Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1998

Designing a higher layer protocol for small distributed
microcontroller systems using the control area network protocol

Long G. Nguyen
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Engineering Commons

Recommended Citation
Nguyen, L. G. (1998). Designing a higher layer protocol for small distributed microcontroller systems
using the control area network protocol. https://ro.ecu.edu.au/theses/1603

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1603

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.ecu.edu.au%2Ftheses%2F1603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1603

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

DESIGNING A HIGHER LAYER PROTOCOL FOR
SMALL DISTRIBUTED MICROCONTROLLER
SYSTEMS USING THE CONTROL AREA
NETWORK PROTOCOL

L. G. NGUYEN
MEngSc
(1998)

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

DESIGNING A HIGHER LAYER PROTOCOL FOR
SMALL DISTRIBUTED MICROCONTROLLER
SYSTEMS USING THE CONTROL AREA
NETWORK PROTOCOL

By

Loug Giang Nguyen
BEng, Grad DipSc (Computer Studies)

A Thesis Submitted in Fulfilment of the Requirements for the Award of

Master of Engineering Science

at the School of Engineering and Mathematics.

Edith Cowan University,

Perth, Western Australia.

Date of Submission: 3" September 1998

ABSTRACT

This thests 1s concerned with designing a Higher Layer Protocol (HLP) for small
distributed microcontroller systems using a well-established network protocol: the
Controller Area Network (UAN) protocol which. currently. is widely used in the
automation industries. Steps were taken to investigate three popular HLPs based on
the CAN protocol: namely, Smart Distributed System (SDS), DeviceNet. and CAN
Kingdom. Following the comparison of the three HLPs, the CAN Kingdom
protocol was chosen for the task of designing the HLLP in this project in order to
satisfy the restrictions associated with smatl systems. Thus, the HLLP (named the
Small CAN Kingdom protocol} of this project was designed according to the
principles of the CAN Kingdom protocol. which contains many advantages for open
network solutions. This enables designers to enhance a system’s performance

relatively easily.

A complete hardware and sofiware design of a small CAN-based system, utilising
the Motorola MC68HC |1 microcontrollers, the Intel 82527 CAN controller chips,
and DS3695 (RS485 standard) transceivers. has been described. This small system
can be used to demonstrate the performance of the Small CAN Kingdom protocol.
The development of the system software has also taken into account the rules

associated with this protocol.

DECLARATION

I certify that this thesis does not incorporate. without acknowledgment, any material
previously submitted for a degree or diploma in any institution of higher education
and that. to the best of my knowledge and belief. it does not contain any material
previously published or written by another person except where due reference is

made in the text,

Long Giang Nguyen
Date: 03/09/1998

-t -

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my gratitude to people, without

wlhom this thesis could not be completed,

First of all. 1 would like to extend my sincere appreciation to Mr Barry Kauler for
giving me the opportunity to participate in this research field. for his advice and

support when | started my study and during my project progress.

Secondly. | would like to express my indebted gratitude to Mr Mike Wetton, my
supervisor. for his countless support and guidance throughout the completion of tlis
project. His sympathy. encouragement, enthusiasm, and patient assistance during

the difficult periods were very much appreciated.

| sincerely thank Dr Bmh Anson, Mr lan Morris and Dr David McDougall who all

provided me assistance with my written English expression,

[also thank A/Prof. Abdesselam Bouzerdoum. Dr Hon Cheung. Dr Daryoush
Habibi., Dr Xiaoli Zhao and all the staff members of Engineering Department,
Library. and International Office at Edith Cowan University for their assistance

during my study.

Finally, I would like to extend my genuine and heartfelt gratitude to my sister, my
parents, my grandparents, my fiancee. Mrs Huong and my friends for their love,
encouragement, support and sacrifices. Without them, | would not have reached this

far.

- 1l -

CONTENTS

CHAPTER | INTRODUCTIONovrrniiinimssssinssssessiimmssrsssssssssssissssassssessssnions 1

1.2 STRUCTURE OF THE THESES ©oovvvvietneivressassesirsirissssssnnssesnsassassasisesssssosssnmsnasnnssssnns o

CHAPTER 2 NETWORK TOPOLOGIES AND CONTROLLER AREA
NETWORK (CAN) o iscasitimsisimsssissssisenisssssssssssssssssssssssssvessesssis 7

2 1 NETWORK TOPOLOGIES 1ottt e veviisin it ssisssresssae st estanesar s sssnvessssssassasns 7
2.1 1 Introduction 1o Compuiter Network.o.coooveii e 7
202 LANs and Industrial NeBvorks........cccocooiivioiiiiii it 9

2.1.2.1 Topologies 0f LANS. ..o srensaens 10
2 1.2.2 LANS in IRAUSHY «.ocoviiiiceiiei et ereeaesmemnaennns 12
2.2 CONTROLLER AREANETWORK (CAN} PROTOCOL ccvvevieririnntcviecirieniinnns 14

