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Abstract

Many researchers today have a need to analyse data in a spatial context. An inherent
preblem is the mismatch of boundaries between the geographic regions for which data

is collected and those regtons for which the data is required.
Often the solution is to interpolate data from one set of regions to another.

This project examings and implements a method of areal interpolation that enables the
user to use extra information in areal interpolation to increase the “intelligence * of the

process.

This method of Enhanced Areal Interpolation vses a conditional Poisson distribution
and the EM algorithm to provide estimated values of a variable. Enhanced Areal
Inierpo!ation assumes that data is available for a set of source regions, and is required
for a set of target regions. Extra information available about the target regions provides
an improved fit of the estimates compared to Areal Weighting Interpolation which uses

area proportionality to distribute the data.

The theory and concepts are illustrated with an example and implemented using the
software packages Mapinfo version 3 for Windows and MapBasic version 3 for

Windows.
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1. Introduction

1.1 Background and Significance

Data interpolation is a problem that is inherent in any field of research involving spatial
data analysis, In such analysis a researcher often encounters difficulties in using data
available for regions that are not those regions that the researcher wishes to use. In
Australia today there are large amounts of data available to the researcher on a
geographical basis. Unfortunately much of this has been collected for relatively large
areas, or by organisations for specific internal or reporting purposes. One example is
the data collected by the Departinent of Social Sccurity (DSS) on numbers of persons
claiming particular benefits. The data in this case is only available by DSS office zones
or postcode. For the rescarcher trying to identify small regions of disadvantaged

persons this data is not appropriate. This is a problem of small area synthesis.

Many researchers collect or purchase data on a geographical basis and the geographical
areas used will have a great influence on the outcome of the research. For example, it
may be possibie to obtain data on single parent families, but only for Local Government
Areas (LGAs). The user who is interested in the distribution of these families, but for
smaller areas has few options, One option is to conduct a survey, which will provide
the information required, but at high cost, and is time consuming. There are also other

factors apart from cost and time. Some of these are:

»

comparability of the data to other collections;

possible need for a survey to be ongoing for a time series analysis;

need to take into account bias and errors;

obtaining a large enough sample.

Many rescarchers will try to find other options. One option is to use point data, and

aggregate those points that falt within the larget region. This option does not take into

of-



account the areal nature of the data. Another option is to allocate data from a source
region to a target region on a closcst fit basis. This method relies heavily on the
knowledge and expericnce of the amalyst. A variation of this method is used by
CDATA 91 whercby a region is selected as being within a boundary if the centroid of
the region falls within the boundary. Lastly, there is the option of allucating data from
source regions o target regions based on the proportion of arza overlap. This method
assumes that the data 1s uniformly distributed. The last method is very likely to be the
method found in a Geographic Information System (GIS) package, and is the method
used by Maplnfo version 3.0. [t was discussed by Markoff and Shapiro (1973), and
Goodchild and Lam (1980) described the process as Areal Interpolation. We shall refer

to it here as Aieal Weighting Interpolation.

Flowerdew et al (1991) describe a statistical method of areal interpolation that uses
ancillary data. This method relies upon the ancillary data being available to the analyst
to provide additional information in the interpolation process, and so enhance the
precision of such interpolations. We shall refer to this method as Enhanced Areal
Interpolation. In their paper, they outline the use of an iterative algorithm known as the
EM algorithm. 'This is a statistical technique to fit missing data and is presented in
general form by Dempster, Laird and Rubin (1977). Dempster, Laird and Rubin (1977}
also outline a general process using the software packeges GLIM and Arclnfo to
implement their procedure. Their implementation of the Enbanced Areal Interpolation
method involved solving problems of interlacing these quite different software
packages. The difficulty was only solved by being able to obtain access to the object
code of the software (Keliris, 1989), which makes it difficult for the average vser to

make use of this method.

1.2 Motation 2ad Preliminaries

The termis and notation used here are similar Lo those vsed by Flowerdew et al (1991),

which is the main referencs or the project. The process is to interpolate data for a set



of regions called the target regions, from the data associated with another set of regions

called the source regions.

Let the variable of interest be Y. The data on this variable is available for a set of

source regions S, but is needed for a set of target regions T.

The source regions and target regions are separate partitions of the same space, and can

be represented by the column vectors

’
S =[s],sz,...,sm]

T=[t,,5,...,tnj

where there are m source regions and n target regions.

These two sets of regions will form regions of intersection, Let the areas of the

intersection regions be represented by the matrix

A=y} i=12.m =120

3

where ajj is the area of the intersection region st;i=1,2,..,mj=1,2, .., n. The

areas of each source region and each target region can be found from this matrix nsing

row and column sums. The area of the i th source region s; is then
fl
. = E ajj
j=l
and that of the j th target region t; is then

m
a.j =Zaij '
i=1

where the dot (.) indicates summation.

These arcas can be represenied as colunin vectors by

A =fa,,a,,...,a, ] for source regions, and

A= [:1_,,;1,3,...,11,,,] for target regions,



The value of the variable Y for a source region s; is yj» (known) and for a target region t;

isyj (unknown). These can be expressed as vectors

’

¥ =[N Y20 0¥m] and  yi=[y..¥2.0¥n ]

Where a source region sj and target region {; intersect, the value of Y for the intersection
is denoted by yij. In this project only extensive variables as described by Flowerdew et
al (1991) will be considered. A vartable is extensive when its valucs can be aggregated
by summation. Some examples are number of people, total expenditure, and number of
electors.  Additional information about the target regions will be used in the

interpolation process. This will be specified by the value of at least one anciliary

variable X; on the target regions which can be represented as the vector

r
X =[Xi X0 een X ] -

1.3 Purpose of Project

The first major objective of this project is to examine the statistical theory that provides
the basis for Enhanced Areal Interpolation. The relevant theory includes the general
concepts and background theory of conditional distributions, exponential families and
maximum likelthood. The theory covers particularly the application of these concepts

using the Poisson distribution.

lowerdew et al (1991) noted that they implemented the enhanced areal interpolation
using two softwarc packages. The GIS was Arclnfo, and the maximum likelihood
estimates were calculated in the statistical package GLIM. They noted that the moin
difficulty was in the interface bet'veen the two, and it was managed only after modifing
the code of the two packages. This opiion is beyond the abilities of the average user.
The second major objective of this project is to implenment the enhanced arcal
interpolaiion in & more robust manner, which means using software and computer
hardware thot is readily available for many users, and setting the implementation up in

such a way that using it reqaires fittle additionu! knowledge on the part of the nser.

1
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2. Mathematical Framework

There are a number of statistical concepts and results needed for the algorithms used in
this project and these are stated here. The concepts are for the most part taken from
Fruend (1992), with additional parts from McCullagh & Nelder (1988) and Johnson &
Wichern (1992).

2.1  Univariate Cencepts

2.1.1 Definition; If X is a discrete random variable, then f(x) = P(X = x) is the

probability distribution of X.

2.1.2 Definition; If X is a continuous random variabie, f(x) is the probability density

function (pdf) of X, and satisfies

b
P(a<s Xsb)=[ f(x)dx

a

a,beRach.

2.1.3 Definition: The expected value or mean of a function u(X) of a random variable
X is defined as

2 u{x)- f(x) if Xis discrete

E[u(X )]: Tu( x)- f(x)dx if X is continuous.

—0e

When u(X) = X, the expected value is the mean or expected value of X and we write

n=E[X]. The following concepts and results will use u(X) = X.

2.1.4 Definition: The variance of X is a measure of dispersion and is defined by

o = E[(X-p)]



which reduces to

o’ = E[X*}-p’.

2.2 Multivariate Distributions

2.2.1 Definition: The joint probability distribution of n discrete random variables

X1, X2, ..., Xp 15 given by

f(xlvva-"xn): P(Xl =X, Xy =%9,..,X, =xn)'

The joint probability density function of n continuous random variables is given by

P((X) Xy, Xy ) e A)= [ [ f(x10 30,000, Yt Xy .,

where A is a region in n space.

2.2.2 Deftnition: For n discrete random variables X, X3, ..., X,, with joint probability
distribution f(xi, X2, ..., Xn) at (Xi, X2, ..., Xu) the marginal distribution of Xj at x; is
given by

g(x,-)= 22 Z"'zf(xhxzwﬂxn)'

X XX X,

For n continuous random variables, the marginal density function of X is given by

g(xf): I _[f(xhxz,---,xn)dxl...dx,-_l dx,-,,,l ...dx”.

—00

2.2.3 Definition: For the n random variables Xy, Xg, ..., X, at xq, X3, ..., Xp, the

conditional density of X1, X2, ..., Xj.1, Xi+1, ..., Xn given X = x;, 1S given by

Xys X9 genes
f(xl,xz,...,x”lx,—)=f( lg(zx,-) ) , g(x,-);éO.

where g(x;) is the marginal pdf of X;.



