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ABSTRACT 

Eccentric contractions, where a musele is repeatedly lengthened while generating 

torque, result in decreased muscle function and muscle soreness. This study was 

designed to determine whether there was a difference in muscle response of the 

elbow flexors from untrained subjects (n = 12) between a bout of high intensity 

eccentric exercise at 30°·s·1 (LVE) compared to the equivalent at 210°·s·1 (HVE). 

Subjects performed 120 seconds of eccentric ero;:rcise of the elbow flexors using a 

Cybex 6000 !so kinetic Dynamometer. At 30°-s·', a total of 30 repetitions were 

required whilst at 210°·s·1
, 210 contractions were performed (at a 1:7 work/rest 

ratio). 

Both exercise bouts resulted in significant decrements m isometric and dynamic 

strength measures (p<O·OI) with HYE resulting in significantly greater reductions 

and a longer recovery compared to LYE. HVE also showed larger (p<0·05) increases 

in serum CK than LYE and the time taken to return to baseline levels was longer. 

LYE had significantly (p<0·05) smaller changes in the circumference (CIR) of the 

upper arm as compared to HVE, mean peak increase in CIR after LYE was 04 ern(± 

0·1) and following HVE it was 0·8 em(± 0·1) (SEM). Significant (p<O·OS) levels of 

palpated, flexed and extended muscle soreness were experienced following both 

exercise conditions and the recovery time was extended for HVE. The two exercise 

conditions resulted in significant (p<0·05) reductions in subjects' ROM (LYE= 12° 

± 4 and HVE = 23° ± 8) and relaxed arm angle (RANG) (LYE= 4° ± 1 and HYE = 

II 0 ± 2) (mean ± SEM). Significant (p<0·05) differences were observed between 

groups and normal function had returned 168 hours following exercise for ROM and 

RANG. 

The most likely explanation for the findings is that a greater mechano-chemical 

strain is placed on fewer fibres in HVE as compared to LYE, despite similar peak 

torques. The site for where this increased strain occurs is not easily definable, but 

may possibly be the contractile protein titin or desmin or contractile structures such 

as costameres or sarcomeres. 
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CHAPTER ONE 

1 INTRODUCTION 

1.1 Background 

Movement of a limb occurs when there is an imbalance in the torque acting across it. 

The imbalance may result from internal sources such as that developed by muscles 

crossing a joint e.g., the elbow flexors and extensors or externally by loads generated 

by objects and surfaces around the joint e.g., a hand holding a weight. The 

terminology of respective muscle actions that instigate movement is based on the 

length of the muscle tendon unit. If the resulting internal torque overcomes any 

counter or opposing torques then the joint will move with the muscle shortening, 

described as a concentric contraction. Conversely, if the internal torque applied by 

the active muscle is less than the opposing torques then controlled movement still 

occurs, but the muscle will lengthen, identified as an eccentric contraction. When 

internal torque and external torques balance, no change in joint position occurs and 

the muscle essentially maintains a constant length, termed an isometric contraction. 

Eccentric contractions are critical to the movements of all land-based animals and 

generally occur under two circumstances. Firstly, where the active muscle undergoes 

a pre-stretch followed immediately by a concentric contraction. This is commonly 

referred to as the stretch-shortening cycle (e.g., when the quadriceps vastus actively 

lengthens immediately prior to shortening in a counter movement vertical jump). 

Condition two occurs when the activated muscle is lengthened under tension to allow 

controlled movement around the joint. This action is found when lowering weight, be 

it an animal's mass during locomotion or a load used in resistance training. These 

movements, when repeated numerous times or with great force, and when the 

exercise is novel or unaccustomed can lead to impaired muscle function, muscle 
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soreness and tenderness. This phenomenon has been termed exercise-induced muscle 

damage (EIMD) (Clarkson, 1992). Previous investigations into EIMD using human 

muscles have quantified the extent of the muscle injury elicited by eccentric exercise 

protocols using indirect measures of muscle function and delayed onset muscle 

soreness (DOMS) (Nosaka & Newton, 2002b; Nosaka, Sakamoto, Newton, & Sacco, 

200 1). 

The relationship between eccentric torque/force generation and contraction velocity 

has led to the proposal that the velocity of contraction is a determinant of the extent 

of EIMD. McCully and Faulkner (1986) were the first to investigate this idea when 

they investigated injury to skeletal muscle resulting from eccentric contractions in 

situ using three contraction velocities. They demonstrated that force decrease post 

intervention was related to increased stretch velocity in conjunction with the duration 

of the applied stimulation. Warren, Hayes, Lowe, and Armstrong (1993) described 

similar findings, namely that decrements in peak i~ometric force post exercise were 

closely related to the peak forces developed during the eccentric exercise protocol. In 

other investigations into the effect of contraction velocity, Lynch and Faulkner 

(1998) and Brooks and Faulkner (2001), using single stretches of mouse muscle, 

found no significant relationship between contraction velocity and injury. Based on 

the available evidence, the effect of velocity of stretch on contraction-induced force 

deficits seems to favour a higher decline in performance with higher velocities of 

stretch. To date, the effect of velocity of stretch has not been tested on the intact 

human muscle tendon unit. 

1.2 Purpose of the Study 

Therefore, the aim of the present study was to compare the effects of two different 

movement velocities on EIMD resulting from eccentric contractions of the human 

elbow flexors in untrained subjects. A randomised crossover design was used to 

determine whether subjects differed in their responses between a bout of eccentric 

elbow flexor exercise at a velocity of 30°·s·1 in one arm compared to 210°·s·1 in the 

other arm when time under tension was comparable. The dependent variables 

(criterion measures) consisted of muscle strength, joint range of movement, arm 

circumference, plasma creatine kinase, surface electromyography and soreness. 
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1.3 Significance of the Study 

Isolated muscle investigations have not conclusively resolved the effect of 

contraction velocity on the extent of the induced muscle injury. Protocols employed 

to elicit muscle damage in intact humans have used only a single angular velocity. 

When compared to human studies, animal models facilitate control of factors such as 

totality of muscle contraction (voluntary vs stimulated) and fatigue. These models 

allow for easy investigation of muscle architecture post~exercise but may not be 

representative of real life events where maximal Yoluntary contractions (MVC's) are 

performed. Difficulties arise in extrapolating the n!sults of animal muscle studies due 

to the use of stretch lengths and velocities, which fall outside human physiological 

ranges and relative force productions above that which can be achieved voluntarily. 

The exercise protocol employed for this study has been able to mimic to a minor 

degree the stretch shortening cycle and may assist in pro_sramming considerations 

such as when and where to place high angular loading exercises in an exercise 

program. The use of a human elbow flexor model, together with adequate recovery 

periods, allows for the facilitation of voluntary vs stimulated and fatigue while still 

employing a movement reflective of what occurs in 'real life' sit.mtions. If there 

were differences in the extent of ElMO incurred and/or a difference in the time 

course of recovery from low velocity exercise compared to high velocity exercise, 

the outcomes would be valuable in optimising resistance training programs, which 

minimise soft tissue injury. 

1.4 Research Question 

Would there be a difference in criterion measures caused by high velocity eccentric 

muscle contractions compared to those performed at a lower velocity when time 

under tension is kept constant? 

1.5 Definition of Terms and Abbreviations 

ANOVA 

ATP 

CIR 

Analysis of variance 

Adenosine triphosphate 

Arm circumference 
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CK 

Concentric contraction 

Eccentric contraction 

EMG 

EIMD 

FANG 

Isometric contraction 

Isokinetic dynamometer 

MVC 

RANG 

ROM 

Sarcomere 

SR 

Torque 

Z line 

Creatine Kinase- an intra-muscular enzyme 

released into the blood due to cell wall 

breakdown. Units are expressed as international 

units (IU) 

Actions where an activated muscle produces 

torque while shortening 

Actions where an activated muscle produces 

torque while lengthening 

Electromyography 

Exercise-induced muscle damage 

Flexed arm angle 

Torque production of a muscle associate~ with 

no overall change in its gross length 

A device used to measure the torque output of 

isokinetic muscle contractions at any number of 

velocities 

Maximal voluntary contraction, subject 

attempts to maximally activate the muscle 

Relaxed arm angle 

Range of motion of a joint 

Smallest functional unit of a muscle fibre 

Sarcoplasmic reticulum- An arrangement of 

membranous vesicles and tubules, located in 

the cytoplasm of striated muscle 

A measure of :mgular force. Units are 

expressed in Newton meters (N·m) 

Defining line of a Sarcomere and the 

attachment point for the thin filaments 
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CHAPTER TWO 

2 LITERATURE REVIEW 

2.1 Introduction 

Muscles are able to generate force in three different manners: static, shortening and 

lengthening of the muscle tendon unit. Static force productio11 is termed an isometric 

contraction, where the muscle acts against an immoveable resistance causing 

negligible change in length of the muscle-tendon unit. Shortening of the muscle 

tendon unit, which can be isotonic (fixed load, changing angular velocity) or 

isokinetic (fixed angular velocity changing load), i~ known as a concentric 

contraction. Finally, muscles may provide an active resistance against an opposing 

load during a stretching of the muscle tendon unit to a lengthened position. This type 

of action, known as an eccentric contraction may also be isotonic or isokinetic in 

nature (Kannus, 1994). 

2.2 Torque-Velocity Relationship 

The relationship between force generation and the velocity of contraction was first 

described by Fick in 1882 and was refined by Hill in 1938 (Lindstedt, LaStayo, & 

Reich, 2001). The theoretical construct presented by Hill was derived from 

calculations of energy expenditure and proposed that the relationship between force 

and speed is hyperbolic when the muscle tendon unit is shortening. This relationship 

was further explored by Katz (1939) and extended to include the effect of increasii1g 

force above isometric values. These associations have become known as the force

velocity relationship and generally take the form illustrated in figure 1. 
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Force-velocity Relationship 

0 
Muscle Lengthening Muscle Shortening 

Relative Velocity 

Figure 1 A representation of the theoretical force- velocity relationship in 
eccentric (lengthening) and concentric (shortening) contractions depicted to the 
relative maximum velocity of muscle lengthening and shortening (Vmax). Adapted 
from Allen (2001). 

The theoretical relationship described by figure ! has been validated in isolated 

muscle studies, in which fibres are stimulated maximally in vitro (Allaf, Goubel, & 

Marini, 2002; Brooks & Faulkner, 1994). The term force-velocity is applicable to 

muscle contractions occurring with linear velocity, in contrast when muscle 

contraction occurs in a limb, about an axis of rotation, which has an angular velocity 

component it is termed a torque-velocity relationship. Investigations into the torque

velocity relationship in human limbs during different contraction velocities have 

yielded less clear results. In whole limbs the level of torque generated is dependent 

on a number of factors: the type of action performed, the velocity of contraction and 

whether the contraction is voluntary or stimulated (Westing, Seger, & Thorstensson, 

1990). The concentric torque-velocity relationship of human limbs using a range of 

muscle groups, follows the force-velocity relaticnship demonstrated in vitro using 

animal models (Caldwell, Adams, & Whetstone, 1993; Gregor, Edgerton, Perrine, 

Campion, & DeBus, 1979). Debate exists regarding whether the eccentric torque

velocity relationship in human limbs during high velocity maximal voluntary 

contractions, corresponds to the force-velocity relationship of in-vitro isolated fibres 
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(i.e. significant increases), plateaus, or decreases (Griffin, 1987; Gulch, 1994; da 

Ruiter & de Haan, 2001 ). Imposing an electrical stimulation upon a muscle group 

already performing a supposedly maximal voluntary eccentric contraction 

demonstrates that eccentric torque output can sometimes be increased further and can 

be more representative of the theoretical torque-velocity relationship (Westing et al., 

1990). Dudley, Harris, Duvoisin et al. (1990) and Westing et al. (1990), suggested 

that peak eccentric torque was effected by the ability of the central nervous system to 

fully activate the muscle and that this inhibition was acting as some form of 

protective mechanism against extreme muscle tension. Webber and Kriellaars (1997) 

predicted the maximum eccentric torque following a graded test in which a 

percentage of the maximal voluntary contraction was reached prior to a stretch being 

applied. Extrapolating this data it was predicted that the peak maximal eccentric 

torque for the knee extensors was 151% of maximal voluntary isometric torque, 

which is consistent with the in-vitro force-velocity relationship. These authors 

postulated that the predicted increase in eccentric torque production being 

significantly greater than the actual torque values suggests that a neural regulatory 

mechanism restricts the recruitment and/or discharge of motor units during this type 

of contraction. 

Force production in skeletal muscle involves both the mechanical and biochemical 

processes referred to as cross bridge cycling. An active cross bridge is the 

combination of the S2 myosin neck and the S 1 myosin head. An attached cross 

bridge is formed by the interaction of myosin S 1 heads on the thick filament and 

actin molecules of the thin filament (Gordon, Regnier, & Hamsher, 2001). Cross 

bridge cycling was presented as a two stage process by Huxley in 1957 and relies 

upon the concept of :'!:ding filaments (Pollack, 1983). It was proposed that cross 

bridges cycle between two functional conditions: a force producing condition 

strongly attached with actin and a non-force producing condition where cross bridges 

are detached from actin (Sieck & Regnier, 2001). There are two main theories for the 

process of force development, both of which assume that the myosin S I head has a 

degree of elasticity. Figure 2 indicates that the myosin Sl head stretches and attaches 

to the actin site (cross bridge formed). After attachment Sl recoils to a starting 

length, detaches and repeats the steps (causing the filaments to slide past one 

another). The alternative explanation (figure 3) still allows for a level of elasticity in 
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the myosin head but differs in that S 1 does not stretch prior to attachment. Instead, at 

the point of attachment, a change in the angle between the head and filament axis 

(rotation) drives filament sliding and force production (Irving & Piazzesi, 1997). In 

both models the force exerted by the myosin head on the actin site causes the 

filaments to slide past each other, the sarcomere to shorten, and the muscle to 

develop force. 

Figure 2 Force generation and contraction results from cross bridges cycling 
functional states: 1) strongly bound and 2) unbound. fapp, rate constant for cross 
bridge attachment; gapp, rate constant for cross bridge detachment. Adapted from 
Sieck and Regnier (2001). · 

Figure 3 Sarcomere showing the overlap of thin and thick filaments . A subtle 
rotation of the thick filament in the opposite direction as the helix rotation of the thin 
filament causes the filaments to slide past one another. Reproduced from Gordon, 
Regnier and Hamsher (200 1) 
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The interaction of the myofilaments to produce force is regulated by calcium (Ca2+) 

concentration and the availability of ATP hydrolysis at the site of binding between 

actin and myosin (Irving & Piazzesi, 1997). It is likely that force production via Ca2+ 

release from the sarcoplasmic reticulum (SR) to the sarcoplasm is the dominant 

regulator and controls steady-state force generation in shortening of the muscle 

tendon unit (Gordon et a!., 2001). ci+ release from the SR is triggered by an action 

potential passing down through the T tubule structure. After myosin binding and 

either Sl recoil or actin rotation, an ATP molecule is attached to the myosin head at 

the active site after which detachment from actin occurs. For the muscle fibre to 

relax, the ATP dependent calcium pump removes Ca2+ from the intracellular space 

and returns it to the SR. 

The processes outlined above describe the sequence of force production in concentric 

and isometric contractions, however eccentric contractions may involve different 

methods to generate tension. The exact mechanism(s) responsible for the greater 

tension developed during eccentric contraction as compared to isometric, is/are yet to 

be defined_ However, it is generally accepted that cross bridge detachment during 

stretching occurs through a mechanical process as indicated by the fact that a fall in 

metabolic heat production occurs, which is a measure of the ATP turnover. The 

ir1creased tension developed during muscle stretch can be explained using the Huxley 

model, where by during the stretch the compliant portions of the cross bridges are 

stretched further than is normally the case in isometric contractions. The sliding 

filament model predicts the tendency towards a plateau of force at higher velocities, 

whereby with the increase in stretch velocity fewer cross bridges will be attached but 

of those that continue to be attached they will sustain greater force. Herzog and 

Leonard (2002) postulated that the force enhancement observed in actively stretched 

muscle could be due to a passive structural element. A hypothesised site for such a 

series elastic element is the large protein titin (Lindstedt et al., 2001). The role which 

may be to assist in resisting the external load by maintaining sarcomere alignment, 

and may have an influence on the initiation of cellular signalling to enhance cross 

bridge recruitment while decreasing ATP metabolic cost (Lindstedt eta!., 2001). 
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2.3 Effect of Contraction Velocity on EIMD 

Investigati'Jns of the role of contraction velocity on EIMD have employed isolated 

muscle models. Several studies have examined the effect of velocity of stretch on the 

loss of muscle function and have used single stretches of muscle fibres, repeated 

stretches of whole muscle. The conclusions drawn by researchers on the importance 

of contraction velocity on skeletal muscle injury have varied. McCully and Faulkner 

(1986) studied injury to skeletal muscle resulting from a maximal stimulation 

followed by an eccentric contraction at one of three velocities (0·2, 0·5 and 1·0 

lengths of fibre per second [Lf·s-1
]) in situ. Significant decreases in isometric force 3 

days post exercise were associated with increases in stretch veiocity, which the 

authors explained by the increased peak forces at higher velocities. Warren, Hayes, 

Lowe and Armstrong (1993) observed similar responses using slightly higher stretch 

velocities (0·5, 1·0 and 1·5 Lf-s-1
) in rat soleus muscle in vitro, (i.e. that decrements 

in peak isometric force post exercise were closely related to the peak forces 

developed during the eccentric exercise protocol). However, the researchers noted 

that greater initial declines in measures of muscle function were observed at higher 

velocities of lengthening independent of peak force produced. 

Using two stretch velocities {3·0 and 4·0 Lf.s-1
) Talbot and Morgan (1998) found a 

weak correlation between velocity and changes in muscle function in toad sartorius 

muscle studied in vitro. Stronger correlations were found between the initial length, 

the number of contractions and the amplitude of stretch with the measured changes in 

muscle function as a result of this research. There have been two later studies 

employing single stretches of extensor digitorum longus muscles but using different 

muscle preparations. The first used permeabilized fibre segments and five stretch 

velocities (0·5, 1·0, 2·0, 3·0 and 4·0 Lf·s1
) (Lynch & Faulkner, 1998), and the second 

investigated five stretch velocities (1·0, 2·0, 4·0, 8·0 and 16·0 Lf.s-1
) in situ (Brooks 

& Faulkner, 2001). Lynch and Faulkner (1998) demonstrated no relationship 

between velocity and the severity of the injury to the fibres, however Brooks and 

Faulkner (2001) showed single stretches of whole skeletal muscle had a weak 

velocity effect. 
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Performance of rat plantar flexors in situ was investigated with a slow and fast 

repeated stretch (50°·s·' and 600°·s·' respectively) imposed on a maximally active 

muscle (Willems & Stauber, 2000). Torque decrements were similar post 

intervention for both investigated velocities with the authors concluding that 

contraction velocity was not a critical factor in performance decrement in stimulated 

muscle in situ. In later work, a comparable result was reported following an 

investigation using rat plantar flexors in situ where torque decrements resulted from 

constant or increasing velocity stretches during 20Hz or 80Hz electrical stimulation 

of the motor nerve (Willems & Stauber, 2002). Investigators have yet to determine 

whether the results generated during contraction velocity work in animal muscle 

research can be replicated in human muscle. 

