
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1996

The Design and Implementation of a Toolkit for the Creation of The Design and Implementation of a Toolkit for the Creation of

Virtual Environments Virtual Environments

Jesse Kinross-Smith
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Kinross-Smith, J. (1996). The Design and Implementation of a Toolkit for the Creation of Virtual
Environments. https://ro.ecu.edu.au/theses_hons/694

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/694

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41536978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F694&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/694

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

The Design and Implementation of

a Toolkit for the Creation of Virtual

Environments

J. Kinross-Smith

B. Sc. (Computer Science) Hons

1996

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

THE DESIGN AND IMPLEMENTATION OF A

TOOLKIT FOR THE CREATION OF VIRTUAL

ENVIRONMENTS

ay

Jesse Kinross-Smith

A Thesis submitted in partial fulfilment of the requirements for

the award of

Bachelor of Science (Computer Science) Honours

at the Faculty of Information, Science and Technology,

Edith Cowan University.

Date of Submission: 31st March, 1996

Field of Research Code/Socio-Economic Objective/Research Type
059903 Virtual Reality and Related Simulallon/100101 Application tools and system utimiestApplied Science

TABLE OF CONTENTS

ABSTRACT ... 4

DECLARATION ... S

ACKNOWLEDGMEN'fS .. 6

1 INTRODUCTION .. 7

2 PROBLEM .. tO

2.1 THEBACKGROUNDOFTHEPROJECT ... 10

2.2 THESJGNIFICANCEOFTHEPROJECT .. 10

2.3 THEPURPOSEOFTHEPROJECT .. 11

2.4 PROJECT OBJECTIVES .. 11

2.5 DEFINITION OFTEP.MS ... 13

3 LITERATURE REVIEW .. 16

3.1 GENERAL LITERATURE ... 16

3.2 LITERATURE ON PREVIOUS FINDINGS .. 18

3.3 SPECIFIC STUDIES SIMILAR TO THE CURRENT PROJECT ... 20

3.4 LITERATURE ON METHODOLOGY ... 21

4 ANALYSIS AND DESIGN .. 23

4.1 DESIGN OVERVIEW .. 23

4.2 SYSTEM MODEL .. 24

4.3 SYSTEM)NTEGRATIONPLAN ... 26

4.4 USER iNTERFACE DESIGN .. 27

4.5 SUMMARY ... 34

Page 1

5 IMPLEMENTATION .. -35

5.1 IMPLEMENTATION OVERVIEW .. 35

5.2 DEVELOPMENT STANDARDS AND PROCEDURES .. 37

5.3 SYSTEM STRUCfURE .. 39

5.4 EVALUATION AND TESTING ... 49

5.5 SUMMARY ... 49

6 FINDINGS .. 50

6.1 DISCUSSION ... 50

6.2 APPLICATION AND USE OF THE PROJECT .. 54

6.3 FuRTHER RESEARCH ... 55

6.4 CONCLUSION ... 56

REFERENCES .. 58

APPENDIX: IMPLEMENTATION SOURCE CODE ... 60

Page2

LIST OF FIGURES

2.1 RELATIONSHIP HIERARCHY FOR REND386 13

3.1 GENERATIONS OF USER INTERACTION 20

3.2 PROTOTYPING MODEL 21

4.1 CURRENT SYSTEM MODEL FOR VR-386 24

4.2 SYSTEM INTEGRATION MODEL 26

4.3 POWERGLOVE GESTURE TABLE 29

4.4 ACTIONS AND EQUIVALENTS 30

4.5 TRANSIT POINTS IN 'I11E VIRTUAL CONS1RUCfiON SITE 31

4.6 PALETTES- EXTENSIONS TO THE USER'S WORKSPACE 32

PageS

ABSTRACT

Virtual Reality is a field that is steadily increasing in popularity and

interest. New developments in both hardware and software have

empowered developers with new devices allowing faster and better quality

interaction with virtual environments. However, the emphasis of research in

virtual environments has been more concerned with development of new

display and input devices, as opposed to the investigation of different

methods of interaction that a three-dimensional environment offers.

This project designs and implements a three-dimensional, interactive,

virtual environment development system upon an existing three-dimensional

rendering engine. The aim of the project is to allow users to generate virtual

environments with ease through a simple and intuitive user interface.

Support for a gesture-based input device has been provided, as well as

for more conventional two-dimensional input devices such as the mouse and

joystick. By catering for a variety of input devices, various different forms of

input have been examined in terms of lheir strengths and weaknesses.

It is through the use of techniques developed throughout this project that

designers of virtual environments may go about their work with greater

efficiency and simplicity, allowing users to concentrate on the development of

the environment, rather than being limited by the tools they possess.

Page4

DECLARATION

I declare that this thesis does not incorporate without acknowledgment

any material previously submitted for a degree in any institution of higher

education, and that, to the best of my knowledge and belief, it does not

contain any material previously published or written by any other person

except where due acl<nowledgment is made.

Signature:

Date:

Page 5

ACKNOWLEDGMENTS

I would like to thank the following people for making this work possible.

Dr Thomas O'Neill, whose invaluable assistance enabled me to finish this

thesis, and who gave me his time and patience to help and guide me

towards completing the project.

Dr James Cooper, who encouraged me in designing and developing the

software portion of the project.

My parents, Russell and Shirley, and my sister Grace, for supporting me

and giving me the space I needed, and helping me throughout the whole

course.

My friends, who offered advice, support, and that nagging 'Shouldn't you be

doing some work on your thesis?' when I needed it.

Sharon, who supported me and kept me going.

Special thanks to Darren, Scott, Chris, and Andrew for their comments,

criticisms, opinions and ideas.

Page 6

1 INTRODUCTION

Today, researchers in the field of Computer Science investigate many

interesting topics that are expected to enrich human endeavour. To this end,

the provision of a user-friendly human-computer interface enhances the

acceptance and viability of the researcher's efforts. A topic that attracts

considerable attention is that of virtual reality, which permits a user to interact

with a computer simulated environment.

For the reader unfamiliar with this area of Computer Science, some initial

insight may be gained through the following dictionary definitions:

Virtual: "being in essence or effect but not in fact"

(Webster's Dictionary, 1981/

Environment: ''act of surrounding; surroundings; external conditions in which a

person or organism lives"

(Penguin English Dictionary, 1974)

Metaphor: '8 figure of speech in which a word or phrase literafly denoting one

kind of object or idea is used in place of another to suggest a likeness or analogy

between them (as in the ship plows the sea): an implied comparison"

(Webster's Dictionary, 1981)

The aim of this project is to produce an intuitive, user-friendly, and

effective development system for the creation of virtual environments in

three-dimensional space. The realisation of this aim is strongly dependant

on the notion of metaphors, whose concepts are employed in the design of

the accompanying user-interface. This is not the first usage of metaphors in

user-interface design; indeed, they are intrinsic to the Macintosh Operating

System (Mountford, 1994) which has been commercially available for more

than a decade. This system provides a very intuitive environment for

learning and development; hence its widespread acceptance and promotion

in educational establishments is understand~ble. Some of the intuitive

metaphors employed by the Macintosh Operating System to simulate real

objects are its virtual desktop, files, folders and trashcan. Furthermore,

Page 7

within the desktop simulation, the provision of layered windows suggests tho

concept of sheets of paper that might be stacl;ed upon the desktop

(Mountford, 1994).

Humanity's habitat occupies three-dimensional space, therefore a virtual

environment should also exist in three-dimensions if it is to provide a

complete human-oriented service. To achieve a high level of service, special

care needs to be exercised when designing appropriate interaction methods

for the user-interface. With this foremost in mind, the project has been

directed towards the experimentation with new interaction methods for three

dimensional environments.

In association with the conventional forms of interaction via the keyboard

and mouse, the user of a gesture-based input device for interaction with the

virtual environment is explored. Specifically, the exploration is limited to a

device called the PowerGiove, which was developed for interactive use with

the computer. The PowerGiove is a more economic alternative to the

Dataglove, which is prevalent in virtual reality applications and research.

Consisting of a number of resistive-ink flex sensors attached to a lycra glove,

the PowerGiove provides feedback on the relative dispositions of the finger

joints. Furthermore, in conjunction with information from acoustic trackers

mounted on the back of the lycra glove, the PowerGiove provides the means

of accurately locating its position in three-dimensional space (Sturman &

Zeltzer, 1994).

The PowerGiove offers a three-dimensional form of interaction superior

to the more conventional two-dimensional forms (e.g. keyboard and mouse)

and it allows direct mapping of points to a three-dimensional environment.

Thus, the combination of hand gestures and the ability to pinpoint location

allow a more intuitive interaction with such environments.

Though physical feedback (i.e. the ability to feel objects) from the

environment is not possible through the PowerGiove, feedback may be

provided visually in order to permit the user to employ natural gestures, such

as grabbing an object by "closing one's hand over it". This type of gesture is

routine for a user and it demonstrates the intuitiveness of the interaction with

the virtual environment.

PageS

The realisation of the aforementioned aim, i.e. a three-dimensional

virtual environment development system, is named the Virtual Cr~struction

Site (VCS) and it is essentially a system that may be used to ere,;;,,, in a

bottom-up fashion, such environments taking advantage of a collection of

primitive three-dimensional building blocks.

The discussion to this point has been in general terms; consequently,

Chapter Two provides greater detail on the background of the project,

outlines its significance, states its purpose and objectives, and defines the

fundamental terminology.

Chapter Three contains a literature review of research into virtual

environments, user-interface design and gesture-based interfaces. The

review covers general literature in these areas, describes previous findings,

discusses specific studies similar to the current project, and includes

commentary on the methodology employed.

Chapter Four treats the analysis and design of the project. Specifically,

there is a design overview (incorporating the goals, objectives, etc), a

detailed system model, a system integration plan and an investigation into

the design of the user interface. This chapter ends with a summary of its

achievements in this phase.

Chapter Five describes the implementation in intimate detail. Beginning

with an overview of the requirements for hardware. software, language,

development tools, etc., then continuing with the development standards and

procedures, a discussion on the structure of the system, and the evaluation

and testing performed to ensure quality. It concludes with a concise resume

of attainment in these regards.

Chapter Six discusses the findings, suggests potential application areas,

and outlines the implications for future research in this field. Finally, it draws

conclusions about the overall success and achievements of the project.

The document incorporates the implementation source code as an

appendix.

Page 9

2 PROBLEM

2.1 The Background of the Project

Virtual Reality (VA) may be defined as "an advanced human-computer

interface that simulates a realistic environment and allows participants to

interact with it" (Latta & Oberg, 1994, p. 23). A virtual environment is the end

result of this process, be:ng an environment which simulates the real world

as close as is needed for the particular problem at hand.

As Richard Quinnell stated (Quinnell, 1993, p. 48) in his article on virtual

reality design software: "It is software, not specialised hardware, that lies at

the real core of VA". To develop an effective virtual reality system, emphasis

needs to be placed upon tho software for designing the environments to

ensure that it is not an area of contention in the development of virtual

environments.

One of the main reasons behind the decision to support a gesture-based

device is to provide a more intuitive and functional interface for the design of

virtual environments. A gesture-based input device, such as the

PowerGiove, allows a task to be performed in three-dimensional space more

intuitively than it would be under a two-dimensional oriented input device.

The enhanced intuition provided by a gesture-based input device is due

largely to a "direct mapping between gesture and the manipulated object"

(Kurtenback & Hulteen, 1994, p. 311).

Care must be taken in designing a gesture-based interface, however, as

"[The mixing of metaphors] presents inconsistent information to the user, and

can ultimately prove disastrous. An example from VA is using a glove to

both steer in 3d and to select options from a 2d menu". (McGuinness &

Meech, 1992, p. 3).

2.2 The Significance of the Project

The successful design and development of any product relies on the use

of effective and efficient tools. In the field of virtual reality, there are a very

Page 10

limited number of tools for building virtual environments that do not require

expensive hardware and software. Users that cannot afford these costs

have to turn to freeware packages like REND386 or one of its derivatives

(AVRIL or VR-386) in order to do their work. The interfaces to these

packages, being text-based, tend to discourage anything other than casual

use, limiting any benefits that might be achieved through the construction of

virtual environments to that of the larger budgeted projects which may afford

the more expensive packages.

2-3 The Purpose of the Project

By designing a three-dimensional interactive virtual environment

development system on top of a package like VR-386, users may generate

virtual environments with ease and simplicity, allowing thern to concentrate

on the problem at hand, and thereby increasing their effectiveness in

producing virtual environments. There are a few similar tools available (such

as SenseS's WorldTooiKit and Autodesk's Cyberspace Development Kit);

however, these tools are very expensive which precludes anything other than

commercial use. By producing a system that allows the design and

construction of virtual environments on a low-end scale, it is possible for a

larger group of users to develop products and perform research in the field of

virtual reality.

2A Project Objectives

In order to create a virtual environment development system, the project

has been broken up into a number of distinct objectives to be achieved.

These are outlined below:

Software

• Virtual Construction Site (VCS)

The Virtual Construction Site is the name given to the project, and

consists of a three-dimensional interactive environment for the creation of

virtual environments that offers the following:

Page 11

• The means by which the user may construct a virtual environment

using a consistent and intuitive interface.

• Support for a gesture-based interface, as well as a conventional

interface for traditional forms of input such as the mouse, keyboard,

and joystick.

• The ability to select simple three-dimensional objects from a defined

set, allowing the user to incorporate these into the virtual environment

being created.

• Facilities for storing commonly used objects, allowing them to define a

set of common objects that they may reuse to create their

environment.

Hardware

• PowerGiove Conversion

In order to utilise a PowerG/ove on a IBM PC compatible platform,

modification of the PowerG/ove is necessary. The modification was

performed using the information given in Eng/owstein's BYTE article

(Eng/owstein, 1990), and involved rewiring the PowerG/ove cable so that it

uses a 25-pin parallel port connector instead of the standard Nintendo

socket. A source of power became an issue, as the PC parallel port offers

no voltage Jines, however, thr0ugh utilisation of the 15-pin game port found

on many personal computers, this problem was solved.

Theoretical

• Study of three-dimensional interaction techniques

In developing an interface for a three-dimensional environment, one has

been able to explore different metaphors for navigation, object manipulation

and interaction within the environment. Experimentation and feedback are

key principles in designing successful user interfaces, as stated by Myers,

"the only reliable way to generate quality interfaces is to test prototypes with

users and modify the design based on their comments" (Myers, 1989).

Page 12

2.5 Definition of Terms

Below are the definitions for a number of important terms which are used

in this proposal.

AVRIL

AVRIL is a virtual reality programming library which has its origins

from REND386. AVRIL is similar in feel for the end user as REND386,

however the code has been extensively modularised and re-ceded, so

as to make it easier for the programmer. The AVRIL library is still being

improved and updated, and is currently in version 2.0, with a version 2.5

looking to offer additional enhancements. One of the drawbacks of

AVRIL, however, is that it does not contain the support for the

PowerGiove that existed in REND386.

Figure 2.1 below illustrates the relationship between the project

and the packages REND386, AVRIL and VR-386.

REND386

~ve~
AVRIL VR-386

I
vcs

FiQure 2.1: Relationship Hierarchy for REND386

Garage-VR

Garage-VR is the term given to virtual reality hardware and

software that is generally developed by individuals with very limited

budgets; in effect, 'working with the parts from one's garage'.

Page 13

PowerGiove

The PowerGiove gives feedback on the current positioning of the

hand in 3-dimensional space, as well current finger positioning and hand

rotation. Aimed at being a cut-down consumer version of the Data Glove,

the PowerGiove is very rugged and hardy in design and, hence, is an

ideal 'Garage-VR' device. Due to lack of consumer interest at the time of

production, however, Mattei stopped producing the PowerGiove several

years ago, and so obtaining one is sometimes a difficult venture.

REND386

REND386 is a virtual reality rendering engine and library which

was developed upon the 80386 architecture for general use. The source

code to REND386 is freely distr;huted; thus, it is quite popular amongst

Garage-VR enthusiasts. The code provides support for a number of

Garage-VR input and output devices, iocluding the PowerGiove.

Virtual Environment (VE)

A world that is simulated entirely within the memory of a

computer. A virtual environment might consist of a three-dimensional

model of a house, or a visualisation of a set of complex data, or any

number of things. It is through virtual reality that users are able to create

and explore these virtual environments. (Aukstakalnis et al., 1992, p. 12)

Virtual Reality (VR)

There are a number of definitions for virtual reality, and a number

of different interpretations of what constitutes a virtual reality system.

Probably the most general description of virtual reality is that given by

Jaron Lanier (who coined the term): "A computer-generated, interactive,

three-dimensional environment in which a person is immersed".

(Aukstakalnis et al., 1992, p. 12)

VR-386

VR-386 is another derivative of REND386, and consists of a

clearly defined programming interface to a virtual reality programming

library. Like AVRIL, it has been extended to provide greater functionality

Page 14

and ease of use for the programmer. VR-386 also provides support for

the PowerGiove, however, it is not currently being maintained by the

author. It was this package that was eventually chosen as the basis for

implementation of the Virtual Construction Site.

Page 15

3 LITERATURE REVIEW

3.1 General Literature

In order to understand the field of virtual reality, and what research and

development is currently being undertaken in this field, one must first have a

good understanding of the basic concepts involved.

