
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2003

Online avatar based interactions Online avatar based interactions

Han Wei Koay
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Communication Technology and New Media Commons

Recommended Citation Recommended Citation
Koay, H. W. (2003). Online avatar based interactions. https://ro.ecu.edu.au/theses_hons/573

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/573

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F573&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F573&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/573

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Online avatar based interactions

Han Wei Koay

Bachelor of Communications

Interactive Multimedia, Honours

School of Communication and Multimedia

19 May 2003

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abstract

The gridWorld project attempts to utilize 3D to develop an online multi-user visual

chat system. GridWorld address ideas of how conversations in a virtual environment

can be facilitated and enhanced by an abstract visual interface design. The visual

interface was developed from research and examination of existing ideas,

methodologies and application for development of user-embodiment, chat/virtual

space, and interface useability towards the visualization of communication.

Declaration

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgment 'lllY material previously submitted

for a degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another person

except where due reference is made in the text; or

(iii) contain any defamatory material

1

Acknowledgments

Thanks to God who helped me get through 4 years of university. Thanks to Dr Arshad

Omari for his advice and guidance in writing this thesis. Thanks good to the work

done by Judith Donath and her "Social Media Group" for providing the inspiration for

gridWorld. Thanks to all the SCAM ar.:ademic and administration staff that provided

the tools and support for me get to where I am today.

2

Contents

Declaration----------------------

3

6.5. Space and location ------------------ 44

7.0. Post development I User feedback _____________ 46

7 .1. QUIS - Questionnaire for User Interface Satisfaction 46

7.2. Results ofQUIS Questionnaire and user feedback 46

7 .3. Analysis of system usability 52

7.4. Analysis of effectiveness of nonverbal metaphors 54

7.5. Future Improvements And Possibilities 56

8.0. Conclusion 59

Reference: _______________________ 60

Bibliography:-------------------- 62

Appendix 1 - QUIS Sample Questionnaire 64

Questionnaire for User Interfac>'! Satisfaction ___________ 65

Appendix 2- User Instructions --------------- 69

Appendix 3 -Lingo code __________________ 70

A2.1. "Script" Cast: Behaviour Scripts 71

A2.2. "Script" Cast: Parent Scripts 84

A2.3. "Script" Cast: Movie Scripts 112

4

1.0. Preface

GridWorld is currently held on a private server within Edith Cowan University,

School of Communication and Multimedia Sciences. Users can access the gridWorld

project homepage through http://malevich.dyndns.org/~hanwei.

5

2.0. Research Questions

Research in the gridWorld project centred on developing a system of visual

representation of verbal and nonverbal communication between users in an online

environment. As such, research needed to first identify what verbal, visual and other

communication cues are useful to facilitate and enhance communication and

interaction in an online avatar-based chat environment. Based on these findings,

research next needed to identify what visual metaphors are appropriate for visualizing

chese communication/cues in an avatar-based chat environment.

Based on these assumptions, the project's research questions are as follows:

• What verbal, visual and/or other communication cues are useful to facilitate

and enhance communication and interaction in an online avatar-based chat

environment?

• What visual metaphors are appropriate for visualizing communication in an

avatar-based chat environment?

6

3.0. Introduction

3. 1. Background

Chatting online:

Online chat systems are conversational interfaces that allow multiple users to hold

real-time dialogues with each other in an online space. They harness the Internet's

property of connectivity to allow numerous people to communicate and interact

regardless of time and location through interfaces such as chat systems.

Chat systems can be generally grouped into two categories:

• Text-based environments: in which communication is carried out in an

almost exclusively word based environment.

• Graphical environments: in which text-based communication is heavily

augmented with visual cues. These visual cues tend to revolve around the user

representation as an avatar.

Text-based chat environments:

In text-based chat environments conversations are held in an almost exclusively word

based environment. Identity and utterances are displayed together in a list, ordered by

time of post, allowing users to gather and converse in real time (figure I). More

advance text-chats such as MSN Messenger (figure 2) allow users to add small

graphics in their text to express emotions or actions.

u are???
illl 5 1

Figure 1- miRC (www.mirc.com)

7

Though simple, traditional text

based chats are still very

popular. The simplicity of

systems such as miRC, MNS

Messenger, Yahoo Chat, and

others "provide a rich

environment for social

interaction (where users can)

gather and converse easily and fluidly" (Spiegel, 2001). All a user need do is type a

message, and it appears on screen for all to read.

iii;'j-;:_E\$:l-8:'
'li¢11\)&ocr

Plhr_t~y{f~i::S_~-S:
Hslloilli!

J·~:r;;:il{t~ru¥_¢_:"J):ew~ -i.i '1~1-ud-'t)}i\{cJ~.ar.: .. · .. -,,
!V?-S:CI;;f,$!

,,;.-avct;l
l:l~n \N~:d t~Dv~r

kth-e:ts-~tw:iLig:fiJhanksl-

FiQure 2- MSN MessenQer

While effective, text-chats face

several limitations due to their

purely text-based interface. As

all communication is text

based, information retrieval is

never at-a-glance, but requires

the user to scan through lines of

text to identify or differentiate

users and their postings.

Additionally, a completely text

based interaction "lacks the

nonverbal social cues used to

interpret visual statements" as

identified by Baker (1990).

Baker quotes Culnan and Markus (1987) who dubbed this phenomenon as the "cues

filtered-out" approach, where "substituting teclmology-mediated for face-to-face

communication will result in predictable changes in intra-personal and inter-personal

variables" - namely that in a purely text-based chat, we are blind to our social

surroundings (being incapable of 'reading' other people/groups) due to our inability to

'see' them.

Non-verbal communication- Social/Visual Cues:

When socializing in the real world, people rely on both verbal and nonverbal

communication in their interactions with one another. When participating or

observing a com:ersation, we are constantly sending and recieving nonverbal

information to establish identity, meaning, and intent, such as cues for establishing

tum-taking or social behaviour. Non-verbal communication thus allows us to adapt

and coordinate ourselves to everyday social interchange.

·Blake and Haroldson define non-verbal communication as "the transfer of meaning

involving the absence of sound or sound representations" (1975). Motion, gestures,

8

facial expressions, voice-quality/inflections, physical space, smell, touch, and other

cues can communicate much meaningful information independently or inconjunction

with each other. Goffman has differentia.ted these cues as being those that are "given"

and those that are "given-off' (Spiegel, 2000). Cues that are given are explicit

expressions of social behaviours, such as nodding in agreement or waving to get

attention. Clues that are given-offare those that are unconscious or involuntarily, such

how we stand or how we look. These are said to form the "back-channels" of social

interactions that allow us to 'read' a person (or group) and make assumptions of their

activity and expectations. Though non-verbal communication can encompass all

senses, it is the non-verbal visual cues that are of interest in this research.

Lee (2001) notes that the goals of visual cues are to "augment real-life conversations

with additional detail or contextual hints" (p. 13). Though limited, users of traditional

text-based chat are still able to communicnte nonverbal social expressions. Emotions

and actions can be expressed and understood through use of emoticons and social

acronyms. 'Emoticons' take advantage of ASCII text characters to produce vmious

expressive faces for emotional responses (e.g. ;-) for 'winking' or:-(for 'sadness').

Likewise, social acronyms like 'LOL' (laughs-out-loud) and 'WYSIWYG' (What-you

see-is-what-you- get) can be used to express actions or phrases. More advanced text

chats allow for small graphics (smiley faces, roses, etc) to supplement text dialogues,

these have grown out of the replacement of emoticons made possible by newer

software technologies.

However the ability to express the "back-channel" visual cues in text-chats is virtually

nonexistent. Lacking visual cues, users cannot easily identify who is participating in

any number of group conversation, where the attention is directed, or who is present

(Donath, 1997). Spiegel highlights that users are functionally invisible to active users

until they chat, and that constant attention is needed to keep track of the activity of a

channel. A text-based interface cannot express the 'shape' of an online community.

Spiegel states:

"we cannot sc~e a person's facial reaction, nor can we see those visual qualities

that a person evolves over time, such as their comfort or experience within an

environment or how involved they have been in a conversation [Offline] we

9

can, by glancing around a party, see who knows whom, determine which

conversations are active and lively, and pick out who has a history with the

group. Online, we have little or no such facility." (2000, p. 4)

Graphical Chats:

The term Graphical chat has become commonly associated with those systems that

employ avatars moving and interacting in 2D or 3D virtual environments. Ranging

from simple 2D characters or pictures to 3D models, avatars are (often) customisable

visual representations of users in a virtual chat space. They act as a virtual "body"

providing a method of denoting their user's presence and location, adding an extra

Figure 3 - Comic Chat (Microsoft, 1996).

Fivnre 4- The Palace

10

dimension of interaction by

giving users the ability to see

and approach each other.

Though verbal communication

is still done through a text

based channel, utterances are

displayed next to their

speaker's avatar much like a

'speech-bubble', allowing

messages to be more easily

associated to or distinguished

from conversing users.

Avatar systems, offer a

potential channel for expressing

the missing visual cues that

were previously omitted in

traditional text-based chats.

Through visual characteristics,

movements and animations of

the avatars, unspoken

information of size, shape,

movement, pictographs/

images. colour, etc can communicate presence, activity, availability, mood, status,

location, identity, capabilities and many other information (Benford, Bowers, FahlCn,

Greenhalgh, & Snowdon, c. 1995) normally available in an offline situation.

Additionally, the usc of iconic graphics helps to alleviate infonnation overload while

adding some aesthetic value to the chattinp i!xperience.

Through combining social expressions and visual cues, avatar systems have the

potential to enhance the effectiveness and enjoyment of online chatting.

II

3.2. Project Aims

The grid\Vorld project seeks to build a graphical 3D avatar chat sy~t.em. The

prototype system will seck to address deficiencies identified in current graphical chat

systems.

The research has four aims:

1) To identify what visual cues and social behaviour expressions are needed for basic

conversational communication and interaction between users in 3D avatar based

virtual environments through examination of current research and practice

2) To develop a three-dimensional avatar-based chat prototype incorporating the

visual cues and expressions identified by the research.

3) To evaluate the system's usability and cffcl'tiveness at facilitating online chatting.

4) To evaluate the system's success at implementing the non-verbal elements

identified.

3.3. Significance

Current graphical chats systems can be roughly categorised as either two-dimensional

or three-dimensional. Two-dimensional chats, such as The Palace (figure 4)

incorporate a 2-dimensional chat space within which iconic or graphical avatars

congregate and communicate within a single or series of chat screens. Three

dimensional chats like Active Worlds (figure 5) feature 3D worlds in which users

view, explore, and interact in the virtual world from a first or third person view of

their representative avatars.

Shortcomings of 2D Graphical Chats:

Two-dimensional graphical chats such as The Palace and Comic Chat :.;uffer from the

problem of limited on screen 'real-estate'. As more users join a channel, nJorc space is

consumed to display their avatars. Similarly, when a user "speaks", additional chat

space is taken up to display their utterances' message text. If user numbers arc not

limited, this wi!l result in a cluttered and unintelligible visual kaleidoscope of graphics

and text, overlaying and obscuring each other.

12

Additionally, and more importantly, though the user is able to change or animate their

representations, there is little direct or continuous connection between user and avatar.

Systems such as Comic Chat or the Palace offer users little or no control over the

movements of their avatars or allow only for discontinuous motion within the chat

space (Spiegel, 2001).

Shortcomings of Graphical 3D Chats:

Popular 3D space graphical chat approaches, though aesthetically spectacular, are

often inefficient, superficial aud tend to be distracting to the task of chatting itself.

(Benford et al., c. 1995; Donath, 1997; Mania & Chalmers, 1998; Miller, Mitchell,

Eva, & Wood, c. 2000) The shortcomings of such a system will be discussed using

Active Worlds as an example of an existing graphical chat system.

Figure 5- Active Worlds Browser Interface (www.activeworld.com)

Active Worlds is a reflection of the current state-of-art in graphical chat systems.

Users access Active Worlds through the AWB (Active Worlds Browser), navigating

from a first or third person point of view from their avatar. Avatar models are

typically articulated humanoids with customisable gender, ethnicity aud clothing. The

user communicates by typing into a chat field and text messages are displayed in the

text window as well as on screen above the avatar, visible to the 12 nearest users. A

selection of predefined emotions and actions ('happy', 'angry', 'wave', etc) are

13

available for expressing nonverbal comments, as well as random automatic avatar

actions during moments of user inactivity (such as looking at his/her watch).

An example of avatar interactions in Active Worlds:

"Paul walks up to Susan who stands there staring blankly out into space. "Hello Susan,

how are you?" Susan looks at her watch as she replies "Paul! Great to see you! I'm fine,

how have you been?" Paul returns the stare and without twitching a limb he exclaims,

"Real Life sucks, I don't think I'm going back there .) ". Susan looks at her watch. Paul

continues, "/mean, out there you can't just walk up to a random person and start a

conversation". Susan looks at her watch. Karen says "Hi". While Paul rotates a full

circle looking for Karen, Susan replies, "//mow what yort mean". Karen says, "So what

do you guys think about this place?". Karen is over by the fountain, waving. Susan looks

blankly at Paul as she says, "/ think it is great to actually see the people you are talking

to!". Paul is stiff. Karen is waving, Susan looks at her watch."

Behaviours:

Excerpt taken from "Autonomous Communicative Behaviours in Avatars"

Page /5, (Vilhjcilmsson, 1997)

It is the attempt to emulate the 'real' that is the major shortcoming of systems like

Active Worlds. In such systems, users must select from menus of animated sequences

or emotional representations to express social behaviours. However, many visual cues

important to the real~life conversations are those that are automatic and/or involuntary

and so impossible to explicitly select. Additionally, Vilhj<'tlmsson (1997) explains that

"lively emotional expressions in interaction is in vain if (the) mechanisms for

establishing and maintaining mutual focus and attention are not in place"(p. 16). A

lone person standing stiff, staring fixedly into space with a broad smile on his face

would be responded with caution rather than welcome.

Lee (2001) identifies that such behaviours in these systems ('waving' or 'looking~at~

the-watch") are used more for "(visual) maintenance" then for contexhlal hints.

Serving no purpose in enhancing the conversation, they are "expectations which must

be satisfied ... (to) make the avatar's appearance acceptable and believable" (p. 10).

The use of behaviours for maintenance can also be risky, as a wrong action or

expression can "easily and efficiently communicate highly misleading social (and

visual) cues." (Donath, 1997)

Articulated Modelling:

14

Literature examining collaborative interfaces (Benford et al., c. 1995; Donath, 1997;

Mania & Chalmers, 1998; Miller ct a!., c. 2000) express concerns for the efficiencies

of such systems in terms of their user embodiment, movement/behaviour/action

control and chatting. In their discussion of the efficiency of user embodiment Benford

ct al. note:

"The attempt to reproduce the human physical form in as full detail as possible

may in fact be wasteful (where) more abstract approaches which reflect the

above issues in simple ways may be more appropriate."

(c. 1995)

To fully render a three-dimensional human model as well as a detailed virtual

landscape would require much computing and hardware resources. Additionally, Lee

observes that the choice of human-like avatars brings with it pre-exiting stereotypes

and expectations that requires additional processing for unnecessary maintenance

behaviours to support (p. I 0), thus consuming more user resources. This can be seen

as wasteful, as even the most artil:ulate avatars tend to become secondary when the

user is engrossed in conversation:

"Although (avatar) systems have now become graphically rich ... graphics are

there simply to provide fancy scenery ... while the act of communication is still

carried out through a single word-based cannel." (VilhjAlmsson, 1997, p. 2)

Dual-Control:

Problems and deficiencit.s with this approach occur in trying to control the avatars'

movements and actions .juring a conversation. Control of avatar actions and

behaviours in Active Worlds requires users to break from chatting to activate the

various animation sequences or expressive looks. The user's attention is thus divided

between chatting and animating the avatar; or else the avatar will stand motionless or

initiate some random action. The result is a dissociative effect similar to that of

conventional two-dimensional chats, where "motions do not give the impression that

you are watching a real person interacting" (Spiegel, 2001, p. 49).

Mania and Chalmers (1998) found that most interfaces, control of an avatar's

movements and expressions are often non-intuitive and disjointed from chatting

15

operations. Not only can this become burdensome, but also the disjointed relationship

between body and conversation can lead to "misleading or even conflicting visual

cues to others" (Vilhjalmsson, 1997, p. 15). Mania and Chalmers argue that avatar

movements and expressions should build towards the chat, and should be

unambiguous in their representation of the users. Similarly, Lee (2001) argued that the

goals of visual cues should be to "augment" conversations, providing added detail or

context to tbe interaction.

Summation:

Current 2D systems' real estate problems can be improved with a scrollable chat

space, which can have relocating views, similar to the exploration and navigation

systems found i11 conventional 3D systems. This allows users more room to move and

assemble in more natural conversation groups.

Current problems with 3D systems can be said to stem from the choice of literal

(human~like/real world) metaphors for avatar and virtual environments. By using

more abstract avatar representations, the need for maintenance behaviours and other

associated functions would be removed, allowing a user to focus on the task 'Of

chatting.

From Spiegel's (2001) observations, the disassociation between user and

representation in two~ and three~dimensional chats can be said to occur due to the

inability of these systems to allow direct and continuous user control and/or influence

over their avatars. The effect can be reduced by increasing the influence user

conversational actions have over the user's representations.

!6

4.0. Literature Review

A review of current research and application of abstract visual chat systems was

carried out to help develop visual communication in gridWorld This review identified

the verbal and visual communication cues and metaphors used in each application to

achieve each system's goals. Through this exeJ;i:ise. ':lny 01.1tstanding cues, metaphors,

and strategies that were proven effective can be documented towards a theoretical

framework upon which future development decisions can be made.

4.1. Existing related studies and projects:

Current studies/research into social visualisation and interfaces for conversations

online are being conducted at Massachusetts Institute of Technology's Media Lab

research group: the "Social Media Group", headed by Judith Donath. Their research

concerns "society and identity in the networked world" (http://smg.media.mit.edu/).

Current research projects of interest include: Tele-Directing, Visual-Who, Chat

Circles, and Coterie. These projects focus on developing abstract interfaces for online

communication systems.

Collaborative Tele-Directing:

The Tete-Direction interface allows multiple users (the Directors) to collaboratively

control a shared remote resource or agent (the Actor), which can be a person, a robot

or a program. The interface is designed to deliver a single instruction to the Actor

through mediation among the Directors. Users collectively suggest and vote on

comments and questions presented by the supervisor using a voting economy built

into the chat interface. All directions voted on cause real actions by the actors in a

remote location, shown in real-time as the stage in the user-Director's interfc.ce.

The use·r is represented by a simple text-geometry embodiment, distinguishable from

each other by colour and text-name. Goals are posted by moving an avatar onto the

stage and typing an action the user would like the remote actor to perfoim, producing

a transparent circle and action-text in the poster's colour. User-Directors vote by

moving onto the circle of choice within a set time limit. By setting goals directly on

stage, postings and voting can be expressed visually in context with the current scene.

17

Chatting can take place outside the stage, where utterances are briefly displayed next

to a user's avatar.

Figure 6- The Tele-Direction interface

. Chalmers.

Visual- Who:

Tele-Director's interface is highly

contextual, task driven and

intuitive. The voting system

implements user embodiment

issues of presence, location,

identity and efficiency, identified

by Benford et a!. (c. 1995), in

context with the directing scenario.

The spatial metaphor of the 'stage'

provides a visual landmark where

typing and expressing visual cues

are intuitively and cognitively

linked, as prescribed by Mania and

Visual-Who was developed for intuitively visualizing large data sets of user postings.

It depicts social patterns normally observable in a community, such as the formation

of people into groups of peers. Visual-Who provides a means for members of an

online community "to explore and understand the roles, ideas and histories that bring

them together" (http:/ /smg.media.mit.edulprojectsNisualWho).

Visual-Who visualizes a community's shifting patterns by measuring a user's

"attractiveness" to a set of topic anchors in the virtual space. A user's attractiveness is

based on the relevance of each individual's data/characteristics/interests to the

community's anchors points. A user's name, which is first generated in the centre of

the space, is 'pulled' towards anchors that are relevant to their preset interests. The

strength of the pull is directly proportional to the relevance or interest toward a given

topic. Colour is used to distinguish different 'types' of users, i.e. academics are

yellow, other staffs are blue, and students are red. The community's shifting social

patterns is visualized through examination of the motion/shifting of different user

18

names towards various anchors. The degree of a user's presence is expressed by the

brightness of his/her name; the brightest names show the strongest posting activity

and thus the strongest presence in the online community. Conversely, the darkest is

seen as having been idle the longest.

