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Abstract 

Many researchers today have a need to analyse data in a spatial context. An inherent 

problem is the mismatch of boundaries between the geographic regions for which data 

is collected and those regions for which the data is required. 

Often the solution is to interpolate data from one set of regions to another. 

This project examines and implements a method of areal interpolation that enables the 

user to use extra information in areal interpolation to increase the "intelligence ' of the 

process. 

This method of Enhanced Areal Interpolation uses a conditional Poisson distribution 

and the EM algorithm to provide estimated values of a variable. Enhanced Areal 

Interpolation assumes that data is available for a set of source regions, and is required 

for a set of target regions. Extra information available about the target regions provides 

an improved fit of the estimates compared to Areal Weighting Interpolation which uses 

area proportionality to distribute the data. 

The theory and concepts are illustrated with an example and implemented using the 

software packages Maplnfo version 3 for Windows and MapBasic version 3 for 

Windows. 
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1. Introduction 

1.1 Background and Significance 

Data interpolation is a problem that is inherent in any field of research involving spatial 

data analysis. In such analysis a researcher often encounters difficulties in using data 

available for regions that are not those regions that the researcher wishes to use. In 

Australia today there are large amounts of data available to the researcher on il 

geographical basis. Unfortunately much of this has been collected for relatively large 

areas. or by organisations for specific internal or reporting purposes. One example is 

the data collected by the Department of Social Security (DSS) on numbers of persons 

claiming particular benefits. The data in this case is only available by DSS office zones 

or postcode. For the researcher trying to identify small regions of disadvantaged 

persons this data is not appropriate. This is a problem of small area synthesis. 

Many researchers collect or purchase data on a geographical basis and the geographical 

areas used will have a great influence on the outcome of the research. For example, it 

may be possible to obtain data on single parent families, but only for Local Government 

Areas (LGAs). The user who is interested in the distribution of these families, but for 

smaller areas has few options. One option is to conduct a survey, which will provide 

the information required, but at high cost, and is time consuming. There arc also other 

factors apart from cost and time. Some of these are: 

• comparability of the data to other collections; 

• possible need for a survey to be ongoing for a time series analysis; 

• need to take into account bias and errors; 

• obtaining a large Ctlough sample. 

Many researchers will try to find other options. One option is to usc point data, and 

aggregate those points that fall within the target region. This option does not take into 
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account the areal nature of the data. Another option is to allocate data from a source 

region to a target region on a closest fit basis. This method relies heavily on the 

knowledge and experience of the analyst. A variation of this method is used by 

CDATA 91 whereby a region is :iCk•:ted as being within a boundary if the: centroid of 

the region falls within the boundary. L1stly, there is the option of allocating data from 

source regions to target regions based on the proportion of area overlap. This method 

assumes that the data is uniformly distributed. The last mo::thod is very likely to be the 

method found in a Geographic Information System (GIS) package, and is the method 

used by Maplnfo version 3.0. It was discussed by Markoff and Shapiro (1973), and 

Goodchild and Lam (1980) described the process as Areal Interpolation. We shall refer 

to it here as 1L·eal Weighting Interpolation. 

Flowcrdew et al ( 1991) descrihc a statistical method of areal interpolation that uses 

ancillary data. This method relies upon the ancillary data being available to the analyst 

to provide additional information in the interpolation process, and so enhance the 

precision of such interpolations. We shall refer to this method as Enhanced Areal 

Interpolation. In their paper, they outline the use of an iterative algorithm known a~: :he 

EM algorithm. 'fhis is a statistical technique to fit missing data and is presented in 

general fonn by Dempster, Laird and Rubin ( 1977). Dempster, Laird and Rubin ( 1977) 

also outline a general process using the sortware pacbges GUM and Arclnfo to 

implement their procedure. Their implementation of the Enhanced Areal Interpolation 

method involvcU solving problems of interfacing these quite different soflware 

packages. The difficulty was only solved by being able to obtain access to the object 

code of the software (Kchris, 1989), which makes it difficult for the average user to 

make usc of this method. 

1.2 Notation :.md 1'rclimil\)lri£s 

The terms and notation used here am similar Lo those used by Flowerdcw et al (1991), 

which is the main rcfcmncr~ !';::.~~·:he project. The process is lo intcrpnl~tc data for a set 
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of regions called the target regions, from the data associated with another set of regions 

called the source regions. 

Let the variable of interest be Y. The data on this variable is available for a set of 

source regions S, but is needed for a set of target regions T. 

The source regions and target regions are separate partitions of the same space, and can 

be represented by the column vectors 

' 
S ::::(sps2, ... ,smJ 

' 
T ~ [t,.t,, ... ,t,) 

where there are m source regions and n target regions. 

These two sets of regions will fonu regions of intersection. Let the areas of the 

intersection regions be represented by the matrix 

1\, ~~1ijJ i ~ 1,2, ... ,m; j ~ 1,2, ... ,!1, 

where aij is the area of the intersection region s;tJ~ i :::: 1, 2, ... , m; j :::: 1, 2, ... , n. The 

areas of each source region and each target region can be found from this matrix using 

row and column sums. The area of the i th source region Si is then 

n 

aj. = L aij • 
i=l 

and that of the j th target region 1j is then 

m 
a.=~ ... 
'j £..,; IJ' 

i=l 

where the dot(.) indicates summation. 

These areas can be represented :1s column vectors by 

A, ::::[a1.,a2., ••• ,a111.] for source regions, and 

A :::: [a_1, a.~, ... ,a.11 J for !argcl regions. 
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The value of the variable Y for a source region Si is Yi• (known) and for a target region tj 

is Y.j (unknown). These can be expressed as vectors 

' ' 
y, = [YJ .. Y2·•···•Ym·] and Yt = [Y.J. Y.2 , ... , Y·n·] · 

Where a source region Si and target region tj intersect, the value of Y for the intersection 

is denoted by Yij- In this project only extensive variables as described by Flowcrdew et 

al (1991) will be considered. A variable is extensive wlw.n its values can be aggregated 

by summation. Some examples arc number of people, total expenditure, and number of 

electors. Additional information about the target regions will be used in the 

interpolation process. This will be specified by the value of at least one anciliary 

variable Xt on the target regions which can be represented as the vector 

' 
x, =[x!,x2,···•xn]. 

1.3 Purpose of Project 

The first major objective of this project is to examine the statistical theory that provides 

the basis for Enhanced Areal Interpolation. The relevant theory includes the general 

concepts and background theory of conditional distributions, exponential families and 

maximum likelihood. The theory covers particularly the application of these ~oncepts 

using the Poisson distribution. 

Flowcrdew et a! (1991) noted that they implemented the enhanced areal intcJpolation 

using two software packages. The GIS was Arclnfo, and the maximum likelihood 

estimates were calculated in the statistical p;tckage GUM. They noted that the main 

difficulty was in the interface bct·vccn the two, and it was managed only after nmJifing 

the code of the two packages. This option is beyond the abil)tics of the avcmgc user. 

The second major objective of this project b to implcnJl'l11 the enhanced areal 

intcrrola!ion in a more robust manner, which means w;iue, soflwarc and computer 

hardware th:1t is rcmlily av:!il:"tblc for many H~crs, awl settin[', the implementation up in 

such a \'Jay that u:;ing it require~; !ittlc additiOJWI knowledge on !he part of the user. 
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2. Mathematical Framework 

The·re Dre a number of statistical concepts and results needed for the algorithms used in 

this project and these are stated here. The concepts are for the most part taken from 

Fruend (1992), with additional parts from McCullagh & Neider (1988) and Johnson & 

Wichern (1992). 

2.1 Univariate Concepts 

2.1.1 Definition: 1f X is a discrete random variable, then f(x) = P(X = x) is the 

probability distribution of X. 

2.1.2 Definition: If X is a continuous random variable, f(x) is the probability density 

function (pdt) of X, and satisfies 

b 

P(a ~ X:> b)= J f(x)dx 

' 
a,be9t;asb. 

2.1.3 Definition: The expected VC4ltte or mean of a function u(X) of a random variable 

X is defined as 

!
L,u(x)· f(x) if X is discrete 

E[u(X)j= o! 
lu(x)· f(x)dx if X is continuous. 

When u(X) ::: X, the expected value is the mean or expected value of X and we write 

~ = E[X]. The following concepts and results will use u(X) =X. 

2.1.4 Definition: The mriance of X is a measure of dispersion and is defined by 
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which reduces to 

2.2 Multivariate Distributions 

2.2.1 Definition: The joint probability distribution of n discrete random variables 

Xt, X2, ... , Xn is given by 

The joint probability density function of n continuous random variables is given by 

P((X1 ,X2 , ... ,x.) E A)= I I ... I Jhx2, ... ,x. )dx1dx2 ... dx. 
A 

where A is a region in n space. 