One of the first books to describe the field of virtual reality was written by

a journalist who travelled to a number of important research centres around

the world for virtual reality research. Rheingold's book, 'Virtual Reality'

(1991) covers the many areas of research and development in this field.

Written in a biographical manner, the book gives the reader a good

understanding of where various areas of virtual reality are in terms of

research and development; however, the book does not explain the reasons

behind their particular approaches to research, nor does it describe in detail

the underlying theory.

Watt (1989), Foley (1991), and Vince (1992) all provide excellent in

depth information on 3-dimensional graphics and modelling, areas in which

the project has investigated to some depth.

Aukstakalnis (1992) contains various useful definitions of terms used in

the field of virtual reality, and also describes the many diverse areas of

research that are being done in this field, as well as illustrating the theoretical

concepts behind the research.

Roehl (1993) and Gradeki (1994) are primarily aimed at the 'Garage-VR'

enthusiast. Both books also contain large collections of im'ormation about

companies doing research in the field of virtual reality, and locations where

further information may be obtained via online services or through the

Internet. Two of the authors of 'Virtual Reality Creations' were also the

authors of REND386, and so it is not surprising that most of the discussion is

about the REND386 software package. The book does, however, give a

good introduction to Virtual Reality, as well as details on how to modify a

variety of equipment, including a PowerGiove, for use with a PC.

Page 16

Gradeki (1994) explores REND386 from a programming perspective,

and contains many good examples and source code for adding special

features to REND386 applications, including adding allowing shared virtual

worlds through the serial port or modem lines. Gradeki also examines many

design and performance issues of note, including that of realism versus

speed in a virtual environment.

Though a realistic world may be the ultimate goal, Gradeki asserts that

one should not necessarily sacrifice speed in order to achieve this, as a

faster frame rate has the advantage of creating a smoother sense of

immersion within the environment. Therefore a well designed virtual

environment should have a careful balance of the two, combining smooth

movement and response times, with enough detail for the user to clearly

recognise everything in the environment.

Benedikt (1994) and Laurel (1994) both contain large col/ecticns of

papers aimed at discussing the theoretical design concepts behind user

interfaces and virtual reality. In particular Bricken's paper (1994) which

describes the differences between the paradigms used for screen-based

interface design and that used for creating virtual worlds.

There are also two excellent electronic discussion groups on the Internet

which are invaluable for research in the field of virtual reality. The USENET

news group 'sci. virtual-worlds' is the medium by which many of the

researchers and developers in the field of virtual reality discuss aspects of

research, design and implementation of projects. A special electronic

'mailing list' for the discussion of utilising and modifying the PowerGiove for

use with various hardware is also available on the Internet.

Page 17

3.2 Literature on Previous Findings

The first article to outline how the PowerGiove could be modif;ed tor the

PC was published in BYTE magazine (Englowstein, 1990), since then, the

PowerGiove has been one of the most commonly used devices in Garage·

VR research. Englowstein's article also described how the PowerGiove

could be used as a simple mouse or joystick, however, this was only utilising

the low-resolution mode of the glove and no three-dimensional positioning

information was given using this mode. In order to access the high

resolution mode of the PowerGiove, and thereby gain the full use of the

PowerGiove's capabilities, a special initialisation protocol needed to be used.

A framework for designing an interface tor the creation of three

dimensional objects is outlined in a paper by Sittas (1991) who describes a

new user-interface method tor creating and manipulating three-dimensional

objects. The framework is based on a set of three-dimensional grids and

finite construction planes which can be used to define sub-spaces within the

environment. Each sub-space can then contain more complex detail about

the objects within their volume, thus alleviating the difficulties of sketching

and defining complex solids and assemblies in three-dimensional space via a

two-dimensional screen quickly.

In McGuinness and Meech's article (1992) about the human factors in

virtual world design, the reader is confronted with the problem of mixing

metaphors whilst designing the interface to a virtual environment. The article

maintains that virtual reality systems must possess consistent infomnation

structuring and representations which can be readily perceived and

understood by the user, and that for these systems it is even more important

to have a cohesive design theory.

Quinnell's article (1993) breaks a virtual reality system into a number of

integral parts which cater for various aspects of the environment created.

Quinnell defines that virtual reality software must be comprised of three main

sections:

• an object database, containing the descriptions of the objects, as well

as attributes such as colour, motion, and orientation;

Page 18

o a device manager, provide a link to the input and output devices,

monitoring the various positioning and tracking devices, and updating

the display; and,

o a simulation manager, the heart of the system, coordinates the other

sections' activities and tracks object attributes, collisions. and user

viewpoints.

Latta and Oberg (1994) define a number of elements to a virtual reality

development system in their paper "A Conceptual Virtual Reality Model". By

breaking it into a number of conceptual parts, a better understanding oi the

human and technical elements that make up virtual reality systems may be

achieved. Furthermore, they describe how human perceptual and muscle

systems can be used to provide sensation and action within a virtual

environment. The cognitive and psychological centres of the human brain

interpret the sensations given by the environment and respond with

appropriate stimuli, thereby creating the sense of immersion within the

environment.

The concept of metaphors and how they should be used is further

outlined in an article called 'Tools and Techniques for Creative Design'

(Mountford, 1994). Mountford's describes metaphors as powerful verbal and

semantic tools for conveying both superficial and deep similarities between

familiar and novel situations. Mountford also presents a number of steps

which can be used to help designers create new interface concepts.

Apart from a number of books which illustrate how to connect the

PowerGiove to the PC (Roehl, et al., 1993; Gradeki, 1994), and provide

software for communicating to it, the glove has also been compared to more

expensive devices such as the DataGiove (Sturman & Zeltzer, 1994).

Sturman and Zeltzer review the underlying theory behind glove-based input,

and compare a number of the glove-based input devices available.

One article of particular interest when considering using the PowerGiove

as an input device is "Gestures in Human-Computer Communication"

(Kurtenbach & Hulteen, 1994) which discuss a number of ways in which a

gesture-based device (such as the PowerGiove) may be used for interaction,

navigation, or immersion, into a three-dimensional environment.

Page 19

When designing the virtual environment interface itself, there are a

number of elements that need to be considered: namely, the type of

interaction methods used, the forms of feedback given, and the level of

complexity incorporated into the interface. In order for a system to be

intuitive and easy to learn and use, careful attention needs to be paid to the

design of the interface, which should consist of a fine balance between

simplicity and functionality.

Fisher (1994), in his paper on "Virtual Interface Environments" describes

the experiences of the Aerospace Human Factors Division at the NASA

Ames Research Center. Fisher describes the evolution of the Ames Virtual

Environment Workstation and the problems they encountered when

designing the interface to the virtual real'lty system.

In an article entitled "Through the Looking Glass", Walker (1994) outlines

the history of user interaction methods. According to Walker, user

interactions may be categorised into five generations, as listed in Figure 3.1.

First Plugboards, dedicated set--up Front Panel

Second Pur.ched cards, Batch processing Countertop

Third Timesharing Terminal

Fourth Menu systems Menu Hierarchy

Fifth Graphical controls, WIMP interface (Windows, Icon, Screen

Mouse, Pointer)

Sixth Cyberspace ?

Figure 3.1 : Generations of User Interaction

3.3 Specific Studies Similar to the Current Project

Presently, no studies of a similar nature to this project are known to

exist. Daniel Lau, an honours student at Curtin University in Western

Australia has been doing some research into using a PowerGiove with a

Silicon Graphics Workstation, however, he is still currently doing this

research, and no real information has been available except for his honours

proposal (Lau, 1994).

Page 20

3.4 Literature on Methodology

The prototyping approach is a well defined methodology for the design

and development of software. Pressman (1992) is an excellent reference

book for all aspects of software design and development, covering

approaches to system and software analysis, design and implementation of

software, aspects of quality assurance, and software testing strategies.

Start

Fi~ure 3.2: Prototvpin!l Model

The project has been developed using a prototyping approach to

application design. This approach has a number of advantages over other

approaches in that it allows continual re-evaluation of the interface to the

application, providing feedback to the progress and success of the project

through the implementation phases. Figure 3.2 illustrates the traditional

prototyping model for software development.

Page 21

The prototyping approach to development consists of the following steps:

1. Producing an initial prototype for the system; in effect a shell to which the

functionality of the system will be added,

2. Refining and evaluating the system, and making any changes to design

that are seen as needed,

3. Adding functionality to the system in a modular fashion, and repeating

steps two and three until the full system has been developed, and no

further revisions of the system are needed.

One common problem with this development methodology is that the

scope of a project gradually expands if not constrained and managed

properly. In order lo avoid this "expansion" of scope, strict design goals were

set early in the design phase of the project, and these were not allowed to

change.

Page 22

4 ANALYSIS AND DESIGN

4.1 Design Overview

The development of any software package requires considerable effort

to be spent on the design phase. This is especially true with the project, as

for any system where the software empowers the user with the ability to

create. The Virtual Construction Site must therefore be carefully planned

and guided, and in order to be able to do this, a detailed description of what

needs to do has to be performed.

As described in earlier chapters, the Virtual Construction Site is to

provide the following:

• Offer a seamless user interface to the virtual environment. Users

should be able to navigate around the environment with ease, and be

able to manipulate the environment with an intuitive user interface;

• A transparent interface for two and three dimensional input devices,

will also be provided, enabling users to use whatever input device they

feel comfortable with. Support for the mouse, joystick, keyboard and

PowerGiove will be provided through this interface; and,

• Allow the user to to utilise basic building blocks and a drag and drop

style of interface to create a virtual environment.

The Virtual Construction Site is to be developed using the VR-386

library, which will provide the basic functionality tor rendering and

manipulating a virtual world. The VR-386 library has been written for the IBM

PC platform, and the full source code is freely available. The following

chapters describe the design and layout of this package, and illustrate how

the Virtual Construction Site will be incorporated into this package.

Page 23

4.2 System Model

The VR-386 package is design8d to be a large set of programming

modules which are incorporated into a single application programming

interface (API). Designed to allow the building of virtual-reality applications

through the use of this API, the lfR-3861ibrary of routines provides a number

of modules in order to achieve this.

On the lowest level of support, the modules provide a sophisticated

rendering engine, an integer mathematics library, file system and device

support, and memory management. On top of this layer of building blocks, a

number of more sophisticated modules are built, providing support for the

manipulation of objects, generic pointer device layers (including support for

input devices such as the mouse, joystick and PowerGiove), management of

Lighting

Rendering

Primitives

Virtual Reality

A

Operating

System

/

VR-386 API

Figure 4.1: Current System Model for VR-386

Page 24

File

world File

Support

Support Object File
Primitives

the virtual world, support for managing cameras and viewpoints, colour,

lighting and the user's body within the virtual environment.

Support for loading and saving objects and worlds to the file system,

basic task management for animating objects, as well as routines for

managing the screen and enabling user interaction arc also provided in this

layer.

The system model given in Figure 4.1 illustrates the organisation of the

various modules within these layers. Each module has been developed

using the primitives provided by the layers below it, or through integration

with modules on the same layer as the module. All of these layers are

accessible through the API, giving the programmer a fairly complete interface

with which to build a virtual reality application.

The VR-386 package is designed to be primarily a programming

interface, and although a skeleton application is included, it provides only

basic support for the features of the package.

Page 25

4.3 System Integration Plan

The Virtual Construction Site (VCS) aims at integrating with the existing

application programming interface, and provide additional functionality to the

system, as well as improve the user interface. In order to achieve this,

particular emphasis needs to be placed on how the new features will

integrate with the existing system in order for it to achieve the desired

functionality.

Virtual Reality

Viewpoint Management

Suppo Primitives .-----

----..:::::::
Color ~

Support

Lighting

Rendering

Primitives

Operating

System
File

Support

Suppon

Object File

/
\

milives ~Support
Integer Math

Primitives User
Manipula

7
tion Interface

Management User Body\ Manage~en0."
World I Scree~ ·~~ppo

Management\

VR-386 API

Figure 4.2: System Integration Model

A system integration model is given in Figure 4.2, which illustrates,

through the previously described system model, how the VCS module will

integrate with all layers of the system.

Page 26

In order for the Virtual Construction Site to be able to integrate smoothly

with the VR-386 library, a number of "hooks" have been used inside the

existing VR-386 library code. These "hooks" are effectively a form of linking

between the system and the new VCS module, allowing it to take control of

the system at particular moments during execution.

A list of the "hooks" present in the VR-386 library, and the associated

VCS routines they are linked is given ;~ Chapter 5.3- System Structure.

4.4 User Interface Design

As the user interface was a major design goal for this project,

considerable emphasis has been placed on the design of the interface, to

ensure that an effective and intuitive final interface to the package was

produced.

This section will discuss the various issues involved with each of the

elements of the interface, and describe the reasons behind the choices

made.

Interaction Methods

Due to the number of devices suppo11ed by the package, there are

several different methods for interaction available at any one time to the

user. The user may decide to point with the glove to select an object, or the

mouse may be placed over an object and the left mouse button clicked to

select the object, or the joystick or keyboard may be used to select the

object.

To provide a smooth transition between all of these fomns of interaction,

the interface style has been designed similarly for each device. By designing

a similarity between the interface styles, users may change between input

devices as they feel appropriate with minimal differences in the functionaiity

or principles behind the interface.

Page 27

Interface Modes

There are two distinct modes which may be used in the program,

Navigation Mode and Placement Mode. The user interface style changes

dramatically between these two modes.

In Navigation Mode, the interface is designed to allow the user to explore

the environment, and all actions, whether they be movement on the mouse,

or gestures with the glove, are interpreted to be movement within the

environment.

In this mode the glove functions similar to a helicopter, allowing the user

to use simple intuitive gestures to move around the world, while controlling

the speed through flexing of the glove; while the hand is flat the user is

motionless, and speed will gradually increase as soon as fingers are closed,

achieving maximum speed if the hand is clenched into a fist gesture. If using

a mouse or joystick, this mode works similarly, save for the method of

controlling movement. Movement of the pointer to the top and bottom of the

screen cause movement either in a forward or backward direction -the

further away from the center point of the screen, the faster this movement

would be.

Any movement of the pointer to the sides of the screen will cause the

user to rotate in that direction, the further away from the center point of the

screen the pointer is located, the faster the rotation in that direction.

If forward motion is achieved, then the direction of the movement is

always in front of the user, thus any turning or rotation while moving will

cause a change in direction and the user will start to move in that direction.

In addition, any objects that are "grabbed" before this mode is selected

are also moved along with the user until the mode is changed and the

objects are released.

Page 28

1\ ·.··· ..
''\·x~··.·.· . ..

. .

pi~ch ·~·~
poinl middle-In ring· in

Figure 4.3: PowerGiove Gesture Table (reproduced from Stampe et al.)

In Placement Mode, the default mode, the user ·,s kept stationary, while

the glove is used to "grab" or "release" objects. The ability to manipulate the

selected object(s) is also provided through this mode.

Of the eleven basic gestures that can be detected from the

PowerGiove's finger sensor data, only seven can be reliably recognised due

to finger and thumb calibration problems. Figure 4.3, reproduced from

Stampe et al. (1993), shows the eleven gestures, and the arrows indicate

how the gestures are combined.

There are a number of basic tasks that can be used in Placement Mode,

some of these having direct gesture equivalents, other more complex tasks

do not have intuitive gesture-based equivalents, and must be accessed

through the use of context-sensitive menus via the keyboard.

Page 29

Figure 4.4 demonstrates the equivalent PowerGiove and Mouse actions

necessary in order to perform a number of tasks ranging from the simple to

more complex.

Selecting an Object Point Left Mouse Button

Grabbing an Object Clench Fist Right Mouse Button, Select Grab

Releasing an Object Release Fist Right Mouse Button, Select Release

Rotating an Object Pinch Right Mouse Button, Select Rotate

Move an Object Grab Object, Move Hand Grab Object, Move Mouse/Joystick

Change Interface Mode Button A Right Mouse Button, Select Change Mode

Change an Object's Colour Must use keyboard Select Object, Right Mouse Button, Change Colour

Destroy an Object Must use keyboard Select Object, Right Mouse Button, Destroy Object

Figure 4.4: Tasks and Equivalent Actions

Palettes

The concept of a palette is derived from the typical artist's tool to help

them build their scenes.

Palettes used in the Virtual Construction Site, however, are used to hold

objects, rather than colours. Objects from these palettes may be selected

and dragged into the user's environment, enabling users to use these objects

to construct complex worlds using a number of basic objects.

In order to utilise palettes, a description of how the interface is designed

should first be covered.

Palettes are accessed through the use of a concept called transit points.

These transit points are sections of the screen which are devoted to

transferring the user in between the user's workspace and the palettes.

Page 30

Figure 4.5 illustrates where the transit points are located in the Virtual

Construction Site.

Transit point back to
the Main User World

Transit point to
the Usr.~ Palette

Figure 4.5: Transit Points in the Virtual Construction Site

Two palettes are available for use, the 3d Palette and the User Palette.

Using these palettes, and a drag-and-drop style of visual interface, users are

able to create virtual environments in a very intuitive manner, and with much

greater ease of use than with a textual method of interaction.

"Dragging" and "dropping" three-dimensional objects from a palette is a

three-dimensional interaction technique. Based on a metaphor akin to the

one humans use to move objects around in real life, this method translates

easily to gesture-based input devices, as well as to two-dimensional input

devices.

