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ABSTRACT 

. In this thesis, we present a fuzzy logic control scheme to regulate the flow of traffic 

approaching a set of intersections. An adaptive Fuzzy Logic Traffic Controller (FLTC) is 

used to adjust the green phase split of the north-south and east-west approaches of a set of 

traffic signals based on the actual traffic approaching the intersection. Each intersection is 

coordinated with its neighbouring intersections by adjusting the offset of the local 

intersection. The offset is adjusted by a local fuzzy logic controller loacted at each 

intersection. A new fuzzy control scheme, using a supervisory Fuzzy Logic Controller, is 

also proposed for adjusting the offset. The fuzzy knowledge base of the supervisory Fuzzy 

Logic Controller is automatically generated by Genetic Algorithms (GAs). The fuzzy rules 

generated by the integrated Fuzzy Logic and Genetic Algorithm architecture is found to be 

effective in optimising the traffic flow. 

The effectiveness of the above fuzzy control scheme is established through simulations of 

the traffic flow approaching an isolated intersection, two adjacent intersections, and a set of 

three intersections. The superiority of adjusting offset using a supervisory fuzzy logic 

controller is established through simulations. 

ii 



Acknowledgement 

I would like to extend my sincere gratitude to my supervisors: Mr. Masoud Mohamrnadian 

and Dr. Jim Millar for their support, guidance and encouragement throughout the 

preparation of this thesis. 

I would also like to thank the staff members of the Department of Computer Science and 

the library staff at Edith Cowan University for their co-operation and support during my 

tenure as a Master's candidate at Edith Cowan University. 

Finally, I would like to thank my family and friends for their love and moral support 

during this period. 

iii 



Declaration 

I certify that this thesis does not incorporate without acknowledgement any material 

previously submitted for a degree or diploma in any institution of higher education; and 

that to the best of my knowledge and belief, it does not contain any material previously 

published or written by another person except where due reference is made in the text. 

iv 

Irshad N ainar 

Date: 09 I 04 I 1996 



TABLE OF CONTENTS 

Abstract ii 

Acknowledgment iii 

Declaration iv 

List of Figures ix 

List of Tables XV 

Abbreviations xvi 

Chapter 1 Introduction 

1.1 Introduction 1 

1.2 An overview of the problem 4 

1.3 Why Fuzzy Logic? 10 

1.4 Outline of the thesis 12 

Chapter 2 Urban Traffic Control, Fuzzy Logic, and Genetic Algorithms 

2.1 Introduction 15 

2.2 Urban Traffic Control 18 
2.2.1 Traffic control 18 
2.2.2 Road traffic signals 19 
2.2.3 Traffic control systems classification based on Architecture philosophy 22 
2.2.4 Signal timing parameters 23 
2.2.5 Coordination of a Network of Intersections 24 

2.2.5.1 Traffic signal coordination of fixed time plans 24 

v 



2.2.5.2 Coordination of Traffic Responsive Methods 26 
2.2.6 Application of AI and KB systems to Traffic control 28 

2.2.6.1 Limitations of the current Urban Traffic Control (UTC) systems 28 
2:2.6.2 Issues Addressed by Artificial Intelligence 30 

2.2.7 Fuzzy Logic as a means for Traffic Control 32 

2.3 Fuzzy Logic and Fuzzy Logic Controller 43 
2.3.1 Fuzzy set theory 44 

2.3.1.1 Fuzzy sets 44 
2.3.1.2 Support set, Crossover point, Fuzzy Singleton 45 
2.3.1.3 Fuzzy set operations 46 

2.3.2 Linguistic Variables and Values 46 
2.3.3 Fuzzy Logic 47 
2.3.4 Fuzzy Inference Rules 47 
2.3.5 Membership Functions 48 
2.3.6 Fuzzy Logic Controller 51 

2.3.6.1 Basic Structure of a Fuzzy Logic Controller 51 
2.3.6.2 Design and Implementation of a FLC 53 
2.3.6.3 System variables and Fuzzy parameters 54 
2.3.6.4 Fuzzification 55 
2.3.6.5 Knowledge Base 55 
2.3.6.6 Specification of the rule base 55 
2.3.6.7 Fuzzy Reasoning techniques 56 
2.3.6.8 Defuzzification 59 

2.3.7 Self Organising Fuzzy Logic Controller 61 
2.3.7.1 Structure of a SOFLC 62 

2.3.8 Adaptive Fuzzy Logic Controller 64 

2.4 Genetic Algorithms 67 
2.4.1 An overview of Gas 68 
2.4.2 Differences between GAs and traditional search techniques 71 

2.5 Discussion 74 

Chapter 3 Fuzzy Control of an Isolated intersection 77 

3.1 The Model 77 
3.1.1 VehicleMovement 19 
3.1.2 Delay Time 81 
3.1.3 Assumptions 82 

3.2 Fuzzy control rules for an isolated intersection 83 

vi 



3.3 Software used for the Simulations 

3.4 Simulation Results 

3.5 Discussion 

Chapter 4 Fuzzy Control of Two Adjacent Intersections 

4.1 The Model 

. 4.2 Two Intersections with no offset adjustment 
4.2.1 Simulation Results 

4.3 Offset adjustment with two local fuzzy logic controllers 
4.3.1 Simulation Results 

4.4 Offset adjustment with a supervisory fuzzy logic controllers 
4.4.1 Simulation Results 

4.5 Simulation results 

4.6 Discussion 

Chapter 5 Fuzzy Control of a set of three Intersections 

5.1 TheModel 

5.2 Three Intersections with no offset adjustment 
5.2.1 Simulation Results 

5.3 Offset adjustment with three local fuzzy logic controllers 
5.3.1 Simulation Results 

5.4 Offset adjustment with a supervisory fuzzy logic controllers 
5.4.1 Simulation Results 

5.5 Simulation results 

5.6 Discussion 

VII 

89 

91 

99 

101 

102 

105 
105 

106 
112 

116 
120 

122 

125 

127 

128 

130 
131 

132 
136 

138 
141 

142 

151 



Chapter 6 Genetic Algorithms for fuzzy rule generation 154 

6.1 Introduction 154 

6.2 Genetic Algorithms 155 

6.3 Rule Generation using Gas 156 

6.4 Control of two adjacent intersections using fuzzy rules generated 
by the Fuzzy-GA rule generator architecture 162 

6.5 Control of a set of three intersections using fuzzy rules generated 
by the Fuzzy-GA rule generator architecture 171 

6.6 Analysis of Genetic Algorithms (GAs) 176 

6.7 Discussion 185 

Chapter 7 Conclusions and Future Research 187 

Bibliography 191 

Appendix A 203 

AppendixB 206 

viii 



List of Figures 

Figure 2.1 Triangular fuzzy membership function 50 

Figure 2.2 Trapezoidal fuzzy membership function 50 

Figure 2.3 Basic structure of a Fuzzy Logic Controller 52 

Figure 2.4 MAX-MIN fuzzy inference method 57 

. Figure 2.5 MAX-DOT fuzzy inference method 58 

Figure 2.6 Basic structure of a SOFLC 62 

Figure 2.7 An adaptive fuzzy logic controller 65 

Figure 3.1 An isolated intersection 78 

Figure 3.2 Membership functions for the input fuzzy sets 87 

Figure 3.3 Membership functions for the output fuzzy sets 87 

Figure 3.4 Model used for the simulation 90 

Figure 3.5 An isolated intersection 'A' 91 

Figure 3.6 Queue length at the north approach and green phase north-south 93 

Figure 3.7 Queue length at the south approach and green phase north-south 94 

Figure 3.8 Queue length at the east approach and green phase east-west 95 

Figure 3.9 Queue length at the west approach and green phase east-west 95 

Figure 3.10 Queue length and average waiting time 96 

Figure 3.11 Average waiting time/vehicle 97 

Figure 3.12 Vehicle flow 98 

Figure 4.1 Two adjacent intersections used in the simulation 103 

ix 



Figure 4.2 Queue length at intersection A (all approaches) - no offset 

adjustement 106 

Figure 4.3 Queue length at intersection B (all approaches) - no offset 

adjustement 107 

Figure 4.4 Block diagram of two traffic signals whose offset is adjusted by 

local fuzzy logic controllers 108 

Figure 4.5 Membership functions for Vol_diff 111 

Figure 4.6 Membership functions for Req_adjust Ill 

Figure4.7 Queue length at intersection A (all four approaches) - 2 local FLC 113 

Figure4.8 Queue length at intersection B (all four approaches) - 2 local FLC 113 

Figure4.9 Queue length at the north approach of intersection A 114 

Figure 4.10 Queue length at the north approach of intersection B 114 

Figure 4.11 Queue length at the south approach of intersection A 115 

Figure 4.12 Queue length at the south approach of intersection B 115 

Figure4.l3 Block diagram of two traffic signals whose offset is adjusted by a 

supervisory fuzzy logic controller 117 

Figure4.14 Queue length at the north approach of intersection A 120 

Figure 4.15 Queue length at the north approach of intersection B 120 

Figure 4.16 Queue length at the south approach of intersection A 121 

Figure 4.17 Queue length at the south approach of intersection B 121 

Figure 4.18 Queue length at intersection A (all four approaches) -

supervisory FLC 121 

X 



Figure 4.19 Queue length at intersection B (all four approaches) -

supervisory FLC 121 

Figure 4.20 Average delay/vehicle for all four approaches at intersection A -

no offset adjustment 123 

Figure 4.21 Average delay/vehicle for all four approaches at intersection B -

no offset adjustment 123 

Figure 4.22 Average delay/vehicle for all four approaches at intersection A -

local FLC 124 

Figure 4.23 Average delay/vehicle for all four approaches at intersection B -

local FLC 124 

Figure 4.24 Average delay/vehicle for all four approaches at intersection A-

supervisory FLC 124 

Figure4.25 Average delay/vehicle for all four approaches at intersection B -

supervisory FLC 124 

Figure 5.1 A set of three intersections 129 

Figure 5.2 Queue length at all four approaches of intersection A -

no offset adjustment 131 

Figure 5.3 Queue length at all four approaches of intersection B -

no offset adjustment 131 

Figure 5.4 Queue length at all four approaches of intersection C -

no offset adjustment 131 

Figure 5.5 Membership functions for Vol_diff 135 

xi 



Figure 5.6 

Figure 5.7 

Figure 5.8 

Figure 5.9 

Figure 5.10 

· Figure 5.11 

Figure 5.12 

Figure 5.13 

Figure 5.14 

Figure 5.15 

Figure 5.16 

Figure 5.17 

Figure 5.18 

Figure 5.19 

Figure 5.20 

Figure 5.21 

Figure 5.22 

Figure 5.23 

Figure 5.24 

Figure 5.25 

Figure 5.26 

Membership functions for Req_adjust 

Queue length at the north approach of intersection B 

Queue length at the south approach of intersection B 

136 

136 

136 

Membership functions for the input fuzzy sets, Vol_diffl, Vol_diff2, 

Vol_diff3, of a supervisory FLC 140 

Queue length at the north approach of intersection C 141 

Queue length at the south approach of intersection C 141 

Queue length at the north approach of intersection A 142 

Queue length at the north approach of intersection A 142 

Queue length at the north approach of intersection B 143 

Queue length at the north approach of intersection B 143 

Queue length at the north approach of intersection C 144 

Queue length at the north approach of intersection C 144 

Queue length at the south approach of intersection A 145 

Queue length at the south approach of intersection A 145 

Queue length at the south approach of intersection B 146 

Queue length at the south approach of intersection B 146 

Queue length at the south approach of intersection C 146 

Queue length at the south approach of intersection C 146 

Average delay of vehicles at the north approach of intersection A 147 

Average delay of vehicles at the north approach of intersection A 147 

Average delay of vehicles at the south approach of intersection C 148 

xii 



Figure 5.27 Average delay of vehicles at the south approach of intersection C 148 

Figure 5.28 Queue length at all four approaches of intersection A -

using 3 local FLC 149 

Figure 5.29 Queue length at all four approaches of intersection A -

using supervisory FLC 149 

Figure 5.30 Queue length at all four approaches of jntersection B-

using 3 local FLC 150 

Figure 5.31 Queue length at all four approaches of intersection B -

using supervisory FLC 150 

Figure 5.32 Queue length at all four approaches of intersection C -

using 3 local FLC 150 

Figure 5.33 Queue length at all four approaches of intersection C -

using supervisory FLC ISO 

Figure 6.1 Fuzzy-GA rule generator architectrue !57 

Figure 6.2 Queue length at the north approach of intersection A 168 

Figure 6.3 Queue length at the south approach of intersection A 168 

Figure 6.4 Queue length at the north approach of intersection B 169 

Figure 6.5 Queue length at the south approach of intersection B 169 

Figure 6.6 Queue length at all four approaches of intersection A 170 

Figure 6.7 Queue length at all four approaches of intersection B 170 

Figure 6.8 Membership functions for the input variables, Vol_diffl, Vol_diff2, 

Vol_diff3 172 

xiii 



Figure 6.9 Queue length at the north approach of intersection A 174 

Figure 6.10 Queue length at the south approach of intersection A 174 

Figure 6.11 Queue length at the north approach of intersection B 175 

Figure 6.12 Queue length at the south approach of intersection B 175 

Figure 6.13 Queue length at the north approach of intersection C 175 

Figure 6.14 Queue length at the south approach of intersection C 175 

Figure 6.15 Queue length at all four approaches of intersection B 176 

Figure 6.16 Best fitness for population size = 10 183 

Figure 6.17 Best fitness for population size = 20 183 

Figure 6.18 Best fitness for population size = 30 183 

xiv 



Table 3.1 

Table 4.1 

Table4.2 

Table 6.1 

Table 6.2 

Table 6.3 

Table 6.4 

Table 6.5 

Table 6.6 

Table 6.7 

Table 6.8 

List of Tables 

Fuzzy Knowledge Base 

Fuzzy Knowledge base for the local fuzzy logic controller 

Fuzzy knowledge base used by supervisory FLC for adjusting 

offset 

An empty fuzzy rule matrix 

88 

112 

119 

158 

Comparison of fuzzy rules constructed by hand and rules generated by GA 

for supervisory FLC adjusting offset at two intersections 

Fuzzy rule base for supervisory FLC adjusting offset 

166 

168 

Comparison of fuzzy rules generated by hand and fuzzy rules generated by 

GA for supervisory FLC adjusting offset at three intersections 173 

Simulation results using GAs for two adjacent intersections with population 

size= 10 and number of generations = 100,200,300 178 

Simulation results using GAs for two adjacent intersections with different 

population sizes and number of generations = 100 180 

Simulation results using GAs for two adjacent intersections with different 

population sizes and number of generations = 300 181 

Best fitness values for different population sizes and generations 182 

XV 



mnemonic 

AI 
FL 
FLC 
GA 
SOFLC 
KBS 
ATC 
UTC 
AUTCS 
DICS 
FDAI 
FTC 
FLTC 

Abbreviations 

meaning 

Artificial Intelligence 
Fuzzy Logic 
Fuzzy Logic Control 
Genetic Algorithm 
Self Organising Fuzzy Logic Controller 
Knowledge Based System 
Area Traffic Control 
Urban Traffic Control 
Automated Urban Traffic Control System 
Distributed Intelligent Control System 
Fuzzy Distributed Arificial Intelligence 
Fuzzy Traffic Controller 
Fuzzy Logic Traffic Controller 

xvi 



Chapter 1 Introduction 

1.1 Introduction 

The design of controllers for regulating a process is dependent on the availability of a 

model for the process. However, it is not always easy to derive a mathematical model for 

processes which are non-linear, ill-defined and dynamic in nature. Conventional control 

algorithms like PID (Proportional - Integral - Derivative) and MRAC (Model Reference 

Adaptive Controller) techniques attempt to cope with these system nonlinearities, but these 

techniques are too complex and time consuming for most real world applications. (Li Y.F., 

eta!, 1989). 

The problems associated with non-linear systems led researchers to incorporate human 

intelligence into automatic control systems. The rationale for developing control systems 

based on human intelligence is the ease with which certain industrial processes are 

controlled by human operators than by automatic control systems. The operators are aware 

of how the system will respond to their control actions; knowledge which they have 

acquired through years of experience. This resulted in the design of intelligent control 

systems and since then many efforts have been made to find methods for designing control 

systems that incorporate knowledge based on human experience. 
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These systems, based on expert's knowledge and human operator's experience, are called 

knowledge based systems. In the control of certain real world applications, sufficiently 

precise information is often not available and certain decisions have to be taken in an 

environment which is imprecise and vague. In such situations, the decisions are made on 

the basis of the decision maker's experience, intuition and evaluation of the parameters. 

The knowledge gained by experts through years of experience, thus becomes a useful tool 

in making judicious judgements and decisions in uncertain circumstances. 

Fuzzy logic control is a special form of knowledge based control. Fuzzy logic control 

systems are designed based on the heuristic of the process to form a set of fuzzy rules 

which basically sum up people's common sense and experience. Specifically, the use of 

fuzzy logic has proved to enhance the ability of intelligent control systems. 

Fuzzy logic provides a gamut of concepts and techniques for representing and inferring 

from knowledge that is imprecise, uncertain, or unreliable. It is concerned with the formal 

principles of approximate reasoning. It is much closer in spirit to human thinking and 

natural language than traditional logical systems (Zadeh L. A., 1988). Fuzzy logic is an 

attractive proposition when the process is either difficult to control or difficult to model by 

conventional methods. 

A fuzzy logic control system comprises fuzzy control rules that are based on an operator's 

knowledge. He/She makes a decision based solely on intuition and experience without any 
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knowledge of the underlying dynamics of the system. However, in certain cases, an 

operator finds it difficult to express the kind of action he/she takes in a particular situation 

thereby making it difficult to transfer the expert's knowledge into a knowledge base. 

Moreover, obtaining information by interviewing operators and experts can become a 

lengthy, costly and a time consuming process. In such cases, an automatic strategy for 

developing fuzzy control rules is highly desirable. 

One technique that is becoming very popular is the design of fuzzy logic controllers which 

have the capability of learning from evolution. The integration of fuzzy logic and genetic 

algorithms provides a powerful tool which emulates the decision making ability of a 

human operator, and the capability to learn an optimal action. Genetic algorithms have 

been used widely in many areas such as image processing (Fitzpatrick J.M., et al, 1984), 

travelling salesman problem (Goldberg D.E., eta!, 1985) and control applications (Kumar 

K.K., eta!, 1990). 

Genetic algorithms (GAs) are randomised and global search techniques that are based on 

the mechanics of natural selection and natural genetics. They are different from other 

traditional search techniques, in that, they manipulate codings of candidate solutions to find 

near optimal solutions based on a system specific performance criterion. GAs exploit 

historical data to locate new points in the search space with an expected improvement in 

the performance of the system (Goldberg D., 1989). These properties enable Genetic 

Algorithms to generate high performance fuzzy rules for a Fuzzy Logic Controller. 
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In this research, we attempt to develop a Fuzzy Logic Control scheme to integrate and 

control a network of systems in a common workplace. In such a situation, a given system 

should be able to communicate with other systems and should also be able to adapt to the 

changes in the environment while at the same time fulfilling its desired objectives. The 

effectiveness of this Fuzzy Logic Control scheme is illustrated by applying it to a set of 

urban traffic signals. 

The traffic flow approaching an intersection is regulated by a set of fuzzy control rules 

which adjusts the green phase splits of the north-south and east-west approaches of the 

signal, based on the traffic volume at these approaches. Each intersection is coordinated 

with its neighbouring intersections using another fuzzy logic controller whose rules adjust 

the offset at each intersection based on the traffic at the neighbouring intersections. Offset 

is the time difference between the start of each phase among adjacent intersections. Thus, 

the traffic signal at each intersection is controlled by two fuzzy logic controllers - one, 

based on the local traffic and the other, based on the vehicular traffic at the neighbouring 

intersections. 

1.2 An overview of the problem 

Traffic signals in use today typically operate based on a preset timing schedule. An Area 

Traffic Control (ATC) system consists of a number of traffic signals which are linked in 

such a way that any signal timing change is dependent upon conditions at any of the other 
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intersections. The methods for controlling the traffic signals can be classified into two 

kinds- Fixed-time control and Traffic-Responsive control (Luk J.Y.K., 1984). 

In Fixed-time control, timing plans for different times of the day are made off-line and 

switched into operation according to the time of day. The preparation of these plans and 

their fine tuning is often a time consuming and labour-intensive task. Vehicle detectors are 

not required and the coordination of intersections is achieved by linking local controllers to 

a master controller by means of a system of cables (Luk J.Y.K., 1984). 

In Traffic-responsive control, the timing parameters are calculated according to the 

prevailing traffic conditions. These systems respond to changes in the traffic by performing 

incremental optimisations at the local level. The two most notable Traffic-responsive 

methods are the - Sydney Co-ordinated Adaptive Traffic (SCAT) method developed in 

Australia (Sims A. G., 1979) and Split, Cycle and Offset Optimisation Technique 

(SCOOT) developed in the U.K (Robertson D., 1969). 

Both SCAT and SCOOT incrementally optimise the signal's cycle time, phase split, and 

offset. The cycle time is the duration for completing all phases of a signal; phase split is the 

division of the cycle time into periods of green signal for competing approaches; offset is 

the time relationship between the start of each phase among adjacent intersections. 
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The Automated Urban Traffic Control Systems (AUTCS) that are in prevalent use today 

have either a centralised or distributed architecture. In a centralised AUTCS, the 

information gathering and processing, and the control computations are carried out in a 

centralised manner by the central computer. In the case of a distributed AUTCS, the central 

computer plays the role of a supervisory controller accounting for the information between 

subsystems. 

These systems, centralised and distributed, are not without their limitations. Congestion is 

one of the most relevant factors that limits the performance of conventional traffic control 

systems. Also, the existing control strategy is unable to respond adequately to unforseen 

changes in the traffic conditions caused by accidents, road blockages, failure of traffic 

signals, road maintenance, etc. This is because it is designed to react only to small changes 

in traffic flows and not to deal with unexpected changes in the traffic environment. 

These limitations found in AUTCS can be attributed to the following circumstances: 

I. When a large quantity of information has to be processed, the efficiency of the 

centralised AUTCS is reduced (Scemama G., 1990). 

2. AUTCS having a distributed structure also have their drawbacks. The accounting of 

information between subsystems is not very efficient and the communication structure 

between modules is very complex (Barriere J., eta!., 1986). 
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3. Moreover, most of the AUTCS operate by means of a quantitative algorithm without 

taking into consideration the qualitative aspects of the transport process (Wu J., et al., 

1991). 

In order to resolve the above issues, some kind of strategic control is necessary for treating 

different problems simultaneously and making appropriate evaluations and decisions. It is 

thus desirable to use techniques which are based on artificial intelligence principles to 

solve transport problems in large cities. These systems are called 'Distributed Intelligence 

Control Systems' (DICS) (Gegov A., 1994). 

DICS are a new class of systems based on control theory, artificial intelligence and 

computer technology. They are characterised by distributed information processing and 

intelligent operational capabilities (Decker K., 1987). DICS comprises distributed 

inteiJigent control units which operate together to achieve a common goal (Yang D., et al., 

1985). These systems are characterised by both quantitative and qualitative features which 

make them far superior to the current AUTCS (Siljak D., 1983). 

Fuzzy logic control (FLC) is an alternative to conventional control when the process to be 

controlled is too complex to be analysed by conventional techniques or when the nature of 

the information obtained about the system is inexact, imprecise or uncertain. FLC is not 

incompatible with conventional control techniques but in contrast to them, incorporates the 
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expert's knowledge of the application domain and arrives at a decision along lines that 

simulate human thinking, rather than being based purely on numerical calculations. 

Fuzzy logic is a powerful tool for the design of intelligent systems. It has been successfully 

applied to many control problems and is now finding its use in solving complex traffic 

problems. Fuzzy logic provides opportunities for formalising the human way of thinking 

and perception of the environment (Gegov A., 1994). 

In this thesis, a fuzzy control scheme is proposed for regulating the traffic flow 

approaching a single traffic intersection, two adjacent intersections, and a set of three 

intersections in a two-way street. 

Chiu and Chand (Chiu S., et a!., 1993) present a distributed approach to traffic signal 

control where an adaptive fuzzy logic controller is used for controlling multiple 

intersections in a network of two-way streets. A set of fuzzy rules is used at each 

intersection to adjust the cycle time, phase split and offset based on the local traffic and the 

traffic at the upstream intersection. Thus, the signal timing parameters at each intersection 

are adjusted based on the local information and coordinated only with adjacent 

intersections. 

A set of forty six control rules is used for adjusting the signal timing parameters. The rules 

are divided into three fuzzy knowledge bases: a knowledge base consisting of twenty five 
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rules for adjusting cycle time and green phase of east-west approach, a knowledge base 

consisting of eighteen rules for adjusting offset, and a knowledge base consisting of three 

rules for determining appropriate constraints on the cycle time value. 

The cycle time and the green phase of the east-west approach of a traffic signal are adjusted 

by a fuzzy logic controller, based on the degree of saturation in the north-south and east

west approaches. The degree of saturation is determined to be the ratio of the number of 

vehicles that passed through the intersection during the previous green phase to the 

maximum number of vehicles that can pass through during that period. It determines the 

effectiveness of the green period. Offset is adjusted to coordinate each intersection with its 

upstream intersection. It is adjusted by using another local fuzzy logic controller located at 

each intersection. 

The fuzzy rules proposed by Chiu and Chand for adjusting the cycle time and green phase 

of the east-west approach are based on the assumption that north and south directions are 

the dominant directions of traffic flow, and they optimise the traffic flow only in those 

directions. Also, their fuzzy control scheme coordinates each intersection with only its 

upstream intersection and there is no interaction with any of the other neighbouring 

intersections. 

In this research, the traffic flow approaching an isolated intersection is regulated using a 

fuzzy logic traffic controller which adjusts the green phase of the north-south and the east-

9 



west approaches. The adjustments are made based on the ratio of the number of vehicles 

waiting at the respective approaches (queue length) to the number of vehicles that passed 

through the intersection during the previous green phase. Two fuzzy control schemes are 

investigated for adjusting the offset at each intersection: 

(i) The offset is adjusted by a local fuzzy logic controller located at each intersection 

which coordinates each intersection with only its upstream intersection. 

(ii) The offset is adjusted by a supervisory fuzzy logic which coordinates each 

intersection with its neighbouring intersections rather than just its upstream intersection. 

The control algorithm developed usmg fuzzy logic controllers aims to overcome the 

limitations of the existing conventional control strategies, which are not adaptive to the 

changes in the traffic environment. The fuzzy logic control scheme optimises the traffic 

flow by reducing the waiting time of vehicles and reducing the number of vehicles waiting 

at the traffic junctions. It adapts to the variations in the traffic conditions and attempts to 

improve the overall performance of the traffic signals. 

1.3 Why Fuzzy Logic ? 

The problem of controlling uncertain dynamic systems has intrigued control engineers for 

several years, especially those systems which are subject to external disturbances and 

systems that are complex, ill-structured or model-free in nature. For these systems, setting 
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up a model can be very difficult and they are best described qualitatively, and handled by 

human operators. 

In classical control system design, the initial step is to obtain a mathematical model for the 

process to be controlled. This model represents a priori information about the system. In 

recent years, a great deal of attention has been paid to model-based control such as linear 

control, non-linear control, and adaptive control. But, in certain cases, it is difficult to 

obtain a precise mathematical model for many real world systems which are highly 

complex and have nonlinear characteristics. In order to overcome this difficulty in control 

systems, fuzzy logic control can be applied (Mamdani E.H., eta!, 1981, Tanscheit R., eta!, 

1988). Fuzzy logic control is the application of fuzzy logic theory to a control problem.It 

has proved to be an useful alternative when the system to be controlled is non-linear and 

uncertain. 

Fuzzy Logic Control is a design methodology that simulates the human description of the 

physical system and the required control strategy in a reasonably natural way. It provides a 

means of converting this linguistic control strategy into an automatic control strategy. 