2.2.2 Defi11itlon: For n discrete random variables X~o X2, ... , X". with joint probability 
distribution f(xJ, x2, ... , Xn) at (x 11 X2, ••. , Xn) the marginal distribution of Xi at Xi is 
given by 

For n continuous random variables, the marginal density function of Xi is given by 

:7,.2.3 Definition: For the n random variables Xt. Xz, ... , Xn at Xl, x2, ... , Xn, the 

.:onditional density of X 1. X2, ... , Xj.J, Xi+ I, ... , Xn given Xi = Xj, is given by 

where g(xi) is the marginal pdf of Xj. 
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2.2.4 Definition: The n random variables Xt. X2 .... , Xn , with joint probability 

distribution( density) function /(X], x2, ... , Xn) at Xt. x2, ... , Xn, are statistically 

independent if and only if 

where fi(Xi) is the marginal distribution( density) of Xi at Xi fori = 1, 2, ... , n. 

If the random variables are identically distributed then 

!;(x.)~f(x;) fori~I,2, ... ,11. 

2.2.5 Definition: If X and Y are random variables, and j(xly) is the value of the 

conditional probability mstribution(density) of X given Y = y, the conditional 

expectation of a function u(X) of X, given Y = y is 

E[u(XJI+ ~ . !
L u( x) f(xly) if X is discrete, and 

J u(x)f(xly)dt if X is continuous 

2.2.6 Maximum Likelihood 

The method of maximum iikelihc'Jd is a general estimation method. The essential 

feature of the max;;mnn likelihood method is that an estimate of an unknown population 

parameter is chosen using the sample values in such a way as to nmximise the 

probability of obtaining the obsc1ved sample. 

If x 1, x2, ... , x11 , arc vulucs of a random sample from a population with the parameter 8, 

then the likelihood function of the sample is denoted. by L(8) and is given by 

The function f is the joint probability distribution or d~nsity of the random variables 

XJ, Xz, ... , Xn at the .sample point. If lhc n random variables are independent this 

reduces to 
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L(8)= Ji(xdl)h(xz;9) ... f 11 (x11 ;9)= fl.fi(x;;9) (2.2.6) 
i 

where fi(Xi;8) is the marginal distribution( density) of Xi at x;for i = I, 2, ... , n. 

The value 8 of the parameter 8 which maximises this function at the sample point 

Xt, X2, ... , Xn, is the maximum likelihood estimate of 0. This value of 0 will also 

maximise the log likelihood function, namely 

e(e)=fn[L(e)]= l:tn[J;(x,;e)]. 

As 8 E R, we can use differentiation to find the value of 9 that maximises £(9). Thus 
A 

the value 8 is a solution to the equation 

2.3 Some Useful DistribuHons 

2.3.1 Uniform Distribution 

A random variable X is said tlJ have a discrete uniform distributior. if and only if its 

probability distribution is 

I 
f(x)=-

n 

where Xi ¢ Xj when i ':f:. j. The discrete uniform distribution has mean and variance 

A random variable X has continuous uniform density if and only if its pdf is given by 

f( )-{-
1
- ,a<x<b x- b-a 

0 , otherwise 

where a, b arc real numbers. The continuous uniform density has mean and variance of 
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2.3.2 Binomial Distribution 

Consider a random experiment with two outcomes, 'success' c:nd 'failure', and constant 

probability p of a success. Then the number of successes X in n independent repetitions 

of the experiment has a binomial distribution with parameters n, p, and is a binomial 

random variable, with probabiliry distribution given by 

for x =0, 1 •... , n. 

The mean and variance of the binomial distribution are 

J.l =np, cr
2 

=np(l- p). 

2.3.3 Poisson Distribution 

The Poisson distribution is a limiting form of the binomial distribution as n tends to 

infinity and p tends to zero such that the binomial mean np is a constant A. 

A random variable X has a Poisson distribution with parameter A. if its probability 

distribution is given by 

f..Xe-1. 
p(x;A.)= 

1 
; x=O,I, ... ; A.>O. 

X. 

The Poisson distribution has mean and variance given by 

The Poisson distribution is used for modelling random events in space or time. 

Note that if the random variables X1, X2, ... , Xn are independent Poisson variables with 
parameters A.1. 1\2, ••. ,~~respectively, then 
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is also a Poisson random variable with parameter 

2.3.4 Conditional Poisson Distribution 

Suppose X1. X2, ... , Xn are independent Poisson variables. Then the conditional 

distribution of X; given EX;= Y = y is given by (2.2.3) as 

!( ·I )= f(x,,y) 
x,y g(y) 

where 

From (2.2.1) the joint probability distribution is 

f(x;.y)= P(X = x;.Y = y) 

= P(x ~ x1,L, *X;= y-x1) 

where 

Therefore 

- 10-



It follows that the conditional distribution of Xi given Y = y is binomial with parameters 

n=y, 
A,. 

p=--'-
LA-; 

(2.3.1) 

and conditional mean 

This result will be used later in equation (3.2.4). 

2.4 Exponential Families of Distributions 

The binomial and Poisson distributions are both members of a group of distributions 

known as Exponential Families. The pdf of an exponential family member can be 

written in the form 

where 

' 
. _ b(x)e~'(x) 

f(x,<j>)- a(<j>) 

t(x) is a function t of the observation x, 

$is the model parameter, 

b(x) is a function b of the observation. 

a(cp) is a function of the parameter cp and is a normalising factor. 

In this study we consider one parameter exponential families. 
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2.4.1 Poisson; mean = A. 

The Poisson distribution can be written as 

...!. e(lnl.)x 

( ) x! f x; A- = -'-"-'-''-:-
e'-

X= 0,1, ... ;}., > 0, 

which is an exponential family member with 

b(x)=_!_, a(<P)=e'-, <j>=fnf., t(x)=x. 
x! 

2.4.2 Normal; mean= J..L, variance= A. 

The pdf of the normal distribution is given by 

-(x-~)' 
f(x·j.l cr2)= I e 2u' 

' ' cr../2Ti 

which requires two parameters. By specifying the value of the variance a2 = 1 say, this 

distribution becomes a one parameter pdf where 

f(x;j.!)= ke-112(x-~)' 

I -112(x'-2x~+~') --e - ..t2it 

I ~ -112 x' ~~x 

= ../2it . el/2~' 

which is an exponential family member with 

-i/2 
b(x)=~, a(<j>)=e~'/2 , <j>=j.l, t(x)=x 

0 12 ° 



2.4.3 Binomial; known n, unknown p. 

The binomial distribution with known n and unknown p ha~ one parameter namely p. 

Its pdf is given by 

f(x;p)=(:)p'(i- p)n-x 

which is an exponential family member with 

b(.~)= (:). a(<j> )= (1- pf", <j> = fnc~ p). t(x)= X. 

2.4.4 Properties of Exponential Families 

Exponential familes have a number of valuable properties (see McCullagh & 

Neider 1988). 

Suppose X h X2 •... , Xn are independent, identically distributed random variables whose 

distribution is a member of an exponential family. From 2.2.1 and 2.4.1 above, the joint 

probability density function is 

' 
~ Lt(~ l 

= e ' Ilb(x;) 
[a(<!>)T 

This is a member of the exponential family with 
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Furthermore, the sum L t(xi) is a sufficient statistic for estimating the parameter .p. 

For example if the random variables were nom1ally distributed as per 2.4.2 above then 

the sum LXi contains all the information in the sample XJ, x2, ... , x0 for findir.g the 

estimate ~ oJf the mean Jl. If Xi is written as a column vector X the joint pdf becomes 

-. _ b(x)e$<(xl 
f(x,cj>)- a(<!>) 

Hence the joint pdf of an exponential family is also an exponential family and the 

structure of an exponential family remains invariant under sampling. This result along 

with (2.2.6) gives the likelihood function 

' 
• _ e$t(x) b(x) 

L(cp, x)- a(<l>) . 

The log likelihood function is then given by 

' f(<j>;x)=<i>t(x) +fnb(x)-fna(cp), 

This can be maximised by differentiating with respect to $ and setting tl\. zero which 

yields 

a ' a'f<j>' 
-e(cp·x)=t(x) -~ =0 
acp ' a(cp) 

and so is a maximum when 

a'(<l>) ' 
a(<!>) = t(x). 

This then allows the maximum likelihood estimator to be readily found when using an 

exponential family. 
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2.5 Model Fit 

A measure of how well a member of an exponential family models a given set of data is 

provided by the deviance (McCullagh & Neider 1988). This is a measure of discrepancy 

between the data values and the modelled values and is a function of the data values 

only. The value of the deviance allows the appropriateness of different methods of areal 

interpolation to be compared. 

For a random variable X, the log likelihood as a function of the mean value parameter ll 

is 

f(J.l;x )= fnf(x;J.l) 

The maximum value of the log likelihood function is then f( fl ,x), which depends only 

on the data and not on the parameters. Deviance is defined (McCullagh & Neider 

1985, p17) as 

D(Ji ;x)= -2[f(i.i; x)- f(x; x) J 

For independent Poisson random variables Xt, X2, ... , Xn. with means !lt.IJ.2, ... , J.ln 

respectively, the joint probability distribution of XJ, Xz, ... , Xn is given by 

f(x;J.t)= n f;(X; ;J.t;). 