Each of the palettes are described in greater detail below.

Page 31

3d Palette

This palette holds a collection of basic three-dimensional objects, which

may be reused (akin to a colour paint palette).

The objects in this palette are:

• Cube;

• Sphere;

• Pyramid;

• Cylinder; and,

• Cone.

These objects may be used in the construction of the user's environment

simply by selecting and dragging the appropriate object back into the user's

world.

30
Palette

0
Main

World

User
Palette

DOD
v 6

Figure 4.6: Palettes- Extensions to the User's workspace

Page 32

User Palette

Similar to a mixing palette, the User Palette holds commonly used

object~ available for reuse. The User Palette can be envisioned as a small

world or room in which the user might store blueprint objects that ready lor

reuse by the user, and/or are convenient to have on hand.

The user may "grab" objects from within the palette, and "drag" them into

the M!iin User World. The object actually dragged is merely a copy of the

object, and not the original blueprint, therefore allowing it to be reused more

than once.

An object may also be dragged from the Main User World into the User

Palette, thereby adding an object to the palette, and making it a blueprint.

An object may also be loaded directly into the User Palette, and this will also

cause it to become a blueprint.

Context Sensitive Actions

Not all tasks can be represented in an intuitive fashion, and for these the

aim is not to make the action more intuitive, but to make it easier for the user

to be able to perform it. In the Virtual Construction Site, this is achieved

through the use of context sensitive menus. The user may invoke a context

sensitive menu at any time, and the menu hierarchy that appears depends

on what the user is doing, and the current state of the program. If no objects

are selected, the following options are displayed:

• Navigation Mode;

• Help;

• Information;

• Goto Location;

• Save World; and,

• Quit.

If a single object is selected, then this menu becomes:

• Save Object;

• Paint Object;

• Resurface Object;

Page 33

o Destroy Object;

o Twirl Object;

o Make Object Fixed; and,

o Information.

While if more than one object is currently selected, then the menu becomes:

o Paint All Objects;

o Resurface All Objects; and,

o Destroy All Objects.

By altering the menu structure according to the user's actions, the

actions which can be performed at that state become both easier to access,

and also more intuitive.

4.5 Summary

The design processes and priorities salient throughout the project have

been examined in this chapter. Discussion now turns to the implementation of

these designs.

Page 34

5 IMPLEMENTATION

5.1 Implementation Overview

In order to design and implement the project, a number of

implementation decisions needed to be made. These included such issues

as the platform the software would be designed to run on, the hardware and

software needed to design and implement the package, and what language

and development environment would be used to build the project. These

issues will be discussed in order in this chapter, together with the reasons for

these decisions.

Platform

In order to enable the most number of users to use this package, the

IBM PC platform was chosen as the development platform. This was further

compounded by availability of the VR-386 library, which only runs on the PC

platform. Unfortunately this also restricted the development to DOS based

applications, as the VR·386 library only supported DOS video modes.

Another strong reason behind this choice was the availability of

documentation for connecting the PowerGiove to the IBM PC's Parallel Port.

Other options were evaluated, however, the Minimal Reality Toolkit, obtained

from the University of Alberta, Canada, was also a viable option, and this ran

under UNIX with X· Windows and OpenGL. However, due to lack of

computing resources, it was not possible to get access to a machine with the

capabilities or configuration necessary to enable any further evaluation of

this software. This platform also limited the range of users who could

possibly utilise the software also, as UNIX machines of the desired

configuration make up only a small part of the computing market.

Page 35

Hardware Used

The following hardware was used to design and implement the project:

• A 486DX4 running at 1 OOMHz was used as the development platform,

this was equipped with a parallel port and game port for connection of the

PowerGiove (see below),

• A customised PowerGiove was used in developing and testing the,

system. This was modified' to be connected via the parallel port on a

conventional PC, and a 5V power source was obtained through the game

port on the PC.

Software Used

In addition to the hardware used, a number of software packages

needed to be used to design and implement the project, the packages used

were as follows:

• Borland C/C++ 3.1 (DOS) as the development software. Borland C/C++

4.0 (Windows) was evaluated as a development platform, but there were

problems with the PowerGiove under Windows 3.1 which rendered it

useless; this was due to timing conflicts between the PowerGiove device

driver and Windows,

• DOS 6.2,

• The VR-386 source code,

• Microsoft Windows 3.1,

• Microsoft Office - Microsoft Word 6.0 was used to write all documentation,

Microsoft Project was used for project management and scheduling, while

Microsoft PowerPoint was used to produce overheads for the final

presentation.

* This was modified along the lines of the specifications given by Eglowstein's BYTE article

(Englowstein, 1990, p. 288)

Page 36

5.2 Development Standards and Procedures

When maintaining code, the majority of a programmer's time is spent

both familiarising themselves with the code in question. In order to assist

this process, a conventional coding style will be followed. This provides a

standard framework for issues such as naming style, internal documentation,

and code layout that will enable a programmer unfamiliar wilh the code to

become familiar with it quickly and easily.

VCS_ Prefix

All Virtual Construction Site procedures, functions, constants and

variables that were visible externally were prepended with the vcs_ prefix.

This notation ensures that all VCS code is easily visible within the VR-386

framework.

Smalltalk-like naming style

All variable names after the prefix have been based on the Smalltalk

style of shifted case with no further underscores. Capitals are used to

denote the beginning of new words in the name.

Thus, a name like vcs_myvariablestring would become

vcs_MyVariableString, making it clearer to read and understand than if

all in lower case.

Internal Documentation

All routines should have comments immediately alter the function

header. These comments should explain in detail what the routine does, and

if a complex routine, should go into some depth. These comments should be

written using the 11 syntax (C++ comments) for code documentation, this

style making it easier should a programmer wish to comment out a large

section of the code using the conventional C form of comments (I' •t).

Page 37

Coding Layout

Code will be structured using a aligned-brace method of code layout.

This allows all braces to be lined up aasily and ensures that braces that are

missing are immediately obvious to the programmer. An example of the

aligned-brace method is given below. (NB. dashed lines are given to show

how the braces line up, and are not actually in the code).

void VCS_ExampleRoutine(int MyVariable)

II This routine basically checks co see if MyVariable is equal

II to True, and if so, then calls VCS_DoRoutineA(J. Regardless

II of whether this occurs or not, VCS_DoRoutineB{) is called

II immediately afterwards.

if (MyVariable)

I
VCS_DoRoutineA(l;

)

VCS_DoRoutineB();

Page 38

5.3 System Structure

This section contains a breakdown of the routines implemented in the

VCS module, along with the modified functionality added to the original VR-

386 library. Below you will find an overview of the extensions added to the

VR-386 library, a description of the system hooks into the VR-386 and where

each module links into the system, along with a comprehensive listing of the

VCS routines and the functionality they provide.

Extensions to the VR-386 library

In developing the Virtual Construction Site application using VR-386,

there were a number of gaps found in the library's support for various

interaction methods and, in some cases, basic functionality. A number of

additional routines have been added to the library, thereby extending the

library's functionality overall.

The features added include:

• The ability to duplicate existing objects without needing to load objects

from disk. Previously the only possible way of creating an object was

to either load one from disk, or to create one from scratch. With the

additional capability of being able to duplicate objects, additional

functionality and features can be implemented to take advantage of

this feature, including the ability to drag and drop copies of an object,

• A more intuitive method for navigation in the virtual environment. Akin

to helicopter movement in many ways,

• Point-and-click interface style for working with objects,

• A structured, more layered approach to working with different input

devices transparently,

• A more consistent and seamless user interface style throughout.

System Hooks

The following list outlines the list of "hooks" made to the VR-386 source

code. Each hook involves a link from the original VR-386 source code to a

VCS routine, combined with some changes in the functionality of the VR-386

Page 39

routine in the given file in order for VCS to function correctly. Each such

modified routine is listed along with the appropriate filename, the VCS

routine that it is now hooked to, and a short description of the reasons

behind this change of functionality. For more information on what each VCS

routine actually does, see the section VCS routines below.

File MAIN.C:

VCS_Initialise()

This hook activates the initialisation code present in the VCS Module,

allowing it to initialise and configure itself.

Fi!e CURSGLOV.C:

VCS_MakeObjectProtected{)

This hook works similarly to that in CURSOR3D.c; protecting the glove

cursor from the object shuffling that takes place when changing in between

worlds.

VCS_ProcessG/ove()

This hook transfers control for all glove actions across to the VCS

module, allowing it to control and maintain the glove user-interface that has

been implemented in the VCS module.

File CURSOR3D.C:

VCS_MakeObjectProtected()

This hook was added in order to make the 3d-cursor objects protected

from the object shuffling that takes place when changing in between worlds.

File CURSOR2D.C:

VCS_ProcessMouse()

This hook was added in order for the interaction with the mouse to be

controlled from the VCS module.

Page 40

VCS_SelectObject()

This hook was added to provide support for the new form of object

selection added by the VCS module. The Shift key can now be used in

combination with the selection action (point or click depending on your input

device) to select multiple objects, which can then be acted upon in concert.

File KEYBOARD.C:

VCS_GetContro/Mode()

VCS_GetWorldMode{}

Both of these hooks were added to enhance the functionality of the

'information' menu option. The 'information' command now displays the

current control mode and world mode, and uses these two routines to get

that information.

VCS_ProcessKeys()

This hook passes control of the keyboard interaction routines over to the

VCS module, allowing it to override the keyboard intertace to allow the

addition of the new features added. These include switching between

control modes, additional menu items, and tranferring between the main user

world and the additional palettes.

VCS_Quit()

This hook was added to enable the VCS module to save its state and

preferences before th~ normal shutdown procedure was run.

File USCREEN.C:

VCS_DisplayPreRenderHook()

VCS_DisplayPostRenderHook()

These hooks were added to enable the VCS module to be able to

display information on the screen before and after the rendering process. It

is through these that the transit points are displayed, as well as the status of

control and world modes, should these display options be activated.

Page 41

VCS Routines

The VCS module is made up of a number of small routines, each

offering additional functionality or working in concert with other routines to do

so. Below you will find a comprehensive list of all the extra routines added

by the VCS module, along with a short description of how these routines fit

into the overall scheme of things.

Initialisation Functions

void VCS_Initialise(void)

This must be called first so VCS may setup everything it needs to run. It

initialises the viewpoint of the user, loads the objects needed for the 3d

Palette, and configures the program's state

Control Mode Functions

These routines let you change between the possible control modes:

Navigation Mode- Where the pointer is used to allow the user to fly

around the environment.

Placement Mode - Where the pointer is used to allow local object

manipulation, so the user may select, grab, and

move objects.

void VCS_ChangeContro/Mode(int NewContro/Mode}

This routine accepts either one of the following:

VCS_NavigationMode

VCS_PiacementMode

and changes to that equivalent mode. If thai mode is already active, then

this function is ignored.

char •vcs_GetContro/Mode(void}

This routine returns a string corresponding to the current control mode.

This function is primarily used for reporting the status of the current control

mode.

Page 42

Object Protection Functions

Object Protection basically means that the objects are marked as system

owned and aren't changed at all when switching world modes. This is done

by default for all glove and 3d cursorr loaded, and may be used for other

objects if desired. Functions are provided to make objects, and object lists

protected, and unprotected.

void VCS_MakeObjectProtected(OBJECT 'obj)

This routine takes the object passed and sets the protected flag on it.

void VCS_MakeObjlistProtected(OBJUST 'objlist)

This routine takes the object list passed, and makes all the objects in

that list protected.

void VCS_MakeObjectUnprotected(OBJECT 'obj)

This routine takes the object passed, and removes the protected flag

from it.

BOOL VCS_is_object_protected(OBJECT 'obj)

This routine takes the object passed, and returns a Boolean value

indicating whether the object is currently protected.

Object Logging Functions

These functions let you dump a particular object's details into the log file,

or let you do a total dump of the current system state and all object lists.

This is useful for debugging purposes.

void VCS_Log_DumpObject(OBJECT 'obi)

This routine takes the object passed, and outputs all the details of that

object into the VCS log file.

void VCS_Log_DumpState(void)

This routine outputs the details of the current program state to the VCS

log file. This includes the overall world structure, details on all objects,

including which world they are associated with, what flags are currently set

on each object, etc.

Page 43

void VCS_DoObjectCount(OBJECT •obj)

void VCS_ CountSetectedObjects(void)

These two routines are used for object counting for status information.

Due to the nature of traversing object lists, object counts are done in the

background. By calling VCS_CountSelectedObject(), the variable

VCS_ObjectCount is automatically updated to reflect the number of selected

objects.

void VCS_SaveSe/ectedObject(void)

This function will save the details of a selected object to a file. Upon

calling of this function, a file name will be requested from the user in the form

of a file dialog box, and the selected object will be saved to that file.

Display Option Functions

These functions allow you to turn on/off the compass and horizon

display. This is more for use internally (as these are switched off when

changing worlds), but the functions are given for future use as well.

void VCS_ TumOffCompass(void}

void VCS_ TumOnCompass(void}

void VCS_ TurnOffHorizon(void)

void VCS_ TurnOnHorizon(void)

State Saving Primitives

These primitives are used to juggle the objects in the current world so as

to emulate multiple worlds.

void VCS_SaveMainWorldObjects(OBJECT •obj)

void VCS_Save3dPaletteObjects(OBJECT •obj)

void VCS_SaveUserPaletteObjects(OBJECT •obj)

void VCS_MoveObjectlnFrontOIPoint(POSE centre, OBJECT •ooj, COORD

distance)

Page44

World Mode Switching Primitives

These are internal routines used for initialising the new world as the current

world is changed.

OBJECT *VCS_CopyObject(OBJECT *obj)

This routine is designed to be a primitive for copying an existing object,

as opposed to loading one in from disk (which is the only way an object may

be loaded with the existing library of routines).

A pointer to an exact clone of the object passed is returned. The user

must still place this object, and MUST perform at least a compute_object()

on it once the object is in place.

void VCS_Setup3dPalette(void}

void VCS_SetupMainWorld(int PreviousWorldMode)

static void VCS_ShiftObjectslntoPosition(OBJECT *obi}

void VCS_SetupUserPa/ette(void)

World Mode Functions

void VCS_ChangeWorldMode(int NewWorldMode)

This routine allow you to change the current world mode between:

VCS_3dPalette -A Collection of Basic 3d Objects

VCS_MainWorld - The Main User World

VCS_UserPalette -A Collection of User Configured Objects

char 'VCS_GetWorldMode(void}

This routine is provided to enable you to get a string holding the current

world mode, this is primarily to be used for status information.

Hooks for Rendering and Input Devices

These routines are linked in with the internal engine of VR-386, and will

be called at various times throughout the package.

This is useful for displaying information, or catching input device

information directly.

Page 45

void VCS_DisplayPreRenderHook(void)

This routine is linked into the prerender_process() in USCREEN.C.

void VCS_DisplayPostRenderHook(void)

This small bit of code should display the world buttons on the screen,

and should put names on them. This is called from postrender_process() in

USCREEN.C.

void VCS_ProcessGiove(POINTER •Glove)

This is the control routine for the PowerGiove driver and updates the

information gained from the glove regarding position and posture, and puts

this in a generic form that it then passes to VCS_RegisterMovement().

long VCS_ScaleGioveXCoord(long value)

long VCS_ScaleGioveYCoord(long value)

These routines are used by VCS_ProcessGiove() to scale the glove's

movement to that of a generic coordinate reference. This is then used when

calling the VCS_RegisterMovement() routine.

void VCS_ProcessMouse(PDRIVER •Mouse)

This is the control routine for the mouse driver, and updates the

information gained from the device, then puts it into a generic form which is

then passed along to VCS_RegisterMovement().

void VCS_RegisterMovement(int Pointer Type, long x, long y, long z, int

Special)

This routine handles all interface control between the package and the

various devices. Interface control is centralised in order to create a truly

transparent user interface style, with only the details of the actual devices

from which this information came from being used for button and state

handling.

Pointer Type may be either of the following:

VCS_Mouse

Page 46

VCS_Giove

The Special field is used to contain either button configuration, or the current

Gesture ID- as is appropriate for given PointerType.

BOOL VCS_ProcessKeys(unsigned KeyPressed)

This routine is used to handle all additional keyboard functionality

provided by the package. It hooks into KEYBOARD.C and is passed the

unsigned value of the key pressed. If the given key is handled in this routine,

the function must return TRUE, otherwise FALSE is returned.

Miscellaneous Functions

BOOL VCS_IsShiltKeyPressed(void)

This routine, used internally mostly, is designed to simply check whether

the shift key is currently pressed.

void VCS_MoveObjectXY(OBJECT •obi)

This routine is used to move objects around after they are grabbed with the

mouse, thereby simulating a drag-and-drop method of interaction. The

object is moved according to the difference between the current mouse or

glove position, and the last recorded position. This enables the object to be

moved relative to the user's movement.

void VCS_ CreateSe/ectedObject(void)

This routine is used to create a duplicate of a currently selected object.

int VCS_SelectObject(OBJECT •obj)

This routine is used to mark a given object as being selected, and

utilises the new shift-key functionality added to the package. Using the shift

key, a user can select multiple objects which can then be worked on as ~ a

group.