D2 IrOaUCHION. ... e [4

2.2.3.2 Message FIHETINE . ..ot ccnsaens e ne e sasnasas 20
2233 Error Handlng oot snessissenaesssisananns 20
224 Datar Transmuission ..o e 21
2.2.4.1 Data frame and Remote frameccovviiiivecniciniicnincnonnn, 22
224, 1.1 Start of Frame {SOF)i 23
2.2.4.1.2 Arbitration field and Control fieldcoocovvinrviiiniiiinn, 23
2.24.1.3 Data fleld....ccocoviiviiireincermi s rassnsne 20
2.2.4.1.4 Cyclic Redundancy Check field (CRC)....ooceecinvviinivininiinnnn. 26
2.2.4.1.5 Acknowledge field (ACK)...occriiivniinniivreicin i, 27
2.2.4.1.6 End of Frame (EOF)ccoiniiiiiiiiviieinniceninininn 27
224 2 EIrOr FIAINE .ccoivieciicie ettt ereeteae e errnnae st s msresss orenrnses 28
2.2.4.3 0verload fraNIE ..ot e et e e aeaens 29

2.2.5 Implementation of CAN protacol ..o 31

_iv-

2.2.6 Advantages and Disadvantages of the CAN Protocolc........ 32
2.2.6.F AUVANIAZES ..oecirivvii e cervaiavse s e e rs s e saasresansssarsns s nnasss 32
2.2.6.2 Disadvantages ..ot e e 33

2 3 T ONCLUSION ottt e e cee e et e etee e tet e te s ettt sasrasanmeebes s tmeeaasssansberassanonangstenesnsen 34

3.1 AN OVERVIEW OF HIGHER LAYER PROTOCOLS FOR CAN e 35

3.2 SMART DISTRIBUTED SYSTEM (SDS oo 39
32 btradiuction 1o SDS s 39

3. 2. 28D8 Basic CORCEPE........ccccvioeiiriiie s v aba e 40
3.2.3 8DS Application Protocsl . e 46
3.24 Advantages and Disadvanmtages of SDS 52
32401 AdVANIAZES cooivivie ettt s 52
3.2.4.2 Disadvantagesc.ooueociiiiiii e 52

3.3 DEVICENET oottt et reeas st sab s s 53
3.3.7 Introduction 10 DeviceNet.. ... 33
3.3.2 DeviceNer Basic Concepi ... 54
3.3.3 DeviceNet Application Protocolc....c.oocoveiiiiencie i, 58
3.3.3.1 Use of CAN Identifier in the DeviceNet protocolccoiicnn, 58
3.3.3.2 Use of CAN Data field in DeviceNet.......ccoonivvviicnniiincrieenn, 60
3.3.4 Advantuges and disadvamtages of DeviceNet ... 67

3.3.4 1 AdVANIAZES it e s s vt s smnanas 02

3.3.4.1 DisadVantages ..c..o.ocovvrveriornieriiniiniiesse s siesrasrae et s sane e st vaes 63

34 CAN KINGDOM Lottt sb st s s rasasn s s b et sesas s 63
341 Introduction to CAN Kingdom ..o 63
3.4.2 CAN Kingdon Basic CORCEPE ..o 65

3.4.2.1 CAN Kingdom model and terminologiesccoovivrvvnciniicinenns 05
3.4.2.2 Basic concept of CAN Kingdomcccovvicviiiinnicccnnnnnnnccnnannn. 08

3.4.3 Application Layer Protocol................occcovievoiiiiniioinviis e 70
3.4.4 Advantages and Disadvantages of CAN Kingdom..............c.cccooeine 75
3.4.4.1 Advantages.........cc.ovecccricir et naessnnsies 19
3.4.4.2 Disadvantagesoveevovviimienremeanitennie st st naes 76

3.5 CONCLUSION ottt ittt aed st s et b s st nn s 76

CHAPTER 4 DESIGNING A HLP FOR SMALL DISTRIBUTED
MICROCONTROLLER SYSTEMS USING CAN ...cccicinmmmnnsssnmmessasssossinns 78

4.1 CHOOSING A HIGHER LAYER PROTOCOL. v oo et ceeiraresssnensneen 18

4.2 DESIGNING THE SMALL CAN KINGDOM PROTOCOL w.ccveeeeeeeeeveceereenesiinanenn 81

A 2 P OEUOCTION. ... oo et et e st e ettt ersaareeeeees 87
F 22 THE KNG e e e 84
D 08 e et e e e ettt r e et 88

J.3 DESIGN A SMALL CAN KINGDOM SYSTEM woovviveeeeeesvievreeceeesvnssssrecetemsessneessaeens 91

L3 THPOAUCHON.. ... e 91

F. 32 SVSIERE ARSTEN ... s 92
4321 The KNE vt et st st 92
322 CIY B oottt an e 93
43,23 CUtY 2ot e 96

G 3.2 CIY 3 ettt e 98

4. 3.3 SYSIEm OPerulion. ... 102
4.3.3.1 Set-up phase ..o e 104
4.3.3 L RUNPRESE ..ottt e 104