Fuzzy logic control attempts to solve complex control problems by using a set of If-then 

rules such as 'If x = LARGE and y = ZERO then output = LARGE'. These rules are 

expressed not in the form of equations but in linguistic terms or in a manner expressed by 

humans. 
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Traffic flow is usually characterised by ambiguity, uncertainty, subjectivity, and 

imprecision and some sort of a model has to be developed to satisfactorily deal with these 

factors and evolve an optimal solution for complex traffic conditions (Teodorovic D., 

1994). Regulating vehicle movements at intersections, using traffic lights, has emerged as 

one of the most effective and flexible means of controlling urban road traffic. However, 

obtaining a valid model of the traffic flow theory is still difficult. 

Fuzzy logic control can be an appropriate tool for controlling traffic lights at an 

intersection because of its capacity to deal with a wide range of traffic patterns and the 

uncertainties that exist in the traffic systems. Fuzzy logic is a theory about vagueness and 

uncertainty and it enables ill-defined concepts to be used for ill-defined situations. A fuzzy 

controlled traffic signal uses sensors that gives a count of the number of vehicles waiting at 

the intersection. This information provides the fuzzy logic controller with traffic densities 

and allows a good assessment of changing traffic patterns. As a result, the fuzzy logic 

controller can adapt to the uncertainity in the system and change the traffic light 

according! y. 

1.4 Outline of the thesis 

In chapter 2, the basic concepts of Fuzzy Logic and Genetic Algorithms are introduced and 

the prevailing urban traffic control methods are discussed. The current methodologies for 

controlling traffic signals are presented in detail and the use of fuzzy logic as a tool for 
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enhancing the current technology is considered. A brief survey of the research on urban 

traffic control using fuzzy logic is given and some relevant concepts for fuzzy set theory 

and fuzzy logic based control systems for constructing a FLC are presented. An overview 

of the three basic operators of a Genetic Algorithm is also presented. Genetic Algorithms 

are proposed to learn the fuzzy knowledge base for controlling a traffic signal. 

In chapter 3, a fuzzy logic controller is developed for controlling the traffic flow 

approaching an isolated intersection. The traffic flow approaching the intersection is 

regulated by a set of fuzzy decision rules which adjusts the green phase splits of the north

south and east-west approaches of the signal based on their respective traffic volumes. This 

control scheme is expected to minimise congestion at the intersection. 

In chapter 4, a study of two adjacent intersections is done and the two intersections are 

coordinated using local fuzzy logic controllers which adjusts the offset at each intersection 

based on the traffic volume at the adjacent intersection. A new fuzzy control scheme is 

proposed for coordinating two intersections. In this control scheme, a supervisory fuzzy 

logic controller is used to adjust the offset at both the intersections. A comparison of the 

two traffic coordination schemes is made and simulation results are presented. 

In chapter 5, the behaviour of a set of three traffic signals is studied. The three intersections 

are coordinated using local fuzzy logic controllers which adjust the offset at each 

intersection based on the traffic volume at its upstream intersection. The supervisory fuzzy 
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logic controller introduced in chapter 4 is used to adjust the offset of the three intersections 

based on the traffic volume at all three intersections rather than just the upstream 

intersection. The supervisory fuzzy logic controller is expected to perform better than the 

local fuzzy logic controllers. 

In chapter 6, fuzzy logic is integrated with Genetic Algorithms (GAs) to learn the fuzzy 

knowledge base. The fuzzy control rules generated via genetic evolution are used to 

regulate the traffic flow approaching two adjacent intersections and a set of three 

intersections. The fuzzy rules generated by GAs are expected to yield better results than the 

fuzzy rules generated by hand. 

In chapter 7, some conclusions from this research are drawn and discussed and future 

directions are proposed. 
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Chapter2 

Urban Traffic Control, Fuzzy Logic and Genetic Algorithms 

2.1 Introduction 

The demand for transportation has increased over the last few decades. A majority of this 

increase is due to the spurt in personal transport which is as a result of urbanisation. The 

increase in the vehicular traffic has brought many problems like pollution, increased 

accident rates and congestion thereby reducing the efficiency of the transportation system 

(Patriksson M., 1994). 

The increase in the number of vehicles on the road has brought into light the problem of 

controlling the traffic flow and optimising a strategy of control. Many difficulties arise 

when attempts are made to model the behaviour of road traffic and evolving an effective 

means of control. Some of the theoretical problems are the inherent randomness of traffic 

movement which in itself depends on how the drivers adapt to various conditions and the 

control variables that affect the modelling of the control strategy. One of the practical 

problems is the difficulty and cost of collecting data and analysing it to prove that a 

particular theoretical model achieves the desired results (Robertson D.l., 1979). 
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Traffic planning, management and control are processes that are linked to certain decisions 

which have to be made based upon some basic input data which might include travel time, 

travel costs, queue length of vehicles, etc. In some cases, the input data is precise and 

available and, assuming that an adequate model exists, satisfactory solutions can be 

expected from the resulting decisions. 

Most of the traffic and transport parameters are characterised by ambiguity, uncertainty, 

subjectivity, and imprecision and some sort of a model has to be developed to satisfactorily 

deal with these factors and evolve an optimal solution for complex traffic and 

transportation processes (Teodorovic D., 1994). 

Fuzzy set theory is a convenient mathematical device for treating uncertainty, subjectivity, 

indetermination, and ambiguity. It is a theory about vagueness and uncertainty. Fuzzy logic 

enables ill-defined concepts to be used for ill-defined situations. Since its introduction, 

fuzzy logic has been successfully applied to the control of a wide variety of ill-defined 

complex industrial processes which require complicated mathematical models (Kickert, 

W.J.M., et a!, 1976, King P.J., et a!, 1977, Yasanobu S., et a!, 1985, Fujitec F., 1988, 

Bernard J.A., 1988). 

However, fuzzy logic control is not without its limitations. One problem is obtaining an 

adequate rulebase for the fuzzy logic controller. Rule-elicitation can be performed by 

interviewing operators, on-line verifications of control actions, etc, but this can be an 
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expensive and a lengthy process and is specific to each application. To overcome this 

problem, Genetic Algorithms can be used to generate the fuzzy rules for the application 

(Mohammadian M., eta!, 1994, Karr C.L., 1991). 

Genetic Algorithms (GAs) are search algorithms that are based on the principles of 

biological evolution. They simulate the natural search and selection process associated with 

natural genetics. They are a class of optimisation procedures whose mechanics are based on 

those of genetics. 

GAs have been widely used in many different applications (Caldwell C., eta!, 1991, Karr 

C.L., 1991, Koza J., 1992) and have successfully been applied in the tuning of 

membership functions of a fuzzy logic controller (Mohammadian M., et al, 1993) and in 

the generation of fuzzy decision rules (Mohammadian M., eta!, 1994). In this research, we 

propose to use Genetic Algorithms to generate the fuzzy control rules for adjusting the 

offset of a traffic signal. 

The number of fuzzy rules depend upon the number of input variables to the fuzzy logic 

controller. An increase in the number of input variables results in an exponential rise in the 

number of fuzzy rules. A ruleset having high dimensionality is difficult to construct by 

hand. Moreover, the randomness and unevenness of certain non-linear systems makes it 

difficult to choose an appropriate control action for a possible set of input values. 

17 



Hence, to facilitate the construction of knowledge bases, Genetic Algorithms is employed 

to learn the fuzzy rules. GAs performs a random search in the output fuzzy regions to 

evolve a knowledge base for the fuzzy logic controller. Each set of fuzzy rules generated by 

the Genetic Algorithms is evaluated by the fuzzy logic controller based on a system 

specific performance criterion. In this thesis, GAs is employed to elicit the fuzzy rules for 

the supervisory fuzzy logic controller adjusting the offset. 

2.2 Urban Traffic Control 

2.2.1 Traffic control 

The transportation system is very complex, and its performance depends on many facets of 

the day-to-day life. The process of evaluating, designing and managing such a system 

cannot be carried out without the aid of well formulated models. The transportation system 

as a whole is modelled based on a set of assumptions, the most important ones being that 

the travel patterns are tangible, stable, and predictable (Patriksson M., 1994). 

Traffic control is an intensive technique to promote safe, efficient and convenient 

movement of people and goods, making a better use of the existing roads (Gartner N.H., et 

a!., 1983). Traffic control can be categorised into three sub-areas: congestion control, 

incident detection, and traffic light control. 
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Congestion in road networks has been one of the barriers faced in the improvement of road 

traffic control. This is due to a lack of understanding of the dynamic behaviour of the 

traffic system as a whole. The problem with congestion is that it can occur unexpectedly, 

requiring a change in the traffic control strategy to cope with it. But the advent of fast 

methods of communication and calculation has created many new opportunities for 

controlling traffic on congested networks (Smith M.J., et a!, 1992). 

Incident detection is the capability of the system to classify some congestion phenomena. 

Congestion could be due to the occurrence of road accidents, or some other incidents 

(Bielli M., 1991). 

Traffic light control is widely used to resolve conflicts among vehicle movements at 

intersections. The main objective is to reduce the confusion generated by different drivers 

and improve the safety and comfort of the road users. Traffic signals were first used simply 

as a means of avoiding collisions and reducing traffic delays at junctions, but, over the 

years, they have become one of the most effective, flexible and readily available means of 

controlling road traffic in an urban road network (Smith M.J., et a!, 1992). 

2.2.2 Road Traffic Signals 

An Area Traffic Control (ATC) system consists of a number of traffic signals linked in 

such a way that any signal timing change is in some way dependent upon conditions 

19 



prevailing at any of the other intersections. The system of signals may be a single linked 

pair, a linear group or a complete network. The control system at each signalised 

intersection consists of the following three control elements: cycle time, phase splits and 

offset (Luk J.Y.K., 1984). 

Cycle time is the duration of completing all phases of a signal; phase split is the division of 

the cycle time into periods of green phase for competing approaches; and offset is the time 

difference in the starting times of the green phases of adjacent intersections. 

Traffic control systems can be grouped into two principal classes: fixed-time and vehicle

actuated systems. 

Fixed time control 

A fixed time control system relies on historical data to prepare timing plans for a signalised 

area. Three to four plans, representing the a.m peak, p.m peak and off-peak conditions are 

commonly used and a particular plan is switched into operation depending on the time of 

the day. Vehicle detectors are not required with this method and the coordination of 

intersections is achieved by linking local controllers to a master controller by means of 

cables. The master controller adjusts the offset of the local traffic signals to minimise the 

number of vehicles waiting at the local intersections. A fixed time system can also be 

implemented in the form of a cableless linked system with the use of crystal clocks in the 

local controllers. 

20 



A fixed time system is simple in structure. It is, however, inflexible in its operation because 

it cannot respond adequately to unpredictable changes in the traffic demand and is only 

suited to networks with predictable flow patterns (Luk J.Y.K., 1984). 

Vehicle actuated control 

A vehicle actuated system, also called traffic responsive control system calculates the 

control parameters according to the prevailing traffic condition. The change in the signal is 

influenced by the traffic flow. In this control strategy, one or more vehicle detectors are 

installed on the approaches to the junction and the green split is adjusted accordingly based 

on traffic flowing over the detectors. The logic of control is based upon the detection of 

time gaps in the stream of traffic that is receiving the green. When a gap of several seconds 

is detected between vehicles, the green phase for that approach is terminated and displayed 

for another approach (Robertson D.I., 1979). 

The traffic-actuated signals are widely used and can provide considerable advantages over 

fixed-time control. But, most of the fixed-time and traffic-responsive control systems are 

aimed at short-term effects or to a certain degree, medium-term. These strategies strive to 

minimise the delay at a single junction and do not optimise the traffic flow of the entire 

network. There are many forms of implementation of traffic responsive methods having 

various levels of traffic adaptability. The most notable of these are SCATS (Sydney 

Coordinated Adaptive Traffic System) developed in Australia and SCOOT (Split, Cycle 
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and Offset Optimisation Technique) developed m the U.K. These methods will be 

discussed in detail later in this chapter. 

Control strategies like SCOOT and TRANSIT (A Traffic Network Study Tool) are 

concerned with the short-term and medium-term effects and seek to minimise the delay for 

the network as a whole (Smith M.J., et a!, 1992). There is currently no way of dealing with 

long-term effects since it is very hard to specify with any precision the longer term network 

wide effects of any control change. Thus, there has been more emphasis on short -term and 

medium-term optimisation of signal controlled junctions and networks. 

2.2.3 Traffic control systems classification based on architecture philosophy 

Traffic control systems can be classified into the following categories based on their 

hardware characteristics (Bruno G., eta!, 1994): 

Non-computerised systems - The early traffic control strategies were operated by 

electromechanical devices which allowed only fixed-time signal changes to the control of a 

single junction or an arterial system. 

Centralised computerised systems - With the advent of computer systems, the collection 

and processing of large amount of data was conceivable so that traffic control plans for 

different areas could be designed. A central computer system gathers traffic data coming 
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from detectors and local controllers and adopts a control strategy for signal plan selection 

or modification. 

Distributed computerised systems - The inability of the centralised computer systems to 

perform fully traffic responsive control has resulted in the design of distributed computer 

systems. In these systems, the central computer plays the role of a supervisory controller. 

The advantages of a distributed computerised system are that the cost of data transmission 

is reduced and the system as such is more flexible. 

2.2.4 Signal timing parameters 

The optimisation of traffic signal systems timing involves the coordination of the network 

as a whole. This optimisation is carried out using a three step sequential decision process 

(Gartner, N.H., eta!, 1976). 

In the first step, the cycle time is calculated based on the requirements of most loaded 

junctions. In the second step, the green splits for the junctions are calculated based on the 

master cycle which is fixed. Finally, in the third step, a set of optimal offsets among signals 

is determined. 
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2.2.5 Coordination of a Network of Intersections 

Traffic signal coordination is one of the most widely used and cost effective means of 

improving the traffic flow in a network of intersections. The signals at two or more 

intersections are coordinated on a common cycle time and the offsets are adjusted in such a 

way that the vehicles passing one intersection arrive at the downstream intersection when 

the light is green. As a result, the vehicles arriving at the downstream intersection pass 

through unstopped. 

2.2.5.1 Traffic signal coordination of fixed time plans 

Fixed time plans use preset values to calculate the signal timing, based on previous 

observations, on the average traffic behaviour over the period of control. As a result, 

separate fixed time plans are derived for different hours of the day. Different methods use 

different techniques to optimise the signal timing. Whiting and Hillier (Hiller J.A., 1965) 

developed a systematic procedure, called the combination method, for minimising the total 

delay in the network of signals. The traffic flow from all sources entering the street is taken 

into account and the timing signal at the downstream intersection is calculated as a function 

of the offset along the street. Optimum offsets between the signals are determined by a 

dynamic programming procedure that finds the best offsets in the network. 
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Some of the other methods of signal optimisation are SIGOP (SIGOP 1966), MITROP 

(Gartner et.al, 1974), and TRANSYT (Robertson D.I., 1969). In SIGOP, an ideal offset is 

calculated for each street that depends only on the conditions along that street. The signal 

offsets are adjusted by a search procedure that minimises the sum of the squares of the 

differences between the ideal offsets and the actual offsets. This method is quite efficient 

but does not guarantee a reduction in the delay time. 

In MITROP, the traffic flow along a street is assumed to occur as a single platoon with 

constant density and the offset is determined by the signal timing at the upstream 

intersection. A mixed-integer linear programming technique is used to optimise the signal 

offsets, green time and cycle time simultaneously. 

All the three methods (combination method, SIGOP, and MITROP) sacrifice realism in 

their model to achieve efficiency in their optimisation procedures. TRANSYT, on the other 

hand, takes into account the different speeds of individual vehicles. The delay at a signal is 

a non linear function of the signal timings of all upstream intersections. However, the 

signal optimisation procedure employed is a simple form of rectangular search which 

might not find the optimal offset. But, the TRANSYT traffic model achieves an improved 

accuracy when compared to the other optimisation techniques, even though its search 

procedure is not very efficient. (Robertson D.I., 1979). 
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2.2.5.2 Coordination of Traffic Responsive Methods 

Two dynamic traffic responsive methods which are currently in operation are reviewed 

here. 

Sydney Coordinated Adaptive Traffic System (SCATS) 

In a SCAT system (Luk J.Y.K., 1984), the signals in an area are coordinated by dividing 

the area into smaller subareas of about one to ten signalised intersections. Each of these 

intersections share a common cycle time which is updated every cycle in steps of up to six 

seconds depending on the Degree of Saturation (DS) of that area. Degree of saturation 

gives an indication of the effectiveness of the green phase. It is measured using detectors at 

the stop lines. 

Each intersection within a subarea has four phase split plans and five offset plans. The 

phase split plans express the green times and intergreens which are percentages of the 

current cycle time. These plans also include other vehicle actuated control tactics for phase 

skipping, transfer of spare time, and defining phases that benefit from additional time 

gained by increase in cycle time. 

The five offset plans comprise internal and external offsets. The internal offsets between 

adjacent intersections vary according to the current cycle time and an input parameter 

known as progressive speed factor which governs the percentage change in the offset. The 
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external offsets are used for merging two subareas. When two adjacent subareas are 

merged, the common cycle time for the combined area is the larger cycle time of the two 

separate subareas before merging (Sims A. G., 1979). 

In SCAT, the determination of the cycle time, phase split and offset are independent of 

each other although they are all affected by the degree of saturation. However, in order to 

minimise the delay and the number of stops, all these three signal timing parameters should 

be optimised simultaneously. Hence, this approach is not ideally suited for large networks 

where the traffic flow is high and unpredictable (Luk J.Y.K., 1984). 

Split, Cycle and Offset Optimisation Technique (SCOOT) 

The technique of optimisation in SCOOT is similar to that of TRANSYT. TRANSYT, 

being a fixed time system, has a cyclic traffic flow, where the signal settings are the same 

for every cycle and the flow at each intersection is assumed to remain unchanged for a 

given time period. SCOOT, on the other hand, measures the traffic flow in real time with 

the help of vehicle detectors. These detectors are located at a small distance away from the 

upstream intersection to obtain a count of the number of vehicles waiting at the 

intersection. The degree of saturation of an approach is estimated from measured flow 

upstream of the stop line, and a predetermined value of saturation flow. The queue length 

at the downstream intersection is also predicted from the preset saturation flows. 
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The queue length in the network is minimised by increasing or decreasing the phase splits 

and the offset. If the area is heavily congested, the cycle time is also adjusted to minimise 

congestion. When the traffic flow at a particular intersection is low, SCOOT operates at 

half its common cycle time thus reducing the delay time of vehicles (Luk J.Y.K., 1984). 

Hunt (Hunt P.B., eta!, 1981) suggested that SCOOT is most effective when the traffic flow 

at a junction approaches the capacity, where the demand is unpredictable and the distance 

between the junctions is short. 

2.2.6 Applications of AI and KB systems to Traffic Control 

In this chapter, some current control strategies were introduced and the systems that are in 

prominence for controlling traffic in urban areas were described. In this section, some of 

the limitations of the current traffic control methods will be discussed and the issues 

addressed by Artificial Intelligence techniques to circumvent these problems, will be 

presented. Furthermore, the benefits of using Artificial Intelligence techniques to the 

control of traffic signals will be discussed. 

2.2.6.1 Limitations of the current Urban Traffic Control (UTC) systems 

Fixed time and traffic actuated systems have their own capabilities and are suited to 

different traffic conditions. Depending upon the traffic conditions in a particular area, 
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either one of these two methods will be appropriate to control the traffic flow in that area. 

However, there are various factors that affect the performance of the conventional traffic 

control systems (Ambrosino G., eta!, 1994). 

1. Congestion is one of the most relevant factors that limits the performance of 

conventional traffic control systems. When overload of junctions occur, short links get 

blocked and queue lengths increase. In such cases, the conventional systems are unable to 

cope with these events and some kind of strategic control is necessary for treating different 

problems simultaneously and making appropriate evaluations and decisions for different 

areas. 

2. Conventional traffic control systems are unable to respond adequately to unforseen 

changes in the traffic conditions caused by accidents, road blockages, etc. This is because 

these systems are designed to deal with predefined average traffic flows or react to small 

changes in traffic flows. 

3. The extent of know ledge available to the UTC systems about the actual traffic behaviour 

is very limited. The current traffic control systems are able to respond to the traffic flows 

measured by detectors. However, these detectors do not provide any information about the 

actual traffic behaviour which is essential to optimise the performance of the system. 
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4. A ml\ior drawback of the current traffic control systems is that, most of the control 

strategies are applied in an isolated manner with no interaction with other traffic 

management measures. 

The purpose of this research is to address the first two limitations and develop a suitable 

technique using Fuzzy Logic to improve the efficiency and the design transparency of the 

urban traffic control system. 

2.2.6.2 Issues addressed by Artificial Intelligence 

In order to realise a traffic control system, the following operations are essential (Bielli M., 

eta!, 1991). 

• Traffic data collection 

• Data Analysis/Interpretation 

• Decision and Control 

The management and operations implied by these three levels can be recognised as a 

knowledge intensive task, given the complexity of the traffic phenomenon and decision 

making that involves expertise and application of rules. 

In order to regulate the traffic flow in a network, an analysis of the current traffic situation 

and an understanding of the network as a whole is essential. The next step is to improve the 
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quality of decision making, that is, to estimate the consequences of possible actions and to 

adapt the decisions to the traffic situation. 

Artificial Intelligence (AD techniques along with logic programming contribute to fulfil all 

the requirements that the quantitative methods of operations research have not been able to 

meet. AI also called knowledge processing uses the models of human reasoning and 

problem solving and applies this knowledge to construct a solution for the problem. AI 

techniques are used to manage complex mathematical models, set up the solving algorithm, 

and solve unstructured problems with the aid of heuristics thus controlling the whole 

decision process (Bielli M., et al., 1991). 

The limitations of the current traffic control systems can be resolved by using new 

techniques that are based on artificial intelligence principles and sophisticated computing 

devices (Gegov A., 1994). These systems are called 'Distributed intelligence control 

systems' (DICS). DICS are composed of distributed intelligent control units, processing 

information in a distributed manner and possessing both quantitative and qualitative 

characteristics. 

The Automated Urban Traffic Control Systems (AUTCS) operate by means of only 

quantitative algorithms that do not reflect the qualitative aspects of the transport process. 

Since qualitative information is usually expressed in uncertainty, it is difficult to formulate 
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a mathematical model for the system considered. For this reason, certain approximate 

approaches should be used for solving this problem. 

Fuzzy logic has been found to be an effective tool in the control of processes that are ill

defined and complex to model (Mamdani E.H., eta!, 1981, Sugeno M., 1985). Fuzzy logic 

is concerned with the formal principles of approximate reasoning. It allows qualitative 

information to be represented in a quantitative way. Distributed intelligent control systems 

incorporating fuzzy logic are the appropriate tools for improving the design transparency of 

the prevailing traffic control systems. 

2.2.7 Fuzzy Logic as a means for Traffic Control 

Zadeh's (Zadeh L.A., 1965) pioneering work on fuzzy sets has provided a conceptual 

framework for dealing with problems that are vague and imprecise in nature. The theory of 

fuzzy sets is capable of providing a basis for the modelling and analysis of complex 

processes, which in many ways is similar to the approach taken by humans, that is, rough 

approximation. 

The problem of controlling traffic junctions is considered as a classical example of 

nonprogrammed decision making where the decisions are to be made in an environment 

that lacks well specified means of coping with the problem (Pappis C.P., eta!, 1977). A 

linguistic control algorithm consisting of fuzzy decision rules can be implemented to deal 
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with this problem. The linguistic control algorithm aims to enhance the appropriateness of 

the control actions, increase control flexibility and produce performance measures which 

closely match human's perception of 'good' traffic control (Chiu S., eta!., 1993). 

A considerable amount of work has been done on the problem of regulating traffic at 

intersections. Automatic control of traffic signals has been dealt by many authors 

worldwide and many theoretical papers about the optimal control of signals have been 

published (Pappis C.P., eta!, 1977, Favilla J., eta!, 1993). 

The first paper that described an attempt to solve this problem using fuzzy logic was 

written by Pappis and Marndani (Pappis C.P., et a!., 1977). They considered an isolated 

signalised intersection of two one-way streets and developed a model based on linguistic 

control algorithm. Pappis and Mamdani assumed an uniform distribution of vehicles 

arriving at the intersection. They also assumed that the cycle is divided into two periods of 

'actual green' and 'actual red', that vehicles leave the queue at the same intensity at which 

they join it and there is no turning traffic. The arrival of a vehicle is decided by generating 

a random number and comparing it with the mean vehicle arrival rate. 

The control algorithm developed consists of three input variables and a single output 

variable. The input variables are: 

T - The time that has lapsed since the last light change at the intersection. 
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A - The number of vehicles that passed through the intersection during the previous green 

phase. 

Q - The number of vehicles waiting in line on the one-way street waiting for the light to 

change to green. 

The output variable is: 

E - The extension which has values identical to variable T, representing the extension 

given to the present state of the system. 

The variables A and Q are assigned linguistic values like 'many' vehicles, 'more than' 

vehicles, 'few' vehicles. The variables T and E are assigned values like 'very short', 

'short', medium'. The control algorithm developed by Pappis and Mamdani consists of 

rules of the following type: 

If Tis very short and A is many and Q is medium then E is medium. 

A total of 25 rules is used and each rule is a fuzzy relation between T, A, Q and E. Every 

ten seconds, a set of five control rules are evaluated ten times for each of the ten seconds in 

order to determine the extension to the present state of the system. It is assumed that the 

detecting pads are sufficiently far away from the junction, so that data is available for each 

of the next ten seconds. 
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A comparison of the results from the model based on fuzzy logic with results from the 

classical approach based on stochastic models to controlling a signalised traffic intersection 

indicated that better results are achieved by the model based on fuzzy logic from the 

viewpoint of average time loss per vehicle. 

Nakatsuyama, Nagabashi and Nishizuka (Nakatsuyama M., eta!., 1984) developed a fuzzy 

logic controller based on the model proposed by Pappis and Mamdani for regulating traffic 

flow approaching two adjacent intersections in a one-way street. They developed a fuzzy 

logic phase controller to coordinate two consecutive east-west intersections along a north

south arterial road. The fuzzy logic phase controller determines the offset, which is the 

time difference between the start of the green phases of the two intersections, using a 

different set of fuzzy rules. 

This model developed by Nakatsuyama, Nagabashi and Nishizuka is based on the traffic 

conditions. The traffic signal at the first traffic junction is controlled by a fuzzy logic 

controller and the traffic signal at the second junction is controlled by either the fuzzy logic 

controller or the fuzzy logic phase controller depending on the traffic density. The fuzzy 

logic phase controller is effective in coordinating the traffic flow between the two 

successive traffic junctions only when the traffic flow is large. It is not very effective when 

the flow is very small or very large. 
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Nakatsuyama et a!. compared their model with a standard vehicle actuated controller for 

different values of traffic flow rates and showed that the combination of fuzzy logic 

controller and fuzzy logic phase controller achieves considerably shorter average delay 

times than a vehicle actuated controller. 

Favilla, Machion and Gomide (Favilla J., eta!., 1993) developed a Fuzzy Traffic Controller 

(FTC) which includes a fuzzy logic controller, a state machine and an adaptive module. 

The adaptive module comprises two adaptive strategies: a statistical adaptive and a fuzzy 

adaptive strategy. 

The fuzzy logic controller compares the incoming traffic at the approach that has the green 

phase with the vehicle queue at the other approaches. On the basis of this information, it 

decides whether or not to extend the current green phase. The input variables to the fuzzy 

logic controller are the Arrival of vehicles in the approach that has the green light and the 

Queue of vehicles in the approach that has the red light. The output variable of the fuzzy 

logic controller is the Extension to the current green phase. The fuzzy logic controller has 

a total of eleven rules. 