2.4 Muscle Fibre type, Recruitment and Activation 

Morphological studies have revealed that maximal eccentric contractions cause 

preferential damage to type II fibres. This has been quantified by measuring 

disruption to myofibre structure (Lieber & Friden, 2002; Vijayan, Thompson, 

Norenberg, Fitts, & Riley, 2001), differences in fibre isometric force (Lieber, 

Woodburn, & Friden, 1991; Macpherson, Schork, & Faulkner, 1996) and isokinetic 

torque loss (Friden, Sjostrom, & Ekblom, 1983). The mechanism underlying 

preferential damage to specific fibre types remains to be elucidated. Lieber, 

Woodburn and Friden (1991) hypothesised that preferential fibre damage was related 

to fatigue and that type II fibres would be the first to succumb. The oxidative 

capacity of muscle fibres (metabolic cost of muscle contraction) which is reflective 

of the rate of cross bridge cycling was identified as central to this hypothesis. If a 

fibre was to suffer from fatigue the first to do so would be the type II fibres resulting 

in the fibre being unable to regenerate ATP, leading to a state of rigour or high 

resting tension. Any subsequent stretch of these stiff fibres would result in a higher 

mechanical stress being placed on them with the probable resultant disruption to the 

cytoskeleton and myofibrillar structures. Later work by Patel, Cuizon et at. ( 1998) 

demonstrated that the oxidative capacity of the fibre was not a significant factor in 

fibre injury when rabbit dorsiflexors were trained through isometric stimulation for a 

three week period. A shift in the optimum length for active tension has been used as 

an indicator of damage resulting from eccentric exercise (Wood, Morgan, & Proske, 
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1993). Brockett, Morgan, Gregory and Proske (2002) further researched this finding 

by investigating slow and fast motor units. It was found that various motor units had 

different optimum lengths for maximum tension. This research suggested that a 

motor unit's optimum length 1elative to the whole muscle might be a better indicator 

of a unit's vulnerability to EIMD. 

The pattern of recruitment in torque production across a joint can be evaluated both 

macroscopically and microscopically. Macro studies focus en the order and amount 

that whole muscles are recruited during the production of force. Microscopically, this 

orCer of recruitment is dependent upon the fibre type and size of the motor unit 

involved. The size principle is the most commonly accepted theory on the order of 

motor unit and fibre recruitment (Cope & Pinter, 1995). It has been proposed the 

normal order of recruitment in eccentric contractions is reversed (Enoka, 1996), 

however many researchers remain opposed to such a suggestion. This hypothesis 

arose out of a demonstrated increase in torque generation but reduction in muscle 

activation, measured using surface electromyography (EMG), in eccentric 

contractions when compared to concentric contractions at the same velocity. Further 

evidence of altered recruitment has been collected following electrical stimulation 

during a maximal voluntary eccentric contraction in which increased torque output 

was recorded (Seger & Thorstensson, 2000). Alterations to the recruitment order of 

motor units during sub-ma;;.imal eccentric exercise has been demonstrated together 

with a greater resistance to fatigue during repeated eccentric contractions (Enoka, 

1996). 

Kasprisin and Grabiner (2000) reported that activation of the biceps brachii was joint 

angle dependent only during concentric isokinetic and isometric contractions, in 

contrast the brachioradialis is affected by elbow joint angle during eccentric 

contractions as measured by surface EMG signal intensity. The range of motion 

investigated during this study was constrictive, being only through a range of 5° to 

90° of elbow flex.ion. Kulig, Power, Shellack and Tcrk (2001) examined the 

eccentric movement pattern of the elbow flexors during submaximal exercise. In this 

study an eccentric action of two seconds duration was compared to one of ten 

seconds and it was revealed that the biceps brachii was preferentially recruited in the 

fast action while the brachialis was recruited at the slower action velocity. 

12 



2.5 Mechanisms of Exercise· Induced Muscle Damage (EIMD) 

EIMD is related to the physiology of force production and muscular contraction. 

Cross bridge cycling thett leads to the shortening of sarcomeres (concentric action) 

occurs when external forces are smaller than the internal force produced. If the 

external force is greater than the internal force, then cyclic attachment still occurs but 

the external force causes the two sets of filaments to be pulled past each other with 

forced detachment of the mym:in head (ecc~ntric action) (Herzog, 2000; Morgan & 

Allen, 1999). Biochemical steps accompany each of these processes of force 

production and contraction (Gordon, Hamsher, & Regnier, 2000; Herzog, 2000). As 

such any of these biochemical or mechanical steps are sources for the development 

of EIMD. Dop Blir, Reijneveld, Wokke, Jacobs and Bootsma (1997) identified two 

hypotheses which attempt to explain the development of EIMD. The first is a 

metabolic overload hypothesis, where demand for ATP exceeds its production 

leading to a cycle of Ca2+ overloading and thus a further reduction in ATP 

production. The second hypothesis is based on the mechanical cost of eccentric 

exercise, where the mechanical strain per fibre is increased due to there being few~::r 

fibres producing the same relative level of tension. This hypothesis is supported by 

extensive morphological damage and large effluxes in extracellular enzymes, 

combined with pain, stiffness and weakness (Ebbeling & Clarkson, 1989). 

EIMD has been proposed to progress through four stages of injury known as the 

'Initial', 'Autogenetic', 'Phagocytic' and 'Regenerative' Phases (Armstrong, 1990). 

The initial stage, which includes the instigating event, is considered the trigger and 

may be mechanical or metabolic in origin. The autogenetic phase follows, 

commencing upon completion of the trigger event, and lasts for approximately four 

to six hours. This is the phase that leads to or exacerbates muscle necrosis via 

activation of several mechanisms (Dop B~r et al., 1997). The phagocytic stage is 

apparent from 4- 6 hours after the event through to 2- 4 days following the exercise 

and is marked by swelling of the limb and removal of necrotic tissue by activated 

immune cells, specifically macrophages. A regenerative phase begins approximately 

4-6 days post exercise and spans about 10-14 days whP-n the injured muscles once 

again appear normal (Armstrong, 1990). Pyne (1994) also used this model but 

described only three stages, eliminating the initial stage and renaming the phagocytic 
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stage the 'inflammatory phase'. While it is convenient to model muscle damage on a 

specific timed stage process, it appears that each phase overlaps, and the exact 

mechanisms responsible and the processes involved are not fully understood 

(Kendall & Eston, 2002). 

Dop Bar et al. (1997) highlighted the importance of Ca2
+ overload caused by the 

initial event. The increased intracellular calcium concentration becomes apparent in 

the autogenetic phase and plays a major role in EIMD. This microscopic event that 

occurs in damaged muscle has been termed 'loss of intracellular calcium 

homeostasis' (McArdle & Jackson, 1997). Four mechanisms by whiclt Ca2+ damages 

muscle have been proposed. These are 1) stimulation of calcium-activated proteases, 

2) activation of lysosomal processes, 3) mitochondrial overload and 4) activation of 

lipolytic enzymes (Kendall & Eston, 2002; McArdle & Jackson, 1997). The loss of 

homeostasis, has been linked to a subsequent Ca2+ reduction a phenomenon termed 

'excitation-contraction' uncoupling (Dop Bar et al., 1997). In a recent review, 

Morgan and Allen (1999) suggested that eccentric exercise may play a dual role in 

excitation-contraction coupling, affecting both Ca2+ release and uptake. The 

disruption of excitation-contraction coupling is linked to a reduction in the force 

generating capabilities of skeletal muscle (Warren, Ingalls, Lowe, & Armstrong, 

2001). 

Proske and Morgan (2001) proposed a model that described the cascade of events 

following eccentric exercise. The sequence follows the eccentric intervention and is 

characterised by as overstretched and disrupted sarcomeres, membrane damage, local 

contracture and finally death (necrosis) of the affected fibres. The decrease in muscle 

tension results from membrane damage, a.nd is proposed to represent excitation

contraction uncoupling dysfunction (Proske & Morgan, 2001; Warren et al., 2001). 

The model proposes that sarcomere stretching occurs before excitation-contraction 

uncoupling (Proske & Morgan, 2001). The process by which a sarcomere is damaged 

is still the subject of speculation. It may involve disruption to the titin filament, 

anchor point of the myosin filaments to the Z discs, or interference to the structural 

protein desmin which is the link between adjacent Z discs (Allen, 2001; Proske & 

Morgan, 2001). It is generally accepted that stretching of the sarcomere leads to 

streaming of the Z-line (Frid6Jt Oc Lieber, 1992) and the resulting non-uniformity is 
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termed sarcomere "popping" (Morgan, 1990). Allen (2001) postulated that the 

streaming of the "Z" lines is represented by a change in the force-length relationship 

with a shift to the right when the imposed stretch is on the descending side of the 

force-length curve. Other authors have postulated that Z-line disruption is associated 

with a reduction in force production capability (Byrd, 1992; Frid6n & Lieber, 2001; 

Morgan & Allen, 1999). 

2.6 Responses to Exercise-Induced Muscle Damage 

2.6.1 Strength Measures 

Previous investigators have suggested that the best non-invasive measure of the 

extent of the induced muscle injury appears to be the deficit in maximum isometric 

force (McCully & Faulkner, 1986). Maximal voluntary force deficit has been shown 

to occur immediately following eccentric exercise, and last for up to 10 days or 

longer in severe cases (Bryne, Eston, & Edwards, 2001; Nosaka, Newton, & Sacco, 

2002c; Sayers & Clarkson, 2001). The loss of maximal voluntary force generating 

capacity has been attributed to: 1) excitation-contraction uncoupling, probably due to 

a functional change of the voltage sensor of the t-tubules (Warren et al., 2001), and 

2) alterations to the torque producing and/or transmitting structures (Morgan & 

Allen, 1999). The resulting loss of force producing capacity following eccentric 

exercise has the potential to impact greatly on sporting performance. 

2.6.2 Serum Creatine Kinase (CK) 

Increases in plasma or serum creatine kinase (CK), an enzyme found in high 

concentration within muscle fibres, has been associated with EIMD, however large 

individual variations in the level of CK response from similarly exercised individuals 

have been recorded (Kuipers, 1994; Nosaka & Clarkson, 1996; Sayers, Clarkson, & 

Lee, 2000b). Plasma CK levels peak approximately 3 -5 days following eccentric 

exercise (Clarkson, 1997) and are believed to be due to a disruption of the muscle 

membrane wall that allows the protein to be released (Lee et al., 2002). CK activity 

in the plasma is reflective of its release from the injured muscle and its removal by 

the reticuloendothelial system (Clarkson, Nosaka, & Braun, 1992). Plasma CK efflux 

is the most commonly measured intracellular enzyme used to indicate loss of cellular 
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homeostasis, however, investigators have also examined the release of L-aspartate 

aminotransferase, lactate dehydrogenase, CK isoforms, myoglobin, heart fatty acid 

binding protein, carbonic anhydrase isoenzyme Ill, contractile and regulatory 

proteins and troponins (Janssen et al., 1989; Sorichter, Puschendorf, & Mair, 1999). 

2.6.3 Soreness (SOR) and Tenderness 

The most commonly used marker of injury to skeletal muscle is muscular soreness 

(Warren, Lowe, & Armstrong, 1999). Some investigators (Rodenburg, Bar, & De 

Boer, 1993; Stauber, Clarkson, Fritz, & Evans, 1990) have suggested that SOR of an 

eccentrically exercised muscle is related to the inflammatory response, however 

others have shown the time course of both to be temporally unrelated (Sayers, 

Clarkson, & Lee, 2000a). Muscle sensory receptors are polymodal, responding to 

both mechanical (e.g., swelling) and chemical (e.g., histamines and prostaglandin) 

stimuli. Histamine is released by mast cell degradation occurring with damage, and 

neutrophil influx can also result in prostaglandin production (Smith, 1991). The most 

frequent method for evaluation of SOR is a visual or numerical scale following 

palpation of the affected muscle (Chen & Hsieh, 2000). In a recent review Warren et 

at. (1999) reported that SOR has been shown to have a poor correlation to changes in 

muscle function both in terms of size and the time course of recovery. The 

discomfort experienced by the subject begins shortly after completion of the exercise 

and would usually peak 24 or 48 hours post-exercise and recedes by 168 hours post

exercise (Chen & Hsieh, 2001; Clarkson et at., 1992). 

2.6.4 Range of Motion (ROM) 

Joint ROM. defined as the size of arc that a joint is able to function through, has been 

shown to be affected by eccentric exercise (Warren et al., 1999). Reductions are 

commonly measured in the relaxed and flexed limb angle of subjects who have 

exercised eccentrically. This is regardless of whether the protocol involved voluntary 

maximal or sub-maximal contractions (endurance exercise) (Nosaka, Newton, & 

Sacco, 2002b). Changes in relaxed limb angle may be explained by swelling of the 

muscle, changes in characteristics of contracting filaments, and/or autonomous 

contracture (Whitehead, Morgan, Gregory, & Proske, 2003). An inability to flex the 

limb may be due to a change in proprioception and/or over stretched sarcorneres 
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(Clarkson, 1997). The time course for changes in relaxed and flexed arm angle 

following eccentric exercise, generally shows a nadir 2 to 4 days post-exercise but 

may be more protracted before returning to baseline levels (Chen & Hsieh, 2000; 

Nosaka & Newton, 2002a). 

2.6.5 Inflammation 

The mechanical disruption to muscle structure is believed to lead to the initiation of 

the inflammatory response. The primary role of the inflammatory cells is to remove 

muscle cellular debris and promote repair (Pyne, 1994). The inflammatory reaction is 

described as a series of six events: 1) tissue injury 2) release of vasoactive substances 

by the injured tissue, 3) vasodilation, 4) leucocyte adhesion, 5) leucocyte migration 

from the blood to the injury and 6) tissue repair (Maim, 2001). The inflammatory 

response following a bout of eccentric exercise has been quantified through the use 

of circumference measures of the exercised limb (Chen & Hsieh, 2001; Nosaka eta!., 

2002b) and by the measurement of intra-muscular pressure (Foley, Jayaraman, Prior, 

Pivarnik, & Meyer, 1999). The swelling of the muscle following exercise was 

suggested as an explanation for muscle soreness as oedema would be associated with 

an influx of extracellular proteins, causing stimulation of pain receptor (Pyne, 1994). 

Early work in ElMO found a correlation between the time courses of resukant 

inflammation and the soreness and pain experienced after eccentric exercise 

(Ebbeling & Clarkson, 1989). Inflammation has been linked to a response that 

muscle uses to adapt to subsequent bouts of eccentric exercise. Pizza and co-workers 

(2002) found that inflammatory cells resulting from either eccentric and isometric 

contractions or passive stretches. performed two weeks prior to a bout of eccentric 

exercise afforded some protection to the extent ofEIMD. 

2.6.6 Muscle Activation 

The activation strategies used to generate torque by muscle during maximal 

voluntary concentric and eccentric contractions are believed to follow two distinct 

patterns. Under normal controlled movement there is an ordered recruitm~nt of slow 

to fast motor units (Thayer, Rice. Pettigr~w. Noble, & Taylor, 1993), although in 

high velocity or eccentric contractions the order may be reversed (Enoka, 1996). 

Changes in the root mean .<;quare EMG signal is a measure of the raw amplitude and 
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reflects total muscle activation. whereas alterations in the median frequency are 

related to changes in the type of motor unit recruited (Warren, Hermann, Ingalls, 

Masselli, & Armstrong, 2000). Alterations in the pattern of voluntary EMG signal 

during EIMD has shown that the median frequency is reduced for up to 7 days 

(Linnamo, Bottas, & Komi, 2000). The frequency content of the EMG signals 

collected from surface electrodes has been used as an indirect measure of motor unit 

recruitment and a higher median frequency during eccentric contractions may be 

explained by selective recruitment of fast twitch motor units (McHugh, Connolly, 

Eston, & Gleim, 2000). EMG signal amplitude has been used to quantify full 

activation or changes in activation of a desired muscle during and following 

eccentric contractions. Sbriccoli, Felici et a\. (2001) demonstrated that the EMG 

signal amplitude remained unchanged after an eccentric exercise protocol but torque 

generated declined indicating a reduced neuromuscular 'efficiency'. The 

characteristics of the EMG signal power spectrum have also been shown to be 

affected by the muscle action, velocity of action and muscle length (Komi, Linnamo, 

Silventoinen, & Sillanpaa, 2000). This research illustrates that muscle activity can be 

at the same level or lower in eccentric actions as compared to concentric actions and 

is influenced by joint angle and level of pre-activation. 

2.7 Conclusions 

To date the majority of available literature has primarily investigated the role of 

contraction velocity using stimulated animal muscle. The research, while 

highlighting possible mechanical events leading to EIMD, is not believed to fully 

represent the factors associated with human voluntary contractions resulting in 

EIMD. Factors that may be implicated during voluntary contraction are the peak 

force developed tbe level of muscle activation, and the use of realisti<! limb 

contraction velocities. EIMD has been demonstrated to result from a range of single 

contraction velocities and in various limbs. The knowledge gained from this research 

would contribute to the understanding of muscle responses following voluntary 

contraction. 
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CHAPTER THREE 

3 MATERIALS AND METHODS 

3.1 Pilot Study 

Differences in peak torque have been identified as a contributing factor in the 

severity of skeletal muscle injury. As the primary research focused on lwo isokinetic 

eccentric velocities it was necessary to conduct a pilot study to establish the eccentric 

torque-velocity relationship in a population sample possessing physical 

characteristics similar to those used in the primary research. The pilot study was also 

used to assess the reliability of the strength measures. The maximal voluntary 

eccentric torque-velocity relationship was used to determine whether there was a 

significant difference in torques procluced at selected velocities of eccentric exercise. 

Fourteen subjects (male n=7 and female n=7), age 26·4yrs (± 6.2); height 1·74m (± 

0·07); and weight 69·3kg (± 11·5), volunteered to participate in two testing sessions, 

consisting of maximal eccentric and isometric contractions of the elbow flexors of 

their dominant arm. All subjects were physically active but were not participating in 

resistance training. Subjects were familiarised with the testing protocol and signed an 

informed consent with the understanding that they could withdraw from the study at 

any time without prejudice. Measurement variables included peak torque of each 

contraction, in Newton meters (N·m) and the angle at which the peak torque 

occurred. 

The measurement variables of the elbow flexors were recorded using a Cybex 6000 

dynamometer (Ronkonkoma, NY). Subjects were seated with their dominant arm 

supported at 45° of shoulder flexion on an arm curl bench (figure 4). Selected 

eccentric exercise velocities were 30°, 90°, 150° and 210°·s-1
• Velocities were tested 
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for all subjects in slow to fast order, with the 30°·s"1 velocity repeated upon 

completion of the 210°·s·1 velocity to account for any learning effects as a result of 

the order of tested velocities and fatigue. The range of motion for the testing 

commenced at 60° of elbow flexirm and extended through 140° of elbow flexion, 

with full extension of the arm being 180° _ Two maximal eccentric actions were 

performed at each test velocity with 60 seconds recovery between each trial and 120 

seconds between the start of each test velocity. Each test velocity was preceded by 

two isometric maximal voluntary contractions at 90° of flexion, with 60 seconds rest 

between each contraction. Following the isometric contractions, subjects warmed np 

with 2 sub-maximal eccentric actions to gain familiarity with the test velocity. 

3.2 Principle Study 

Twelve subjects (male n=6 and female n=6) were recruited from volunteers within 

the Sports Science student population at Edith Cowan University and from associates 

of the researcher. Values (mean ± SD) for age, weight, and height were 27·5 ± 

6·3yrs, 67·9 ± ll·Okg and 1·74 ± 0·08m respectively. All subjects were right-hand 

dominant and performed both exercise interventions. Recruitment was accomplished 

through the use of printed leaflets and posters, which were distributed around the 

Joondalup campus of Edith Cowan University. All subjects were required to sign and 

complete a combined informed consent (Appendix A) and medical questionnaire 

(Appendix B). The questionnaire was used to ensure that all subjects were free from 

any disorder or injury that may contraindicate involvement in the study. Subjects 

were informed that they were free to withdraw from the study at any time without 

prejudice. Prior to commencement of data collection ethical approval for the research 

was granted from the Edith Cowan University Ethics Committee (Appendix C). 