2.2.4 Definition: The n random variables Xy, X3, ..., Xy , wiih joint probability
distribution{density) function f(xi, x9,...,Xq) &t X{,X2,..., Xn, are statistically

independent if and only if
Flrpxgsecnxy)= filx) fo(e2) - Fulxa )
where fi(x;} is the marginal distribution(density) of X at xj fori=1,2,...,n.

If the random variables are identically distributed then

f,-(xi-)= f(x,-) fori=12,...,n.

2.2,5 Definition: If X and Y are random variables, and f(xly) is the value of the
conditional probability aistribution(density) of X given Y = y, the conditional

- expectation of a function u(X) of X, given Y=y is

> u(x) f(x]y) if X is discrete, and

Elu =47 '
[ (X)b’] j 1x) f(x|y)dxiinS contin’uous

—a

2.2.6 Maximum Likelihood

The method of maximum likelihcod is a general estimation method. The essential
featurc of the maxirnum likelihood method is that an estimate of an unknown population
parameter is chosen using the sample values in such a way as 10 maximise the

probability of obtaining the obscyved sample.

If xy, X2, ..., Xy, are values of a random sample from a population with the parameter 0,

then the likelihood function of the sample is denoted by L{0) and is given by
LO)= f(x;, x5, %,:0).

The function f is the joint probability distribution or density of the random variables

X1, X2, ..., Xy at the sample point.  If the n# random variables ase independent this

reduces to



L®)= fi(1:6)/2(x3:8)... £, (3,30 ) = [[ fi(x::8) (2.2.6)

where fi(x;;0) is the margimal distribution(density) of Xj at x;fori= 1,2, ...,n

The value 8 of the parameter O which maximises this function at the sample point
X1y X2, +vvy Xn, 18 the maximum likelihood estimate of Q. This value of 6 will also

maximise the log likelihood function, namelv

f(8)=fn[L(G)]szn[j;(x,;B)].

As 0 e R, we can use differentiation to find the value of 8 that maximisés £(6). Thus

A . ,
the value 9 is a solution to the equation

dL®) _, ., 40) _,
de d8

2.3  Some Useful Distribuiions

2.3.1 Uniferm Distribution

A random variable X is said to have a discrete uniform distributior: if and only if its

probability distribution is

1
f(x)=; X = Xyy X penes Xy

where x; # x; when i #j. The discrete uniform distribution has mean and variance

n n
pe3n L oS (-np
i=1

i=1 n
A random variable X has continuzous uniform density if and only if its pdf is given by

,a<x<h
flx)= b -
0 , otherwise

where a, b are real numbers. The continuous vniform density has mean and variance of

-8-



L, =ath Gzﬁb*az
H==" T 12

2,3.2 Binomial Distribution

Consider a random experiment with two outcomes, ‘success’ and ‘failure’, and constant
probability p of a success. Then the number of successes X in n independent repetitions
of the experiment has a binomial distribution with parameters n, p, and is a binomial

random variable, with probability distribution given by

b(x;n,p)=(ﬂp"(l- p)

forx=0,1, ..., n

The mean and variance of the binomial distribution are

w=np, o =np(l-p)

2.3.3 Poisson Distribution

The Poisson distribution is a limiting form of the binomial distribution as n tends to

infinity and p tends to zero such that the binomial mean np is a constant A.

A random variable X has a Poisson distribution with parameter A if its probability

distribution is given by

AX -A
p(x;A )= ;' ; x=0,1,...; A>0.

The Poisson distribution has mean and variance ‘given by
n=c%=A,

The Poisson distribution is used for modelling random events in space or time.

Note that if the random variables X, Xa, ..., X, are independent Poisson variables with
paramcicrs Ay, Ag, ..., Aq respectively, then

Y=Y X



is also a Poisson random variable with parameter

A=Y A

2.3.4 Conditional Poisson Distribution

Suppose X;, Xz, .., X, are independent Poisson variables. Then the conditional
distribution of X; given ZX; = Y = v is given by (2.2.3) as
f(xi,)

f(xely)=“;(—y")" -

where

e—Zlf Y
. g(y)= (le) .

y!

From. (2.2.1 the joint probability distribution is
f(xy)=PX=x,Y=3y)
= P(X= x,-,z *X,- = y—x,—)

= [e—l' (lf)xj} e—z i (Z *lg')y_x:

x,-! ()"'".Xl')!
where

"Z$Xi - Y'—Xi, Z*)., =Z?L,»—7L,-.

Therefore

-10-



x;! (y- xi)!
e IM(T )
!
_ ry] 0 (%)
() ()

HEIE

It follows that the conditional distribution of X; given Y=y is binomial with parametcrs

f;(xi|3’)=

- _ M
n=y, p_fi_s 2.3.1)
and conditional mean
pmrp=geioy.
i
This result will be used later in equation (3.2.4).

2.4 Exponential Families of Distributions

- The binomial and Poisson distributions are both members of a group of distributions
known as Exponential Families. The pdf of an exponential family member can be

written in the form

s0)="®)

where t(x) is a function t of the observation X,
¢ is the model parameter,
b(x) is a function b of the observation,

a(9) is a function of the parameter ¢ and s a normalising factor.

In this study we consider onc parameter exponential families.

-11-



2.4.1 Poisson; mean=A.

The Poisson distribution can be written as

[ile(fnl)x
flx:A) = xt - =Q,1,...;A >0,

y X=
e

which is an exponential famnily member with

b(x)=i, a(¢)=e’“, d=/{nh, t(x)=x

242 Normal; mean = p, variance = A.

The pdf of the normal distribution is given by

om0’ )=5 7

-(x—p.)
e T 207

which requires two parameters. By specifying the value of the variance 62 = 1 say, this

distribution becomes a one parameter pdf where

f(x;u)=_4_§-;n_c—u2(xﬁu):
_ 1 ua(-axu?)
==
@~l!2x’}px
LS

which is an exponential family member with

x/2

b(x)z-Jz_’ a(p) = eh1?, o=, t(x)‘“.'

-12-



2.4.3 Binomial; known n, enknown p.

The binomial distribution with known n and unknown p has one parameter namely p.

Its pdf is given by
(n\ x n-x
fes;p)=|_ |p*(1-p)
\X/
a Y p ]"
\XAl-p

(1-p)"

which is an exponential family member with

)=} ato)=-", o=l ) )=+

2.4.4 Properties of Exponential Families

Exponential familes have a number of valuable properties (see McCullagh &

Nelder 1988).

Suppose X1, X3, ..., Xp are independent, identically distributed random variables whose

distribution is a member of an exponential family. From 2.2.1 and 2.4.1 above, the joint

probability density function is

F( X %0 30)= [T (x30)
H b(x)
[a(@)T

This is a member of the exponential family with

- 13-



bx)=]Tb(x) a@)=[a@) ¢=0. ex)=3r(x)
i i
Furthermore, the sum Z t(x;) is a sufficient statistic for estimating the parameter ¢.
i
For example if the random variables were normally distributed as per 2.4.2 above then

the sum Zx; contains all the information in the sample Xy, X3, ..., X, for findirg the

estimate (I of the mean . If X; is written as a column vector x the joint pdf becomes

. zb ie‘t’l(i)’
f0) =20 —

Hence the joint pdf of an exponential family is also an exponential family and the
structure of an exponential family remains invariant under sampling. This result along

with (2.2.6) gives the likelihood function

] _e¢l(x)’b!x)
L(9; x)= )

The log likelihood function is then given by
2(0;x)=9 t(x) + £nb(x)—£na(9),

“This can be maximised by differentiating with respect to ¢ and setting to zero which

yields

€= —aJ(q,—)J =0

and s0 is a maximum when

“®)_
) ).

"This then aliows the maximum likelihood estimator to be readily found when using an

exponential family.

.14 -



2.5 Model Fit

A measure of how well 2 member of an exponential family models a given set of data is
provided by the deviance (McCullagh & Nelder 1988). This is a measure of discrepancy
between the data values and the modelled values and is a function of the data values
only. The value of the deviance allows the appropriateness of different methods of areal

interpolation to be compared.

For a random variable X, the log likelihood as a function of the mean value parameter I

- Hux)=tnf(xp)

The maximurm value of the log likelihood function is then £([1,x), which depends only

on the data and not on the parameters. Deviance is defined (McCullagh & Nelder
1985, p17) as

D ;x)=-2[¢0i; x)- £{x;x)]

For independent Poisson random variables Xy, X3, ..., Xp, with means jy, 12, ..., ln

respectively, the joint probability distribution of Xy, X5, ..., X; is given by

fxsp)=ITfi(x;5m).