Visual-Who IS highly

efficient in computer resource

use, managmg screen real

estate, and expressing (the

required) visual cues. The

choices of embodiment,

environment and visualization

metaphors reflect and exploit

the text nature of their

medium to create a "synthetic
Figure 7 -Visual Who geography" that acts a means

of coordinating and mapping the virtual space (Miller et a!., c. 2000). Quantifiable

data, such as nnmber of people and size of community groups can be easily visualized

from a quick glance at the shape, size, and movements of these 'text-landscapes',

while qualitative information about each user in their groups is easily gathered

through textual characteristics such as transparency, hue and colour.

Chat-circles:

Chat Circles is a 2-dimensional "abstract graphical interface for synchronous

conversation", created by Fernanda Viegas (1999). The user's identity and activity is

represented as a small coloured circle, which expands to accommodate the chat

messages inside, much like a 'speech bubble'. The circle grows and brightens with

each message, while fading and diminishing in periods of silence.

The chat space consists of a single room for all conversations, rather than multiple

separate rooms, or channels. A "hearing range" metaphor is adopted that intuitively

breaks large groups into conversational clusters, where users need to be physically

close to other participants to be able to "hear" (read) their conversation. Circles

19

outside the "hearing range" appear empty, but are still visible so as to indicate

presence and activity of others.

Figure 8 - Chat Circle conversation space

Additionally, an archival interface is available, providing a temporal visualization of

conversation histories. A coloured vertical thread represents each user, the y-axis

representing time, the intersecting horizontal bars representing moments of dialogue.

Figure 9 - Chat Circles, Archival Interface

20

Chat Circles provides an innovative application of an abstract graphical chat interface.

It successfully addresses all user embodiment issues outlined by Benford et a!. (with

the exception of gesture and facial expression) with minimal system and cognitive

requirements. Its conversational and archival metaphors provide clear and obvious

visualization of conversations that are well suited to the "sense and substance" of the

interface (Tufte 1983 as cited by Donath), namely the process of chatting.

Coterie:

Coterie is a 2D abstract avatar system for "creating and displaying nonverbal social

back-channels in online environments" (Spiegel, 2001) in IRC channels. Visual cues

are created from monitoring the social interaction with a channel over time, building

statistical models based on message post rate, conversation length and memberships.

Information is automatically visualized so that the passive social expressions of the

individual and the group can be seen at a glance.

Figure 10- Coterie

Participants are

abstractly represented as

ovals of various colours.

The ovals are arranged

horizontally based on

their activity levels;

participants are move to

the centre of the screen

when they post a

message, and slowly

move toward either side

as they become more

inactive. Users fade,

change hue and

transparency to depict

historical social

interaction information, as seen in figure 8, providing a clear visual distinction

between users who are actively chatting, and those who are passively observing. The

Interface focuses on cohesiveness and temporal visualisation of conversation threads.

21

Coterie provides another example of an abstract graphical chat interface. It addresses

and makes practical use embodiment issues in its visual interface. While gestures and

emotional expressions are not represented; Coterie successfully conveys the visual

(background) cues of presence (individual and group), activity, location, and

participation/involvement using simple abstract user embodiments.

4.1.1. Summary

This review has provided some insightful strategies and proof of the effectiveness of

abstract metaphors to successfully facilitate communication and interaction online.

Visual cues that (currently) are most relevant to the task of chatting: Presence,

Location, Identity, Activity, Availability and Involvement, can be effectively

expressed through innovative use of text and simple geometdc-shapes. Tete

Directing, Visual-Who, Chat Circles and Coterie's nonverbal channe.\s can be seen to

be based around the representation's visual attributes of size, colour, hue/

transparency/lightness, movement, and position. Through combining t:hese four basic

cues more abstract and deeper nonverbal messages can be communicated, such as

attention, interests, or individual and community group behaviours. Further research

into nonverbal communication may reveal additional non-verbal cues and their

application/implications in communication.

In the reviewed systems, avatars are secondary to the chat, acting as placeholders for

users in the online space. Visual cues are centred on status and condition of users. It

can be assumed that social behaviours and expressions of emotions and actions are

communicated through the text-channel by creative use of available ASCII characters,

such as seen in traditional text-based chats. By letting emotional or behavioural

content of the. message be conveyed through the utterances, rather than the avatars,

control and production of conversation is potentially mori~ efficient and effective.

22

4.2. The Communication Channel

Communication is a process. It involves a source to initiate it, a message to

communicate, a method to convey it and a receiver to interpret it. The process of

asking a question in person is completely different over the telephone, through a

letter, or in an email. While the source (speaker), message and receiver may remain

the same, the means by which the message is transported is vastly changed in each

sihlation and would affect how well the m~ssage is transferred, interpreted, and

eventually replied.

A communication channel is the sum of the medium (the matter/energy unit by which

transfer is made), the message (information that is carried by the medium) and the

connection or link that is formed between the participants (Blake & Haroldsen, 1975).

"Communication channels are the effective links inter-connecting the source·

receiver nodes in a communication structure, through which messages flow.

Channels couple the source and the receiver, enabling them to communicate"

(Rao, 1972, p.4: as quoted by Black & Haroldscn)

Berelson and Steiner (1964, p.527: as quoted by Black & Haroldsen) define

communication as the act or process of transmission (of information, ideas, emotions,

etc). As communication charmels can be seen as the means of this transmission, the

effectiveness of the communication channel used would thus determine the

effectiveness of transmission, which is communication itself. It can be seen that these

channels can determine credibility, feedback, involvement, availability, permanency

and other dimensions of interaction, as they affect how messages would be encoded

when sent, and decoded when received.

Communication is a multi-channel phenomenon (Druckman, Rozelle, & Baxter,

1982). This is most evident in face-to-face interactions, which can utilize the medium

of speech, sound, sight, touch, taste and smell as in any one instance. Taylor et a!.

(1986) identifY these as message carriers, the "things a person actually says and does

while communicating" {p.9), substituting when words are inadequate or inappropriate.

23

Though a majority of a face-to-face interaction is carried out through a spoken or

written medium, other unspoken transmissions are present and play an active part in

providing meaningful communication. From observation those channels which use

verbalized message carriers (e.g. spoken or written language) can be said to form the

verbal channels of the interaction, those that use non-verbalized message carriers can

be said to fonn the non-verbal channels. For example, a person shrugging would be

said to be communicating through a nonverbal channel using action as the message

carrier. On the receiving end, the receiver would be connected to the sender by

visually witnessing the message carrier (i.e. the shrugging action).

As discussed previously, many of the nonverbal channels are almost nonexistent in

online text-based interactions, as text is a verbalized message carrier. It can be seen

that this deficiency has led to the inclusion of graphical interfaces to many chat

systems today, with the aim of providing a medium for nonverbal cues to be

expressed in some way.

4.2.1 Classifying non-verbal communication

Communication as a process requires a communication channel to connect each

participant and provide a medium or message carrier to transfer the message itself.

Nonverbal communication has been identified as "the transfer of meaning involving

the absence of symbolic sound or sound representations" (Blake & Haroldsen, 1975,

p.43), utilizing such senses as vision, hearing, taste, smell, touch and other abstract

senses.

In their book "A Taxonomy of Concepts in Communication" (1975), Blake and

Haroldsen quote Duncan (1969) in classifying nonverbal communication as the

following:

• Body motion/Kinesic behaviour - gestures, expresstons and other body

movements

• Paralanguage- vocal qualities and speech characteristics

• Proxemics - perception and use of space

• Olfaction- smell

• Skin sensitivity -touch and temperature

24

• Use of artefacts- dress, cosmetics or objects

Druckman, Roselle and Baxter's "Nonverbal Communication: Survey, Theory, and

Research" (1982) identifies the four channels of nonverbal communication as vocal

(paralanguage), facial, body (kinesics) and vism.l (eye behaviour). In

"Communicating" (1986), Taylor et a!. identified these characteristics as message

carriers in nonverbal communication, noting similar and additional message carriers

of actions, appearance, use of objects, space, voice qualities, vocalizations,

environmc sounds, touch, time, smell and environment, categorising them as

either visual, audio/aural, tactile, olfaction (smeli). o; a combination of carriers.

Figure 11 shows a hierarchical representation of nonverbal communication channels

using the above classificatic•.;..

Non~verbal Communication

Touch

Appearance

Covert V s. Overt Proxemics

Body I Kinesics Visual/ Eye

Figure II -Non~ verbal Hierarchy

Aural nonverbal communication

Aural nonverbal communication involves nonverbal cues that are heard. This can

include quality and characteristics of sound, such as loudness, pitch or tone. In the

context of face-to~face communication, these attributes represent the basis of

paralanguage; aural nonverbal cues that are the expressed by how a person speaks.

Paralanguage is one of four communication channels identified by Druckman et a!.

(1982) in their survey of nonverbal communication behaviours. Druckman et al. note

the importance of paralanguage in detecting the emotional states of conversational

participants. Conversational behaviours can be regulated through intonation,

25

paralinguistic drawl or a drop in pitch, providing cues for tum taking. Additionally,

nonverbal cues in paralanguage can extend to what is not spoken, where silence or

hesitation in speech can indicate information processing.

Visual nonverbal communication

Taylor et al. (I 986) identified four distinct categories in visually received nonverbal

message carriers as Actions, Appearance, Objects, and Space.

Actions include the other three of the four communication channels identified by

Druckman ct al. in their surveys. These include Facial expressions, bodily movements

or kinesics, and visuaVeye behaviours such as gaze. Nonverbal cues in this category

may be overt (out in the open and readily available) or covert in nature. While covert

actions are harder to distinguish, they often communicate more, being harder to

control and thus will send very "honest messages" (Taylor et al., 1986, p. 95).

Appearance includes the visible physical characteristics of the conversant. These are

"bodily communicators that do not involve movements" (Taylor et al., 1986, p.l02),

such as physique, size, arrangement of body/stance and colour. These characteristics

can be differentiated into stable characteristics and unstable characteristics. Stable

characteristics are those such as gender or build, which suffer little fluctuations or

change over short periods of time, unlike unstable characteristics, such as clothes,

cosmetics or hair length, that can be more easily change at will.

Objects include any item that may be used to express nonverbal messages. Objects

such as a table centrepiece or muddy shoes can influence the environment and affect

how people communicate. Additionally, objects may carry symbolic meaning that can

be directly associated to its owner, indicating rank, history, personality, etc.

Space, or Proxemics, involves the physical distance between conversants and/or their

surrounding envirn ·ments. Linked to location, space can be an important indicator of

the intimacy of a conversation where the more private an interchange is, the less

distance there is between participants. Taylor et al. identified interpersonal distance to

be one of the more important aspects in direct face-to-face interactions (p. 96),

differentiating three levels of interaction distances: social consultation/far, personal-

26

intermediate, and intimate-close as categorised by Halls (1966) and Store & Morden

(1976). Taylor et al. note the relationship between interpersonal distances and

territoriality of personal space, in which each individual possesses a 'bubble' that

"expands ,1nd contracts depending on the circumstanc~s ... situations and our

relationships with the people with whom we're talking" (Taylor et al., 1986, p. I 03).

This space can be "contaminated" by other people through changes in interpersonal

distances, and thus evokin'g reaction and other behaviours from the space holder.

Depending on the holder's relationship to the intruder, this encroachment may be met

with acceptance to tension or hostility.

4.2.2 Summary

From the brief taxonomy of nonverbal message carriers identified, the nonverbal

channels of paralanguage, actions, appearance, objects, and space/proxemics can be

said to be most transferable and suitable in an online setting. Firstly, due to the

dissociative nature of the computer interface, only those cues that can be received

visually an audio/aurally can be considered as viable communication channel.

Secondly, these channels are seen to be the most utilized channels in face-to-face

communication (Blake & I-Iaroldsen, 1975; Druckman eta!., 1982; Taylor et al.,

1986) and can be combined to express various other abstract messages (such as time).

Finally, these channels are the prime carriers of the visual attributes of size, colour,

hue/ transparency/lightness, movement, and position that is was identified earlier as

visual cues for nonverbal meaning in successful abstract avatar systems.

27

5.0 The design and implementation of gridWorld:

The GridWorld prototype is a 3d avatar-chat system attempts to facilitate

communication and interaction between users online. GridWorld allows users to

interact by manipulating abstract avatars from a third person perspective. All avatar

movements and interactions are held on a 3d "chat floor", and are controlled by the

user using a point and click interface. Chat messages are typed in the left hand text

field. Emoticons are added into the text-messages using radio buttons above the text

field. Avatar menu controls are displayed in the black area below the chat floor

window. All with utterances appear as "speech bubbles" over the speaker's avatar for

a period of five seconds and then moved to a history window below avatar menus. All

users within the chat world are shown in the top-left user list. User instructions are

available in a scroll box at the bottom-left corner of the screen.

Figure 12- GridWorld Screen Capture

The goal of GridWorld's visual metaphors is to complement and enhance the

communication process between two or more users through the visualisation of

nonverbal cues of Presence, Location, Identity, Activity, Availability, and Emotional

28

expression using the nonverbal communication channels of paralanguage, actions,

appearance, objects, and space/proxemics.

5.1 Designing User Representation:

The basic and most obvious feature of any avatar~based chat system are its avatars.

Online avatars are representations of real~world users in a virtual environment and

provide a means of communicating visual nonverbal cues normally expressed by our

bodies. Through avatars, users may interact with virtual objects, travel virtual spaces

and, most importantly, communicate with other (avatars) users. It can thus be seen

that the capabilities and limitations of what users can "do" in any particular chat

system is often dictated by the design of that system's avatar mechanics.

Abstract Avatars

In three~dimensional graphical chats the use of highly anthropomorphised virtual

bodies and behaviours can be distracting to the chatting process and often creates

behavioural expectations that cannot or are difficult to satisfy (Benford et al., c. 1995;

Donath, 1997; Lee, 2001; Mania & Chalmers, 1998; Miller et a!., c. 2000;

Vilhjlllmsson, 1996). Additionally, the stilted and often uncommunicative movements

of these types of three-dimensional representations offers little pretence for "believing

in a close collllection between the user and the user representation", resulting in the

avatars that are little more than "fancy icons" (Spiegel, 2001, p.49)

Research at MIT's Sociable Media Group's research into new methods of facilitating

online communication provides excellent examples of the effectiveness of abstract

avatars in online chat scenarios (Lee, 2001; Spiegel, 2000, 2001; Viegas & Donath, c.

1999). Chat Circles and Coterie demonstrates the ability of simple geometric shapes

in the reprsentation of an interacting user by establishing a direct and continuous

connection between the user and the representation by allowing the avatar's

physical/visual appearance to be directly influenced the user's conversational and

virtual actions. The metaphors used are simple and accurate in their reflection.ofreal

world interactions. The more active or participating a user is, the more prominent their

representation will appear. Similarly, the more talkative or eloquent the user is, the

larger their avatar will become. Finally, conversational protocols promote the

29

formation of observable conversational groups, serving not only to relieve visual

congestion by filtering/organising user utterances to localised nodes, but also creating

discernable sociable group behaviours and attributes (such as activeness or

association).

Embodied Conversational Agents

Iu their discussion of embodiment in collaborative systems, Benford et al. identified

the following issues and techniques to be considered in designing user representation:

Presence, Location, Identity, Activity, Availability, Gesture/Facial expression, history

of activity, user perspective, user representation through multiple media channels

(text, graphic, audio), efficiency and truthfulness. Benford et al. suggest that designs

should take into context the tasks and goals of the system and how these embodiment

issues will affect the overall collaborative outcome, quoting: "User embodiment

concerns the provision of users with appropriate body images so as to represent them

to others (and also to themselves) in collaborative situations" (c. 1995). Thus it can be

said that in graphical chat systems, the appropriateness of an avatar would be

measured by its ability to visualise the creation and maintenance of conversation.

This "appropriateness" of the virtual body is also discussed in Cassell, Bickmore,

Campbell, Vilhj<llmsson, & Yan's Conversation as a System Framework: Designing

Embodied Conversational Agents (1999), where avatars in graphical chat systems are

identified as Embodied Conversational Agents (ECA). Cassell et al. define ECA as

user representations that are "specifically conversational in their behaviours (geared

towards facilitating user interaction by having) the same properties as humans in face~

to~ face conversations". This includes:

• The ability to recognize and respond to verbal and nonverbal input;

• The ability to generate verbal and nonverbal output;

• The ability to deal with conversational functions such as turn taking, feedback

and repair mechanisms; and

• The ability to give signals that indicate the state of the conversation, as well as

to contribute to new propositions to the discourse.

(Cassell et al., 1999, p. l)

30

Though ECAs refer to the development of human-like representations, the

behavioural concepts identified by Cassell ct a!. provides a useful behavioural goals

for graphical interfaces to strive toward.

From Cassell et at. 's definitiOI1S, we can see how those embodiment issues identified

by Benford et al can affect the ability's of the ECA. For example, for an ECA to

generate verbal and nonverbal output that is meaningful to any conversational

situations, it must first be 'seen' by other users, thus addressing the issues of presence,

location and u~er perspective (i.e. camera angle}. Secondly, the verbal or nonverbal

output should be directed towards a specific individual or group, and thus addressing

the issues of identity and availability. Finally, the verbal and nonverbal output

generated should draw on the issues of user activity, geshlre or facial expressions, and

representation across multiple media (via text or graphics). Further, these verbal and

nonverbal outputs would be influenced by the efficiency and truthfulness of these

representations, affecting how easily and how seriously other receive them.

Additionally, the display time of these outputs would be affected by the method a chat

system chooses to implement a history of the verbal and/or nonverbal actions.

31

5.2 User representation in gridWorld

The goal of avatars in gridWorld is to perform the role conversational agents in the

online world such that participants can see a direct and continuous connection

between user and representation.

Figure 13- An avatar in grid World.

The goal of the gridWorld chat

environment's visual metaphor is to evoke

the abstracted impression of a person

looking down from a balcony onto a

conference room floor. The viewer sees the

interacting crowds from a top-down angle,

and is therefore able to see a majority of

each person's appearance, gestures and

expressions. They are able to discern large

groups of public gatherings from smaller,

more private conversations, as well as see

individuals wanderit:tg around the floors.

Using this metaphor, each individual in gridWorld is represented by a coloured

sphere, giving an abstracted impression of watching a person from above. Each user's

sphere's hue is customisable by the user as a means of differentiating themselves from

others. Additionally, each sphere has a floating nametag as an additional means of

identification, enabling a viewer to more easily associate a user's representation to a

user.

Above each user is a "flag" which acts as an additional identifYing marker, as well as

a visual aid for expressing nonverbal cues. A user's flag shape is customisable when

they enter the chat system giving the avatar a distinct appearance among other avatars.

During the chat, the flag animates and changes size, hue and transparency in response

to their user's conversational activities, thereby further differentiating the user from

others and informing the viewer of the owner's actions and status.

Around each user is a hexagonal border, representing the boundaries of the user's

hearing range. A user's hearing range must intersect with another's hearing range in

32

order to "hear" their utterances. This not only filters out unnecessary dialogue from

other conversations, but also encourages individuals to form conversational groups

much like in real-world interactions.

An essential characteristic of gridWorld's chat perception is the visual consistency of

the environment and users. In chat systems such as miRC, messages and user names

appear and disappear, or change instantaneously. Spiegel (2001) noted that "these

discontinuities can lead to a distancing of the connection between users and their

representations on screen" (p. 51). As such, the majority of changes to an avatar's

appearance and motion in gridWorld are smooth and gradual, allowing the viewer to

see these changes occur over time. A user's flag grows, shrinks, and fades in and out

gradually, while the avatar's movements are smooth and continuous.

While not as expressive as Comic Chat, gridWorld's focus is on maintaining a

believable connection between user and avatar. In the current version of gridWorld,

avatars are static and rigid. Ideally, avatars should be able to mimic language-like

defonnations, such as 'squash and stretch' in Coterie.

5.3 Building gridWorld

GridWorld was build using Macromedia Director 8.5's 3d lingo engine, and exported

into Shockwave 3d format for distribution on the web. Director 8.5 was seen as the

most suitable development environment for this project as it was the first development

suite to fully integrate a true 3d-engine into Director Shockwave Studio, allowing for

rapid design and development three dimensional, net-ready content.

Shockwave 3d and 3d lingo

N.\ 3d content in Director 8.5 is stcred and displayed in Shockwave 3d sprites. These

r,prites contain within them the entire 3d world that is viewed from a camera pane.

Shockwave 3d can be resized, animated, manipulated and integrated into the overall

interface like any other sprites in director. The only limitation is that they require a

3d-graphics card and d·.rect draw to render properly on screen. In this way,

Shockwave 3d sprites are similar to QuickTime movie sprites, in that they cannot be

overlayed or have other sprites overlayed over them.