Page 47

void VCS_GrabObject(OBJECT •obj)

This function provides a simple primitive for grabbing and attaching an

object to the user.

void VCS_UngrabObject(OBJECT •obj)

This function provides the ability to detach an object from the user, in

effect dropping it.

void VCS_Quit(void)

This routine is used to catch the shutdown of the package, and allow the

VCS module to save any configuration details and shut down as appropriate.

Page 48

5.4 Evaluation and Testing

In order to ensure a quality system was produced, there were a number

of evaluation and testing methods used throughout the development phase.

These include:

• Module Testing

This involves putting a variety of values into each variable of a particular

function or procedure, and verifying the results;

• Internal Logging

A number of specialist debugging functions were added, including

VCS_DumpObject() and VCS_DumpState() These were used to

extensively test the various routines as they were added to the system,

and used to verify that each new feature worked in coordination with

existing code; and,

• Exhaustive Testing

Simply testing all possible number of things in trying to use different

possible combinations. This also involved an Alpha and Beta test phase,

with constant updating in between.

5.5 Summary

This chapter has presented the decisions made in the implementation of

the project, as well as the rationale behind these decisions. The importance

of standards, and how they have been applied to the development of the

project has also been discussed. Finally, the structure of the new system

was covered, describing in detail how the project integrated with the existing

system, and the functionality was added to the existing system.

The next chapter discusses the findings of the project, and the problems

encountered in throughout the design and development of the project.

Page 49

6 FINDINGS

6.1 Discussion

To best describe the findings and results of the project, the original goals

of the project will be reviewed and discussed in terms of the problems

encountered and the solutions used to overcome them.

Virtual Construction Site (VCS)

The first and foremost goal of the project was defined as being: "the

means by which the user may construct a virtual environment using a

consistent and intuitive interface". Designing a system like this is no easy

feat, and required one to be very careful in defining exactly what constituted

virtual environment that a user would wish to construct.

The concept of a construction site was seen as the closest real-world

analogy, and thus this concept became the driving force behind the design of

the project; the user would be given the ability to build the environment using

basic building blocks • the most elementary of these being simple three

dimensional shapes such as cubes, cylinders, and spheres. Later this was

defined as a separate goal of the project, 'Yhe ability to select simple three

dimensional objects from a defined set, allowing the user to incorporate

these into the virtual environment being created".

Furthermore, it was seen that in addition to the ability to use elementary

three-dimensional objects to build the environment, the package should also

provide •racilities tor storing commonly used objects, allowing them to define

a set of common objects that they may reuse to create their environment".

The ability to store objects and reuse objects as specified by the user

was seen as important as it would provide users with the means to design

their own sets of primitive objects for the task at hand, thus enabling them to

create more advanced and detailed environments.

The design of the application has been useful as a test-bed for new

concepts in user-interface design, and this was further expressed by the

decision to provide ''support for a gesture-based interface, as well as a

Page 50

conventional interface for traditional forms of input such as the mouse,

keyboard, and joystick". The decision to support such devices, however,

when combined with the earlier decision to provide a consistent and intuitive

user interface caused many problems with the design and implementation of

the project.

Fundamental problems concerning the accuracy of the PowerGiove

caused a number of issues to be raised concerning the possibility of

designing a consistent and intuitive interface utilising both two-dimensional

and three-dimensional forms of input. These issues are discussed in greater

detail in a section on the study of three-dimensional interaction techniques

which can be found below.

Conversion of the PowerGiove

As discussed in Chapter Two, modification of the PowerGiove was

necessary in order to utilise in combination with an IBM PC compatible

platform. Details on how to perform this modification were readily available

from a number of sources (Englowstein, 1990; Roehl eta/., 1993; Gradeki,

1994), helping minimise the problems encountered in this phase.

A source of power was an issue, however, as the PowerGiove required

5 volts in order to function and the IBM PC parallel port, to which the

PowerGiove would be connected with the appropriate modifications, offered

no voltage lines. The 15-pin game port, almost a standard on personal

computers today, was found to provide a steady supply of 5 volts, and so an

extra connector was wired to the PowerGiove to utilise that as a source of

power.

Study of three-dimensional interaction techniques

In many ways the exploration of three-dimensional interaction techniques

was seen as a major goal of the project; to this end, considerable effort was

spent in the research and development of techniques to achieve this goal.

Existing methods for interaction were studied in rnany forms, however,

the nature of the interface demanded interaction forms that were both

intuitive and functional in a three-dimensional environment. Conventional

Page 51

two-dimensional forms of interaction, such as the classic WIMP (Windows

Icons, Mouse, Pointer) interface, tended to cover up important elements of

the environment and were deemed as conflicting with the inherent structure

of the environment. Therefore, it was decided the most appropriate interface

style was one that would merge with the three-dimensional environment, and

provide a natural addition to the environment.

The concept of a palette provided the answer to the posed problem.

Designed to extend the user's workspace, a palette offers a form of

interaction with the user that is much less intrusive than any conventional

forms of interaction. The analogy provided by the palette also helps to

merge it with the interface; that of a typical artist's tool used to aid in

rendering a scene. Taking the analogy one step further, the concept of the

palette can be broken up into two distinct parts; a "colour'' palette, and a

"mixing" palette. Wtlhin the Virtual Construction Site, howevei", the colour

palette would become a three-dimensional object palette, while t>1e mixing

palette would become an area where the user can store objects for later

reuse.

Dragging and dropping items, a concept pioneered by the Macintosh

Operating System (Mountford, 1994), enabled the user to function intuitively

between these additional workspaces and the main environment, allowing

users to transfer objects from a palette and place them into the world they

are building. In addition, the concept of dragging and dropping items is

intuitive in both a two-dimensional and three-dimensional environment,

allowing the same interface style to be used with both devices smoothly.

For a task such as selecting or moving objects, gestures provide a very

natural means of interaction, the actions map the same in the real world as

they do in the environment, providing an interface that is far more intuitive

than any two-dimensional form of interaction performing the same task.

However, interaction using the PowerGiove becomes far more difficult when

attempting to find mappings for more complex tasks, such as changing the

colour of an object.

This problem is further compounded by the problems associated with

determining reliable gestures for the PowerGiove. The glove can reliably

Page 52

detect up to eleven basic gestures (these were displayed in Figure 4.3),

which, due to finger and thumb calibration problems, is further reduced to

seven basic gestures. Of these seven gestures, four of the most intuitive

gestures (Bordegoni et al, 1993) were used in Placement Mode, these being:

flat (no action/release object), fist (grab object), point (select object), and

pinch (rotate object). The remaining gestures were deemed too awkward

and impossible to use intuitively (except for the gesture bad finger which

could have been used for quitting the application, however, this was decided

to be too offensive to actually be used).

It was found that two-dimensional devices, such as the mouse and

joystick, though lacking in depth with regards to interfacing to three

dimensional environments, are more than adequate for the forms of

interaction used in the project. These devices have a distinct advantage

over the PowerGiove in that they are highly accurate. The PowerGiove relies

on the emission of ultrasonic frequencies to determine the location of the

glove in three-dimensional space in front of the computer, and any number of

things can interfere with this method of transmission - sharp or reflective

objects around the computer, environmental noise, and a number of other

factors combine to decrease the level of accuracy of the glove dramatically.

As a result, the feedback on the location of the PowerGiove tended to be

erratic and this caused severe problems when designing a user interface

around it. The exact location of the PowerGiove was deemed too inaccurate

and sporadic for reliable translation of user intent, and the hand's movement

could be guaranteed only in terms of significant changes of location in three

dimensional space.

The concept of transit points was therefore conceived, in which an

extreme section of the screen is marked as being a point of transference

between the current state and another state. Transit points were then used

to enable the user to switch back and forth between the 3d and User

Palettes.

In ordw to enable the user to carry out more complex actions upon

objects, the two-dimensional interface design concept of the menu was

employed within the interface; allowing tasks such as the changing of an

Page 53

object's colour, or the loading or saving of an object to be performed. As

efficiency of design was an issue, it was seen more productive to design

these menus to be context-sensitive, i.e. for them to adapt to the current

environment, and offer choices to the user as appropriate. The use of these

menus is described in more detail in Chapter 4.4 • User Interface Design.

The last issue to be discussed in this section, is the method of navigating

around the virtual environment while in Navigation Mode. After

experimentation with different forms of navigation using the PowerGiove, the

most intu'1tive method found was for the glove to act similar to a helicopter

joystick. Using this method of movement, motion towards the left or right of

the screen would cause the user to be rotated along the vertical axis (Y-axis),

while speed was controlled by the amount of flexing of the glove; a flat hand

indicating no speed, while a clenched fist indicating full speed in the current

direction.

6.2 Application and Use of the Project

The project has been aimed, as described in earlier chapters, at

producing a software package that can be used to create virtual

environments using an interactive three-dimensional environment. The

possibilities for use of this project are numerous, however, several possible

uses are listed below.

Architecture

Architecture is one field where virtual reality has had a large amount of

acceptance and commercial use. This project offers not only the ability to

construct buildings from plans, but to allow navigation around the designs

and experience them first hand. This allows architects to see exactly how a

building is going to look before the first brick has been laid, and can prove

invaluable for detecting possible flaws in the design before construction.

Another possible use along these Jines of thought is as a means of

conveying locational data to the user. By modeling a building such as a

university, the project might be used to construct a three-dimensional model

Page 54

of that model, and then allow students to familiarise themselves with it

without ever having set foot on campus.

Education

This package offers all streams of education the ability to visualise

information in a way that extends itself to all areas of research. Utilitising the

package as a teaching tool, it is possible to explain concepts through the use

of a three-dimensional environment that are best understood by experiencing

it visually. "If a picture is worth a thousand words, then a three-dimensional

image can speak over a million words" (Roehl et at., 1993).

Two examples of use in the field of education include:

• Astronomy- A model of the solar system could be used to

demonstrate the distances between the orbits of the various planets,

and how they interact with each other; and,

• History- Historical buildings or structures that existed hundreds of

years ago could easily be modeled using the project. This allows

students to explore and interact with such structures, as opposed to

just reading about them.

Entertainment

In addition to educational use, this project could also be used for all sorts

of entertainment purposes. Even now, we are seeing a changing trend in

video games towards those with a first-person point of view and detailed

environments. Using this project, one can create an environment totally of

their own design and merely creating and exploring a created environment

could be an adventure unto itself.

6.3 Further Research

There are a number of areas where the research gained through this

project could be expanded and enhanced to include provide ad~itional

functionality to the user. Below is a short list of some of the topics for that

might be used for further research.

Page 55

• Multiple-user environments- whereby a number of users may occupy and

interact within the same virtual space;

• Linking between multiple environments- allowing users to jump from one

world to another;

• Distributed/networked environments- this could enable the overhead of

rendering complex environments to be shared or distributed across a

network, or for multiple environments to be interlinked via networks;

• Support for three-dimensional audio- adding the sense of sound to the

environment would enhance the level of immersion provided by the

environment considerably; and,

• Support tor interaction and navigation using head-mounted displays

(Limited support for such devices is is currently provided by the VR-386

package, but not fully supported by the Virtual Construction Site).

6.4 Conclusion

Virtual reality is continuing to be a growing field of interest, and current

trends seem to indicate that this will continue to grow. Arthur C. Clarke was

once noted to have said "Virtual Reality won't merely replace Television, it

will eat it alive!" (Rheingold, 1991)- a reflection on the possible future impact

of this field on current mediums.

An incredibly versatile area of research, virtual reality has already had

considerable impact on a number of fields, most notably with that of

architecture, medicine and engineering. Despite this, there are still

considerable gaps in the information and research available in particular

streams of virtual reality.

One of those streams, interaction methods within three-dimensional

environments, formed the basis for the research in this project. Only through

experimentation could such interaction methods be developed, and this

became the goal of the project, to produce a virtual reality application which

would utilise the new forms of interaction and provide a test-bed for

development in this regard.

Page 56

The project also fulfils another goal, that of expanding the field of virtual

reality to include those users who might not have the money to spend on

expensive packages to create virtual environments, and yet still wish to

explore this medium. The project does this by providing a tool which can be

used to effectively and intuitively create virtual environments using a number

of basic building blocks.

It is hoped that through the knowledge gained from the project, we will

not only be one step closer to realising the goal of intuitive and effective

interaction me~hods, but we will also have a useful toolkit with which we can

build the future of virtual reality.

Page 57

REFERENCES

Aukstakalnis, Steve, Blatner, David, Roth, Stephen F. (Ed.) (1992). Silicon
Mirage: The Art and Science of Virtual Reality Berkeley, CA: Peachpit
Press.

Benedikt, Michael (Ed.) (1993). Cyberspace: First Steps (5th Printing)
Massachusetts: MIT Press.

Bordegoni, Monica, Hemmje, Matthias (1993). A Dynamic Gesture Language
and Graphical Feedback for Interaction in a 3D User Interface. In
Hubbold, R.J., Juan, R. (Eds.) Computer Graphics Forum- Eurographics
'9312(3), pp.1-11.

Bricken, Meredith (1993). Virtual Worlds: No Interface to Design. In M.
Benedikt (Ed.), Cyberspace: First Steps (5th printing). Massachusetts:
MIT Press.

Englowstein, Howard (1990, July). Reach Out and Touch Your Data. BYTE
Magazine 4(2), pp 283-290.

Fisher, ScottS. (1994). Virtual Interface Environments. In Brenda Laurel (Ed.),
The Art of Human-Computer Interface Design (8th printing). Reading,
Massachusetts: Addison-Wesley.

Foley, James D., van Dam, Andries, Feiner, Steven K., Hughes, John F.
(1991). Computer Graphics: Principles and Practice (2nd Edition).
Reading, Massachusetts: Addison-Wesley.

Gradeki, Joe (1994). The Virtual Reality Programmers Kit New York: John
Wiley & Sons.

Kurtenbach, Gordon, Hulteen, Eric A. (1994). Gestures in Human-Computer
Communication. In Brenda Laurel (Ed.), The Art of Human-Computer
Interface Design (8th printing). Reading, Massachusetts: Addison
Wesley.

Latta, John N., Oberg, David J. (1994, January). A Conceptual Virtual Reality
Model. IEEE Computer Graphics and Applications, 14(1), pp 23-29.

Lau, Daniel (1994, June). Investigation and Application of Virtual Reality
technology to low cost graphics workstations Unpublished honours
dissertation proposal, Curtin University, Perth, Western Australia.

Laurel, Brenda (Ed.) (1994). The Art of Human-Computer Interface Design
(8th printing). Reading, Massachusetts: Addison-Wesley.

Page 58

McGuinness, Bany, Meech, John F. (1992). Human Factors in virtual worlds.
1. Information structure and representation. lEE Colloquium on 'Using
Virtual Worlds' (Digest No. 0931 (pp 3/1-3). London, UK: lEE.

Mountford, S. Joy (1994). Tools and Techniques for Creative Design. In
Brenda Laurel (Ed.), The Art of Human-Computer Interface Design (8th
printing). Reading, Massachusetts: Addison-Wesley.

Myers, BA (1989). User-Interface Tools: Introduction and Survey. IEEE
Software 6(1), pp. 15-23.

Penguin English Dictionary (1974). The Penguin English Dictionary (2nd
Edition). Middlesex: Penguin Books Ltd.

Pressman, RogerS. (1992). Software Engineering: A Practitioner's Approach
(3rd Ed). New York: McGraw-Hill.

Quinnell, Richard (1993, November). Software simplifies virtual-world design.
EDN 38(24), pp 47-54.

Rheingold, Howard (1991). Virtual Reality London: Mandarin Paperbacks.

Roehl, Bernie, Stampe, Dave, Eagan, John (1993). Virtual Reality Creations
Corte Madera, CA: Waite Group Press.

Sittas, E. (1991, June). 3D design reference framework Computer Aided
Design, 23(5), pp 380-384.

Sturman, David J., Zeltzer, David (1994, January). A Survey of Glove-based
Input. IEEE Computer Graphics and Applications, 14(1), pp 30-39.

Vince, John (1992). 3-D Computer Animation Wokingham, England: Addison
Wesley.

Walker, John (1994). Through the Looking Glass. In Brenda Laurel (Ed.), The
Art of Human-Computer Interface Design (8th printing). Reading,
Massachusetts: Addison-Wesley.

Watt, Alan (1989). Fundamentals of Three-Dimensional Computer Graphics
Wokingharn, England: Addison-Wesley.

Webster's Dictionary (1981). Webster's Third New International Dictionary
USA: G. & C. Merriam Co.

Page 59

APPENDIX: IMPLEMENTATION SOURCE CODE

The following source code comprises of the VCS module (vcs.h and

vcs.c) that was added to the VR-386 library. The VR-386 source code library

can be obtained via anonymous ftp to psych.utaranta.ca in the /pub/vr-386

directory, or through the World Wide Web via the Universal Resource Location:

ftp://psych.utaronto.ca/pub/vr-386/

Page 60

VCS.h ·Virtual Construction Site Header File

II This file contains various deUnitions needed for the Virtual

II construction Site, which i~ built upon the VR-38G library.