The log likelihood, as a function of the model parameter | = (uy, fi2, ..., iy, is then
€(us x)=fn f(x; ;)
e M u_xi
= o [T B
P!

- =X [wi+x oy —en(x D}

with maximum value when ; = [i;of

£ x)= Z["ﬁi + x; nfl; — £ (% ')]

-15-



Hence the deviance becomes
D{fi;x)= —Z[E(ﬁ; x)- E(x;x)]
=25 [~k +x, nfi, - En(x, )+ x, - x, £nx,+ En(x,!)]

2225[{1,. ~x,+x,({nx, —L’uﬁi)]

= 22{& fn{g—‘i}—(xi -ﬁ,)]. (251)

For the Poisson distribution, the second term usually sums to zero (McCullagh &

Nelder 1988).

2.6 EM Algorithm

The EM Algorithm is an iterative process comprising two steps, the expectation or E
step and the maximisation or M step. This algorithm is given comprehensive treatment
in Dempster, Laird and Rubin (1977), where it is presented in a general form. It is
difficult to provide numerical steps for the algorithm (Dempster, Laird & Rubin 1677),
as there are many and varied situations where it can be used, and the actual steps to be

undertaken rely upon the specific sitvation,

The E step replaces all missing data values by their conditional expectations given the.
observed data and estimated values of all population parameters. The M step
maximizes the log likelihood function using the now complete data to obtain new
estimates for values of the population parameters. These new population parameter
values are then used in the E step. Both steps are iterated, continuing until suitable

CONveErgence occurs.,

K step

The E step is sometimes referred to as a prediction step (Johnson & Wichern, 1982),
since a prediction or estimate is made for missing data, given some estimate of the

unknown population parameter.

-16-



The E step uses estimates of the population parameters from the M step. For the first
E step there has to be some starting value for these parameters. The estimation process

will depend on the model being used.

For example in a one parameter normal model as in 2.4.2, an initial estimate for missing
values could be the mean p of the data available, The E step uses the M step estimate

for further iterations.

For a single parameter exponential family this step will estimate t(x) by

AP) _ E[t(xjx;d)(p)]

where t® is the p th iteration estimate for the data values.

M step

The maximum likelihood estimator ¢ is now found from the complete data set. The
estimated values from the E step are treated as observed data, and so the value of the

maximum likelihood estimator is estimated by
E[e(x)o]= P,

which will give the (p+1) th estimate of ¢. This simple form of the equation for
estimating ¢ is made possible only because of the form of the exponential family and the

availability of a complete data set.

-17-



3. Enhanced Areal Interpolation

3.1  Areal Weighting Interpolation

The areal weighting interpolation method introduced by Goodchild and Lam (1980)
assumes that the variable of interest is uniformiy distributed within each source region,
and hence any sub-region will have a value proportional to the fraction of the area that
is within the sub-region. For example, if a region with a population of n persons is
divided into p divisions of equal area, the uniform distribution specifies that each sub-

division will contain n/p persons.

This is a process of weighting the distribution using area. If the matrix W = {wjj],
i=1,2,.,m j=1,2,,.,n is a matrix of weights based on the proportion of
intersection region area to source region area, then the elements of W can be found by

Intersection Area  ajj
W“ - = my -
Y Source Area  ,a;
j

(3.1.1)

The data for the variable Y is known for the source regions. The problem is to

interpolate values of Y for the target regions. These estimates are denoted by

% = [91. 92, 9n ]

-18-



We can then write

% =ysW -
fay ap . ap
ar. 2} a.
P ap 2n
=[Y14 2.0 "% Ym] as. . an
A An | Am
dm. 3y am
=| 021 Y21 Yedml | MAin | Y28, +1m3mn]
| @ ap am a. az Am
S DD EUTIS ELR
izl & = & i=1 3

i=l i (3.1.2)

We see that the source Y value is apportioned according to the ratio of intersection area
to source region areas, and then )’;\.j is found by the appropriate column sum.

This method of interpolation is {requently used in practice. Although the main
assumption of uniform distribution may be questioned, effects of non-uniformity may

be reduced by cnsuring that source regions are relatively small.

311 Example

Consider Figure 3.1 with two source and three target regions so that m = 2, n= 3,and
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i

we also have

%=[4.6], o
A=l 2f.a=h 2 1]

A_IIO
710 1 1{

Using (3.1.1) gives

W_[o.s 0.5 0]
L0 0505

and so

and the target value estimates §, can be found by

#=yW
0.5 05 0
=[4 6][0 0.5 0.5]
- =[2 5 3]

- 3,2 Enhanced Areal Interpolation

The areal weighting interpolation method described and illustrated in section 3.1 is a
reasonably simple and straight forward process that is relatively easy to implement in

~ practice. The Enhanced Areal Interpolation method differs from this in the use of

» ancillary data on the target regions to enhance the precision of the

interpolated valucs,
* astatistical distribution to model data on intersection regions, and

* the EM algorithm to implement the estimation procedure providing

estimates for y values on the intersection regions and hence target regions.
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321 The Ancillary Variable

The ancillary variable X has known vajues on the target regions and is used to indicate
target regions with a similar distribution of the variable of interest. The use can be
lixened to a classification or category, where target regions with the same value of the
ancillary wvariable will have a similar distribution.  The model uses this extra
information to distribute the variable of intercst Y to the intersection regions
sccordingly. Essentially, X is used to ‘flag’ target regions of a similar type. One
example (Flowerdew et al 1991) uses the soil types, clay and limestone, in the
interpolation of population. In this case, assuming independent Poisson data the model

becomes

" :{llpﬁj: x=1(clay)
ij

?\,2 A] : x =2 (limestone). 3.2.1)

Thus the mean of the variable of interest Y on each intersection region is proportional tc

the area of the interscction with constant of proportionality Ay depending on the soil

type x of the region.

thout loss of generality, we assume that X takes the values 1, 2, ..., k, with k £ n.

The proportionality constant A is set so that there is a distinct value A for each distinct
value x of X. It becomes an indicator for target regions that are presumed to have the

same distribution of the Y variable. Hence

h:[?ux]’;x-—*l,z,...,k.

From (3.2.1) the imodel then becomes

llAij:X—l

Mo By 1x=2
i = 2; !

}ukﬁjlx—'k

(3.2.2)
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3.2.2 The Statistical Mode!

This application of the enhanced areal interpolation method assumes that Y is an
extensive variable and that on the intersection regions the Y;; have a Poisson distribution

with a mean involving an unknown parameter 3; so that

Yij ~ Poisson(pij ); mean =“(B’ Xj» ‘A‘j)

The implementation of the EM algorithm requires some initial estimate to prime it.
This is provided by first applying Areal Weighting Interpolarion to the data and using
the result obtained as this initia] estimate. This essentially duplicates the first iteration

of the E step and so this application of the EM algorithm commences with the M step.
The first estimates from Araal Weighting Interpolation are desigrated as y{u) , the

superscript (1) indicating that this is the first iteration of the EM algorithm.

Maximum likelihood estimates are used to maximise the joint density likelihood at the
observed values. The likelihood function, in the special case of two distinct values of

X, becomes
L("'l’lz le)) f(YJ*xl)f(yJ’M)

| —WEA, MEAJ Ey.} Eyq
e g W l:n H%UHAIY“

(1) (2)

|

¥ !

[ Y. AN

where (x); x = 1, 2; indicates a sum (product) over all intersections 1,j with the same
value of the ancillary variable X, and where K is a constant function of A1, A2.

To maximise the likelihood function, 1. is differentiated with respect to Ag; X =1, 23

obtaining
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— =0,
JA X
giving
—h 2 A+ Xy =0,
(x) (x)
and hence

The estimated parameter values ﬁ-,j can be calculated for each intersection region, using

(3.2.1) as

N VYT )

These estimates are then used for the next E step.

323 Estep

The ‘missing’ data values are those values of Y on the regions of intersection of the
source and target regions. The Estep uses the values of Y on the source regions,
together with estimates of parameter values, to provide a set of estimates 3?5]- for the
values yjj on the intersection regions. Using the Poisson model described above, these

estimates are calculated from the known valves ;. on the source regions.

Assuming Yj; arc independent Poisson random variables with parameters W5, we

require the conditional distribution of Yjj given yje. Section (2.3.4) shows that the
conditional Poisson distribution is binomially distributed and has parameters

=y, p=wrie: i=12,..,mj=1,2
~"}']’ p‘“w = » 1----;1“'_]'" 3'-*9---9“-

S Wik ’
k
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Hence the estirnates are the conditional expectation of yjj given y; and pjj,

Yis :E[ﬁj',pvij:yl-]
=np

k (3.2.4)

In practice the irnplementation of the E step is straightforward, (3.2.4) is used to find the

next fr\ij value. It is convenient to consider theses values in 2 mateix 0 = [ﬁij ], and the

matrix operation equivalent to (3.2.4) becomes

5’{]:1;’[—15'1]; i=1:27-“sm; j=1’2""’n

[

(3.2.5)

where the denerninators are the row sums of ), namely
;. =2ﬂij
i
The matrix in (3.2.5) is analogous to the weighting matrix W in areal weighting
interpolation.

