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ABSTRACT 

Increasing land degradation is recognised as an immediate worldwide threat. Human­

induced soil salinity is probably the major cause of land abandonment, through its 

adverse effects on plant growth. Salinity is a major focus of environmental researchers 

because it is recognised that counter-strategies can potentially reclaim both artificially 

degraded lands and intrinsically saline areas. Currently, strategies to combat salinity 

require that land use is changed, since restoration to a past use is usually economically 

impractical or impossible. 

Biological strategies show most promise. Revegetation of degraded soils with hardy 

plant species has met with considerable success, and shows promise for the future, given 

the vast, and as yet largely unknown, resources in plant genetic diversity. This diversity 

also gives rise to the need for testing of specific tolerances to soil salinity and associated 

soil conditions, such as waterlogging, to expedite revegetation programs. 

Growth of the introduced grass Agropyron elongatum, known for its tolerance to stress, 

was examined in a glasshouse at a range of salinities, in waterlogged conditions and in 

high soil pH, conditions often found on some minesites in the southwest of Australia. An 

indigenous grass Danthonia caespitosa and an indigenous daisy Podolepis gracilis were 

similarly examined. These trials were undertaken in order to determine any potential 

usefulness in minesite revegetation, and to compare a known halophyte with the 

tolerances of previously untested Australian species. 
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A. elongatum was found to decrease in growth, but tolerate salt concentrations to 400 

mM, and to be unaffected by waterlogging. Both Australian species were found to be at 

least as tolerant of salt as A. e/ongatum, but to be sensitive to hypoxia caused through 

waterlogging. Both grasses showed apparent growth stimulation at low salt 

concentrations, though this is not in accordance with past studies on monocotyledonous 

plants. 
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CHAPTER 1. INTRODUCTION 

1.1 Causes and Economic Importance of Soil Salinity 

The effects of salinity on plant growth are well documented; according to 

Garfield (cited by Munns [1993]), this is the second-most frequently published 

plant physiology topic behind photosynthesis. Such a high level of scientific 

interest is indicative of the potential for significant economic loss caused through 

the adverse effects of salts on growth (hence yield) of crop species and also of 

the Jess obvious potential for harm to conservation efforts. As an extreme 

example, salinity in less-developed countries (LDCs) has been linked to the 

encroachment of desert on both crops and stands of natural vegetation 

(McWilliam, 1986). Desertification clearly is the ultimate result of unchecked 

salinisation (Mabbutt, 1978), yet such extreme conditions rarely cause concern in 

more-developed countries (MDCs) (Freer, 1978). This disparity is related to the 

amount of capital able to be directed at the problem of salinity (McWilliam, 

1986), and also to the different capacities of cultures to firstly recognise and 

acknowledge the potential long-tenn effects, then to implemont effective 

counter-strategies. 

These two points also give some indication of the difficulty involved in assessing 

the importance and extent of salt-affected land (Flowers & Yeo, 1995); that is, 

the degree of estimated salt damage depends on the objective viewpoint of the 

assessors, and the assessors' understanding of the capacity of the population to 
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alter land-use practices. For example, rice is relatively salt-sensitive (Aslam, 

Qureshi & Ahmed, 1993), but is grown in sufficient quantity on salt-affected 

soils to support subsistence agriculture in parts of western Asia, India and 

Indonesia. However, in many of these same locations the rice yield is considered 

too low to support an increasingly important agricultural economy (Flowers & 

Yeo, 1995). It is, therefore, partially replaced by more salt-tolerant crop species 

(such as semi-dwarf rice), or the affected land is abandoned. More aftluent 

nations, or those with less restricted options, might consider directing capital at 

research into biological or physical strategies to prolong the usefulness of the 

salt-affected land. 

Of least importance in assessing the extent and impact of salinity at the 

international level is the amount of salt in the soils. Using salt concentration as 

the only parameter, some researchers have determined that as much as 10 m.iiiion 

km2 ofthe earth is affected; by confining these studies to land-use as secondarily 

affected by salt, the figure is given as around 1/3 of the approximately 1.2 million 

km2 of irrigated land (Peck, 1993), and 1/7 of the approximately IS million km2 

total cropland (Yeo & Flowers, 1989). It would seem therefore, more 

appropriate to confine generalisations to countries or regions with a single, 

definable economic base, enabling specific strategies to combat salinity which 

need only consider any region's economic practices and goals, and its peoples' 

capacities to change land~use wherever it is shown to be necessary. 
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A further complication in assessing the impact of salinity is that soil salt levels 

continually cmnge through natural causes, and more importantly, increase 

through human land-use practices such as irrigation with salty water (Flowers & 

Yeo 1977; Ashraf 1994; Flowers & Yeo 1995). In addition, primary (natural, or 

intrinsic) salinity is usually associated with high or very low rainfall and 

undesirable soil chara~eristics. It is often economically impractical to change to 

new croplands (many countries simply have none available), so existing sites 

continue to be subjected to a salt input or to increased exposure of topsoil to 

natural underlying sources of salt. 

Soil salinity is not a new problem. Records show that ancient peoples frequently 

moved to new farmlands when existing land became contaminated; the Punjab in 

India for example has created a severe salinity problem over many centuries of 

traditional farming practices. However, the worJd now has something like 6 

billion people, and arable land is increasingly being seen as a very finite resource 

(Yeo & Flowers, 1989). 

The focus nowadays, in both LDCs and "MDCs, is on production or selection of 

vegetation which will tolerate certain levels of salt (hence acknowledging the 

relative permanence of the problem), or on reclamation of contaminated land 

through phytological and/or physical remediation (Yeo & Flowers 1989; Barrell­

Lennard & Qureshi 1994; Flowers & Yeo 1995). The former strategy has the 

advantage of being potentially able to claim previously unusable land; intrinsically 
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saline soils which have been ignored in the past may be entirely suitable to some 

halophytic varieties (McWilliam, 1986). 

Naturally-saline soils may be caused by weathering of parent rock, wet or dry 

precipitation, surfllce or subterranean water flow, and are often the sites of 

ancient sea-beds. Agriculturally useful halophytes may be used to tap the 

resources of these normally unproductive areas. Both of the above strategies 

depend on the production or selection of plants with some degree of salt 

tolerance, whether for immediate and prolonged use, such as crops, or for a 

long-tenn program of reclamation. 

1.2 Soil Salinity in Australia 

A further cause of salinity, and one which is well known in Australia, is the 

exposure of topsoil to rising water-tables (Mulcahy 1973; Belford, Dracup & 

TeMant 1990). Unconfined aquifers are leachate sumps, and hence are slightly to 

moderately saline (even exceeding that of sea-water where dissolving parent rock 

contributes sufficient metallic chlorides NaCI, CaCJ, or MgCJ,). Salts brought to 

the rootzone by rising water are concentrated by evaporation (Mulcahy, 1978). 

In the Murray River catchment, irrigation with this water or surface water in 

conjunction with past clear-felling of deep-rooted trees which previously kept the 

water table low through transpiration, has created a serious salinity problem; of 

particular importance since the region represents around 80% of Australia's 

irrigated lands (Mabbutt, 1978). 
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In Western Australia, tree-clearing has probably contributed to the salinisation of 

over half of the dryland fanning areas (Mabbutt, 1978). Salinity and 

waterlogging is widespread in those areas; some water tables bave risen from 

depths of 20m to within 2m of the soil surface. Over the past few decades, crop 

production has decreased, some land has been abandoned, concern has arisen 

over the salinity of the domestic water supplies, into which saline water drains, 

and ominously, much of the world's driest continent is considered to be 

increasingly susceptible to desertification (Mabbutt, 1978). Unlike LDCs, 

Australia has the capital and resources to keep the problem in check, and recent 

tree-planting programs (Schofield, 1991 ), and improved irrigation techniques 

along with extensive drainage, have helped begin a long program of reclamation. 

Research has shown that smaller plant types may also have a role in lowering 

water tables (Barrett-Leonard, 1996). Groundwater recharge can also be reduced 

through evapotranspiration from near the soil surface. 

Elsewhere in Australia, salinity is considered a less immediate economic problem 

(McWilliam, 1986). Intrinsically saline areas are often located where periodic 

flooding, unpredictable rainfall or infertile topsoil preclude farming, and 

xeromorphic and/or halophytic indigenous vegetation is suitable for supporting 

relatively few stock animals per km2 on large commercially viable properties in 

arid inland areas (Mabbutt, 1978). Primary salinity is estimated to occupy 

around 5.3% ofthe continent (Peck, 1993). 
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1.3 Soil Salinity in Southwestern Australia 

The stale of Western Australia has an economy based primarily on mining, 

followed by agriculture/timber, and tourism. Extensive clear-felling of eucalypts 

(and in some places, extravagant irrigation methods) have caused 

salinity/waterlogging problems through elevation of water tables in parts of the 

southwest of the state (George, 1990). Tree planting programs, with 

govemment·provided incentives for farmers, have begun in recent years. Some 

fanners have turned partly or wholly to tree fanning, with the two-fold benefits 

of improving their own soil while profiting in the near future from the timber 

industry (Bartle, 1991 ). 

The tourism industry is based partly on mining operations7 mainly in the north of 

the state, but more importantly on natural areas of interest such as old-growth 

forests in the southwest. These have been extensively cleared since European 

settlement in the 19th century, to both exploit the hardwoods and make room for 

crops (especially wheat) and pastures. Probably less than 10% of forest in that 

part of the state has been unaffected by European settlement, and no more than 

35% of original wooded land remains. Nevertheless, salinity/waterlogging 

problems have been regarded as so far confined to isolated sites, and most 

attention bas been directed at educating fanners about containment. The Western 

Australian Department of Agriculture regularly issues journals and newsletters 

which report on the costs and benefits of various salt and waterlogging 
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containment methods (Bathgate & Evans 1990; Barrett-Lennard, Frost, Vlahos 

& Richards 1991; George 1991). 

Inland from the state's capital city Perth, wheat is the major crop, and the area is 

a major contributor to the economy. Erosion of the topsoil and salinity have been 

of major concern in the past. Studies pertinent to the worldwide concern over 

desertification have been undertaken in this and other parts of the state (Mabbutt, 

1978). 

Western AustraJia is a major contributor of mineral ores to the world market, 

including diamonds and iron ore in the north, gold, nickel and silver in the inJand 

southern half, and bauxite (and coal for local power production) in the 

southwest. Mining operations are a tourist attraction in themselves, but can 

exacerbate pre-existing hydrogeological problems, and drastically alter 

environments over wide areas (Freer 1978; Barrett & Bennett 1994). State and 

federal legislation is in place which requires that mining companies contribute to 

conservation efforts, including remediation of spoiled or denuded land 

(Scheltema, 1991). In the past, this has resulted in the planting of stands of 

contaminant-tolerant, especially halophytic, trees and smaller woody species, 

which were selected for the similarities in soil conditions found in their natural 

habitats. There has been little regard for their ecological 'relevance' to the new 

situation. Over recent years, however, the focus has been on conservation using 

indigenous species (Barrett & Bennett, 1994). 
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There is ample evidence that increased salinity in this region is a result of 

settlement by Europeans. Concern was expressed as long ago as 1897 that the 

Northamffoodyay rivers were becoming increasingly saline (Mulcahy, 1978). 

Significantly, at that time only a comparatively small part of the catchment area 

had been cleared for (wheat) farming, suggesting that tree-clearing in relatively 

small sections of bushland affected soil salinity both locally and remotely, via 

surface or shallow sub-surface drainage. Research was underway by the 1930s 

into the causes and effects of local salinity. A generalisation was made, and 

remains valid today, which proposed that the usual result of an unaffected 

hydrogeological cycle was a very slight net increase of salinity nearest the coast, 

increasing with decreasing rainfall and increasing evaporation further inland, and 

that European-style tarrning practices affected the cycle's equilibrium. 

Replacement of deep-rooted trees with short-lived (annual) crops and pastures 

caused a reduction in evapotranspiration, hence an increase in groundwater 

recharge (Mulcahy, 1978). Salt concentration near the soil surface increased 

through evaporation in the hot dry summers of a Meditteranean-type climate. 

Although salt input through wet and dry precipitation decreases further inland, 

the topography is not conducive to effective discharge to the ocean; indeed this 

region is characterised by chains of salt lakes which likely represent the remnants 

of ancient rivers (Mulcahy, 1973). The lack of a gradient necessary for adequate 

drainage, combined with the artificial increase in groundwater recharge, is 

obviously a major contributor to salinity/waterlogging problems in the wheatbelt, 

but also of importance is the predominance of lateritic layers underlain by 
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relati•..ely impe:meable kaolinitic clays (Mulcahy 1978; Belfbrd et al. 1990). The 

latter {pallid) zones are associated with significant amounts of soluble salts, and 

usually occur over the granitic bedrock which prevails east of the Darling 

escarpment (Mulcahy, 1973). Relatively permeable sedimentary calcareous rock 

underlies most of the Swan Coastal Plain, west of the scarp. The granitic bedrock 

of the Western Australian Shield contains little chloride, hence the salts in the 

pallid zone are probably derived secondarily from precipitation followed by 

evaporative concentration (the pallid zones are themselves formed by leaching) 

(Mulcahy, 1973). 

The westernmost section of the shield is tenned the zone of bauxitic laterites. 

Bauxitic soils overlay a laterite-associated pallid zone in this area (Mulcahy, 

1973). Winter rainfall is relatively high, more so toward the coast, as is the 

amount of evaporation occurring during the summer months. Natural drainage is 

ineffective in the eastern part of this zone, though less so toward the west, where 

permanent rivers follow a steep gradient to the coastal plain. Most of the western 

and southern section of the zone is eucalypt (especially jarrah, E. marginata) 

forest; clearing for agriculture occurs mostly in the eastern parts of the forest, 

where rainfall is lower. Cleared sections of the jarrah forest have contributed to 

salinity levels in catchment areas; of most concern is the deteriorating qua1ity of 

domestic water supplies (Peck, 1993), and as mentioned, the impact on 

individual farms (George, 1990). 
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Of most relevance to the current study are the mining operations in the zone of 

bauxitic laterites, in particular gold mining towards the west of the zone, 

southeast of Perth. Soil at these sites is adversely affected by waste products 

from chemical treatment, topographic alterations which affect water drainage, 

and disruption to soil strata caused during the ore-extraction process. Salts and 

heavy metals are deposited in tailings at the soil surface; the nonnal curative 

effects of leaching are inhibited partly by the natural characteristics of the 

geological zone, and by an artificially elevated water table. Hence the soils 

acquire a heterogeneous distribution of salt concentrations, waterlogging near 

the surface, and a predominantly alkaline chemistry due to intrinsic parent 

materials and introduced contaminants. Such conditions strongly inhibit the 

settlement and growth of local plant species, impeding efforts at restoration. 