The log likelihood, as a function of the model parameter Jl = (J.lt> Jl2, ... , J.ln)', is then 

f(Jl; x)= Rnf(x;J.l;) 

= fn[n e-f'• J.l:'] 
i X; ! 

= 'L,(-Jl; +X; fDJ.l; -Rn(X; !)J 

with maximum value when Jli == Ai of 
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Hence the deviance becomes 

D(~;x)= -2[e(~;x )-f(x;x)] 
= -22:,[-~, +x1 fn~1 -ln(x1 !)+x1-x1 lnx1 +ln(x, !)] 

i 

= zi,[~. --x, +x, (enx, -e,,~,) l 
i 

=2~[x,en( ~11 )-(x,-~,)J (2.5J) 

For the Poisson distribution, the second tenn usually sums to zero (McCullagh & 

Neider 1988). 

2.6 EM Algorithm 

The EM Algorithm is an iterative process comprising two steps, the expectation or E 

stel' and the maximisation or M step. This algorithm is given comprehensive treatment 

in Dempster, Laird and Rubin (1977), where it is presented in a general fonn. It is 

difficult to provide numerical steps for the algorithm (Dempster, Laird & Rubin 1977), 

as there arc many and varied situations where it can be used, and the actual steps to be 

undertaken rely upon the specific situation. 

The E step replaces all missing data values by their conditional expectations given the 

observed data and estimated values of all population parameters. The M step 

maximizes the log likelihood function using the now complete data to obtain new 

estimates for values of the population parameters. These new population parameter 

values are then used m the E step. Both steps are iterated, continuing until suitable 

convergence occurs .. 

Estep 

The E step is sometimes referred to as a prediction step (Johnson & Wichern, 1982), 

since a prediction or estimate is made for missing data, given some estimate of the 

unknown population parameter. 
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The E step uses estimates of the population parameters from the M step. For the first 

Estep there has to be some starting value for these parameters. The estimation process 

will depend on the model being used. 

For example in a one parameter normal model as in 2.4.2, an initial estimate for missing 

values could be the mean Jl of the data available. The E step uses the M step estimate 

for further iterations. 

For a single parameter exponential family this step will estimate t(x) by 

where t(P) is the p th iteration estimate for the data values. 

Mslep 

The maximum likelihood estimator $ is now found from the complete data set. The 

estimated values from the E step are treated as observed data, and so the value of the 

maximum likelihood estimator is estimated by 

which will give the (p+l) th estimate of <J>. This simple form of the equation for 

estimating$ is made possible only because of the form of the exponential family and the 

availability of a complete data set. 
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3. Enhanced Areal Interpolation 

3.1 Areal Weighting Interpolation 

The meal weighting interpolation method introduced by Goodchild and Lam (1980) 

assumes that the variable of interest is unif01mly distributed within each source region, 

and hence any sub-region will have a value proportional to the fraction of the mea that 

is within the sub-region. For example, if a region with a population of n persons is 

divided into p divisions of equal area, thl"· unifonn distribution sp.!cifies that each sub

division wiJI contain nip persons. 

This is a process of weighting the distribution using area. If the matrix W = [Wij], 

i = 1, 2, ... , m; j: l, 2, , ... , n is a matrix of weights based on the proportion of 

intersection region area to source region area, then the elements of W can be found by 

.. _ Intersection Area _ ~ 

w,J - Source Area - }:~ aij · 
(3.1.1) 

j 

The data for the variable Y is known for the source regions. The problem is to 

interpolate values of Y for tbe target regions. These estimates are denoted by 

' [. . . ] 
Yt = Y·IoY.z, ... , Y·n • 
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We can then write 

"' 'W Yt = Ys 

.!!J.J. !!1.2. !!J..n 
at. •t· •t· 

.!!l.L ~ a2n 

= [Yt .• Y2·· Ym· az. az. az. 

~ ~ !mn. 
am. am am 

_ [11:.!!J.J. + ~ )Jnaml ~ + )2.azo + Ym3mn] - +···+ ' ... , + ... 
a1. a2. aw. a1. a2. am 

f~]. 
i=l ai. 

Hence the estimate Y.j of the value of Yon the target region tj can be written as 

(3.1.2) 

We see that the source Y value is apportioned according to the ratio of intersection area 

to source region areas, and th~~~ Y,j is found by the appropriate column sum. 

This method of interpolation is frequently used in practice. Although the main 

assumption of uniform distribution may be questioned, effects of non-uniformity may 

be reduced by ensuring that source regions are relatively small. 

3.1.1 Example 

Consider Figure 3.1 with two source and three target regions so that m = 2, n = 3, and 

sl s2 

tl 

t2 

t3 

Fig 3.1 
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we also haye 

' Ys = [4,6], 
' ' 1\=[2 2]. J\=[1 2 I] 

and so 

A,=[~ : ~l 
Using (3.1.1) gives 

w=[o.5 o.5 o J 
0 0.5 0.5 

and the target value estimates Yt can be found by 

0.5 
0.5 

3.2 Enhanced Areal Interpolation 

The areal weighting interpolation method described and illustrated in section 3.1 is a 

reasonably simple and straight forward process that is relatively easy to implement in 

practice. The Enhanced Areal Interpolation method differs from this in the usc of 

• ancillary data on the target regions to enhance the precision of the 

interpolated values, 

• a statistical distribution to model data on intersection regions, and 

• the EM algorithm to implement the estimation procedure providing 

estimates for y values on th-:-, intersection regions and hence target regions. 
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~.2.1 The Ancillary Variable 

The ancillary variable X has known vaiues on the target regions and is used to indicate 

target regions with a similar distribution of the variable of interest. The use can be 

Jilencd to a classification or category, where tnrget regions with the same value of the 

ancillary variable will have a similar distribution. The model uses this extra 

information to distribute the variable of interest Y to the intersection regions 

uccordingly. Essentially, X is used to 'flag' target regions of a similar type. One 

example (Fiowerdcw ct al 1991) uses the soil types, clay and limestone, in the 

interpolation of population. In this case, assuming independent Poisson data the model 

becomes 

(3.2.1) 

Thus the mean of the variable of interest Yon each intersection region is proportional tc 

the area of the intersection with constant of proportionality Ax depending on the soil 

type x of the iegion. 

thout loss of generality, we assume that X takes the values 1, 2, ... , k, with k :$; n. 

The proportionality constant/.. is set so that there is a distinct value A,. for each distinct 

value x of X. It becomes an indicator for target regions that are presumed to have the 

same distribution of the Y variable. Hence 

' 
A.= [A.,] ; x= l.2, ... ,k. 

From (3.2.1) the model then becomes 

A.IA;j :x =I 
1.21\j :x=2 
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3.2.2 The Statistical Model 

This application of the enhanced areal interpolation method assumes that Y is an 

extensive variable and that on the intersection regions the Y;i have a Poisson distribution 

with a mean involving an unknown parameter p; so that 

The implementation of the EM algorithm requires SDrT1C initial estimate to prime it. 

This is provided by first applying Areal \\1cighting lnterpolarion to the data and using 

the result obtained as ~his initial estimate. This essentially duplicates the first iteration 

of the E step and so this application of the EM algorithm commences with the M step. 

The first estimates from Ar~al Weighting Interpolation are designated as y<i~) , the 

superscript ( 1) indicating th<:.t this is the f!rst iteration of the EM algorithm. 

Maximum likelihood estimates are used to maximise the joint density likelihood at the 

observed values. The likelihood function, in the special case of two disticct values of 

x,·becomes 

where (x); x ::::: 1, 2; indicates a sum (product) over all intersections i,j with the same 

value of the ancillary variable X, and where K is a constant function of AJ, Az. 

To maximise the likelihood function, L is differentiated with respect to A-x; x = I, 2; 

obtaining 
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ilL 
iJ;l. = 0, 

X 

giving 

-:\.~A .. +~ u. = 0 
iLJ~'IJ LJJIJ ' 
(x) (x) 

and hence 

(3.2.3) 

The estimated parameter values ~ij can be calculated for each intersection region, using 

(3.2.1) as 

These estimates are then used for the next E step. 

3.2.3 Estep 

The 'missing' data values are those values of Y on the regions of intersection of the 

source and target regions. The Estep uses the values of Y on the source regions, 

together with estimates of parameter values, to provide a set of estimates :/ij for the 

values Yij on the intersection regions. Using the Poisson model described aOove, these 

estimates arc calculated from the known values Yi· on the source regions. 

Assuming Yij arc independent Poisson random variables with parameters !Jij. we 

require the conditional distribution or Yij given Yi·· Section (2.3.4) shows that the 

conditional Poisson distribution is hinomially distributed and has parameters 

n =Yi·• 
fl·· 

!
)::: I] ' ..... ' 

L,ll;k 
k 

i = 1,2, ... , m~ j =: 1,2, ... ,n. 
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Hence the estimates are the conditional exper:tation of Yij given Yi and llij. 

