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ABSTRACT 

A reduction in capacity of the neuromuscular system associated with exercise 

can occur from a wide range of physiological and psychological factors. Many 

researchers have investigated neural activation during exercise, or the effects of 

muscle damage associated with eccentric exercise, but few have studied the 

prolonged effects of a bout of eccentric exercise on strength and motom<Juron 

excitability. Eleven male and female subjects (aged 20-43 years) were tested to 

detennine the effects of a fatiguing bout of eccentric exercise upon maximal 

isometric plantarflexion strength, motomeuron excitability, and neural activation of 

the soleus (SOL) and medial gastrocnemius (MG). The exercise consisted of two 

hours on a calf raise machine, the only the right leg perfonning eccentric repetitions, 

with three sets of 60 repetitions at 60% of the concentric one repetition maximum 

(lRM). 

Hoffman reflex (H-reflex), evoked responses, maximum voluntary 

contraction (MVC) torque, voluntary root mean squared electromyography 

(nnsEMG), Creatine Kinase (CK), and the Achilles tendon reflex (T -reflex) were 

tested immediately prior to, immediately post, and l, 24, 48 and 72 hours post 

exercise. Results indicated that there were significant (R < 0.05) decreases of 18% 

and :.!.3% in MVC torque and SOL rmsEMG respectively following the fatiguing 

protocol. There were also significant declines of 31% in the SOL H-reflex, 25% in 

the SOL Hmax:Mmax (the ratio of the maximum H-reflex to the maximum M

response ), as well as a 21% decline in the amplitude of the evoked twitch. There 

were no significant decreases in the M-response or T-reflex, or in any of the 

variables of the control leg, following the exercise bout. 

The reduced voluntary torque and EMG suggests that the force loss was due 

to a decreased neural drive. The decline in the H-reflex following exercise indicates 

a reduction in the excitability of the a-motomeuron pool (since altered M-waves 

suggest no impainnent in neuromuscular propagation). The change in strength may 

in part be due to alterations in spinal excitability, but other factors must also 

contribute since the correlation between the two (although significant) is relatively 



weak (~ = 0.2). The lack of change in the T-reflex may suggest that, with the 

combined effect of a decrease in spinal excitability and increase in spindle 

responsiveness and/or muscle compliance, which in part compensate for the decline 

in a-motorneuron excitability, the resultant net change was zero. Result suggests 

that alterations in motor drive associated with fatiguing eccentric exercise probably 

represent a combination of the modulatory effects of a number of inputs (both 

excitatory and inhibitory) to the cr-motomeuron. 
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CHAPTER ONE 

INTRODUCTION 

I. I Background to the study 

Few problems in motor control have been more extensively studied than 

neuromuscular (NM) fatigue. Muscular fatigue can be defined as a reduction in 

force generating capacity of the neuromuscular system that occurs during sustained 

activity. and is often used to denote an acute impainnent of perfonnance (Bigland~ 

Ritchie & Woods, 1984). The cause of muscle fatigue has long been the subject of 

controversy as it is a complex phenomenon and may involve factors at many 

different levels contributing to force loss and therefore performance decrement. 

Failure anywhere along the pathway involved in muscie activity, from the 

central nervous system (CNS) to cross-bridge cycling, could result in a loss of force 

output from the muscle (Binder~Macleod & Snyder-Macklcr, 1993). The potential 

sites of failure can be divided into three general categories: those which lie within the 

CNS, those concerned with neural transmission from CNS to muscle, and those 

within the individual muscle fibres. Peripheral fatigue - failure of peripheral 

electrical propagation or contractile mechanisms ~ has been widely studied (Bigland

Ritchie, Johansson, Lippold, & Woods, 1983; Davis, 1995; Hal&.inen, 1995; Ingalls, 

Warren, Williams, Ward, & Armstrong, 1998; Jones, 1981; Lepers, Hausswirth, 

Maffiuletti, Brisswalter, & van Hoecke, 2000; Newham, Jones, & Clarkson, 1987; 

Stephens & Taylor, 1972). Central fatigue - insufficient activation of the 

motomeuron (MN)- has been studied much less, partly because of the complexity of 

the central nervous system and partly because of technical difficulties (Grimby, 

Hannerz, Borg, & Hedman, 1981 ). 

While it is generally agreed that much of the force Joss results from 

contractile failure of the muscle fibres, it may result from failure of peripheral 



electrical transmission, or from central fatigue (Bigland~Ritchie, Johansson, Lippold, 

& Woods, 1983; Stephens & Taylor, 1972). Impairment of muscle perfonnance is 

not ne..:essarily the limiting factor in force production from a fatigued muscle. Under 

some conditions, altered neural drive can contribute to muscle fatigue since it may be 

insufficient to generate the full force which it is capable of (Gandevia, Allen, Butler, 

& Taylor, 1996). These changes may involve altered descending supraspinal drive, 

changes resulting from influence of segmental spinal reflexes, and changes in 

recruitment patterns of a-motorneurons (Latash, 1998). 

Volitional and electrical tests are often used to quantify muscle fatigue 

(Binder-Macleod & Snyder-Mackler, 1993). Electromyography (EMG) and 

percutaneous electrical muscle stimulation (EMS) are two experimental techniques 

that have been frequently used to study muscle activation during a maximal isometric 

voluntary contraction (MVC) as well as the location and mechanisms of NM fatigue. 

Ir. combination with EMG, additional force induced by superimposed EMS during an 

MVC has been used to assist in identification of central and peripheral mechanisms 

of fatigue (Bentley, Smith, Davie, & Zhou, 2000). To detennine whether fatigue 

results from declining activation by the central nervous system, the rate of force loss 

during a MVC is compared with that from maximal nerve stimulation. If the force 

falls more quickly during voluntary activity and can be restored by nerve stimulation, 

some fatigue is said to be 'central': if not, it must have resulted from failure at some 

site distal to the point of stimulation and is tenned 'peripheral fatigue'. 

The loss of voluntary EMG activity can result from a decrease m a

motomeuron excitability. As H~reflex amplitudes are an indirect measure of the a

motorneuron excitability, they can then reflect the net excitability and inhibitory 

influences in the a-motomeuron pool. Any change in the input to o:~motomeurons 

potentially has the ability to alter their muscle output, therefore the H-reflex is a 

useful tool for investigating muscular fatigue (Leonard et al., 1994). 

Acute high intensity or prolonged duration exercise generally induces the 

development of fatigue that has detrimental effects on performance. Most studies of 

motomeuronal fatigue have been with static contractions (Gravel, Belanger, & 

Richards, 1987; Kirsch & Rymer, 1987), fewer studies with dynamic contractions 

(Hakkinen, 1993; Pinniger, Nordlund, Steele, & Cresswell, 2001), and even fewer 

eccentric contractions. In comparison with concentric and isometric modes of 



exercise, eccentric contractions (also referred to as negative repetitions) are believed 

to induce a larger impainnent of force-generating capacity, longer lasting changes in 

EMG signal, as well as morphological and histochemical changes (Kroon & Naeije, 

1991). It has been reported that the residual effects of futigue from a previous 

eccentric exercise bout may disrupt exercise performance during subsequent training 

sessions (Bentley et al., 2000; Hamlin & Quigley, 200lb; Michaut, Pousson, Babault, 

& Van Hoecke, 2002). The effects of fatigue induced by exercise with eccentric 

contractions have been observed to last from one hour (Fowles, Sale, & MacDougall, 

2000), up to 48 hours post-exercise (Hamlin & Quigley, 200\a; Smith eta\., 1994). 

Negative repetitions can lead to a high force load on the muscle, and are commonly 

used in athletic training. The effect of a high work load session on muscle has been 

found to be a primary concern among professional and recreational athletes who 

wish to simultaneously develop their endurance capacity and muscle strength 

(Bentley et a\., 2000). 

1.2 Significance ofthe study 

Despite the large volume of literature relating to muscle fatigue, the effect 

and recovery of the strength and motomeuron excitability of the triceps surae after a 

prolonged eccentric exercise protocol has yet to be investigated. Furthennore, the 

effects of fatigue are often measured during and immediately post the fatiguing 

protocol, but not for a prolonged recovery period. The mechanisms of muscle 

fatigue following eccentric exercise are not entirely understood and therefore warrant 

further investigation, particularly muscle activation. A greater understanding of the 

mechanisms associated with decrements in muscle function following eccentric 

exercise will be useful when considering recovery in exercise programming. 

1.3 Purpose of the study 

The purpose of this study was to examine the characteristics of and time 

course of changes in muscle function and MN excitability induced by a bout of 

3 



eccentric exercise of the lower leg. It was also to identify any relationships between 

MN excitability and voluntary force production following an exercise bout. 

1.4 Research Questions 

The research addressed four main questions: 

I, What is the time course for changes in voluntary strength and EMG parameters 

during recovery following an eccentric exercise protocol? 

2. What is the time course for changes in the evoked potentials during recovery 

following an eccentric exercise protocol? 

3. What are the possible mechanisms for the changes in strength, EMG and evoked 

potentials following the e·xercise protocol? 

4. Is there a relationship between changes in voluntary strength, EMG and evoked 

potentials following an eccentric exercise protocol? 



CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In order to understand the research questions more clearly there are areas of 

the study that need to be outlined with regard to muscle fatigue. These areas are 

spindle reflexes, maximal voluntary strength, voluntary EMG, muscle twitch, 

Creatine Kinase, eccentric exercise, and recovery from muscle fatigue. 

2.2 Spindle reflex 

A monosynaptic reflex (MSR) 

originates from primary spindle 

endings and makes only one 

connection (synapse) with CJ.-

motomeurons of the muscle that houses 

the spindle (as shown in Figure 1 ). The 

fibres travel from the muscle spindle to 

the spinal cord and make a 

monosynaptic connection with the a

motomeurons innervating the muscle 

(Latash, 1998). 

(l..motoneuron 

Ia-afferents 

muscle spindle 

Figure I. A monosynaptic reflex has 
only one reflex synapse in its reflex 
arc. The synapse is between an 
afferent fibre and an a-motomeuron 
(Latash, 1998, p.65). 

In the early 1940's Renshaw (1940) (cited in Crone, Hultbom, Mazieres, Morin,' 

Nielsen, & Pierrot-Deseilligny, 1990) introduced the MSR as a tool for investigating 

excitability changes in the MN pool. When used as a test reflex it allows one to 



assess the effect on the MN pool of conditioning volleys in sensory afferents or 

descending tracts. When MNs are facilitated, the size of the test reflex increases as 

more MNs are recruited from the subliminal fringe by the test Ia volley, the reverse 

occurring with inhibition (Crone et al., 1990). One of the most common 

monosynaptic reflexes used in research is the H~reflex. 

2.2.1 H-reflex 

The biggest fibres within a muscle nerve are Ia afferents that originate from 

the muscle spindles, and are considered to have the lowest threshold to electrical 

stimulation. Electrical stimulation of the Ia afferents induces the monosynaptic 

Hoffmann reflex (H~reflex) and has been used as a tool to assess motorneuronal 

excitability (Bulbu\ian & Darabo~ 1986; Garrett & Caulfield, 2001; Hoffman & 

Koceja, 1995 ). It has also been used to investigate the modulatory changes occurring 

at the level of the MN pool, as well as presynaptic inhibition acting on the Ia 

terminals (Butler, Yue, & Darling, 1993; Crenna & Frigo, 1987; Ellrich, Steffens, 

Treede, & Schomburg, 1998). 

•• 
Figure 2. A typical H~reflex and M
response to increasing stimulation 
intensity (Latash, 1998, p.67). 

The H-reflex of the lower leg is 

evoked by applying weak electrical 

stimulation of the lowest threshold to 

muscle spindle afferents in the tibial 

nerve at the knee, and has a latency of 

approximately 30ms. When the 

stimulation intensity increases the 

amplitude of the H-reflex increases as 

more Ia afferents are activated, and at 

some point the stimulus will induce 

action potentials in the axons of the Cl

motorneurons (Latash, 1998). 



A further increase in stimulus intensity will generate action potentials in more 

MNs, and the response (EMG and force) will be larger. For this reason the H~reflex. is 

used as a test of the level of excitability of the motor neuron pool~ the response of the 

H-reflex. and M-response to increasing stimulation intensity can be seen in Figure 2. The 

bigger the response, the greater the number of motor units that have contributed to the 

response, because of a higher level of excitability in the motor neuron pool (Enoka, 

1994). A more distal stimulation lengthens the onset latency of the H-reflex, and it is 

facilitated by voluntary contraction of the test muscle and inhibited by voluntary 

contraction of antagonist muscles. The H-reflex is also used clinically to test the 

function of the peripheral nerve and dorsal and ventral roots (EUrich eta!., 1998). 

Alpha MNs receive monosynaptic and polysynaptic input from sensorimotor 

cortical projections, brain stem nuclei, and type Ia, lb, II, III and IV sensory afferents, 

therefore the H-reflex amplitude reflects the net excitability and inhibitory influences 

in the a.-motomeuron pool (Leonard et a!., 1994 ). It has been suggested that the 

motorneuronal excitability is affected by several factors, which can be categorised as 

pre- and post-synaptic (Enoka, 1994). Pre-synaptic factors are the extrinsic properties 

of a MN (for example, the number of synaptic terminals per MN from a given input 

system, and spatial distribution of synaptic terminals onto a MN). The post~synaptic 

factors are the intrinsic properties of a MN ( eg. the total membrane area, electronic 

architecture of the MN which depends on the cell anatomy, the membrane time 

constant, and so on) (Funase, Imanaka, & Nishihira, 1994). 

H-reflex amplitudes decrease during muscle fatigue (Bigland-Ritchie, Jones, & 

Woods, 1979; Garland & McComas, 1990; Ross, Leveritt, & Riek, 2001). Garland et 

a!. (1990) found the soleus (SOL) H-reflex was significantly reduced and concluded 

that it was a result of the decreased excitability of the MN pool. Ross et al. (2001) 

concluded that a number of possibilities are related to spinal changes with muscle 

fatigue including supraspinal failure, segmental afferent inhibition, and depression of 

the MN excitability. 



2.2.2 M-response 

After the Group Ia afferents, the class of axons with the next largest diameter 

are the alpha axons, and they are recruited at a higher stimulation intensity than the Ia 

afferents (Figure 2). When action potentials are generated in the alpha axons, the 

motor response to electrical stimulation of the nerve is called theM-response and has a 

latency of about Sms in the lower limb, depending on the distance between the 

stimulation and the muscle spindle (Enoka, 1994). Whereas the H-wave is the reflex 

discharge of the a-motomeuron pool in response to the orthodromic afferent volley 

travelling in the large-diameter Ia fibres originating in the muscle spindles, the M

wave is a muscle response to direct activation of the axons of the same pool. It is 

elicited experimentally to probe the integrity of the circuit between the site of the 

stimulus (muscle nerve) and the site of the recording (usually the muscle EMG); that 

is, it tests the integrity of the NM propagation and can, under certain conditions, 

decrease during muscle fatigue (Bigland-Ritchie, 198 la). 

While the maximal M-wave (Mma~) is elicited by supramaximal nerve 

stimulation and is the electrical counterpart of the activation of all motor units of the 

pool, the maximal H-reflex (Hmax) is elicited by submaximal nerve stimulation 

(Maffiuletti et al., 2001). The ratio of maximal H-reflex amplitude to maximal M

response (Hmn~:Mmax or H:M) is thought to represent the number of MNs recruited 

through the MSR as a proportion ofthe MN pool (Garrett & Caulfield, 2001). 

2.2.3 T -reflex 

The tendon reflex (T -reflex) is a monosynaptic reflex induced by a quick 

muscle stretch induced by tapping on the muscle tendon. Muscle spindles are 

sensitive to muscle length and velocity and therefore a quick muscle stretch will lead 

to synchronised firing. The action potentials travel along the Ia afferents to the spinal 

cord and induce a reflex response (T -wave) of a-motorneurons leading to a twitch of 

the muscle (reviewed by Latash, 1998). The reported response of the T-reflex to 

muscle fatigue has been varied (A vela, Kyrolainen, & Komi, 1999; Enoka, Hutton, & 

Eldred, 1980). 