The main objective of the adaptive module is to optimise the fuzzy traffic controller's 

performance in a broader ranges of traffic situations. In the statistical adaptive strategy, the 

membership functions of the input variables are adjusted. During 18 consecutive intervals 

of 10 seconds each, the vehicle arrival is added up for each lane of each approach and the 
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lane having the maximum value for each approach is stored. Then the average is calculated 

along with standard deviation and the membership functions of Arrival and Queue are 

updated. 

In the fuzzy adaptive strategy, the membership functions of Extension is adjusted by 

employing another fuzzy logic controller which has as its inputs the residual queue at the 

end of the green phase and the queue variation during the green phase. The output is the 

adjustment to the upper limits of the membership functions of Extension. 

The results obtained by simulating the traffic flow with and without adaptive strategies 

showed that the fuzzy adaptive schemes perform better than statistical adaptation. By using 

the adaptive schemes, the average delay is reduced and the FTC becomes more responsive 

to traffic flow characteristics. A comparison of the proposed decision making logic with 

the one proposed by Pappis and Mamdani (Pappis C.P., et al., 1977) indicated a reduction 

in the queue length with the employment of the fuzzy traffic controller. 

Another fuzzy logic controller for regulating traffic approaching a single intersection in a 

two-way street was designed by Kelsey and Bisset (Kelsey R., et al., 1993). The fuzzy logic 

controller has three inputs - the average density of traffic behind the green light, the 

average density of traffic behind the red light, and the length of the current green time. 

The traffic densities are obtained from two sensors placed on the road. One is placed at the 

intersection and the other placed 150 feet from the traffic light. This gives a count of the 
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number of vehicles waiting. The output of the controller decides whether to change the 

phase from green to red or remain the same. The fuzzy logic controller uses 26 fuzzy 

control rules that are invoked every second. 

In order to model the traffic flow to mimic reality, Kelsey and Bisset used physical 

equations to describe the motion of a car based on the car in front of it. They used a time

delay differential equation derived from traffic flow theory and standard classical physics 

equations for determining the velocity and position of an object based on the object's 

acceleration. 

The simulation results showed that the fuzzy logic controller allows more cars to pass 

through than the conventional fixed time and proximity controllers. It improved the 

throughput and reduced the average waiting time of vehicles indicating that cars spend less 

time waiting and more time moving. The overall cost of the traffic control system was also 

reduced. 

Hoyer and Jumar (Hoyer R., et al., 1994) developed a fuzzy logic controller for a two-way 

arterial road with multiple state control instead of two state control, that is, instead of being 

restricted to two main directions of traffic flow, they also considered turning traffic. 

The fuzzy logic controller operates with ten input variables and two output variables. The 

inputs to the controller are the 'traffic densities' of different lanes and the 'time elapsed' 
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since the last state change. The outputs are the 'extension' to the current green time and the 

'selection of the next state'. 

Hoyer et a!. considered an intersection with four approaches having 12 main directions. 

They used six states to control the 12 directions of traffic flows. Depending on the traffic 

volume, the states are switched into operation. If there is little turning traffic, the states 

controlling the turning traffic are not switched on and the turning vehicles have to give way 

to the oncoming vehicles. The fuzzy logic controller is constructed using 72 rules. The 

effectiveness of this scheme is yet to be investigated. 

Nakamiti, Freitas, Prado and Gomide (Nakamiti G., et a!., 1994) introduced a Fuzzy 

Distributed Artificial Intelligence (FDA!) approach to control a network of urban traffic 

lights. The fuzzy distributed traffic light control system consists of a processor (fuzzy logic 

controller) situated at each intersection deciding on the setting of its local traffic light and 

communicating with its neighbour processor only. The readings from the sensors are sent 

to the local processor whose aim is to optimise the traffic flow and reduce the average 

queue length and the delay time of vehicles. 

Each processor comprises of a local problem solver and a case-based mechanism. The local 

problem solver reasons upon the processor's knowledge and decides whether to alter its 

current state. It also decides whether to send any message to its neighbour processors. The 

case based mechanism helps the local problem solver to analyse the current situation and 
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verify similar past cases. A decision is reached by the problem solver which is fed back to 

the case based mechanism and this information is stored for future reference. 

The exchange of information between the processors is in natural language. A decision is 

reached based on the processor's local setting, past information and the received messages. 

This system is still under study and one of the critical points, according to the authors, is to 

achieve consensus and coordination among the processors. 

Chiu and Chand (Chiu S., et a!., 1993) proposed a distributed approach to traffic signal 

control where the signal timing parameters at each intersection are adjusted based on the 

local traffic condition and on the signal timing parameters at adjacent intersections. They 

present a distributed system of cooperative fuzzy logic controllers where each local fuzzy 

logic controller uses a set of fuzzy decision rules to adjust the cycle time, phase splits and 

offset. 

A set of 46 control rules is used to adjust the signal timing parameters. The rules are 

divided into three decoupled groups: 25 rules for adjusting the cycle time and phase splits, 

18 rules for adjusting offset, and three rules for determining constraints on the cycle time 

value so that coordination is possible. 

The inputs to the fuzzy logic controller for adjusting the cycle time and phase split are the 

'highest degree of saturation among the east-west approach' and the 'highest degree of 
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saturation among the north-south approach'. The outputs are the 'adjustment to the 

current cycle time' and 'adjustment to the east-west green phase'. The degree of 

saturation is given by the ratio of the actual number of vehicles that passed through the 

intersection during the green period to the maximum number of vehicles that could have 

passed through the intersection during the same period. The rules are evaluated at every 

phase change and the maximum adjustment to the cycle time and green phase is 20% of the 

current value. 

The offset is adjusted by another fuzzy logic controller which determines the dominant 

direction of traffic from the vehicle count for each approach and then determines the 

upstream intersection it wishes to be coordinated. The inputs to the fuzzy logic controller 

are the 'difference between the traffic volume in the dominant direction and the 

remaining directions' and 'the required adjustment', which is the amount by which the 

current green phase is to be shortened/extended divided by the current green period. The 

output is the 'allowable adjustment to the current green phase'. 

The set of three rules determines the allowable difference between the local cycle time and 

that of the upstream intersection based on the vehicle volume at the local intersection. By 

enforcing a common cycle time when the traffic flowing from the upstream intersection to 

the local intersection is high, it is possible to minimise the number of stops at the local 

intersection. 
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A network of intersections is used in the simulation and the results indicate a significant 

reduction in the average waiting time per vehicle and in the number of stops per minute. 

In this research, a fuzzy logic control scheme to regulate the traffic flow approaching a set 

of intersections, is presented. Instead of using local fuzzy logic controllers, as proposed by 

Chiu and Chand, to coordinate each intersection with only the upstream intersection, a 

single supervisory fuzzy logic controller is proposed, which coordinates tbe intersections 

based on tbe traffic flow from all directions. As a result, the offset at each intersection is 

adjusted based on the traffic volume at all its neighbouring intersections rather than just the 

upstream intersection. Also, instead of using proximity sensors, sensors that give an 

estimate of the queue length are used. 

The input variables to tbe fuzzy logic traffic controller are ratio of queue length to number 

of vehicles that passed through the intersection during the previous green phase, in the 

north-south approach and ratio of queue length to number of vehicles that passed 

through the intersection during the previous green phase, in the east-west approach. The 

output variables are green phase adjustments to the north-south approach and green 

phase adjustments to the east-west approach. This fuzzy control scheme is aimed at 

improving the overall performance of the system. 

The supervisory fuzzy logic controller adjusting tbe offset of the three intersections, 

consists of three input and three output parameters, thereby making it difficult to determine 
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an appropriate control action for a given set of input conditions. To overcome this problem, 

Genetic Algorithms are used to learn the fuzzy rules for adjusting the offset. 

2.3 Fuzzy logic and Fuzzy Logic Controller 

The concept of fuzzy sets was introduced in 1965 by Lotfi Zadeh (Zadeh L.A., 1965) as a 

means of representing vagueness in ,applications. He suggested a modified set theory in 

which an individual can have a value that ranged over a continuum of values instead of 

being either 0 or 1, Fuzzy set theory is an extension to traditional set theory and fuzzy logic 

is the corresponding logic to manipulate the fuzzy sets. 

Fuzzy logic attempts to model computer reasoning on the kind of imprecision found in 

human reasoning, Through fuzzy logic, a system not only can represent imprecise concepts 

such as Fast, Tall, etc, but through a set of sound mathematical principles, it can also use 

these concepts to make deductions about the system. Fuzzy logic aims to model imprecise 

reasoning or common sense reasoning for uncertain, ill-defined, and complex processes 

which do not require a high level of precision. 

A Fuzzy Logic Controller (FLC) uses fuzzy logic to determine the course of action. It 

provides an algorithm which converts the linguistic control strategy based on expert 

knowledge into an automatic control strategy. The process is controlled by linguistic 
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variableS rather than crisp numerical variables. FLCs are an attractive option when the 

process to be controlled is ill-defined and normally requires a skilled human operator. Over 

the past few years, fuzzy logic control has been widely applied to a variety of control 

problems and has been found to be a good alternative to conventional control methods. 

Some of the applications include cement-kiln process control (Mamdani E.H., eta!., 1981), 

robot control (Tanscheit R., et a!., 1988), image processing (Kandel A., 1982), and 

automatic train operation (Sugeno M., 1985). 

2.3.1 Fuzzy set theory 

2.3.1.1 Fuzzy sets 

Fuzzy set theory is an extension to the classical set theory. As with classical sets, fuzzy sets 

are defined over an universe of discourse. For a given universe of discourse U, a fuzzy set 

is determined by a membership function which maps elements of U on to a membership 

range which is usually in the range [0,1]. 

Let U be a collection of objects denoted by {u} where 'u' represents the generic element of 

U. A fuzzy set A in the universe of discourse U is characterised by a membership function 

!lA(u) which maps each element ofU to a real number in the interval [0,1], namely (!lA: U 

-> [0,1] ). The membership function represents the grade of membership of u in A. 
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The fuzzy set A can thus be represented as : 

A= { (u, J.l A(u)) I u E U } 

When U is continous, the fuzzy set A is represented as : 

A= f u J.l A (u) I u 

When U is discrete, A is represented as : 

A= I !! A(U;) I U; 

A fuzzy set can be considered to be a generalisation of an ordinary set, such that in an 

ordinary set, an element will have a membership function J.l A = 0 or 1. In the classical set 

theory, an element either belongs to or does not belong to a set but, the elements belonging 

to a fu;z:zy set show a gradual transition from membership to non-membership. Thus, fuzzy 

sets allow an element in the set to have a degree of membership of any real value between 

zero and one which is called the membership value. This value determines to what degree 

an element belongs to a set. 

2.3 .1.2 Support set, Crossover point, Fuzzy singleton 

The support set of a fuzzy set A is the crisp set of all points 'u' in U such that J.l A(u) > 0. 

An element 'u' in U at which J.l A(u) = 0.5 is called a crossover point. 

A fuzzy set whose support is a single point in U is called a fuzzy singleton. 
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2.3.1.3 Fuzzy set operations 

All the normal set operations can be defined on fuzzy sets. Let A and B be two fuzzy sets 

in X with membership functions 11 A and 11 8 . The traditional set theory operations of 

union, intersection and complement of classical subsets of X can be extended for fuzzy sets 

via their membership functions (Yan J., et al, 1994). 

Union: 

11 A u B (u) =max { 11 ~(u) , 11 B(u) } for all u E U 

Intersection : 

11 A n B (u) =min { 11 A(u) , 11 B(u) } for all u E U 

Complement : 

I-LA (u) = 1 - 11 A (u) for all u E U 

2.3.2 Linguistic Variables and values 

The term linguistic variable (Zadeh L.A., 1965) denotes a variable defined in a universe of 

discourse and taking on some value such as small, large, etc. These linguistic values which 

are represented in natural language are called as linguistic values or primary terms. These 

linguistic values are modelled by fuzzy sets. Each linguistic variable involves a finite 

collection of primary terms. Another important aspect of fuzzy sets is the concept of 

linguistic hedges such as slightly, very, more or less. 
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For example, a linguistic variable 'Pressure' can have values such as very high, high, 

slightly high, and not very high. Thus, a linguistic variable is defined by both primary terms 

and linguistic hedges. The linguistic hedges resemble the concentration operation (very 

high), dilation operation (slightly high) and complement operation (not very high). It 

introduces into the system a shade of vagueness which makes it possible to model human 

decision making process. 

2.3.3 Fuzzy Logic 

Fuzzy logic is the logic corresponding to fuzzy sets. In classical two-valued logic, or 

boolean logic or binary logic, a proposition is either true or false. The only permitted 

membership values are 0 or I. Every item in the universe of discourse is either a full 

member of the set or not a member at all. Two valued logic works well for problems which 

are linear and systems that can be modelled precisely and it has proved to be effective in 

solving such problems. In mutivalued logic, a proposition may be true, false or have an 

intermediate truth value. The set of truth values is assumed to be evenly divided over the 

interval [0, 1]. In fuzzy logic, the membership function can have values ranging from 0 to 1 

(Yan J., et al., 1994). 

2.3.4 Fuzzy Inference Rules 

A fuzzy inference rule or a fuzzy relation is often expressed through the conditional logic 

structure 'If-then'. They are of the form "If A then B", where A and B are fuzzy sets 
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characterised by appropriate membership functions. These rules tend to capture the 

impreciseness shown in human reasoning when having to make a decision in an 

environment of uncertainty and imprecision. For example, a fuzzy rule for controlling 

current in the compressor inside an airconditioning unit could be written as 'lf temperature 

is high and humidity is low, then supply moderate amount of current'. The If clause is 

called the antecedent and the then clause is called the consequent. Such rules are generally 

obtained from, and reflect the experience and the know ledge of human experts. 

Another form of fuzzy lf-then rules, proposed by Takagi and Sugeno (Takagi T., et a!., 

1983), shows the involvement of fuzzy sets only in the premise part. An example of a 

fuzzy rule using Takagi and Sugeno's fuzzy inference rule can be given by: 

if velocity is high then force= k *(velocity) 

where high in the antecedent part is a linguistic value represented by a membership 

function. The consequent is a non-fuzzy equation, that is, the output variables are crisp. 

For the computer implementation of a fuzzy rule, the linguistic values high, low and 

moderate must be mapped to numerical values. Fuzzy set theory allows these terms to be 

defined through membership functions and assigns these qualitative values to fuzzy sets. 

2.3.5 Membership functions 

Each linguistic value is characterised by a membership function. There are two ways to 

define the membership function of fuzzy sets: numerical and functional. A numerical 
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definition expresses the degree of membership function of a fuzzy set as a vector of 

numbers whose dimension depends on the number of discrete elements in the universe of 

discourse. A functional definition defines the membership function of a fuzzy set in an 

analytical expression where the degree of membership for each element is calculated (Lee 

C.C., 1990). 

Certain standard shapes of membership functions are commonly used for representing the 

fuzzy sets based on the universe of discourse. The membership functions commonly used 

are: (a) S-function, (b)rc-function, (c) triangular form, (d) trapezoid form and (e) 

exponential form (Yan J., et a!., 1994). The triangular form and the trapezoid form are 

most widely used for determining the degree of membership. 

Triangular membership function 

The membership functions have a triangular shape whose precise appearance is determined 

by the values a,b,c as shown in Figure 2.1. 'a' and 'c' are the lower and upper limits of the 

fuzzy sets and 'b' is the average of 'a' and 'c'. For an element x, the membership function 

is defined as follows: 

ll A (x) = 0 , x < a 

ll A (x) = (x - a) I (b - a) , a s; x s; b 
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J.iA(x)=(c-x)/(c-b) , b :o; x :o;c 

Jl A (x) = 0 , x > a 

JlA 
1.0 

0.5 

0.0 '------L-----=---~~---

a b c X 

Figure 2.1 Triangular fuzzy membership function 

Trapezoidal membership function 

A Trapezoidal fuzzy membership function is shown in the Figure 2.2. 'a' and 'd' are the 

lower and upper limits of the fuzzy sets and the region between 'b' and 'c' always has a 

membership value equal to one. The membership function for a trape;zoidal fuzzy number 

is given as follows: 

Figure 2.2 Trapezoidal fuzzy membership function 
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ll A (x) = 0 , x < a 

J.lA (x) = (x- a) I (b- a), a s:;x s:;b 

!lA (x) = 1, b s:;x s:;c 

J.lA(x)=(d-x)/(d-c), c s:;x s:;d 

J.l A (X) = 0 , X > d 

2.3.6 Fuzzy Logic Controller(FLC) 

The applications incorporating fuzzy logic have their inputs, outputs and control response 

specified in terms similar to those that might be used by human operators. Complex 

mathematical models of the system are not required. The knowledge base constructed, 

based on the experience of the human expert, is in the form of rules which are easily 

understandable. Such systems are called as fuzzy inference systems and they are also 

known as fuzzy models, Fuzzy Associative Memories (FAM), or fuzzy logic controllers 

when they are used in control problems (Jang J. S. R., 1991). 

2.3.6.1 Basic structure of a Fuzzy Logic Controller 

The main elements of a fuzzy logic controller are the fuzzification unit, the fuzzy 

knowledge base, the fuzzy logic inference unit, and the defuzzification unit. The basic 

structure is shown in Figure 2.3 (Y an J., et al., 1994). 
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1. The fuzzification unit maps the measured inputs, which are in the form of crisp inputs, 

into fuzzy linguistic values used by the fuzzy reasoning mechanism. 

2. The fuzzy knowledge base contains two mam types of information: (a) a database 

defining the membership function of fuzzy sets used as values for each system variable and 

(b) a rule base which maps fuzzy values of the input to fuzzy values of the output. 

3. The fuzzy logic inference unit performs various fuzzy logic operations to infer the 

control action for the given fuzzy inputs. 

4. The defuzzification unit converts the inferred fuzzy control action to the required crisp 

control value. 

---l Fuzzy Inference 
mechanism 

Fuzzification Defuzzification 
Input unit unit Output 

r------- ---------- --------., 
I , 
' ' I I 

' Rulebase Database I 

' I 
I I 

Figure 2.3 Basic structure of a Fuzzy Logic Controller 
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The system variables are of two types, input variables measured from the control process 

and output variables used by the FLC to control the process. Depending upon the design 

objectives, different types of FLC can be constructed. For instance, the FLC may have a 

fixed number of fuzzy control rules ( a static fuzzy knowledge base ) or it may have 

learning capability through modification of the knowledge base ( a dynamic fuzzy 

knowledge base) ( Yan J., et al, 1994). 

2.3.6.2 Design and Implementation of a fuzzy logic controller 

In designing a fuzzy logic controller, the following factors should be kept in mind. 

1. Identify the input and output variables and their universe of discourse. These variables 

determine the state of the process and the control actions to be considered. 

2. Determine the scale factors of the input and output variables. 

3. Define the fuzzy membership functions. These functions are used in setting up the fuzzy 

sets for the input and output variables. 

4. Construct the fuzzy rule base. The rule base gives the relationship between the input and 

output fuzzy sets. 
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5. Design an inference mechanism that uses the rule base to logically obtain the control 

statements for an input value and thereby determine the fuzzy outputs. 

6. A defuzzification strategy, for translating the fuzzy output sets to crisp outputs which are 

applied to the process to be controlled. 

2.3.6.3 System variables and fuzzy parameters 

The system variables or fuzzy parameters, which include the input and output variables, 

are usually linguistic ie, expressed in natural language, and they take values corresponding 

to their fuzzy sets. These system variables are different from the input and output values 

which are crisp in nature with many values in a permitted range. 

The design of the fuzzy sets is the critical part of the design. The number of input and 

output variables varies depending on the complexity of the system. A system with n input 

and m output variables is called an-input m-output system. The fuzzy sets for each system 

variable are defined in linguistic terms such as PB (Positive Big), PS (Positive Small), ZE 

(Zero), NS (Negative Small) and NB (Negative Big). The number of fuzzy sets for each 

variable determines the number of fuzzy membership function for each variable. The 

membership function for each fuzzy set is then defined on the universe of discourse of the 

fuzzy variable. Usually, triangular or trapezoidal membership functions are used as these 

require less computation time than the other membership functions (Yan J., et al., 1994). 
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2.3.6.4 Fuzzification 

Fuzzification is the process of mapping from observed inputs to fuzzy sets in the universe 

of discourse. In fuzzy control applications, the observed data is usually crisp and hence 

fuzzification is necessary to map the crisp inputs to the corresponding fuzzy values for the 

input variables. The mapped data are further converted into linguistic terms as labels for 

the fuzzy sets defined for the system input variables. 

2.3.6.5 Fuzzy Knowledge base 

The knowledge base of a fuzzy logic controller comprises two components, namely, a 

database and a fuzzy control rule base. The database defines the fuzzy sets for the system 

variables with the membership functions defined over the universe of discourse for each 

variable. The rule base contains the fuzzy control rules intended to achieve the control 

objectives. 

2.3.6.6 Specification of the rulebase 

The rulebase comprises the fuzzy decision rules for controlling a process. The formulation 

of the ruleset is comparable to that of an expert system except that the fuzzy rules 

incorporate linguistic variables which are similar to how a human operates the system. The 

fuzzy rules are derived from the expert's knowledge and intuition. The rules are in the 
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form: If [Xt is A1 and x2 is A2 and .... ] Then [YJ is Bt and Y2 is B2 and .... ] where Ai and Bi 

are the input and output fuzzy sets respectively. The incorporation of fuzzy terms gives 

fuzzy logic its strength. 

The number of fuzzy sets of an input variable defines the number of rules required. 

Usually, five to seven fuzzy sets are chosen for an input or output variable. A fuzzy rule is 

written for every possible combination that could exist in the system to be controlled. An 

increase in the number of input variables results in an exponential increase in the number 

of fuzzy rules. There is no strict formal standard for the structure of fuzzy rules (Yan J., et 

a!, 1994). 

2.3.6.7 Fuzzy Reasoning techniques 

Several types of fuzzy reasoning have been proposed in the literature. Depending on the 

fuzzy If-then rules employed and the types of fuzzy reasoning, an appropriate fuzzy control 

action is taken. Among the various fuzzy inference methods, the most commonly used are 

the following (Yan J., eta!., 1994): 

!. MAX-MIN fuzzy inference method. 

2. MAX-DOT fuzzy inference method. 

Let us assume a fuzzy control rule base with two rules: 

Rule I :IF xis A1 andy is B1 THEN z is Ct 
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Rule 2 : IF x is A2 and y is B2 THEN z is C2 

Let the firing strength of the ith rule be denoted by a, . For inputs x0 and y0, the firing 

strengths a 1 and a 2 of the rule base can be denoted by 

a I= !lAI(Xo) 1\ !lBI(yo) 

where A. stands for the Intersection or minimum operator. 

!. MAX-MIN fuzzy reasoning 

ll AI AI !l Bl Bl Ill Cl 

llc 

u w 

!lA2 A2 ll B2 B2 C2 C2 

w 

x0 u Yo v n w 

Figure 2.4 MAX-MIN fuzzy inference method 

In MAX-MIN fuzzy reasonmg, the m1mmum operation rule proposed by Mamdani 

(Mamdani E.H., et a!, 1981) is used for fuzzy implication. The control decision led by the 
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ith rule is given by U; AJ.l ci(w) where f.ki(W) is the membership value of the output fuzzy 

sets. Thus, the membership grade of the consequent is given by 

J.k(w) =(a," J.k,(w)) v (a," J.k,(w)) 

where v stands for maximum or union operator. 

Figure 2.4 shows the MAX-MIN inference process for the crisp inputs xo and YO· 

2. MAX-DOT fuzzy reasoning 

AI J.l CJ 

u v w 

w 

Xo u Yo v w 

Figure 2.5 MAX-DOT fuzzy inference method 
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In MAX-DOT fuzzy reasoning, Larsen's product operation rule is used as the fuzzy 

implication function. The control decision can be expressed as a;· J.lc,(w). The membership 

function is given by 

J.k(w) =(a. ·IJ<·(w)) v (a,· J.k,(w)) 

Figure 2.5 shows the MAX-DOT inference process for the crisp inputs Xo and yo. 

2.3.6.8 Defuzzification 

Defuzzification is the process of mapping the fuzzy control actions into cnsp control 

actions. The purpose of defuzzification is to produce a nonfuzzy control action that best 

represents the possibility distribution of the inferred fuzzy control action. There is no 

systematic procedure for choosing a defuzzification strategy. Three methods that are often 

applied are described here (Wen-Ruey H., 1993). 

I. Centre of Area ( COA) method 

The centre of area method calculates the centre of gravity of the distribution of the control 

action. For a fuzzy control action with a membership function f.! c. the control action is 

given by: 
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where q is the number of quantisation levels of the output, W is the crisp output, J.L c(zi) is 

the membership grade of Zi and Zi is the amount of control action at the quantification level 

I. 

2. Mean of Maximum (MOM) method 

The mean of maximum method generates a control action which represents the mean value 

of all the control actions whose membership functions reach the maximum. The control 

action is given by: 

where Hi is the maximum height of the membership function of the fuzzy set defined for 

the ith rule output control, a; is the firing strength of the ith rule and Wi is the crisp control 

value at which the membership function reaches the maximum Hi> which is usually equal 

to one. 

3. Centroid Method 

The centroid method is a simplification of the COA method where the control action is the 

average of the weighted rules. 
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where n is the number of rules fired, W; is the firing strength and z; is the amount of control 

action recommended by rule i. 

2.3.7 Self Organising Fuzzy Logic Controller 

Fuzzy logic control has been applied successfully to many industrial processes and it has 

been found to be appropriate when process models are either unknown, non-linear or 

variable in structure. Since fuzzy control is based on a set of fuzzy rules which are derived 

from people's experience and common sense, it is sometimes difficult to obtain an 

adequate rule base for the controller especially when complicated dynamic processes are 

concerned. Rule elicitation can be performed by interviews with operators, on-line logging 

of control action, etc. But this is a lengthy process and specific to each application. To 

overcome this problem, the concept of Self Organising Fuzzy Logic Control (SOFLC) was 

introduced (Procyk T. J., eta!., 1979). 

A SOFLC achieves a better performance of the controlled process by developing and 

improving the fuzzy rules through a learning process and structures itself automatically by 

monitoring the process's performance on-line, and is thereby able to obtain a 

predetermined quality output. The learning process of the SOFLC consists of algorithms 
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that allow the controller to assess its own performance on the basis of a set of 

predetermined rules. 

The SOFLC observes the environment while issuing the appropriate control actions and 

uses the results of these control actions to improve them further, that is, learn from them. 

The function of the controller is one of system identification and control. (Procyk T. J., et 

a!., 1979). 

2.3.7.1 Structure of a SOFLC 

~-------------------------------------------------, 

' ' ' ' ' : Learning module 
' 

Performance Index Table 

~ 

I Fuzzy rule generating/modifying module I ' ' ' ' --------------------------------------------------
' ------------------------- -------------------------, 
' ' 

~ 
' Set int ' FLC Rule Data 
' 

..-' '¥...../ e ' ' 
Ba'e Ba'e u 

' 
-0 ' ' c 

: I Fuzzification Defuzification I Fuzzy Inference 
' GC ' ! ___________________________________________________ 

Process r71. 

Output u ¥...../GU 

Figure 2.6 Basic structure of a SOFLC (Yan J., et al, !994) 
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A SOFLC is a two level, hierarchical, rule-based controller in which the fuzzy control rule 

base of the FLC is created and modified by a learning module which comprises of a set of 

fixed performance rules. As illustrated in Figure 2.6, a SOFLC consists of the following: 

1. An ordinary fuzzy logic controller at the basic level. 

2. A learning module at the top level. 

I. The basic level 

The basic level of the SOFLC consists of a simple fuzzy logic controller. In this level, at 

each sampling instant, the input signal to the controller is taken and the error and change in 

error are calculated. The error (e) is given by the difference between the process output 

and the set point or the reference point and the change in error ( ce) is the difference 

between the present error and the previous error. These two values are mapped from real 

values to normalised values and sent to the self organising level to generate new control 

rules and modify the old ones. 