3.3 Methodology 

A pseudo random counter balanced design was employed ensuring that both arm 

dominance and velocity intervention were equally balanced across exercise 

intervention (30°-s·• = low velocity exercise and 210°·s·1 =high velocity exercise) 

and order of testing. 
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3.3.1 Criterion Measure Testing 

The criterion strength measures recorded during the study were; isometric torque 

(90° and 150° of elbow flexion); concentric dynamic torque at 30°·s·', 90°·s·1, 

150°·s·' and 210°·s·1 of elbow flexion, and dynamic eccentric torque at 30°-s"1 and 

210°·s·' of elbow flexion. Other criterion measures recorded included relaxed 

(RANG), stretched (SANG) and flexed (FANG) arm angles and ROM of the elbow 

joint, arm circumference, muscle soreness, plasma CK and the average and peak 

EMG signal. With the exception of CK, all of the criterion measures were collected 

on the exercised arm. Strength measures, RANG, SANG and FANG and arm 

circumference were all recorded during at least l familiarisation session, pre 

exercise, immediately post exercise, 30 minutes post exercise and I, 2, 3, 4 and 7 

days following exercise. Serum CK was determined from a blood sample drawn from 

the fingertip measured at least from l familiarisation session, pre exercise and 1, 2, 3, 

4, 7 and 10 days following exercise. Palpated, flexed and extended muscle soreness 

was considered to be nil before exercise following which it was recorded l, 2, 3, 4 

and 7 days following exercise. Peak and average surface EMG signal of each 

contraction was recorded from at least 1 familiarisation session, pre exercise, 

immediately post exercise, 30 minutes post exercise and day 7. Each measure was 

recorded in the following order: serum CK, RANG, SANG and FANG, muscle 

soreness, and strength tests. An example of the time line used for familiarisation, 

baseline, exercise interventions and post-testing sessions are represented in Table 1. 

The individual collection methods employed for each of the criterion measures are 

described in detail in 3.3.1.1- 3.3.1.7 below. 

Table 1 

Time line for the recording of criterion measures and exercise sessions. 

Davl Dav2 Dav3 Day4 DavS Dav6 Dav7 
Week 1 Familiarisation Baseline 

Session measures 
Week2 Exercise session Post Post Post exercise Post 

1 & pre and post exercise exercise test day 3 exercise 
exercise tests test dav I test day 2 test dav4 

Week3 Post exercise Familiarisation Baseline 
test dav 7 Session measures 

Wcek4 Exercise session Post Poot Post exercise Post 
2 & pre and post exercise exercise test day 3 exercise 
excrci se tests test dav I test dav 2 test dav 4 

Wcek5 Post exercise 
test dav 7 
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Figure 4 Example of a subject positioned on the preacher curl bench and 
isok.inetic dynamometer with the arm at an isometric contraction angle of 90° and the 
shoulder at 45°. 

3.3.1.1 Isometric Strength 

Maximal voluntary isometric torque of the elbow flexors was measured at joint 

angles of 90° and 150° on a Cybex 6000 isokinetic dynamometer. The subject was 

positioned with their arm supported at 45° of shoulder flexion on an arm curl bench 

(figure 4). The elbow of the tested arm was aligned with the centre of rotation of the 

lever arm of the dynamometer. Subjects were verbally encouraged to perform two 

maximal contractions, holding each contraction for 4 seconds. The subject was 

allowed 30 seconds of passive rest between each effort at each specific angle and 60 

seconds of rest during the transition between the two joint angles. Torque was 

recorded and displayed in real time using an IBM desktop computer operating 

AMLAB II data acquisition software. The torque analogue signal was accessed from 

the dynamometer and sampled via a 16-bit data acquisition card (Minirack, AMLAB 

II) on a separate channel to the EMG signal. The signal was processed to provide a 

recording of the torque output as per the specific schematic (Appendix D). An 

average peak torque for the two contractions was used during analysis. 
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3.3.1.2 Dynamic Strength 

Maximal voluntary torque production of the elbow flexors at specific concentric and 

eccentric velocities was measured on the Cybex 6000. Angular testing velocities 

were 30, 90, 150 and 210°·s·1 for the concentric protocol, and 30 and 2l0°·s·1 for the 

eccentric. The dynamometer set up was the same as that employed in the isometric 

strength evaluation (figure 4). Subjects performed two maximal voluntary 

contractions at each velocity in both the concentric and eccentric protocols. The 

order of contractions was such that all concentric contractions preceded eccentric and 

test velocities proceeded from slow to fast. A one-minute and a two-minute passive 

recovery was provided between each successive test velocity and contraction mode, 

respectively. The range of motion through which the subject's arm moved 

commenced at 60° of elbow flexion and proceeded through to 160° of elbow flexion 

(where full extension was considered 180°). Torque was acquired and recorded using 

the same set-up as that employed for isometric strength (see 3.3.1.1). Torque and 

angular displacement analogue signals were accessed from the dynamometer and 

sampled via a 16-bit data acquisition card (Minirack, AMLAB II) on two separate 

channels to the EMG signal. The signal from one channel was processed to provide 

velocity and displacement, the second signal was a recording of the torque output 

and a combination of the two signals as used to determine accumulated work as per 

the specific schematic (Appendix D). The peak torque of the two contractions at each 

velocity was averaged and used for analysis. 

3.3.1.3 Range of Motion (ROM) 

ROM measurements at the elbow were obtained using a plastic goniometer (Baseline 

Inc.). All measures were determined with the subject in a standing position with the 

arm initially relaxed by their side. Measurement of the relaxed arm angle (RANG) 

was taken as the angle at the elbow joint when the subject allows their arm to hang in 

a relaxed manner by their side. Stretched arm angle (SANG) was recorded as the 

angle at the elbow joint when the subject attempts to fully extend their arm. Flexed 

arm angle (FANG) was determined when the subject fully flexed their elbow joint in 

an attempt to touch their shoulder with the palm. A subject's ROM was determined 

by deducting FANG from SANG. 
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Landmarks used to measure the elbow joint angles were the lateral epicondyle of the 

humerus, the acromion process and the mid~point of the styloid process of the ulna 

and radius; these sites were marked on the skin with a semi~permanent ink marker to 

obtain consistent measures. The landmarks were renewed each day. 

3.3.1.4 Arm Circumference (CIR) 

Circumference of the upper arm was assessed using a constant tension tape 

(Lafayette Instrument) while the arm was relaxed and hanging by the subject's side. 

Measurements were taken from sites at 3. 5, 7, 9 and Item above the crease line of 

the elbow of the exercised arm. Each site was marked with a semi-permanent ink 

marker to obtain consistent measures and an average of the five sites was recorded as 

the arm circumference and used for analysis. 

3.3.1.5 Soreness (SOR) and Tenderness 

Muscle soreness was reported using a 100 mm visual analogue scale while the arm 

was forcibly flexed and extended by the investigator. The subject was instructed to 

place a mark on a 100 mm line for both the flexion and extension movement, rating 

the soreness experienced. The subject was instructed that 0 mm indicated no pain at 

all while 100 mm was an indication of "unbearable" pain. Soreness resulting from 

palpation of the upper arm and the forearm was considered muscle tenderness and 

reported using the same analogue scale and reporting method. The arm was palpated 

in four positions, utilising some of the same markings as those used for arm 

circumference. Palpation occurred at siles 3 - 5 em and 7 - 9 em above the elbow 

crease, and laterally on both the brachialis and brachioradialis. Nosaka, Newton .:md 

Sacco (2002a) have previously described the soreness and tenderness techniques 

employed. An average the four resulting measures was recorded as the elbow flexor 

tenderness and used in analysis. 

3.3.1.6 Plasma Creatine Kinase (CK) Concentration 

Plasma ,~reatine kinase activity was determined from a 30J.tl sample of whole blood 

col.lect~d from a fingertip puncture made using a spring-loaded lancet. The sample 

was collected into a capillary tube and immediately pipetted onto a test strip for 

analysis. Creatine Kinase activity was determined using a Reflotron 

spectrophotometer (Boehringer-Mannheim) as previously described by McHugh et 

al. (1999). 
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3.3.1.7 Electromyography (EMG) 

The electromyographic activity of the biceps brachii (BB) of the exercising arm was 

measured using surface electrodes. Electrode placements were made as per the 

recommendations reported by Hermens, Freriks, Disselhorst~Klug and Rau (2000). 

Skin at the placement site was lightly abraded, cleaned with an alcohol wipe and 

dried. A pair of disposable sliver/sliver chloride pre-gelled surface electrodes (1·5 em 

diameter) were applied, with a centre-to-centre distance of 2·5 em, longitudinally 

with the muscle fibres approximately halfway from the motor point area to the distal 

part of the muscle. An earth electrode was placed on the medial epicondyle of the 

exercising arm. An example of electrode placement is shown in figure 5. Once the 

electrodes were in place and the subject was positioned on the isokinetic 

dynamometer, electrode leads were attached and connected to the preamplifier in an 

IBM desktop computer operating AMLAB II diagnostic software. The analogue 

signal was sampled via a 16wbit data acquisition card (Minirack, AMLAB II) at 2500 

samples pet second. Processing of the signal was firstly through a bandpass filter 

incorporating a second order quasi-Butterworth high/low pass filter at 1·817 to 

95·797 Hz. Full wave rectification was applied to the signal followed by a second 

low-pass filter at 5·083 Hz outputting a linear envelope. The raw analogue and linear 

envelope signal was stored using the AMLAB data collection software system 

(Appendix D). The signal was recorded during the performance of the exercise 

intervention and testing of isometric and dynamic strength from the familiarisatim1 

session, immediately post, 30 minutes post-exercise and day 7. The processing and 

analysis of the signal after acquisition was accomplished by selection of the data via 

lever arm displacement positioning and the tension time of each contraction followed 

by exporting the data in ASCII format. Exported data files were processed in 

Microsoft Excel. Full wave rectified data was processed and a signal average was 

calculated for each contraction condition and velocity. 
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Figure 5 Surface electrode placement sites and circumference measurement 
sites, with the elbow flexed at 90°. Electrodes positioned on the midline of the biceps 
brachii and 7cm form the elbow crease with an earth on the medial epicondyle. 

3.3.2 Exercise Protocol 

The range of motion for the exercise intervention was from 60° of elbow flexion 

through 180° (full extension). Each subject performed two bouts of eccentric 

exercise of the elbow flexor muscles (one bout per arm). The two isokinetic exercise 

protocols, low velocity exercise (LVE = 30°·s-1
) or high velocity exercise (HVE = 

210°·s-1
) were designed such that the elbow flexors would spend a total of 120 

seconds under eccentric tension (see Table 2). The work:rest ratio for each exercise 

intervention was controlled and set at 1 :7, thus the corresponding velocities for L VE 

were 30°·S-l: 10°·S-l and for HVE 21 0°·S-1: 70°·S-l (see Table 2). The 'rest velocity' is 

the corresponding velocity that the lever arm, and therefore the subject' s arm, is 

returned the starting position. This return phase was a passive movement where the 

subject was instructed to relax and allow the machine to return their arm to the 

starting position. A 90-second passive rest period separated each set of 6 repetitions. 

Subjects were encouraged throughout the lengthening movement of the elbow 

flexors (a repetition) to apply maximal resistance against the lever arm of the 

isokinetic dynamometer. The maximal voluntary torque, the work absorbed by the 

muscle, and surface EMG signal during each repetition was recorded using the same 
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set up as that employed for isometric strength (see 3.3.1.1) and electromyography 

(see 3.3.1.7) with the exception that a different schematic was designed (Appendix 

D). Each subject was provided with visual and verbal feedback of his or her torque 

output during each repetition and was encouraged to provide a maximal effort. 

Table 2 

Exercise protocol parameters 

Total time of eccentric exercise (sees) 

Time of each contraction (sees) 

Time of passive component (sees) 

Total number of repetitions 

Total number of sets 

Number of repetitions per set 

3.4 Data Analysis 

Exercise Protocol 

30°·s'1 210°·S-l 

120 120 

4 0·57 

12 1·71 

30 210 

5 6 

6 6 

Values in the result section are presented as mean ± standard error of mean unless 

otherwise stated. All relevant raw data pertaining to the described results can be 

found in Appendices E (pilot study) and F (principle investigation). 

3.4.1 Data Analysis of Pilot Study Results 

Results of the pilot study were analysed using a two-way repeated measure ANOV A 

for the average peak torque achieved under each dynamic test condition. Isometric 

average peak torque results were analysed using an independent t-test. Method error 

and coefficient of variation were calculated for torque generated isometrically and 

dynamically at velocities of 30°·s·1
, 90°·s·1

, 150°·s·1 and 210°·s·1 and used to 

determine reliability. 

3.4.2 Data and Statistical Analysis of Principle Research 

Statistical analysis was performed separately on each of the criterion measures, using 

a !(velocity) x ?(time) one-way Repeated Measures ANOV A. Statistical significance 
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was set at p<0·05 for these analyses. Any significant main effects were assess~::d 

through the application of paired t-tests with associated Bonferroni correction. 

Planned comparison paired Hests were conducted at relevant time points where a 

significant difference was considered to exist to identify interactions between 

interventions with an associated Bonferroni correction. 

For clarity the measures recorded during the exercise interventions were analysed 

using a one-way Repeated Measures ANOV A to test for differences to baseline at 

exercise time points of 24, 48, 72, 96 and 120 seconds. Planned comparison paired t

tests were conducted at 24, 48, 72, 96 and 120 seconds of muscle tension to identify 

significant differences between interventions. Statistical significance was set at 

p<0·05 for these analyses. 

3.5 Limitations 

3.5.1 Subject Delimitations 

The investigator imposed the subject delimitations of excluding subjects who had 

been involved in resistance training in the six months prior to undertaking the 

research. Subjects were a1so excluded if they fell outside of the range of 18 - 45 yrs 

in order to comply with the upper age range set by the ACSM or asymptomatic 

males. 

3.5.2 Subject Limitations 

Due to subjects being sought through word of mouth and poster advertising it was 

difficult to be certain whether this subgroup is representative of the normal untrained 

population. The rating of soreness method is a subjective measure, which is 

dependent upon the subject's pain threshold, other psychological factors, and honesty 

at the time of testing. A subject's ability to maintain a maximal effort for the duration 

of the exercise intervention and for the term of each eccentric contraction of the 

elbow flexors is also subjective. 
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CHAPTER FOUR 

4 RESULTS 

4.1 Pilot Study 

The coefficients of variation for isometric and dynamic eccentric contractions at 

velocities of30°, 90°, 150° and 210°·s·1 between trial one and t'.VO were 2·8%, 8·9%, 

7·0%, 8-6% and 9·5% respectively. Two~way ANOVA with repeated measures, 

indicated that the main effect of the trial condition (test 1 and test 2) was not 

significantly different (p<0-05) (figure 6). The second main effect of velocity was 

shown to be significant (p<0·05). The one-way ANOV A revealed that there was a 

significant difference between isometric contractions (velocity oo-s-1
) and aH 

contraction velocities (figure 6) but showed no significant differences between any of 

the velocities. A significant (p<0-05) difference was found between the initial tr;st at 

30°·s-1 and the repeat. On average, torque increased 16·4% (± 2·7)(SEM) above 

isometric at 30°·s·1 compared to 14·4% (± 2·3) above isometric at 210°·s·'. Mean 

maximal voluntary isometric torque generated at 90° of elbow flexion in an i~CJmetric 

contraction from the five trials that preceded each test velocity (figure 7) was not 

significantly different between contractions or test sessions hut did decline 

approximately 8% between test I and 2. 

On examination of the data the joint angle at which peak torque was reached for the 

four-isokinetic test velocities was similar for all velocities and both trials. The mean 

joint angle ranged between 76·4°- 72·6° (±4·1- 2·5) for trial1 and between 76·1°-

15·1° (± 2·5 - 2· 0) for trial2. 
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Figure 6 Eccentric torque-velocity relationship (mean± SEM) of test 1 and test 
2 (n = 14). Average torque of two contractions at each contraction velocity. 
# represents a significant (p<0-05) difference to isometric. 
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Figure 7 Isometric peak torque at 90° elbow flexion (mean ± SEM) from two 
contractions prior to each eccentric action velocity. 
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4.2 Exercise Intervention 

4.2.1 Peak Torque 

Peak maximal voluntary eccentric torque values were similar for LVE and HVE for 

the first 4 seconds of muscle tension, ranging from 21·3- 804 Nm (43·0 ± 6·2 Nm, 

mean ± SEM), and 25·9 to 79·6 Nm (45·7 ± 4·8 Nm) respectively. Figure 8 is a 

representation of the mean peak torque values produced during 120 seconds of 

muscle tension for the two contraction velocities, normalised to the first contraction. 

LVE mean peak torque declined significantly (p<O·OS) after 24 and 120 seconds of 

time under tension and significantly (p<C·Ol) after 48, 72 and 96 seconds. In 

contrast, HVE mean peak torque declined significantly (p<O·Ol) at all compared time 

points. Differences between exercise velocities were significantly different (p<O·Ol) 

at all compared time points. 

There were distinct differences in the pattern of torque loss between L VE and HVE 

(figure 8). Torque production during LVE recovered after each successive 24 

seconds of muscle tension, although recovery was incomplete each time with the 

exception of the initial 24 seconds of tension. In comparison HVE declined sharply 

after 52 seconds of muscle tension to 58% (± 2·8%) of the initial value. For the 

remaining 68 seconds of muscle tension the peak voluntary torque declined only 4% 

further. 

4.2.2 Work Absorbed 

The mean values for total work absorbed between LYE and HVE were markedly 

different for the first 4 seconds of muscle tension, ranging from 28 -118 J (58·6 ± 

10·2 J, mean± SEM) for LYE, and 201 - 765 J (373·2 ± 644 J) for HVE (figure 9). 

Figure 10 is a representation of the mean work absorbed during 120 seconds of 

muscle tension from LYE and HVE normalised to the first 4 seconds of muscle 

tension. L VE mean normalised work absorbed declined significantly (p<0·05) after 

24 seconds of muscle tension and significantly (p<O·Ol) following 48, 72, 96 and 120 

seconds of muscle tension. HVE mean normalised work absorbed declined 
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significantly (p<O·OS) after 24 seconds and significantly (p<O·Ol) following 48- 120 

seconds of muscle tension. Differences between exercise velocities were significant 

(p<0·05) at 48,72 and 96 seconds and significant (p<O·Ol) at 120 seconds. 

4.2.3 Average EMG Signal 

Mean full wave rectified EMG signal for the 120 seconds of muscle tension from the 

biceps brachii was similar between exercise conditions (figure 11), but HVE was 

consistently higher. The signal average for LVE after 4 seconds of r.1Uscle tension 

was 0·75 mY(± 0·10) and HYE 0·96 mY(± 0·12) (mean± SEM). In comparison the 

signal average did not change greatly after 120 seconds of muscle tension where for 

LYE the signal was 0·88 mY(± 0·09) and HYE was 1·19 mY (± 0·10). 
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Figure 8 Peak torque generated during LVE (n = 12) and HVE (n = 12), shown 
as a percentage of the first four seconds of muscle tension (mean± SEM). 
##represents a significant (p<O·Ol) difference to baseline.** represents a significant 
(p<0·01) difference between conditions, 
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Figure 9 Work absorbed during the first and last eccentric contraction during 
LVE (n = 12) and HVE (n = 12) (mean± SEM). Work absorbed during the first and 
last 4 seconds of muscle tension for exercise interventions LVE (n = 12) and HVE (n 
= 12) (mean± SEM). 
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Figure 10 Work absorbed by the exercised limb during LVE (n = 12) and HVE 
(n = 12), shown as a percentage of the first four seconds of muscle tension (mean± 
SEM). 
# represents a significant (p<O·OS) difference to baseline, ## represents a significant 
(p<O·O 1) difference to baseline. * represents a significant (p<O·OS) difference 
between conditions,** represents a significant (p<O·Ol) difference between 
conditions. 
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Figure 11 Average rectified EMG signal generated during LVE (n=12) and HVE 
(n=lZ), shown in absolute values for 120 seconds of muscle tension (mean± SEM). 
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4.3 Isometric Strength 

Peak maximal volur.lary isometric torques at 90° of elbow flexion were similar for 

both groups prior to LYE or HVE, ranging from 25·2 - 82-2Nm (47·4 ± 5·32Nm, 

mean± SEM) (LYE), and 26·9 to 79·0Nm (45·8 ± l·lNm) (HVE). Similarly, there 

was no significant difference between arms at 150° flexion (LVE = 32·7 ± 44Nm, 

HVE = 29·7 ± 4·5Nm). 