2.3 Muscle twitch 

The quanta! output of a motor unit (MU) is a twitch. A twitch represents the 

force-time response of muscle to a single input and can be characterised by three 

measurements: the contraction time from force onset to peak force (time to peak or 

TTP), the magnitude of the peak force (twitch peak torque or TPT), and the time it 

takes for the force to decline to one half of its peak value (half relaxation time or 

HRT). Contraction time is used as a measure of the speed of the contractile machinery 

(Enoka, 1994). 

Localised muscle fatigue has been shown to influence the electrical and 

mechanical properties of the muscle fibre of the active MUs, it is characterised not 

only by loss of force but also by a slowing of the contraction speed (Fowles et a!., 

2000; Fuglevand, Zackowski, Huey, & Enoka, 1993). With fatigue the amplitude of 

the action potentials of the MUs can decrease, the duration increase, the amplitude of 

the mechanical twitch reduce, and there can also be a prolongation of the relaxation 

process (Esposito, Orizio, & Veicsteinas, 1998; Smith eta!., 1994). Fowles et at. 

(2000) found a decrease in contractile force up to one hour following repeated passive 

stretching and concluded that the excitation frequencies required to maintain a given 

level of muscular activation were directly proportional to the speed of contraction. 

Therefore, the physiological response to any change in electrical excitation depends on 

simultaneous changes in muscle mechanics, and loss of force may not necessarily 

result from a decrease in electrical activity (Bigland-Ritchie, 1981 b). 

2.4 Electromyography 

Electromyography (EMG) is a method of registration of compound action 

potentials generated by muscle fibres (Latash, 1998). The most common approach to 

measuring EMG is to place an electrode near an excitable membrane and record the 

action potentials as they pass the electrode, with the action potential being recorded as 

a voltage-time event. Following an exercise bout, if the drop in force is accompanied 

by a parallel decline in electrical activity, fatigue is attributed to failure of excitation-



but if the electrical activity is undiminished the failure is attributed to events within the 

muscle (Bigland-Ritchie, 1981a). 

There is commonly a reduction in voluntary EMG following electrically 

induced or voluntary fatigue (Bentley et al., 2000; Bigland-Ritchie, Johansson, 

Lippold, & Woods, 1983; Fowles et a!., 2000; Fuglevand et a!., 1993). Bigland

Ritchie, Johansson, Lippold et al. (1983) showed a 40% decline in voluntary EMG 

following a sustained MVC, and concluded that the loss of force may have resulted 

from inadequate muscle activation in addition to failure of its contractile mechanism. 

The origin of the decline in motor unit activation is in part reflexively dependent on 

afferent signals from the contracting muscle. This decliqe my be advantageous in that 

it helps to protect peripheral NM structures from excessive exhaustion and prevent 

impulse frequencies higher than those needed for a full tetanic activation of the 

fatiguing muscle fibres (A vela eta!., 1999), for example, when cont;actile properties 

are slowing. 

2.5 Creatine Kinase 

Increased serum levels of Creatine Kinase (CK) is commonly used as an 

indirect marker of the microtrauma which can occur in response to unaccustomed 

exercise or an increase in the volume or intensity of exercise (Clarkson, Byrnes, 

McCormick, Turcotte, & White, 1986; Newham, Jones, & Edwards, 1983). The level 

of CK and time course of recovery depends on the type and intensity of the exercise 

bout. It has been shown that CK increases significantly following moderate and high 

intensity exercise, as well as eccentric exercise bouts (Clarkson et al., 1986; Dolezal, 

Potteiger, Jacobsen, & Bent!dic~ 2000; Newham et al., 1987; Newham, Jones et at., 

1983; Raastad & Hallen, 2000; Smith eta!., 1994). It has been reported that there is a 

larger increase in CK with high intensity exercise than with moderate intensity 

exercise (Raastad & Hallen, 2000), and depending on the exercise prescription, CK 

peak can occur anywhere from six hours to five days (Clarkson, Kroll, & McBride, 

1980; Newham, Mills, Quigley, & Edwards, 1983; Raastad & Hallen, 2000). 



2.6 Eccentric exercise 

The particular site, or combination of sites, that contribute to reduction in force 

generating capacity is likely to depend on the type and intensity of the muscular 

activity causing the fatigue. There is emerging evidence that the activation of a motor 

unit pool may vary with the relative magnitude of the muscle and load torques. When 

the muscle torque is less than the load torque, the active muscle lengthens in an 

eccentric contraction. Its been reported that it is difficult for subjects to generate a 

maximal CNS drive to the motor unit pool during eccentric conditions, at least in 

comparison to that achieved in concentric conditions (Enoka & Stuart, 1992). As well 

as the specific type of fatiguing load, the magnitude of a fatigue-induced decrease in 

the NM performance is related to the overall volume and intensity of the session 

(Hakkinen, 1993). Strenuous heavy resistance continuous muscular work usually 

leads to momentary changes both in the maximal voluntary neural activation of the 

exercised muscles and in muscular strength (Hakkinen, 1993 ). 

Impairment of force-generating capacity due to eccentric exercise is well 

demonstrated (Hamlin & Quigley, 200la, 200lb; McHugh, Connolly, Eston, Gartman, 

& Gleim, 2001; Moritani, Oddson, & Thorstensson, 1990; Newham, Mills et at., 1983; 

Pearce, Sacco, Byrnes, Thickbroom, & Mastaglia, 1998), with the impainnent 

persisting for several days or weeks (Hamlin & Quigley, 2001b; Kroon & Naeije, 

1991; Michaut et al., 2002; Saxton et al., 1995; Smith et al., 1994). Strength losses 

after eccentric exercise have been reported to be greatest in the first 24 hours after a 

bout of eccentric exercise and may well be on the way to recovery, or have fully 

recovered, by the time that soreness develops (Hamlin & Quigley, 200lb). 

The issue of whether force decrease induced by eccentric muscle actions could 

also be partly attributed to central fatigue is still unsettled. After voluntary eccentric 

exercise, Saxton et a!. (I 995) did not find any central fatigue following 50 maximal 

eccentric contractions, whereas Gibala et al. (1995) reported a 6% voluntary activation 

decrease using the twitch interpolation technique after eight sets of eight repetitions at 

80% of one repetition maximum. Most of the studies dealing with eccentric muscle 

actions have primarily focused on strength recovery, while the mechanisms of the 

recovery of fatigue following an eccentric exercise are less discussed (Gibala, 



MacDougall, Tamopolsky, Stauber, & Elorriaga, 1995; Michaut et al., 2002; Saxton et 

a!., 1995). 

2. 7 Muscle fatigue 

Volitional activation of skeletal muscle requires proper functioning of both the 

CNS and peripheral NM pathways, therefore muscle fatigue may reflect the ability to 

achieve full voluntary muscle activation (Bigland-Ritchie, 198lb). Maximal voluntary 

contraction force declines with prolonged exercise and has been used as a most 

common index of fatigue. The drop in muscle force may be accompanied by a 

decrease in a.-motomeuron excitability and reduced frequency of firing of individual 

motor units (Latash, 1998). The central processes involve the activation of the motor 

portions of the cerebral cortex and MN pool in the ventral gray matter of the spinal 

cord. Peripheral activation begins with the transmission of action potentials along the 

peripheral motor nerve axon, continues across the neuromuscular junction (NMJ) to 

the muscle membrane and the transverse tubular system, and ends with the cross

bridge formation between the myosin heads and actin filaments (Stackhouse et al., 

2001). 

Controversy exists over whether central fatigue plays a major role in the loss of 

force associated with fatigue. It is often assumed that there is a complete activation of 

the muscle when no extra force can be elicited by electrical stimulation. However, 

under some conditions, there may be a failure of central motor drive which results in 

sub-maximal activation of the muscle (Kent-Braun & Le Blanc, 1996; Stackhouse et 

at., 2001 ). A number of studies have indicated that muscle fatigue is associated with a 

decrease in neural activation of motor units (Bigland-Ritchie, Johansson, Lippold, 

Smith, & Woods, 1983; Bigland·Ritchie & Woods, 1984; Enoka & Stuart, 1992; 

Hakkinen, 1993; Moritani et al., 1990). It has also been observed that during muscle 

fatigue changes in the corticomotor excitability occur (Gandevia et al., 1996; Sacco, 

Thickbroom, Byrnes, & Mastaglia, 2000), as well as a modulation of muscle activation 

in order to preserve force output and NM transmission (Kirsch & Rymer, 1987; 

Leonard et al., 1994). 
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2.8 Recovery of muscle fatigue 

Only a small number of muscle fatigue studies have followed recovery over a 

prolonged period. Kroon and Naeije (1991) simultaneously recorded muscle 

performance and the surface EMG up to 25 hours after the dynamic exercise of the 

human biceps brachii muscle to exhaustion. The study indicated that after the heavy 

dynamic exercise the recovery rate of the EMG was similar to the rate of recovery of 

muscle performance. A decrease in MVC up to one hour post-exercise has been 

reported by Fowles et al. (2000) and Fuglevand et al. (1993), while Hamlin et al. 

(200 I b) found a 12% decreased in EMG and was still decreased at 48 hours. Smith et 

al. ( 1994) found a significant time effect of eccentric exercise on strength, and that the 

greatest reduction was found 48 hours after exercise, but was only represented by a 9% 

decrease in strength. 



CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Subjects 

Subjects were recruited from the staff and student population of the School of 

Biomedical and Sports Science at Edith Cowan University, as well as from the friends 

and family of the researcher. Eleven healthy adults (four female, seven male), with a 

mean age, height, and weight of25.8 ± 6.4 years, 172.7 ± 7.94 em, and 72.5 ± 10.4 kg 

respectively, participated in the study. All subjects completed an infonned written 

consent (Appendix A), medical questionnaire (Appendix B), and physical activity 

questionnaire (Appendix C) prior to testing. Subjects were screened to eliminate those 

who: had participated in heavy resistance tmining in the last six months; had muscular 

I neurological disorders; had injuries of the lower leg in the last six months; or had 

been taking medications that may affect the CNS or muscle function. Approval to 

undertake research involving human subjects was given by the Committee for the 

Conduct of Ethical Research at Edith Cowan University. 

3.2 Equipment 

Dual Ankle Dynamometer (Ribuck Industries) 

Electric Stimulator (model DS7, Digitimer) 

Bipolar Stimulation Electrode (Medelec) 

Microsoft Excel2000 

AM LAB Computer Software (version 2) 

Surface EMG Conductive Adhesive Electrodes (Meditrace 200 Ag/AgCI, Kendall) 

Conductive Gel (MES) 



Modified cal fraise machine (RM Sporting Supplies} 

Monark Cycle Ergometer (818E, Ergomedic) 

Spectrophotometer (Reflotron, Boehringer-Manheim) 

Creatine Kinase test strips (Reflotron, Boehringer-Manheim) 

Lancet (Boehringer-Manheirn) 

Capillary tubes (Bohringer-Manheim) 

Metronome (System Maelzel) 

Tendon hammer (AMA medical products) 

Goniometer (AMA medical products) 

3.3 Exercise protocol 

The protocol consisted of one exercise bout of 180 repetitions on a modified 

calf raise machine (Figure 3a). The repetitions were eccentric in nature, and had a 

weight load of 60% of each subjects concentric one repetition maximum (lRM). 

Three sets of 60 repetitions were perfonned, with a three minute rest time between 

sets. Each repetition took approximately I 0 seconds to complete at a metronome 

governed pace, and the entire exercise bout took approximately two hours to complete. 

To standardise the protocol, the right leg was exercised, with the left leg as the control 

for all subjects. 

Subjects stood under the shoulder pads on the machine with both feet in 

dorsiflexion, then were instructed to plantarflex through their full range of movement 

(ROM). The pin was secured to maintain the position of the machine while the subject 

obtained the position of the exercised leg for the next repetition (Figure 3b). The 

subject then slowly lowered to full dorsiflexion with the body weight supported on the 

exercised leg only. The control leg was left in a non-weight bearing position which 

was decided by the individual subject. Subjects were instructed to maintain correct 

body positioning by keeping their back straight, and their knee extended. A standard 

set of instructions was given prior to the commencement of testing (see Appendix D 

for protocol instructions to the subject). 

Prior to the exercise protocol the subjects performed a standardised warm up 

consisting of two minutes of cycling on an ergometer at 50 watts (50 revolutions per 



minute x 1 kg), followed by two minutes stretching of the lower leg muscles. The 

subjects were asked to refrain from other exercise, stretching or massage during the 

course of the study. 

3.4 Data collection and analysis 

3.4.1 Calf raise machine 

The equipment used for the exercise protocol was a modified calf raise 

machine (RM Sporting Supplies) used with free weights (Figure 3). It w.as a basic 

standing calf raise machine with slight modifications, such as a pin locking system to 

allow for heavy eccentric loading without the concentric phase of a calf raise. 

(a) (b) 

Figure 3. Front view of the calf raise machine used in the exercise protocol (a), 
with a lateral view of the pin locking system (b). 
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3.4.2 Testing Apparatus 

A custom built (Ribuck Industries) Dual Ankle Dynamometer (DAD) was used 

for the testing protocol. The DAD consisted of a base frame with a variable seat 

height, mounted with two footplates that could be adjusted for both plate height and 

distance between the two plates. A lateral view of the DAD can be seen in Figure 4. 

1. Strain gauge battery 

2. Foot plates 

3. Foot strapping 

4. Belt pulley system 

5. Force transducers 

6. Adjustable seat height 

Figure 4. Lateral view of subject positioning and foot strapping during testing on 
the DAD. 

Each footplate was attached to a rotating rod connected via a belt pulley system 

to a displacement transducer. Using a force transducer fixed to the rotating rod via a 

5mm turnbuckle (Zenith), each footplate could be locked into position to give plantar 

flexion torque at variable angles. The force transducers (Radio Spares model 021-300) 

were foil (copper nickel alloy) uni-axial strain gauges (resistance 120!1, Wheatstone 

bridge) receiving a constant DC input from a 9V battery (Figure 5). All output signals 
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from the strain gauges were relayed via shielded cabling to a personal computer (PC) 

running AMLAB software. 

Figure 5. Location of force transducers in relation to 
the footplates on the DAD. 

3.4.3 Subject positioning for testing 

The evoked reflex and tendon tap tests (section 3.4.7) were performed on the 

exercised leg, while MVC tests (section 3.4.8) were performed on both the exercised 

and control leg. For all testing on the DAD the subject sat with the trunk thigh angle 

at 90° flexion, the knee angle at 90° flexion, and the foot at 10° dorsiflexion (measured 

using a goniometer). The feet were securely strapped to the foot plates over the region 

of the extensor reticulum, and the distance between the foot plates was adjusted so that 

the line from the knee to ankle of both limbs was parallel to each other and was 

therefore perpendicular to the axis of rotation. The ... height of the footplate was also 

adjusted so the axis of rotation of the plate was aligned with the lateral malleolus. A 

general requirement was that the subjects were relaxed and passive throughout the 

tests and that the leg positions were maintained by the equipment rather than by the 

subject (Figure 4). 
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3.4.5 Data acquisition software 

All data from the DAD was recorded, stored and analysed using AMLAB 

'Windows' based software (version 2.0) and hardware (single digital signal processor, 

mini-rack interface, and 18 channel isolated ground card) computer application 

package. Signals from the DAD were sampled and viewed as a voltage change using 

AMLAB and the data was stored on hard disk for offline analysis. The sampling rates, 

scaling factor, channel gain, and storage factors for the wave recordings of the reflexes 

can be seen in Table 1. Conversions from volts to torque (Nm) were based on 

calculations determined via prior calibration procedures. Calibration involved loading 

each DAD footplate fixed at 10° dorsiflexion with 251b in weights and recording the 

subsequent voltage reading through AMLAB. The same method of weight application 

was used on the Cybex 6000 isokinetic dynamometer, hence the following calculation 

was used to convert voltage recordings to torque values in Nm. Calibration was 

carried out weekly during the testing period. 