1.4 Strategies for Continued Use or Recovery of Saline and 

Waterlogged Land 

Assessment of the economic impacts of salinity must take into account not on1y 

the available remediative or palliative strategies, but the capacity of a people to 

put these into effect. In addition, its capacity must be carefully defined to include 

its own assessment of the costs/benefits of land-care strategies as they pertain to 

economic goals, and naturally, the return expected of the land itsel( This point is 

reiterated here because it is important to recognise that no single strategy can be 

applied to all cases, and that even where a set of containment measures have a 

high probability of success, the cost of their implementation may exceed the 
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predicted benefits in the short and/or long term (Yeo & Flowers 1989; Flowers 

& Yeo 1995). 

Hence reviews of the salinity problem vary considerably not only in quantitative 

assessment of its impact and scope, but also in prognoses of the efficacies of 

different containment strategies. McWilliam (1986) for e<ample, states that 

effective drainage of saline water is the only effective long-term solution, and 

that development of salt-tolerant crops may be merely a method of postponing 

technological programs. Flowers and Yeo (1995) on the other hand, recommend 

that containment should involve a co-ordinated blend of physical and biological 

measures; that is, that neither approach will succeed in the absence of the other. 

Both reviews stress the importance of minimising artificial inputs of salt, 

particularly through improved water management by reviewing irrigation 

practices. Biological programs are in place, but results so far have been mixed. 

The next section briefly describes biological containment programs. For the sake 

of brevity they are considered as discrete disciplines, though the approach should 

be unified in practice, and reckoned in combination with physicaVtopographical 

containment programs. 

1.5 Salt in Crops and Pastures 

Agriculture has been the major focus of attempts to develop salt-tolerant plant 

varieties (Flowers & Yeo, 1995). The human population, and that of LDCs in 

particular, has reached a level where farmland is considered an irreplaceable 
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necessity rather than a source of economic gain (Tal, 1985). Inadequate drainage 

is usually given as the major cause of salt accumulation in croplands, but it is the 

input of water and comparative lack of evapotranspiration on annually harvested 

land which first creates the need for artificial drainage in many situations. 

Subsistence agriculture has shown that reliance on a single, staple crop is 

possible only through management of soil water, including effective drainage 

(which is often practical on the smaller plots found in subsistence farming), and 

periodic transfer of attention to other plots which have had time to recover their 

fertility. The rice paddies of Asia are one obvious example, especially pertinent 

since rice requires a semi-aquatic environment but is moderately se11sitive to salt. 

Physical approaches to water management are often less feasible in larger-scale 

agriculture, where the aim is for maximum yield at mininum cost (Bathgate & 

Evans 1990; George & Frantom 1991). Financial strategies are used in more 

aft1uent countries to offset the economic impact of drought or flood. Such 

strategies include fund borrowing, calculation of the most conservative cropping 

rates, long-term grain storage and emergency government funds. McWilliam 

(1986) sugsests that salinity has not yet been considered a problem worthy of 

similar approaches in most of these same countries. Certainly in Australia, 

salinity has had local, rather than regional economic effects, and as mentioned, is 

only considered a problem wherever other environmental restraints on 

agriculture such as drought or flooding are not. The irrigated farmlands of 

northern Victoria however, have recently undergone widespread changes to 

irrigation techniques, in conjunction with improved drainage methods. Yet it has 
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been estimated that soil salinity/waterlogging in that area could take I 00-200 

years to decrease to pre-European settlement levels if the new cropping methods 

were effective immediately. A similar figure was given for Western Australia's 

Blackwood River to regain its status as a source of potable water, if saline input 

were to cease completely and immediately. Hence there seems a clear need for 

salt/waterlogging·tolerant crop species, especially in countries where salt input is 

an unavoidable aspect of providing water to otherwise barren land. 

Biological approaches have been most extensively studied with agriculture as the 

focus. Research endeavours can be conveniently classified as selection of 

appropriate crop types, production of novel hybrids or genetic improvement of 

existing crop types. 

1.5.1 Selection or salt-tolerant crop varieties 

This approach has arguably achieved the greatest success. Halophytic and 

xerophytic species have been widely tmnsplanted around the world, and 

incorporated into economies as sources of fuelwood, fodder or oilseed (Flowers 

& Yeo, 1995). For example, Salicornia has been the focus of extensive field­

trialling in the Middle East (Charnock, 1988). Varieties of this euhalophyte (salt­

tolerant physiology) have been shown to succeed in severe environments, and 

even thrive on irrigation with seawater. Its nutritional value as fodder for goats 

has been judged superior to the crops it has replaced. Locally, A triplex (saltbush) 

species have been widely transplanted as forage for sheep in southwestern 
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Australia. Recently, however, its nutritional value has been found to be lower 

than expected (Warren, 1995). 

Yet these are not true crop species. The world depends on only a few hundred 

plant species for its nutrition, and probably only 12 species could account for 

most of this dependance. Of the I 560 halophytic plants so far known, none 

have shown potential as a human food source on a useful scale. Flowers and Yeo 

(1995) suggest that a similar approach, that of domesticating (breeding 

usefulness into) a halophyte may be the most practical option. This is supported 

by past successes in increasing the yields from Triticale and Hordeum (though 

neither are true halophytes). 

1.5.1 Hybrids (crop species+ halophyte) 

Triticale, a wheat/ryegrass hybrid, has been mentioned above. However, 

successful hybridisation programs are uncommon. Salt tolerance seems to be a 

complex genetic trait, further complicated by the environmental/physiological 

relationships of halophytes (eg; aridity/tissue succulence) (Tal 1985; Flowers & 

Yeo 1995). 

Hybridisation has been successful where a single gene can confer immunity to 

disease or insect pests, followed by simple back-crosses to dilute the undesirable 

phenotypic features of the resistant parent in following generations. Salt 

tolerance at the whole plant level, however, entails complex genetic control of 
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growth strategies, physiologies (eg; slow growth, succulence, glands) in the 

halophytic parent (Warne, 1995) which creates difficulties when attempting to 

dilute this parent's phenotype. 

Flowers and Yeo (1995) found very few substantiated reports, or trade patents, 

for salt-tolerant hybrids. Therefore it might be concluded t:~at the crossing of 

entire genomes is not yet a practical option. 

1.5.3 Genetic improvement of salt tolerance in existing crop genotypes 

AU major crops are relatively salt-sensitive or only moderately tolerant, by 

coincidence or through usage over centuries. All approaches so far mentioned 

have ultimately required empirical testing of results, and most have shown that 

crop yield is not finally dependant on an absolute value of a species' tolerance of 

osmotic stress or of salt effects (Ralph 1989; Flowers & Yeo 1995). Screening in 

controlled conditions has not identified any clonal lines which regularly and 

predictably give a higher yield than another conspecific in field conditions. These 

observations give some clue as to the difficulties which might arise in genetic 

manipulation of crop species, supported by the previously-mentioned lack of 

patents relating to salt-tolerant plant varieties. 

A genetically 'improved' plant variety appears no more likely to show a higher 

yield compared to an unimproved variety b'ecause of the heterogeneous 

distribution of salts in cropland (Ralph 1989; Flowers & Yeo 1995). In other 
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words, a plot with an average soilwater conductivity of lOOmS/em may provide 

higher yields than an equivalent plot with an average conductivity of70mS/cm, if 

there are sufficient patches of low salinity, or other growth-maintaining qualities 

within that plot. 

This limitation may apply to any method of crop improvement, but genetic 

manipulation has additional constraints which give it particular relevance. One 

such constraint is that there has been limited success in identifying genes which 

specifically confer tolerance to salts (Tal, 1985). Most candidate genes probably 

contribute to salt tolerance only as a secondary result of other physiological 

control mechanisms (Warne, 1995). Tolerance is likely to be conferred by 

complex synergistic genetic mechanisms (Tal 1985; Rausch, Kirsch, Low, Lehr, 

Viereck & Zhigang, 1996). A search of the literature revealed no concerted 

attempts to identify transcription facto,· 1 which might open entire gene 'boxes' 

conferring resistance to salt-induced stress. It has been proposed that a more 

realistic aim would be to produce high-yield transgenic crop plants able to exploit 

the patchiness of saline soils, rather than transgenic halophytes with a lower yield 

(Flowers & Yeo, 1995). 

Tissue culture has highlighted this difficulty; tolerant cell lines do not reliably 

develop into tolerant whole plants (Daines & Gould 1985; Flowers & Yeo 

1995). Tolerance is a property of the whole plant, including control of membrane 

function, water/solute relations in the apoplast, photosynthetic capacity etc. Field 
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testing, with yield as the important criterion, seems to be the only true indicator 

of the value of a particular crop genotype. 

1.6 Woody Species in Conservation and Land Rehabilitation 

Trees and shrubs can be an economically profitable crop ( eg; timber, paper, 

fuelwood) (Barrett-Leonard et al. 1991; Bartle 1991), but are considered 

separately because they are not harvested annually. They are re1atively long­

lived, hence can both remediate salt/waterlogged areas (George, 1991), and 

return affected sites to more socially-accepted conditions (ie: in conservation 

efforts) (Freer, 1978). 

Strategies for production and selection of suitable varieties are similar to those 

used in agriculture, but differ in that there is considerably greater variation in 

stress tolerances of undomesticated species. In addition, the yield of woody 

species is usually an unimportant consideration in conservation. 

Australian species have been widely used locally and internationally in control of 

salinity and waterlogging (van der Moezel, Walton, Pearce-Pinto & Bell 1989a; 

Barrett-Leonard & Qureshi 1994), as a source of fuelwood and for aesthetic 

value. Screening of eucalypts (van der Moezel, Watson & Bell, 1989b), 

casuarinas (El-Lakany & Luard 1982; van der Moezel, eta/. 1989a), acacias and 

Atrip/ex, has resulted in a useful database which details relative and absolute 
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values for salt and waterlogging tolerances in a number of species, including 

comparison between provenances within these species and some clonal lines. 

Complicating factors which are mentioned in the reports of these screening 

experiments include predicted (and observed) variation in results according to 

different growth stages, different periods and levels of prior acclimation (Marcar, 

1993), intraspecific variation (Sands, 1981) and seasonal growth variations. 

Trees have been widely used in Australia over recent years in replanting 

programs, which aim to repair degradation caused through past clearfelling 

practices of both the timber and agriculture industries (George, 1991 ). The 

target in this 'Decade of Landcare' (Schofield 1991; Scheltema 1991), is the 

replanting of a billion trees in ecologically appropriate areas. Farmers have 

traditionally resisted planting trees in valuable crop space, but the federal 

government is currently providing incentives, and education as to the importance 

of conseJVation in sustainable agricu1ture. 

1. 7 Herbaceous Varieties in Conservation 

Conservation does not necessarily mean reclamation of affected land with trees 

and shrubs, especially since there is little likelihood of returning the original 

vegetation to newly saline soil. Necessarily, salt tolerant species of various 

morphologies must be identified for use in revegetation. This should include 

herbaceous varieties, particularly since grass and heathlands have also been 
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subjected to salt/waterlogging. Ecological considerations could be included in 

selecting the most appropriate plant type for revegetation from a database of the 

tolerance abilities of candidate species. 

Herbaceous plants have some advantages over woody species in rapid 

revegetation: rapid gmwth to reproductive stage, shallow roots (hence may 

avoid all but the most severe waterlogging) and dense root mats which can 

rapidly bind topsoil and encourage microbiotic colonisation. These root mats 

may also quickly alter soil structure to enhance further settlement of plants, 

including subsequent generations of offspring. Initial settlement may be followed 

by a rapid linking-up of 'islands' of colonisers. Rapid colonisation may occur 

through asexual reproduction or seasonal reseeding if planting is initially 

successful (many grasses for instance, are r strategists whose populations 

increase at an intrinsic rate), hence planting programs could be 'one-off and 

inexpensive. Such strategists may make use of the patchiness found in saline soils 

to aggressively colonise initially small areas. 

A program of reclamation with herbaceous species should include; identification 

of candidate species from severe environments, identification of more-tolerant 

genotypes through screening, field testing of success to adult and subsequent 

reproduction, and identification of any markers (physiological, chemical) which 

could predict field success. 
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The current study focusses in part on testing Australian herbaceous species, 

identified as growing naturally near contaminated soils, for their tolerances to 

salinity and waterlogging, with the aim of determining their usefulness in 

revegetation progrsms. 

1.8 Physiologies of Salt Tolerance, Waterlogging Tolerance and 

Alkalinity Tolerance 

1.8.1 Salt tolerance 

It is possible to separate species by broad delineation of their tolerances; marine 

algae (some Rhodophyta can survive 4X seawater salt concentration), 

euhalophytes (physiologically specialised, benefitting from some level of salt, eg; 

Sa/icomia spp.), miohalophytes (relatively high tolerances, usually through foliar 

salt exclusion, eg; barley) and glycophytes (low tolerances, eg; rice). 

1.8.1.1 Halophytes 

Flowers, Troke & Yeo (1977) group halophytes for convenience of discussion as 

having an optimal external salt requirement of between 20-500 mM 

concentration (commonly between I 00-200 mM), and a lethal salt concentration 

of usually much greater than 300 mM (with growth inhibition occurring at 

greater than I 00 mM [Ayala & O'Leary, I 995]), and glycophytes as a separate 

group by exclusion from these considerations. Salt tolerance is however, a 
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continuous rather than discrete variable, a.'!ected by factors such as; light 

intensity, light period, temperature, humidity (ie; factors affecting photosynthesis, 

transpiration [MuMs, 19931), growth stage (Ashraf, 1994), prior acclimation, 

and physiological adjustments to very small changes in ion concentrations 

(Flowers et al., 1977). 

Halophytes generally respond well to external salts (Ayala & O'Leary, 1995), 

though it has not been shown that these plants are innately dependant on ion 

concentrations above those found in nonnal soil conditions. Experiments under 

culture conditions show that growth responses are highest when NaCI is the sa1t 

used, and lowest when CaCh is used. There are interspecifically variable 

responses to monovalent and divalent cations, and also to different anions~ cr 

has been found to increase relative growth rates across a wide range of species 

tested (Flowers et al., 1977). 

