
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

1995

An Ada-like language to facilitate reliable coding of low cost An Ada-like language to facilitate reliable coding of low cost

embedded systems embedded systems

Michael Collins
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Collins, M. (1995). An Ada-like language to facilitate reliable coding of low cost embedded systems.
https://ro.ecu.edu.au/theses_hons/619

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/619

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/619

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

"An Ada-like Language to
Facilitate Reliable Coding of

Low Cost Embedded Systems"

by: Michael Collins

A dissertation to be submitted
in partial fulfilment of the requirements

for the degree of

Bachelor of Applied Science
(Information Science) Honours.

Department of Computer Science,
School oflnfonnation Technology and Mathematics,

Edith Cowan University,
Perth, Western Australia.

Supervisor: Dr T. J. O'Neill.

February 1995

Michael Collins.
Student Number 0912143

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Table of Contents

ABSTRACT .. 4

DECLARATION .. 5

ACKNOWLEDGMENTS .. 6

1 INTRODUCTION ... 7

2 THE PROBLEM ... 11

2.1 Background to tbe Study ... ll

2.2 Significance of the Study ... 13

2.3 Statement of the problem .. 14

2.4 Research questions to be answered ... 15

2.5 Summary .. 15

3 REVIEW OF THE LITERATURE ... 16

3.1 General Literature .. 16

3.2 Specific Studies Similar to the Current Study .. 26

3.3 Other T~1terature of Significance to this Study .. 34

3.4 Summary .. 37

4 RESEARCH DESIGN ... 38

4.1 General Method ... 38

4.2 Specific Procedures .. 41

4.3 Verification of the translation software .. 49

4.4 Summary .. 49

2

5 FINDINGS .. 50

5.1 The Implementation of the Study .. 50

5.2 Evidence found that supports each of the Research Questions .. 76

5.3 Unanticipated Findings ... 77

5.4 Summary .. 78

6 CONCLUSION ... 79

APPENDIX A: A GLOSSARY OF TERMS USED IN THIS DOCUMENT ••....•••.. 82

APPENDIX B: AN ADA-LIKE LANGUAGE .•........•..•.••••..................................... 85

APPENDIX C: "SAFE C" .. 91

APPENDIX D: EFFECTIVE USE OF ADA GENERICS TO REALISE THE
SYMBOL TREES .. 96

APPENDIX E: THE USE OF THE C PRE-PROCESSOR TO ACHIEVE INTER­
COMPILER COMPATIBILITY•.................... 107

APPENDIX F: THE TEST PROGRAM, WRITTEN IN THE ADA-LIKE
LANGUAGE DEVELOPED IN THIS PROJECT, AND THE
TRANSLATION IN "SAFE C" .. 110

APPENDIX G: LISTING OF START-UP CODE USED TO SUPPORT THE TEST
PROGRAM . .. 129

END TEXT REFERENCES ... 136

3

Abstract
Due to a lack of operating system (0/S) support, it is more difficult to develop programs

for embedded systems than for workstations. For those developing on a low budget, the

problem is often further compounded by the necessity of using inappropriate, 0/S

dependent, compilers.

This study attempts to ascertain those elements of a High Level Language (HLL) which

are absolutely necessary and implementable to produce reliable, efficient, embedded

programs without the benefit of a large budget. The study is based upon the Ada

philosophy as the Ada language incorporates many desirable features for modelling real­

world problems in terms of embedded solutions.

By implication, the research provides a small step towards an increased availability of low

cost tools to assist in the development of reliable and efficient code for use in medium

performance embedded systems.

4

Declaration
I declare that this thesis does not incorporate without acknowledgment any material

previously submitted for a degree in any institution of higher education, and that, to the

best of my knowledge and belief, it does not contain any material previously published or

written by any other person except where due acknowledgment is made.

5

Acknowledgments

No significant project can be completed by one person. Accordingly, I would like to thank

all those people who helped and encouraged me with this project. However, there are

some specia1 people to whom I wish to express particular gratitude.

Thank you Sue, Ben and Beccy, for being there when I was here.

Thank you Dr Thomas O'Neill, for you can inspire the transformation of a mediocre

passage of text into something that is worth writing.

Thank you C.C.S. Communications Pty. Ltd., for supplying the code-locator that is used in

this project.

6

1 Introduction
This chapter contains an overview of embedded systems in general, and the problems of

programming for medium performance embedded systems in particular. The aims of the

project are described and a synopsis of the remainder ofthe project is given.

An embedded computer system, suggests Zave (1982), is surrounded by a larger non­

computer system and is frequently subject to operational constraints on time and space.

Embedded systems are used to control many aspects of everyday life: from automobile

engines to those in fighter-planes; from microwave ovens to production lines; from

domestic reticulation systems to agricultural crop spraying~ and, from model train sets to

national railway signalling systems. Their computing power ranges from that of a simple

eight bit rnicrocontroller capable of simple arithmetic and logical evaluations right up to

state of the art thirty-two bit para11el processors able to perform the fastest calculations. In

every cas\ the embedded systems are expected to perfonn to extremely high standards of

reliability, (1ften under adverse operating conditions and within exacting response times.

Safety requirements may at times appear conflicting with military weapon systems being

"designed tc be very safe in peacetime, but lethal in time ofwar!" (Cullyer, 1993).

For software engineers active at the high end of the embedded arena (for example, within

the relatively large budgets of the aerospace industry) Mann (1992) suggests that

development environments are available which are every bit as sophisticated and

productive as those for developing workstation hosted software. Where budgets are more

limited, however, the choice and availability of development tools are often restrictive to

the implementor. This can result in inefficiencies within system development and

maintenance, the consequences of which can be at best expensive, or at worst fatal to the

system or its users.

There is available a range of general purpose, medium perfonnance, microcontroller units

based upon the standard sixteen bit microprocessor architectures that are found within

personal computers (PCs). These microcontrollers lend themselves well to embedded

development on a tigbt budget due to their significant advantage of being able to execute

code generated by standard, relatively cheap, PC compilers (e.g. Microsoft C). However,

7

embedded systems often exhibit a lack of 0/S and/or concurrency support for such code

and this disadvantages the developmental process. It may dso be difficult, and/or

expensive, to obtain program debuggers which will operate meaningfully within a real-time

embedded environment, thus prolonging test and verification phases.

Ada is a concurrent, strongly typed, language which was created chiefly for use in large

scale embedded systems; yet for efficiency, familiarity and availability reasons, the C

language remains the primary development language of medium perfonnance embedded

systems. However, C includes no natural expression of concurrency and exhibits weak

typing which can let many program errors persist until run time, when they become more

difficult to remedy.

Sommerville (1990) suggests in his discussion on debugging that the later a mistake is

corrected in a software development cycle, the more expensive the correction becomes.

Strong type-checking, as found in Ada, can detect many errors before run-time.

The study examines current developmental practice within the context of medium

performance embedded systems. It aims to establish that the existing programming tools

and language elements of Ada and C may be combined effectively to reduce the incidence

of error entry into embedded systems, thus increasing reliability. This is accomplished by

establishing a subset ofC (termed "Safe C" throughout this document) which, requiring no

0/S support, may be used to safely express embedded programs written in an Ada-like

syntax.

Chapter two elaborates the problem. The background of the study i' di.3Cussed: the

embedded system is defined and examples provided. The type of embedded system

targeted in this study is explained and identified by its prominent features and abilities.

Problems faced by software engineers in providing executable code for such systems are

outlined in tenns of complexity and economics, with reference to conventional languages

and tools. Finally the significance of this study in the real world, and its framework, are

outlined.

8

Chapter three takes the form of a review of the relevant literature. The work of others,

illustrated in the firm foundation of text books and augmented by the documented research

and experiences of others in papers and articles, fonns a basis of guidance and justification

for the approach taken and substance of this project. A list of desirable features for Real­

Time languages is discussed, together with the approaches of different multi-tasking

models and the use of C as an intermediate target.

Chapter four builds upon the foundations outlined in the Literature Review (chapter three),

combining these with the needs identified in the Study Background (chapter two) to form

the basis for the pilot project design. The design of the pilot study is developed, together

with its methods and verifiable outcomes. The discussion addresses the methods in tenns

of the list of desirable features discussed in chapter three.

Chapter five presents the findings and results of the pilot implementation. Selection

criteria for a suitable target system are discussed and an overview of the features offered

by the selected target is given. The test program, which incorporates a variation of the

producer-consumer relationship designed to demonstrate treatment of the desirable

features, is examined. Suitable t:.;ttracts from the Ada-like source for the test program are

presented, together with their "Safe C" productions. These are used to provide answers to

the research questions.

Chapter six concludes the project. A summary is given of its beginnings and initial aims;

the manner in which the project framework was anived at; the design criteria for the pilot

implementation; and, the resultant product ofthe Ada-like language to "Safe C" translator.

Finally, implications are discussed for current practice and future research.

9

This document concludes with several appendices, which are used to provide clarification

and amplification of significant areas of the study, and a section where end text references

for documents used to support th e study are given: namely

Appendix A consists of a comprehensive glossary of terms used in this document;

Appendix B presents a description of an Ada-like Language;

Appendix C lists those elements of Microsoft C Version 6 which have been found to

satisfy the requirements for "Safe C" as used in this project~

Appendix D demonstrates how Ada's generic packages facilitated the re-use of major

components in the translator;

Appendix E illustrates how pre-p' ocessor macros were used to achieve inter-compiler

compatibility;

Appendix F presents the Ada-like language test program, and its translated productions

in "Safe C"· and ,

Appendix G is a listing of the startup code used to support the test program.

10

2 The Problem

2.1 Background to the Study

It is generally more difficult, and hence more costly, to engineer programs for embedded

systems than for applications of similar complexity on workstations. The extra difficulty

is, as Mann (1992, p58) and Aucsmith (1988) suggest, because the embedded program

cannot usually take advantage of underlying 0/S support. Where a tight budget dictates

the use of inappropriate 0/S dependent compilers, developers of embedded systems face

further complications.

An embedded system is defined as 11
3 computer system which forms part of a larger non­

computer system" (Zave 1982). Booch (1987, piS) suggests that although embedded

applications are varied, they share a set of common characteristics, which tend to :-

• be long-lived and subject to continuously changing requirements~

• be subject to constraints of time and space, especially for real-time response~

• be highly reliable and fault tolerant, requiring automatic error-recovery

(Aucsmith, 1988);

• be 11extraordinarily hard to test11 (Zave & Yeh 1981);

• exhibit 11 asynchronous parallelism11 (Zave 1982).

The processing power available for embedded systems ranges from simple eight bit

rnicrocontrollers (Mazur, 1992), such as could be found controlling a microwave oven,

through to thirty-two bit computers (Bhansali, Pflug, Taylor & Wooley, 1991), as used in

the avionics industry. Within this range exists a set of low-cost medium-performance

embedded systems with which this study is concerned. These are built around a general

purpose Central Processing Unit (CPU) core capable of addressing a Megabyte of

memory, employing sixteen and thirty-two bit registers and sustaining clock speeds of five

to twenty megahertz. Current examples of such CPUs are the Motorola 68000, Intel

80186 and NEC V25, V35, V40 and V50 range. Their general purpose CPU core allows

the execution of code nonmally intended for PCs.

11

Embedded system programmers are faced with large up-front costs of purpose built Cross­

Compilers and In-Circuit Emulators. As an economical alternative they may choose to

relocate the code produced by efficient proprietary compilers (such as Microsoft or

Borland C), and subsequently use monitor r-rograrns to test the resultant code in the target

system, as described by Phillips & Rowett (1991, p85). This technique introduces fresh

problems, as code produced by such compilers naturally expects to find facilities provided

by an 0/S. Whilst it is possible to embed an 0/S with the application, this imposes

additional costs of necessary hardware, software, and distribution licenses and/or royalties~

and, like all software, is liable to contain errors. Not all 0/Ss may be suitable for the

hosting of multitasking applications as portions of their code do not support re-entrancy.

Some embedded systems are still coded, and maintained, in assembly language. Many

developers have migrated to the use of C (Mazur 1992). This provides relative

improvements in portability and abstraction while still pennitting low level control and

flexibility. Its portability is demonstrated by recent commercial studies which have

concluded that "C in its standard form was the only language fully supported for a range of

real-time embedded ope-rating systems" (Velastin, 1991). However, C's freedom is gained

from weak typing and the use of pointers, both vf which may be dangerous. As Wa1raet

(1989, p140-144) explains, C provides many semantic ambiguities which allow

"undisciplined manipulations of data". There is no mandate f0r exception handling, as

returned error values can be freely ignored throughout C programs. Furthermore, C gives

no natural expression of concurrency, which is an essential characteristic of rea1-world

problems. Summarised by Velastin (I 991), "C is an inherently unsafe language which has

inevitably resulted in unsafe practices".

With its many function libraries, C is a capable yet simple language, but notably one which

requires an extremely strict programming dbcipline. C++, as suggested by Phillips et al.

(1991, p76) and Stapfer (1992, p72), is also beginning to be employed for embedded

system programming. Whilst performing stronger type checking, C++ allows the free

inclusion ofC syntax and thus requires the same strength of discipline. This can really only

be imposed by rigidly following a tight specification. However, a lower level language

such as C, with its preoccupation for fine detail and lack of natura] concurrency, does not

12

relate well to specification languages. These need to be "l1igh level enough to be

understandable, yet precise enough to define completely a particular class of behaviour'!

(Swartout & Balzer 1982, p438).

Ada is a language which was developed primarily for large-scale embedded systems

(Booch 1987). Its strong typing insists that data types, and operations on them, are

known up front, enforcing a rigid programming discipline. It features a rich set of

. constructs, including concurrency. This facilitates expression at both high and low levels,

and consequently eases the tnmslation from a specification mechanism, such as Jackson

Structured Development (JSD), to implementation language (Topping & Yeung, !990).

Ada's suitability in this case is further demonstrated by Jackson's release of a JSD to Ada

code generation tool (Topping & Yeung, 1991). Further, Ada provides almost

unprecedented portability, good maintainability and is now being widely taught at colleges

and universities.

In spite of these obvious advantages there is a down side. Ada's concurrency mechanism,

called tasking, has been widely criticised (Sims, 1991; Struble & Wagner, 1989; Baker,

1988) for real-time applications. Compilers are expensive, relative to those ofC, and their

output is seen to be resource hungry and inefficient in tenns of executabiP speed and

interrupt response time, as found by Dobler (1992) and Harp (!988). heed with these,

some developers view Ada with reseiVations (Struble & Wagner 1989).

2.2 Significance of the Study
From the background discussion, the following is apparent. On the one hand there is the C

language, with inexpensive and readily available compilers generating efficient relocatable

code. However, using C creates a difficulty of verification and any resulting errors may

lead to time wasted in testing and debugging. On the other hand, there exists the rich

strongly-typed language of Ada, compilers of which can be expensive and can produce

code that may be inefficient on medium performance machines.

13

The study demonstrates the possibility of harnessing the descriptive power, strong typing

and concurrency, found in the Ada language and translating this to "Safe C" so that a C

compiler can be used to generate efficient verifiable executable code. This affords the

practicing embedded-systems engineer a number of advantages :-

• concurrency may be expressed formally;

• strong typing reduces the amount of coding errors which actually get as far as run

time;

• the proper use of an Ada-like syntax increases the readability and hence the

maintainability of the program;

• extensibility with assembler and C modules will still be available;

• compilation and linking tools will probably already be familiar items.

2.3 Statement of the problem

The study investigates the possibility of using an Ada-like syntax for source code entry and

the subsequent translation of the entry to an efficient C format which attempts to suppress

coding and logic errors reaching run-time, and which provides a natural expression of

concurrency in low-budget medium-performance embedded-system development.

14

2.4 Research questions to be answered
The main question:-
11 Can the desirable features for low cost, medium performance, embedded systems

programming be provided in an Ada-like language, and then translated \o "Safe C" to

achieve reliable run-time efficiency? 11

The major components of the above question are :-

a) "What elements of computer languages are desirable to express solutions as low cost,

medium performance, embedded systems? 11

b) 11 Can the elements noted in (a) be expressed in an Ada-like language?''

c) "Can those language elements be implemented using only verifiable elements of the C

language?"

2.5 Summary

Where severe budget constraints apply, development of embedded systems represents an

area where verification and expression are difficult using traditional, but widely available,

C compilers. The Ada language has been designed to solve problems experienced with

large-scale embedded systems, but due to execution inefficiencies, and resource hungry

run-time demands, it is still seen as being unsuitable for medium performance embedded

systems. This study ascertains that "Safe C" may be used P.s an efficient intermediate step

to represent models expressed using the safety-net of an Ada-like stronger typing.

15

3 Review of the Literature

3.1 General Literature
From Hooch's (1987, pl5) definition of an embedded system, outlined in Section 2.1 of

this document, we know that embedded systems must frequently work within strict

physical and temporal (real-time) constraints. This differs from normal processing

requirements, and the needs for this must be serviced accordingly by languages and their

compilers. Laplante (1993, pp64-88) provides an excellent discussion of Language Issues

for Real-Time systems. In the discussion he identifies run-time memory requirements and

speeds of execution and response as being the principal constraints on such a language.

He further suggests the following desirable features in a Real-Time language:-

• strong typing;

• flexible parameter passing mechanisms;

• recursion;

• exception handling;

• concurrency;

• elimination of constructs with indeterminate execution times.

• interrupt types (this implies re-entrancy);

• modularity;

• low-level control;

(Cotigny & Pie (1991), based upon their practical experience in CNC machine design,

echoed Laplante's list of desirable features, but additionally emphasised the necessity of

• portability

in their criteria of language choice.

Using the extended list of desirable features as a framework, each item will be inspected

with respect to relevance to this project:

• Strong typing

Brosgol (1990) states the importance of matching the type to the data, so that the

program may realistically model the data of the real world. Where types may be

defined in this manner, the trapping of variable mismatches at compile time by the use

of strong typing is "widely acknowledged as being a good idea" Sebesta (1989, pl22).

16

Sebesta further suggests that strong typing may be describld as the situation where

each name in a program is associated with a single type, and that the type is known at

compile time.

The general idea of abstraction is seen by Tucker-Taft (1993, pl27) to be extended by

the object-oriented paradigm so that a given abstraction may effectively have multiple

implementations. This is the basis of object-orientation, while still retaining strong

typing, as used in Ada-9X.

• Flexible parameter passing mechanisms

If we consider a subprogram frame to be the scope where all of its variables can be

manipulated, then a subprogram communicates with the world outside that frame in

two main ways: either by changing values globally available to it, or through the

passing of parameterised values. An excellent discussion of parameter passing exists in

Sebesta (1989, pp264-265), a synopsis ofwhich might be the following:

Four implementation models are generally available:

(a) Pass (or Call) by Value (IN-mode): where the value of the actual parameter is

copied on the stack to a subprogram. This method provides for inward only

communication.

(b) Pass by Result (OUT mode): no value is taken from the parameter on entry to a

subprogram, but just before control is passed back to the subprogram's caller, the

variable's value is copied back to a supplied variable on the stack. This method

provides for outward only communication.

(c) Pass by Value-Result (IN-OUT mode): a copy is made on the stack of the

variable's inward value to the subprogram and, at subprogram tennination, the final

value is copied back out to the caller. This method provides for two-way

communication but, as with the other two methods, excessive stack space can be

used with large variables.

(d) Pass by Reference (access or pointer method): the address of the variable is

passed to the subprogram, which subsequently may manipulate the contents via

that address. This method can lead to undesirable side-effects, but serves to

minimise stack space.

17

Note that methods (a), (b), and (c) fall into a general category of "CaU-by-value", as

actual copies of the value are transferred to/from the called subprogram, and that (d)

falls into the category of Caii~by-Reference, where "Reference" indicates that the

address of the variable is transferred. Excessive copying of entire variables to the stack

can adversely affect run-time performance, limiting the ability of an embedded system

to respond.

On a lighter note: Niklaus Wirth, founder of Pascal, Modula-2 and Oberon, when

asked how he pronounced his name was reputed to have replied "If you call me by

name it's veer/, ifyou call me by value it's worth" (Laplante, 1993, p66).

• Recursion

A recursive subprogram can be self-referential, i.e. it can call itself Whilst recursion is

elegant, Laplante (!993, p68) points out that its use of stack for parameters and local

variables can reduce run-time efficiency to the point of endangering p•rlonnance. He

suggests that compilers could combat this by recognising the recursion and then

mapping it into an iterative form to increase execution speed and reduce stack

dependency, though he knows of none that do. As an alternative, Real-Time Euclid

programs prohibit recursion to ensure compile-time knowledge of execution times and

storage requirements (Stoycnko & Kligerrnan, 1986, p943).

18

• Exception handline:

Where a handler is provided to cater for exceptional or abnormal run-time conditions,

t!;.is permits the program to handle the event and recover gracefully. Recognising that

exceptions will occur, however, is a small part of the problem, as the machine must be

restored to a stable state before nonnal execution can occur. The binding, between an

exception and its handler, which restores control to a level of normality, can be

achieved in two main ways, (Sebesta, 1989, p382) each having its own attendant

arguments:

0 If we handle the exception local to its occurrence, then it may be the case that

many handlers are required to ensure the correct trapping of all exceptional

conditions. This complicates the code, increasing the complexity ofthe program.

0 If we allow the exception to propagate, for example to the calling environment,

then we can reasonably trap several possibilities for exception with one handler.

This can result in less complex, more easily validatable code.

After the exception has occurred and been trapped, the question of to where control is

transferred must be addressed. The easiest solution, Sebesta says (1989, p382), is

controlled tennination of the program. However, an embedded system may not be

allowed the privilege of simply terminating, and must be expected to resume program

execution reliably. Hoogeboom and Halang (1991), suggest that such behaviour is

essential for robustness and that there is "a requirement that the system remains in a

predictable state even if the environment does not correspond to the specifications".

Notable, and well documented, exception handling facilities are exemplified in PL/1

(which pioneered the concept), CLU, and Ada. C++ has recently added exceptions to

its latest standard, though implementations providing it are difficult to find (Eckel,

1993, p716).

19

The scope ofPL/I's handlers are dynamically bound to the exception, and are therefore

not necessarily known at compile~time. Such binding represents an area where

program control is non-detenninistic. The designers of CLU, noting this, worked

according to two major decisions (Liskov & Snyder, 1979):

0 handlers are statically associated with invocations; and

0 for simplicity, handlers may be attached only to program statements and not to

expressions.

Subprograms in CLU can return in one of two ways: namely, on normal tennination by

executing a return, and on abnormal termination by signalling an exception. In this

way the subprogram is able to return differing types and objects according to its

termination condition.

Ada's mechanism partially builds upon that of CLU (Sebesta, 1989, p 392) in that

handlers are statically bound, known at compile-time, and may be sited locally to the

code where the exception occurred or, by tht:ir absence there, allow the exception to

propagate and be handled by a more general exception handler in the calling chain.

Additionally, Ada provides for five pre-defined exceptions. C++, a relative newcomer

to the world of exception handling, has modelled its version, CLU like, as "an

alternative return mechanism from functions" (Eckel, 1993, p 717), differing only by

the fact that under exception conditions the function can return types other than those

declared in the function declaration. C++ functions are provided with destructors

which implicitly remove (i.e. de-allocate memory for) objects suitably created during

the function execution. Harnessing an exceptional return to the mechanism provided

for a nonnal return ensures that only those destructors necessary to remove objects

created up to the exception point are called. In similar fashion to Ada, exceptions can

propagate along the calling chain until, if no handler is provided, controlled tennination

of the C++ program will occur.

20

• Concurrency & elimination of constructs with indeterminate execution times

Topping and Yeung(l990, p25) place great importance on the ability to h.andle

concurrent activities that occur in embedded environments. It is important, however,

to recognise that the presence of concurrency in a language does not signify that Real­

Time requirements, in particular determinism, will be met. Gligor & Luckenbaugh

(1983) highlight the differences between the requirements for concurrent languages

and those for Real-Time languages. These may be summarised as:-

• Real-Time

0 A Real-Time program must

* produce the correct results; and

* produce those results within the allotted time (i.e. be deterministic).

0 Real-Time languages must facilitate, to the programmer, adequate control of

both the timing and the sequencing of operations. However, Laplante (1993)

states that constructs which do not automatically relinquish control of the

processor should be discouraged by the compiler. An example of such a

construct is a loop which can only be exited following an external event (e.g.

when waiting for a key-press). The language Real-Time Euclid (Stoyenko &

Kligennan, 1986) actually mandates the inclusion of some Maximum Time-Out

at which loops must end in order to prt ... erve temporal determinism.

• Concurrent programming

0 Concurrent programming has been developed primarily as

* a means for using the underlying computer hardware more efficiently; and

* a methodology for the decomposition of large programming systems.

0 In concurrent programming the goal is frequently to hide the precise details of

sequencing from the programmer.