The stopping rule has to be considered at this stage in the algorithm. This is discussed

in section 3.2.6.

The estimates from the E step are then used in the M step.

3.2.4 M Step

Each time the E step is completed the maximum likelihood equations are used to fit the
mode] to these estimated values and produce maximum iikelihood estimates for the

unknowsn population paramelers.

The M step is composed of two distinet operations.  The proportionality constant,

lambda, is gstimated first, followed by the estimation of the ﬁij using
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- Jhadge
Hy = :

lkAl k.

The lambda estimates are calculated using (3.2.3)
2 Yij
£

YA
(k)

where the sum Z is the sum of the values for which x = k.
(3]

3.2.5 The Estimation Procedure

The EM algorithm involves iteration of the E and M steps until convergence (see
3.2.6). After the rth iteration the estimates for Y, |t and A on the intersection regions

are defined by

S‘r.ﬂr), ()and l respectively.

Once the estimates }’r\ij have been calculated the estimates ¥ j are calculated by

Yf‘—Z?ij-
1 .

{3.2.6)

3.2.6 Convergence

There is a need to decide when the estimate has converged with a reasonable level of
accuracy and hence stop the itcrative process. The method chosen for this study is to
use a stopping rule, which allows for some flexibility, yet provides a reasonable level of

accuracy fo be reached.

For each intersection region, after the r th iteration of the EM algorithm, we define the

difference between estimated values for each intersection region as

(r) _ olr) _ ple-D)
A1 “"'} y'} _ (327)
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This difference is used to determine when a sufficient level of accuracy has been
reached and the iterative process may cease. Suppose a sufficient level of accuracy is

€ = 0.05 say. Then when

max(‘A(g:) ) “‘_‘8;(;) <g, fori=12,....mj=L12,...,n 328

the process will stop.

An iteration counter for r is also needed to limit the number of iterations should

convergence become slow.
3.3 Model Fit

The likelihood function for this model on the intersection regions is

5’

P-J
Ly )=[T[]—- o
i ij°

with log likelihood

£(1:9)= z Z ["ﬁij + 3§ en iy — En(ﬁij ')]
i

giving deviance (2.5.2) on the intersection regions as
i;9)= —2[e(;z;s‘«)—e’(9; 9)]
= 222 i fn - — 15 )| (3.3.1)

Deviance can aiso be calculated from the source region y values and is denoted as Dy,.

The estimated y values for the target regions can be used to find a ‘target deviance’ Dy,

‘The calculations can be made as follows. From the E step we have

o i
yij - Zﬁ‘
k
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and hence

Using this result and summing (3.3.1) over j, gives

e =23, [y, En( Y ) (3. - )]

[Z ij = Vi Zﬁfj = ﬁf-]-
J J

(3.3.2)
By summing (3.3.1) over i gives
R
D =23| 9 f”[ ] ]“ (9;-8)
j Hj
(2 Fi =35 20y =0 ]
i (3.3.3)

For the matrix of estimated Y values
Yj = [35} ]
Where
=28 95=29
k £
and for the matrix of estimated Jjj values
ﬁu = [ﬁij]

where
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4, Implementation

4.1 Imitial Development

The application of the enhanced areal interpolation method is best illustrated with a
simple example. This example was incorporated into a spreadsheet model. A copy of

this model is in Appendix A.

51 7 53
T
e—— 12
s4 85 56
5] —

V 58 59
T4

Fig 41 - Source regions and target
regions.

15

Consider nine square source regions each having unit area arranged into a regular 3x3
grid forming a square with a total area of nine, This 3x3 grid is completely divided into

five target regions, as shown in Figure 4.1.

The data available for the source regions is given Table 4.1

Resion ¥p Sy 8y Sy S¢S Sy Sg 59t Totanl
i 1 2 3 4 5 6 7 i 9 -
Al 1 1 1 1 1 1 1 1 g
Yi. 2 3 5 2 3 4 2 3 6 30

Table 4.1 - Source region data.
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The five target regions have an ancillary variable X; with the values as shbwn in

Table 4.2,
HRemion i t2 13 t4 t5
j 1 2 3 4 5
X 1 2 3 3 2

Table 4.2 - Ancillary values for target regions.

The nine source regions and five larget regions form intersection regions. The areas of

these intersection regions are given in Table 4.3.

Intersection Eealons

Area i
Ail 1 2 3 4 5 2
1107696 00000 0©.2304 0.0000 0.0000 { 1.000
2104440 03254 0.2306 0.0000 0.000C | 1.000
3(00000 1.0000 00000 0.0000 ©0.0000 | 1.000
4|00000 00000 0.8766 01234 0.0000 | 1.000
i 5{000C0 01240 0.3235 02785 0.2740 | 1,000
6100000 04700 0.0000 00000 05300 | 1.000
7100000 00000 0.1490 G.851¢ 0.0000 | 1.000
8100000 00000 0.0000 0.6785 03215 | 1.000
2100000 00000 0.0000  0.0000 1.0000 § 1.000
12135 19195 1.8101 1.9314 21255 | 9.000

Table 4.3- Intersection region areas.

Table 4.3 shows the areas of the intersection regions, with source region number as the
row heading and target region number as column heading. The row totals give the arca
of each source region, and the column totals give the area of each target region. Note

that the table is sparse, as each target region intersects only a few source regions.

Initial estimates for the EM algorithm are obtained frem the areal weighting

interpolation estimates. Table 4.3 is the equivalent of the area matrix A = [a;], the
intersection region areas. Equation (3.1.2) is used to find the areal weighting estimate

of the y values.
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For example

A~ 0
i=—"n
al.

0.7696
= —'"i—'-(2)
=1.5392.

The result of the éal_culations for all intersection regions is given in Table 44.

Araal Weightlng estimate

)

1est vl i 2 3 4 5 h
111539 0000 0461 0000 00007 2.00
211332 0976 04692 0000 0000 | 3.00
310,000 5000 0000 0000 0000 | 5.00
410000 0000 1753 0247 0000 | 2.00

i 5)0000 0372 0970 0836 0822 ] 3.00
6{0.000 1.880 000G 0000 2720 4.00
710000 0000 0298 1.702 0000 | 2.00
8{0.000 0.000 0000 2035 0965 | 3.00
9]0.000_ _0.000 0.000 0,000 6,000 | _6.00
>12871 8228 4174 4.820 9.906 |30.00

Table 4.4 - Areal weighting estimates.

- Note that the column totals give the areal weighting interpolation estimate for the target

regions. This can be compared with the enhanced areal interpolation results.

E step (1)

The first estimates are calculated using (3.2.4) which are ‘the .'mal'.Weighting .

interpolation estimates.

M step (1)

The number of lambda values needs to be determined before commencing with the

M step of the EM algorithm. In practice the ancillary values x;, 1= 1, 2, ..., n will not

necessarily take the values 1,2, .., K, k € n, and will need recoding. Suppose this

recoded value, called the lambda flag, is zj; j = 1, 2, .. 1,
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In our example ‘scanning’ through the target regions from j=1to 5, finds the first
ancillary value x, = 1, and so put z, = 1. The next ancillary value is x, = 2 which is
distinct from x, so put z, = 2. The next ancillary variable x, = 3, and so put z, = 3, The
next ancillary variable x, = x, = 3, and so z,=2z,=3. Lastly, x; = x, = 2, and so put

z,=z,= 2. The recoded variable 7 takes the values 1, 2,3, and k = 3.

Once the lambda flags are found then (3.2.1) is used to estimate pjj for each intersection

regidn.
- From (3.2.2) the model is |

Wi =ho44, 2=123.

* The first step is to find the lambda estimates using (3.2.3). For example

1
Y.y

X(zl)=4—~ 12=2;§=2,5
2a;

]
I \
0
an +a'5
_ 8.228+9.906

1.919+2.126
= 4,483,

Similarly the other values are calculated. Table 4.6 shows the new lambda estimates for

all target regions as calculated, Note that the lambda values for tafgct regions j=1,3,4 -

are equal.
Lambda (1)
i
A 1 2 3 4 ) >
X} 1 2 3 3 2 n

Yj 2.871 8228 4174 4820 9906 | 30.00
TA ] 1.214 1.919 1.810  1.931 2125 | 9.00
A 2366 4483 2404 2404  4.483 | 16.14

Table 4.6 - Lambda estimates.
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The estimates for [ are then calculated using these lambda values in (3.2.2), As an
example z, = 1 and so the calculation of the estimate for \,, is given by
A~ _ 1t
B{Y =Rayy
=2.366(0.7696)
=1.8207.
Table 4.7 shows the remainder of the | estimates to 1 decimal place. Note that
Table 4.7 is similar to matrix U, but as a table includes the row and column totals. This

is useful in a spreadsheet as deviance can be calculated at any point.