Halophytes have been useful in studies of physiological responses to salt, 

showing clear variation in growth and morphology according to types and 

concentrations of salts applied, and have assisted in elucidating cellular and 

whole-plant responses to external salts. Studies of these plants have provided 

evidence that growth reduction is due to reduced eel! division rather than 

reduced cell growth, and have also provided support for a model of plant growth 

which is controlled by cell wall extensibility more directly than turgor effects 

(Casas, Bressan & Hasegawa, I 99 I). In broad terms, halophytes may be 

considered separate from glycophytes in having a higher optimal external salt 
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concentration, and a higher tolerance of high salt concentrations. These may 

represent two distinct and different mechanisms (Ayala & O'Leary, 1995). An 

optimum lower salt concentration may be equated with a g!ycophytic 

requirement of specific ions as micronutrients in varying concentrations, while a 

high upper lethal limit is certainly a specialised stress response (Flowers et al., 

1977). 

Given that halophytic ability is usually determined empirically, according to 

responses to environmental salt concentrations, rather than by physiological 

adaptation, Jennings' definition (cited by Greenway & Munns, [1980]) may be 

appropriate; '(halophyes are) ... the native flora of saline soils'. 

1.8.1.2 Glycophytes 

Glycophytes may be defined as those plants which are less able to tolerate a salt 

concentration as high as that tolerated by halophytes. This represents the vast 

majority of plants. In research, these plants have proven useful in elucidating the 

physiological effects of salinity (Greenway & Munns, 1980), and provide 

comparison with halophytes, especially where a glycophyte and halophyte are 

closely related. Crop species show a range between glycophytic and 

miohalophytic abilities (some crop species have halophytic ancestors). Plants can 

show an intraspecific range of salt tolerances; native inhabitants of saline soils 

can often be found growing in non~saline areas, while the reverse is true of some 

species normally considered to be non-halophytic, further demonstrating the 
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blurred distinction between halophytes and glycophytes. E. camaldulensis for 

example, usually not considered a halophyte in the strictest sense, can be found 

growing naturally throughout mainland Australia in a wide range of 

environmental conditions (Farrell, Bell, Akilan & Marshall, 1996a). 

1.8.1.3 Mechanisms of salt tolerance 

Having mentioned that halophytic ability is a continuous variable, it must be 

pointed out that it is also evident that true (eu-) halophytes may be characterised 

physiologically, primarily by adaptations which facilitate ion (panicu1arly Na') 

uptake and compartmentalisation to decrease water potential in tissue (Flowers 

et al. 1977; Flowers & Yeo 1986; Glenn, Olsen, Frye, Moore & Miyamoto 

1994). Such a mechanism ensures a gradient in water potential between the plant 

and the soil. This is associated in dicotyledonous halophytes with increased tissue 

water (ie; succulence) (Flowers & Yeo, 1986). Monocotyledonous halophytes 

may take up Na +, and utilise organic solutes for intracellular osmotic adjustment, 

usually accompanied by a decrease in water content (Glenn, 1987). Ion uptake 

has been shown to be an effective osmotic adjustment. The level of adjustment 

varies between species, but NaCJ alone can account for 75-93% of osmotic 

potential in plant tissues (Flowers eta/., 1977). Vacuoles are the likely site of 

ion concentration. It is generally accepted that cytoplasmic ion concentration is 

1/3 to 112 that of the vacuole, and that tissue damage occurs only when supply of 

ions exceeds demand, causing apoplastic saturation. Na + is toxic at higher 

concentrations, as is K', both inhibiting protoplasmic enzymes. Shoot ion 
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concentration in comparison to root mass has been used to define halophytic 

ability, since ion supply is a function of root surface area (Flowers & Yeo, 1986). 

Glycophytic tolerance is more correctly an avoidance strategy, provided primarily 

by ion exclusion, mostly from the leaves, with concomitant accumulation ofNa + 

in roots and stems (Greenway & Munns, 1980). The roots often have a hi­

layered endodennis, affording increased control of ion uptake, and while Na' 

enters the root via the symplast, it is actively retained in the root xylem 

parenchyma and 'leaked' Na' is actively resorbed from the xylem. 

The halophyte/glycophyte distinction can blur interspecifically, but even within a 

species, such as Spartina patens, the tolerance ability can vruy between ecotypes 

across the halophytic/glycophytic boundary (Hester, Mendelssohn & McKee, 

1996). It is possible that tolerance to salt is an evolutionary adjustment of the 

level of ion uptake relative to ion exclusion, occurring separately in 

approximately one-third of angiosperm orders. This view is supported by the 

apparent lack of metabolic adaptations seen in halophytes (Flowers eta/., 1977), 

although anatomical adaptations, such as the salt-extruding glands of Atrip/ex, 

occur in some species. In addition, some plants (particularly monocots) tolerate 

high external salt by exclusion of ions at the roots, combined with temporary or 

long-tenn suspension or mininUsation of growth. Many halophytes are, in fact, 

slow growers (Flowers eta/., 1977). 
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It is possible that the high ion content of halophytes is not induced by high 

external salt, but is a constitutive aspect of halophytic growth (Flowers et al., 

1977). For example, many halophytes are C4s and require Na' as an essential 

component of pyruvate transport (Luttge, 1993}, whereas Na' is not an essential 

micronutrient of C3 phmts. In addition, some plants may change from C3 to C4 

pathways when exposed to water stress. Mesembryanthemum crystallinum for 

example, can be induced to change from C3 photosynthesis to CAM in high 

external salt (Luttge, 1993). This causes malic acid synthesis to increase, which is 

an organic osmoticum (anionic counter to Na+ in the vacuoles of photosynthetic 

leaf cells). The role of organic osmotica in countering osmotic stress is not yet 

resolved. This is discussed further in section 1.9.3. Cellular organelles are 

implicated in this mechanism (Robinson & Jones, 1986), and some tentative 

support for organic osmotica as a response to stress is offered by evidence that 

temporary sequestration of inorganic ions may occur in organelles prior to 

compartmentalisation in vacuoles. 

Specific uptake of K' or Na' varies between plants (Glenn, Pfister, Brown, 

Thompson & O'Leary, 1996), and between ratios of"K:/ Na', so it is difficult to 

generalise on ion specificity as a factor in salt tolerance (Flowers eta/., 1977}. At 

high concentrations of different salt types, Na+ is taken up in selective transfer of 

K+ in the majority of angiosperms. In addition, ion/tissue specificity varies 

between species. In halophytes, approximately 90% ofNa' is found in the shoots 

and 80% in leaves. This is in contrast to glycophytes, in which Na' is retained in 
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the roots. Although rapidly transponed to leaves, neither cations nor anions are 

readily exponed, even from senescing leaves (Flowers et al., 1971). 

There is evidence that halophyte enzymes are no less inhibited in their function by 

high salt concentrations in the vacuoles than those of glycophytes (Daines & 

Gould, 1985). High Na • IK• ratios, absolute levels of each, and high cr 

concentrations are known to inhibit many enzyme activities. Enzyme activity may 

be improved by acclimation or by high substrate concentration. There is also 

evidence that more than one form of some enzymes (eg; malate dehydrogenase) 

exists in both glycophytes and halophytes, but that halophytic cells contain 

proponionately more of the less-inhibited forms (Daines & Gould, 1985). 

The role of active transport in vacuolar sequestration and in flux: across root cell 

membrane is not yet fully elucidated, though active transpon of Na • in 

glycophyte roots has been shown, and Na•fH' antiponers would fulfill theoretical 

requirements (Rausch, et a/., 1996). Cenainly, changes in tonoplast permeability 

(and that of organelle membranes) is imponant, as it has been shown to be 

affected by changes in concentrations of ions applied experimentally. The 

difference between tonoplast permeability in root cells and leaf cells could 

account for selective transfer (antagonistic exchange) of K+ (less readily across 

membrane) and Na• (more readily) (Rausch et al., 1996). In Salicomia, Na/ K+ 

pumps are implicated in ion exchange across the tonoplast; thus Na+ would be 

sequestered temporarily in organelles (to avoid excess cytoplasmic 

concentration). In other halophytes, Na• may move into the apoplast prior to 
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removal in the transpiration stream to leaf surfaces. Na supply would, therefore, 

rarely exceed demand in these species. 

Controlled experiments in salt-stress effects and tolerance mechanisms are of 

necessity relatively simple. Soil salinity is however a complex combination of 

many factors. Besides the physical effects on soil structure, and the effects on 

chemistry and root-zone biota which certainly contribute to overall plant 

response, the salts themselves vary in proportionate ionic concentrations, and this 

both temporally and spatially. Na+/Ca2
+ ratios for example, are important to the 

penneability of root cell membranes, affecting control of ion uptake. Na + 

displaces Ca2
+ (important in membrane structure) in cation exchange, which 

occurs not only in the soil solution but also at root cell surfaces. When the 

Na+/Ca2
+ ratio is high, tolerance is often low. Further complicating this 

relationship is the exchangability of other cations in the soil solution, particularly 

M 2• g. 

Clearly, salt tolerance in plants is a complex trait. The following sections deal 

briefly with two further soil conditions often associated with salinity that plants 

may encounter. 
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1.8.2 Waterlogging 

1.8.2.1 Effects of waterlogging on plant growth 

Saturated soil contains insufficient oxygen to support normal root cell function 

(Barrett-Leonard, Davidson & Galloway 1990; Marcar 1993). Active transport 

at the root cell membranes is inhibited by up to 95% (the difference between 

oxygenic respiration and fermentation pathways) (Barrett-Leonard eta/., 1990). 

The immediate effect is root·tip iqjury (Farrell eta/., 1996a), a lack of control of 

ion uptake (Marcar, 1993), and an inhibition of osmotic control (van der Moezel 

et a/. 1989b; Galloway & Davidson 1993). Jon toxicity, especially that of 

sodium, may be manifest through tissue damage, while osmotic imbalance varies 

as to its observable effects according to plant type. Grasses for example, seldom 

wilt when exposed to waterlogging until tissue damage occurs. 

Many plants can survive for long periods in waterlogged conditions by temporary 

cessation or minimisation of growth. Oxygen content, for instance, usually takes 

at least 8 days to decline to zero, depending on temperature. However, there is 

evidence that rooHip death occurs in hypoxic conditions relatively quickly in 

both halophytes and glycophytes, though the former may be more injury-tolerant 

(Galloway & Davidson, 1993). In addition, waterlogging is associated with 

numerous secondary soil effects, many of which are deleterious to plant survival. 

Nitrifying bacteria cannot survive anoxic conditions, hence nitrate levels in the 
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root zone decrease to zero in approximately I 5 days. Exudates of roots, 

decomposing microbiota and a new population of anaerobic microbiota 

contribute to further changes to soil chemistry. These include increased levels of 

carbon dioxide, ethylene, hydrogen sulfide, and methane, though these may take 

days (over 100 days in the case of methane) depending on temperature and soil 

constituents, to reach toxic levels (Setter & Belford, 1990). 

1.8.2.2 Waterlogging tolerance mechanisms 

Parenchymatous air-spaces (aerenchyma) are found in the roots of some plants 

subjected to waterlogging (Setter & Belford, 1990). These provide a continuous 

air-filled channel to the atmosphere, hence an uninterrupted supply of oxygen to 

the roots. Aerenchyma development may be increased by the onset of 

waterlogging, and for several species the extent of this development has been 

shown to be related to the plant's age and prior exposure to waterlogging. Older 

plants with existing aerenchyma often have a higher survival rate than younger 

plants which have yet to develop aerenchyma through exposure to waterlogging 

(Setter& Belford, 1990). 

Adventitious roots above the zone of waterlogging occur in some tolerant 

species, though these have also been observed in plants with no tolerance of 

waterlogging (van der Moezel eta/. 1989b; Setter & Belford 1990). 
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Saline soils are often waterlogged. Ionic and osmotic imbalance caused by the 

lack of oxygen is exacerbated by the abundance of salt ions (Marcar, 1993). 

Many halophytes are, however, also tolerant of waterlogging due to their 

halophytic physiology. Companmentation of ions in the tissues moderates the 

need to regulate ion uptake, so an excess of both water and ions is perhaps of 

lesser significance to their growth strategies. More-tolerant species may 

therefore be simply those which are able to more efficiently companmentalise 

salts. Inhabitants of saline/waterlogged environments are often found to be slow 

growers, indicating an ability to suspend or minimise growth (Setter & Belford, 

1993). 

Exclusion of Na + and Cr, together with adventitious aerenchymatous roots, has 

been suggested as contributing to the relative tolerance of Casuarina obesa to 

salt/waterlogging (van der Moezel, Watson, Pearce-Pinto & Bell, 1988). It must 

be noted, however, that the physiological effects of combined salinity and 

waterlogging are not well understood. 

1.8.3 Alkalinity 

A funher effect of salinity which is often noted in Australian drylands is high soil 

pH, caused by high levels of intrinsic sodium. White encrusted sodic soils are 

often used to show the effects of unchecked salinity in agricultural journals. 

However, alkalinity need not be derived entirely from primary salt sources. 

Agricultural soil additives and industrial contaminants can increase pH through 
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direct or indirect input of excess hydroxides. Soil pH is a large and complex 

topic, hence will be dealt with here only in terms of its direct effects on plant 

growth. 

The immediate effects of alkalinity are the changes to the ion-exchange processes 

in soil solutions. Iron, manganese, copper, zinc and other micronutrients can 

precipitate from the solution in high pH, making them unavailable for uptake by 

plant roots. Calcium can be replaced by sodium where high sodium 

concentrations occur, leading to a loss of root cell membrane integrity and 

further inhibition of micronutrient Jptake. This will be exacerbated in soils which 

are further affected by salinity and waterlogging, in which osmotic stresses also 

contribute (Bell & van der Moezel, 1991 ). High pH can also have a caustic effect 

on plant tissue (Brady, 1990). 

Plants can counter moderately high pH through their normal physiological 

activity (Brady, 1990). Uptake of cations and exudation of acidic substances into 

the rootzone can control alkalinity. However, if the pH is excessively high, 

normal plant activity is inhibited and the alkalinity can be compounded by further 

effects on a changing soil chemistry and the loss of rootzone microbiota which 

would normally moderate pH levels. 
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1.9 Conservation in Saline and Waterlogged Environments 

1.9.1 Consenration and sustainable agriculture 

It seems clear that soil salinity is a multi-faceted problem with no simple all­

encompassing solution. Physical measures vary in their long-tenn effectiveness 

(McFarlane & Cox 1990; McFarlane, Negus & Ryder 1990), and can incur both 

direct costs in their implementation and indirect costs in their often unpredictable 

effects on the hydrological cycle (McFarlane, Engel, Ryder & Eales 1990; 

Barrett-Leonard & Qureshi 1994). Biological strategies show promise but are 

hindered from the outset by a poor correlation between halophytic abilities of 

plants and economic usefulness, and further by a lack of success to date in 

combining these qualities. Nationally, deep-rooted perennials have been widely 

planted, lowering elevated water tables and reducing surface salt. This practice 

has benefitted agriculture directly, and can be viewed as truly remediative since it 

returns land to a more natural condition. 