The issues of providing support for concurrency have provided the subject for much

research over the last three decades (Aijomandi, O'Farrell & Kalas, 1994) and have

typically presented two approaches. In the first approach, language extensions are

produced with concurrency constructs emerging as part of the (new) language; and, in the

second, the lower level details of concurrency are kept outside of the language and

encapsulated in libraries. Atjomandi et al., in presenting an overview of concurrency

21

support, found that the fonner is 'the more desirable and less restrictive approach, due

chiefly to the observation that "users of concurrent libraries must observe certajn protocols

with varying degrees of severity".

• Interrupt tvpes

Best described by their features, the following points have been noted from the Turbo

C++ Progranuners Guide(I 990). An interrupt type denotes a special kind of

subprogram which, being activated by an event asynchronous to normal program flow

(e.g. a hardware derived interrupt), is characterised by the following:

0 it is void of parameters~

0 it implicitly saves and restores machine registers as prologue and epilogue

respectively;

0 it tenninates with an end~of-interrupt instruction (c.f. a subprogram return);

0 it is typically associated with a vector location in memory which contains the

interrupt-service subprogram's start address;

0 it provides re-entrant code so that multiple instances of each may occur hannlessly.

Variables accessed by, but external to, Interrupt-Driven subprograms need special

consideration due to their asynchronous operations. Some C compilers provide the

"volatile" keyword to prevent any compiler optimisation on such variables. Ada uses

"pragma shared" to accomplish similar variable protection (Duhaut, Bidaud &

Fontaine, 1992, p 299).

• Modularity

Parnas and Clements (1972) give a set of criteria which provides for the partitioning of

software l .• odules with clearly defined intennodule communication but which avoids

unwanted interrnodule interference. The correct application of modularity can enhance

maintainability. Sommerville (1990, pl98) points out: "Maximising cohesion in a

component and minimising coupling between components is likely to lead to a

maintainable design". Such a modularisation is acknowledged to ~e desirable from

many perspectives, but chiefly from that of information hiding, which suppresses how

an object or operation is implemented and "focuses our attention on the higher

22

abstraction" (Booch, 1987, p33). However, with respect to aspects of Real-Time

performance, Laplante (1993, p76) warns of an increased overhead with subprogram

calls and their associated stack usage, that accompanies excessive modularisation.

• Low-level control

Embedded systems frequently revolve around hardware control, and as such must be

able to access intimately the low level architecture of the machine. A language used

for such systems must provide realistic constructs which will effectively facilitate data

movement between the CPU and Programmed VO and/or Memory-Mapped VO

(Laplante, 1993, p48).

• Portability

This stems from the emphasis placed by Cotigny & Pie (1991) upon the necessity of

using a "normalised language with standard libraries" for portability. It is important to

recognise that once a program has been written and tested, the real~ world continues to

evolve. Needs change, and computing hardware continually improves. Aucsmith

(1988) comments that due to enhancements and enlargements, embedded systems tend

to be "long lived and have many iterations". Where a processor is upgraded,

portability becomes a prime consideration. Emery and Nyberg(l989, p 245) define

Software Portability as simply "the effort required to get a piece of software running

on one host to run on another". Their findings conclude that the capabilities and

facilities provided by Ada assist in developing systems that are easy to port.

This concludes the discussion of the list of desirable features. The presence I absence of

these features in commonly available languages is now discussed.

Figure 3 .I emphasises the poor support for desirable Real-Time features. It presents a

comparison of features found in those languages which may be considered candidates for

Real-Time embedded-system programming. Not included in the comparison are "hybrid"

languages such as Concurrent Pascal, Concurrent C/ C++ (although some of their features

are reviewed later), and Real-Time ones such as Pearl and Euclid. This is chiefly due to

their lack of widespread availability or standardisation (de-facto or otherwise) for low cost

23

development environments. A1so missing is the feature of dynamic memory support

which, in most instances, is translated by the compiler into 0/S calls and this study

concerns itself with non-0/S hosted programs. Even if this were not the case, Stoyenko

and Kligerman (1986, p942), point out that allocation and de-allocation of dynamic

structures makes it very hard to ensure the temporal and resource determinism necessary

for real-time determinism.

Language Call-by· Call·by· Strong· Interrupt· Exception- Enum· Modularity Re-entrant Low-Level Coo

value- reference- typing .,,, Handling erated·type ""'' Control currency

Parameter Parameter

Ad• y y y y y y y y y

BASIC N N N N N N N N N

c y yo N Y" N y y y Y"

C++ y y N Y" Y" y y y Y"

FOIITRAN N y N N N N N Y" N

Modula·2 y y Y## y N y y y v

Pascal y y Y## N N y y y N

*Stmu1ated vta pomters; **Compiler I Verston Dependent; #Non-deternumstic, ##except vanant records

Figure 3.1 Feature Comparison Table (substantially augmented from an original in

Laplante(l993, p79)).

Figure 3 .I illustrates that Ada provides a more complete set of the desirable characteristics

for Real-Time embedded development Ada has now been sufficiently used for

comparative studies to have found that its use for non-trivial programs (greater than I 000

lines of code) provides 11a significant advantage over other high-order languages (such as

FORTRAN & Pascal), even for the first project" (Bhansali eta!., 1991, p26). Bhansali et

al.' s work suggests that the advantage increases with increased program size or when

software components are re-used, for which Ada is well suited.

The facilities provided by Ada frequently come at the expense of run-time efficiency.

Aucsmith (1988) summarises this as "The (Ada) language provides many features which

are not present in any other single language. The problem with using Ada for embedded

systems is more of a problem of efficient implementation of its features." Aucsmith is not

alone in acknowledging Ada's limitations of implementation. Several have felt inclined to

address Ada's inefficiency of executable code by exploring, or describing, run-time system

24

Y#

N

N

N

N

y

N

alternatives or enhancements (Dobler,1992; Kamrad, 1992; Sims,1991; Powers & Roark,

1990; Aucsmith,1988; Colton,1988; Baker,1988). Not all, by adopting a "strictly Ada"

approach, met with immediate success in terms of speed (Baker, 1988), which gives an

indication of the difficulty of altering such a highly integrated system. Struble & Wagner

(1989) offer a quantitative evaluation of Ada's tasking model, particularly with respect to

interrupt handling. Of note in their findings is that Ada compiler vendors frequently offer

two interrupt handling schemes: one to comply with the Ada validation suite; the other

non-standard but faster, to cope with Real-Time response! Interestingly, the model used

for providing pre-emptive or serial multi-task control in Ada is implementation dependent.

As Booch (1987, p281) notes "Ada semantics do not require that task scheduling applies a

time slicing algorithm".

This study addresses the run-time efficiency problem by the approach of using C as an

implementation vehicle. It addresses the lack of determinism and intenupt response by

adopting a slight departure from the Ada tasking model.

Z5

3.2 Specific Studies Similar to the Current Study
Snow (I992, p9) acknowledges that a system allowing concurrency will almost always

require more processes than the number of physical processors provided by the hardware.

The abstraction of concurrency in these circumstances, which are directly applicable to this

project, necessitates the use of a pseudo-concurrency where a processor's resources are

shared in some way. This sharing is achieved via multiplexing the processor with respect

to time, either on a pre-emptive or a co-operative basis. Snow (1992, pll) reports that

even in the early 1960s the idea of multiple threads of control was being pursued, together

with attendant problems such as memory sharing. By I 965, the idea of explicitly declaring

areas of parallelism, using programming constructs such as parbegin and parend (Dijkstra,

I965), had been proposed. Dijkstra had formalised at a high level many of the problems of

synchronising, data sharing and concurrency in his classic article "Co-operating Sequential

Processes". Principally, he identified the critical section problem, when a process is

accessing shared data, with the use of semaphores proposed as a solution. His secondary

identification was the problem of deadlock, with a deadlock detection algorithm proposed.

Dijkstra's semaphores gave way to monitors which encapsulated both the data and the

necessary operators to permit serial re-usability. These were eventually refined by Hoare

(1974).

The issues of data-sharing, or communication, between concurrently executing processes

have produced three main models (Gehani & Roome, I 993, p 154):

a) the shared memory model;

b) the asynchronous (non-blocking) message passing model; and

c) the synchronous (blocking) message passing model.

A fourth sub-model has recently emerged, as exemplified in Linda (Appleby, I99I, p2I4),

where a shared data space between, but owned by none of, the processes allows them to

create, remove and edit data.

26

Since Dijkstra' s first efforts, there has been mur't work in the problem areas of

concurrency. The problem of providing a realistic, yet deterministic concurrency model is

perhaps the single biggest problem facing the designer of a language for Real-Time

embedded-system use. Instances of concurrency models which have provided lessons for

this project will be reviewed now.

• Concurrent Pascal~

• Concurrent C;

• Oberon;

• Microsoft Windows;

• Smalltalk V;

• co-routines.

Concurrent Pascal is an instance of using an existing, already successful, language of the

time as a vehicle for the description of concurrency using a shared memory model. Two

major additions were made to Standard Pascal in order to achieve the concurrency

required for "structured programming of computer operating systems" (Brinch-Hansen,

1975, p264):

• the Process : consisting of a private data structure and a sequelltial program to

operate on that data, which may not be accessed by another process. A process

functions independently of other running processes.

• the Monitor : consisting of a shared data structure, which may be initialised, and the

operations that processes can use to access it. Processes call these operations which

then exclusively access the shared data; thus, the operations have a synchronising

effect. Monitors may be used to pass data between processes, or to system

components such as disk drives, and may call other monitors. Deadlock is prevented

by barring monitors from making recursive calls. Communications using monitors

appear to be non-deterministic.

Concurrent Pascal compilers produce code (called C-code) which relies upon an

underlying virtual machine (called a C-machine) in order to execute. The virtual machine

provides a "multiprogramming kernel and interpreter" (Mortensen, 1984, p 155) and it is

responsible for interpreting, at run-time, the C-code to executable machine code. All

27

machine specific functions and low level features such as Register-access, Addressing and

Interrupts are excluded from the Concurrent Pascal language, being handled by the virtual

machine.

Concurrent C (Gehani & Roome, 1993) is an instance of providing extensions to an

existing language, C, to handle the issues of concurrency. Although Concurrent C uses

predominantly message passing models, as with Concurrent Pascal two major additions

were made to the base language:

• the Process with parameters: In Concurrent C the process consists of two parts: a

declaration of the process name and its parameter types, and a body which additionally

contains statements to execute. More than one instance of the process may be created,

each one having its own set of parameters in order to pass information to the process

when it is created. Each process instance may be assigned a priority at its time of

creation and, if there are multiple processors available a process may be assigned to a

specific processor. In uni-processor implementations, a library provides for pre­

emptive multitasking.

• the Transaction: A caller process may interact or communicate with a receiver

process via transactions, in a similar relationship to that between a client and a server.

Two types of transactions are possible: synchronous and asynchronous. In the

synchronous case, the caller sends data to the receiver and waits for the receiver to

accept the transaction. In due course this happens, whereupon the receiver does

whatever processing is necessary and returns some value to the caller, who now

resumes execution. This allows for two way message passing, is also known as the

extended rendezvous model (Gehani & Roome, 1993, pi 54), and is similar to the Ada

tasking model. This model is non-deterministic. The asynchronous transaction allows

the caller to send information to the receiver and simply continue processing. lt wr.i'l

neither for the receiver to accept the information nor for any return information, and it

is suitable for uni-directional information exchange, and for connection to hardware

interrupts. However, it has the considerable advantage of decoupling the caller from

the receiver, but implies the use of some underlying pipe-lining of the messages. No

attempt is made to avoid deadlock, this being left to the progran1mer.

28

Concurrent C is effectively a superset of the C language, which provides for the

uninhibited use of shared memory at the simplest level (i.e. accessing objects via common

pointers or global objects). It petmits hardware interrupts to be attached to subprograms

dynamically under programmer control, via a provided library function call to effect the

association (Gehani & Roome, 1986, p821). Its compilers produce C code, i.e. it uses C

as an intermediate target.

Oberon is the single-minded progress in computer languages pursued by Niklaus Wirth,

starting with Pascal, evolving through Modula-2, and culminating in the integrated

language and operating system of Oberon. This "is a single-user. single process, multi­

tasking system designed for a workstation."(Wirth, 1989, plO). The Oberon system

presents a multi-tasking model which is <':scribed (Wirth & Gutknecht, 1992, p 13) as

allowing "the user to pursue several different tasks concurrently" but which does not

depend upon pre-emption and, in fact, Wirth & Gutknecht (1992, pl3) "classifY Oberon as

a single-process system". The Oberon system revolves around a central loop. which

resides in module Oberon, this being the heart of the 0/S. That central loop involves the

processor in continually polling event sources whilst not involved in the interpretation of a

user entered command. Synchronisation problems (described in Sebesta, 1989, p356)

existed with the programmer contiOlled, implementation dependent and hence non­

portable, multi-tasking model of Modula-2. In recognition of this, Wirth removed all

multi-tasking access from the Oberon language to its co-existent operating system

component.

Tasks within Oberon are styled according to perceived priority. Interactive tasks are fairly

localieed. being bound to local regions on the display screen and generally have a high

priority and quick execution, whilst background tasks are described as being global in

nature and are polled with low priority (Wit th & Gutknecht, 1992, p 26). Once tasks are

created, they exist in a state of suspension until they are activated by the task scheduler

passing a message to them. The synchronous mechanism for message passing here is

analogous to passing parameters to a subprogram call. When the task has finished

processing for that message it returns control to the task scheduler. The scheduler then

proceeds to the next task which has a message to reactivate it, transferring control as an

29

ordinary subprogram call and awaiting the normal subprogram return. Asynchronous

events are dealt with by intermpt service routines within special drivers that are

accessories to the 0/S. These routines buffer the result for later collection by the central

loop.

In surrunary, Wirth presents a tasking model peculiarly suited to the single user, who may

use the system to flip between tasks at will. To achieve this model, pre-emption was found

to be unnecessary. This served to eliminate any context switching and removed the need

for data protection such as locking of common resources. Deadlocks, therefore, are never

a threat.

Microsoft Windows currently runs on top of the single tasking and non-reentrant MS­

DOS, and accordingly employs a non-pre-emptive tasking model (Petzold, 1992, p8).

Windows programs are not interrupted by the operating system: instead, each program

voluntarily interrupts its own operation to let any other programs run. Coupled with this is

a "message delivery system" (Norton & Yao, 1992, piS), which takes the form of a queue.

Interrupt driven subprograms within device drivers buffer asynchronous events, e.g.

keyboard entry, into the hardware event queue for subsequent collection and processing by

the active Windows program. When the Windows program has finished processing the

message it will return control to the Windows scheduler and request any new message. In

the event of lengthy processing, the programmer can temporarily relinquish control, using

pre-defined system calls, to the scheduler at suitably placed synchronisation points. Like

Oberon, Windows also has foreground (e.g. character entry) and background processes

(e.g. printing).

The Windows model is similar in concept to Oberon's, except that the programs

themselves initiate a temporary transfer of control to a central scheduling system at

programmer controlled synchronisation points, instead of initiation by the user. A

program in this instance can be seen as a process running under the Windows scheduling

system, which also maintains queues for interprocess communication.

30

Smalltalk V. being a pure object-oriented implementation, involves "communicating

objects which send messages to each other so as to perform useful work"(Digitalk, 1992,

p251). Smalltalk V allows for pseudo-concurrency by maintaining multiple stacks of

incomplete message sends. Each stack is represented by a separate object of class Process.

At any time a single process is executing. Processes, at creation time, are prioritised which

means that higher priority processes are scheduled before those of lower priority.

Processes either terminate or, if incomplete, relinquish control with the wait construct to

the scheduler, which will allocate the processor to the next task based upon priority. In

the event of competing equal priority tasks, length of time spent "ready-waiting" will

detennine allocation. The Semaphore is used to synchronise multiple processes, where a

process will send to the semaphore the message wait, meaning to attend an event, or

signal, meaning to indicate an event has occurred. Smalltalk V also supports Interrupt

Processes.

The co-routine, exemplified in the Simula-67 and Modula-2 languages, is described by

Sebesta (1989, p347) as "a subprogram that has multiple entry points, which are controlled

by the co-routine itself: and the means to maintain its status between activations". Co­

routines provide a relatively simple means to achieve co-operative multi-tasking since they

can relinquish control to the processor and, when granted the processor's resources again,

resume execution just after the last active statement. Knowing the points of resumption

and relinquishment of control, and not being dependent upon external timing, co-routines

can be seen to be deterministic. Rather than acting in a master-slave relationship, co­

routines co-exist as peers (Appleby, 1991), passing control co-operatively. Akerbaek

(1993) suggested extensions to C++ so as to implement co-routines. In Akerbaek's

scheme each co-routine has its own stack. This becomes the current machine stack when

that co-routine is activated by being called as a normal function from the main program.

When the co-routine wishes to relinquish control it saves its current stack status before

returning to the main program as if it were a normal function. Similar work, at the

University of Brighton, by English is described in Volkman (1993, November). English,

attracted by the lack of elaborate interprocess synchronisation, presented co-routine

classes for Borland C++ under MS-DOS.

31

In summary, the multi-tasking models explored can be perceived as being according to two

models: pre-emptive and co-operative. Data sharing is less complex with the co-operative

model, needing less protection against critical sections and deadlock. The Smalltalk model

showed that prioritisation can be accommodated in a co-operative tasking model, and the

elusive temporal determinism can be achieved with co-routines. Data can be shared

between processes by using areas of shared data or the use of message queues, the latter

engaging processes synchronously (wait for a reply) or asynchronously (deliver the

message and get back to work).

The issue of writing a compiler to produce code to run on a bare machine, i.e. one without

an 0/S, was found by Colton (1988) to present some interesting problems. His solution

involved incrementally crafting a mini-operating system, predominantly in Assembler, to

perform much of the run-time support needed for the compiler. The compiler's output

code, then, is situated one layer removed from the machine. This, however, raises the

prospect of the run-time system having to be re-written for each target processor. Bentley

(1986) suggests that if an intermediate language can be found, this "circumvents much

complexity". Portability across different target machines becomes a matter of using an

available "back-end translator", provided by compilers of the chosen intermediate

language. Diagrammatically this may be represented as follows:

Target

Source language

Intermediate language

Target

2

0 0

Diagram 3.1 Bentley's use of a "back-end" translator

0 Target

n

32

The concept of using C as such an intennediate target is no longer regarded as a novel

approach, and is often adopted for very practical reasons. As Eckel (1993, p40) describes,

Bjaroe Stroustrup recognised when creating C++ that the key to acceptability is

availability. To hasten this availability, housed a C-code generator, cjront, that may be

quickly ported to any platform which boasts a C compiler. The giant A. T.&T.(trademark)

put their resources behind the creation of cjront, which translates C++- code into C, a

technique which is still commonly used on Unix C++ implementations(Cullens 1994).

Eiffel, an object oriented language which perfonns strict static type checking, uses C as its

target. Meyer (1988, p487) explains, "As a language, Eiffel is in no way an extension of

C, but the use of a widely available assembly language such as C as intetmediate code has

obvious portability advantages. 11
• Similarly, the reactive Real-Time language for

workstations, Esterel, (Boussinot & De Simone, 1991) can be translated into one of

several target languages, (Ada, Cor Lisp) which, for portability reasons, is C by default.

The practice is not limited to being a tool f"r the code generation for programming

languages. Odette (1991) describes CLIPS, a NASA developed language tool-kit for use

in Artificial Intelligence, which successfully uses C as its implementation language, and

also describes the use of C to simulate a Prolog machine.

There are other advantages. The use of C, in this project, allowed the study to concentrate

on the higher level issues of the presentation and workings of the translation process. It

facilitates an implementation without major concern for the separate problems of target

code generation and linkage.

33

3.3 Other Literature of Significance to this Study
Usually, where executable code is generated for an 0/S hosted target, that code will be

relocatable by the 0/S using well-established location techniques. Recognising this makes

it possible to envisage the possibility of locating such code so as to run on an absolute

address target. The techniques of re-locating operating system targeted files are

documented by Allison (1994) and Pillay (1990), the latter of whom presents a tutorial on

the subject, using the 80x86 processor as an example target. Diagrammatically, the

mechanism can be represented as follows:-

Application program

Source Code

Standard Compiler and Linker Location Data

Relocatable executable

output

Map file

output

Absolute

addresses

Locator used to cre-ate absolute executable code.

Rom-able code, located to execute at the

supplied absolute addresses

Diagram 3.2 The mechanism of locating absolute code

34

Both Pillay' s aod Allison's works describe how the MS-DOS staodard .EXE file header

format is combined with .MAP file information provided by MS-DOS linkers to achieve

location at the specified Absolute addresses. Pillay's article gives a comprehensive

aoalysis of that .EXE header format. Allison's article additionally describes the necessity

of providing appropriate start-up code so that the Application main program is launched

correctly. This, at least, consists of:

• setting u~ any segment access registers for program code, data and stack segments;

• establishing a program stack area;

• traosferring aoy initialised variable data from ROM to RAM;

• setting un-initialised variables to zero;

• setting-up any error (e.g. divide by zero, null access) vectors; and

• calling the application main program.

It should be noted that, since commencement of this study, several commercial programs

for the location of executable code, produced by proprietary C compilers, have become

available.

Welsh (1993) describes a method of using a laoguage based on ao 0/S hosted language to

achieve development of critical but platfonn independent components of a project, citing

his experience with an embedded data compression project. This is so that 0/S

development environments can be used to ease the initial coding phase. Welsh's

compression code was initially written in a subset of VAX hosted FORTRAN which was

sympathetic to limitations of the eventual target laoguage, Intel's proprietary PL/M. When

this phase was completed, the source was successfully traosliterated to PL/M so that it

could be compiled for the target 80386 micro-processor.

JS

The code produced by proprietary compilers, as supplied by Microsoft or Borland, quite

reasonably expects to find operating system (0/S) support. Phillips et al. (1991) advocate

caution when using procedures from the C standard library (through which C performs

much of its Input/Output), and suggest three options for determining and supplying the

program's needs for 0/S support:-

• buy the vendor's library source, then modifY it for your own purposes; or

• implement your own run time system; or

• inspect your disassembled code for calls to known 0/S function entry points.

This study is based on the concept that a reasonable and far safer alternative is to produce

code that never makes 0/S function calls. To achieve this, the Ada-like language,

provided for scripting of the original source, is automatically transliterated into a subset of

C. This subset cr'C, known here as "Safe C", has been tested for 0/S calls and will behave

in a manner sympathetic to the limited start-up procedures provided for the application

program to execute successfully.

36

3.4 Summary

The evolution of programming languages, and indeed languages in general, is a steady

process, with each advance being in response to fresh and re-ernergent needs, or the

disappearance of previous needs. What one person sees as an advantage, another may

clearly view as an unnecessary handicap. Clearly it is necessary for any language designer,

or one proposing change to an existing language, to define needs and hence responses in

an organised and structured manner and base these upon the finn foundation of fact.

Hoare's dictum that the language designer's task is one of"consolidation, not innovation"

(Hoare, 1973) is as valid now as it was when first stated.

Using facts and documented experience, the literature has been used to provide a basis for

a discussion about identifiable desirable features that cater for the special needs of Real­

Time embedded systems. Significant models of pseudo-concurrency have been discussed,

with an emergent idea that co-operating multi-tasking processes can achieve temporal

determinism using less elaborate synchronisation than that needed for pre-emptive tasking

models. Also reviewed were the reasons for, and virtues of, using a portable intermediate

language, or a safe subset of one, during the translation process from source to executable

code for the target.

37

4 Research Design

4.1 General Method
In order to produce an effective pilot implementation, it is necessary to realise three

distinct components:

• the determination of"Safe C": that is, the subset of the intermediate language C which,

when compiled, makes no 0/S calls and is therefore safe for use on 0/S-less embedded

systems~

• a translator which accepts an Ada-like language as its source code for translation into

Safe C; and

• the provision of start-up code necessary to organise the target microprocessor so as to

support the compiled program.

As noted in chapter three, commercial software is available to convert relocatable code to

absolute programs which may be executed from ROM. In the interests of expedience, such

a product is used, for this purpose, in this project.

Determination of Safe C

As Phillips et al. (1991) suggest, one way of determining whether or not the functions in a

program exhibit any 0/S dependency is to inspect the program's disassembled code for

0/S related calls. In the case of this project, the "Safe C" subset of the C language is

determinable by compiling and linking a C program containing a selected usage of each

function under test. The resultant executable may then be disassembled and inspected for

software interrupts, by which all communications to the 0/S are made. Any such 0/S calls

made by a function may be used as a criterion for eliminating that function from inclusion

in "Safe C".

The C language, by itself, is not a large language and much of its power comes from the

function libraries and pre-processor which accompany a C compiler. The task of testing

functions within those libraries is made easy because the functions tend to be grouped

within the libraries. Furthermore, within these groups, functions exhibit data or functional

similarities; thus, the task of testing is straightforward.

38

The design of the translator, from the Ada-like language to Safe C, relies heavily upon

the application of strong typing within the source language. In a strongly typed language

there may be found three distinct areas/phases within each submitted program:

• A Global Specification area which contains symbols of:

0 a declaration of each subprogram, specifYing a name, a type and any formal

parameter list to identifY the subprogram for use throughout the program;

0 all globally visible constants, specifYing their names, types and actual values;

0 all global variables for sharing data between the subprograms, specifYing their

names and types.