33

As the Shockwave 3d sprite is itself the entire 3d world, it can thus be considered a

secondary stage for 3d content. As normal sprites and functionality on the primary

stage is controlled and created with Director's scripting language lingo, all

functionality and 3d objects are controlled within the Shockwave 3d 'stage' through

Director's new 3d lingo scripts. 3d lingo has a separate set of syntax that allows

developers to directly build a 3d movie from scratch or import pre-made 3d objects

into the Shockwave sprite.

3d object hierarchy

3d models in Director 8.5 are created using model resources and given surface

textures by assigning Shaders to their faces. Model resources are the blue prints of

each 3d model, specifying its shape, size, vertices, faces, and other variables.

Typically, model resources can be one of five primitive types: plane, box, sphere,

cylinder, and particles. Alternatively, a user can define a customised mesh object that

may be used as a model resource. Once a model resource has been created and has all

relevant variables defined, it can be used to create a model in the 3d world. To add

texture to a 3d model, a user must first define a Shader object to be attached to the

model's surface faces. This shader object defines how each face is to be rendered

when the model is drawn. Attributes like shininess, reflectivity, and colour can be set

in a model's shader object. Additionally, texture objects can be attached to a shader.

The following diagram illustrates the hierarchy of 3d objects in Director 8.5.

Shockwave 3D Cast Member

3D Model

34

Floor, lights and camera

The current gridWorld consists of a single 700 x 1000 unit 3d plane that is divided

into a 50 x 50 unit grid. The plane is easily customisable in length, width and grid

size, and acts as the floor of the chat environment. The ratio of the floor's length and

width to grid size is vital when designing and/or customising gridWorld. The floor

must be evenly divisible by 50 units in order to form uniform tiling of the floor's

surface. These tiles are the foundation of gridWorld's point-and-click interface,

serving as coordinates for avatar movement and placement during the chat, as well as

a referencing system for rendering the floor's texture (this will be covered later).

Lighting is provided by an ambient and two directional lights positioned at 45 degrees

to each other. This provides lighting for the top, top-front and top-back of the 3d

world. The camera is positione(i at a vector(-250, 551, 500), so as to give users an

angled overhead view of tht! chat environment. The camera is set with a field of view

of 45 degrees, giving a natural sense of depth to the floor. These values were derived

from trial and error to optimise user field of vision, orientation and aesthetics.

Avatar modelling

User avatars are made of three 3d primitives- a box, a sphere and a cone. The sphere

primitive represents the body of the avatar. The sphere's model resource has a low

resolution so as to reduced the number of polygons rendered, as well as give the

avatar some physical features to accentuate its rolling movement. The box and cone

primitives function as the avatar's clothes, being attached to the sphere object in a

parent-child hierarchy. The box primitive was modelled with only font and back faces

and with very litt!.! width so as to appear as a two-sided flag. Its width's scale could

later be increased and/or decreased, allowing the box's front and back faces to move

further away or closer together. The cone was the most complex of the three. Its

model resource was modified to have a large top radius, a small bottom radius, and

short height with only its side faces visible. This created a shallow bowl shape that

sits underneath the avatar's body to form the hearing boundary.

To create a cell-shaded effect, a toon shader was used to surface the avatar and an

inker modifier was added to each primitive to provide balded edges. The toon shader

applied a two-tone cell shading effect on the sphere that masked its low resolution, but

35

retained the sharp comers of the avatar. The inker modifier allowed the edges of the

flag and hearing boundary to be seen when completely transparent.

Texturing

For bitmaps to be used as textures in Shockwave Jd their dimensions need to be in the

power of two (i.e. 2, 4, 8, 16, 32, 64, 128). The avatar's flag object used a 128 x 256

pixel, 32-bit depth bitmap with an 8-bit alpha channel. This same texture could be

reused with different flag shapes so long as the flag's length to height ratio was the

same as that of the texture.

In order to allow for a scalable grid floor size, the floor '-'itmap texture needed to be

'generated on the fly each time the 3d world is remade. Using imaging lingo,

grid World can draw a rectangular bitmap of any dimensions to serve as the floor's

texture. GridWorld uses a tiling algorithm based on a 64 x 64 pixel bitmap tile for

each grid square on the chat floor. The floor texture is redrawn each time the 3d world

is recreated, based on the specified length, width and tile size of the floor plane.

Camera Overlay

GridWorld uses the camera's overlay function to display user nametags and message

posts. Overlay objects are textures attached to a camera's overlay layers and displayed

in front of all other objects in the Shockwave 3d sprite. A camera can have multiple

overlay layers, each holding a single texture object. An overlay layer with a higher

layer number will be drawn over all lower layers, much like sprites in the score

window. Each overlay layer can be moved around the visible camera screen by

altering its horizontal and vertical values in the same way a sprite can be translated

with locH and LocV on the stage. Additionally, each layer's transparency and scale

can be manipulated at will.

GridWorld assigns two dedicated overlay channels for each user; the first for the user

nametag, the second for message posts. The nametag remains constantly visible, and

is automatically repositioned directly above each avatar after each frame. The

message layer remains invisible until a user posts an utterance, upon which the

message texture is drawn (using imaging lingo) and (re) attached to the message

overlay layer. As with the nametag layer, the message layer is also repositioned after

36

every frame. As an additional feature, each message layer will calculate if it in

intersecting with any lower level message layers and will adjust its vertical position to

avoid covering other user's posts in each redrawing.

Multi-user Server

GridWorld uses chatML to support its back end chat functions. ChatML is a multi

user server XlvlL protocol being developed by Jacky Chong to support dynamic data

and media transfer within the shockwave environment.

GridWorld uses chatNIL functions to transfer message postings, avatar behaviours and

statistics, coordinates and other information to animate and synchronise all active

gridWorld chat applic.ations.

37

6.0. Multi-channelled nonverbal communication in gridWorld

Communication is a multi-channel phenomenon. Much like real-world interactions,

gridWorld uses multiple communication channels to express nonverbal cues. Though

restricted to those audio and visual carriers, avatars in gridWorld are still able to

communicate through use of paralanguage, actions (movement, gestures and

expressions), appearance, objects, and space.

6.1. Paralanguage

Paralanguage has been called "the implicit aspects of speech" (Hehrabian, 1972, as

quoted by Druckman et at., 1982), playing a crucial role in communicating emotional

state or content of an utterance, advertising to the listener cues for coordinating social

exchanges, as well as influencing other's perceptions of the speaker. Though more

commonly associated with spoken language, paralanguage can also be found in the

written medium. Punctuation marks such as exclamations marks, quotation marks or

question marks are used frequently to add or change the tone and meaning in

sentences. The use of capital, bold or italicised text, or stylised fonts creates

undertones and adds volume to words and phrases.

Text~based

Paralanguage
... No ...

No!

No?

NO

No

Figure 14 ~Text based

paralanguage use

punctuation and

formatting of written

text to provide the

"vocal qualities" of

speech.

In chat systems such as MSN Messenger, graphical

emoticons can be freely combined with written text,

supplying additional emotional context to user utterances.

Similarly, emotive paralanguage is simulated in gridWorld by

a combination of emoticons and text. Users can select one of

nine emoticon's to augment their speech.

Paralanguage plays a large role in gridWorld's chat interface.

As gridWorld uses an abstract chat interface, avatars do not

have faces or bodies to express the users emotional states, nor

any means of gesturing. This removes the need to divert

attention or resources towards extraneous maintenance

behaviours (Lee, 2001). Rather, the interface relies on

38

Emotive
Paralanguage

WNo

©No

~No

®No

~No
Figure 15 -The

inclusion of emoticon

graphic adds additional

emotional context to

the text.

6.2 Objects

creative text-based and emotive paralanguage to communicate

any underlying emotional or meaningful content within each

utterance. This provides a much more honest representation of

face-to-fJ.ce interactions, where to properly understand an

individual's emotional expressions there must be a mutual

understanding of the conversation's situation, context, focus

and intent (Vilhja\msson, 1997).

By relying on paralanguage as the main carrier of expressive

nonverbal conversational cues, the majority of communication

can take place through the text-channel. This results in a quick,

economical and efficient chat interface.

Objects in real world interactions can provide an auxiliary means for carrying

uonverbal information that may be as effectively conveyed through other channels

due to their medium's physical or practical limitations. An architect can more

effectively describe a building design with the aid of a model. In gridWorld, the

avatar's design limits its expressive capabilities to simple geometric or iconic-based

actions such a.:; blinking, rolling or deformations. However, any actions or changes

applied to the avatar must be subtle enough to ensure that its original appearance

remains intact and/or recognisable, and does not conflict with its abstract nature by

evoking behaviour expectations. Thus, for example, the avatar cannot suddenly sprout

arms to wave.

To compensate its limited functionality and avoid maintenance behaviours, each

avatar has a flag and a hearing boundary object with which to communicate a majority

of overt and covert nonverbal behaviours. The flag object provides cues to aid in

identity and recognition, emphasises/enhances user visibility (and hence presence),

and can animate and change in visual characteristics to express nonverbal

communication through actions and appearance. For example, as a user's average

message rate and length increases, the avatar's flag grows larger and more solid to

indicate a stronger user presence. The hearing boundary object circles the avatar to

39

provide a visual indicator for more covert cues relating to space and proximity.

Avatars must be in range of these boundaries to be heard. These two objects provide

the avatar with additional channels of nonverbal expression that was previously

unachievable by itself.

6.3. Actions

All avatar actions in gridWorld are performed automatically in response to tbe user's

chatting activity. As a result, the representations are directly and continuously linked

to its user without the need for any manual behavioural controls. This simplifies user

control and creation of avatar behaviours, but does not take away any authenticity of

their representation of the user's activities, such as is done by random gestures and

avatar movements in Active Worlds.

Walking around gridWorld

A user controls their avatar's movements by a

point-and-click interface. Movement is based on a

grid-tiled system (hence the name gridW orld),

allowing only one avatar to stand on one grid-tile

at any one moment. Users need only click on an

available tile to direct their avatar's movements

on the floor.

When a user clicks on a tile, tbe avatar "walks" to

the targeted location. When walking, an avatar

rolls along the floor, while its flag waddles from

side to side, giving an observer an abstract

Figure 16 - The mouse pointer will

highlight the tile to move to.

impression of someone walking across the floor. Through this motion, an avatar is

given a believable movement action that works towards the visual consistency of the

chat environment.

Thinking response feedback

An avatar's flag will expand and rotate while displaying a" ... " texture whenever a

user begins to type in the chat field. If the user stops typing, the flag will continue to

40

animate for a period of five seconds, then return to its normal state. Depending on the

length of the message being typed, the flag will expand to several times its normal

width. Short utterances will result in a small expansion, while longer utterances will

result in wider expansions.

The flag metaphor models the use of silence and hesitation in real world face-to- face

interactions, where:

"hesitations, unfilled pauses, and reduced verbal productivity may signal

processing and decoding of speech ... (enabling) the encoder to process thought

into proper words and gestural forms to be spoken" (Bruneau, 1973, as quoted

by Druckman et al., 1982, p. 49).

These pauses are more easily recognized as preludes to replies in face-to-face

situations, as the encoder's body language would be clearly visible to the onlooker.

Additionally, these pauses in offline situations tend to be brief when compared with

pauses between replys in online conversations. Puases in online situations would be

lengthened by the time taken to type a response, and if too prolonged, may be

interpreted as un-received or ignored by the receiver. This problem is further

compounded if the receiver is a very slow typist.

By providing visual confirmation

of a user typing a response in real

time, both observers and

conversantes have confrimation

of when a user is typing, as well

as an indication of the length of

response. This provides a 'buffer

zone' between interchanges,

satisfying the expectant sender of

Figure 17 - An avatar's flag will expand and rotate when an upcoming reply and informing

the usertvoes. other conversantes of the

encoder's intent and activeness, allowing for regulating of conversational activities

such as turn taking.

41

6.4. Appearance

Colour and Shape

Colour and shape serve as means of distinguishing and differentiating one user from

another. Much like clothes and cosmetics in the real world, gridWorld allows users to

choose their avatar's colour and shape, giving users some. measure of self-expression

in their appearances. Hue is good referent for a person's identity as it is a good carrier

of discrete, unchanging information (Spiegel, 2001, p. 55). Combined with geometric

shape a more striking contrast between avatars can be created to further aid in

identifying users. Users can select one of seven hues (orange, red, green, blue, yellow,

purple and aqua) and four flag shapes, allowing for 112 unique avatar appearances.

As well as a visual cue for individual identity, colour is also used as a means of

expressing chat group association and chat. classes.

Figure 18- public, private, and host class avatars

Private chat groups are distinguished by the colouration transparency of their hearing

ranges. When a user creates or joins a private chat, their hearing ranges changes

colour to match the host avatar's hue. Thus in a private chat, all participants would

have a simular visual trait, signifying their association to the chat group as well as

distinguishing them from other private and public groups.

Each avatar in gridWorld can belong to either public, private and host class. The

importance of the user's ability to identify these classes is particularly important when

.trying to join private chats. To join a chat, a user must first click on a host avatar to

42

request entry into the group. If a user is unable to find the host, then they cannot join.

GridWorld uses the colour and transparency of an avatar's flag as message carriers of

class. An example of this is in figure 18, where 'bill' is a private avatar and 'fred' is a

host avatar.

Size and transparency

Size and transparency are used as indicators of the user's level of activity within the

chat. Much in the same way that people can have more presence in real world

conversations; a user's chat presence becomes more prominent as he/she posts more

messages. As a user's chatting activities increases, their avatar'.s flag grows larger and

more solid- thus becoming more visually dominant to a viewer. Conversely, if a user

stays quiet over a period of time, their flags begin to shrink and fade, becoming less

noticeable to the observer.

Figure 19 - An avatar's flag will

shrink and become transparent

after a long period of inactivity.

The size of a user's flag is a measure of the average

length of their utterances. GridWorld measures and

records the number of characters in each utterance and

calculates the average message length with periods of

one minute. Based on this measure, a user's flag will

grow or shrink after every minute.

Similarly, the transparency of an avatar's flag indicates

how talkative a user is, based on the number of

messages posted per minute. If a user post less than two

messages within a minute, their flag will fade, while if a

user post more than one message within a minute, their

flag will grow more solid. As with changes in size,

changes in transparency will also in/decrement after

every passing minute, allowing for a gradual transition in appearance.

The combined effect of size and transparency creates a natural contrast between active

and inactive users. As changes to these visual characteristics are gradual and directly

linked to each individual's conversational behaviours, the nonverbal data expressed

are truthful and accurate. The overall effect created adds an additional dimension to

43

the conference-room metaphor, where not only will the observer be able to see and

identify individuals and groups, but will be able to also see the how active the

conversations are, who is the focus of attention and who are the bystanders.

6.5. Space and location

Physical space plays an important role in face-to-face interactions (Blake &

Haroldsen, 1975; Druckman eta!., 1982; Taylor et al., 1986). This also holds true in

graphical chats, as iconic, graphical, 3d or abstract avatars require a 'physical' virtual

space on the screen in which to be seen to interact. In graphical chat systems such as

The Palace, avatars could be placed anywhere on the screen and be able to chat to

anyone. This type of implementation allows users to hold conversations without

moving closer to each other, allowing interaction from opposite ends of the 'room'.

This can be seen to be an ineffective use of screen space as well as interpersonal

space, leading to visual clutter of disorganised avatars and their messages. This

problem was avoided in Chat Circles through use of a 'hearing-range' that filters out

message post that are at a distance to the user avatar. The hearing range mimicks real

world interactions by encouraging users to move closer to each other to talk to each

other, thus forming clusters of user conversational groups.

GridWorld incorporates a simular hearing range metaphor, using the hearing

boundruy object to mark the edges of the user's personal bubble. In order to 'hear' or

be 'heard' their avatar's hearing boundary must be in contact with each other. User

utterances outside this contact will appear transparent and faded, much like

background noise in a busy room that is heard but can be easily ignored.

The concept of territoriality has been extended in gridWorld through incorporation of

private chat groups. In Chat Circles, hearing ranges act as territorial spaces for

mimicking interpersonal distances of individuals, thus leading to the formation of

conversational groups. Through this action, screen space is taken up and becomes

'owned' by users. In the same way a user can hold private territory, groups of people

can hold a collective territory that is fanned from a coalition of related interactions.

This territory increases and the number of members increases, and thus consumes

more space as it grows. When users create or join private chat groups in gridWorld,

44

their hearing boundary solidifies and takes on the hue of the host to form a hearing

space. In this way, the chat group's territmy is visualised by means of the collective

area of their hearing spaces,

6.6. Summary

GridWorld's chat metaphor allows for nonverbal communication through use of

paralanguage, actions, appearance, object~ and space in a vitual setting. Combining

emoticon graphics with words in user messages creates a form of paralanguage that

allows users to be more expressive with their utterances. Avatar flag and boundary

objects give the avatar additional methods communicating actions, appearance,

objects and space. Through use o.i.' the flag object, avatar's can better communicate

actions (such as walking and thinking) for conversational feedback, as well as colour,

shape, size and transparency for identity and status. Through us of the hearing

boundary object, additional nonverbal social and conversational cues involving space

can be better expressed.

45

7.0. Post development I User feedback

7.1. QUIS- Questionnaire for User Interface Satisfaction

GridWorld was tested using a modified Questionnaire for User Interface Satisfaction

(QUIS) developed by Shneidennan in 1997 (Shneiderman, 1998) to evaluate the

subjective effectiveness of an interactive computer system's Object~Action Interface

model. The Object-Action model is based on the perfonnance of direct manipulations

applied to visual representations of objects and actions in a user interface. QUIS

evaluates the effectiveness of a system's metaphors for visualising u~er actions and

system objects by measuring the user satisfaction with the system after use.

The QUIS questionnaire is based on a series of psychometric rating scales and

comment boxes arranged into hierarchical sub-components in a set of system and

performance categories. These categories include:

1. User Experience,

2. Overall user reactions,

3. Learning the system,

4. Online conferencing (chatting),

5. System information/feedback,

6. Screen layout, and

7. Visual (graphic and text) quality.

A sample of the modified QUIS form used for evaluating this project can be found in

appendix 1.

7.2. Results of QUIS Questionnaire and user feedback

User feedback was categorised into 7 parts; User Experience, Overall User Reactions,

Learning the system, Chatting, System Feedback, Screen Layout, and Visual Quality.

Each category is composed of several sub'5ections of system and performance

questions and their associated rating scales. At the end of user interface evaluation,

the scores are tallied into averages and mapped onto 5 charts showing gridWorld's

interface performance in each category. Those questions that were answered "N/A"

were not included in the results calculation. Each score is measured along a scale from

46

1 to 9, where 1 point indicates the strongest negative response and 9 points indicates

the strongest positive response. Any score that ranked above 5 was considered to be a

positive feedback. A score of 0 was given to results that were not applicable to the

scale ranking measure.

Results of Part 1: User Experience

All users who completed the QUIS questionnaire were experienced computer users

who have previously used MSN Messenger, miRC, ICQ and other chat programs.

Most users were familiar with chatting online using text-based chat system, but were

unfamiliar with graphical chats with the exception of one who had previously used

The Palace. It was thus expected that the one user who had previous experience with

graphical chat systems would have less difficulty learning and using gridW orld, but

be more critical in their responses to the system.

Results of Part 2: Overall User Reactions

The result of the user evaluation shows a positive response in overall user reactions to

the system. Overall user reactions (2.1) scored 6.75 points on the QUIS ranking scale,

indicating that users were adequately satisfied with the overall performance of

gridWorld's interface.

I :
I 7

6

5

4

3

2

0

2.1 2.1.1 2.1.2 2.1.3

Figure 20- Overall User Reactions

While the overall feedback was positive, sub-questions evaluating the underlying

factors for this satisfaction (satisfaction found chatting on the system, level of

stimulation of chat metaphor, and ease of use) showed weak positive scores hovering

47

just above 5 points (a neutral score), indicating that users only found chatting, chat

metaphor and system intuitiveness to be only moderately satisfying. This shows that,

while the current interface is usable, it can still be vastly improved on in future

iterations.

Results of Part 3: Learning the system

Results from part three of the questionnaire shows the current system to be only

moderately easy to learn, scoring 5.8 points for ease of learning to operate the system

(3.1). Question 3.3, "task can be performed in a straight-forward manner" and its

corresponding two sub-categories (3.3.1 and 3.3.2), scored. an above average score of

7 and higher, indicating that users were generally satisfied with the interfaces task

logic sequence and operations while learning to use the system. Question 3.2,

"exploration by trial and error", scored below the 7-point average as seen in 3.3,

indicating that the current interface did not offer enough encouragement for

exploration.

