The effect of assigning specific roles in science groups on the gender behaviour of primary school children

Janet F. Bant
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons
Part of the Educational Psychology Commons, and the Gender and Sexuality Commons

Recommended Citation

Bant, J. F. (1993). The effect of assigning specific roles in science groups on the gender behaviour of primary school children. https://ro.ecu.edu.au/theses_hons/604

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study.

The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following:

- Copyright owners are entitled to take legal action against persons who infringe their copyright.
- A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author's moral rights contained in Part IX of the Copyright Act 1968 (Cth).
- Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

```
The effect of assigning specific roles in science
    Eroups on the gender behaviour of primary
                        school children.
                        by
        Janet F. Bant, B.A. (Education - Primary)
            A Thesis submitted in partial fulfilment of the
                requirements for the award of
            Eachelor of Education with Honours
at the Faculty of Education, Edith Cowan University.
```


USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abstract

This thesis reports on an investigation into the effects on gender behaviour of assigning specific roles (Managır, Tracker, Recorder, Communicator) to primary aged members of a cooperative learning group in science. The study was carried out in a Year 4 and a Year 5 classroom in a Perth primary school. Both classes used a six lesson programme on a physical science topic prepared by the researcher and taught by the classroom teacher. The target subjects were randomly chosen from students meeting certain criteria defined by the researcher. All other subjects were allocated to either single- or mixed-gender groups of four. The target group was observed and their behaviour and verbal interactions coded before and after the assignment of the specified roles. Data were collected during the third sohool term. 1992. Data collected prior ta, and subsequent to, the treatment were compared and correlated with data collected through pre- and post-programme whale class questionnaires, field notes and post-programme interviews of the target group and the participating teachers. Implications for small group teaching are discussed and suggestions for future research conclude this thesis.

Declaration

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degres or diploma in any institution of higher edication; and that to the best of my knowledge and belief it does not contain any material previousiy published or written by another person except where due reference is made in the text.

Signature

$$
\text { Date } 1, \text { te juse } 1993
$$

Acknowledgements

I would like to thank my supervisor, Dr. Denis Goodrum, for his invaluable help and guidance: Dr. Mark Hackling, for his valued input: Kevin Barry and his team for the coding and analysis undertaken; and my mother and my son, Simon, for the support and encouragement they always give me.

TABLE OF CONTENTS

Abstract iii
Deciaration iv
Acknowledgements \mathbf{v}
List of Tables \mathbf{x}
List of Figures xi
CHAPTER ONE
Introduction
Background 1
Significance 3
Purpose 3
Problam 3
Research Questions 4
Definition of Terms 4
Organization of the Thesis 5
CHAPTER TWO
Literature Review
General Gender Issues in Science 6
Behaviour of Girls 8
Cognitive Learning Styles of Girls 9
Range of Experiences for Girls 10
Behaviour of Boys 11
Cognitive Learning Styles of Boys 12
Teacher Behaviour 12
Cooperative Learning Groups in Science 14
Cognitive Advantages 15
Affective Advantages 17
Methods of Grouping 18
Summary of the Chapter 80
CHAPTER THRET.
Methodology
Research Design 31
Sample 23
Teaching Programme 26
Data Collection Instruments 27
Behaviour Instrument 27
Verbal Instrument 29
Questionnaires 30
Interviews 31
Data Collection Procedures 31
Pre Study organisation 31
Data Collection during the Study 33
Research Consistency 35
Assumptions of the Study 36
Limitations of the Study 37
Ethical Considerations 38
Summary of the Chapter 39
CHAPTER FOUR
Results and Discussion
Overview 40
Research Question 1 40
Subsidiary Question 1.1 41
Summary 50
Subsidiary Question 1.2 50
Summary 61
Subsidiary Question 1.3 62
Summary 68
Year 4 Behaviour in Lesson 6 69
Research Question 1 Discussion 71
Summary 74
Research Question 2 Discussion 75
Summary 76
Research Question 3 Discussion 77
Summary 80
Supplementary Results 81
Summary of the Chapter 83
CHAPTER FIVE
Conclusions, Implications and Recommendations
Results and Findings 85
Discussion Related to the Literature 85
Impacting Variables 88
Implications for Instruction 80
Recommendations for Further Research 91
Summary of the Chapter 92
REFERENCES 94
APPENDICES 1001. Specific Roles in Cooperative Learning Groups
2. Class Sociograms: Year 4 and Year 5
3. Behaviour Instrument
4. Verbal Instrument
5. Questionnaires: Initial and Final
B. Interview Schedule

LIST OF TABLES

1. Lesson 1 Behaviour by Gender
2. Lesson 1 Verbal Interactions. Year 4
3. Lesson 1 Verbal Interactions, Year 5
4. Lesson 1 Speaker by Listener, Year 4
5. Lesson i Speaker by Listener, Year 5
6. Lessan 3 Behaviour by Gender
7. Lesson 3 Verbal Interactions, Year 4
8. Lesson 3 Verbal Interactions, Year 5
9. Lesson 3 Speaker by Listener. Year 5
10. Lesson 6 Dehaviour by Gender, Year 5
11. Lesson 6 Verbal Interactions, Year 5
12. Lesson 8 Behaviour, Year 4
13. Lesson 6 Verbal Interactions, Year 4
14. Attitudes to Science by Group
15. Gender Attitudes to Science by Group
16. Gender Attitudes to Science
17. Assessment Test Results

LIST OF FIGURES

1. Design of the Study
2. Choosing the Target Groun in Each Class
3. Plan of the Research Pragrame

CHAPTER ONE

Introduction

Background

Poor retention rates of girls in upper secondary school physical science and a resulting lack of female scientists in the work force have been matters of concern for some years (Kelly, 1887).

Many researchers have attempted to isolate the factors involved in girls' negative attitudes to science. Recent research has focussed on the apparent emergence of differential behaviour by boys and girls in science at about Year 4/Year 5 level in primary school. Until about nine years of age, girls and boys show similar levels of curiosity and interest in science, but during the succeeding years girls appear to fall behind boys in both motivation and achievement (Erickson \& Erickson, 1984). It appears that girls and boys exhibit most examples of differences in behaviour when warking in mixed-gender groups, and therefore this is the type of group chosen for investigation in this study (Rennie, Parker \& Hutchinson, 1984).

This study uses cooperative learning groups developed by Johnson and Johnson (1975) and refined by Burns (1981). Johnson and Johnson recommend four elements of a cooperative learning group:

1. Positive interdependence - all group members are required to interact to achieve the goals.
2. Face-to-face interaction between students physical proximity aids cooperation.
3. Individual accountability for mastering assigned material.
4. Instraction in appropriate interpersonal and small group skills - by the teacher initially, and later peer tutoring sor reinforcement.

The Groups of Four model of small group cooperative learning (Burns, 1981) is based on three rules for students to follow. These rules are:

1. Each member of the Eroup is responsible for his or her own work and behaviour.
2. Each member of the group must be willing to help any other group member who asks for help.
3. You may only ask the teacher for help if all four group members have the same question.

During Groups of Four sessions the teacher is a Pacilitator who circulates around the groups, observing the interactions and helping if the entire group has a question. The teanher also summarizes the results for the whole class when the groups have finished exploring the problem (Burns. 1981).

This model is used in the Science for Life and Living curriculum (Biological Sciences Curriculum Studies, 1989).

Significance

No previous published studies were found to have focussed on role designation and gender behaviour. This thesis seeks to make a potential contribution to educational theory and practice in this field. It is postulated that using cooperative learning groups in which students are assigned specific roles (Manager, Tracker, Recorder, Communicator), behaviours more relevant to societal, personal and family attitudes and interactions may replace the differential behaviours attributed to gender. This may provide the teacher with a strategy to enhance gender equity in science lessons.

Purpose

The purpose of this study is to investigate the effects of assigning specific roles in cooperative learning groups in science on the gender behaviour of primary school students.

Problem

How does the assigning of specific roles to boys and girls in cooperative learning groups of four affect their gender behaviour in science lessons?

Research Questions

1. "Can any observed differences in the gender behaviour of girls and boys in science be modified by the assignment of specific roles in mixed-gender groups?" 2."Are there any differences in gender behaviour between Year 4 and Year 5 students?"
2. "Do students in mixed-gender groups show greater changes in attitude to science than those in singlegender groups?"

Definition of Terms

For the purposes of this study the following terms will be defined thus:-

Cooperative Learning Group: A group of students working on a common activity towards a common goal.

Roles: Assigned in accordance with those from the experimental edition of Science for Life and Living (Biological Sciences Curriculum Studies, 1989). (see Appendix 1).

Gender behaviour: stated behaviours associated with science activity which are more common in one gender than the other.

Mixed-gender group: A group comprising two boys and two girls.

Single-gender group: A group comprising four boys or four girls.

Target group: The mixed-gender group randomly chosen for in depth observation and coding of the stated gender behaviours.

Organization of the Thesis

This thests reviews the literature in the two areas of gender issues in science and cooperative gronp learning then discusses the method of investigation for the study. Following the description of the data collection are the results and discussion. Conclusions are drawn from these results and implications for teachers and areas of further research are suggested. References and appendices complete this proposal.

CHAPTER TWO

Literature Review

The purpose of this chapter is to review literature in the two areas of gender issues in science and cooperative group learning. The review will identify behaviours in science attributed to gender and the Glements of cooperative group learning which can impact on these behaviours.

This chapter initially discusses the general gender issues identified in science, then describes specific behaviour exhibited by girls, boys and teachers which has been observed and reported by researchers as impacting on science learning. Literature on cooperative learning groups is reviewed in the light of cognitive and affective advantages over traditional teaching methods, and some of the methods af grouping are discussed.

General Gender Issues in Science

The differential involvement of girls and boys in soience has been attributed to various causes. Genetic and biological differences have been found by Gray (1981) and Waber (1976), while Harding (1986), Kelly (1987) and Whyte (1988) attribute observed and measured differences to sociological and cultural influences of a
western patriarchal society. Other researchers (Fennema \& Peterson, 1987; Good \& Brophy, 1991; Tobin \& Garnett, 1987) consider the differences reflective of teacher strategies and behaviour. Erickson and Erickson (1984) describe differences in the understanding of science knowledge and the application of that knowledge to the physical sciences. However, Parker and Offer, in their 1986 analysis of Western Australian results for Achievement Certificate Science over a fourteen year period, found differences vanished when the number and the näture of science courses taken previously were controlled for; boys and girls showed equal achievement levels when backgraund experience was equal.

Kelly (1982, 1987) and Kahle (1987) have extensively documented the masculine image of science and pind that the abstract, analytical, objective attitudes traditionally valued by scientists discourage the participation of girls. Curricula are largely based on boys' interests and textbook illustrations depict mainiy men. The notion that science is about things and not people rejects female socialization attitudes of nurturing and concern for others and increases the "apparent remoteness of science prom girls' everyday concerns" (Kelly, 1982, p.497).

Kahle (1987) reports that of 185 Year 10 students from four Perth secondary schools asked to "Draw-A-Scientist", only two depicted women. This

```
Stereotypic male image matches results found in other
countries (Chambers, 1983-Canada: Kahle, 1986 - United
States of America: Rennie, 1986 - Australia;
Weinrich-Haste, 1981 - United Kingdom).
    Projects such as the action research Girls In
Science and Technology initiated in mixed comprehensive
schools in the north of England, have facussed on
providing female role models for girls in an attempt to
improve attitudes to science (Whyte, 1984).
```


Behaviour of Girls

Rennie et al, (1984) report that in mixed-gender groups during a Year 5 physical science activity, girls spent nearly 25\% less time manipulating equipment than boys. Girls also spent up to four times as long watching and listening as boys. In many group situations, girls had a peripheral role as note takers and onlookers, recording the results and watching as boys manipulated the equipment and did the experiment.

When off-task in science lessons, girls were generally more likely to passively tune out, withdraw or engage in social activities, while male students who had finished the assigned tasks were more disruptive and their off-task behaviour often involved misuse of the equipment (Tobin \& Garnett. 1987).

Connitive Learning Styles of Girls

Recent research points to girls and boys using different learning patterns and styles (Harding, 1986; Ormerod \& Duckworth, 1975; Tobin \& Garnett, 1987). Harding (1988), speaking to Curriculum Consultants in Melbourne, said "Research indicates that girls in general tackle a new problem by putting themselves in the centre of the problem to examine all facets of it, and how the facets interact. Boys are more likely to look at a problem from the outside." Whyte (1986) found that boys approached laboratory tasks with "trial and error" methods, while girls tended to discuss the task, follow rules and set up the apparatus accurately the first time.

Ormerod and Duckworth (1975) believe that girls usually process information by memorizing or rote learning difficult material while boys prefer to understand the underlying principles. Tobin and Garnett (1987) believe these cognitive differences are primarily due to educational deficiencies which in turn lead to attitudinal changes. Researchers have found that "competition does not facilitate girls' learning" (Fennema, 1987. p.121), and the more competitive the classroom, the less girls learn (Good \& Brophy, 1991; Johnson, Johnson \& Holubec, 1990).

Range of Experiences for Girls

Girls lack background knowledge of many science concepts, and have had less experience engaging in "tinkering activities" such as using a saw, mending toys and playing with Meccano (Whyte, 1984). This lack of experience may contribute to the differences in visuo-spatial competence sometimes cited as a reason for girls" poorer performance on some nhysical science activities.