In the case that all global symbols are declared in this manner at the beginning of the

program, it is possible to complete the translation exercise in a single pass. This is

seen by Fischer and Leblanc (1991, p17) as having a "positive contribution to compiler

efficiency".

• For each subprogram, there exists a Local Specification area which consists of:

0 a re-iteration of the subprogram declaration, with the name, the type and the formal

parameter list as specified within the global specification area;

0 all local constants, specifYing their names, types and actual values;

0 all local variables, specifYing their names and types.

• Each subprogram, of necessity, also contains an area where the subprogram's work is

achieved. Typically, this is delimited by an identifiable beginning and ending, and

contains:

0 assignments to variables, where a left-hand side variable is used to receive an

evaluation of identically typed variables, functions or constants resident on the

right-hand side. Between the left hand side and right hand side must exist an

assignment operator (e.g. :=);

0 subprogram calls which return no value, but which may operate upon currently

visible variables and constants.

39

The translator initially finds itself in the Global Specification area, thereafter it must exist

exclusively in one of the other two areas at any point in time, and can therefore respond to

statements encountered within the submitted source code according to the particular rules

of that phase of the translation.

In order to simplifY the design of the pilot implementation there is no provision for the

nesting of suhprograms, thus visibility is restricted to the following two levels:

• global variables, constants and subprogram specifications are visible and accessible

from within all subprograros and endure for the life of the prograro; and

• local variables and constants may be referenced solely from within the currently

executing subprograro and endure for its life only. Note that local variables and

constants may obscure global entities which share the same name.

Provision of st~rl.-up code

The work of Pillay (1990) provided an ideal basis for the provision of suitable start-up

code, although further experimentation became necessary in order to accommodate

executable code generated by the 1\ficrosoft C compiler. Preparing such start-up code at

its simplest level entails:

• turnlng off all maskable interrupts;

• setting up the Code, Data and Stack registers so they may access available RAM;

• declaring the "main" function, present in all C programs, as an external callable label;

• for Microsoft C specifically, setting the global label "_acrtused" to a non-zero value to

prevent the Microsoft linker from including the default 0/S dependant start-up code;

• copying initialised data from ROM into RAM;

• calling the compiled C program via its "main" function.

40

4.2 Specific Procedures

The derivation of the "Safe C" subset, for the Microsoft C compiler version 6, relies upon

the detection of calls made to 0/S services. These services will not be present in an 0/S­

less system, and calls to them will result in unpredictable and probably fatal results. The

Microsoft C compiler is capable of generating programs to run under the operating

systems of MS-DOS, 0/S-2, and Microsoft Windows, according to configuration details

supplied to the compiler. With the compiler configured for its default production of MS­

DOS based programs, we may concentrate solely upon MS-DOS 0/S service calls.

MSwDOS 0/S services are invoked by "using the int instruction and specifying Interrupt

2lh" (Microsoft Corporation, 1991, pll), rendering their detection relatively

straightforward. The method is as follows:

• assemble start-up code so as to prevent linkage with the MS-DOS library;

• submit source code to the C compiler, compiling to object format and linking with the

assembled start-up code to produce a .EXE file;

• disassemble the .EXE file to produce an assembly listing;

• load this assembly listing into a text-editor, and search for the string 'int 21'.

In the absence of 'int 2 I' statements, the functions (properly) used within the source code

may be deemed safe for use in an 0/S-less environment.

Tools used in the above procedure are:

• the Microsoft C compiler~

• the Microsoft Assembler or Borland's Turbo Assembler;

• a Dis-Assembler (e.g. the ShareWare program "Sourcer"); and

• a text editor capable of performing text based searches (e.g. Microsoft's EDIT).

The construction of the trans!ator from the Ada-like language source code to "Safe C"

focuses upon the desirable features identified in chapter three. The decision to craft a

translator from scratch, rather than combining the use of existing tools like Lex and Yacc

is based upon the fo11owing obseiVations:

• Yacc, when used for any non-trivial exercise, produces an output which must be

submitted to a C compiler before it may be executed (Mark Williams Company, 1992,

41

pll35). The C source code produced is effectively unalterable by its lack of

readability. This represents a limitation of control over the final product which was felt

by the author to be unacceptable for this project.

• Yacc has problems dealing with any ambiguities which may be present in a language,

and which may not be resolved by the use of precedence rules executed (Mark

Williams Company, 1992, pll85). In keeping the syntax of the Ada-like language

closely aligned to that of Ada itself, such ambiguities exist principally in the

representation by names of machine specific features: for example,

0 the hardware mapping of tasks used as intenupt service routines, as distinct from

multi-tasking tasks; and

0 the location of I/0 mapped and Memory mapped hardware register variables as

distinct from notma1 program variables.

Other ambiguities exist in the automatic generation of co-routine management code.

• The effective use of Yacc appeared to the author to require a substantial learning

investment which, it was felt, could not be guaranteed to produce the desired translator

in the time available.

Ada, the language chosen for the crafting of the translator, permits the rapid

construction and easy instantiation, in various guises, of generic components such

as trees, lists, and binary searches. These facilities assist greatly in the construction

of major components of the translator. Illustrations are given in Appendix D of the

useage of Ada's generics in this implementation for the effective construction of

the symbol trees, which are necessary for rapid symbol location.

The translator addresses the list of desirable features for Real-Time Languages, identified

in chapter three in the manner described below.

• Strong Typing

Recall, from chapter three, that Sebesta (1989) suggests the idea of strong typing is

where each name in a program is associated with a single type, which is known at

compile time. Using this concept, the pilot implementation checks an declarations and

subsequent occurrences of named constants, vruiables, subprograms and parameters

with respect to consistency of type. Constants need to be assigned va1ues which are

42

consistent with their declared type. References to symbols used in left and right sides

of assignments need also to be checked for such consistency.

The relationship between declaration of a name and its subsequent reference for use in

a subprogram is that of one to many. Due to this relationship it becomes apparent that

the translator will spend some of its time inserting a declared name into some holding

structure, but much time will involve searching for that name. This mandates that the

translator employ a rapid method of searching for the declared names, for Booch

(1987a, p501) quoting Knuth states "the substitution of a good search for a bad one

often leads to a substantial increase in speed". To this end binary trees are employed

for named subprograms, variables and constants as they exhibit an order of efficiency

of insertion and searching which tends towards nlog2n (where there are n items in the

tree). Parameters, which tend to be small in number, are stored in lists as Booch

(I 987a, p 464) quoting Abo, Hopcroft and Ullman states "the more sophisticated

algorithms are generally a waste of effort for n less than one hundred". A generic

binary tree may be easily instantiated to facilitate each case of rapid storage of, and

access, trJ essential details of:

• gll1baJ constants, whose named references are replaced throughout the translation

by tht::i; values, after successful type-checking with their destination;

• global variables, whose use is pemtitted after successful type-checking with any

source or destination during assignments or operations;

• subprograms, whose use is permitted after type-checking of any return value and

constistency of connection between declared formal parameters and actual

parameters supplied in subprogram statements; and

• local constants, which are treated in similar manner to global constants in tenns of

replacing names with values.

This represents a complete, and effective, type-checking mechanism for all necessary

components of the Ada-like language. However, to cater for occasions when it is

expedient to change the type of a named entity, explicit type casting is permitted. An

example of this is when a variable of type CHARACTER needs to be output to a serial

port transmission register which is of type BYTE.

43

• Flexible parameter passing mechanisms

Parameter passing methods of IN, IN OUT and OUT parameters are facilitated for all

provided data types within the Ada-like language, there being no upper limit to the

quantity of parameters passed to a subprogram in keepiag with the consistency of its

declared formaJ parameters.

Simple data types provided in the Ada-like language are as follows:

• INTEGER -- a !6 bit signed value, e.g. -1968;

• WORD -- a 16 bit unsigned value e.g. 43764;

• CHARACTER -- a 7 bit value g 'a'· e. . '

• BYTE -- an 8 bit unsigned value e.g. 255

• ADDRESS --a 20 bit unsigned value e.g. 655536

* FLOAT --a floating point number e.g. -197.64

The decision to service only simple data types is taken to keep the pilot implementation

manageable in size, yet stiU demonstrate effective addressing of the desirable features

identified in chapter three. Complex and user defined data types are essentiaJly

mathematical extensions of the simple types to be found in a language, and operations

on these have been deferred to a later study.

• Recursion

The decision of whether to prohibit or permit recursion within a language is a classic

illustration of the type of calculated compromise which must be borne by a computer

language designer. Inevitably the language must be aimed at a certain type of

programmer, and Sebesta (1989) suggests that the designer must consider a balance

between freedom of expression within the language and protection of the programmer

from their own mistakes. It is the author's experience that embedded systems

engineers are often instrumental in designing both hardware and software for their

system. They may be assumed to be aware of any limitations of memory space which

would be affected by excessive recursive stack use. Recursion, involving self­

referential subprograms, therefore is included in the Ada-like language, subject to the

general strict type checking rules for subprogram calls.

44

• Exception handling

From chapter three we have seen the immense value of potential protection offered to

embedded programs by the facility of exception handling. However, the sheer size of

intercepting and coping with all possible sources of unexpected or erroneous program

termination renders it beyond the practical scope of this project. Consequently, the

subject of exception handling is deferred to a later study.

• Concurrency

An emergent idea was developed in chapter three of using co-routines to achieve

temporal determinism within a pseudo-multitasking program. Ada provides the

keyword "task" to denote a subprogram which is involved in some kind of background

processing.

Tasks which are used as an expression of concurrency will not be associated with a

specific memory location, as is the case with interrupt service routines. In order to

function correctly, co-routines must have two essential components:

0 synchronisation points that, when encountered, smoothly relinquish control to the

next waiting process; and

0 management code to resume the execution successfully from the point where it was

last relinquished from within the co-routine.

Once again noting that embedded systems engineers are, in general, intimately familiar

with the requirements and limitations oftheir system, the placing of the synchronisation

points is reasonably placed under programmer control by provision of the keyword

«synch" (see Appendix B). However, during the translation process when the

translator will be aware of the location of the synchronisation points, it is then a

relatively simple matter for the translator to generate code to manage invisibly the

relinquishment and subsequent resumption of control.

For co-routines to perfonn any worthwhile work, they must be able to communicate

with each other. Recalling that co-operating processes such as co-routines are never

able to compete simultaneously for data, the "shared data" model is used. In the pilot

45

implementation instances of the shared data otjects are, in fact, globally declared

variables. Co-routine tasks in the Ada-like language communicate solely through these

objects and, therefore, are parameter-less subprograms.

• Elimination of constructs with indeterminate execution times

110 ports may change their state asynchronously with respect to the main flow of the

program and it is desirable that these should not be relied upon to terminate a loop

construct because in the worst case, the loop may never tenninate. The translator

prohibits the inclusion of variables mapped to hardware locations with representation

clauses in the resolution of loop control. Whilst this does not trap all possibilities of a

program becoming "hung" while waiting for a port to change state, it goes some way

to focus the programmer on this possibility, by trapping obvious places where tills may

occur.

• Interrupt types

Hardware intenupts are an essential part of most embedded systems, for they pennit

the rapid processing of asynchronous events as close to the time of their occurrence as

possible. Few languages pennit the automatic association between a hardware

interrupt vector and the code responsible for servicing the interrupt. Ada pennits this

by use of representation clauses, where the language lets us refer to the interrupt

vector by the name of the subprogram with which we wish it to be associated. In

similar manner, the Ada like language permits such association, and the translator

necessarily supplies all code needed to effect the association at run-time.

It is necessary to protect any globally declared variable from the asynchronous effects

of being accessed during interrupt servicing. This is achieved by the translator

declaring all globally declared variables to be "volatile", indicating such protection to

the C compiler.

46

• Modularity

In this pilot implementation modularity is provided at subprogram level only. This

pennits the programmer the opportunity to maximise cohesion at a functional level,

and to minimise coupling by the choice of parameters used to communicate with a

subprogram. Package level modularity is deferred for a later study.

• Low-level control

Intimate machine access to allow the manipulation of 110 ports is a vital requirement of

embedded systems control. The Ada~like language permits such control in two

aspects:

0 permitting named port variables to be associated with hardware locations by means

of representation clauses. Such ports come in two "flavours":

* 110 mapped {denoted by a representation clause containing the map at

keyword); and

* memory mapped (denoted by a representation clause containing the use~ at

keyword).

From a programmer's point of view there is little difference between these, and the

Ada-like language pennits identical operations to be performed on both types. The

translator must, howev~1 supply code for the machine to access each type in

prescribed fashion. This differs from most current language implementations (e.g.

Turbo Pascal, Borland C, Microsoft C, Meridian Ada), which force the

programmer to use procedures to write to I/0 ports and functions to read their

value. This has a potential portability benefit, since porting I/0 mapped variables

to a memory mapped machine wiU only necessitate a change of the representation

clause from MAP_ AT to USE_ AT.

0 the facility to perform bitwise operations such as bitwise AND-ing and OR-ing of

variables and ports. Again, from the programmer's point of view there is little

difference between the expression of Boolean logical operations and bitwise logical

operations and it is logical that identical keywords are used. The translator

determines the particular operation from the type of variables being operated upon,

and it supplies appropriate code to the C compiler. In this implementation bit-

47

shifting operations (e.g. Shift Left and Shift Right) have not been supplied, chiefly

for reasons of time; and

0 the provision of statements to tum on and tum off machine intenupts.

• Portability

Portability is achieved by using C as the intermediate language in the manner of

Bentley's "back-end" translator (see Diagram 3.1). However, although an ANSI

standard exists for the C language, all C compilers are not the same! Fortunately, the C

pre-processor pennits the use of macros to align C source code statements in such a

manner as to be acceptable to various compilers. This pilot project is directed toward

the Intel 8086 instruction set computers. Accordingly, macros are supplied to satisfY

compilation by both :Microsoft and Borland C compilers. An illustration of such code

is given in Appendix E.

48

4.3 Verification of the translation software
Sommerville (1990), in his discussion on fonnal specification and his discussion on fonnal

verification, suggests that an implementation be verified for correctness against a known

precise specification. In the case of a computer language, a precise and formal

specification may be expressed using the Extended Backus-Naur Fonnat (EBNF). Such a

specification is included for the Ada-like language in Appendix B.

This pilot implementation must be able to translate correctly (in readiness for compilation

by the C compiler and subsequent execution) a program written in accordance with the

fonnal EBNF language specification. It will be a measure of portability that the code be

found acceptable by the two major C compilers for the 8086 family of processors: namely,

those of Microsoft and Borland. Material presented in Appendix E illustrates the methods

by which compatibility between differing C compilers is achieved. Differing machine

specific instructions, such as those for addressing I/0 mapped ports preclude any attempt

at a generalised compatibility for C compilers.

Finally, on a more general note, the translator makes no attempt at error-repairing. That

is, when an error is encountered in the submitted source code, the translator will tenninate,

and, also infonn the user of the error-type, the token at the point of failure, and the line

number where the error may be found in the source code.

4.4 Summary
The major components of design for the pilot implementation of an Ada-like language

have been described. In the course of chapter three, a list of desirable features for Real­

Time languages was developed. In this chapter a response has been made to each element

on that list. Finally the broad criteria by which the implementation may be judged in tenns

of success or failure have been introduced.

49

5 Findings

5.1 The Implementation of the Study

As stated in chapter four, the implementation required three major components to be

produced:

• the determination of"Safe C". This involved the selected use of groups of functions.

These were compiled, disassembled and inspected for the tell-tale "int 2lh" instruction

which, when present, revealed a dependency upon the 0/S. Having established the

procedure, this component became a straightforward process and its tabulated results

are given in Appendix C of this document.

• the translator which puts into practice, to the extent described in chapter four, the

desirable features for real-time languages espoused in chapter three. This pilot

implementation has been accomplished using the Ada language, which lends itself well

to the fabrication, and facile re-use, of substantial portions of code. Notwithstanding

this, the project proved to be a substantial undertaking and required approximately

5500 lines of source code to complete the working model.

• the provision of start-up code to support the compiled program. This, essentially

represented a refinement of Pillay's (1990) work, chiefly in the area of the specific

details required by the chosen target microprocessor

Having completed these three major components, it now became necessary to prove the

effectiveness of the pilot implementation. This involved the selection and production of

two further key elements:

• a suitable target system, adequately equipped to demonstrate a working test program

expressed using the Ada-like language detailed in Appendix B; and

• such a working test program.

50

The target system

Embedded-systems engineers, when selecting hardware, must include such criteria as

suitability and availability. The question of suitability looms large because, above all, the

hardware must be capable of doing the required processing in a timely reliable manner.

Availability must also be considered carefully, as considerable investment will occur before

production models may be released, at which point the engineering investment may begin

to be recouped. The hardware components of the production model must continue to be

available in economically viable quantities until a satisfactory return on that investment has

been achieved.

Based upon the aforementioned criteria. the chvice for the target system centres upon the

NEC V25 microprocessor which exemplifies a medium-performance low-cost processing

device. Together with its accompanying hardware (designed and produced by Sturt

Technology of Adelaide, South Australia) it is eminently suitable for demonstration of the

features of this project. In terms of availability the target system is priced at a level which

makes it attractive for incorporation in embedded systems requiring large or small

production quantities. In short, it is representative of the kind of system upon which an

embedded-systems engineer, such as the author, could be expected to rely in order to

develop a product.

The V25 processor chip is a complete microcomputer subsystem whose core CPU is

software compatible with the Intel 8086 range of processors: consequently, it can support

code generated by PC based C compilers (e.g. Microsoft C). On chip, there exist two­

hundred and fifty-six programmable byte-wide memory-mapped register ports to provide

fucilities which include:

• two full duplex asynchronous serial ports;

• twenty-four parallel 110 lines;

• two sixteen-bit timers;

• a twenty-bit time base counter,

• a programmable interrupt controller; and

• a two-channel Direct Memory Access (DMA) controller.

51

\

On power-up, these memory mapped register ports are relocatable within a wide range of

the total address space. Off chip, the V25 addresses a potential one Mbyte memory and

provides a sixty-four kbyte 1!0 mapped port address space. In this 1!0 mapped port

address space is a Real-Time clock calendar chip/integrated circuit (I. C.). An on-board

EPROM of up to sixty-four kbyte, and two thirty-two kbyte RAM l.C.s are provided.

Further memory and 1!0 mapped devices may be accommodated externally (off-board) via

control. address and data bus lines for which connectors are provided. However, it should

be noted that in order to achieve any real functionality with the '~25 on chip devices,

substantial initialisation of both their registers and the CPU interruJ.. ~gisters is necessary.

From the programmer's perspective, the I/0 and memory maps appear as in Diagrams 5.1

and 5.2, respectively.

FFFFH

OOOOH

EXTERNAL

(OFF-BOARD)

l!OMAPPED

SPACE.

The on-board Real-Time clock chip is

mapped onto registers OOOOH .. OOIFH

Figure 5.1. 110 map of target system. (Addresses are in hexadecimal format)

52

FFFFFH

EOOOOH

OFFFF H

08000H

OOOOOH

128kbyte

EPROM AREA

EXTERNAL

(OFF BOARD)

MEMORY

AREA

32kbyteRAM

32kbyteRAM

Power~up program start vector

placed at address FFFFO H

Interrupt Service Routine Vectors

are in the lowest lkbyte ofRAM.

Figure 5.2. Memory map of target system. (Addresses are in hexadecimal fonnat)

53

The test program

The test program was designed to demonstrate the laoguage features developed in this

project aod, also, to represent the sort of program which ao embedded system could

reasonably be expected to achieve: e.g. that of protocol conversion and periodic message

transmission. The target hardware includes two asynchronous serial ports and a Real­

Time clock chip. Under the test program, one serial port is configured to support the

RS232 interface at ninety-six-hundred bits per second, the other to support the RS422

interface at forty-eight-hundred bits per second. Additionally, the output of the Real-Time

Clock "seconds" port is transmitted once per second.

One of the classical demonstrations of concurrency is the producer - consumer

relationship as described in Deitel (1990, p90) aod Gehaoi (!989, pl25). The producer is

engaged in generating data that a second process, the consumer, uses when available.

Importantly, the producer is decoupled from the consumer such that the consumer cannot

slow down or otherwise regulate the producer, which is free to generate data within

reasonable limits as rapidly as it needs. Varying this relationship, the test program's role

incorporates the following considerations:

• data may be forthcoming from three sources for collection by the consumer:

0 the RS232 serial port: whereupon an interrupt service routine (ISR) task buffers

the data and raises a flag to indicate its presence;

0 the RS422 serial port: whereupon a second ISR task performs similar buffering aod

flag-raising; aod

0 a producer task, which continuously polls the Real-Time Clock chip to detect the

presence of fresh "seconds" upon which that data is buffered aod flagged;

• the consumer will perform as follows:

0 when data is available from either of the serial ports, it will send that data to the

other serial port; aod

0 when data is available from the fresh "seconds" producer, it will send the latest

"seconM' in character form to the RS232 serial port;

54

• both producer and consumer demonstrate the ability to communicate meaningfully with

each other and with machine hardware; and

• asynchronous events are handled by interrupt service routines and buffered for later

use by the consumer.

Complete listings of both the source test program in our Ada-like language, and the

intennediate "Safe C" translation are given in Appendix F. Note that while the use of

mixed case in the source listings is arguably unattractive, its use demonstrates the case­

independence of the translator.

Annotated extracts from the test program are now examined, together with their translated

"Safe C". The purpose of this examination is twofold: first to demonstrate the "behind the

scenes" work done by the translator; and, second to demonstrate that C makes an excellent

intermediate language.

Every program must have only one driver subprogram (Fig. 5.3a). From the programmer's

perspective, this identifies the main entry point to the program.

I driver TEST_pROG;

Figure 5.3a. Syntax of a driver subprogram specification.

This distinction cannot be carried through to the C compiler, so it is translated as a

subprogram with no return value, which inC is of type void (see Fig. 5.3b). Note also that

the first statement in the translated code enables the inclusion of the macros written to

align the "Safe C" code to the chosen C compiler, thus increasing portability. This file,

"standard.c" is presented, in its entirety, in Appendix E.

#include "staudard.c"

void test_prog(void);

Figure 5.3b. Initial lines of the translated "Safe C" code.

Specifications for functions and procedures (exemplified in Fig. 5.4a), with and without

fonnal parameter declarations are made as in the Ada language. These form the

translator's foundation for flexible parameter passing and strong-typing and it is against

these specifications that all type checking is done with respect to parameters passed and

function return types.

function CHAR_ LENGTII_ CONVERT(THE _LENGTii : integer) return byte;
procedure !NIT_ REGISTERS~
procedure SET_SERIAL_PORT (THE_PORT

THE_BAUD_RATE
THE_PARITY
BITS_PER_CHARACTER
THE STOP BITS

:INTEGER;
:INTEGER;
: CHARACTER;
:INTEGER;
:INTEGER);

Figure 5.4a. Subprogram specifications in the Ada-like language.

As may be seen from a comparison of Figs. 5.4a and 5.4b, the translation of subprogram

specifications is a fairly literal process.

unsigned char char _Iength_convert(int the_length);
void init_registers(void);
void set_ serial _port(int the_port,int the_baud_rate,char the _parity,

int bits _per character,int the stop bits);

Figure 5.4b. Translation of subprograms in Fig. 5.4a.

56

Next are specified some Interrupt Service Routines (ISRs). These tasks are invoked by a

hardware interrupt mechanism which is triggered by a hardware event. They are tied into

that hardware interrupt mechanism by having their code starting address placed/located at

a dedicated place in memory. This place is cal!ed a vector and there is one such vector per

hardware interrupt source. The clause which attaches the task name to the memory

location, via the keyword use_ at, is called a representation clause.

task SERIAL_PORT_O_!SR; --for on-chip serial port 0
for SERIAL_PORT_O_ISR use_at52; --located at memory address 52

task SERIAL_PORT_l_!SR; --for on-chip serial port 1
for SERIAL PORT I ISR use at 68; --located at memory address 68

Figure S.Sa. Specification of ISR tasks.

The translated ISR tasks are distinguished by being declared of type void interrupt. The

keyword interrupt tells the C compiler to protect the machine state by saving all CPU

registers on the stack and, in addition, to terminate th(:: subprogram by a "return from

interrupt" instruction instead of a subprogram return. As C does not provide for automatic

location of ISRs at a particular vector, the translator stores the location of the ISR vectors

for future reference when producing the location code.

void interrupt serial_port~O_isr(void);
void interrupt serial _port I isr(void)~

Figure S.Sb. ISRs in Care distinguished by the keyword interrupt.

The following co-routine tasks are distinguished from hardware event driven tasks (ISRs)

by not being located at any memory address (Fig 5.6a).

task CONSUMER;
task PRODUCER;

-- a co-routine task
--a second co-routine task

Figure 5.6a. Declaration of co-routine tasks.

Once again there is no way of informing the C compiler of these subprograms' special

status, but the translator stores this for reference when translating the co-routine bodies.