9

8

I 7

6

5

4

3

2

0

3.1 3".2 3.3 3.3.1 3.3.2

Figure 21 - Learning the system

When we compare scores in each questionnaire, question 3.2 almost always received

a lower score than 3.3. Thus it can be assumed that the low user satisfaction in

learning the system is largely caused by the current interface's tendency to intimidate

almost half the users away from trial-and-error exploration of the system's

capabilities.

48

Part 4: Chatting

Results from evaluation of the chatting category provided both encouraging and

discouraging results. Overall scores in this category showed relatively low satisfaction

in the interface's ability to support chatting online. Results showed that users found

holding conversations (4.1) to be only relatively easy. While the number of people

allowable in a conversational group (4.1.1) was shown to be satisfactory, the users

expressed only a slight satisfaction to the ease of establishing private conversations

(4.1.2) within the chat world. Question 4.2 evaluated the appropriateness of the chat

window size of 1024 x 768 with a YES/NO answer (thus showing a score ofO in the

chart), to which all but one user ansered Yes.

I :
I 7

4.3 4.3.1 4.3.2 4.3.3

Figure 22 - Chatting

Question 4.3 and its sub-questions evaluated the bulk of the avatar's visual metaphors.

Scores from question 4.3 showed that users where moderately satisfied with the

system's avatar metaphors/visual cues in determining the focus of attention during

online conversations. Users were relatively satisfied with the ease at which an avatar's

visual cues helped them to identify an active speaker (4.3.1). However, scores for ease

in which to identify a lead speaker (4.1.2) and lurkers (4.1.2) showed slight user

dissatisfaction.

Part 5: System/Feedback

The users reports in this category indicate relative satisfaction in the clarity of system

instructions that appear on screen (5.1) and the functionality/purpose of system

menus, buttons and/or fields (5.1.1). While users were satisfied in the predictability of

49

results in menu selections (5.2.1), users showed less satisfaction in the system's

ability to keep them informed of their tasks and operations (5.2). Users found the

system's error messages to be moderately unhelpful (5.3).

9

8

7

6

5

4

3

2

0
5.1 5.1.1 5.2 5.2.1 5.3 5.4 5.4.1 5.4.2 5.5

Figure 23 - System/Feedback

Users showed only a small satisfaction in the avatar controls (5.4), finding the

response time of most avatar-related operations to be only slightly adequate (5 .4.!).

However, users showed a greater satisfaction with the amount of effort required to

perform those avatar operations, reporting that the effort level to be relatively

unnoticeable (5.4.2). Lastly, users reported their relative satisfaction of the reliability

of the system (5.5).

Part 6: Screen Layout

Overall, evaluation of screen layout returned relatively high scores, indicating that

users were generally satisfied with this category. While clarity of text characters

(6.1.1) and font legibility (6.!.2) received high scores, average score for readability of

text characters on screen (6.1) barely scored above neutral. This may be a result of

text rendering problems experienced when gridWorld is run on a computer with

insufficient video memory, causing text to appear incomplete in the main chat

window while drawing correctly in the history window.

50

I 9

' 8

7

6

5

4

3

I 2

I
6.1 6.1.1 6.1.2 6.2 6.2.1 6.2.2

Figure 24 - Screen Layout

Further results indicate that users thought the screen layout was almost always

intuitive (6.2), reporting that amount of information that is displayed on screen was

moderately adequate and the arrangement of information displayed on screen

sufficiently logical.

Part 7: Visual Quality

Results from this category showed that users were only slightly satisfied with the

quality of emoticon graphics (7.1). The users appeared to be satisfied with

implementation of the 3d world (7.2), reporting the avatar and world objects to be

sufficiently clear. Users thought that the colours employed in gridWorld were natural

(7 .2.1) and the range of avatar colours available was adequate (7.2.2).

9

8

7

6

5

4

3

2

' 1

0

7.1 7.2 7.2.1 7.2.2

Figure 25 - Visual Quality

51

7.3. Analysis of system usability

While the users responses indicate a general satisfaction with the current interface, the

relatively low positive scores show that major improvements are still needed.

Analysis of the feedback received through the QUIS questionnaire and observations

of users during evaluation suggest problems in the following areas.

Problems with learning the system

Low scores for chatting satisfaction and ease of using the system can be seen to be

linked with the low scores found in learning the system. Currently all instructions are

displayed in the scroll box on the bottom-left hand corner of the screen. User

instructions consist of an itemised list of operations and features that are available in

gridWorld, ranging from basic movement and chatting to private channel

management. To save on space and scrolling, all instructions were brief and to the

point as possible, and where at the time, thought to be adequate enough to guide users

in their exploration of gridWorld's operation. The interface was assumed to be

intuitive enough to enable users to learn the system through experience, and trial and

error.

While this system worked satisfactorily for learning basic task and operations, such as

moving and chatting, the more abstract and complex controls required more detailed

explanation than the instruction list or on screen system feedback could provide. This

would suggest that, while user instructions where not detailed enough, system

messages and feedback were also offered insufficient explanation and/or information

to be of use by themselves. Results from question 3.3.2 showed that feedback that the

interface provided was not always clear, while question 5.3 showed user

dissatisfaction with error messages. Without adequate information on the purpose and

operation of a menu or whether an executed task or operation was a success or failure,

users may not be able to predict the direct consequences of their actions. An

uncommunicating system would only serve to cause anxiety to the user, and may act

as a hindrance the exploration by trial and error.

Finally, post examination showed that the instruction list was also difficult to find,

where one user commented that the instructions were hard to see, and so was not

aware of a majority of chat operations and features available in the system.

52

Problems with controlling/tracking user activities

The results of the evaluation show that users experienced some problems controlling

avatar and chat operations in gridWorld. Low user satisfaction that was reported in the

avatar controls, which was shovm to become frustrating during times of high system

lags (due to congestion of the multi-user network), where avatar movements become

delayed. Additionally, gridWorld's point and click system was reported to be less than

perfect, with some clicks on tile and avatars being ignored by the system. This

problem disrupts the chatting process and accounts for the low user satisfaction with

avatar controls as well as in the response times of avatar reactions.

When a user sets his avatar to follow another avatar, their following status is changed

from "none" to the name of the user to be followed, which is displayed in the black

menu bar below the chat world window. Post examination and user feedback has

suggested that this information about user action/status is hard to see, and is usually

not noticed when it changed. Secondly, when users click on floor tiles to select a

position to move to, users complained of not receiving any acknowledgement of that

command or any visual reference of the target path or location. This would account

for the low satisfaction with the system's capabilities of keeping users informed on

their current tasks and operations, and is another example of insufficient system

feedback.

Problems with private chatting

Observation of users during evaluation showed that users were having problems

setting up private chat channels. Users experienced difficulty entering the channel

name due to improper syntax and the existence of another private channel using the

same name. In the first case, users failed to notice the menu instructions specifying

the need for a "@" character in front of the channel name. In both cases, when the

operation to create a private channel failed, a majority users could not determine the

source of the problem and gave up trying, thus accounting for the low satisfaction

scores received in establishing private conversations as well as the reported

dissatisfaction with the helpfulness of error messages. Again, the problem is seen to

be linked to insufficient system feedback, as well as inadequate explanation in the

user instructions.

53

Summary of analysis of system useability

From the previous analysis, all major problems seem to be linked with the issue of

inadequate feedback, information or instructions. While some problems can be

sourced to displaying issues and program bugs, the main problem with the useability

of gridWorld is that users do not know how to (properly and fully) use gridWorld.

7 .4. Analysis of effectiveness of nonverbal metaphors

User response to the chat metaphor was not as positive as expected, with users

reporting gridWorld's visual metaphors to be only mildly stimulating. Examination of

"Chatting" results reveals more detail on which visual cues were more readily

accepted and which cues were not.

Effectiveness of Paralanguage

Though low, results measuring user reactions showed that users gained some

satisfaction out of chatting on gridWorld. Almost all users reported to have previously

used MSN messenger and so were familiar with the use of emoticons with text as a

form cf paralanguage. Most users were quick to make use of this simular system used

in gridWorld' s chat interface, some commenting the need for gridWorld to adopt a

larger range of emoticon expressions and graphics. While all user responses show that

the current emoticon-text chat system could be better improved, they also show the

relative success of paralanguage as the main carrier of expressive nonverbal

conversational cues through the text-channel.

Identifying 3D Objects

Support for user satisfaction with the use of 3d objects in gridWorld is evidenced in

"Visual Quality" results. Observations of users during the evaluation showed they

were able to recognise avatar objects and orientate themselves on the chat floor.

While quick to identify the use of their avatar's sphere and flag objects, it took some

more time and the occasional explanation to discover the purpose of the hearing range

boundary.

54

Effectiveness ofAvatar Actions

Avatar waddliug actions while walking were found to be effective and entertaining

method of depicting user movements around the chat floor; with several users

commenting how they liked the way the avatars move. Determining the focus of

attention during conversations and the ability to identify when a user was speaking

scored relatively high, indicating the effectiveness of the avatar's flag animations at

expressing the visual cues of response and user activity. One user was particularly

impressed with the correlation between an avatar's flag rotation and scale, and the

length of the message being typed.

Users however, commented that the point~and-click controls of the avatar movement

were sometimes clumsy and unresponsive, rating a low satisfaction with avatar

controls. These lags cause dl.' 1,1ys in an avatar's reaction and become a source of

visual inconsistency that distracts an, structs the chat process.

Ljfectiveness of Avatar Appearance

The relatively high satisfaction points scored in the evaluation of the use of and range

of colour suggest that users were comfortable with the implementation of colour in

distinguishing identity in user representations. Moderately high positive scores for the

implementation of 3D objects also suggest user satisfaction with the use of flag shapes

to further promote identity and user distinction.

While users seem satisfied with identifying each other through colour and shape, the

use of size and transparency to communicate presence was largely unnoticed. Users

still expressed some difficulty at identifying individuals leading conversations from

those who were lurking. Only one user noted the correlation between the size and

transparency of an avatar's flag and it's user active involvement within a group

conversation. It can be seen that a longer chat session was needed to provide users

with the opportunity to fully recognise these long-term cues, as well as more users to

provide a more visible spectrum of activity levels. Given that the evaluation was

carried out within a time period of 15 minutes and with a maximum of 3 users, it can

be seen that the current implementation of size and transparency metaphors fail to

express the presence in small user numbers and short chat durations.

55

Effectiveness of Space and location

The categories of holding conversations and the number of people (allowable) in a

conversational group scored high satisfaction points, providing additional evidence

that users were comfortable with the use of hearing range in the chat metaphor,

However, observation of user actions showed that users initially were not aware of the

existence of a hearing range, and C!nly noti-;ed the relevance of the hearing boundary

object after some time through trial ana error, discovery of instructions or

explanation, thus accounting for the relatively low user satisfaction with chatting and

learning the system,

Summary of analysis of effectiveness of nonverbal metaphors

Those nonverbal visual metaphors that experienced problems appear to have been

unsuccessful or misunderstood due to awkward/limited implementation and

inadequate explanation, The system of size and transparency to express level of user

presence was broke down during conversations that lasted only short durations and

involved small user numbers, while users were ignorant of the relationship benveen

the hearing boundary and the hearing range. While the metaphor for user presence

failed because of poor execution, ignorance of the purpose and use of visual cues such

as the hearing range can be seen to be linked to the reoccurring issue of inadequate

system information and instruction.

7.5. Future Improvements And Possibilities

Analysis of the QUIS questionnaire and user feedback revels 'ieveral problems with

chat interface usability and nonverbal metaphors that will need to be addressed in

future versions of gridWorld. Along with these corrections, future versions will

endeavour to improve the interface through revision of chat and system menus and

GUI as well as implementing more advanced features and functionality that will add

value to the system.

Improving intetface useability: Part 1- improved user instructions/User help

While analysis showed that users were comfortable with the operation ofgridWorld's

basic functions of moving and public chatting, many users were uninformed of the

operation (and sometimes existence) of more advanced chat features, such as creating

56

and managing private chat charmels/groups. In order to increase interface useability,

clearer and more helpful instructions is needed to train, as well as provide support for

users as they become more familiar with the system's operations and capabilities.

Future implementation of gridWorld will need to incorporate a more comprehensive

help system than the currently available instructions list: The help system will be

accessible through a help button, which can open up in a new browser window or a

MUI dialogue box. The help system will support basic to advanced tutorials as well as

an index of operations and definitions explanations with examples.

Improving interface useability: Part 2- improved user control & tracking

Users experienced lags in avatar movements/animations and chat message pop-ups

when users generated multiple mouse clicks or messages too quickly. These lags

between user action and system reaction occur when user input overloads the network

and causes the multi-user server to slowdown. To minimise these lags, future versions

of gridWorld will revise the current implementation MU procedures to optimise the

efficiency of sending and receiving of XML data packets. For example, current

procedures for system wide synchronisation of gridWorld chats is to have each chat

send avatar coordinates to every user on the network every three frames. A better

option would be to store and distribute all user data server side through server scripts.

Users need only to send a their own coordinates (and other statistical info) and

retrieve onscrcen user data, eliminating the need for the MU server to send

information on users that are not seen.

Secondarily, additiom.l chat world GUI's will be implemented to help improve user's

ability to track their actions. These include iconic or symbolic (animated) rollover

cursors, which will inform users of the actions of mouse clicks on specific objects in

the chat environment, and field markers that will highlight geographical information

like target coordinates/user, movement paths and other relevant information.

Improving inteiface useability: Part 3-floating menus/improved system feedback

Currently, gridWorld displays all system and avatar menus appearing outside the chat

floor window. This method proves ineffective of menu display as it forces the user to

divert their attention away from the chat scene to operate the menu. Additionally, the

57

menu display may be completely overlooked if the user is fully engrossed in chatting.

\Vhile it was originally intended for this project to employ floating menus in its

interface, Jack of time and 3d Lingo resources prevented its implementation.

However, now that the gridWorld prototype is functional, more time can be invested

into developing this and other OS functionalities through use of extras such as

OSControlXtra.X32 or !vrul for accessing avatar, chat and other system controls.

Through use of floating menus and MUI dialogue boxes more screen space can be

dedicated to the chat world window as well as providing more room for longer and

more comprehensive system feedback, instructions and other chat/system relevant

information, such as error messages that identify problem, description,

suggestion/instruction for improvements, and examples or references.

Dynamic emoticon-text messaging

Paralanguage in gridWorld is based on attaching emoticon graphics to sentences or

paragraphs to give them emotional content and intonation. Based on MSN and Yahoo

chats, the gridWorld emoticon-text system would allow users to apply add emotional

tone to any number of sentences in a single posting by attach various ernoticons

before, within or at the end of each phrase. The current chat messaging system is

limited to one emoticon grapi.-;.ir. per user utterance, thus the user can only attach only

one emotion/intonation to any chat posting. Future versions of gridWorld would

feature an improved o::noticon-text system that would allow users to insert more than

one emoticon graphic at any line position within a posted message.

Improved avatar animation and visuals

While avatar movements and animations were received satisfactorily, they are stiff

and do not flow as well as intended. Avatar flag scale and transparency jumps

suddenly as user statistics change during conversations, when they 3hould flow

smoothly from one state to another, depicting changes in one effortless transition.

This would allow avatars to more easily express small status changes during short

term and small group interchanges.

58

8.0. Conclusion

At the begitming of this thesis, it was identified that the main deficiency oftext·chats

was their capacity to express nonverbal cues (particularly covert cues) that fire so

readily used in face-to-face conversations. To rectify this, graphical chats incorporate

emoticon/graphics, typically in the form of avatars, to provide visual nonverbal

communication. The use of avatars to represent users in the online world created

issues of embodiment, such as efficiency, appropriateness truthfulness, and control,

particulmly among the graphical 3d chat. It was seen that current 3d chats tend to

favour a literal visual metaphor, trying to rebuild the real world in a virtual setting,

thus giving rise to performance and control issues, such as maintence behaviours. In

these systems the mutually exclusive arrangment of chat and avatar behaviour

controls ment that their avatars became little more than fancy icons, which offered mo

real meaningful improvement in nonverbal communication than the text-chats.

GridWorld was presented as a graphical 3d chat that offered true nonverbal

communication in an online setting through use of abstract avatars and visual

metaphors. Based on a theoretical framework established through research in abstract

interfaces for online communication conducted by MIT's Social Media Group

(http://smg.media.mit.edu/) as well as additional literature in nonverbal

communication cues, the gridWorld interface is able to express multichanneled

nonverbal behaviour that are directly influenced by the user's conversational activites.

While evaluation of gridWorld and its abstract interface revealed some deficiencies in

its nonverbal metaphors and implementation, overall, gridWorld perfonned

satisfactorily in supporting online communication through both verbal and nonverbal

channels.

59

Reference:

Baker, J. (1990). Online Emotional Discourse, gender language and style in
computer-mediated communication. Retrieved 9 August, 2002, from the
World Wide Web: http://sjsu.sjweb.net/l/author.html

Benford, S., Bowers, J., Fahl6n, L. E., Greenhalgh, C., & Snowdon, D. (c. 1995).
User embodiment in collaborative virtual environments. Retrieved 16 March,
2002, from the World Wide Web:
http://www .a em. org/sigchi/ chi9 5/Electronic/ documnts/papers/ sdb _ bdy .htcn

Blake, R. H., & Haroldsen, E. 0. (1975).A Taxonomy of Concepts in Com1:mnication.
Ontario: Hastings House, Publishers, Inc.

Cassell, J., Bickmore, T., Campbell, L., Vilhj:ilmsson, H., & Yan, H. (1999).
Conversation as a System Framework: Designing Embo,.Jied Conversational
Agents [on-line PDF]. Retrieved 20 September, 2002, from the World Wide
Web:
http:/ I gn. www .media.mit.edulgroups/ gn/pub lications/ECA _ GNL.chapter. to_ h
andout.pdf

Donath, J. S. (1997). Inhabiting the Virtual City: The design of social environments
for electronic communities [on-line]. MIT. Retrieved 20 April, 2002, from the
World Wide Web:
http:/ /persona. www .media.mit.edu/Thesis/ThesisContents.html

Druckman, D., Rozelle, R. M., & Baxter, J. L. (1982). Nonverbal Communication,
Survey, l11eory, and Research 0/ol. 139). Beverly Hills, California: Sage
Publications, Inc.

Lee, M. W. (2001). Chatscape: A behaviour-enhanced graphical chat built on a
versatile client-server architecture. Massachusetts Institute ofTeclmology,
Massachusetts.

Mania, K., & Chalmers, A. (1998). A classification for user embodiment in
collaborative virtual environments [on-line PDF]. Dept. of Computer Science,
University of Bristol. Retrieved 16 March, 2002, from the World Wide Web:
http://www. cs. bris. ac. uk/T oo Is/Reports/Psi 199 8-mania.pdf

Microsoft. (1996). Microsoft Comic Chat. Retrieved, 2002, frum the World Wide
Web: http:/ /research.microsoft.com/vwg/projectsheets/ comicchat.htrn

Miller, S., Mitchell, K., Eva, S., & Wood, J. (c. 2000). Geospatial information
visualization user inteiface issues [on-line PDF]. Retrieved 1 April, 2002,
from the World Wide Web:
http://www. geovista. psu. edulsites/icavis/agenda/PD F /Cartwright. pdf

60

Shneiderman, b. (1998). Designing the user interface, Strategies for effective human
computer interaction (3rd ed.). USA: Addision-Wesley.

Spiegel, D. (2000). Creating and displaying nonverbal social back-channels in online
environments. Unpublished Thesis Proposal, Massachusetts Institute of
Technology, Massachusetts.

Spiegel, D. (2001). Coterie: A Visualization of the Conversational Dynamics within
IRC. Massachusetts Institute ofTechno1ogy, Massachusetts.

Taylor, A., Rosengrant, T., Mt:yer, A., & Samples, B. T. (1986). Communicating (4th
ed.). Englewood Cliffs, New Jersey: Pretence-Hall, Inc.

Viegas , B. F., & Donath, J. S. (c. 1999). Chat Circles [on-line]. MIT Media Lab.
Retrieved 6 April, 2002, from the World Wide Web:
http:/ /smg.media .mit.edu/papersN iegas/ChatCircles/ chat -circles_ CHI .html

Villij<'llmsson, H. H. (1996). Avatar Interactions [on-line]. Retrieved 1 April, 2002,
from the World Wide Web:
http://web.media.mit.edu/-hannes/project/index.html

Villij<'llmsson, H. H. (1997). Autonomous Communicative Behaviors in Avatars.
Massachusetts Institute of Technology, Massachusetts.

61

Bibliography:

Boyd, D., Lee, H.-Y., Ramage, D., & Donath, J. S. (2002). Developing legible
visualizations/or online social spaces. Unpublished Conference Paper, MIT,
Cambridge MA.