Kahle and Lakes (1883, p.134) analysed 1976-77
National Assessment of Educational Progress (NAEP) responses to attitude to science items drawn from 9, 13 and 17 year old students and found that

Females reported far fewer "hands-on" activities with magnets, mirrors, electricity, heat, solar energy and erasion. Girls reported having significantly more experiences than males with only three materials: living plants, sound and human behavior.

They also reported less female involvement in all extra-curricula science activities such as watching science shows on television, working with science projects or hobbies, reading science books, magazines or newspaper articles. This may add to an overall deficiency of science experiences for girls, which in turn may contribute to negative attitudes toward

Abstract

science. The resulting unfamiliarity with science equipment, and hesitancy and timidity in using it, may mean that girls avoid experiments and may "...end up having fewer opportunities to develop practical and technical skills, increasing their disadvantage in this respect compared with boys" (Whyte, 1984, p.84).

Behaviour of Boys

Bays "hog resources", allowing girls less opportunity to manipulate the equipment and resulting in the science experience being somewhat vicarious for them (Tobin, Kahle \& Fraser, 1990). Other researchers have reported similar behaviour (Kahle \& Lakes, 1983; Kelly, 1982, 1987: Whyte, 1984, 1988).

A gender difference has been reported in "calling out" behaviour. Sadker and Sadker (1985) described the results of a three year study of fourth-sixth- and eighth-grade American classrooms, and noted that boys were almost eight times as likely as girls to call out. Whyte (1984, p.a5) also found "The boys were falling over themselves to give the answer...". Tobin and Garnett (1987) characterise these behaviours as consistent with the interpretation that boys are more inclined than girls to take risks in science tasks.

Cosnitive Learning Styles of Boys

Kelly (1982) postulates that boys believe science is a male domain, and this affects their classroom behaviour, increasing their dominance. Their physical dominance of the classroom environment also appears to add to the perception "that boys were more able in science and their higher ability allowed the work to be completed and for all in the group to learn." (Tobin \& Garnett, 1987, p.99).

Boys preferred to learn through discovery methods and by spatial and quantitative means (Ormerod \& Duckwor^h, 1975).

Teacher Behayiour

Teacher behaviour can also impact on girls' learning in science lessons. Many researchers have focussed on teacher-student interaction (Galton, Simon \& Croll, 1880; Goad \& Brophy, 1991; Tobin et 21, 1990). finding differential expectations for science achievement which often raflect the societal view that girls cannot do well in science or mathematics.

There is disagreement between researchers over the amount of teacher attention received by boys and girls. Galton, Simon and Croly (1980), Kelly (1987) and Whyte (1984) show significant differences, with teachers giving boys more attention, directing more questions to
them, accepting more responses, and giving more elaborative feedback. Clarke and Dart (1987) and Dillon (1882) found teacher attention and interaction pairly evenly distributed between the sexes. Tobin and Garnett (1987), analysing observations of 200 science lessons in a Private and a Public coeducational high school in Perth, found that even when giris autnumbered boys in the class, the boys answered 70\% of the questions. In later works, Tobin identifies what he calls "target students" who are responsible for most of the teacherstudent interaction. In science classes these students are generally high-achieving males (Tobin et al, 1990).

Tobin and Garnett (1987, p.98) also noted that teachers often ask higher cognitive level questions of boys, and consequently boys were involved in responding to questions "intended to stimulate thinking or to elicit responses that would provide a bridge to a new area of content". Student initiated questions tend to come from males, and if girls ask questions, they tend to be procedural or social. In addition, teachers more often provide boys with instructions to help complete a project, but show girls how to do it, or do it for them.

The type of praise the teacher gives can lead to the phenomenon of "learned helplessness" in girls by altering their locus of control (Kelly, 1982; Sadker \& Sadker, 1985). According to Kelly (1987), Eirls are generally praised for behaviour, obeying rules and

Abstract

compliance and criticised for intellectual inadequacy. Boys receive praise for academic excellence and intellectual qualities and criticism for poor behaviour or disruptiveness. Boys are more often told their lack of success is due to lack of effort, while girls are told they lack the skill (Tobin, 1887).

Gooperative Learning Groups in Science

Cooperative learning groups are small groups in which all members are working together to attain a joint goal. They have been recommended as an alternative to the traditional competitive classroom for some years (Johnson et al, 1990, p.31). The authors feel that cocperative learning is indicated:

Whenever the learning goals are highly important, mastery and retention is
important, the task is complex or conceptual, problem solving is desired, divergent thinking or creativity is desired, quality of performance is expected, and higher level reasoning strategies and critical thinking are needed.

In a meta-analysis by Good and Brophy (1981), 26 of 41 studies conducted in regular classrooms showed significantly greater learning in classes using cooperative methods, and only one found greater learning
in a control group.
As the use of cooperative learning has increased, different models (for example, Jigsaw I \& II: Teams, Games, Tournament; Student Team Learning; Student Teams Achievement Divisions; have bcen trialled. All focus on the process of reaching a result. They promote more positive attitudes towards the subject area in which they are used (Johnson et a1, 1990). This has important implications for teaching, for example, in influencing choice of secondary science subjects which may lead to science and mathematics oriented careers.

The value of cooperative learning is that it models attitudes and interactions which are important in society, and teaches skills which are relevant to students' lives, family and personal relationships (Biological Sciences Curriculum Studies, 1998).

Cognitive Advantages

Small groups allow students to interact with each other and learn from their peers. "Compared with interactions with adults, interactions with peers tend to be more frequent, intense and varied throughout childhood and adolescence" (Johnson et al. 1980, p.21). By using group members as the first level of help, students come to rely less on the teacher as the only source of knowledge and the validator of their thinking, and begin to become actively involved and take
responsibility for their own learning. Individuals are involved in "the exploration part of the learning process", and the teacher's role is to help them to understand the results of that exploration (Burns, 1981, p.51).

Good and Brophy (1981). Johnson et al (1990) and Lewis (1988), found that students often use higher order thinking skills in cooperative learning groups. Concept development, problem solving and synthesis are enhanced. Pupils in Grade 5 classes produced superior answers to questions recring original contributions (Sharan, 1988). Davidi un (1880, p.5) says that 'Students in groups can often handle challenging situations that are well beyond the capabilities of individuals at that developmental stage".

Transfer of skills is facilitated, as are discussion and creativity. Others' ideas are more acceptable because of exposure to other perspectives which may be different from their own.

Pace of instruction is considered important for achievement. In cooperative learning groups children are able to set their own pace and are free to control their own cognitive strategies to a greater extent than in traditional whole class activities. (Barnes \& Todd. 1981).

Affective Advantages

Abstract

Piaget saw social interaction as one of the essential ingredients for learning (Foolfolk, 1987). Cooperative learning groups maximise interaction among students and therefore have major advantages over traciitional whole class methods in this area (Good \& Broply, 1991: Johnson \& Johnson, 1975). Galton et al, (1980) conclude from their studies of students in the United Kingdom that participation in cooperative learning experiences lead to significant increases in self-esteem and self-confidence. Johnson et al (1990) measured lower levels of anxiety in cooperative learning group members in Ameriean schools and support Galton's findings.

If the teacher structures the goals of learning so that students are concerned with the performance of other group members as well as their own performance, positive interdependence among group members may result (Johnsan et al, 1990).

As all members of the group must have the same request for information (Burns, 1981), teacher management problems may be alleviated by teacher interaction with seven or eight groups instead of thirty two individuals.

Motivation may be enhanced because children are allowed to talk and move around. Consequently they spend more time on task (Good \& Brophy, 1981).

Students need to understand the rules associated With small group cooperative learning and learn to interact constructively with other members of their group. They need to be taught how to work, cooperate and communicate effectively and develop interpersonal and small group skills (Jahnson et al, 1990).

Methods of Groupink

There is controversy regarding the optimal method of Grouping students for cooperative learning. Lockheed and Harris (1984) examined 84 data sets, 45 of which showed greater male activity, influence or leadership in mixed-gender groups. They rostulate the sex segregation which occurs during elementary years may not be the harmless developmental stage pioviously thought, but may be communicating a "normative acceptance of sex segregation and its consequences" (p.27B). Galton et al. (1980) measured the interactions of 489 primary students and found those of the same gender interacted more than twice as often as with the opposite gender in mixed-gender groups.

Webb (1984) investigated 77 Year 7 and Year 8 students in two mathematics classes taught by the same teacher and found higher male achievement in mixedgender groups of equal ability where numbers of girls and boys were the same. She speculated that these differences were a consequence of the students being
able to obtain explanations and information when they requested it. Girls were less successful than boys in obtaining help when they needed it, and this impeded their learning. She also noted that in groups where the number of boys was greater than the number of girls, the girl was ignored and the boys achieved higher results, While in groups where the number of boys was less than the number of girls, most interactions were directed to the boy and he again evidenced higher achievement.

According to Rennie et al (1984) the pattern of time spent by boys on each activity is the same in either single- or mixed-gender groups, and is in turn, matched by single-gender girls* groups. However, in mixed-gender groups the girls are far more passive. spending more than four times as long watching and listening as the boys. These studies point to the widest degree of differences in the behaviour of boys and girls in mixed-gender grouping. This mas therefore chosen as the target grouping in this study.

Good and Brophy (1991) report groups using all high or all low ability students are likewise unsuccessful. In mixed ability groups the high ability students tend to control a majority of the interactions. This study attempted to lessen the effect of high- and law-ability students by excluding them from the target group (see Figure 2).

Abstract

Little published research was found on the effects of role allocation on group dynamics. Biological Sciences Curriculum Studies (1989) recommended specific roles in cooperative learning groups to enhance affective growth. Good and others (1980) focussed on cognitive rather than affective advantages of the strategy, and saw the value of assigning roles as artificial with highly questionable benefits. This study attempted to further investigate these diametrically opposed views.

Sumpary of the Chapter

The preceding review of the literature shows some of the differences in science behaviour attributed to gender. Such behaviours as reading, notetaking and recording, manipulating the equipment, watching and listening, off task behaviour, "calling out" behaviour, responding to questions and peer/teacher interactions have been reported as showing different patterns in boys and girls.

The literature reviewed in this chapter also shows soms cognitive and affective advantages of cooperative learning groups over more traditional methods. The type of grouping chosen for this study is described with reffrence to the literature reviewed.

CHAPTER THREE

Nethodalogy

As the review of the literature indicated, the dynamics of small groups was considered a significant aspect of cooperative learning. Accordingly, this study focussed on one feature of group dynamics, namely role allocation, and investigated its influence on some of the differences in the behaviaur of boys and girls which have been attributed in the literature to gender.

Research Design

A case study of a target group during science lessons was conducted. Cohen and Manion (1980, p.99) define a case study as an observation of:
the characteristics of an individual unit a child, a clique, a class, a school or a community [to] analyse intensively the multifarious phenomena that constitute the life cycle of the unit with a view to establishing generalizations about the wider population to which the unit belangs.

Six lessons were taught by the classroom teachers of a Year 4 and a Year 5 class from a gender-neutral programme prepared by the researcher. The programme was
designed to use cooperative learning groups of four students, including role allocation, as outlined in the Science for Life and Living curriculum (Biological

Sciences Curriculum Studies, 1989). The investigations focussed on a physical science topic, Wheels and Cogs.

Figure 1. Design of the study

Lesson 1 --- Lesson 3	Lesson 6	
01	X	02 Year 4 target group
03	X	04 Year 5 target group

In Figure 1, 01 and 03 represent baseline observational data collected in Lesson 1. Roles were then allocated in Lesson 3 (X). 02 and 04 are observational data collected in Lesson 6 after the role allocation. The data were then processed to determine any differences in behaviour of the students in the target group before and after the role allocation (X).

Erickson and Erickson (1984) asserted that gender differences began to emerge at about nine years of age. A Year 4 (mean age 8 years 7 months) and a Year 5 (mean age 9 years 8 months) class were chosen to test this assertion. The design of the research study allowed inter- as well as intra-class comparisons.

Sample

The subjects for this study were drawn from two middle primary classes at the same school in Perth. The Year 4 class comprised 26 students, the Year 5 class, 28. The students were assigned to a single- or mixed-gender group of four by the researcher and the teacher.

The mixed-gender groups comprised two boys and two girls who met criteria designed to minimise confounding variables. The target group therefore did not contain newly arrived migrant children because of the possible language difficulties and cultural influences; very high or very low achieving students who may be deferred to, or isolated (Tobin et al, 1990); or children with extreme personal attributes such as shyness or assertiveness. (Tayler, personal communication, 24th June, 1992). These criteria were applied to minimise the differences between students, grouping together "typical" students whase behaviour would be indicative of the treatment and not unduly confounded by extraneous factors.