Internationally, the most successful strategy has probably been the simplest one; 

to select halophytes from saline habitats and transplant them to otherwise 

economically valueless land elsewhere. This approach requires that the 

transplanted species can be incorporated into a region's trading economy, either 

directly or by reducing a dependance on imports, or has some value in 

conservation. An advantage in the short term is that salinity in that area becomes 
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a mere soil condition (which may even be most profitably maintained; through 

irrigation with seawater for example), but the long-term disadvantages are the 

new dependance on that particular species remaining economically appropriate, 

and the unchecked increase in salinity (Barrett-LeMard & Qureshi, 1994). 

In Australia, dryland farming has been the m'\ior economic base, and salinity is 

largely secondarily derived from less than two centuries of European-style land­

use. Thus though a problem has been created which can match those of less 

aftluent countries, the practices are not culturally entrenched. For this reason, 

Australia is in the enviable position of being able to contain the spread of 

degraded land simply by educating landowners as to the causes. While individual 

fiums and properties may be beyond immediate financial recovery, causing some 

alarm to the agriculture industry, the industry itself is not in apparent immediate 

danger. Attention can be partly directed therefore to conservation, an essential 

component of a nation's economic success (Freer, 1978). It is perhaps from 

these efforts in combination with more directly agriculture·based research that 

effective long-term solutions will be found. 

1.9.2 Screening for salt and waterlogging tolerant woody species 

There has been some relatively comprehensive testing of indigenous Australian 

woody species over the past decade (Marcar & Termaat 1990; Marcar 1993; 

Farrell eta/. 1996a; 1996b). This has been essential to the agriculture industry 

due to the proven benefits of planting species with a high rate of water use in 
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strategic positions on salt-affected farmlands. A useful database of trees and 

shrubs able to succeed in severe environments has developed from these studies, 

and this database is of international interest given that Australian species have 

been successful transplants in the Middle East and elsewhere (Marcar & Termaat 

1990; Marcar 1993; Barrett-LeMard & Qureshi 1994). 

The usual protocol has been to identifY those species which naturally inhabit 

severe environments, with special emphasis on salinity and waterlogging, and 

screen these in glasshouse conditions to identitY stress tolerances of each plant 

type (Marcar & Termaat 1990; Bell & van der Moezel 1991; Farrell eta/. 1996a; 

1996b). Testing clonal lines within these candidate species ensures that 

genotypes can be selected for transplanting in the field with some confidence in 

their success (Farrell eta/., 1996a). The point is often raised however, that these 

screening methods are time-consuming, as they are constrained by the need to 

compare relative growth rates (RGRs) after a lengthy propagation period. A 

further restriction is that the greatest variation in stress tolerance usually occurs 

in those species with lower tolerances overall. This also suggests that genetic 

manipulation may ultimately be found to have an upper success limit; genotypic 

adaptation to osmotic stress may possess inherent limitations imposed by 

numerous interacting environmental factors. 
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1.9.3 The need for rapid screening 

Plant physiologists have searched for characters in plants which signifY their 

tolerance abilities in field conditions, in order to expedite screening (Aslam eta/., 

1993). The most obvious potential character is morphological variation. Leaf 

thickness, root/shoot ratios, leaf expansion and xeromorphic features (Blake, 

1981) are a few examples which have been shown to be inadequate pointers to 

tolerance abilities (Krishnaraj & Thorpe, 1996). Most have simply revealed 

nonnal intraspecific variation (Hester et al., 1996), growth-stage variation 

(Ashraf, 1994), or adaptation to unknown (or unrelated) environmental factors 

(Shannon, 1985). Physiological variation can be used only where salt stress 

effects can be causally delineated from photosynthetic inhibition, which has 

proved difficult (Ayala & O'Leary, 1995), and tissue-ion relations show only 

tenuous taxonomic links to tolerance abilities (Greenway & Munns 1980; van der 

Moezel et a/. 1989a; Morabito, Jolivet, Prat & Dizengremel 1996). It is 

important however, that physiological featuces considered singly or together, 

often indicate tolerance of a wide variety of stress types, and it is becoming 

increasingly evident that salinity tolerance may merely be one such stress (Yeo & 

Flowers, 1989). In other words, salt tolerance may be only one constitutive 

property of a widely-tolerant plant, although it should be noted that halophytic 

physiologies are not strongly associated with xeromorphic traits. 
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The limitations of tissue culture have been mentioned; these relate to the 

increasing awareness that stress tolerance is a whole-plant strategy which is 

rarely dependant on a wholly cellular response (Daines & Gould 1985; Tal 

1985). Nevertheless, infomtation on the cellular basis of tolerance continues to 

increase, and an increasing understanding of tolerance mechanisms will certainly 

lead to more expedient screening methods (Tal 1985; Flowers & Yeo 1995; 

Olmos & Hellin 1996). 

Amino acids and carbohydrates have been obsetved to increase in quantity in 

photosynthetic tissues of plants exposed to osmotic stress. There is an ongoing 

debate over their place in osmotic adjustment, but Flowers and Yeo (1986) have 

presented evidence that some of these, notably proline, glycinebetaine and simple 

sugars, are present in sufficient quantity in water-stressed leaves of some species 

to significantly lower water potential (and stabilise cytosoJ/vacuole osmotic 

gradients in other species which accumulate ions). Further evidence that these 

substances are an osmotic stress response includes: 

a) they are non-polar, uncharged (hence do not affect electrochemical gradients 

across tonoplast or plasmalemma while maintaining osmotic balance) and do not 

impair (in fact may help maintain [Hare & Cress, 1997]) cytosolic enzyme 

activity, 

b) differences in proportions or absolute quantities of each of these substances 

are found between plant taxa, and show taxonomically~associated accumulation 

responses to different types of water stresses applied (eg; drought [Ali Dib, 

Monneveux, Acevedo & Nachit, 1994], antagonistic nutrient deficiency 
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[Al-Karaki, Clark & Sullivan, 1996], and salinity [Martinez, Maestri & Lani, 

1996]), and 

c) they are usually present in small quantities in unstressed plants, but can be 

caused to increase in quantity by either imposing an actual osmotic stress 

(drought, or high solute concentration 'physiological drought') (Ali Dib el a/., 

1994}, or imposing a simulated osmotic stress such as the application ofabscisic 

acid (ABA) (Cachorro, Martinez, Ortiz & Cerda, 1995). 

Evidence that increases in these substances are due to secondary influences of 

osmotic stress includes: 

a) proportions and accumulation rates of each substance differ between 

genotypes, but it is the osmotic contribution of all substances together which is 

significant, rather than one substance (eg; proline) alone (Ali Dib eta/., 1994), 

b) they are usually components of essential synthetic pathways; if such cycles 

are compromised, these substances can be produced in excess, perhaps 

preventing feedback inhibition of the end-product and thereby contributing to 

their own propagation, and 

c) increases in concentrations of these substances are often temporary, and 

may lower a plant's water potential at the expense of other essential pathways 

(hence a potential benefit to the plant may be realised in neither the short-term 

nor the long-term). 

Munns (1993) proposes that plant response to salinity is bi-phasic; an immediate 

and prolonged (weeks) reduction in growth due to water deficit which is often 
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reversible, followed by a period of necrosis and death (showing first in older 

leaves), which is due to the toxicity of absorbed salts. If this model is correct, 

rapid screening techniques would demonstrate the level of a plant's ability to 

tolerate osmotic stress, but not its ability to tolerate exposure of tissue to salt. 

Munns (1993) supports this model by referring to the relatively long periods 

required to separate salt-tolerance abilities of closely related species by 

observable differences in growth. 

These considerations notwithstanding, there is certainly a case for utilising 

neutral organic osmotica as a marker of salt-tolerance ability. Wyn Jones & 

Storey (1978a; 1978b), in examining glycinebetaine and proline accumulation in 

water-stressed barley, provide support for the argument for their use as 

haJophytic markers. They conclude that under culture conditions, ionic 

adjustment is the major osmotic response, but that increases in proline levels are 

quantitatively related to the stress levels applied. They also found that 

glycinebetaine levels usually exceeded those of proline within a subset of two 

families, Chenopodiaceae and Poaceae. Within this subset proline levels 

increased dramatically at the onset of osmotic shock, often to levels exceeding 

those of glycinebetaine, while the latter increased incrementally as stress 

increased. Beyond this subset however, this relationship was less apparent. 

Aspinall & Peleg (1981) provided evidence that proline levels increase with 

stress applied, but they could not support a quantitative link with halophytic 

ability. Sundaresan and Sudhakaran (1995) state that "convincing evidence in 
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support of ... (correlation of proline levels with osmotic stress tolerance 

abilities) ... is lacking". 

Yet the assaying of proline levels remains an attractive approach. Correlation is 

apparently found within certain subsets of plant taxa, so this method may 

increase the efficiency of screening techniques, at least within restricted 

boundaries. This project examined proline levels at a range of salt concentrations 

in the roots and shoots of a grass with well-documented stress tolerances, to 

examine any quantitative relationship. 

1.10 A Database of Salt Tolerant Herbaceous Species 

Databases of plants with halophytic ability have been mentioned previously. 

These are the result of screening programs which, for Australian woody species 

at least, often take into account commonJy-associated environmental factors such 

as waterlogging and pH extremes. Plants can be grouped according to both 

absolute and relative stress tolerances; a significant improvement on broad 

groupings as either halophyte or glycophyte. Creation of such databases has been 

undertaken on trees and shrubs due to their obvious value in both 

saJt/waterJogging remediation and conservation. This review found no similar 

efforts toward construction of a database of tolerances of Australian herbaceous 

species. 

39 



Many quantitative studies on salt effects/tolerances have been undertaken on 

crop species (Dvorak, Noaman, Goyal & Gorham 1994; Krishnaraj & Thorpe 

1996; Maiti, Amaya, Cardona, Dimas, De La Rosa-Ibarra & Castillo 1996), and 

coastal (Hester et a/., 1996) and arid-land grasses. The infonnation gathered is 

usually utilised in physiological studies, and tolerances to a range of stresses are 

rarely recorded. Databases of crop and forage/pasture plant tolerances are 

available from North America, but generally exclude infonnation on stresses 

other than salinity or drought, and are mainly useful only in a uniquely American 

agronomic context. 

Grasses and ground-cover vegetation are often overlooked in the light of the 

immediacy of agricuhural concerns. Yet herbaceous species are of proven 

importance in revegetation of industrial sites and chemically-contaminated soils 

in many types of applications (Freer, 1978). The Standing Committee on 

Agriculture (SCOA, 1993) strongly advocates an integration nf economic and 

ecological research foci, with a view to long-term sustainability. 

In Australia, introduced grasses have been widely used in revegetation programs, 

making use of their known stress-tolerance abilities. The African species 

Uroch/ea mosamhicus, for example,has recently been shown to grow 

aggressively in the extreme environments of Queensland's Bowen Basin, where it 

dramatically reduces erosion around coal mine sites. It was chosen after extensive 

field-trialling of over 60 species. Legal requirements for revegetating disturbed 

areas are met by these approaches, but as mentioned, there is a growing 
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awareness of the desirability of indigenous Australian species in fulfilling these 

roles. 

Tall wheatgrass Agropyron e/ongatum (introduced from Asia Minor in !935 

[Lamp, Forbes & Cade, 1990]; classification of tall wheatgrass from Hnatiuk 

[1990]}, is well-established in Australia, following six decades of use in 

reclamation of saline/waterlogged and alkaline soils in m'"Y applications (Lamp 

eta/., 1990). 

1.11 Experimental Aims 

The environmental laboratory at Boddington Gold Mine (BGM) proposes to 

revegetate areas within the mine surrounds using herbaceous plant varieties. The 

soils there are adversely affected by mining activities. and are commonly saline, 

alkaline and subject to waterlogging. The company intends to stabilise soils, 

particularly where the original topsoil has been removed or disturbed, and 

improve the aesthetic qualities of the site. Soil improvement prior to revegetation 

has been considered by BGM. Strategies such as the application of gypsum or 

topsoil translocation were believed to be financially impractical. Revegetation 

programs at the site must therefore utilise stress-tolerant plant species. 

Tall wheatgrass has been used successfully in Australia in revegetation of salt­

crusted, compacted soils, duplex alkali soils and calcareous sands wherever 

water is plentiful. The species' hardiness and limitations are well known from 

anecdotal evidence, and from decades of field testing. BGM therefore proposed 
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its use in their revegetation program. The company considered that testing of the 

species' stress tolerances under controlled ·conditions was a prerequisite to 

revegetation efforts. 

The company also proposed the testing of stress-tolerances of indigenous 

herbaceous species observed to grow naturally near minesites, since these were 

considered ideal candidate species from an ecological viewpoint. If these plants 

proved to be tolerant of adverse soil conditions to some degree, they could be 

utilised in place of, or in conjunction with, tall wheatgrass. 

Data gathered on all species' tolerances to stress could contribute to a database 

of specific properties. Data relating to tall wheatgrass would be relevant to 

AustraJian soil conditions, and since the species' hardiness is already known, the 

data could be analysed to more fully characterise its halophytic physiology. Data 

relating to Australian plants would be useful both in comparison with tall 

wheatgrass, and in the current and future searches for plants able to be used in 

revegetation of degraded soils. Currently, most candidate herbaceous species are 

exotics for which stress-tolerance data is available. Addition of Australian species 

to lists of candidates would appear essential to conservation efforts. 

This project aimed to provide stress-tolerance data on an introduced grass and 

indigenous herbaceous species proposed for use in revegetation of mine sites in 

southwestern Australia. 
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The project examined, under glasshouse conditions, the gwwth responses of 

Agropyron elongatum, and the Australian species Podolepis gracilis and 

Danthonia caespitosa to a range of rootzone NaCI concentrations, and to 

waterlogged conditions. 

Screening of plants for tolerances to salinity has undergone an increase over the 

past decade, as land degradation becomes an increasingly immediate threat. 

Screening trials could be expedited if a physiological indicator of tolerances 

could be identified. Proline accumulation is one such potential marker, though 

plant physiologists are divided as to its worth in this regard. Analysis of proline 

accumulation in tall wheatgrass could provide evidence either for or against a 

relationship between levels of accumulation and stress applied. 

This project examined proline accumulation in A. elongatum following exposure 

to a range of salinities. 
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CHAPTER 2. TALL WHEATGRASS AGROPYRON ELONGA.TUM 

(POACEAE) 

2.1 Introduction 

Tall wheatgrass is most commonly called Agropyron elongatum in the literature. 