II

II By Jesse Kinross-Smith

II

II March 1996

Hfndef PTRDEF

typedef void POINTER

ijendif

II Define if you wish to enable debugging options (ie. FS to dump state info)

~define DEBUG

11 Control Modes Availublt•

#define VCS_N.:.vigationHode 0

ndefine VCS_I'lacemcnLHode

I I World HocKs Av<,ilable

Hdefim! VCS_l·1a i.n\'lorld

!define VC.S_)dP<llette

#define vcs_Ust,rPalette

0

1

2

II Definition,; for- Ule srecL:d borders

#define VCS_Bonje,rSizc

lldefin·~ VCS_!3urd<"t-coloclr

~de tin('_ VCS_t'onh,~T<)Y.t

#dcf i ne vc:..:_DO! dt'r0ut l i 1w

~define VCS_TexLO!.fo>(·L

ndet ine. VCS_idPalctU)L,J.bel

~define vcs_Ue>~'' f'.Jle~tr,Labc>l

lldetine VCS_t·lairMor!dLabel

15 II 15 pixels wide/high

15'16+12 If Grey Dox

15 II Wllita Text

15'16+8 II Darker Gray Edge

(screen info- >XJniJ.X/21 - I B • 9+4)

" 3d Object Pcdetto "

"U~er Object ?alctte"

Main User world

II Definitions for location of the VCS mode display information

lldehne VCS_llisplayColour 15

#defin« VCS_DlspliJyh'orl.dLocX 5

#define \'CS_Dic;play\VorldLocY 20

~define "Cc;_Displayr-:ontrolLocX 5

#define vc:::_Di~;[JlaycontrolLocY 30

II 'l'l10ow ilf•- r<'LUnK,d by VCS_GetWorldMode() and VCS_GetControlMode()

lido l- ir:<e Vc:;_'O<cXt 'Jd l'aleL t.e

Rdcf i rHo VC:]_'i't",:·;l.;~d i n\.,ror) d

~rlefiru~ vc;_Tr~xtUserPulatte

#de [inc vr.•;_'l'r·xLNilv i g<Jt ion

#de [i. no vr::-:_T<;:•a. P 1 rJc{)ment.

ndef ina VC:O_'j'<~xt·unknown

']d Palette"

"Main World"

"User Palette"

"Navigation Mode"

"Placement Mode"

"Unknown"

II Navig-c1tion t4ode -Movement Speeds Available

#define vco;_Now~

ndefine VCS_Slow

0

1

Page 61

#define VCS_MediuJn

ndeline vcs_r-.st

#define VCS_Veryfast

2

4

'
II Name of the Ule that is loaded for configuration detilils

#define vcs_configFilcNilme

~define VCS_LogFileName

·vcs.cfg•

"VCS.log"

I I Needed to be abl8 to de> fine Lhe pointer tYPe used

#define vcs_~louse o

#define VCS_Glove

II Definitions of what valUl'S of Spc>cial c>qual wlw.t buttons

Hdefine VCS_NoMouseButt;on 0

#de f l ne VCS_l,e ftHousel-!uL Lon

#define VCS_HighUiouc;cilut:ton 2

II 'rhis is u!wd 101 ciJlculdting n1ovement. in NaviqcJtior, t~odc

~define vcs_xccnt.ctpoi:Jt

#define VCS YCent.upoin:_

~dc>firw VC:O_ZCHILc•rpoint_

#define vc::;_C.,!i u,r poi nt.Co 1 our

c;crcen in to- >Xm,v; 12

sc rccni n fo- >Ymaxl2

0

15

II U!>cd tu :-cUtiC<' Lhr= spr=<cd ilt h'hich Navigution Mode rotates

#delin0 VC~_NiWi(.l<J'LionSLep 10

ildefine vcs_GlP'"-,!-;tep 20

II Used to c,11culaLe tlie movement of the mouse in Navigation Mode

#define VCS_NavigaLionSper:d 10

II Used sim.i.lilrly, except. this is used in Placement Mode for rotation

#define VCS_Rotationstcp 5

II 3d-Objects AvailalJle in the 3d P,J.lette

II These busic objects com actually bG rcplar;ed by changing tile plg file

II PleaSt! note Llial: LlJCt<) MliS'l' he no <errors with the objects or else a

II cr.:.st1 might ucr:11t. Cll<•c:k tho objects ~;c•parately before using them here.

~define vee; '<lllle_l

~define' V<:;; JciFi h• ?.

~definr> vu; _it:l'i),-,

#defim:: vee; '<11 J lr 4

ncJetln<-, 'JCS Jd!-'il("_5

"vcsJd_l.dat"

"vcs3d_2.dcot'"

"VC53d_3 .d,lt"

"VCG3d_4.dat"

"vcsJd_S.dat"

II TheGC dP.[irw the-' layout and width o[the various palettes

#rlcfinr, VCS_3dObicctGap 1150

ffclef in<; vcs_Jdp,, Lecr.ePi>;tance 3 500

jjdefine '.'C:_Ihel"I-'."Jlrctt:<-cDistc.r.ce lOOUO

Ude f inr: 'JCS __ rk,I;Obj <xr.Di:;~ance l 000 0

II All o[thE; m.utf is defined externally in VCS.c

II to hG linked in at compilation. see the comments in VCS.C for more

II in [ormut ion on llo\V these ;)re used.

Page 62

II Glob11l Variables defined i_n vcs.c

extern int VCS_Control~!ode;

extern int vcs_WorldMode;

extern iot vcs_DisplayWor 1 dModc;

extern int vcs_Di splayControlMode;

extern int vcs_NodeChLJngeDeiLJY;

extern OBJLIST *VCS_Objlist_Jdl'alette;

extern OBJLIST •vcs_oUj 1 i Gt_}'!u i nWorl d;

extern OB,TLIS1' *VCS_Objlisr_UGerPaletto;

extern chilr *VCS_Ni:tvigationUc>st:un~r; [I;

extern chac *VCS_Placem<?ntGcsl.un's [];

II Functions deUned in VCS.c

extern void VCS_Initialiso(void);

extern void VCS_ChangeControJNode I int NeWControl Mode);

extern char •vcS_G,etControlt·!ode(void);

extern void vcs_rhilng<Mor 1dHotle I int N<=W~Iorl<:JModeJ;

extern C:hil r *VC!:~_Get\~or 1 d~1orl<~ I void J ;

extern void VCS_Di ,-,playFn;I{"J:ckrH\">k (void) ;

extern void Vc;;_::J i .op l d}'l'o:;tH;:-,!<tkr·Hook 1 vr, i ri) ;

extern void VCS_Frocc;"sr;luvc ti'Oltl'r!:::< '(;]ovc);

extern void vee~ r ro((• ,;HoiJ,--;,. 1 1-Di<IVI'I< ·~-lour;,);

extern !~OQ(, VCS_PJ'occ,,.;:- K<,j:OO (~~:1:-; '~HJCd Kl-Y Pr o::s:-:ed) ;

.:.xtern VQHI vc;_f\LgJ::lct"HOVd~iUII lint 1-'ointo:>r'l'yp.:., long x, long y, long z, int Special);

extern \IllS i qn.:d VCS_II<.J r i ;:onco 1 u1: 1·s I J ;

extern void VCS_~lakl'Oblrccr_r-:·ot_r,cLr•d (0!3.JECT •obj);

extern void vc.s_Mak<oOhj \ i o-:t.JlH,t <·<:t<Cd IOln!.tST •obj list J;

extern void vr.s_~Jak<CObj"ct.tJnpro:<:cl,-:diOBJEC'J' *obj);

extern POOL vcs_l :;_objec L_prot cctt!d 1 oE,JECr •ob j) ;

extern int vc.s_SelectObit'ctiOJJJt-:C'l' •obj);

extern void vcs_crabobject: IOB.H::CT *obj):

extern void vc~;_Unqt-abOb_iect (OBJECT *obj);

ex torn void VCS_Quit {void);

Page 63

VCS.c- Virtual Construction Site Source Code

II This file contains t"u" bulk of 1;1e code developed for the Virtual

II Construction Site. Some other files have also been modiried so as

II to use the routines in here.

II

II All code designed and implemented by Jesse Kinross-Smith.

II

II March, 1996

~include ~stdio.h>

Hinctude "vr-::onst.h"

~include "point int. h"

#include "vr_,1pi.h"

#include "pcdevice.h"

hnclude "VCS.ll"

II some local definitions to make thr.e code more roadablc.

~define XMin sc reenin f o-- >.':min

#define XMax scn,tmin Lo- >XIn<lx

~define Y1-lir' scn'eninfo >ym'..n

#defilw YJ.tax >)C reen info- >ymax

ide Line t~ocleChclngePo>>c; i IJ l e { vcs_~!odech <Jn!-JeDt>l ay 0)

Uckf inc Modt>H.J c;!J('<.mchangcd ;:o
I! Eq•Jival.ent to tilt' number or times VCS Proce!'lsGlove has to be called

II bl'for..o mode chdnqes 1-1ill be allm•ed ag<lin.

~define HhJd_Only

~(le[in<'O HroadWrit<.:

~de (i ne 1\pp<ond

static clwr •vcs_ObJect/1enu()

"SilVe object",

"Paint objl,ct",

"Rcsur(cJCf! object",

"Destroy object",

"Twirl object",

"W"

"0."

"f'ixed/Movable", II This option is changed dynamically

"Intorm,Jtion",

NULL

static char •vcs_objectsWmu[l

"Pilint /dl Objects",

"Resurfac!:' All Objects",

"Destroy All Objects",

NULL

static char *VCS_MainMenu[) = (

"Navigut ion /Placement",

'Help",

II This option is changed dynamically

Page 64

•Information",

"Goto Location",

"Save World",

•Quit",

NULL

static char VCS_'I'oggleFi xedStdng [J

static char vcs_Togg leHoveilb leSt ring [J

static char VCS_ChangetoNilV i gat i onSt ring [)

"make object Fixed";

"make object Hovabl e";

"Navigiltion mode";

static char VCS_ChangetoPlJcementSL ring [) ''Fl<Jcemcnt mode";

II •rhese store the cur!'<:nl Control and Wut-ld Modt,,c; which VCS is in,

If as well ilS thP delay nw·d<Jd before 'r.'orld ~1orlr· can b<; changed <~gaiu.

int VCS_ControlMock;

int VCS_World~!ock;

int VCS_D i sp l<JyCour. ro H!ot.l<•;

int VCS_Di ~Jp [iiyh'or l dt·!O(h'·;

i nt VCS_~!odeChdr.ucllc• Jay - o;

I 1 These thn'" st.n:cnu-c,c; !told lil(; Lhr<oe worlds that will be used to

II l1old the d<otOJi l~; "nd objccu:: needed for the different World t~odes.

OEJLIST •vcs_objlic;t_Jdi-'alett~o<;

OBJLIS'f 'VCS_Ob j I i st._Ha i llh'orld;

OBJLIS'r •vcs_obj 1 is L_User Pal eL u~:

char wycS_NadqationGE:SLures [] "' {

"None", "None", "Slaw", "Slow",

"Slow", "Nediurn'', "Very FasL", "Fv.st",

"Medium", ''W"t.lium", "Medium", "None");

int VCS_NavigationSpeeds[l "' (

vcs_None, vcs_Nonc, vcs_slaw, vcs_slaw,

vcs_slaw, VCS_Medlwn, vcs_veryF'ast, VCS_Fast,

vcs_Medium, vcs_Medium, vcs_Medium, VCS_Nane J;

char •vcs_PlacementGestures [J

"" "Rotate", "Grab",

"Select",

unsignr,d vcs._Hari;:oncolaurs[16l "'

unc; igned vc-;_tlaHari zonCa lours [16]

int VCS_Co:np.Jc;c;SL.JLc;

f'OS~; VCS C:dwr:!Iu e,

[,IGH'l' • VCS_)',J](,[I.C!Ll "ht.,; [1] ;

Of',I[,CT •vc-;_:_;,_, l (:c t.c:dob i ect;

Ol'lJEC1' •vc:;_i'<• n•ntObj ect:;

EJOOL VCl'-"'' I c.ctr::<lObj ec tF 1 <.~g;

int VCS_OlJj<oclCOlJilL = 0;

oBJECT ·vcs_La s L c:cd <.=ctcdObj ect

Oxaf, Oxae, Oxad, Oxac, Ox79, Ox7a, Ox7b, Ox7c);

(OxOO) ;

NULL;

Page 65

OBJECT •vcs_LastObjectinList

BOOL VCS_MenuActive ~ FALSE;

NULL.;

COORD VCS_MoveObj ectX, VCS_!~oveOl>j eel: Y;

COORD VCS_NoveOl>j ec tLa~tX, VCS_~1o•Je0b j ectL<1st '{;

II This ~houldnt be ha.nlcoded, but It is [or the moment

If This should v.1ry accordiny to the dist<.mce ot the object from ttm vi€wer

int VCS_Pen:;pect t veDi '<tiJnce :i~;

BOOL vcs_LeltButtonl!\"lrJ Fi\r"!:E;

BOO!, VCS_Rigllt.B•Jt~011Held J:M,•;i-,;

int vcs_~l i nG 1 ov,,x 3:!7~7;

int vcs_MaxGlovex 3.0L"I;

int vcs_~linc lovd' _\2'11•'1;

int VCS M.:JvG[OVPY -:l27L7;

FILE ~vcs_LogFile;

extern int do_hor izon;

extern int ~how_comp.:l<>s;

extern struct Screeninfo *screenlnfo;

static int min(int a, int b)

if (a < bJ

return a;

return b;

static int max(int a, int b)

if (a > bJ

return a;

return b;

II ff###~#U~## VCS Initialisation Function ########H~

II '!'his must be c<~lled first so VCS can setup everything it needs to rur..

void VCS_Initialiae(void)

FILE: •ct<~t<~l'ile;

POSE ObjectFoc:r, ZERO_POSE;

VC.S_ControlModc, " VCS_Navigatic>nMode;

VCS \~orld~!orlrc .,. vr.s_MainWorld;

VCS_Di c,pl n yCoF,t_ rul Mod<" ·rRUE;

VC.S_DispliW~Jorldl1odoo TR\m;

vcs_selectF:'dOb·jccr. ~ PALSE;

vcs_ob} 1 is t_3dPill et tG ,_ new_obj list () ;

Page 66

vcs_objlist_MainWorld ~ ncw_oL>jlisLIJ:

VCS_Objl ist_Uc;erPalt>LLe o new_ol>j li,;t. I J;

ObjectPose.z {COOHD) VC.S_3d I ;, J H. LLDi stanc._, • 2;

11 J,o<Jd the objects 10r tt1t., 3d !'illr,:.tr• and <Jdd them to the objlist for ic

ObjectPose.x

ObjectPose.y

data file

I CUOiiOI - vc;_JdUll j .-·t:LG'-'P;

{COORJll '';

toad_plg_r_o_uhj\J,t(d.Jtd:i1<,, lw::_ul,'li~;:: JdPaCe.l.Le, 1, /,ObjectPose, 1,1,1, OJ:

fcloseldo~t,,: 11<·1;

Objectl'u:;r-.x

object Poe;.-. y

ddt a [l J (:

(UH.li<Ll) ~

{I_'(HJlmJ .'J;

load_p lq_u>_,.b • \ i '. ·,_ I d 1 • _.! \ 1 J ,- , '!I_: ·,_nJJ; J

icloo;ciddf_,J~!1o I;

Objr:ctl·n!';'-"··~

ObjPCli'Obe.\'

(I'(J\li•.[)) ','('!

]oad_plc;_LC•_Oh :1- ldd'd!llo, vc;_O!Ji]),;t_.Jd!.-,]ett0, 1, ~OlJj(~CLPose, 1,1.1, OJ;

fclou"(d,!!.<o\!],_

object<'<>:;e.~. I !'C\(lklJ I '/1 .; __ .I dO]J i • xI I ;il p ;

data[Jlc - l<•;ll,::I\'C · ><t1·, 1• , .. ·1. !·<:<~l!_Onir•l;

Joad_ply_:o_<dJi::· i,:.,:.,tt::•·. '.t•· n!J,Ji,:_-'dl_,!rotr.'-", l, &ObjectPose, 1,1,1. 0);

[clo~"=' (da•_c.. t., ._ 1 ;

Objf'CI.i'c, -:••, X

Obj(o'<;t:i'u' .y

datu f i \•.·

·':

, Fo'dd_Onlyl;

!oad_plq_:_o_oi,; l:

fclos<•ldiltdti":>_t;

lddLnlt:••, vcc.:_ob_ili:;~_:JdPalette, J, &ObjectPose, l,I,l, 0);

//VCS_l\ll <cL tr ·L i qill :; I I• I e!'-"<ll <e_l iqi:r. INlll,L, !'OH~'i'_L!G!IT, 128);

//pos i L i utt_P" i ;, :_ 1 i qnt I vc~_l'J 1 u_t. r:l. 1 uttt ;; [:· i , M}!Jj eel Puo:e 1 ;

II L<'T.'; Jnir .. <JJi"'-' ti1<.· loq fil<• :o: t.l;L; run by wriLing a header to it.

1 I td l snb~:•·<JU<:n~ wriU•,; t.o Lhic; J. i 1<- \·li 11 br, using Append.

VCS_Lo<;!-'i l"

fprint.J l'!c,_:cJ<<i'i'''• "'"""" ••~~• #11"#~ Virtual Construction Site- Runtime Log#~##~

u•#•~ •~~~·'t'-t~'-:1"1:

tC I'>: •o ('-JI'~; -' 'll ,.-' l '-') ;

II tlU~~##IIHh Ctmtrnl ~~orl<' Functions 0~~#~~~#~

II TheCJf! rour.in'"~; l<,~t you change twtwecn the po:;c;ihle control modes:

II NaviqaLion L·!ocle

II

II

1'/ltcr<" Uw po:nter 1:: u:;,'d lo allow the user Lo fly

druuwl t.~ll; "1\Vltflll~"mt.