Immediately following LYE, mean peak isometric strength declined to 72% of pre

exercise values and continued to decrease to 69% of pre-exercise 30 minutes 

post-exercise (figure 12). In comparison, following HVE subjects' had a greater 

torque decrement producing only 32% of baseline immediately post-exercise and 

33% at 30 minutes later (figure 12). Maximal voluntary peak torque remained 

significantly reduced (p<0-01) up to 48 hours post exercise and continued to be 

depressed (p<0·05) until 96 hours post following LVE. Following HVE subjects' 

experienced protracted torque loss that was significantly (p<O·Ol) below baseline 168 

hours post-exercise being only 50% of pre-exercise levels. Differences between peak 

isometric torques at 90° following exercise at the two contraction velocities were 

significant (p<O·O 1) at all time points. 

Peak isometric strength at 150° of elbow extension responded in a similar manner to 

that at 90° (Appendix F). Isometric strength was significantly (p<O·O 1) decreased for 

both LVE and HVE up to 48 hours post-exercise when compared to pre-exercise. 

Responses following HVE continued to be significantly (p<O·Ol) below baseline 

across all recording time points. In contrast, responses following LVE were 

significant only to 96 hours post-exercise compared to pre-exercise. Time courses for 

recovery were similar following both bouts of exercise, though differences between 

conditions were still significant. Differences betv .... en velocities were significant 

(p<O·Ol) immediately post until 24 hours post exercise. Significant (p<0·05) 

differences were present 48 hours and 168 hours post exercise. 
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Figure 12 Normalised maximal voluntary isometric torque at 90° (mean± SEM) 
of elbow flexion. Expressed as a percentage of pre-exercise, for LVE (n = 12) and 
HVE(n = 12). 
#represents a significant (p<0·05) difference to baseline,## represents a highly 
significant (p<O·Ol) difference to baseline.** represents a highly significant 
(p<O·Ol) difference between conditions. 
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4.4 Dynamic Strength 

4.4.1 Concentric Torque 

Peak maximal voluntary concentric torques were similar for both groups prior to 

LVE and HVE (table 3). Both LVE and HVE resulted in significant torque 

decrements (p<O·Ol) immediately post and 30 minutes following exercise for all 

tested dynamic concentric velocities. Recovery trends were similar to those displayed 

for isometric strength (figure 13 and 14). 

Immediately following LVE, mean peak concentric torque at 30°·s'1 declined to 73% 

of pre-exercise values and continued to decrease to 70% of pre-exercise 30 minutes 

later (figure 13). In comparison, following HVE subjects' experienced a greater 

torque decrement, producing only 44% immediately post and no change 30 minutes 

following exercise (figure 13). Torque remained reduced up to 72 hours 

post-exercise (p<O·Ol) and continued until 96 hours following LVE (p<0·05). 

Fol1owing HVE subjects' experienced a protracted torque loss at 30°·s·1 that was 

significantly (p<O·Ol) below baseline 168 hours post-exercise. Subjects had 

recovered to 96% of baseline 168 hours post-exercise following LVE, but at the 

equivalent time following HVE they had recovered to 80% of pre-intervention values 

(figure 13). Differences between responses for concentric torque at 30°·s·1 following 

LVE and HVE were significant (p<O·Ol) at all recorded time points up to 72 hours 

following exercise and were still significant (p<0·01) 168 hours post-exercise. 

Following LVE, mean peak concentric torques at 210°·s·1 declined to 72% of pre

exercise values immediately following exercise and continued to decline to 67% of 

pre-exercise 30 minutes later (figure 14). In comparison, following HVE subjects' 

experienced a greater torque decrement producing only 45% of baseline immediately 

post-exercise and decreased to 41% 30 minutes later (figure 14). Torque was 

significantly (p<O·DS) below pre-intervention levels at all time points post-exercise 

for both conditions. Subjects had recovered to 91% of baseline 168 hours 

post-exercise following LVE compared to only 75% recovery following HVE at the 

39 



same time point. Differences between interventions for peak concentric torque at 

210°·s·1 were significant (p<0·05) at all recorded time points post-exercise with the 

exception of 96 hours. 

Table3 

Baseline maximal voluntary concentric torque (Nm) 
Exercise Velocities 

LYE HVE 
Mean (SEM) Min Max Mean (SEM) Min Max 

Concentric action 
30°·S-I 35·6 (4·59) 17-4 67-7 33·9 (4·25) 16·9 61·0 
90°·S-l 33·3 (3·9) 19·1 55·5 32·3 (3-8) 16-4 54-4 
150°·s-1 30·7 (3·5) 16·7 50-4 29·0 (3·4) 14·7 47·0 
210°·S-l 28-4 (3·42) 14·3 44-4 25·9 (3·20) 13·2 42·0 
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Figure 13 Normalised maximal voluntary concentric torque at 30°·s'1 (mean± 
SEM) of elbow flexion. Expressed as a percentage ofpre~exercise, for LVE (n:::: 12) 
and HVE (n = 12). 
# represents a significant (p<0-05) difference to baseline, ## represents a significant 
(p<0-01) difference to baseline.** represents a significant (p<O·Ol) difference 
between conditions. 
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Figure 14 Normalised maximal voluntary concentric torque at 210°·s·1 (mean± 
SEM) of elbow flexion. Expressed as a percentage of pre-exercise, for LVE (n = 12) 
and HVE (n = 12). 
# represents a significant (p<0·05) difference to baseline, ## represents a significant 

(p<O·Ol) difference to baseline.* represents a significant (p<O·OS) difference 
between conditions, ** represents a significant (p<O·O 1) difference between 
conditions. 
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4.4.2 Eccentric Torque 

Peak maximal voluntary eccentric torques at 30° ·s·' were similar for both arms prior 

to LYE and HVE, ranging from 28·6- 91·6Nm (51·1 ± S.S3Nm, mean± SEM), and 

28·9 to 80·9Nm (47-0 ± 5-13Nm), respectively. Similarly, no significant difference 

was apparent for mean peak maximal voluntary eccentric torques at 210°·s·' for both 

arms prior to LVE and HVE, with values ranging from 30·5 - 83·3Nm (49·6 ± 

4·75Nm, mean± SEM), and 29·0 to 81·0Nm (484 ± 4·85Nm), respectively. 

Differences were significant (p<O·Ol) between conditions (LVE and HVE) at an 

eccentric contraction velocity of 30°-s·' for up to 72 hours post-exercise (figure 15). 

Recovery of peak torque at this action velocity was similar in both conditions, yet 

torque generation remained significantly below baseline 168 hours post-exercise for 

HVE. Similar recovery trends shown in other strength measures were also apparent 

at an eccentric test velocity of30°·s·1• 

Differences between conditions (LYE and HVE) at an eccentric contraction velocity 

of 210°·s·' were also significant (p<O·Ol) up to 72 hours post exercise (figure 16). 

The recovery trend of torque generated at this action velocity was similar to that 

developed at a contraction velocity of 30°·s·'- Interestingly, eccentric torque 

production at 210°·s·' following the HVE bout was similar to that described for the 

same velocity concentric torque production after HVE, in as far as there was a 

similar levelling 96 hours post-exercise and remained significantly below baseline 

through 168 hours after exercise. 
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Figure 15 Normalised maximal voluntary eccentric torque at 30°·s-1 (mean± 
SEM) of elbow flexion. Expressed as a percentage of pre-exercise, for LVE (n = 12) 
and HVE (n = 12). 
##represents a significant (p<O·Ol) difference to baseline.** represents a significant 
(p<O·Ol) difference between conditions. 
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Figvre 16 Normalised maximal voluntary eccentric torque at 210°·s-1 (mean± 
SEM) of elbow flexion. Expressed as a percentage of pre-exercise, for LVE (n = 12) 
and HVE (n = 12). 
# represents a significant (p<0·05) difference to baseline, ## represents a significant 
(p<O·Ol) difference to baseline. ** represents a significant (p<O·Ol) difference 
between conditions. 
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4.5 Range of Motion (ROM) 

ROM values were similar for both groups prior to LVE and HVE, ranging from 

123·5°- 163·0° (1354° ± 3-0, mean± SEM) (LYE), and 124·0° to 159·0° (136·8° ± 

2·4) (HVE). Both exercise interventions resulted in significant (LVE, p<O·Ol and 

HVE, p<0-05) reductions inKOM immediately post-exercise (LVE = -10-23° ± 2·2, 

HVE = -23·9° ± 7·7) compared to that measured before the interventions (figure 17). 

ROM continued to decrease following LYE with the peak occurring 30 minutes post 

( -12·2° ± 4) while ROM had began to recover for subjects' following HVE ( -20·4° ± 

5·8). The ROM was significantly reduced (LYE, p<0·05 and HVE, p<0-01) 

compared to baseline up to 96 hours post-exercise (figure 17). Differences in the 

change in ROM between exercise bouts were significant (p<0·01) 24 to 72 hours 

post -exercise, and 96 hours later (p<0·05). ROM 168 hours following exercise had 

recovered to 133·9° ± 2·7 and 130·4° ± 2·9 for LVE and HVE respectively. 

4.5.1 Relaxed Elbow Angle (RANG) 

RANG was similar for both groups prior to LVE or HVE, ranging from 148°- 156° 

(152·3° ± 0·7, mean ± SEM), and 146°- 165° (154·8° ± 1·7) respectively. A reduced 

RANG indicates that, when the subject allows the arm to hang by their side, it is in a 

more flexed position. LVE resulted in a significantly reduced RANG immediately 

post-exercise and at 24, 48 (p<0·05) and 96 hours post-exercise (p<0·01) returning to 

baseline levels by 168 hours (figure 18). In re~ponse to LYE, RANG declined -3·5° ± 

1·4 immediately post-exercise and recovered transiently 30 minutes later to -2·8° ± 

1·9 before achieving a peak reduction of -4° ± 1-4 at 48 hours following exercise. In 

HVE RANG declined -6·2° ± 1·5 immediately following exercise with no recovery 

30 minutes later ( -6· 2° ± 1·8) and continued to decrease reaching a nadir of -1 0·9° ± 

2·1 at 72 hours post-exerche. The changes in RANG in response to HVE were 

significant immediately after exercise, and at all other time points post-exercise 

(p<0·05). In contrast to LVE a return to baseline was not achieved by 168 hours(-

4-40 ± 1·8). The changes in RANG between conditions were significant following 

exercise (p<O·Ol) 72 hours post-exercise and significant at 48, 96 and 168 hours 

post -exercise (p<0·05). 
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Figure 17 Change in ROM (mean ± SEM), expressed as degrees from pre-
exercise, for LYE (n = 12) and HVE (n = 12). 
# represents a significant (p<0·05J difference to baseline, ## represents a significant 
(p<O·Ol) difference to baseline. >t; represents a significant (p<0·05) difference 
between conditions, ** represents a significant (p<O·Ol) difference between 
conditions. 
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Figure 18 Change in RANG (mean± SEM), expressed as degrees from pre-
exercise, for LYE (n = 12) and HVE (n = 12). 
# represents a significant (p<0·05) difference to baseline, ## represents a highly 
significant (p<O·Ol) difference to baseline. * represents a significant (p<0·05) 
difference between conditions,** represents a highly significant (p<O·Ol) difference 
between conditions. 
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4.6 Creatine Kinase (CK) 

Baseline plasma CK values were within the 'normal' range prior to LVE and HVE, 

174·1 IV ± 31·6, (mean± SEM), ar.d 150·9 IV± 27-8) respectively. The HVE 

elicited a significant (p<O·OS) increase in CK from baseline 48 to 168 hours 

post-exercise (figure 19). In contrast, LYE did not differ significantly from baseline. 

Peak concentrations for HVE occUlTed 96 hours after exercise (1298·2 IU ± 427·7) 

and remained elevated 240 hours post-exercise (467·2 IU ± 146·1). In contrast LVE 

elicited a non-significant average peak of 279·9 IV ± 89·2 at 72 hours 

post-exercise, significant differences were observed between conditions at 48, 72, 96 

and 168 hours following exercise. 

CK concentration 

• 
1550 -<l-LVE 

~ ....._HVE 

" ::1250 .. 
c .o • " " 950 • u c • 0 • u 

"' 650 
u .. 

• 
350 • 

50•+---.---.---.---r-----------,----------.-
Base 24 hrs 48 hrs 72 hrs 96 hrs 168 hrs 240 hrs 

Time 

Figure 19 Change in serum CK concentration (mean ± SEM), expressed in 
absolute values in IU, for LVE (n = 12) and HVE (n = 12). 
# represents a significant (p<0·05) difference to baseline, ## represents a highly 
significant (p<O·O 1) difference to baseline. * represents a significant (p<O·OS) 
difference between conditions,** reprt!sents a highly significant (p<O·Ol) difference 
between conditions. 
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4.7 Soreness (SOR) and Tenderness 

4.7.1 Tenderness 

Subjects reported significant levels of muscle tenderness (figure 20) (p<O·Ol) up to 

96 hours post-exercise HVE intervention. In contrast responses to LVE were only 

significant until 72 hours following exercise (p<O·OS). Significant differences 

between responses to each condition (LVE and HVE) were evident 72 and 96 hours 

post-exercise (p<O·OS). Palpated soreness peaked 24 hours earlier for LVE (19mm ± 

6) compared to the HVE condition at (36mm ± 8). Muscle tenderness had dissipated 

by 168 hours post-exercise following both LVE and HVE. 

4.7.2 Extension Soreness 

Reported ratings of extension soreness (figure 21) following HVE were significantly 

above baseline from 24 to 96 hours following exercise (p<O·Ol), with forced 

extension still eliciting soreness (non-significant) 168 hours post-exercise 

intervention. Extension soreness resulting from LYE was significantly above 

baseline from 24 through 72 hours following e:tercise (p<O·OS). Ratings of extension 

soreness peaked for both interventions 48 hours post-exercise (LVE = 24·9mm ± 7·1, 

HVE = 56·6 ± 7·7). Differences in extension soreness between conditions were 

significant from 24 through 96 hours following exercise (p<0·05). 

4.7.3 Flexion Soreness 

Flexion soreness was similar to extension for LYE with a peak in soreness occurring 

48 hours post-exercise (20·6mm ± 7) and values significantly (p<0·05) above 

baseline evident at 24 through 72 hours following the intervention (figure 22). HYE 

flexion soreness increased significantly (p<O·Ol) from baseline at each time point up 

to 96 hours following the exercise intervention (peak of 42mm ± 8-4) before 

returning to baseline at 168 hours post-exercise. Passive flexion soreness was 

statistically different between groups (p<0·05) at only 72 and 96 hours after exercise. 
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Figure 20 Soreness upon palpation of the elbow flexors (mean± SEM) for LVE 
(n = 12) and HVE (n = 12). 
# represents a significant (p<0·05) difference to baseline, ## represents a significant 
(p<O·Ol) difference to baseline. *represents a significant (p<0·05) difference 
between conditions. 
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Figure 21 Soreness upon extension of the elbow (mean± SEM) for LVE (n = 
12) and HVE (n = 12). 
# represents a significant (p<0·05) difference to baseline, ## represents a significant 
(p<O·Ol) difference to baseline.* represents a significant (p<0·05) difference 
between conditions,** represents a significant (p<O·Ol) difference between 
conditions. 
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Figure 22 Soreness upon flexion of the elbow (mean± SEM) for LVE (n = 12) 
and HVE (n = 12). 
# represents a significant (p<O·OS) difference to baseline, ## represents a significant 
(p<O·Ol) difference to baseline. * represents a significant (p<0·05) difference 
between conditions. 
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4.8 Arm Circumference (CIR) 

Upper arm CIR values were similar for both arms prior to L VE and HVE, ranging 

from 22·1- 30·0cm (26·2cm ± 0·7, mean± SEM), and 22·5- 29·9cm (264cm ± 0·6) 

respectively. Figure 23 represents the change in CIR following exercise for each 

condition. In contrast to LYE which elicited no significant CIR increase over time, 

immediately following HVE subject's CIR had significantly increased (p<O·Ol). CIR 

30 minutes following HVE was elevated significantly (p<O·OS) and remained so at all 

subsequent time points. Peak CIR following HVE occurred 72 hours post-exercise 

with a mean increase of 0·8 ern ± 0·1. Significant (p<0·05) differences between 

conditions (LVE and HVE) were recorded at 24 through 168 hours post-exercise. 
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Figure 23 Change in arm circumference (mean± SEM), expressed as 
centimetres change from pre-exercise, for LYE (n = 12) and HVE (n = 12). 
#represents a significant (p<0·05) difference to baseline, ##represents a highly 
significant (p<O·Ol) difference to baseline. *represents a significant (p<0·05) 
difference between conditions. 
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4.9 Electromyography (EMG) 

The observed trends seen in the size of the mean average full wave rectified EMG 

signal for the entire ROM was similar for all contraction modalities (table 4). To 

ensure the observations were accurate and not from changes occurring due to skin 

impedance, familiarisation and pre-test responses were compared using a t-test for 

contraction modalities. The Hest showed no significantly different variation between 

testing occasions for either exercise condition (L VB and HVE). No individual 

contraction modality elicited a significantly different response between either 

exercise condition (L VB and HVE). The signals recorded during isometric 

contractions at 90° elbow flexion were similar for both contraction modalities, with a 

slight increase in the average signal 30 minutes post-exercise and returning to 

baseline levels after 7 days, at all times the !iignal recorded during HVE was slightly 

higher. Average rectified EMG signal during isometric contractions at 150° elbow 

flexion were very similar following LVE and HVE, with the only observable 

difference occurring 7 days post-exercise. At this time the signal recorded following 

LVE had returned to baseline. In contrast the signal 7 days after HVE was at its 

lowest average value. The EMG signal recorded during maximal voluntary 

concentric contractions at 30°·s·1 decreased slightly following both exercise 

interventions. The EMG signal during maximal voluntary concentric contractions at 

210°·s·1 followed similar trends to those recorded during concentric contractions at 

3Qo.s·l. 
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Table 4 

Average full wave rectified surface EMG signal 

Time 

Contraction Mode Base Post 30 min Post 7 Days Post 

LVE 
0.856 0.937 0.975 0.855 

Isometric 90" (0·11) (O·ll) (0·10) (0·07) 

HVE 
0.964 1.034 1.088 1.096 
(0-49) (0·49) (0·51) (0·51) 

LVE 
1.236 1.091 1.156 1.356 

Isometric 150" (O·ll) (0·10) (0·09) (0·13) 

HVE 
1.264 1.152 1.223 1.157 
(0·45) (0·49) (0·55) (0·48) 

Concentric 30"-s'1 1.008 0.946 0.952 l.ll4 
LVE (0·10) (0·11) (0·08) (0·15) 

HVE 
1.162 1.075 1.083 1.097 
(0·49) (0·49) (0·58) (0·56) 

Concentric 210°·s·1 1.178 1.007 0.960 1.218 
LVE (0·12) (0·08) (0·09) (0·13) 

1.169 1.046 1.064 1.072 
HVE (0·46) (0·34) (0-42) (0·38) 

Eccentric 30°·s·1 0.873 0.886 1.01 0.817 
LVE (0·07) (0·07) (0·08) (0·09) 

0.92 0.852 0.942 0.718 
HVE (0·47) (0·35) (0·43) (0·28) 

Eccentric 210°·s·1 LVE 
0.741 0.900 0.856 0.769 
(0·08) (0·07) (0·07) (0·07) 

0.821 0.791 0.852 0.645 
HVE (0·45) (0·41) (0·47) (0·28) 

Values expressed in mV (mean± SEM) LVE (n = 12) and HVE (n = 12). 
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CHAPTER FIVE 

5 DISCUSSION 

Limited research has been conducted into the role of stretch velocity in exercise

induced muscle damage (EIMD); mostly this has involved animal models or isolated 

muscle fibres. In either instance, muscle activation was externally induced and the 

stretch lengths used may have been outside of the anatomical range of motion. The 

research completed for the purposes of this thesis used maximal voluntary 

contractions of elbow flexors in situ, with the time that muscles were under tension 

of 120 seconds and comparisons made of two stretch velocities (30°·s·1 and 210°-s-1
). 