Its taxonomic treatment has, however, varied in the past according to a range of 

different criteria (Walsh & Entwisle, 1994). An examination of the various 

treatments of tall wheatgrass is not relevant here, but it is worthwhile to note 

some of those encountered in the Jiterature (showing addenda where known): 

Agropyron (agro-) pyronoides, Agropyron elongalum auc/orum non (Host) P. 

Beauv 1812, Elymus e/ongatus (Host) Runemark ssp. ponticus (Podpera) 1978, 

Elytrigia pontica (Podpera) Holub, Loplwpyrum ponticum, Thinopyrum 

ponticum, Thinopyrum elongatum. In addition, there are a number of recognised 

cultivars that have been developed, including 'Largo', 'Alkar' and 'Tyrell'. 

In its native habitat of southern Europe, Asia Minor and south-eastern Russia, 

the species grows near the coast and in saline marshes where flooding may occur 

(Walsh & Entwisle, 1994). It is a tussock-forming perennial which spreads by 

seeding, and may grow to 2m in height (Lamp el al., 1990). Growth rate may be 

dependent on season, as it has been observed to suspend growth in 

Meditteranean winters. Growth in spring, summer and autumn is maintained 

provided there is sufficient moisture or a shallow water table. Flowering occurs 
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in summer; gennination and early vigour is dependent on soil characteristics. The 

species appears to be relatively intolerant of drought (Walsh & Entwisle, 1994). 

The species' salt tolerance has been measured in the past. Yeo & Flowers (1989), 

for example, state that a 50% yield reduction occurs at an electrical conductivity 

of 19.5dS/m; threshold conductivity (salt level at which growth is reduced) has 

been quantified at 7.5dS/M. Such figures are usually described as relative to 

those species with which it is being compared, and as being related to 

environmental conditions, soil type and propagation practices. Hence the species 

is variously described as being moderately salt-tolerant to tolerant. 

The use of tall wheatgrass internationally as a forage species suitable for planting 

on saline land has been well-documented (Walsh & Entwisle, 1994). In Australia, 

this grass has been used for six decades to revegetate saline, waterlogged and 

alkaline soils, mainly in temperate zones, and has shown little evidence of any 

tendency to invade adjacent areas. Hence the species would appear ideal as both 

a pioneer species and, since it can become a dominant or co-dominant in suitable 

conditions, as an endpoint species in some situations. 

Although relative salt tolerance figures are available from North America, where 

it is compared to local species in American environmental conditions, data 

relevant to Australia is scarce. Most information regarding the plant in this 

country is anecdotal and unquantified. Information on tolerance to waterlogging 

is largely derived from field sampling. Established plants appear to be relatively 
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unaffected by soil hypoxia. Infonnation on germination and early growth in 

waterlogged conditions is lacking. Tolerance of the species to high soil pH is also 

determined largely from field obseJVation. 

Worsley Alumina, acting as manager for BGM, required quantified data on the 

ability of tall wheatgrass to revegetate mine surrounds, including mine residue 

heaps. Such revegetation would comply with government requirements for 

rehabilitation and aesthetic improvement. BGM required data relevant to soil 

conditions found at the mine, from screening trials in controlled conditions. 

The current trials examined growth responses of tall wheatgrass in a range of 

external salt concentrations, waterlogging and high soil pH. The effects of 

waterlogging on growth were examined both separately and in conjunction with 

soil salt. The effects of high pH on growth were examined separately. Proline 

accumulation was measured following growth in a range of sa!t concentrations. 

A range of different salt and waterlogging treatments were applied in the first 

experiment (Experiment 1.). Those considered to be Jess relevant were omitted 

from subsequent trials. In addition, results from several parameters in the first 

experiment were included in thls report. These were useful in determining which 

were most relevant in analyses of plant responses to these conditions. 

Subsequent experiments present only those parameters considered most 

appropriate. 
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2.2 Materials and Methods 

2.2.1.1 Plant material 

Agropyron elongatum seed was from one seed lot ( cultivar unknown), supplied 

byBoddington Gold Mine in March, 1997. Seed was germinated in 180mm pots 

for approximately six weeks, at which time their numbers were thinned to three 

or five plants of similar size per pot. Plants were watered daily, and fertilised 

(half strength ThriveTM) every fourth day until treatments began. All gennination 

and plant propagation was performed in a glasshouse, with temperatures ranging 

from 20- 35° C. 

2.2.1.2 Pots and soil 

180mm pots were used in all experiments, with a single lOmm hole at the base 

which could be sealed using a rubber bung. The soil was a I :I ratio mixture of 

fine and coarse pasteurised white sand. Each pot contained 4kg of soil. 

2.2.1.3 Saline solutio·fls 

Nutrient/salt solutions comprised NaCI in multiples of 1.46lg/L for each 25 mM 

increase in concentration, half-strength Thrive1M fertiliser (0.889g/L) and 

Hoagland's solution strength Ca(N03)2 (0.656g/L) (Hoagland, 1920) to avoid 

potential effects of sodicity, in deionised water. The control solution comprised 
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the same additives with the exception ofNaCI. Control treatments are referred to 

as 0 salt, or 0 mM NaCI, but ThriveTM contains KNO, (9.0%), Na,B,O, (0.005%) 

and Na,MoO, (0. 002% ). 

Salt solutions are described in units of electrical conductivity (EC). Soil salt 

solutions are measured in deciSiemens per metre (dS/m), from extracts of 

saturated soil solution. In these salinity trials, treatments are described as 

concentrations of NaCI in millimoles per litre (mM). However, the nutrient 

solutions contained other ions, hence solution conductivities are given here as a 

general guide: control solution- 1.2dS/m, 25 mM- 3.9dS/m, 50 mM- 6.5dS/m, 

100 mM- 11.5dS/m, 200 mM - 21.9dS/m, 300 mM- 30.5dS/m, 400 mM-

39.6dS/m. Conductivity was measured with an OrionTM Model 140 conductivity 

meter. The pH of control and salt solutions was 5.00 ± 0.02 at 24°C prior to 

application to pots. 

2.2.2 Experiment 1. Salt and waterlogging 

Each pot contained five plants of similar size, treatments comprised three pots 

(total 15 plants per treatment). Salt treatments began in mid-June, and consisted 

of control, 25 mM NaCI, 50 mM NaCI, 100 mM NaCI, and 200 mM NaCI 

solutions. Solutions were applied at daily increments of 25 mM, until the target 

concentration was reached. Sufficient solution was added to the pots until the 

conductivity of the solution entering was equal to that of the solution exiting the 

drainage hole. 
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Eight days after the treatments began, three pots treated with control solution, 

and three with I 00 mM NaCI, were sealed with a rubber bung before flushing 

was complete such that the solution filled the pot to a depth of approximately 

I em over the soil surface. These were the 0 salt/100% waterlogged, and 100 mM 

salt/! 00% waterlogged treatments respectively. 

Another three control pots and three 100 mM NaCI pots were sealed before 

flushing was complete. A lmm hole was drilled in the pot halfway between the 

base and the soil surface, such that waterlogging occured in the lower half of the 

soil column. These were the 0 salt/50% waterlogged and 100 mM NaCU50"1o 

waterlogged treatments respectively. 

The experiment therefore comprised a control treatment, four salt treatments (25 

mM, 50 mM, 100 mM and 200 mM NaCI), two non-saline/waterlogged 

treatments (50% and 100% waterlogged) and two saline/waterlogged treatments 

(100 mM NaCU50% waterlogged and 100 mM NaCU!OO% waterlogged). Pots 

were well-spaced and randomly rearranged daily. Waterlogged (100%) pots were 

watered using deionised water, to I em above the soil surface. Waterlogged 

(50%) pots were watered by weight with deionised water. All other pots were 

maintained at field capacity by watering to weight daily with deionised water. 

Plants were harvested 50 days after the treatments began. They were separated 

into roots and shoots and their fresh weights measured. They were dried at 70° C 

for six days then their dry weights measured. 
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2.2.3 Experiment 2. High salinity 

Each pot contained three plants of similar size. Each treatment comprised four 

pots (total 12 plants per treatment), though only three pots (total 9 plants per 

treatment) were used in the salinity trial, with the extra single pot per treatment 

being used in analysis of proline accumulation. The experiment began in eady 

November. Treatments were control, 100 mM NaCI, 200 mM NaCI, 300 mM 

NaCI and 400 mMNaCI. Solutions were applied in daily increments of25 mM as 

in Experiment 1., such that the final concentration ( 400 mM) was reached on day 

16. Pots were sealed with a rubber bung on day 17, and watered by weight daily, 

using deionised water. Pots were weJI spaced and randomly rearranged each day. 

Plants from all pots were harvested 44 days after treatments began, separated 

into roots and shoots and their fresh weights measured. Three pots from each 

treatment were dried at 70° C for six days, and their dry weights measured. 

Plants from the remaining pots were analysed for proline content. 

2.2.3.1 Proline analysis 

Samples of leaf material were taken from those pots set aside for proline analysis 

in Experiment 2. One pot was chosen at random from the four pots in each 

treatment. Replication was four samples from a single plant in each of the five 

pots. Proline levels were analysed using the procedure of Troll & Lindsley 

(1954), modified by Bates, Waldren and Teare (1973). 
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2.2.4 Experiment 3. Alkalinity 

2.2.4.1 Alkaline treatments 

Nutrient solutions were made up, comprising hatf~strength ThriveTM fertiliser in 

deionised water. The pH ofthe solutions was adjusted to the appropriate level by 

adding IM NaOH. 

Pots contained three plants of similar size, five pots per treatment (totallS plants 

per treatment). Treatments were pH 6.0, 7.0, 8.0, 9.0 and 10.0 (all values ±0.1). 

The experiment began in early November. Attempts were made to equilibrate 

soils with the solutions by flushing in a similar manner to that perfonned in the 

salinity experiments. These were unsuccessful, the pots returning to a lower pH 

within a few hours of each application. It was decided that pots should be sealed 

and watered with pH-adjusted solutions for the duration of the experiment, 

similar to the method of Farrell et a/. (1996b). Plants were watered to field 

capacity by weight daily, using the appropriate pH-adjusted nutrient solutions. 

Pots were well-spaced and randomly rearranged daily. The plants were harvested 

29 days after treatments began. The pH of the soil solution in each pot was 

measured during harvesting. The plants were separated into roots and shoots and 

their fresh weights measured. They were dried at 70° C for six days, then their 

dry weights measured. 
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2.2.5 Statistical analysis 

Statistical analysis was perfonned using SPSS for Windows Version 6.0. All data 

subsets were tested for nonnality, and transfonned using natural logarithms 

where appropriate. Analysis of variance (ANOVA) was perfonned to test the 

validity of replication within data sets. Two-way ANOVA was perfonned on 

experimeats where two factors were tested, and where significant (P;;Q,OS) 

effects were noted, a one~way ANOVA was used to test for significant 

differences (probabilities are presented for each parameter in parentheses) 

between treatments; post hoc analysis comprised Tukey's honestly significant 

difference multiple range test (Tukey's hsd) at a significance level ofO.OS. 

2.3 Results 

2.3.1 Experiment 1. Salt and waterlogging 

2.3.1.1 Salinity trials 

In most parameters, growth in low salt concentrations was greater than in non­

saline conditions, but decreased at progressively higher concentrations such that 

growth was reduced in 200 mM NaCI relative to the control. The decrease in 

growth at that concentration was significant in some parameters. Waterlogging 

reduced root growth, but did not affect growth of shoots or whole-plants, hence 
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waterlogging trial results are presented separately in Section 2.3.1.2. Survival 

rate was I 00%. 

Mean fresh weights of shoots (Figure 2.la) differed from that of the control 

(P=O.OOIO). Lowest shoot growth occurred in 200 mM NaCI. Mean fresh 

weights of roots (Figure 2.1 b) in 25 mM and SO mM NaCI were significantly 

higher than those in the control (P~O.OOOO). Mean whole-plant fresh weights 

(Figure 2.lc) reflect the component results, clearly showing an initial increase in 

growth at lower salt concentrations, followed by a progressive decrease in 

growth in increasing concentrations (P~O.OOOO). Mean fresh weights of whole 

plants were lowest in 200 mM NaCI. 

Mean shoot dry weights (Figure 2.2a) showed a similar trend to shoot fresh 

weights (P~0.0045). Salt concentrations to I 00 mM had no significant effect, but 

a significant decrease occurred in 200 mM NaCJ. Growth increases were shown 

more markedly by dry weights of roots (Figure 2.2b; P~O.OOOO). Mean whole­

plant dry weights (Figure 2.2c) showed results similar to those obtained for fresh 

weights, except that growth was significantly lower in 200 mM NaCI relative to 

the control (P~O.OOOO). 

Significant decreases in relative growth rates (RGR), measured as a percentage 

of mean control dry weights, were apparent in 200 mM NaCI for shoots (Figure 

2.3a; P~0.0045) and roots (Figure 2.3b; P~O.OOOO). Mean RGRs of shoots in 

saline treatments to IOOmM were comparable to that of the control, while roots 
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showed a marked increase in growth in those treatments. Relative growth rates 

ofwhole plants (Figure 2.3c) illustrate the initial increase at low concentrations, 

and progressive decrease thereafter, seen in both fresh and dry weight parameters 

(P=0.0002). A marked decrease in RGR in 200 mM NaCI is apparent from the 

chart, but is not significantly lower than the control. 

Fresh and dry weight parameters suggested that whole-plant growth 

measurements were more influenced by root weights than those of the shoots. 

Mean shoot/root ratios, determined from dry weights (Figure 2.4) show the 

relationship more clearly (P=O.OOOO). Saline treatments to 100 mM caused an 

increase in root growth relative to shoots. In 0 salt and 200 mM NaCI, root 

growth was markedly lower in comparison. The mean shoot/root ratio of almost 

1:1, seen in the 50 mM treatment, was significantly lower than that of the 

control. 

Of the salt-only treatments, percentage water content (%WC) of the shoots was 

significantly lower in the control than all other treatments (Table I; P=O.OOOO). 

Percentage WC of roots in the 200 mM treatment was significantly higher 

(P=O.OSOO). In whole plants, %WC was significantly lower in the control than in 

other treatments (P=O.OOOJ). 

There was little leaf death observed in any treatment. Chlorosis was confined to a 

small proportion of leaves of some plants in the control treatments. No leaf-roll 

was observed in any treatment. 
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Figure 2.1. Mean fresh weights of A. e/ongatum a) shoots, b) roots and c) whole 

plants grown in Nat:! concentrations from 0 mM (control) to 200 mM for 50 

days. Vertical bars represent standard errors of the mean. (•) represents 

dillerence in means (Tukey's hsd,,,) of IS replicates compared to control. 
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Figure 2.2. Mean dry weights of A. elongatum a) shoots, b) roots and c) whole 

plants grown in NaCI concentrations ofO mM (control) to 200 mM lbr 50 days. 