M step {1)
j

ast mu i 2 3 4 5 z
1] 1.8207 0.0000 05539 0.0000 00000 2,375

2] 1.0503 1.4591 05543 0.0000 0.0000 3.064

3| 0.0000 4.4833 0.0000 0.0000 0.0000 4.483

4! 0.0000 0.0000 2.1072 0.2967 0.0000 2.404

i 51 0.0000 0&E560 07776 06695 12283 3.231
6] 0.0000 21072 0.0000 00000 2.3762 4,483

71 0.0000 0.0C00 03582 2.0457 0.0000 2.404

8} 00000 00000 0.0000 16310 14415 3.073

9| 0.0000 0.0000 0.0000 0.0000 4.4833 4.483

Il 2.8710 8.6056 43512 4.6429 9.5293| 30.000

Table 4.7 - New estimates of L.

E Step (2)

With |ijj calculated the M step is completed, and the estimated y values are calculated

for the next iteration of the algorithm. Table 4.7 is very useful since the estimated y

value for each intersection region is found using (3.2.4). There are three inputs to this
calculation, the y;,, [i{ which is the cells of Table 4.7 and ) which is the row total

from Table 4.7,
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"An example caleunlation using (3.2.4) is shown for the intersection region of s, and t,,

~(2) _ 1.0503 -
Y21 T 10503 +1.4591+ 0.5543
_ 10503 .
3.064
= 1.0285.

In a similar manner all the values are found. Table 4.8 shows the remainder of the

estimates of the intersection region Y values after the second E step. The process then

continues.
Convergence
E step (2)
J

est yi| 1 2 3 4 5 X

1] 1.5335 0.0000 0.4665 0.0000 0.0000f 2.000

21 1.0285 1.4287 0.5428 0.0000 0.0000} 3.000

3] 0.0000 5.0000 0.0000 0.0000 0.0000{ 5.000

41 0.0000 0.0000 1.7531 0.2469 0.0000] 2.000

i 5] 0.0000 0.5162 0.7219 0.6216 1.1403] 3.000

6| 0.0000 1.8800 0.0000 0.0000 2.1200[ 4.000

71 0.0000 0.0000 0.2980 1.7020 0.0000] 2.000

8{ 0.0000 0.0000 0.0000 1.5925 1.4075}( 3.000

9] 0.0000 0.0000 0.0000 0.0000 6.0000| 6.000

Z| 2.5620 8.8249 3.7824 4.1629 10.6678) 30.000

Table 4.8 - Estimated Y values after second E step.

For this example the accuracy level chosen was € = 0.001. Table 4.9 shows the results

@

of the delta calculations after the second E step. These are values of Djj” .
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Deita (2)

]
1 2 3 4 5 >

0.000 0062 0.000 0.000 0.000| 0.000
-0.090 0.148 -0.060 0.00¢ 0.000F 0.000
0,000 0.000 0.000 0.000 0.000] 0.000
0.000 0.000 0.000 0©.000 0.000{ 0.000
0.000 0228 0.045 0.030 -0.303] 0.000
0.000 0.000 0.000 0.000 0.000] 0.000
0.000 0.000 0.000 0.000 0.000; 0.000
0.000 0.000 0.000 0.168 -0.168) 0.000
(0.000 0.000 0.000 0.000 0.000{ 0.000
-0.090 0378 -0.015 0,198 -0.471] 0.000

Table 4.9 - Deita values afier E step 2.

MO O~ DU N T

From Table 4.9 it is clear that the maximum absolute value for delta is 0.303 and so the
process should continue. The spreadsheet was designed to be iterative, and once the
iteration process was started it continued until the specified level of accuracy was

reached. This occurred after seven iterations and the results are given in Table 4.10.

E step (7)

i
pst Yst 1 2 3 4 5 z

1] 1.5458 0.0000 04542 0.0000 0.0000[ 2.000
2{0.8043 1.6347 0.4610 0.0000 (.0000; 3.000
3/0.0000 5.0000 0.0000 0.0000 0.0000{ 5.000
4| 0.0000 9.0000 1.7531 0.2463 00000 2.000
5/0.0000 0.5835 0.6058 0.5216 1.2891| 3.000
6( 0.0000 1.8800 0.0000 0,0000 2. 30/ 4.000
7
8
9
)

0.0000 0.0000 0.2080 1.7020 0.0000| 2.000
0.0000 0.0000 0.0000 1.3694 1.6306F 3.000
0.0000 0.0000 0.0000 0.0000 6.0000] 6.000
24800 9.0983 3.5721 3.8398 11.0348| 20.000

Table 4.10 - Spreadsheet estimates

The source deviance was 0.4144 for the 2nhanced areal interpolation estimates.

This cxercise provided valuable insight to implementation issues and also provided

results that could be used to check the output from the implementation.
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4.2 Implementation

The implementation was made in three broad stages using the source and target regions

as described in secticn 4.1,

(i) Stage 1 involved the integration of the application with Maplnfo and the

constructior, of a user interface.

(ii) Stage 2 used the inbuilt MapInfo operations for creation of intersection
regions. MaplInfo version 3 includes a function that can use the shape of a
polygon to divide up another polygon, The terminology used by the
software manuals is that of a ‘cookie cutter’. This split function allows the
data attributes associated with the polygon being split to be allocated by

three methods
1. No data is allocated, the data attribute is left blank or zero,
2. Datais duplicated, as in a region name;,
3. Numeric data only can be allocated using area proportioning,.

The third option is areal weighting interpolation. Each attribute of a data

itern can have an option individually specified.

(iit) Stage 3 was the implementation of the EM algorithm and the production

of estimates on the target regions.
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4.3 Software and Hardware

Both the software and hardware for the implememtation had to be of a kind readily
available to a large number of users. This was particularly important in the choice of

hardware, as being that which is likely to be found in a wide variety of uses.

4.3.1 Software

The calculation aspect of the enhanced areal interpolation can be implemented in many
packages, and as shown in the previous chapter, can be designed into a spreadsheet
package. The crucial aspect of the software is the GIS package which is used to

calculate the areas of source and intersection regiens. It needed to be
» readily available,
* - relatively inexpensive,
* casy to learn and use

casily able to interface with the calculation software, and

 able to operate on a wide variety of computers.

Based on these criteria the software package chosen was MaplInfo version 3.0 for
Windows. This software package is termed a desktop mapping application rather than a
GIS. For our purposes it had all the necessary features. An added benefit was the
associated programming language MapBasic version 3.0 for Windows, which provided

the ability to integrate the whole application.
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432 Hardware

The software packages chosen are avaiiable for a wide variety of computers including
Unix, Macintosh and IBM compatible Personal Computers using Microsoft Windows
software. The hardware used was an IBM PC compatible computer with an Intel 486
Central Processing Unit (CPU), and 4 Mb of random access memory using Microsoft
‘Windows version 3.1. This choice of hardware would ensure that any application
package produced would be able to operate on hardware that is readily available in the

wider community.

44 Design

An appropriate representation of the implementation is to consider the source and target
regions as in a table as shown in Table 4.1. This was the method used for the exampie
~ in Chapter 4 and enables matrix operations to be used which results in great simplicity
of implementation. Maplnfo allows the use of only one dimensional arrays (in effect

vectors). This restriction greatly influenced the design of the application.

Maplnfo is essentially a database management system (DBMS) that stores the data in
tables. Each row in a table is a data itemn and the columns are the attributes of the data,
Maplnfo has a special geographic attribute that can be given to the data in a table that
allows the data items to have an associated geographic image, be it a point, line or
polygon, that is geocoded in any of a number of co-ordinate systems. Hence the main
difficulty of the implementation was (hat table manipulation was required via relational
database operations. A row in a table can also be referred to as a data item or record,

while a column can also be referred to as a data attribute or a data field.

-37 -



The design of the implementation was strongly influenced by this aspect of Maplnfo,
and so involved a combination of array type operations, such as loops, with relational
database operations, such as row or record selection. MapBasic is designed for easy
creation of modular code, and the application is strongly modular in design, making it
relatively straightforward to modify any aspect of operation, or make enhancements

either as modifications or additions.

4.5 Execution

451 Integration and User Interface

The application has been set up to operate as a sub menu item in MapInfo. It has four -

sub menus of its own. These sub menus are
= commence the application,

» exit the application and remove the menu option,

give a brief description of the application,

provide help information.