5.1 Preliminary Torque-Velocity Relationship 

The testing protocol used in the pilot study to investigate the eccentric 

torque-velocity relationship was found to have a small but not statistically significant 

effect on isometric MVC torque (figure 7). Brooks and Faulkner (2001) showed lhat 

EIMD can occur as a result of a single eccentric contraction. Muscle damage is also 

known to be dependent on the length at which contraction commences, with the 

severity being greater at longer muscle lengths (Child, Saxton, & Donnelly, 1998). 

For this reason the range of movement tested was restricted to a mid·range of 80° of 

the subjects ROM, eliminating angles at which the muscle was most extended 

(stretched) to reduce the potential for EIMD. Contraction was initiated before the 

lever arm commenced the lengthening action so that full voluntary activation was 

achieved and that the peak torque generated would occur within the normal optimal 

range of70°-ll0° of elbow flexion. 
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The pilot study findings (figure 6) of a 14- 16% increase in peak voluntary torque 

above isometric values is consistent with the findings of Griffin (1987) using female 

subjects and those of Hortobagyi and Katch (1990) in subjects with low strength. A 

further finding of no significant difference between the tested velocities despite a 

decreasing trend, supports findings by Cramer et al. (2002). However, further studies 

by Griffin et al. (1993) using men and women and Hortobagyi and Katch (1990) in 

strength trained subjects presented contrary data. Previous research has indicated that 

the eccentric torque.velocity relationship of the elbow flexors at high velocities is 

inconsistent, with four patterns described. Slowly increasing with increasing velocity 

(Hortobagyi & Katch, 1990), a slowly de1:reasing with increasing velocity (Komi et 

al., 2000), or a plateau (Griffin, 1987; Griffin et a!., 1993). Other researchers using 

various muscle groups have shown there to be a steady trend for strength to increase 

with velocity of eccentric contraction (de Ruiter & de Haan, 2001; Westing, Seger, 

Karlson, & Ekblom, 1988). 

Methodological differences could account for the inconsistencies observed in the 

maximal voluntary eccentric torque·velocity findings between researchers but the 

differences between human and isolated animal muscle remain unclear. The 

hypothesis that some form of neural inhibition leading to a reduction in the number 

of active units used for torque production (Aagaard et al., 2000) is supported by 

research using external electrical stimulation of the muscle, since stimulation 

downstream from the spinal junction identifies a lack of full activation. In the leg 

extensors, superimposing electrical stimulation on a maximal voluntary eccentric 

contraction, evokes an eccentric torque increase of lO - 40% (Dudley et a!., 1990; 

Seger & Thorstensson, 2000; Westing et al., 1990) depending upon the training 

status of the subjects. It has been proposed that this phenomenon may originate from 

the Golgi tendon organs (Hortobagyi & Katch, 1990; Westing et al., 1990) but this 

has not been conclusively demonstrated. It is also known that increased feedback 

from cutaneous pain and/or joint receptors is involved in torque regulation (Houk & 

Henneman, 1967). 

The test·retest reliability of the test protocol showed a coefficient of variation of 2·8-

9·5% across each of the tested velocities. Griffin (1987) in a similar study, reported 

intraclass correlation coefficients of 0·72 · 0·80, proposing that the low reliability 
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may be due to the order of test contractions (concentric-eccentric), fatigue, lack of 

test famHiarisation and incomplete stabilisation (subjects were supine). The 

influences of these factors were minimised in the protocol u~.ed for this study. Only 

eccentric test contractions were used, subject fatigue, if it occurred, was identified 

through the use of isometric contractions interspersed between eccentric velocities. 

This was only considered to be a substantial factor if output declined by greater than 

10%. Test familiarisation was improved through the use of two trial arm extensions 

at each test velocity prior to measurement. Only the effect of incomplete stabilisation 

was not be controlled fully. The study used the preacher curl bench, where the 

position of the lever arm and the movement involved, encouraged the subject's 

shoulder and torso to be pulled down, and into the bench thus reducing body 

movement and only allowing movement about the elbow (figure 4). de Morton and 

Keating (2002) found that the use of a 65% pre-load of each subject's maximal 

voluntary isometric contraction significantly increased the reliability compared to 

one of a 5% pre-load. Although, in this investigation the elbow flexors were 

contracted prior to initiation of the eccentric movement, the isometric torque level 

was not controlled. 

The length tension relationship predicts that the elbow angle for peak torque 

production should range between 90° to 110°, which has been demonstrated by 

Singh and Karpovich (1966). This investigation found an elbow angle where peak 

torque was developed to range between 75° to 77° (full extension was 180°). Specific 

isometric pre-loading prior to lengthening during testing may assist in increasing the 

angle at which peak torque is developed bringing it closer to that which would be 

expected from the length tension relationship. 

The coefficient of variation for isometric MVC at 90° flexion between trials was 

7·8% and did not change significantly over time (figure 7). On questioning, subjects 

reported little soreness following the testing, which, if experienced, lasted 2 -3 days 

post exercise. The isometric contractions were used to assess whether or not fatigue 

or damage occurred as a result of the test protocol. Mean isometric strength loss for 

both tests was approximately 8%, suggesting that, on average, fatigue and damage 

associated with the eccentric testing protocol were not significant factors. 
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5.2 Effect of Contraction Velocity on EIMD 

The present investigation used an arm to arm comparison in the same subjects. This 

model has been demonstrated to be a powerful tool for the investigation of EIMD in 

various muscle groups (Child et al., 1998; Farr, Nattie, Nosaka, & Sacco, 2002; 

Nosaka & Newton, 2002b), since it minimises the effects of variation. The fact that 

all parameters were similar between the two groups at baseline prior to L VE or HVE 

excludes the contribution of inter~arm differences in the responses observed. 

Although all subjects were right hand dominant, potential effects of dominance were 

controlled through the use of a pseudo-random counter-balanced design. This 

ensured that arm dominance and order of testing velocities were equally balanced 

across exercise interventions. 

Both L VE and HVE resulted in significant declines in all criterion measures except 

average surface EMG signal following exercise with the changes following HVE 

significantly greater than LYE in all strength measures. Moreover the time necessary 

for strength recovery was significantly longer following HVE. It should be noted the 

decrease in strength immediately after exercise was approximately 30% larger for 

EVE than LYE but minimal strength recovery occurred for either test velocity 30 

minutes later. The reported deficits in strength and the time courses of recovery 

found after LVE and HVE are similar to those reported previously using this model 

of EIMD (Nosaka & Newton, 2002a, 2002d). The minimal recovery of strength 

parameters in the short-term indicates torque decrements resulted from muscle 

damage and not fatigue. This supports the findings of Ryschon, Fowler, Wysong, 

Anthony and Balaban (1997) who demonstrated that eccentric exercise had a lower 

metabolic cost than comparable concentric exercise. 

The protracted decline in strength following HVE has significant implications for 

athletes participating in sports incorporating such high angular loadings. The 

decrement in isometric and dynamic strength which was still evident 7 days 

following the exercise bout highilghts the importance of correct athlt!te tapering 

when high velocity loading is included in training programs. The effects of eccentric 

training may only be limited to strength decrements immediately following exercise 

as repeated bouts of eccentric loading imposed on previous ElMD does not seem to 
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inhibit strength recovery nor increase muscle soreness or blood borne muscle 

proteins (Chen & Hsieh, 2001). This is supported by the work of PaddonwJones, 

Leveritt, Lonergan, and Abernethy (2001) who reported positive benefits of 

exclusive high velocity eccentric training following a ten week training program. The 

periodisation of training and the adaptive process of super-compensation have OOen 

well documented (Fry, Morton, & Keast, 1992; Kraemer et al., 2002). However, the 

effect on performance of the interaction between moderate to high velocity r~sistance 

training with other training stimuli is less clear and provides exciting potential for 

further research. 

HVE likely involves greater contribution for torque generation from those motor 

units capable of developing attached cross bridges in the time available, vis a vis 

fast-twitch units. Thus, it seems reasonable to hypothesise that the greater 

decrements in measured strength variables were attributable to the fast twitch motor 

units being preferentially damaged. The HVE may have selectively damaged these 

fibres, but this can not be verified from the present data. Using rat, single muscle 

fibre segments, Macpherson, Schork et al. (1996) demonstrated that under 

comparable conditions, the size of the induced injury was greater to fast fibres 

compared to slow fibres. Presently invasive techniques (muscle biopsies) have been 

used to quantify fibre damage following eccentric exercise in human muscle. 

Quantification of disrupted fibres following eccentric exercise of the elbow flexors 

h::.s been conducted by Stauber, Clarkson, Fritz and Evans (1990) and (!.\bala, 

MacDougall, Tarnopolsky, Stauber and Elorriaga (1995), but neither of these studies 

differentiated between fibre types. Alternatively examining the release of myosin 

heavy chains can be used to differentiate between disrupted fibres in a non-invasive 

manner (Sorichter et al., 2001). To identify whether the protocol in this research 

preferentially afflicted fast-twitch motor units, replication of the protocol with 

additional parameters of muscle biopsies using staining techniques (Vijayan et al., 

2001) and/or through closer examination of myosin heavy chain isoforms which 

differ depending on the fibre classification. 

The number of contractions necessary to reach 120 seconds of eccentric muscle 

tension may also have influenced the increased strength loss associated with HVE. 

An increased metabolic cost could be related to the number of contractions (see table 
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2), whereby susceptible fibres reach a state of fatigue or rigour and become more 

likely to be stretched past digitation and unable to re-digitate. A fatigued fibre state 

due to a higher metabolic cost is not supported by the present research as total rest to 

total time in contraction was higher in HVE protocol compared to LVE protocol (90 

seconds between sets, LVE = 6 sets and HVE = 35 sets). In a study investigating the 

effect of contraction number on EIMD in the knee extensors utilising maximal 

voluntary contractions, Brown, Child, Day and Donnelly (1997) demonstrated no 

significant difference between the number of contractions when velocity was 

constant. To fully dismiss the effects of contraction number, it would be necessary to 

repeat the protocol and control the number of contractions performed under each 

condition. 

Damage to the sarcotubular system, cytoskeleton, and contractile proteins is well 

known to resuli from eccentric exercise. Ingalls, Warren et al. (1998) suggested that 

the decline in strength following eccentric exercise is caused largely by 

E-C uncoupling for the first few days, and that longer term decrements result from 

disruption to the contractile elements. It is possible that the strength loss observed in 

this study following LVE and HVE could result from E-C coupling disruption, the 

extent of damage, as measured by torque decrement and protracted recovery, was 

smaller following LVE compared to HVE. This suggests that structural damage to 

contractile elements was less following LVE, and in the latter case, any fibre 

damage, did not lead to the affected fibres becoming necrotic (Armstrong, 1984). 

The contrast in the degree of damage is well illustrated by the differences in plasma 

CK efflux following exercise, with HVE showing, on average, a 450% greater peak 

response (see figure 4.19) than LYE. Plasma CK did not significantly change 

following LYE which is in contrast to the literature where changes in plasma CK 

levels are reported to occur following novel and/or strenuous exercise with a peak 

3-5 days post-exercise (Nosaka, Clarkson, & Apple, 1992) then a return to baseline 

values. Although similar to previous investigations (Clarkson & Ebbeling, 1988; 

Nosaka & Clarkson, 1996) exercise encompassing predominantly eccentric exercise 

results in an influx of CK and a large inter-individual variability, which was found 

following both HVE and LVE. The release of CK has been used to quatify the extent 

to which the exercised muscle has lost cell homeostasis. The change in plasma CK 
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after LVE showed evidence of a slight bi-modal response but at no stage was the 

response significantly elevated from the normal range. This would suggest that L VE 

resulted in no major loss of muscle cell homeostasis, which is in contrast with the 

significant and protracted loss of muscle strength observed. In contrast plasma CK 

efflux after HVE peaked 4 days post and continued to be inflated 7 days after 

exercise. This time course of elevation supports severe disruption to 1;ontractilf~ 

elements as demonstrated by the large torque deficits present also at this time. The 

distinctly different plasma CK responses between LVE and HVE suggest that the 

number of fibres damaged after HVE is higher or, that of the fibres damaged, more 

have become degenerative. 

The changes in muscle stiffness after LVE or HVE are distinct, with all subjects 

experiencing a considerable Joss of ROM immediately following both exercise 

interventions. Changes in ROM are representative of an altered FANG and SANG, 

and both may contribute to different extents. ChangF.s in FANG have been shown to 

correspond to torque loss and recovery (Clarkson & Tremblay, 1988). It has been 

postulated that a decreased FANG is related to connective tissue changes (Clarkson 

et al., 1992). Clarkson et al. (1992) hypothesised that alterations to FANG are 

attributed to over stretched sarcomeres no longer being able to form their maximal 

number of cross bridges and thus reducing the ability to shmten the muscle tendon 

unit. It was further postulated that changes in FANG may result from a Ca2+ 

deficiency in the SR where by inhibiting the cross bridge cycling process (Clarkson 

eta!., 1992). 

Spontaneous muscle shortening identified by changes in RANG was markedly 

different following LVE as compared to HVE. Although changes in RANG after 

L VE occurred, there was no easily identifiable peak and full recovery had occurred 

after 7 days. In comparison, immediately after HVE the angle became acute and 

continued to be exaggerated until the greatest change 3 days after exercise, RANG 

continued to be reduced 7 days later. Ebbeling and Clarkson (1989) proposed that 

changes to RANG occurred because of alterations to the connective tissue occurring 

due to an influx of Ca2+ which resulted from a loss of sarcolemmal integrity or SR 

dysfunction. This upset the balance between actin and myosin, causing involuntary 

contraction. Michaut, Pousson et al. (2001), however, found that eccentric exercise 
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did not modify the intrinsic properties of the series elastic component, indicating that 

factors other than structural dysfunction must contribute to the changes in RANG. 

The larger changes in ROM and RANG following HYE suggests that either an 

increased number of fibres are altered or, that of the fibres filtered, more are 

significantly degraded. With the evidence presented earlier this would support the 

notion that HYE results in a preferential damage to certain motor units. The changes 

associated with the ROM and RANG can not be conclusively identified from the 

present data. In order to quantify what initiates these changes it would be necessary 

to repeat this protocol and include examination of collagen breakdown (Brown, Day, 

& Donnelly, 1999). Using techniques such as changes to magnetic resonance image 

T2 signal intensity for closer examination of alterations to contractile and/or 

connective tissue elements (Sorichter eta!., 2001). 

Another factor which may have contributed to an altered RANG are changes in limb 

circumference. Howell, Chila, Ford, David and Gates (1985) proposed that oedema 

resulting from eccentric exercise leads to changes in the perimuscular connective 

tissue, altering the elastic behaviour of the muscles and causing a re-duction in 

motion. This mechanism is supported by the present study since changes in CIR were 

related to those in RANG. CIR was significantly elevated immediately after HYE 

and peak circumference occurred 72 hours post-exercise, which also followed the 

same time course as soreness and tenderness. The non-significant increases in CIR 

following LYE is in accord with the minimal changes observed in RANG. The 

smaller changes in CIR after HYE (averaging 8mm) are in contrast with previously 

reported increases ln the elbow flexors of greater than 18mm (Murrayama, Nosaka, 

Yoneda, & Minamitani, 2000; Nosaka & Newton, 2002c). 

All measures of soreness and tenderness were greater for HYE than LYE and had 

returned to normal by 7 days after exercise, but the pattern of recovery differed 

between exercise. Recovery occurred rapidly following LYE but the trend was 

shifted to the right (ie slowed) for HYE (figure 20 - 22). The peak in soreness and 

tenderness following LYE 2 days after exercise is a more commonly described 

response (McHugh et a!., 1999; Rinard, Clarkson, Smith, & Grossman, 2000). 

Others have reported that following eccentric endurance exercise of the elbow 
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flexors soreness peaks 1 day after exercise (Nosaka et al., 2002b). The soreness 

findings in this study correlated well with other indicators of EIMD (e.g RANG). 

DOMS has been associated with the muscle intlammatmy response measured by CIR 

(Murrayama et al., 2000). The data presented supports this relationship, as response 

time courses between CIR and measures of soreness and tenderness were similar in 

time to peak recordings. 

5.3 Effect of Contraction Velocity during Eccentric Exercise 

The pilot study conducted prior to the primary research demonstrated that elbow 

flexor MYC's at eccentric angular velocities of 30°, 90°, 150° and 210°·s·1 resulted 

in similar torque outputs (figure 6). Therefore it could be assumed that the torque 

generated by the elbow flexors would not be a mitigating factor in the resulting 

muscle damage incurred post ex~rcise when the time under tension was constant. 

The peak torque decrements for HVE period were similar to those observed utilising 

stimulated contractions (Nosaka et al., 2002c), where a sharp initial decline occurred 

followed by a period of little further reduction in peak torque. The peak mean torque 

production after 4 seconds of respective eccentric loading (ie !-contraction verses ?

repeated contractions) for LYE and HYE respectively was similar for the two groups. 

However, over the duration of exercise, HYE resulted in a much greater loss in 

torque compared to LYE for the same relative time under tension. This could be 

explained by a reduced muscle activation but the EMG signal findings argue against 

this explanation, since lhere was no significant change in the size of the average 

rectified EMG signal recorded during the exercise period for either condition. 

Alternatively the size of the decrements experienced during HYE could be the result 

of groups of fibres selectively suffering from fatigue and thus no longer being able to 

generate torque as previously described by (Lieber et a!., 1991). This would be 

consistent with the EMG signal that did not significantly decline from start to finish. 

However, seems unlikely, given that there was no significant recovery of strength 30 

minutes following either exercise protocol. A mechano-chemical explanation would 

provide an argument that is consistent with the EMG signal data and strength 

deficits, 
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Although initial torque generation did not differ between velocities, the relative 

properties of motor units responsible for torque generation may differ. During LVE 

the subjects were required to maintain a max:imal voluntary contraction for 4 seconds 

where as in HVE the max:imal voluntary contraction lasted 0·57 seconds. LVE would 

allow for a larger number of units and thus cross bridges to share the production of 

the same relative amount of torque as that generated in a single contraction during 

HVE. If this were to be the case then it would be possible to assume that during HVE 

fe".ver fibres share the workload and thus, these fibres have a greater amount of strain 

placed upon them. This condition that has been identified as one that may lead to 

contractile structure damage (Lieber & Friden., 1993). The site for this strain injury 

to contractile structures could be the thin and thick filament attachment position (Z 

line) and/or other structures necessary for force transfer and/or production. 