2. The Self organising level 

The self organising level contains a performance index table (also called a learning rule 

base table) and a rule generation and modification algorithm, which is responsible for 

creating new rules or modifying existing ones. In a SOFLC, the control state of a process 

is monitored by the learning module. When an undesired output of the process is detected, 
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the fuzzy control rules are created or modified based on the corrections given by the 

performance index table. The performance index table acts as a meta rule base that 

generates the strategy on how the control rules in the rule base can be amended. When the 

control state of a process deviates from its desired behaviour, the performance index table 

assigns a credit or reward value to the control actions that contributed to the present state. 

2.3.8 Adaptive Fuzzy Logic Controller 

A conventional fuzzy system converts its crisp inputs into fuzzy sets, invokes the rules 

relevant to the inputs based on some inference scheme, and defuzzifies the resultant output 

fuzzy sets into crisp outputs which acts as the input to the process to be controlled. It can 

adjust its behaviour during an execution cycle based on the results of the previous cycle but 

it does not reorganise itself or modify its rules to accommodate the changes in the 

environment (Cox E., 1993). Thus, the initial design parameters such as fuzzy sets, 

membership functions, universe of discourse and control rules have to be modified and 

adjusted to meet the design objectives. 

While a self orgamsmg fuzzy logic controller is only responsible for creating and 

modifying fuzzy control rules, an adaptive fuzzy logic controller has self-tuning and 

learning capabilities. It can respond to environmental changes and adjusts itself to these 

changes. An adaptive system has the ability to learn and explain its reasoning and has the 
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capacity to modify and extend it structure, thus making it very robust and extensible for a 

variety of problems. 

An adaptive fuzzy logic controller consists of the following: 

I. A supervising and tuning module at the top level. 

2. A performance measurement module at the top level. 

3. An ordinary FLC at the low level. 

,-----------------------------------------------------------------------1 

' : Supervisory and tuning module 
' ' ' ' ' ' ' ' ' ' ' 

--

r 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

-

Performance 
Measure 

I Tuning module \ 
I fuzzy rules I Universe of Discourse I 

Membership Scaling 
functions factors 

------------------------------- -------------------------------

-------------------------------- --------------------------------
FLC 

Rule Data 
base base 

Fuzzification Fuzzy Inference Defuzzification .I I 

--

-

-------------------------------------------------------------------

Process I 

Figure 2.7 An adaptive fuzzy logic controller (Yan J .• eta!, 1994) 
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The kernel of an adaptive fuzzy logic controller is the supervising and tuning module 

which determines the required modifications or adjustments to the corresponding 

parameters, based on the system performance measures. 

The performance measurement module determines the system performance, including the 

process error, the change of error, the least square error, the least mean square error, etc. 

The process error and the change of error are more frequently used as performance 

measures in most implementations, since the other algorithms are computationally 

expensive ( Yan J., et al, 1994). 

A fuzzy logic controller can be made adaptive by several ways. Various adaptive fuzzy 

logic controllers have been designed and implemented. They can be classified into four 

types: Adaptive fuzzy logic controllers with membership function tuning, universe of 

discourse tuning, scaling factor tuning, and fuzzy rule tuning (Y an J., et al, 1994). Procyk 

and Mamdani (1979) suggested a method for modifying the defuzzification technique to 

determine which rules are responsible for the present poor performance of the system and 

then delete those rules and add new rules. Making modifications to the scale factors by 

condensing or enlarging the spacing of the terms around the equilibrium point also 

improves the performance of the system (Ragot J., et. a!, 1993). 

Before implementing any system, obtaining the necessary training data for the problem is 

crucial to optimise the performance of the system. The self organising fuzzy logic 
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controller developed by Procyk and Mamdani achieves a better performance of the 

controlled process by improving the fuzzy rules through a learning process. However, self 

organising fnzzy logic controllers require a valid model of the system. The desired output 

of the system is known and the controller is required to converge the system to the desired 

output. This type of learning, called supervised learning is not viable when the desired 

output of the system is not known. 

Another learning technique that is becoming very popular is the use of Genetic Algorithms 

(GAs) to develop the fuzzy knowledge base for the fuzzy logic controller. The fuzzy rules 

are generated via genetic evolution. GAs do not require a model of the system nor do they 

need to know the desired output of the system. 

A Genetic Algorithm starts with an initial population of solutions. Each of these solutions 

is evaluated by the fuzzy logic controller and ranked according to a fitness function. The 

fitness function gives an indication of the goodness of the solution and is system specific. 

Pairs of solutions are selected and combined based on the GA operators to create new 

solutions. 

2.4 Genetic Algorithms 

Genetic Algorithms (GAs) are search algorithms based on the mechanics of natural 

selection and natural genetics. They use operations found in natural genetics and guide 
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their way through a search space. Genetic Algorithms have been shown to find the 

optimum or a near optimum solution to problems which have large and complex parameter 

space. They are probabilistic in nature and exhibit global search capabilities. 

2.4.1 An overview of GAs 

Genetic Algorithms were developed by Prof. John Holland (Holland J.H., 1975) at the 

University of Michigan to mimic some of the processes observed in natural evolution. The 

concept of Genetic Algorithms comes from the Darwinian theory of natural selection and 

survival of the fittest. Genetic Algorithms were developed to explain the adaptive 

processes of natural systems and design artificial systems that emulate the characteristics of 

the natural system. 

Genetic Algorithms work on a population of genetically coded solutions. They use a bit 

string to encode a solution and each genetic code (a bit string of 0 and 1) represents a 

member or an individual. Each individual string is a member of a population. 

A simple Genetic Algorithm is composed of three operators. 

I. Selection and Reproduction - This is a process where individual strings are assigned 

copies according to their fitness function. Strings with a higher fitness value get more 

copies and have a higher probability of contributing to one or more offspring in the next 

generation. 
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2. Crossover - The selection stage of Genetic Algorithms reproduces a pair of the best 

existing individual parent strings for each offspring that is to be included in the next 

generation. But, it does not create any new individuals. In order to create new individuals 

from a mating pool, a simple one point crossover is applied where two strings are mated at 

random and are cut randomly between any two bits in the string. These pieces are swapped 

to form new individuals. As a result of crossover, valuable information from both parents 

are obtained and combined and is expected to form a highly fit individual. 

Crossover can be illustrated by the following example: 

Consider the following two parent strings: 

A= [011100} 

B = [101 010} 

An integer position R is selected between one and the string length less one. If R = 3, then 

A= [011 1100} 

B = [101 I 010} 

where the separator symbol ( I ) IS the crossover point and the crossover yields the 

following two children. 

Achild= {011 010} 

Bchild = { 101 100) 
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3. Mutation -Reproduction and crossover give genetic algorithms much of their power by 

searching towards a better solution in tbe local area. Mutation is a mechanism for 

maintaining genetic diversity in a population of strings and insuring against the premature 

loss of information. In this operation, each bit of the binary string is flipped with a very 

small probability. This prevents certain bits becoming fixed at a specific value. Otherwise, 

every string in the population might have the same value resulting in a premature 

convergence to a non-optimal solution. 

Mutation can be illustrated as follows: 

Consider the following parent string: 

{01!100} 

After tbe mutation of the fourth bit, the child string obtained is as follows: 

{Ol!OOO} 

The standard Genetic Algorithm searching steps can be summarised as follows (Goldberg 

D.E., 1989): 

1. Define the representation of an individual. 

2. Define a fitness function based on the desired objective. The fitness value evaluated 

from the fitness function gives the goodness of the individual. 
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3. Set the size of the population, the crossover rate, and the mutation rate. 

4. Initialise the population. 

5. Evaluate the fitness of each individual. 

6. Select mates based on the fitness value of the population. 

7. Create offsprings via reproduction, crossover and mutation. 

8. Repeat steps 5 through 7 until a satisfactory solution is obtained. 

2.4.2 Differences between Genetic Algorithms and traditional search techniques 

Genetic Algorithms are a class of optimisation procedures whose mechanics are based on 

those of natural genetics. They combine survival of the fittest among string structures with 

a structured yet randornised information exchange to form a search algorithm with some of 

the innovative flair of human search. 

Random search techniques have been increasing in popularity over the traditional search 

schemes like calculus-based and enumerative methods because of the robustness of the 

search algorithm. Calculus-based schemes are local in scope, that is, the optima they seek 

are best in the neighbourhood of the current point and they tend to climb false peaks in a 

mutimodal (multi-peaked) search space. Furthermore, these methods need derivatives, 

which are calculated analytically or numerically, to climb the current peak. But many 

functions contain discontinuities and vast multimodal noisy search spaces and these search 

spaces are unsuitable for search by calculus-based search schemes (Goldberg D.E., 1989). 
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Unlike calculus-based schemes which require derivatives to perform a search, Genetic 

Algorithms do not require any such auxiliary information: they are blind. To perform an 

effective search for better and better solutions, they only require the objective function 

values associated with individual strings. This characteristic makes Genetic Algorithms a 

more flexible method than other search schemes. 

The search algorithms in enumerative schemes look at objective function values one at a 

time. Although this algorithm is simple and very human kind of a search, this search 

scheme lacks efficiency. Many practical spaces are too large to search one at a time. 

In enumerative search techniques, we move from a single point in the search space to the 

next using some transition rule to determine the next point. But, this point to point method 

is dangerous because there is a high probability of locating false peaks in a multimodal 

search space. By contrast, Genetic Algorithms work from a rich database of points 

simultaneously (a population of strings), climbing many peaks in parallel, thus reducing the 

probability of finding a local maximum. 

The differences between genetic algorithms and normal optimisation and search procedures 

can be summarised as follows: 

1. Genetic Algorithms work with a coding of the parameter set, not the parameter 

themselves. 

2. Genetic Algorithms search for a population of points, not a single point . 
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3. Genetic Algorithms use payoff (objective function) information, not derivatives or other 

auxiliary information. 

4. Genetic Algorithms use probabilistic transition rules, not deterministic rules. 

The use of probabilistic transition rules by Genetic Algorithms to guide their search does 

not suggest that this method is some simple random search. On the contrary, genetic 

algorithms use random choice as a tool to guide a search towards regions of the search 

space with likely improvement. Thus, direct use of coding, search from a population, 

blindness to auxiliary information, and randomised operators contribute to a genetic 

algorithm's robustness and the resulting advantage over other search schemes. 

One of the most tedious and painstaking tasks in the design of a fuzzy logic controller is 

the construction of an appropriate rule base to control a process effectively. Genetic 

algorithms alleviate this by automatically generating the fuzzy rule base. The integration of 

the properties of Genetic Algorithms and Fuzzy Logic optimises the performance of fuzzy 

logic controllers. 

In this thesis, we use Genetic Algorithms to learn the fuzzy control rules for a fuzzy logic 

controller which coordinates the traffic flow approaching two adjacent intersections and the 

traffic flow approaching a set of three intersections. The decision making ability of fuzzy 

logic controllers and the learning capability of genetic algorithms attempt to improve the 

overall design of the traffic environment. 
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2.5 Discussion 

In this chapter, we introduced the basic concepts of fuzzy logic and genetic algorithms and 

provided a brief overview of urban road traffic planning and traffic light control. Fixed 

time control strategies and traffic responsive control strategies were discussed and some of 

the prevailing methods of automated urban traffic signal control systems were introduced. 

Traffic control in large cities is a difficult and a non-trivial problem. The increasing 

number of vehicles and passengers often causes delays, congestion and accidents in roads. 

To overcome these difficulties, automated urban traffic control systems (AUTCS) are in 

use. These systems can be classified into two categories - Fixed time and Traffic 

responsive control systems. Traffic responsive systems are a better alternative to fixed time 

control because they change their signal parameters based on the prevailing traffic while 

fixed time control plans are done off-line and then switched into operation depending on 

the time of day. 

Even though traffic responsive control strategy regulates the traffic flow at the intersections 

based on the prevailing traffic, it is not able to deal with unforseen changes in the traffic 

environment such as congestion, accidents, etc. This control strategy fails to adapt itself to 

the dynamic changes in the traffic situation. As a result, the whole network is affected since 

each intersection is linked to its neighbouring intersection. 
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The application of artificial intelligence techniques to transport problems has been an area 

of intense research for the past few years. The use of fuzzy logic for controlling traffic at 

intersections has been studied by various researchers and different approaches have been 

proposed. 

Fuzzy set theory and fuzzy logic, the logic for manipulating the fuzzy sets, is a very 

powerful mathematical device for treating uncertainty, subjectivity, ambiguity, and 

indetermination. Fuzzy logic perceives the environment in a manner which is not very 

different from the human way of thinking. It is not practically possible to accurately define 

human features like thinking and reasoning, and fuzzy logic attempts to emulate these 

features, an ability which traditional methods lack. These characteristics make fuzzy logic a 

powerful tool for making decisions in an uncertain environment. 

Fuzzy logic control is an effective tool for decision making in an uncertain and imprecise 

environment. It can be employed as an alternative to the conventional methods of traffic 

control. The randomness and unevenness inherent in the flow of traffic can be handled 

more efficiently by fuzzy logic controllers than conventional controllers. They regulate the 

traffic by making on-line adjustments to the signal timing parameters of the traffic light. 

The design of a fuzzy logic controller is based on the construction of an appropriate 

rulebase for controlling the system. These rules are generally derived from an operator's 

knowledge and experience. In certain cases, the process to be controlled may depend on a 
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large number of input parameters, thereby making it difficult to determine an appropriate 

control action for a given set of input conditions. This problem of rule-elicitation can be 

overcome by employing Genetic Algorithms to learn the fuzzy rules for controlling a 

system. 

Genetic Algorithms (GAs) are search techniques that define a global search by 

simultaneously considering many points in the search space. Most search and optimisation 

techniques require derivative information or complete knowledge of the problem structure 

under consideration. But, genetic algorithms require only information about the quality of 

the solution produced by each parameter set. These characteristics make genetic algorithms 

an attractive tool for the generation of fuzzy knowledge bases for a fuzzy logic controller. 
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Chapter3 

Fuzzy control of an Isolated Intersection 

Fuzzy logic control can be used as an alternative approach to conventional control for the 

control of traffic environments. A typical traffic environment includes the lanes to and 

from the intersection, the intersection, the vehicle traffic and the traffic signals at the 

intersection. A traffic signal should be able to handle the fluctuations in the traffic flow 

efficiently and utilise the green phase periods to achieve maximum throughput. 

In this chapter, a fuzzy logic traffic controller to control the traffic signal at an isolated 

intersection, is presented. The traffic flow approaching the intersection is regulated by a set 

of fuzzy decision rules to adjust the green phase split of the signal. Depending upon the 

traffic volume at the north-south and east-west approaches, the green phase is adjusted 

accordingly to minimise congestion at the intersection. 

3.1 The Model 

It is assumed that each signalised intersection uses sensors that count the number of 

vehicles instead of proximity sensors which only indicates the presence of a vehicle. The 

vehicle densities are taken from two sensors placed on the road. One is at the intersection 
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and the other at 100 metres from the intersection. The rear sensor increments a counter 

every time a vehicle passes over it, while the forward sensor decrements the same counter. 

This gives a count of the number of vehicles waiting 100 metres before the light and a 

count of the number of vehicles that pass through the intersection when the light is green. 

Figure 3.1 shows an isolated signalised intersection. 

rear sensor 

---+ 

vehicles waiting 

' 
1 North 

front sensor 

---------------] .____ ~ast 

100 metres 

isouth 

Figure 3.1 An isolated intersection 

The maximum number of vehicles that can be detected by the sensors is twenty since we 

are assuming that each vehicle is about four metres in length and there is a spacing of one 

metre between each vehicle when they are stationary, and waiting for the light to tum to 

green. If the number of vehicles waiting at the intersection exceeds twenty, the fuzzy logic 
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controller makes a decision based only on the first twenty vehicles in the queue. As a 

result, the queue length is reduced gradually by the fuzzy logic controller. 

3.1.1 VehicleMovement 

The traffic flow is modelled to mimic reality, specifically the motion of vehicles relative to 

one another. Physical equations are used to describe the motion of a vehicle based on the 

velocity and position of the vehicle in front of it. The equations used in the simulation are 

given as follows: 

ar (t + T) = k ( v,(t)- vr(t)) I ( x1(t)- xr(t)) (3.1) 

v(t) = v(t-1) + a(t)dt (3.2) 

x(t) = x(t-1) + v(t)dt + .!_ a(t)dt2 (3.3) 
2 

t = d I v(t) (3.4) 

Equation (3 .1) describes the acceleration of a vehicle based on the velocities and positions 

of itself and the vehicle immediately in front of it. This equation is obtained from the 

traffic flow theory proposed by Haight (1963) and Barwell (1973). Equations (3.2) and 

(3.3) are classical physics equations for determining the velocity and position of an object 

based on the object's acceleration. Equation (3.4) is used to determine tbe time taken by a 

vehicle to travel a distance d witb a velocity v(t). 
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ar (t + T) is the acceleration of the following vehicle after a time lag ofT seconds. v1(t) and 

x1(t) are the velocity and position, respectively, of the leading vehicle at time t, and vr(t) 

and xr(t) are the velocity and position of the following vehicle. T is the time lag between 

the leading vehicle and the following vehicle. Time lag is the gap distribution to the next 

vehicle in time, also called headway, and is assumed to be equal to one and a half seconds. 

k is the characteristic speed which is set to 8.0 meter/second (Barwell F.T., 1973). The 

acceleration value for the first vehicle in the queue of vehicles is assigned a value equal to 

4.9 metres/second2
. 

In equations (3.2) and (3.3), v(t) is the final velocity of a vehicle, v(t-1) is the initial 

velocity of a vehicle, a(t) is the acceleration of a vehicle, x(t-1) is the initial position of a 

vehicle and x(t) the final position. In equation (3.4), t is the time taken by a vehicle to 

travel a distance d with a velocity v(t). 

When the traffic signal changes to green for a particular approach, the velocity and position 

of the first car in the queue is determined from equations (3.2) and (3.3) after a time lag of 

one and half seconds. The acceleration of the next vehicle in the queue is determined from 

the velocity and position of the leading vehicle using the equation (3.1). After a time lag of 

one and a half seconds, the next vehicle moves forward based on the velocity of the vehicle 

immediately in front of it. In this way, each vehicle crosses the intersection with a velocity 

which is dependent on the velocity of the leading vehicle. The time taken by each vehicle 

to cross the intersection is determined from equation (3.4). 
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3.1.2 Delay time 

The arrival time of vehicles at the intersection is considered as being random. At each 

successive time unit (one second), a random number is generated and compared with the 

mean vehicle arrival rate (number of vehicles/hour) and the arrival of a vehicle is decided. 

If qn denotes the arrival of a vehicle at the nth time interval, 

then qn =I, if a vehicle arrived during the nth time interval 

else qn = 0. 

If Qa is the number of vehicles not cleared during the previous green phase, then queue 

Qo.R at the nth time unit after the beginning of the red phase is given by: 

n 

Qn.R = Qa + L q .. (3.4) 
nl=l 

The total waiting time of the vehicles, Dn.R, in the queue at the nth time unit after the 

beginning of the red phase would be: 

(3.5) 

Equations (3.4) and (3.5) are obtained from the model proposed by Pappis and Mamdani 

(1977). 
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If P G is the number of vehicles that has passed during the green phase, the number of 

vehicles not cleared at the nth time unit after the beginning of the green phase is given by: 

" 
<b,G = QR + I,q .. -PG (3.6) 

nl=l 

These vehicles are subjected to a delay of: 

" ( "I ) Dn,G= L Qa-Pa+ I,q,, 
nl=l n2=1 

(3.7) 

Thus, during a cycle, the total del<iy experienced by the vehicles travelling in all four 

directions is given by: 

D = Dn,R + Dn,G (3.8) 

The average delay per vehicle would be: 

(3.9) 

3. 1.3 Assumptions 

Some simplifying assumptions are used in the simulation model: 

• There is only single lane traffic. 

• A vehicle cannot turn at the intersection. 

• There is no pedestrian traffic. 
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3 .2 Fuzzy control rules for au Isolated intersection 

A fuzzy logic traffic controller comprising twenty five fuzzy rules is used to adjust the 

green phase split of a traffic signal. The number of vehicles waiting (queue length) at the 

end of a red phase and the number of vehicles that passed through in the previous green 

phase are the deciding factors in adjusting the green phase split of the signal. 

When traffic volume is high for a particular approach, the current green phase for that 

approach is increased to allow more vehicles to flow through, thus reducing the number of 

vehicles waiting at that approach. When traffic volume is low, the green periods are 

reduced resulting in shorter cycle time and thereby reducing the delay in waiting for phase 

changes. 

The input variables of the fuzzy logic traffic controller are : 

(i) The ratio of queue length to number of vehicles that passed through, in the east-west 

approaches. 

(ii) The ratio of queue length to number of vehicles that passed through, in the north-south 

approaches. 

The input control variables are determined in the following fashion: the queue length 

(number of vehicles waiting) of an approach is compared with that of the opposite 

approach, and the greater of the two queue lengths is chosen. This queue length is then 
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divided by the number of vehicles that passed through the intersection during the previous 

green phase. For example, if the queue length at the north approach is greater than that of 

the south approach, the number of vehicles waiting at the north approach is divided by the 

number of vehicles, from the north approach, that passed through the intersection during 

the previous green phase. The ratio of queue length to number of vehicles that passed 

through, in the east-west approaches is also determined in a similar way. 

The output variables of the fuzzy logic traffic controller are : 

(i) The amount of adjustment to the current green phase of the north-south approach. 

(ii) The amount of adjustment to the current green phase of the east-west approach. 

In the approach presented by Chiu and Chand (1993) for the fuzzy control of a traffic 

signal, the input control variables are the degree of saturation in the north-south and east

west approaches. The degree of saturation is the ratio of the number of vehicles that has 

passed through the intersection to the maximum number of vehicles that can pass through 

during that period, determined from the saturation flow, in the north-south and east-west 

approaches. The degree of saturation shows the effectiveness of the green phase. The 

effectiveness of the current green period gives a measure of how long the next green phase 

should be. This control scheme is based on prediction as the length of the current green 

phase is determined from the vehicle flow during the previous green phase. 
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In this thesis, the queue length and the number of vehicles that has passed through the 

intersection during the previous green phase are considered as the deciding factors for the 

extension/reduction to the green phase time. The queue length gives an accurate measure of 

the waiting traffic, and the ratio of queue length to number of vehicle that passed through 

gives a measure of both the vehicles waiting and the vehicle flow. If the ratio is high, then 

the green phase should be extended to allow more vehicles to flow through thereby 

reducing the queue length. 

The degree of saturation introduced by Chiu and Chand (1993) gives an indication of the 

effectiveness of the previous green phase which, in tum determines the length of the 

current green phase where as, the ratio of queue length to number of vehicles that passed 

through, determines the length of the green periods based on the actual traffic situation. 

The linguistic input and output variables for adjusting the green phase for the North-South 

and East-West approach of a traffic signal are listed below. Each fuzzy set numerically 

represents a linguistic term. The membership functions for the input and output variables 

are shown in Figure 3.2 and 3.3. 

85 



The fuzzy linguistic terms for the input variables (ratio of queue length to vehicles passed) 

are: 

VL: Very Low 

LO: Low 

MD :Medium 

HI: High 

VH : Very High 

The fuzzy linguistic terms for the output variables (amount of adjustment to the green 

phase) are: 

NB : Negative Big 

NM : Negative Medium 

NS : Negative Small 

ZE: Zero 

PS : Positive Small 

PM : Positive Medium 

PB : Positive Big 
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Ratio of queue length to vehicles passed (Queue/vehpass) for 

north-south and east-west approaches 

Figure 3.2 Membership functions for the input fuzzy sets 
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J.1 (Green change 
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Green phase change for N-S and E· W approaches 

Figure 3.3 Membership functions for the output fuzzy sets 

Construction of the Rule base 

Once the precise numeric conditions of the system are categorised into fuzzy sets, a process 

for determining the appropriate control action must be constructed. This involves writing a 

rule set that provides a fuzzy action for every possible condition that could exist in the 

problem environment. The following rules are developed for adjusting the green phase of 

the north-south and east-west approaches. They are arranged in a matrix relationship of 
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input and output fuzzy variables which is called a Fuzzy Knowledge Base. Table 3.1 shows 

a Fuzzy Knowledge Base. Each entry in the table is made up of two components. The first 

is the green phase adjustment to the traffic signal at the North-South approach and the 

second is the green phase adjustment to the traffic signal at the East-West approach. The 

rules in the rule set are of the form 'If ratio in North-South is MD and ratio in East-West is 

HI then green_change_NS is ZE and green_change_EW is PM. 

The rules are evaluated at every phase change; the maximum green phase adjustment 

allowed in one step is 20% of the current green period so that any change in the traffic 

volume results in a gradual change to the green phase of the signal (Chiu S., et a!, 1993). 

The green phase for any approach can be extended to a maximum of 28 seconds. 

VL 

Ratio in LO 
north-south 
approaches 

MD 

HI 

VH 

Ratio in east -west aproaches 

VL LO MD HI 

NB NB NB NB 
NB NS PS PM 

NS NS NS NM 
NB NS PS PM 

PM PS ZE ZE 
NB NS ZE PM 

PM PM PM PM 
NB NM ZE PM 

PB PB PB PB 
NB NM NS PM 

Table 3.1- Fuzzy Knowledge Base 
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Inference mechanism and Defuzzification 

The fuzzy outputs of the fuzzy logic traffic controller are determined by the MAX-MIN 

fuzzy reasoning mechanism (see section 2.3.6.7). Mamdani's 'min' implication function is 

adopted to map the input fuzzy sets to the output fuzzy sets. The fuzzy control action of 

each rule is decided by its firing strength and the fuzzy sets. The fuzzy control action 

inferred from the complete set of fuzzy rules is equivalent to the aggregated result derived 

from individual rules. 

The Centroid defuzzification scheme is employed to determine the crisp outputs from the 

fuzzy output sets. The green phase change to the North-South and East-West approaches is 

computed by invoking the following formula: 

" 
LWiZi 

w = -"'~'::'--
" 

L,w' 
i=l 

(3.10) 

where n is the number of rules fired, wi is the firing strength and Zi is the amount of control 

action recommended by rule i. The Centroid method of defuzzification yields a single 

control action which is applied to the physical system. 

3.3 Software used for the simulations 

The simulations are performed by developing software packages for the Fuzzy Logic 

Controller (FLC) and the Traffic model. The software packages are developed in 'C' using 
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the Borland C++ V4.0 compiler. The process of fuzzification, inference, and 

defuzzification is performed by the Fuzzy Logic Controller simulator. The software 

simulating the traffic flow provides the inputs to the Fuzzy Logic Controller and receives 

the outputs from the Fuzzy Logic Controller to regulate the traffic flow. 

Traffic green_NS 

model 
green_EW 

vol_NS vol_EW 

Fuzzy Logic 
Controller 

adj_NS adj_EW 

Figure 3.4 Model used for the simulation 

The traffic density approaching the intersection is determined by the software simulating 

the flow of traffic (The traffic model). This data is sent to the Fuzzy Logic Controller 

which determines the amount of adjustment to be made to the green phase. An increase in 

the flow of traffic results in an increase in the time duration of the corresponding green 

phase. 
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Vehicle movements are simulated using the standard laws of motion and equations to 

determine the velocity and position of a vehicle based on the velocity and position of the 

leading vehicle. 

3.4 Simulation Results 

Simulation was performed to establish the effectiveness of this fuzzy logic control scheme. 

An isolated intersection with four approaches, as shown in Figure 3.4 is considered. The 

green phase for the North-South and the East-West approaches is set initially to 20 

seconds. The green phase of the sigual for any approach cannot exceed 28 seconds. The 

fuzzy control rules are evaluated at every phase change and the maximum green phase 

adjustment allowed at any time step is 20% of the current green period. 