.4 CONCLUSION cevtetttit ettt st s svva bbbt esaab et s b sasdensararessannnas 106

CHAPTER 5 INTRODUCTION TO MICROCONTROLLERS AND

CAN CONTROLLER CHIPSoicreittmcsnncvissisissersssssinsnssssanssssrssssssssnssrons 107
5.1 MICROCONTROLIERS L. cotcitriieii et ceeeninrcs e sen s ess e ee s ssstenenan 107
ST OVRIFVIEW oo e 107

3. L2MCOSHC] Block Dicigram...............cccocooooviiiiiceecioveev i 110
3.1.3 Systent development ermvirommentc.o.cociiiiniiieeea 1

5.1.3.1 Hardware design environmentccoeiieeenvninicvnccnnisncnnnnnens 112
5.1.3.2 Software design environment.......c...c..oceeeeeiavnreerinssiiesseravarnnsernene 113

5.2 CAN CONTROLLERSociitivimsticcnreanitiosimnscetsiesnrecsensanronssesssnesmmecnssssnnee 113
5.2.1 Choosing CAN controllers ..ot 15
3.2.2 Intel 82527 CAN comtrollercccoocoii oo 116

5.3 CONCLUSION ... octitii ettt arssssiieessseasssssesssansssssereanmmsstssessnasessssssesrressssisnss 119

-] -

CHAPTER 6 HARDWARE DESIGN. ... ceninnsstssssssssissin 120

O.1 INTRODUCTION oeoeititteeeiee ettt e eeessa st time et teresasataee e et esreassaaserneasss orsereassiens 120
6.2 INTERFACING THE INTEL 82527 TO AN MCOSHC T T vovviiiieeceeeeeiriciieannn, 123

6.3 INTERFACING THE INTEL 82527 TO A TRANSCEIVER CHIP «.ccovieeevvvireveireennenne, 129

0.3.1 CAN bus review and introduction to CAN transceiver chips............... 129
0.3.2 PCAS2C250 CAN 1rnSCoIVEr......cccovivicie oo v 130
6.3.3 DN36YS IraQnsCeiVer.cc..oivio oot 131
0.3.+4 Modifving the DS3693 ... 133
6.3.5 Trel 82327-DS3695 interface circuit diagram.......................... 135
6.4 INTERFACE BETWEEN THE KING AND AN IBM PC 136
6.5 INTERFACING A/D DEVICES TOMCOSHC T .. 137
6.6 INTERFACING THE LCD TO INTEL 82527 (.ot 138
6.7 DESIGNING A REMOTE REQUEST DEVICE oot 140
6.8 DESIGNING INDICATORS.....cociieiiiiirini i escctiecitenectsine e b e 141
6.9 CONCLUSION oottt ettt e e rnns et 142
CHAPTER 7 SOFTWARE DESIGN ..ot niressssssinnss 144
TV INTRODUCTION ettt eesiaeae s eme st tne s aases s r e e 144
7.2 SYSTEM OPERA TION Lottt eesr e sanaase s snnaneesmonaen 148
7.3 SOFTWARE IMPLEMENTATION oot eman oo et re s sseans 152
7.3.1 Configuring the CAN comtroller chips ..., 152
7.3.1.1 Resetting a CAN controller chip....c..covecivvvvviiincicinivesievennen 152
7.3.1.2 Inittalising a CAN controller chip.......c.ccocconir i, 153
7.3.2 Designing Interrupt Service Routine (ISRJ ..., 156
7.3.3 Servicing King's ESSAGES............ccccooommiiiiiiiiiiice e, 160

7. 3.4 King SOfIWAIe ..ot s coas e 164
7.3.4.1 King's Main ProZramc.ovveciiimecniinniasirerersrcosesnesansesessnessesesnes 164
7.3.4.2 NO_OP subroutineccc.ocovnivecvvncimeiiiininicissieceasecvcoseesnnnes 163
7.3.4.3 B_SET SUBIOULINEooovvireeieiicci vt 165
7.3.4.4 King Menu progranl......c...mrienoreeiessonisnesnsesssmsesss e ssasenes 166
7.3.4.4.1 IntrodUuCtion........ccceeveivieiicc s e et 166
7.3.4.4.2 Designing the King Menu programcococoviriecavenivnvnvnnnnn 170

7.3.5 Designing the software to service King Pages in Cities...................... 174
7.3.5.1 PG_0 SUDTOULINE.....covrmieciiiri it et s 174