All children who met the criteria were randomly assigned to one of three mixed-gender groups, and from these three groups one group was randomly chosen to be the target group (see Figure 2). All other children were assigned to a single-gender group of four, based partly on their cholce of partners compiled by the

```
researcher into a class sociogram (see Data Collection
Procedures, p. }31\mathrm{ for further details of this grouping,
and see also Appendix 2 for the Class Sociograms).
```

Figure 2. Choosing the target group in each class

Apply criteria
Target Individuals 0 X $X O$ O O
Randomly assign to
mixed-gender groups
Groups
$\begin{array}{llll}X & X & 0 & 0 \\ X & X & 0 & 0 \\ X & X & 0 & 0\end{array}$
Randomly choose target
group
$\mathrm{x} \times \mathrm{O} 0$
All other students
assigned to single-
gender groups

KEY : O and X denote girls and boys.

The presence of both single- and mixed-gender groups in each class enabled a comparison of changes in attitude to science as a function of group composition (see Research Question 3). This method of grouping necessarily placed all students with the idiosyncratic qualities outlined above in the single-gender groups. The groups remained constant over the six lessons.

The teachers who taught the two classes were similar in a number of ways. While Galton et al (1980) found some evidence that the sex of the teacher might be a factor in determining the attitudes of girl pupils to science, Hacker (1986, p.69) disputed these results and found the "presence of a male teacher had no adverse effects on either the prequencies or the quality of girls' interactions in science classrooms." Therefore the teachers chosen for this study were male, but were closely matched on other parameters to counteract any possible effects. Both teachers were four-year trained with a degree of Bachelor of Education with a science background, and comparable teaching experiencs. They have bath used group work in other subjects (reading and mathematics), but not in science with the classes they currently teach. Both claimed to use gender neutral teaching strategies as outlined in the Ministry of Education Social Justice policy.

Teaching Programme

Kahle (1987) and Kelly (1987) found highest levels of female disinterest in physical science. It could therefore be expected that in a physical science topic, girls would exhibit high levels of watching behaviour, one of the traits attributed to gender in the literature (see page 20). This field was therefore chosen as the basis for the programme. It was expected that any modification of behaviour due to role allocation would be maximised.

The researcher met with the classroom teachers prior to the commencement of the study in order to determine a suitable physical science topic. Wheels and Cogs was mutually acceptable because:
i. it formed part of the Year 5 science syllabus,
ii. it had not been taught during the current year.
iii. suitable equipment was available on loan from Edith Cowan University, and
iv. lack of appropriate resources at the school and district level would minimise the chance o? succeeding teachers of these classes exploring this topic in depth.

The researcher examined syllabus content for the concept areas to be taught, and consuited other science curricula to design materials-centred, inquiry-based activities in line with W. A. Ministry of Education
perspectives. Gender-neutral strategies were identified from the literature and incorporated wherever possible.

Data Collection Instruments

Behaviour identified in the literature as attributable to gender was reviewed in Chapter Two. Of the listed behaviours, several were deemed to be measurable in swall group situations. The following instruments were chosen as most appropriate.

1. Behaviour Instrument

A behaviour instrument was developed to code the behaviour of the target group. This Behaviour Instrument used an adaptation of the categories of the Group Work Activity Schedule (Rennie et al. 1984). The categories were:

Reading/eriting - unchanged
Watching/Listening - unchanged
Manipulatine Equipment - unchanged
Planning/Discussing - changed to Verbal Interactions
Other On Task - deleted.
Off Task - unchanged
Out of Role - this added category was developed to code a student exhibiting non rale-appropriate behaviours in

Lessons 3 and 6. Role appropriate behaviour was expected to be independent of gender. (See Appendix 1 for the Specific Roles and their designated appropriate
behaviour, and see also Appendix 3 for the Behaviour Instrument).

Trials were conducted by the researcher using the original instrument to code Year 4 mathematics group work lessons. During the first trial it became obvious that some of the categories on the original instrument needed to be changed for this study. Accordingly, the Planning/Discussing category was broadened to include all talk regardless of purpose, and renamed the Verbal Interactions category. The Other On-task category was deleted. A new Out of Role category was developed to code non role-appropriate behaviour.

The original instrument used a time interval of 90 seconds, at which time the class was observed and behaviours in all groups caded. Trials conducted by the researcher using this instrument indicated 30 second intervals were mare appropriate when study was focussed on only one target group in each classroom. Additional data were abtained by script taping verbal interactions to supplement the audio recordings during the interval. The amended Behaviour Instrument was successfully trialled in a further Year 4 mathematics lesson.

The Rennie at al (1984) instrument was chosen because it measures both the nature and the extent of each target student's participation.

Elements of the Rennie et al (1984) instrument being used in this study have both internal and external
validity and reliability. It was developed for a 1984 field study of 18 Perth Year 5 classrooms, and was extensively trialled before use. For this study it was used in similar year levels in the same geographic area.

2. Verbal Instrument

The verbal exchanges between the members of the target group were tape recorded, transcribed and coded using the MAKITAB Small Group Learning Interaction Analysis developed in 1991 at Edith Cowan University, Perth, by King, Barry, Maloney and Tayler (see Appendix 4). Teacher interaction with the target group was coded, but teacher/whole class interactions omitted from the transcripts since they were not relevant to the study.

For the purposes of recording, each student in each group was assigned an identification number. Numbers were dlustered to delineate between girls (numbers 1 and 2) and boys (numbers 5 and 6) as outlined in the draft manual for the MAKITAB system.

The coded verbal interactions were then analysed using the computer programme, SAS Statistics, to identify frequencies in interactions and significant patterns. MAKITAB has been trialled in Perth and at Missouri in the United States of America, and is currently being prepared for publication.

3. Questionnaires

Initial and Final Questionnaires were given before and after the programe to all students. The Questionnaires used a modified Likert-type response format (see Appendix 5). To visually enhance understanding, the response categories were matched with a series of circles of increasing diameter, as used successfully by Rennie et al (1984). The content of the items in this scale related to attitudes to science, attitudes to group work, and gender behaviour. Ihe Final Questionnaire also prabed previous knowledge of the topic. The nine questions of the Initial Questionnaire were matched with the twelve questions of the Final Questionnaire in each category of interest.

The Questionnaires were subjected to face validity by expert review by several teachers at the participating school, and a draft version was administered to a composite class of Year 4/Year 5 children not directly involved in the study. No difficulties were found with the content or the response format, but one question was amended slightly to enhance clarity, The language was judged to be appropriate for the age of the children involved.
4. Interviews

Abstract

Post-programme Interviews were held with the teachers involved in the study to determine their perceptions of any differences in the stated gender behaviours before and after the assignment of roles. Following analysis of the Initial and Final Questionnaires of the target students and overall patterns identified from the Behaviour Instrument and field notes, the target students were individually interviewed using a semi-structured format outlined by Murphy (1980) (see Appendix 6). Discrepancies between the Initial and Final Questionnaires were probed, and further insights sought. The students' responses were tape recorded and transcribed. The Interviews served to triangulate data by clarifying and enhancing observations by the researcher (Jick, 1979).

Data Collection Procedures

Pre Study Organisation

A Programme was developed by the researcher on the physical science topic of Wheels and Cogs. It was shown to the teachers and their camments invited. The Programme included full lesson plans with detailed steps for the teacher to follow, background information on the concepts to be taught in each lesson, student worksheets
with answer sheets for the teacher, teaching aids, charts and equipment. Both teachers agreed the lesson formats appeared to be amenable to group work; gender neutral; and appropriate to the year levels concerned. The teachers used the same programme to maintain consistency in both content and method and to reduce the number of operational variables in the study.

The teachers were also provided with information on the Burns' (1981) Groups of Four madel of cooperative learning and the Biological Science Curriculum Studies (1989) role behaviours expected (Appendix 1). Through these strategies, context variables relating to subject matter, instructional objectives and teaching wethods, as well as Eeneral variables related to the level of teacher background information and experience with the topic, were incorparated into the research design.

The Behaviour Instrument was trialled, as noted previously, by the researcher during Year 4 mathematics group work lessons, and subsequently adapted. The trials were conducted with the dual purpose of familiarising the students with the presence of an observer, and allowing the researcher to practise with the Behaviour Instrument in order to identify strengths and weaknesses inherent in its use.

Later analysis of the tape recordings of these lessons showed very little interaction with the researcher, and minimal curiosity about the equipment

Abstract

(tape recorder, microphone, etc.). Before the programme began, the students in each class were invited to indicate the names of three classmates they would like to work with during the term's science lessons. On the Dasis of these lists, Class Sociograms were constructed (Barry \& King, 198日). These Sociograms are included (see Appendix 2).

After the targei groups were chosen (see Figure 2) the rest of the students were assigned to a singlegender group of four based partly on their choices for the Sociogram. Over half the class, 15 of 28 children. were placed in a group with one or more of their choices at the Year 5 level, and 13 of 26 at the Year 4 level.

Data Collection during the Study

The Initial Questionnaire was administered to the whole class at the commencement of the programme. The students were then grouped for science lessons as previously described (Figure 2).

At this point, due to circumstances beyond the researcher's control, the timelines of data collection were altered. The Year 5 class undertook the six week programme in a three week time frame, with two lessons per week on successive days. The Year 4 class delayad the onset of the programme by one week, but followed the programme format of one lesson per week for six lessons.

Lesson 1 was coded using the Behaviour Instrument
to categorise each target student's behaviour, and tape recorded for later coding and analysis using MAKITAB as planned. This provided the baseline data for the research. Field notes were also recorded at the conclusion of the lesson to triangulate and further clarify data collected.

At the beginning of Lesson 3 students were assigned roles in each group. Traditional gender behaviour as identified in the literature would lead to expectations that the boys would manipulate the equipment and do the experiment while the girls recorded the information and communicated the results. Roles were assigned across these gender expectations, so that the girls were allocated the non-traditional roles of Manager and Tracker: the boys, Recorder and Communicator.

The verbal and behavioural interactions were then tape recorded and coded with the Behaviour Instrument as before. Again, field notes were recorded at the completion of the lesson.

Lesson 6 was coded in the same manner, and again, field notes were recorded.

In addition to the extensive observational data collected during Lessons 1, 3 and 6, Lessons 2. 4 and 5 were partially coded using the Behaviour Instrument, and intermittently tape recorded. While these data were incomplete and therefare nat included in the results, they were also examined and compared with the detailed data.

Figure 3. Plan of the Research Programme

Stage Measuring Instrument

July Trial of Questionnaire Questionnaire
Trial of Behaviour Behaviour Instrument Instrument

Measurement of children's Initial Questionnaire attitudes

Selection of research Sociogram sample

August- Instruction phase using Behaviour Instrument Sept Wheels and Cogs prosramme Verbal Instrument Classroom observation

Sept Measurement of children's Final Questionnaire attitudes Interview

Measurement of teacher's Interview perceptions

Measurement of cognitive Assessment test outcomes

At the request of one of the participating teachers, an Assessment Test was devised to conclude the unit. Both classes subsequently completed the Assessment Test, which was administered to the whole class during Lesson 7. The Final Questionnaire was also held over until this time.

Research Consistency

Research consistency was sought by:

1. Modified random selection of target students.
2. Trialling of the Behaviour Instrument and the Questionnaire with a group of students at the same age as the target population prior to its use in the field.
3. The researcher coding all behaviours exhibited in the lessons.
4. The researcher conducting all interviews.
5. Audio taping all lessons and interviews.
B. Joint coding of the lesson transcripts by the authors of the MAKITAB Verbal Instrument in collaboration with the researcher, ensuring context accuracy.
6. Teachers using matching behaviours and strategies in their teaching, and their treatment of the programme being approximately equiva:lent.

Assumptions of the Study

The following assumptions applied to the research:

1. The researcher assumed the students in Year 4 and Year 5 had similar educational and social backgrounds. cognisant of the one year age difference.
2. The range of academic abilities in each class was similar.
3. The concepts chosen wers new to the students and neither class had previous background experience, other
than normal everyday experience, of the topic "Wheels and Cogs".
4. The participating teachers followed the programe closely to ensure consistency between classes.
5. Within the parameters of the study, the students were assigned randomly to their groups.
6. The Questionnaire and Interview environments were non-threatening to the students.

Limitations of the Study

The following limitations applied to the research:

1. The literature and previous research shawed that the teachers required familiarity with group processes for effective small group cooperative learning. The tws teachers who were chosen to participate in this study both had experience in using small group work. Their experience in using the particular approach outlined in the Soience for Life and Living programme (Biological Sciences Curriculum Studies, 1989) was, however, limited.
2. While the observational data is extensive, the small size of the sample hampers generalizability when applying the findings of the study to a wider population. This problem is escalated by the fact that the sample was not determined in a random manner,
3. The "Hawthorn Effect" may have had some bearing on the results of this study. The Hawthorn Effect describes any situation "in which subjects" behaviour is affected not by the treatment per se, but by their knowledge of participation in a study" (Gay, 1987, p.275). The students in this study were nat told the reason for the research, but believed the researcher was evaluating a new programme. This explanation was considered necessary to explain the group work, the roles allocated and the presence of the researcher.

Ethical Considerations

The following methods were undertaken to maintain the confidentiality of all participants in the study:

1. The school involved was identified by code letters and numbers in all written data.
2. The teachers involved were iclentified only as "the teacher of Year 4" or "the teacher of Year 5".
3. Although students' first names were used during the Interview, and appear in the transcripts of the audio tapes, a code was used to designate students in all written work. The target students were identified as Student 1, Student 2, Student 5 or Student 6 (abbreviated to 51, S2, 55 and 53), or by their role designation (Manager, Tracker, Recorder or

Communicator). The clustering of the code identifies their gender.