''•'lw~'' 1.~1" f>UJ[L!.<.·t i.'; u:-ad ~n ;!llo\~ lucal obj<,ct

r·anipuldr__ion, ~;u tl:<: u:;,:·t c<trl ·:..clt,cf.. cp-.lh, <!!ld move

Page 67

II objects.

void VCS_ChangeContro!Mode(int NeWControlModa)

if (VCS_WorldMode != VCS_MainWorldJ

!I Can only change to Naviyation Mode 11hen in the l~ain World.

1 J Ignore keypresses otherwise..

return;

vcs_controlMode NewControlMode;

char *VCS_GetControlHode(void)

switch (VCS_Cont rolHode I

<::ase vcs_ •lavigat ion~·lode:

case VCS_PlacementModo:

default:

return VCS_'!'c_,xL)~uviqaLion;

!"t)turn VCS_'l'ext Pl<•cc,n,en~;

return VCS_'l'<oxtUnknlMn;

II #~~~H~Ifij~J! Objr~ct Prouccr.ion ?nrwtionc: >it~P~ii#~ll~

II object Protc,c~io:l ba:;'.c,-,Jl\' ,,,,.,-u." Lhiol Lll<o objects are marked as

// sySLl'm O'dlt<-,d c,:](i "'''r:'L r:n,,<,qt;d ,or. dll ·-~hen <;WiLcbiny Horld modes.

II Tlric; i:; c\r)'l< t•'i <i••l-X2 1', l<_ll ,_,ll (llov<: art<i 3<i cursors loadt!d, and

II Cil!l be u;;<ccl tor :>t,hc! uui<:CL,-; it c:csired.

II Funct~on:; a:<, p:r_;vHi<•d to mab, oiljd~tc;, ur.d objEoct lisLs protected,

II and unnroL,CLHi.

void VCS_MakeObjectProtected(OBJECT *obj)

II This sets the SYS'I'E!LOII'tiED flag [or the appropriate object.

SH_obj ect_f l<Jgs { obj , SYSTE~1_0l~NED, TRUE) ;

void VCS_MakeObjlistProtected(OBJLIST *objlist)

walk_objlist(objlist, VCS_MakeObjectProtected);

•oid VCS_MakeObjectUnprotected(OBJECT *obj)

set_object_t:ll.!gs (obj, SYSTEM_OWNED, FALSE);

BOOL VCS_ie_object_protected(OBJECT *obj)

nO'turn is_system_ownP.d{obj);

Page 68

II UUn####~# Object Logging Functions ~UH###~Ii!lil

II These functions let you dump a p,1rticul<1r object's deLuils into the log

II file, or let you do a total dump o[Lhc curreut. r;y:;tem :;tatr;, imd all

II object lists. '!'his is useful for debugging purpo:;es.

void VCS_Log_DumpObject(OBJECT ~obj)

int numverts;

int numpolys;

POSE p;

get_obj_info(obj, l<!l\llnVerts, &numpolys);

get_object_world_pose lobj, &pI ;

fpr int f I VCS_LogF i 1 e:,

%s%s%s%s\n",

ObjlJump- Vertices: %d, Polys: %d (%l::l,%ld,%ldl -

numvo:;ortfl, numpolys, p.x, p.y, p.z,

? ''Move<>ble" "Fixed" I, I is_obj ect._IIIOVl,abl e I obj I

1 i s_obj ect_ vis i blc I obj) Visibl8"

Selected"

", Invisible"),

(i s_obj ec t_se 1 er.ted I obj I) '

IVCS_is __ object_protccted(obj) ? ", Protected" ""II;

void VCS_Log_DumpState(void)

vcs_LogFile fopen(VCS_LoqFileName, Append);

fprintf(VCS_LogFilr,, "Curren:-, \1orld ~lode: %s\n'', VCS_GetWorldModel));

fpn nL f {VCS_i,ogF i 1 e, "\•lor td CDJ\Clc'lltf; \n" I ;

do_for_ull_ob_icctc; IVc:;_Loq_.IJumpObject 1;

fprir,t[IVC.S_!.cgFile, "ln<ICf-iV<' Objlio;t Contcnts\n");

wa lk_ob j 1 i st 1 i nact 'vc'_ob j u'l __] i st, vcs_Log_DumpObj ect I ;

fpri nt f lvc_;_LoqF i lJ•, ""\d I'd l el t e Obj I ist Contents\ n" I ;

wa 1 k_ohj 1 is L rvc~;_rJJJ j l , o;t 1dl d l e~ t r , VCf _Log_DumpObject 1 ;

fp-:-intt(VCS_Loql .. ile, "gain \'lorlrl Objlist Contents\n");

wan_obj 1 ; .c;t; IVC.c;_Obj 1 L1l_l·1ilL!11-Iorld, VCS_Log_DumpObject I;

fprintf IVc:;_Loql'ile, ''\n");

fclose IVC;_Loyr,.t leI;

void VCS_DoObjectCount(OEJECT ~obj)

vcs_nL:i '"ctCm1nt, ·•;

VCS_Lilst.Obj ect I nList obj;

void vcs_countSelectedObjects(void)

vcs_objectcount 0;

Page 69

VCS_La~tObjectinList " NULL;

do_for_a ll_selecteJ (VCS_DoObj ectcount J ;

void VCS_saveSalactodObject(voiO)

II This routine will save a current single selection to a specified file

char SaveFileNmne[BJ;

char message(40);

char prompt() ="Name of save file: ";

FILE *Savel'ile>;

VCS_CountSelectc>dQbjects (J;

i [(VCS_ObjectCount < l)

sprintf(mess<~yc, "No Ob:iccu; SE:le>cted to Sove");

if (VCS_ObjcecLCount > 1)

sprintf(lllC:>l3CH)I', '"I'•JO 1·1,111Y ObjQCLi: ScleC"Led to Suve");

if (VCS_Object.CounL 1)

askfor(prompt, ~;.l•:el'il<eN.lllle, 11);

Silvel'"ile = fopen(SuvcFileNume, Reudl~rite);

if (SaveFile ~" NUL[,]

c;print.[(mcssaye, "Un,lble to '.~rite to Suve File");

else

savo_plg (VCS_LustObjocL 1nList., SaveFile, 1);

sprintt(mess,1Qe, "ObjGct Saved as %s SUCCl'ssfully", SaveFileName);

fclose (Savo:;Filel;

VCS_LogFi lc I' open { VCS_LogF i leNamco, Append I ;

fprintt(vc-;_LoqFlll!, "'Saving PLG file for an Object. *\n Object Info:");

VCS_Log_Dlw.pOtJ 1 Pr:t. I VCS_Lac;tObi cc L T nList) ;

[print f IVC.:_l.ogF. 1 '",

fc] O.St-' (VC:.:_LoyF i lc) ;

"ts\n* F.nd of Saving Object *\n\n', ml'ssage);

popmsg (rnGssagc,);

tdelay(600);

world_changerl• •;

II Uiiii~H##~~ oispluy Opt.ion Functions ##U#n###n

II Th02s0 tuncl·.iom:; allow you to turn unloff the compass and horizon display.

II ThLc is 1r.ore for use internally (as these are switched off when changing

II worlds), hut thr, tunctions aro given for futuro use as well.

void vcs_TurnOffCompaaa(void)

II TlliB s.Jvcs th<.' curnmt compass stat!:! and ensures the compass display is off

'ICS_CumpassSL<Jt<o = sl:ow_compass;

stow_compass " FilLS£;

voJ.d VCS_TurnOnCompaaa (void)

Page 70

II This doGsnt actually turn the comp<~ss on, so much as return it back to its

II previous state.

{

nhow_compass = vcs_compassStatG;

void VCS_TurnOffHorizon(void)

II This turns off the horizon, repl,)cing it with a black background,

do_horizon = FALSE;

set_horizon (1, VCS_NoHorizonColours, 1);

void VCS_TurnOnHorizon(void)

II This turns on the horizon, displaying d gradiated blue sky and green ground

{

do_horizon = THUE;

set_horizon 18, vcs_HorizonColours, 48);

II n##!iU~#~# StaLP. saving Primitives #U~##UU;t#

II These primitives urG uc;ocd to juggle the objects in the current world so

! J as to emulate multiple worlds.

void VCS_saveMainWorldObjecte(OBJECT *obj)

if 1 ! VCS_is_obj ect_protected I obj))

remove_object_from_world(obj);

add_to_obj 1 ist (VCS_Objli st_NainWorld, obj);

void vcs_save3dPaletteObjecte(OBJECT *obj)

if (! VCS_i s_obj ect_protected I obj) J

remove_object_from_I-!Orld lobj);

add_to_objlist (VCS_ObjlisL_JdPalette, obj);

void VCS_saveUeerPaletteObjecte(OBJECT *obj)

if (!VCS_is_object_protected(obj))

remove_object_from_world Cobj);

add_to_obj 1 i.st (VCS_Obj l ist_UserPal et te, obj) ;

void VCS_MoveQbjectinFrontO£Point(POSE centre, OBJECT *obj, COORD distance)

Page 71

POSE TranslationPose

RotationPose

RotationPosc2

DON'l'CARILPOSE,

DONTCARE_POSE,

DON'rC!IRE_POSE;

set_object_world_pose (obj, ¢ro);

global_update_objoct (obj);

vcs_GrabObject(objl;

II Shift object back so its in line with tile origin axis

Rotat ionPose. rx

Rotation Pose. ry

Rotation i'ose:. r z

(At\'GLEI 0;

(ANGLE) 0:

1/I~;GIY) n;

set_object_jJos;:,(obj, ~Hol<iL\onPu,;r_:);

II ~\ilke the 7. 'l'ra:l,]alic>:l

get_obj '-'CL_P<•~:c 1 obi , '· '!' r·<~nc: ~ "1: 10nl'ococ I ;

•~ (01\l!dJ) di::tance;

11 Shift thr, obJ<'CI. l!.J<;k to its origin<Jl ax.is

RotationPosee2. ry

ROtilt ion i'osc2. rz

(!,t<:<:LI::I cr:ntno. rx;

lo\M:I_f·:! n,ntre:.ry;

(ilt\GJ.EI C<·nr_re. rz;

set_ohj ec t_pose I obj , -~ l~ota L i onPm;e2) 1

VCS_UngrilbObjrect (obj);

global_upddle_objrcct (ol'j 1;

world_chan<JC:Ci • •:

/1 ffnll~~~#~~~ World ~lo,Jte Switching Primitives ~U#U##I1U##

II 'Phese 01re intern,1l tout in"':; u'>Gd for initialising the new world as the

II current world ic; ch,lnqcd.

OBJECT •vcs_CopyObject(OBJECT *obj)

II This routin<' i~; de~;i9n<:cl to br: J primitive for copying an existing object,

II ,)E oppOsfcd t.o :_,,cJrl.iny on<: in from dic;k (w)Jich is the only way an object)

1/ can be lo<.~<W<~ witl1 Lht: <·xic;t.irm lilJrary of routineo:;.

II A poinLer u> em <·."-:<ICI clo:w ol Lh0 ol)ject pnssed iG returned. 'rhe user

II m<lG'~ c;Lill p],;c,, l.ht:; object., and t~US'I' porform ilt least a compute_object()

II on JL n:l'_.,, Ill<· "hj<:'.c:_ ic: ii< plJCe.

COORIJ X, '(,

UI~::JiLjJlf.'C! f'Oi(JllT;

PO!.Y "IV•Iy;

irlt. TJIII~(>oly._;, mnnv•''rts, tpvGrts;

worm polyv<cert:

\10fW pn,yr·ount vcrtoxcount;

int V<"rt <cY.nllm;

()[lJCC'[' *m•I-JUbj;

POSE pose,;

Page 72

get_obj_info (obj, &numverts, &numpolys);

tpverts " (int) total_object_pverts (obj);

newobj = create_[ixed_objectlnumverts, numpolys, tpverts);

set_representa t ion_si ze (newobj, get_represontation_size (obj)) ;

for (vertexcount = 0; vertexcount < numverts; vertexcountt+·)

get_vertex_world_info(obj, vertexcount, &x, &y, &z);

add_vertexlnewobj, x, y, Z);

for (polycount 0; polycount < numpolys; polycount++)

get_poly_info(obj, polycount, &colour, &polyverts);

poly " add_poly(newobj, colour, polyverts);

if ((polyverts > 0) && (poly !-c. NULL))

for (vertexcount 0; verte.xcou!lt <. polyverts; +tVertexcountJ

vertexn•Jm ~ (int) g<Jt_poly_vr:rtex_indexlobj, polycount, vertexcount);

add_point (newobj, poly, v<>rtexnumJ;

set_obj_flags (newobj, gr~L_obj_tli!gs lobj));

get_object_puse (obj, ~pose);

set_obj ect_pose 1 r:ewobi , &p,,;e J ;

get_obj ect_wor ld_poo:t"! I ol;j , & rose) ;

So:"t_obj ect_\,or ld_pose lnowo!Jj , hpmle l ;

set_object_SO(t i r.g lnc~·obj, c:;et_obj cct_sortinq (obj)),

return newobj;

void VCS_SetupJdPalette(void)

POSE NeV/BodyPose ZERO_POSE;

do_ for _a ll_obj ects IVCS_Savet1.:l inWor ldObj ects) ;

add_obj l ist_to_wor ld (VCS_Obj 1 ist_JdPalet te) ;

vcs_savedl'ose = •hody_pose;

~Jev18odyl'ose.z '"" (COORD) vcs_)rll'aletteDistance;

NewflodyPoc:e.y ICOOTWl vcs_JdObjectGap/2;

•body_rose " N~"lvBodyPose;

vcs_sultecLl'.dOb"jcct. ~ NULL;

VCS_P<erfl]JectivoDistance = 5;

VCS_Tur nUf [Compasr< I J;

vcs_ 'l'u rnof tHor izon (l ;

void VCS_SetupMainworld(int PrevioueWorldMode)

Page 73

*body_pose = vcs_s~vedPose;

If Protect the selected object, so it gets kept when we move to the

I I Main World.

it {VCS_LeEtButtonfleldJ

vcs_MakeObj ectrrotected IVCS_Sel ect c>dObj ect) ;

if {PreviousWorldMode "" vcs_JdPaletteJ

do_for_illl_objects I VCS_Silvel<lPal et teObj ects) ;

else

do_for_all_obj ects I VCS_SaveUserPal et LeObj eeLs) ;

add_obj 1 ist_to_world I VCS_Ol)j 1 i st_l~a i n\1orld) ;

II unprotect the object und shift it into posiLion so it is in

II front of the user

if IVCS_LeftButtonHeldJ

11 Unprotect the• object ,1nd shift it into position so that it is in

II front of t:he user

vcs_~lakeob j ectUnprot<ected (VCS_Se lectedObj ect) ;

vcs_t·!ovcobj ect rnrronto fPoint 1 *body _pose, vcs_SelectedObj ect, (COORD)

VCS_NewObjectDistanccl;

VCS_I·lO'IeOb-j cc L LilstX

VCS_~toveObj l'Ct last 'i

vc.s_xcenu:rpoint;

VCS_YCcnt.erpoi nt.;

VCS_Perspc>ctiVeDistoJnce = 35;

vcs_Turnoncompass 1);

VCS_TurnOnllori zon 1);

static void VCS_ShiftObjectsintoPosition(OEJECT ~obj)

POSE NewPose "' 7.ERO_POSE;

VCS_MukcObjr2ctUnrJtOU;cted lobj);

NewPosl,,y +eo VCS_UserPal.;.t.teDisLance;

set_object_pose lobj, &NewPose);

void VCS_SetupUserPalette(void)

POSE NewBodyPose = ZERO_POSE;

II Lets only grab the last selected object

if IVCS_LeftButtonHeld)

VCS_CountScl ectcdObji'Cts I);

VCS_Selecte>dObject ~ VCS_LastSeloctedObject;

VCS_MakeOh:i er;t Protc>ctrod I vcs_se 1 ectedObj ect) ;

do_[or_all_objects (VC;_saveMil j n\·JorldObjects);

add_obj 1 i st_ to_world (VCS_Obj l i st_llser Palette I ;

Page 74

vcs_savedPose = *body_pose;

NewBodyPose.z += (COORD) VCS_3dPaletteDistance;

NewBodyPose.y (COORD) VCS_3dPalet teDistance* 2;

*body_pose = NewBodyPose;

if (VCS_LeftButtonHeld)

VCS_Shif tObj ectsintoPosi t ion (VCS_SelectedObject) ;

vcs_MoveObjectLastX vcs_xcenterpoint;

VCS_MovcObject Last Y vcs_ YCent.erpoi nt;

vcs_PerspectiveDis~ 1w·. 20;

vcs_'rurnof fCor.~pass

VCS_TurnOffl-lorizon (J;

II ~~##U~U# \~orld Mode Functions IIU~##Ii#ll~~

II These routines allow you to change tho:;, current·_ v:orld mode between:

II VCS_3dPalette A Collection of fl<i~;ic Jd Objects

II

II

VCS_Main\~orld

vcs_userPalctte

The l·lain user \•Jorld

A Collo:ection o[User Configured Objects

II Function<Jlity is <Jlso provided for qettJng Lhe current world mode.

void VCS_ChangeWorldMode(int NewWorldMode)

if (VCs_worldMode "" New\~orldt~ode)

return; II Lets ignore changes to the same state as it is currently.

if (VCS_ControlMode vcs_Navigat ion~lode)

II This should put r::he user into Placement Mode automatically.