7.3.5.2 PG _1 SUBIOULINE. ... oviiiiiieciires s vtveniaesteesie s rersessentesseesssssssssoneeens b 19
7.3.5.3 PG_2 SUBFOULINE.......covrenriiiicereirniinrie e ses e eesesvesessssssesssnneansey 1 19
7.3.5.4 PG_3 SUBIOULINE...c.oeeieirieeicreeccrecectenite e srarssreeeresrasessnsssresnsenss } 10
7.3.5.5 PG 4 subroutine ..ot s 176
7.3.6 CIes "SOMMVAFe .ot 176
7.3.6.1 Assigning address for ISR......cociiiiivniiecneciieneieenevvcnicnnenn 177
7.3.6.2 TnIIAlISALION oo et e e reee e eee s sn e e esa e asavnnsensens 177
7.3.6.3 Set-Up Phase .o e 178
7.3.0.4 RUN PHESE oottt ettt bt s e sresra e s esease s 178
T304 1 CIY Tttt s 178
T30 4.2 City Qi s 180
T3.0.43 CILY 3ottt et 181

T TESTING wovit ittt eceare ettt e oo st eaa b e ae s smcernenmesaesennnsaees 184
Tod d SOU-1P DRESC ..o e e 184
T 2 RUN PRASE ..o e i87
7.4.2.1 Testing communication between City 1 and City 3. 187
7.4.2.2 Testing communication between City 2 and City 3., 187
743 AdIONal 1eSHAG ... e 188
7.4.3.1 Changing message Identifiers.........ccovevrriimcimnnrcccrnrerniereecrnenn. 188
7.4.3.1.1 Changing communication priority between City t and City 3 188
7.4.3.1.2 Changing communication priority between City 2 and City 3 190
7.4.3.2 Changing Cities” addressescoeovvaieeeneciinncsrecesresnsnnessnseeass 191
7.4.3.3 Assigning a group address to Cities......c.ooveiveevecrncninincccncnnnnn 192
7.4.3.4 Ungrouping a group or restoring the Cities’ original addresses 193
7.4.3.5 Changing baud rateccoeeiveeimecnerenerrrre s e cvnnsnsnsneenees 194
7.4.3.6 Adding a new City to the systemccovereniiiinivinsvenrnvenneenn, 196
7.4.3.7 Testing the role of the Kingccovvivvrivnnvvinrncscinninie, 198
7.4.4 Testing the behaviour of the King Menu program....................coccceeel, 199

7.5 CONCLUSION ettt eeeeeeseie s eerveesseeinraeesesst e asbeveassnseneesneessassossessssnneresssssssneens 200
CHAPTER 8 CONCLUSION . ctiiiiiiiiciiessvesssssasssssssissassssssvessassessssasssssssnsans 202

B S UMMARY cooeeeeieeeeeeeeevaverseeesseersestasastsanasssieeareesasaersrssasasassreeesseennemserersenseesnneses 202
8.2 FUTURE TRENDS AND SUGGESTIONS ...covvcirrrerrrssrsueersssssrsesessossesssrersrasarsnsssraens 23 1

REFERENCES.......coovmiitinsnnisniramsnesisnisssssssiossssssisscossssssassastasssssssasasssssss 213

APPENDIX A .ovvciiiirevrvenrresmssnsenienseresnnnsens veresaresnisaees versnenaennns 218

APPENDIX B ...cciiiiiiiiiimininssisseniimessenssssssstssarssssssesinimsasssrseasssessorens 221
APPENDIX Crrrerrrreeesienrreoriisnmsinissnssiessssssstns s st ns st sinssasassssssassssssasssssssens 225
APPENDIX D...eeriiniinnns CEmEnerseeTINEIEIssSTsbesbtssusaRe R Res I RR R PR RSOOSR TR R R RS AR SRR BT SRR SS 227

-ix -

FIGURE 2-1
FIGURE 2-2
FIGURE 2-3
FIGUR) 2-9
FIGLRE 2-3
FIGURL 2-6
FIGURL 2-7
FIGUR) 2-8
FIGURE 2-9
FIGure 2-11
FIGURE 2-[2
FIGURE 2-13
FIGURE 2-14

FIGUR) 2«15

FIGURE 3-1
FIGURE 3-2
FIGURE 3-3
FIGURE 3-4
FIGURE 3-5
FIGURE 3-6
FiGURE 3-7
FIGURE 3-8
FIGURE 3-9
FIGure. 3-10
FIGURE 3-11
FIGURE 3-12
FIGURE 3-13
FIGURE 3- 14
FIGURE 3-15

LIST OF FIGURES

ISO/OS] REFERENCE MODEL .. cuvteeoveeeeeseceermatsteessseesensseesesssesssmnesans

STARNETWORK coviiiireiet e iieieee et veiteasestteeveseeiseastseseecerasnessessessesssrsirsens

RING NETWORK

LINEAR Bus TOorOLOGY

CAN'SLAYERS PART A oo rveerenins
CANTS LAYERS PART B oot ettt aa e e etevraaens

......................................

......................................

......................................

EXAMPLE QF PRINDRITY IN CAN BUS 1ot irieeeee e eeeiesveris e vesnessrerasssasanas

DATA FRAME

REMOTE FRAME

ARBITRATION FIELD - STANDARD...............

ARBITRATION FIELD — EXTENDED FORMAT

......................................