Their manner of returning is that of a normal function, and the C compiler's code

generator determines which machine registers should be saved and restored in the

subprogram's prologue and epilogue.

void consumer(void);
void producer(void);

Figure 5.6b. Co-routine task specifications translate to parameterless subprograms.

57

Constants, as seen in Fig. 5.7a, are declared in simular manner to those in Ada. However,

their names are never used in the translated "Safe (.;" as every reference to them is type­

checked, whereupon their value substituted in place of the name.

SER!AL_PORT_O: constant INTEGER:- 0;
SERIAL_PORT l: constant INTEGER:= 1;

Figure 5. 7a. Constant declarations in the Ada-like language.

Some global variables, of type byte (unsigned 8 bits [0 .. 255]) and boolean ([True/False])

are declared in FigS. Sa. These may be used to pass data where co-routine tasks need to

communicate.

RECEIVED_CHAR_O,
RECEIVED_ CHAR_! : byte;

CHAR_WAITING_AT_O,
CHAR_WAITING_AT_I :boolean;

Figure 5.8a. Ada-like declaration of variables.

Where variables are global, the translator prefixes their type with the C keyword volatile.

This prevents any attempt at optimisation by the C compiler where they would be

vulnerable to becoming inadvertently overwritten. An instance of such optimisation is

where variables are passed as parameters within CPU registers, instead of via the slower,

but more secure, stack.

volatile unsigned char received_ char_ 0;
volatile unsigned char received_ char _1;

volatile BOOLEAN char_ waiting_ at_ 0;
volatile BOOLEAN char waiting at I;
Figure 5.8b. Translated global variables in "Safe C" are declared as volatile.

58

Recall that for purposes of low-level control, the Ada-like language permits the

representation of a hardware location by a name (e.g. in Fig. 5.9a). These located variable

registers are hardware registers which must be configured, overwritten and read in order

to make the machine work under low-level program control. Note that the names (e.g.

BRGO) replicate those used throughout the V25 CPU documentation.

-The first examples are of memory-mapped /10 ports. The names are located at
-hardware locations through the use of the keyword use_ at in their representation
-clause.
BRGO, --Baud Rate Generator 0
SCCO --Serial Communication Control Register 0

:byte;
for BRGO use_ at 1015658;
for SCCO use_at 1015657;

--For /10 mapped ports, the use of the representation clause to attach a name to an 110
--mapped address differs only in the use of the keyword map_ at.
REAL_TIME_SECONDS_PORT: BYTE;
for REAL_ TIME SECONDS PORT map at 2;

Figure 5.9a. Ada-like declaration of hardware registers, both memory and 1/0

mapped.

There is no way of meaningfully passing this location data to the C compiler.

Consequently, the translator declares these variables as normal globals, retaining the

location data for substitution into C pre-processor macros when the located variables are

referenced in sub-programs.

!!first the two memory mapped 110 ports
volatile unsigned char brgO;
volatile unsigned char sccO;

!/followed by the /10 mapped port
volatile unsigned char real time_seconds_port;

Figure 5.9b. Hardware register declarations in C cannot be distinguished from

normal variables.

This concludes the extracts from the global specification area and their "Safe C" translated

counterparts. Extracts from the second and third areas: local specifications and

subprogram bodies will now be examined in similar manner.

59

The function in Fig. 5.10a returns a value, ready for insertion into the on-chip Serial

Communications Control Register, according to the Baud rate. It serves to demonstrate

application of the case statement, variable assignments and use of recursion.

function SET_SCC(TIIE_BAUD_RATE: INTEGER) return BYTE is
RETURN_ V AR : BY1E;
begin
case THE_BAUD_RATE is

when 110 => RETURN_ V AR := 8;
when 150 =>RETURN_ VAR := 7;
when 300 =>RETURN_ VAR := 6;
when 600 "">RETURN_ VAR := 5;
when 1200 =>RETURN_ VAR := 4;
when 2400 =>RETURN_ VAR := 3;
when 4800 =>RETURN_ VAR := 2~

when 9600 =>RETURN_ VAR := 1;
when19200 =>RETURN_VAR:= 0;
when others =>RETURN_ VAR := SET_SCC(9600);

end_case;

return RETURN_ V AR;
end SET SCC;

Figure S.lOa. An Ada-like subprogram body.

60

Function SET_ SCC is translated to C in a fairly literal manner, showing how effective the

C language is when used as an assembly language for a High Level Language. As the

translated C code has been automatica11y generated, nested indentation levels, used to aid

readibility, were not practical. To compensate for this, comments in the C source code are

automatically inserted by the translator (e.g. at the end of all constructs) to aid in its

legibility. This proved very useful to the author during the crafting of the translator when

inspecting the translated code for correctness! However, for readability purposes within

this section, indentation is employed.

unsigned char set_scc{int the_baud_rate){

unsigned char retum_var;
switch(the_baud_rate){
case 110: retum_var= 8; break;
case 150: retum_var= 7; break;
case 300: retum_var= 6; break;
case 600:
case 1200:
case 2400:
case 4800:
case 9600:
case 19200:
default:

} /*switch*/

retum_var= 5~ break;
retum_var= 4; break;
return_var= 3; break;
return_var- 2; break;
return_ var- I: break;
retum_var= 0; break;
rctum_var- set_scc(9600); break;

return return_ var;
}/* end of set sec*/

Figure 5.10b. ''Safe C" translation ofthe SET_SCC function in Fig 5.10a.

61

The on-chip registers must be properly set in order for the hardware to perfonn correctly.

This subprogram, Set_Seriai_Port, demonstrates how much setting is necessary to coax a

serial port into life. It also serves to demonstrate the flexible parameter passing

mechanism, bitwise operations (and & or) on registers and data, and the use of constants

to increase code readability. Note the use of the above subprogram (SET_SCC) to load

the hardware registers scco and sec I.
procedure SET_SERIAL_PORT (THE_PORT

THE_BAUD_RATE
THE_PARITY

ASYNCH
TX_READY
RX_ENABLE

BITS _PER_ CHARACTER
THE_STOP_BITS

: constant BYTE := 1;
; constant BYTE := 128;
:constant BYTE:= 64;

: IHTEGER;
:INTEGER;
: CHARACTER;
INTEGER;
: INTEGER) is

ERROR _INT_D!SABLE_ MASK
TX_ENABLE

: constant BYTE := 71; --disable error Interrupts
:constant BYTE := 64; --enable Tx generally

BIT _P ARAMS : BYTE;
begin
BIT _P ARAMS := ASYNCH;
BIT_PARAMS := BIT_PARAMS orTX_READY;
BIT_PARAMS :=B!T_PARAMS orRX_ENABLE;
BIT_PARAMS :=BIT _PARAMS or PARITY_ CONVERT(THE_PARITY);
BIT _PARAMS := BIT_PARAMS or CHAR_LENGTH_CONVERT(BITS _PER_ CHARACTER);
BIT_PARAMS := BIT_PARAMS or STOP _BITS_CONVERT(THE_STOP _BITS);
case THE_PORT is

when 0 =>
BRGO := SET_BRG (THE_BAUD_RATE);
SCCO := SET_SCC (THE_BAUD_RATE);
SCMO := BIT_PARAMS;
SEICO := SEICO and ERROR_INT_D!SABLE_MASK;
SEICO := SEICO or 64;
SRICO :=SRI CO and 7;
STICO :=STICO and 199~
STICO :== STICO or 64;

when I =o>
BRG! := SET_BRG (THE_BAUD_RATE);
SCC! :=SET_SCC (THE_BAUD_RATE);
SCM! := BIT_PARAMS;
SEICI := SEICl and ERROR_INT_DISABLE_MASK;
SEICI := SEICI or 64;
SR!Cl := SRIC I and 7;
ST!Cl := ST!Cl and 199;
STICl := STICI or 64;

when others => null;
end_case·,

end SET_SERIAL_PORT;

Figure S.lla. Priming an on-chip serial port for action.

62

The "Safe C" production of SET_ SERIAL _PORT is a fairly literal translation of the

source text in that variables are assigned the prescribed values, and have operations

performed upon them. It can be seen, however, that the translator is doing considerable

"behind the scenes" work in providing code to handle the memory-mapped variable names,

which have their assignments achieved via the mem_var_get and mem_var_put operators.

These operators are, in fact, macros which the pre-processor will resolve at compile time.

Due to the peculiar segmented addressing needs of the 8086 family ofCPUs, the translator

has calculated the segment and offset which detennine the actual location within the

CPU's twenty-bit address space.

void set_ serial _port(

unsigned char bit_params;
bit_pararns"" l;

int the_port,int the_baud_rate,char the_parity,int bits_per_character,
int the_stop_bits){

bit_params""' bit_params /128;
bit_params= bit_pararns)64;
bit_pararns= bit_params I parity_convert{the_parity);
bit_params= bit_pararns I char _length _convert (bits _per_ character);
bit_params=: bit__params I stop_bits_ convert(the_stop _bits);
switch(the _port){
case O:

mem_var_put(61440, 32618, set_brg(the_baud_rate));
mem_var__put(61440, 32617, set_scc(the_baud_rate))~
mem_var_put(61440, 32616, bit_params):
mem_var__put(61440, 32620, mem_var_get(61440, 32620) &71);
mem_var__put(61440, 32620, mem_var_get(61440, 32620) 164);
mem_var_put(61440, 32621, mem_var_get(61440, 32621) &7);
mem_var_put(61440, 32622, mem_var_get(61440, 32622) &199);
mem_var_put(61440, 32622, mem_var_get(61440, 32622) 164);
break;

case 1:
mem_var_put(61440, 32634, set_brg(thc_baud_rate));
mem_var__put(61440, 32633, set_scc(the_baud_rate));
mem_var_put(61440, 32632, bit__params);
me"in_var_put(61440, 32636, mem_var_get(61440, 32636) &71)~
mem_var_put(61440, 32636, mem_var_get(61440, 32636) 164);
mem_var_put(61440, 32637, mem_var_get(61440, 32637) &7);
mem_var__put(61440, 32638, mcm_var_get(61440, 32638) &199);
mem_var_put(61440, 32638, mem_var, _ _get(61440, 32638) 164);
break;

default: ; I* null statement*/
break;

} /*switch*/
}/*end ofset_serial_port*/

Figure 5.!lb. "Safe C" production of procedure SET_SERIAL_PORT.

63

Procedure Put_ Char demonstrates an instance where constructs with indetenninate

execution times can be eliminated. On this machine it is necessary to wait until the

Transmit buffer indicates it is empty (by setting bit 7 of register STICO) before a fresh

character may be transmitted. If this were to be accomplished with a while loop (e.g.

while (STICO < 128) loop null; end _loop;) then clearly, if the transmit buffer never

emptied, the program could loop endlessly. Accordingly, the translator rejects any while

loops whose tennination is dependant upon a located variable. The for loop used in this

instance is a preferable mechanism because it is detenninistic.

procedurePUT_CHAR(TO_THE_PORT: INTEGER;
THE_ CHAR :CHARACTER) is

LOOP_ COUNTER : INTEGER;
begin

if(TO_THE_PORT" 0) then
for LOOP_ COUNTER in I .. 10000 loop

if(STICO >= 128) --test if we can send the char
then

STlCO '" STICO and 127;
TXBO :~BYTE(THE_CHAR);

exit~
end_if;

end_ loop;
else
for LOOP_ COUNTER in I .. 10000 loop
if(SnCI >" 128) rl1en

S"DCI '" ST!CI a:od 127;
TXBI :~BYTE(THE_CHAR);
exit;

end_if;
end_loop~

end_if;

end PUT_ CHAR;

--remove buffer empty flag
-- demonstrate an explicit type-cast
-- while putting the char into the
--transmission register
-- then get out of the loop

--as above, but for Serial port 1
--can we send the char?

Figure 5.12a. Sending a character from a serial port is an instance where

indeterminate constructs can be eliminated.

64

Procedure PUT_ CHAR demonstrates the code necessary to achieve an exit from within a

loop. Whilst the C language does provide the keyword break, it is not possible to use this

as an exit from within a loop in all situations. For example, C does not provide a natural

way to break out of a loop from within a switch-case statement. A workable alternative is

to always use a computed goto statement as demonstrated here. In order to achieve this,

the translator has to create a unique label for every end _loop, in case an exit is required.

Wben this occurs the exit statement is matched to the end_loop. The EXIT statement

which appears in the C code below is in fact a macro that the pre-processor will convert to

the goto keyword.

Again, note the translator provided comments (e.g. for an explicit type cast) inserted to

make reading the "Safe C" translation easier, and the translator's automatic recognition

and treatment of memory-mapped variables in Fig. 5.12b.

void put_char(int to_the_pon,char the_char){

int loop_counter;
if(to_the_pon ~ 0){

for(loop_counter-1~ loop_countel'V'-10000; loop_counter++){/*(Loop Labei==Ll:)*/
if(mem_var_get(61440, 32622) >== 128){

mem_var_put(61440, 32622, mem_var_get(61440, 32622) &127);
mem_var_put(61440, 32610, (BYTE)the_char/*Explicit Type Cast*/);
EXITLI;

}/*end if*/
) Ll:;

} else {/*else pan*/
for(Ioop_counter-1; looo_counter<=IOOOO; loop_counter++){/*(Loop Label=L2:)*/
if(mem_var_Jlet(6l44D, 32638) >= 128){

mem_var_put(61440, 32638, mem_var_get(61440, 32638) &127};
mem_var_put(61440, 32626, (BYTE)the_char/*Explicit Type Cast*/);
EXITL2;

}/*end if*/
) L2:;

}/*end if*/
}/*end of put_ char*/

Figure 5.12b. The translation ofPUT_CHAR, showing the loop EXIT mechanism.

65

Interrupt Service Routine (ISR) tasks differ from all other types of subprogram in that they

are invoked, asynchronous to the main program flow, by a hardware mechanism. When

task SER!AL_PORT_O_ISR was declared, it was attached to a hardware interrupt vectOJ

by means of a representation clause (see Fig. 5.5a). When a character arrives at serial pon

0, the hardware interrupt mechanism associated with serial port 0 causes task

SERIAL_PORT_O_ISR to be invoked. Its code causes the arrived character and any error

condition to be read from appropriate registers (RXBO and SCEO respectively). Both

items are placed in a Global variable for subsequent collection by the consumer co-routine.

It then remains for the intenupt control register (SRICO) and error control register

(SEICO) to be cleared of their interrupt condition before the subprogram tenninates.

Interrupt Service Routines should exhibit concise code so that they may complete their

execution, then rapidly restore the machine to be ready for the next interrupt.

task SERIAL_PORT_O_ISR is
begin

ERROR_COND_O :~ SCEO;
RECEIVED_ CHAR_ 0 :~ RXBO;
CHAR_ WAITING_AT_O :~TRUE;

SRICO :"' SRICO and 127; -- clear this interrupt
SEICO := SEICO and 127; --and any pending error interrupt

end SERIAL PORT 0 ISR;

Figure 5.13a. An Ada-like ISR, which collects an incoming character.

66

Apart from the use of the C keyword interrupt, the ISR task looks like a normal C

function. However, it is necessary for the translator to automatically insert the expression

FINT in order to satisfactorily terminate an internal interrupt for the V25 chip. The

expression FINT is expanded by a macro in "standard.c" Qisted in Appendix F) to produce

appropriate code for the V25 CPU.

void interrupt serial _port_ 0 _isr(void){

error_cond_O= rnem_var_get(61440, 32619};
received_char_O = mem_var_get(61440, 32608);
char_waiting_at_O = true;

mem_var_put(61440, 32621, mem_var_get(61440, 32621) &127);
mem_var_put(61440, 32620, mem_var_get(61440, 32620) &127);

FINT·
' }/*end of serial _port 0 isr*/

Figure 5.13b. Translation of the ISR in Fig 5.13a.

The largest area of "behind the scenes" work done by the translator is that of automatic

production of management code for co-routine tasks, which differ substantially from all

other subprogram types covered so far. To demonstrate this, both Ada-like and "Safe C"

code for the two co-routine tasks: PRODUCER and CONSUMER, will now be examined.

67

PRODUCER (Fig 5.14b) polls the real-time clock "seconds" register (at I/0 mapped

variable REAL_TIME_SECONDS_PORT), logging and flagging the occurrence of every

fresh second. In order to make life easier for CONSUMER, PRODUCER transforms the

raw BCD coded "seconds" byte into two representative characters, in readiness for

transmission. Explicit type casts are necessary to convert the BYTE data into

CHARACTER data to be stored in readiness for collection by CONSUMER.

task PRODUCER is
TEMPORARY_ BYTE: BYTE;

ASCII_ORDINAL_O: constant BYTE:= 48; -'0' position in the ASCII table

UPPER _NYBBLE : constant BYTE := 240~
LOWER_NYBBLE: constant BYTE:= 15;

begin
if (REAL_ TIME_SECONDS_PORT i" THE _SECONDS_ STORE) then

-- First log the new value
THE_ SECONDS_ STORE:" REAL_TIME_SECONDS_PORT;

-- We need to split up the lO's and Units columns of the seconds
-- First the IO's or Most Significant Digit...
--isolate upper 4 bits, in which we will find the 'lO's column
TEMPORARY_BYTE '" THE_SECONDS_STORE and UPPER_NYBBLE;
-- move them into the lower 4 bit area
TEMPORARY _BYTE'" TEMPORARY_BYTE 116;
-- make this into the byte representation of an ASCII character
TEMPORARY_BYTE :" TEMPORARY __ BYTE + ASCII_OROINAL_O;
--and save this Most Significant Digit
-- in readiness for the Consumer process
-- n.b. the use of explicit type-cast
SECONDS_MSD :"CHARACTER(TEMPORARY_BYTE);

-- now isolate the 'units' component of the "seconds"
TEMPORARY_BYTE := THE_SECONDS_STORE and LOWER_NYBBLE;
-- make this into the byte representation of an ASCII chamcter
TEMPORARY _BYTE'" TEMPORARY _BYTE+ ASCII_OROINAL_O;
-- and save this Least Significant Digit
-- in readiness for the Consumer process
SECONDS_LSD :"CHARACTER(TEMPORARY _BYTE)·,

NEW_SECOND
end_if:

end PRODUCER;

:"TRUE;

Figure 5.14a. PRODUCER- the simpler of the co-routine tasks.

68

The translator recognises that PRODUCER is a co-routine, but because it has only one job

to perform (i.e. the storage of new "seconds" when they occur), it does not need to

generate any co-routine management code. Of interest though, is the translation of the

routine reading I/0 mapped variable REAL_TIME_SECONDS_PORT, which is

accomplished through the macro "i_o_ var _get".

void producer(void){

WISigned char temporary_byte;
/*Co-routine Management Section*/
//note the use of the macro "i_ o_var _get" to read the 110 mapped variable
I/RE4L_TJME_SECONDS_PORT, which was located at J/0 address 2.

if(i_o_var_get(2) != the_seconds_storc){
the_seconds_store = i_o_var_get(2);
temporary_byte = the_seconds_storc &240;
temporary _byte = tempomry_byte I 16~
temporary_byte = temporary_byte + 48;
seconds_ msd = (char)temporaf)'_byteJ*Explicit Type Cast*/;
temporary_byte = the_seconds_storc &15;
temporary_byte = temporary_byte + 48;
seconds_lsd = (char)temporary_byteJ*Explicit Type Cast*/;
new_second =true;

}/*end if*/
}/*end of producer*/

Figure 5.14b. Translation for the PRODUCER co-routine of Fig 5.14c.

69

The CONSUMER task, in reality, has three distinct jobs to do in life:

• If a character has been received and flagged by the RS232 (Serial port 0) !SR., then

that character is transmitted from of the RS422 port.

• Similarly, if a character eventuates at the RS422 (Serial port 1) !SR., that character

is sent to the RS232 port.

• If a fresh second has been logged and flagged by PRODUCER, then the second's

character values, as prepared in PRODUCER, are transmitted from the RS232

serial port. These are foil owed by the transmission of a new-line sequence.

On each invocation, CONSUMER will only perform one of these jobs, exiting at the next

SYNCH statement encountered. It is essential, however, that upon its next invocation,

CONSUMER will resume execution at the point immediately after that SYNCH statement

or, if none exists, at the first job.

task CONSUMER is
TEMPORARY_ CHAR : CHARACTER;
begin
if(CHAR_WAITING_AT_O) then

TEMPORARY_ CHAR :=CHARACTER(RECEIVED _CHAR_ 0);
CHAR_WAITING_AT_O :=FALSE;
PUT_CHAR(SERIAL _PORT_!, TEMPORARY_CHAR);

end_if;
SYNCH;

if(CHAR_ WAITING_AT_l) then
TEMPORARY_CHAR :=CHARACTER(RECEIVED_CHAR_l);
CHAR_WAITING_AT_I :=FALSE;
PUT_CHAR(SERIAL_PORT_O, TEMPORARY_CHAR);

end_if~

SYNCH;

if (NEW_ SECOND) then
--Transmit the seconds, most significant digit first
PUT_CHAR(SERIAL_PORT_O, SECONDS_MSD);
PUT_CHAR(SERIAL]ORT_O, SECONDS_ LSD);

TEMPORARY_CHAR := CHARACTER(l3);

--this is job number I.

--this is job number 2.

-- this is job number 3.

PUT_ CHAR(SERIAL _PORT_ 0, TEMPORARY_ CHAR); -- send a carriage return
TEMPORARY_CHAR :=CHARACTER(! D);
PUT_CHAR(SERIAL_PORT_O, TEMPORARY_CHAR); --and line feed.

NEW_ SECOND :- FALSE;
end_ if;
SYNCH;

end CONSUMER;

Figure 5.15a. Consumer- '\hard-working co-routine!

70

void consumer(void){
char temporary_ char;
/*Co~routine Management Section*/
//num_of_synch_points is a static variable, which will retain its value between invocations of this
//subprogram.
static int num_of_synch_points = 1;
switch (num_of_synch_points){
case I :goto T3; break;
case 2:goto T4; break;
case 3:goto T5; break;
}/* switch num_ of_ synch_points*/
/*End of Co-routine Management Section*/
T3: ;
if(char_waiting_at_O){
temporary_char- (char)rcceived_char_O/*Explicit Type Cast*/;
char_ waiting_ at_ 0= false;
put_ char(!,temporary_ char);
}/*end if*/
if(++num_of_synch_points > 3)

num_of_synch_points =I;
return;/* Syncb point*/

T4:;
if(char_waiting_at_l){
temporary_char- (char)rcceived_char_I/*Explicit Type Cast*/;
char_waiting_at_l= false;
put_ char(O, temporary_ char);
}/*end if*/
if(++mun_of_synch_points > 3)

num_of_synch_points =I;
return;/* Synch point*/

T5:;
if(new_second){
put_ char(O,seconds_ msd);
put_ char(O,scconds _!sd);
tcmporary_char- (char)13/"'Ex1Jlicit Type Cast*/;
put_ char(O,temporary _char);
temporary_char= (char)lO/*Explicit Type Cast*/;
put_ char(O,temporary _char);
new_ second== false;
}/*end if*/
if(++num_of_synch_points > 3)

num_of_synch_points ==I;
return;/* Synch point*/

}/* end of consumer•/

Figure S.l5b. "Safe C' production for CONSUMER.

Clearly, the translator has to do substantial "behind the scenes" work (compare Figs. 5.15a

and 5. 15b) to manage the relinquishment and subsequent resumption of execution in an

orderly and correct manner. Use is made ofC's static variables which, when used within a

subprogram, may be initialised once and will maintain their last written value between

71

subprogram invocations. The mechanics ofthis are that they occupy global variable space,

but are only visible from within the subprogram in which they are declared.

The co~ routine management code consists of two distinct parts:

• on entry to the co-routine, a decision is made, based upon the value of a static variable

which maintains the next job to be done, in order to vector execution to labels placed

at the start of each of the co-routine task's jobs;

c. before relinquishment of execution, that static variable mu .. " be left containing the

correct value for resumption at the next job upon any subsequent iteration of the co­

routine task.

In order to achieve this, the translator has to inspect the source code of the co-routine to

count how many SYNCH points exist within it. When this is known, the switch-case

statement which controls the job sequencing can be inserted into the C code. The

operational and assignment statements of the task are processed as for any other

subprogram, except in the case of SYNCH statements. Before relinquishing control at the

SYNCH statement, the static variable is updated, round-robin style, with the value of the

next job to be done. When the last job is done, the co-routine management code nwerts

the execution resumption to the first job.

Code for last subprogram type, driver, is to refound in Figs. 5. l6a and 5. l6b, on the two

ensuing pages. This programs's drivt::J, TEST_PROG, initialises the global variables, turns

off the machine interrupts, initia!ir,es the serial ports, transmits a 'hello' test message from

each serial port and then enters an intenninable loop calling each of the co-routine tasks in

their tum. Note that the ' hello' message is generated within a loop which is tenninated

with a conditional exit statement.