North (1300 veh!hr) 

1 

---+ 
West (1000 vehlhr) 

--------, 

l 
South (1200 veh!hr) 

Figure 3.5 An isolated intersection 'A' 

91 



Road sensors are assumed to be installed at the intersection and at lOOm from the 

intersection to determine the number of vehicles waiting and to keep a count of the number 

of vehicles that passes through the intersection. A mean vehicle arrival rate is assigned to 

each end of a street as shown in Figure 3.5. At each simulation time step, a random number 

is generated for each approach and compared with the mean vehicle arrival rate 

(vehicles/hour) to determine whether a vehicle should be added to the end of the lane. If the 

mean arrival rate is high at the north-south approaches, the traffic flowing from those 

directions is high thus resulting in extended durations of green phase for the north-south 

approach and reduced durations for the east-west approach. 

The input variables, ratio of the vehicles waiting to the vehicles passed during the previous 

cycle for the north-south and east-west approaches are sent to the fuzzy logic traffic 

controller. The fuzzy decision rules given in Table 3.1 are then applied to determine 

whether the green phase is to be extended/reduced for an approach. 

When the traffic volume is high for both approaches, the green phase for both the 

approaches is increased thus minimising the number of stops at the intersection. As the 

number of vehicles waiting at the approaches reduces, the green phase is also reduced thus 

minimising the delay as a result of waiting. 

Figure 3.6 shows the number of vehicles waiting (queue length) at the north approach of 

the isolated intersection (solid line) and the green phase duration of the north-south 
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approach of the traffic signal (dashed line). The queue length is the number of vehicles at 

the end of a complete cycle. From Figure 3.6, it can be seen that the fuzzy logic traffic 

controller follows a trend similar to that of the queue length. An increase in the queue 

length results in a corresponding increase in the length of the green phase thus allowing 

more vehicles to pass through the intersection. The fuzzy logic traffic controller tries to 

keep the number of vehicles waiting to a minimum and thereby reducing the average time 

spent by a vehicle on waiting. The change in the green phase duration is gradual rather than 

abrupt in relation to the queue length. 
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Figure 3.7 shows the number of vehicles waiting at the south approach of the isolated 

intersection and the green time in the north-south approach. Similar to the previous figure, 

the controller tries to maintain the queue length to a minimum. When there is a heavy burst 

of traffic, as from time instant 30 - 50, in the Figure 3.5, the fuzzy logic traffic controller 

extends the green phase period to increase the vehicle flow and thus reducing the number 

of vehicles waiting. 
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Figure 3.7 Queue length at the South approach and green North-South 

Figure 3.8 shows the number of vehicles waiting at the east approach and the green phase 

duration of the east-west approach .. In this figure, the green phase duration during the time 

period 75 - 80 is high, eventhough there are no vehicles waiting at the east approach. This 

is because, the approach with the greater of the two queue lengths acts as the input to the 

fuzzy logic traffic controller. If there is a heavy traffic flow at the west approach, the green 
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phase for the east-west approach is increased to accomodate more vehicles to pass through 

from the west approach. 
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In Figure 3.9, an increase in the length of the queue at the west approach of the intersection 

results in a corresponding increase in the green phase of the east-west approach of the 

signal. Once the green phase attains the saturation value, which is 28 seconds, further 

increase in the queue length does not affect the green phase of the east -west approach of 

the signal. The duration of the green phase is maintained at 28 seconds till there is a 

reduction in the traffic flow approaching the west approach. This figure shows that due to 

the constraint on the upper limit of the green phase duration, the fuzzy logic traffic 

controller is unable to respond to. very heavy traffic flows. To avoid congestion at 

intersections with very heavy traffic flows at all approaches, the maximum value of the 

green phase of the north-south and east-west approaches should be high. 
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Figure 3.10 shows the total number of vehicles waiting at all four approaches at the end of 

a cycle and the average waiting time per vehicle. When there are a greater number of 

vehicles waiting at the approaches, the time spent in waiting by each vehicle for the light to 

change to green increases. 

Figure 3.11 shows the effect of of the vehicle arrival tate on the average waiting time spent 

by a vehicle in the queue. The delay time per vehicle increases as the vehicle arrival rate is 

increased for all the approaches. This is due to increased cycle time periods and more 

vehicles spending time at the intersection waiting for the phase to change from red to 

green. 
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Figure 3.11 Average waiting time/vehicle 
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It can be seen from Figure 3.12 that the flow of vehicles passing the intersection increases 

with an increase in the vehicle arrival rate. When the arrival rate of vehicles is not high, the 

traffic signal at the north-south and east-west approaches have reduced green phase 

durations since the number of vehicles waiting at these approaches is quite minimal and 

there is no need for extended durations of the green phase. An increase in the vehicle 

arrival rate for all the approaches, results in an increase in the green phase periods for all 

the approaches and as a consequence more vehicles flow through the intersection from all 

directions. After a stage, the vehicle flow reaches a saturation level as the vehicle arrival 

rate does not have any effect once the green phase durations of the signal reaches the 

maximum value, that is, 28 seconds. The vehicle flow tends to remain a constant 

irrespective of the vehicle arrival rates. 
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3.5 Discussion 

The fuzzy logic traffic controller controlling an isolated traffic signal is responsive to 

abrupt changes in the traffic situations. An increase in the number of vehicles waiting at the 

north-south and east-west approaches results in an increase in the green phase durations for 

tbe respective approaches. Any change in the traffic conditions results in a corresponding 

change in the time duration to the green phase of tbe traffic signal. An increase in tbe 

queue length results in an extension to the green phase until it reaches its maximum value, 

after which it cannot be extended any more. 

The on-line adaptation of the fuzzy logic traffic controller is instrumental in minimising the 

number of vehicles waiting at the intersection as well as tbe average time spent on waiting 

by each vehicle. The performance of the controller is still of high quality even when the 

traffic flow is highly uneven. It can change the traffic signal lights as necessary to achieve 

maximum throughput, rather than be limited to a preset cycle time as it is the case with a 

fixed time traffic controller. 

The use of sensors to determine the traffic densities in tbe lanes rather than just detecting 

the presence of a vehicle provides the fuzzy logic traffic controller with a better assessment 

of tbe traffic patterns. Thus, the controller developed is expected to improve the standard of 

traffic regulation at signalised intersections in a dynamic environment by adapting itself to 

the changes in tbe traffic situation. 
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This chapter discussed the regulation of traffic flow approaching an isolated traffic signal. 

The signal is controlled by a fuzzy logic traffic controller comprising twenty five fuzzy 

rules. In an urban road traffic network, the performance of a traffic junction usually affects 

that of its neighbouring traffic junctions. Each intersection is coordinated with its adjacent 

intersections based on the signal timing parameters. In the next chapter, two adjacent traffic 

signals are coordinated by adjusting their respective offsets. 
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Chapter4 

Fuzzy control of two adjacent intersections 

In chapter 3, a fuzzy logic scheme to control a traffic signal at an isolated intersection is 

presented. The adjustments to the green phase splits of the north-south and east-west 

approaches are made on-line depending on the number of vehicles waiting at the respective 

approaches and the number of vehicles that passed through the intersection during the 

previous green phase. 

Traffic signal coordination is one of the most widely used and cost effective means of 

improving the efficiency of traffic flow. An Area Traffic Control (ATC) system does not 

consist of just a single traffic signal but a number of traffic signals linked together. H any 

one of these traffic signals are oblivious to the traffic volume at the other intersections, 

then the traffic flowing through the system is not optimised. This is because of the lack of 

coordination in phase splits and offset between the intersections. 

The signal timing changes at each intersection should be dependent upon the prevailing 

conditions at the other intersections in order to optimise the traffic flowing through the 

system. In an ATC system, the signals at two or more intersections are coordinated on a 

common cycle time and tbe offsets are adjusted in such a way that the vehicles passing one 
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intersection arrive at the downstream intersection when the light is green. As a result, the 

vehicles arriving at the downstream intersection pass through unstopped. 

In this chapter, two adjacent signalised intersections are coordinated in the north-south 

direction. The traffic signal at each intersection is controlled by a fuzzy logic traffic 

controller which adjusts the green phase splits based. on the local traffic. In addition to the 

green phase adjustment, the offset at each intersection is also adjusted in order to 

coordinate it with the adjacent intersection. Two control schemes using fuzzy logic are 

investigated for adjusting the offset at each signal so that number of stops at the second 

intersection is minimised. 

4.1 The Model 

The model to regulate the traffic flow approaching two adjacent intersections is similar to 

the one that is proposed in chapter 3 for the isolated intersection. In the model proposed for 

the isolated intersection, the motion of vehicles after they cross the intersection is not taken 

into account since only one intersection was being considered. In the case of two 

intersections, each vehicle passing the first intersection moves at a velocity which is 

dependent on the velocity of the vehicle immediately in front, till it reaches the second 

intersection. The distance between the two intersections is assumed to be 100 metres. 
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Figure 4.1 shows the two adjacent intersections A and B. Road sensors are placed at each 

intersection and 100 metres away from each intersection. A mean vehicle arrival rate is 

assigned to each end of the street. The mean vehicle arrival rate for the north, south, east, 

and west approaches of the two intersections are shown in Figure 4.1. A vehicle is added to 

the queue based on this mean vehicle arrival rate. At each simulation step, a random 

number is generated and compared with the vehicle arrival rate to determine whether a 

vehicle should be added to the queue. The arrival rate at the north and south directions are 

higher than those of the east and west directions thereby making north-south the dominant 

directions of traffic flow. 

North (1350 veh/hr) 

WestA(lOOO veh/hr) r---:------1 -
100 metres 

South (1300 veh/hr) 

10 metres 

Road sensors 

Figure 4.1 Two adjacent intersections used in the simulation 
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The two traffic signals operate in such a way that the green phase for both the signals begin 

simultaneously. When the traffic signal changes to green at the first intersection, each 

vehicle in the queue crossing the traffic junction accelerates for two seconds and then 

moves forward at a constant velocity. The initial velocity for all the vehicles is zero. The 

acceleration is determined from equation (3.l). The final velocity and final position of each 

vehicle after two seconds is determined from equations (3.2) and (3.3). There is a time lag 

of approximately one and half seconds between any two vehicles since each vehicle crosses 

the junction giving a headway of one and half seconds to the vehicle in front. The time 

taken by each vehicle to reach the second intersection is calculated from equation (3.4) 

since the distance between the two intersections and velocity for each vehicle are known. 

If there are no vehicles waiting at the second intersection and if the light is still green at the 

second traffic signal, then each vehicle crosses the second traffic junction unstopped. Else 

if the light is red or if there are vehicles waiting at the second intersection, then the vehicles 

leaving the first intersection form a queue at the second intersection. The maximum 

number of vehicles that can be accommodated in the stretch between the two intersections 

is twenty. Once the number reaches twenty, no more vehicles are passed across the first 

intersection until the queue length becomes less than twenty. For example, if the number of 

vehicles waiting at the north approach of intersection B exceeds twenty, the vehicles at the 

north approach of intersection A do not pass through intersection A, even if the light is 

green, until the number of vehicles at the north approach of intersection B reduces below 

twenty. 
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4.2 Two intersections with no offset adjustment 

Each of the two traffic signals placed at adjacent intersections in the north-south direction 

is controlled by a fuzzy logic traffic controller which uses a set of twenty five fuzzy 

decision rules. These rules are the same as those that were introduced in chapter 3 for 

controlling the traffic signal at an isolated intersection, (see Table 3.1). The fuzzy sets and 

the membership functions of the input and output variables are the same as those used in 

chapter 3. The green phase splits at the north-south and the east-west approaches are 

adjusted based on the ratio of the traffic density to the number of vehicles that passed 

through during the previous green phase. Both traffic signals operate in an isolated mode, 

based only on the local traffic information. 

The fuzzy logic traffic controllers controlling the individual traffic signals operate 

independently of each other. There is no coordination between them, that is, neither one of 

the two controllers has any knowledge about the traffic situation at the other intersection. 

This might lead to chaos if there is a heavy flow of traffic from either one or from both the 

directions resulting in a traffic congestion at the approaches leading up to the intersections. 

4.2.1 Simulation Results 

Figures 4.2 and 4.3 show the number of vehicles waiting at intersection A and intersection 

B respectively. With no coordination between the two intersections, there is a tendency for 
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the queue length to increase at the intersections A and B. The fuzzy logic traffic controllers 

that adjust the green phase of the north-south and east-west approaches of the traffic 

signals A and B based on the local traffic flow, are unable to cope with this increase in 

queue length. 
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Figure 4.3 Queue length at intersection B 
(all approaches)- no offset adjustment 

In order to obviate such a situation, the two intersections A and B are coordinated with each 

other by adjusting their respective offsets. The offset is adjusted by using local fuzzy logic 

controllers, which adjusts the offset at each intersection based on the traffic volume at the 

upstream intersection. 

4.3 Offset adjustment with two local fuzzy logic controllers 

In this section, in addition to the fuzzy logic traffic controller which adjusts the green phase 

of the traffic signal based on the queue length and the number of vehicles that passed 
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through the intersection during the previous green phase, another set of fuzzy decision 

rules is used to adjust the offset between the two adjacent intersections. 

Offset is the time relationship between the start of each phase, among adjacent 

intersections. Offset is adjusted to coordinate adjacent signals in a way that minimises 

stops in the direction where the traffic flow is heavy. A local fuzzy logic controller with a 

set of five rules is developed for adjusting the offset of an intersection. This local fuzzy 

logic controller adjusts the offset based on the traffic volume at the upstream intersection. 

The local fuzzy logic controller receives the vehicle count at the north-south approach of 

the upstream intersection and the vehicle count at the east-west approaches of the local 

intersection. If the vehicle count at the upstream intersection is greater than the average 

vehicle count at the east-west approaches of the local intersection, the offset is adjusted by 

giving an extension to the green phase of the north-south approach of the local traffic 

signal. Figure 4.4 shows a block diagram of the two fuzzy logic traffic controllers and the 

two local fuzzy logic controllers. FLCl is the fuzzy logic traffic controller and FLC2 is the 

local fuzzy logic controller. 

In Figure 4.4, Vol_diffA and Vol_diff8 are given by equations (4.1) and (4.2) respectively. 

V _NSAand V _EW A are the ratio of queue length to vehicles passed in the north-south and 

east-west approaches of intersection A. V _NS8 and V _EW8 are the ratio of queue length to 
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Vol_diffu 

V_NSA 

V_EWA 

Traffic signal A Traffic signal B 

p>LC2 rRer adjustA 
·I 

FLC~ 

:I 
~Adjust_NSA 

FLCl 
Adjust_EWA 

Figure 4.4 Block diagram of two traffic signals whose offset is 
adjusted by local fuzzy logic controllers 

'Req_adjust• 

Vol_diffA 
Adjust_Ns. 

Adjust_Ew. 

vehicles passed in the north-south and east-west approaches of intersection B. Adjust_NSA 

and Adjust_EW A are the adjustments to the green phase of the north-south and east-west 

approaches of the traffic signal A. Adjust_NSa and Adjust_EWa are the adjustments to the 

green phase of the north-south and east-west approaches of the traffic signal B. 

Req_adjustA and Req_adjusta are the offset adjustments to the north-south approach of 

intersections A and B respectively. 

The input variable to the local fuzzy logic controller is the difference between the traffrc 

volume at the upstream intersection and the average volume at the east -west approaches of 

the local intersection. The difference in volume, called Vol_diff, for intersection A is the 

difference between the number of vehicles waiting at the south approach of intersection B 

and the average number of vehicles waiting at the east-west approach of intersection A. 
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Vol_diff = Vsa- ( (VEA + VwA) 12) (4.1) 

In equation (4.1), Vsa is the traffic volume at the south approach of intersection B, and VEA 

and VwA are the traffic volumes at the east and west approaches of intersection A. 

Similarly, the Vol_diff for intersection B is the difference between the number of vehicles 

waiting at the north approach of intersection A and the average number of vehicles waiting 

at the east-west approach of intersection B. 

vol_diff = VNA- ( (VEB + Vws) 12) (4.2) 

In equation (4.2), VNA is the traffic volume at the north approach of intersection A, and VEB 

and V ws are the traffic volumes at the east and west approaches of intersection B. 

The output of the local fuzzy logic controller determines whether the green phase of the 

north-south approach of the local traffic signal is to be further extended. This extension to 

the green phase of the local traffic signal is the offset adjustment. This adjustment, called 

Req_adjust, either extends the green phase or leaves it unchanged depending on the value 

of Vol_diff. 

The local fuzzy logic controller at each intersection operates as a local controller 

coordinating the local intersection with the upstream intersection. If the local signal 

becomes green, then the vehicles will pass through the local intersection unstopped. Thus, 

each traffic signal is controlled by two fuzzy logic controllers - (i) a fuzzy logic traffic 
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controller, comprising twenty five fuzzy rules, which adjusts the green phase of the north

south and east-west approaches of the signal based on the queue length and the vehicles 

passed during the previous green phase and (ii) a local fuzzy logic controller, comprising 

five fuzzy rules, which adjusts the offset of the intersection by adjusting the green phase of 

the north-south approach of the signal based on the traffic volume at the upstream 

intersection and the average volume at the east-west approaches of the local intersection. 

The fuzzy linguistic terms for the input variable, Vol_diff, of the local fuzzy logic 

controller are: 

VL: Very Low 

LO: Low 

MD :Medium 

HI: High 

VH : Very High 

The fuzzy linguistic terms for the output variable, Req_adjust, of the local fuzzy logic 

controller are: 

VS : Very Small 

SM: Small 

MD :Medium 

m :High 

VH : Very High 
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The fuzzy sets and the membership functions for the input variable, Vol_diff, and the 

output variable, Req_adjust, are shown in Figures 4.5 and 4.6 respectively. The fuzzy rules 

for adjusting the offset is given in Table 4.1. 

VL 
1.0 

ll (Vol_diff) 

0.0 

vs 
1.0 

ll (Req_adjust) 

0.0 

LO MD HI VH 

0.3 0.4 0.6 0.7 0.9 1.0 
Vol_diff (vehicles) 

Figure 4.5 Membership functions for Vol_diff 

SM MD ID VH 

2.0 3.0 4.0 5.5 6.0 7.0 
Req_adjust (seconds) 

Figure 4.6 Membership functions for req_adjust 

If the traffic volume at the either the north or south approach of the upstream intersection is 

high and the average volume at the east-west approaches of the local intersection is low, 

then the offset at the local intersection is adjusted by extending the green phase of the 
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north-south approach of the local traffic signal so that the vehicles leaving the upstream 

intersection pass through the local intersection unstopped. The main purpose of adjusting 

offset is to coordinate the two intersections in such a way that the number of stops at both 

the intersections is minimised. 

The fuzzy rules for the local fuzzy logic controller are given in Table 4.1: 

ifVol_diffis Very Low (VL) 
then Req_adjust is Very Small (VS) 

ifVol_diffis Low (LO) 
then Req_adjust is Small (SM) 

ifVol_diffis Medium (MD) 
then Req_adjust is Medium (MD) 

if Vol_diff is High (HI) 
then Req_adjust is High (HI) 

if Vol_diff is Very High (VH) 
then Req_adjust is Very High (VH) 

Table 4.1 Fuzzy Knowledge base for the local fuzzy logic controller 

4.3.1 Simulation Results 

Figures 4.7 and 4.8 show the number of vehicles waiting at at four approaches of 

intersections A and B respectively. By adjusting the offset at intersections A and B, the 

queue length does not escalate as in the case where there is no offset adjustment, see 

Figures 4.2 and 4.3. In Figure 4.7, when there is a heavy burst of traffic during the time 
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instant 60-90, the fuzzy logic controller adjusting the offset does not allow the queue to 

build up and tries to minimise the number of vehicles waiting at intersection A. The queue 

length at intersection B, as shown in Figure 4.8, is less than that of intersection A. This is 

because the traffic flow approaching the south approach and the east-west approaches of 

intersection B is not heavy. The fuzzy logic controller adjusting the offset maintains the 

queue length at the same level throughout the simulation. 
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Figure 4.7 Queue length at intersection A 
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Figure 4.8 Queue length at intersection B -
(all four approaches)- 2local FLC 

Figures 4.9 shows the effect of the local fuzzy logic controller on the number of vehicles 

waiting at the north approach of intersection A. By adjusting the offset of the traffic signal 

at intersection A, there is a reduction of about 15% in the number of vehicles waiting at the 

end of a cycle. Cycle is the total time duration of the green phase of north-south approach 

and green phase of east-west approach. The difference is not vast because the traffic 

volume arriving at the south approach of intersection B is not heavy and hence, the volume 

difference between the traffic volume at the south approach of B and the average volume at 
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the east and west approaches of A is small, thereby resulting in very small adjustments to 

the offset at intersection A. 
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Figure 4.10 Queue length at the north approach 
of intersection B 

Figures 4.10 shows the queue length at the north approach of intersection B. The effect of 

the local fuzzy logic controller is very pronounced in this case. The volume difference 

between the traffic volume at the north approach of intersection A and the average volume 

at east-west approaches of intersection B is large due to the high vehicle arrival rate in the 

north direction and a low arrival rate at the east and west approaches of intersection B (see 

Figure 4.1 for vehicle arrival rates). This large difference in volume results in extended 

durations to the green phase at the north-south approaches of intersection B. Thus, more 

vehicles corning from intersection A cross intersection B without stopping, thereby 

reducing the queue length at the north approach of intersection B by 65%. 
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In Figure 4.11, the outcome of the offset adjustment by the local fuzzy logic controller is a 

reduction of about 35% in the number of vehicles waiting at the south approach of 

intersection A. The unevenness of the traffic flow is illustrated in this figure when there is a 

sudden increase in the queue length when the offset is not adjusted. Figure 4.12 shows the 

number of vehicles waiting at the south approach of intersection B. An adjustment to the 

offset of signal at intersection B reduces the queue length by 33%. 
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Figure 4.12 Queue length at the south approach 
of intersection B 

In this section, two adjacent intersections are coordinated by adjusting the offset using a 

local fuzzy logic controller, comprising five fuzzy rules, at each intersection. This local 

controller coordinates each intersection with only its upstream intersection based on the 

traffic volume at the upstream intersection. Simulation results show the effectiveness of the 

local fuzzy logic controllers in making appropriate amounts of offset adjustment to the 
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north-south approaches of intersections A and B thereby reducing the queue lengths at these 

approaches. 

When more than two intersections are to be coordinated, using a local fuzzy logic 

controller at each intersection to adjust the offset may not be very effective. The local fuzzy 

logic controller receives information about the traffic conditions at only its upstream 

intersection. It has no knowledge of the traffic volumes at the other neighbouring 

intersections. In order to coordinate a network of intersections, a supervisory fuzzy logic 

controller is proposed, which adjusts the offset at each intersection based on the traffic 

volumes at all the neighbouring intersections. The supervisory fuzzy logic controller is 

expected to improve the flow of vehicles and minimise the number of vehicles waiting at 

all the intersections. 

In the next section, a supervisory fuzzy logic controller is used to adjust the offset at 

intersections A and B. The supervisory fuzzy logic controller receives the traffic volume at 

the north approach of intersection A and that at the south approach of intersection B and 

decides on a course of action for adjusting the offset at intersections Band A respectively. 

4.4 Offset adjustment with a supervisory fuzzy logic controller 

In the previous section, the flow of vehicular traffic between two adjacent intersections was 

studied. Each intersection is coordinated with its upstream intersection using a local fuzzy 
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logic controller with a knowledge base comprising five rules to adjust the offset between 

the two intersections. The offset is adjusted to minimise the number of stops between the 

traffic junctions. 

Here, a supervisory fuzzy logic controller is developed to adjust the offset between the two 

adjacent intersections. The offset for both intersections is adjusted by a single supervisory 

fuzzy logic controller instead of two local fuzzy logic controllers as discussed in the 

previous section. A comparison of both techniques is made. Figure 4.13 shows a block 

diagram of a supervisory fuzzy logic controller and the two fuzzy logic traffic controllers. 

Traffic signal A 

Vol_diff2 
r 

FLCl 

Traffic signal B 

Supervisory 
FLC 

v NSB Ad" 
-I FLCl 

-J 

Ext! 

Ext2 

Vol_diff 1 
ust_NSB 

:I 
~Adjust NSA 

Adjust_EWA v_EWjf -A djust_EW8 

Figure 4. 13 Block diagram of two traffic signals whose offset is 
adjusted by a supervisory fuzzy logic controller 

In Figure 4.13, Vol_diff2 and Vol_diffl are given by equations (4.3) and (4.4) respectively. 

Extl and Ext2 are the offset adjustments to the north-south approach of intersections A and 

B respectively. 
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The supervisory fuzzy logic controller uses a set of twenty five rules to adjust the offset at 

each intersection. The inputs to the controller are: 

(i) The volume difference, Vol_dijf 2, between the traffic volume at the north approach of 

intersection A and the average volume in the east-west direction of intersection B. 

Vol_diff 2 = VNA- ((YEs+ Vws) /2) (4.3) 

In equation (4.3), VNAis the traffic density at the north approach of intersection A, and YEs 

and Vws are the traffic density at the east and west approaches of intersection B. 

(ii) the volume difference, Vol_dijf 1, between the traffic volume at the south approach of 

intersection Band the average volume at the east-west approaches of intersection A 

vol_diff I= Yss -( (VEA + VwA) 12) (4.4) 

In equation (4.4), Vs8 is the traffic density at the south approach of intersection B, and VEA 

and V wA are the traffic density at the east and west approaches of intersection A. 

The two outputs of the supervisory fuzzy logic controller are the extensions that have to be 

made to the green phase of the north-south approach of the two traffic signals A and B. 

Ext] is the extension to the green phase of the north-south approach of signal A and Ext2 is 

the extension to the green phase of the north-south approach of signal B. 
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The fuzzy linguistic terms and the membership functions for the input and output variables 

are the same as those used by the two local fuzzy logic controllers to adjust the offset 

between the intersections (see Figures 4.5 and 4.6). 

The fuzzy knowledge base of the supervisory fuzzy logic controller is shown in the form of 

a rule matrix in Table 4.2. Each entry in the table is made up of two components. The first 

is the offset adjustment given to the north-south approach of intersection A and the second 

is the offset adjustment given to the north-south approach of intersection B. 

Vol_diff2 
VL LO MD HI VH 

VS vs vs MD MD 
VL vs SM MD MD HI 

SM SM SM MD MD 
LO vs SM MD HI VH 

Vol_diff 1 
MD MD MD MD MD 

MD vs SM MD HI VH 

MD HI HI HI HI 
HI MD MD MD HI VH 

HI VH HI VH VH 
VH MD MD MD HI VH 

Table 4.2 -Fuzzy Knowledge base used by supervisory FLC for adjusting offset 

In this section, a supervisory fuzzy logic controller is proposed to adjust the offset at two 

adjacent intersections. The supervisory fuzzy logic controller takes into account the traffic 

volume at all the neighbouring intersections rather than just considering the traffic volume 
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at the upstream intersection. It is expected to be a better alternative to the local fuzzy logic 

controllers when more than two intersections are to be coordinated. 

4.4.1 Simulation Results 

Figures 4.14 to 4.17 show a reduction in the number of vehicles when the offset is adjusted 

by a supervisory fuzzy logic controller. There is a significant reduction in the queue length 

at the north approach of intersection B and at the south approach of intersection A. This is 

because, by adjusting the offset at intersection B based on the traffic volume at the north 

approach of intersection A, most of the vehicles leaving intersection A also pass through 

intersection B unstopped. Similarly, by adjusting the offset at intersection A based on the 

traffic volume at the south approach of intersection B, the vehicles leaving intersection B 

pass through intersection A unstopped. 
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Figure 4.14 Queue length at the north approach 
of intersection A 
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Figure 4.17 Queue length at the south approach of 
intersection B 

Figures 4.18 and 4.19 show the number of vehicles waiting at intersections A and B. When 

the two signals are coordinated by the supervisory fuzzy logic controller, the number of 

stops at both intersections is reduced. When there is an increase in the queue length at 
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intersection A, as can be seen in Figure 4.18, the fuzzy logic controller adjusting the offset 

at intersection A gives large extensions to the green phase of the north-south approach of 

the signal, thereby reducing the queue length. Thus, the queue lengths at intersections A 

and B are restricted by adjusting the offset. 