Figure 4.2 shows the MaplInfo menus and the application sub menus.

3.



M
File Edit Objects Query Table Options Window Map |ibwits| Help
Run MapBasic Program... Ctri+l)
Show MapBasic Window

SealeBar 3

ffe- g
e

About...
Help

| Figure 4.2 - MaplInfo menus & sub menus.

The user may set up the application to install itself whenever MaplInfo starts up.

When the application is run from within Maplnfo, it only installs itself by addiﬁg an
interpolation menu item. The enhanced interpolation commences when the third sub
menu is chosen. The user is given a dialog box on the screen as shown in Figure 4.3,
This dialog box requésts the name of the table that éontains the source regions. This
" table is referred to as the source table. Once this table has been selected a pop up menu
of attributes becomes available from which to chose the column that contains the Y
values. Another input area allows the user to select the target table, and the
corresponding column in that table that is to be used as the ancillary variable, The user

is not able to chose the same table for both source and target regions.
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ITARGET -
-{MODEL1 | .- |MODEL1
;- |MODEL2 . - ]MODEL2

: |MODEL3 .. . |MODEL3

Fig 4.3 - User interface dialog box.

The dialog box also contains a section for iteration control. This allows the user to
specify the level of accuracy € and the maximum number of iterations. These values are

~ initially set to 0.005 and 50 respectively.

4.5.2 Table Manipulation

A major part of the implementation effort was in having to manipulate Maplnfo tables,
especially since every operation requires some rows of a table to be selected, and the
selected rows create another table called a sclection table. To give some idea of this,
consider the example described in section 4.1. Tnis has nine source regions, five target
regions and 15 intersection regions and one iteration through the EM algorithm results

in the creation of over 80 tables.

On the positive side, alterations to selected rows are carried through to the original
table. This can be very useful for altering the fields of specific records in a table. For
example consider a table containing a column of postcedes and a column of locality
names together with other columns, A selection could be made on a particular lecality
name, say Perth City. The selection can be made to contain only the postcode and
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locality name columns. The locality name column in this selection table would contain
only the locality selected (Perth City), and the postcode column would contain only the
postcodes associated with this locality. These postcodes could be altered to some other
value. This alteration would then be carried through to the original table from which
the selection was made, only altering those rows that were selected; that is only the
postcode for those data records with locality name of Perth City would be changed.
This is a very powerful feature. This particular ability was especially useful in

calculating estimates for only selected intersection regions in the M step.

One other aspect of the table structure that had a major influence on the application
design was the way the split function operated. As mentioned above, this function
operates like a ‘cookie cutter’. A table is specified to the function as the one to be ‘cut’,
a second table is specified as the ‘cookie cutter’ and divides up the first table. In many
Mapinfo operations the result produced has no effect on the original arguments to the
operation. However the split function differs in this respect. The net result is that after
the split function is used the source table has been ‘cut up’ into intersection regions and

no longer exists in its original form, and it is very difficult to put back together again.

This effect of the split function could cause unwanted alteration of a data table. To
ensure that this could not happen the implementation was designed to operate on copies
of tables. This had two effects on the implementation design. Firstly the source and
target tables are copied to temporary tables and all operations take place on these
temporary tables, thus ensuring that the users’ data is not affected until all calculations
are complete. Secondly, the split source table becomes the main table on which all the

application operations are carried out. This then becomes an intersection iable.
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453 EM Algorithm

The EM algorithm is the major feature of the implementation and accounts for over a
third of the application code. Most of the rest is accounted for by the user interface.

Implementation follows closely the spreadsheet design discussed in Chapter 4.

To account for the first iteration of the E step being replaced by the areal weighting
estimates, the EM algorithm is implemented as an ME algorithm with the M step first.
This suits the convergence limit, as this is calculated after the E stép and so is more

suited to this reversal.

As noted in Chapter 3, the lambda flags need to be Sét up ﬁrsf. | -HoWever, the
explanation in Chapter 3, while easy to follow, does not. conStitutc an f.:'fﬁciént
algorithm as each target region is examined and then compared to some }i.st of previous
ancillary values to determine the z value to be allocated. This is CPU time consuming
and memory using. A computationally more efficient algoﬁthm yvhich should reduce

the number of comparisons made is described below.

Before the split operation the target table is indexed j = 1, 2, ..., nin the order in which
 the data records occur, and the source table is indexed in a similar manner. This ensures
that there is a source table and target table index in each intersection region. In the split
operation any data attribnte not specified will default to either a blank or Zard entry
This is a simple way of ensuring that all lambda flag fields are initjally zero Th_e :

allocation of data flags proceeds as below.
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1. Lambda flag column is denoted as If, and the ancillary variable column as
xvalue. A copy of each lambda value is kept in a one dimensional array
denoted as lamf(z), where the maximum number of z values is set to the

number of intersection regions.
2. Setacounter variable ‘index = 1, number of flags counter ‘count=1".

3. From the intersection table get record number = index, set lambda flag If = -

1 and lamf(1) to the lambda value .

| 4, Now select all records from the intersection table that have the same

lambda value as lamf(1). For these selected records set if = _1 .
5. While index < number of intersection tabIc rows do the following
'5.1. Increment index by L
52, From.intcrsect_ibn table get record w;.ith fecord number = index

5'._.3'. If llf for this record is zero then. (needs a lambda flag),
increment count by 1,
set lamf(count) to the lambda value for this record,
select all records from the intersection table that have the same

lambda value as lamf(count), and for these records set If = count.

6. The final value of count gives the number of lambda flags set which is

variable k.
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This then gives k as the maximum valve of z. It is worthwhile to note that althougl
each record is examined, if the flag has been set, then it is skipped over, thus speeding

up the execution of this stage of the implementation.

The M step then operates in a loop that is executed once for each lambda flag, MapInfo .
provides a very useful summation operation that simplifies the calculations. Say a data
table is used for the finances of shop locations and has a column that contains lease
payments. Tt may be a useful financial analysis to obtain total lease payments by
distribution regien. Rows can be selected from the table using distribution region as the
selection criterion, and a column can be included that provides the sum of the lease
values. This sum can be assigned to a variable and used in other calculations. This
means that an entire column of data could be arithmetically operated on by this assigned

value. For each lambda flag, the calculation to find [ is done once and the updates all

selected records. This summation operation makes the E step very simple, and this took

only ten lines of code to implement.

4,54 Producing Results

A simple test determines if the value of £ has been reached or if the maximum number
of iterations has been rcached. If either case is true the iterations stop, both values are

recorded and reported to the user as they may be useful for further analysis.

Both source deviance D and target deviance D, are calculated. The former uses the
source index column and the fatter uses the target index column that set up in the
intersection table. They can both be reported to the user. A interesting situation arises

in the calculation of souice deviance, It is possible for the Y varjable column in the

.44 .



source table to contain zero for one or more source regions. These regions contribute
zero to the estimates, but the deviance calculation must take into account the possibility

of a zero value. Where the source region has a y value of zero the deviance calculation

for that region uses only the value ;..

The target region index is used to sum the estimates in a process we refer to as
assembling. At this point the table specified by the user as the target table is modified
by the addition of a column with the same column title as the Y variable column in the
source table. It is into this column that the estimates are summed. The temporary tables
are not deleted as they may be of interest to the user. The temporary tables are deleted

when either another iteration is commenced, or when the application is closed.
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5. Evaluation
In this chapter we include the results obtained to date and compare the areal weighting
interpolation and enhanced areal interpolation methods. The first example used is that
described in Chapter 4, and some of the results may be indicative of the ‘artificial’
nature of this example. Rather than move directly to ‘real’ data, it was thought more
prudent to study variations on the example from Chapter 4. The original example is
referred to as Example 1 and the variations are Example 2 and Example 3. The target
regions remain the same for all examples, only the source regions are modified by
grouping and merging those from Example 1. A description of each example is given

and this is followed by a comparative summary,

51 Lxamplel

Example 1 is shown in Figure 4.1. The results from this example are given in Table
4.10 in Scction 4.1. The main feature of this example is having congruent source
regions. The main concentration of the values of the Y variable is in the top row of
source regions accounting for 33% of the total, and the right column which accounted
for 50% of the total. The distribution of the values in this right column of regions can
have a major effect on the final estimates. The overall areal density of Y is 3.333.

Using areal density allows source regions with high variability to be identified easily.
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52 Example2

Example 2 is shown in Figure 5.1. In this example the original source regions s) and s

81 82
T1
12
83 54
T3 —
s6
T4 15

Figure 5.1

have been merged into one region to form s1. Regions s3, 54, and s¢ have been merged
to form new source region sz. Regions s, and s, have been merged to form s3. This has

the effect of ‘smoothing out the variations in Y. This smoothing has greatest effect on

the right column, which should have greatest effect on target regions tp and ts.