Vertical bars represent standard errors ofthe mean. (")represents difference in 

means (Tukey's hsdo . .,) of 15 replicates compared to control. 
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Figure 2.3. Mean relative growth rates, determined from dry weights of A. 

elongatum a) shoots, b) roots and c) whole plants, grown in NaCI concentrations 

ofO mM (control) to 200 mMfor 50 days. Vertical bars represent standard 

errors of the mean. (*) represents difference in means (Tukey's hsd,.,) of I 5 

replicates compared to control. 
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Figure 2.4. Mean sboot:root ratios calculated from dry weights of A. e/ongatum 

grown in NaCI concentrations of 0 mM (control) to 200 mM for 50 days. 

Vertical bars represent standard errors of the mean. (•) represents difference in 

means (Tukey's hsdo.,) of 15 replicates compared to control. 
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Control 

25mM 

SOmM 

IOOmM 

200mM 

%WC shoot 

79 

81* 

82* 

82* 

so• 

%WC root 

82 

83 

83 

83 

85* 

%WCtotal 

80 

82* 

83* 

82* 

82* 

Table 2.1: Mean percentage water content (%WC) of A. e/ongatum shoots, 

roots and whole-plants grown in NaCI concentrations from 0 mM (control) to 

200 mM for 50 days. (*) represents difference in means (Tukey' s hsdo.Ol) of 15 

replicates compared to control in the same column. 
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2.3.1.2 Salt and waterlogging 

Growth of whole plants was unaffected by waterlogging. However, root growth 

was reduced by complete waterlogging, shown by the significantly higber dry 

weight shoot/root ratios in these treatments (Figure 2.5) compared to the control 

(P=O.OOOO). 50% waterlogging did not affect growth of roots or shoots. 

Mean shoot relative growth rates, determined from dry weigbts (Figure 2.6a), 

were comparable to that of the control in all waterlogged treatments (P=O.I470). 

Mean root RGR (Figure 2.6b) in the 0 mM NaCI/50%WL and 100 mM 

NaCI/50%WL treatments, was higher than that of the control, while markedly 

lower in both !OO%WL treatments (P=O.OOOO). Relative growth rates of whole 

plants in all treatments were comparable to that of the control (Fig. 2.6c; 

P=0.498). 

Percentage water content of plants in waterlogging treatments is not presented, 

in order to simplifY analysis of the salt/'/oWC relationship. 

Eighty percent of plants in 0 salt/100%WL, and 26.7% of plants in 100 mM 

NaCI/IOO%WL possessed upwardly-oriented roots, originating from the crown. 

These varied between 10- 40mm in length, and varied in number between plants 

from 2 to 20 (the latter occuring in one plant in the saline/WL treatment). They 

were not observed on plants in 500/oWL treatments. or in salt·only treatments. 
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Figure 2.5. Mean shoot:root ratios calculated from dry weights of A. elangatum 

grown in 0 mM NaCl (control), 0 mM NaCUwaterlogged to 50% and 100% 

levels in 180mm pots and 100 mMNaCUwaterlogged to 50% and 100% levels in 

180mm pots for 50 days. Vertical bars represent standard errors of the mean. 

(*)represents difference in means (Tukey's hsdn.05) of 15 replicates compared to 

control. 
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Figure 2.6. Mean relative growth rates (%) calculated from dry weights of A. 

elongatum a) shoots, b) roots and c) whole plants, grown in 0 mM NaCI 

(control), 0 mM NaCI/waterlogged to 50% and 100% levels in 180mm pots and 

I 00 mM NaCI/waterlogged to 50% and I 00'/o levels in 180mm pots for 50 days. 

Vertical bars represent standard errors of the mean. 
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2.3.2.1 Experiment 2. High salinity 

Fresh and dry weights were higher in this experiment than in the corresponding 

treatments (control, IOU mM and 200 mM NaCI) of Experiment I. Growth 

response trends, however, were similar. In most parameters, growth decreased in 

progressively higher salt concentrations, such that a significant decrease relative 

to the control was first observed at 200 mM NaCI. Growth decrease from I 00 

mM to 400 mM NaCI was near-linear. Growth in the control and 100 mM 

treatments was comparable. 

Mean shoot dry weights (Figure 2. 7a) showed an almost linear decrease at 

increasing salt concentrations, the 200 mM, 300 mM and 400 rnM treatment 

means differing significantly from the control (P=O.OOOO). Mean dry weights of 

roots (Figure 2. 7b) showed a similar decrease with increasing salt concentrations, 

though that in the 100 mM NaCI treatment was higher than the control 

(P=O.OOOO). The net result was a near-linear decrease in whole-plant dry weights 

(Figure 2. 7c) at increasing salt concentrations, and significant differences 

between the control mean and that of the 200 mJ.A 300 mM and 400 mM 

treatments (P=O.OOOO). 

There was little difference between 100 mM NaCI and the control in mean RGR 

of whole plants, calculated from fresh weights, although relative growth rates 

decreased markedly at higher concentrations, with significant decreases in the 

300 mM and 400 mM NaCI treatments (Figure 2.8a; P=O.OOOO). Relative growth 
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rate detennined from dry weights (Figure 2.8b) showed a similar trend, except 

that the 200 mM treatment mean also differed significantly from that of the 

control (P=O.OOOO). 

Percentage WC of the roots did not differ significantly between treatments (Table 

2; 1'=0.3086)). However, %WC of the shoots was lowest in the control, and 

significantly higher in the 100 mM, 200 mM and 300 mM treatments 

(P--0 .0000). In whole plants, % WC was lowest in the control, and significantly 

higher in the 200 mM treatment (P=0.0055). 

Shoot growth relative to the root, calculated from dry weights (Figure 2.9), was 

significantly higher in the 400 mM treatment than !n the control and lower in the 

100 mM treatment(P=O.OOOO). The trend was an increase in shoot/root ratio at 

increasing salt concentrations from 100 mM NaCI. Ratios in the control, 100 mM 

and 200 mM treatments were similar to those recorded in the corresponding 

treatments in Experiment 1. 

Control plants were paler in colour than those of other treatments, though not 

chlorotic. Leaf death was minimal in all treatments. Most affected were the 300 

mM and 400 mM treatments, both containing an estimated 5% dead leaves or 

leaf tip death in older leaves. No leaf roll was observed in any treatment. 

64 



Figure 2.7. Mean dry weights (g) of A. elongatum a) shoots, b) roots and c) 

whole plants grown in NaCl concentrations of 0 mM (control) to 400 mM for 28 

days. Vertical bars represent standard errors of the mean. (*) represents 

difference in means (Tukey's hsd,,.,) of 9 replicates compared to control. 
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0 100 200 300 400 

NaCl concentration (mM) 

Figure 2.8. Mean relative growth rates ("/o) of A. elongatum calculated from a) 

fresh weights and b) dry weights following growth in NaCl concentrations of 0 

mM (control) to 400 mM for 28 days. Vertical bars represent standard errors of 

the mean. (*) represents differences in means (Tukey's hsdo.05) of 9 replicates 

compared to control. 
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control 

IOOmM 

200mM 

300mM 

400mM 

o/oWCSHOOT 

75 

80* 

79* 

78* 

77 

%WCROOT 

78 

76 

78 

75 

76 

%WCTOTAL 

77 

78 

79* 

78 

77 

Table 2.2. Mean percentage water content (%WC) of A. elongatum shoots, 

roots and whole-plants grown in NaCI concentrations from 0 mM to 400 mM for 

28 days. (*) represents difference in means (Tukey's hsdo.Ol) of 9 replicates 

compared to control in the same column). 
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0 100 200 300 400 

NaCl concentration (mM) 

Figure 2.9. Mean shoot:root ratios, calculated from dry weights, of A. 

elongatum grown in NaCl concentrations of 0 mM (control) to 400 mM for 28 

days. Vertical bars represent standard errors of the mean. (*) represents 

difference in means (Tukey's hsdo . .,) of9 replicates compared to control. 
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2.3.2.2 Proline accumulation 

Increased proline in higher salt concentrations was dramatic (Figure 2.10). 

Accumulation of proJine in the shoots increased markedly in salt concentrations 

of200 mM, compared to both the control and 100 mM treatments (P~O.OOOO). 

Proline levels in these latter treatments were both relatively low. There was a 

further steep increase in mean shoot proline levels at higher salt concentrations. 

Mean root proline levels were approximately half those of corresponding shoots, 

except in 200 mM NaCI, where levels were similar, but showed the same trends 

in accumulation levels (P~O.OOOO). Within each treatment, mean shoot and root 

proline levels were comparable ~0.0632). 

2.3.3 Experiment 3. Alkalinity 

Plants in all treatments except those in three of the four pots in pH 8 showed 

leaf-rolling and leaf death within 14 days of the commencement of the 

experiment. At day 20, leaf rolling was observed in a second pot at pH 8, leaving 

only two pots which contained healthy plants. Leaf rolling varied between pots 

from an estimated 40 to I 00%, with no apparent relationship between the extent 

of this response and the treatment applied. Water use in these treatments, 

determined during watering, was estimated at approximately one tenth that of the 

two unaffected pots. Water use by plants in all pots at pH 10 and one pot at pH 9 

increased in the week before harvesting. Black soil fungus and a blue fungal 
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Figure 2.10. Mean proline levels (umol/ g fresh weight) in shoots and roots of 

A. elongatum after growing in NaCI concentrations of 0 mM (control) to 400 

mM for 28 days. Vertical bars represent standard errors of the mean. 
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growth at the plant crowns were obseiVed in all pots except those containing 

apparently healthy plants at pH 8. 

Roots in affected pots were damaged and deformed, though a small amount of 

apparently healthy root tissue was obseiVed in most of these plants. 

The pH of the soil solution of all affected pots was 3.5 ± 0.5; pH in the two 

unaffected pots was 7. 8 ± 0.1. 

ANOVA revealed replication by individual plants was not valid in any data subset 

(P > 0.05), hence growth responses could not be statistically analysed. However, 

mean dry weights of shoots (Figure 2.11a), roots (Figure 2.11b) and whole­

plants (Figure 2.11 c) are presented. 
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Figure 2.11. Mean dry weights (g) of A. elongatum a) shoots, b) roots and c) 

whole plants, following growth for 29 days in nutrient solutions adjusted to a 

range of pH values from 6 to 10. Vertical bars represent standard errors of the 

mean. 
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2.4. Discussion 

2.4.1.1 Salt and waterlogging 

These trials have confinned the high tolerance of tall wheatgrass to salt and 

waterlogging. Growth rate was shown to be dependent on salt concentration and 

independent of any level of waterlogging. Tissue death was minimal across the 

raoge of NaCI concentrations from 0 to 400 mM. Root growth decreased at 

higher salt concentrations, but root tissue showed no apparent damage. Shoot 

growth showed similar trends in growth responses, but to a lesser degree, 

providing a compensatory effect on total yields. 

Of most interest was the apparent euhalophytic curve shown by the results. There 

was an initial increase in growth at lower concentrations, and a progressive 

decline in growth as concentrations increased, such that growth in 200 mM NaCI 

was significantly reduced. 

Increased growth in low salt concentrations is not usually associated with 

grasses. As for several other monocotyledonous plants tested, it has been 

proposed that grasses avoid Na toxicity by limiting its uptake. This is usually 

associated with osmotic adjustment through a decrease in tissue water, and a 

subsequent decrease in turgor and growth. These responses are seen consistently 

in tests on monocots, leading to the proposal that a monocot 'physiotype' exists. 

This experiment could not support that hypothesis. 
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Decrease in growth was not strongly associated with tissue damage, though leaf 

death was slightly higher in the 300 mM and 400 mM treatments (data not 

presented): Thus the growth decrease is typical of salt-including halophytes, and 

probably represents a progressive increase in energy expenditure at the roots as 

ion uptake is increased (Flowers el a!., 1977). 

A rise in percentage water content of the leaves in all salt concentrations to 300 

mM possibly represents compensation for a decrease in osmotic potential in the 

protoplasm, though this should not be confused with the tendency toward 

succulence shown by many dicotyledonous species (Glenn & O'Leary, 1984). As 

mentioned, a decrease in water content would be expected in a grass species. 

Plants in 400 mM NaCI did not show a significant increase in water content. 

In agreeance with Yeo & Flowers (1989), yield was reduced in Experiment I. to 

almost 50% in 200 mM NaCI (EC - 19.5d/Sm) relative to the highest yield 

(obtained in 25 mM NaCI), and to approximately 60% of the highest yield 

(obtained in the control) in Experiment 2. Growth at higher salt concentrations 

was higher than that given for a hypothetically typical monocot halophyte 

(Greenway, 1973), but within a reasonable error range. 

The most noticeable effect of waterlogging was to increase shoot/root ratios 

while only marginally affecting total yield. Shoot growth was therefore 

compensatory to growth of the whole plant. The aerial roots observed on some 
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plants may account for tolerance to waterlogging in both these plants and others 

within the same pots, although adventitious root growth at the soil surface is also 

observed in flood-affected plant species with no tolerance to waterlogging 

(Setter & Belford, 1990). Slow growth, allowing time for development of 

aerenchyma within existing roots is perhaps a more likely strategy in tall 

wheatgrass, particularly given that this response is well documented in woody 

species (van der Moezel et a/., l989b) and in the more closely-related crop 

grasses (Setter & Belford, 1990). 

2.4.1.2 Proline analysis 

A clear relationship was shown by the increased proline levels in plants at higher 

salt concentrations . The initial significant increase at 200 mM NaCJ supports a 

link between proline accumulation and a response to stress (Hare & Cress, 

1997), since significant growth decreases occurred at this concentration in 

Experiments 1. and 2. This, and the further significant increases in proline at 300 

mM and 400 mM NaCI, is evidence that proline levels in tall wheatgrass are 

quantitatively related to the degree of osmotic stress. 

2.4.2 Alkalinity 

Results from this experiment were included in this report, despite the effects of 

fungal infection, for two reasons. Firstly, all plants except those in two pots at 

pH 8 exhibited leaf rolling and severe root growth reduction, yet mean whole· 
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plant weights appeared to be within a range expected of healthy plants. Secondly, 

soil solution pH of pots unaffected by fungus was similar to the treatment 

solution, while soil solution of affected pots was strongly acidic. 