Summary of the Chapter

This chapter described the methods used to collect data for this study. A description of the method of choosing the sample is followed by an outline of the teaching programme devised. Measurement instruments are described, and their use is explained in sequential time plans of the data collection. Assumptions, limitations and ethical considerations of the study conclude this chapter.

CHAPTER FOUR

Results and Discussion

Overview

The results and discussion for this study have been combined to give a clearer picture of the patterns and trends of gender behaviour exhibited by the students.

The results from both the Behaviour Instrument and the Verbal Instrument have been combined with supporting data from the Questionnaires, Interviews and Field Notes, and examples from the transcripts of the audio tape of the lessons. Convergence of results from this multi-method approach gives confidence in the results.

For this study the students in the target groups were allocated code numbers to preserve anonymity. The numbers were clustered to delineate between boys and girls. In both target groups $\$ 1$ and 52 are girls and $S 5$ and $S 6$ are boys.

Research Question 1

"Can any observed differences in gender behaviour by boys and girls in science be modified by the assignment of specific rales in mixed-gender groups?"

This qiestion invited three subsidiary questions, each of which supplied part of the answer to the
research question as a whole. These questions are:

1:1 "What were the observed differences between boys and girls in Lesson 1?"

1:2 "Were any changes in behaviour observed after the allocation of roles in Lesson 3?"

1:3 "Were any changes in behaviour observed in Lesson 6?"

Data are reported for each category of behaviour nominated in the Behaviour Instrument; Reading/Writing, Watching/Listening, Manipulating Equipment, Verbal Interactions, Off Task. Data are discussed at each year level, firstly by gender and then by individual student if warranted.

Results from the data collected in each lesson will be interpreted in the light of the preceding questions, in order ultimately to answer Research Question 1.

1:1 "What were the observed differences between boys and girls in Lesson 1 ?"

Table 1 shows the girls in each target group did all the required reading and writing, while the boys manipulated the equipment more. The baseline results from observation of the target groups in this study are similar to general patterns found by other researchers investigating girls' bshaviour in science lessons (Kelly, 1982; Rennie, 1985).

Table 1

Lesson 1 Behaviour by Gender

	Year 4 $(N=4)$	Year 5 $(N=4)$
Reading/Writing	$\mathrm{g}=2.1 \%$	3.7x
	$\mathrm{b}=0 \%$	0\%
Watching/Listening	$\mathrm{g}=26.98$	25.8\%
	$\mathrm{b}=11.8 \%$	23.1\%
Manipulating Equipment	$\mathrm{g}=14.5 \%$	11.0\%
	$\mathrm{b}=22.0 \%$	16.7\%
Verbal Interactions	$\mathrm{g}=5.9 \%$	7.ax
	$\mathrm{b}=10.8 \%$	8.7\%
Off task	$\mathrm{g}=2.2 \mathrm{x}$	1.3x
	$\mathrm{b}=3.8 \%$	2.7\%
	100\%	100\%

Observed Differences in Reading/Writing Behaviour in
 Lesson 1

The Year 4 girls did all the reading/writing behaviour for Lesson 1: $\mathrm{g}=2.1 \%, \mathrm{~b}=0 \%$ (see Table 1).

S1 took passession of the worksheet and began reading aloud. 52 read over her shoulder. The boys in this group made no attempt to read the worksheet for instructions, relying on the brief directions given verbally by the teacher.

S1 remarked to 55 "I've got to do the writing", to which he replied, "You don't have to".
The Year 5 girls did all the reading/mriting behaviour for Lesson 1: $x=3.7 \%, b=0 \%$ (see Table 1).
They shared the worksheet equally and read in an undertone, raising their voices to read an instruction to the boys who were manipulating the equipment to make the model. For example 52 "Roll around a pencil..." s1 to Group "We'll see what's next".
The boys asked for clarification rather than reading the worksheet themselves. 56 to $\$ 1$ "You're meant to tell me what colour it is".

Observed Differences in Watching/Listening Behaviour in

 Lesson 1The girls in the Year 4 target group did more than twice as much watching and listening as the boys in Lesson 1: $g=28.9 \%, b=11.8 \% ~($ see Table 1).
When analysed on an individual basis, 52 appesred responsible for most of this behaviour, with 32 out of a total of 47 personal behaviour codings being in this category, She was a very passive group menber, who said little, and participated minimally.
In the Year 5 target group the watching/listening codes were approximately equal: $g=25.8 \%, b=23.1 \%$ (see Table 1).

Obsorved Differences in Manipulating Equipgent Behaviour in Lesson 1

The Year 4 boys generally manipulated the equipment much more than the girls: $g=14.5 \%, b=22.0 \%$ (see Table 1) but the passivity of 52 again skewed the codings in this category.

The boys physically took possession of the materials and began with a variety of trial and error methods. This behaviour was expected from the literature reviewed in Chapter Two. Only apter three trials did S1 ask "Can I [have a turn]?" The lesson was marked by repeated conflicts between $S 1, \$ 5$ and $\$ 6$ about whose turn it was. In the final analysis, S1, S5 and 56 had approximately equal codes in this category. S2, as previously mentioned, was extremely passive, and had a low number of codes in this category.

The Year 5 percentages for the manipulation of equipeent mare more equal: $g=11.0 \%, b=18.7 \%$ (see Table 1).

The lesson transcript has a telling example of the Gendor stereotypes already existing. 55 to 52 "Girls don"t have enough power. Let us do it!" The activity in question sas roliing a soft drink can.

Observed Differenose in Verbal Interactions in Lesson 1

From the Behaviour Instrument it appears the boys
in the Year 4 target group did more of the talking than the girls: $g=5.9 \%, b=10.8 \%$ (see Table 1). Codings of the lesson transcript using the Verbal Instrument provide measures which agree with the ratio of the Behaviour Instrument codings: $g=26 \%$ of all initiated speech, $b=46 \%$ (see Table 2). Further analysis on an ; ndividual basis using the Veribal Instrument codings of he lesson transcripts showed that the amount of time spent talking seemed more a function of the child's c. minant or passive behaviour, than of their Eender. S2 was a very passive student who initiated only 5.3% of the verbal interactions of the lesson, and was addressed only 1.8\% of the time. S1, on the other hand, approximately equalled the verbal interactions of 56 : $S 1=20.7 \%, S 6=19.5 \%$, while $S 5$ dominated the frequency of talk with 26.7\% of the interactions (see Table 2).

Although S6 talked to the other students, he was not addressed by other group members very much (see Table 2). Most of the verbal interaction in this lesson was between 51 and S5.

The Year 5 target students had approximately equal verbal interactions, with the exception of $\mathbf{S 6}$, who had only 14% of the interactions, although the other team members appeared to defer to him and he was the recipient of much of the total talk (see Table 3).

The bulk of the conversation was directed to the group in general, and took the form of statements.

Table 2

Lesson 2 Verbal Interaction, Year 4

| | S1 | S2 | S5 | S6 | Group |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequenay of
 speaker | 20.7% | 5.3% | 28.8% | 19.5% | |
| Frequency of
 listenc\% | 14.8% | 1.8% | 16.6% | 7.1% | 30.2% |

Table 3

	\$1	S2	S5	S6	Group
Frequenoy of speaker	24.3\%	26.7\%	25.4\%	14.1\%	
Frequency of listener	10.2\%	9.6\%	11.2%	14.1\%	37.2x

When the Listener by gender was compared to the Speaker by gender (see Table 4), a Year 4 girl talked to the other girl only 3% of the time and to a boy 13.8% of the time. A boy spoke to a girl 13.8\% of the time, and to the other boy 7.7\% of the time. The rest of the talk was directed to the eroup in seneral or to the teacher.

Table 4

Lesson 1 Speaker by Listener, Year 4

	Listener	
Girl Gpy Speaker Boy	3%	Boy

In a group with two boys and two girls the expected frequency of cross-sex verbal interaction is twice that of same-sex verbal interaction (Wabb, 1884). These proportions are shown in only three of the cells in Table 4. The fourth cell shows a significant difference in the frequency of same-sex verbal interactions due to the passivity of S2.

In the Year 5 group, a girl spoke to the other giri 7.5% of the time, and to the bays 17.1% of the time. The boys spoke to a girl 11.8\% of the time, and to each other 7.5\%. Again the rest of the conversation was directed to the group in general or the teacher.

Table 5

Lessan 1 Speaker by Listener, Year 5

	Listener	
Girl Speaker Boy	7.5%	Boy

Table 5 shows girls speak to the boys more than boys speak to the girls. This may be a pattern of girls deferring to gender stereotypical male competence in science, as discussed by Webb, 1984.

The percentage of intra-group conversation is higher than that of the Year 4 group: Year $4 \div 37.9 \%$, Year $5=43.9 \%$. This may be due to the lower levels of teacher interaction in the Year 5 group.

Observed Differences in Off Task Behaviour in Lesson 1

Off task behaviour was minor in this lesson, but showed patterns attributed in the literature to gender.

The Year 4 boys showed the highest amount of this category of behaviour : $b=3.8 \%$ of total codes (see Table 1). Most of the off task behaviour involved fiddling with tise equipment, an off-task behaviour
associated in the literature with boys.
The Year 5 boys exhibited twice as much off task behaviour as the girls in the target group : g = 1.3\%, $\mathrm{b}=2.7 \%$ (see Table 1). Much of this behaviour was related to a discussion about the advertising on the soft drink can they were using in the activity.

Other General Observed Differences in Behaviour in Lesson 1

S1 was the only student in the Year 4 target group who assigned jobs to other group members in this lesson. Such statements as "Stand that there", "Move it up here so you get more space", "Let go", and "Let [S2] check it" were directed to the whole group or to $\$ 5$ who often had the equipment in his possession.

The Year 5 target students seemed to work more cooperatively. Some examples in the transcript for this lessan were: 52 to $\mathbf{S 5}$ "I'll show you" : S6 to S 1 "Can I hold that?" S5 to S6 "You just gave me an idea". S2 however did some allocating of jobs to the boys from her reading of the worksheet. For example: "Straighten that out" (to S6); "Start cutting out, youse" (to S5 and S6).

Summary

To summarise, the differences in behaviour between girls and boys observed in Lesson 1 were:

* girls did all the reading and writing required,
* girls watched and listened more than boys at Year

4 level,

* boys manipulated the equipment more than girls,
* frequency of talk seemed mare dependent on the dominant/passive attributes of the child, rather than their gender,
* off task behaviour was minimal in this lesson,
* the Year 5 groun worked more cooperatively than the Year 4 group, and
* girls allocated jobs to other team members.

1:2 "Were any changes of behaviour observed after the allocation of roles in Lesson 3?"

After the students in the target groups were assigned non-traditional roles (S1 = Manager, $52=$ Tracker, $\mathbf{S 5}=$ Recorder and $\mathbf{S 6}=$ Communicator), their patterns of behaviour showed measurable changes (see Table 8).

Before the allocation of roles, the girls did all the required reading and writing. In this lesson, at both year levels, boys did approximateiy equal amounts
of reading and writing as the girls (see Table 6). Other observed differences were in manipulating equipment, and levels of off-task behaviour.

Table 6

Lesson 3. Behaviour by Gender

	Year 4 $(N=4)$	Year 5 $(N=4)$
Reading/Writing	$\mathrm{g}=4.3 \%$	3.9\%
	$b=5.4 \%$	3.4\%
Watching/Listening	$\mathrm{g}=28.7 \%$	13.1\%
	$\mathrm{b}=21.3 \%$	14.8\%
Manipulating Equipment	$\mathrm{g}=7.4 \%$	20.4\%
	$b=8.6 \%$	14.6\%
Verbal Interactions	$\mathrm{g}=8.5 \%$	5.8\%
	$\mathrm{b}=3.1 \%$	10.7\%
Off task	$\mathrm{g}=5.3 \%$	2.4\%
	$\mathrm{b}=4.3 \%$	9.2\%
	100\%	100\%

Observed Differences in Reading/Writing Behaviour in

Lesson 3

Table 6 shows the Year 4 students participating equally in reading and writing: $g=4.3 \%, b=5.4 \%$

However when the data were analysed on an individual basis, it became obvious that only S1 and S5 were doing
any reading or writing, and 52 and 56 were doing none. This compares with Lesson 1 when only the girls did the reading and writing.

The teacher had explained the appropriate role behaviours at the time of allacating the roles at the commencement of this lesson. He emphasised that all group members should do the reading, but that the writing of the resulis could be initially left to the Recorder who would record the group concensus for each result required. At a later time, each individual would copy these group results onto their own worksheet as their personal copy.
s5, the Recorder, took his role seriously, changing his previous behaviours to accommodate the requirements of his new role. Towards the end of the lesson, he expressed a wish to manipulate the equipment, and handed the data sheet to $\mathbf{S 1}$, the Manager.

The Year 5 students had approximately equal instances of reading and writing behaviour: $g=3.9 \%$, $b=3.4 \%$ (see Table 6).

Further analysis showed that each student participated in reading, although the Recorder, who was off-task a great deal, was constantly reminded by $\mathbf{S 2}$, the Tracker, and the teacher, to record the results. S2 to S5 "[S5], read your sheet. Read the parts in brackets".