Table 5.1 gives the data for the source regions.

Reglon 8 83 Sy 84 ss1 Total
i 1 2 3 4 5 -
Als 2 3 2 1 1 9
Yis 5 15 4 3 3 30
Density | 2.50 500 200 3.00 30001 333

Table 5.1 - Souice regions for Example 2

-47 -



The smoothing cffect can be seen in that the greatest arcal density is down from 6 to 5,

wihile there has been no change in the minimum density.

53 Example 3

T2

Figure 5.2 - Example 3 regions.

Example 3 is shown in Figure 5.2. This example continues the merging process, and has
only two source regions. Example 3 has the greatest smoothing and very little of the

detail that was present in Example 1. Region s has a y value of 21, more than 50% of
the total, with 56% of the total area,. This source region now wholly encloses ts and
some effect should be scen here. The original s3 and sy are merged and the effects of

these original iwo source regions should be less than in Example 1.

Table 5.2 gives the data for the source regions.

Region s} s2 Total
i 1 2 -
Ais 4 5 9
Yi 9 21 30
Density 2.25 4.20 3.33

Table 5.2 - Source regions for example 3.
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54 Commeonis

The resuits {or all three examples arc given in Tabie 5.4, For each example the target
region estimates are given. For the enhanced arcal interpolation the source deviance
and number of itcrations is also given. For each example the squared differences are

given to compare estimates.

Example Besulis

Target Reglons Source
Example Mathod 1 2 3 4 5]Dovianceo| lteratlons
1 AW] 2871 8,227 4172 4819 9896 0.8014
EA 2449 Q096 3571 3.840 11.028 0.4139 b
Sq diff 0178 0.7% 0360 0958 1.281
2 AW 3.034 B530 4172 4819 9426 (0.4252
EAl 2473 9543 3566 3.840 10.558 G.0114 7
Sq diff 0315 1.027 0366 0959 1.282
3 AWI 2731 7.422 4701 6211 8918 0.7284
EAl 1.681 9282 4,227 4.515 10278 0.0000 Q

Sq diff 1.103 3458 0.225 2874 1849
AW Areal Weighting Interpolatiion
EAlL: Enhanced Areal Interpolation

Table 5.3 - Summury of results,

In each example the EAI estimates have lower deviance than the AWI estimates,
indicating better fit. The AWI performed best in Example 2 with its Jowest deviance.
In Example 3, EAIL produces a much better fit than AWI. This is due to the extra
information that the ancillary variable provides to EAL This can be scen best in target
region to, where tiie AWI cstimate has decreased greatly from that obtained in Examples
1 and 2, whereas the BEAT estimate is close to the values in the first two examples. AWI
i using the uniform distribuwtion is affected by the smoothing of the data to a nmch

greater extent than EAL
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Where ancillary data is available for target regions that are generally smalier than source

regions the EAI provides a more precise estimate than AWI. Table 5.4 gives the results

of timings made for cach example

Example Iterations

Time(sec)

sec per iteration

1
2

2

17.33

12.43

8.00

Table 5.4 - Iteration timings.

The length of time for each iteration is clearly influenced by the number of source

regions, The number of source regions for each example are in the ratio 9:5:2, while the

times for one iteration are not in this ratio, there is some correspondence. The timings

indicate that for larger numbers of source and target regions, the processing time will

increase. For this reason the hardware used for this paper should be regarded as the

recommended minimum.

-50-



6. Brief Summary

6.1 Implementaticn

The implementation can easily be operated by a user with little technical knowledge of
the EM algorithm or Exponential Families of distributions. The implementation has
been tested to handle a wide range of inputs and to detect and advise the user of invalid
inputs. The implementation uses commercially available software and hardware that is
widely distributed in the community. In meeting these criteria, it can be said to be

robust.

The enhanced areal interpolation is an intensive processing task and while able to
operate on older and slower hardware than that used in this paper, our recommendation

is that the hardware used for this implementation is the minimum that should be used.

6.2 Usefulness

As noted in Chujpicr nhanced areal interpolation improves on the precision of areal
weighting interpo!atinn when the source data is smoothed due to source regions
encompassing a number of smaller target regions. The extra information provided by
the ancillary variable is very useful in such situations, Enhanced areal interpolation can
only be used where such an ancillary variable is available. For example, in estimating
population numbers, the ancillary variable can be given velues according to the main
land use of the target region, or the target region may be simply classified as urban/non-

urban.
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The measure of deviance is worthwhile using for areal weighting interpolation as well
as for enhanced areal interpolation. [t provides a relatively simple method of measuring

the precision of estimates.

The deviance value can also be used to measure the performance of different ancillary
variable for the same set of data and regions. This allows the user to identify the

ancillary variable that will provide the more precise estimate.

6.3 Future Directions

The timings in Chapter 5 indicate that the implementation may have room for speed
improvement so that larger numbers of regions can be used without a speed penalty.
The implementation uses up a great deal of memory and there may be techniques that

can reduce this usage.

The next step is to test the implementation on real data and regions. Such an
investigation could look at various aspects such as the effect of the number of ancillary
variable values. Testing the implementation on real regions would provide iteration

timings that may help improve the speed of tlie implementation.

In this paper a Poisson distribution is assumed, but as pointed out by Green (1989) the
binomial distribution may have a use in enhanced areal interpolation and other

distributions may have a use.

Moxey and Allanson (1994} have produced a comparison of iechniques based on
Enhanced Areal Interpolation considering categorical variables. An investigation of

their paper may indicate that a more generalised implementation is possible.
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Appendices

Appendix 1: Spreadsheet Model

This appendix shows the spreadsheet models, and the formulas vsed for calculation.

The first set of tables provides the source region inputs of area and Y values.

Project Example

Source Raglongs Intersection Regiona
Areaq ;|

i As Ys Ast 1 2 3 4 5 z
1 3y A 1 0.2A0 sWaTaTa) RIGLEE n._non 0000 1NN
2 2| 0. 0 :
3 3 0. 0

g As| 1Y i g g: Ast 72 =Row
) 6f 0. 3pl| sam

7 7l 0. 0

8 8 Q. 2

9 1 9|  0.bor——wmuvr oo wmre— w0 | '—sou
T Q 30 Zl ] At = col sum b 2.000

Areal Welghting estimate
t
Yat 1 2 3 4 5 z
1 54 i nn 0.24 fnn 0.00
.00
00 b
.00 P
Yst=Ast*Ys/As 82 =Ys
a2 |
.00 P
87 )
U.og T L pysLe =R .00 L_‘_-_O

| Yt_l=col sum _'U k1]

B0 0o~ O N I Lo BN —

The table labelled “Intersection Regions” contains the areas of the intersection regions.
Each table shown either contains a name, formula or both, Formulas are preceded by an
equals sign. Hence the column containing “= row sum” in the Intersection Regions
table contains a formula that sums the row values, but the column dees not have a

namec,



The botiom row of this table contains “At = col sum”. The equals sign and the formula

to the right of indicates that these values are found from summing each column, “At”

before the cquals sign is the rame given to the result of this calculation. This name may

be used in other formulae,

The last table shown in this set calculates the Areal Weighting Interpolation estimates

(Yst) for each intersection region. The column totals provide estimates for the target

region Y values.

The second set of tables show the calculations used in the EM algorithm and to

calculate deviance.

gource Deviance

18 Dst Dst'
1 =tF{estY s =1F (est
2 b=0,musa Ysb=0,
Al lestY sb Nlestysb.es musa-
Al =Y 58 J|tYsb*LN || jestYshe
5 (estYsh/ stYsh*L

musa)- NiestYs
8 {estY sh- Ifmusa))
7 musai}
]
9
Ds ]_ T =2%col sum

Target Doviance{onmt ¥t)

Yk Dst Dst!
1 | =t¥a*L Sl
2 TINLY tafm Yia*LN(
3 =Y 1 fluta}-Y ks Y tafteua
4 . muta}) A
5
STl J R Tor

EH Algovithm uelng X1 Step:
Lambda (1)}
t
A ] 2 3 z
Xt Xt
I Yt =a[F(Step=1,Y1_1,Ytn) =
T At =At row sum
newla newla = (sum Yt)/{sum Ar)
H atep (1)
t
mu i 2 3 z
1
2
3 musa =
4 mua = newla*A st fow sum
] 5
6
7
8
Q R ——-grrr— 1 Ty
z!|! muta = col sum | so.coo
E gtap (1)
t
Lot vst 1 2 3 I
1
2
3
4 Ysto ={mua/musa)*ys Ysin = row
o 5 sim
6
7
8
q et 1
sl Vin = cal sum | 30
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The cell named “Step” controls the iterative process. If the value of this cell is set to
one, then iteration does not occur, if the value is set to any value other than one, then

iteration occurs. The key to this is the table named “Lambda”,

Lambdza

The first row contains the ancillary values. The second row contains the target region Y
value estimates. If Step = 1 then this row contains the Areal Weighting Interpolation
target region estimates (Yt_1), otlierwise the values are taken from table “E step”(Yta),
This table is calculated using the second row of Lambda and hence forms the iterative

loop.