Darner, B. (1998). Netiquette and Community Hosting [on-line]. Retrieved 1 April,
2002, from the World Wide Web:
http://www.digitalspace.com/avatars/book/appendix/netiq.htm

ELF. Virtual Learning Environments [on-line]. Retrieved 1 April, 2002, from the
World Wide Web: http://www.elf.ufl.edu/virtuaVvle.html

Evaluation Tools.[on-line]. Retrieved 24 September, 2002, from the World Wide
Web: http://mimel.marc.gatech.edu/MM_Tools/evaluation.html

Kessler, G. D. (c. 1999). Virtual Environment Models [on-line PDF]. Lehigh
University. Retrieved 16 March, 2002, from the World Wide Web:
http ://vehand. engr. ucf. edu!bandbook/Chapters/ chapter 13 .PDF

Miller, H. (1995). The Presentation of Self in Electronic Life: Goffman on the internet
[on-line]. Department of Social Sciences, The Nottingham Trent University.
Retrieved 14 June, 2002, from the World Wide Web:
http://ess.ntu.ac.uk/miller/cyberphych!goffinan.html

Miller, S., Mitchell, K., Eva, S., & Wood, J. (c. 2000). Geospatial information
visualization user interface issues [on-line PDF]. Retrieved 1 April, 2002,
from the World Wide Web:
http://www.geovista.psu.edu/sites/icavis/agenda!PDF/Cartwright.pdf

Morley, David and Robins, & Kevin. (1995). Culture, community and Identity.
Spaces of Identity: Global media, electronic landscapes and cultural
boundaries, 43-69.

Newman, W. M., & Lamming, M.G. (1995). Interactive system design. Cambridge,
Britain: Addision-Wesley.

Nonverbal Communication Theories.[on-line]. Retrieved 24 September, 2002, from
the World Wide Web:
http://www. orst. edu/instruct/comm3 21/ gwalker/nonverbal.htm

QUIS: The Questionnaire for User Interface Satisfaction.[on-line]. Human-Computer
Interact:on Lab. Retrieved 19 October, 2002, from the World Wide Web:
http://www.cs.umd.edu/hciVquis/

Rodenstein, R., & Donath, J. S. (2002). Talking in Circles: A spatially-grounded

multimodal chat environment [on-line]. Retrieved 14 June, 2002, from the

World Wide Web: http://www.media.mit.edu/-royrod/projects/TIC_CH2000

/index.html

62

Taylor, T. L. (1999). Life in Virtual Worlds: Plural existence, multimodalities, and
other online research challenges. The American Behavioural Scientist, 43(3),
436-449.

Viegas , B. F., & Donath, J. S. (c. 1999). Chat Circles [on-line]. MIT Media Lab.
Retrieved 6 April, 2002, from the World Wide Web:
http://smg.media.mit.edu/papersNiegas/ChatCircles/chat~circles_ CHI.html

Vilhj3lmsson, H. H. (1996). Avatar Interactions [on~ line]. Retrieved 1 April, 2002,
from the World Wide Web:
http:/ /web .rued ia.mit.edul-hannes/proj ect/index.html

Zabiliski, R. (2001). What are the key elements when designing a user friendly
computer interface? Your place, my place, interface, 28-40.

63

Appendix 1 - QUIS Sample Questionnaire

64

Questionnaire for User Interface Satisfaction

Part 1: User Experience

Please tick the length of you computer experience

0
0

Less than a day 0
0

6 months to less than l year

1 week to less than 1 month over a year

0 1 month to less than 6 m::mths

Ofthe following, please tick the chat systems you have used previously.

0 MSN Messenger 0 Yahoo Chat

0 Lycos 0 Excite

0 m!RC 0 The Palace

0 Active Worlds 0 Other

If other please specify:

Part 2: Overall User Reactions

2.1 Overall reaction to the system Terrible Neutral

I 2 3 4 ;s :6 :
2.1.1 I found chatting on this system to be Frustrating

I 2 3 4 i 5 !6
'

2.1.2 The chat metaphor was Dull

I 2 3 4 is i6
'

2.1.3 I found using the chat system to be Difficult
']6 I 2 3 4 : 5

65

Wonderful

7 8 9 NA

Satisfying

7 8 9 NA

Stimulating

7 b 9 NA

Easy

7 8 9 NA

Part 3: Learning the system

3.1 Learning to operate the system Difficult Neutral E"Y
' ' 1 2 3 4 \ 5 \ 6 7 8 9 NA

3.2 Exploration by trial and error Discouraging Encouraging
' ' 1 2 3 4 \5 \6 7 8 9 NA

3.3 Tasks can be perfonned in a straight-forward Never Always

manner 1 2 3 4 :s \6 7 8 9 NA
' '

3.3.1 Steps to complete a task follow a Never Always

logical sequence 1 2 3 4 : 5 : 6 7 8 9 NA
' '

3.3.2 Feedback on the completion of Unclear Clear

sequence of steps 1 2 3 4 \ 5 !6 7 8 9' NA
'

3.4 Comments about learning the system

Part 4: Chatting

4.1 Holding conversations Difficult Neutral E"Y

1 2 3 4 \ 5 \ 6 7 8 9 NA
' '

4.1.1 Establishing private conversations Difficult E"Y

1 2 3 4 is \6 7 8 9 NA
'

4.1.2 Number of people in ' Too few Enough

conversational group 1 2 3 4 i 5 i 6 7 8 9 NA

4.2 Window showing chat world is of appropriate Yes/No

size

4.3 Determining the focus of attention during Confusing Clear

conversations was ' ' 1 2 3 4 \ 5 \ 6 7 8 9 NA
-

4.1.1 Telling who was speaking Difficult Easy
' ' 1 2 3 4 rs i 6 7 8 9 NA

4.1.2 Telling who w" leading Difficult E"Y

conversations 1 2 3 4 i 5 :6 7 8 9 NA
' '

4,1.3 Telling who WM "lurking" (not Difficult Easy

participating) I 2 3 4 ' :5 \6 7 8 9 NA
' '

4.4 Comments about Chatting

66

Part 5: System I Feedback

5.1 System instructions which appear on screen Confusing Neutral Clear
' '

I 2 3 4 i5 f6 7 8 9 NA
'

5.1.1 Menu/button/field commands " Confusing Clear
' ' functionality I 2 3 4 \5 : 6 7 8 9 NA
' '

51 System keeps you infonned about what Never Always

task/operation you doing I 2 3 4 \5 i 6 7 8 9 NA
' '

5.2.1 Performing ' menu selection Never Always

operation leads to predictable results I 2 3 4 \5 i 6 7 8 9 NA
'

5.3 Error messages Unhelpful Helpful

I 2 3 4 \ 5 i6 7 8 9 NA
'

5.4 Avatar controls U1matural Natural

I 2 3 4 is !6 7 8 9 NA

5.4.1 Response time to most avatar related Too slow Fast enough

operations ' ' I 2 3 4 !5 !6 7 8 9 NA

5.4.2 Effort to perfonn most avatar related Too much Unnoticeable

operations ' '
I 2 3 4 i s i6 7 8 9 NA

' '
5.5 The system is reliable Never Always

I 2 3 4. : 5 \6 7 8 9 NA

5.6 Comments about System I Feedback:

Part 6: Screen Layout

6.1 Text characters on screen Hard torcad Ncutml Easy to read

I 2 3 4 is \ 6 7 8 9 NA
' '

6.1.1 Clarity of text characters F- Sharp

I 2 3 4 i 5 \6 7 8 9 NA
' '

6.1.2 Font legibility Barely legible Very legible

I 2 3 4 : 5 \6 7 8 9 NA

6.2 Screen layouts seemed intuitive Never Always

I 2 3 4 '
f5 i 6 7 8 9 NA

6.2.1 Amount of information that ,, Inadequate Adequate

displayed on screen I 2 3 4 i 5 : 6 7 8 9 NA
' '

6.2.2 Illogical Logical

67

Arrangement of information

displayed on screen

6.3 Comments about Screen Layout:

Part 7: Visual Quality

7.1 Quality of emoticon graphics

7.2 Implementation of 3d objects

7.2.1 Colours used are

7.2.2 Range of colours available

7.3 Comments about Visual Quality

General Comments:

23456789 NA

B'd Neutral Good
'

\6 1 2 3 4 ': 5 7 8 9 NA
'

Confusing Clear

1 2 3 4 \5 \ 6 7 8 9 NA

Unnatural Natural

1 2 3 4 !5 ! 6 7 8 9 NA

Inadequate Adequate

1 2 3 4 1 5 J6 7 8 9 NA

68

Appendix 2- User Instructions

Accessing gridWor!d:

Grid\Vorld is currently held on a private server within Edith Cowan University,

School of Communication and Multimedia Sciences. Users can access the gridWorld

project homcpagc through http://malcvich.dyndns.org/-hanwei.

GridWorld is a Shocbvave 3D program and has the following mmtmum

requirements:

128Mb SDRAM

800 MHz Pentium II I Power PC G4

32 Mb 3D accelerated graphics card

How to use grid World:

1) To move, just click on the floor's tiles.

2) To access user menu, click on your avatar. You can perform actions on other users

by clicking on their avatars.

3) Avatar's must be within your "hearing-range" before your can "hear" their

messages.

4) To rotate the camera's view, hold shift and move mouse up or down.

5) Public, private and host avatars have different appearences. You must click on a

host avatar before you can join a private chat.

69

Appendix 3- Lingo code

The gridWorld interfare is run by 48 lingo scripts, separated into four casts each

handling key chat op,~rations, with an additional 23 chatML scripts to support MU

functionality.

Of the four script cast, the "Script" cast is the largest, containing 11 behaviour scripts,

7 parent scripts, and 10 movie scripts supporting the majority of gridWorld's 3D

environment and object controls, point-and-click interactivity and other interface and

chat operations.

The lingo code for the "Script" cast script members are outlined in the following

pages:

1) Behaviour Scripts

2) Parent Scripts

3) Movie Scripts

70

A2.1. "Script" Cast: Behaviour Scripts

Behaviour Script: 1 -loop

on exitFrame me
go to the frame

end

Behaviour Script: 2- exitFrame.Follow

global s3d -- the member of the 3d sprite
global thissprite -- the spriteNum of the 3d sprite
global userAvatar -- user's avatar object

-- Frame behaviour script attach~d to 3d sprite to make
user
-- avatar follow a selected avatar
-- created: 24/7/2002

on exitFrame

sendSprite (thisSprite, #getMouseOver)-- update postion
of the pointer

if userAvatar.avFollow =True then
-- get user position
isectoata = s3d.modelsUnderRay(userAvatar.userPos,

vector(0,-1,0), 1, #detailed)
-- find avatar name to follow
n = " avatar.bottom " & userAvatar.followName

if voidP(s3d.model(n)) then-- check if target avatar
still exists

userAvatar.avFollow = False
userAvatar.followName = "none"

else -- target avatar exists
-- send user avatar position and target avatar

position to user avatar's rnovment scripts
userAvatar.rnoveToObj.setAvTrajectory(isectData,

s3d.model(n).worldposition)
end if

end if

if userAvatar.followName <> "none" then -- double check
if user is still following someone

userAvatar.avFollow =True
end if

go to the frame - 5 -- repeat every five frames

71

end exitFrame

Behaviour Script: 3- exitFrame.getMouseOver

global thisSpxite -- the spriteNum of the 3d sprite
global userAvatar -- user's avatar object

-- Frame behaviour script used to update position of the
pointer
-- created: 24/7/2002

on exitFrame
sendSprite (thisSprite, #getMouseOver)-- update postion

of the pointer
end exitFrame

Behaviour Script: 4- toggleCamera

global defaultCameraVector -- the initial camera vector
global tagH -- height at which nametag will hover over
the avatar

property bMode -- button mode

Button behaviour used to toggle camera vie'N' from
third person to birds eye view. The script uses
a binary toggle switch to change its functionality.

The behaviour is initially set to mode 2 {i.e. the
camera is in its initial, third person vector) setting
the camera to toggle up to birds eye view when

clicked.

on beginSprite(me)
bMode = 2 -- initial "ground" view, behaviour set to

mode 2
end beginSprite

on mouseUp (me)
case bMode of

1: -- behaviour set to mode 1
bMode = 2 -- set behaviour to mode 2
toggleCameraDown() -- toggle "ground" view

2: --behaviour set to mode 1
bMode = 1 -- set behaviour to mode 1
toggleCameraUp() -- toggle "birds-eye" view

end case

72

end mouseUp

on toggleCameraUp(me) -- set the camera to jump to bird's
eye view

member(" gridWorld"). camera[1] , transform. position =
vector(-0,1000 1 0) -- bird's eye vector

xPoint = member("gridWorld") .model{" dummy
") .worldPosition.x

zPoint = member ("gridWorld") .model (" dummy
") .worldPosition.z

member(" gridWorld"). camera[1]. pointAt(xPoint, 0, zPoint)
-- move camera

tagH = 26 -- correct nametag hover height
end toggleCameraUp

on toggleCameraDown(me) -- set the camera to jump to
original view

rnemb,-.,_::-("gridNorld 11
) .camera[1]. transform. position =

defaulh:'.~.:'fleraVector -- initial vector
xPoint :::- •\,C!ll'bcr(11 gridWorld") .model (" dummy

11
) .worldPosi.tJ_•-:••:
zPoint = mernbe:!:("gridWorld") .model(" dununy

") .worldPosition.z
member ("gridWorld '').camera[1 J. poir.tA.t (xPoint, 0, zPoint)

-- move camera
tagH = 100 -- correct nametag hover height

end toggleCameraDown

Behaviour Script: 5- button.Login

-- Button behaviour script to jump to "chat" marker

on mouseUp(me)
go to "chat"

end

73

Behaviour Script: 6- button.sendMessage

-- Button behaviour script to call sendMessage handler

on mouseUp me
sendMessage ()

end

Behaviour Script: 7- behaviouroupdateTimer

global avatarList

property secTimer -- seconds counter
propertJ minTimer -- minute counter
property m -- "00" minute value

-- Behaviour script attached to 3d sprite to update the
chat
-- clock which will be used for measuring avatar
statistics o

on beginSpri te (me)
-- pre/reset clock values
secTimer = 0
minTimer = 0
m = "00"

end beginSpri te

on eY..~. <:J:~rame (me)
updu·dAvatarTimer() -- update clock for avatar

statistics
end exitFrame

on updateAvatarTimer(rne)
secTimer = secTimer + 0 o 03 increment seconds

if secTimer > 30 and secTimer < 30 o03 then
repeat with i = 1 to avatarList. count run through

aLl active avatars in gridWorld
avatarList[i]ostatObjoupdateBlend() update

short-term effects
end repeat

74

else if secTimer >60 then
repeat with i -= 1 to avatarList.count

all active avatars in gridWorld
avatarList[i].statObj.updateScale()

avatar's flag size
avatarList[i].statObj.updateBlend()

short-term effects
end repeat
secTimer = 0 -- reset seconds

run through

update an

update

minTimer = minTirner + 1 -- increment minutes

if minTimer < 10 then
m = "0" &min Timer

else
m = minTirner

end if
end if

if secTimer < 10 then -- write the minute value into
clock

rnember("timer").text = "["& m &" : 0"& secTimer & "
J "

else
member("timer"),text = "["& m &"

J "
end if

end updateAvatarTimer

75

" & secTimer & "

Behaviour Script: 8 ~ behaviour.emoteCheckBox

global emote

Behaviour script attached to emoticon
-- selection menus.
-- created:20/9/2002

on beginSprite(me}
emote = "none" -- preset ernoticon menu selection to

"none" expression
end beginSprite

on mouseUp(me)
-- return radio button selected
selected = sendAllSprites (#RadioGroup_SelectedButton,

"emoteGroup" }

case selected.name of -- set emoticon to emote
"none": emote = "none"
"happy": emote = "happy"
"wink": emote = "wink"
"supprise": emote = "supprise"
"interest": emote = "interest"
"fear": emote= "fear"
"sad": emote = "sad"
"angry": emote= "anger"
"disgust": emote= "disgust"
"neutral": emote= "neutral"

end case

end mouse Up

on toggleSelf(me, checked)
if checked<> sprite{me.spriteNum).member.name then

sprite(me.spriteNum).member.hilite =False
else

sprite(me.spriteNum).membcr.hilite =True
emote = checked

end if
end toggleSelf

76

Behaviour Script: 9- behaviour.chatBox

global gNet
global userAvatar

-- Behavior script attached to chat input box.

on keyUp(me)
if the keycode = 36 then -- check to see if enter has

been pressed
delete member ("chatField") .line [2] -- erase carr age

return
sendMessage() --call to movie handler to send

message
else

-- Thinking animation cycle is off or has ended
if userAvatar.animateObj.thinkCycle = 0 or

userAvatar.animateObj.thinkCycle > 5 then
id = userAvatar.userName
c = member ("chatField"). text. chars, count
if c>=O and c<20 then -- short message length

zScale = 10
else if c>=20 and c<40 then -- medium message

length
zScale = 20

else if c>=40 and c<60 then -- long message length
zScale == 30

else if c>=60 then -- maximum message length
zScale = 40

end if

sets=[:]
s. add prop("corrunand", "Custom Event")
s. add prop ("target", "@AllUsers")
s. add prop ("event" , "think")
s.addprop("id", id)
s.addprop("scale", zScale)
gNet.send(s)

else
-- Thinking animation still go, but message length

has hit milestone
c = member ("chatField"). text .chars. count
if c = 20 then -- message length has grown past

short length
zScale = 10
set s = [:]
s.addprop("command", "Custom Event")
s. addprop("target", "@AllUsers")
s.addprop("event", "think")
s.addprop("id", id)
s. addprop("scale", zscale)
gNet.send(s)

77

else if c = 40 then -- message length has grown
past medium length

zScale = 20
sets=[:]
s. addprop("command" 1 "Custom Event")
s. addprop ("target" 1 "@AllUsers")
s. add prop ("event" , "think")
s.addprop("id" 1 id)
s.addprop("scale", zScale)
gNet.send(s)

else if c = 40 then -- message length has grown
past long length

zscale = 30
set s = [:)
s. add prop ("command" , "Custom Event")
s. add prop ("target" , "@AllUsers")
s.addprop("event", "think")
s.addprop("id", id)
s.addprop("scale", zScale)
gNet.send(s)

else if c = 60 then -- message length has hit
maximum length

zScale = 40
sets=[:]
s.addprop("command", "Custom Event")
s. add prop ("target'' 1 "@AllUsers")
s.addprop("event", "think")
s. addprop("id", id)
s. add prop ("scale", zScale)
gNet.send(s)

end if
end if

end if

end keyup

78

Behaviour Script: 10- behaviour.history

global s3d
global gNet -- global chatML object

property phistory -- history member
property hHeight -- height of history image
property hWidth -- width of history image

-- Behaviour script attached to history sprite.

on beginSprite(me)
pHistory = member ("his~:cry")
pHistory. image. fill (0, '), 700, 180, rgb(192,220, 192))
hHeight = phistory.height
hWidth = phistory.widt·.h

end beginSprite

on drawPage(me, timage, nameTag, tTopLeft, emote)
tRect = tlmage.rect -- calculate the rect of the

message image
plmage = member("history") .image -- get copy of old

history image

targetY = hHeight - tRect.height - 5
targetX = tTopLeft.LocH --(tRect.width/2)
tHeight = targetY + tRect.height
tWidth = targetX + ·tRect. width

-- update history
pHistory.image.copyPixe1s(pimage, rect(O,-tRect.height-

20,700,180-tRect.height-20), pimage.rect)
pimage.fill(O,targetY-16,700,180, rgb(192,221,192))
-- draw nametag and message
pHistory.image.copyPixels(nameTag, rect(targetX-

5,targetY-16,tWidth-5,targetY), nameTag.rect)
if emote <> ''none" then -- redraw for no emoticon

pHistory.image.copyPixels(member(emote).image,
rect(targetX,targetY-1,targetx +
member(emote) .image.rect.right,targetY-1 +
member(emote) .image.rect.height),
member(emote).image.rect,
[#maskimage:member(emote).image.createMask(), #ink:36])

l:'~i.:;..-;tory. image. copyPixels (timage, rect (targetX +
member(E:TJ\ote). image. rect.right + 2, targetY ,tWidth +
member(emJte).image.rect.right,tHeight), tRect)

else -- redraw for emoticon included
pHistory.image.copyPixels(timage,

rect (targe·tx, targetY, twidth, tHeight) , tRect)
end if

79

end drawPage

Behaviour Script: 11- behaviour.gridWorld

global thisSprite
global s3d
global gNet
global worldReady
global worldObj -- 3d world object
global userAvatar -- user avatar object
global avatarList -- list of user's avatars
global tileSize -- size of grid
global avColour --avatar's Colour
global avShape ·-·- avatar's Shape
global tagH -- height of name tage above avatar

property isectData --list returned by modelsUnderLoc{)
function
property setPoint
property onSprite
the 3d sprite
property tempString

target vector for
property to check

pointer position
if mouse is within

-- Behaviour script attached to the 3d sprite. Controls
-- behaviour handlers for gridWorld

on beginSprite(me)
createAlpha() --used to create new text box alphas

thisSprite = sprite(l) -- set 3d sprite object
s3d = thisSprite.member -- set 3d member object
onSprite = False
tagH = 100
avatarList = []
isectData = []

userAvatar = new(script
"avatar.parent" (member(''field.userNamell) .text) ,avColour,a
vShape)

worldObj = new(script 11 gridWorldo parent 11
)

worldObj.createWorld() --calls createGrid() and
initializeValues()

userAvatar.createAvatar(userAvatar)

userAvatar.setAvatar()
userAvatar.chatObj.setChat(userAvatar)

worldObjocreateDummy() --calls and sets dummy model
member (11 followAv") o text = userAvatar o followName

80

worldReady = True

sound(2).queue((#mernber; mernber("chatTag")]) --cue
sound effect in ram
end beginSprite

on mouseUp(me)
if the doubleClick then -- check for double click

doubleClickedAction()
else

startTimer
repeat while the timer < 10

if the mouseDown then -- user has double clicked
doubleClickedAction()
exit

end if
end repeat
getMouseClicked()

end if
end mouseUp

on mouseWithin(me)
set onSprite = True -- mouse within 3D S'~rite

end mouseWithin

on mouseLeave(me)
set onSprite = False -- mouse left 3D sprite

end rnouseLeave

-- getMouseOver handler controls the mouse
rollover/pointer

tracking operations withing the 3D chat environment.