Conflict arase later when it was discovered SS had

```
recorded his answer, rather than the group concensus.
T to group "Have you got a result?"
S1 to teacher "Anti-clockwise"
S6 to teacher "Anti-clockwise"
S5 to teacher "Yeh, clockwise"
Group to S5 "ANTI-CLOCKWISE!"
    Comparison of the results of observations made in
Lesson 3 and Lesson 1 show a change of Reading/Writing
behaviour after the role allocation.
```

observed Differences in Watching/Listening Behaviour in Lesson 3

In the Year 4 group during Lesson 1, girls had twice as many Watching/Listening codings as boys : $g=11.8 \%, b=23.1 \%$ (see Table 1), but in Lesson 3 these percentages were far more equal: $g=28.7 \%$, b $=21.3 \%$ (see Table 6).

Each of the students, with the exception of S2, showed increased levels of watching and listening, probably because of the high levels of teacher monitoring and intervention in this lesson. S2 was assigned the role of Tracker. She showed a decrease in passive watching and listening from 17.2% in Lesson 1 to 14.9\% in Lesson 3, indicating more involvement and participation in Lesson 3. The field notes recorded at the conclusion of this lesson indicate bursts of role appropriate activity exhibited by S2, with lapses to
normal "non-involvement".
In the Year 5 class, Watching/Listening behaviours were very similar to Lesson 1, with both boys and girls having approximately equal percentages of the total coding in this category.

Lesson 1 : g = 25. $\mathrm{B} \mathrm{\%}, \mathrm{~b}=23.1 \%$ (see Table 1).
Lesson $3: g=13.1 \%, b=14.6 \%$ (see Table 6).
Comparison of the results of observations made in Lesson 3 and Lesson 1 show a change in watching and listening behaviour for 52 (Year 4) after role allocation.

Observed Differences in Manipulating Equipment Behaviour

in Lesson_3

The Year 4 girls made large gains in the manipulation of equipment category codings. In Lesson 1 the ratio of boys using equipment to girls using equipment was approximately $3: 2$ ($\mathrm{g}=14.5 \%$, $\mathrm{b}=22.0 \%$ see Table 1). In this lesson the ratio was far more equal $: ~ g=7.5 \%, b=8.5 \% ~(s e e ~ T a b l e ~ 6) . ~$

Individual analysis shows that the bulk of the equipment manipulation was done by 51 and S6. S2 anly handled the equipment once or twice during the lesson. S5 complained during the post programme Interview that he didn't like working in groups because "...I couldn't get my shot because [S6] took it, or [S1] and if I did get a shat, [S6] would just take the Lego off me".

S1 also felt she did not do enough manipulation of
equipment. She complained in the Interview that she didn't actually build the models, "...just ... fiddle around with it a little bit apterwards".

S6 complained that his role as Communicator hampered him and "I didn't get to do much..."

In fact, these three students had approximately equal codings in this category. The only group member who considered she got equal turns was 52 , the student With by far the least codings.

The Year 5 group showed an inversion of the ratio of manipulating the equipment from Lessons 1 to 3. In Lesson $1: \mathrm{g}=11.0 \%, \mathrm{~b}=16.7 \%$ (see Table 1) a ratio of approximately 2:3. In Lesson 3 : g = 20.4\%, b =14.6x (see Table 6) a ratio of approximately 3:2.

The largest gain was made by S2, the Tracker (Lesson $1=5.0 \%$, Lesson $3=14.1 \%$). A large decrease was made by 56 , the Communicator (Lesson $1=\mathrm{B} .0 \%$, Lesson $3=3.9 \%$).

S2 used the role of Tracker to take charge of the task after being challenged for not doing her job. S6 to S2 "You're the Tracker, man. You're meant to know what to do, where we're up to." She then embraced the role and became very directive.

S2 to Group "Next we have to turn the handle wheel clockwise."
... to 56 "It has to be much longer."
... to S 5 "You can P 111 in this part."

She was also the student who physically removed the Lego from the box and began making the model.

S5, the Recorder, was off-task a good deal during this lessan (see Observed Differences in Off-Task Behaviour in Lesson 3, p.58). He was manipulating the equipment to construct a personal model of an army tank. S6 did less manipulation also. As the Communicator, he used the opportunity to investigate the work of the other groups, leaving his own group on several occasions during the lesson.

Comparison of the results of observations made in Lesson 3 and Lesson 1 show a change of levels of manipulation of equipment codings of all students, some in a positive way, others in a negative way.

Observed Differences in Verbal Interactions in Lesson 3

The Behaviour Instrument showed the Year 4 Girls increased their proportion of talk : g = 8.5\%, $b=3.1 \%$ (see Table 6) compared with the Lesson 1 codings : $g=5.9 \%, b=10.8 \%$ (see Table 1). The Verbal

Instrument supported these patterns, although the percentages were much closer : $\mathcal{G}=30.6 \%, b=32.8 \%$ (see Table 7).

On an individual basis 52 , the Tracker, increased her verbal interactions from Lesson 1, but still had fewer interactions than other group members (\$2 as speaker $=6.7 \%$, as $1 i s t e n e r=2.3 \%$). An apparent anomaly
in the Behaviour Instrument readings for this student show an increase in the Verbal Interaction category from Lesson $1=1.0 \%$ to Lesson $3=5.3 \%$ of all codes in this lesson. As previously stated, S2 had bursts of Tracker appropriate role behaviour which necessitated verbally directing other group members, and it is postulated by the researcher that several of these incidents may have coincided with Behaviour Instrument coding intervals. The Behaviour Instrument also showed a marked decrease in verbal interactions for $S B$, the Communicator: Lesson $1=5.9 \%$, Lesson $3=1.0 \%$; but the more sensitive Verbal Instrument does not show this large difference :

Lesson 1 S6 as speaker $=18.5 \%$, as listener $=7.1 \%$
Lesson 3 S6 as speaker $=16.0 \%$, as listener $=9.1 \%$

Table 7

Lesson 3 Verbal Interactions, Year 4

| | S1 | S2 | S5 | S6 | Group |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency of
 speaker | 23.7% | 6.9\% | 16.8% | 16.0% | |
| Frequency of
 1istener | 16.0% | 2.3% | 10.7% | 9.1% | 28.2% |

Both instruments agreed that the boys in the Year 5 target group increased their verbal interactions to approximately twice the level of the girls in this Iesson: $\mathrm{G}=5 . \mathrm{B} \mathrm{\%}, \mathrm{~b}=10.7 \%$ on the Behavtour Instrument (see Table B); $g=28.2 \%, b=66 \%$ on the Verbal Instrument (see Table 7). This was significantly different to Lesson 1, with its more equal codings.

Table 8

Lesson 3 Verbal Interactions, Year 5

| | S1 | S2 | S5 | S6 | Group |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency of
 speaker | 12.7\% | 15.5\% | 38.5\% | 27.4\% | |
| Frequency of
 1istener | 日.5\% | 14.0\% | 22.3\% | 22.5\% | 22.1% |

This difference may have been due to the fact that the two girls in the group did not speak to one another during this lesson. The girls spoke to the boys, the boys spoke to the girls, and to one another, but the girls did not speak to one another (see Table 9). The researcher can only speculate an argument or tiff as the reason for this result, as it was unique to this lesson. The two girls usually interacted well.

Table 8

Lesson 3 Speaker by Listener, Year 5

Girl	Listener	
Girl Speaker Boy	0\%	20.6%

The rest of the talk was directed to the group in general or the teacher.

Comparison of the results of observations made in Lesson 3 and Lesson 1 shows a change in the verbal interactions of some students.

Observed Differences in Off-Task Behaviour in Lesson 3

The Year 4 levels of off-task behaviour were slightly higher than in Lesson 1:

Lesson $1 \mathrm{~g}=2.2 \%, \mathrm{~b}=3.8 \%$ (see Table 1)
Lesson $3 \mathrm{~g}=5.3 \%, \mathrm{~b}=4.3 \%$ (see Table 6).
In the Year 5 class, 55 was off-task significantly
more than any other student : $51=1.4 \%, 52=1.4 \%$, $\mathbf{S 5}=\mathbf{6 . 8 \%}, \mathbf{S 6}=\mathbf{2 . 4 \%}$. This behaviour explains the high readings in Table $\mathrm{B}: \mathrm{g}=2.4 \%, \mathrm{~b}=9.2 \%$.

S5 was constructing a model of his own from the

Lego. The other group members spent some time attempting to get him on-task. The lesson transcripts illustrates one of these attempts:

S2 to S5 "What are you doing?"
S5 to 52 "Just making a little tank."
S6 to 55 "Take it apart or you*11 get into trouble."
S5 to Group "Oh well, the army tank explodes."
Comparison of the results of abservations made in
Lessan 3 and Lesson 1 show more off task behaviour generally, and especially by 55 in the Year 5 group.

Other General Observed Differences in Behaviour in Lesson 3

The Behaviour Instrument was used to code non role-appropriate behaviour exhibited in this lesson. This category was coded using 30 secand intervals. This method was not successful at indicating non role-appropriate behaviour. Ideally this behaviour should have been incident recorded to give a true indication of its prevalence. Therefore the observations op this behaviaur are anecdatal from the field notes rather than empirical.

In the Year 4 group, 51, S2 and 55 showed some incidences of non role-appropriate behaviour. $\mathbf{s 5}$, as previously mentioned, took the role of Recorder very seriously, only relinquishing the worksheet to $\mathbf{S 1}$ when he felt he was missing out on manipulating the
equipment. At this stage, fairly late in the lesson, he reverted to the type of behaviour recorded during Lesson 1.

S1 took the role of Recorder from $S 5$ in addition to her role of Manager for the last part of the lesson. S2, as previously mentioned, exhibited bursts of Tracker role appropriate behaviour, and in between, lapsed back to non-involvement.

In the Year 5 group, 52 , the Tracker, and 55 , the Recorder, showed some examples of non role-appropriate behaviour. S2 did some recording after constant reminders to 55 , whose role it was. The transeripts of the lesson show several references to role behaviour : S6 to Group "Who's the Tracker?" S1 to S6 "Ask [the teacher]. YOU have to ask.

Summary

To sumarise, the differences between boys and girls observed in Lesson 3 were:

* girls and boys shared the reading and writing, * girls and boys watched and listened at equal rates, * girls manipulated the equipment at least as much as boys, * the frequency with which a student spoke may have been modified by the role allocated to the student, * a Year 5 boy was very off-task during this lesson, and * some students showed examples of non role-appropriate behaviour, but generally role behaviour as identified in Appendix 1 was dominant over behaviour attributed to gender.
1.3 "Were any changes in behaviour observed in Lesson 6?"

The Communicator of the Year 4 target group, a boy, was absent for Lesson 6. This meant the data could not be directly compared with the previous lessons' data, nor with the Year 5 data, as research in the field of small group work indicates that the size and composition of the group has marked effects on the group dynamics (Good \& Brophy, 1991; Hebb, 1984).

The Year 4 results will be discussed after the Year 5 results have been compared as in the previous lessons.

Lesson 6 showed a pattern of reversion to gender behaviour at the expense of role appropriate behaviour for some of the Year 5 students.

Table 10

Lesson 6 Behaviour by Gender, Year 5
($\mathrm{N}=4$)

Reading/Writing	$\mathrm{g}=9.5 \%$
	$\mathrm{~b}=\mathrm{B} .1 \%$
Watching/Listening	$\mathrm{g}=12.2 \%$
	$\mathrm{~b}=\mathbf{6 . 8 \%}$
Manipulating Equipment	$\mathrm{g}=13.6 \%$
	$\mathrm{~b}=19.0 \%$
Verbal Interactions	$\mathrm{g}=7.3 \%$
	$\mathrm{~b}=7.3 \%$
Off-task	$\mathrm{g}=3.1 \%$
	$\mathrm{~b}=13.1 \%$
	-100%

Observed Diffrences in Reading/最riting Behaviour in

Lesson 6

This lesson required more reading and writing than previous lessons. The Year 5 students showed almost equal levels of reading and writing behaviour : $\mathrm{B}=9.5 \%, \mathrm{~b}=8.1 \%$ (see Table 10), compared with Lesson $3: g=3.9 \%, b=3.4 \%$ (see Table 6).

The Recorder, 55, was again constantly directed by S2, the Tracker. Some examples of these directions were:
"[SS] put there - They're fast, they're slow."
" You can write down SOMETHING."
S1, the Manager, showed the most significant change in behaviaur, reverting to doing most of the reading and writing in this lesson as she had in Lesson 1. Although she was still exhibiting Manager-role behaviours, she reverted to the Recorder role.

Comparison of the results of observations made in the three lessons show some of the group members maintaining a more equitable share of the reading and writing behaviours. $\$ 1$, howevel, reverted to Lesson 1 levels of this behaviour by doing more reading and writing than any of the other group members.

Observed Differences in Watching/Listeninf Behaviour in Lesson 6
rable 10 shows the Year 5 girls did almost twice as
much watching and listening as the boys. When analysed individually, 51 was responsible for the largest proportion of these codings : S1 $=9.5 \%, \mathrm{~S} 2=2.7 \%$, S5 $=1.4 \%$, $56=5.4 \%$. The field notes record that the Manager spent most of her time "looking at others". She joined in off-task conversations, for example : s1 to $\mathbf{5 6}$ "Mark him up in the classroom." S6 to 51 "Yeh, that's my nickname, Marky." S1 to S6 "Marky, oh, Marky."