25lb on the Cybe~ = 17.43 Nm 

25lb on the DAD foot plate= 63.44 V 

63.44/17.43 = 3.64 

:. 1Nm=3.64V 

3.4.6 Electromyography and mechanical recording 

After careful preparation of the skin (abrasion and cleaning with alcohol) pairs 

of surface electrodes (Meditrace 200, Ag/AgCI) were placed on the soleus (SOL) 

approximately l3cm above the calcaneus and below the muscle fibres of the 

gastrocnemius, as well as on the gastrocnemius medial head (MG) approximately 7cm 

below the caput fibulae. The surface electrode pair were placed at a distance of 30mm 

centre to centre. Electrode placements can be seen in Figure 6. The reference 

electrode was placed on the bony prominence of the patella. Actual electrode 

positions were carefully measured for each subject to control that they were identical 

for each time period. EMG analysis of muscular activity was conducted during the 

MVC and reflex protocols. EMG signals collected during the refle~ protocols (retle~ 

EMG) were amplified, filtered, disphtyed, stored and analysed in raw format. EMG 



signals collected during the MVC protocol (rmsEMG) were amplified, filtered, 

rectified, displayed, stored using AMLAB, then exported to Microsoft Excel where an 

average of the values collected over one second was calculated for data analysis 

(Table 1). 

Table 1. 

Figme 6. Electrode placement on the MG and SOL 
used dming EMG analysis. 

Settings, Samnling Rates, Scaling Factors, Channel Gains and Stor~e Factors for Data 
Collection with Amlab of the EMG and Torgue Data for the Evoked Reflex and MVC 
Protocols 

Filtering 
Sampling Scaling Channel Storage 

Protocols Low pass High pass 
Rate (Hz) Factor Gain Decimation 

Factor 

ReflexEMG 3.52 1025.16 4000 2 2000 1 

rmsEMG 5.74 478.98 1000 2 4000 1 

Torque 

Left gauge 1000 -245 100 5 

Right gauge 1000 -295 175 5 
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3.4.7 Reflex measurement: muscular twitch and surface action potential 

Reflexes were evoked by electrical stimulation of the tibial nerve m the 

popliteal fossa on the exercised leg only, and were elicited using a high voltage 

stimulator (model DS7, Digitimer). A bipolar stimulation electrode (Medelec), 

consisting of two small foil pad electrodes wrapped in wet gauze and covered with 

conductive gel, was pressed into the popliteal fossa, and the tibial nerve was 

stimulated with single electrical pulses (duration O.lms) delivered at 10 second 

intervals. The optimum site of stimulation was first located by holding the stimulation 

probe by hand, then the electrode was manipulated until a consistent H-reflex was 

found and the M-response was minimal, subsequently, the stimulation electrode was 

finnly affixed to the site with velcro straps. The stimulus intensity was increased by 

0.5 - 1.0 rnA with each trial until no increases in the M-wave could be seen. The 

tendon reflex (T -wave) was elicited using a tendon hammer by performing a 

mechanical percussion on the Achilles. The test reflex was elicited eight times with 

10 seconds rest in between, and an average of the eight trails was used in data analysis. 

From the twitch of the evoked reflexes, the maximal twitch torque (TPT), time 

to peak (TTP), and half relaxation time (HRT) was measured. The TPT and TTP 

measurements were both taken from the initiation of the twitch torque to the point of 

the peak torque, and the HRT was taken after the peak torque from 90% to 45% of the 

recovery of the twitch (Alway, MacDougall, & Sale, 1989). Also measured were the 

peak-to-peak amplitudes in volts (V) of the surface action potentials of the H-reflex 

and Tendon reflex waves for each trial for each subject. The peak to peak amplitude 

of the maximum motor response (Mmax) was measured, and the peak H-reflex (Hmu) 

was expressed as a ratio of the Mma11. (Hmax:MmH ratio). 

3.4.8 Strength measurement 

The MVC test was perfonned pre-exercise, after each exercise set, and for each 

recovery time period. Peak torque and rmsEMG obtained during the maximal 

isometric contraction for the exercised and control legs were determined from the 

average of three trials. The subject was instructed that they were able to lift the heel 

off the footplate, but refrain from holding the DAD frame with their hands. Three 



trials were performed with a single electrical pulse delivered towards the end of the 

third trial in order to determine if there was a change in the torque readings when 

stimulated. Subjects were encouraged verbally to exert a maximal constant effort by 

isometrically contracting the calf muscle into plantarflexion against the footplate for 

10 seconds during the trials. 

3.4.9 Blood sampling 

Using a lancet to puncture the skin capillary blood samples were drawn from 

the subjects fingertip. The blood was collected in a 30mL heparinized capillary tube 

and analysed for blood CK using a portable spectrophotometer (Reflotron, 

Boehringer~Manheim) after each testing period. 

3.5 Time course of recovery 

The time course of recovery f0r each of the variables measured following the 

exercise bout was determined. Therefore, the H-reflex, tendon tap, and CK tests were 

perfonned immediately post; and l, 24, 48, and 72 hours post exercise, while the 

MVC tests were also measured after each set of the exercise protocol. The schedule 

for the test protocols can be seen in table 2. 

Table2 

Time Schedule for the Test Protocol 

Hours post exercise 

Protocol Baseline Exercise 0 24 48 72 

Exercise Protocol • 
Evoked reflexes • • • • • • 
Tendon tap • • • • • • 
MVC • • • • • • • 
CK • • • • • • 
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3.6 Statistical analysis 

Statistical analysis on the data of the 19 parameters acquired during the testing 

period was carried out using SPSS (version 10.0) for Windows. Variables acquired 

from the MVC test were assessed using a l x 8 repeated measures factorial ANOV A, 

with post hoc contrasts to baseline. All other variables were assessed using a 1 x 6 

repeated measures factorial ANOV A, with post hoc contrasts to baseline. 

Greenhouse~Geisser corrections were applied to significant analyses of variance that 

did not meet Maulchy' s sphericity assumption, with the level of significance set at R < 

0.05. A Pearson product moment correlation matrix was generated to show the degree 

of relationship among the variables. Descriptive statistics for the baseline values 

(mean ± standard deviation) were tabulated for all variables, and the data was 

normalised to the baseline values and analysed for changes according to the baseline. 

Reproducibility data was collected during a pilot study, and from the results the 

coefficient of variation of repeated measures was calculated for each of the dependent 

variables (Nonnan & Streiner, 1999). 

3. 7 Limitations 

There were several limitations to the present study. Firstly, with the mean age 

of the subjects being 26 ± 6.83, and subjects who were resistance trained or injured 

were excluded, therefore, the subjects may not have been a true representation of the 

population. Secondly, there were two instances of equipment failure during the testing 

period, which meant that some data was missing for two testing time points. Thirdly, 

the subjects were relied upon to perform MVCs to the best of their capabilities, and 

were given consistent and strong encouragement by the same tester. It was also 

assumed that the subjects refrained from stretching and exercise within the testing 

period, however, it was only suggested and not enforced or monitored. Fourthly, a 

limiting factor in the present study was that central activation ratio was not measured, 

therefore the voluntary force and the maximal evokable force could not be compared. 

Finally, the methods themselves are not without their limitations, the electrically 
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stimulated contractions can be uncomfortable, and may cause inadvertent stimulation 

of the antagonist muscles of the lower leg. 
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CHAPTER FOUR 

RESULTS 

4.1 Baseline Values and Reliability 

Table 3 shows the baseline results 

obtained for this study. The mean torque 

produced during baseline maximal voluntary 

contractions were 68.5 ± 18.8 Nm for the 

exercised (right) leg, with the control (left) leg 

strength being marginally lower (56.5 ± 16.7 

Nm). Baseline voluntary EMG (rrnsEMG) 

ranged from 0.20 ± 0.08 mV for the control 

MG to 0.33 ± 0.13 mV for the exercised SOL, 

with the SOL generally higher than the MG 

values. Figure 7 shows the response of the 

SOL evoked potentials to increasing stimulus 

intensity for a single individual. The 

amplitude of the H~wave for the SOL was 

larger than that of the MG, values of the SOL 

H:M ratio was almost double that of the MG 

Hmax:Mma~· and the baseline value of the peak 

twitch torque was 9.2 ± 2. 7 Nm. 

" H • • 

! ,J ,J ,J "I so I 
Time(ms) 

Figure 7. The SOL M-response 
and H-retlelt response to 
increasing stimulus intensity. 

In onler to test the reproducibility of the dependant variables, a pilot study 

was conducted prior to testing with a sub-sample of the subjects (n=t l ). Coefficient 

of variation of repeated measures was less than 5% for the majority of tests, with the 
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reproducibility ranging from 2. 79% for the exercised SOL rrns EMG up to 8.67% for 

the SOL T-wave (Table 3). 

Table 3. 

Baseline Descrigtive Statistics for the Avemge of Three Trials of the De12endent Variables of 
11 subjects, and the Coefficient QfVariation (CV) result~ 

Variables Mean SD CV(%) 
Maximum Voluntary Torque (Nm) 

Left 56.58 16.73 5.28 
Right 68.59 18.89 4.97 

Maximum Voluntary EMG (mV) 
Left soleus 0.29 0.12 2.79 
Left gastrocnemius 0.20 0.08 5.16 
Right soleus 0.33 0.13 3.29 
Right gastrocnemius 0.31 0.09 6.98 

H-wave (mV) 
Soleus 3.60 I. 74 5.06 
Gastrocnemius 1.33 0.64 6.85 

M-wave (mV) 
Soleus 8.45 2.06 3.28 
Gastrocnemius 7.73 3.89 3.05 

H~n~~~:Mm•x ratio 
Soleus 0.41 0.12 5.33 
Gastrocnemius 0.22 0.15 4.22 

Evoked twitch 
Half relaxation time (ms) 67.00 15.87 1.38 
Time to peak (ms) 129.00 6.47 2.97 
Torque (Nm) 9.29 2.76 3.09 

T-reflex 
Soleus amplitude (mY) 2.20 0.89 8.67 
Gatrocnemius amplitude (mY) 0.82 0.42 4.16 
Torque(Nm) 4.21 1.26 8.24 

Creatine Kinase 124.00 53.29 

4.2 Effects of exercise 

4.2.1 Voluntary contractions 

All subjects showed a reduction in MVC performance over the course of 

three sets of the exercise protocol, there was however, a large variation in voluntary 
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torque loss ~between subjects, with strength declining to 49.24 - 88.44% of the 

baseline values. An example of the reduction in torque and recEMG for a single 

subject can be seen in Figure 8. The mean decline in MVC torque was 82.6 ± 10.0% 

of the baseline (Q = 0.003) after the third set. Similarly, the decline in rmsEMG 

occurred post set two at 76.2 ± 22.1% of the baseline (Q = 0.027) for the SOL and 

37.6 ± 14.5% of the baseline (Q = 0.002) for the MG. For the non-exercised leg, 

there were no significant changes in the torque (94. 8 ± 9. 7% ·after set one), SOL 

rmsEMG (76.3 ± 23.6% after set one), or MG rmsEMG (99 ± 35.8% after set three) 

over the entire testing period. The reduction in MVC torque and rmsEMG of the 

exercised leg following each set of the exercise protocol can be seen in Figure 9. 
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Figure 8. Reduction in torque and EMG with a single electrical stimulus(*) and 
following the commencement of the MVC (+)before (a) and immediately after the 
exercise bout (two hours from the commencement of exercise) (b). There was a 
reduction in the twitch and H-wave, but no change in theM-wave, of the evoked 
potentials. A reduction in the torque produced with the MVC can also be seen. 
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Figure 9. Reduction in torque and EMG during a MVC for the exercise period 
obtained immediately post set one, post set two, and post the final set (* Q < 0.05, 
•• Q < 0.01). 

4.2.2 Evoked responses 

Figure 10 shows the effect of the exercise bout on the H-reflex and T -reflex. 

All subjects showed a variable reduction in the SOL H-reflex of24.5- 83.16% of the 

baseline, with a mean decline to 68.7 ± 31.0% of the baseline (.Q = 0.015). The MG 

H-reflex showed a similar exercise effect as the SOL, but the change was not 

significant. 
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Figure 10. Effect of the exercise protocol on the H-reflex (H-wave) and Tendon 
reflex (T-wave) across the testing period ( n < 0.05, n < 0.01). 

The mean decline in the SOL Hmax:Mmax ratio (H:M) was 74.8 ± 27.8 % of 

the baseline (Q = 0.01), with the MG H:M showing a non-significant decline of24.0 

± 35.1% of the baseline (Figure 11). There were no significant changes in the SOL 

and MG M-wave (86.18 ± 14.4% and 91.8 ± 15.7% respectively) from the baseline 

values within the testing period. The amplitude of the evoked twitch showed a 

similar decline to the MVC torque, H-reflex and H:M immediately following the 

exercise bout at 79.0 ± 16.0% of baseline (Q = 0.002), this can be seen in Figure 12. 

There were, however, no significant changes in the HRT and TTP of the evoked 

twitch, or with of the variables associated with the T-reflex (T-wave) after the 

exercise protocol (Figure 10). 
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Figure 11. Effect of the exercise protocol on the Hmax:Mmax ratio across the testing 
period, c• Q < 0.05) 

4.2.3 Creatine Kinase 

All subjects showed an increase in CK following the exercise protocol. There 

was a large variation between subjects with CK increasing to 118.3-471.2% of the 

baseline values, but the average change was not significant. 

4.3 Recovery 

4.3.1 Recovery of maximal voluntary contractions 

Figure 12 portrays the prolonged recovery of MVC torque of the exercised 

leg, 48 hours post-exercise it was at 84.9 ± 12.4% of the baseline (Q = 0.017) but had 
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recovered by 72 hours. Although not measured, there was no observed change in the 

MVC torque with twitch interpolation following the exercise bout. 
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Figure 12. Recovery of the maximal isometric torque of the exercised leg and 
control leg, and evoked twitch from the baseline values (* Q < 0.05, * Q < 0.01) 

Figure 13 portrays a different pattern of recovery of the rmsEMG compared 

to torque with an MVC, with both SOL and MG rmsEMG recovering slightly after 

one hour post exercise. The SOL declined again at,.81.3 ± 8.0% of the baseline (12 = 

0.001), while the MG had a larger but non-significant decrease at 69.7 ± 32.0% of 

baseline at 24 hours post exercise. By 48 hours post-exercise the SOL and MG 

rmsEMG had again recovered to almost the pre exercise values and remained the 

same at 72 hours. 
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4.3.2 Recovery of evoked responses 

Similar to that of the MVC torque, the SOL H-reflex was still reduced one 

hour post-exercise at 68.2 ± 19.7 of the baseline (Q = 0.001). It slowly increased 

over the 72 hour period but was still reduced by 7% from the pre exercise value. 

Although not significant, the T -wave responses post-exercise displayed a similar 

pattern to that of the H-reflex immediately post exercise, but increased above the 

baseline at 24 hours (Figure 1 0). The SOL H:M remained decreased one and 24 

hours post exercise, but had recovered by 72 hours (Figure 11 ). 