The presence of a small proportion of undamaged roots may both account for the 

later increase in water use shown by some plants in the pH 9 and pH I 0 

treatments, and tentatively rule out a sustained effect of fungus on growth. 

The flushing of pots prior to the commencement of the experiment may have 

damaged root tissue, providing opportunity for fungal infection and subsequent 

defonnation of roots (pH of control and saline solutions in Experiments 1. and 2. 

was close to 5, and caused no discemable root damage). 

It must be concluded that fine analysis of growth responses to pH would be 

inappropriate in this instance, but that soil reaction up to pH 10 appeared 

' unlikely to have affected plant survival. The experiment was also probably useful 

in clarifYing appropriate methods of adjusting pH in a confined rootzone. 

2.4.3 Procedural limitations and further development 

A comparison of the results of Experiments I. and 2. shows that absolute figures 

cannot be integrated into a single range of relatiVe growth rates in salt 

concentrations up to 400 mM. Dry weights were considerably lower in 

Experiment I. compared to those in the corresponding treatments in Experiment 
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2. The funner comprised treatments with five plants per pot. Competition for 

light and nutrients was presumably more intense in this experiment. There exists 

also the possibility that nutrient uptake by five plants in the first days of the 

experiment may have caused depletion of one or several elements more quickly 

than would three plants, leading to growth responses that were both treatment 

and nutrient related. However, this seems unlikely given that only the control 

plants in both experiments were observed to be slightly pale in colour. This 

observation does, however, raise the possibility that growth of control plants in 

both trials was retarded by a nutrient deficiency, leading to an artificially-induced 

euhalophytic-type increase in growth at low salt concentrations. It should be 

noted that despite these considerations, growth response trends were well­

correlated with those found in the literature. Certainly, pl· tnt numbers per pot 

should be carefully considered in future trials of this type. 

This point also raises the issue of comparison of a halophyte's growth responses 

in salt with a non-saline control. It would seem more appropriate to compare 

growth of plants in higher concentrations with plants in an optimum environment 

(where Cl" is not limiting [Greenway & Munns, I 980]), in this instance at 25 mM 

NaCI. The procedure was, however, appropriate in these experiments, since the 

known halophytic ability of tall wheatgrass was to be compared with the 

unknown properties of Australian plants, which required the use of salt-free 

control treatments. 
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Time restrictions prevented a search of roots in waterlogged treatments for 

aerenchyma. This simple microscope analysis should have been undertaken, and 

the absence of this data must be blamed on inadequate timewmanagement. 

The procedural problems experienced in the pH trials have been mentioned. Plant 

roots will regulate proximal soil chemistry through exudates (Brady, 1990), but 

the sustained application of pH-adjusted solution in this experiment presumably 

placed excessive energy demands on root cell membranes, leading to tissue 

death. If so, hydraulic resistance would have increased, and stomatal aperture 

would pose an immediate threat to the plants' water balance. Honnonal mediated 

leaf-rolling was the visible physiological response. Leaf death may have been due 

to diversion of essential elements away from older leaves, possibly in response to 

the inability of the damaged roots to take up ions. 

It is apparent that soil reaction has attributes not shared with soil salinity, and 

should be applied differently. Farrell et al. (1996b) applied pH increases to 

Eucalyptus camaldu/ensis during gravimetric watering in increments of 1 or 2 

over 38 days, obtaining treatment-related growth responses. This suggests that 

the current trial was procedurally correct, but was affected by the early attempts 

to rapidly adjust pH. 
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CHAPTER 3. AUSTRALIAN PLANTS 

3.1 Introduction 

Herbaceous species have been used extensively on degraded lands in Australia, 

often as a component of mixed communities (Mitchell & Wilcox, 1994). 

In the past, this usualJy entailed using exotic species, whose broad hardiness was 

well known, for pasture~land improvement. Some of these introductions spread 

widely (for example, some couch varieties), many being listed as weeds (Lamp et 

a/., 1990). More recently, trials of candidate species have been directed at 

determining specific tolerance characteristics relevant to the site under study. 

Mining and industrial sites are often rehabilitated with herbaceous plants or 

shrubs able to rapidly stabilise topsoils and residue heaps communities (Mitchell 

& Wilcox, 1994). Suitable plants often originate from overseas, where their 

specific tolerances have been either tested or inferred from their usual habitats. 

Indigenous Australian species with appropriate tolerance abilities may be found 

for these purposes. 

Podolepis gracilis (Lehrn.) (Asteraceae) is eridemic in Australia, occuring over 

much of the southwestern comer of the continent. It is an annual herb with a 

branching habit which flowers in spring to summer. It is a 'strong' annual, 

indicating perhaps a wide genetic variation in seed store, given the 

unpredictability of rainfall in its habitat. The plant occurs naturally in sands and 

lateritic soils, most commonly in open jarrah and marri woodlands (Marchant et 

a/., 1987). A search of the literature found no reference to the species' relative 
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tolerances to environmental extremes, and no mention of any deliberate seeding 

on degraded lands, although this occurs in mine operations throughout the 

southwest of the state (Scott, pers. comm.). P. gracilis is found growing 

naturally in the woodlands surrounding minesites southeast of Perth, thereby 

suggesting itself for possible use in revegetation of the adjacent degraded land. 

Common wallaby grass Danthonia caespitosa Gaud. (Poaceae) is endemic in 

Australia, and is widespread in temperate regions. In Victoria it is considered a 

useful pasture grass, and is often used in nutrient·poor, compacted soils where 

more valuable pasture species will not persist (Walsh & Entwisle, 1994). In 

Western Australia, it is common in grasslands and open woodlands, and is noted 

to be a dominant in some areas, particularly in the southeast of the state (Mitchell 

& Wilcox, 1994). 

There has been some debate regarding this plant's taxonomic treatment. 

Confusion has been caused thr~"ugh the anatomical similarity of several 

Danthonia species, in particular that of D. setacea (Lamp et a/., 1990). In 

addition, two forms of D. caespilosa have been noted which differ only in leaf 

thickness and attitude (Walsh & Entwisle, 1994). 

No reference to the species' tolerances to environmental extremes could be found 

in the literature. Deliberate seeding has been performed on soils described as 

poor, but usually in a context of pasture yield optimisation rather than 

revegetation of degraded soils. This practice does, however, occur on minesites 
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in southwestern Australia (Scott, pers. comm.).The species has been observed to 

grow naturally in the vicinity of mine sites in southern Western Australia, 

suggesting itself for inclusion as a candidate for deliberate planting in such areas. 

The current trials examined the growth responses of P. gracilis and D. 

caespitosa to a range of soil saJinities and waterlogging conditions. This was 

done to detennine their tolerances in reJation to conditions found at Doddington 

Gold Mine, southeast of Perth, in order to test their suitability for revegetation at 

that site. The trials also enabled comparison of tolerances in these species with 

tali wheatgrass. 
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3.2 Materials and Methods 

3.2.1.1 Plant material 

Podo/epis gracilis and Danthonia caespitosa seed was from single seedlots, both 

supplied by Boddington Gold Mine in March, 1997. Seed was genninated in 

180mm pots for approximately ten weeks, at which time their numbers were 

thinned to three plants of similar size per pot. Plants were watered daily, and 

fertilised (half-strength ThrivelM) every fourth day until treatments began. All 

gennination and plant propagation was perfonned in a glasshouse with 

temperatures ranging from 20M35°C. 

Approximately 2% of D. caespitosa showed a comparatively higher growth rate, 

and a broader leaf anatomy. In these plants, leaves were oriented almost 

verticatly, in contrast to the remainder, in which leaves appeared less rigid, and 

drooped under their own weight. These faster-growing plants were not included 

in the experiment. 

3.2.1.2 Pots and soil 

180mm pots were used in all experiments, with a single !Omm hole at the base 

which could be sealed using a rubber bung. The soil was a 1:1 ratio mixture of 

fine and coarse pasteurised white sand. Each pot contained 4kg of soil. 
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3.2.1.3 Saline solutions 

Nutrient/salt solutions were made up as described in Chapter 2. 

3.2.2 Experiment 4. P. gracilis 

Each pot contained three plants of similar size, treatments comprised three pots 

(total 9 plants per treatment). The experiment began in mid-September. 

Treatments were control, 25 mM NaCJ, 50 mM NaCJ, 100 mM NaCI, 200 mM 

NaCI and 0 salt/100% waterlogging. As described in the A. elongatum 

salinity/waterlogging experiments, solutions were applied in daily increments of 

25 mM, requiring 8 days to reach the highest concentration (200 mM). The pots 

in the waterlogged treatment were sealed then flooded with control solution to 

approximately lcm above the soil surface on day 8. Waterlogged pots were 

watered as required, using deionised water, to 1 em above the soil surface. All 

other pots were watered to field capacity by weight daily, using deionised water. 

All pots were well spaced and randomly rearranged daily. Plants were harvested 

36 days after the treatments began. They were separated into roots and shoots 

and their fresh weights measured. They were dried at 70° C for 6 days and their 

dty weights measured. 
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3.1.3 E1periment 5. D. caespitosa 

Each pot contained three plants of similar size, treatments comprised three pots 

(total 9 plants per treatment). Treatments began in mid-September. They were 

control, 25 mM NaCI, 50 mM NaCI, 75 mM NaCI, 100 mM NaCI, 125 mM 

NaCI, 150 mM NaCI, 175 mM NaCI, 200 mM NaCI, 0 salt/100% waterlogged 

and 100 mM NaCVIOO% waterlogged. Solutions were applied as described in 

Experiments 1., 2. and 4., except that each increment was included as a separate 

treatment. The final concentration (200 mM) was reached on day 8. The two 

waterlogged treatments were flooded to approximately lcm above the soil 

surface on day 8. Spacing and watering regimes were as mentioned above. Plants 

were harvested 36 days after treatments began, separated into roots and shoots 

and their fresh weights measured. They were dried at 70° C for 7 days and their 

dry weights measured. 

3.2.4 Statistical analy<is 

Statistical analysis was performed as described in Chapter 2. 
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3.3 Results 

3.3.1 Experiment 4. P.gracilis 

In all parameters measured, growth was not affected by salt concentrations. 

Waterlogging severely decreased growth in all parameters, but survival rate was 

100%. 

Of the saline treatments, there were no statistically significant differences in dry 

weight RGRs of the shoots (Figure 3.la; P=0.3335), roots (Figure 3.lb; 

P=O.I 059), or whole-plants (Figure 3.1c; P=0.2269), although all results show a 

slight progressive decrease at increasing cor,lcentrations. Of the waterlogged 

treatments, however, significant growth decreases were seen in all parameters; 

shoots (P=0.0360), roots (P=O.OOOO) and whole-plants (P=0.0070). 

Mean shoot/root ratios of plants in saline treatments, calculated from dry 

weights, did not differ significantly (Figure 3.2; P=0.5992). The high ratio in 100 

mM NaCI is moderated by the large error. Plants in the waterlogged treatment 

showed a high ratio of shoot to root dry weight (P=0.0300). 

There was almost no variation in percentage water content of plants (P=0.2570) 

over the range of saline treatments. Percentage WC of roots in the waterlogged 

treatment was, however, markedly lower (P= 0.0300), probably a result of the 
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Figure 3.1. Mean relative growth rates (%) calculated from dcy weights of P. 

gracilis a) shoots, b) roots and c) whole plants, grown in NaCl concentrations 

from 0 mM (control) to 200 mM, and in 0 mM NaCVwaterlogged conditions, for 

36 days. Vertical bars represent standard errors of the mean. 
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Figure 3.2. Mean shoot:root mtios calculated from dry weights of P. gracilis 

grown in NaCl concentrations from 0 mM (control) to 200 mM, and in 0 mM 

NaCUwaterlogged conditions for 36 days. Vertical bars represent standard errors 

ofthemean. 
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high proportion of necrotic tissue observed during harvesting (data not 

presented). 

All plants in the control treatments were paler in colour compared to the 

remainder, though not chlorotic. Leaf death was minimal in all treatments up to 

100 mMNaCI. Plants showed approximately 10-15% death of older leaves in the 

200 mM NaCl treatment, and approximately 50% in the waterlogged treatment. 

Flowering occurred across the range of treatments; highest flower counts 

occurred in the 25 mM NaCl pots, and the lowest counts in the 200 mM 

treatment (two flowers on one plant). Approximately 20 flowers per plant were 

observed in the waterlogged treatments. 

3.3.2 Experiment 5. D. caespitosa 

Growth increased slightly, in most parameters, in salt concentrations up to 100 

mM NaCI. At higher concentrations, there was a progressive decrease in growth 

with increments of salt concentration, such that lowest growth occurred in the 

highest concentration (200 mM). Survival rate in salt-only treatments was I 00%. 

Waterlogging severely affected growth in all parameters. Survival rate in the 0 

salt/waterlogged treatment was I 00%, and 67% in the 100 mM 

NaCVwaterlogged treatment. Two-way ANOV A revealed a combined effect of 

salt and waterlogging on shoot growth. There were no combined effects on root 

growth or growth of whole plants. 
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Mean dry weight RGR of shoots in all salt-only treatments were comparable 

(Figure 3.3a; P=0.2108). Mean shoot RGR of plants in the 0 salt/waterlogged 

treatment was comparable to that in the highest salt concentration, and 67% of 

the control mean, while mean RGR of the I 00 mM NaCI/waterlogged treatment 

was less than 33% that of the control (P=O.OOOI). 

Plants in both the 25 mM and 50 mM treatments showed a higher root RGR than 

the control (Figure J.Jb; P=O.OOOO). Root growth decreased at higher salt 

concentrations. Lowest growth was observed in 125 mM NaCI. Root RGR in 

both waterlogged treatments was significantly reduced (P=O.OOOO). 

Whole plant RGRs reflect the component results, showing higher dry weights of 

plants in salt-only treatments up to I 00 mM, though only fractionally so in the 75 

mM treatment (Fig. 3.3c; P=0.0344). At higher concentrations, plant growth 

progressively decreased. Of the salt-only treatments, RGR was lowest in 200 

mM NaCI. Waterlogging had a marked effect on whole-plant growth 

(P=O.OOOO); in 0 salt/waterlogged conditions the mean RGR was significantly 

reduced, and more markedly so in the 100 mMNaCI/waterlogged treatment. 