Comparison of the results of observations made in the three lessone wow a reversion by one of the Year 5 girls to the baseline is of behaviour in the watching and listening category.

Observed Differences in Manipulating Equipment in Lessong

Although the percentages for this category appear close $: ~ g=13.6 \%, b=19.0 \%$ (see Table 10), individual analysis showed S2 and 55 working with the equipment three times as much as S 1 and $\mathbf{5 6}$.

S6, the Communicator, gradually increased his manipulation of the equipment towards his Lesson 1 percentages after having exhibited a large percentage drop in this behaviour during Lesson 3.

Lesson $1=6.0 \%$, Lesson $3=3.9 \%$, Lesson $B=5.9 \%$
S1 did very little manipulation in this lesson. She had to reach diagonally across two joined tables to touch the equipment which was mostly in front of $\mathbf{S 5}$.

The other girl in the target group, S2, the Tracker, maintained her increased levels of manipulating the equipment and decreased levels of watching and listening throughout this lesson.

Lesson $1=5.0 \%$, Lesson $3=14.1 \%$, Lesson $3=10.4 \%$
55, the Recorder, increased his levels over the three coded lessons:

Lesson $1=8.7 \%$ Lesson $3=10.7 \%$, Lesson $6=13.1 \%$ He had physical contrul of the equipment for most of the lesson.

Comparison of the results of observations made in the three lessons show that S 1 and S 6 reverted towards baseline levels of manipulating the equipment, while S2 maintained an increased level.

Obseryed Differences in Verbal Interaction in Lesson 6

Verbal interactions were coded as identical for boys and giscin in this lesson : $\mathrm{g}=7.3 \%, \mathrm{~b}=7.3 \%$ (see Table 10). The more sensitive Verbal Instrument showed $g=40.8 \%, b=56 \%$.

For the first time, S 6 , the Communicator, seemed to becone a dominant member of the group. He initiated conversation 31.2% of the time (see Table 11). In fact, he more than doubled his verbal interactions from Lesson 1 to Lesson $6:$ Lesson $1=14.2 \%$, Lesson $6=31.2 \%$.

S1, the Manager, appeared to fade out, participating less and seemingly less interested. She
initiated lgss conversation and was addressed less often by the others.

S2, the Tracker, maintained a high profile in the
group. Her task oriented verbal intaractions were maligned by 55 , the Recorder, as the following conversation illustrates:

S5 to S2 "[S2] stop bossing us around."
S2 to 55 "I'm just telling you what you have to do."
S5 to 52 "OK, OK, that's still bossing."
S6 to S5 "We don't have to do it."
S5 to 56 "Why doesn't she be better?"
S2 to S5 "Do you want me to say ANYTHING? You guys say
anything you want."
S1 to 55 "Stop hassling us OK?"
s5 to s1 "NO"

Table 11

Lesson 6 Verbal Interaction, Year 5

	S1	S2	S5	S6	Group
Frequency of Speaker	13.9%	26.7%	24.0\%	31.2%	
Frequency of Listener	7.3%	19.0%	17.1%	14.5%	32.7%

The levels of conflict in this lesson were high. Conversations which began innocuously became increasingly acrimonious. S5 and S6, the boys in the group, were involved respectively in 16 and 26 of the total of 62 conflict codes for this lesson. Lesson 1 had only two codes recorded, and Lesson 3, fourteen. Comparison of the results observed in the three lessons show an increasing level of discord within the group after the allocation of roles.

Observed Differences in Off Task Behaviour in Lesson 6

The Tracker, 52 , was the only Year 5 group member to record no codes of off task behaviour. Both boys had 6.5\% each of the total codes for the lesson recorded on the Behaviour Instrument as Off Task. Most of this behaviour for $\$ 5$, the Recorder, involved making his own models with the equipment, while 56, the Communicator was involved in a lot of verbal bickering with the others, as well as fiddling with the equipment. He was not constructing anything, merely turning a Lego piece such as a wheel, over and over in his hand,

Comparison of the results of observations in the three lessons show increasing levels of off Task behaviaur from Lesson 1 to Lesson 6.

Other General Observed Differences in Behaviour in Lesson 6

As previously mentioned, the levels of conflict were high in this lesson (see Observed Differences in Verbal Interactions in Lesson G. p.65).

The girls dismantled the models and packed away the equipment. This did not happen in any other lesson. Usually all the group members helped with this task.

Summary

To summarise, the differences between Year 5 girls and boys observed in Lesson 6 were:

* a girl did most of the reading and writing,
* a girl did most of the watching and listening,
* a girl and a boy worked with the equipment almost three times as much as the other pair,
* one girl was verbally very passive.
* the lesson was marked by high levels of verbal
conflict,
* the boys were off task mare than the giris,
* both girls packed the equipment away.

Year 4 Behaviour in Lesson 8

As previously explained, the absence of a group member could be expected to change the dynamics of the group, and therefore the results from this lesson are not compared with the Year 5 results, nor with the previous Year 4 results. The statistical results from the Behaviour and Verbal Instruments have been tabulated individually and not segregated by gender in this section (see Table 12).

Table 12

Lesson 6 Behaviour, Year 4

	S1	S2	S5
Reading/Writing	1.6%	5.2%	9.4%
Watching/Listening	6.3%	16.2%	$\mathbf{5 . 9 \%}$
Manipulating Equipment	19.8%	5.2%	6.8%
Verbal Interactions	7.3%	3.2%	7.3%
Off task	0.6%	0%	2.2%
	-	100%	

For this lesson, S5, the Racorder, also took on the role of the absent Communicator, 56 .

S1, the Manager, did most of the manipulation of materials (see Table 12).

S2, the Tracker, played a more participatory rale in this lesson. In the four person group she was very passive, but in this three person group she exhibited less watching and listening behaviour, more reading and writing behaviour, and increased verbal interactions. The Verbal Instrument shows her frequency of speaking as almost equal to the other two students (see Table 13).

Table 13

Lesson 6 Yerbal Interactions. Year 4

	S1	S2	S5	Group
Frequency of Speaker	25.8\%	24.3%	28.8%	
Frequency of Listener	15.0%	日.7\%	16.1%	41.6%

The high frequency of the group as a listener, that is, the conversation was addressed to all rather than one individual (see Table 13): suggests a more cohesive group. The transcripts of the lesson reinforce this in the type of language used. There was less bickering and more sharing, Little off task behaviour was shown.

Research Question 1:
"Can any observed differences in the gender behaviour of girls and boys in science be modified by the assignment of specific roles in mixed-gender groups?"

From the research data presented it can be concluded that the assignment of roles corresponded with changes in gender behaviour of students in the target groups at both year levels in several categories of behaviour in this study.

Allocation of roles equalized the reading/writing activities of the students. Prior to role allocation the girls had followed a path identified as "typically female" by researchers (Kahle, 1987; Kelly, 1982; Rennie et al, 1984), by doing all the reading and writing activities for the group. Assigning non-traditional roles with concomitant expectations of appropriate role behaviour seemed to encourage target students to change their gender stereotypical behaviour in this category. The bays did more reading and writing, the girls less, after role allocation, changing their behaviour in this category.

Allocating roles seemed to aid some more passive students to participate more in the group and exhibit less watching and listening behaviours. Before role allocation the Year 4 girls watched and listened more than the boys; after role allacation the rates were more
equal.
The Year 5 girls and boys watched and listened at equal rates throughout the programme, and role allocation had no detrimental effect on these rates. It seems possible these behaviours might be age/maturity related. Allocating the non-traditional role of Tracker to a girl seemed to encourage more participation in the lesson than might otherwise have occurred. The data du not suggest the other roles were affected to the same extent as this role.

Allocating roles changed the behaviour of both boys and girls in the manipulation of equipment category. Before rale allacation the baseline data suggested the type of scenario roported in the literature, with the girls recording, and the bays almost exclusively doing the activity (Kelly, 1987; Whyte, 1984;. After role allacation the girls and boys manipulated the equipment to do the activity at more equal rates. In the Year 5 group, the girls handled the materials even more than the boys.

Some students seemed to use the opportunity to replace gender behaviour with role behaviours and maintained increased levels of non-traditional gender behaviour required by the role allocation. Further research might indicate the personality traits of the students who would benefit most from this opportunity. Patterns in the data from this study could not be
used to substantiate claims made in the literature that boys had more verbal interactions than girls in small group work (Webb, 1884). The only pattern appearing in the data appears to support frequency of talk being a function of the passivity/dominance of the individual, regardless of gender (Good, Reys, Grouws \& Mulryan, 1989).

Following role allocation it appeared that the roles of Tracker and Communicator encouraged more student verbal interactions, but the trend of passivity/dominance of the individual was still paramount.

The increased verbal interactions of the year 4 Tracker, S2, would have been extremely interesting to chart through Lesson 6. As previously discussed, the absence of one of the group members could be expected to change the group dynamics, so the apparent pattern could not be interpreted as a continuing one. The results recorded by the Year 4 three person group may indicate more involvement of passive individuals in smaller groups.

Role allacation could not be said conclusively to modify verbal interaction in the short term.

The levels of off task behaviour were higher in the lessons where students had been allocated roles. In the short period of time involved in this study, it is difficult to conclude that roles increase off task behaviour. Other factors such as the students'interest

Abstract

in the programe: the group dynamics; personal student characteristics and the loss of novelty and motivation of group work in science day have caused this result.

The "calling out." and disruptive off-task behaviour attributed to boys and reported in Chapter 2 was not evident in this study. Off task behaviour was mainly exhibited within the group. It did include the withdrawal and tuning out of the girls as reported, but not the misuse of equipment by boys.

Summary

Overall, it appears that role allocation corresponded with changes in gender behaviour in the areas of reading and writing and manipulation of equipment, but the data were not conclusive that role allocation changed gender behaviour in the other categories.

Research Question 2:
"Are there any differences in gender behaviour between Year 4 and Year 5 students?"

The baseline data indicated that girls and boys at both year levels exhibited behaviour attributed to gender in the literature (Rennie et al, 1984).

The girls did the reading and writing for the group and the boys manipulated the equipment (see Table 1).

At the Year 4 level the differences in Watching/Listening behaviour between girls and boys was large, but as previously reported, mainly attributable to one passive student (see Table 1). The Year 5 levels in this category were approximately equal on a gender basis (see Table 6). Rennie et al (1984) reported large differences in this behaviour when Year 5 physical science lessons were coded with the Group Work Schedule, which was adapted slightly for this study. With the small sample used in this study it is difficult to draw accurate conclusions, other than noting the possibility of an age/maturity differential.

This sample also leads the researcher to conclude that verbal interaction is a function of dominance/ passivity rather than gender. Both target groups could be considered to have one dominant boy and one dominant girl. In the Year 4 group, three of the students
strugeled fos leadership of the group with concomitant power plays being a feature of the verbal interactions. The Year 5 target group worked more cooperatively. After role allocation they shared the reading/writing and manipulating of equipment more equally, and "helping" behaviour was a Peature of several verbal interactions (see discussion Other General Observed Differences in Behaviour, Lesson 1, p. 49).

Analysis of the verbal interactions showed the Year 5 group asked more higher level cognitive questions (average 4.9\% of all questions asked) than the Year 4 students (average 3.2\%). This increase would be expected with added maturity.

Summary

The researcher found any differences in gender behaviour between Year 4 and Year 5 students to be minor. The added maturity of the Year 5 students may have allowed them to work together more cooperatively.

Research Question 3:

```
"Do students in mixed-gender groups show greater changes in attitude to science than those in singlegender groups?"
```

On the gross data, 't' tests revealed no statistically significant levels of change. No conclusion can be drawn regarding the changes in attitude to science as a function of mixed- or singleEender grouping, The largest changes in attitude were evidenced by single-gender groups in Year 4 and mixed-gender groups in Year 5 (see Table 14).

Table 14

Attitudes to Science by Groun

	Average Questionnaire Rating (High attitude to science $=6$,Low attitude to science $=1)$		
	Initial	Final	Change
Year 4			
($\mathrm{N}=26$)			
single-gender	5.5	4.6	-0.9
mixed-gender	5.7	5.3	-0.4
Year 5			
($\mathrm{N}=28$)			
single-gender	5.0	4.5	-0.5
mixed-gender	4.5	3.6	-0.9

When the data were analysed along gender parameters, the boys, regardless of grouping, showed very little change in attitude to science over the programme, while the girls seemed to lose their positive attitudes (see Table 15). Results from 't' tests show the changes are significant at the 5% level for the Year 4 single-gender girls' group. Changes for other groups are not statistically significant. Since further analysis showed attitude to group work did not change, it seems that the programme was responsible for the measured change of attitude to science. This dislike of, or disinterest in, physical science topics is well documented in the literature (Kahle, 1987; Kelly, 1987), and even though gender neutral strategies were included in the programme to interest the girls as well as the boys, the topic was not a popular one with them (see Table 16).

Further probing during the Interviews elicited the information that the topic was "pretty boring" (Year 5 girl) and " I didn't really like it that much".