The supervisory fuzzy logic controller attempts to minimise the queue length at the 

intersections A and B by adjusting the offset. But, it does not show any marked 

improvement over the performance of the local fuzzy logic controllers. Both the 

supervisory and the local fuzzy logic controllers adjust the offset by a similar amount. This 

is because both the controllers receive the same input information from the sensors. When 

more than two intersections are to be coordinated, the performance of the supervisory and 

the local fuzzy logic controllers differs because the supervisory controller adjusts the offset 

based on the traffic volume at all the intersections while the local fuzzy logic controller 

only recieves the traffic volume at the north-south approach of the upstream intersection. 

4.5 Simulation results 

Further simulations were performed to establish the effectivenss of offset adjustment at 

intersections A and B. The above figures show the improvement brought into the queue 

length by adjuting the offset at intersections A and B using either two local fuzzy logic 

controllers or a supervisory fuzzy logic controller. The offset adjustment reduces the queue 

length at the north-south approaches of both intersections. 
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The number of vehicles waiting at the north and south approaches of intersection B is less 

compared to that of intersection A when the offset is adjusted at both the signals. This is 

due to the high vehicle arrival rate at the north direction resulting in a heavy vehicle 

volume at the north approach of intersection A. Since the offset at intersection B is adjusted 

based on the traffic volume at the north approach of intersection A, a heavy traffic volume 

at the north approach of intersection A results in extended durations to the green phase of 

the signal at the north-south approach of intersection B, thereby reducing the number of 

stops at the north approach of intersection B. 

Figures 4.20 - 4.25 show the average time spent by each vehicle from any approach at the 

intersections A and B. As the queue length increases, so does the average waiting time. The 
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Figure 4.21 Average delay/vehicle for all four 
approaches at intersection B - no offset 

time spent in waiting is more at intersection A than at intersection B because of the high 

vehicle arrival rates at the north approach of intersection A and the east-west approaches of 
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A in comparison to the arrival rate at the south approach of intersection B and east-west 

approaches of intersection B. 
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Figure 4.25 Average delay/vehicle for all four 
approaches at intersection B - supervisory FLC 

The following statistics were arrived from the above figures: 

Average waiting time at intersection A : 

No offset adjustment - 17.92 sec 
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Two local FLC 

Supervisory FLC 

- 16.7 sec 

- 16.5 sec 

Average waiting time at intersection B : 

No offset adjustment - 15.9 sec 

Two local FLC 

Supervisory FLC 

- 15.39 sec 

- 15.2 sec 

The average time spent by a vehicle, at both the intersections, waiting for the signal to 

change to green is reduced when there is an offset adjustment at both the intersections. As 

an outcome of the adjustment, the green phase duration is increased, thereby allowing more 

vehicles to flow across the intersection. A decrease in the number of stops at the 

intersection constitutes a reduction in the average waiting time. From the statistics, it can 

also be seen that the supervisory fuzzy logic controller is more effective in reducing the 

waiting time than the local fuzzy logic controllers. 

4.6 Discussion 

The fuzzy control of two traffic signals placed at adjacent intersections was investigated. 

Two fuzzy logic control schemes were introduced to coordinate the adjacent traffic signals 

by adjusting the offset. Simulations were run to establish the effectiveness of the two 

control schemes. The simulation results showed that when there is no offset adjustment at 
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the intersections, the number of vehicles waiting tends to accumulate resulting in longer 

queues at all approaches. A significant reduction in the queue length is noticed when the 

offset is adjusted by either the local fuzzy logic controller or the supervisory fuzzy logic 

controller. 

The number of vehicles waiting at all four approaches of intersections A and B, and the 

average time spent by a vehicle in waiting at the intersections are reduced by adjusting the 

offset. The performance of the supervisory fuzzy logic controller and the local fuzzy logic 

controller, which adjusts the offset, are equally good with neither one performing better 

than the other. This is because the control of only two adjacent traffic signals is considered. 

The effectiveness of the supervisory fuzzy logic controller is evident in chapter 5 where the 

traffic flow approaching a set of three intersections is studied. A set of three traffic signals 

is coordinated by a supervisory fuzzy logic controller which makes adjustements to the 

offset at all three intersections. 
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ChapterS 

Fuzzy control of a set of three intersections 

In chapter 3, a fuzzy logic controller to regulate the flow of traffic approaching an isolated 

traffic junction, is studied. The controller responds to fluctuations in the traffic flow in an 

effective way by making appropriate on-line adjustments to the green phase splits of the 

traffic signal based on the traffic densities at the north-south and east -west approaches. Any 

change in the traffic conditions results in a corresponding change in the time duration to 

the green phase of the traffic signal. 

In chapter 4, the traffic flow approaching two adjacent intersections is regulated by 

coordinating the two intersections. Each intersection is coordinated with its adjacent 

intersection by making adjustments to the offset of each signal. Two fuzzy control schemes 

for adjusting the offset at an intersection, based on the traffic volume at the adjacent 

intersections, were discussed. In the first scheme, the offset of a traffic signal is adjusted by 

a local fuzzy logic controller which makes the adjustment based on the volume difference 

between the traffic volume at the upstream intersection and the average volume at the east

west approaches of the local intersection. The local fuzzy logic controller coordinates each 

intersection with only its upstream intersection. In the second control scheme, the offset 

adjustment is made by a supervisory fuzzy logic controller which makes the offset 
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adjustments based on the traffic volume at both the intersections rather than that of just the 

upstream intersection. 

In this chapter, the two fuzzy control schemes that were introduced in the previous chapter 

will be applied to the control of traffic signals at three intersections. The three intersections 

are in a straight line in the north-south direction, with the north and south directions being 

the dominant directions of traffic flow. The purpose of adjusting the offset is to minimise 

the queue length at the north and south approaches of the three intersections. 

5.1 The Model 

The model that was introduced in chapter 4 is now extended to the control of three 

signalised intersections. The three intersections are denoted by A, B, and C. A mean vehicle 

arrival rate is assigned to each end of the street as shown in Figure 5.1. The mean vehicle 

arrival rate is assigned to the north approach of intersection A, the south approach of 

intersection C and the east and west approaches of intersections A, B, and C. At each 

simulation step, a random number is generated and a vehicle may be added to the queue 

based on the mean vehicle arrival rate. 

lf the traffic signal is red for an approach at any of the three intersections, each vehicle 

arriving at that approach adds to the queue of vehicles at that approach. The time spent by 
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each vehicle in waiting for the phase to change is determined from the length of the red 

phase and the time instant the vehicle joined the queue. 
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Figure 5.1 A set of three intersections 

When a vehicle from the north approach of intersection A crosses this traffic junction, the 

time taken by the vehicle to reach intersection B is calculated from the distance between 
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the two intersections, which is known and velocity of the vehicle, which is determined 

from equation (3.2). If this time period is less than the length of the green phase of the 

north-south approach at intersection B, then the vehicle passes through intersection B 

unstopped. Similarly, the time taken by a vehicle crossing intersection B and reaching 

intersection C is calculated and if it is less than the length of the green phase of the north

south approach at intersection C, the vehicle passes through unstopped. The number of 

vehicles passing through intersection C and reaching intersection A is also determined in a 

similar way. 

5.2 Three intersections with no offset adjustment 

The three intersection A, B, and Care aligned in a straight line in the north-south direction 

as shown in Figure 5.!. The vehicle flow approaching each of the three intersections is 

regulated by a set of twenty five fuzzy decision rules which adjust the green phase splits of 

the traffic signal for the north-south and east-west approaches. The adjustments are made 

to the green phase based on the ratio of the queue length at the respective approaches to the 

number of vehicles that passed through the intersection during the previous green phase. 

The fuzzy decision rules that adjust the green phase have been explained in detail in 

chapter 3. The fuzzy sets and the membership for the input and output variables are the 

same as those used in chapter 3. The three signals are not coordinated with each other since 
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their respective offsets are not adjusted. All the three signals operate individually based 

only on the local traffic information. 

5 .2.1 Simulation Results 
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Figure 5.3 Queue length at all four approaches 
of intersection B - no offset adjustment 
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Figure 5.2, 5.3, and 5.4 show the number of vehicles waiting at the intersections A, B, and 

C. With no coordination between the three intersections, the queue length at the approaches 
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to the intersections is not reduced. The average queue length at the end of a cycle at 

intersection A is 49, at intersection B is 42, and at intersection C is 43. If the queue is 

allowed to build up, it might hamper the traffic flow at the other intersections resulting in 

congestion and increased delay time. 

In order to avoid such a situation, each intersection is coordinated with its neighbouring 

intersections by adjusting the offset of each traffic signal. The offset at each intersection is 

adjusted by a local fuzzy logic controller which coordinates each intersection with only its 

upstream intersection. 

5.3 Offset adjustment with a local fuzzy logic controller 

Offset is adjusted to coordinate the local signal with its adjacent signals in such a way that 

the vehicles arriving at the local intersection pass through unstopped. In this section, the 

offset at each intersection is adjusted by a local fuzzy logic controller, comprising five 

fuzzy rules, located at each intersection. Each intersection has two upstream intersections -

one in the north and one in the south. The upstream intersection having the greater queue 

length is determined and the local fuzzy logic controller coordinates the local intersection 

with this upstream intersection by adjusting the offset at the local intersection. For 

example, the offset at intersection B is adjusted based either on the traffic volume at the 

north approach of intersection A or on the traffic volume at the south approach of 

intersection C. If the traffic volume at the north approach of intersection A is greater than 
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that at the south approach of intersection C, then intersection B IS coordinated with 

intersection A, else with intersection C. 

If the traffic volume at the upstream intersection is high and the average volume at the east

west approaches of the local intersection is low, then the green phase for the local 

controller is extended by adjusting the offset, so that the vehicles leaving the upstream 

intersection pass through the local intersection unstopped. The main purpose of the offset 

adjustment is to minimise the number of stops at the intersection thereby reducing the 

waiting time for each vehicle. 

Thus, each of the three traffic signals is controlled by two fuzzy logic controllers. The first 

controller consists of twenty five fuzzy decision rules for adjusting the green phase splits 

based on the local traffic volume and the number of vehicles that passed through the 

intersection during the previous green phase (explained in chapter 3). The second controller 

consists of a set of five decision rules for adjusting the offset of the signal based on the 

traffic volume at the upstream intersection and the average volume at the east-west 

approaches of the local intersection. 

The local fuzzy logic controller, adjusting the offset at intersection A coordinates this 

intersection with intersection B, the fuzzy logic controller at intersection B coordinates this 

intersection with either intersection A or intersection C, depending upon which intersection 
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has a greater waiting traffic, and the fuzzy logic controller at intersection C coordinates 

intersection C with intersection B. 

The input variable to the local fuzzy logic controller is the difference in volume, Vol_diff, 

between the traffic volume at the upstream intersection and the average traffic volume at 

the east-west approaches of the local intersection. The output of the fuzzy logic controller 

is the amount of adjustment that has to be made to the current green phase of the signal, 

Req_adjust. 

The volume difference, Vol_diff, at intersection A is given by: 

Yol_diff = Yss- (YEA+ YwA) 12 (5.1) 

In equation (5.1), Ys8 is the traffic volume at the south approach of intersection B, YEA is 

the traffic volume at the east approach of intersection A, and YwA is the traffic volume at 

the west approach of intersection A. 

The volume difference, Vol_diff, at intersection B is given by: 

Yol_diff = YNA- (YEB + Yws) 12 (5.2-a) 

Yol_diff = Ysc- (YEB + Yws) /2 (5.2-b) 

In equations (5.2-a and 5.2-b), YNA is the traffic volume at the north approach of 

intersection A, Y sc is the traffic volume at the south approach of intersection C, Y EB is the 
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traffic volume at the east approach of intersection B, and Vwa is the traffic volume at the 

west approach of intersection B. 

If the traffic volume at the north approach of intersection A is greater than the traffic 

volume at the south approach of intersection C, equation (5.2-a) is used to determine the 

volume difference else equation (5.2-b) is used. 

The volume difference, Vol_diff, at intersection Cis given by: 

Vol_diff = VNs- (VEe+ Vwe) 12 (5.3) 

In equation (5.3), VNs is the traffic volume at the south approach of intersection B, VEe is 

the traffic volume at the east approach of intersection C, and V we is the traffic volume at 

the west approach of intersection C. 

The input and output fuzzy membership functions are shown m Figures 5.5 and 5.6 

respectively. 

1.0 YL V.H 

j.L (Vol_diff) 

0.0 0.3 0.5 0.8 1.0 
Vol_diff (vehicles) 

Figure 5.5 Membership functions for Vol_diff 
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Figure 5.6 Membership functions for Req_adjust 

The knowledge base of the local fuzzy logic controller comprises five fuzzy decision rules 

as shown in Table 4.1 in chapter 4. The input and the output linguistic terms are same as 

the ones used for the control of two intersections (see chapter 4). 

5.3.1 Simulation Results 
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The queue length at the north approach and the south approach of intersection B is shown 

in Figures 5.7 and 5.8 respectively. The queue length is reduced by 65% at the north 

approach of intersection B as a result of the offset adjustment at intersection B. This large 

reduction is due to the heavy traffic volume at north approach of intersection A. Since the 

offset adjustment at intersection B is made based on this traffic volume, the traffic flow is 

improved and the queue length is reduced. 

In Figure 5.8, the queue length at the south approach of intersection B is reduced by 42%. 

The reduction is not as large as that of the north approach of intersection B because the 

traffic flowing from intersection C to the south approach of intersection B is less compared 

to the traffic flowing from intersection A to the north approach of intersection B. 

In this section, a local fuzzy logic controller adjusts the offset at an intersection based only 

on the traffic volume at the upstream intersection. It does not have any knowledge of the 

traffic situation at the intersections other than that at the upstream intersection. For 

example, the traffic signal at intersection A is aware only of the conditions prevailing at 

intersection B and not that of intersection C. As a result, the queue lengths at the north and 

south approaches of intersection B are minimised but there is not much reduction in the 

queue length at the north-south approaches of intersections A and C. Thus, the traffic flow 

is optimised at only intersection B when the offset is adjusted by a local fuzzy logic 

controller. 
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In the next section, a supervisory fuzzy logic controller is proposed for adjusting the offset 

at the three intersections based on the traffic volume at all the intersections. It is expected 

to achieve a better performance at all the intersections rather than just improving the traffic 

flow at a single intersection. 

5.4 Offset adjustment with a supervisory fuzzy logic controller 

In the previous section, the traffic· flow approaching a set of three intersections was 

discussed. Each intersection is coordinated with only its upstream intersection by adjusting 

the offset at each intersection. The offset is adjusted by a local fuzzy logic controller whose 

knowledge base consists of five fuzzy control rules to adjust the offset. 

In this section, a supervisory fuzzy logic controller comprising twenty seven rules is 

developed to coordinate the three intersections. The supervisory fuzzy logic controller 

adjusts the offset of the three traffic signals by evaluating the traffic volume at all three 

intersections and then decides on the amount of extension that is to be made to the green 

phase of each signal. 

The supervisory fuzzy logic controller has three input and three output variables. The input 

variables are : 
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(i) the volume difference (Vol_dijfl) between the traffic volume at the south approach of 

intersection C (Vsc) and the average volume at the east-west approaches of intersection A 

(VEA and VwA); 

Vol_diffl = Vsc- ((YEA+ VwA) 12) (5.4) 

(ii) the volume difference (Vol_difj2) between the traffic volume at the south approach of 

intersection C (V sc) or at the north approach of intersection A (V NA) depending on which 

direction the traffic flow is high) and the average volume at the east-west approaches of 

intersection B (V EB and V ws); 

Vol_diff2 = VNA- ((YEs + Vws) 12) (5.5-a) 

Vol_diff2 = Vsc- ((YEs+ Vws) /2) (5.5-b) 

(iii) the volume difference (Vol_diff3) between the traffic volume at the north approach of 

intersection A (VNA) and the average volume at the east-west approaches of intersection C 

(VEe and Vwc); 

Vol_diff3 = VNA- ((VEe+ Vwc) 12) (5.6) 

The fuzzy output variables are the extensions that are to be made to the green phase of the 

north-south approaches of the three traffic signals. The outputs are represented as: Extl, 

Ext2, and Ext3. 
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Each of the three input variables of the supervisory fuzzy logic controller is divided into 

three fuzzy sets and each output variable is divided into five fuzzy sets. Each input variable 

is divided into three fuzzy sets to simplify the construction of the knowledge base. An 

increase in the number of input variables and fuzzy sets results in a knowledge base of very 

high dimensionality which might be difficult to construct. To ease the task of constructing 

a knowledge base, each input variable is divided into three fuzzy sets thereby yielding 27 

fuzzy niles. The sensitivity of the fuzzy logic controller is certainly reduced as a result of 

restraining the number of fuzzy sets of the input variables to three but the effectiveness 

with which the supervisory fuzzy logic controller deals with the fluctuations in the traffic 

pattern is still commendable when compared to the performance of the local fuzzy logic 

controller. 

LO 
1.0 

~ (Vol_diff) 

0.0 

MD HI 

0.4 0.6 0.75 1.0 
Vol_diff 

Figure 5.9 Membership functions for the input fuzzy sets, Vol_diffl,Vol_diff2,Vol_diff3 
of the supervisory FLC 

The membership functions for the input fuzzy sets is shown in Figure 5.9. The membership 

functions of the output fuzzy sets, same as those used for the local fuzzy logic controller, is 

shown in Figure 5.6. The fuzzy knowledge base comprising 27 rules is shown in Appendix 

A. 
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5.4.1 Simulation Results 

Figure 5.10 shows the effect of the local fuzzy logic controller and the supervisory fuzzy 

logic controller on the queue lengths at the north approach of intersection C. The 

superiority of the supervisory fuzzy logic controller is evident in this case. The local fuzzy 

logic controller adjusts the offset at intersection C based on the traffic volume at the north 

approach of intersection B. The supervisory fuzzy logic controller adjusts the offset based 

on the traffic volume at the north approach of intersection A and the volume difference at 

the other two approaches .. 
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of intersection C 
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Figure 5. 11 Queue length at the south approach 
of intersection C 

Since the vehicle arrival rate at the north approach of intersection A is higher than that at 

the north approach of intersection B, offset adjustment using a supervisory fuzzy logic 

controller results in extended time durations to the the green phase of the north-south 

approach of the signal at intersection C. As a result, the traffic flowing across intersection 
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C is increased and the number of vehicles waiting at the north approach of intersection C is 

reduced by 41%. The extended time durations to the green phase of the north-south 

approach of signal C also reduces the queue length at the south approach of intersection C 

by 22%, as shown in Figure 5.11. In can be inferred from the above two figures, that offset 

adjustment using a supervisory fuzzy logic controller is a better option than using local 

fuzzy logic controllers, when more than two traffic signals are to be coordinated. 

5.5 Simulation results 

Further simulations were performed to study the behaviour of the local fuzzy logic 

controllers and the supervisory fuzzy logic controller in adjusting the offset of the three 

intersections. 
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Figure 5.12 Queue length at the north approach 
of intersection A 
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Figures 5.12 and 5.13 show the number of vehicles waiting at the north approach of 

intersection A. When there is no offset adjustment at this intersection, the queue length 

increases with time. Since there is no controller adjusting the offset at intersection A, 

knowledge regarding the traffic volume at the other intersections is not available and the 

green phase can be increased to a maximum of only 28 seconds by the fuzzy logic traffic 

controller. When a local fuzzy logic controller is used to adjust the offset at intersection A, 

the reduction in the number of vehicles waiting is 30% while the supervisory fuzzy logic 

controller brings about a reduction o~ 45% by adjusting the offset at the north-south of this 

intersection, see Figures 5.12 and 5.13. The performance of the supervisory fuzzy logic 

controller is better than the local fuzzy logic controller because the latter only considers the 

traffic volume at the upstream intersection, which in this case is south approach of 

intersection B, while the supervisory controller takes into consideration the traffic volume 

at all the intersections before invoking a decision regarding the offset adjustment. 
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The queue length at the north approach of intersection B is shown in the Figures 5.14 and 

5.15. As expected, there is a marked reduction in the queue length when the offset is 

adjusted by the local fuzzy logic controller or by the supervisory fuzzy logic controller. 

Even though the offset at the north-south approach of intersection B is adjusted based on 

the traffic volume at either the north approach of intersection A or at the south approach of 

intersection C for both the local fuzzy logic controller and the supervisory fuzzy logic 

controller, the queue length is reduced by about 65% in the former instance and only by 

58% in the latter case. This could be due to the reduced number of fuzzy sets of the input 

parameters of the supervisory controller. The input variable is divided into three fuzzy sets, 

in order to facilitate the construction of the rule base. As a result, the supervisory controller 

is less sensitive to the abrupt changes in the queue length. 
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Figure 5.17 Queue length at the north approach 
of intersection C 

The above two figures, Figures 5.16 and 5.17, show the number of vehicles waiting at the 

north approach of intersection C. The offset adjustment by the local fuzzy logic controller 
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does not result in a reduction in the number of vehicles waiting. This is because of the low 

vehicle volume at the north approach of intersection B as can be seen from Figure 5.14. 

The supervisory fuzzy logic controller reduces the traffic volume at the north approach of 

intersection C by 37% due to the high vehicular traffic at the north approach of intersection 

A. 

The Figures 5.18 and 5.19 show the vehicular volume at the south approach of intersection 

A. In Figure 5.18, the local fuzzy logic controller at intersection A which coordinates this 

intersection with intersection B, causes a 22% increase in the number of vehicles waiting. 

The traffic volume at the south approach of B which affects the offset adjustment at 

intersection A is low, thus resulting in a reduction in the green phase, thereby increasing the 

queue length. When a supervisory fuzzy logic controller is used to adjust the offset, as 

shown in Figure 5.19, the average queue length is not affected. 
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of intersection B 

Ill 
G> 
'() 
:c 
G> 
> 
0 ... 
G> .c 
E 
:::1 
c 

25 

20 

15 

10 

5 

.,,,,,,"' : \ 
I 

\ 
t 

0 10 20 30 40 50 60 70 80 90 

time (sec) 1 unit= 40 sec 

• - • nooffset 
--supervisory FLC 

Figure 5. 21 Queue length at the south approach 
of intersection B 

The Figure 5.20 shows a reduction of 42% in the queue length at the south approach of 

intersection B when the offset is adjusted by the local fuzzy logic controller. Figure 5.21 

shows only a 31% reduction in the queue length for the supervisory fuzzy logic controller. 

This may be a consequence of restricting the number of fuzzy sets of the input parameters 

of the supervisory controller to three fuzzy sets. 
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Figure 5.23 shows a significant reduction of about 40% in the number of vehicles waiting 

at the south approach of intersection C when using a supervisory fuzzy logic controller 

while the local fuzzy logic controller brings about only a 23% reduction in the queue length 

(Figure 5.22). Due to the high vehicle arrival rate at the north approach of intersection A 

and the low vehicle arrival rate at the east and west approaches of intersection B, the 

volume difference is high thus giving large extensions to the green phase of the north-south 

approach of intersection C. When a local fuzzy logic controller is used to adjust the offset, 

there is not much reduction in the queue length as the the traffic volume at intersection B is 

not as high as that of the north approach of intersection A. 
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Figure 5.24 A vg delay of vehicles at the north 
approach of intersection A 
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approach of intersection A 

The average time spent by a vehicle in waiting at the north approach of intersection A is 

reduced when the offset is adjusted by either a local fuzzy logic controller or a supervisory 

fuzzy logic controller as illustrated in the Figures 5.24 and 5.25. 
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Figure 5.26 A vg delay of vehicles at the south 
approach of intersection C 

Figure 5.27 A vg delay of vehicles at south 
approach of intersection C 

Similarly, the average delay per vehicle at the south approach of intersection C is also 

reduced as a consequence of the offset adjustment at this intersection, see Figures 5.26 and 

5.27. An offset adjustment at the north approach of intersection A and at the south 

approach of intersection C results in increased green phase durations at these two 

approaches resulting in more number of vehicles flowing through the junction without 

stopping, thereby reducing the time spent in waiting. 

The delay statistics are given below: 

Average delay per vehicle at the north-south approach of intersection A 

No offset adjustment between the intersections - 17.5 sec 

Local FLC used for offset adjustment at each intersection - 16.6 sec 

Supervisory FLC for adjusting offset at all three intersections - 15.94 sec 
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Average delay/vehicle at the north-south approach of intersection B 

No offset adjustment between the intersections - 18.6 sec 

Local FLC used for offset adjustment at each intersection - 17.8sec 

Supervisory FLC for adjusting offset at all three intersections - 17.7 sec 

Average delay/vehicle at the north-south approach of intersection C 

No offset adjustment between the intersections - 13.3 sec 

Local FLC used for offset adjustment at each intersection - 12.7 sec 

Supervisory FLC for adjusting offset at all three intersections - 12.1 sec 
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Figure 5.28 Queue length at all four approaches Figure 5.29 Queue length at all four approaches 
of intersection A- using three local FLC of intersection A- using supervisory FLC 

Figures 5.28 and 5.29 show the number of vehicles waiting at all four approaches of 

intersection A when offset is adjusted with a local fuzzy logic controller and when offset is 

adjusted using a supervisory fuzzy logic controller respectively. The average queue length 

at the end of each cycle is equal to 38 vehicles when the offset is adjusted using a 
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supervisory controller and 44 vehicles when the offset is adjusted by a local fuzzy logic 

controller. 
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of intersection B - using supervisory FLC 

Figures 5.30 and 5.31 show a significant reduction in the number of vehicles waiting at all 

four approaches of intersection B when there is an offset adjustment at the north-south 

approach of this intersection. When the offset is adjusted by a local fuzzy logic controller, 

the average queue length is 26 at the end of a cycle, while the queue length when a 

supervisory controller is used is 29. 
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Figures 5.32 and 5.33 show the traffic volume at all four approaches of intersection C. 

There is a considerable reduction in the traffic volume waiting at intersection C when the 

offset is adjusted by a supervisory fuzzy logic controller (Figure 5.33). The average number 

of vehicles at the end of a cycle is 30 in this case. When a local fuzzy logic controller is 

used, the average queue length is 38. 

The simulation results establish the effectiveness of the supervisory fuzzy logic controller 

in improving the traffic flow through the three intersections. The queue lengths at the north 

and south approaches of the three intersections are reduced to a greater extent by the 

supervisory fuzzy logic controller than by the local fuzzy logic controllers. 

5.6 Discussion 

The traffic flow approaching a set of three intersections situated in the north-south 

direction was studied. The three intersections are coordinated by adjusting their respective 

offsets. The simulation results show that by using a local fuzzy logic controller to 

coordinate each intersection with only its upstream intersection, the queue length at the 

local intersection is reduced when the traffic volume at the upstream intersection is high. 

Otherwise, the green phase duration of the local traffic signal is not long enough to allow 

the traffic coming from the upstream intersection to pass through unstopped, thereby not 

reducing the queue length at the local intersection. 

151 



When a supervisory fuzzy logic controller is used to adjust the offset of the three traffic 

signals, the queue length at the north-south approaches of all three intersections is reduced. 

This is due to the adjustment of offset of each traffic signal based on the traffic volume at 

all the intersections rather than that of just the upstream intersection. 

Adjusting the offset of a traffic signal using a supervisory fuzzy logic controller has a more 

pronounced effect on the traffic flow passing through the three traffic junctions compared 

to the effect of three local fuzzy logic controllers. It is possible to achieve a better 

throughput at all the intersections rather than just maximising the traffic flow at a single 

intersection. This is because the fuzzy control scheme involving the supervisory controller 

is a more coupled architecture, where each signal is coordinated with its neighbouring 

signals thus making it a cohesive network. 