Yij = E[y,j;f!ii• y,.] 
=np 

!1;; 
=y, :Liiil<. 

k (3.2.4) 

In practice the implementation of the E step is straightforward, (3.2.4) is used to find the 

next Yij value. It is convenient to consider theses values in a matrix () ;;:: [~ij ], and the 

matrix operation equivalent to (3.2.4) becomes 

. -Y{ilij]· . -I 2 · . -I 2 Yij- s ~ , z- , , ... ,m, J- , ,. .. ,n 
f!,. 

where the dencr:ninators are the row sums of(), namely 

. ~. 

fli· =..::., f!ij 
j 

(3.2.5) 

The matrix in (3.2.5) is analogous to the weighting matrix W in areal weighting 

interpolation. 

The stopping rule has to be considered at this stage in the algorithm. This is discussed 

in section 3.2.6. 

The estimates from theE step are then used in theM step. 

3.2.4 M Step 

Each time the E step is completed the maximum likelihood equations are used to fit the 

model to these estimated values and produce maximum likelihood estimates for the 

unknown population Jlilrametcrs. 

The M .step is composed of two di.~tinct operations. The proportionality constant, 

lambda, i::. estimated fir:;t, followed by the estimation of the (lij using 
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~IA;(X=l 
~2Aij:x=2 

The lambda estimates are calculated using (3.2.3) 

LYij 
' (k) 
/..k =~· 

L..Aij 
(k) 

where the sum I, is the sum of the values for which x = k. 
(k) 

3.2.5 The Estimation Procedure 

The EM algorithm involves iteration of the E and M steps until convergence (see 

3.2.6). After the r th iteration the estimates for Y, J.l and A on the intersection regions 

are defined by 

,(r) '(r) d , (r) . l Yi1 ,J.liJ an l'vx respective y. 

Once the estimates Yij have been calculated the estimates :Y.j are calculated by 

(3.2.6) 

3.2.6 Convergence 

There is a need to decide when the estimate has converged with a reasonable level of 

accuracy and hence stop the iterative process. The method chosen for this study is to 

usc a stopping rule, which allows for some flexibility, ycl provides a reasonable level of 

accuracy to be reached. 

For each intersection region, after the r th iteration of the EM algorithm, we define the 

difference between estimated values for each intersection region as 

(3.2.7) 
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This difference is used to detennine when a sufficient level of accuracy has been 

reached and the iterative process may cease. Suppose a sufficient level of accuracy is 

E;;: 0.05 say. Then when 

max(lll\jll) ~ o ~) < e, fori~ 1,2, ... ,m;j ~ 1,2, ... ,n 
(3.2.8) 

the process will stop. 

An iteration counter for r is also needed to limit the number of iterations should 

convergence become slow. 

3.3 Model Fit 

The likelihood function for this model on the intersection regions is 

with log likelihood 

giving deviance (2.5.2) on the intersection regions as 

o(jl; y)~ -2[t(ri; y)-f(y; 9)] 

~2t~[Yu(en~ J-&u -~;i)]. (3. 3.1) 

Deviance can also be calculated from the source region y values and is denoted as Ds.· 

The estimated y values for the targ~t regions can be used to find a 'target deviance' Dt.. 

The calculations can be made as follows. From theE step we have 
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and hence 

A 

Yij _ Y;. _ Y;. 
Jl,j - r Jl,k - 11,. · 

k 

Using this result and summing (3.3.1) over j, gives 

D, = 2~[y1• fn(~~.)- (y1.- fi;.)] 

( ~);j = Y; • 7 fiij = fi;. J 
By summing (3.3.1) over i gives 

D, =27[yifnUJ-(.Yrii-i)] 

( ~Yij = Y-j· ~ii'i =iii} 

For the matrix of estimated Y values 

where 

A "' A Yi· = .£... Yik • A "' A Y·j = .<:. Yej • 
k £ 

and for the matrix of estimated !lij values 

where 

A "' A ~i- = "'~ik. 
k 

A "' A J.l-j = .<:. J.lej. 
f 
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4. Implementation 

4.1 Initial Development 

The application of the enhanced areal interpolation method is best illustrated with a 

simple example. This example was incorporated into a spreadsheet model. A copy of 

this model is in Appendix A. 

Sl 
S2) 

S3 

Tl 
12 

S4 S5 S6 

13 

/ 
s;/ SB S9 

14 15 

Ftg 4.1 - Source regtons and target 
regions. 

Consider nine square source regions each having unit area arranged into a regular 3x3 

grid forming a square with a total area of nine. This 3x3 grid is completely divided into 

five target regions, as shown in Figure 4.1. 

The data available for the source regions is given Table 4.1 

Re•ion ,, -3.__ "' ' ' §; M ' & Total 

; 1 2 3 4 5 6 7 8 9 -

Ai. 1 1 1 1 1 1 1 1 1 9 

Yi. 2 3 5 2 3 4 2 3 6 30 

Table 4.1 - Source reg10n data. 
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The five target regions have an ancillary variable Xt with the values as shown in 

Table 4.2. 

Rcl!ion II 12 t3 t4 ~ 

j I 2 3 4 5 

X] I 2 3 3 2 

Table 4.2- Anctllary values for target reg10ns. 

The nine source regions and five target regions form intersection regions. TIJ.e areas of 

these intersection regions arc given in Table 4.3. 

Intersection P.:e~lons 
Area j 

NJ 1 2 3 4 5 I 
1 0.7696 0.0000 0.2304 0.0000 0.0000 1.000 
2 0.4440 0.3254 0.2306 0.0000 0.0000 1.000 
3 0.0000 1.0000 0.0000 0.0000 0.0000 1.000 
4 0.0000 0.0000 0.8766 0.1234 0.0000 1.000 

I 5 0.0000 0.1240 0.3235 0.2785 0.2740 1.000 
6 0.0000 0.4700 0.0000 0.0000 0.5300 1.000 
7 0.0000 0.0000 0.1490 0.8510 0.0000 1.000 
8 0.0000 0.0000 0.0000 0.6785 0.3215 1.000 
9 0.0000 0.0000 0.0000 0.0000 1.0000 1.000 
y 1.2135 1.9195 1.8101 1.9314 2.1255 9.000 

Table 4.3- Intersection region areas. 

Table 4.3 shows the areas of the intersection regions, with source region number as the 

row heading and target region number as column heading. The row totals give the area 

of each source region, and the column totals give the area of each target region. Note 

that the table is sparse, as each target region intersects only a few source regions. 

Initial estimates for the EM algorithm are obtained frC'm the areal weighting 

interpolation estimates. Table 4.3 is the equivalent of the area matrix A = [aij]. the 

intersection region nreas. Equation (3.1.2) is used to find the areal weighting estimate 

of the y values. 
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For example 

I> au 
Yu =-YJ. 

a f. 

= 0.7696 (2) 
1 

= 1.5392. 

The result of the calculations for all intersection regions is given in Table 4.4. 

A IWlhtl t/ t rea e1ar na es ma a 
J 

est vi/ 1 2 3 4 5 r 
1 1.539 0.000 0.461 0.000 0.000 2.00 
2 1.332 0.976 0.692 0.000 0.000 3.00 
3 0.000 5.000 0.000 0.000 0.000 5.00 
4 O.Ou'O 0.000 1.753 0.247 0.000 2.00 

I 5 0.000 0.372 0.970 0.836 0.822 3.00 
6 0.000 1.880 0.000 0.000 2.120 4.00 
7 0.000 0.000 0.298 1.702 0.000 2.00 
8 0.000 0.000 0.000 2.035 0.965 3.00 
9 0.000 0.000 0.000 0.000 6.000 6.00 
I 2.871 8.228 4.174 4.820 9.906 30.00 

Table 4.4- Areal weighting estimates. 

Note that the column totals give the areal weighting interpolation estimate for the target 

regions. This can be compared with the enhanced areal interpolation results. 

Estep (1) 

The first estimates are calculated using (3.2.4) which are the areal weighting 

interpolation estimates. 

M step (1) 

The number of lambda values needs to be detennined before commencing with the 

M step of the EM algorithm. In practice the ancillary values Xj, i = 1, 2, ... , n will not 

necessarily take the values I, 2, ... , k, k S n, and will need receding. Suppose this 

receded value, called the lambda flag, is Zj; j = 1, 2, ... , n. 
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In our example 'scanning' through the target regions from j = 1 to 5, finds the first 

ancillary value x1 = 1, and so put z1 = I. The next ancillary value is x2 = 2 which is 

distinct from x1 so put z2 = 2. The next ancillary variable x
3 
= 3, and so put z3 = 3. The 

next ancillary variable x4 :;;: X
3 

= 3, and so z
4 
= z

3 
= 3. Lastly, x

5 
= x

2 
= 2, and so put 

z3 = z
2 
= 2. The receded variable Z takes the values I, 2, 3, and k = 3. 