•rhe getMouseOver handler will not fully execute if
onSprite

property is False.
created: 23/7/2002

on getMouseOver()

if onSprite = True then -- mouse within 3d sprite
--find where the mouse clicked ..•
pointWithinSprite = the mouseLoc -

point(thisSprite.left, thisSprite.top)
isectData =

s3d.camera(l).modelsUnderLoc(pointwithinSprite,
#detailed)

if isectData <> [] then-- pointing at something

81

--get clicked on model's name
modelName = string(isectData[l].model)
-- check if user clicked on the floor model
case mode1Narne.word[2] of

"gridworld":
t = getProp(isectData[l],#vertices) -- return

vector location of user avatar
tempString = t[2]
vectl = tempString.x--word[2] extract x

vector. value
vect3 = tempString. z--word[4] e;~tract z

vector value
setPoint =

vector(float(vectl),userAvatar.userRadius,float(vect3)) +
vector(-(tileSize/2),0,tileSize/2)

end case
if the shiftDown then -- rotate camera mode

worldObj.pointer.visibility =#none
worldObj.pointer.transform.position = setPoint

vector(O,userAvatar.userRadius + 0.5,0)
else -- normal pointer mode

worldObj.pointer.visibility =#both
worldObj.pointer.transform.position = setPoint

vector(O,userAvatar.userRadius - 0.5,0)
end if

else -- pointing at nothing
worldObj.pointer.visibility =#none

end if
else -- mouse outside of 3d sprite

worldObj.pointer.visibility =#none
end if

end getMouseOver

-- getMouseClicked tracks the mouse clicks user makes
within

the 3D chat environment.
modified: 15/7/2002

on getMouseClicked(me)

-- check if clicked on any models
if isectData.count <> 0 then -- clicked on something

--get clicked-on model's name
modelName = string(isectData[l].model)
-- determine action to be taken
case rnode1Name.word[2] of

''pointer": -- clicked on pointer
-- call to move avatar
userAvatar.moveToObj.setAvTrajectory(isectData,

setPoint.)
jumpMarkerMovement()

82

"gridWorld": -- clicked on floor
otherwise: -- clicked on avatar

whichAvatar(modelName)
end case

else -- clicked on nothing
return

end if
end getMouseClicked

on doubleClickedAction()

-- return to normal movement mode
userAvatar. followName = "none"
userAvatar.avFollow =False
member("followAv") .text = "none"

end doubleC:lickedAction

--·---
on E.·xitFrame

-- update ALL avatars .in gridWorld
repeat with i = 1 to avatarList.count

avatarList[i] .checkAvatarl{)
end repeat

end exi tFrame

83

A2.2. "Script" Cast: Parent Scripts

Parent Script: 1- gridWorld.parent

global thisSprite -- sprite(me.spriteNum)
global s3d -- thisSprite.member
global avToSpritePos -- avatar's position relative to 3d
sprite position
global avatarList
global tileSize -- size of tile
global defaultCaweraVector

property worldCam -- world camera 1
property gridWorld -- "Floor" object
property dummy -- dummy object for camera focus
property pointer -- plane to denote where pointer is on
"Floor"
property pointShader -- pointer shader
property gridShader -- floor shader
property gridMap -- image file
property worldWidth -- width of the floor
property worldLength -- length of the floor

-- Parent script for creat.ion of gridWorld' s floor,
camera,
-- lighting, textures, and user avatar.

on new(me)
return(me) -- return object

end ne\"'

-- Private Functions --

on createWorld(me)

-- reset 3d world
s3d.resetvlorld() -- reset 3d world

defaultCameraVector = vector(-250,550,-500)

-- call functions -
initializeValues()
createShaders ()
createGr id ()
calculateTiles()
set Texture ()
createPointer ()

-- create textures for thinking animation
noDots =

s3d. newTexture(" Odot" ,#fromCastMember ,member ("0-dots"))

84

noDots. nearFil teri.ng = false
noDots.guality =#medium
oneDots =

s3d. newTexture ("ldot" ,#fromCast.Member ,member (" 1-dots"))
oneD~ts.nearFiltering = false
oneDots.quality = #medium
twoDots =

s3d .newTexture("2dot" ,#fromCastMe0'1ber ,member ("2-dots"))
twoDots.nearFiltering = false
twoDots.quality = #medium
threeDots =

s3d. newTexture ("3dot" ,#fromCastMember ,member (" 3-dots"))
threeDots.nearFiltering = false
.threeDots .quality = #medium

-- set up directional lighting
s3d. newLight ("userDirectional" ,#directional)
s3d.light[3].transform.rotation = vector(-145,0,0)

end createWorld

initializeValuse(): last modified: 15/7/2002
on initial.~ zeValues (me)

the flr;atPrecision = 1
tileSize = 50
worldWidth = 700
worldLength = 1000

end initializevalues

-- set shader values
on createshaders(me)

pointShader = s3d. newShader ("pointerShader" ,#standard)
gridShader = s3d.newShader("worldShader" ,#standard)

pointShade.r. ambient = rgb (50, 50,50) -- set ambient
pointZ~Addr.diffuse = rgb(S0,100,200) -- set diffuse
pointShader.shininess = 0 -- set shininess off
pointShader.texture = void -- assign a void texture to

paintShader
pointShader.flat = true use flat shading
pointShader.blend = 20

gridShader.shininess ~ 0
gridShader.renderStyle = #fill
gridShader.texture = void
gridShader.blend = 100

end createShaders

85

on createPointer(me)
-- create plane resource
pResource = s3d.newModelResource(" plane ",#plane)
pResource.length = tileSize
pResource.width = ~ileSize
-- create pointer model
pointer = s3d.newModel(" pointer '',pRe source)
pointer.transform.rotate(-90,0,0)
-- add sbader
pointer.shaderList{l] = pointShader
pointer.shaderList[2] = pointShader
pointer.visibility = #none

end createPointerPlane

-- createCrid(): last modified: 15/7/2002
on createGrid ()

-- Create new plane resource
gResource = s3d.newModelResource("gridMap", #plane)
gResource.length = worldLength --plane model's yAxis

size
gResource.width = worldWidth -- plane model's xAxis

size
gResource.lengthVertices = (worldLengthltileSize + 1)
gResource.widthVertices = (worldWidthltileSize + 1)

-- create 'gridWorld' model from plane resour:ce
gridWorld = s3d.newModel(" gridWorld ",gResource)
-- orientate the "ground"
gridWorld.rotate(90,0,0) -- rotate the floor to lie

horizontal
gridWorld.transform.translate(worldWidth I

2,0,worldLength I 2) -- set top-left of tile to
vector (0, 0, 0)

-- set shaders
gridWorld.shaderList[l} = gridShader

gridWorld.shaderList[2] = gridShader
-- set visibility
gridWorld.visibility = #front
-- set inker
gridWorld.addModifier(#inker)

end createGr id

on setTexture(me)
--assign texture to gridShader
gridMapTexture = s3d.newTexture("gridTexture")
gridMapTexture.image = gridMap

86

gridShader.diffuseLightMap =
s3d.newTexture("base" ,#fromCastMember ,member ("grid
floor_small"))

gr.i.dShader.texture = gridMapTexture -- assign texture
map to gridShader

gridShader.blend = 50
gridShader.textureModeList{2] =#none
gridShader.blendFunctionList[l] =#add
gridShader.blendFunctionList[2] = #blend
gridShader.blendConstantList[2] = 20
-- tweeking •.. --
gridMapTexture.quality = #low
gridHapTexture.nearFiltering = False

end setTexture

-- calculateTiles(): last modified: 15/712002
on calculateTiles(me)

-- Calculate number of square tiles needed
tileNumWidth = worldWidth I tileSize -- number of tiles

across
tileNumLength = worldLength I tileSize -- number of

tiles down

rectl = 0
rect2 = 0
rect3 = tileSize
rect4 = tileSize

gridMap = image(worldWidth, worldLength, 32)
initialize gridmap image

repeat with i = 0 to tileNumLength -- row
rectl = 0
rect3 = tileSize
repeat with p = 0 to tileNumWidth -- column

gridMap.copyPixels (member("newTile") . image,
rect (rectl, rect2,rect3, rect4), member("newTile") .rect)

rectl = rectl + tileSize
rect3 = rect3 + tileSize

end repeat
rect2 = rect2 + tileSize
rect4 = rect4 + tileSize

end repeat
alphaMap = image(worldWidth, worldLength, 8)
alphaMap.copyPixels(gridMap,gridMap.rect,gridMap.rect)

-- member("tmpGrid") .image = gridMap
gridMap.setAlpha(2SS)
gridMap.setAlpha(alphaMap)
gridMap.useAlpha = true

87

end calculateGrid

on createDummy()
-- create dummy object
dummy = s 3d. newModel { " durruny ")
dummy .Resource = s3d. newMode!Resource {"dummy", #plane)
dummy.Resource.width = 1
dumrny.Resource.length = 1
dummy.transform.position.y = -1
dummy.visibility = #none
setCarnera(dummy)

end createDummy

on setcamera(dummyObj)
-- camera positioning
worldCam = thisSprite.camera(l)
worldCam.transform.position = defaultCameraVector

vector(-1C0,400,350)
worldCarn.pointAt(O,O,O)
-- camera properties
worldCam.hither = 20
worldCam.projectionAngle = 40
-- set camera as child of avatar
dummy = dummyObj
dummy.addChild(worldCam)

end setCamera

on movecamera(me, num)
-- follow avatar with camera
dummy.transform.position =

avatarList[num].userModelPoint.worldPosition
end movecamera

88

Parent Script: 2- avatar.parent

global thisSprite
global s3d
global avatarList -- avatar model list
global worldobj -- gridWorld.parent object
global tileSize -- size of grid squares
global tagH -- height of name tage above avatar

property chatObj -- chat.parent object
property moveToObj -- rnoveTo.parent object
property collisionObj -- collision.parent object
property statObj -- avStats.parent object
property animateObj -- animation parent object

property userModel -- avatar "feet"
property userModelTop -- avatar "body"
property userModelPoint -- avatar parent/collision
bounding box
property hBounds -- hearing boundary

property userName -- user name
property userRadius -- radius of avatar sphere
property userPos -- user's world vector coordinents
property userNumber -- user number based on
avatarList.count
property userTalk -- whether an avatar has a chat box or
nat

property avShader -- shader of avatar
property avShaderl
property avShader2
property avatarColour -- colour of avatar
property avatarShape shape of avatar

property talkCounter number of frames past since
message display
property talkCount -- flag to count frames: true/false

property overlayindexBack -- index of first overlay
property overlayindexFore -- index of second overlay
property overlayRect rect obj to overlay text image
property backTexture texture that is used to display
text backdrop
property foreTexture texture that is used t.o display
text messages
property historyText

property avToSpritePos -- avatar's locH and locV

89

property avatarGo -- status of avatar's movement
property avSpeed -- speed of avatar
property myAnglePerUnit -- angle to turn per unit
traveled

property avThink -- true/false value of when an avatar is
in "thinking" mode
property avFollow -- true/false value of when an avatar
is in "following" mode
property followNarne -- name of user to follow

property avChatStatus -- status of user in chat world
property channelHost --name of channel's host
property channelName -- name of channel (if exist)

on new(me, name, avcolour, avShape)

-- void
me.userModel = void
rne.userPos = void
rne.backTexture = void
me.foreTexture = void
me.chatObj = void
me.moveToObj = void
me.followName = "none"
me.historyText = []
rne.avChatStatus = ''public"
rne.channe!Host = ''none"
rne.channe!Name = "none"

me.overlayindexBar.k = -1
me.overlayindexFore = -1

-- Values
rne.userNarne = name
rne.avatarColour = avColour
me.avatarshape = avShape

-- True/False
rne.talkCount = False
me.userTalk = False
me.avatarGo = False
me.avThink = False
me.avFollow = False

-- Vectors
rne.overlayRect = rect(O,O,O,OJ

-- Integers
me.userNurnber = -1

90

me.talkCounter = 0
me.userRadius = 15 -- set radius
me.avSpeed = 5
me.myAnglePerUnit = 180 I (userRadius * pi) -- rotate

angle
return me

end

createAvatar(): modified 19/7/2002 -
on createAvatar(userAvatar)

-- set avatarNumber
avatarList.add(userAvatar) add avatar Object to

global avatar list
userNumber = avatarList.count -- assign a user number

to avatar object (note: user always number 1)

-- generate model resource
aList = createResource(avatarShape, userRadius,

userName)

--create 'avatar' model from sphere and box resource
userModel = s3d. newModel(" avatar. bottom " & userName & "

",aList[l])
userModelTop = s3d. newModel (" avatar. top "& userName & "

",aList[21)
userModelPoint = s3d.newHodel(" avatar.poinL "&

user;·iame & " ", aList [3])
hBounds = s3d.newModel(" hearRange "& userName & "

",aList[41)

createModel(aList, userRadius, userName, userModel,
userModelTop, userModelPoint, hbounds)

-- create shaders for models
avShader = s3d.newShader("avShader

"&userName,#standard)
avShaderl = s3d.newShader("avShader.t

"&userName ,#standard)
avShader2 = s3rl.newShader("avShader.h

"&userName,#standard)

setAvShader(avatarColour, userName, avShader,
avShaderl, avShader2, userModel, userModelTop,
userModelPoint, hbounds)

-- set control objects
chatObj = new(script "chat.parent" (userNumber))
moveToObj = new(script "moveTo. parent" (userNumber))

91

collisionObj = new(script
"collision. parent" (userNumber))

statObj = new(script "avStats.parent" (userNumber))
animateObj =new(script "animation.parent"(userNumber))

-- debug control
userModel.debug = false
userModelTop.debug = false
userModelPoint.debug = false

-- attach collision detection modifiers
collisionObj.setCollisionBoundary(userModelPoint,

"#bumper")
collisionObj. setCollisionBoundary (hBounds, "#listen")

-- initialise overlays
chatObj.inioverlay()

--iniital test of avatar
checkAvatarl ()

end createAvatar

-- Custom Handlers --------------------------------------

-----------~---

on setAvatar ()
userPos = userModel.worldPosition
avatarGo = False
isectData = s3d.modelsUnderRay(userPos, vector(0,-1,0),

1, #detailed)
setPoint = vector((tileSize/2),userRadius,(tileSize/2))
moveToObj.setAvTrajectory(isectData, setPoint)

end setAvatar

on avPosToSpritePos()
avToSpritePos =

sprite(l).camera.worldSpaceToSpriteSpace(userPos)
end avPosToSpritePos

on startClock ()
-- Reset talk timer
talkCount = True
userTalk = True

92

talkCounter = 0
end startClock

on stopClock ()
-- Stop talk timer
talkCount = False
userTalk = False
talkCounter = 0
chatObj.chatLocArea = [170,170,170]

end stopClock

on checkAvatarl()
userPos = userModel.worldPosition --update Avatar's

world coordinants

if avatarGo then
moveToObj.avMoveToPosition()

end if

checkAvatar2 ()

end checkAvatarl

on checkAvatar2()
if talkCount = True then

animateObj.speachPopUp(talkCounter)
talkCounter = talkCounter + 1 -- count
-- check if message has been onscreen for 5 seconds
if (talkCounter > 30 * 5) then

chatObj.hideOverlay(overlayindexBack)
hide overlayl

chatObj.hideOverlay(overlayindexFore) --hide
overlay2

stopClock() -- stop and reset timer
end if

end if

if avThink = True then
animateObj.thinkingAvatar()

end if

checkAvatar3 ()

end checkAvatar2

on checkAvatar3()

93

--update avatar's screen position
avPosToSpritePos()

-- align the overlays to the avatar
if avToSpritePos <> VOID then

if userTalk = True then
chatObj.updateOverlay(overlayindexFore) -- update

all overlays
end if
thisSprite.camera.overl&y[overlayindexBack].loc =

point(avToSpritePos.locH - 64, avToSpritePos.locV - tagH)
thisSprite.carnera.overlay[overlayindexBack].scale = 1

-- nameTag visible on overlay 1
else

--make overlay's invisible
thisSprite.camera.overlay[overlayindexBack].scale = 0

nameTag invisible on overlay 1
thisSprite.camera.overlay[overlayindexFore).scale = 0

chat message invisible on overlay 2
end if

userModelPoint.collision.enabled = False -- disable
collision detection

collisionObj.myFrame = 0 --set to 0 so collision will
execute next frame
end checkAvatar3

--on stepFrame me
checkAvatarl()
checkAvatar2()
checkAvatar3()

--end stepFrame

94

Parent Script: 3 - avStats.parent

global s3d
global thisSprite
global avatarList global list of avatars

property avatarObj -- avatar object
property avscale
property postRecord
property timeRecord
property hPost
property pCount -- average Post-rate

-- Parent script for tracking and updating avata~
-- statistics.

on new(me, userNum)
avatarDbj = avatarList[userNum]

me.avScale = avatarobj.userModelTop
me.postRecord = [20,1]
me.tirneRecord = [0,0]
rne.hPost = [20,1]

me.pcount = 0

return me
end new
---·------
--on longTermStatus(me)

postRecord = []
--end longTermStatus

--on shortTerrnStatus(me)
updateScale ()
updateBlend()

--end shortTermStatus

on updateScale(me)
avMsgLength = postRecord[1]/postRecord[2] -- average

message length

if avMsgLength <= 5 then -- low chatting
p = 0.60

else if avMsgLength > 5 and avMsgLength <= 10 then -
low-medium chatting

p = 0. 70

95

else if avMsgLength > 10 and avMsgLength <= 15 then -
medium chatting

p = 0.80
else if avMsgLength > 15 and avMsgLength <=20 then -

rnedirn-high chatting
p = 0.90

else if avMsgLength > 20 and avMsgLength <=30 then -
high chatting

p = 1. 00
else if avMsgLength > 30 then -- very high chatting

p = 1. 10
end if

if hPost = postRecord then
postRecord = [postRecord[1]+0, postRecord[2]+1]

end if

hPost = postRecord
-- change avSca1e
avscale.transform.scale =

vector(p,p,avScale.transform.scale.z)

end updateScale

on updateBlend(me)
if pCount <= 1 then

if avatarObj .avShader.blend > 10 -!'

put avatarObj.userName
s3d. shader("avShader. t " & avatarObj. userName). blend

= s3d.shader(''avShader.t "& avatarObj.userName) .blend
10

avatarObj.avShader1.blend =
avatarObj.avShader1.blend- 10

end if
else if pCount > 1 then

if avatarObj .avShaderl.blend < 90 then
s3d. shader("avShader. t " & avatarObj, us erN arne) .blend

= s3d. shader ("avShader. t " & avatarObj. userName), blend +
10

avatarObj.avShader1.blend =
avatarObj.avShader1.blend + 10

end if

end if
put pcount
put s3d. shader("avShader. t " & avatarObj. userName) .blend
pCount = 0

end updateBlend

96

Parent Script: 4- moveTo.par~nt

global thisSprite
global s3d
global wo:.ldObj -- proprietary machine-user object
global avatarList -- list of avatars
global tileSize -- size of grid squares
global gNet -- NU object

property avatarObj -- user object
property pointerPos -- pointer position vector (relative
to world coordinates)
property targetPos -- center of tile clicked or.,
property avTrajectory -- avatar's movement vector
property travelDist -- distance for avatar to travel
property iniPoint -- start vector of avatar's travels
property tempString -- temporary string value for
targetPos