CYCLIC REDUN NCY CHECR FIELD vttt eveteesee s s eeaneeereenaess

ACKNOWLEDGE FIFN Dttt e svae s srnenaasrnesananesanns

ERROR FRAMI oottt eeeieeie e

......................................

ISO/OST REFERENCE MODEL FOR CAMN v ereee it aesieees

MODEL OF THE QST APPLICATION LAYER ... seerieeveras e ceassien s

SMART DISTRIBUTED SYSTEM MODEL cvv v vieeveeiv et

STANDARD CAN FRAME FORMAT ©ooeeiviii v vseee e vveeeeeenesiieearssianasasesinans

SDS HEADER v ovive vt iorane s resas s arannens

NON-FRAGMENTED FORMAT oot ieeeee s e ess et cteeesesseeeaareeans

......................................

FRAGMENTED FORMAT «oveeicvieite ettt v eeest sesaneenesnnssanbsesaassnnnes

DEVICENET HIERARCHICAL VIEW OF CLASSES AND OBJECTS

...........

A DEVICENET NODE. . ittt et veeeeivst s i ctieaveatttassasebon s sssosssssnesssnrsessnsssanas

DEVICENET MODEL

......................................

DEVICENET'S USE OF THE CAN IDENTIFIER FIELD .ovvvviiveeeviiveereseeens

J/O MESSAGE FORMAT cveeetetvtiertsaereensressoasseeseesnssesssastessessiesaesssesess

EXPLICIT MESSAGE FORMAT 1.iioiis vt seecisireece s s st ma s e
/0 MESSAGE FRAGMENT FORMATovvveecirmnaeennenstrsnesininesane

EXPLICIT MESSAGE FRAGMENT FORMAT......

P T

10
Il

16

W17

19
22
23
24
24

26

27

28
30

36
37

.40

46
47

. 50

50

55
56
58
60

.. 60
.. 61
e 02

FIGURE 3-16
FiGURL 3-17

FIGURE 3-18

FIGURI- 3-19

FIGURE 3-20

Frot ki 4-1
Fiot kg 4-2
FlGeRe 4-3
it R 44
FlerRE 4-5
FIGURI -6
Fiaure 4-7
FIGURE 4-9
Fiarr) 4-10
FiGURL 4-11
FIGURE. 4-12
FIGURE 4-13

Fiouryr 4-14

FiGURE 5-3

FIGURI: 5-4

|

FIGURE 6-1
FIGURE 6-2
FIGURE 6-3
FIGUR]: 6-4
FIGURE 6-5
FIGURE 6-6

CAN KINGDOM MODEL cocoviiiiieiiiceisec e aeen s seenesassseasee
A CAN KINGDOM LETTER oottt sae s sn s nesaenrs
..... 69
..... 7

R N P A S ettt et e e e e s e vaarem s e rete e e e ranresransssaaereesnanes
EXAMPLE OF A KING PAGE FORM. ... e venans

EXAMPLE OF A FORM 10 BL USEN IN RUN PHASE oo,

SAMALL CAN KINGDOM MODEL i
THE KING PROUESS oottt eva et
CITY TS OPERATION PROCESS ..o vncvvvaeenenees e
THECTTY TS KING DOCUMENT oo
CITY 1S TRANSMIT DOUCUMENT s s siins e
CHIY 275 OPERATION PROUCESS vttt et eereevean s
Criy S TRANSMIT DOCUMENT s eeer e
CITy 3'S OPERATION PROCESS .ottt ove s sisies s rrassba e amvee
Crry 3°s RECEIVE DOCUMENT (FORM FOR FOLDER 2) v
Crry 37s ReCEE DOCUMENT (FORM FOR FOLIDER 3) e

THE SMALL CAN KINGDOM SYSTEM™S SET=UI PHASE covvveevevieesee v

MOCOBHC T | BLOUK DIAGRAM orviieie e crriei e vviinisaessannannnn e aans
SYSTEM DEVELOPMENT ENVIRONMENT Lovvtviecrcreestivisnsissssssremeessnnses
THE 82527 BLOCK IHAGRAM oot evvvsevnttsssvensnaasas

[NTEL 82327 ADDRESS MAP 11 ecccrreeieis e rrevaaae e e e vniaesrasassssssanns

TekE SMALL CAN KINGDOM SYSTEM BLOCK DIAGRAM ..oovvvvviiirene.
MCGO8HC1] AND INTEL 82527 INTERFACE CIRCUIT DIAGRAM........
MCOBHC T MEMORY MAP ...ttt mvrenecnie e nncnae s
ADDRESS DECODER CIRCUIT | vt
ADDRESS DECODER CIRCUIT 2 ..ievveveervssiessinsrissie st sasanesrnesns
PCAB2C250 CAN TRANCEIVERocciiriieenrerniiamenrennen it snsis
DS3695 (RS485) TRANCEIVERvvciviriveiiiireesnscvinnssaesiasnesnsssasnecos