Once the lambda flags are found then (3.2.1) is used to estimate ~ij for each intersection 

region. 

From (3.2.2) the model is 

The first step is to find the lambda estimates using (3.2.3). For example 

I.~7) 
"(I) - . /..2 _..L_ :z=2;j=2,5 

I,ai 
j 

= y~> + y_g> 
az +a.5 

8.228+9.906 

1.919+2.126 
= 4.483. 

Similarly the other values are calculated. Table 4.6 shows the new lambda estimates fof 

all target regions as calculated. Note that the lambda values for target regions j = 1, 3, 4 

are equal. 

Lambda en 
J 

' 1 2 3 4 5 ' Xj 1 2 3 3 2 11 
1: Vj 2.871 8.228 4.174 4.820 9.906 30.00 
1: Aj 1.214 1.919 1.810 1.931 2.125 9.00 

' 2.366 4.483 2.404 2.404 4.483 16.14 

Table 4.6- Lambda estimates. 
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The estimates for ~ij are then calculated using these lambda values in (3.2.2). As an 

example z1 = 1 and so the calculation of the estimate for J!11 is given by 

'(I) ,, !1,, ="''"" 
=2.366(0.7696) 
=I. 8207. 

Table 4.7 shows the remainder of the J.lij estimates to 1 decimal place. Note that 

Table 4.7 is similar to matrix U, but as a table includes the row and column totals. This 

is useful in a spreadsheet as deviance can be calculated ut any point. 

M step (1) 

I 
estmu 1 2 3 4 5 :E 

1 1.8207 0.0000 0.5539 0.0000 0.0000 2.375 
2 1.0503 1.4591 0.5543 0.0000 0.0000 3.064 
3 0.0000 4.4833 0.0000 0.0000 0.0000 4.483 
4 0.0000 0.0000 2.1072 0.2967 0.0000 2.404 

I 5 0.0000 0.5560 0.7776 0.6695 1.2283 3.231 
6 0.0000 2.1072 0.0000 0.0000 2.3762 4.483 
7 0.0000 0.0000 0.3582 2.0457 0.0000 2.404 
8 0.0000 o.ooco 0.0000 1.6310 1.4415 3.073 

" 0.0000 0.0000 0.0000 0.0000 4.4833 4.483 
:E 2.8710 8.6056 4.3512 4.6429 9.5293 30.000 . 

Table 4.7- New estimates at Jlij· 

EStep (2) 

With ~ij calculated the M step is completed, and the estimated y values are calculated 

for the next iteration of the algorithm. Table 4.7 is very useful since the estimated y 

value for each intersection region is found using (3.2.4). There are three inputs to this 

calculation, the Yi.• JlU) which is the cells of Table 4. 7 and J.t.<l.) which is the row total 

from Table 4.7. 
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An example calculation using (3.2.4) is shown for the intersection region of s2 and t1, 

!!W =1.o5o3 

,(2) - 1.0503 3 
y21 - 1.0503 + 1.4591 + 0.5543. 

= 1.0503.3 
3.064 

= 1.0285. 

In a similar manner all the values are found. Table 4.8 shows the remainder of the 

estimates of the intersection region Y values after the second E step. The process then 

continues. 

Convergence 

E step (2) 

I 
est vi 1 2 3 4 5 ); 

1 1.5335 0.0000 0.4665 0.0000 0.0000 2.000 
2 1.0285 1.4287 0.5428 0.0000 0.0000 3.000 
3 0.0000 5.0000 0.0000 0.0000 0.0000 5.000 
4 0.0000 0.0000 1. 7531 0.2469 0.0000 2.000 

I ;; 0.0000 0.5162 0.7219 0.6216 1.1403 3.000 
6 0.0000 1.8800 0.0000 0.0000 2.1200 4.000 
7 0.0000 0.0000 0.2980 1.7020 0.0000 2.000 
8 0.0000 0.0000 0.0000 1.5925 1 .4075 3.000 
9 0.0000 0.0000 0.0000 0.0000 6.0000 6.000 
); 2.5620 8.8249 3.7824 4.1629 10.6678 30.000 

Table 4.8 - Estimated Y values after second £ slJp. 

For this example the accuracy level chosen was E = 0.001. Table 4.9 shows the results 

of the delta calculations after the second Estep. These are values ofo<ij> . 
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Delta (2) 

I 
D 1 2 3 4 5 r 
1 0.000 0.000 0.000 0.000 0.000 0.000 
2 ·0.090 0.149 ·0.060 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 
4 0.000 0.000 0.000 0.000 0.000 0.000 

I 5 0.000 0.229 0.045 0.030 ·0.303 0.000 
6 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 0.000 0.000 
8 0.000 0.000 o.uoo 0.168 ·0.168 0.000 
9 0.000 0.000 0.000 0.000 0.000 0.000 
r -o.ooo 0.378 ·0.015 0.198 ·0.471 0.000 

Table 4.9- Delta values afwr Estep 2. 

From Table 4.9 it is clear that the maximum absolute value for delta is 0.303 and so the 

process should continue. The spreadsheet Wa'i designed to be iterative, and once the 

iteration process was started it continued until the specified level of accuracy was 

reached. This occurred after seven iterations and the results are given in Table 4.10. 

Estep (7) 

I 
stVst 1 2 3 4 5 L 

1 1.5458 0.0000 0 45<2 0.0000 0.0000 2.000 
2 0.9043 1.6347 0.4610 0.0000 0.0000 3.000 
3 0.0000 5.0000 0.0000 0.0000 0.0000 5.000 
4 0.0000 0.0000 1.7531 0.2469 0.0000 2.000 

I 5 0.0000 0.5835 0.6058 0.5216 1.2891 3.000 
6 0.0000 1.8800 0.0000 0.0000 2. JO 4.000 
7 0.0000 0.0000 0.2980 1.7020 0.0000 2.000 
8 0.0000 0.0000 0.0000 1.3694 1.6306 3.000 
9 0.0000 0.0000 0.0000 0.0000 6.0000 6.000 
r 2.45oo 9.0983 3.5721 3.8398 11.0398 30.000 

Table 4.10 - Spreadsheet estimates 

The source deviance was 0.4144 for the '!nhanccd areal interpolation estimates. 

This exercise provided valuable insight to implementation issu-c.s and also provided 

results that could be used to check the output from the implementation . 
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4.2 Implementation 

The implementation was made in three broad stages using the source and target regions 

as described in section 4.1. 

(i) Stage I involved the integration of the application with Maplnfo and the 

construction of a user interface. 

(ii) Stage 2 used the inbuilt Maplnfo operations for creation of intersection 

regions. Maplnfo version 3 includes a function that can use the shape of a 

polygon to divide up another polygon. The terminology used by the 

software manuals is that of a 'cookie cutter'. This sr>lit function allows the 

data attributes associated with the polygon being split to be allocated by 

three methods 

I. No data is allocated, the data attribute is left blank or zero, 

2. Data is duplicated, as in a region name; 

3. Numeric data only can be allocated using area proportioning. 

The third option is areal weighting interpolation. Each attribute of a data 

item can have an option individually specified. 

(iii) Stage 3 was the implementation of the EM aJgorithm and the production 

of estimates on the target regions. 
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4.3 Software and Hardware 

Both the software and hardware for the. implementation had to be of a kind readily 

available to a large number of users. This was particularly important in the choice of 

hardware, as being that which is likely to be found in a wide variety of uses. 

4.3.1 Software 

The calculation aspect of the enhanced areal interpolation can be implemented in many 

packages, and as shown in the previous chapter, can be designed into a spreadsheet 

package. The crucial aspect of the software is the GIS package which is used to 

calculate the areas of source and intersection regions. It needed to be 

• readily available, 

• relatively inexpensive, 

• easy to learn and use 

• easily able to interface with the calculation software, and 

• able to operate on a wide variety of computers. 

Based on these criteria the software package chosen was Maplnfo version 3.0 for 

Windows. This software package is tenned a desktop mapping application rather than a 

GIS. For our purposes it had all the necessary features. An added benefit was the 

associated programming language Map Basic version 3.0 for Windows, which provided 

the ability to integrate the whole application. 
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4.3.2 Hardware 

The software packages chosen are avaiiabk for a wide variety of computers including 

Unix. Macintosh and IBM compatible Personal Computers using Microsoft Windows 

software. The hardware used was an IBM PC compatible computer with an Intel 486 

Central Processing Unit (CPU). and 4Mb of random access memory using Microsoft 

Windows version 3.1. This choice of hardware would ensure that any application 

package produced would be able to operate on hardware that is readily available in the 

wider community. 