The third row is a copy of the target region areas. The fourth row calculates the lambda
values (see 3.2.3). This valculation has to be set up specifically for the regions being

used.

M step and E step
Table “M step” produced Table 4.7. The cells of this table are calculated using (3.2.2).

Table “E step” produced Table 4.8 and implements equation 3.2.4.

Devianice Tables

The deviance tables use (3.3.2) and (3.3.3) to calculate source and target deviance
respectively, McCullagh and Nelder (1988) show that for the Poisson distribution the
second term usually sums to zero (section 2.5). The deviance tables were set up so that
the second term was included in the first deviance calculation and excluded in the
second deviance calculation, This arrangement provided a measure accuracy of the

spreadsheet design.
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Appendix 2: MapBasic Application Design

Listed below is the main application used to implement Enhanced Areal Interpolation.
This listing is partly written in MapBasic. Most of the listing is a brief description of
the various steps.

IR EZTEREI SRS S SRR RER SRR RS R SEEEER SR SRS ERELE SRR 2R X TS

'  Program : GWINT.MB Author: Gordon Wragg 1994 12/12
‘" Thig program designed to implement an enhanced areal interpolation process'
' based on the Peigson distribution and the EM algorxithm. '

* fThe user specifieg two open tables. The first, called the source table
* contains a column of data that the user would want interpoclated to the
' second table which is the target table. The target table must have a

' ‘column of auxiliary data that is distributed similarly.

' the program will uge this information to do the interpclation.

;

|t*****_***i't**t*********t***i***w****Il't**t*ti***tt***l*****i***t****i********

"t a file of standard definitions is included
'  Include "mapbasic.def” '

Include “menu,.def"

' also include file to use "auto-load® library.
Include "auto_lib.def*

' Include functions
Include "col_type.mbh*
“Include *"colmax.mb*

Include "gwhlp.mb*

' Define some constants
These define constants used in dihlog boxes.

Define temporary table names.
This section declares subroutines and fuﬁétiona.

' define global variables
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AR AL RS R AR SRS LR RSl st s AR AR AR FER LR SRS YR

' Program starts with 'Main', and execution begins here. Put up a menu, then
' the program will "go toc sleep" and wait for the user to select a menn item,
' When zelected, the appropriate subroutine is called.

IR SRR RRERE RS SR EERERRERRLERRREs R et R iRt sl R iR s Rl Y

Sub Main

' Need to Assign global variables for auto lead library
gsAppFilename = "gwint.mbx"
gsaAppDescription = "gwint"

Put up installation message.
Create menus, the subroutines are activated when a menu option is chosen.
" End Sub

‘**********i*t***************t**#***********t******t***t*************i*****t*

' SubRoutines _ .
ook e i Sk v dr o o v ok v ok ok g e e v e o e ke ok e ok T e o e e O e W T ol e ok T o T o e T e oy o e o e T ol e o o o T ko ok e ke
Sub aAbout .

Dialog Title “About Interpolate® _
‘This is a dialog box that provides basic information about the program;
End Sub

Thdedddhdhhhhdhddddkrdhb b kddbdrhdhh b rhhkdrrhdhhrddehdrkrbrhk sk hhd kb

o Interpolate

lw*i***t*w*w***tw***ttt**tti\\-***i***t*****tt**t**w*t*i**tt*************i**t**

Sub Intérpolate

'This procedure digplays a dialog, for the user to identify
‘the source table and column to interpolate,

‘'and the target table containing the auxiliary variable ¢olumn.

Set up Error checking.

Cleanup any temporary tables left over from previous runs.

'initialisze variables

‘check that at least 2 tablesa are open

'check that mapper is front window

Get area units being used.

Now display main dialog box.

Hander routines are set up to handle choices.

Table Handler loocks after table and variable options.
If the user changes stop limit or number ¢f iterations then thel
new values are recorded.

If the cancel button is used then exit,
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Check that number of iterations > 0 and that stop limit > 0.00005.
Copy source and target tahles and save with temporary names.

_'‘naw #lter temporary =zource table fo: extra columns'

Call split routine to split tbe source regions using the'targgt'regions.
Call EM algorithm routine.

Cail Deviance routinse.

Call Assemble routine to sum target region estimates and put:into target
table. : o : ' :

All done.

End Sub

4o de A W A W W v v ok e v e o o ok o O ok o ok ol o vk e ol ok e o S v o e ok i o ol ok e ok ok e v e o S v i ol o ol o e i o o e ol i ok T ok o O o e e e o

* Table handler

lt**t**t*&t****l‘*ti*t***************iii***i***t**************i*t***"*****_****

Sub Tabhndler

This routine handles the cheices for source and target tables, and
variable golumns.

If tablel index not zero then source table chosen so get name.
If columnl index not zero then Y variable column chosen.

Modify dialog box to show cheices.

If table2 index not zero then target table chosen so get name.
If column? index not zerc then X variable column chosen.

Modify dialog box to show choices. ' .

Check that source and target tables are not the same.

End Sub
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|tt***ﬁitt*ﬁ****i*******t**t*tt*tiit*i*****i***t*******itt******t**tt*t**t**i

' hllCkay _
n**t*t*t**ﬁ****ttitt***t****t***tt**t*t***t*t*t*tt**t***t***i***i**t***tt*t**

- Sub AllQkay

This routine is called after the dialog box is closed and checks that celumns
are the correct data type toc be used and that the mource and target tables are
different.

If an error is found a dialog box is displayed to advise the wuser and the
main dialog box is redisplayed.

End Sub

|*******i****tt*ttt*****t******i*********‘t**t**i***tt**‘********************

' sSplitup

2L 22 s il I I I iR I R e I T R T 12 TIIII =

Sub SplitUp

This is the split routine.

The source regions are split with the Y values interpolated usxng areal
weighting.

The area is calculated and added to the source table for each
intersecticn region. o '

Add index to source table to point to associated target region.
'now make sure that source areas are all within target area

End Sub
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IEEETEEERR R SN EENER RS ARlRi s iR 2 s il st FE RSty )

' Sub procedure: EM
IR XSRS A NSRS RES SRR R R ER AR Rl RSS2SRl 2Rl xR R R Y]

Sub EM
This is the EM algorithm routine.
Get number of intersection regions.

'Now set up the lambda flags
For each intersection region
if the lambda flag iz zero then

set it up.

‘now ready to commence EM algorithm

Do Until done
record previoua estimate

'atart M step
For i = 1 to number of lambhda flags
Sum vy estimate, areas and mu from source table where_lémbda flag
equal to 1 inte sumy, sumarea and musum
record values
calculate lambda = sumy/Sumarea
update source table with mu = lambda * atarea.

'M gtep done, now do E step

For i = 1 to number of scurce table rows
Sum mu, y values from scuive table where source index =i
inte musum and ysval, '
calculate v estimate= mu * ysval/ musim

update values in source table.

‘check stop limit and number of iterations
Calculate delta and check with stop limit,
1f maxdelta < deltamax OR count >= itmax then
done = TRUE
End If
Loop.

End Sub
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(R ESE R A REEXESSERLALAEEAEEI S SRR RS AR R SRR PR RS AR R R R TSRS ERERR LY T EYEES

' Deviance

B2 AR AR SRR SRR RRERS R RRER RS2SR RsR RS2 R s R RN SRR Y 2]

Sub Deviance
' first calculate source deviance sdev

For 1 = 1 to number of source regions

sum mu and y estimates where source region index = i into musum and
ysum,

Put values into an array musum{i) and ys(i}.
If ysum = 0 then dev(i)={(muiisum - ysum)
sdev = gdev + (musum - ysum)
Else dev{i)=(ysum * Log{ysum/musum) - {ysum - musum})

sdev = sdev + (ysum * Log|ysum/muisum} - {Ysum - musum) }
End If.

Accumulate deviance.
Next

Calculate source deviance = 2 * deviance total.

' now calculate target deviance tdev

Calculate similar to scurce deviance.

Report deviance values.
End Sub

IR L R T R b L T T L L L kT L L L L T u e S
' Assemble _

IR KR AR kAR A Ak kR AT A N AR NN Ak ke A RN RN R AWk N AR R Rk kW R ke ok e ot o e
Sub Assemble

Add ¥ value column to target table and index target regions

For each target region match index with that in source table

sum vy estimates and update target table.
Save target table.

End Sub
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