- X -

65
67
69

73

..... 82

...... 93

..... 94

..... 97

..... 99

100
101
103
103
105
105

110
114
117
118

122
125
126
127
128

. 130

131

FIGURE 6-8
FIGURE 6-9
FiGURL 6-10
FIGURE 6-11
FiGURI 6-12

FiGLgy 6-14

Frivre 7-
FIGURIL 7-2
FIGUR} 7-3
Fraurey 7-4
FIGURY 7-3
FIGURE 7-0
FIGURJ- 7-7
FIGURE_7-8
FIGUR). 7-9

FiGUre B-1

FiGURE B-2

MODIFIED DS3695 CIRCUIT DIAGRAM <.ooveecieceeiiiineeneccssissemneeeens 134
INTEL 82527-DS3695 INTERFACE CIRCUIT DIAGRAM..........con. VR 133
INTERFACE BETWEEN THE KING ANDANIBM PC ... 136
AD DEVICE = MCOSHC T T INTERFACE ..eciereneeiinecenreee e 137
INTEL 82527 - LCD CIRCUIT IMAGRAM L., 139

REMOTE REQUEST DEVICE CIRCUN DIAGRAM Looiviirieeeriienierennnnn, 140

INDICATORS CIRCUIT DIAGRAM Lo iiae s e 141
SOFTWARE MODULES FOR THE KING ooveiie e e 145
SOFTWARE MODULES FORCTTY T i vrrv vt emvvse s e 145
SOFTWARE MODULES FOR CITY 2 i nva e 146
SOFTWARE MODULES FORCITY 3t 146
KING FLOW-UHAR T oo vt ee s s siee e s v arm s rmsaesaasasei e ensaens 148
CTTY LTS FLOW=CHART ittt rsiiie e s e sevnsssnss s siie e srnnasesseseesnns 149
CITY 278 FLOWCTART 11t e etveer s iee st sts e s s eetssrmrnssraeaeae e 150
CIIY 3 S FLOW-CHART oot re e sinvveeena s s ne s saans e a1 151
KING MENU L et ies e cmre e beesamesaaesaa s be e sesnarseas 166
PIN LAYOUT L ettt ntae et s s 223
PIN LAYOUT 2 oottt vvertv et astee s eee e s s basestesan s savenresaen 224

- Xil -

TABLE 1-1

TaBLE 3-1
TABLF 3-2

Tasr.r 3-3

TAaBLE 6-1
TABLE 6-2
TABLE 6-3
TABLE 6-4
TABLE 6-5

TABLE 7-1
TABLE 7-2
TaBLE 7-3
TABLE 7-4
TABLE 7-5
TABLE 7-6
TABLE 7-7

TABRLE B-1
TaABLE B-2
TABLE B-3

LIST OF TABLES

CUMUILATIVE BUS NODES SOLD UP UNTIL THE ENDOE 1995 ...

EXAMELE OF AN SDS COMPONEN) DOCUMENT oo
SERVICE TYPE VALUE VOR SHORT FORM MESSAGES ovvvveverevveveseeeens

SERVICE TYPE VALVE FOR LONG FORMMESSAGES i eveevesicariens

PCAS2CI50 PIN DESCRIPTION cc i oo ve e
PCAS2C250 YRUTH TABLE oot v
DS36935 PIN DESCRIPTION oottt aeaeiene
DS3695 TRUTH TABLE L.iooiioitirioiiee s s snesees e v ieennsensnas

TRUTH TABLE OF THE MODIFIED DS3693 TRANSCEIVER .o

VALUES OF INTEL 82527 S INTERRUPT REGISTER coovvver v eivesvenes e
INTERRUPT SERVICE VECTOR TABLE 1ovvevesoereereevssessesseeaesssresessvns
KING PAGE VECTOR TABLE oot iiieet e anesase st eaaasaenseaesnes

BUFFALO'S LMILITY SUBROUTINES 1ottt eesesseesesar e s reaeeenns

INTERFACE BETWEEN MCO8HCT 1 ANDINTEL 82527 oo
INTERFACE BETWEEN INTEL 82527 AND DS3695.. i,

INTERFACE BETWEEN INTEL 82527 ANC L2012 i,

- xili -

-

...... 43

48
49

..... 131

132
134

157
158
161
170
195
199
201

221
222
222

CHAPTER 1

INTRODUCTION

1.1 Overview

Demand tor the use of “intelligent™ devices to control manufacturing processes in
automation industries has rapidly increased in the recent years. Accordingly, these
devices are forced 1o transfer data between each other. A critical issue for the

comimunication between such devices is the use of protocols.

The overall aim of this thesis is to design an application layer protocol (Higher
Layer Protocol) for a small distributed microcontroller system based on the
Controller Area Network (CAN) protocol, which is a widely-used network protocol

in automation industries.

According to Cena and Valenzano (1995). one of the most essential requirements
for industrial networks is that they must guarantee deterministically bounded
response times; and hence. the protocols utilised in such networks have to satisfy

this requirement.