4.4 Design 

An appropriate representation of the implementation is to consider the source and target 

regions as in a table as shown in Table 4.1. This was the method used for the example 

in Chapter 4 and enables matrix operations to be used which results in great simplicity 

of implementation. Maplnfo allows the use of only one dimensional arrays (in effect 

vectors). This restriction greatly influenced the design of the application. 

Maplnfo is essentially a database management system (DBMS) that stores the data in 

tables. Each row in a table is a data item and the columns are the attributes of the data. 

Maplnfo has a special geographic attribute that can be given to the data in a table that 

allnws the data items to have an associated geographic image, be it a point, line or 

polygon, that is gcocodcd in any of a number of co-ordinate systems. Hence the main 

difficulty of the implementation wa~ that table manipulation was required via relational 

database operations. A row in a table can also be referred to as a dma item or record, 

while a column can also be referred to as a data attribute or a data field . 
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The design of the implementation was strongly influenced by this aspect of Maplnfo, 

and so involved a combination of array type operations, such as loops, with relational 

database opcn1tions, such as row or r...:cord selection. MapBasic is designed for easy 

creation of modular code, and the application is strongly modular in design, making it 

relatively straightforward to modify any aspect of operation, or make enhancements 

either as modifications or additions. 

4.S Execution 

4.5.1 Integration and User Interface 

The application has been set up to operate as a sub menu item in Mapinfo. It has four 

sub menus of its own. These sub menus are 

• commence the application, 

• exit the application and remove the menu option, 

• give a brief description of the application, 

• provide help infonnation. 

Figure 4.2 shows the Maplnfo menus and the application sub menus . 
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Figure 4.2- Maplnfo menus & sub menus. 

The user may set up the application to install itself whenever Maplnfo starts up. 

When the application is run from within Maplnfo, it only installs itself by adding an 

interpolation menu item. The enhanced interpolation commences when the third sub 

menu is chosen. The user is given a dialog box on the screen as shown in Figure 4.3. 

This dialog box requests the name of the table that contains the source regions. This 

table is referred to as the source table. Once this table has been selected a pop up menu 

of attributes becomes available from which to chose the column that contains the Y 

values. Another input area allows the user to select the target table, and the 

corresponding column in that table that is to be used as the ancillary variable. The user 

is not able to chose the same table for both source and target regions . 
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Fig 4.3- User interface dialog box. 

The dialog box also contains a section for iteration controL This allows the user to 

specify the level of accuracy e and the maximum number of iterations. These values are 

initially set to 0.005 and 50 respectively. 

4.5.2 Table Manipulation 

A major part of the implementation effort was in having to manipulate Maplnfo tables, 

especially since every operation requires some rows of n table to be selected, and the 

selected rows create another table called a selection table. To giw some idea of this, 

consider the example described in section 4.1. Tit is has nine source regions, five target 

regions and 15 intersection regions and one iteration through the EM algorithm results 

in the creation of over 80 tables. 

On the positive side, alterations to selected rows are can·ied through to the original 

table. This can be very useful for altering the fields of specific records in a table. For 

example consider a table containing a column of postcodes and a column of locality 

names together with other columns. A selection could be made on a particular locality 

name, say Perth City. The selection can be made to contain only the postcode and 
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locality name columns. The locality name column in this selection table would contain 

only the locality selected (Perth City), and the postcode column would contain only the 

postcodes associated with this locality. These postcodes could be altered to some other 

value. This alteration would then be carried through to the original table from which 

the selection was made, only altering those rows that were selected; that is only the 

postcode for those P_ata records with locality name of Perth City would be changed. 

This is a very powetful feature. This particular ability was especially useful in 

calculating estimates for only selected intersection regions in the M step. 

One other a'.ipect of the table structure that had a major influence on the application 

design was the way the split function operated. As mentioned above, this function 

operates like a 'cookie cutter'. A table is specified to the function as the one to be 'cut', 

a second table is specified as the 'cookie cutter' and divides up the first table. In many 

Maplnfo operations the result produced has no effect on the original arguments to the 

operation. However the split function differs in this respect. The net result is that after 

the split function is used the source table has been 'cut up' into intersection regions and 

no longer exists in its original fom1, and it is very difficult to put back together again. 

This effect of the split function could cause unwanted alteration of a data table. To 

ensure that this could not happen the implementation was designed to operate on copies 

of tables. This had two effects on the implementation design. Firstly the source and 

target tables are copied to temporary tables and all operations take place on these 

temporary tables, thus ensuring that the users' data is not affected until all calculations 

are complete. Secondly, the split source table becomes the main table on which all the 

application operations are carried out. This then becomes an illtersection table. 
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4.5.3 EM Algorithm 

The EM algorithm is the major feature of the implementation and accounts for over a 

third of the application code. Most of the rest is accounted for by the user interface. 

Implementation follows closely the spreadsheet design discussed in Chapter 4. 

To account for the first iteration of the E step being replaced by the areal weighting 

estimates, the EM algorithm is implemented as an ME algorithm with the M step first. 

This suits the convergence limit, as this is calculated after the E step and so is more 

suited to this reversal. 

As noted in Chapter 3, the lambda flags need to be set up first. However, the 

explanation in Chapter 3, while easy to follow, does not constitute an efficient 

algorithm as each target region is examined and then compared to some list of previous 

ancillary values to detennine the z value to be allocated. This is CPU time consuming 

and memory using. A computationally more efficient algorithm which should reduce 

the number of comparisons made is described below. 

Before the split operation the target table is indexedj = 1, 2, ... , n in the order in which · 

the data records occur, and the source table is indexed in a similar manner. This ensures 

that there is a :;ource table and target table index in each intersection region. In the split 

operation any data attribute not specified will default to either a blank or zero entry. 

This is a simple way of ensuring that all lambda flag fields are initially zero. The 

allocation of data flags jlroceeds as below . 
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1. Lambda flag column is denoted as If, and the ancillary variable column as 

xvalue. A copy of each lambda value is kept in a one dimensional array 

denoted as lamf(z), where the maximum number of z values is set to the 

number of intersection regions. 

2. Set a counter variable 'index; 1', number of flags counter 'count= I'. 

3. From the intersection table get record number= index, set lambda flag If= 

I and lamf(l) to the lambda value. 

4. Now select all records from the intersection table that have the same 

lambda value as lamf(l). For these selected recordsset if= I. 

5. While index .S number of intersection table rows do the folJowing 

5.1. Increment index by I. 

5.2. From intersection table get record with record number= index 

5.3. If If for this record is zero then (needs a lambda flag), 

increment count by 1, 

set lamf(count) to the lambda value for this record, 

select all records from the intersection table that have the same 

lambda value as lamf(count), and for these records set If= count. 

6. The final value of count gives the number of lambda flags set which is 

variable k. 
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This then gives k as the maximum value of z. It is worthwhile to note that althougl~ 

each record is examined, if the flag has been set, then it is ~;!~ipped over. thus speeding 

up the execution of this stage of the implementation. 

TheM step then operates in a loop that is executed once for each lambda llag. Map Info 

provides a very useful summation operation that simplifies the calculations. Say a data 

table is used for the finances of shop locations and has a column that contains lease 

payments. It may be a useful financial analysis to obtain total lease payments by 

distribution region. Rows can be selected from the table using distribution region as the 

selection criterion, and a column can be included tiat provides the sum of the lease 

values. This sum can be assigned to a variable and used in other calculations. This 

means that an entire column of data could be arithmetically operated on by this assigned 

value. For each lambda flag, the calculation to find J.lij is done once and the updates all 

selected records. This summation operation makes theE step very simple, and this took 

only ten lines of code to implement. 

4.5.4 Producing Results 

A simple test determines if the value of£ has been reached or if the maximum number 

of iterations has been reached. If either case is true the iterations stop, both values are 

recorded and reported to the user as they may be useful for further analysis. 

Both source deviance Ds and target deviance D1 are calculated. The former uses the 

source index column and the latter uses the target index column that set up in the 

intersection table. They can both be reported to the user. A interesting situation arises 

in the calculation of source deviance. It is possible for the Y variable column in the 
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source table to contain zero for one or more source regions. These regions contribute 

zero to the estimates, but the deviance calculation must take into account the possibility 

of a zero value. Where the source region has a y value of zero the deviance calculation 

for that region uses only the value ~i.· 

The target region index is used to sum the estimates in a process we refer to as 

assembling. At this point the table specified by the user as the target table is modified 

by the addition of a column with the same column title as the Y variable column in the 

source table. It is into this column that the estimates are summed. The temporary tables 

are not deleted as they may be of interest to the user. The temporary tables are deleted 

when eithe1· another iteration is commenced, or when the application is closed. 
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5. Evaluation 

In this chapter we include the results obiaincd to date and compare the areal weighting 

interpolation and enhanced areal interpolation methods. The first example used is that 

described in Chapter 4, and some of the results may be indicative of the 'artificial' 

nature of this example. Rather than move directly to 'real' data, it was thought more 

prudent to study variations on the example from Chapter 4. The original example is 

referred to as Example l and the variations are Example 2 and Example 3. The target 

regions remain the same for all examples, only the source regions are modified by 

grouping and merging those from Example 1. A description of each example is given 

and this is followed by a comparative summary. 