-- Parent script for controlling and tracking avatar
-- movements on the chat floor.

on new(me, userNum)
avatarobj = avatarLisc[userNum]
return me

end new

on setAvTrajectory(me, isectData, setPoint)
if isectData <> {] then

pointerPos = isectData[l].isectPosition -- position
mouse clicked

targetPos =- setPoint
-- calculate trajectory vector for avatar
avTrajectory =- (targetPos- avatarObj.userPos) --get

travel vector
iniPoint = avatarObj.userPos
travelDist = avTrajectory.magnitude -- get travel

vector's magitude

avTrajectory.y = 0 --keep avatar on ground
avTrajectory = avTrajectory I travelDist -- caculate

avatar's trajectory vector

-- prepare movement paramaters
moveList = []

97

moveList =
[avatarObj.userName,iniPoint,travelDist,targetPos,avTraje
ctory]

-- prepare to send
s = I: l
s.addprop("com;nand", "Custom Event")
s.addprop("target", "@AllUsers")
s.addprop("event", "move")
s. add prop ("rnList", moveList)
-- send info
gNet.send(s)

end if

end setAvTrajectory

-- modified: 19/7/2002
on avMoveToPosition(me)

currentVect = (avatarobj.userPos - iniPoint)
currentDist = currentvect.magnitude

if currentDist >= travelDist then
avatarObj.avatarGo =False-- stop avatar moving
avatarObj.userModelPoint.transfo=m.position =

targetPos

-- animate avatar
animatecount = 0
avatarObj.animateObj.resetAvatar()

else
-- Move Avatar

avatarObj.userModelPoint.transform.translate(avTrajec~ury
* avatarObj.avspeed)

-- Make the ball roll as it moves find the axis of
rotation

axis = avTrajectory.crossProduct(vector(O, -1, 0))
angleTurnHd = avTrajectory .magnitude *

avatarobj. myP..nglePerUnit * avatarObj. avspeed
ballPosition = avatarObj.userModel.worldPosition

-- Rotate the ball around its center relative to the
world

avatarObj.userModel.rotate(ballPosition, axis,
angleTurned, #world)

if avatarObj.userName = member("field.userName").text
then

worldObj.moveCamera(avatarObj.userNumber) --move
dummy to move camera

end if

98

-- animate avatar
avatarObj. animateobj. animateAvatar (avTrajectory)

animate the avatar
end if

end avMoveToP•?sition

99

Parent Scripts: 5- chat. parent

global thisSprite
global s3d
global avatarList
global userAvatar

list of avatars
proprietary machine-use~ object

property avatarObj -- proprietory machine-user object
property chatRect -- rect(O,O,O,O)
--property backRect background overlay rect
--property foreRect foregrounq overlay rect
property scaleValue scale value for overlay
property blendValue blend value for overlay
property chatTexture
property chatLocArea -- area occupied by message overlay

-- Parent script for controling chat message operations,
-- chat message rendering, etc.

on new(me, userNum)
me.avatarObj = avatarList[userNum]
me. chatRect = []
me.scaleValue = 0
me.blendValue = 30
me.chatLocArea = [170,170,170] --top, bottom,

centerline

return me
end

on setChat(me)
-- CHAT.INI --
member("chatText") .text = " "
member("chatField") .text= "Hello world!"
member("chatField") .editable = True

avatarOb.j. foreTexture. image =
member ("chat Text"). image

thisSprite.camera.ove~lay[avatarObj.overlayindexFore] .sea
le = 0

end setchat

on iniOverlay(me)
-- initiate overlay textures
chatTexture = s3d.newTexture("chatBox "&

avatarObj. userName,#fromcastMember ,member (" llnBox"))

100

-- create overlay textures
avatarobj .backTexture = s3d.newTexture("NameTag " &

avatarObj.userName) -- texture for backdrop overlays
avatarObj.foreTexture = chatTexture --texture for

frontdrop overlays

-- attach overlays to camera
thisSprite.carnera.addOverlay(avatarObj.backTexture,

point(O,O), 0) --set backTexture as first private
overlay

thisSprite.carnera.addoverlay(avatarObj.foreTexture,
point(O,O), 0) -- set foreTexture as second private
overlay

-- set overlaycount
avatarObj.overlayrndexFore =

thisSprite.carnera.overlay.count
avatarObj.overlayiHdexBack = avatarObj.overlayindexFore

- 1

createNameOverlay

end inioverlay

-- modified: 26/7/2002
on createOverlay(me, message, emote)

me:nber("chatText") .text= message --write message
strirrg into temporary cast member

avatarObj.historyText[1] =message
avatarObj.historyTeAt[2J =emote
member("chat Text") .paragraph{ 1]. color =

avatarObj.avatarColour
-- update statObj values
avatarObj.statObj.postRecord[1] =

avatarObj.statObj.postRecord[1] +
member("chat Text"). text .length

avatarObj.statObj.postRecord[2J =
avatarObj.statObj.postRecord[2] + 1

avatarObj.statObj.pCount = avatarObj.statObj.pCount + 1

chatimage = member ("chatText"). image -
image(128, (avatarObj.overlayRect.bottom) +
chatRect.bottom, 8)

member("tmpchat") .ima'Je = chatimage--.extractAlpha()
repeat with i = 4 to 216

if rnember("tmpchat").image.getPixe1(i, 0) = rgb(255,
255, 255) then

chatWidth = i-1
put chatWidth
exit repeat

end if
end repeat

lOl

chatRect[1J = chatrmage.rect.left --+ 4
chatRect[2] = chatimage.rect.top-- + 4
chatRect[3] = chatimage.rect.right --+ 4
chatRect[4] = chatimage.rect.bottom --+ 4

i = member("chatText"). height
if i <=16 then -- 1 line message

if chatWidth <= 150 then
chatRect[3] = chatWidth
member ("llnBox-half") . image = member ("lline

half") • image
b = ''llnBox-half''

else
member("llnBox").image = member("lline").image -

redraw background
b = "llnBox"

end if
n = 3

else if i>l6 and i<48 then -- 2 line message
member("2lnBox").image = member("2line").image

redraw background
b = "2lnBox"
n = 3

else if i>=48 then -- 3 line message
member(" 3lnBox") .image = member(" 3line") .image

redraw background
b = "3lnBox"
n = 3

end if
-- draw emoticon
if emote <> "none" then

drawFace{emote, b)
n = 24

end if
-- draw message
member(b).image.copyPixels(chatimage, rect(chatRect[l]

+ n,chatRect[2],chatRect[3] + n,chatRect[4]),
rect(chatRect[l],chatRect[2],chatRect[3],chatRect[4]),
[#maskimage:chatimage.createMask(), #ink:36])

chatTexture.image = member(b).image --update message
box image

s3d.camera[l].overlay[avatarObj.overlayindexFore].source
= chatTexture -- update overlay texture

avatarobj.startClock() --start timing message lifespan
end

on drawFace(emote, b)
faceimage = member(emote) .image
fRect = [l
fRect[l] = faceimage.rect.left

102

fRect{2] = faceimage.rect.top
fRect{3] = faceimage.rect.right
fRect{4] = faceimage.rect.bottom

member(b) .image.copyPixels(faceimage,
rect(fRect{l]+2,fRect{2]+2,fRect[3]+2,fRect{4]+2),
rect(fRect{l],fRect{2],fRect[3],fRect[4]),
[#maskimage:faceirnage.createMask(), #ink:36])

end drawFace

on createNarneOverlay(me)
member ("nameTag") . text = avatarObj. userName
member("nameTag") .alignment = #center
member("nameTag") .forecolor =

value(avatarObj.avatarColour.paletteindex)
avatarObj. backTexture. image = rnernb~r ("nameTag") • image

end createNameOverlay

on hideOverlay(me, overlay)
thisSprite.carnera.overlay[overlay].scale = 0 -- set the

overlay size to 0
drawHistory()

end hideOverlay

on drawHistory(rne)
if (avatarObj.avToSpritePos <>VOID) then

-- check if message is within hearing range
if (avatarObj.userName = userAvatar.userNarne) 0r

(blendValue = 100) then
tTopLeft = calcChatOverlay()
member ("nameTag"). text = avatarObj. userNarne
member("nameTag") .alignment = #left
member ("name Tag") . forecolor =

value(avatarObj.avatarColour.palette!ndex)

member("historyText") .text =
avatarobj.historyText[l]

member("historyText"). forecolor =
value(avatarObj.avatarColour.paletteindex)

sendSprite(3, #drawPage,
member ("historyText"). image, member("nameTag"). image,
tTopLeft, avatarObj.historyText[2])

end if
end if

end drawHistory

103

on update0verlay(me,overlay2)
-- calculate the position of the avatar's overlay
tTopLeft = calcchatoverlay()
h = chatRect[4]-chatRect[2]
t = tTopLeft.locV
b = tTopLeft.locV + h
t = tTopLeft.locV + (h/2)
c hatLocArea [1] = t
c: hr.tLocArea [2] = b
chatLocArea[3] = c

if avatarObj.userName <> userAvatar.userName then
repeat with i = 1 to (avatarObj.userNumber- 1)

if avatarList[i].userTalk =True then

then

if c > avatarList[i].chatObj.chatLocArea[3] then
if t <= avatarList[i] .chatObj.chatLo~Area[2]

tTopLeft.locV =
avatarList[i].chatObj.chatLocArea[2] + 5

avatarList[i].chatObj.chatLocArea[2] =
tTopLeft.locV

end if
else

if b >= avatarList[i] .chat0bj.chatLocArea[1]
then

tTopLeft .locV =·

avatarList[i].chatObj.chatLocArea[1] - (h+4)

avatarList[iJ.chat0bj.chatLocArea[1] =
tTopLeft.locV

end if
end if

end if

end repeat

thisSprite.camera.overlay(avatarobj.overlayindexFore].ble
nd = blendValue -- set blend of foregroundOverlay

end if

-- align the overlays to the avatar
thisSpri·te. camera. overlay[overlay2] .lac = tTopLeft
-- reset blend values
blendValue = 30

end

on calcChatOverlay(me)
tTopLeft = point(avatarObj.avToSpritePos.locH- 64, \

104

avatarObj.avToSpritePos.locV
(avatarObj.overlayRect.bottom) - 25)

return tTopLeft
end calcChatOverlay

lOS

Parent Script 6- collision.parent

global thisSprite
global s3d
global gNet
global tileSize
global avatarList
global userAvatar

list of avatars
proprietary machine-user object

property avatarObj -- userObject
property myFrame -- the current frame

--Parent scripts for collision detections.

on new(me, userNumber)
avatarObj = avatarList[userNumber]
return me

end new

on setCollisionBoundary(me, cModel, handle)
cModel.addmodifier(#collision)
cModel.collision.mode = #mesh
cModel.collision.resolve = False
cModel.collision.setCollisionCallback(value(handle),

me)
end setCollisionBoundary

on bumper(me, colllsionData)
-- 0) check that collision will only detect once per

frame by
ignoring the second collision.

-- * may become obsolete in future versions of Director
if myFrame = the Frame then

exit
end if
myFrame = the Frame

-- 1) check if model who did the colliding is the one
who called the handler

if collisionData.modelA <> avatarObj.userModelPoint
then

exit
else

2) check if the model who called the handler is
moving or stationary·

if avatarObj.avatarGo =false then
exit

else

106

if avatarObj.moveToObj.targetPos =
collisionData.modelB.worldPosition then

isectData = s3d.modelsUnderRay(avatarObj.userPos,
vector(0,-1,0), 1, #detailed)

modelName = string(isectData[1].model)

tempString = isectData[l].vertices[2]
tempString = tempString.item[4 .. 6]

vectl = tempString.x--.word[2] -- extract x
vector value

vectl = vectl.item[l] -- get rid of comma
vect3 = tempString.z--.word[4] -- extract z

vector value
setPoint =

vector(float(vectl),avatarObj.userRadius,float(vect3)) +
vector(-(tileSize/2),0,tileSize/2)

avatarObj.moveToObj.setAvTrajectory(isectData,
setPoint)

end if
end if

end if
end bumper

on listen(me, collisionData)

avatarObj. userModelPoint.collision.Emabled = True
-- check if model who did the colliding is the one who

called the handler
if collisionData.modelA = user?'-.:~.r?.tar.hBounds then -

user called handler
if string(collisionData.modelB).word[3] =

userAvatar.followName.word[l] then
userAvatar.avFollow = False

end if
else -- other avatar called handler

if string(collisionData.modelB).word[3] =
userAvatar.userName then

avatarObj.chatObj.scaleValue = 1
avatarObj.chatObj.blendValue = 100

end if
end if

end if
end listen

107

Parent Script: 7- animation.parent

global s3d
global thisSprite
global avatarList -- global list of avatars

property avatarobj -- avatar object
property animatecount -- counter for timing "walking"
animation
property thinkCount counter for timing "thinking"
animation
property thinkCycle counter for "thinking" cycles

property zScale
property yRotation

-- Parent script for controlling avatar animation cycles.

on new(me, userNum)
avatarObj = avatarList[userNum]
me.animatecount = 0 -- counter to 0
me.thinkCount = 0 counter to 0
me.thinkCycle = 0 -- counter to 0
me.zscale = 10
me.yRotation = 0
return me

end new

on speachPopUp(rne, i)
case i of

open message box
0: n = 0
1:n=0.2
2:n--0.4
3: n = 0.6
4: n = 0.8
5: n = 1

if avatarobj.userNumber = 1 or
avatarObj.chatobj.blendvalue = 100 then

sound(2) .play (member ("chatTag"))
end if

close message box
146: n = 0.8
147: n = 0. 6
148: n = 0. 4
149: n = 0. 2
150: n = 0

else
otherwise: n = 1

I 08

end case

make overlay's visible
thisSprite.camera.overlay[overlayindexBack].scale =

1 nameTag visible on overlay 1

thisSprite.camera.overlay[avatarObj.overlayindexFore] .sea
le = n -- chat message invisible on overlay 2

-- Reset transparency

thiGSprite.camera.overlay[avatarObj.overlayindexFore].ble
nd = iOO -- set blend of foregroundOverlay

end speachPopUp

-- created: 19/7/2002
on animateAvatar(me, avTrajectory)

case animateCount of
0:

avatarObj.userModelTop.transform.rotation =
vector(O,O,O)

avatarObj.userModelTop.transform.position =
vector(0,30,0)

1:
avatarObj.userModelTop.rotate(avTrajectory*2,#parent)

3:
avatarObj.userModelTop.rotate(avTrajectory*l.S,#parent)

3: avatarObj.userModelTop.rotate(
avTrajectory*2,#parent)

5: avatarObj.userModelTop.rotate(
avTrajectory*2,#parent)

5: avatarObj.userHodelTop.rotate(
avTrajectory*l.S,#parent)

7:
avatarObj.userModelTop.rotate(avTrajectory*2,#parent)

7:
avatarObj.userModelTop.rotate(avTrajectory*l.S,#parent)

9:
avatarObj.userModelTop.rotate(avTrajectory*l.S,#parent)

end case
-- increment counter
animateCount = animateCount + 1
-- check counter
if animateCount > 7 then

set animateCount = 1
end if

end animateAvatar

on thinkingAvatar(me)

109

yRotation = yRotation + 5
if yRotation > 359 then

yRotation = 0
end if

if thinkCycle > 5 then
if avatarObj.userHodelTop.transforrn.scale.x < 1.0

then
avatarObj. user!1ode1Top. transform. scale =

vector(l.O,l.O,l.O)
else
avatarObj.userModelTop.transforrn.scale =

vector(avatarObj.userModelTop.transform.scale.x,avatarObj
.userMode1Top.transforrn.scale.y,1.0)

end if
avatarObj.userModelTop.transform.rotation =

vector(O,O,O)
avatarObj.avShader1.texture = s3d.texture("name

"&avatarObj.userName)
avatarObj.avThink =False
thinkCount = 0
thinkCyc1e = 0

else
case thinkCount of

0:
avatarObj.userModelTop.transform.scale =

vector(avatarObj.userModelTop.transform.scale.x,avatarObj
.userModelTop.transform.scale.y,zScale)

avatarObj.avShaderl.texture = s3d.texture("Odot")
10:

avatarObj.userModelTop.transform.scale =
vector(avatarObj.userModelTop.transform.scale.x,avatarObj
.userModelTop.transform.scale.y,zScale)

avatarObj.avShaderl.texture = s3d.texture("ldot")
20:

avatarObj.userModelTop.transform.scale =
vector(avatarObj.userModelTop.transform.scale.x,avatarObj
.userModelTop.transform.scale.y,zScale)

avatarobj. avShaderl. texture = s3d. texture ("2dot")
30:

avatarobj.userModelTop.transform.scale =
vector(avatarObj.userModelTop.transform.scale.x,avatarObj
.userModelTop.transform.scale.y,zScale)

avatarObj.avShaderl.texture = s3d.texture("3dot")
thinkCycle = thinkCycle + 1

end case
-- increment counter
thinkCount = thinkCount + 1
-- check counter
if thinkCount > 40 then

set thinkcount = 0
end if

II 0

avatarObj.userModelTop.transforrn.rotatio~ =
vector(O,yRotation,O)

end if

end thinkingAvatar

on resetAvatar(rne)
avatarDbj.userModelTop.transforrn.rotation =

vector(O,O,O)
avatarObj.userModelTop.transform.position =

vector(O ,30, 0)
end resetAvatar:

Ill

A2.3. "Script" Cast: Movie Scripts

Movie Script: 1- movie.create-remove

global thisSprite
global s3d
global userAvatar
global message
global avatarList -- avatar model list

-- Public Methods --

-- Movie script containing handlers for creating
-- and removing avatars.

on createAnotherAvatar (plist)
plist = value(plist)
-- create obj of "avatar.parent" called Jim
av = new(script "avatar.parent" (plist[l]))
av.avatarColour = plist[2]
av.avatarShape = plist[9]

-- create new user-sphere resource
av. createAvatar()

av. setAvatar()
av.moveToObj.iniPoint = plist[3]
av.moveToObj.travelDist = plist[4]
av.moveToObj.targetPos = plist[S]
av.moveToObj.avTrajectory = plist[6]
av.avatarGo = plist[7]
av. userPos = plist [8]
av.avChatStatus = plist[l2]
av.channelHost = plist[l3]
av.channelName = pList[l4]

checkChannel(av)

s3d.shader("avShader.t "& pList{l]).blend = plist[lO]
s3d.shader("avShader.h "& pList[l]).blend = plist[ll]

av.userModelPoint.transform.position = av.userPos

av .chatObj .createOverlay("hi mom!", ''happy")

return av
end

on checkChannel(av)

112

if av.avChatStatus = "Host" then
prepareHostStatus(av)

else if av.avChatStatus = "private" then
preparePrivateStatus(av)

else if av.avChatStatus = "public" then
preparePublicStatus (av)

end if
end checkChannel

on removeAvatar(avatarName)

-- remove user avatar model, modelResource, shaders,
overlays, textures, etc

repeat with p = 1 to avatarList.count
if avatarList[p] .userName = avatarName then

i = p
end if

end repeat

if avatarList[i].userNarne = avatarName then
remove from actorLis1:

(the actorList) .deleteOne(avatarList[i])

delete the avatar models
s3d.deletemodel(" avatar.point "& avatarName tw" ")
s3d. deleternodel (" avatar. top " & avatarNarne & " ")

s3d.deletemodel(" avatar.bottom "& avatarName &" ")

s3d.deletemodel(" hearRange "& avatarNarne &" ")

-- delete the d.vatarResources
s3d. deleteModelResource("top." & avatarName)
s3d. deleteModeli\:esource ("feet. " & avatarName)
s3d. delet.eModelRe:~ource("mbounding. " & avatarNarne)
s3d. deleteModelRe:::.ource("hbounding. " & avatarName)
-- remove overlay
overlay! = avatarL_ist [i] .overlayJ:ndexBack
overlay2 = avatarLi~t[i].overlayindexFore
s3d. camera(1). removeOverlay(overlay2)
s3d.camera(l).removeOverlay(overlayl)
-- increment user overlay and number down by 1
repeat with n = (i+l) to avatarList.connt

avatarList(n].userNumber = i --increment
userNumber down 1

avatarList[n] .overlaylndexFore = i;2
avatarList[n].overlayindexBack = (i*2)-1

end repeat
-- removeShaders
s3d.deleteShader("avShader "& avatarNarr.e)
s3d. deleteShader("avShader, t " & avatarName)
s3d. deleteShader("avShader. h " & avatarName)
-- Uelete textures
s3d. deleteTexture ("name 11 & avatarName)
s3d. deleteTexture ("NameTag 11 & avatarNarne)