There is a range of architecture and protocols which has been used in industrial
networks to date, such as CAN, SP-50 FieldBus. MAP, Profibus, and FIP (Zuberi &
Shin. 1995). Among these networks. CAN has gained widespread acceptance in
industry due to its speed, low-cost network architecture, and especially, high
reliability in noisy environments. According to Farsi and Ratcliff (1997), CAN has
long been a market leader in the industrial fieldbus arena; and by the end of 1995,

mare than 6 million CAN nodes were installed {Table 1-1).

Introduction

Table 1-1 Cumulative bus nodes sold up until the end of 1995

Bus Chips Cumulative Quantity
P-Net 35,000

FIP 65,000

ASI 80,000

Profibus 500,000

Interbus S 1,000,000

LON 1,500,000

BITBUS 2,500,000

CAN 6,000,000

The CAN protocol provides users with many powerful features including
multimaster functionality, and the ability to broadcast and multicast telegrams. The
most important characteristic of the protocol is its priority-base arbitration which

allows short response times for high priority messages (see Chapter 2).

However, to ensure inter-operability between CAN components, several Higher
Layer Protocols (HLPs) have been developed to allow devices to communicate with
each other in a standardised manner. These include Smart Distributed System
(SDS), DeviceNet, CAN Kingdom, CANopen, and SAE J1939 (Korane, 1996; Farsi
& Ratcliff, 1997). Chapter 3 of this thesis reviews the first three protocols in detail,
especially, their current use in a broad range of industrial applications (Bladin,
Bradley, Danioux, Gray, & Loaic, 1997). Each one of these protocols has taken a
different approach for controlling systems, with respect to the application services

provided to its users.

Although many HLPs have been developed for different kinds of CAN-based
systems, there is still demand for a simpler HLP in order to simplify the control

tasks of small distributed systems which utilise tiny 8-bit microcontrollers such as

Introduction

the Motorola MC68HC11 or Intel 8051. The two main requirements of a HLP for

small systems are as follows:
¢ Toachieve a design methodology which is easy to understand, and

o To fit into a limited amount of on-chip memory available to small

microcontrollers.

[t is unportant that the requirements above are taken into consideration because in
many small systems it may not be necessary to use a complex HLP. such as SDS or
DeviceNet. Moreover, in some cases. it ts not financially viable to increase the cost

of circuit design by introducing external memory.

After comparing the main characteristics of SDS, DeviceNet and CAN Kingdom,
the author of this thesis conclided that the CAN Kingdom protocol contains more
advantages than the other two, with respect to the requirements of simplicity and
ease of design for small systems. Additionally, the CAN Kingdom protocol allows
devices that utilise other HL.Ps to be integrated into a CAN Kingdom system, with

only minor changes to the control software (see Chapter 3).

Despite the above. full implementation of the CAN Kingdom protocol is a complex
matter; and hence, it is the aim of this thesis to show that further simplifications can
be made to the protocel in order to suit the requirements of small CAN-based

distributed systems.

The HLP designed in this thests, based on the CAN Kingdom protocol, is named the
Small CAN Kingdom protocol. The programming codes written for this small
protocol easily fit into 512 bytes EEPROM of MC68HC |1 microcontrollers used in
this project. The protocol also provides an open solution which enables later

designers to enhance the application progress.

The main idea behind the Small CAN Kingdom protocol is that a master node in the
system, the King, is responsible for the whole network configuration and governs

-3-

Introduction

the communications between devices. The King, however, can be removed after
setting up the network; and the system, therefore, can inherit the full potential of the
CAN protocol such as multimaster, broadcasting or multicasting which are not

efficiently utilised in other protocols {e.g. SDS or DeviceNet).

The CAN nodes in a Small CAN Kingdom system are called Cities. The Cities can
be designed independently from each other without any concern for their inter-
communication role in a particular network: responsibility for this lies with the
King, The major consideration, in designing a City, is that it must be able to obey

the King's instructions.

In order to develop the software and to demonstrate the performance of the Small
CAN Kingdom protocol. a small distributed system s also designed in this project.
The aim of this system is to illustrate the responsibility of the King, the
communication between the King and Cities, and the communication between the

Cities themselves.

1.2 Structure of the thesis

The remaining chapters of this thesis are concerned with details of the research

which are summarised as follows:

Chapter 2 presents an overview of network topologies and industrial networks. The
main features of the CAN protocol are also discussed in this chapter in order to

show that the protocol is well-suited for industrial environments,

Chapter 3 introduces the importance of HLPs for CAN-based systems. The

architecture of three popular HLPs are covered:

. Smart Distributed System (SDS) from Honeywell,
2. DeviceNet from Allan Bradley, and
3. CAN Kingdom from Kvaser.

Introduction

The advantages and disadvantages of these three HLPs are also discussed in order
to select the HLP employed for the task of designing a simpler protocol in this

thesis,

Chapter 4 details the design of the Small CAN Kingdom protocol, utilising the
main ideas of CAN Kingdom, following the comparison of the three HLPs covered
in Chapter 3. The methodology of designing a small distributed system is also

mtroduced in this chapter. The small system consists of:

* A master node (the King) which is responsible for the network

configurations. and

s Three Cities. each of which carries out particular tasks for its specific role

in the system.