5.1 Example 1 

Example 1 is shown in Figure 4.1. The results from this example are given in Table 

4.10 in Section 4.1. The main feature of this example is having congruent source 

regions. The main concentration of the values of lhe Y variable is in the top row of 

source regions accounting for 33% of the total, and the right column which accounted 

for 50% of the total. The distribution of the values in this right column of regions can 

have a major effect on the final estimates. The overall areal density of Y is 3.333. 

Using areal density allows source regions with high variability to be identified easily . 
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5.2 Example 2 

Example 2 is shown in Figure 5.1. In this example the original source regions s1 and s2 

Sl ) S2 

Tl 

12 

53 S4 

13 / 

l/. \ 
S5 

15 

Figure 5.1 

have been merged into one region to fonn st. Regions s3, S6, and S9 have been merged 

to form new source region s2. Regions s4 and s7 have been merged to form s3. This has 

the effect of 'smoothing out the variations in Y. This smoothing has greatest effect on 

the right column, which should have greatest effect on target regions t2 and ts. 

Table 5.1 gives the data for the source regions. 

Region •• ,, s, •• ,, Total 

i I 2 3 4 5 -

Ai• 2 3 2 I I 9 

Yi• 5 IS 4 3 3 30 

DensitY 2.50 5.00 2.00 3.00 3.00 3.33 

Table 5.1- Source regions for Example 2 
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The smoothing effect can be seen in that the greatest areal density is down from 6 to 5, 

while there has been no change in lhc minimum density. 

5.3 Example 3 

Sl ) S2 

Tl 

T2 

T3 / 

/. TS 

Figur.: 5.2 ~ Example 3 regions. 

Example 3 is shown in Figure 5.2. This example continues the merging process, and has 

only two source regions. Example 3 has the greatest smoothing and very little of the 

detail that was present in Example 1. Region sz has a y value of 21, more than 50% of 

the total, with 56% of the total area.. This source region now whoHy encloses ts and 

some effect should be seen here. The original s3 and s9 are merged and the effects of 

these originul two source regions should be less than in Example I. 

Table 5.2 gives the data for the source regions. 

Rcnion d s2 Total 

' 1 2 -

Ai• 4 5 9 

Yi• 9 21 30 

Dcnsitv 2.25 4.20 3.33 

Tublc 5.2 ~ Somcc regiOns for c;wmplc 3. 
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5.4 Comm~nts 

The results [or <lll ti1rcc.; examples arc given in Table 5.4. For each example the target 

region cstim;:tcs :trc given. For the enhanced areal interpolation the source deviance 

and number of iterations is also given. For each example the squared differences are 

given to compare estimates. 

Example Rewlis 

Targot Regions Sourco 
Example Method I 2 3 4 5 Dovlonco Iterations 

1 AWl 2.871 8.227 4.172 4.819 9.896 0.8014 

EAI 2.449 9.096 3.571 3.840 11.028 0.4139 6 

Sq dlff 0.178 0.756 0.360 0.958 1.281 

2 AWl 3.034 8.530 4.172 .-:1.819 9.426 0.4252 

EAI 2.473 9.5<13 3.566 3.840 10.558 0.0114 7 
Sq dlff 0.315 1.027 0.366 0.959 1.282 

3 AWl 2.731 7.422 4.701 6.211 8.918 0.7284 
EAI 1.681 9.282 4.227 4.515 10.278 0.0000 9 

Sq dlff 1.103 3.458 0.225 2.874 1.849 
AWl: Areal Weighting lnterpolallon 
EAI: Enhanced Areal Interpolation 

Table 5.3 ~ Summary of results. 

In each example the EAI estimates have lower deviance than the A \VI estimates, 

indicating bcltcr fit. The AWl perfonned best in Example 2 with its lowest deviance. 

In Example 3, EAl produces a much better fit than AWl. This is due to the extra 

information that the ancillary variable provides to EAI. This can be seen best in target 

region t2, where tile: AWl estimate has decreased greatly from that ohtained in Examples 

1 and 2, \'/hcrc::s the EAI estimate is close to tht: values in the first two examples. A VII 

in using the uniform distribution is affected by the smoothing of the data to a much 

greater extent tilan EAI. 
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Where ancillary data is available for target regions that are generally smaller than source 

regions the EAI provides a more precise estimate than AWL Table 5.4 gives the results 

of timings made for (;ach example 

Example Iterations Time( sec) sec per iteration 

6 104 17.33 

2 7 87 12.43 

3 9 72 8.00 

Table 5.4- Iteration timings. 

The length of time for each iteration is clearly influenced by the number of source 

regions. The number of source regions for each example are in the ratio 9:5:2, while the 

times for one iteration are not in this ratio, there is some correspondence. The timings 

indicate that for larger numbers of source and target regions, the processing time will 

increase. For this reason the hardware used for this paper should be regarded as the 

recommended minimum. 
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6. Brief Summ&o-y-

6.1 Implementation 

The implementation can easily be operated by a user with little technical knowledge of 

the EM algorithm or Exponential Families of distributions. The implementation has 

been tested to handle a wide range of inputs and to detect and advise the user of invalid 

inputs. The implementation uses commercially availuble software and hardware that is 

widely distributed in the community. In meeting these criteria, it can be said to be 

robust. 

The enhanced areal interpolation is an intensive processing task and while able to 

operate on older and slower hardware than that used in this paper, our recommendation 

is that the hardware used for this implementation is the minimum tltat should be used. 

6.2 Usefulness 

As noted in Ch;,1,ccr -nhanced areal interpolation improves on the precision of areal 

weighting interr~,! ·:.::inn when the source data is smoothed due to source regions 

encompassing a number of smaller target regions. The extra information provided by 

the ancillary variable is very useful in such situations. Enhanced areal interpolation can 

only be used where such an ancillary variable is available. For example, in estimating 

population numbers, the ancillary vt~ri~blc can be given ve.lues according to the main 

land use of the target region, or the target region may be simply classified as urban/non~ 

urban. 

• 51 • 



The measure of deviance is worthwhile using for arcnl weighting interpolation as well 

as for enhanced nr·~al interpolation. It provides a relatively simple method of measuring 

the precision of estimates. 

The deviance value can also be used to measure the performance of different ancillary 

variable for the same. set of data and regions. This allows the user to identify the 

ancillary variable that will provide the more precise estimate. 

6.3 Future Dir<'.ctions 

The timings in Chapter 5 indicate that the implementation may have room for speed 

improvement so that larger numbers of regions can be used without a speed penalty. 

The implementation uses up a great deal of memory and there may be techniques that 

can reduce this usage. 

The next step is to test the implementation on real data and regions. Such an 

investigation could look at various aspects such as the effect of the number of ancillary 

variable values. Testing the implementation on real regions would provide iteration 

timings that may help improve the speed of the implementation. 

In this paper a Poisson distribution is assumed, but as pointed out by Green (1989) the 

binomial distribution may have a use in enhanced areal interpolation and other 

distributions may have a use. 

Moxey and Allanson (1994) have produced a comparison of techniques based on 

Enhanced An!al Interpolation con:;jdering categorical variables. An investigation of 

their paper may indicate that a more ~cncralised implementation is p•Jssiblc. 
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Appendices 

Appendix 1: Spreadsheet Model 

This appendix shows the spreadsheet models, and the formulas used for calculation. 

The first set of tables provides the source region inputs of area andY values. 

Project Example 

s ource Roai no 0 I t secti • or OD R i •• ODO 

Area j 

I As Ys '" 1 2 3 4 5 ' 1 ~ ~ 1 0. 00 
2 2 o. 0 ' 3 3 0. 0 
4 

As Ys 
5 

4 0. 0 
i 5 0. Ast 73 :=Row 

6 6 0. 30 '"m 
7 7 0. 0 
8 8 0. 2 
9 '--1 ---, 9 0. 0 o.otm t.doo 

' 9 30 ' At"' col sum 9.000 

Areal Weight! g estim to D • 
t 

Y.t 1 2 3 4 5 ' 1 .16 on .00 
2 .00 
3 .00 
4 .00 

=Ys • 5 Yst=Ast*YsfAs .82 
6 .12 
7 .00 
8 .97 
9 .00 

' Yt I col sum 1 30 

The table labelled "Intersection Regions" contains the areas of the intersection regions. 

Each table shown either contains a name, formula or both. Formulas are preceded by an 

equals sign. Hence the column containing "= row sum" in the Intersection Regions 

table contains a formula that sums the row values, but the column does not have a 

name. 
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The bottom row of this table contains "At =col sum". The equals sign and the formula 

to the right of indicates that these values are found f~om summing each column. ..At" 

before the equals sign is the name given to the result of this calculation. This name may 

be used in other formulae. 