However, there is a limitation with using the single supervisory fuzzy logic controller. 

When a large number of traffic signals is to be coordinated, a supervisory fuzzy logic 

controller is not feasible because of the large number of input and output variables thus 

making it computationally expensive and not very cost effective. In such a case, where a 

large number of signalised intersections is considered, coordinating each intersection with 

its upstream intersection might be a better proposition. 

In developing the supervisory fuzzy logic controller, each of the three input variables is 

divided into three fuzzy sets to facilitate the construction of the rulebase. This resulted in a 
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fuzzy rulebase comprising twenty seven rules. By restricting the number of fuzzy sets to 

only three, the fuzzy logic controller is made less sensitive to abrupt changes in the queue 

length of vehicles. 

In chapter 6, the traffic flow approaching a set of three intersections is regulated by 

adjusting the offset at each intersection using a supervisory fuzzy logic controller whose 

input variables are divided into five fuzzy sets each and whose fuzzy rules are developed 

using a Genetic Algorithm. The increase in the number of fuzzy sets should improve the 

sensitivity of the supervisory fuzzy logic controller resulting in a better performance. 
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Chapter6 

Genetic Algorithms for fuzzy rule generation 

6.1 Introduction 

Fuzzy Logic Control (FLC) is a control methodology based on the theory of fuzzy sets. It 

attempts to model the human rule of thumb approach to problem solving. Fuzzy logic 

controllers are rule based systems whose inference mechanism is accomplished by fuzzy 

rules. These rules are normally obtained by interviewing human operators, extracting 

knowledge from experts in the area, and trial and error. But this could be a lengthy process 

and does not always provide reliable information for complex and ill-defined processes. 

To overcome the problem of rule-elicitation, Procyk and Mamdani (1979) proposed the 

Self Organising Fuzzy Logic Controller (SOFLC) to develop and improve the fuzzy rules 

of a system and automatically structure itself by monitoring the performance of the process 

so as to obtain a predetermined quality. SOFLC, being a supervised learning technique, 

needs a valid model of the system that is to be controlled. If the desired output of the 
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system is not known, it is not possible to obtain a satisfactory knowledge base for the 

system. 

Another technique that can be employed to obtain an adequate rulebase is by using Genetic 

Algorithms (GAs) (Wen-ruey H., 1993, Mohanunadian M., eta!, 1994a). There is no need 

to know the desired output of the system that is to be controlled. With the aid of GAs, 

optimal fuzzy rules could be obtained without human operators' experience or control 

engineers' knowledge. 

In this chapter, Genetic Algorithms (GAs) are employed to learn the fuzzy rules to adjust 

the offset of a set of traffic signals. The approach presented here generates the fuzzy rules 

to regulate the traffic flow approaching two adjacent intersections and a set of three 

intersections. The models considered here are the same as the ones described in chapters 4 

and 5 respectively. 

6.2 Genetic Algorithms 

Genetic Algorithms are search algorithms based on the mechanics of natural selection and 

evolution (Goldberg, D.E., 1989). There are three basic genetic operations, associated with 

a simple GA which are performed on a population of possible solutions. They are 

reproduction, crossover and mutation. 
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In reproduction, a population of possible solutions (strings) is usually represented as a 

string of binary numbers. Each individual string is decoded and applied to the problem and 

the performance of the string is assessed by assigning it a fitness value. Thus, each string is 

assigned a fitness value depending on how well it has performed its task. 

The next step involves recombination where the fittest strings are chosen to form the next 

generation. This process involves the crossover operation where a point is randomly chosen 

in the two strings and the segments of the two strings are switched to the right of this point. 

Crossover occurs with a certain probability called the crossover probability. 

Mutation is performed to maintain genetic diversity within a small population of strings 

and avoid premature convergence to a non-optimal solution. The mutation operator 

performs a random change of the value of a string position according to a small probability 

called the mutation probability. 

An additional feature commonly included in GAs is the automatic inclusion of the best 

performing string of the parent generation in the new offspring generation. This procedure 

prevents a good string being lost due to the probabilistic nature of reproduction. 

6.3 Fuzzy Rule generation using GAs 

The design of the knowledge base of a fuzzy logic controller is based upon a human 

operator's knowledge and experience. The fuzzy rules are formulated by a trial and error 
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method which is not only time consuming but also does not guarantee optimal fuzzy rules 

for the system. Incorporating Genetic Algorithms into the design of a fuzzy logic controller 

ensures automatic generation of fuzzy rules for controlling a system. In this chapter, a 

fuzzy-GA rule generator architecture is used to automatically generate the fuzzy rules for 

the supervisory fuzzy logic controller. A block diagram of the fuzzy-GA rule generation 

architecture is shown in Figure 6.1. 

Fuzzy ~ GA fuzzy rule 
output regions genCrator block 

1 FLC 

I Rulebase r evaluator 
block 

Fuzzy rules 

~ ................... -.- ...... -.-.- ....................... ~ 

Figure 6.1 Fuzzy-GA rule generator architecture (Mohanunadian M., 1994) 

The structure of a fuzzy-GA rule generator architecture is similar to that of a traditional 

fuzzy logic controller except that in a traditional fuzzy logic controller, the fuzzy rules are 

determined by expert's knowledge while in a fuzzy-GA rule generator system, the fuzzy 

rules are obtained by doing a random yet iterative search in the output fuzzy regions based 

on a system specific performance criterion to search for the best fuzzy rule base for the 

fuzzy logic controller. The fuzzy rules are obtained by evaluating the performance of the 

system for each set of rules that is generated by the GAs, until some system specific 

performance criterion is met. 
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Fuzzy-GA architecture 

Let us consider a fuzzy logic controller with two inputs (x andy) and a single output (z). As 

a first step to generating the fuzzy rules, the domain intervals of the input and output 

variables are divided into different regions, called fuzzy sets. The number of fuzzy sets is 

application dependent. It is assumed that x, y and z are all divided into five fuzzy regions 

each, with x andy denoted by the linguistic terms VL, LO, MD, m, VH and z denoted by 

the linguistic terms VS, SM, MD, HI, VH. A fuzzy membership function is assigned to 

each fuzzy set. Since x and y are divided into five fuzzy sets each, a maximum of twenty 

five fuzzy rules can be written for the fuzzy logic system. 

y 

VL LO MD HI VH 
VL 

LO 

X MD 

HI 

VH 

Table 6.1 An empty fuzzy rule matrix 

The fuzzy rule base can be constructed as 5 x 5 rule matrix as shown in Table 6.1, with 

cells to hold the corresponding action that must be taken for every possible combination of 

the input variables x andy. 

!58 



The consequent for each fuzzy rule, the value of each cell in the Table 6.1, is determined 

by genetic evolution. In order to do so, the input and the output fuzzy sets need to be 

encoded. However, it is not necessary to encode the input fuzzy sets because the input 

fuzzy sets are static and do not change. Only the output fuzzy sets are encoded. The fuzzy 

rules relating the input variables (x and y) to the output variable (z) have twenty five 

possible combinations. The consequent of each fuzzy rule can be any one of the five output 

fuzzy sets. The output fuzzy sets are encoded by assigning I = VS (very small), 2 = SM 

(small), 3 = MD (medium), 4 = HI (high), and 5 = VH (very high). GAs randomly encode 

each output fuzzy set into a number ranging from I to 5 for all possible combinations of 

the input fuzzy variables. Each encoded parameter can be considered to be a gene and the 

string formed by the concatenation of all the encoded parameters is called a genotype. Each 

genotype is an individual string which is a member of a population which in this case, is a 

set of fuzzy rules for the fuzzy logic controller. 

An individual string can be represented in the following way: 

--------------11 I 
1 2 3 4 25 

which translates to: 

ifx = VL andy=VL thenz= m 

ifx = VL andy= LO then z =MD 

ifx =VL andy =MD then z =VH 

ifx = VL andy= HI then z =MD 
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ifx = VH andy= VH then z = VS 

Each string is a member of a population and a population of size n has n number of 

individuals strings randomly encoded by GA. A population comprising of n individual 

strings can be represented as: 

I 2 3 ---------- -------------------------- 2S 

1 14 13 lsi Is I 
2 11 lsl 3

1 I 3 1 

3 14 14121 I 1 I 

n 

Each individual string is then decoded into the ouput linguistic terms. The set of fuzzy 

rules thus developed is evaluated by the fuzzy logic controller, based upon a fitness value 

which is specific to the system. The fitness value is application dependent. At the end of 

each generation, two copies of the best performing string from the parent generation is 

included in the next generation to ensure that the best performing strings are not lost. GA 
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then performs the process of selection, crossover and mutation on the rest of the individual 

strings. Selection and crossover are the same as a simple genetic algorithm while the 

mutation operation is modified. 

Crossover and mutation take place based on the probability of crossover and mutation 

respectively. For crossover, two individual strings from the parent generation are selected 

at random and an integer position k is selected randomly between I and the string length 

less one, which is 24. Two new strings are created by swapping all integers between 

positions k+ 1 and 25 inclusively. For example, consider the following two strings, strings I 

and 2 from the initial population: 

I 2 3 4 5 --------- -------------------------- 25 

1 

2 

If k = 2, the new strings obtained as a result of crossover is given by: 

I 2 3 4 5 ---------- ------------------ 25 

1 

2 

The process of mutation takes place depending on the mutation rate. An integer position in 

the individual string is selected at random and the encoded parameter at that position is 

replaced by a random number ranging from I to 5. The mutation operation can be 

illustrated in the following way: 
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Before mutation: 

1 2 3 4 5 ---------- ----------------- 25 

After mutation: 

1 2 3 4 5 ---------- ----------------- 25 

The process of selection, automatic inclusion, crossover and mutation are repeated for a 

number of generations until a satisfactory fuzzy rule base is obtained. We define a 

satisfactory rule base as one whose fitness value differs from the desired output of the 

system by a very small value. 

Genetic Algorithms perform the task of generating high performance fuzzy rules quickly. 

They run automatically without any need for operational guidance other than the fitness 

value supplied by the fuzzy logic controller. GAs perform a self-directed search, learning 

new fuzzy rules for the fuzzy logic controller (Mohammadian M., eta!., 1994a). 

6.4 Control of two adjacent intersections using fuzzy rules generated by 

the Fuzzy-GA rule generator architecture 

The traffic flow approaching an intersection is random and highly uneven. Regulating this 

fluctuating traffic flow requires common sense reasoning and know ledge pertaining to the 
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pattern of traffic flow. If we assume a policeman directing traffic at an intersection, he lets 

traffic pass through in one direction and then stops traffic from that direction and lets the 

traffic pass from the other direction. He makes his decision based on the traffic density at 

each approach and also on the time spent by vehicles waiting to pass through. He makes his 

decisions using the rule of thumb and knowledge gained through years of experience. 

However, if the traffic flow approaching a set of intersections is to be regulated, the 

policeman's knowledge and experience may not be sufficient. Fuzzy logic, which emulates 

the human way of thinking is an useful tool for dealing with problems which are ill-defined 

and uncertain as in the case of traffic regulation which is highly uneven and unpredictable. 

In chapter 3, a fuzzy logic traffic controller to regulate the vehicular flow approaching an 

isolated intersection from all four directions (North, South, East and West), is presented. 

Based on the current traffic volume and the number of vehicles that passed through during 

the previous green phase, the current green phase of the north-south and east-west 

approaches of the traffic signal is adjusted. The simulation results showed the ability of the 

fuzzy logic controller in handling a wide range of varying traffic patterns. 

In chapter 4, a supervisory fuzzy logic controller is developed to coordinate two adjacent 

intersections by adjusting the offset of the traffic signals in order to minimise the number 

of stops at each intersection. A set of twenty five fuzzy control rules is used to adjust the 

offset. These rules, developed manually based on common sense reasoning and trial and 
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error, are effective in reducing the number of vehicles waiting at the two intersections. 

However, it is difficult to determine whether these fuzzy rules are the 'optimal' fuzzy rules 

for adjusting the offset. 

In order to procure a better set of fuzzy decision rules, a genetic algorithm is employed to 

acquire the fuzzy rule base for adjusting the offset at the two intersections A and B, see 

Figure 4.1. The input variables are Vol_diff 1 and Vol_difj2 where 

Vol_diff 1 = Vsa- (VEA + VwAJ I 2 

Vol_diff 2 = VNA- (VEa + Vwa) I 2 

(6.1) 

(6.2) 

Vsa is the queue length at the south approach of intersection B, VNA is the queue length at 

the north approach of intersection A, V EA and V wA are the queue lengths at the east and 

west approaches of intersection A, and VEB and Vwa are the queue lengths at the east and 

west approaches of intersection B. 

The output variables are the adjustments to the green phase of the two traffic signals, Ext] 

and Ext2. The linguistic fuzzy sets for the input and output variables and their 

corresponding membership functions are the same as used in chapter 4. 

The fuzzy-GA rule generator architecture shown in Figure 6.1 is employed to acquire the 

fuzzy rule base for adjusting the offset. GA initialises a population of individual strings by 

encoding the output regions in a random manner. Since the supervisory fuzzy logic 
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controller has two output variables, Ext] and Ext2, each individual string is constructed as 

a two dimensional array represented by: 

I 2 3 4 5 -------- -------------------------- 25 

I : I 
Each of these strings is then decoded into the output linguistic terms and for each 

combination of the input fuzzy sets, an output linguistic term is assigned. This fuzzy rule 

base is evaluated by the supervisory fuzzy logic controller based on a fitness function. The 

fitness function is the sum of all the vehicles waiting at the north and south approaches of 

the two intersections during the simulation. It is desired to generate a fuzzy rule base that 

minimises the fitness function. The GA operators - reproduction, crossover, and mutation 

are then applied to the individual strings of the population based on the fitness value. This 

process is repeated for a number of generations till a suitable fuzzy rule base is obtained. A 

suitable fuzzy rule base is one which minimises the queue length at the north and south 

approaches of both intersections. 

In generating the fuzzy control rules for adjusting the offset of the two traffic signals, the 

following set of data is used. 

Number of generations = 300 

Population size = 30 

Length of chromosome = maximum number of rules = 25 
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Crossover probability = 0.6 

Mutation probability= 0.015 

Fuzzy rules Fuzzy rules 
~enerated by 

hand 
~enerated by 

GA 

Queue length at the north approach of intersection A 2323 802 

Queue length at the south approach of intersection A 562 436 

Queue length at the north approach of intersection B 441 543 

Queue length at the south approach of intersection B 1529 778 

Queue length at all four approaches of intersection A 4253 2595 

Queue length at all four approaches of intersection B 2974 2375 

Table 6.2 Comaprison of the fuzzy rules constructed by hand and rules generated by GA 
for the supervisory fuzzy logic controller 

Table 6.2 shows the effectiveness of the fuzzy rules generated by Genetic Algorithms over 

the fuzzy rule base constructed by hand. When the fuzzy rules are determined by hand, the 

number of vehicles waiting at the south approach of intersection A and those at the north 

approach of intersection B is less when compared to the other two approaches. When the 

fuzzy rules are generated manually, there is a tendency to restrict the flow of vehicles 

passing through the north approach of intersection A and the south approach of intersection 

B in order to avoid the possibility of congestion between the two intersections. As a result, 

the number of vehicles waiting at the approaches between the intersections, that is, north 

approach of intersection B and south approach of intersection A, is kept to a mimimum. 

However, the queue length at the north approach of intersection A and that at the south 
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approach of intersection B increases to a high value whenever there is a heavy burst of 

traffic. 

On the other hand, Genetic Algorithms attempt to optimise the overall performance of the 

system. They minimise the number of vehicles waiting at all the approaches to 

intersections A and B rather than just reducing the queue length at the north approach of 

intersection B and the queue length at the south approach of interscetion A. When the fuzzy 

rules are generated by genetic algorithms, the queue length at the north approach of 

intersection A is reduced by 62%, the queue length at the south approach of intersection A 

is reduced by 22%, the queue length at the north approach of intersection B is increased by 

18% and the queue length at the south approach of intersection B is reduced by 49%. The 

total number of vehicles waiting at intersection A is reduced by 39% and the total number 

of vehicles waiting at intersection B is reduced by 20%. 

The fuzzy rule base obtained after 300 generations for a population size of 30 is shown in 

Table 6.3. The offset adjustments to the north-south approaches of intersection A and B, 

which in effect is the green phase extensions, are the output variables. Each entry in the 

table is made up of two components. The first is the green phase extension in the north

south approach of intersection A and the second is the green phase extension to the north

south approach of intersection B. 
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Vol_diff2 

VL LO MD HI VH 

SM VH SM VH SM 
VL vs vs SM HI HI 

LO vs SM SM vs VH 
VH VH VH SM HI 

MD vs vs MD. VH SM 
Vol_diffl SM VH SM HI SM 

HI MD MD HI vs MD 
HI MD MD VH MD 

VH MD SM VH vs HI 
MD HI VH VH HI 

Table 6.3 Fuzzy rule base supervisory FLC adjusting offset 

Figures 6.2 and 6.3 show the queue length at the north and south approaches of intersection 

A. It can be seen that the traffic density is reduced as a result of the fuzzy rules generated 

by Genetic Algorithms. 
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In Figure 6.2, when the fuzzy rules are developed by hand, the queue of vehicles tends to 

build up and there is no indication of any change in the trend, as the vehicles keep 

accumulating. The fuzzy rules generated by Genetic Algorithms maintain the queue length, 

without letting it increase, throughout the simulation. In Figure 6.3, the fuzzy rules 

generated by genetic algorithms shows only a slight improvement in the queue length at the 

south approach of intersection A because the queue length is already minimised to a small 

value. 
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Figure 6.5 Queue length at the south approach 
intersection B 

Figure 6.4 shows the number of vehicles waiting at the north approach of intersection B. 

The fuzzy rules generated by Genetic Algorithms is not successful in reducing the traffic 

volume at the north approach of intersection B. This is because, the number of vehicles 

waiting at the north approach of intersection B is already minimised to a great extent and it 

is not possible to further reduce the queue length without affecting the traffic flow at the 

169 



other approaches of intersections A and B. The fuzzy rules generated by genetic algorithms 

tend to minimise the traffic volume at all the approaches, to the same extent. In contrast, 

the fuzzy rules generated by hand are only effective in reducing the queue lengths between 

the two intersections. 

The queue length at the south approach of intersection B is reduced, as shown in Figure 

6.5. The number of vehicles waiting does not increase beyond 24 even as the vehicle 

arrival rate increases. The fuzzy rules generated by genetic algorithms extends the green 

phase duration of the north-south approach of intersection B in such a way that the queue 

length is maintained below this level. 
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Figure 6.7 Queue length at all four approaches 
of intersection B 

Figures 6.6 and 6.7 show the number of vehicles waiting at all four approaches of 

intersections A and B. These figures show a reduction in the traffic density at these 

intersections when the fuzzy rules generated by Genetic Algorithms are used. These rules 
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are effective in reducing the number of vehicles waiting at intersection A to a greater extent 

than the number of vehicles waiting at intersection B. This is because the fuzzy rules 

generated by the genetic algorithms reduce the traffic volume at all the approaches to the 

same extent, while the fuzzy rules developed by hand are biased towards the north 

approach of intersection B because of the high vehicle arrival rate at the north approach of 

intersection A. Hence, the overall reduction in the traffic volume at intersection B is not 

significant. 

6.5 Control of a set of three intersections using the fuzzy rules generated 

by the Fuzzy-GA rule generator architecture 

The fuzzy-GA rule generator architecture shown in Figure 6.1 is now used to automatically 

generate the fuzzy rules for regulating the traffic flow approaching a set of three traffic 

signals. In chapter 5, a supervisory fuzzy logic controller is developed to coordinate a set of 

three intersections and minimise the number of vehicles at each intersection. A set of 

twenty seven fuzzy control rules is used to adjust the offset of all three traffic signals A, B, 

and C, see Figure 5.1. The supervisory fuzzy logic controller comprising three input 

variables and three output variables was employed for this purpose. Each of the three input 

variables was divided into three fuzzy regions, instead of five regions, in order to facilitate 

the formulation of the fuzzy rule base. Limiting the number of fuzzy input sets results in a 

smaller rule base. However, the sensitivity of the fuzzy logic controller tends to reduce 

because of the wider input fuzzy regions (Yan J., et al1994),. 
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In this chapter, the offset of the three n·affic signals is adjusted using a supervisory fuzzy 

logic controller whose input variables, Vol_diffl, Vol_dijj2, and Vol_diff3 are divided into 

five fuzzy regions to make the fuzzy logic controller more sensitive to abrupt changes in 

traffic flow. A control action is required for every possible condition that exists in the 

system. The number of possible combinations of the input fuzzy sets is 125. The deduction 

of fuzzy rules by hand, for a knowledge base of such high dimensionality is a difficult task. 

To facilitate the formulation of the fuzzy rule base, the rules are generated using Genetic 

Algorithms. The fitness function is the sum of the queue lengths at the north-south 

approaches of the three intersections. The fuzzy membership functions for the three inputs 

are shown in Figure 6.8. The output fuzzy sets and their corresponding membership 

functions are the same as those used in chapter 5, see Figure 5.6. 

VL LO MD HI VH 

f.l vol_di 

0.0 0.5 1.0 
vol_diff (vehicles) 

Figure 6.8 Membership function for the input fuzzy variables, vol_diffl,vol_diff2,vol_diff3 

We start with the following initial set of data in order to generate the fuzzy rules for 

adjusting the offset. 
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Population size = 30 

Length of chromosome= maximum number of rules= 125 

Crossover probability = 0.6 

Mutation probability= 0.001 

The genetic algorithm was run for I 00 and 200 generations and the results obtained is 

shown in Table 6.4. 

Fuzzy rules Fuzzy rules Fuzzy rules 
generated by after 100 after 200 

hand generations generations 

Queue length at the north approach of intersection A 1167 1231 1052 

Queue length at the south approach of intersection A 839 775 959 

Queue length at the north approach of intersection B 685 968 239 

Queue length at the south approach of intersection B 547 743 240 

Queue length at the north approach of intersection C 718 280 628 

Queue length at the sooth approach of intersection C 789 691 684 

Queue length at the north approach of intersection A 3509 3512 3533 

Queue length at the north approach of intersection B 2616 2802 1859 

Queue length at the north approach of intersection C 2683 2117 2477 

Table 6.4 Comparison of fuzzy rules generated by hand and fuzzy rules generated using GAs for offset 
adjustment of three traffic signals 

The fuzzy rules generated by the genetic algorithms after 200 generations reduce the 

number of vehicles waiting at the north-south approaches of all three intersections except 

the south approach of intersection A. This fuzzy rule base can be considered to be a 
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satisfactory rule base for offset adjustment at the three intersections because of the extent 

to which it has reduced the queue lengths at the north and south approaches of the three 

intersections. The fuzzy rules are given in Appendix B. The fuzzy rules obtained after 100 

generations are not very good as can be seen from the statistics for 100 generations in 

Table 6.4. This is could be due to a poor selection of individual strings in the initial 

population and not enough generations for the genetic algorithm to evolve a good fuzzy 

rule base.· 

Figures 6.9 - 6.14 show the number of vehicles waiting at the north-south approaches of 

intersections A, B and C. The fuzzy rules generated by Genetic Algorithms reduces the 

queue length at the north approach of intersection A by 9%, the queue length at the north 

approach of intersection B by 65%, the queue length at the south approach of intersection B 

by 56%, the queue length at the north approach of intersection C by 12% and the queue 

30 

• 
25 

I 

Ill 
Q) 

:§ 20 
.c 
Q) 

> 
0 15 ... 
Q) 
.c 
E 10 
:I 
c 

5 

0+--r~--+-~-+--r-~-+~ 

0 10 20 30 40 50 60 70 80 90 

time (sec) 1 unit = 40 sec 

• • • no GA I 
--GA . 

Figure 6.9 Queue length at the north approach 
of intersection A 

25 

Ill 

'* 20 :c 
~ 
0 15 .. 
.8 
~ 10 
c 

5 

0 10 20 30 40 50 60 70 80 90 

time (sec) 1unlt = 40 sec 

I :_:_~~GAl 
Figure 6.10 Queue length at the south approach 

of intersection A 

174 



length at the south approach of intersection C by 13%. However, the queue length at the 

south approach of intersection A in increased by 12%. But the overall performance of the 

supervisory fuzzy logic controller is improved as a result of the fuzzy rules generated by 

Genetic Algorithms. 
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Figure 6.12 Queue length at the south approach 
of intersection B 

Ill 
Q) 

u 
:E 
Q) 
> -0 .. 
Q) 
..c 
E 
:I 
c 

20 

15 

10 

5 

0+--t---1--t--+--1---1--+--+---1 
0 10 20 30 40 50 60 70 80 90 

I . :·~:. ~~~~ GA I 

Figure 6.14 Queue length at the south approach 
of intersection C 

175 



60,------------------------------------------------, 
50 

40 

30 

20 

10 

0 10 20 30 40 50 60 80 90 

Figure 6.15 Queue length at all four approaches of intersection B 

Figure 6.15 shows the number of vehicles from all approaches waiting at intersection B. 

There is a reduction of 30% in the total number of vehicles waiting at intersection B when 

the offset at intersection B is adjusted by the fuzzy rules generated by the genetic 

algorithm. From the simulation results, it can be inferred that the fuzzy rules generated by 

genetic algorithms is expected to reduce the queue lengths at all the intersections 

irrespective of vehicle arrival rates. Genetic algorithms are unaware of the internal 

workings of the system; they strive to evolve the best possible solution to the task using the 

fitness as a measure of the performance of individuals in the population. Hence, the overall 

queue length is reduced. 

6.6 Analysis of Genetic Algorithms (GAs) 

A genetic algorithm is a search procedure that uses random choice as a tool to guide a 

search through a space of candidate solutions (Goldberg D. E., 1989). It strives to improve 
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the performance of a process or a system to an 'optimal' point. The mechanics of GAs are 

quite simple, involving the copying of strings and swapping of partial strings. 

The population of individual strings may converge to an 'optimal' value after a series of 

generations, based on the fitness function. The fitness of individual strings improves as the 

number of generations increases. The best fitness for each generation is the encoded 

individual parameter string of a population with the least fitness value. 

In this section, we investigate the effectiveness of Genetic Algorithms and how they can 

evolve a fuzzy rule base that can improve the pe1formance of the system being controlled. 

The control of two adjacent traffic signals using a supervisory fuzzy logic controller, is 

considered. The initial set of population strings is decoded into fuzzy rules and evaluated 

by the supervisory fuzzy logic controller based on a fitness function which is the sum of all 

the vehicles waiting at the north-south approaches of the two intersections during the 

simulation. The genetic operators ·· selection, crossover and mutation are applied to the 

initial population string in order to minimise the fitness function. 

The Gen.etic Algorithm was nm for 100, 200 and 300 generations for a population size 

equal to 10 and the results obt<\ined are shown in Table 6.5. 

In Table 6.5, the number of vehicles waiting at the north approach of intersection A and the 

vehicles waiting at the south ctpproach of intersection B are reduced when the Genetic 
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Algorithm is run for a greater number of generations. The queue length at the north 

approach of intersection B and the queue length at the south approach of intersection A are 

not reduced because the volume at these approaches is already low and it is not possible to 

reduce it further. 

100 200 300 
gen gen gen 

Queue length at north approach of intersection A 832 780 766 

Queue length at south approach of intersection A 348 401 384 

Queue length at north approach of intersection B 495 561 564 

Queue length at south approach of intersection B 1481 1256 1240 

Total number of vehicles waiting at intersection A 2580 2693 2603 

Total number of vehicles waiting at intersection B 2920 2864 2840 

Table 6.5 Simulation results using GAs for two adjacent intersections with population size = 10 
and number of generations = 100, 200, 300 

The number of vehicles waiting at all of the four approaches of intersections A and B is 

reduced as the Genetic Algorithm is run for many generations. Even though the queue 

lengths at the north approach of intersection B and that at the south approach of 

intersection A are not reduced, the overall performance of the system is improved with an 

increase in the number of generations. 