VCS_ChangeCont rolt~ode (VCS_PlacementMode) ;

switch (New~lor ldMod(')

case VCS_3dP,Jlett.e:

caso:e VCS_Ma in\·lorld:

case vcs_userralett~:

vcs_so:etup3dPalette (): break;

vcs_setupMai nWorltl (VCS_\~orldMode); break;

vcs_setupUserPalette(J: break;

defauH: II Obviously not; a valid world mode, so Jets ignore it.

ru_urn;

display_cl!-"lllJ<Od• •;

worlt.l_chang,•d, •;

VCS_WorldNod(o = New~/orldMode;

char •VCS_GetWorldMode(void)

switch (VCS_WorldMode)

case VCS_3dPalettc: return VCS_Text3dPalette;

Page 75

case vcs_~lainWorld:

case vcs_userPalette:

default:

return VCS_'rcxtMui nWorld;

return VCS_TextUserPaleLte;

return VCS_TextUnknown;

BOOL VCS_IaShiftKayPreaaed(void)

II Returns TRUE if either o[the shift keys are being pressed.

II Otherwise FALSE is returned.

int keystatus;

II The left and right shift k<oys usc blt:s 0 and 1 respectively.

II Thus by using a mctsk of 3 (000000111 we isolate only the shift keys for

II reading. Anything other than 0 r.u~ans till• s!Jil't key is being pressed!

keystatus" bioskeyl21 & 3;

if (keystatus !" 01

return TRUE:;

else

return FALSE;

void VCS_MoveObjectXY(OBJECT *obj)

II This routino;. is used to move objects around after they ara grabbed

II with thE' mouse (simulaLinq n drag-and-drop method of inter<Jction).

COORD xTranslation, y'l'rilnslation;

ANGLE xllngle, yAogle, zllngl•-:;

POSE WorldPose, Old!-'osr•,

Tr<JnslationFDiH> ~ 1lOWJ'C<iRE_POSE,

Rotat ionPo~;~; = DON'l'CM\E_l'OSE;

II Calculate theo difft~renco:,s from the last movement location

xTr<~nslation ICOOHDJ (\fCS_t·loveObjectLasLX VCS_MoveObjectX):

yTranslation (COOHDI 1\fCS_Mov.cDbj<"ctLastY

II M.t<lch the objN:l to tlll! use!-.

VCS_GrcJbObjoct (obj I;

vcs_HoveObjectY);

II Rotate the object Ctround tha user's axis according to the cursor's

II new movement on tile screen.

get_obi !)Ct_po~H' (body -~•eg, &1-Jor ldPose) :

xt\ngle

yAnglo

zAngle

\Vorl d l'ose. rx;

\·lor \d Pose. ry;

~:orlcl Po:w .. r·;.:

1 I Shift objecL \hlCk c;o its in line with the origin axis (-Z)

get_ob·j o;L_po~e 1 oll j , &OldPosc I ;

t<otationl'o~<-!. n:

Hot at: i onl'ose. t-y

Rot at; i onl'osr:;. r ;:

Oldl'oc;e. rx

0\<li'ose.ry

0\dl'u~;c.r;:

xAngle;

yAnqlo;

zllnglo;

Page 76

set_object_pose(obj, &Rot~tionPoseJ;

/I M~ke the X,Y Transl~tion

I/ (X is reversed because of the orientution of those world modes)

get_object_pose(obj, &OldPoseJ;

(x'l'ranslEJtion vcs_Perspocti veDistance) ; TranslationPose.x

TranslationPose.y

OldPose.x

Oldrose.y ly1'ram;J~t:ion * vcs_PerspectiveDistance);

set_obj ect_pose (obj , &'l'ra:Jslut ion rose J ;

II Shift the objoct back 1.0 its oriC.Jinal ;Jxis

get_object_posp(obj, &Oldf'o~'< J;

Rotation Pose. ,·x

RotationPolle. r y

RotationPose.rz

Oldi•o,;c:.!X

Oldl-'o~;,,,,y

Oldi'OlH'. • I

.v.llnq lr:;

yr,nql e;

:Cflt!\JlC;

set_obj ecr._poo;t"' I obj , .r. Hold!. ~on ~·osv J ;

II Updat(! Lh<O obj(OCL atte:n1ard:~ t.his ~hould've transl<Jted the object

II us ina the camera vU"W <h; t.he ilxis. • fingers crossed~

update_object (obj J ;

II Hemove the connect ion between t:he object and the user.

vcs_UngrJbObject lobj);

VCS_J~oveObj ect Last X

vcs_~tovcobj ect: J ,ac;t Y

wor 1 d_chilnged • •;

vcs_~toveObj cctx;

VCS_MoveObjP.ctY;

II II#U~#~,i~~R Hoo~:o lor Rendering and Input Devices ~##~~#ll#nU

II These routine~; are linked in wiLh the internal engine of VR-386,

II dnd will !Jr, catlt>d .JL VoJriou:: times throughout t:he pilCkilge.

II 1'hi:.' i:; usc,fu! :·or dir;playinu informatjon, or Ciltching input device

II intomat·.lon tliru:tly.

void VCS_DieplayPreRenderHook(void)

II This routine, is linked into the prarender_process{) in USCREEN.C.

if {VCS_Worldt·todc ! " vcs_~l<>inl"lorld)

sctup_liglJU: I VCS_f'alet teLights, 1) ;

void VCS_DieplayPoetRenderHook{void)

11 This snt,1]] bit of code should display the world buttons on

II ttto.: screen, and should put_ names on them. This is called from

1 I poc:trcndr,r _procer;s {) in l1SCREEN .C.

cllEJr buff[_lO);

it {VCS_DlsplayWorldMode)

ucer_tcxt. IVCS_Dif;pl,Jy\"lorldLocX, VCS_DisplayWorldLocY, VCS_DisplayColour,

vcs_GetV/orld:~ode t J J;

if (VCS_Di o;playCont. ro 1M ode)

Page 77

usec_text I VCS_DisplayControl LocX, VCS_DisplayCont rol LocY, vcs_Di fJplayColour,

vcs_GetControlMode());

switch {VCS_controlNode)

case VCS_NavigationMode:

II Display the centerpoint on the screen tor reference

vgapoint {VCS_XCenterpoint, VCS_YCo:.nterpoi n t, VCS_Co:.ntorpointColour) ;

break;

case VCS_Ploco:.mentMode:

switch {VCS_I~orldMode)

case VCS_3dPalette:

I I Nothing up the 'l'op

user _box { XMi.n, Y~lilX- VCS_8ordcrSi ze +1 , X~lax, Yt1ax, VCS_I3orderColour) :

user _box {XI~ in, Yl·l,JX- VCS_IlonlerS i. ze, XHax, Yt1ax- VCS_BorderSi zo+ 1,

VCS_BorderOutline);

user _box 1 Xl·t in, Yl~ax- vcs_uurd(~rs i. ze, 1 , XNax, Yl~ax- vcs_Borders i ze+2,

vcs_Borderoutllne•ll;

sprint f { bu [t, /CS_I~<.l i n\>lor ldL,>bel) ;

user _text I Xt~i n+ VCS_'I'extOf fc,~t, YMax-VCS_IlorderSize+S, VCS_BorderText,

buff);

break;

case VCS NatnWorld

user _box {XI·! in, Y~~ in, XM<.lx, Y~lin • VCS_BorderS i ze t 1 , VCS_BorderColour) ;

user _box {XHin, YMin • VCS_llorderSi ze-1, XMax, YNin• VCS_BorderSize,

\'CS_BorderOut 1 i ne< 1 J ;

user _box I x:-ti n, YHiru VCS_Rorder:Ji ze, XHax, YMin+VCS_IJorderSize+l,

vcs_Eorderou t 1 inc J ;

!'l[lrintt I buff, VCS_Jdl'aletteLabel) ;

uwcr_tcxt{XMi.n;VCS_'l'cxtOfl'set, YMin•J, VCS_BorderText, buff);

user _box I XMi n, YMax- VCS_EorderSi ze' 1, XMax, YMax, VCS_BorderColour) :

user_box ln!in, YHax-VCS_IlorderSizo, XNax, YMax-VCS_BorderSize+l,

vcs_Borderoutlinel;

u,ocor _box I XMin, YMilx- vcS_llorderSi. ze+ 1, xr~ax, Yt~ax-vcs_BorderSize+2,

vcs_Bordorout 1 ine + 1 I;

sprint f (buff, vcs_userPa let teLabel) :

user_text (XMin-•VCS_TextOffset, YNax-VCS_BorderSize+5, VCS_BorderText,

buff);

break;

case VCS UserPalette:

user_box{XMin, YNin, XMax, YMin+VCS_BorderSize+l, VCS_BorderColourl;

u scr _box (X Min, YMin+ VCS_BorderS i ze-1, Xt~ax, YMin+ VCS_BorderSi ze,

vcs_Borderoutline< i J;

Page 78

user_box (XMin, YMi n+VCS_BorderSiz0, XMax, YMin;VCS_DorderSize+l,

VCS_BorderOutline);

sprintf(buff, vcs_MoinWorldLabel);

user_text (XMin J-VCS_TextOffset, YMint3, VCS_Border•rext, buff);

II Nothing down the Bottom

break;

display_changed++;

void VCS_ProceaeGlove(POINTER *Glove)

switch(Glove->~eys)

case G_!\KEY

case G_BKEY

VCS_CimngeCont rolMode (VCS_Nav i gat i onMode); break;

VCS_ChangeControlMode (VCS_PlilcementMode); break;

VCS_RegisterMovement IVCS_Glove, Glove->x, Glove->y, Glove->z, Glove->gesture);

long vcs_scaleGloveXCoord(long value)

II The boundaries for glove coordinat0s seems to be -625 to +l'i25,

II I'll convert tllio; to screen coordiniltes (0- XMax)

float ratio;

value •= E25;

if (value 0)

return 0;

ratio= (flout) vulue I 1250;

return (long) (ratio * XM•)X);

long vcs_scaleGloveYCoord(long value)

II The boundaries for glove coordinates seems to be -625 to +625.

II I'll convert this to screen coordinates (0- YMax)

float ratio;

V<lliJ(O •~ 625;

if (value, 0)

return 0;

r,'ltio = (tloilt) value I 1250;

return I long) (ratio * YMax);

void VCS_ProceeeMouee(PDRIVER •Mouse)

int x, y, z = o, Buttons;

mouse_last(t1ouse, &x, &y, &Buttons); __________ ,_ ______ _
Page 79

VCS_RegisterMovemont(VCS_t·10use, (long) x, (long) y, (long) z, Dut·t·.ono;J;

11 Externs [or tlw painting und surfacing stuff.

extern unsigned stype {);

extern unsigned paint;

extern unsigned surf<JC£<;

extern unsigned pall!tcolo,·;

extern void ~;urf_it (OB,Jf::C"i" 'ob.i);

extern void color _ _it(uiUI-TT •ohj);

extern unsiw1ed inr. liL't._surldcP('Joid);

extern POOL can_poinl"._).[J[void);

extern int mani p_Ju_,v.t i 1;

extern PDRlVEI\ •cur~;or_de:vice;

void VCS_Registo~Movement(int PointerType, long x, long y, long z, int Special)

II Pointer't'ype is can be eithC'r of the fallowing:

I I VCS_MOL!Oll'

I I VC.S_GlOV<'.

II The Speclul lireld is lHH·d to contain either button configuration,

II or Lhe cu:-renL C:<."~>Lln<! Ill.

i ~ (VCS_1~od.-;Ch.1!1<JtcDclay ! ~ G)

VCS_Modc•ChcJnql:D<e 1 ;,y--;

swltch(VCS cunt rol~1ude)

case VCS !'lcwementl·lode:

switch I Pointer Type)

CclS0 VCS_MOU5e:

if ((Special VCS_ki9hU1ousoButtonJ r.& (VCS_MenuActive

char user_bur f<,r(5CI];

Ot!JECT 'in';ir;_~a.:q;

\10RD Selccr.ionX, S<"lectlonY;

vcs_w•nuAct i v<: THUE;

save_ screen I):

vcs_Co<mtSc,!ectcdobjects I J;

switch IVCS_ObjectCuuntJ

case 0:

if (VCS_ControHiode == VCS_NavigationModeJ

VCS_Wr.ir~J.Ienu I 0 l = VCS_Changet.oPlacementString;

else

VCS_~1ainMenu (0) vcs_ch.:mgetoN,1vigat ionString;

swi t:ch(menu IVCS_Mai nMenu))

Ci:lse 'N':

Page 80

FALSE))

VCS_CilanyeConL r·ol!~ode (VCS_I~,w igul ionHode J ;

br<2ak;

C<IGt,; 'P' :

VCS_ChungC'COnt rol~lode (VCS_Plac<.>men tMod02) ;

br02ak;

I I Help

case 'H':

process_u_k<N I' H' J;

breok;

I I Information

case 'I' :

prOCC'S!;_d_kcy ('I');

bre;,k;

II Goto lucarion

C<JSC' '(;' :

a:.;k[o:·("Y.,Y,Z: user_buf[er, 50);

i[(u<_,er huf[h IQ])

~;scanf I w:.\01 _buf f.:,r, "'tld, 'tid, %ld", &body_pose->x,

&body_pose->y, &body_pose-><.);

[JDSilhll•_dlilll(jCdt;;

break;

&SelectionY):

II SdVC world

brbJk;

II Quit

case '\l':

prOC('8S_il_kcy('Q');

l;reilk;

break;

case 1:

it (L_object_movGable (VCS_LastObjectlnt.ist))

vcs_ObjecU!enu (5 J = vcs_ToggleFixedString;

else

vcs_objectt-1onul ~;I " vcs_Toggld·1oveableString;

s1·1i. Lch (menu IVCS_Obj cctMenu) J

II Sal!('> olljroct

case'S':

vcs_SilveSelectedObject I l;

bre,lk;

II Paint objcect

r:a"e 'P':

if 1 ir:cn_point_2D(J) break;

if I !manip_2D_il.vail) break;

disp_palotte();

do

move_t ill_click 1 cursor_device, 1, &SelectionX,

) while (SelectionY > 126 II SelectionX > 160);

pai.ntcolor ~ 16 • (SelectionY 1 6) + SelectionX I 10;

if (surface:! =" 0)

?age 81

/* hue, brightness *16 *I

p.;~inr. " p.;~intcolor;

else

p<:~int (surf.;~ce I llpaintcolor "" 4) & OxOFFO) + 10):

world_clwnged • +;

color_itiVCS_Lo.sLObjectinListJ; II In Keyboard.c

break;

I I Rr<s\irtc+ce object

case '!\':

it (ge:t_surf,1ce() !oo 1)

sur f_i t (VCS_L..lc:LObj ect JnList) ;

world_chanyHJ•;;

break:

il !Je:let.e obi<ecL

case 'll' :

del e:te:_ob j(,c:t I 1/CS_LasLObj ectJ nLl st) ;

··o~-1 d_c\JilL<.J• <1 • ·;

br-<;.11:;

// 'Pivirl L>:J-jccr__

co.r;e "I":

II Tc,gglc· f-"ixed/Mov,Jble

cas<' 'f'' :

c,1se 'M':

if I i s_object_mvvr:ab le 1 vcc;_LastObj ect InLis t))

VCS_L;;J.fJtObj \'CL I nLi st

make_moveable_object_f i xed (VC~}_Las LO\.lj ect l:-J!, i rJL, r, i nv i iJ_seg, TRUE) :

dc-dete_olJj.,r:L (ill vi s_scgl :

g loba l_upd<Jle_ob_i cc L IVCS_LcwtObject InLi st l :

else

VCS_LasLObj•"ctinList =

make_f ixed_obj ect_moveable IVCS_LustObj eeL rnLi st, NULL) ;

g lobal_update_obj eeL IVCS_L<l.stObj ectrnList l ;

break;

II Informiltior+ about the object

case 'I':

break;

seg_info(OI:

get_response (1);

break;

default;

switchlmenuiVCS_ObjectsMenu))

, I Paint all objects

cilse 'P':

if (!can_point_2DI)) break;

Page 82

&SelectionY):

il (1rnanip_2U_avuilJ b102ak;

disp_p;lleue 1)

do

movo_Ul l_c lick (cur:;or _d<'=vice, 1, &SelectionX,

l while> ISelect:ionY > 128 II SeloctionX > 160);

paintcolor ~ 1li • (.SolecLionY 1 8) + Selro·ctionX 1 10;

if fsurf<H:e ~'o 01

pnint ~ palntcolor;

else

paint: (c;urtace I ((paintcolor << 4) & OxOFFOJ + 10):

I* hue, brightness *16 *I

world_chanyl'd' +;

do_for_.1ll_,,elcocteJ(color_itl; 11 In Keyboard.c

bn,ak;