As seen in Figure 12, the evoked twitch showed a similar exercise effect to 

that of the MVC torque with the amplitude of the evoked twitch still decreased one 

hour post-exercise at 86.6 ± 16.0% of baseline (Q = 0.038), but showed a more rapid 

recovery back to baseline at 24 hours (96.9 ± 28.6). There were no significant 

changes in the HRT and TTP of the evoked twitch in the time course of recovery. 
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4.4 Relationships between the variables 

Linear correlation coefficients were calculated for all the dependent variables 

to determine if the evoked, voluntary, electrical, and mechanical parameters of the 

study were related (details in Appendix F). Significant correlations included the 

SOL rmsEMG and strength, SOL H-reflex and strength, SOL H:M ratio and 

strength, evoked twitch amplitude and strength, SOL H-reflex and SOL T -wave, and 

SOL H-reflex and evoked twitch amplitude. The correlation figures (Figures 14 -

16) show the individual results for all time slots and all subjects c· ), as well as the 

group mean results for each time period ~ ). Figure 14 shows the correlation 

between strength and the SOL rmsEMG with a MVC. The pattern of the mean data 

points over time shows a similar reduction at first, then the SOL rmsEMG recovered, 

declined, then recovered quickly back to baseline. In contrast, the strength remained 

decreased until 48 hours post exercise. 
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torque, ( • individual data ,• groups means for time periods)(* R < 0.05) 
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Figure 15 shows the correlation between strength and the SOL H:M ratio. A 

similar pattern is displayed in terms of percentage change, however the SOL H:M 

recovered at a slightly faster rate. 
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Figure 15. Correlation between the SOL H:M ratio and maximal voluntary 
isometric torque ("individual data ,• groups means for time periods (* 12. < 
0.05) 

Although there is a correlational relationship between the SOL T-wave and 

H-wave (as indicated by the highly significant r value) there is no similar pattern of 

recovery (Figure 16). The time period mean data points show the H-wave decreased 

post-exercise then recovered back to baseline by 72 hours, while the T-wave remains 

relatively unchanged. There is a large spread of data points below and above 100% 

of the baseline, which indicates a large variability of subject post-exercise responses. 
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CHAPTER FIVE 

DISCUSSION 

5.1 Changes in maximal voluntary contraction 

The main finding of the present study was that an eccentric exercise bout, 

consisting of a two hour calf lowering protocol, induced a significant decrease in 

voluntary torque and EMG, with an associated decline in the amplitude of the H~ 

response. The strength losses were, however, smaller than expected at the beginning 

of the study, based on the fact that the subjects were near exhaustion at the endofthe 

task. One possible explanation for this was that the method of MVC testing had a 

different body positioning from the exercise protocol. Alway et al. (1989) found that 

during testing, conducted in a seated position with the knee at 90°, the gastrocnemius 

was in a sub~optimal position for force generation. It would have been more 

effective to measure maximal isometric torque on the same calf raise machine as the 

exercise was perfonned on. Although this was not possible in the present study it 

should be kept in mind for future studies using this model. 

The observed reduction in the force generating cap"tcity supports previous 

reports of strength decrement following voluntary eccentric exercise (Bentley eta!., 

2000; Esposito eta!., 1998; Hamlin & Quigley, 200lb; Kroon & Naeije, 1991; Smith 

et al., 1994). Following a 20 minute stretch exercise Behm, Button, & Butt (2001) 

found a 12% decrease in maximal isometric strength. Bentley et al. (2000) found 

that following a 30 minute cycling protocol maximal voluntary force was 

significantly reduced post-exercise and the mechanical and electrical activities of the 

MU of the quadriceps were altered. In comparison with other prolonged activities in 

the quadriceps, the average muscular torque losses of 18% after the two hour 

eccentric exercise in this study were smaller than those reported after a prolonged 

running exercise (Sherman eta!., 1984), but closer to those observed from a two hour 
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cycling protoc·ol of 14% (Lepers et al., 2000). The results of this study showed that 

following a bout of eccentric exercise, voluntary torque fully recovered to pre

exercise values by 72 hours. Similarly, Smith et al. (1994) found the greatest 

reduction at 48 hours, while Hamlin & Quigley (200lb) also found force still 

decreased at 48 hours post exercise. This suggests that there was minimal muse le 

damage resulting from the exercise, which supports the relatively small CK 

increments measured following the eccentric exercise bout. 

5.2 Reduction in EMG 

The decrease in MVC torque was associated with a reduction in the SOL 

(23%) and MG (29%) voluntary rmsEMG activity. A number of other studies have 

indicated that muscle fatigue leads to a decrease in the neural activation of motor 

units (Bigland-Ritchie, Johansson, Lippold, Smith et al., 1983; Bigland-Ritchie & 

Woods, 1984; Enoka & Stuart, 1992; Hakkinen, 1993; Moritani et al., 1990; Nottle 

& Sacco, 2002). A vela et al. ( 1999) found a 16.5% decrease in SOL EMG following 

a one hour repeated passive stretching protocol. Similarly, following a 20 minute 

stretch exercise Behm et at (200 I ) found a 12% decrease in maximal isometric 

strength, a 20% decrease in EMG, and a II% decrease in TPT, but no change in 

tetanic force. They concluded that the stretch-induced decrease in MVC could be 

partially attributed to decreases in muscle activation, and that prolonged stress on the 

joint receptors could possibly lead to inhibitory effects upon the MN (Behm et al., 

2001). Fowles et al. (2000) found that EMG was significantly depressed after 30 

minutes of cyclical passive stretching but had recovered by 15 minutes. Similarly, a 

reduction in integrated EM G 24 hours following a resistance exercise bout has been 

reported, and it was suggested the reduction in isometric force was possibly due to 

fatigue of central origin, as evidenced by the decreased integrated EMG level 

(Linnamo, Hakkinen, & Komi, 1998}. The difference in the above studies with 

regard to the present study would likely be a result of the differing type and duration 

of the exercise protocols. 

The EMG reductions shown in this study suggest a decreased neural drive to 

the muscle. The reduced neural input could imply the occurrence of central fatigue, 
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which can be caused either by supraspinal fatigue or by changes in the inhibitory as 

well as disfadlitory signals originating from the contracting muscle (A vela et al., 

1999; Bigland~Rit...:hie, Dawson, Johansson, & Lippold, 1986). The simultaneous 

decrease in the firing rate and in the amplitude of the of the MU action potential and 

the de~recruitment of some highly fatigable MU would lead to a decrease in the 

EMG signal (Esposito eta!., 1998). 

Although decreases in MN firing rates and spinal reflexes have been 

demonstrated during fatigue (Bigland-Ritchie, Johansson, Lippold, & Woods, 1983; 

Garland & McComas, 1990), such alterations are not themselves indications of 

central fatigue (Gandevia et at., 1996). MN tiring rates have shown to decrease 

during a sustained voluntary contraction but this is a functionally useful change 

which matches activation to the slower contractile properties of the muscle. 

However too great a slowing of neuronal firing would constitute central fatigue 

(Gandevia et al., 1996). It has been shown that because of central fatigue, maximal 

voluntary force will actually be less than the maximal evocable force, so that any 

evoked twitch force would be a larger percentage of maximal voluntary force than of 

the maximal evocable force (Gandevia et at., 1996). A limiting factor in the present 

study was that central activation ratio was not measured, therefore the voluntary 

force and the maximal evokable force could not be compared, however, there was no 

observable change in the amplitude of the twitch torque. 

EMG and strength displayed differing recovery rates in the present study, 

with a similar reduction at first, but no similarities thereafter. Kroon & Naeije 

(1991) found the recovery rate of the EMG was similar to the rate of recovery of 

muscle performance up to 25hours after dynamic exercise of the human biceps 

muscle to exhaustion, with the MVC force decreased until four days post~exercise 

and EMG altered for 10 days post an eccentric exercise bout until exhaustion. 

Kukulka, Russell, & Moore ( 1986) found that the changes in electrical activation and 

force generating capabilities of soleus during sustained, maximum isometric efforts 

were all consistent with a muscle designed to optimally resist fatigue. It has been 

argued that the slowing of MN firing in response to fatigue may act as a 

compensatory mechanism for preserving optimum force output and limiting NM 

block. A reduction on neural firing proportional to the prolongation of the muscle 

twitch, would aid in force being maintained at maximum tetanic levels without 
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unwarranted neural drive (Kukulka, Russell, & Moore, 1986; McHugh, Connolly, 

Eston, & Gleim, 2000). 

5.3 Neuromuscular propagation and Excitation-Contraction coupling 

A possible explanation for the reduction in force following the eccentric 

exercise protocol could be either a failure in, or weakened, NM propagation. 

However, the possibility of weakened NM propagation is excluded by the 

nonsignificant changes in the maximal M-wave in the present study. Nattie & Sacco 

(2002) found no alteration in the SOL or MG M-wave following a bout of repeated 

submaximal eccentric contractions of downhill walking. Bigland-Ritchie, Johansson, 

Lippold, & Woods (1983) also found that during a 60 second MVC there was a 

decrease in the EMG but not in the M-wave, and concluded that the reduction in 

force was not due to a NM block, but due to a reduction in the firing pattern of the 

MN pool. It appears that the MN firing rates elicited by voluntary effort is regulated 

and limited for each muscle to the minimum requirement for maximal force 

generation, therefore preventing NM transmission failure and optimising motor 

control (Bigland-Ritchie & Woods, 1984). Nevertheless, the alteration ofM-wave in 

human muscle with fatigue is still controversial. An increase in M-wave following a 

bout of 70 repeated eccentric contractions has been reported (Hortobagyi, Tracy, 

Hamilton, & Lambert, 1996), while a decreased M-wave post-exercise has also been 

shown with sustained submaximal contractions (Fuglevand et al., 1993), a prolonged 

cycling exercise (Lepers et al., 2000), and an acute eccentric resistance bout 

(Michaut et al., 2002). This is largely due to the differences in tasks and type of 

contractions perfonned to induce fatigue. 

Another possible explanation for the reduction in force due to the exercise 

protocol is an alteration in the excitation-contraction coupling (E-C coupling) 

process, and is demonstrated by a large number of studies of muscle damage induced 

by eccentric exercise (Davies & White, 1981; Esposito et al., 1998; Hamlin & 

Quigley, 2001a; Newham, Mills et al., 1983; Pearce et al., 1998). It has been argued 

that eccentric contractions damage the contractile machinery causing a force deficit, 

and are not associated with a reduction in excitation as assessed by surface EMG. 
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The reduction in twitch torque found in the present study tends to support the notion 

of an altered E-C coupling. However, since the twitch torque had recovered by 24 

hours, while voluntary strength and EMG remained reduced, some portion of the 

strength loss may be related to E-C coupling failure, but can be attributed to other 

mechanisms also. Further studies will require quantifying E-C coupling change by 

following alterations in tWitch torque ratios during recovery from such exercise. 

5.4 Decrease in cx-motorneuron excitability 

Similar to that of the MVC torque, the SOL H-reflex and H:M ratio were still 

reduced by 32% and 25% respectively at one hour post-exercise and slowly 

recovered back to baseline over 72 hours. The significant decrease in the SOL H:M 

following the eccentric exercise protocol supports previous research, however the 

extent of the reduction of the H:M ratio in the present study is smaller than previous 

reports (Avela eta!., 1999; Garland & McComas, 1990; Trimble & Harp, 1998). 

Trimble & Harp (1998) found a 36% decrease in the SOL Hma](:Mmax. as well as a 

potentiation of the lateral gastrocnemius H;M for 10 minutes post a concentric

eccentric exercise bout, while Garland & McComas (1990) found a 47% reduction 

following electrically induced fatigue. Similarly, A vela et al. (1999) found a 44% 

decrease following a one hour repeated passive stretching condition and concluded 

that the reduction was due to a decline in stretch reflex sensitivity and the decreased 

a.-motorneuron pool excitability. Only a 12% reduction in the H:M was found by 

Bulbulian & Darabos (1986) following low intensity exercise. They concluded that 

the highly significant change was due to a tranquillising response under conditions of 

high intensity exercise. 

The H-reflex reflects the amplitude of the net excitability and inhibitory 

influences in the a.-motomeuron pool (Leonard et a!., 1994). However, as 

modulation of reflex amplitude is somewhat independent of central drive this 

indicates that reflex magnitude is not merely a reflection of motorneuron excitability, 

but can also be influenced by additional neural mechanisms (Pinniger et al., 2001). 

In general, the size of the H-reflex is affected by the ongoing net excitatory drive 

onto the a.-motomeurons, a reduced H-reflex represents either a reduced ex.citatory 
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drive to the a-motomeurons, or an enhanced inhibitory effect (A vela et al., 1999). 

Alpha MNs receive monosynaptic and polysynaptic input from sensorimotor cortical 

projections, brain stem nuclei, and type Ia, Ib, II, Ill and IV sensory afferents (Enoka, 

1994), and can be seen with Figure 17, a model of the inputs and outputs to the a-

motomeurons. 

presynaptic 
Inhibition 

Descending corticospinal, 
propriospinal & other 

drives 

Figure 17. Summary of inputs and outputs to a-motomeurons. The 
solid circles are inhibitory, and the dotted curved region at the pre
motorneuronal terminals denotes presynaptic inhibition acting 
selectively on the afferent paths to the motomeurons (Gandevia, 
2001, p.l735). 

Figure 18 represents the possible routes for peripheral input to change 

motomeurons (and force production) with fatigue. Panel one shows the activation of 

III, IV and Ia afferents reinforcing muscle contraction through activation of the 

fusimotor (y MN) path, Panel two summarises the view of H-reflex testing after 

fatigue, Panel three depicts the disfaciliation accompanying a decline in spindle input 

during sustained isometric contractions, and Panel four shows a more complex 

explanation of force modulation based on the presynaptic, spinal and supraspinal 

action of group III and IV afferents (Gandevia, 2001 ). 
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Figure 18. Summary of the possible routes for peripheral inputs to change the 
firing rates of motomeurons in fatigue. The effects of tendon organs are not 
included. Panel one depicts reflex facilitation ofmotorneurons exerted through 
the action of group lii and IV afferents on the fusimotor~muscle spindle system. 
Panel two depicts direct reflex inhibition of motomeurons by group Ill and IV 
afferents. Panel three depicts disfacilitation of motorneurons produced by the 
reduction in firing of muscle spindle endings with fatigue. Panel four depicts 
group lli and rv afferents acting via supraspinal drives and shows their complex 
spinal actions involving both presynaptic and polysynaptic actions (Gandevia, 
2001, p.\755). 

There is no a priori reason why the declines in EMG and reflex excitability 

should be identical. There are probably many important differences in the spinal 

circuitry involved in the H-reflex and the descending drive onto motomeurons, and 

in the postsynaptic responses of the motomeurons to the two forms of excitatory 

command. Such differences could cause a fatigue-induced reduction in 

motomeuronal excitability to affect the EMG and H-reflex excitability to unequal 

extents, particularly when the potential effects of presynaptic inhibitory circuits are 

taken into account (Garland & McComas, 1990). 

Therefore a number of mechanisms could account for the prolonged post

exercise decrease in the H-reflex seen in this study. One possibility is presynaptic 

inhibition. Pre-synaptic factors affecting the a-motomeurons are the extrinsic 
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properties of a MN and include factors such as the number of synaptic terminals per 

MN from a given input system, the spatial distribution of synaptic terminals (Funase 

et at., 1994). Inhibition of the H~reflex may be attributed to several mechanisms. 

These may include the inability to evoke volleys in Ia fibres, and a reduced 

probability of transmitter release from the presynaptic terminal (homosynaptic post~ 

activation depression). Presynaptic inhibition of Ia afferents from plantar flexor 

agonists, the origin of which is possibly the decreased resting discharge of the 

muscle spindles because of increased compliance of the muscle from the eccentric 

contractions, would lead to a reduced H~reflex (Pinniger et al., 2001). Also, group 

Ib, and spindle group II along with special cutaneous afferents receive abundant 

presynaptic contacts capable of mediating presynaptic inhibition (Gandevia, 2001). 

The influence of Ib afferents could be considered to be the likely cause of reflex 

modulation as Ib afferents are sensitive to very small changes in muscle tension and 

are influential during active muscle (Pinniger et al., 2001 ). Group II afferents are 

predominantly regarded as indicators of static length changes; therefore, the 

influence of muscle spindle discharge on reflex modulation has been found to arise 

from predominantly Ia afferents (Pinniger et at., 2001), and group III afferents 

innervating tendons arc plentiful and may exert presynaptic inhibition on the group 

Ia fibres (Priori et a!., 1998}. The presynaptic inhibition of the Ia afferent terminals 

due to stimulation of the group Ill and IV muscle afferents may be a valid 

explanation for the H-reflex depression, although some other forms of inhibition 

could also be involved (Avela et at., 1999). The intrinsic properties of the 

motorneuron may change with fatiguing exercise, but the examination of this 

phenomenon goes beyond the scope of this study. 