The last lable shown in this set calculates the Areal Weighting Interpolation estimates 

(Y st) for each intersection region. The column totals provide estimates for the target 

region Y values. 

The second set of tables show the calculations usect m the EM algorithm and to 

calculate deviance. 

Step: 1 Step 

Lamblia (1) 

' 
' 1 2 3 4 s t 
Xt " t Yt ="IF(Stcp-=l,Y t_ I. Ytn) . 

t At 
newla 

H tltep (1) 

mu 1 
1 
2 
3 
4 

• s 
6 
7 
8 
9 
t 

B atap (l.} 

"' YRt 
1 
2 
3 
4 

0 s 
6 
I 
8 
9 
I 

•A< 
n~wla =(sum Yt)l{sum At) 

' 2 3 4 

mun"' ncwln"A st 

muta=colsum 

2 3 4 

Ystn ={munlmu~a) 0 Ys 

s 

s 

. 56. 

row sum 

t 

111 usn= 
row sum 

30.000 

I 

Ysa<=row 
~urn 

• 

' 

source Dev i nne a 

Yo 
D '' 

Dsl' 
1 =IF(estY s =lr(est 
2 b:O,nl U.l~ Y sb=O, 

3 .estY sb cUYsb,cs m USO· 

4 .,y sa tYsb 0 LN cstY >b,e 

s (estY sbl <tY.<b•L 

musn)· N(c<tYs 
6 (cstY _,h. h/mu.>n)) 
I lll!I.>U)) 

8 
9 . ..,.,..____,_,~~.., 

D• =2°col sum 

&.:.:gc. t D i c ( Clll t Yt) ov 00 " 

" D ;t Dst' 
1 ·I."'""'~. . 2 · N(Ytalm Yw•LN( 

3 ,,y( i tl!a).(Y!a- Ytnlmuta 

4 ; 111 uta)) ' 

5 •o..lLc-- J ·:c:--Dt -- =2•col s~r::!___ 



The cell named "Step" controls the iterative process. If the value of this cell is set to 

one, then itemtion does not occur, if the value is set to any value other than one, then 

iteration occurs. The key to this is the table named "Lambda". 

Lambda 

The first row contains the ancillary values. The second row contains the target region Y· 

value estimates. If Step = 1 then this row contains the Areal Weighting Interpolation 

target region estimates (Yt_l), otiierwise the values are taken from table "E step"(Yta). 

This table is calculated using the second row of Lambda and hence fonns the iterative 

loop. 

The third row is a copy of the target region areas. The fourth row calculates the lambda 

values (see 3.2.3). This ,.-alculation has to be set up specifically for the regions being 

used. 

M step and E step 

Table "M step" produced Table 4.7. The cells of this table are calculated using (3.2.2). 

Table "Estep" produced Table 4.8 and implements equation 3.2.4. 

Deviance Tables 

The deviance tnbles use (3.3.2) and (3.3.3) to calculate source and target deviance 

respectively. McCullagh and Neider (1988) show that for the Poisson distribution the 

second term usually sums to zero (section 2.5). The deviance tables were set up so that 

the second term was included in the first deviance calculation and excluded in the 

second deviance calculation. This arrangement provided a measure accuracy of the 

spreadsheet design. 
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Appendix 2: MapBasic Application Design 

Listed below is the main application used to implement Enhanced Areal Interpolation. 
This listing is partly written in MapBasic. Most of the listing is a brief description of 
the various steps. 

'**************************************************************************** 

Program : GWINT.MB Author: Gordon Wragg 1994 12/12 

This program designed to implement an enhanced areal interpolation process 

based on the Poisson distribution and the EM algorithm. 

The user specifies two open tables. The first, called the source table 

contain~ a column of data that the user would want interpolated to the 

second table which is the target table. The target table must have a 

column of auxiliary data that is distributed similarly. 

The program will use this information to do the interpolation. 

' a file of standard definitions is included 

Include •mapbasic,def" 

Include •menu.def• 

' also include file to use •auto-load" library. 

Include •auto_lib.def• 

' Include functions 

Include •col_type.mb" 

Include •colmax.mb• 

Include 'gwhlp.mb• 

' Define some constants 

These define constants used in dialog boxes. 

Define temporary table names. 

This section declares subrouti~es and functions. 

' define global variables 
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'**************************************************************************** 

Program starts with 'Main', and execution begins here. Put up a menu, then 

the program will •go to sleep" and wait for the user to select a menu item. 

When selected, the appropriate subroutine is called. 

'**************************************************************************** 

Sub Main 

' Need to Assign global variables for auto load library 

gsAppFilename = "gwint.mbx' 

gsAppDescription = •gwint' 

Put up installation message. 

Create menus, the subroutines are activated when a menu option is chosen. 

End Sub 

'**************************************************************************** 

' SubRoutines 

'**************************************************************************** 

Sub About 

Dialog Title 'About Interpolate' 

This is a dialog box that provides basic information about the program. 

End Sub 

'**************************************************************************** 

Interpolate 

'**************************************************************************** 

Sub Interpolate 

'This procedure displays a dialog, for the user to identify 

'the source table and column to interpolate, 

'and the target table containing the auxiliary variable column. 

Set up Error checking. 

Cleanup any temporary tables left over from previous runs. 

'initialise variables 

'check that at least 2 tables are open 

'check that mapper is front window 

Get area units being used. 

Now display main dialog box. 

Hancler routines are set up to handle choices. 

Table Handler looks after table and variable options. 

'/ 

If the user changes stop limit or number of iterations then the 

new values are recorded. 

If the cancel button is used then exit. 
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Check that number of iterations > 0 and that stop limit > 0.00005. 

Copy source and target tables and save with temporary names. 

•now alter temporary source table for extra columns' 

Call Split routine to split the source regions using the target regions. 

Call EM algorithm routine. 

Call Deviance routine. 

Call Assemble routine to sum target region estimates and put into target 
table. 

All done. 

End Sub 

'**************************************************************************** 

' Table handler 

'**************************************************************************** 

Sub Tabhndler 

This routine handles the choices for source and target tables, and 
variable ~olumns. 

If table! index not zero then source table chosen so get name. 

If column! index not zero then Y variable column chosen. 

Modify dialog box to show choices. 

If table2 index not zero then target table chosen so get name. 

If column2 index not zero then X variable column chosen. 

Modify dialog box to show choices. 

Check that source and target tables are not the same. 

End Sub 
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' AllOkay 

'**************************************************************************** 

Sub AllOkay 

This routine is called after the dialog box is closed and checks that columns 
are the correct data type to be used and that the source and target tables are 
diffel:ent. 

If an error is found a dialog 
main dialog box is redisplayed. 

End Sub 

box is displayed to advise the user and the 

'**************************************************************************** 

SplitUp 

'**************************************************************************** 

Sub SplitUp 

This is the split routine. 

The source regions are split with the Y values interpolated using areal 
weighting. 

The area is calculated and added to the source table for each 
intersection region. 

Add index to source table to point to associated target region. 

'now make sure that source areas are all within target area 

End Sub 
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' Sub procedure: EM 

'**************************************************************************** 

Sub EM 

This is the EM algorithm routine. 

Get number of intersection regions. 

'Now set up the lambda flags 

For each intersection region 

if the lambda flag is zero then 

set it up. 

•now ready to commence EM algorithm 

Do Until done 

record previous estimate 

•start M step 

For i = 1 to number of lambda flags 

Sum y estimate, areas and mu from source table where lambda flag 
equal to i intcJ sumy, sumarea and musurn 

record values 

calculate lambda = sumy/sumarea 

update source table with mu = lambda * starea. 

'M step done, now do E step 

For i = 1 to number of source table rows 

Sum mu, y values from sou~~e table where source inaex = i 

into musum and ysval. 

calculate y estimate= mu * ysval/ musnm 

update values in source table. 

'check stop limit and number of iterations 

Calculate delta and check with stop limit, 

If maxdelta < deltamax OR count >= itmax then 

done = TRUE 

End If 

Loop. 

End sub 
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Deviance 

'*************************************************~·--······················· 

Sub Deviance 

fir.st calculate source deviance sdev 

For i = 1 to number of source regions 

sum mu and y estimates where source region jndex = i into musum and 
ysum, 

Put values into an array musum(i) and ys{i). 

If ysum = 0 then dev(i)=(musum- ysum) 

sdev :::: sdev + (muswn - ysum) 

Else dev(i)=(ysum * Log(ysum/musum) - (ysum- musum)) 

sdev = sd9V + (ysum • Log(ysum/musum) - (ysum- musum)) 

End If. 

Accumulate deviance. 

Next 

Calculate source deviance = 2 * deviance total. 

' now calculate target deviance tdev 

Calculate similar to source deviance. 

Report deviance values. 

End Sub 

········································~···································· 
Assemble 

··········································································i·· 

sub Assemble 

Add Y value column to target table and index target regions 

For each target region match index with that in source table 

sum y estimates and update target table. 

Save target table. 

End Sub 
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