72

driver test__prog is

the _letter: character;
letter __ num,
loop_ counter: integer;

begin
~~initialise inter~process data
NEW_SECOND :=FALSE;
CHAR_WAITING_AT_O :=FALSE;
CHAR_WAITING_AT_l :=FALSE;

~- disable interrupts, as we don't want any occurring so that our setup code isn't interrupted
disable _int;

init_registers; ~~set general purpose output registers

set_serial_port(SERIAL_PORT_O, 9600, 'n', 8, I);~~ set up serial~port 0 (the RS~232 port)

set_serial__port(SERIAL_PORT_l, 4800, 'n', 8, l); ~-and serial port I (the RS422 port)

-- now that the ports can cope with interrupts, we may safely enable the interrupts.
enable_int;

-- set the serial port handshaking lines to their active state,
~- so that characters may be transmitted and received,
SET_DTR(SERIAL_PORT_O);
SET_DTR(SERIAL_PORT_!);
-- now a little wake-up message
letter_num := 1;
while (true) loop
case letter_num is

when I=> the_letter := 'H';
when 2=> the _letter := 'e';
when 3=> the_Ietter := '!';
when 4=> the_letter :='I';
when 5=> the _letter := 'o';
when others => null;

end_case;
put_char(SERIAL_PORT_O, the_Iettcr);
put_ char(SERIAL_PORT_l, the_letter);
loop_counter := Ioop_counter+I;
exit when (loop_counter > 5);

end_loop;
--now service the co-routines forever...
while (TRUE) loop
PRODUCER;
consumer;

end_ loop;
end test__prog;

Figure 5.16a. Ada-like source for driver subprogram TEST_PROG.

73

void test_prog(void){

int letter_num;

int loop_ counter;

char the_letter,

Set_ Vector(52, serial_port_O_isr);

Set_ Vector(68, serial_port_I_isr);

new_ second= false;

char_ waiting_ at_ 0= false;

char_waiting_at_l= false;

disable_int;

init_rcgisters();

set_ serial _port(O, 9600, 'n' ,8, 1);

set_ serial _port(1, 4800, 'n' ,8, 1);

enablc_int;

set_dtr(O);

set_dtr(l);

lctter_num= 1;

while(true){/*(Loop Label=L6:)*/

switch(letter_num){

case 1: the_letter-'h'~ break;

case 2: the_letter= 'e'; break;

case 3: the_letter= '1'; treak;

case 4: the_letter- '1'; break;

case 5: the_Iettcr- 'o'; break;

default: ; I* null slatement */break;

} /*switch*/

put_ char(O,the_lctter);

put_ char(I,the _letter);

loop_ counter= loop_counter +I;

if(loop_counter > S) EXIT L6;

} L6::

while(true)(!'(Loop Labei~L7:)'/

producer();

consumer();

} L7:;

}/* end oftest_prog*/

Figure 5.!6b. "Safe C" production for driver subprogram TEST_PROG

74

Before any statements can be executed in the Ada-like source code, the "Safe C"

translation of the driver subprogram (see Fig. 5.16b on the previous page) must resolve all

interrupt vector initialisation for ISR tasks. Once again this may be achieved through a

macro which the pre-processor will resolve, and Set_ Vector is passed the name of the ISR

vector (which inC is a pointer to the subprogram's code) and the memory location of the

vector. Whilst this, and other areas where macros have been relied upon, would be

possible to accomplish explicitly in Safe C, the use of pre-processor macros assist greatly

with potential portability in that only the macros (contained in "standard.c") need be

changed between target processor implementations.

There remains but one thing to be done as far as the C program is concerned. All C

programs must have a mainQ subprogram, which is the entry point from the startup code.

In this instance, the translator manufactures the code for main() subprogram, which merely

ca11s the driver subprogram (in this instance test_prog) named in the Ada-like source.

void main(void){

test__prog();}/* main*/

Figure 5.17 main() calls the driver TEST_PROG.

75

5.2 Evidence found that supports each of the Research
Questions

The Main Research Question's compontnts, followed by the Main Question itself, are re­

stated and addressed in turn.

a) "What elements of computer languages are desirable to express solutions as low cost,

medium performance, embedded systems?"

Desirable element Brief reason for desirability Demonstrated in ...

strong typing allows the program to model realistically the data of the real Fig. 5.12, Fig. 5.14,

world, yet minimise programmer induced errors in data Fig. 5.15.

transfer

flf'.xible parameter pennits subprograms to communicate with the world outside Fig. 5.11, Fig. 5.16.

passing their frame of operations through the passing of

mechanisms parameterised values

recursion allows an elegance of coding Fig. 5.10

exception permits the program to handle abnormal run-.time events and deferred for a later

handling recover gracefully study

concurrency in a Real-Time sense, allows the programmer adequate Fig. 5.6, Fig 5.14,

control of both timing and sequencing of operations Fig.5.15

elimination or constructs which do not automatically relinquish control of Fig. 5.12

constructs with the processor present potential points at which a program can

indeterminate become non-detenninistic

execution times

interrupt types aliow rapid servicing of events which are asynchronous to Fig. 5.5, Fig. 5.13

nonnal program flow

modularity when correctly applied, permits infonnation hiding, more Fig. 5.4, Fig. 5.11

manageable code modules and enhances maintainability

low-level control permits the programmer intimate control over the underlying Fig. 5.9, Fig. 5.11

machine

portability as hardware develops, pennits code to be configured rapidly Fig. 5.3b,

for new processors Appendix E
. . ' . F1gure 5. 18 Relatmg the desirable elements to ev1dence of this study's successful

response to the research questions.

76

b) "Can the elements noted in {a) be e.'<.pressed in an Ada-like language?"

Yes, this study has resulted in the production of a translator which, save for the deferred

topic of exception handling, satisfies this question.

c) "Can those language elements be implemented using only verifiable elements of the C

language?"

Yes, this study has established an 0/S independant "Safe C" for the 8086 family of

processors, which has proved to be effective with the Microsoft C version 6 compiler, thus

providing an intermediate language to implement the Ada-like source code.

The main question:

"Can the desirable features for low cost, medium performance, embedded systems

programming be provided in an Ada-like language, and then translated to "Safe C" to

achieve reliable nm-time efficiency? "

During chapter three, a list of these desirable features was developed, chiefly in response

to the problems outlined in chapter two. In chapter four, the method by which this study

proposed to address each of these features was outlined, (although the topic of exception

handling was deferred to a later study). In this chapter a demonstration program was

presented, written in an Ada-like language. Although small in scale the test program was

representative of a typical real-world project and, when translated into "Safe C", was

.successfully embedded into real-world target hardware to predictably perform its required

work. Based upon this evidence then, whilst noting the exception (sic) of exception

handling, the answer to the main research question is in the affirmative.

5.3 Unanticipated Findings
There were no unanticipated findings in this study.

77

5.4 Summary

The target hardware represents a typicaJ system in current use for medium~perfonnance

embedded systems and it allows demonstration of all of the significant features developed

by this project. The target system is an off-the-shelf item, based on the NEC V25

microcontroller with lMbyte address range. It provides on-board support for EPROM,

RAM, both memory-mapped and I/O-mapped I/0 ports, including timers, serial-ports,

parallel ports and a Real-Time clock. However, in order to configure the system to

perform a useful task, substantial initialisation of on-chip registers and interrupt vectors are

performed.

The test program, written in an Ada-like language, is carefully structured to:

• demonstrate the activities of the translator in response to the list of desirable features

for real-time systems languages identified in chapter three; and

• be indicative of the type of work which could be expected from such a system.

It is perhaps worth noting that the test program required two iterations before the target

system functioned correctly, i.e. debugging time was minimal.

Suitable annotated extracts from the test program are provided, together with the

translated output expressed in "Safe C", showing the code that is generated to accomplish

the desirable features.

Finally, based upon the demonstration incorporated in the test program, answers are

provided to the Main Research Question and its components as stated in chapter two.

78

6 Conclusion
To introduce this final chapter, let us first examine the raison d'8tre for this project. The

author, an embedded-systems engineer, has for some time been aware of the problems

associated with implementing embedded-system software without the benefit of

sophisticated and expensive development environments. In particular, the author observed

from his own experiences and from those of similarly employed colleagues, that there is

considerable time spent in debugging embedded software, often due to errors which could

have been avoided by stronger typing. Whilst the presence of a good debugger can greatly

assist in discovering bugs of this nature, the author came to feel that debugging time could

be reduced if such preventable errors were trapped. The author has used the Ada and C

languages extensively in substantial projects and has an awareness of the strengths and

weaknesses of both languages. In short, as expressed in chapter one, this project was born

of a desire to harness in a formal manner the strengths of these languages in such a way as

to reduce preventable coding errors, thus enhancing the reliability of an embedded

implementation.

In fonnalising the problem during chapter two, it became necessary to define clearly the

kind of embedded system with which the study concerns itself; to define the areas where

the exclusive use of C or Ada is likely to cause problems; and, to suggest areas where a

combination of the strengths of those languages may yield an advantage to the

programmer.

The literature was then reviewed from the perspective of ascertaining the pecuJiar needs of

embedded-systems software. The features identified as being desirable for embedded­

systems and, in particular, those with Real-Time needs were formed into a list. This list

fanned a convenient framework for explaining and justifYing each element, or desirable

feature, which would be addressed in the project implementation. Potential alternative

languages were examined to see the level of support they offered to the peculiar needs of

Real-Time embedded systems. From this the Ada language, in spite of its shortcomings,

emerged as the most complete. Having ascertained that Ada's shortcomings lie

substantially in the area of deterministic concurrency and resource greediness, existing

alternatives in these areas were explored for workable solutions. This concluded with the

79

emergent ideas of usmg a co-operating tasking mechanism to overcome the first

shortcoming, and of employing a subset of the C language (known to have no 0/S

dependency) for efficient code generation to overcome the second.

In designing the pilot translator from the Ada-like language to "Safe C", in order to prove

the worth of the emergent ideas, the list of desirable features was again used as a

framework. The methods of implementing the response to each desirable feature were

described, and a formal complete specification of the Ada-like language was developed to

respond to the desirable features. This specification constitutes Appendix B of this

document. In deference to its size and complexity, any response to the feature of

exception handling was at this stage deferred to be a subject of a later study.

In order to test the translator a suitable hardware target system was chosen to exemplifY

the one defined in chapter two. A non-trivial test program was devised, written in the

Ada-like language, to demonstrate the translator's ability to support the desirable language

features, and which perfonned a workload indicative of that which could be expected in a

real-world project. A variation of the classical theme of the producer - consumer

relationship was chosen to test the pilot implementation for its handling of concurrency

und Real-Time response to external events. Other issues, such as low-level control, were

tested by the complex nature of initialising the machine's registers so that the system

performed in a controlled manner. The combination of hardware and test software

perfonned a dual task of real-time serial link protocol conversion and periodic timing

transmission.

Having translated the source code of the test program, the "Safe C" output was compiled

and then run in the target system to verity its effectiveness. Pertinent extracts of the Ada­

like language source code were presented and examined together with their translated

"Safe C" representation, now known to be working. This examination was based upon the

list of desirable Real-Time language features and its findings from this examination were

used to answer to the Main Research question and its components.

80

The study was directed toward achieving reliability and efficiency of coding for low-cost

medium-performance embedded systems. The pilot implementation has shown that this is

possible, retaining the many advantages of using a strongly-typed concurrent Ada-like

language, yet still benefitting from the efficient compilation and code-generation of current

C compilers.

Implications for embedded-systems engineers include:

• a potentia] reduction in debugging time, as errors from type-mismatches are made

preventible;

• the availability of a natural expression for co-operative deterministic concurrency;

• automated attachment of intenupt service routine tasks to hardware interrupt vectors~

and

• an increase in code portability.

There is no reason, however, why the techniques used in this project should be limited to

embedded systems. Should the intefl!lediate language be extended to include 0/S

dependancies, the co-operative tasking method employed would serve admirably in a

single-tasking operating system (e.g. MS-DOS). With its use, competition for resources

would be eliminated, as only one process would be allowed to enter the potentially

sensitive 0/S code.

Implications _for future research include the addition of effective exception handling to the

existing implementation, a quantitative analysis of the time penalty of the co-routine

management overhead, a broadening of the existing implementation to embrace current

Ada standards, and an adaptation of the co-operating concurrency model to include the

eventuality of multiple-processors.

81

Appendix A: A Glossary of terms used in this document
Ada-like The United States Department of Defense, the effective owners of Ada, has

"disallowed subsets" (MacLennan, 1987, p327) of Ada for portability reasons.

Consequently, the resulting dialect of the study will be known as "an Ada-like language"

or simply "Ada-like".

BCD Binary Coded Decimal notation is where one (eight bit) byte contains a coded

decimal digit [0000 .. 1010] in each of its pair offour bits.

Chip computing jargon for integrated circuit (I. C.). The chip is actually a reference to the

slice of silicon circuitry which forms the working part of the integrated circuit package.

EPROM Erasable Programmable Read Only Memory. Read-only non-volatile

semiconductor memory that is erasable in ultra-violet light and is reprogrammable .

. EXE file An executable file produced by MS-DOS linkers. The code and data contain<d

may be re-located to available memory areas by the 0/S according to information

contained in a standard header at the start of the .EXE file .

.!lQ Input/Output. Two types of access are generally available:

• Programmed 110, where data to and from Input/Output devices is accessed using

special IN and OUT instructions from the CPU. These devices are mapped separately

from main memory.

• Memory mapped I/0, where data is mapped together with main memory and accessed

using similar instructions to those for normal declared variables.

JSD Jackson Structured Development. A method widely used to express the design of

Real-Time systems .

. MAP file A file produced by MS-DOS linkers cross-referencing symbols (e.g. variable

names and subprogram names) to re-locatable addresses within the executable (.EXE) file.

Monitor programs Small, supervisory, programs used to give a primitive level of facility

and control over a computer system.

Orthogonalitt Where a language provides a relatively small set of primitive constructs

that can be combined in a relatively small number of ways, and where every combination is

legal and meaningful, to build the control and data structures of the language. Adapted

from Sebesta, 1989, p6.

82

0/S Operating System which, in a general purpose computer, affords application

programs the basic operations such as file handling, keyboard buffering, and facilities for

general input and output (e.g. MS-DOS, OS/2, Unix). 0/Ss are available for embedded

systems (e.g. OS-9, QNX, VRTX32, PDOS.) and these afford more low level facilities.

PC Personal Computer. Includes those according to the IBM standard (80x86 based

machines) and Apple Macintosh (680x0 based machines).

RAM Random Access Memory. Semiconductor read/write volatile memory. Data is lost

if the power is turned off.

Real time system

(i) "Any system in which the time at which output is produced is significant."(Bums &

Wellings, 1990, p2).

(ii) "Systems that handle asynchronous events in a timely and deterministic manner."

(Isherwood, 1991). The word timely should be taken in context of the total system, with

some systems requiring microsecond response, while others requiring response measured

in seconds.

Re-entrant code may be interrupted in mid execution and then re-executed in a second, or

subsequent, instance. A subprogram which may be interrupted in mid execution by, for

example, an external hardware interrupt and then re-executed within the interrupt service

routine is re-entrant.

Relocatable code may be loaded into memory at a location according to available space,

then nm at that location.

ROM Read Only Memory. Computer memory in which data can routinely be read, but

written to once only using special means when the ROM is manufactured. The ROM is

used for storing data or programs on a permanant basis.

RS232 Recommended Standard, number 232, is laid down by the Electronic Industry

Association (EIA) for communications using bipolar voltages with respect to a common

ground for serial communications.

RS422 Recomended Standard, number 422, is laid down by the Electronic Industry

Association {EIA) for defining balanced (or differential) serial communications using two

signal wires for each direction. Much higher transmission rates may be achieved than with

RS232.

83

Run·time system A nucleus of frequently used routines which an executing program may

rely upon to perform such functions as string operations, concurrency control and memory

allocation.

§afe C A subset of the C language which is known to have no dependency on Operating

System support for the implementation tested.

Simplicity A language with a small number of elementary components to learn is relatively

simple to learn.

Target system The computer system, where the program being developed will reside, at

the heart of which will be a specific microprocessor.

Validation Checks if the product1s functions are what the customer really wants. As

Boehm (1981) suggests 'Are we building the right product?'.

Verification Checks whether the product under construction meets the requirements

definition. Often confused with validation. Boehm (1981) suggests 'Are we building the

product right?1
•

84

Appendix B: An Ada-like language

B.l Grammar for an Ada-like language

Listed below is an Extended Backus Naur Fonn (EBNF) grammar for the Ada-like

language developed in this project. Conventions used in this grammar description are:

• keywords and punctuation are depicted in bold font;

• non-terminal symbols are enclosed in< and >;

• terminal symbols are represented by themselves;

• items enclosed in square braces [J are optional

• items enclosed in curly braces { } may be iterated zero or more times;

e the symbol -> separates the left and right sides of a production. If no left side of a

production is shown, the preceding left side applies.

<actual option> _, [(<id> {' <id>)))

<address literal> -) <digit> { < digit >) in the range 0 .. 1048575

<alpha character> -) a .. z

-) A..Z

alphanumeric character _, <alpha character>

-)

_, <digit>

<ascii character> _, ascii NUL .. ascii DEL

<assignment statement> _, <id> :=<expression>;

<basic loop> -) loop <statement> {<statement> }end loop

<bitwise operator> -) and

-) or

<boolean expression> _, (<factor> [<relational operator> <factor>])
_, <unary operator> <factor>

<boolean literal> _, FALSE

-) TRUE

<byte literal> _, <digit > {<digit>) in the range 0 .. 255

85

<call statement>

<case statement>

<character literal>

<constant option>

<digit>

<discrete range>

<exit statement>

<expression>

<factor>

<float literal>

<formal part>

<formal part option>

<id>

<ld list>

<if statement>

<initialisation option>

<integer literal>

<interrupt control statement>

<iteration clause>

<literal>

-> <id> <actual option> ;

-> case <id> is {<when list> }<others clause> end_case;

-> '<ascii character>'

-> [constant]

-) 0 .. 9

-> <factor> •• <factor>

-> exit [when <boolean expression>];

-> <factor> [<operator> <factor>]

-> <type cast>

-) <id>

-> <literaJ>

-) [-]<digit > { < digit>). < digit> { < digit>}

-> (<parameter declaration list>)

-> [<formal part>]

-> <alpha character>{ <alphanumeric character>}

-) <id> {, <id>}

-> if <boolean expression>

then <statement> {<statement>}

[else <statement> {<statement>}]

end_if;

-> :=<value>

-) [-]<digit>{<digit>)

-> disable_int;

-> enable_int;

-> for <id> in <discrete range>

-> while <boolean expression>

-> <boolean literal>

-> <byte literal>

-> <character literal>

-> <float literal>

-> <integer literal>

-> <word literal>

86

<location clause> -> map_at <word literal>

-> use_at <address literal>

<logical operator> -> and

-> or

<loop statement> -> [<iteration clause>] <basic loop> ;

<mode> -> in

-> in_out

-> out

<multiplying operator> -) •
-> I

<null statement> -> null;

<object declaration> -) <id list> : <constant option> <type> <initialisation

option>;

<operator> -) <bitwise operator>
_, <logical operator>

-> <r;mltiplying operator>

-> <plus operator>

-> <relational operator>
_, <unary operator>

<others clause> -> when others=> <statement> {<statement>}

<parameter declaration> -> <id list>: [<mode>] <type>

<parameter declaration list> -> <parameter declaration> {; <parameter declaration>}

<plus operator> -> +

->

<relational operator> -> =

-> I=

-> >=

-> <=

-> <

-> >

<representation clause> -> for <id> <location clause>

<return statement> -> return [<expression>] ;

87

<statement> _, <assignment statement>

-) <call statement>

-) <case statement>

-) <exit statement>

-) <if statement>

-) <interrupt control statement>

-) <loop statement>

-) <null statement>

-) <return statement>

-) <synchronisation statement>

<subprogram body declaration> -) <subprogram specification> is {<object declaration>}

begin {<statement>} c~nd <id> ;

<subprogram declaration> -) <subprogram specification> ;

<subprogram specification> -) driver <id>
_, function <id> <fonnal part option> return <type>

-) procedure <1d> <fonnal part option>

-) task <id>

<sy1tchronisation statement> _, synch;

<type> -) address
_, boolean
_, byte

-) character

-) float

-) integer
_, word

<type cast> -) <type> (<factor>)

<unary operator> -) not

<value> -) <id>

-) <literal>

<when list> -) when <integer literal> => <statement> {<statement>}

<word literal> -) <digit> (<digit>} in the range 0 .. 65535

88

B.2 Tokens recognised by the scanner of the Ada-like language

Ken,yords:

address and begin boolean byte
case character constant disable int driver
else enable int end end case end if
end _loop exit float for function
if in in out integer IS

loop map_at not null or
others out procedure return synch
task then use at when while
word

Ouerators

Operator type Evaluation Order of

order precedence

Unary not Right to Left Highest

Multiplication * I Left to Right

Plus + Left to Right

Relational ~ !~ < <~ > >~ Left to Right

Bitwise and or Left to Right

Logical and or Left to Right Lowest

Punctuators

() ·~

Data tvpes supported:

address boolean byte character float Integer word

89

B.3 Additional notes

Identifiers must begin with a letter and consist of letters, underscores and digits. Their

length should be of less than twenty~nine characters. This allows for some additions to

identifiers before they are submitted to the C compiler, whose general limit is thirty-two

characters.

Literals

• Integer literals can contain only digits and minus signs. They must start with a digit or

minus sign and are legal in the range -32767 .. 32768.

• Float literals can contain digits, a minus sign, a single decimal point. They must start

with a minus sign or a digit, and a digit must both precede and follow the decimal

point.

• Character literals are characters within single quotes e.g. 'c'.

• Byte literals are digits and are legal in the range 0 .. 255.

• Boolean literals are either TRUE or FALSE.

• Word literals consist of digits and are legal in the range 0 .. 65535.

• Address literals consist of digits and are legal in the range 0 .. I 0485 75. The upper limit

refelcts the twenty bit address range of the target machine.

Comments are prefixed by the compound symbols-- and conclude at the next new-line.

Visibility and scope of variables:

Two levels of scope are provided: namely, global for variables which are visible from ail

subprograms, and local scope for variables declared locally within subprograms.

Parameters have the same visibility as locally declared variables. Local variables and

constants obscure similarly named global declarations.

Case sensitivity is not significant, in fact all characters are read as lower case.

Tokens are separated by white space. They are, therefore, not allowed to persist beyond a

new-line in the source text.

90

Appendix C: "Safe C".

Safe C: Operating system hosted compilers feature, within their run-time libraries,

dependencies on Operating System (0/S) support, which are to be avoided in embedded

programs. These are often in the form of input and output techniques to console and file

huffers provided by the 0/S. Other dependencies may manifest themselves via requests for

dynamic memory so that internal calculations may be performed, such as in numeric to

character data conversion and formatting. However, there will certainly exist a small

component of the run-time library which is not dependent on the operating system.

The following functions have been found by the author to be MSDOS independent in the

case of Microsoft C version 6. The functions are shown by category together with the C

header file in which their prototype may be found and a brief description. For more detail

the user is referred to the literature, in particular the Microsoft C Runtime Library

Reference.

Memory manipulation functions

memcpy

memcmp

memchr

memset

Character conversion functions

to ascii

tolower

toupper

prototypes found in <memory.h>

copies contents of source area in memory to a

destination area

compares contents two areas in memory

seeks and returns the first occurrence of a

character in the specified area of memory.

sets all bytes in the specified area in memory to

the supplied character

prototypes found in < ctype.h>

the ASCII value

the lowercase equivalent

the uppercase equivalent

91

Character classification functions

isalnum

isalpha

isascii

iscntrl

iscsym

iscsymf

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

prototypes found in < ctype.h>

alphanumeric character?

alphabetic character?

ASCII character?

control character?

letter, underscore, or digit?

letter or underscore?

decimal digit?

printable character, not space?

lowercase letter?

printable character?

punctuation character?

white-space character?

uppercase letter?

hexadecimal digit?

92

String Manipulation Functions

strcat

strchr

strcmp

strcpy

stricmp

strlen

strncat

strncmp

strncpy

strnicmp

strnset

strrchr

strset

strstr

strtok

Port 1/0

inp

inpw

outp

outpw

prototypes found in <string.h>

concatenates second string to first

finds the first occurrence of a given character in

the string

compares two strings lexicographically

copies a string

as strcmp but case insensitive

get the length ofthe string

concatenates n characters of second string to first

as strcmp but only for n characters

copys first n characters of a string

as strncmp but case insensitive

initialise n characters of a string to a given

character

find last occurence of a given character

sets all characters of a string to a given character

find a substring

find next token in a string

prototypes found in <conio.h>

the byte read from port

the word that was read

the byte output

the word output

93

Data conversion

atof

atoi

atol

a told

ecvt

fcvt

gcvt

ito a

Ito a

strtod

strtol

strtoul

ultoa

prototypes found in <stdlib.h>

string to a floating point number

string to an integer number

string to a long integer number

string to a long double (floating point) number

converts a double (floating point number) to a

string, using a statically allocated buffer

converts a floating point number to a string, using

a statically allocated buffer

converts a floating point number to a string, using

the providod buffer

converts an integer number to a string

as itoa but for long integer number

converts string to a double (floating point)

number

converts string to a long integer number

converts string to an unsigned long integer

number

converts unsigned long integer to a string

94

Math functions

a tan

floor

ceil

abs

fabs

fmod

sin

cos

tan

log

sqrt

exp

prototypes found in <math.h>

arctangent of supplied number.

largest integer less than the supplied number

smallest integer greater than the supplied number

absolute value of the supplied integer

absolute floating point value

floating point remainder

sine of supplied number, in radians

cosine of supplied number, in radians

tangent of supplied number, in radians

natural logarithm of supplied number

square-root of supplied number

exponential of supplied number

95

Appendix D: Effective use of Ada Generics to realise the symbol
trees.