Another possible explanation for the decreased H-reflex with fatigue is due to 

postsynaptic mechanisms. The post-synaptic factors are the intrinsic properties of a 

MN and include the total membrane area, electronic architecture of the MN which 

depends on the cell anatomy, the membrane time constant (Funase et al., 1994). 

Finally, a third possible explanation is that tonic pain can influence the motor system. 

It has been found that decreases in the H-reflex 20 minutes after the disappearance of 

pain was due to a reduction in the excitability of the cortical and spinal motorneurons 

(Lc Pera et al., 2001), although this is unlikely due to the nature of the exercise bout 
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in the present study. Whatever factors are responsible for reducing excitability in 

this model must be long lasting, as recovery is complete only after 72 hours. 

To conclude, the findings suggest the decrease in a.-motorneuron excitability 

due to presynaptic inhibition from the III and IV afferents, a decrease in Ia afferent 

output and inhibition from the exercising muscle. Voluntary strength, EMG and the 

reflex excitability of the a-motomeuron pool were all significantly depressed 

following fatigue of the plantar flexors induced by an eccentric exercise bout, and the 

respective depressions could not be explained by peripheral failure, or reduced neural 

drive alone. With fatigue there is likely to be a net reduction in spinal reflex 

facilitation and increase in inhibition, thus the motomeurons are harder to drive by 

volition. 

5.5 Tendon reflex 

The increase in spindle excitability following an exercise protocol is usually 

reflected by an increase in the tendon reflex. The amplitude and rate of stretch of the 

muscle depend both on the mechanical features of the stimulus (site of impact, angle 

of impact, force delivered) and on the compliance of the muscle tissue (Brunia, 

1973 ). In the present study there was a 30% reduction in H-wave, therefore a similar 

decrease would be expected in the T-wave as the action potentials travel along the Ia 

afferents to the spinal cord and induce a reflex response (T-wave) ofa-motomeurons 

leading to a tYYitch of the muscle. Unexpectedly, the T -reflex remained virtually 

unchanged. It is possible that the tendon response could have increased as a result of 

increased muscle compliance, but showed no change due to an increase in inhibition 

(as shown by a decreased H-reflex). Another possible explanation, is that the small

diameter afferents (rather than the activity of the large-diameter axons) resulting 

from the reduced sensitivity of the muscle spindles to stretch, lead to a modulation of 

the T-wavc (A vela et al., 1999). The findings lead to the suggestion that with further 

research a number of variables should be tested when using the Tendon tap as a 

measure of a-motomeuron excitability. 
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5.6 Relationship between the variables 

Of the variables examined significant correlations were found for strength 

and the SOL H-relle<, H:M, T-retlex, and EMG, SOL H:M and EMG, and SOL H· 

reflex and SOL T -reflex. This suggests that the above variables are associated with 

each other and/or modulated similarly. However, the relative weakness of the 

relationships suggest that a combination of factors also make a large contribution to 

strength changes induced by fatigue, and can be explained by the mechanisms 

described earlier. 

5. 7 Conclusions 

A bout of eccentric exercise of the triceps surae resulted in a strength loss of 

18% (which recovered by 72 hours), and a reduction in the H-reflex of30%, which 

remained declined at 72 hours. The respective depressions could not be explained by 

peripheral failure, or reduced motor activation alone. The decrease in torque and 

EMG with an MVC suggest force loss due to a decreased neural drive, there was a 

change in twitch peak torque, but it recovered by 24 hours. The decline in voluntary 

EMG activity could not be explained by loss of excitability ofNMJs or muscle fibre 

membranes. Although the small decline in the maximal M-wave indicated the 

presence of altered muscle fibre membrane or of slowed impulse conduction, this 

was much Jess than the fall in voluntary EMG, and the decrease in the H-reflex 

indicates a decrease in excitability of the a.-motomeurdn pool. 

The most likely exp~anation for the prolonged depression of the H-reflex is a 

reduction in the excitatory drive from the Ia afferents, and elevated presynaptic 

inhibition to the a.-motomeurons. Therefore, the decrease in MVC force was likely 

due to a decreased spinal excitability as a result of fatigue. The lack of agreement for 

changes in the T-reflex and H-reflex during recovery may be due to a decrease in 

spinal excitability, but an increase in spindle sensitivity and compliance brought 

about by the nature of the contractions, lead to a net change of zero. Result suggests 

that alterations in motor drive associated with fatiguing eccentric exercise probably 
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represent a combination of the modulatory effects of a number of inputs (both 

excitatory and inhibitory) to the a-motomeuron. 

The exercise protocol used in this study was unique, with the results 

suggesting that the prolonged eccentric exercise bout was sufficient to impair the 

central and peripheral mechanisms of force generation in plantarflexors for a period 

of 72 hours. This has implications for athletes when planning their exercise 

programs, as the mechanisms of fatigue and recovery in specific training regimes 

should be identified for an optimal training program, particularly when planning 

training sessions around competitions. It would be interesting to further investigate 

this concept, incorporating the limitations of the present study, by looking at the 

effect of muscle function and motomeuron excitability with eccentric exercise bouts 

of different intensity levels. 
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INFORMED CONSENT FORM 

"Changes to the neural drive and motor neuron excitability following eccentric exercise causing 
muscle fatigue of the Triceps Surae" 

Thank you for agreeing to be a participant in my research into the area of muscle fatigue. The aim of 
presenting you with the following information is to inform you of the nature ofthe study and the tasks 
you will be completing during the testing period. The research aim is to determine whether muscle 
excitability decreases following a bout of eccentric exercise that causes muscle fatigue in the lower 
leg, I am interested in the relationship between central muscle fatigue, motomeuron excitability, 
stretch reflex and voluntary muscle contraction following exercise. 

As a subject you will be asked to complete an exercise task that will involve fatiguing the muscle of 
th.e lower leg by performing a three sets of calf raises on a specifically designed calf raise machine. 
Muscle soreness may be experienced in the days following each exercise task. 

There are four tests that you will be asked to complete on the testing days (prior to, immediately after, 
and three days following each of the two exercise tasks). 
I. A Maximal Voluntary Contraction (MVC) test to determine your maximal calf strength. 
2. A tendon tap test of the Achilles tendon to determine your calf stretch reflex. 
3. Testing for motor unit excitabilit)' by electrical stimulation (some discomfort may be experienced, 

but it is of very short duration). 
4. And testing for Creatine Kinase via a small blood sample to measure the amount of muscle 

damage. 
You will be familiarised with the testing procedures before you begin testing so that you are fully 
aware of the procedures involved. AU personal information and test results will remain confidential 
and will not be used for any p<it'f.IOSe other than the current study. 

As the study involves an exercise task and assesses changes over time, it is asked that you do not 
make major changes to your diet and that you don't participate in exercise during the testing period. 
Due to the nature of the study, it is required that subjects are healthy at the time of testing, therefore it 
is asked that you complete a medical and physical activity questionnaire prior to the commencement 
of testing. 

Participation in this study is voluntary and you may withdraw at any time, for any reason. If there are 
any questions relating to the above information please feel free to contact me for clarification or 
information. 

Sincerely, 

Mikala Pougnault 
Postgraduate student 
School of Biomedical and Sport Science 
Edith Cowan University 
Phone:  
E·mail: m.pougnault@ecu.edu.au 

Or Paul Sacco 
Supervisor 
School of Biomedical and Sport Science 
Edith Cowan University 
Phone: 9400 5539 
E·mail: p.sacco@ecu.edu.au 

c-cc-c:;----:c-;:---:-
7

-,---,---;-;:-- have read the informed content, h~ve completed a medical and 
physical activity questionnaire and have had all questions relating to the study answered. 

I agree to participate in this study realising that I can withdraw at any time without prejudice. I agree 
that the research data obtained from this study may be published, provided I am not identifiable in any 
way. 

Participant'------------- Date: ________ _ 

Investigator:. ___________ _ Date: ____ / __ 
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MEDICAL QUESTIONNAIRE 

The following questionnaire is designed to establish a background of your medical history, 
and identify any health factor that may influence your performance, 
All infonnation is strictly confidential. 

Personal Details 
Name: Date of Birth: _____ _ 

Gender: M IF 

Medical History 
Have you had I do you have any of the following? If YES, please list the details 

High or abnonnal blood pressure Y I N 
High cholesterol YIN 
Rhematic fever Y IN 
Heart abnormalities YIN 
Asthma YIN 
Diabetes Y IN 
Epilepsy Y I N 
Back I neck pain Y I N 
Severe allergies Y I N 
Dizziness I Fainting Y I N 
Infectious diseases Y I N 
Neurological disorders Y I N 
Neuromuscular disorders Y I N 

Are you on any medications? Y I N 
Have you been injured recently? Y I N 
Have you done any exercise 
training in the last six months? Y IN 
Is there any other condition not 
mentioned which may affect your 
perfonnance? Y I N 

Family History 
Do any of the following exist in your family? 

Cardiovascular disease 
Pulmonary disease 
Stroke 

Lifestyle habits 

Y/N 
YIN 
Y/N 

Do you exercise regularly? Y I N 
Do you smoke nicotine products? Y I N 
Do you consume alcohol? YIN 
Do you consume tea or coffee? Y I N 
Do you take recreational drugs? Y IN 
Do you take supplements or 
ergogenic aids? Y IN 

If YES, please list the details 

If YES, how many times per week 
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PHYSICAL ACTIVITY QUESTIONNAIRE 

This questionnaire is designed to establish details of your physical activity routine and 
fitness level. 

All infonnation is strictly confidential. 

PERSONAL DETAILS 

Name:---------- Contact Number:--------

DateofBirth: __ / __ / __ Gender: M/F 

PHYSICAL ACTIVITY HISTORY 

I, What level of fitness would you consider yourself'? 

0 sedentary D mildly trained D moderately trained D very trained 

2. What is the type of training that you most participate in? 

D light aerobic D power D resistance D endurance Dsport 

3. What is the main exercise that you participate in? (ie- gym, run, basketball) 

4, What is the extent of your physical activity? 

Frequency 0 Daily I almost daily 
0 3~5 times per week 
0 I ~2 times per week 
0 A few times per month 
0 Less than once per month 

Intensity 0 Sustained heavy breathing and perspiration (eg, running) 

Time 

0 Intermittent heavy breathing and perspiration (eg, tennis I jogging) 

0 Moderately heavy (eg, recreational sports) 

0 Moderate (eg, volleyball/ brisk walk) 
0 Light (eg, walking) 

0 Over 30 minutes 

0 20-30 minutes 
0 10-20 minutes 
0 Under I 0 minutes 
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INSTRUCTIONS FOR EXERCISE PROTOCOL 

CONCENTRIC IRM 
Step on the machine 
Place body under the shoulder pads, going into a semi squat position, back straight 
Place feet shoulder width apart 
Slowly straighten knees until locked 
Place right leg in the middle of the pad 
Slowly lower to full dorsiflexion 
Keep back straight and knee locked 
Slowly lift heel into full plantar flexion 
- five attempts at determining one RM 
- two minutes rest is allowed between each repetition 

Calculating the Eccentric weight load from the concentric 
= 60% of concentric I RM 
=40%EccRM 

EXERCISE PROTOCOL 
Warm Up 
Cycling for two minutes (50 revolutions per minute x one kg per minute) 
5 minutes of stretching to follow, concentrating on the muscles of the TS 
-soleus (20 sees each leg) x 2 
-gastrocnemius (20 sees each leg) x 2 
- quadriceps (20 sees each leg) 
-hammy (20 sees each leg) 

Protocol 
-three x 60 repetitions, or until the subject are unable to continue 
- MVC test of the exercised and control leg after each set using the DAD and Am lab 
- I 0 minutes rest between each set 

Calf Raise and Lower 
Step on the machine 
Place body under the shoulder pads, going into a semi squat position, back straight 
Step on with both feet, shoulder width apart 
Slowly straighten knees until locked 
Slowly lift heel into full plantar flexion 
The arm is locked in place with the pin lock 
Place feet shoulder width apart 
Place body under the shoulder pads, back straight. 
Place right leg in the middle of the pad 
Lift to full plantarflexion and then slowly lower (for three seconds) to full 
dorsiflexion 
Repeat from step 3 

AFTER PROTOCOL 
Full testing protocol of the dependent variables 
The subjects will be asked to refrain from any stretching or massage ofthe TS post
exercise 
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Right Average torque (Nm) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0 1 
55.91 
81.32 
84.00 
76.87 
41.75 
80.80 
67.90 
55.01 

53.61 
56.18 
78.66 
69.47 
41.45 
73.92 
56.18 
44.25 

52.13 44.63 
53.68 48.16 

106.23 103.72 
av 68.69 60.93 

so 18.96 18.90 
SEM 5.72 5.70 

Right PEAK torque (Nm} 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
av 

SD 
SEM 

0 1 
58.97 
82.60 

127.59 
78.05 
47.51 
79.89 
75.99 
59.35 
52.13 
55.26 

111.60 
75.36 

25.23 
7.61 

57.45 
57.92 

122.29 
73.98 
49.32 
80.30 
59.40 
57.15 
45.91 
53.96 

113.09 
70.07 

25.61 
7.72 

1.5 
50.38 
50.26 
77.43 
59.08 
42.53 
48.23 
65.37 
45.67 
40.00 
44.96 
98.40 
56.57 

17.12 
5.34 

2 
50.09 
54.37 
66.78 
57.90 
40.20 

63.74 
42.56 
37.00 
45.85 
96.80 
55.53 

17.56 
5.55 

1.5 2 
54.74 55.01 
49.58 53.63 

119.51 105.16 
64.77 66.94 
43.01 45.53 
52.49 
75.53 66.21 
54.17 50.41 
44.23 37.00 
50.76 54.77 
99.73 113.28 
64.41 64.99 

24.53 25.09 
7.40 7.94 

3 
43.90 
69.41 
63.50 

41.25 
39.79 
65.85 
44.69 
39.70 
47.91 
97.65 
55.37 

18.71 
5.92 

3 
47.43 
68.92 
98.64 

43.63 
43.50 
71.76 
52.85 
44.39 
47.91 

104.34 
62.34 

23.00 
7.27 

MVC 

24 

41.64 
77.19 
67.43 
60.75 
32.88 
48.89 
65.69 
55.93 
44.58 
48.78 
93.95 
57.97 

17.51 
5.28 

24 

43.09 
76.14 

100.34 
60.75 
32.88 
62.66 
68.83 
62.57 
50.41 
52.55 

100.27 
64.59 

21.31 
6.42 

.. 
37.31 
86.43 
66.22 
60.97 
32.09 
56.36 
57.46 
50.69 
44.06 
54.20 
99.91 
58.72 

19.99 
6.03 

72 
47.24 
95.78 
81.67 
72.28 
43.54 
75.76 
66.76 
45.61 
48.92 
53.04 

101.54 
66.56 

20.64 
6.22 

.. 72 
37.31 47.24 
85.26 105.37 

101.52 128.38 
61.27 72.47 
32.09 65.04 
66.91 80.60 
57.46 71.54 
52.85 45.61 
46.83 53.41 
58.94 57.43 

104.61 105.42 
64.10 75.68 

23.96 26.93 
7.23 8.12 

Right AVflrage torque (Nm)- nonnalised 
011.52 

1 100.00 
2 100.00 
3 100.00 
4 100.00 
5 100.00 
6 100.00 
7 100.00 
8 100.00 
9 100.00 
10 100.00 
11 100.00 
av 100.00 

%change 
so 0.00 

SEM 0.00 

95.89 
69.09 
93.64 
90.36 
99.29 
91.49 
82.73 
80.44 
85.62 
89.72 
97.64 
88.72 
11.28 