Z-line streaming has previously been shown to result from novel eccentric exercise 

as has disruption to the sarcolemma and the myofibrils (Hortobagyi et al., 1998). A 

further potential further site for the investigation of EIMD is a costamere, the 

structure proposed to be necessary for lateral force transmission in skeletal muscle 

(Bloch & Gonzalez-Serratos, 2003). The costameres are proposed to act as 

mechanical attachments used to distribute contractile forces laterally through the 

sarcolemma (Danowski, Imanaka-Yoshida, Sanger, & Sanger, 1992), thereby 

facilitating uniform sarcomere length between fibres of active and non-active motor 

units (Rybakova, Patel, & Ervasti, 2000). As has been previously reported, the non

uniformity of sarcomeres is associated with a reduction in the force generation 

capacity of the muscle (Byrd, 1992). Investigations into whether costamere 

disruption occurs and how this interacts with other measures of stretched induced 

contractile injury may provide further evidence as ~e how force generation is 

increased in contractions involving stretches and whether this is a site for rapid 

adaptation. The costamere interaction with other measures of stretched induced 

i11jury could be investigated with the use of histological studies via muscle biopsies 

of the biceps brachii. Investigations into the costamere may also need to consider the 

interaction of desmin protein, which is critical for sarcomere integrity (Rybakova et 

al., 2000). 
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Brockett et al. (2002) postulated that torque decrement occurs due to a selective 

number of fibres being recruited first and that these fibres have a shorter optimum 

length. They reported that fast glycolytic fibres have a shorter optimum tension 

length as compared to fast oxidative glycolytic and slow oxidative fibres. The shorter 

length necessary for maximum tension of these fibres means that when stretched, 

their sarcomeres are the first to be stretched past digitation and are unable to re

digitate, they are "popped" and unable to generate torque (Morgan, 1990). Allen 

(2001) proposed that following stretching of the sarcomere a change in the force

length relationship occurs, shifting to the right when the imposed stretch is on the 

descending side of the force-length curve. Sarcomere stretching may involve 

disruption to the titin filament, anchor point of the myosin filaments to the Z discs, a 

necessary protein for force generation and transfer between sarcomeres (Lindstedt et 

al., 2001; Proske & Morgan, 2001). Closer examination of the titin protein during 

eccentric contractions may yield new informatbn on the processes by which 

eccentric contractions are able to generate sut;.:h high forces. Through the use of 

genetically modified rodents whereby specific markers are placed on the titin protein 

or the protein itself is modified, its involvement in eccentric contractions and the 

adaptations resulting from ElMD could be quantified. Lindstedt et al. (2001) has 

suggested that the role of titin in lengthening contractions may include cellular signal 

initiation fN cross bridge enhancement and that differing titin isoforms may play a 

role in maintaining the amount of work a muscle is able to perform. 

The size of strain placed on a fibre has been implicated in the level of induced 

muscle injury (Brooks & Faulkner, 2001; Lieber & Friden., 1993; Lieber et al., 1991; 

Lynch & Faulkner, 1998). The strain imposed on a fibre may be related to the work 

absorbed by a muscle in eccentric contraction, but it is difficult to quantify from the 

data collected for this investigation. The two exercise interventions began with 

similar amounts of work absorbed in a single contraction as would be expected from 

the similar observed mean peak torques (figure 9). The total amount of work 

absorbed between the two interventions were vastly different with HVE resulting in 

approximately 7 times as much work absorbed which is a reflection of the number of 

contractions performed (ie the average torque times the distance moved). The HVE 

resulted in a greater relative loss in work absorbed by the contracting muscle upon 

completion of 120 seconds of muscle tension (figure 10). This could reflect the 
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increased level of strain placed on fewer cross bridges and/or the increased number 

of times contraction occurred. The number of times that the muscle contracted can be 

discounted as a factor in the greater decrement in relative work absorbed, because the 

amount of mean work absorbed was similar for the last contraction of each exercise 

intervention, an indication fatigue was not a factor in the observed differences. 

The time for each contraction relative to the intervention is possibly very important 

As fewer fibres would have the ability to reach full tension during HVE or fewer 

fibres would have the capacity to form strongly attached cross bridges during the 

contraction time even though muscle activation was comparable between LYE and 

HVE (table 2). Only faster acting cross bridges would be able to attach during the 

HVE and as such may be reflective of the duty cycle of the motor units. It has 

previously been hypothesised that in fatiguing conditions, the neural motor drive is 

organised in such a way that torque production is optimised as generation capabilities 

change (Mi.chaut et al., 2001). Tesch, Dudley, Duvoisin et al. (1990) suggested that a 

de~recruitrnent of fatigued or damaged motor units alternating with the recruitment of 

fresher units occurs. The alternating of active motor units may be possible but cannot 

be verified from the data collected. Thus the larger work absorbed decrement and 

EIMD following HVE may result from fewer fibres having attached cross bridges 

and thus these cross bridges (fibres) are required to absorbed a greater proportion of 

the strain. Repeating the experiment and matching the work absorbed (number of 

repetitions) between investigated velocities instead of the time of muscle tension, is 

necessary to resolve some of these issues. 

The susceptibility to EIMD of fast glycolytic (FG) fibres or fast oxidative glycolytic 

(FOG) fibres has previously been reported in studies using animal muscle and where 

the size of contraction was controlled (Lieber et al., 1991; Macpherson et al., 1996; 

Vijayan et al., 2001). In contrast findings from human muscle suggest that during 

voluntary eccentric contractions susceptibility to EIMD is not fibre type specific 

(Friden et al., 1983; O'Reilly et al., 1987; Sorichter et al., 2001). A biochemical 

explanation for the preferential damage to FG or FOG fibres was refuted by Patel et 

al (1998) indicating that the explanation may be mechano-chemical The findings 

from the current research provide anecdotal evidence that during maximal voluntary 

eccentric contractions, EIMD is fibre specific when the velocity of action is varied 
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and the time d muscle tension is constant. Testing of this hypothesis needs to be 

undertaken using muscle biopsies where the sample is immunostained with antifast 

myosin and antitotal myosin as described by Vijayan et al. (2001). Furthermore the 

investigated velocities need to be more reflective of movement patterns in the 

sporting arena, where velocities in excess of 500°·sec·1 have been recorded (Elliott, 

Marshall, & Noffal, 1996; Zehr, Sale, & Dowling, 1997). 

5.4 Conclusions 

This research has demonstrated that faster eccentric contractions had a greater effect 

on the induced muscle injury than slow ones when time under tension was 

comparable. But in EJMD models that use maximum voluntary eccentric 

contractions of the elbow flexor, contraction velocity is a major determinant 

compared to the initial peak torque and needs to be considered when comparing 

responses to eccentric exercise. 

The findings presented have provided evidence that higher velocity eccentric 

contractions require longer recovery periods and as such should be considered when 

structuring training programs. This would be highly recommended in the 

programming of stretch~shortening exercise (carr \only known as plyometrics). 

When considered for use in the resistance training scenario, it may be feasible to 

structure workouts using super slow sets closer together, as the time needed for full 

recovery is less than higher velocity sets. 

Further research is needed to fully understand the phenomenon of EIMD and the role 

of contraction velocity using maximal voluntary eccentric contractions. It should 

include, but not be limited to, investigations into whether slow contraction velocities 

provide protection to eccentric exercise at a substantially faster rate. This same 

experiment could be manipulated to have relevance to endurance athletes by 

investigating whether a bout of maximal slow velocity contractions protects against 

EIMD from a comparative bout of sub~maximal high velocity contractions? A 

comparison study is also needed between muscle groups (ideally a lower limb and an 

upper limb) performing a similar exercise task (time of muscle tension or work 

absorbed) and how do these relate to varying stretch velocities? 
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Informed Consent Form 

For the study 

The Effect of Eccentric Exercise Velocity on Selected 
Measures of Muscle Function and Soreness of the Human 

Elbow Flexors in Untrained Males and Females 

Thankyou for expressing an interest in my research. The reason for providing you 
with the following information is to fully inform you of the purpose and nature of the 
study. 

Purpose of the study 

The objective of this study is to investigate whether movement velocity significantly 
effects the selected measures of muscle function and soreness in the elbow flexors 
when exercise is performed eccentrically. 

Exercise and Measurements 

If you agree h. .-drticipate in this study you will be asked to attend the laboratory on 
twelve separate occasions. The first occasion will be two days prior to the first 
exercise session. This initial session will be used to familiarise you with l) the 
testing and exercising equipment, 2) the testing and exercising procedures to be used 
in the study and thirdly to record some base line data to indicate your individual 
starting point. The actual exercise and testing will take place over two seven-day 
blocks, with a three-day break between the two blocks. Several measurements will be 
taken two days before and immediately prior to the exercise session, 30 minutes after 
the exercise, and then 1, 2, 3, 4 and 7 days following exercise. On each of these 
occasions we will also require your approval to take a small sample of blood from 
your fingerrip for analysis of an enzyme called creatine kinase. The day of the 
exercise se~sion will take approximately two and a half· hours, and approximately 30 
minutes for each of the remaining days of the block. The exercise and measurements 
will take place at a sports science research laboratory located on the Edith Cowan 
University Joondalup campus, room 19·150. 

Exercise: You will be asked to perform your exercise task on a machine known as a 
Cybex 6000 isokinetic dynamometer. Your upper arm will be resting on the arm 
support of a preacher curl bench forming a 45° angle with the trunk of your body. 
Your wrist will be secured to the pad of a lever mm, which will cause your elbow 
joint to form an angle of 60°, which will be the starting position of the exercise. 
During the exercise sessions the lever arm will be driven in a downward motion at 
either a speed of 30°·sec·1 or 210°·sec·1 by the motor of the Cybex, forcing the arm 
angle to extend to a position of 180 degrees. You will be verbally encouraged to 
maximally resist the motion of the lever arm and thereby produce what is referred to 
as a "maximal voluntary contraction" of the elbow flexor muscles. The lever arm and 
therefore your arm will be returned to the starting position by the Cybex during 
which time you will be requested to "relax and let the machine move your arm back 
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to the starting position". Exercise will consist of sets of 6 maximal repetitions, with a 
90-second rest between sets. 

Measurements: The following measurements will be taken from the exercised arm. 

Maximal isometric torque: Maximal voluntary isometric torque of the elbow flexors 
at an elbow angle of90° and 150° will be measured twice, for 4 seconds each, using 
the Cybex dynamometer and a preacher curl bench. 
Maximal dynamic torque: Maximal voluntary torque of the elbow flexors will be 
measured concentrically and eccentrically through a set range of motion (90°). The 
concentric contractions will be at 30°, 90°, 150° and 2l0°·sec·1• Eccentric 
contractions will be performed at velocities of30°·sec·1 and 2l0°·sec·1• Two attempts 
will be made at each velocity using the Cybex dynamometer and a preacher curl 
bench. 
Electromyography: The electrical activity of one of the elbow flexor muscles (biceps 
brachii) will be recorded during the above measures of torque on the day of exercise 
and on day 7. Three removable surface electrodes will be placed onto your skin and 
connected to a signal acquisition device. To obtain consistent measurements, three 
marks will be placed on the skin by a semi-permanent ink marker. 
Plasma creatine kinase activity: Approximately 30[!1 of blood will be collected into a 
capillary tube following the piercing of a selected finger with a spring-loaded lancet. 
The blood will be immediately assessed by a spectrophotometer for plasma creatine 
kinase concentration. 
Range of motion: your elbow joint angle will be measured by an investigator using a 
plastic goniometer when you, in a standing position, try to fully flex the elbow by 
touching your shoulder with the palm, try to straighten the elbow joint, and relax 
your arm at your side. To ensure the measurements remain consistent, three marks 
will be placed on the skin by a semi~permanent ink marker. 
Upper arm circumference: Circumference will be assessed by a constant tension tape 
measure at three sites on your ·..:jJper arm (3, 7 and llcm from the elbow crease) 
when you relax and let arm hang by your side. In order to keep the measurements 
consistent the three sites will be marked on the skin by semi-permanent ink marker. 
Muscle soreness: This will be assessed by palpating the selected elbow flexor 
muscles (primarily the biceps brachii) at a number of sites, and forcibly extending 
and flexing the elbow joint, during which time you the subject will be asked to mark 
your level of discomfort using a visual analog scale (VAS) of a lOOmm line (0: no 
pain, 100: very painful). 

• Risk and Ethical considerations 

You may experience some degree of muscle soreness and decreases in muscle 
function, such as muscle strength and range of motion, in the days following the 
exercises. You may also experience swelling of the upper arm and forearm. these 
symptoms are often seen after unaccustomed exercise containing eccentric muscle 
actions, and will disappear in a week or so. 
You will experience some transient discomfort when a lancet pierces your finger 
during the process of blood sampling for creatine kinase analysis. Since blood is 
withdrawn by an experienced researcher in accordance with a safety manual of blood 
sampling, risk for infections or injury are negligible. Other measurements employed 
in the study are risk free. 

79 



No direct comparisons between different individuals participating in the study will be 
made at any stage of the testing. Analysis of the data will be made on a group basis 
with means and variance between groups compared. You are therefore not in 
competition with any other individuals in the study and will in no way be made to 
feel as if your results are inadequate or incorrect. 
All personal information and test results recorded will remain confidential and will 
not be used for any other purpose other than the current study. Moreover, no data 
analysis will include your name or information that may identify you as the specific 
subject involved. 
You will be free to withdraw from this study at any stage and for any reason without 
prejudice. 

Requirements 

As the study is aimed at assessing any changes that may occur across a period of 
time, you will be requested not to perform any unaccustomed exercises or sporting 
activities, not to take any anabolic steroids, anti-inflammatory drugs or nutritional 
supplements, and not to alter your diet and lifestyle (sleeping habits etc) that may 
influence your results during the experimental periods. 
Additional, as the study involves an exercise protocol, it is requires Wat you be 
healthy at the time of testing. For this reason, you will be asked to complete a 
medical questionnaire prior to the commencement of testing. 

Should you have any questions relating to any of the information provided above, 
please feel free to contact me for further explanation. If you have any concerns about 
this research, or would just like to speak to an independent person, you may contact 
the Head of our schoo~ Assoc Prof. Barry Gibson on telephone (9400 5037). 

Thankyou very much for your cooperation and contribution to the study. 

Yours Sincerely, 

Dale Chapman B.Sd (MSc. candidate) 
School of Biomedic~::~l and Sports Science, Edith Cowan University 
100 Joondalup Drive, Joondalup WA 6027 
Phone: 9400 5159 E-mail: d.chapman@ecu.edu.au 
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Medical Questionnaire 

The following questionnaire is designed to establish a background of your medical 
history, and identify any injury and or illness that may influence your testing and 
performance. 
Please answer all que!'tions as acc'Jrately as possible and if you are unsure about any 
thing please ask for r;lruification. All information provided is strictly confidential. If 
Y:Ju answer yes to any non-exercise related question that may contraindicate you 
fmm completing '.his study a clearance from a qualified medical practitioner will be 
required prior t() commencement of any exercising or testing. 

Personal Details 

N,1me: ------------ Subject Code: 

Date of Birth (DIMlY): ------ Gender: Female Male 

Medical History 
Have you ever had, or do you currently have any of the following? 

If YES, please provide details 

High or abnormal blood pressure y N 

High cholesterol y N 

Rheumatic fever y N 

Heart abnormalities y N 

Asthma y N 

Diabetes y N 

Epilepsy y N 

Recurring back pain y N 

Recurring neck pain y N 

Severe allergies y N 

Any infectious diseases y N 

Any neurological disorders y N 

Any neuromuscular disorders y N 
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Are you currently on any medications? 

Have you had the flu in the last two weeks? 

Have recently injured yourself? 

Do you have any recurring muscle or 
joint injuries? 

Have you had any elbow or shoulder 
problems in the past? 

Have you participated in resistance training 
in the last six months? 

Is there any other condition not previously 
mentioned which may affect your upper 
arm exercise? 

Lifestyle Habits 

Do you exercise regularly? 
If YES, what do you do? 

How many hours per week? 

Do you smoke tobacco? 
If YES, how much p~r day? 

Do you consume alcohol? 
If YES, how much per week? 

Do you consume tea or coffee? 
If YES, how many cups per day? 

Declaration 

If YES, please provide details 

y N _____ _ 

y N _____ _ 

N ____ _ 

y N _____ _ 

y N _____ _ 

y N ____ _ 

y N _____ _ 

y N 

y N 

y N 

I acknowledge that the information provided on,this form is to the best of my 
knowledge, a true and accurate indication of my current state of health. 

Participant 

Name: ________________________ _ 

Date (DD/MMIYYYY): _____ _ 
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4 111 December, 2002 

Mr Dale Chapman 
 

 

Dear Mr Chapman, 

tt is with plee~ure that I write on behalf of the Faculty of Communication, Health & Science, 
Higher Degrees Committee to advise you that your Master's research proposal has been 
;.1:;proved- Tile effect of eccentric exercise velocity on selected mea.' ures of muscle 
function and soreness of the human elbow flexors in untrained males and females. 

1 am pleased to advisl3 that your proposal complies with the provisions contained in the 
University's policy for the conduct of ethical research, and your application for ethics 
clearance has been approved. Your ethics approval number Is 02-143 and period of 
approval is 181

n September, 2002 to 31"1 December, 2003. A copy of the Conditions of 
Approval is attached. You may now commence your data collection 

Approval is given for your supervisory team to consist of: 

Principal Supervisor: Dr Paul Sacco 

The examination requirements on completion are laid down in Part 4 of The University 
(Admissions, Enrolment and Academic progress) Rules far Courses Requiring the 
Submission of Thesas (contact office if you require a copy) or c.heck the web at: 
WNW cowan.edu.aulsecretarlaUunical/rUies/aprcOill.lllm. 

Additional information and documentation relating to the examination process can be found 
at our web site: www.cowan.edu.au/research/gsmain.html. 

Please note: 
1. The Research Students and Scholarship Committee has resolved to restrict Master 

theses to a maximum of 70,000 words with a provision that under special 
circumstances a candidate may seek approval from the Faculty Research and 
Hioher Degrees Commiltee for an extension 10th,, word length. [RSSC 99124] 

Finally, could I take this opportunity to offer you our best wishes for your research and the 
development of your thesis. 