Although analysis of response in the group interactions category questions on the Initial and Final Questionnaires did not show any changes in attitude to group work, the Interviews with the target students highlighted group management problems which may nevertheless have had an influence on individual attitudes to science.

Table 15

Gender Attitude to Science by Group

	Average Questionnaire Rating (High attitude to science $=6$, Law attitude to science $=1$)		
	Initial	Final	Change
Year 4			
single-gender	$g=5.7$	3.7	-2.0
$(\mathrm{n}=14)$	$b=5.4$	5.0	-0.4
mixed-gender	$g=5.7$	5.0	-0.7
$(\mathrm{n}=12$)	$b=5.7$	5.7	0
Year 5			
single-gender	$g=4.4$	4.3	-0.1
$(\mathrm{n}=16)$	$b=5.5$	5.3	-0.2
mixed-gender	$g=4.3$	2.7	-1.6
$(\mathrm{n}=12)$	$b=4.7$	4.5	-0.2

Table 16

Gender Attitude to Science

	Average Questionnaire Rating (High attitude to science $=6$, Low attitude to science $=1$)		
	Initial	Final	Change
Year 4	$g=5.7$	4.6	-1.1
($\mathrm{N}=26$)	$\mathrm{b}=5.5$	5.3	-0.2
Year 5	$g=4.6$	3.7	-0.9
($\mathrm{N}=26$)	$b=5.0$	4.6	-0.2

Summary

Abstract

It seems the composition of groups had less effect on attitude to science than the gender of the students. The pattern of changes in attitude as measured by the Initial and Final Questionnaires was delineated on a gender basis with girls evidencing more change than boys regardless of mixed- or single-gender groupings.

Supplementary Results

Although this research project did not set out to address the issue of achievement as a function of group work, the teachers requested an assessment in the form of an End of Unit Test be included in the programme. This test was composed of structured questions. Research findings show this format is mare gender-neutral than multiple choice or essay questions (Harding, 1980).

A pattern was noted by the researcher when examining the results of these Assessment Tests. These findings are additional to the original intention of the study, and therefore have no bearing on the Research Questions. However, they were deemed worthy of discussion and inclusion in the thesis.

The researcher marked the Year 4 tests, and recorded the results; the Year 5 testis were marked by the classraom teacher from a marking key provided by the researcher.

Analysis of results showed the groups which had worked best together (as subjectively noted by the class teacher and the researcher at the conclusion of each lesson and recorded in the field notes) attained the highest aggregate of results.

In the Year 4 class, the all girls group G1 and the Target Group had average scores well above the rest of the class : $\mathrm{GI}=\mathbf{8 7 . 5 \%}, \mathrm{T}=83.8 \%$. Class average $=\mathbf{6 4} .2 \%$
(see Table 17).
In the Year 5 class the nominated cooperatively working groups similarly attained the highest scores : $G 2=92.5 \%, T=86.3 \%$, Class average $=73.6 \%$ (see Table 17).

Table 17

Assessment Test Results

Group Composition Average Scare

Year$\text { (} \mathrm{N}=$	4	*	Mixed	Target	83. 8%
	$26)$		Mixed	M1	49.4\%
			Mixed	M2	66.3\%
			All boys	B1	50.9\%
			All bays	B2	47.5\%
		*	All girls	G1	87. 5\%
			CLASS AVERAGE		64.2\%
Year$\text { (N }=$	5	*	Mixed	Target	86. 3x
	$28)$		Mixed	M1	77.5\%
			Mixed	M2	85\%
			All boys	B1	58.8\%
			All girls	G1	70\%
		*	All girls	G2	92.5\%
			All girls	G3	45\%
			CLASS AVERAGE		73.6\%
			notes coope	atively	ing gr

These results could not be considered valid or reliable because of the initial method of choosing the target groups. High and low achievers were excluded
from the mixed-gender groups by applying the criteria designed to include only "typical" students (see Figure 2), and therefore it is conceivable that the single-gender groups comprising the rest of the students may have inadvertantly included all high or all low achievers in one group, thereby skewing the results. Nevertheless, there seem to be indications of a correlation between cooperative ability or cohesiveness of a group and their subsequent achievement. This would align with results found by Johnsan et a1 (1990).

Summary of the Chapter

This chapter reported the results from the data collected in this study, and discussed consistent interpretations in the context of the Research Questions posed in Chapter One.

CHAPTER FIVE

Gonclusions and Implications of the Study

This study investigated the effects of role allocation on the gender behaviour of girls and boys in Year 4 and Year 5 cooperative learning groups of four in science. Both classes were taught the physical science topic "Wheels and Cogs" by the classroam teacher from the same six-lesson programme. Target groups in each class were observed and behaviours and verbal interactions of the students before and after the allocation of the specified roles were compared. Selected results from this study were used to address the research questions.

A Behaviour Instrument was used to record behaviours displayed by each of the target students at 30 -second intervals throughout the lessans. Transeripts of audio tape recordings of the lessons were coded using the MAKITAB Small Group Learning Interaction Analysis System. Anecdotal field notes were compiled for each lesson. Pre- and post-programme Questionnaires and an End-of-Unit Assessment were completed by all students in each class. The target students and the teachers were interviewed at the conclusion of the programme.

Results and Findings

The size of the sample selected and the complexity of independent variables acting on this data set mitigates definitive conclusions being drawn.

Data collected in this study indicates that following role allocation, there were changes in the behaviour of boys and girls in mixed-gender groups in the reading/writing and manipulating equipment categories of gender behaviour. This change of behaviour was continued by some students for the duration of the role allocation.

There was little difference in the type and amounts of gender behaviour between the year levels; Year 4 and Year 5 target students both exhibited comparable codings in each category measured.

Cianges in attitude to science were evidenced more by girls than boys regardless of grouping. The choice of a physical science topic may have influenced these changes of attitude to science (see discussion p.78).

Discussion Related to the Literature

No studies were identified on the interaction of role behaviours and gender behaviours, so this study adds to the knowledge in this area.

Kahle (1984), Kelly (1987) and Whyte (1984)
suggested the girls in a mixed-gender group read the
instructions and recorded the results, while the bays manipulated the equipment and did the experiment. The baseline data from this study supported the lite: ature in this respect. This study showed more equal interactions in some categories of genden behaviour between boys and girls in mixed-gender groups when non-traditional roles with specified behaviour expectations were allocated.

Other studies which investigated the effect of different strategies on gender behaviour also concluded that group dynamics and gender behaviaur can be madified. Rennie et al (1984) used an inservice course on non-sexist teaching to attain more equal interactions in mixed-gender groups being taught a physical science topic. Lookheed and Harris (1984) found gender stereotypes were nat reduced by cooperative grouping until they controlled for male leadership.

Patterns in the data from this study could not be used to support claims made by Spender (1980) that boys in a mixed-gender environment had more verbal interactions than girls. Nor could the data justify the findings of Webb (1984) that the total verbal activity for boys was equal to the total verbal activity for girls, allowing for differences in the type of interaction between the sexes. The only patterns identified in this study related the frequency of talk to the passivity or dominance of the individual, regardless of gender. Good
and Brophy (1991) suggest the composition of each group determines the verbal interactions, which necessarily vary from one group to another. The failure of the study conclusively to support the literature in this area may be as a consequence of the particular groupings and the small sample size in this study.

Kelly (19日7, p.71) observed that boys used "ridicule to remind girls of their inferior status", and this trait was illustrated by several of the passages of conversation.

This study found anly minar differences in gender behaviour between year levels, and did not support the findings of Eriokson and Erickson (1984), who showed similar levels of curiosity and interest in science until about nine years of age and a significant decline thereafter.

Kelly (1987) found a strong correlation between female gender and negative attitude to the physical sciences and Johnson and Johnson (1975) found higher levels of male interest in science. This study supported these findings.

The research design used in this study allowed the collection of data to formulate answers to the rssearch questions and to draw some conclusions. However the ambiguau nature of some of the findings 'ighlight the complex nature of group work and student performances.

Impacting Variables

Abstract

Five factors have been identified as contributors to the ambiguaus nature of some of the results: the different teaching styles of the participating teachers: the preparation of the students; the content of the lessons; the differing time periods over which the programe was implemented; and the length of the study.

Different teaching styles of the participating teachers may have affected the results of the research. Although each taught from a prescriptive programme, the Year 4 teacher often recallec the class from small group to whole class format to further explain a concept. The Year 5 teacher explained concepts to each group when recuired, and did not use the whole class format. The Year 4 children therefore had less time in small group wink due to the interruptions, but results show they spent more time on task. The Year 5 class had uninterrupted small group work, but showed more off-task incidents. Other results may also have been affected.

The students had no previous experience of role allocation in science lessons. This lack of experience and necessity for "on-the-job training" may have caused some confusion and affected measurements of some behaviours.

The physical science content of the lessons which could be expected from the literature to appeal mare to

the boys than the girls in the class, may have influenced their behaviour during the study.

The Year 4 class completed the programme in six weeks, the Year 5 class in three weeks, and this difference in time period may have affected the results. Any novelty effect due to the specific roles may have been influenced in either a positive or a negative manner by the time period, although the data collected in the study did not address this variable. The spread of the lessons may have added a dimension of ance-a-week novelty to the Year 4 lessons, or required more effort to remember the roles, or, alternatively, allowed the Year 5 students to remember the role behaviours more easily, or lase interest in the group format.

Had the study been continued over a longer period of time, for example a semester, the patterns emerging may have been clearer. The beginning trend of reversion to gender behaviour at the expense of role behaviour for some students may have been modified by other factors.

If this study were replicated, it would be advantageous to control more closely the teaching style, student preparation, and time period of the research. More detailed questionnaires may have clarified some of the ambivalent results. The overall structure of the research design appeared sound in terms of gathering the required data, and the instruments used functioned as planned.

Implications for instruction

The research design appeared to assess appropiriately the parameters being investigated even though the sample is small. The behaviours coded as baseline data agree well with those expected from the literature. Results gathered from this research study have implications for teachers, students and science education.

* Pre-treatment measures indicate that gender inequities da exist in small group work in science. The changes in gender behaviour following role allocation in the areas of reading/writing and manifulating equipment imply that this strategy may be useful in promoting gender equity.
* Implicntions for students are highlighted by the changes in gender behaviour in both girls and bays which followed role allocation. Some students, when offered the opportunity to use non-traditional role behaviour, did so and subsequently became more highly involved in the lessons. Having a role ta play seemed to add a dimension of purpose to their behaviour.
* Working in small groups in science seemed to encourage pupil responsibility and some affective gains were made. A favourable attitude to group work persisted with most students in the class. The behaviour of some target students subjectively offered
an increase in levels of personal responsibility for learning and group interaction. Close monitoring of small groups by the teacher appears necessary to limit high levels of off-task behavioun.
* Curriculum developers may need to examine the approaches currently taken to physical science topics in the primary sohool. Even the gender-neutral strategies used in this study were not sufficiently motivating to the girls in the group, and an even more "girl-friendly" approach may be necessary for the maximum participation of girls.

Recommendations for Further Research

Analysis of the results discussed in Chapter 4 has highlighted several aspects of gender behaviour and cooperative learning in science which may be worthy of further investigation.

[^0]highlight strengths and weaknesses in varying group sizes.

Abstract

* Studies of the effect of role allocation on gender behaviour in same-sex small groups would add to the data found on mixed-sex small groups in this study.

* Inter-group differences between lower and higher levels of primary-aged children, for example Year 3 and Year 6, could be investigated in order to pinpoint the age at which gender behaviour becomes a problem.
* The personality of the student most likely to benefit from role allocation may need to be further clarified. Data collected in this study shows that not every child benefits to the same degree, nor would we expect equal gains. Further research might tailor this method more closely to the cognitive and affective learning styles of individuals.

Summary of the Chapter

This chapter discussed the conclusions reached by this study and the implications for teachers, students and science education arising from the results. The data from this study imply that role allocation in small groups may be a useful strategy to promote gender equity in the science classroom. For some students cooperative learning in small groups may allow more participation
than other methods, and the allocation of non-traditional roles may allow the chance to experience non-stereotypical gender behaviour. Further investigation using larger samples would be necessary Por conclusive proof of the efficacy of this strategy. Other areas for further research in this complex field have been listed.

REFERENCES

Barnes, D., \& Todd, F. (1981). Talk in small groups. In C. Adelman (Ed.), Uttering. muttering (pp. 69-77). London: Grant McIntyre.

Barry, K., \& King, L. (1988). Beginning teaching. Wentworth Falls, N.S.W: Social Science Press.

Biological Sciences Curriculum Studies (1989). Science for life and living, Colorado: BSCS.

Burns. M. (1981). Groups of four Learning, 10(2). 46-51.

Chambers, D.W. (1983). Stereotypic images of the scientist - the draw-a-scientist test. Science Education. 67, 255-265.

Clarke, J.A., \& Dart, B.C. (1987). Gender research in classrooms: scientific or political? Paper presented to the combined Australian Association for Research in Education and New Zealand Association for Research in Education. Christchurch, N.Z. (Erje Document Reproduction Service No. ED302466).

Cohen, L. \& Manion, L. (1980). Research methads in education. Kent: Croom Helm.