8.82 
2.66 

90.10 
61.80 
92.17 
76.85 

101.86 
59.69 
96.26 
83.02 
76.73 
83.76 
92.63 
83.17 
16.83 
13.52 
4.08 

89.59 
66.85 
79.49 
75.32 
96.28 

93.87 
77.36 
70.98 
85.43 
91.12 
82.63 
17.37 
10.09 
3.19 

Right PEAK torque (Nm)- normalised 
0 1 1.5 2 

1 100.00 
2 100.00 
3 100.00 
4 100.00 
5 100.00 
6 100.00 
7 100.00 
8 100.00 
9 100.00 
10 100.00 
11 100.00 
av 100.00 

%change 
so 0.00 

SEM 0.00 

97.43 
7Q12 
95.85 
94.79 

103.82 
100.51 
78.17 
96.30 
88.06 
97.65 

101.34 
93.09 
~·1 

10.36 
3.12 

92.83 
60.02 
~3.67 

82.99 
90.53 
65.71 
99.39 
91.28 
64.84 
91.86 
89.36 
85.68 
14.32 
12.15 
3.66 

93.29 
64.92 
82.42 
85.76 
95.64 

89.76 
84.93 
70.98 
99.12 

101.51 
86.85 
13.15 
11.80 
3.73 

3 24 48 72 
76.52 
85.36 
75.60 

98.79 
49.24 
96.98 
81.23 
76.16 
89.26 
91.92 
82.31 
17.69 
14.26 

4.51 

74.48 66.72 84.50 
94.92 106.28 117.78 
80.28 7a83 97.23 
79.02 79.31 94.02 
78.75 76.85 104.28 
60.51 69.75 93.76 
96.74 84.62 98.31 

101.66 92.51 82.91 
85.51 84.51 93.83 
90.88 100.98 98.81 
88.44 94.05 95.58 
84.65 84.95 96.45 
15.35 15.05 3.55 
11.69 12.45 9.34 

3.52 3.75 2.82 

3 24 
80.42 73.07 
83.43 92.18 
77.31 78.65 

77.84 
91.84 69.21 
54.44 78.43 
94.44 90.58 
89.04 105.43 
85.15 96.69 
86.71 95.10 
93.49 89.85 
83.63 86.09 
16.37 13.91 
11.66 11.29 
3.69 3.41 

.. 72 
63.27 80.12 

103.22 127.56 
79.57 100.62 
78.51 92.85 
67.54 136.91 
83.75 100.88 
75.62 94.15 
89.04 76.85 
89.83 102.46 

106.67 103.92 
93.73 94.46 
84.61 100.98 
15.39 -0.98 
13.62 17.84 
4.11 5.38 



Right Soleus EMG (volts) 

, 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 .. 
SD 

SEM 

0 1 
0.34 
0.23 
0.53 
0.22 
0.35 
0.31 
0.46 
0.16 
0.18 
0.32 
0.50 
0.33 

0.13 
0.04 

0.35 
0.14 
0.47 
0.24 
0.36 
0.34 
0.22 
0.13 
0.17 
0.26 
0.42 
0.28 

0.12 
0.03 

Right gastroc EMG (volts} 

Base 1 
1 0.44 0.33 
2 0.21 0.09 
3 
4 
5 
6 
7 
8 
9 
10 
11 
av 

SD 
SEM 

0.39 
0.21 
0.36 
0.40 
0.31 

0.16 
0.31 
0.26 
0.31 

0.09 
0.03 

0.40 
0.19 
0.35 
0.25 
0.18 

0.14 
0.25 
0.25 
0.24 

0.10 
0.03 

1.5 
0.37 
0.11 
0.30 
0.19 
0.27 
0.20 
0.18 
0.16 
0.17 
0.27 
0.39 
0.24 

0.09 
0.03 

1.5 
0.29 
0.09 
0.22 
0.12 
0.25 
0.21 
0.20 

0.08 

0.26 
0.23 
0.19 

0.07 
0.02 

2 
0.34 
0.15 
0.21 
0.20 
0.48 

0.32 
0.13 
0.17 
0.20 
0.40 
0.26 

0.12 
0.04 

2 
0.26 
0.12 

0.20 
0.13 
0.34 

0.20 

0.14 
0.21 
0.25 
0.21 

0.07 
0.02 

3 
0.32 
0.16 
0.32 

0.39 
0.32 
0.42 
0.10 
0.17 
0.31 
0.40 
0.29 

0.11 
0.03 

3 
0.45 
0.18 
0.23 

0.21 
0.26 

0.19 

0.26 
0.25 
0.25 

0.09 
0.03 

24 
0.27 
0.21 
0.43 
0.18 
0.32 
0.25 
0.43 
0.11 
0.12 
0.25 
0.40 
0.27 

0.11 
0,03 

24 
0.34 
0.25 
0.34 
0.13 
0.12 
0.13 
0.36 

0.08 
0.12 
0.23 
0.21 

0.11 
0.03 

48 
0.50 
0.28 
0.45 
0.~8 

0.30 
0.26 
0.44 
0.14 
0.14 
Q-.31 
0.46 
0.32 

0.13 
0.04 

48 
0.79 
0.34 
0.40 
0.18 
0.18 
0.12 
().28 

0.10 
0.17 
0.29 
0.29 

().20 
0.06 

72 
0.38 
0.25 
0.51 
0.21 
0.44 

0.43 
0.14 
0.09 
0.32 
0.47 
0.32 

0.15 
0.05 

72 
0.47 
0.26 
0.45 
0.20 
0.18 
0.19 
0.30 

0.10 

0.17 
0.22 
0.25 

0.12 
0.04 

Right Soleus EMG • normalised 

011.52 3 24 48 72 
100.00 101.76 108.61 98.53 93.64 77.98 147.95 

91.15 122.35 
79.61 84.91 
81.33 83.64 
90.75 84.32 
83.32 85.71 
93.72 95.17 
69.68 89.89 
69.83 79.13 
77.60 94.76 
80.23 92.33 
81.38 96.38 
18.62 3.62 

8.00 20.61 
2.41 6.21 

112.13 
109.43 
95.82 
95.37 

123.32 

2 
3 
4 

100.00 60.23 47.31 
100.00 87.72 56.61 
100.00 11113.80 86.73 

65.17 68.51 
38.90 60.04 
94.75 

5 100.00 102.36 77.24 136.83 110.95 
6 100.00 
7 100.00 
8 100.00 
9 100.00 
10 100.00 
11 100.00 
av 100.00 

%change 
so 0.00 

SEM 0.00 

112.43 
47.76 
81.26 
95.83 
79.96 
85.41 
87.59 
12.41 
19.98 

6.02 

64.99 
38.96 
98.53 
97.34 
83.76 
78.88 
76.27 
23.73 
22.14 

6.68 

Right gastroc EMG -normalised 

Base 1 1.5 
1 100.0 75.46 66.31 
2 100.0 43.73 42.16 
3 100.0 102.97 55.05 
4 100.0 90.64 58.52 
5 100.0 95.86 67.89 
6 100.0 62.97 52.20 
1 100.0 59.24 64.54 
8 
9 100.0 84.43 47.13 
10 100.0 79.44 83.96 
11 100.0 95.69 86.17 
av 100.0 79.06 62.39 

%change 20.94 37.61 
so 0.00 18.89 14.51 

SEM 0.00 5.97 4.59 

70.20 
80.63 
98.86 
62.49 
81.17 
82.75 
17.25 
26.63 
8.42 

2 

104.36 
89.97 
64.21 
99.24 
94.35 
80.36 
86.58 
13.44 
17.52 
~54 

3 24 48 

94.01 
85.69 
53.51 
99.28 
94.49 
96.33 

3.67 
18.59 

5.88 

72 
60.21 103.20 77.97 181.02 107.55 
57.52 82.76 115.36 158.62 121.32 
49.79 58.02 87.53 100.76 113.66 
63.99 61.74 86.17 97.75 
92.50 33.30 49.41 50.23 

53.02 31.07 30.24 46.96 
65.62 84.32 115.89 91.89 98.59 

88.93 118.65 
67.33 83.10 
95.05 95.94 
71.22 84.88 
28.76 15.12 
16.59 21.85 

5.53 7.73 

46.72 
39.94 
87.69 
·~72 
30.28 
32.01 
10.12 

62.09 
55.97 

111.04 
92.72 
7.28 

47.90 
15.15 

63.52 
53.61 
84.39 
83.76 
16.24 

28.05 
8.87 



Left Average torque (Nm) 
0 1 

1 41.73 46.79 
2 63.22 51.78 
3 89.10 88.73 
4 74.08 71.15 
5 36.54 32.18 
6 
7 
8 
9 

51.85 
44.51 
50.33 
57.87 

54.18 
41.82 
4804 
48.12 

1.5 
44.63 
59.47 
84.67 
67.95 
36.26 

54.78 
41.29 
48.20 
47.95 

2 
39.11 
70.79 
86.o7 
68.04 
27.47 

55.27 
44.14 
48.90 

3 
42.01 
72.12 
88.60 

26.92 

54.18 
47.06 
43.19 
48.71 

24 
42.64 
73.30 
86.07 
68.13 
23.26 

47.83 
41.42 
57.53 
54.48 
98.54 

48 
34.33 
80.02 
86.26 
62.00 

5291 
43.03 
57.03 
50.38 
93.34 

72 
37.76 
75.95 
88.10 
73.27 

42.25 
52.79 
51.71 
91.33 

10 
11 

•• 56.58 53.64 53.91 54.97 52.85 59.32 62.15 64.15 

so 
SEM 

16.73 16.77 15.00 19.09 19.22 22.57 20.20 20.68 
5.58 5.59 5.00 6.75 6.79 7.14 6.73 7.31 

Left Soleus EMG (voJts) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

•• 
so 

SEM 

0 1 
0.45 
0.16 
0.42 
0.29 
0.21 

0.17 
0.31 

0.29 

0.12 
0.04 

0.32 
0.08 
0.43 
0.20 
0.19 

0.17 
0.14 
0.21 

0.22 

0.11 
0.04 

1.5 
0.33 
0.19 
0.42 
0.23 
0.18 

0.23 
0.11 
0.15 

0.23 

0.10 
0.04 

2 
0.32 
0.22 
0.43 
0.27 
0.24 

0.14 

0.27 

0.10 
0.04 

3 
0.33 
0.21 
0.42 

0.20 

0.16 
0.22 

0.26 

0.10 
0.04 

24 
0.32 
0.24 
0.39 
0.20 
0.22 

0.18 
0.11 
0.18 
0.24 
0.23 

0.08 
0.03 

.. 
0.29 
0.24 
0.33 
0.18 

0.42 
0.16 

0.35 
0.40 
0.30 

0.10 
0.03 

72 
0.38 
0.26 
0.42 
0.20 

0.14 
0.10 
0.27 
0.45 
0.28 

0.13 
0.05 

Left Average torque (Nm)- nonnalised 
011.52 

1 100.00 112.12 106.93 93.72 
2 100.00 81.90 94.07 111.99 
3 100.00 99.59 95.03 96.60 
4 100.00 96.04 91.72 9HM 
5 100.00 88.08 99.25 75.19 
6 
7 
8 
9 

10 
11 

100.00 104.49 105.65 106.59 
100.00 93.97 92.78 99.18 
100.00 95.45 95.76 97.16 
100.00 83.16 82.86 

3 
100.65 
114.08 

99.43 

73.68 

104.50 
105.74 

85.81 
84.17 

av 100.00 94.98 96.00 96.53 96.01 
'Yo change 5.02 4.00 3.47 3.99 

so 0.00 9.79 7.32 10.91 13.47 
SEM 0.00 3.26 2.44 3.86 4.76 

Left Soleus EMG • normalised 
0 1 1.5 2 3 

1 100.00 71.53 73.75 70.80 73.38 

24 48 72 
102.16 
115.94 
96.60 
91.97 
63.66 

82.25 90.48 
126.58 120.15 
96.81 98.87 
83.68 98.90 

92.25 102.05 
93.07 96.69 

114.30 113.32 
94.14 87.07 

96.01 98.56 
3.99 1.44 

15.25 15.31 
5.08 5.41 

24 48 
70.87 

94.94 
104.89 
89.36 

99.66 
0.34 

10.50 
3.97 

72 

2 100.00 48.16 118.85 132.99 130.94 147.75 
63.72 

150.20 
78.72 
61.59 

83.26 
162.70 
99.05 
67.84 

3 100.00 101.26 98.42 101.65 99.05 91.96 
4 100.00 68.52 79.77 91.70 68.18 
5 100.00 94.80 85.37 115.28 95.45 107.97 
6 
7 
8 
9 

10 
11 

1oo.oo 83.67 67.53 62.67 95.62 65.74 s1.n 
100.00 66.67 47.85 72.26 57.10 112.58 87.10 

av 100.00 76.37 81.65 99.18 94.45 87.08 93.36 92.95 
% chang3 23.63. 18.35 0.82 5.55 12.92 6.64 7.05 

so 0.00 18.20 22.68 22.55 21.41 31.92 37.76 37.15 
SEM 0.00 6.88 8.57 9.21 8.74 12,07 16.89 15.17 



EVOKED POTENTIALS 

Soleus Hmax:Mmax Ratio Soleus Hmax:Mmax - Normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 0.59 0.55 0.47 0.55 0.52 0.58 1 100.00 94.66 80.28 93.62 88.99 98.72 
2 0.29 0.20 0.18 0.18 0.17 0.33 2 100.00 67.50 63.48 61.94 58.57 114.07 
3 0.53 0.13 0.32 0.35 0.44 0.37 3 100.00 24.37 61.45 65.56 83.47 70.39 
4 0.37 0.44 0.38 0.36 0.36 4 100.00 117.21 103.42 96.38 96.38 
5 0.54 0.44 0.64 0.54 0.51 0.51 5 100.00 81.64 118.93 100.23 93.64 94.74 
6 0.33 0.26 0.29 0.26 0.29 0.54 6 100.00 79.34 87.21 78.00 87.05 164.04 
7 0.47 0.49 0.47 0.47 0.67 0.52 7 100.00 104.29 100.35 98.95 141.61 109.88 
8 0.38 0.22 0.39 0.23 0.27 0.40 8 100.00 57.53 104.31 61.79 71.82 104.60 
9 0.26 0.13 0.11 0.12 0.10 0.25 9 100.00 49.92 40.20 47.26 39.69 96.63 
10 0.26 0.13 0.14 0.32 0.34 0.23 10 100.00 50.18 54.53 123.17 132.81 90.36 
11 0.53 0.51 0.49 0.50 0.48 0.48 11 100.00 96.76 92.35 95.31 90.39 91.66 
av 0.41 0.32 0.35 0.35 0.38 0.42 av 100.00 74.86 80.31 84.52 89.49 102.86 

%change 25.14 19.69 15.48 10.51 -2.86 
so 0.12 0.17 0.17 0.15 0.17 0.12 so 0.00 27.81 24.89 23.09 29.07 23.28 

SEM 0.04 0.05 0.06 0.04 0.05 0.04 SEM o.oo 8.38 7.87 6.96 8.76 7.02 

Soleus Peak H IVOil!} Soleus f!eak H - Normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 6.63 6.37 4.43 6.30 5.40 5.43 1 100.00 96.08 66.82 95.02 81.45 81.90 
2 1.83 1.00 1.37 1.20 1.23 2.23 2 100.00 54.64 t.;.as 65.57 67.21 121.86 
3 5.83 1.43 3.67 3.50 4.50 4.13 3 100.00 24.53 62.95 60.03 77.19 70.84 
4 2.60 2.93 1.50 2.37 2.47 4 100.00 112.69 57.69 91.15 95.00 
5 4.93 4.10 5.00 5.43 4.50 5.03 5 100.00 83.16 101.42 110.14 91.28 102.03 
6 2.97 1.76 1.77 1.80 1.47 2.77 6 100.00 59.26 59.60 60.61 49.49 93.27 
7 2.53 2.87 2.07 3.33 3.83 =3.20 7 100.00 113.44 81.82 131.62 151.38 126.48 
8 2.53 1.26 1.93 1.33 1.60 2.37 8 100.00 49.80 76.28 52.57 63.24 93.68 
9 1.63 0.73 0.57 0.67 0.67 1.37 9 100.00 39.89 31.15 36.61 36.61 74.86 
10 2.53 0.93 1.17 2.63 3.20 2.27 10 100.00 36.76 46.25 103.95 126.48 89.72 
11 5.40 4.63 4.37 4.67 4.23 4.40 11 100.00 85.74 80.93 86.48 78.33 81.48 
av 3.60 2.55 2.64 2.94 3.00 3.24 av 100.00 68.73 68.21 78.21 83.08 93.74 