Sincerely 

Karen Leckie 
Manager 
Graduate School 

cc: P Sacco 
R Treloar·Cook 
Graduate School File 

MOlJI<T lAWlCY t:Ah1!'US 

,,,, •.•. ,l..l'"o"'""• 
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Pilot Study Table I 
Subject Eccentric Peak Torgue, Nm (averase of 2 trials) 

Eccentric Velocity 
30 90 150 210 

Subject Test l Test2 Test 1 Test 2 Test I Test 2 Test I Test2 
1 49.5 40.0 43.0 41.0 58.0 42.5 57.0 43.0 
2 27.5 24.5 27.5 30.5 27.0 28.5 29.0 30.5 
3 22.0 20.5 26.5 19.0 19.0 18.5 19.5 17.0 
4 35.0 41.0 34.5 36.0 34.5 38.0 35.0 32.0 
5 42.0 46.0 38.5 46.0 39.0 46.5 40.0 45.0 
6 76.0 71.0 71.0 67.5 72.5 67.0 71.0 67.5 
7 81.0 79.0 70.5 73.0 73.5 71.0 70.0 69.5 
8 67.0 56.0 69.0 60.5 70.0 62.5 62.5 79.0 
9 51.5 45.5 49.5 46.5 48.5 43.5 48.0 44.0 

lO 66.5 74.0 65.0 62.0 75.0 68.5 71.0 66.5 
ll 63.0 75.0 65.0 71.0 67.5 72.0 65.0 69.0 
12 51.0 52.0 56.5 49.0 50.0 43.0 48.0 43.0 
13 44.0 41.5 47.5 43.0 44.5 42.0 43.0 42.0 
14 47.5 49.0 53.0 51.5 50.0 55.0 54.5 56.0 

Mean 51.7 51.1 51.2 49.8 52.1 49.9 5!.0 50.3 
SEM 4.7 4.9 4.2 4.2 4.8 4.4 4.4 4.8 

Pilot Study Table 2 
Subject Isometric Peak Torgue, Nm (averaS:e of 2 trials) 

Isometric contraction prior to Eccentric Velocity 
30 90 150 210 30 

Subject Test I Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test I Test2 
1 53.0 45.0 46.0 42.0 45.0 41.0 45.0 42.0 41.0 42.0 
2 27.0 24.0 24.0 26.0 23.0 24.0 26.0 24.0 23.0 24.0 
3 19.0 I8.0 18.0 18.0 19.0 14.0 18.0 15.0 16.0 14.0 
4 28.0 30.0 27,0 34.0 27.0 31.0 24.0 30.0 26.0 28.0 
5 39.0 38.0 35.0 37.0 33.0 37.0 31.0 37.0 30.0 35.0 
6 60.0 57.0 62.0 58.0 61.0 58.0 58.0 62.0 37.0 65.0 
7 69.0 70.0 69.0 73.0 65.0 66.0 61.0 66.0 61.0 61.0 
8 71.0 71.0 62.0 71.0 66.0 69.0 62.0 68.0 61.0 68.0 
9 41.0 34.0 38.0 34.0 35.0 30.0 33.0 28.0 35.0 28.0 

10 64.0 66.0 62.0 64.0 66.0 62.0 64.0 62.0 64.0 
11 57.0 72,0 58.0 68.0 61.0 71.0 65.0 71.0 62.0 65.0 
12 37.0 52.0 37.0 52.0 43.0 56.0 50.0 49.0 49.0 46.0 
13 39.0 38.0 38.0 34.0 35.0 34.0 34.0 34.0 37.0 34.0 
14 45.0 46.0 43.0 43.0 43.0 43.0 42.0 42.0 42.0 42.0 

Mean 46.4 47.2 44.2 46.7 44.4 45.4 43.8 45.0 41.5 44.0 
SEM 4.4 4.8 4.3 4.7 4.5 4.9 4.4 4.9 4.2 4.8 
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Table I 
Peak Isometric 90 Torf;l;ue (L VE) 

Time 
Subject Gender Base Post 30 Post Da:z: 1 Da:z:2 Da:z:3 Dn:z:4 Da:z:7 

03 F 25.23 19.77 17.25 20.05 20.89 25.51 26.09 25.07 
04 F 28.16 24.81 22.85 26.20 27.04 26.48 24.80 28.72 
07 F 31.25 23.18 21.73 28.13 22.31 26.24 24.20 32.41 
08 F 31.54 18.53 20.27 23.47 24.78 27.83 29.58 
10 F 31.18 22.89 23.47 22.75 25.65 25.95 27.84 31.76 
12 F 40.71 27.83 24.64 34.09 36.85 39.61 39.47 42.23 
01 M 53.61 29.28 30.96 37.11 39.63 44.66 49.69 55.01 
02 M 51.95 47.18 44.10 50.81 46.90 50.53 50.25 51.93 
05 M 70.39 55.29 46.06 49.97 55.29 64.52 65.63 63.68 
06 M 60.18 33.48 32.64 41.03 42.43 43.26 51.65 52.21 
09 M 46.79 25.07 31.80 36.56 39.61 37.72 41.65 
11 M 82.27 65.63 62.84 65.91 69.55 75.70 65.63 74.86 

Mean 
Total 46.10 32.74 31.55 36.34 37.58 40.67 42.52 44.09 
SEM 5.24 4.37 3.86 3.97 4.25 4.72 4.72 4.51 

Tab\e2 
Peak Isometric 90 Torgue {HVE) 

Time 
Subject Gender Base Post 30 Post Da:z: 1 Da:z:2 Da::z:3 Da:z:4 Dar7 

03 F 26.89 9.08 8.64 7.33 7.91 7.92 8.64 11.34 
04 F 29.23 8.09 9.20 9.63 10.62 9.82 12.83 
07 F 30.88 7.63 10.24 10.68 6.89 11.69 11.84 14.75 
08 F 29.14 7.48 6.46 10.82 11.26 17.66 16.20 19.26 
10 F 28.58 7.09 7.45 10.38 9.37 9.66 6.89 11.55 
12 F 44.06 15.77 14.89 17.22 14.89 15.04 27.11 26.52 
01 M 52.27 18.37 15,02 22.85 25.92 29.56 31.24 
02 M 54.87 18.12 19.69 26.48 32.64 28.44 29.28 
05 M 67.68 23.18 23.69 26.38 32.62 35.64 41.27 .17 .39 
06 M 62.96 14.60 17.73 19.84 22.45 23.33 20.56 26.20 
09 M 44.98 20.42 20.71 25.94 26.24 31.62 32.78 33.94 
11 M 79.06 33.94 38.65 41.86 44.38 45.78 46.90 53.33 

Mean 
Total 45.88 15.31 15.70 18.55 19.92 22.53 23.72 26.36 
SEM 5.10 2.36 2.73 2.86 3.37 3.57 3.75 3.78 
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Table3 
Peak Isometric !50 Torgue 'LVEl 

Time 
Subject Gender Base Post ]IJ Post Da~ I Da:t2 Da:t 3 Da:t4 Da:t7 

03 F 17.53 10.82 13.95 13.06 13.34 14.02 16.35 13.58 
04 F 20.75 16.14 20.05 11.38 18.09 16.42 17.54 20.33 
07 F 19.31 14.75 14.89 14.46 15.33 17.65 18.67 23.43 
08 F 19.55 14.17 13.15 16.64 15.18 18.09 23.18 
10 F 18.24 13.44 12.42 13.29 16.35 15.04 17.22 20.42 
12 F 26.74 20.71 19.69 24.93 26.24 28.27 28.27 29.44 
01 M 42.28 23.13 21.73 27.32 22.29 25.08 28.16 27.60 
02 M 42.85 30.68 34.03 37.95 35.43 38.79 40.75 40.74 
05 M 45.08 33.20 30.68 35.15 41.02 46.90 43.82 41.59 
06 M 38.93 20.89 21.45 27.33 26.78 24,53 27.88 31.24 
09 M 22.27 16.49 15.91 20.13 21.44 21.29 23.91 
II M 65.77 42.14 41.03 48.02 50.~5 52.49 54.73 58.92 

Mean 
Total 31.61 21.38 21.58 24.14 25.14 26.55 29.34 29.53 
~EM 4.39 2.73 2.63 3.34 3.34 3.71 3.80 3.56 

Tablc4 
Peak Isometric !50 Tort ue HVE 

Time 
Subject Gender Base Post 30 Post Da:t I Da:t2 Da:t 3 Da:t4 Da:t 7 

03 F 15.76 9.08 8.64 7.33 7.91 7.92 8.64 11.34 
04 F ' 16.74 8.09 9.20 9.63 10.62 9.82 12.83 
07 F 18.35 7.63 10.24 10.68 6.89 11.69 11.84 14.75 
08 F 15.40 7.48 6.46 10.82 11.26 17.66 16.20 19.26 
10 F 14.32 7.09 7.45 10.38 9.37 9.66 6.89 11.55 
12 F 25.65 15.77 14.89 17.22 14.89 15.04 27.11 26.52 
01 M 38.79 18.37 15.02 22.85 25.92 29.56 31.24 
02 M 33.47 18.12 19.69 26.48 32.64 28.44 29.28 
05 M 50.55 23.18 23.69 26.38 32.62 35.64 41.27 37.39 
06 M 38.65 14.60 17.73 19.84 22.45 23.33 20.56 26.20 
09 M 24.75 9.37 10.97 12.28 14.75 16.06 13.29 14.02 
II M 63.82 33.94 38.65 41.86 44.38 45.78 46.90 53.33 

Mean 
Total 29.69 14.39 14.81 17.41 18.96 21.23 22.10 24.36 
SEM 4.56 2.35 2.72 2.81 3.34 3.51 3.74 3.85 
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TableS 
Peak Torgue: Concentric 30 iL VEl 

Time 
Subject Gender Base Post 30 Post Da;t 1 Da:z::2 Da:z::3 Da:z::4 Da;t7 

03 F 17.45 12.88 13.29 13.16 14.23 16.38 17.85 17.05 
04 F 21.68 19.87 16.11 16.65 18.52 18.26 19.33 18.39 

07 F 21.54 16.24 14.23 14.50 14.23 15.30 19.46 22.76 
08 F 19.41 14.35 14.23 15.48 16.23 18.23 19.60 
10 F 18.25 14.50 13.42 13.56 16.51 15.35 15.60 18.23 

12 F 31.79 22.23 17.23 26.98 26.85 27.98 29.98 31.35 
01 M 40.62 22.43 22.69 22.86 25.72 31.20 36.40 38.40 
02 M 44.48 31.20 39.01 41.61 39.27 44.22 44.48 40.60 

05 M 58.02 36.91 33.50 36.24 43.08 49.39 51.47 56.52 
06 M 41.14 25.10 23.35 26.71 27.12 30.07 32.62 40.07 
09 M 32.50 35.34 34.23 22.68 31.28 29.13 33.02 

!1 M 64.73 39.74 43.09 46.11 50.46 54.17 48.46 59.87 
Mean 
Total 34.30 24.23 23.70 24.71 26.96 29.14 31.56 32.99 
SEM 4.58 2.73 3.15 3.26 3.49 3.94 3.87 4.25 

Table6 
Peak Tor~ue: Concentric 30 'HVEl 

Time 

.S .. !!~Ject Gender Base Post 30 Post Da:t I Da:t 2 Da:z::3 Da;t4 Da;t7 

03 F 21.78 !0.07 10.87 16.24 18.53 17.85 22.01 18.38 
04 F 20.28 7.53 8.18 10.25 10.74 12.21 16.65 17.76 

07 F 19.46 5.91 8.98 10.47 9.26 12,88 11.28 12.75 
08 F 19.66 11.10 10.23 16.48 16.98 16.73 15.48 18.35 

10 F 16.91 5.37 6.84 8.22 8.86 9.13 13.56 16.38 
12 F 34.73 12.73 13.98 16.10 22.35 24.35 24.60 27.10 
01 M 40.74 20.13 14.77 24.29 27.78 31.95 36.3S 
02 M 40.74 26.98 24.43 27.11 31.41 27.92 30.07 
05 M 55.46 22.10 25.37 31.13 34.23 39.33 48.73 49.76 

06 M 41.38 12.22 13.91 20.92 21.75 27.11 24.97 27.34 

09 M 34.89 18.25 18.39 15.71 15.71 26.04 22.15 27.52 

1! M 61.01 3U4 31.41 33.29 34.09 37.72 34.36 42.68 

Mean 
Total 33.92 15.33 14.81 18.96 20.61 23.89 24.84 26.19 
SEM 4.25 2.44 2.20 2.32 2.57 2.93 3.12 3.31 
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Table 7 
peak Torgue: Concentric 90 'L VE} 

Time 
Subject Gender Base Post 30 Post Da:z:: 1 Da:z::2 Da:z::3 Da:z::4 Da:z:: 7 

03 F 19.15 15.44 15.71 15.03 15.03 16.78 17.58 18.93 
04 F 19.13 17.05 15.17 16.64 17.31 18.59 17.32 19.20 
07 F 20.00 13.83 12.48 16.92 17.05 15.43 17.85 21.37 
08 F 13.54 13.23 13.73 15.73 14.98 16.48 17.35 
10 F 18.79 13.82 14.23 12.35 15.17 14.73 15.23 18.10 
12 F 29.73 19.23 15.85 20.60 24.60 25.85 24.48 27.85 
01 M 37.54 20.84 22.13 22.60 23.64 30.68 32.24 35.88 
02 M 40.70 34.06 34.84 36.66 36.14 38.49 42.39 39.73 
05 M 53.96 29.80 30.06 26.18 35.71 43.66 44.78 51.48 
06 M 41.54 27.25 25.23 26,57 25.90 27.65 28.32 39.40 
09 M 30.21 25.59 20.94 24.96 32.89 26.31 30.07 
II M 55.51 35.71 31.35 29.67 36.38 40.74 43.43 51.14 

Mean 
Total 32.06 22.15 20.97 21.99 24.56 26.28 28.36 30.87 
SEM 3.96 2.34 2.24 2.06 2.54 2.99 3.39 3.63 

Table 8 
Peak Torgue: Concentric 90 ~HVEl 

Time 
Subl!:ct Gender Base Po.t 30 Post Da:z::l DaJ::2 Da:z::3 Da:z::4 Da.r7 

03 F 22.12 10.18 10.47 16.11 17.59 17.45 19.33 18.77 
04 F 20.44 10.86 6.32 8.83 10.98 11.66 15.29 19.10 
07 F 20.20 5.78 7.42 6.98 9.53 10.61 11.95 13.36 
08 F 18.04 13.60 12.23 13.98 18.10 15.23 15.48 15.98 
10 F 16.44 6.04 6.31 8.99 10.07 8.59 14.90 16.24 
12 F 33.66 11.23 ll.48 11.60 16.98 18.60 21.23 24.60 
01 M 36.72 14.23 16.51 21.21 24.97 28.32 32.69 
02 M 37.51 22.55 25.91 26.85 28.99 25.77 28.45 
OS M 51.67 18.01 19.33 23.33 26.18 30.33 41.21 43.11 
06 M 46.09 11.08 12.58 15.44 20.67 22.15 27.65 29.74 
09 M 30.32 8.32 7.'29 13.96 17.05 18.93 18.12 20.98 
11 M t:'. ·~ 

J'l.4.:1 2'i.64 26.04 27.11 23.76 29.26 24.16 31.14 
Mean 
Total 32.30 13.12 12.36 16.12 18.56 20.01 22.31 23.77 
SEM 3.85 1.78 1.78 1.97 1.78 2.25 2.45 2.53 
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Table9 
Peak Tor~ue: Conc.;ntric 150 ~LVE~ 

Time 
Subject Gender Base Post 30 Post Da:t I Da:t2 Da~3 oax4 Da:t7 

03 F 18.59 16.24 13.43 15.98 14.63 15.17 16.92 16.91 
04 F 19.26 16.24 15.97 15.57 16.78 16.58 16.78 19.06 
07 F 19.06 12.48 11.95 15.70 16.51 15.03 17.45 17.78 
08 F 19.91 14.35 12.48 15.23 13.48 15.23 14.60 
10 F 16.71 12.21 11.94 11.28 13.69 14.10 14.48 14.35 
12 F 23.79 16.98 14.23 22.73 24.60 25.23 23.10 26.10 
01 M 33.16 21.64 22.41 23.12 24.42 33.80 30.15 36.40 
O> M 39.79 29.89 29.11 33.28 30.67 34.84 36.40 33.35 
05 M 50.44 30.07 29.40 24.43 33.82 39.87 40.08 45.11 
06 M 41.55 28.99 25.23 32.48 30.47 32.22 29.26 32.69 
09 M 29.79 20.65 18.93 24.83 25.50 26.98 26.44 
11 M 45.94 23.29 29.00 32.35 36.72 39.74 39.07 44.10 

Mean 
Total 29.83 20.25 19.50 22.25 23.4<!. 25.73 26.37 27.24 
SEM 3.47 1.91 2.07 2.20 2.39 2.94 2.86 3.19 

Table lO 
Peak tor~ue: Concentric 150 !HVEl 

Time 
Subject Gender Base Post 30 Post Da:t l Da:t2 oax3 Dax4 nax7 

03 F 22.45 9.13 8.05 15.44 15.30 18.79 20.13 18.46 
04 F 17.62 8.41 7.28 7.92 10.12 11.78 14.18 13.73 
07 F 16.71 4.69 8.44 7.12 9.13 7.79 9.66 11.68 
08 F 16.60 13.48 10.48 12.23 15.10 13.98 13.35 14.73 
10 F 14.70 6.31 4.96 6.44 7.79 6.85 13.29 14.90 
12 F 29.79 9.73 12.23 10.73 13.60 16.85 19.73 20.23 
01 M 35.04 17.05 13.42 19.20 23.36 30.61 29.33 
02 M 34.97 17.05 21.88 22.28 25.64 23.62 26.31 
05 M 46.97 19.23 16.64 20.29 27.65 33.55 28.66 33.60 
06 M 42.59 12.89 16.11 21.34 24.03 22.42 30.64 
09 M 26.43 7.27 8.33 10.20 10.74 15.30 14.77 18.39 
11 M 45.10 21.88 20.40 22.42 20.00 23.36 23.36 29.66 

Mean 
Total 29.08 12.26 11.02 14.16 16.37 19.04 19.37 21.12 
SEM 3.40 1.60 1.36 1.69 1.86 2.47 1.34 2.21 
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Table 11 
Peak Torgue: Concentric 210 ~LVE} 

Time 
Subject Gender Base Post 30 Post Da:z: I Da:z:2 Da:z:3 Da~4 Da:z:7 

03 F 16.38 14.23 12.2i 12.21 1Ll4 15.30 14.49 14.23 
04 F 17.54 15.30 14.36 16.24 15.98 16.28 15.44 17.05 
07 F 15.48 10.61 1UH 12.89 16.51 14.09 14.77 14.05 
08 F 17.85 10.73 11.98 14.23 13.35 13.98 13.60 
10 F 14.29 10.74 10.34 10.33 11.01 13.85 12.35 13.48 
12 F 22.66 14.48 16.35 16.98 21.60 25.98 21.23 22.73 
01 M 39.68 21.64 21.28 23.38 31.45 32.24 28.33 31.19 
02 M 36.43 28.07 28.59 28.33 31.97 30.67 32.24 30.35 
05 M 44.40 27.78 22.77 25.23 33.42 36.11 35.38 39.40 
06 M 42.35 27.52 25.64 26.31 23.09 26.17 27.78 32.02 
09 M 24.99 18.32 14.23 18.12 24.43 20.54 23.89 
[[ M 37.89 27.99 26.65 28.33 35.71 35.04 33.03 42.08 

Mean 
Total 27.49 18.95 17.95 19.38 22.47 23.35 23.50 24.50 
SEM 3.38 2.10 1.92 1.90 2.60 2.51 2.55 2.99 

Table 12 
Peak Torsue: Concentric 210 'HVEl 

Time 
Subject Gender Base Post 30 Post Da:z: 1 Da:z:2 Da:z: 3 Da:z: 4 Da:z:7 

03 F 20.27 8.86 5.91 15.17 15.84 14.09 17.05 14.23 
04 F 13.65 6.31 7.39 7.66 10.43 12.64 13.38 12.65 
07 F 14.63 4.01 6.24 5.90 7.78 7.12 9.13 9.26 
08 F 14.16 8.98 8.98 10.23 13.23 12.48 14.23 11.60 
10 F 13.22 6.44 4.16 5.50 6.31 7.38 13.16 12.75 
12 F 24.60 9.73 9.48 10.10 11.60 12.35 16.23 18.48 
OJ M 33.36 15.44 13.69 18.26 21.75 26.17 24.30 
02 M 30.47 18.39 20.54 18.52 24.23 26.17 25.77 
05 M 42.04 16.12 16.51 19.15 27.38 28.46 32.75 36.64 
06 M 40.02 12.14 15.40 18.12 16.11 22.82 21.48 25.11 
09 M 23.87 7.54 6.59 5.37 9.26 12.35 12.62 12.48 
[[ M 40.07 23.76 19.33 18.79 14.23 21.48 20.27 24.29 

Mean 
Total 25.86 11.47 10.33 12.90 14.37 16.80 18.39 18.48 
SEM 3.20 1.69 1.46 1.73 1.75 2.14 1.97 2.44 
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Table 13 
Peak Torl:.lue: Eccentric 30 !L VE} 

Time 
Subiect Gender Base Pmt 30 Post DaJ:: I DaJ::2 Daz:3 DaJ::4 DaJ:: 7 

OJ F 28.59 21.34 19.87 19.87 23.09 23.10 27.92 23.76 
04 F 33.42 26.31 25.77 29.66 27.65 2.8.05 27.35 31.60 
07 F 29.26 19.06 18.52 25.10 24.30 29.80 28.99 37.58 
08 F 35.29 23.85 22.60 23.10 25.35 26.23 33.60 
10 F 34.56 24.70 24.29 20.40 26.84 24.48 28.48 30.98 
12 F 49.91 29.35 28.98 38.10 41.10 42.10 37.98 42.85 
01 M 56.80 33.90 34.32 34.32 40.31 42.39 46.04 53.33 
02 M 59.84 46.30 43.96 40.05 42.39 44.48 45.78 46.48 
05 M 76.04 56.91 49.26 40.40 49.93 54.23 60.81 66.58 
06 M 59.40 34.63 33.42 40.27 38.52 46.45 51.82 60.21 
09 M 42.62 29.80 29.66 34.23 39.06 38.25 45.10 
ll M 91.58 63.90 63.56 64.23 70.61 64.23 58.86 75.98 