The Genetic algorithm tries to converge to an 'optimal' solution by doing a random search 

in the output fuzzy regions. They do not have any information pertaining to the actual flow 
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of traffic. GA aims to optimise the performance of the entire system as a whole. It tries to 

obtain the best possible solution by generating a fuzzy rule base which minimises the total 

queue length at all the intersections. As a result, it is quite possible that the fuzzy rules 

adjusting the offset at one intersection may not be as good as the rules controlling some 

other intersection. 

The fitness value returned by the supervisory fuzzy logic controller is the sum of the queue 

lengths at the approaches of all the intersections. Hence, the queue length at one approach 

may be reduced by a great extent while the queue length at some other approach may not 

be reduced by the same amount. This is quite satisfactory because the purpose of using 

GAs is to optimise the traffic flowing through all three intersections and minimise the total 

number of vehicles waiting at the intersections. 

Further analysis to establish the effectiveness of using genetic algorithms for constructing 

fuzzy control rules was done by running the simulation for different population sizes. The 

number of generations was set to 100 and the Genetic Algorithm was run for population 

sizes of 10, 20 and 30. The probablity of crossover and mutation were the same as used 

before. 

Table 6.6 shows the effect of population sizes on the overall performance of the system. It 

can be seen from the table that an increase in the population size does not always enhance 

the performance of the system. For a population size of 20, the queue length at the south 
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approach of intersection B is reduced significantly but there is no improvement at the other 

approaches. The overall performance of the system does not become better. 

popsize popsize pop size 
10 20 30 

Queue length at north approach of intersection A 832 990 1088 

Queue length at south approach of intersection A 348 512 357 

Queue length at north approach of intersection B 495 537 452 

Qneue length at south approach of intersection B 1481 842 1191 

Total number of vehicles waiting at intersection A 2580 2885 3124 

Total number of vehicles waiting at intersection B 2920 2482 2706 

Table 6.6 Simulation results using GA for two adjacent intersections with different population sizes 
and number of generations = 100 

When the genetic algorithm is run for a population size of 30, there is a slight improvement 

in the queue length at the south approach of intersection A and the north approach of 

intersection B, but there is a heavy build up of traffic at the other approaches. The reason 

could be due to the selection of poor strings in the initial set of population and not enough 

generations for GAs to evolve into an optimal solution. It can thus be inferred from this 

table that, increasing the population size does not evolve a better solution if the GA is run 

for fewer generations, which in this case is, I 00. 
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In an attempt to acquire a better set of fuzzy rules, the number of generations is increased 

to 300 for population sizes 20 and 30. Table 6.7 shows the effect of population size on the 

performance of the system when the Genetic Algorithm is run for 300 generations . 

. 

popsize popsize popsize 
10 20 30 

Queue length at north approach of intersection A 766 861 802 

Queue length at south approach of intersection A 384 474 436 

Queue length at north approach of intersection B 564 327 543 

Queue length at south approach ofintersection B 1240 832 778 

Total number of vehicles waiting at intersection A 2603 2825 2595 

Total number of vehicles waiting at intersection B 2840 2382 2375 

Table 6.7 Simulation results using GA for two adjacent intersections with different population sizes 
and number of generations = 300. 

Table 6.7 shows a reduction in the overall number of vehicles waiting at the north-south 

approaches of the two intersections when the population size is increased to 30 and when 

GA is run for 300 generations. For a population size of 20, an increase in the number of 

generations reduces the queue length at all the north-south approaches other than the north 

approach of intersection A. The overall number of vehicles waiting at the three 

intersections is reduced with an increase in the population size. The fuzzy rulebase 

obtained after 300 generations for a population size of 30 is the best fuzzy rule base 

generated by the genetic algorithm. 

181 



Population Number of Best 
size generations fitness 
10 100 2978 

10 200 2873 

10 300 2848 

20 100 2648 

20 300 2488 

30 100 2927 

30 300 2477 

Table 6.8 Best fitness values for different population sizes and generations 

Table 6.8 shows the best fitness values for different population sizes and different 

generations. GAs converge rapidly when the size of the population is small. For a 

population size of 10, GAs do not have enough individual strings to perform the genetic 

operations in a viable manner. With an increase in population size, the convergence of the 

search space is increased as the GAs have more number of strings to process. This achieves 

a better solution at a slower rate of convergence. 

Figures 6.16 to 6.18 show the rate of convergence for population sizes equal to 10, 20, and 

30. 
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Figure 6.16 Best fitness for population size = I 0 

4000 

3500 

3000 

2500 
• • • 2000 
~ 

1500 

1000 

500 

0 
0 50 100 150 200 250 300 

number of generations 

Figure 6.17 Best fitness for population size= 20 

4000 

3500 

3000 

2500 
• • • 2000. c 

"' 1500 

1000 

500 

0 
0 50 100 150 200 250 300 

number of generations 

Fignre 6.18 Best fitness for population size= 30 

183 



In Figure 6.16, there is no marked improvement in the fitness function after 130 

generations. GAs converge to a value rather quickly because of the small population size. 

A new population of strings is produced, at the end of each generation, via the genetic 

operations which involve copying of strings, swapping portions of strings and generating 

random numbers. In a search space containing fewer number of individual strings, the 

operations of selection and crossover after a few generations may result in a population of 

strings with similar combinations. In other words, GAs converge prematurely to a local 

optimum, which might not be the global optimum. 

For a population size of 20, the performance of GAs is distinct in the first 50 generations. 

(Figure 6.17). This could be due to the selection of very good individual strings in the 

initial set of population. But after 50 generations, the small size of the population restricts 

the search algorithm's quest for better solutions. In Figure 6.18, where the GA is run for a 

population size of 30, the rate of convergence is slow but it yields a better solution. 

It can be inferred from the simulation results that an increase in the population size, and in 

the number of generations, results in the evolution of a better solution. Increasing the size 

of the population has a more pronounced effect than increasing the number of generations. 

The fitness value obtained for a population size of 20, after 100 generations, is better than 

the fitness value obtained after 300 generations for a population size of 10. Using a 

population size of larger magnitude leads to a better solution. 
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If the initial population consists of good individual strings, genetic algorithms achieve a 

better solution after a few generations. But, if the size of the population is small, all the 

candidate solutions in the population of strings may become similar after a few generations 

with no marked improvement in the fitness function. 

6.7 Discussion 

In this chapter, a Genetic Algorithm is ·used to generate the fuzzy control rules for adjusting 

the offset of a set of traffic signals. The fuzzy rule base for coordinating two adjacent 

intersections and a set of three intersections is developed using GA as a search algorithm. 

From the simulation results, it was found that Genetic Algorithms are capable of generating 

fuzzy rules which effectively reduce the queue lengths at all the approaches of the three 

intersections. Since GAs consider many points from the search space simultaneously, it has 

a greater chance of converging to global optima. 

However, the Fuzzy-GA architecture used to develop the knowledge base might not be a 

feasible option for complex networks involving more than three intersections. An increase 

in the number of intersections results in an increase in the number of input parameters to 

the Fuzzy Logic Controller thereby resulting in an exponential increase in the number of 

fuzzy rules. The use of GAs to generate the fuzzy knowledge base in such a case would be 

a computationally intensive task. Hence, a more feasible and an effective method needs to 
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be applied to generate the fuzzy knowledge base for controlling a complex network of 

intersections. This issue is beyond the scope of this thesis and further work needs to be 

done in this area. 

An analysis of GAs is also done to illustrate the effect of population size and number of 

generations on its performance. The simulation results showed the achievement of better 

solutions when there is an increase in size of the population and number of generations 

with population size having a more pronounced effect on the convergence to a better 

solution. 

It can be concluded that Genetic Algorithms (GAs) are an effective tool for the generation 

of fuzzy rules for controlling a set of three traffic signals. The Fuzzy-GA rule generator 

architecture generates the fuzzy rules automatically. It is a quick, effectual and a cost 

efficient method of rule generation. The fuzzy decision rules obtained enhance the 

performance of the system and achieve better results than the fuzzy rules derived by hand. 

Incorporating Genetic Algorithms into fuzzy logic makes it possible to develop fuzzy logic 

controllers for controlling systems which are dependent on a high number of input 

parameters. 
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Chapter 7 

Conclusions and future research 

Traffic light control is used to resolve conflicts among vehicle movements at intersections. 

The existing traffic control techniques have been successful in regulating traffic in urban 

road networks. However, they cannot respond adequately to unpredictable changes in the 

traffic demand. These techniques strive to minimise the delay at a single intersection and 

do not optimise the traffic flow of the entire network. 

In this thesis, a fuzzy control scheme for controlling a set of three urban traffic signals is 

presented. The effectiveness of fuzzy logic controllers in controlling the signals is 

established through simulations. The fuzzy logic controller makes adjustments to the green 

phase of the north-south and east-west approaches and the offset of the north-south 

approach of the traffic signal, based on actual traffic flow data. Sensors which measure the 

traffic densities in the lanes approaching the intersection provides the fuzzy logic controller 

with a good assessment of the varying traffic patterns. 

In chapter 3, a fuzzy logic traffic controller for controlling an isolated traffic signal is 

studied. The controller makes adjustments to the green phase of an approach based on the 

ratio of the queue length at the approach to the number of vehicles that passed through the 

187 



approach during the previous green phase. The fuzzy logic traffic controller is effective in 

reducing the queue length and the average waiting time per vehicle. Fluctuations in the 

traffic flow result in a corresponding change in the time duration of the green phase of the 

signal. 

In chapter 4, two adjacent intersections are coordinated by adjusting the offset at each 

intersection. Each intersection is coordinated with only its upstream intersection by a local 

fuzzy logic controller placed at each intersection. A supervisory fuzzy logic controller is 

proposed to adjust the offset, based on the traffic volume, at both intersections. Simulation 

results show a reduction in the queue length and in the average delay per vehicle when the 

offset is adjusted. The performance of the supervisory fuzzy logic controller is similar to 

that of the local fuzzy logic controllers, since only two intersections were considered. 

The traffic flow approaching a set of three intersections is studied in chapter 5. The 

superiority of the supervisory fuzzy logic controller over the local fuzzy logic controllers in 

adjusting the offset is established through simulations. The local fuzzy logic controllers 

achieve a reduction in the queue length only if the traffic volume at the upstream 

intersection is high. The supervisory fuzzy logic controller reduces the queue length at all 

the north-south approaches of the three intersections because each intersection is 

coordinated with all its neighbouring intersections rather than with just its upstream 

intersection as it is the case with a local fuzzy logic controller. 
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The formulation of fuzzy rules and selection of appropriate consequents for a set of input 

conditions can be a time consuming and an arduous task. Genetic Algorithms (GAs) have 

been gaining in popularity as a learning technique for the generation of fuzzy rule bases. In 

chapter 6, GAs are used for the automatic generation of the fuzzy rule base for a 

supervisory fuzzy logic controller. A supervisory fuzzy logic controller, comprising 25 

fuzzy rules, is used for adjusting the offset at two adjacent intersections and a supervisory 

fuzzy logic controller consisting of 125 fuzzy rules is used to adjust the offset at a set of 

three intersections. Simulation results showed a marked improvement in the overall 

performance of the system when the offset is adjusted by the fuzzy rules generated by GAs. 

Using GAs as an unsupervised learning scheme for designing fuzzy rules not only 

simplifies the construction of the rule base but also provides an adequate control action for 

coordinating a set of two and three intersections. 

The proposed fuzzy control scheme is not without its limitations. For the sake of 

simplicity, turning traffic was not considered in this research. The inclusion of turning 

traffic might result in a large number of input and output parameters, increasing the 

complexity of the fuzzy control scheme. Another assumption was the inclusion of only 

single lane traffic. However, the fuzzy control system does not lose its generality as it can 

be extended to include multi lane traffic without any changes to the control scheme. 

There is much that can be done to further improve the present fuzzy logic control scheme. 

Some of the suggestions for future research are: 
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1. Control of a network of four intersections placed in the form of a square. In such a case, 

the intersections would have to be coordinated in both the north-south and east-west 

directions. 

2. Inclusion of turning traffic and muti-lane traffic. 

3. Using a hierarchical fuzzy logic controller to adjust the signal timing parameters instead 

of using a fuzzy logic traffic controller and a supervisory fuzzy logic controller operating 

independently of each other. A hierarchical fuzzy control scheme with the fuzzy logic 

traffic controller at the bottom level and the supervisory fuzzy logic controller at the top 

level is expected to enhance the performance of traffic control systems. 

In this research, artificial intelligence techniques have been applied to the control of a set 

of urban traffic signals. The use of fuzzy logic controllers to adjust the signal timing 

parameters, green phase splits and offset, of the traffic signals improve the traffic flow 

across the set of intersections. They make the adjustments automatically in response to 

traffic situations. This fuzzy logic control scheme can detect occurrences of traffic 

congestion quickly and exactly by using sensors that determines the traffic density .. 

The integration of Fuzzy Logic and Genetic Algorithms is effective in the generation of 

fuzzy control rules which are superior compared to the fuzzy rules developed manually. 

These rules are effective in improving the performance of the fuzzy logic control system. 

The fuzzy logic control scheme proposed in this thesis can be effectively applied to on-line 

traffic control because of its ability to handle extensive traffic situations. 
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Appendix A 

The fuzzy control rules used by the supervisory fuzzy logic controller to adjust the offset at 

the three intersections, are contained here. A set of 27 fuzzy rules is employed for this 

purpose. Each fuzzy rule consists of three antecedents shown by their corresponding fuzzy 

sets and three consequents represented as fuzzy linguistic terms. The input variables are 

Vol_diffl, Vol_dijj2, and Vol_dijj3. The output variables are Ext], Ext2, and Ext3. 

[0.00 0.40] [0.00 0.40] [0.00 0.40] 
vs vs vs 

[0.00 0.40] [0.00 0.40] [0.25 0.75] 
SM SM MD 

[0.00 0.40] [0.00 0.40] [0.60 1.00] 
MD MD HI 

[0.00 0.40] [0.25 0.75] [0.00 0.40] 
vs SM vs 

[0.00 0.40] [0.60 1.00] [0.00 0.40] 
SM MD SM 

[0.00 0.40] [0.25 0.75] [0.60 1.00] 
SM HI HI 

[0.00 0.40] [0.60 1.00] [0.25 0.75] 
MD HI HI 

[0.00 0.40] [0.25 0.75] [0.25 0.75] 
SM MD MD 

[0.00 0.40] [0.60 1.00] [0.60 1.00] 
MD HI HI 
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[0.25 0.75] [0.00 0.40] [0.00 0.40] 
MD SM SM 

[0.25 0.75] [0.00 0.40] [0.25 0.75] 
MD SM MD 

[0.25 0.75] [0.00 0.40] [0.60 1.00] 
m MD HI 

[0.25 0.75] [0.25 0.75] [0.00 0.40] 
MD MD SM 

[0.25 0.75] [0.25 0.75] [0.25 0.75] 
m HI HI 

[0.25 0.75] [0.25 0.75] [0.60 1.00] 
HI HI VH 

[0.25 0.75] [0.60 1.00] [0.00 0.40] 
MD HI SM 

[0.25 0.75] [0.60 1.00] [0.25 0.75] 
m m HI 

[0.25 0.75] [0.60 1.00] [0.75 1.00] 
m HI VH 

[0.60 1.00] [0.00 0.40] [0.00 0.40] 
m MD SM 

[0.60 1.00] [0.00 0.40] [0.25 0.75] 
MD SM MD 

[0.60 1.00] [0.00 0.40] [0.60 1.00] 
m MD m 

[0.60 1.00] [0.25 0.75] [0.00 0.40] 
MD MD SM 

[0.60 1.00] [0.25 0.75] [0.25 0.75] 
m HI MD 

[0.60 1.00] [0.25 0.75] [0.60 1.00] 
HI HI HI 

204 



[0.60 1.00] [0.60 1.00] [0.00 0.40] 
HI MD MD 

[0.60 1.00] [0.60 1.00] [0.25 0.75] 
HI VH HI 

[0.60 1.00] [0.60 1.00] [0.60 1.00] 
VH VH VH 
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AppendixB 

The fuzzy knowledge base, generated using Genetic Algorithms (GAs), for adjusting the 

offset at three adjacent intersections is included here. The fuzzy rules shown below are 

obtained after 200 generations for a population size of 30. These rules are used by the 

supervisory fuzzy logic controller to adjust the offset of the three traffic signals. The 

supervisory fuzzy logic controller has three input and three output variables. The input 

variables are Vol_diffl, Vol_dijj2, and Vol_diff3. The output variables are Ext], Ext2, and 

Ext3. The three antecedents of each fuzzy rule are represented by their corresponding 

fuzzy sets and the three consequents are represented as fuzzy linguistic terms. 

[0.00 0.20] [0.00 0.20] [0.00 0.20] 
vs m vs 

[0.00 0.20] [0.00 0.20] [0.15 0.50] 
vs vs m 

[0.00 0.20] [0.00 0.20] [0.40 0.60] 
vs m m 

[0.00 0.20] [0.00 0.20] [0.50 0.80] 
vs VH MD 

[0.00 0.20] [0.00 0.20] [0.70 1.00] 
MD vs SM 

[0.00 0.20] [0.15 0.50] [0.00 0.20] 
vs vs m 

[0.00 0.20] [0.15 0.50] [0.15 0.50] 
SM VH HI 
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[0.00 0.20] [0.15 0.50] [0.40 0.60] 
vs VH vs 

[0.00 0.20] [0.15 0.50] [0.50 0.80] 
vs HI vs 

[0.00 0.20] [0.15 0.50] [0.70 1.00] 
vs vs SM 

[0.00 0.20] [0.40 0.60] [0.00 0.20] 
MD MD HI 

[0.00 0.20] [0.40 0.60] [0.15 0.50] 
vs VH HI 

[0.00 0.20] [0.40 0.60] [0.40 0.60] 
vs SM MD 

[0.00 0.20] [0.40 0.60] [0.50 0.80] 
vs HI VH 

[0.00 0.20] [0.40 0.60] [0.70 1.00] 
MD HI MD 

[0.00 0.20] [0.50 0.80] [0.00 0.20] 
vs HI VH 

[0.00 0.20] [0.50 0.80] [0.15 0.50] 
vs SM HI 

[0.00 0.20] [0.50 0.80] [0.40 0.60] 
vs HI vs 

[0.00 0.20] [0.50 0.80] [0.50 0.80] 
vs VH VH 

[0.00 0.20] [0.50 0.80] [0.70 1.00] 
vs VH SM 

[0.00 0.20] [0.70 1.00] [0.00 0.20] 
SM SM SM 

[0.00 0.20] [0.70 1.00] [0.15 0.50] 
vs MD SM 
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[0.00 0.20] [0.70 1.00] [0.40 0.60] 
SM VH HI 

[0.00 0.20] [0.70 1.00] [0.50 0.80] 
vs vs VH 

[0.00 0.20] [0.70 1.00] [0.70 1.00] 
vs SM VH 

[0.15 0.50] [0.00 0.20] [0.00 0.20] 
vs VH MD 

[0.15 0.50] [0.00 0.20] [0.15 0.50] 
SM SM MD 

[0.15 0.50] [0.00 0.20] [0.40 0.60] 
vs SM vs 

[0.15 0.50] [0.00 0.20] [0.50 0.80] 
SM VH VH 

[0.15 0.50] [0.00 0.20] [0.70 1.00] 
MD vs SM 

[0.15 0.50] [0.15 0.50] [0.00 0.20] 
MD m vs 

[0.15 0.50] [0.15 0.50] [0.15 0.50] 
vs m m 

[0.15 0.50] [0.15 0.50] [0.40 0.60] 
SM m MD 

[0.15 0.50] [0.15 0.50] [0.50 0.80] 
MD VH MD 

[0.15 0.50 [0.15 0.50] [0.70 1.00] 
VH SM MD 

[0.15 0.50] [0.40 0.60] [0.00 0.20] 
MD HI SM 

[0.15 0.50] [0.40 0.60] [0.15 0.50] 
vs VH VH 
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[0.15 0.50] [0.40 0.60] [0.40 0.60] 
VH VH vs 

[0.15 0.50] [0.40 0.60] [0.50 0.80] 
VH vs vs 

[0.15 0.50] [0.40 0.60] [0.70 1.00] 
VH HI HI 

[0.15 0.50] [0.50 0.80] [0.00 0.20] 
MD HI SM 

[0.15 0.50] [0.50 0.80] [0.15 0.50] 
VH MD vs 

[0.15 0.50] [0.50 0.80] [0.40 0.60] 
vs HI HI 

[0.15 0.50] [0.50 0.80] [0.50 0.80] 
SM vs vs 

[0.15 0.50] [0.50 0.80] [0.70 1.00] 
VH VH SM 

[0.15 0.50] [0.70 1.00] [0.00 0.20] 
MD VH HI 

[0.15 0.50] [0.70 1.00] [0.15 0.50] 
MD MD HI 

[0.15 0.50] [0.70 1.00] [0.40 0.60] 
HI HI SM 

[0.15 0.50] [0.70 1.00] [0.50 0.80] 
vs SM vs 

[0.15 0.50] [0.70 1.00] [0.70 1.00] 
HI vs VH 

[0.40 0.60] [0.00 0.20] [0.00 0.20] 
VH SM vs 

[0.40 0.60] [0.00 0.20] [0.15 0.50] 
VH vs HI 
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[0.40 0.60] [0.00 0.20] [0.40 0.60] 
SM vs SM 

[0.40 0.60] [0.00 0.20] [0.50 0.80] 
VH MD VH 

[0.40 0.60] [0.00 0.20] [0.70 1.00] 
SM HI SM 

[0.40 0.60] [0.15 0.50] [0.00 0.20] 
vs SM VH 

[0.40 0.60] [0.15 0.50] [0.15 0.50] 
SM HI SM 

[0.40 0.60] [0.15 0.50] [0.40 0.60] 
vs HI VH 

[0.40 0.60] [0.15 0.50] [0.50 0.80] 
vs VH HI 

[0.40 0.60] [0.15 0.50] [0.70 1.00] 
HI SM vs 

[0.40 0.60] [0.40 0.60] [0.00 0.20] 
VH vs m 

[0.40 0.60] [0.40 0.60] [0.15 0.50] 
m vs vs 

[0.40 0.60] [0.40 0.60] [0.40 0.60] 
vs m m 

[0.40 0.60] [0.40 0.60] [0.50 0.80] 
MD vs vs 

[0.40 0.60] [0.40 0.60] [0.70 1.00] 
vs VH HI 

[0.40 0.60] [0.50 0.80] [0.00 0.20] 
VH VH m 

[0.40 0.60] [0.50 0.80] [0.15 0.50] 
VH MD HI 
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[0.40 0.60] [0.50 0.80] [0.40 0.60] 
HI SM MD 

[0.40 0.60] [0.50 0.80] [0.50 0.80] 
HI MD vs 

[0.40 0.60] [0.50 0.80] [0.70 1.00] 
VH VH vs 

[0.40 0.60] [0.70 1.00] [0.00 0.20] 
MD MD SM 

[0.40 0.60] [0.70 1.00] [0.15 0.50] 
vs vs vs 

[0.40 0.60] [0.70 1.00] [0.40 0.60] 
HI MD vs 

[0.40 0.60] [0.70 1.00] [0.50 0.80] 
VH MD VH 

[0.40 0.60] [0.70 1.00] [0.70 1.00] 
HI HI SM 

[0.50 0.80] [0.00 0.20] [0.00 0.20] 
MD HI vs 

[0.50 0.80] [0.00 0.20] [0.15 0.50] 
MD MD VH 

[0.50 0.80] [0.00 0.20] [0.40 0.60] 
VH VH MD 

[0.50 0.80] [0.00 0.20] [0.50 0.80] 
HI MD vs 

[0.50 0.80] [0.00 0.20] [0.70 1.00] 
vs HI VH 

[0.50 0.80] [0.15 0.50] [0.00 0.20] 
MD VH vs 

[0.50 0.80] [0.15 0.50] [0.15 0.50] 
MD SM MD 
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[0.50 0.80] [0.15 0.50] [0.40 0.60] 
vs MD HI 

[0.50 0.80] [0.15 0.50] [0.50 0.80] 
MD SM MD 

[0.50 0.80] [0.15 0.50] [0.70 1.00] 
SM MD vs 

[0.50 0.80] [0.40 0.60] [0.00 0.20] 
HI vs VH 

[0.50 0.80] [0.40 0.60] [0.15 0.50] 
HI MD SM 

[0.50 0.80] [0.40 0.60] [0.40 0.60] 
VH vs VH 

[0.50 0.80] [0.40 0.60] [0.50 0.80] 
MD VH MD 

[0.50 0.80] [0.40 0.60] [0.70 1.00] 
VH MD MD 

[0.50 0.80] [0.50 0.80] [0.00 0.20] 
VH VH HI 

[0.50 0.80] [0.50 0.80] [0.15 0.50] 
vs SM MD 

[0.50 0.80] [0.50 0.80] [0.40 0.60] 
HI HI SM 

[0.50 0.80] [0.50 0.80] [0.50 0.80] 
vs SM SM 

[0.50 0.80] [0.50 0.80] [0.70 1.00] 
MD HI MD 

[0.50 0.80] [0.70 1.00] [0.00 0.20] 
vs VH MD 

[0.50 0.80] [0.70 1.00] [0.15 0.50] 
MD HI SM 
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[0.50 0.80] [0.70 1.00] [0.40 0.60] 
SM HI VH 

[0.50 0.80] [0.70 1.00] [0.50 0.80] 
MD VH vs 

[0.50 0.80] [0.70 1.00] [0.70 1.00] 
MD HI vs 

[0.70 1.00] [0.00 0.20] [0.00 0.20] 
SM vs vs 

[0.70 1.00] [0.00 0.20] [0.15 0.50] 
HI MD VH 

[0.70 1.00] [0.00 0.20] [0.40 0.60] 
HI SM MD 

[0.70 1.00] [0.00 0.20] [0.50 0.80] 
VH VH HI 

[0.70 1.00] [0.00 0.20] [0.70 1.00] 
MD VH MD 

[0.70 1.00] [0.15 0.50] [0.00 0.20] 
HI VH SM 

[0.70 1.00] [0.15 0.50] [0.15 0.50] 
HI HI vs 

[0.70 1.00] [0.15 0.50] [0.40 0.60] 
HI vs HI 

[0.70 1.00] [0.15 0.50] [0.50 0.80] 
HI SM SM 

[0.70 1.00] [0.15 0.50] [0.70 1.00] 
MD VH VH 

[0.70 1.00] [0.40 0.60] [0.00 0.20] 
VH vs VH 

[0.70 1.00] [0.40 0.60] [0.15 0.50] 
HI MD vs 
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[0.70 1.00] [0.40 0.60] [0.40 0.60] 
SM SM MD 

[0.70 1.00] [0.40 0.60] [0.50 0.80] 
VH SM vs 

[0.70 1.00] [0.40 0.60] [0.70 1.00] 
VH MD HI 

[0.70 1.00] [0.50 0.80] [0.00 0.20] 
MD vs vs 

[0.70 1.00] [0.50 0.80] [0.15 0.50] 
HI VH vs 

[0.70 1.00] [0.50 0.80] [0.40 0.60] 
VH VH VH 

[0.70 1.00] [0.50 0.80] [0.50 0.80] 

VH HI VH 

[0.70 1.00] [0.50 0.80] [0.70 1.00] 
HI MD SM 

[0.70 1.00] [0.70 1.00] [0.00 0.20] 

HI SM VH 

[0.70 1.00] [0.70 1.00] [0.15 0.50] 

MD vs MD 

[0.70 1.00] [0.70 1.00] [0.40 0.60] 

HI VH MD 

[0.70 1.00] [0.70 1.00] [0.50 0.80] 
HI HI HI 

[0.70 1.00] [0.70 1.00] [0.70 1.00] 
VH VH HI 
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