~ %change 31.27 31.79 21.79 16.92 6.26 ~ 

so 1.74 1.83 1.58 1.88 1.61 1.31 so 0.00 31.03 19.77 29.15 32.67 17.66 
SEM 0.~2 0.55 0.50 0.57 OA8 0.40 SEM 0.00 9.36 6.25 8.79 9.85 5.33 



EVOKED POTENTIALS 

Soleus Peak M {volts} Soleus Peak M - Normalised 
0 ~ 3 ~4 48 72 0 2 3 24 48 72 

1 11.33 11.50 9.43 11.50 10.37 9.40 1 100.00 101.50 83.23 101.50 91.53 82.97 
2 6.30 5.10 7.43 6.67 7.23 6.73 2 100.00 80.95 117.94 105.87 114.76 106.83 
3 11.03 11.10 11.30 10.10 10.20 11.10 3 100.00 100.63 102.45 91.57 92.48 100.63 
4 7.00 6.73 5.20 6.17 6.90 4 100.00 96.14 74.29 88.14 98.57 
5 9.10 9.27 7.76 10.00 8.87 9.80 5 100.00 101.67 65.27 109.89 97.47 107.69 
6 8.97 6.70 6.13 6.97 5.10 5.10 6 100.00 74.69 68.34 77.70 56.86 56.86 
7 5.36 5.83 4.37 7.13 5.73 6.17 7 100.00 106.77 61.53 133.02 106.90 115.11 
8 6.70 5.80 4.90 5.70 5.90 6.00 8 100.00 86.57 73.13 85.07 88.06 89.55 
9 6.97 5.57 5.40 5.40 6.43 5.40 9 100.00 79.91 77.47 77.47 92.25 77.47 

10 9.87 7.23 6.37 6.33 9.40 9.60 10 100.00 73.25 64.80 64.40 95.24 99.29 
11 10.27 9.10 9.00 9.27 8.90 9.13 11 100.00 86.61 87.63 90.26 86.66 88.90 
av 6.45 7.63 7.41 7.84 7.66 7.78 av 100.00 90.26 86.18 93.73 91.85 93.08 

%change 9.74 13.82 6.27 8.15 6.92 
so 2.06 2.26 2.21 2.14 1.93 2.10 so 0.00 12.20 14.42 17.58 14.40 16.44 

SEM 0.62 0.68 0.70 0.64 0.58 0.63 SEM 0.00 3.68 4.56 5.30 4.34 4.96 

Gastroc Hmax:Mm@! Ratio Gastroc Hmax:Mmax • Normalised 
0 2 3 24 48 72 0 2 3 24 48 .n. 

1 0.12 0.12 0.12 0.18 0.17 0.17 1 100.00 98.44 97.58 153.52 143.45 147.44 
2 0.30 0.14 0.18 0.07 0.10 0.17 2 100.00 47.13 58.70 22.06 33.52 55.15 
3 0.25 0.08 0.10 0.14 0.57 0.52 3 100.00 31.73 40.57 56.80 230.85 210.59 
4 0.22 0.20 0.34 0.21 0.22 4 100.00 87.17 152.30 93.40 97.96 
5 0.19 0.10 0.14 0.19 0.16 5 100.00 52.62 73.09 100.70 65.27 
6 0.19 0.11 0.10 0.10 0.07 0.09 6 100.00 57.29 51.91 53.62 36.42 45.81 
7 0.37 0.41 0.27 0.34 0.27 7 100.00 110.45 73.00 93.04 74.12 
8 0.10 0.09 0.09 0.07 0.07 0.10 8 100.00 88.14 89.44 69.97 64.19 98.22 
9 0.05 0.03 0.03 0.03 0.07 0.06 9 100.00 51.62 48.35 63.55 126.04 111.64 
10 0.08 0.05 0.05 0.11 0.12 10 100.00 58.98 61.64 133.54 149.34 
11 0.56 0.85 0.61 0.46 0.54 0.46 11 100.00 152.35 110.08 81.58 96.39 82.17 
av 0.22 0.20 0.17 0.17 0.24 0.21 av 100.00 75.99 70.44 88.76 101.92 105.26 

%change 24.01 29.56 11.24 ·1.92 -5.26 
so 0.15 0.24 0.17 0.13 0.20 0.15 so 0.00 35.17 22.66 44.88 60.73 47.86 

SEM 0.04 0.07 0.05 0.04 0.07 0.05 SEM 0.00 10.60 7.17 14.19 20.24 14.43 



EVOKED POTENTIALS 

Gastroc Peak H (volts) Gastroc Peak H • Normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 1.60 1.40 1.33 1.23 1.27 1.73 1 100.00 87.50 83.13 76.88 79.38 108.13 
2 0.87 0.41 0.50 0.43 0.63 1.07 2 100.00 47.13 57.47 49.43 72.41 122.99 
3 2.67 0.80 0.97 1.40 4.60 4.67 3 100.00 29.96 36.33 52.43 172.28 174.91 
4 0.80 0.67 1.00 0.90 0.90 4 100.00 83.75 125.00 112.50 112.50 
5 1.93 1.30 1.57 1.93 1.70 5 100.00 67.36 81.35 100.00 88.08 
6 1.30 0.67 0.70 0.67 0.43 0.37 6 100.00 51.54 53.85 51.54 33.08 28.46 
7 1.10 0.90 0.83 1.63 1.40 7 100.00 81.82 75.45 148.18 127.27 
8 1.00 0.70 0.90 0.87 0.87 1.17 8 100.00 70.00 90.00 87.00 87.00 117.00 
9 0.63 0.33 0.37 0.47 0.87 0.87 9 100.00 52.38 58.73 74.60 138.10 138.10 
10 0.77 0.40 0.40 0.80 1.17 10 100.00 51.95 51.95 103.90 151.95 
11 1.97 2.10 1.60 1.73 1.63 1.77 11 100.00 106.60 91.37 87.82 82.74 89.85 
av 1.33 0.88 0.94 1.05 1.43 1.53 av 100.00 66.36 67.96 80.86 102.85 114.48 

%change 33.64 32.04 19.14 -2.85 -14.48 
so 0.64 0.53 0.49 0.51 1.26 1.12 so 0.00 22.22 18.71 25.04 43.61 38.21 

SEM 0.19 0.16 0.16 0.16 0.42 0.34 SEM o.oo 6.70 5.92 7.92 14.54 11.52 

Gastroc Peak M fvolts} Gastroc Peak M - Normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 13.50 12.00 11.50 6.76 7.47 9.90 1 100.00 88.89 85.19 50.07 55.33 73.33 
2 6.80 6.80 6.80 6.43 6.20 6.40 2 100.00 100.00 100.00 94.56 91.18 94.12 
3 10.80 10.20 9.67 9.97 8.06 8.97 3 100.00 94.44 89.54 92.31 74.63 83.06 
4 3.57 3.43 2.93 4.30 4.10 4 100.00 96.08 82.07 120.45 114.85 
5 10.00 12.80 11.13 9.93 10.33 5 100.00 128.00 111.30 99.30 103.30 
6 6.97 6.27 7.23 6.70 6.33 4.33 6 100.00 89.96 103.73 96.13 90.82 62.12 
7 2.97 2.20 3.07 3.97 3.70 4.10 7 100.00 74.07 103.37 133.67 124.58 138.05 
8 9.57 7.60 9.63 11.90 12..97 11.40 8 100.00 79.41 100.63 124.35 135.53 119.12 
9 11.50 11.67 13.97 13.50 12.60 14.20 9 100.00 101.48 121.48 117.39 109.57 123.48 
10 9.73 8.57 8.20 7.57 6.90 9.90 10 100.00 88.08 84.28 77.80 70.91 101.75 
11 3.53 2.47 2.93 3.80 3.03 3.86 11 100.00 69.97 83.00 107.65 85.84 109.35 
av 8.09 7.64 8.41 7.59 7.16 7.95 av 100.00 91.85 98.25 97.75 95.88 102.05 

%change 8.15 1.75 2.25 4.12 -2.05 
so 3.57 3.82 3.55 3.42 3.39 3.57 SO 0.00 15.70 12.69 23.33 25.94 22.60 

SEM 1.08 1.15 1.12 1.03 1.07 1.08 SEM 0.00 4.74 4.01 7.03 8.20 6.81 



CONTRACTILE PROPERTIES 

f!!&k twitch 1volts} f:!&ak twitch !volts)- Normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 35.22 25.59 34.63 14.73 34.34 29.78 1 100.00 72.67 98.34 41.83 97.52 84.57 
2 4290 30.00 36.70 34.76 32.01 39.48 2 100.00 69.93 85.55 81.03 74.62 92.04 
3 54.29 34.12 36.88 44.64 52.39 55.62 3 100.00 62.85 67.94 82.60 96.51 102.45 
4 46.79 43.26 43.75 40.11 45.67 4 100.00 92.45 93.49 85.72 97.59 
5 23.72 16.35 21.40 19.55 20.90 26.65 5 100.00 68.93 90.22 8242 88.11 112.35 
6 32.59 25.06 20.70 26.06 23.67 35.43 6 100.00 76.88 63.53 79.97 72.62 108.71 
7 30.50 32.96 29.73 30.37 30.83 7 100.00 108.07 97.49 99.56 101.09 
8 24.90 17.35 19.03 33.40 23.25 32.75 8 100.00 69.68 76.44 134.14 93.37 131.53 
9 28.93 19.47 21.60 29.93 27.15 27.10 9 100.00 67.28 74.65 103.46 93.84 93.66 
10 25.00 18.36 24.47 34.07 32.63 29.87 10 100.00 73.43 97.88 136.28 130.55 119.48 
11 26.94 28.92 30.93 35.53 37.33 37.88 11 100.00 107.35 114.82 131.90 138.58 140.62 
av 33.80 26.49 27.61 31.54 32.24 36.02 av 100.00 79.05 86.69 96.97 97.50 108.30 

%change 20.95 13.31 3.03 2.50 -8.30 
so 10.06 8.39 6.54 7.17 8.97 8.85 so 0.00 16.04 16.06 28.65 20.48 18.00 

SEM 3.03 2.53 2.07 2.16 2.70 2.80 SEM 0.00 4.84 5.08 8.64 6.17 5.69 

e!ak twitch fNm} f:!eak twitch {Nm)- Normalised 
0 2 3 24 48 n 0 2 3 24 46 72 

1 9.67 7.03 9.51 4.05 9.43 8.18 1 100.00 72.67 98.34 41.83 97.52 84.57 
2 11.79 8.24 10.08 9.55 8.79 10.85 2 100.00 69.93 85.55 81.03 74.62 92.04 
3 14.91 9.37 10.13 12.32 14.39 15.28 3 100.00 62.85 67.94 82.60 96.51 102.45 
4 12.86 11.88 12.02 11.02 12.55 4 100.00 92.45 93.49 85.72 97.59 
5 6.52 4.49 5.88 5.37 5.74 7.32 5 100.00 68.93 90.22 82.42 88.11 112.35 
6 8.95 6.88 5.69 7.16 6.50 9.73 6 100.00 76.88 63.53 79.97 72.62 108.71 
7 8.38 9.05 8.17 8.34 8.47 7 100.00 108.07 97.49 99.56 101.09 
6 6.64 4.77 5.23 9.18 6.39 9.00 6 100.00 69.68 76.44 134.14 93.37 131.53 
9 7.95 5.35 5.93 8.22 7.46 7.45 9 100.00 67.28 74.65 103.46 93.84 93.66 
10 6.87 5.04 6.72 9.36 8.97 8.21 10 100.00 73.43 97.88 136.28 130.55 119.48 
11 7.40 7.95 8.50 9.76 10.26 10.41 11 100.00 107.35 114.82 131.90 138.58 140.62 
av 9.29 7.28 7.58 8.67 8.86 9.90 av 100.00 79.05 86.69 96.97 97.50 108.30 

' %change 20.95 13.31 3.03 2.50 -8.30 
' so 2.76 2.30 1.80 1.97 2.46 2.43 so 0.00 16.04 16.06 28.65 20.48 18.00 

SEM 0.83 0.69 0.57 0.59 0.74 0.77 SEM o.oo 4.84 5.08 6.64 6.17 5.69 



CONTRACTILE PROPERTIES 

TTP TIP • normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 117 117 115 137 135 115 1 100.00 100.28 98.29 117.09 115.10 98.29 
2 129 119 139 138 142 140 2 100.00 92.25 107.75 107.24 110.08 108.53 
3 138 115 129 110 140 138 3 100.00 83.27 93.45 80.00 101.45 100.36 
4 130 118 132 141 123 4 100.00 90.77 101.15 108.46 94.36 
5 129 131 140 139 138 144 5 100.00 101.16 108.14 107.36 106.98 111.24 
6 114 107 121 117 128 127 6 100.00 93.57 106.14 102.92 112.26 111.40 
7 133 105 133 129 138 7 100.00 76.50 99.50 96.50 103.50 
8 124 138 136 136 137 138 8 100.00 110.59 109.38 108.98 109.79 110.72 
9 137 124 121 117 118 137 9 100.00 90.53 88.11 65.19 65.92 99.51 
10 132 118 126 121 156 122 10 100.00 89.39 95.45 91.67 118.28 92.68 
11 132 136 138 129 144 133 11 100.00 103.54 104.56 97.97 109.62 101.27 
av 129 121 130 128 138 132 av 100.00 93.99 101.08 99.64 107.41 102.84 

%change 6.01 -1.08 0.36 -7.41 -2.84 
SO 6.47 10.70 7.00 9.37 9.48 7.26 so 0.00 9.27 7.22 10.92 6.56 7.10 

SEM 1.95 3.23 2.21 2.83 2.86 2.30 SEM 0.00 2.80 2.28 3.29 2.58 2.25 

HRT HRT- normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 44 73 23 53 62 56 1 100.00 164.66 51.86 120.30 139.85 125.56 
2 61 47 54 58 55 72 2 100.00 77.05 88.52 95.08 90.16 118.03 
3 42 34 31 41 37 37 3 100.00 81.60 75.20 98.40 89.60 89.60 
4 86 59 79 95 47 4 100.00 68.60 91.28 110.47 54.65 
5 76 42 73 82 68 57 5 100.00 55.26 96.05 107.89 89.47 75.00 
6 63 44 47 55 54 42 6 100.00 70.74 75.00 87.23 65.64 67.02 
7 93 86 88 86 78 7 100.00 92.47 94.62 92.83 84.23 
8 87 79 80 81 86 76 8 100.00 90.23 91.95 93.10 98.28 87.36 
9 76 34 63 84 40 59 9 100.00 45.18 62.69 110.09 52.19 77.19 
10 57 29 55 64 74 69 10 100.00 51.76 96.47 113.53 130.00 121.76 
11 54 47 46 56 52 49 11 100.00 67.65 84.57 103.70 96.91 90.74 
av 67 52 56 67 64 56 av 100.00 80.47 83.72 101.22 96.98 90.69 

%change 19.53 16.28 -1.22 3.02 9.31 
SO 15.87 17.98 17.11 14.90 18.34 12.93 so 0.00 32.14 13.70 10.59 23.59 24.10 