Mean 
Total 49.77 34.17 32.85 34.14 37.43 38.65 41.40 45.67 
SEM 5.71 4.12 3.86 3.53 3.93 3.70 3.78 4.56 

Table 14 
Peak Torsue: Eccentric 30 ~HVEl 

Time 
Subject Gender Base Post 30 Post Da:z: 1 Da:z:2 Da:z:3 Da:z:4 Da:z:7 

OJ F 29.00 12.62 12.89 17.99 19.33 19.20 22.01 27.35 
04 F 30.8! 16.05 15.95 16.52 18.99 21.75 23.10 27.24 
07 F 30.81 12.01 14.46 16.64 15.98 16.38 17.58 21.88 
08 F 30.80 24.35 22.10 25.85 29.73 28.85 29.73 30.35 
10 F 28.45 11.81 11.28 14.63 16.51 18.39 23.22 30.60 
12 F 47.79 21.48 19.85 22.10 26.85 30.10 29.23 33.35 
01 M 50.31 21.21 19.59 28.72 35.57 37.59 42.76 
02 M 53.86 31.54 29.39 28.99 34.50 41.75 44.43 
05 M 68.12 27.01 27.89 36.24 38.53 46.17 58.26 59.33 
06 M 66.17 23.94 24.17 31.68 32.88 38.93 34.23 35.30 
09 M 46.98 21.61 24.97 24.27 28.06 31.14 26.84 3208 
ll M 80.87 41.48 4l.75 40.00 42.95 54.23 51.68 56.51 

Mean 
Total 47.00 22.09 21.35 25.33 27.86 31.43 33.36 36.22 
SEM 5.13 2.51 2.48 2.36 2.54 3.36 3.67 3.50 
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' Table IS 

Pea~ Torsue: Eccentric 210 'LVEl 
Time 

Subjecl Gender Base Post 30 Post Da:t l Da:t2 Da~3 Da:t4 Da:t7 
03 F 30.51 23.35 21.48 21.07 20.40 27.60 23.76 25.77 
04 F 33.49 27.92 27.78 26.31 25.23 22.82 26.78 33.73 
07 F 32.75 26.04 24.56 30.~4 27.65 38.12 36.78 
08 F 37.54 28.35 26.48 27.10 27.10 30.60 36.73 
lO F 39.13 24.96 28.99 27.12 29.53 33.10 32.23 36.48 
12 F 49.54 29.l0 26.98 38.73 37.48 37.10 38.10 38.35 
01 M 48.72 34.18 32.50 33.80 35.10 39.27 45.00 45.52 
02 M 55.02 42.92 42.91 41.35 46.56 45.52 49.16 50.35 
05 M 67.65 45.64 52.62 40.27 47.11 55.57 52.08 64.57 
06 M 62.46 36.81 37.18 39.33 39.19 51.68 48.12 65.57 
09 M 43.81 32.35 34.77 37.05 45.51 36.51 53.15 
II M 83.36 64.23 59.54 43.09 59.54 73.96 69.60 73.63 

Mean 
Total 48.66 34.65 34.65 33.79 36.70 41.25 42.29 46.72 
SEM 4.64 3.35 3.37 2.08 3.30 4.23 3.91 4.30 

Table 16 
,Peak Torsue: Eccentric 210 'HVE} 

Time 
Subiect Gender Base Post 30 Post Da:t: 1 DaJ::2 DaJ::3 DnJ::4 DaJ::7 

03 F 29.00 13.15 16.64 20.54 20.81 19.73 26.04 25.03 
04 F 32.60 22.82 27.15 16.15 21.81 25.26 26.00 25.72 
07 F 33.36 12.94 15.79 18.25 16.37 16.64 21.34 25.10 
08 F 36.55 28.73 23.73 28.23 34.98 29.23 34.23 31.35 
lO F 32.95 13.43 15.71 17.32 21.34 24.16 29.39 33.02 
12 F 44.35 23.48 22.73 26.98 28.23 32.98 34.60 40.23 
01 M 50.00 25.62 17.35 27.92 33.69 38.79 46.45 
02 M 50.62 31.&1 30.06 22.95 29.80 41.34 47.52 
05 M 69.64 23.12 26.68 34.36 34.76 42.82 56.51 60.14 
06 M 65.10 24.05 28.32 23.89 33.29 41.34 37.99 40.67 
09 M 55.97 25.37 27.38 27.92 32.75 31.68 29.93 38.66 
II M 81.05 44.97 45.10 38.92 42.28 50.87 41.61 58.78 

Mean 
Total 48.43 24.12 24.23 25.88 28.60 31.94 35.45 38.74 
SEM 4.85 2.58 2.46 2.01 2.26 2.90 2.87 3.62 
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Table 17 
Rense of Movement L VE 

Time 

04 F 135.0 131.0 133.0 130.5 135.0 134.5 142.0 138.5 
07 F 138.5 125.5 127.5 131.0 127.0 126.0 132.0 137.0 
08 F 142.0 132.0 130.5 134.5 132.0 137.5 142.5 
10 F 133.8 118.5 117.0 121.0 124.0 121.0 124.5 133.0 
12 F 137.0 129.0 128.5 134.5 134.0 135.0 135.0 137.0 
01 M 163.0 154.5 155.5 164.0 156.0 157.0 157.5 154.0 
02 M 140.0 135.5 132.0 131.5 134.5 138.0 136.5 139.5 
05 M 123.5 113.5 117.5 114.0 119.0 117.0 118.5 119.5 
06 M 126.5 99.5 75.5 101.5 100.5 105.5 109.5 121.0 
09 M 131.5 129.0 126.5 126.0 123.0 122.5 134.0 
11 M 128.5 126.5 129.5 126.5 129.0 132.0 128.0 130.5 

Mean 
Total 135.92 125.71 123.75 127.71 127.75 129.29 131.00 134.63 
SEM 2.93 3.93 5.39 4.33 3.78 3.73 3.80 2.69 

Table 18 
Ranse of Movement ~HVEj 

Time 
Subject Gender Base Post 30 Post Dax 1 Dax2 Da;[3 Dax4 Dax7 

OJ F 137.0 123.5 121.0 117.0 ll8.5 121.5 128.0 142.0 
04 F 136.0 126.0 126.0 124.5 125.5 124.5 131.0 135.0 
07 F 130.8 63.0 72.0 95.5 102.0 103.0 102.0 114.5 
08 F 141.3 132.5 128.0 130.0 135,0 135.0 138.5 141.0 
10 F 135.8 122.5 120.0 125.5 126.5 130.5 136,0 134.0 
12 F 132.8 122.0 123.5 123.5 125.0 122.5 125.5 128.5 
01 M 158.8 135.5 133.0 144.0 140.5 137.5 148.0 
02 M 143,0 131.0 128.0 123.5 125.5 127.5 136.5 
05 M 133.0 116.5 119.5 116.5 113.5 118.5 121.0 131.0 
06 M 124.3 33.0 65.0 69.5 83.0 96.5 85.0 110.5 
09 M 132.5 128.0 134.0 120.5 123.5 110.0 111.0 134.5 
II M 137.5 122.5 132.5 123.0 118.0 117.0 115.5 126.5 

Mean 
Total 136.88 113.00 115.86 118.13 119.54 120.17 122.42 130.36 
SEM 2.44 9.08 6.94 5.46 4.36 3.54 4.95 2.89 
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Table 19 
Relaxed arm An11;le !1 VEl 

Time 
Subject Gender Base Prut 30 Post Da:z: 1 oax2 Daz3 Dax4 Da;r:7 

03 F 149.0 141.5 142.0 142.5 145.0 145.0 149.0 i52.0 
04 F 154.0 151.5 141.5 148.5 152.5 155.0 149.0 155.0 
07 F 152.5 155.0 155.0 155.0 151.0 150.0 149.0 150.5 
08 F 156.5 156.0 157.5 150.5 150.0 154.5 156.5 
10 F 150.0 145.0 142.0 141.0 143.0 138.5 143.5 149.0 
12 F 152.5 154.0 154.5 154.5 157.0 155.5 154.0 157.0 
01 M 152.5 152.5 155.0 150.5 150.0 152.0 149.5 153.5 
02 M 153.8 147.0 161.5 150,5 153.5 160.0 150.0 154.0 
05 M 156.0 151.0 156.5 151.5 147.5 150.0 154.5 155.5 
06 M 154.5 140.5 142.5 142,5 140.5 144.0 144.5 153.0 
09 M 152.5 152.0 149.5 153.5 147.5 146.5 152.5 
11 M 147.8 146.0 144.5 143.0 143.5 142.0 142.0 145.0 

Mean 
Total 152.63 149.33 150.17 148.63 148.42 149.42 148.50 152.79 
SEM 0.76 1.50 2.11 1.46 1.40 1.84 1.19 0.98 

Table20 
Relaxed arm An~le ~HVEl 

Time 
Subject Gender Base Post 30 Post Da:z: I Da:z: 2 Daz 3 Da;t4 Dax7 

03 F 149.3 152.0 153.5 147.5 155.5 147.0 149.5 149.5 
04 F 157.0 157.5 151.0 152.0 152.5 152.0 151.0 156.0 
07 F 148.0 135.5 134.5 131.5 133.5 132.5 131.0 135.0 
08 F 152.8 147.0 153.0 15l.O 141.0 148.5 152.0 150.0 
10 F 152.0 148.0 150.0 145.0 146.0 145.5 147.5 150.5 
12 F 146.3 138.5 132.5 135.5 136.5 137.5 140.5 142.5 
01 M 160.0 159.0 156.0 153.5 150.5 150.0 153.5 
02 M 160.0 151.5 155.0 153.0 151.0 154.5 168.0 
05 M 165.0 150.5 153.5 153.0 153.5 157.0 154.0 158.5 
06 M 151.0 143.0 137.5 140.5 133.5 132.0 128.0 136.0 
09 M 156.3 146.0 151.5 142.0 135.5 128.0 134.0 149.5 
11 M 160.8 155.0 156.5 158.5 155.0 146.5 154.5 154.5 

Mean 
Total 154.85 148.63 148.14 147.08 145.50 143.96 145.83 150.00 
SEM 1.69 2.07 2.55 2.40 2.57 2.65 2.84 2.78 
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Table 21 
Creatine Kinase 'L VEJ 

Time 
Subject Gender Base Da:t 1 Da:t2 Da}: 3 Da;t4 Da;t 7 Da:t 10 

03 F 231.6 381.0 42.7 32.5 98.3 95.7 69.6 
04 F 80.0 129.0 169.0 116.0 135.0 205,0 109.0 
07 F 72.3 102.0 66.9 66.9 72.6 82.0 98.8 
08 F 71.3 69.8 65.5 153.0 91.3 74.1 
10 F 86.5 80.6 57.8 67.1 71.3 78.5 61.6 
12 F 131.5 135.0 126.0 328.0 210.0 91.5 199.0 
01 M 74.6 154.3 102.0 105.0 221.0 70.8 29.0 
02 M 99.6 115.0 215.0 161.0 101.0 109,0 
05 M 342.5 578.0 375.0 379.0 354.0 506.0 326.0 
06 M 185.0 755.0 530.0 549.0 519.0 341.0 254.0 
09 M 220.5 403.0 324.0 195.0 463.0 94.6 
11 M 371.5 110.0 438.0 1080.0 526.0 219.0 11~.0 

Mean 
Total 165.57 251.06 209.33 269.38 230.82 196.07 130.43 
SEM 31.32 65.20 48.27 85.73 50.91 45.31 26.30 

Table 22 
Creatine Kinase iHVEl 

Time 
Subject Gender Base Da;t 1 Da;t2 Dax3 Day4 Da::z::7 Da:t 10 

03 F 59.8 134.0 674.0 1040.0 1862.0 931.0 158.0 
04 F 118.5 139.0 78.7 144.0 229.0 914.0 
07 F 85.3 97.7 75.5 121.0 465.0 1010.0 285.0 
08 F 106.3 160.0 134.0 95.7 74.2 85.3 67.6 
10 F 91.8 133.0 94.6 80.3 95.4 100.0 96.0 
12 F 147.0 126.0 98.8 121.0 529.0 593.0 239.0 
01 M 33.5 134.0 60.7 87.5 78.1 64.3 
02 M 174.0 242.0 381.0 436.0 546.0 902.0 315.0 
05 M 316.5 1650.0 1330.0 1390.0 1920.0 1130.0 482.0 
06 M 247.5 1060.0 1010.0 1120.0 1600.0 2232.0 1600.0 
09 M 108.3 461.0 462.0 1760.0 4500.0 1330.0 269.0 
11 M 323.0 447.0 1600.0 2360.0 3680.0 1716.0 1160.0 

Mean 
Total 150.95 398.64 499.94 729.63 1298.23 917.30 467.16 
SEM 27.75 138,55 156.06 227.14 427.72 190.37 146.07 
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Table 23 
Sorenc-~s Tendernc."-" 

Time Time 
LYE HVE 

Subiect Gender Da~ l Da:i2 Da:l3 Da:l4 oarz Da~l Da:i2 Dar3 Dar4 nar? 
03 F 3.5 6.5 2.3 1.0 0.0 8.4 17.0 24.3 9.5 0.0 
04 F 28.0 12.3 7.8 0.5 0.0 13.4 22.3 14.3 4.4 0.0 
07 F 14.1 55.3 12.3 1.9 0.4 34.8 34.0 96.0 31.8 2.0 
08 F 51.3 36.6 0.0 8.8 26.0 30.3 13.8 0.5 
10 F 11.0 18.1 2M 30.0 0.0 11.9 15.0 18.S 21.3 0.0 
12 F 4.5 4.1 0.3 0.0 0.0 6.5 46.5 68.9 25.9 1.5 
01 M 2.5 3.6 5.8 2.4 1.1 9.5 '·' 7.8 3.8 0.0 
02 M 31.3 61.4 19.3 0.5 0.0 54.0 80.4 69.1 57.0 0.0 
05 M 4.5 10.1 17.0 9.9 0.0 3.5 13.0 9.5 4.3 0.0 
06 M 21.9 28.0 12.4 0.0 5.5 31.1 31.6 22.8 6.0 
09 M 12.6 11.0 8.5 0.5 18.1 27.5 23.1 14.6 0.0 
II M 5.0 9.3 7.5 6.5 0.0 6.3 23.0 37.9 21.6 0.0 

Mean 
Total 12.63 22.08 14.29 6.50 0.17 15.04 28.32 35.95 19.21 0.83 
SEM 2.96 6.42 3.26 2.69 0.10 4.28 5.69 7.98 4.33 0.51 

Table 24 
Soreness Extended 

Time Time 
LYE HVE 

Subject Gender Dal;:l Daz:2 0~3 DaY4 DaY? Da~ l Da;t 2 Da:l3 oar4 oar7 
03 F 20 10 3 2 0 22 59 47 44 0 
04 F 17 10 4 0 0 23 34 20.5 15 0 
07 F 7 82 41 10.5 0 100 100 100 100 70 
08 F 90 5I 0 31 82 39 I 0 
10 F 35 48.5 55 60 0 27 40 64.5 65 0 
12 F 9 3.5 2.5 0 0 15.5 64 92 73 0 
01 M 0 3 5 2 0 9 9 7 3 0 
02 M 10 305 25 2 0 54.5 81 83 64 21 
05 M 2 10.5 20.5 5 0 13 28.5 7.8 15 1.5 
06 M 9.5 li.5 2 0 1.5 53 55 59.5 13.5 
09 M 14 27 8 0 33 45 37.5 27.5 0 
II M 16 24.5 2 5 0 61 83.5 93 78.5 0 

Mean 
Total 12.68 30.86 19.04 8.85 o.oo 32.54 56.58 55.54 45.46 8.83 
SEM 2.77 8.80 5.68 5.26 0.00 7.91 7.73 8.94 9.42 5.90 
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Table 25 
Soreness Flexed 

Time Time 
LVE HVE 

Subiect Gender Da~ I Dax2 Dax3 oax4 Da;t 7 Dax I Da;t 2 Da;t 3 Da;t 4 Daz:7 
03 F 5 10 2 1 0 30 28 37.5 16 0 
04 F 8 6 3 2 0 7 12 7 7 0 
07 F !.< 79 48 10.5 1 100 42 65 8 0 
08 F 63 51 0 23 46 38 10 0 
10 F 33 40 53 56.5 0 33 45 63.5 63.5 0 
12 F 1.5 3 0 0 0 12 65 93 49 12 
01 M 10 3 4 1 0 3 7 0 1 0 
02 M 32 23 19 6 0 31.5 71.5 58 53 0 
OS M 2.5 7.5 10 3 2 7.5 6.5 10.5 2.5 0 
06 M 22 6.5 6.5 0 20.5 41 29.5 49 0 
09 M 20.5 29 11 0 30 34 27 14 0 
11 M 5 6 6 2 0 3 63 75 62 0 

Mean 
Total 14.05 24.50 17.79 8.85 0.25 25.04 38.42 42.00 27.92 1.00 
SEM 3.28 7.54 5.91 4.92 0.18 7.57 6.37 8.41 7.I8 1.00 
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Table 26 
Arm Circumference (LVE} 

Time 
Subject Gender Base Post 30 Post nax 1 Dar 2 Da:r;:3 Da:r;:4 Da:r;: 7 

03 F 23.39 23.30 23.32 23.40 23.42 23.48 23.51 23.61 
04 F 25.01 24.81 24.S3 24.93 24.94 25.13 25.15 25.23 
07 F 26.35 26.21 26.20 26.28 26.29 26.40 26.42 26.47 
OS F 22.09 21.90 21.90 22.33 22.32 22.16 22.22 
10 F 26.35 26.12 26.15 26.27 26.30 26.41 26.39 26.46 
12 F 24.44 24.38 24.42 24.51 24.52 24.56 24.58 24.62 
01 M 26.52 26.32 26.30 26.34 26.33 26.45 26.50 26.60 
02 M 29.03 28.89 28.93 29.06 29.09 29.19 29.24 29.31 
05 M 27.96 27.94 28.01 28.14 28.22 28.27 28.25 28.25 
06 M 30.34 30.25 30.35 30.60 30.72 3094 31.03 31.22 
09 M 25.18 25.06 25.05 25.14 25.15 25.)4 25.38 25.49 
II M 28.09 28.00 28.04 28.19 28.25 28.41 28.50 28.64 

Mean 
Total 26.23 26.10 26.12 26.27 26.30 26.40 26.81 26.51 
SEM 0.69 0.69 0.70 0.69 0.70 0.72 0.64 0.73 

Table 27 
Arm Circumference ~HVE) 

Time 
Subiect Gender Base Post 30 Post Da;t I Da;t2 Da:r;: 3 Dax4 Da:r;:7 

03 F 24.07 24.03 24.06 24.16 24.19 24.30 24.38 24.51 
04 F 25.47 25.36 25.48 25.68 25.76 25.88 25.90 25.96 
07 F 25.89 25.75 25.77 25.87 25.89 26.02 26.05 26.17 
OS F 22.44 22.34 22.33 22.37 22.37 22.44 22.52 22.57 
10 F 27.44 27.26 27.27 27.40 27.40 27.53 27.57 27.67 
12 F 25.32 25.2S 25.32 25.41 25.44 25.52 25.54 25.62 
01 M 26.40 26.30 26.34 26.47 26.52 26.65 26.69 26.81 
02 M 27.35 27.19 27.19 27.29 27.27 27.37 27.37 27.43 
05 M 27.66 27.55 27.64 27.81 27.94 28.13 28.29 28.49 
06 M 29.00 2S.79 2S.85 28.96 2S.97 29.12 29.18 29.36 
09 M 24.80 24.66 24.64 24.72 24.72 24.85 24.91 24.99 
II M 29.99 29.86 29.84 29.96 29.98 30.08 30.11 30.18 

Mean 
Total 26.32 26.20 26.23 26.34 26.37 26.49 26.54 26,65 
SEM 0.61 0.60 0.60 0.61 0.61 0.61 0.61 0.62 
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