The purpose of this appendix is to demonstrate the worth of Ada's generics with respect

to the project by using, as an of example, some of the source code used in the

implementation. Without the facilities offered by generics, which allow the re-use of one

piece of code for more than one purpose, the implementation would have been much more

onerous.

While processing the Ada-like source code for type checking and potential illegal symbol

duplication, it was necessary for the translator to contain methods for rapid storage and

retrieval of the encountered symbols. In all, five such symbol trees were necessary, one

each for:

• global constants, held for the life of the progam's translation;

• global variables, held for the life of the pro gam's translation;

• local constants, held for the life of the current subprogam' s translation;

• local variables, held for the life of the current subprogam's translation; and

• suprograms, held for the life of the progam's translation.

96

Ada's generics were used to advantage in providing an instantiation of a symbol tree for

each of the five, based in tum, upon an unbalanced binary tree structure. Demonstration

of the dependencies which exist upon each of the respective generics are shown in Figure

D. I.

Package

PROCESS

Generic Package

BINARY TREE

Generic Package (includes one instance

SYMBOL TREE of BINARY_ TREE)

(includes five instances of SYMBOL TREE)

Figure 0.1. Annotated dependency chart of symbol tree generic instantiations.

Complete listings are now given of both specification and bodies for generic packages

BINARY_ TREE and SYMBOL_ TREE. The specification code necessary to achieve the
•

five instantiations within package PROCESS is also prov1ded.

97

-pacl,age specification for BINARY_TREE
.. -this package specification and its body are based upon the
--excellent discussion chapter on trees inBooch (1987a).

generic
type ITEM is private;

packageBINARY_TREE is
type TREE is private;
type CHILD is (LEFT, RIGHT);

procedure CLEAR (THE_TRRE : in out TREE);

procedure CONSTRUCT(THE _ITEM
AND_ THE_ TREE
ON_TIIE_CHILD

procedure SWAP_CHILD (THE_ CHILD

:in ITEM;
:in out TREE;
:in CHILD);

:in CHILD;
OF_THE_TREE :inout TRE:>~;
AND_THE_TREE :in out TREE);

function IS_NULL (THE_TREE :in TREE) return BOOLEAN;

functioniTEM_OF(THE_TREE

function CHILD_ OF (THE_ TREE
THE CHILD

private
type NODE;
type TREE is access NODE;
type NODE is

record
THE_ ITEM :ITEM;
LEFT_SUBTREE :TREE;
RIGHT_ SUBTREE :TREE:

end record;
end BINARY_TREE;

: in TREE) return ITEM;

:in TREE;
: in CHILD) return TREE;

98

-package body BINARY_TREE

with UNCHECKED_ DEALLOCATION;
package body BINARY_ TREE is

NULL_TREE: constant TREE;= null;
procedure DEALLOCATE is new UNCHECKED_ DEALLOCAT!ON(NODE, TREE);

procedure CLEAR (THE_TREE; in out TREE) is
begin
DEALLOCATE (THE_TREE);

end CLEAR;

function IS_NULL (THE_ TREE : in TREE) return BOOLEAN is
begin
return (THE_ TREE~ NULL_TREE);

end IS_NULL;

procedure CONSTRUCT (THE_ITEM
AND_ THE_ TREE
ON_ THE_ CHILD

; in ITEM;
: in out TREE;
: in CHILD) is

begin
ifON_THE_CHILD ~ LEFrthen

AND_ THE_ TREE :~
new NODE'(THE_ITEM

else
AND_THE_TREE :~

LEFr_SUBTREE
RIGHT_ SUBTREE

new NODE'(TIIE_ITEM

end if;
end CONSTRUCT;

LEFr_SUBTREE
RIGHT_SUBTREE

procedure SWAP_ CHILD (THE_CHILD
OF_THE_TREE

=>THE_ITEM
""> AND_THE_TREE,
=>null);

""> TIIE_ ITEM,
"">null,
=> AND_THE_TREE);

:in CHILD;
: in out TREE;

AND_ THE_ TREE
TEMPORARY _NODE : TREE;

: in out TREE) is

begin
ifTHE_CHILD ~LEFT then
TEMPORARY _NODE :~OF _THE_TREE.LEFr_SUBTREE;
OF_THE_TREE.LEFr_SUBTREE :~AND_THE_TREE:

else
TEMPO'Jd\RY _NODE :~ OF_THE_TREE.RIGIIT_SUBTREE;
OF _THE_TREE.RIGIIT _SUBTREE:~ AND_ THE_TREE;

end if;
AND_THE_TREE :~TEMPORARY _NODE;

end SWAP_CHILD;

99

function ITEM_ OF (THE_ TREE : in TREE) return ITEM is
begin

return THE_TREE.THE_ITEM;
end ITEM_ OF;

function CHILD_OF (TIJE_TREE
TIJE_CHILD

begin
if THE_ CHILD = LEFT then

return TIIE_TREE.LEFT_SUBTREE;
else

return TI-IE_TREE.RIGHT_SUBTREE~
end if;

end CHILD_ OF;

end BINARY_ TREE;

; in TREE;
: in CIDLD) return TREE is

100

-package specification SYMBOL,_ TREE

--satisfies the need to be able to:-
-- - add symbols to the tree, no duplicates
- - retrieve any symbol from the tree, according to an equality test on a key field of the symbol
-- - destroy the tree
generic

type sYMBOL is private;
type KEY is private;

-- is_efJ.ual & is _less_ than allow instantiator to select a key for equality
-- testing of symbols.
with function IS_ EQUAL (LEFT : SYMBOL;

RIGHT :SYMBOL) return BOOLEAN;
with function IS_LESS_ THAN (LEFT :SYMBOL;

RIGHT : SYMBOL) return BOOLEAN:

with function EQUALS KEY(LEFT :KEY;
RIGHT : SYMBOL) return BOOLEAN;

withfunctionKEY_LESS_THAN(LEFT :KEY;
RIGHT : SYMBOL) return BOOLEAN;

with procedure DELETE_SYM (THE_SYMBOL: in out SY11BOL);
--in case the SYivmOL has any dyna;.nic memory elements for the caller to deallocate
with procedure PROCESS_ SYM (THE_ SYMBOL : SYMBOL)·,
-for the traverse routine (for extracting data from the tree)

package SYMBOL_TREE is
function ADD (THE_SYMBOL :
function DESTROY return BOOLEAN;

SYMBOL) return BOOLEAN;

function FOUND('I'!IE _KEY : KEY) return BOOLEAN;
procedureRE'IR!EVE(THE_KEY

IN_THE_SYMBOL
SUCCESS

procedure TRAVERSAL;
end SYMBOL_ TREE;

: in out
:in out

KEY;
SYME'OL;
BOOLEAN);

101

-package body SYMBOL_ TREE
with BINARY_ TREE;
pact age body SYMBOL_ TREE is

-the instantiation of BINARY _TREE ...
package SYMBOL _BIN_ TREE is new BINARY_ TREE (ITEM=> SYMBOL);
use SYMBOL_ BIN_ TREE;
THE_ TREE : TREE;

function FOUND(THE_KEY: KEY; IN_ THE_ TREE: TREE) return BOOLEAN:

procedure INSERT(THE_SYMBOL :
IN_THE_TREE ; in out
SUCCESS : in out

procedure RETRIEVE(THE_ KEY
THE_SYMBOL
FROM_ THE_ TREE
SUCCESS

procedure 1RA VERSE (TIIIS_TREE : in TREE);

SYMBOL;
TREE;
BOOLEAN);

KEY;
: in out SYJvfBOL;
:in TREE;
; in out BOOLEAN);

procedure DESTROY (TIDS_TREE; in out TREE);

function ADD (THE_SY14BOL; SYl\1BOL) return BOOLEAN is
SUCCESS : BOOLEAN;
begin

INSERT(TIIE_SYMBOL =>TIIE_SYMBOL,
IN_ THE_ TREE => THE_ TREE,
SUCCESS => SUCCESS);

return SUCCESS;
end ADD;

function FOUND(THE_KEY: KEY) retUrn BOOLEAN is
begin

return FOUND(THE_KEY, THE_TREE);
end FOUND;

function FOUND(THE_KEY: KEY; IN_THE_TREE: TREE) return BOOLEAN is
begin
if not IS_ NULL(IN _THE_ TREE) then

ifEQUALS_KEY(TIIE_KEY, ITEM_ OF(IN_ THE_ TREE)) then
return TRUE;

elsifKEY_LESS_TBAN(THE_KEY, ITEM_OF(IN_ THE_ TREE))
then return FOUND(THE_KEY, CHJLD_OF(IN_THE_TREE, LEFT));
else return FOUND(THE_KEY, CHILD_OF(IN_THE_TREE, R!GIIT));
end if;

end if;
return FALSE;

end FOUND;

102

procedure INSERT(THE_SYMBOL : SYMBOL;
IN_THE_TREE :in out TREE~
SUCCESS : in out BOOLEAN) is

TEMPORARY_TREE: TREE·= IN_TEE_TR.EE;
begin

if!S_NULL(IN_TEE_TREE) then
CONSTRUCT(THE_ITEM

AND_ TEE_ TREF.
ON_ TEE_ CHILD

SUCCESS := TRUE;
else

if IS_ EQUAL(LEFT => TEE_SYMEOL,

=> TEE SYMBOL - .
=> IN_ THE_ TREE,
=>LEFT);

RIGIIT => ITEM_ OF(IN_ TEE_ TREE))
then -- cannot add to existing record

SUCCESS:= FALSE;
elsif -- <
IS_LESS_THAN(LEFT => TEE_SYMBOL,

RIGIIT=> ITEM_ OF(N_THE_TREE))
then

TEMPORARY_TREE ;= CH!LD_OF(THE_ TREE => IN_ THE_ TREE,
THE_ Cllll..D => LEFT);

THE_SYMBOL => THE_SYMBOL, INSERT(

if SUCCESS U10n
SWAP_CH!LD(

end if;
else - >

IN_ THE_ TREE => TEMPORARY_ TREE,
SUCCESS => SUCCESS);

THE_CHILD
OF_ TEE_ TREE
AND_ TEE_ TREE

==>LEFT,
=> IN_ TEE_ TREE,
=> TEMPORARY_TREE);

TEMPORARY_TREE :=CIITLD_OF(THE_ TREE => IN_ THE_ TREE,
THE_CIIII..D => RIGIIT);

INSERT(

if SUCCESS then

THE_SYMBOL
IN_ THE_ TREE
SUCCESS

=> THE SYMBOL - .
~> TEMPORARY_ TREE,
=>SUCCESS);

SWAP_ CIIILD(THE_CIIILD
OF_THE_TREE
AND_ TEE_ TREE

=>RIGHT,
=>IN_ THE_ TREE,
=> TEMPORARY_ TREE);

end if;
end if;

end if;
end INSERT;

procedure RETRIEVE (THE_KEY

begin

IN_ THE_ SYMBOL
SUCCESS

RETRIEVE(THE_KEY
THE_SYMBOL
FROM_THE_TREE
SUCCESS

end RETRIEVE;

KEY;
: in out SYMBOL;
: in out BOOLEAN) is

=>THE_ KEY,
=>IN THE SYMBOL - - .
=> THE_TREE,
=> SUCCESS);

103

procedure RETRJEVE(THE_KEY

begin

THE_ SYMBOL
FROM_ THE_ TREE
SUCCESS

if not !S_NULL(FROM_THE_1REE) tllen
ifEQUALS_KEY(LEFT => TIIE_KEY,

KEY;
: in out SYMBOL;
:in TREE;
: in out BOOLEAN) is

RIGID =>ITEM_ OF(FROM_THE_1REE))
then

SUCCESS := TRUE;
TIIE_SYMBOL := ITEM_OF(FROM_TIIE_1REE);

elsif- <
KEY_LESS_THAN(LEFT =>TI!E_KEY,

RIGID =>ITEM_ OF(FROM_THE_1REE))
then

RETRIEVE(

else-->
RETRIEVE(

end if,
end if~

end RETRIEVE;

THE_KEY
THE_SYMBOL
FROM_ THE_ TREE

=> CHILD_ OF(

SUCCESS

THE_KEY
THE_SYMBOL
FROM_THE_1REE

=> CHlLD_OF(

SUCCESS

=>TilE_ KEY,
=> THE_SYMBOL,

THE_TREE => FROM_THE_1REE,
THE_CHlLD =>LEFT),
=> SUCCESS);

=>THE_ KEY,
=>THE_ SYMBOL,

THE_1REE => FROM_THE_TREE,
THE_CHlLD =>RIGHT),
~> SUCCESS);

procedure DESTROY (THIS_ TREE : in out TREE) is
TEMPORARY _SYMBOL: SYMBOL;
TEMPORARY_TREE :TREE;
begin
if not IS_NULL(THIS_TREE) then

TEMPORARY_ SYMBOL := ITEM_ OF(THlS _TREE);
TEMPORARY_TREE := CHlLD_OF(TIIE_TREE => THlS_TREE,

TIIE_CH!LD => LEF1);
DESTROY(TEMPORARY_TREE);

TEMPORARY_TREE := CHlLD_OF(TIIE_TREE =>THlS_TREE,
THE_CH!LD =>RIGHT);

DESTROY(TEMPORARY_TREE);

DELETE_SYM(THE_SYMBOL =>TEMPORARY _SYMBOL);

CLEAR (THE_TREE => THlS_TREE);
end if,

end DESTROY;

104

function DESTROY return BOOLEAN is
begin

DESTROY (THIS_ TREE=> THE_TREE);
return TRUE;

exception
when others=> return FALSE;

end DESTROY;

procedure TRAVERSE (THIS_TREE: in TREE) is
begin
if not JS_NULL (THIS_TREE) then
TRAVERSE (THIS_TREE =>CHILD_OF(THE_TREE =>THIS_TREE,

THE_CHILD => LEFI'));
PROCESS_SYM(THE_SYMBOL => JTEM_OF(THIS_TREE));
TRAVERSE (THIS_TREE =>CHILD_OF(TIIE_TREE =>THIS_TREE,

THE_ CHILD=> RIGHT));
end if,

end TRAVERSE;

procedure1r.RJ\~SAJL is
begin

TRAVERSE (THIS_ TREE => THE_ TREE);
end TRAVERSAL;

end SYMBOL_TREE;

105

Taken from the package PROCESS, the following five Ada statements are all that is
necessary to create the required five instances of SYMBOL_ TREE. Those subprogram
names passed as parameters to the package instantiation (e.g. DELETE, EXTRACT}, are
visible from within package PROCESS.

package GLOBAL_ CONST _TREE
is new SYMBOL_ TREE(SYMBOL

KEY
IS_EQUAL

package GLOBAL_ V AR_ TREE

IS_ LESS_ THAN
EQUALS_KEY
KEY_ LESS_ THAN
PROCESS_SYM
DELETE_SYM

is new SYMBOL_ TREE(SYMBOL
KEY
IS_EQUAL
IS_ LESS_ THAN
EQUALS_KEY
KEY_LESS_THAN
PROCESS_SYM
DELETE_SYM

--contents used as replacements within in the sub~prog scope
package LOCAL_CONST_TREE

is new SYMBOL_ TREE(SYMBOL
KEY
IS_EQUAL

package LOCAL_ VAR_TREE

IS_ LESS_ THAN
EQUALS_KEY
KEY_ LESS_THAN
PROCESS_ SYM
DELETE_SYM

is new SYMBOL_ TREE(SYMBOL

package SUB_PROG_TREE

KEY
IS_EQUAL
!S_LESS_THAN
EQUALS_KEY
KEY_LESS_THAN
PROCESS_SYM
DELETE_SYM

is new SYMBOL_ TREE(SYMBOL
KEY
IS_ EQUAL
IS_LESS_THAN
EQUAT.S_KEY
KEY_LESS_TIIAN
PROCESS_SYM
DELETE_SYM

=> VAR_PTR,
=>STRING,
=>IS_ EQUAL,
=>IS_ LESS_ THAN,
=> !S_EQUAL,
=> IS_ LESS _THAN,
=>EXTRACT,
=>DELETE);

=> VAR_PTR,
=>STRING,
=> IS_EQUAL,
=> !S_LESS_THAN,
=> !S_EQUAL,
=> IS_LESS_THAN,
=:>EXTRACT,
=>DELETE);

=> VAR_PTR,
=>STRING,
=> IS_EQUAL,
=> IS_LESS_THAN,
=> IS_EQUAL,
=> IS_LESS_THAN,
=>EXTRACT,
=>DELETE);

=> VAR_PTR,
=>STRING,
=> IS_EQUAL,
=> !S_LESS_THAN,
=> IS_EQUAL,
=> IS_LESS_THAN,
=>EXTRACT,
=>DELETE);

=> SUB_PROG_PTR,
=>STRING,
=> IS_EQUAL,
=> JS_LESS_THAN,
=> JS_EQUAL,
=> !S_LESS_THAN,
=>EXTRACT,
=>DELETE);

106

Appendix E: The use of the C pre-processor to achieve inter­
compiler compatibility.

I'
FILENAME

DESCRIPTION :

AUfHOR
'I

I'

"standard.c"

Not all C compilers are the same, particularly where
low-level machine specific features are concerned.
Fortunately, there exists with C compilers a
pre-processor which interprets macros and replaces
defined statements.

The MS-DOS C compilers supplied by Microsoft and
Borland provide unique identification to these
pre-processors, which can then be used to advantage
in reconciling differences between the different C
dialects.

Michael Collins.

Include file <dos.h> contains the Borland C .MK _ FP, inp & outp definition.
The fact that it also contains definitions of 0/S dependant functions
is irrelevent if we never use them. The translator sees to it
that we never use 0/S dependant functions.

*I
#include <dos.h>

typedef int

typedefunsigned char
typedef unsigned int
typedef unsigned long
typedef double

typedefvoid far*
typedefBYTE far*
typedef WORD far *
typedefDWORD far'
typedef QWORD far'

BOOLEAN;

BYTE:
WORD;
DWORD;
QWORD;

PTR;
BYTE_PTR:
WORD_PTR;

DWORD_PIR;
QWORD_PIR;

//All C source from the translator is in lower case
#define word WORD
#define byte BYTE
#define FALSE 0
#define TRUE JF ALSE
#define true TRUE
#define false FALSE

/*in C BOOLEANs are normally
contained in integers*/

I* 8-bit data *I
I* 16-bit data*/
/* 32-hit data *I
!* 64-bit data *I

/*Pointer to any data type*/
I* Point-u to 8-bit data *I
/*Pointer to 16-bit data •t
I* Pointer to 32-bit data *I
I* Pointer to 64-bit data *!

#define EXIT goto /*EXITs from Loops are replaced by goto*/

---·

107

#if definedL TURBOC _)/*Borland's Compiler identifier*/
I*

Set_ Vector macro places an interrupt service routine address
into its hardware vector

•I
#defme Set_ Vector(location, addr) *(void interrupt far (far* far *)(})((location))= (addr)

#else I* Must be Microsoft C *I
I*MK_FP mimics Borland's function of that name to create a far (20 bit)
pointer from a segment and offset*/

#define MK_FP(seg,ofs) ((void far"') (((unsigned Iong)(seg) << 16)) (unsigned)(ofs)))

I* Set_ Vector a Ia Microsoft ... *I
#define Set_ Vector(location, addr) *((DWORD _PTR) ((location)))~ ((DWORD) (addr))

/*Now supply some really low level alignment for Microsoft C*/
#define asm _asm
#define enable() _ enableO
#define disable() _disable()
#define emit _emit
#defineasm
#endif

_asm

,.
The Ada-like to "Safe C" translator outputs i_o_var get & put
but both C compilers understand inp and outp respectively.

•I
#define i_o_var_get inp
#define i_o_var_put outp

I'
Aligning memory mapped variables me1n _ _var put & get
is a little more complicated. Note the use of MK _ FP
for which we defined a macro above. Macros can reside
within macros, which makes the pre-processor a really
powerful tool.

*I
#define mem_ var_get(a,b) \\

('((byte far ')MK_FP((a),(b))))
#define mem_var_put(seg, ofs, valu) \\

('((byte far ')MK_ FP((seg),(ofs))))~(valu)

108

,.
Rapid processor interrupt control, via in-line
assembly language instructions . . ,

#define enable_int asm sti
#define disable_int asm eli

,.
The V25 needs a special command to complete interrupts
which have been initiated by internal on--chip register events.
We can substitute some in-line assembly code to achieve this . . ,

#define FINT asm {asm emit OxOf asm emit Ox92}
I* signal end of INTERNAL V25 interrupt*/

109

Appendix F: The test program, written in the Ada-like language
developed in this project, and the translation in
"Safe C".

F.l The Test prc:.gram: TEST_PROG.ADL

•• PROGRAMNAME
•• WRITTEN IN
•· AUTI!OR
•• DESCRIPTION

•• NOTES

: TEST_PROG.ADL
:AN ADA-LIKE LANGUAGE
: MIKE COLLINS
: Performs protocol conversion between the
: RS232 serial link
: @ 9600bps, 8 data, no parity, I stop
:and the
: RS422 serial link
: @ 4800bps, 8 data, no parity, 1 stop
: and also emits an updated "second" count
: once per second from the RS232 port .

: AU machine specific names used in
: this program are taken from the V25
:literature. Specifically this is
: "uPD70320/322 (V25tm) 16-bit, Single-Chip
: CMOS Microcomputers" and is available from
: NEC Electronics Inc. or
: George Brown Group,
: 294 South Road, Hilton S.A. 5033, Australia.

-- Global constants used in the program

SERIAL _PORT_ 0 : constant INTEGER :" 0;
SERIAL_PORT_l :constant INTEGER:: I;

-- Global data-stores, used for inter-process communication
TilE_SECONDS_STORE,
RECEIVED_ CHAR_ 0,
RECEIVED_ CHAR_!,
ERROR_ COND _ 0,
ERROR_ COND _I : byte;

--Most Significant Digit (MSD) of current Real-Time clock chip second
SECONDS_MSD,
-- and the Least Significant Digit (LSD) of the current second
SECONDS_ LSD :CHARACTER;

NEW_SECOND,
CHAR_WAITING_AT_O,
CHAR_WAITING_AT_l: boolean;

-- YO mapped register ...
--The rea1-time clock seconds (as opposed to hours, minutes &etc)
--register is located at I/0 map address 2
REAL_TIME_SECONDS_PORT: BYTE;
for REAL_TIME_SECONDS_PORT map_at 2;

110

--some memory mapped UO w .r .t. On chip Serial Port #0

BRGO,
SCC<l,
SCEO,
SCMO,
RXBO,
TXBO,
SRI CO,
SEICO,
STICO

:byte;
for BRGO
for SCCO
for SCEO
for SCMO
forRXBO
for TXBO
for SRICO
for SEICO
for STICO

--Baud Rate Generator 0
--Serial Communication Control Register 0
--Serial Communication Error Register 0
--Serial Comm. Mode Register 0
--Receive character Buffer (;
--Transmit character Buffer U
--Serial Receive Interrupt Control 0
--Serial Error Interrupt Control 0
--Serial Transmit Interrupt Control 0

use_at 1015658~
use_at 1015657:
use_at 1015659,
use_at 1015656;
use_at IOI564R·,
use_at 1015650;
use_at 10!5661;
use_at 1015660;
use_at 1015662;

-Now all the registers for On chip Serial Port 1
BRGI,
SCCl,
SCEI,
SCM!,
RXBl,
TXBl,
SRICl,
SE!Cl,
ST!Cl

:byte;
for BRGI
for SCCI
for SCE1
for SCM!
for RXB1
forTXBI
for SRICI
for SEICI
for STJCI

--Baud Rate Generator I
--Serial Communication Control Register I
--Serial Communication Error Register I
--Serial Comm. Mode Register I
--Receive character Buffer I
--Transmit character Buffer 1
--Serial Receive Interrupt Control 1
--Serial Error Interrupt Control I
--Serial Transmit Interrupt Control l

use_at 1015674;
use_at 1015673;
use_ at 1015675;
use_at 10!5672;
use_at 1015664;
use_at 1015666;
use_at 1015677;
use_at 1015676·,
use_at 1015678;

Ill

PRC, -Processor Control Register leb
TBIC, -- Time Base Interrupt Control Register
PMO, --Port 0 Mode Port
PMCO, - Port 0 Mode Control Port
PO, --Port 0 data port
PM!, --Port I Mode Port
PMCJ, -- Port 1 Mode Control Port
Pl, -- Port 1 data port
PM2, -Port 2 Mode Port
PMC2, --Port 2 Mode Control Port
P2 --Port 2 data port

:byte;

forPRC use_at 1015787;
for TBIC use_ at 1015788;
for PMO use_ at 1015553;
forPMCO use_at 1015554;
for PO use_at 1015552;
for PMI use_at 1015561;
for PMCI use_at 1015562;
for PI usc_ at 1015560;
forPM2 use_at 1015569;
for PMC2 use_ at 1015570;
forP2 use_at 1015568;

driver test_prog; -- this is the main sub-program
-- only one is allowed per program

function CHAR_LENGTII_CONVERT(Tim_LENGTH :integer) return byte;
procedure INIT _REGISTERS;
function PARITY_CONVERT (THE_PARITY :CHARACTER) retum byte;
procedure PliT_CHAR(TO_TIIE_PORT: INTEGER;

THE_ CHAR :CHARACTER);

function SET_BRG(THE_BAUD_RATE; INTEGER) return BYTE;
procedure SET_ DTR(THE_ SERIAL _PORT: INTEGER);
function SET_SCC(THE_BAUD_RATE: INTEGER) return BYTE;
procedure SET_SERIAL_PORT (THE_PORT

THE_BAUD_RATE
THE_PARITY
BITS_PER_ CHARACTER
THE_STOP_BITS

:INTEGER;
:INTEGER;
: CHARACTER;
:INTEGER;
:INTEGER);

function STOP _BITS_CONVERT (THE_ STOP _BITS: integer) return byte;

--announce some interrupt service routines:

task SERIAL_PORT_O_lSR;
for SERIAL_PORT_O_ISR use_at52;

task SERIAL PORT 1 ISR; - --
for SERIAL_PORT_l_ISR use_at68;

task CONSUMER;
task PRODUCER;

--for on-chip serial port 0
--located at memory address 52

--for on-chip serial port I
-located at memory address 68

- a co-routine task
- a second co-routinP. task

112

--Subprogram bodies ...