Percentage water content (%WC) varied little between whole-plants in salt-only 

treatments (P=O.l83!). Low %WC in waterlogged plants (P=O.OOOO) was likely 

due to a high proportion of dead tissue (data not presented). 
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Figure 3.3 Mean relative growth rates ("/o), calculated from dry weights of 

D.caespitosa a) shoots, b) roots and c) whole plants grown in NaCI 

concentrations ofO mM (control) to 200 mM, and 0 mM/waterlogged and 100 

mM/waterlogged conditions for 36 days. Vertical bars represent standard errors 

ofthemean. 
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Mean shoot/root ratios in the salt-only treatments, calculated from dry weights, 

were lowest in the 25 mM treatment (Figure 3.4; P=O.OOOI). There was a trend 

toward slightly increasing ratios at higher salt concentrations. Highest mean 

shoot/root ratio occurred in 125 mM NaCI. Mean shoot/root ratio of the control 

was between the higher and lower values. The high ratio in the 0 

salt/waterlogged treatment is moderated by the large error, but also illustrated a 

greater effect of waterlogging on roots (P~0.0005) than shoots. Combined 

effects of salt and waterlogging on shoot dry weight were likely to have 

moderated the shoot/root ratio in the 100 mM NaCVwaterlogged treatment. 

Leaf death was observed in all treatments. Estimates of percentage leaf death in 

salt treatments ranged from 5% in 50 mM NaCI to 40'/o in 200 mM NaCI. 

Survival rate in salt-only treatments was 100%. Leaf death in all waterlogged 

treatments was estimated at 90%. Leaf roll was not observed in any treatment. 
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Figure 3.4. Mean shoot:root ratios calculated from dry weights of D. caespitosa 

after growth in NaCl concentrations of 0 mM (control) to 200 mM, and 0 

mM/waterlogged and 100 mM/waterlogged conditions for 36 days. Vertical bars 

represent standard errors of the mean. (•) represents difference in the means 

(Tukey's hsdo.o•) of9 replicates compared to the control. 
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3.4 Discussion 

3.4.1 Podolepis gracilis 

P. gracilis was found to be tolerant of salt concentrations up to 200 mM, but not 

tolerant of hypoxia. A progressive decline in growth rate with increasing NaCI 

concentrations up to 200 mM can be discerned from the results, but this was not 

statistically significant. Waterlogging caused reduction of growth and tissue 

damage, but survival rate remained high (I 00%). 

While the results do not show a euhalophytic curve which indicates growth 

stimulation by NaCI, they do show a response typical of salt-excluding species 

with a relatively high tolemnce of external salt (Greenway, 1973). P. gracilis 

might therefore be tentalively termed a miohalophyte. The growth of such 

species is usually decreased relatively rapidly at NaCI concentrations between 

100-200 mM (Greenway & Munns, 1980), a result not seen in this experiment. 

Growth of P. gracilis was reduced in salt-free hypoxic conditions. Root growth 

was affected more severely than shoot growth. Interactive effects of hypoxia and 

salinity were not examined, but it is likely that P. gracilis would be affected by 

ion toxicity under such conditions. Soil oxygen deficiency inhibits the energetic 

exclusion of ions from the roots of miohalophytes, leading to an uncontrolled 

uptake of salts which accumulate in the leaves (Galloway & Davidson, 1993). 
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Hypoxia can have similar effects on euhalophytes, but at comparatively higher 

salinities. 

Percentage water content of shoots and roots did not vary significantly between 

the control plants and those in saline substrates, nor between plants in different 

salt concentrations. This may be further support for classification of P. gracilis 

as a miohalophyte. Glenn & O'Leary (1984) found that of twenty eu- and 

miohalophytic dicotyledonous species tested in saline media, miohalophytes 

exhibited less control of osmotic potentials through adjustment of water content. 

This was associated with a slight decrease in tissue water in saline conditions. 

3.4.2 Danthonia caespitosa 

D. caespitosa showed salinity-related growth responses similar to tall 

wheatgrass, suggesting it may have halophytic properties. There was an increase 

in growth at salt concentrations to 100 mM, and a progressive decrease in 

growth thereafter with increasing concentrations. However, differences in 

growth were not statistically significant. 

Waterlogging decreased growth significantly, roots were affected more than 

shoots. The interactive effects of salt and waterlogging severely reduced root and 

shoot growth. 

94 



Leaf death was high in comparison to the two other species tested; tentatively 

associated with salt concentrations, but clearly associated with waterlogging. Of 

the salt treatmer.t.s, none were found to differ significantly in growth responses 

from the control There were, however, significant differences between the 

higher growth rates seen in lower salt concentrations and the lower growth rate 

in 200 mM NaCI. 

The apparent similarity in relative growth rates to those of tall wheatgrass is not, 

however, conclusive support for an overall comparison. Monocotyledonous 

euhalophytes tend to accumulate cations, usually potassium, and produce organic 

counter-osmotica. This is generally associated with adjustment of cellular 

osmotic potential through a decrease in vacuolar water (Glenn & O'Leary, 

1984), as discussed previously. In this experiment, D. caespitosa was found to 

have a signicantly reduced shoot water content at the highest salt concentration, 

and to have made little or no water content adjustment at lower concentrations 

(although a high proportion of dead leaf tissue may account for both of these 

obseJVations). In this respect, D. caespilosa differed from tall wheatgrass, but 

supported the idea of a salt-tolerant monocot physiotype. 

3.4.3 Procedural limitations and further development 

Further tests on the tolerances of P. gracilis and D. caespitosa are required, to 

concentrations of at least 400 mM, to examine the true extent of the halophytic 

properties shown in the current trials. As in the tall wheatgrass trials (Chapter 
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2.), plant numbers per pot should be carefully considered, as the increase in 

growth at lower salt concentrations seen in both that species and D. caespitosa 

may indicate a procedural error. 

A requirement of plant species proposed for revegetation endeavours is that they 

germinate and grow at a resonable rate. This is also important if trials of stress 

tolerance levels are to be performed. P. gracilis germinated and grew in 

sufficient quantity (ie; allowing random selection of similar-sized plants) for use 

in all treatments except saline/waterlogging. D. caespitosa grew in numbers 

exceeding requirements, and was therefore tested experimentally in saline 

increments of 25 mM, requiring more treatments (the species' salt tolerance was 

under-estimated during the planning of these experiments, hence the surplus 

plants were not utilised in trials to 400 mM NaCl). Thus, both species showed 

attributes valuable to revegetation pro grams. 

Besides these species, twenty Australian seed species were proposed for these 

trials. The majority did not germinate, or germinated in insufficient numbers for 

inclusion in experiments. These included: Ptilotus mang/esii, P. drummondii, 

Stackhousia huegelii, Lobelia rhombifo/ia, lsotoma hypocrateriformis, Stipa 

campylachne, Tripterococcus bnmoni, Waitzia paniculata, Wmmbea dioicea 

ssp. alba, Ve//eia trinervis, Themeda australis, Spinifex longifolius, 

Amphipagon amphipagonoides, Eragrostis eriopoda, Monachather paradoxus, 

Drosera gigantea, Patersonia occidentalis, and Triodia pungens. The remaining 

species, Neurachne alopecuroidea and Cyathochaeta avenacea genninated 
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sufficiently but did not grow or survive sufficiently for use in these tria1s. It must 

be pointed out that gennination of some of these species is not usually 

considered to be low (Scott, pers. comm.). Seed donnancy and timing of 

germination attempts should be considered. 
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CHAPTER 4. GENERAL DISCUSSION 

Tall wheatgrass was found to be exceptionally tolerant of salt and waterlogging 

stress. Its survival rate was 100% in all treatments. Growth rate was reduced in 

higher concentrations of NaCI, presumably as a result of increased energy 

expenditure in maintaining low cellular water potentials. However, physiological 

responses to the 'physiological drought' caused by salinity that may be expected 

in a less-tolerant plant, such as leaf-roll or necrosis, were minimal. 

Waterlogging caused a reduction in root growth with an associated 

compensatory increase in shoot growth, such that growth of whole plants was 

statistically associated with salinity, but independent of waterlogging. The 

species supported the notion that halophytic properties are associated with 

tolerance of a broad range of stresses. Survival rate in fungus-infected substrate 

at low and transiently high pH levels was also 100%, and despite marked leaf­

rolling and necrosis, many plants showed indications of recovery. 

Growth responses of tall wheatgrass to salt were clearly typical of a halophyte, 

but not of halophytic grasses, and the results do not support the case for a 

halophytic monocot 'physiotype' (Greenway & Munns, 1980). Statistically 

significant increases in o/oWC in concentrations up to 300 mM is not in 

accordance with the findings of Glenn (1987), who found that water content 

decreased in halophytic grasses under saline conditions. However, increased 

water content at salt concentrations to 300 mM and a decrease in 400 mM NaCI 
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might suggest that osmotic adjustment occurs in stages in tall wheatgrass. In 

other words, that at low to moderate external saJt concentrations, adjustment is 

primarily through an increase in cellular ions and carbohydrates, permitting 

subsequent minor adjustment with increased water. This model would also help 

to explain the increased growth at concentrations to 100 mM seen in these trials 

(increase in turgor ~ cell wall extension - increase in organic carbon; though this 

model of growth is not supported by tests on succulent species, which continue 

to grow when dehydrated [Glenn & O'Leary, 1984]). 

At higher salt concentrations, a high ion uptake and concentration may be 

unavoidable, enforcing a levelling-out in absolute quantities (and relative to 

external ions) through a decrease in water content, thus avoiding the toxic effects 

of monovalent cations. This model suggests that decreased growth observed in 

200 mM and 300 mM would therefore be due to the energetic requirement of ion 

regulation exceeding the potential for growth through increased turgor. Specific 

ionic mass is often proportionately high relative to specific organic mass in NaCI~ 

occumulating halophyes grown in saline conditions (Flowers et al., 1977). 

Elemental analysis, and the testing of organic mass vs ionic mass, should be 

performed if these trials are repeated. Of interest would be the organic/ionic mass 

ratio at lower salinities. 

It should be note.! that Glenn (1987) found that highest growth rate occurred in 

salt~free treatments, while Na • uptake increased, and water content decreased in 

ISO mM and 540 mM NaCl, in a study of salt-sensitive and salt tolerant grasses. 
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In that experiment, carbohydrates and K+ were found to be unimportant in 

whole-plant osmotic adjustment. Tall wheatgrass, however, has been shown to 

accumulate K+ in preference to Na•. Affinity forK+ may be twenty times higher 

than for Na • in low concentrations (Flowers et a/., 1977). A. intermedium, 

another wheatgrass, though less salt-tolerant, showed similar tendencies 

( euhalophyes take up K+ in the absence of Na •• though this is directly limited by 

small additions of the latter [Flowers eta/., 1977]). Hence plants of this genus 

may differ from the majority of grasses studied so far; cenainly in these trials 

growth responses to salinity more closely approximated those of dicotyledonous 

euhalophytes than halophytic grasses. 

P. gracilis showed growth responses to salinity typical of a miohalophytic 

dicot, tolerating moderately high salinities through salt exclusion (Glenn & 

O'Leary, 1984). Growth rate decreased in increasing salt concentrations, but 

survival rate was 100%. Growth rates to 200 mM were higher than those of a 

hypothetically typical miohalophyte, described by Greenway (1973). Trials to 

400 mM, or perhaps higher, should be undenaken on this species. The species 

was not tolerant of waterlogging, however, probably limiting its usefulness in 

revegetation of pem~anently inundated soils. Whole-plant death and severe 

necrosis of surviving plants occurred within 28 days under waterlogged 

conditions, clearly suggesting that the plant could not find alternative access to 

oxygen through physiological/morphological adjustment. 
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However, P. gracilis should be included in considerations for revegetation of 

contaminated soil, given its high tolerance of salinity in comparison to 

glycophytes. Its halophytic properties were found in these trials to exceed those 

oftall wheatgrass in most parameters. 

Genotypic diversity is likely to be high in this species as it is a strongly recurring 

annual occurring over a wide geographical area, and dependant on a seed store 

for regeneration. Natural growth occurs most commonly on sandy soils and 

duplex laterites. Such soils are likely to be well-drained, possibly explaining the 

species' intolerance of waterlogging as it is endemic to these areas with, 

therefore, a probable evolutionary link to environmental conditions. Salt-tolerant 

annuals are considered to be an important component of plant communities on 

saline land wherever livestock grazing occurs (Barrett-Leonard & Galloway, 

1996). In contrast to halophytic perennials, such plants contain considerably less 

stored salt, and may be grazed preferentially. 

Having mentioned that P. gracilis is likely to be of little value in revegetating 

persistently inundated land, it must also be pointed out that if waterlogging 

occurs to a maximum ievel below the soil surface, the species may be able to 

complete its growth and reproduction without exposure to hypoxia. Grown in 

such sites as a 'companion' species to other halophytes, the plant may also 

contribute to evapotranspiration, thus assisting in control of groundwater 

recharge. 
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D. caespitosa was also found to be tolerant of salinity, despite a relatively high 

leaf death at higher concentmtions. This plant may be (temporarily at least) 

classified together with P. gracilis as being of comparable value in revegetation 

projects. Both species were shown to be sensitive to exr.ess soil water, but robust 

in saline conditions. D. caespilosa showed growth responses in saline conditions 

seen in other halophytic monocots. The latter feature, as mentioned, suggests a 

relatively broad tolerance of environmental extremes. 

4.1 Concluding Remarks 

These trials set out to determine the tolerances of selected herbaceous species to 

a range of applied stresses in order to determine the feasibility of their use in 

revegetation of degraded soils at a southwestern Australian gold mine site. The 

two Australian species tested were found to be at least as tolerant of salinity as 

tall wheatgrass, a known halophyte. Further tests should be done on these 

species, such as exposure to higher salinities, to more fully characterise t.heir 

stress-tolerance abilities, but results gained in this project are certainly cause for 

optimism. 

A lack of tolerance to waterlogging restricts the application of these plants in the 

sites targeted for revegetation in this project, but may have little bearing on their 

use in revegetation elsewhere. In addition, sensitivity to waterlogging may not 

affect their ability to colonise sites where waterlogging is transient or contained 

below rootzones. P. gracilis, for example, is a strongly recurring annual, but is 
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endemic in a region of unpredictable hydrology. Propagation strategies in this 

species, while not conferring increased stress tolerances in themselves, are likely 

to give the species an added resilience. 

It is evident that specific tolerances to individually applied stresses under 

controlled conditions will provide valuable information, especially where a given 

species is considered most appropriate for a particular revegetation program 

(such as tall wheatgrass at BGM). However, it is funher evident that a species 

will have limitations and attributes that must be considered in conjunction with 

experimental data. Tall wheatgrass appears ideal for revegetation of saline and 

waterlogged minesites, but it is an introduced species. Of the two Australian 

species tested in this project, both were found to be tolerant of salinity, a soil 

condition common in AustraJia. Further investigations into tolerances of other 

Australian herbaceous species could prove to be invaluable. 
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