SEM 4.78 5.42 5.41 4.49 5.53 4.09 SEM 0.00 9.69 4.33 3.19 7.11 7.62 



TENDON TAP 

s - eeak to eeak Soleus - eeak to eeak • Normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 2.22 2.39 2.27 2.34 2.06 1.40 1 100.00 107.59 101.91 105.12 92.74 62.77 
2 1.12 1.25 1.01 1.18 1.27 1.19 2 100.00 111.36 89.98 105.46 112.84 106.19 
3 3.33 2.66 2.77 3.22 2.52 3.20 3 100.00 80.11 83.20 96.95 75.68 96.34 
4 1.91 1.93 1.63 2.09 2.22 4 100.00 100.98 85.25 109.57 116.26 
5 3.68 2.70 3.71 4.18 3.30 3.79 5 100.00 73.47 100.85 113.61 89.66 103.06 
6 2.41 1.87 1.82 1.53 2.02 6 100.00 77.65 75.52 63.43 83.92 
7 2.36 2.79 2.19 3.21 2.78 0.00 7 100.00 117.99 92.59 135.98 117.81 
8 0.53 0.47 0.61 0.60 0.61 0.60 8 100.00 88.68 115.09 113.21 115.09 113.21 
9 1.73 1.53 1.50 1.41 1.40 1.37 9 100.00 88.44 86.71 81.50 80.92 79.19 

10 2.38 1.33 2.13 2.51 2.37 2.60 10 100.00 55.67 89.64 105.64 99.44 109.24 
11 2.50 2.35 2.54 1.68 2.18 2.10 11 100.00 94.00 101.50 67.00 87.00 84.00 
av 2.20 1.94 2.06 2.16 2.01 1.86 av 100.00 91.83 93.91 98.66 94.93 95.42 

o/o change 8.17 6.09 1.34 5.07 4.58 
so 0.89 0.17 0.89 1.05 0.76 1.11 so 0.00 18.87 10.98 19.95 17.72 17.35 

SEM 0.27 0.24 0.28 0.32 0.23 0.33 SEM 0.00 5.97 3.47 6.01 5.34 5.49 

1C • ~ea]! to Qeak Gast;roc • eeak to eeak- Normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 0.57 0.51 0.60 0.69 0.77 0.54 1 100.00 90.07 106.40 121.63 136.64 94.70 
2 0.35 0.38 0.47 0.46 0.49 0.49 2 100.00 108.54 132.38 129.89 139.50 139.50 
3 1.31 1.35 1.09 1.08 1.18 1.30 3 100.00 102.86 83.05 82.10 89.62 98.67 
4 0.76 0.69 0.86 0.84 0.87 4 100.00 91.58 113.37 111.39 115.02 
5 0.96 0.78 1.01 1.00 0.89 0.94 5 100.00 81.30 104.55 104.29 92.86 97.14 
6 1.69 0.61 0.77 0.87 1.02 6 100.00 36.07 45.68 51.29 60.46 
7 0.98 1.11 1.02 1.69 1.43 7 100.00 114.10 104.49 173.08 147.01 
8 0.23 0.30 0.27 0.31 0.23 0.27 8 100.00 130.43 117.39 134.78 100.00 117.39 
9 0.51 0.31 0.41 0.47 0.30 0.41 9 100.00 60.78 80.39 92.16 58.82 80.39 

10 0.77 0.58 0.89 1.02 0.94 1.10 10 100.00 74.68 114.94 132.03 122.08 142.86 
11 0.94 1.03 1.13 0.67 0.81 0.73 11 100.00 109.31 119.68 71.41 85.64 77.66 
av 0.82 0.70 0.75 0.82 0.80 0.77 av 100.00 96.37 99.93 109.13 103.17 102.38 

%change 3.63 0.07 -9.13 -3.17 -2.38 
so 0.42 0.36 0.31 0.38 0.35 0.33 so 0.00 20.71 27.49 35.17 31.71 26.57 

SEM 0.13 0.11 0.10 0.11 0.11 Q.11 SEM o.oo 6.55 8.69 30.60 9.56 BAD 



To ue Nm Torgue {Nm)· normalised 
0 2 3 24 48 72 0 2 3 24 48 72 

1 3.67 2.83 4.14 1.49 3.51 3.11 1 100.00 77.28 113.07 40.66 95.64 84.78 
2 3.76 3.63 3.73 3.22 3.30 3.93 2 100.00 96.53 99.18 85.74 87.93 104.69 
3 7.22 4.63 5.46 5.49 5.76 6.38 3 100.00 64.13 75.69 76.07 79.78 88.39 
4 5.56 5.68 5.13 5.36 6.15 4 100.00 102.17 92..22 96.30 110.53 
5 4.39 2.91 4.21 3.73 3.14 4.76 5 100.00 66.25 95.93 85.12 71.57 108.54 
6 4.15 3.85 3.18 3.04 4.40 6 100.00 92.80 76.59 73.28 105.87 
7 3.84 4.48 4.29 4.80 3.92 7 100.00 116.92 111.91 125.07 102.27 
8 2.71 3.32 3.82 2.88 3.08 3.05 8 100.00 119.80 137.62 103.96 110.89 109.90 
9 2.80 266 2.77 3.32 2.61 2.91 9 100.00 95.10 99.02 118.63 93.14 103.92 

10 3.68 2.61 4.11 4.42 3.16 3.57 10 100.00 70.90 111.57 120.02 85.82 97.01 
11 4.48 4.89 5.66 5.10 5.92 6.18 11 100.00 109.04 126.28 113.87 132.11 13a01 
av 4.21 3.76 ~20 3.89 3.89 4A4 av 100.00 91.81 - 94.36 93.52 -%change a19 -6.31 5.64 .... -5.16 
so 1.26 1.08 0.83 1.21 1.20 1.37 so 0.00 20.87 17.69 25.22 11.46 14.56 

SEM 0.38 0.34 0.26 0.37 0.36 0.43 SEM 0.00 6.60 5.59 7.60 5.27 4.60 

CREATINE KINASE 
CK CK. Normalised 

0 3 24 48 72 0 3 24 48 72 
1 158.0 110.0 84.0 299.0 476.0 100.0 69.6 53.2 189.2 301.3 
2 245.0 353.0 335.0 157.0 130.0 2 100.0 144.1 136.7 64.1 53.1 
3 101.0 118.0 85.3 432.0 159.0 3 100.0 116.8 84.5 427.7 157.4 
4 115.0 109.0 136.0 126.0 4 100.0 94.8 118.3 109.6 
5 130.0 196.0 320.0 213.0 203.0 5 100.0 150.8 246.2 163.8 156.2 
6 74.7 352.0 279.0 307.0 106.0 6 100.0 471.2 373.5 411.0 141.9 
7 58.4 80.2 82.4 106.0 85.0 7 100.0 137.3 141.1 181.5 145.5 
8 61.6 80.0 140.0 104.0 8 100.0 129.9 227.3 168.8 
9 143.0 201.0 173.0 343.0 394.0 9 100.0 140.6 121.0 239.9 275.5 

1C 122.0 130.0 163.0 106.0 98.0 10 1\JO.O 106.6 133.6 86.9 80.3 
11 155.0 166.0 299.0 501.0 133.0 11 100.0 107.1 192.9 323.2 85.8 
av 124.0 172.3 1806 256.8 191.0 av 100.0 151.7 166.2 22~6 150.7 
so 53-3 98.0 9S.O 142.5 134.2 so 0.0 108.7 89.5 125.0 80.8 

SEM 16.1 29.5 29.8 45.1 42.4 SEM 0.0 32.8 27.0 39.5 25.6 
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SOLH 50'-M MGH:M MGH MGM TORQUE SOLEMG GASEMG TIP ""' ... SOLT GASo TTOitOUE 

SOLH:M 0.83'' 0.05 0.26' 0.33'' 006 0.27" 0.31" -o.os 0.39" 0.27" 0.40'' 0.29' 0.16 0.22' 

SDLH o.55'" 0.29" 0.48'' '" 0.44'' 0.36'' 0.15 0.29' 0.37"' 0.37'' 0.54'' 0.41'' 0.18 

SDLM 0.13 0.33'' 0.45" 0.45'' 0.23' 0.36'' -0.01 0.24' 0.06 0.54'' 0.57•• -0.07 

MGH:M 0.78"' 0.44' 0.06 0.10 0.17 0.06 0.29' 0.29' 0.07 0.21 0.03 

MGH 0.10 0.31'" '" 0.23 007 0.22' 0.42"' 0.26' 0.30· 0.18 

MGM 0.30·· 0.16 0.33'' 0.06 -0.06 -00< 0.38'' 0.37'' 0.13 

TORQUE 0.31'' 0.23' 0.12 0.14 0.46" 0.32" 0.33·· 0.28' 

SOLEMG 0.56'" 0.34"' 0.21 0.08 '" noa 0.00 

GASEMG 0.17 0.15 0.07 0.23 0.41" 0.19 

TIP 0.28" 0.08 0.13 0.20 --0.02 

HRo 0.18 o.n 0.36"' --0.05 

m 0.18 0.20 0.63" 

SOLo 0.69" 0.32•• 

GAST 0.24· 

TTOROUE o.w 

c 'p<0.05. "p<O.Oll 
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Soleus Peak H (volts) 

1 2 3 4 5 6 7 8 9 10 11 12 av 
Base 4.60 0.47 1.70 2.65 4.49 2.27 2.27 4.47 3.94 2.40 2.93 

1 4.63 1.77 1.33 1.93 3.74 1.95 1.95 5.24 3.15 1.55 2.72 

diff -0.03 -1.30 0.37 0.72 0.75 0.32 0.32 -0.77 0.79 0.85 0.00 0.00 0.17 

Soleus Peak M (volts) 

1 2 3 4 5 6 7 8 9 10 
Base 8.46 8.20 6.93 4.50 8.20 6.50 4.89 6.87 8.33 5.95 

8.27 9.23 2.47 4.30 8.77 7.12 5.05 7.92 6.09 6.49 

0.19 ·1.03 4.46 0.20 -0.57 -0.62 -0.16 -1.05 2.24 -0.54 

Soleus Hmax:Mmax Ratio 

2 3 4 5 6 7 8 9 10 
Base 0.54 0.06 0.25 0.59 0.55 0.63 0.46 0.65 0.47 0.40 

0.56 0.19 0.25 0.45 0.43 0.60 0.39 0.66 0.52 0.24 

dlff -0.02 -0.13 0.00 0.14 0.12 0.04 0.08 -0.01 -0.04 0.16 

Gastroc Peak H {volts) 

1 2 3 4 5 6 7 8 9 10 
Base 2.16 0.70 0.77 0.87 1.50 1.45 0.97 1.89 1.25 0.77 

1 1.97 0.37 0.60 1.35 1.09 0.77 1.00 1.98 1.39 0.67 
dilf 0.19 0.33 0.17 .0.48 0.41 0.68 -0.03 -0.09 ·0.14 0.10 

Gastroc Peak M (volts) 

11 12 

11 12 

11 12 

av 
6.88 
6.57 

0.31 

av 
0.46 

0.43 

0.03 

av 
1.23 

1.12 

0.11 

1234567 8 9 10 11 12 av 
Base 2.67 4.70 6.53 2.44 4.39 7.92 3.63 3.64 10.29 5.54 

diff 

4.13 a70 6.50 2.12 4.03 6.45 2.75 3.42 9.65 5.68 

-1.46 -4.00 0.03 ·0.28 0.36 1.47 0.88 0.22 0.64 -0.14 

Gastroc Hmax:Mmax Ratio 

5.18 

••o 
-0.2 

1 2 3 4 5 6 7 8 9 10 11 12 av 
Base 0.41 0.15 0.12 0.36 0.34 0.18 0.50 0.52 0.32 0.14 

1 
diff 

0.48 0.03 0.09 0.50 0.27 0.12 0.36 0.58 0.31 0.12 

·0.07 0.12 0.03 -0.14 O.o? 0.06 0.13 -0.06 0.01 0.02 

Time to peak of evoked twitch 

Base 

1 

diff 

1 2 3 4 5 

105 74 127 130 127 

119 127 123 117 122 

-14 -53 4 13 5 

6 7 8 9 10 
108 126 129 128 

111 114 129 132 

-2 12 0 -4 0 

11 12 

0.30 

0.29 

0.02 

av 
110 126 117 

116 107 120 

-6 19 ·2 
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HRT of evoked twitch 
1 2 3 4 

Base 76 123 69 83 
1 80 86 74 107 

d\ff .-4 37 ~5 -24 

TPT of evoked twitch 

1 2 3 4 
Base 

1 

diff 

10 
10 
0 

Av Soleus T~wave 

5 

5 

0 

11 
13 
-1 

10 
9 

2 

5 6 

47 eo 
75 65 

-27 -5 

5 

5 
8 

-3 

6 
15 
14 
1 

7 

7 

71 
70 
6 

7 

9 

-2 

8 
96 

110 
-15 

8 

11 
13 
-2 

9 10 

9 

65 
65 

0 

18 

10 
8 

10 

11 12 av 

11 

74 81 77 
48 76 78 
26 5 0 

11 
15 

-4 

12 
7 

10 
-3 

av 
10 
11 
0 

base 1.02 0.50 0.72 
1 1.24 1.34 0.50 

d\ff -0.23 -0,84 0.22 

1.10 0.69 3.26 1.62 3.68 1.99 2.35 1.86 1.73 1.71 
0.79 1.72 2.69 1.65 4.65 2.'i' 1.92 2.49 2.03 1.93 
0.30 -1.03 0.57 -0.03 -0.97 -0.18 0.43 -0.63 -0.31 -0.22 

Av Gastroc T~wave 

base 0.58 0.96 0.18 0.52 0.31 1.32 1.08 1.56 0,57 0.85 0.35 1.36 0.80 
1 0.54 0,30 0.16 0.54 0.57 1.04 1.08 1.90 0.70 0.69 0.39 1.18 0.76 

diff 0.04 0.66 0.02 -0.02 -0.26 0.29 0.00 -0.35 -0.13 0.17 -0.05 0.17 0.05 

T·reftex torque 

base 4.80 2.70 4.05 3.57 2.20 8.50 4.68 6.13 6.36 4.28 4.18 4.18 4.64 
1 5.52 2.72 4.40 3.77 1.92 7.23 4.57 8.32 8.70 5.69 4.85 4.85 5.21 

d\ff -0.72 -0.02 ·0.34 -0.20 0.28 1.28 0.10 -2.19 -2.34 -1.41 -0.66 -0.66 -0.57 

MVC Volts 

1 
Base 262 

1 315 
diff -53 

Soleus MVC EMG 

2 

209 
189 

20 

3 

54 
118 

-84 

1 2 3 
Base 0.27 0.18 0.06 

1 0.42 0.20 0.12 
diff -0.15 -0.03 -0.07 

Gastroc MVC EMG 

1 2 3 

4 

284 
279 

5 

5 

119 
159 
-41 

4 5 
0.29 0.18 
0.28 0.24 
0.01 -0.06 

4 5 

Base 
1 

diff 

0.18 
0.18 
0.00 

0.26 
0.09 

0.17 

0.24 0.27 
0.22 0.28 
0.01 -0.01 

O.D7 
0.06 
0.00 

6 
318 
255 
63 

6 
0.28 
0.17 
0.10 

6 

0.18 
0.09 

0.10 

7 

178 
166 

12 

7 

0.34 
0.22 
0.12 

7 

0.30 

0.15 

0.15 

8 
160 

110 
51 

8 
0.18 

0.15 
0.03 

8 

9 10 11 12 av 

142 156 193 218 191 
215 163 220 281 206 
-73 -7 -27 -63 ~15 

9 10 11 12 av 

0.17 0.18 0.23 0.25 0.22 
0.13 0.11 0.27 0.30 0.22 
0.04 0,07 -0.04 -0.05 0.00 

9 10 11 12 

0.11 0.07 0.28 
0.07 0.19 0.32 
0.04 -0.12 -0.04 

0.08 

0.20 

-0.12 

0.10 
0.15 

.0.04 

0.18 
0.17 
0.01 
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