I/ RP.i'a!di1C0 all obj(cCLs

cac;e 'H':

il(g.:,t_surfiJC(O()) tJr,ak;

do_•; or _al ~_selcctc,d 'r;IJf f_l t);

\,'orld_ch.:~nq•,d• •;

breuk;

cuse • lJ' :

spru.t_f(u:wr_bulfcr, "Delc>L<:o %d object%si Are you sure'?',

VCS_Ohj<.:cLCnunt, l'lC~~-ot.jectCount"' 1) '? "s" : "');

popnL!-;~1 I uscr_bu f f<'f J ;

it (Loup)wr I'"•-'L_response11l I 'Y' J

do_t or _ull_,~<:l <'C Led 1delete_vi sobj) ;

world_r:hangl•dt t;

bn:oc1k;

while (get_response(OI i= 0);

restore_screcn () ;

VCS_HenullctiV8 -= FALSE;

if 1 !VCS_LettButtonll8ld && Special VCS_LeftMouseButton)

II Right Button hils just been pressed initially

VCS_LcftBuLtonHeld = 'rRllE:;

VCS_MoveObjectL<!sLX X;

VCS_NoveohjectLasLY y;

II Actuul object Sr<lection is done using vcs_selectObject()

II '<~hich ic' t:illled just after this routine.

else

Page 83

if (VCS_Leftfluttonlleld f.~ Speecidl "7 VCS_Leftt10UfWButtonl

II Button i;; ~;till br,ittg pn:~;!:uJ

(

II 1f VCS_,~,]<~r;tObit:c\ (I IJi,mL ~eJected <mything,

II lhen turn ott til<' lKl<'. ~;tiJtuc; tor Llw button.

if (VCS_LOH:I.S~;~,;ct_c-dUhi<'CI. -" NULL)

VCS_L<! f Ll!ut r_onlJr, 1 d

else

II Otlt<~ll~.iue tliOVl' Ui<' obj"r;t according to the Cl.lrsor's

II (.."llt-!"<"lit :oc<ltiun

VCS_t·tovdJbj<:ct X

VC.S_~tov<,Ob_j<,r 1.\' y;

if (VC!:_\·Io!ld:·!ode vee; ~!dJrMotld)

do_: ur _. 11 l_c;,_, l ',, · Lc·d (VCS_t-:ovcob j ectXY) ;

elr;u

if ('ICS_~;r~lcc~_,dOhj<:r;L !- NULL)

Vco,_~~uv<,Obj H.:tXY IVCS_~:r, l ,,r;t. c,dObj ect 1 ;

else

if (VCS_LeLtButtonl-lcld .~& Sp<Ociul VCS_NoMouseButton)

it IVCS_\VorldHode =~ vc:-;_3df-'illette)

if (VC.':_SelectcdObjen_ l·ll!Ll.l

delr:tc_oOjH;. (I!C<;_Sclr:ctcdObject);

VC~~_ScdectedObjcct ~ NlJLJ,;

if (VCS_\~orllit·Jode == VCS_ll~Gt"l-'<ilette)

if (VCS_Seleect<>dObj<:Cl. !~NULL)

delete_objc>cL (VCS_P;nentObject);

VCS_ParentObjN.l'. ~ NULL;

unhighl ight_obj ect (vcs_selectedObj ect) ;

VCS_SelectedObject ~ NULL;

11 Button has :just been released ••

if I! vcs_IsSh i ftKeyPressed() && (VCS_WorldMode __ VCS_MainWorld))

II l\s long as the shift key wasnt held down

if (VCS_LastSelecLedObject !=NULL)

unhiglll ight_objcct I VCS_LastSelectedObject l ;

VCS_Le t tBut ~onl-leld F"ALSE;

Page 84

break;

case VCS Glove:

X VCS_Sca.leGloveXCoord lx I;

y VCS_SculeGloveYCoord{y):

VCS_MinGloveX

VCS_/·1uxG1 0\"PX

VCS_M inC 1 oveY

VC -"--~~.J xG l ov ~~ \'

Sl~itch{.SpcCJ;,I I

min 1 vc:;_J.! ir:r;lov~cx, x) ;

tll<lX {VG:_I•1•1·~GlovtX, X);

min \VI ::.}:ir,l:luv~Y. y);

r·r,,~. I \'I · :_;.];,):(; i ovc:"!, y I ;

Cc"it;C G 1"]!:."1 du __ ~•JI_,,,;l'.p(•.~H!,:',J'_L()); bredk;

cao;c r: PJNCIJ· do_~!U_:r·dr:Lp(fiO'i'N~I·:_DOJ; break;

II Pinch is not really S>tpputt.H.I in tJHo i:t't Jdl vee.: rk.";iqn Should i. t be?

ca:;r, G_l'OHIT: du_.<;J_JI' . .t<lip(!:FiYC'i'_DO); brcuk;

default: tio_~IUII.tili;•I!:J;U·:_DUI; iXhJk;

bre<lk;

II Check llordcr Arcoa:; l<n c;L']l.<cL~rm, but dont allow multiple

II mode ctJ.:mg.-.:; ~;1. r<t iyht; ;t tun nne, .mother.

i((y <~ Yt~intVCS_Donkt:::::<:l

II Change \•lorld :-lc.dc L•' Jd uh-je:c~ i'cllcU.e

vc::·_,..:uin'dur-ldl ~& ~1odeCh<lf1gePossible)

vcs_changd·lu~ ld~lud(; (vr-:.s __ "ld!'il l >-'L Le 1 ;

VC.S_t·1od·-·ChanguDe lay t·locidla::;Bt:enCliilnged;

if ((VCS_\-lorldModr~ VC.S_UserPillette) && NodeChangePossible)

VCS_ChangeWorldModo;{VCS_I·lainWorld);

VCS_NodeC~,anyeDcolay ~ ModeHasBeenChanged;

if (y >= YMax-VCS_BorderSize)

II Chanye \'lorl<J 1·1od~' to User Object Palette

if (IVCS_Worldt·1ode, VCS_Nain\'lorld) &h 11od8ChangePossible)

VCS_Chilnge\-lor l d~lodc (VCC._UserPalet tel ;

VCS_Mml\·.ChangeD~; lay - l·lodelliJf'.l'eenCllil.nged;

i r. ((Vc;u .. ·orld11odc vc;_; 3dl'd 1 ot LeI && NodGChangePossible)

VC.S_Chanqe\-lor ldt~ode IVCS_t·la in\-lorld) ;

VCS_~lodr'Chungc>D<O I ay - /1odeHas8eenChanged;

Page 85

if (X <-= XMin<·VCS_Bon.lerSizo)

11 Rot<:~te Viewpoint NegativG\y i.lround the Y axis.

if (VCS_WorldMode ~~ VCS_Mainl'.'orld)

body _pose- >ry - = t loat'-2<mgle ((VCS_B<.lrderSi ze-x) /VCS_Rotat ionStep) ;

if (X>-= X~1ax-VCS_BoJdt,rSizc)

11 Rotate Viewpoint l'o::iLivrdy around the Y axis.

if (VCS_\~orldMode c~ VCS_MCJinWorld)

body_pose->ry f 1 oat 2cmg lG ((X WI X- VCS_BonlerS i ze-x) /VCS_Rota t ionstep) ;

bre01k;

case VCS_NavigationMode:

II Navigation ~lode, dllows e.1sy Hldnipulation o/ the user's

II viewpoint. LhrourJh :nov<·~lmlt. ol the hand .i11 3D o.pucc, and

II simple qcc;tun, cr,JI.IOi.

/I Left ol· ri<.Jh". Jro:n the rcnu,•po~rll: indical.es rninor rotation

//around Lh<• 1' dY.iC', ·,;l,tl<. Hl<W<·m• 111. i•i•c"•"l<! 01 !""low the

II ccn:cr·pll!n· im:i,·"r,., .. "''"i<.III<,;Jl i11t.u n1· d'.·:<•Y :[om ':.!He scrten.

!I [loth V.J:y1:1q ac; •.• ,,,;llt; ~u t:i': d<·<..::<·<' 11·urn wl1ich tlw)Jdnd

II is !!10\'U] d\-/,",y II<''! 1!•,; ,·u:'.<·:·jHJJ":I, O] LJJ. :;c;--.-,r,ll,

/I If r.b" h,-,, .. ,; i.; clc·JICil<.c\, , __ .IH·r·. lh•_ ·nc·\•ifHJJr'.l. i:· IC:DVfccl qulckly

11 toward:; r::•.: d11o:-<·t.iw: 1:1•:· v~'.\·;i""J:· i:· liwinn, ,-, f~aL hand

II indic,l'~inq n" nl>v<:r·<·II\., .mti '''"d!.•nl ir: L,._:·:·\·1<+:. <,1ivinq

!/ V,lryi;lq :'T>02•d•: '': :11<''/l':I'C:Jl IUI"'-'••I<i.

II 1n tlE: CoJ•·:•c or,-, rro·.:,:c·, 1 h•· 1.'111 :.on.: .JH' U[;r:d instead.

II pm.:it".:ve tiird·:.in11 \:<l,.,\lrcl!: i.h' ,_,cr<cen, while 1:!1<~ right mouse

I I button intli C:·•lc•c; st. eddy mov,,wcnt. <Jway f!:"om t.he l;creen.

switch (Pointer1'ype)

case VCS_Mouse:

key_set_direct ((int) ((x-VCS_XCenterpoint.) IVCS_Navigat.ionStep),

(int) ((y-VCS_YCentorpoint) /VCS_NavigationStepJ, 0);

if (Special !oo 01

break;

II L.:oft. butt\lfl indical:cc1)lo:.;it:ive movement

if Special VC<> Lcft~:ous<OI1uLton)

k.c, set._move(U,-l,U, 11;

It wn ·" l<iqht !3ulton indicate::; ncgiltive movement

if (Special == VCS_RiqhU~ouseDutt:on)

k<,y_:::;et_move (0, 1, 0, l);

Page 86

case vcs_Glove:

II I should factor in thG;. coordinilte her<= :oomGhow too ...

I I Should ullo1~ fingGr g.oc.:t.utl'>>, and just usG ;1 3D centr~rpoint

II as tile basis tor moveml•nt:' Hill this bG inLuitive enough?

X VCS_ScaleGluvcXC:oon:l (X);

y VCS_Sc<deGlov"YConr·d ly I;

vcs_~ti nGlov,·x

VCS_MaxGlov"?:

vcs_t·ti nc l.,w •. ·
vcs_~~axc],,._,,.

raiiJ{'Jt' .. J-:i,;C;l<lVCli, X);

r;1 , :< lVI .:._L·I·'-':1~1 ov<::\, :-.I :

!lll\'• ::_t·!illl;!ov•·"l, y);

··:.t·.l'.'l': :-'.oxli."'.'•·Y, y);

key_:;<'l. .. !.litc< I I I 11;: ({X

vcs_XCGnterpoint) IVCCi_Ul cw. ~: 1 , ·! • ·v1 . :_,tl"v i '-'·' 1. i <J!IS!"~"·cdr:: .•;p,c i all 1 ,

I : !L' I ! ':/

vcs_ YCcntc>rpoi nL J ;vc:_c 1 ''~'''· l.•·p • \1< .•;_11'' 1.· i q" L i on!·:p.-•··r.L; 1 spr•c; iu 11 1 , o 1 ;

I/ k"Y _c,.,·L_c!J n•<. :. I'-', · Vt "!;_n.~v i q.1 t. i '!ll:.;pe:"tl•; l Spec i a 1] , 0 I ;

break;

break;

position_changed++;

II ~###~U#### Customised Objoct Selection Routine ##~#######

void VCS_~reateSelectedObject(void)

O!lJECT *Ne~o.•Object:

POSE OldPO!Je;

get_obj ect_poo;e (VCS_se lectcdOhjecL, &OldPose I ;

NewObject ~ vcs_copyObject (VCS_Sel ectedObj0ctJ;

add_object_~o_world (NcwObject I;

NewObjecl wake_f ixed_objGct_movcahle (NewObjGct, NULL);

h iqhl iglll:_obi <"Ct. 111.-,wObjcct.l ;

VC<.;_Sr!lror:tcdObj<>('l. = N,;wObject;

\ICS_Li.Jc;t.Sc I c:o<:l.<;clr.Jbi c:oct. NewObject;

g 1olJC. l_uprJdU!_<>l> i<Oct. (t{<;WObj cc t) ;

\10t 1d_r;hcill',j<:d l < ;

int VCD_SelectObject(OEJECT *obj)

If Thi.s ;_,;called by movc_and_select_2D() in Cursor2d.c

II Retu:"n value of 0 " no action, 1 = new object selected

Page 87

II \1o want to ignore mous\0 clicks in this mode, thr,y are catered fol:" elsewhere.

if (VCS_ControlMode "'" VCS_NdVigaL i ont1ode)

return 0;

if (VCS_WorldMode "" VCS_MainWorld)

if (!VCS_IsShiftKeyPressed())

do_for_all_sel acted (tJnhiqhl i~ht_obj ect) ;

VCS_LastSelectedObject = NULL;

if (obj && is_object_scd<o'ctable(obj))

II I[the shift key i:: pn,s,;c'(i, then allow multiple hiyhlightC'd objects,

II othen~ise clbiJ u~,. p~-c'viuu': :~e:lcctlons.

II 'l'his i~ only lor T.ll<c Indin worl<J th011gl:.

if (i r._obj ect_se tl'Ct cd I obi) I

if (VCS_Sr~JectedOlrjccL ! = NULL)

del~;>te_objcct (obj);

vcs_sol ocLedo"ojt!Cl = NULL;

else

unhlghlight_obj<:cl(obj);

else

unhighl ight_obj ect (obj) ;

else

II Lets only <tllow tho user to selocL one object from the 3d Pillette

II at a time, and turn o[f .:Jny old choices as a new one is selected .

.if (VCS_WorldMode !~- VCS_Maini-Jorld)

if ((VCS_SelectedObjecL lee NULL) && (VCS_WorldMode -- VCS_3dPalette))

delete_object (VCS_Scle<:tedObject);

vcs_SelectedObject " NULL;

if (VCS_IsShiftKeyPres~ed())

highlight_object (obj); II Just highlight it

else

VCS_SelecLedObject "' obj;

VCS_Parentobject "' obj;

VCS_CreateSeloctedObjP.ct();

Page 88

else

highlight_objecL (obj);

VCS_LastSelectcdObject ob);

world_changed++;

ret. urn 1;

return 0;

void VCS_GrabObjact(OBJECT *obj) II Grab un object

if(is_object_child_of(body_.seg, obj)) return; II can't grab body part!

attach_objccL(ubj, body_so"g, 1);

void VCS_UngrabObjact{OBJECT •obj) II Drop an object

if { i s_obj cct_chi ld_o f (body _seg, obj))

detach_object (obj, 1);

BOOL VCS_ProcessKeys(unaigned KeyPrassed)

switch (KcyPressedl

II Just a few debug options so I can see what's going on.

#ifdef DEBUG

case F5:

vcs_Log_DumpState(J;

break;

ca!le r6:

VCS_SaveSelectcdObj ect () ;

bt'Nlk;

#end if

1 1 Extensions lor VCS - F? toggles VCS display stuff, and

II FB ~1ill toggle between NJvigation and Placement Mode

case F7:

if (VCS._DisplayControlNoi!e)

VCS_D.ispl<~yControlMode-- ;

VCS_Displuy\~orldMode--;

VCS_DisplayControlMode++;

VCS_DisplayWorldMode+ +;

Page 89

break;

caso F8:

if lVCS_ConLrolMode "~ VCS_NuvigaLion~lode)

VCS_Changocont rolMode (VCS_PlacemenU~ode) ;

else

vcs_changeCont roHiode !VCS_N<lvigar ionNod'") ;

break;

I I Extensions for VCS - F'9 ond FlO allow switching between World Modes

case F9:

switch (VCS_WorldModol

case VCS_3dl'alclvo:

case VCS_M<lin\\'orld:

case VCS U',cr l-'d lot! e.

bro.:Jk;

case FlO:

switch I VCS_I'o'or 1 clt~odo I

Cflse vcs_JdPaletu;:

case vcs_~lain\·ior·Jcl:

Cilse \fCS_Usorr,,lette:

break;

default:

return FALSE;

break;

VCS_Challge\•,'or ldHO<k I'ICS_Jdf'a 1 GL te) ; break;

VCS_Ch.:Jngd/or 1 d!·iodc I VCS_Main~lor ld) ; break;

VCS_Chunge\'lo' ldNo•ki\/CS_~Iainl-lorld); break;

VCS_Chunqe\~orld~lod<O IVCS_Userl-'aletLe); break;

bn.!dk;

return TRUE;

II ~UH~~fiHHn Hook to tho quit routine so VCS can close down nicely H########~

void VCS_Quit(void)

Hi(C:ef DEI3llG

VCS_LogFile fopen(VCS_LogFileName, Append);

fpr int f (VCS_LogF i l<~, "Maximum and Minimum Glove Values: \n---- ---------- -------------

-----\n");

fprim.fiVCS_LogFile, "X: %d- %d\nY: %d- %d\n\n",

vcs_:~inGloveX, vcs_t1axGlovex, VCS_MinGloveY, vcs_MaxGloveY);

fcloseiVCS_Logl'ile);

llondi [

Page 90

	The Design and Implementation of a Toolkit for the Creation of Virtual Environments
	Recommended Citation