--a parameter-less procedure
procedure INIT_REGISTERS is
begin

PRC :~68;

PMO := 125; --all input except/DTRO and Clock-out
PMCO := 128; --Bit 7 to clock-out, others to port mode
PO :== 2; --set /DTRO inactive

PMl := IS; -- Portl upper 4 bits output
PMC1 := 0; --lower 3 bits must always be input
PI := 0; --leaving Portl.4 .. Port1.7 for programmable i/o

PM2 :~o; -­
PMC2 :=0;
P2 :=0;

end !NIT_ REGISTERS;

-- this function demonstrates a simple case statement, unconditional returns
--and recursion.
function SET_ BRG(THE_ BAUD_ RATE : INTEGER) return BYTE is
DEFAULT_BAUD: constant INTEGER:= 9600;
begin

case Tiffi_BAUD_RATE is
when 110 =>return 142;
when 150 ==>return 208;
when 300 => return 208;
when 600 => return 208;
when 1200 => return 208;
when 2400 =>return 208;
when 4800 => return 208;
when 9600 ==> return 208;
when 19200 => return 208;
when others ==> return SET_ BRG(DEFAULT _BAUD); --default to 9600 baud

end_case;
end SET_BRG,

113

-this function demonstrates a simple case statement, variable allocation,
~- recursion and a simple function return statement.
function SET_ SCC(TilE_ BAUD _RATE : INTEGER) return BYTE is
--DEFAULT_BAUD: constant INTEGER;= 9600~
RETURN_ VAR :BYTE;
begin
case THE_BAUD_RA1E is
when 110 ==>RETURN_ VAR := 8~
wheni50 =>RETURN_VAR:= 7~
when 300 => RETURN_ V AR := 6;
when 600 =>RETURN_ VAR := 5;
when 1200 =>RETURN_ VAR := 4;
when2400 "">RETURN_VAR:"" 3~
when4800 ==>RETURN_VAR:"" 2;
when 9600 "">RETURN_ VAR := 1;
when 19200 "">RETURN_ VAR := 0;
when others=-> RETURN_ V AR :"" SET_ SCC(9600);

end_case;

return RETURN_ V AR;
end SET_SCC;

function CHAR_LENGTIJ_CONVERT(TIIE_LENGTIJ: integer) return byte is
begin

case THE_LENGTIJ is
when 7 => return 0;
when 8 => return 8;
when others.:::> return 8; --default to 8 bits

end_case;
end CHAR_LENGTH_CONVERT;

function PARITY_CONVERT(THE_PARITY: CHARACTER) return byte is
RETURN_ VAL: byte;
begin

if{TIIE_PARITY= 'o') then RETURN_ VAL:= 32; end_if;
if(THE_PARITY" 'e') then RETURN_ VAL :~48; end_if;
if(THE_PARITY = 'n') then RETURN_ VAL:= O; end_if;
return RETURN_ VAL;

end PARITY_CONVERT;

114

-this function demonstrates the usc of deterministic
--control structures, when associated with machine hardware
--which can change state asynchronously w.r.t. normal
-program flow.
procedure PUT_ CHAR(TO_TIIE _PORT : INTEGER;

THE_CHAR :CHARACTER) is
LOOP_ COUNTER : INTEGER;
begin

if (TO_ TilE_ PORT~ 0) then
for LOOP_COUNTER in I .. 10000 loop
if (STICO >= 128) --test if we can send the char
then

STICO := STICO and 127; --remove buffer empty flag
TXBO :=BYTE(TilE_ CHAR); - demonstrate an explicit type-cast

-- while putting the char into the
-- transmission register

exit; --then get out of the loop
end_ if;

end_Ioop;
else
for LOOP _COUNTER in I .. 10000 loop --as above, but for Serial port I
if(STICI >= 128) then --can we send the char?

ST!Cl :~ ST!Cl and 127;
TXBl :~BYTE(TIIE_CHAR);
exit,

end_ if~
end_loop;

end_if;

end PUT_ CHAR;

function STOP _BITS_ CONVERT (THE_STOP _BITS : integer) return byte is
begin

if(THE_STOP _BITS~ 2) then return 4;
else return 0; end_if;

end STOP_ BITS_ CONVERT;

procedure SET_DTR(TIIE_SER!AL_PORT: INTEGER) is
DTRO _ON : constant BYTE := 253; --and this with PO to set DTRO active
DTRI_ ON: constant BYTE:= I6; --or tltis with PI to setDTRI active
begin

case THE_SERIAL _PORT is
whenO ->PO :=PO and DTRO_ON;
when I=> PI :=PI or DTRl_ON;
when others=:> null;

end_case;
end SET_DTR;

115

~~All this just to set up the port to send/receive a c:naracter!!
procedure SET_ SERIAL_ PORT (THE_PORT :INTEGER;

THE_BAUD_RATE :INTEGER;
THE_PARITY :CHARACTER;
BITS_PER_CHARACTER: INTEGER;
THE_STOP_BITS :INTEGER)is

ASYNCH :constant BYTE:== I;
TX_READY :constant BYTE:= 128;
RX_ENABLE : constant BYTE := 64;
ERROR_INT_DISABLE_M.ASK: constant BYTE;= 71; ~-disable error Interrupts
TX_ENABLE ; constant BYTE:= 64; ~~enable Tx generally

BIT_PARAMS: BYTE;
begin
BIT_FARAMS := ASYNCH;
BIT_PARAMS :=B!T_PARAMSorTX_READY;
BIT_FARAMS :=BIT_PARAMSorRX_ENABLE;
BIT _PARAMS := BIT _P ARAMS or PARITY_ CONVERT(THE _PARITY);
BIT_PARAMS :=BIT _PARAMS or CHAR_ LENGTH_ CONVERT(BITS_FER_ CHARACTER);
BIT _FARAMS := BIT _P ARAMS or STOP_ BITS_ CONVERT(TilE_ STOP_ BITS);

case TIIE_PORT is
when 0 =>

BRGO := SET_BRG (TIJE_BAUD_RATE);
SCCO := SET_SCC (TIJE_BAUD_RATE);
SCMO := BIT_FARAMS;
SEICO := SEICO and ERROR_\NT_DISABLE_MASK;
SEICO := SEICO or 64;
SRI CO ;= SRICO and 7;
STICO := STICO and 199;
STICO := STICO or 64;

when 1 =>
BRGI := SET_BRG (TilE_BAUD_RATE);
SCCI := SET_SCC (TIJE_BAUD_RATE);
SCM! := BIT_PARAMS;
SEICI := SEICI and ERROR_INT_DISABLE_MASK;
SEICI := SEICI or64;
SRICI := SRICI and 7;
STICI := STICI and 199;
STICI := STICI or 64;

when others => null;
end_ case;

end SET_SERIAL_PORT;

116

- and Utis to receive a character
task SERIAL_PORT_O_ISR is
begin

ERROR_ COND _ 0 := SCEO;
RECEIVED_CHAR_O :=RXBO;
CHAR_WAITING_AT_O :=TRUE;

~f'<..ICO := SRICO and 127; ·-clear this interrupt
SEICO := SEICO and 127; -- and any pending error interrupt

end SERIAL_PORT_O_ISR;

task SERIAL_PORT_l_ISRis
begin
ERROR COND 1 := SCEl' - - ,
RECEIVED_ CHAR_! := RXBI;
CHAR_WAITING_AT_l :=TRUE;

SRICl := SRICI and 127~ --clear this interrupt
SEICI := SEICI and 127; --and any pending error interrupt

end SERIAL_PORT_l_ISR;

117 ·I
'

--producer, in its sequence, polls the real-time clock 11SCConds" register
-- if there is a difference from the last reading it collects the
-- new va1ue and prepares it for the producer to use.

task PRODUCER is
TEMPORARY _BYTE: BYTE;

ASCII_ORDINAL_O; constant BYTE :== 48~ --'0' position in the ASCII table

UPPER_ NYBBLE : constant BYTE :~ 240;
LOWER_NYBBLE; constant BYTE;= 15~

begin
if(REAL_TIME_SECONDS_PORT t~ TIIE_SECONDS_STORE) then

-- First log the new value
THE_ SECONDS_ STORE:~ REAL_TIME_SECONDS_PORT;

--We need to split up the IO's and Units columns of the seconds
-First the IO's or Most Significant Digit...
--isolate upper4 bits, in which we will find the 'IO's column
TEMPORARY_ BYTE :~ TIIE_SECONDS_ STORE and UPPER_ NYBBLE;
--move them into the lower4 bit area
TEMPORARY_BYTE :~TEMPORARY_BYTE/16;
--make this into the byte representation of an ASCII character
TEMPORARY_BYTE :~ TEMPORARY_BYTE + ASCll_ORDJNAL_O;
-- and save this Most Significant Digit
-- in readiness for the Consumer process to send it
SECONDS_MSD :~CHARACTER(TEMPORARY _BYTE);

-- now isolate the 'units' component of the "seconds"
TEMPORAtY_BYTE :~ TIIE_SECONDS_STORE andLOWER_NYBBLE;
-- make thi& into the byte representation of an ASCII character
TEMPORARY_BYTE :~ TEMPORARY_BYTE + ASCil_ORDJNAL_O;
-- and save this Least Significant Digit
-- in readiness for the Consumer process
SECONDS_LSD :~CHARACTER(TEMPORARY_BYTE);

NEW_SECOND
end_ if;

end PRODUCER;

:~TRUE;

118 I

•· The CONSUMER task, in reality has three jobs to do in life:
-- I) If a char has been received by RS232 (Serial port 0) ISR, then

it sends that char out of the RS422 port.
·· 2) SiwJiarly, if a char arrives at the RS422 (Serial port 1) ISR,

that char is sent to the RS232 port
- 3) If a New second has arrived (and this occurs once per sec),

then the second's value [00 .. 59] is sent to the RS232 serial
port.

lliSk CONSUMER is
TEMPORARY_ CHAR : CHARACTER;

begin
·· this is job number I.
if(CHAR_WAITING_AT_O) then
TEMPORARY_CHAR :=CHARACTER(RECEIVED_CHAR_O);
CHAR_ WAITING_AT_O :=FALSE;
PUT_CHAR(SERIAL_PORT_l, TEMPORARY_CHAR);

end_ if;
SYNCH;

·· this is job number 2.
if(CHAR_WAITING_AT_l) then

TEMPORARY_CHAR :=CHARACTER(RECEIVED_CHAR_l);
CHAR_WAITING_AT_l :=FALSE;
PUT_ CHAR(SERIAL _PORT_ 0, TEMPORARY_ CHAR);

end_if;
SYNCH;

.. this is job number 3.
if(NEW_SECOND) then
-Transmit the seconds, most significant digit first
PUT_CHAR(SERIAL_PORT_o, SECONDS_MS!J);
PUT_CHAR(SERIAL_PORT_O, SECONDS_LSD);

TEMPORARY_CHAR := CHARACTER(l3);
PUT_ CHAR(SERIAL_ PORT _0, TEMPORARY_ CHAR); ··send a carriage return
TEMPORARY_CHAR :=CHARACTER(! OJ;
PUT_CHAR(SERIAL_PORT_O, TEMPORARY_CHAR);-- and line feed.

NEW_ SECOND :=FALSE;
end_if;
SYNCH;

end CONSUMER;

119

driver test_prog is

the_letter: character;
letter_nwn,
loop_counter: integer;
begin

-initialise inter-process data
NEW_SECCJND :=FALSE;
CHAR_WAITING_AT_O :=FALSE;
CHAR_WA!TING_AT_I :=FALSE;

--disable maskable interrupts, as we don't want any occurring
--whilst we are setting the V25 peripheral ports ready for action.
disable_int~

--set general purpose output registers
init_ registers;

-set up serial-port 0 (the RS-232 port)
set_serial_port(SERIAL_PORT_O, 9600, 'n', 8, I);

-- now set up serial port 1 (the RS422 port)
set_serial_port(SERIAL_PORT_l, 4800, 'n', 8, I);

--now that the ports can cope with interrupts, we may safely
-- enable the interrupts.
enable_int;

-- set the serial port handshaking lines to their active state,
-- so that characters may be transmitted and received.
SET _DTR(SERIAL _PORT_ 0);
SET _DTR(SERIAL _PORT _1);

-- now a little wake-up message
letter_ num := I;
while (true) loop

case letter_num is
when 1-> the_letter := 'H';
when 2=> the _letter := 'e';
when 3=> the _Jetter:== '1'~

when 4=> the_letter :=='I';
when 5==> the_letter :== 'o';
when others=> null;

end_case;
put_ char(SERIAL _PORT _0, the_letter);
put_char(SERIAL_PORT_l,the_letter);

loop_counter :=loop_ counter+ I;
exit when (loop_counter> 5);

end_loop;

while (TRUE) loop
PRODUCER;
consumer;

end_loop;

end test_prog;

120

F.2 The Translated "Safe C" for the test program:

#include "standard.c"
/*******"'*"'*Global constants**"'******/
#define serial_port_D 0
#define serial_port_l I
/***********Global Variables*********/
volatile unsigned char brgO;
volatile unsigned char brgl;
volatile BOOLEAN char_ waiting_ at_ 0;
volatile BOOLEAN char_ waiting_ at_ I;
volatile unsigned char error_cond_O;
volatile unsigned char error_ cond _1 ~
volatile BOOLEAN new _second;
volatile unsigned char pO;
volatile unsigned char pl;
volatile unsigned char p2;
volatile unsigned char pmO;
volatile unsigned char pml;
volatile unsigned char pm2;
volatile unsigned char pmcO;
volatile unsigned char pmcl;
volatile unsigned char pmc2;
volatile unsigned char pre;.
volatile unsigned char real_time_seconds__port;
volatile unsigned char received_ char_ 0;
volatile unsigned char received_ char _l;
volatile unsigned char rxbO;
volatile unsigned char rxbl;
volatile unsigned char sccO;
volatiJr unsigned char sccl;
volatile unsigned char sceO;
volatile unsigned char see!;
volatile unsigned char scmO;
volatile unsigned char semi;
volatile char seconds_lsd;
volatile char seconds_msd;
volatile unsigned char seicO;
volatile unsigned char seicl;
volatile unsigned char sricO;
volatile unsigned char sricl;
volatile unsigned char sticO;
volatile unsigned char sticl;
volatile unsigned char tbic;
volatile unsigned char the_seconds_store;
volatile U11Signed char txbO;
volatile unsigned char txbl ~

121

!***********Sub program prototypes****/
WlSigned char char_length_convert(int flle_Iength);
void consumer(void);
void init_ registers(void);
unsigned char parity_convert(char the_parity);
void producer(void);
void pt't_char(int to_the__port,char the_char);
void interrupt serial _port _0 _isr(void);
void interrupt serialyort_I_isr(void);
unsigned char sct_brg(int the _baud_ rate);
void set_ dtr(int the_ serial _port);
unsigned char set_scc(int the_baud_rate);
void set_serial_port(int the_port,int the_baud_ rate, char the_parity,int bits _per _character,int
the_stop_ bits);
unsigned char stop_bits_convert(int the_stop_bits);
void test_prog(void);
/***********Sub programs**************/
void init_registers(void){

mem_var_put(61440, 32747, 68);
mem_var _ _put(61440, 32513, 125);
mem_var;_put(61440, 32514, 128);
mem_var_put(61440, 32512, 2);
mem_var_put(61440, 32521, 15);
mem_var_put(61440, 32522, 0);
mem_var_put(61440, 32520, 0);
mem_var_put(61440, 32529, 0);
mem_var_put(61440, 32530, 0);
mem_var_put(61440, 32528, 0);
}/*end ofinit_registers*/

12Z

unsigned char set_brg(int the_baud_rate){

switch(the_baud_rate){
case 110: return 14-2;
break;
case 150: return 208;
break;
case 300: return 208~
break;
case 600: return 208~
break~
case 1200: return 208;
break~
case 2400: return 208;
break;
case 4800; return 208;
break;
case 9600; return 208;
break;
case 19200: return 208;
break;
default : retum set_brg(9600);
break;
} /*switch*/
}/*end ofset_brg*/

unsigned char set_scc(int the_baud_rate){

unsigned char return_ var;
switch(the_baud_rate){
case 110: return_var= 8;
break;
case 150: return_var-- 7;
break;
case300; retum_vJr-6;
break;
case600: return_var-5;
break;
case 1200: retum_var-4;
break;
case 2400: return_var- 3;
break;
case 4800: retum_var-= 2;
break;
case 9600: retum_var= 1;
break;
case 19200: return_var-= 0;
break;
default: return_var- set_scc(9600);
break;
} /*switch*/
returo return_ var,

}/*end of set_ sec*/

123

unsigned char char_Iength_convert(int the_length){

switch(the_length){
case 7: return 0;
break;
case 8: return 8;
break;
default : return 8;
break;
} /*switch*/

}/*end ofchar_Iength_convert*/

unsigned char parity_ convert(char the _parity){

unsigned char return_ val;
if(the _parity~ 'o'){
return val== 32· - '
}/*end if*/
if(the _parity~ 'e'){
return val:=. 48· - '
}/*end if*/
if(the _parity~ 'n'){
return val= o· - '
}/*end if"'/
return return_ val;
}/*end ofparity_convert*/

void put_char(int to_ the _port, char the_char){

int Ioop_counter,
if(to_the_port ~ 0){
for(loop_counter-=1; loop_counter<==lOOOO; loop_counter++){/*(Loop Labcl==Ll:)*/
if(mem_var_get(61440, 32622) >= 128){
mem_var_put{ 61440, 32622, mem_var_get(61440, 32622) &127);
mem_var_put(61440, 32610, (BYTE)the_char/*Explicit Type Cast*/)~
EXITLI;
}/*end if*/
} Ll:;
} else {/*else part*/
for(loop_counter=l; loop_counter<==IOOOO; loop_counter++){/*(Loop Label=L2:)*/
if(mem_var_get(61440, 32638) >== 128){
mem_var_put(61440, 32638, mem_var_get(61440, 32638) &127);
mem_var_put(61440, 32626, (BYTE)the_char/*Explicit Type Cast*{);
EXITL2;
}/*end if*/
} L2:;
}/*end if*/
}/*end of put_ char*/

124

unsigned char stop_bits_convert(int the_stop_bits){

if(the_stop_bi~ ~ 2){
return 4~
} else {/*else part*/
return 0;
}/*end if*/
}/*end ofstop_bits_convert*/

void set_dtr(int the_.::erial_port){

switch(the_serial_port){
case 0: mem_var_put(61440, 32512, mem_.V"ar_get(61440, 32512) &253);
break;
case I: mem_var_put(61440, 32520, mcm_var_get(61440, 32520) 116);
break;
default : ; I* null statement *I
break;
} /*switch*/
}/*end ofset_dtr*/

void set_ serialJ)Ort(int the_port,int the_baud_ ratc,char the_parity,int bits _per _character ,int
the_stop_bits){

unsigned char bit_params;
bit_params== 1;
bit_params= bit_params 1 128;
bit_params= bit_params /64;
bit_params= bit_pamms 1 parity_convcrt(the_parity);
bit_params= bit_params I char_length_convert(bits_pcr_character);
bit_params= bit_params 1 stop_bits_convert(the_stop_bits);
switch(the _port){
case 0: mem_var_put(61440, 32618, sct_brg(the_baud_rate));
mem_var_put(61440, 32617, set_scc(thc_baud_rate));
mem_var_put(61440, 32616, bit_params);
mem_var_put(61440, 32620, mem_var_get(61440, 32620) &71);
mem_var_put(61440, 32620, mem_var_get(61440, 32620))64);
mem_var_put(61440, 32621, mem_var_gct(61440, 32621) &7);
mem_var_put(61440, 32622, mcm_var_get(61440, 32622) &199);
mem_var_put(61440, 32622, mem_var_get(61440, 32622) 164);
break;
case 1: mem_var_put(61440, 32634, sct_brg(the_baud_ratc));
mem_var_put(61440, 32633, set_scc(thc_baud_rate));
mem_var_put(61440, 32632, bit_params);
mem_var_put(61440, 32636, mem_var_gct(61440, 32636) &71);
mem_var_put(61440, 32636, mcm_var_gct(61440, 32636) 164);
mem_var_put(61440, 32637, mem_var_gct(61440, 32637) &7);
mem_var_put(61440, 32638, mem_var_gct(61440, 32638) &199);
mem_var_put(61440, 32638, mem_var_get(61440, 32638))64);
break;
default: ; I* null statement */
break;
} /*switch*/

}/* end of set_ serial __port*/

125

void interrupt serial _port_ O_isr(void){

error_cond_O= mem_var_get(61440, 32619);
received_ char_()= mem_var_get(61440, 32608);
char_waiting_at_O= true;
mem_var_put(61440, 32621, mem_var_get(61440, 32621) &127)~
mem_var_put(61440, 32620, mem_var_get(61440, 32620) &127);

FJN1'• ,
}/*end ofserial_port_O_isr*/

void interrupt serial_port_1_isr(void){

error_cond_1= mem_var_get(61440, 32635) ~
received_char_l= mem_var_get(61440, 32624);
char_waiting_at_l= true;
mem_var_put(61440, 32637, mem_var_get(61440, 32637) &127);
mem_var_put(61440, 32636, mem_var_get(61440, 32636) &127);

FINT;
}/*end ofserial_j!Ort_l_isr*/

void producer(void){

unsigned char temporary_byte;
/*Co-routine Management Section*/
if(i_o_var_get(2) J= the_seconds_store){
the_seconds_store== i_o_var_get(2);
temporary_byte= the_seconds_store &240;
tempormy_byte== temporary_byte /16;
temporary_byte= temporary_ byte+ 48;
seconds_ msd= (char)temporary _ byte/*Explicit Type Cast*/;
temporary_ byte= the_seconds_store &15;
temporary_ byte= temporary _byte+ 48;
seconds_lsd== (char)temporary _byte/*E},:plicit Type Cast*/;
new_second= true;
}/*end if*/

}/*end of producer*/

126

void consumer(void){

char temporary_ char;
/*Co-routine Management Section*/
static int num_of_synch_points =I;
switch (num_of_ synch _points){
case 1 :goto T3; break;
case 2:goto T4; break;
case 3:goto T5; break;
}/• switch num_of_synch_points*/
/*End of Co-routine Management Section*/
TJ:;
if(char_ waiting_ at_ 0){
temporary_ char= (char)received_char_O/*Explicit Type Cast*/;
char_ waiting_ at_ 0== false;
put_ char(! ,temporary_ char);
}/*end if*/
if(++num_of_synch_points > 3)
num_of_synch_points = 1;

return;/* Synch point*/

T4:;
lf(char_ waiting_ at_!){
temporary_char= (char)received_char_l/*Explicit Type Cast*/;
char_ waiting_ at_l ==false;
put_ char(O,temporarv _char);
}/*el.d if*/
if(++num_of_synch_points > 3)

num_of_synch_points= I;
return; I* Synch point*/

T5: ;
if(ncw_second){
put_ char(O,seconds_ msd);
put_ char(O,seconds _lsd);
temporacy_char= (char)I3/*Explicit Type C<lst*/;
put_ char(O ,temporary_ char);
temporary_char- (char)lO/*Explicit Type Cast*/;
put_ char(O,temporary _char);
new_second= false;
}/*end if*/
if(++num_of_synch_points> 3)

num_of_syn:::h_points =I;
return;/* Synch point*/

}/*end of consumer*/

127

void test_prog(void){

int letter_num;
int loop_counter;
char the_ letter;
Set_ Vector(52, serial_port_O_isr);
Set_ Vector(68, serial_port_I_isr)~
new_second= false;
char_waiting_at_O= false;
char_waiting_at_l"" false;
disable_int~
init_registers();
set_ serial_port(O, 9600, 'n' ,8, I);
set_ serial _port(I ,4800, 'n' ,8, 1);
enable_int;
set_dtr(O);
set_dtr(I);
letter_num= I;
while(true){/*(Loop Labe!=L6:)*/
switch(letter_ num){
case 1: the_letter= 'h';
break;
case 2: the_letter- 'e';
break;
case 3: the_letter- 'I';
break;
case 4: the_letter- '1';
break;
case 5: the_letter- 'o';
break;
default : ; I* null statement *I
break;
} /*switch*/
put_ char(O,the _letter);
put_ char(l, the _letter);
loop_counter= loop_counter + 1;
if(loop_counter > 5) EXIT L6;
} L6:;
while(true){/*(Loop Label=L7:)*/
producer();
consumer();
} L7:;

}/*end oftest_prog*/

void main(void){
test_progQ;}/* main*/

128

Appendix G: Listing of Start-up code used to support the test
program.