Davidson, N. (Ed). (1990). Cooperative learning in mathematics: a handbook for taachers. California: Addison Wesley.

Dillon. J.T. (1982). Male-female similarities in class participation. Journal of Educational Research. 75. 350-353.

Erickson, G.L., A Erickson, L.J. (1984). Females and science achievement: evidence, explanations and implications. Science Education, G8(2), 63-89.

Fennema, E., A Peterson, P.L. (1987). Epfective teaching for airls and boys. In D.C. Berliner \& B.V. Rosenshine (Eds.), Talks to teachers (pp. 111-125). Hew York: Random House.

Gaiton, M., Simon, B., \& Croll, P. (1980). Inside the primary classroom. London: Routledge \& Kegan Paul.

Gay. L. R. (1987). Educational evaluation and measurement. Calombus, Ohio: Charles E. Merrill. Good, T.L. \& others (1990). Using work groups in mathematics instruction. Educational Leadership, 47(4), 56-62.

Good, T.L., \& Brophy, J.E. (1991). Looking in classrooms (5th ed.). New York: Harper Collins.

Good, T., Reys, B., Groums, D. A Mulryan, C. (1989).
Heterogenous mork groups in matheratics: improving student's understandine and social skills. Technical Report $\ddagger 472$ Columbia: University of Missouri. Gray. J.A. (1981). A bialogical basis for sex differences in achievement in science? In A. Kelly (Ed.), The missing half: girls and science education (pp. 42-58). London: Manchester University Press.

Hacker, R.G. (1988). Class gender and teaching processes. Europaan Journal of Science Education, 8 , 57-71.

Harding, J. (1980). Sex differentiation and schooling. Education in Science, 89, 27.

Harding, J. (1983). Switched off: the science education of girls. York: Longman for Schools Council.

Harding, J. (1986). Perspectives on gender and science. London: Falmer Press.

Jick, T. (1979). Mixing qualitative and quantitative methods: triangulation in action. Adairistrative Sclence Quarter1y, 24(1), 602-611.

Johnson, D.W. \& Johnson, R.T. (1975). Learning_alone and together. New Jersey: Prentice-hall.

Johnson, D. 7 . \& Johnson. R.T. (1982). Having your cake and eating it too: maximizing achievenent and cofnitive-social development and socialization through cooperative learning. Paper presented at the Annual Convention of the American Psychological Association, goth, August 23-27. Washington, D.C. (Eric Document Reproductive Service No. ED227408).

Johnson, D. ${ }^{\text {. , Johnson, R.T. A Holubec, E.J. (1990). }}$ Circles of learning: cooperation in the classroom. (3rd ed.). Minnesota: Interaction Book Co.

Kahle, J.B. (1984). Girls in school/women in science: a synapsis. Indiana: Vomen's Studies Conference. (Eric Document Reproduction Service No. ED243785).

Kahle, J.B. (1887). Images of science: the physicist and the cowboy. In Gender issues in science education.
(pp. 1-11). Perth: Curtin Univarsity of Technology.

Kahle, J. B, \& Lakes, H.K. (1983). The myth of equality in science classrooms. Journal of Research in Science Teaching, 20(2), 131-140.

Kelly, A. (1982). Why girls don't do science. New Scientist. 94, 497-500.

Kelly, A. (Ed.). (1987) . Science Por eirls. England: Open University Press.

King, L., Barry, K., Haloney, C. A Tayler, C. (1991). Small group learnins interaction analysis system (MAKITAB). Perth: Edith Cowan University.

Lewis, S. (1988). Gender equity in mathematies and science. Canberra: Curriculum Development Centre.

Lockheed, M.E. \& Harris. A.M. (1988). Cross sex collaborative learning in elementary classrooms. Amarican Educational Research Journal, 21(2), 275-294.

Murphy, J. (1980). Getting the facts. United States: Scott Foresman.

Ormerod. M.B. A Duckworth, D. (1975). Pupil's attitudes to scierce. Slough: National Foundation for Educational Research.

Parker, L.H. \& OPfar, J.A. (1988). Achievement Certificate science: sex dipferences in grades. 1872-1985. Paper presented at the 12th Annual Science Education Conference, 31st October, 1988, at the University of Western Australia, Yedlands, Perth.

Rennie, L.J., Parker, L.H. \& Hutchinson, P.E. (1984). "Hands-on" science: how often and whose hands? Proceedings of the 10 th annual conference of the Western Australian Science Education Association. (pp. 87-96).

Sadker, D., \& Sadker, M. (1985). Is the OK classrcom OK? Phi Delta Kappan, 66(5), 358-361.

Sharan. s. (1988). Language and learning in the cooperative classroom._New York: Springer-Verlag.

Spender, D. (Ed.), (1980). Learning to lose: sexism and education. United Kingdom: Women's Press.

Tobin. K. (1987). Gender differences in science: they don't happen here. In Gender issues in science education (pp. 37-45). Perth: Curtin University of Technology.

Tobin, K. \& Garnett, P. (1987). Gender-related differences in science activities. Science Education, 71(1). 81-103.

Tobin, K., Kahle, J.B. \& Fraser, B.J. (1890). Windows into coience classrooms. United Kingdom: Falmer Press.

Waber, D.P. (1976). SAX differences in cognition - a function of maturation rates? Science, 192. 572-574.

Febb, N. A. (1984). Sex differences in interaction and achievement in conperative small eroups. Journal of Educational Psychology. 76(1). 33-44.

Weinrich-Haste, H. (1981). The image of science. In A. Kelly (Ed.), The missing half: girls and science education (pp. 217-226). London: Nanchester University Press.

Whyte, J. (1984). Observing sex stereatypes and interactions in the school laboratory and workshop. Educational Review, 36(1), 75-86.

Whyte, J. (1986). Girls into science and technology: the story of a project. London: Routledge \& Kegan Paul.

Woolfolk, A.E. (1987). Educational psychology (3rd ed.). New Jersey: Prentice-Hall.

APPENDIX ONE

Specific Roles in Gooperative Learning Groups

The following rale behaviours are considerad appropriate for the specific roles allacated to the students in the cooperative learning groups in science.

Manager
The Manager is responsible for callecting and Feturning the equipment the team needs. The Manager also informs the teacher if something is damaged or broken. All team mates are responsible for cleaning up after an activity and getting the materials ready to return.

Tracker
The Tracker is responsible for tracking the team's progress through the steps of a team activity, and ensuring that every member of the team participates. The Tracker focusses the tean's attention on the directions, or reminds team members to read the directions again if they are moving too quickly onto the next step. All team mates should help read and follow directicns.

Recorder
The Recorder is responsible for completing the team record for the croup activity. The entire team is responsible for assizting the Recorder in pormulating the responses.

Communicator
The Communicetor is responsible for asking the teacher or anothor team's communicator for help to resolve a question, or decide how to follov a procedure. The Communicator then shares the information with the other team members. All team dembers should be able to report on the tean's results.
N.B. Although each student has a specific role to play in the team, all students manipulate the equipment and collset the data.
(Biological Sciences Curriculum Studies, 1989).

APPENDIX THO

Class Sociogram

Year 4

APPENDIX THO

Class Sociogram

Year 5

APPENDIX THREE

Behaviour Instrument

Faculty of Education School of Education Studies Pearson Street CHURCHLANDS WA 6018

SMALL GROUP LEARNING INTERACTION ANALYSIS (MAKITAB) August 1992

EDITH COWAN LINIVERSITY

$\begin{aligned} & \text { WHO } \\ & \text { INTR } \end{aligned}$	LE CLASS ODUCTION	GROUP ${ }^{\text {TASK }}$		GROUP DYNAMICS		MONITORING GROUP		WIIOLE CLASS INTERVENTION		WHOLE CLASS WRAP-UP	
ISOI	Recapitulating from previous lessons	TSO1	Management materials / movement	DS01	Decision-making processes	MSOI	Clucking progress	NS01	Recapitulating previous activity		Recapitulating / summarizing lesson
	Explaining task content / procedures / materials	TS02	Clarifying task directions / requirements	DS02	Assigning role(s)	MS02	Clarifying or eliciting lask content / solution	NS02	Clarifying task content / procedures / materials	RS02	Marking / collating findings
	Feedback - positive		-	DS03	Task feedback positive	MS03	Feedhack - positive	NS03	Feedback - positive	RS03	Feedback - positive
$\text { 주ํ } 1504$	Feedback - negativè			DS04	Task feedlack negative	MS04	Peediback - negrative	NS04	Feedhack - negative	RS04	Feedback - negative
$\underset{\sim}{c} 1 S 05$	Setting context	TS05	Determining work actions	DS05	Challenging group member(s) / asserting	MS05	Clarifying task procedures	NS05	Cltecking thinking process(s)	RS05	Reviewing thinking process(s)
1506	Explicit teaching of content	TS06	Accepting work actions	DS06	Positive response to chatlenge / assertion	MS06	Giving answer / solution	NS06	Explicit texching of new content	RS06	Looking altead
IS07	Recapitulating task content / procedures	TS07	Rejecting work actions	DS07	Negative respronse to challenge / assertion	MS07	Giving explicit directions	NS07	Giving explicit directions	RS07	Giving directions
IS08	Control / discipline	TS08	Examining, comprehending, clarifying \& rontine responding	DS08	Seeking approval / feedliack	MS08	Control / discipline	NS08	Control / discipline	RS08	Control / discipline
1509	Student question / comment	TS09	Sudden ideas / insights	DS09	Self-evaluation positive	MS09	Student initiated contact	NS09	Student question / comment	RS09	Student question / comment
SPEAKER -LISTENER		TSI0	Proposing	DSt0	Self evaduation negative Monitoring belaviour in group	MSIO	Resolving problems (dyatanics)	NSI0	Cluecking progress / marking		
	Female student Male student	TS11	Negotiating, arguing, reacting to ideas, insights or proposals	DS! 1							
9	Group	TS12	Final agreement		Grosp evaluation						
U	Unknown student	TS13	Final rejection	${ }_{\text {DS }}$ DS 14	Aggressign / conflict						
C	Class	TS14	Representation	DS14	Seeking lielp						
T	Teacher	TS15	Reviewing Monitoring student /	DS15	Offerins: help			COD	ING NOTES		
H	- Helper		group progress					\#\#99	Non-task related (TS,	S, NS, RS)
0	Outsider								Cannot codz		
S	Self				Not to be used	out	NGMission.		Statement - For co for a cognitive ques	ing que	stions substitute
X	Other /Coder						mey, Collatte Tayker.		for all other forms		

APPENDIX FIVE

SCIENCE QUESTIONNAIRE

Name: \qquad

Here are some questions about science.
First, here is a practice question. Colour in the circle which is right for your answer.

How much would you like to meet a dinosaur?

(If you aren't sure how to answer, ask your teacher).
Now here are the questions for you.

Do you think science is interesting?

Do you enjoy science?

How useful do you think science will be to you when you are an adult?

How much will you enjoy science if you nork in groups?

Do you like working in groups with all girls / all boys?

How much do you like working in mixed groups with boys and girls together?

Do you get equal turns in groups with all boys YES NO or all girls?

Do you get equal turns in mixed groups?
YES NO
Do you think boys and girls act the same
YES NO
in science lessons?

APPERDIX FIVE
 SCIENCE QUESTIUNNAIRE 2

Name:
Job: 106

Group:

Did you find the Cogs and Gears lessons interesting?

Did you enjoy the Cogs and Gears 1essons?

Did you learn anything about how Cogs and Gears work which you didn't know before?

How useful do you think knowing about Cogs and Gears will be to you when you are an adult?

Have you played with Lego Technics before?

Do you have Lego at home?

How much did you enjoy working in groups?

Did you like tho jeb you had?

Did you have equal turns in your group?

Did one person take over your group and boss you around?

Do you think boys and girls act the same in science? YES

Do you have any brothers or sisters? YES
Could you please write their names and ages.
BROTHERS

$\begin{gathered} \text { Kot } \\ \text { at } \mathrm{d} 1 \mathrm{l} \end{gathered}$	$A \underset{\text { bit }}{\text { litie }}$	A faír bit	$\begin{gathered} A \\ \operatorname{lot} \end{gathered}$
-	O	0	
0	0	0	
\bigcirc	0	0	
	0	0	
-	0	0	\square
-	0	0	
0	\bigcirc	0	
0	0	\bigcirc	\square

NO

NO

NO

NO

APPENDIX SIX

Interview Questions for Semi-Structured Interview

Question 1. "Did you like the Wheels and Cogs
programne? Why, why not?"

Question 2. "Did you enjoy using the Lego?"

Question 3. "Did you like working in groups?"

Question 4. "Did you like your group? Why, why not?"

Question 5. "Did you like your role? Why/why not?"

Question 6. "Did you think you had equal turns in your group? If not, who had the most turns and why?"

Question 7. "Do you think girls and boys act the same in science? If not, how are they different?"

Question 8. "Do you think having a job to do made any difference to how you worked? Did it make a difference to how anyone else in your team worked?"

[^0]: * Extension of the time period of the study, to a semester or a year, would allow deeper insights into the patterns which form over time.
 * Investigations using teachers of different gender and experience levels would add to the generalizability of the study.
 * Altering the numbers of students in a group, while still allocating roles to the group members. might