113

s3d.deleteTexture("chatBox "& avatarName)
-- remove user avatar from avatar list
avatarList.deleteAt(i)

end if
end removeAvatar

on getAvDetails()
pList = []
pList[l] = userAvatar.userName
pList[2] = userAvatar.avatarColour
pList[3] = userAvatar.moveToObj.iniPoint
pList[4] = userAvatar.moveToObj.travelDist
pList[S] = userAvatar.moveToObj.targetPos
pList[6] = userAvatar.moveToObj.avTrajectory
pList[7] = userAvatar.avatarGo
pList[8] = userAvatar.userPos
pList[9] = userAvatar.avatarShape
pList[lO] = userAvatar.avShaderl.blend
pList[ll] = userAvatar.avShader2.blend
pList[l2] = userAvatar.avChatStatus
pList[l3] = userAvatar.channelHost
pList[14] = userAvatar.channelName
return pList

end getAvDetails

114

Movie Script: 2- movie.sendMessage

global emote
global gNet
global userAvatar

-- Public Methods --

- • -- Handler for sending chat messages

on sendMessage ()
-- Primary Avatar chat --
message = member("chatField") .text
member("chatFit:ld"). text = "" -- clear chat field
pList = []
pList = [userAvatar.userName, message]

if userAvatar.channelName = "none" then
targetUsers = "@All Users"

else
targetUsers = userAvatar.channelName

end if

set s = [:]
s.addprop("command", "Chat")
s. add prop ("target", "@AllUsers")
gNet. send(s)

set s = [:]
s.addprop("command", "Chat")
s. add prop("target" 1 targetUsers)
s.addprop("message", message)
s.addprop{ "emote", emote) -- emoteFace)
gNet. send(s)

member("chatField") .editable = true
sendAllSpr i tes (#toggleSelf, "none")

end

115

Movie Script: 3- movie.jumpMarkerControl

global currentMarker
global userAvatar
global gNet
global avatarList

-- Movie Scripts controlling marker jumping. Toggles
variables
-- to prepare valuet. to be used at new marker

on jumpMarkerMovement()
if currentMarker = "menu" then

-- user is currently in menu
if member("chatStatus") .text = "public" then

go to "chat"
else if member("chatStatus") .text = "private" then

go to ''chat.private"
else if member("chatStatus") .text = "debug" then

go to "chatoebug"
end if

else if currentMarker = "system_~qorking" then
-- system is busy

end if

end jumpMarkerMovement()

on whichAvatar(modelName)
avName = mode1Name.word[3]
repeat with i = 1 to avatarList.count

if avatarList(i].userName.= avName then
member ("name'') . text = " "
member ("name") . text = avName --& " "
avatarObj = avatarList[i]
exit repeat

end if
end repeat

if currentMarker <> "system_working" thr;n
if avName <> userAvatar. userName ti.i.:;:;n

if avatarObj. avChatStatus = "host" and
userAvatar.channelName = "none" then

mernber("chP.nnelName").text =
avatarObj .channeH"fame

go to "othe:rMenu.host"
else if userAvatar.followNarne =

avatarObj. userName&" " then
go to "otherMenu .follow"

else

!!6

go to "otherMenu"
end if

else
if userAvatar. avChatStatus = "host" then

go to "userMenu. host"
else if userAva·tar.avChatStatus = "Private" then

go to "userMenu.private"
else

go to "userHenu"
end if

end if
end if

end whichAvatar

on avChangeStatus(pStatus)
if pStatus = ''host" then

sets=[:]
s.addprop("conunand", "custom Event")
s.addprop("target", "@AllUsers")
s. add prop ("event", "becomeHost")
s.addprop("id", userAvatar.userName)
s. addprop("channelName", userAvatar. channelName)
gNet.send(s)

else if pStatus = "private" then

else if pStatus = "public" then
end if

end avChangeStatus

!17

Movie S{;ript: 4- movie.createResource

-- Movie script containing handlers to build avatar
-- flag shapes

on buildShape01(me)
tVertexList -= [\

vector(l2.5,0,0.5) ,\
vector(12.5,75,0.5),\
vector(-12.5,75,0.5),\
vector(-12.5,0,0.5),\
vector(-12.5,0,-0.5),\
vector(-12.5,75,-0.5),\
vector(l2.5,75,-0.5),\
vector(l2.5,0,-0.5) \
l

tFaceList = [\
[1,2,4],\
[2,3,4],\
[5,6,8],\
[6,7,8] \
] -- each face vertex needs to be defined in counter
clockwise direction

rnList = [tFaceList,tVertexList]
return mList

end buildShapeOl

on buildShape02(me)
tVertexList = [\

vector(0,37.5,0.S), \
vector(0,4,0.5), \
vector(l2.5,0,0.5), \
vector(7,37.5,0.5), \
vector(l2.5,75,0.5), \
vector(0,65,0.5),\
vector(-12.5,75,0.5), \
vector(-7,37.5,0.5), \
vector(-12.5,0,0.5), \
veci::.or(O, 37. 5,-0.5) 1 \

vect:or(0,4,-0.5), \
vector(-12.5 1 0,-0.5), \
vect·Jr(-7,37.5,-0.5), \
vector(-12.5,75,-0.5) 1 \

vector(0,65,-0.5), \
vector(l2.5,75,-0.5), \
vector(7,37.5,-0.5), \

118

vector(12.5,0,-0.5)\
1

tFaceList = (\
[1,2,3],\
[1,3,4],\
[1,4,5],\
[1,5,6],\
[1,6,7],\
[1,7,8],\
[1,8,9],\
[1,9,2],\
[10,11,12],\
[10,12,13],\
[10,13,14],\
[10,14,15],\
[10,15,16],\
[10,16,17],\
[10,17,18],\
[10,18,11]\
J -- each face vertex needs to be defined in counter
clockwise direction

mList = [tFaceList,tVertexList]
return rnList

end buildShape02

on buildShape03(me)

tVertexList = [\
vector(0,37.5,0.5), \
vector(O,O,O.S), \
vector(12.5,10,0.S), \
vector(l2.5,37.5 1 0.5), \
vector(12.5 1 6S,O.S), \
vector(0,75,0.5),\
vector(-12.5,65,0.5) 1 \

vector(-12.5,37.5 1 0.5), \
vector(-12.5,10 1 0.5), \
vector(0,37.5,-0.S),\
vector(0,0,-0.5), \
vector(-12.5 1 10,-0.5), \
vector(-12.5,37.5,-0.5), \
vector(-12.5,65,-0.5), \
vector(0,75,-0.5), \
vector(12.5,65,-0.5), \
vector(12.5,37.5,-0.S), \
vector(l2.5,10,-0.5)\
1

tFaceList = [\
[1,2,3],\

119

[1,3,4],\
[1,4,5],\
[1,5,6],\
[1,6,7],\
[1,7,8],\
[1,8,9],\
[1,9,2],\
[10,11,12],\
[10,12,13],\
[10,13,14],\
[10,14,15],\
[10,15,16],\
[10,16,17],\
[10,17,18],\
[10,18,11]\
] -- each face vertex needs to be defined in counter
clockwise direction

rnList = [tFaceList,tVertexList]
return mList

end buildShape03

on buildShape04(me)

tVertexList = [\
vector(0,37.5,0.5), \
vector (0, 0, 0. 5) , \
vector(6,.20,0.5), \
vector(12.5,37.5,0.5), \
vector(6,55,0.5), \
vector(0,75,0.5),\
vector(-6,55r0.5), \
vectoi(-12.5,37.5,0.5), \
vector(-6,20,0.5), \
vector(0,37.5,-0.5),\
vector(0,0,-0.5), \
vector(-6,20,-0.5), \
vector(-12.5,37.5,-0.5), \
vector(-6,55,-0.5), \
vector(0,75,-0.5), \
vector(6,55,-0.5), \
vector(12.5,37.5,-0.5), \
vector(6,20,-0.5)\
l

tFaceList = [\
[1,2,3],\
[1,3,4],\
[1,4,5],\
[1,5,6],\
[1,6,7],\
[1,7,8],\

120

[1,8,9],\
[1,9,2],\
[10,11,12],\
[10,12,13],\
[10,13,14],\
[10,14,15],\
[10,15,16],\
[10,16,17],\
[10,17,18],\
[10,18,11]\
] -- each face vertex needs to be defined in counter
clockwise direction

mList = [tFaceList,tVertexList}
return rnList

end buildShape04

121

Movie Script: 5- createAlpha

-- Movie script for creating alpha channels for message
boxes

on createAlpha
member ("lline"). image .setAlpha (255)
member ("lline"). image. setAlpha(member{ '' lalpha"). image)
member ("lline"). image. useAlpha = true
member(" llnBox") .image = member("lline") .image

member ("lline-half") . im.3.ge. setAlpha (2 55)
member("lline-half") .image.setAlpha(member("lalpha

half").image)
member("lline-half").image.useAlpha =true
member ("llnBox-half"). image = member ("lline

half").image

member(" 2line"). image. setAlpha (255)
member ("2line"). image. setAlpha (member ("2alpha") • image)
member ("2line"). image. useAlpha = true
member ("2lnBox"). image = member(" 2line"). image

member(" 3line"). image. setAl ph a(2 55)
member ("3line"). image. setAlpha(rnernber("3alpha"). image)
member ("3line"). image. useAlpha = true
member("3lnBox").image = mernber("3line").image

code for drawing chat floor tiles
member ("newTile") . image. setAlpha (255)

member("newTile") .image.setAlpha(member("alphaTile") .imag
e)

member ("newTile"). image. useAlpha = true
member("llnBox").image = member("lline").im~ge

end createAlpha

122

Movie Script: 6- movie.avatarResource

global s3d
global tilef' 2

--Movie script for creating avatar model resources.

on createResource(avatarShape, userRadius, userName)
-- create new sphere resource
s = s3d.newModelResource("feet."& userName, #sphere)
s.radius = userRadius
s.resolution = 2

case avatarShape of
"shapeD l": mList = buildShapeOl ()
"shape02": mList = buildShape02 ()
"shape03": mList = buildShape03 ()
"shape04": mList = buildShape04()

end case

tFaceList = mList[l]
tVertexList = mList[2]

-- create new mesh resource
b = s3d.newMesh("top."&userName, tFaceList.count,

tVertexList.count)
-- define vertices for each face in new mesh resource
b.vertexList = tVertexList
repeat with i = 1 to tFaceList.count

b.face[i].vertices = tFaceList[i]
end repeat
-- gene:cate normals
b.genP.rateNormals(#flat)
--.build
b.bu!.ld()

-- create box resource for parent and collision
detection

p = s3d.newModelResource("mbounding. "& userName,#box)
p.top = False
p.bottom = False
p.length = tileSize - 2
p.width = tileSize - 2
p.height = 1

-- crea~e box resource for hearing range
c =

s3d.newModelResource("hbounding. "&userName,#cylinder)
c.topCap = False
c. topRadius = 80

123

c.bottomrac\ius = 0
c.height = 0.5
c.numSegments = 1
c.resolution = 4

aList = [s, b, p, c}
return aList

end createResource

Movie Script: 7- movie.avatarModeJs

global s3d

-- Movie script for creating avatar models.

on createModel(aList, userRadius, userName, userModel,
userModelTop, userModelPoint, hbounds)

-- set parent of avatar "body" and "feet"
userModel.parent = userModelPoint
userModelTop.parent = userModelPoint
hBounds .parent = userModelPoint

-- set parent "•ode! invisible
userModelPoint.visibility = #none
hBounds.visibility = #back

-- position models
userModelTop.transform.translate(vector(0,30,0))
userModelPoint.transform.position.y = userRadius
hBounds.transforrn.position = vector(O,-(userRadius-

0.5),0)

end createModel

124

Movie Script: 8- movie.avatarShaders

global s3d

--Movie script for creating avatar shaders.

on setAvShader(avatarColour, userName, avShader,
avShaderl, avShader2, userModel, userModelTop,
userModelPoint, hbounds)

r = avatarColour. red -- red value
g = avatarColour. green -- green value
b = avatarColour.blue -- blue value

v = 10 -- increment/decrement value

-- prepare avShader
avShader.ambient = rgb(r,g,b)
avShader.diffuse = rgb(r+v,g+v,b+v)
avShader.shininess = 0
avShader.texture =void -- assign a void texture to

paintshader
avShader.flat = true
avShader.blend = 100

-- prepare avShaderl
avShaderl.ambient = rgb(r,g,b)
avShaderl.diffuse = rgb(r,g,b)
avShaderl. shininess = 0
avShaderl.texture = void -- assign a void texture to

paintShader
avShaderl. flat = true
avShaderl.blend = 90
avShaderl.textureMode = #wrapPlanar

nameTexture = s3d.newTexture("name
"&userName, #fromCastMernber ,member (11 nameTexture 11

))

nameTexture.nearFiltering = false
nameTexture .quality = #medium
avShaderl. texture = nameTexture

prepare avShader2
avShader2.ambient = rgb(r,g,b)
avShader2.diffuse = rgb(r+v,g+v,b+v)
avShader2. shininess = 0
avShader2.texture =void-- assign a void texture to

paintShader
avShader2.flat = true
avShader2.blend = 0

-- attach shaders to models

125

userModel.shaderList[l] = avShader -- sphere shader
attached

userModelTop.shaderList[l] = avShaderl
userModelTop.shaderList[2] = avShaderl
userModelTop.shaderList[3] = avShaderl
userModelTop.shaderList[4] = avShaderl
userModelTop.shaderList[S] = avShaderl
userModelTop.shaderList[6) = avShaderl

-- attach shader to hBounds
hBounds.shaderList[l] = avShader2

-- add #inker modifier
userModel.addrnodifier(#toon)

userHodel. inker .creases = True
userModel.inker.silhouettes = True

userModelTop.addmodifier(#inker)
userModelTop.inker.creases = True

userModelTop.inker.silhouettes = True
userModelTop.visibility = #front

hBounds.addmodifier(#inker)
hBounds.inker.creases = False

hBounds.inker.silhouettes =True
end setAvShader

126

back shader
shader
shader
shader
shader
shader

Movie Script: 9- movie.chatControl

global s3d
global userAvatar
global gNet

on prepareHostStatus(avatarObj)
s3d. shader ("avShader. h " & avatarObj. userName) .blend =

50
if avatarObj.userName <> userAvatar.userName then

avatarObj. userModelTop. removeModifier (#inker)
avatarObj.userModelTop.addModifier(#toon)

end if
avatarObj .avchatstatus = "host"
avatarObj. channelHost = avatarObj. userName

end prepareHostStatus

on preparePrivateStatus(avatarObj)
s3d. shader ("avShader. h "& avatarObj. userName) . blend

= 50
if avatarObj. userName <> userAvatar. userName then

avatarObj.userModelTop.removeModifier(#inker)
end if
avatarObj.hBounds.shaderList[l] =

s3d. shader("avShader. h " & avatarObj. channelHost)
end preparePrivateStatus

on preparePublicStatus(avatarObj)
-- check if toon modifier exists
if avatarObj.userModelTop.rnodifier.count = 1 then

avatarObj.userModelTop.removeModifier(#toon)
end if

-- change inker modifier back to normal mode
avatarObj.userModelTop.addModifier(#inker)
avatarObj.hBounds.shaderList[l] = avatarObj.avShader2
avatarObj.avShader2.blend = 0

-- reset avatar chat values
avatarObj .avChatStatus = "public"
avatarObj .channelHost = "none"
avatarObj .channelName = "none"

if avatarObj .channelName <> "none" then

end if

end preparePrivateStatus

127

Movie Script: 10 - movie.chatProcesses

global s3d
global gNet
global avatarList
global userAvatar
global worldReady

global custom

-- Movie script controlling the sending and recieving
-- of chat and avatar information using gNet {chatML
object).

on processNetStuff{me, m)

set c = rn. find{ "command") .value
if worldReady = True then

case c of

"Chat": -- chat procedure
repeat with i = 1 to avatarList.count

if m.find{ "from") .value =
avatarList[i] .userName then

avatarList[i]. stopClock{)
create the message

if avatarList[i].userTalk =True then

avatarList[i].chatObj.hideOverlay(avatarList[i].overlayin
dexFore)

end if

avatarList [i 1 .chatObj .ct·eateOverlay (rn.find("message") . val
ue, m.find("emote").value)

avatarList[i].animateObj.thinkCycle = 10

end if
end repeat

"Custom Event";
set custom= m.find("event") .value
case custom of

"messageSent": -- user has finished responding
repeat with i = 1 to avatarList.count

if rn.find("from").value =
avatarList[i].userName then

avatarList [i]. animateObj. thinkCycle = 10
end if

end repeat

128

"adduser": -- adduser procedure
put "adding user .•. "
pList = value(m.find("list").value)
put "addUser: "&pList
member("UserList").text = pList[1] & return &

member("UserList") .text

repeat with i = 1 to avatarList.count
-- check if avatar already exists
if (pList [l] = avatarList[i] .userName) then

exit -- dent add user
end if

end repeat

-- add user
av = createAnotherAvatar(pList)
av. setAvatar ()

-- generate new pList to send to
respondAddUser

command

then

pList = getAvDetails ()
set s = [:]
s.addprop("command", "Custom Event")
s .addprop("target", "@AllUsers")
s. addprop ("event" , "respondadduser")
s .addprop("list", pList)
put "sending request to respondAddUser: "&s
gNet.send(s)

"respondadduser": -- respond to an adduser

put "responding ... "
avList = value(m. find(" list"). value)

avExist = False
put "respondAddUser: "& avList
repeat with i = 1 to avatarList.count

if (avList[l] = avatarList[i] .userName)

exit -- avExist = True
end if

end repeat

if (avExist = False) then
member("UserList") .text = avList[l] & return

& member("UserList") .text
createAnotherAvatar(avList)
--end if

"removeuser": -- kill user
uName = m.find("name") .value
removeUser(uName)

"move": -- move avatar's user

129

mList = value(m.find("mList") .value)
moveMe {mList)

"think": -- user is typing a message
id = string(m.find("id").value)
zScale = value(m.find("scale") .value)
repeat with i = 1 to avatarList.count

if avatarList[i] .userName = id then
avatarList[i].avThink =True
avatarList[i].animateObj.thinkCycle = 0
avat~rList[i].animateObj.zScale = zScale
exit repeat

end if
end repeat

"killingchannel":
s = [: l
s. add prop ("command" 1 "Leave Channel")
s. addprop {"channel" 1 userAvatar. channelName)
gNet.send(s)

s = [: l
s. add prop ("command" 1 "Custom Event")
s. addprop ("target", 11 @AllUsers 11

)

s. add prop ("event" , "becomePublic")
s. addprop("targetiD '', user Avatar. userName)
gNet.send(s)

"becomeHost": -- change to host status
id = string(m.find("id").value)
repeat \V"ith i = 1 to avatarList.count

if avatarList [i]. us erN arne = id then
avatarList{i}.channelName =

string (m. find(''channelName"). value)
prepareHostStatus (avatarList [i])
exit repeat

end if
end repeat

"becomePrivate": -- change to private status
id = string(m.find(''id").value)
repeat with i = 1 to avatarList.count

if avatarList{i] .userName = id then
avatarList{i] .avChatStatus = "private"
avatarList[i].channelHost =

string(m.find("hostName") .value)
avatarList [i] . channelName =

string(m.find("channelName") .value)
preparePri vateStatus (avatarList [i})
exit repeat

end if

end repeat

130

"becomePublic": -- change back to public status
id = string(m.find("targetiD").value)
if id = "all" then

preparePublicStatus(userAvatar)
else

repeat with i = 1 to avatarList.count
if avatarList[i] ~ userName = id then

preparePublicStatus(avatarList[i])
exit repeat

end if
end repeat

end if

end case
end case

end if

end

-- Custom Handlers --

on moveMe(rnList)
repeat with i = 1 to avatarList.count

if mList[1] = avatarList[i].userName then
avatarList[i].moveToObj.iniPoint = mList[2]
avatarList [i] .moveToObj. trave!Dist = mList[3]
avatarList[i].moveToObj.targetPos = mList[4]
avatarList[i].moveToObj.avTrajectory = mList[5]
avatarList[i].avatarGo =True

end if
end repeat

end moveMe

on removeUser(uName)
set t = mernber("UserList").text
set n = uName
set i = 1
set c = t.line.count

repeat while i = 1 t.o c
if (t.line[i] = n) then

delete t.line[i]
member("UserList") .text = t
removeAvatar(n)
return

end if
end repeat

end removeUser

131

132

	Online avatar based interactions
	Recommended Citation