; The primaty function of the start~up code is to set up the run~time
; environment before passing control to C function mainQ.
; The start-up code performs the following functions:
; 1) Initialize hardware and check RAM.
; 2) Copy initializers from ROM to RAM to setup initialized program variables
~ to proper initial values.
; 3) Zero all uninitializcd program variables.
; 4) Setup data segment.
; 5) Setup stack segment.
; 6) Pass control to C function main().

; This provides for a fairly minimal start-up of the V25.
; It relies substantially upon the work of; Pillay(l990);
; sample code provided with the locator, from
; Systems & Software, Inc. Irvine California;
; and sample code provided with the V25 development system
; purchased from Sturt Technology, Adelaide, South Australia.

; This code is included solely to give an indication of what needs
; to be done before the High level language program receives
; control of the CPU.

NAME MSC_ST ART_UP_CODE

PUBLIC acrtused
acrtused EQU 1

; setting _acrtused in this manner prevents the Microsoft linker from
; pulling in the DOS dependant startup code.

; Specify stack size.
;STACK_SIZE EQU IOOOH

~All Segment names used conform to those used by Microsoft C Version 6.0a
; refer to the Microsoft C compiler manuals for further explanation.

BEGFDATA SEGMENTPARAPUBLIC'FAR_DATA_BEG'
PUBLIC _bfdata

_bfdata LABEL BYIE ; the beginning ofinitialized data
; in FAR_DATA class.

; key~ Lbfdata ~>begin far data)
BEGFDATAENDS

FAR_DATA_START SEGMENT PARA PUBLIC 'FAR_DATA'
FAR_DATA_START ENDS

ENDFDATA SEGMENT PARA PUBLIC 'FAR_DATA_END'
PUBLIC _efdata

_efdata LABEL BYTE ; the end of initialized data
; inFAR_DATAclass.

ENDFDATAENDS

129

BEGFBSS SEGMENT PARA PUBLIC 'FAR_BSS_BEG'
PUBLIC _ bfbss

_bfbss LABEL BYTE ; the beginning nfuninitialized
; data in FAR_BSS class.

BEGFBSS ENDS

FAR_BSS_START SEGMENT PARA PUBLIC 'FAR_BSS'
FAR_BSS_STARTENDS
ENDFBSS SEGMENT PARA PUBLIC 'FAR_BSS_END'

PUBLIC_ cibss
_efbss LABEL BYTE ; the end ofuninitialized data

; in FAR_BSS class.
ENDFBSS ENDS

BEGHBSS SEGMENT PARA PUBLIC 'HUGE_ BSS_ BEG'
PUBLIC_ bhbss

_bhbss LABEL BYTE ; the beginning ofuninitialized
; data in HUGE_ BSS class.

BEGHBSS ENDS
HUGE_BSS_START SEGMENT PARA PUBLIC 'HUGE_BSS'
HUGE_BSS_START ENDS
ENDHBSS SEGMENT PARA PUBLIC 'HUGE_BSS_END'

PUBLIC_ chbss
_ehbss LABEL BYTE ; the end ofuninitialized data

; in HUGE_BSS class.
ENDHBSS ENDS

DGROUP GROUP NULL,_ DATA,CONST,ENDDATA,_BSS,ENDBSS,STACK

NULL SEGMENT PARA PUBLIC 'DATA_ BEG'
; This segment contains 16 bytes of zeros.
; If a (DS:O) nuH pointer assignment
; occurs, these byte locations will be oveiWiitten.
; We can use this to check for null pointer assignment.

PUBLIC _ bdata ; the beginning of initialized data.
_ bdata LABEL BYTE

DB I6 DUP (0)
NULL ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
; Segment with class name OAT A contains initialized variables.
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST
; Segment with class name CONST contains constants.
CONSTENDS

ENDDATA SEGMENT PARA PUBLIC 'DATA_END'
PUBLIC_ edata

_ edata LABEL BYTE ; the end of initialized data.
ENDDATA ENDS

_ BSS SEGMENT WORD PUBLIC 'BSS'
; Segment with class name BSS contains uninitiaJized variables.
_BSS ENDS

130

ENDBSS SEGMENT WORD PUBLIC 'BSS_ END'
PUBLIC _end

_end LABEL BYTE ~the end ofuninitialized data.
ENDBSS ENDS

STACK SEGMENT PARA STACK 'STACK'
DW STACK_ SIZE DUP (?)

stack_topLABEL WORD
STACK ENDS

~we must declare the C entry point so the assembler code can find it
EXfRN _main:FAR ;C mainQ

STARTUP _TEXT SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:STARTUP_TEXT

ASSUME DS:DGROUP, SS:DGROUP

PUBLIC START_
START_:

PUBLIC _stan_ ~ust be paragraph aligned (i.e. offset is 0)
start_: ;and the address where program code starts.

CLI ; tum off the interrupts at the earliest possible moment//
; Initialise hardware by re-locating
; the on-chip V25 registers
; from their old location ofOFFFFH to
; OF7EOH. Why there? Because the example
; code I first used located to this point.
; It worked, so I left well alone!! I
; For internal register mapping, refer to NEC
; V25 documentation, specifi .. :t~lly:
;"uPD70320/322 (V25tm) 16 Bit, Single Chip CMOS Microcomputers"
; available from NEC Electroncis Inc.
; or
; George Brown Group
; 294 South Road,
; Hilton, S.A. 5033.
; Australia.

IDB_SEG
IDB_LOC

EQUOFFFFH
EQUOFH

NEW_ IDB _ SEG EQU OF7EOH
NEW_ IDB _ LOC EQU OF7H

~'vV P>X, IDB_SEG
MOVES, AX
MOV AL, NEW_IDB_LOC
MOV ES:BYTE PTR IDB_ LOC, AL

~ow address at new location
MOV AX, NEW_IDB_SEG
MOVES, AX
MOV AL,OFFH
MOV ES:BYTE PTR OI02H, AL
MOV AL,OB2H
MOV ES:BYTE PTR OIEIH, AL
MOV P>X, 05555H

131

MOVES:WORDPTROIEBH, AX
MOV AL,04CH
MOVES:BYTE PTROIEBH, AL
MOV AL,040H
MOV ES:BYTE PTR 0 IOAH, AL

; Perform variable initialization. Initia1izers are copied from ROM to RAM.

PUBLIC _init_begin
_init_begin:

cw
Transfer Count
MOV AX,OFFSET DGROUP:_roata ; Transfer counter
CMPAX,O
JZ no_init_data
MOVCX,AX
Destination
MOV AX,SEG bdata
MOV ES,AX ; Destination ES:fDIJ
MOV DI,O ; Start ofinitialized variable area in RAM
Source
MOV AX,SEG _elext ; Sourre DS:[SI)
MOV DS,AX ; Start of initializer storage in ROM
MOVSI,O
Begin BY1E transfer

REP MOVSB ; Begin byte transfer from ROM to RAM
no_init_data:

Clear uninitialized data area in DGROUP group

MOV CX,OFFSET DGROUP:_end; End of'BSS' class in RAM
MOV DI,OFFSET DGROUP:_ edata ; Start of 'BSS' class in RAM
SUB CX,DI ; Size of'BSS' class in bytes
JCXZ no_uninit_data
MOV AX,O ; Initialize to 0

REP STOSB
no_uninit_data:

Initialize FAR_ DATA data in RAM with initializers stored in ROM

Transfer Count
MOV AX,SEG _ bfdata
MOV CX,SEG _efdata
SUB CX,AX ; Compute size ofFAR_DATA segments in paragraphs
JCXZ Joopend ; No FAR_DATA class
MOV DX,CX ; Saves transfer count in paragraphs
Destination
MOVES,AX
MOVDI,O
Source

; Destination ES:[DIJ
; Start ofFAR_DATA class in RAM

MOV AX,SEG_etext ; SourceDS:[Sl]
MOVDS,AX ; StartofFAR_DATA initializer storage in ROM
MOV Sl,OFFSET DGROUP:_edata ; _edata is paragraph aligned
Normalize Source Pointer
MOV AX,SI ; Process base of source pointer
MOVCL,4
SHR AX,CL ; Divide by 16
MOVBX,AX
MOV AX,DS
ADDAX,BX

lJZ

MOVDS,AX
MOVSI,O
MOVAX,DX

; Adjust base of source pointer
; Offset of source pointer is zero
; Restore transfer count in paragraphs

loopbegin:

last.xfer:

CMP AX,IOOOH
JBE lastxfer
MOV CX,8000H
SUB AX, IOOOH

; More than 64K bytes to transfer?
;No
; Prepare to transfer 8000H words

JMP SHORT xferbegin

MOVCL,3
SHLAX,CL
MOVCX,AX
MOV AX,O

; Number of WORDs = paragraph * 8
; Set up transfer count in terms of WORDs
; No more to transfer

xferbegin:
REP MOVSW ; Transfer WORDs from ROM to RAM

Ioopend:

CMP AX,O ; Any more data to transfer?
JE loopend ; No
; Adjust Source and Destination pointers
MOVBX,AX ; Saves transfer count
MOV AX,DS
ADD AX,IOOOH
MOVDS,AX
MOVAX,ES
ADD AX,IOOOH
MOVES,AX
MOVSI,O
MOVDI,O
MOVAX,BX
JMP loopbegin

; Restores transfer count

Clear uninitialized data area in FAR_BSS class
Transfer C'ount
MOV AX,SEG _ blbss
MOV CX,SEG _elbss
SUB CX.AX ; Compute size ofFAR_BSS segments in paragraphs
JCXZ loopfend ; No F AR_BSS class
Destination
MOVES,AX
MOVDI,O
Transfer Count
MOVAX,CX

loopfbegin:
CMP AX, !OOOH
JBE lastfxfer
MOV CX,8000H
SUB AX,!OOOH

; Destination ES:[DI]
; Start ofF AR _ BSS class in RMf

; More than 64K bytes to initialize?
;No
; Prepare to transfer 8000H words

MOV BX,AX ; Saves transfer count
JMP SHORT xferfbegin

Iastfxfer:
MOVCL,3
SHLAX,CL
MOVCX,AX
MOVAX,O
MOVBX,AX

xferfbegin:
MOV AX,O

; Number of WORDs =paragraph • 8
; Set up transfer count in terms of WORDs
; No more to transfer
; Saves transfer count

133

REP STOSW ; Initialize WORDs to zero
MOV AX.BX ; Restore transfer count
CMP AX.O ; Any more data to transfer?
JE loopfend ; No
~Adjust Destination pointers
MOVAX,ES
ADD AX,!OOOH
MOVES,AX
MOVDI,O
MOV AX,BX ~ Restore transfer count
1MP loopfbegin

loopfend:

Clear uninitialized data area in HUGE_BS..:. ~lass
Transfer Count
MOV AX,SEG _bhbss
MOV CX,SEG _ehbss
SUB CX,AX ; Compute size of HUGE_ BSS segments in paragraphs
JCXZ loophend ; No HUGE_ BSS class
Destination
MOVES,/~
MOVDJ,O
Traruier Count
MOVAX,CX

loophbegin:
CMP AX,!OOOH
JBE lasthxfer
MOV CX,SOOOH
SUB AX, !OOOH

; Destination ES:[DIJ
; Start ofHUGE_BSS class in RAM

; More than 64K bytes to initialize?
;No
; Prepare to transfer 8000H words

MOV BX,AX ; Saves transfer count
.Th1P SHORT xferhbegin

lasthxfer:
MOVCL,J
SHLAX,CL
MOVCX,AX
MOV AX,O
MOVBX,AX

xferhbegin:
MOVAX,O

; Number of WORDs "" paragraph * 8
; Set up transfer count in tenns of WORDs
; No more to t.:·ansfer
; Saves transfer count

REP STOSW ; Initialize WORDs to zero
MOV AX,BX ; Restore transfer count
CMP AX,O ; Any more data to transfer?
JE loophend ; No
~ Adjust Destt tation pointers
MOV AX,ES
ADD AX,!OOOH
MOVES,AX
MOVDI,O
MOVAX,BX
JMP Ioophbegin

loophend:

; Restore transfer count

134

~ Setup data and stack segment here

MDV AX,DGRDUP
MDV DS,AX ; Setup data segment
MDVES,AX
ASSUME DS:DGROUP
MOV SS,AX ~ Setup stack pointer
MDV SP,OFFSETDGROUP:STACK_TOP
ASSUME SS:DGROUP

CALL_main
HLT

STARTUP_ TEXT

; Pass control to C mainO function
; Embedded programs have no right to
; return, so halt the processor.
ENDS

; the next section provides for an area where initialised data
; can be copied from. Tills data is normally placed after the program
; code by the locator.

C_ETEXT SEGMENTPARAPUBLIC 'CODE_END'
PUBLIC _etext

_etext LABEL BYTE ~This label marks the end of program code.
DB 16 DUP(?) ; Required bytes

C_ETEXTENDS

END START_ ; The end of the assembler code.

135

End Text References
Allinson, C. (1994, March), ROMLDR, an Embedded System Program Locator. The C

Users Journal. pp35-46.

Akerbaek, T. (1993, March). C++, Coroutines and Simulation. The C Users Journal

pp74-86,

Appleby, D. (1991). Programming Languages: Paradigm and Practice. New York:

McGraw-Hill.

Atjomandi, E., O'Farrell, W. & Kalas, I (1994, Jan). Concurrency Support for C++: an

Overview. C++ Report pp. 45-50.

Aucsmith, D. (1988, March). Ada and Embedded Processors, Experience with ALS!N.

Paper presented at SouthCon 88. Orlando Florida USA.

Baker, T.P. (1988). An improved Run-Time System Interface. The Journal of Systems and

Software, 8(5) 373-393,

Bentley, 1. (1986) Programming Pearls. Communications of the ACM 29(8) pp711-721.

Bhansali, Praful V., Pflug, Bryan K., Taylor, John A, Wooley, John D. (1991) Ada

Technology: Current Status and Cost Impact. Proceedings of the IEEE, 79(1) 22-29.

Boehm, B. W. (1981), Software Engineering Economics, Englewood Cliffs, NJ: Prentice­

HalL

Booch, Grady. (1987). Software Engineering with Ada. Menlo Park, California: The

Benjamin Cummings Publishing Company, Inc.

Booch, Grady (1987a). Software Components with Ada. Menlo Park, California. : The

Benjamin Cummings Publishing Company, Inc,

Boussinot, F. & De Simone, R. (1991, Sept). The Esterel Language. Proceedings of the

IEEE. 79(9) ppl293-1304.

Brinch-Hansen, P.(l975). The Programming Language Concurrent Pascal. In Horowitz. E

(Ed) 1985 Programming Languages: A Grand Tour. Rockville. Computer Science

Press.

Brosgol, B. (1990, Sept.). Ada's fundamental language structures build reliable systems.

EDN -ppl53-166.

Bums, A. & Wellings, A (1990). Real-time systems and their programming languages.

Wokingbarn, UK.: Addison WesleyPublishing Company Ltd.

136

Colton, R. (1988 March). Ada a' a Bare Machine. Paper presented at SouthCon 88.

Orlando Florida USA.

Cotigny, J.D. & Pie, B. (1991) Design of a Man-Machine Inteiface for a Computerised

Numerical Controller. Paper presented to the 1991 International Conference on

Industrial Electronics, Control and Instrumentation.

Cullens, C (1994, March). Cross-platform development with Visual C++. Dr. Dobb's

Journal, 19(3), 64-69.

Cullyer, J. Lucas Professor of Electronics, University of Warwick (1993) Editorial on

Safety Critical Systems. Microprocessors and Microsystems 17(1) p2.

Deitel (1990). An Introduction to Operating Systems Menlo Park: Addison-Wesley

Publishing Company.

Digitalk (1992). Smal/talk V for Windows: Tutorial and Programming Handbook. Los

Angeles: Digitalk Inc.

Dijkstra, E. W.(l965). Co-operating Sequential Processes. In Genuys. F. (Ed) 1968

Programming Languages. New York: Academic Press, pp 43-112.

Dobler, H. (1992). Ada on Personal Computers - Some Experiences. Structured

Programming, 13(4) 193-201.

Duhaut, Bidaud & Fontaine (1992, Sept.). !ada, A language for Robot Programming based

on Ada. Robotics and Autonomous Systems. pp299-304.

Eckel B. (1993). C++ Inside & Out, Berkeley, California, Osborne McGraw-Hill.

Emery and Nyberg (1989). Observations on Portable Ada Systems. In Alvarez. A. (Ed)

1989 Ada- the Design Choice. Cambridge: Cambridge University Press, pp 245-255.

Fischer, C. N. & Leblanc, R.J. (1991) Crafting a Compiler with C. Menlo Park,

California: The Benjamin Cummings Publishing Company. Inc.

Gehaini, N. (1989). Ada: An Advanced Introduction Englewood Cliffs, N.J.: Prentice

Hall.

Gehani, N.& Roome, W. (1986, Sept) Concurrent C. Software-Practice and Experience.

16(9), p821-844.

Gehani, N. & Roome, W. (1993) The Concurrent C Programming Language. Summit NJ:

Silicon Press.

137

Gligor. V & Luckenbaugh G. (1983). An Assessment of the Real-time Requirements for

Programming Languages. Paper presented to the Proceedings of the Real-time

Systems Symposium, Dec 1993.

Harp, K. (1988 March). Ada on a Limited Address Machine. Paper presented at SouthCon

88. Orlando Florida USA.

Hoare, C.A.R. (1973, Oct). Hints on Programming Language Design. In Horowitz, E.

(Ed' !985. Programming Languages: A Grand Tour. pp 31-40.

Hoare, C.A.R. (1974, Oct). Monitors: An Operating System Structuring Concept.

Communications of the ACM. 17(1 0). pp 549-557.

Hoogeboom. B, & Halang W.A. (1991, Sept.) The Concept of Time in Software

Engineering for Real-Time Systems. A paper presented to the 3rd International

Conference on Software Engineering for Real~ Time Systems, Cirencester, U.K . .

Isherwood, D. (1991) DOS and real-time?. paper presented at the Third International

Conference on Software Engineering for Real-Time Systems. Cirencester, U.K

Karnrad, Mike. (1992). The Catalogue of Interface Features and Options: Bridge to the

Future for Real-Time Ada Applications. In A.Burns (Ed.), Towards Ada 9X (pp9-49).

Ar.:otordarn: !OS Press.

Laplante, Phil. (1993). Real-Time Systems Design and Analysis: An Engineers'

Reference. New York: The Institute of Electrical and Electronic Engineers.

Liskov & Snyder (1979). Exception Handling in CLU. In Horowitz. E (Ed) 1985

Programming Languages: A Grand Tour. Rockville. Computer Science Press.

MacLennan, Bruce J. (1987). Principles of Programming Languages: Design, Evaluation

and Implementation. HRW, The Dryden Press: New York.

Mann, Daniel. (1992). The Universal Debugger Interface. Dr. Dobb's Journal, 17(9),58-

68.

Mark Williams Company (1992). Coherent Operating System Manual lllinois: Mark

Williams Company.

Mazur, Beth. (1992). Moving from Assembly to C. Dr. Dobb's Journal, 17(8), 72-84.

Meyer, Bertrand. (1988). Object-Oriented Software Construction. New York, Prentice­

Hall,

Mortensen, B. (!984) Use uf Concurrent Pascal in Industrial Systems Programming.

Microprocessing and Microprogramming 14 p 155-!59

138

Microsoft Corporation, (199l)MS-DOS Programmer's Reference Redmond, Washington:

Microsoft Press.

Norton, P. "' Yao, P. (1992) Borland C++ Programming in Windows New York:

Bantam Books.

Odette, Louis L. (1991). Intelligent Embedded Systems. Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, USA.

Parnas, D.L., & Clements, P.C., (1972, Dec) On the Criteria to be Used in Decomposing

Systems into Modules. Communications of the ACM 15(12) pp1053-l 058.

Petzold, C. (1992), Programming Windows. Redmond, Washington: Microsoft Press

Phillips, Stuart G., & Rowett, Kevin J. (1991). C++ for Embedded Systems, Dr. Dobb's

Journal, 16(10), 76-85.

Pillay, Kenneth D. (1990). Relocating loader for MS-DOS .EXE files. Microprocessors

andMicrosystems 14(7), 427-434.

Powers, R.D., & Roark, C. (1990). Ada Support for Real-Time Systems. Ada Letters.

10(4) 114-118.

Sebesta, R. W. (1989). Concepts of Programming Languages. California: The Benjami"

Cummings Publishing Company Inc.

Sims, J. Teny. (1991, October). An Enhanced Ada Run-Time System for Real-Time

Embedded Processors. Paper presented at the IEEE/AJAA lOth Digital Avionics

Systems Conference, Los Angeles, California, USA.

Snow, C.R. (I 992). Languages for Programming. Cambridge UK: Cambridge University

Press

Sommerville, I. (1990). Software Engineering. Wokingham: Addison Wesley.

Stapfer, Christian. (1992). Timed Callbacks in C++, Dr. Dobb's Journal, 17(10), 72-76.

Stoyenko, A.D.& K!igerman, E., (1986, Sept). Real-Time Euclid: A Language for

Reliable Real-Time Systems. Transactions on Software Engineering, 12(9) pp941-949.

Struble, D. G., & Wagner, M.J., (1989). A quantitative evaluation of intermpt handling

capabilities in Ada. Paper presented at TRJ-Ada '89, Pittsburgh, USA.

Swartout, William & Balzer, Robert., (1982) On the Intertwining of Specification and

Implementation. Communications of the ACM. 25(7), 438-440.

Topping, G., Yeung, W.L. (1990), Implementing JSD Designs in Ada- A Tutorial. ACM

SIGSOFT Software Engineering Notes 15(3), 25-33.

139

Topping, G., Yeung, W.L. (1991, September). A Formalisation of Jackson System

Development. A paper presented at the 3rd International Conference on Software

Engineering for Real Time Systems at the Royal Agricultural College, Cirencester,

UK.

Tucker-Taft, S. (1993). Ada 9X:From Abstraction-Oriented to Object-Oriented Paper

presented at the 8th Annual Conference of00PSLA'93, ppi27-136.

Tur.~o C++ Programmers Guide (1990). Borland International, Scotts Valley CAUSA.

Velastin (1991, September). An Approach to Modular Programming in C. A paper

presented at the 3rd International Conference on Software Engineering for Real Time

Systems at the Royal Agricultural College, Cirencester, UK.

Volkman, V. (1993, November). BCC Coroutines, TDE, Lost Algorithms, and Anthony's

Tools. The C Users Journal. ppl 19-121.

Walraet, Bob. (I 989). Programming, The Impossible Challenge. Amsterdam: Elsevier

Science Publishers B.V.

Welsh, T. (1993, October). Debugging Embedded Systems. The C Users Journal. ppl9-

30.

Wirth, Niklaus. (1989, January). Designing a System from Scratch. Structured

Programming.pp I 0-I 8.

Wirth N. & Gutknecht, J. (I 992). Project Oberon: The design of an Operating System

and Compiler. New York. ACM Press.

Zave, Pamela & Yeh, Raymond T.(l981, March 9-12). Executable Requirements for

Embedded Systems. Paper presented at the 5th International Conference on Software

Engineering. San Diego California.

Zave, Pamela. (1982). An Operational Approach to Requirements Specification for

Embedded Systems. IEEE Transactions on Software Engineering, SE-8(3), 250-269.

140

	An Ada-like language to facilitate reliable coding of low cost embedded systems
	Recommended Citation