Chapter 5 reviews the two physical components used in the design of the two main
parts of a CAN node: a microcontroller which controls the node’s operations, and a
CAN controller which manages the node’s communication. The hardware and
software development environments are also covered in this chapter in order to

provide an efficient mechanism for the design of the Small CAN Kingdom system,

Chapter 6 presents the steps associated with the design of the hardware part of the
system. All the interfaces between the components used in each CAN node are
described. In addition, the chapter includes the steps of modifying the DS3695
(RS485 standard) transceiver chips in order to suit the requirements of the CAN
bus. The DS3695 transce.ver chips were used in this thesis due to time restrictions
and the difficulty of obtaining standard CAN transceiver chips in Perth, Western

Australia.

Chapter 7 is concerned with the design of the software which controls the small
system in this project. The implementation of the software has taken into account
the rules associated with the Small CAN Kingdom protocol. The designs of the
software for the King, as well as the three Cities, are described in detail including

-5-

[ntroduction

algorithms for each sof:ware module. Finally, efficient testing schemes, which were

used to check the performance of the system, are covered in this chapter.

Chapter 8 is reserved for concluding remarks which were made following the
completion of the research program. Some suggestions are then proposed

concerning future developments and research.

Appendix A provides the description of the system development environments.
Appendix B contains the pin connection tables for each hardware interface design,
and the diagrams showing the pin layout of these components. These tables and

diagrams were used for wire-wrapping purpose in the hardware design.

Appendix C describes the steps associated with how system designers can use the

King to set up the network.

Finally. Appendix D gives the complete program listing of the software designed in

this project.

CHAPTER 2

NETWORK TOPOLOGIES AND THE CONTROLLER
AREA NETWORK (CAN) PROTOCOL

This chapter provides an overview of network topologies and industrial networks,
and their protocols, including the Controller Area Network {(CAN) protocol. The
prominent features of the CAN protocol are described in order to explain why it is

suitable for hazardous industrial environments.

2.1 Network Topologies

2.1.1 Introduction to Computer Network

Hughes {1992, p. 3) states that “communications, whether among humans, animals,
or computers. involve the transfer of information™. With computers becoming
widespread in society. the needs of communications have increased. In the home,
for example. a data file is transferred from one personal computer to another or
information can be accessed from a public database. In the office and educational
institutions, communication channels are used to exchange e-mails or to share
expensive peripherals such as laser printers or plotters. In the process industry, the
transfer of information is necessary to coordinate the control of instrumentation
associated with a plant. In the manufacturing industry, datz is transmitted from one

automated unit to another (Halsall, 1996, p. 3).

This exchange of information is called networking. Depending on the geographical
distance of the communicatton, there are two types of network: Local Area
Networks (LANs) and Wide Area Networks (WANSs). The term LAN is used when
computers are distributed around a single office or building. If the computers are

located in different sites, then the term WANSs is applicable (Halsall, 1996, p. 6).

Network Topologies and Controiler Area Network (CAN)

In response to the growth in computer networks, the International Standards
Organisation (ISO) has developed a reference model (Figure 2-1) for computer
networking known as Open Systems Interconnect (OSI). According to this model,
the entire communication subsystems are broken down into a number of layers,
each of which performs a well-defined function. Henshall & Shall (1988) describe

these layers as follows:

layer
7 ‘ Application Layer \ Top
6 [Presentation Layer
5 ! Session Layer
b — -
4 L thmsporl Layer m_lj
3 Netwark Layer
2

I

‘ Data Link Lay r ‘
!_.

|

Phys:cal Layer \ Bottom

—_—

Figure 2-1 ISO/0SI Reference Model

The Application Layer contains a variety of protocols that are commonly needed.

[t provides the means for incompatible computers to communicate with each other.

The Presentation Layer is concemmed with the syntax and semantics of the
information transmttted. This may include character code translation, data

conversion, or data compression and expansion.

The Session Layer focuses on providing the services used to organise and
synchronise the dialogue that occurs between users, and to manage the data

exchange.

Network Topologies and Controller Area Network (CAN)

The Transport Layer contains functions, which accept data from the session layer
and split them up into smaller units, if required, It also determines what type of

service to provide the session layer and users of the network.

The Network Layer is concerned with the task of controlling the operation of the

subnet. It determines how packets are routed from source to destination.

The Data Link Layer provides reliable data transmission from one node to another.

It is responsible for the error-free transmission of data frames.

The Physical Layer is responsible for transmitting raw bits over a communication

channel.

2.1.2 LANs and Industrial Networks

According to Nunemacher (1990, p. 17}, the generally accepted definition of a LAN
is that two or more microcomputers are connected and communicate with one other
through some physical media. such as twisted-pair or coaxial cable, in order to
share data and peripheral devices. These microcomputers are usuaily located in the

same limited geographic area.

In addition, Zuberi and Shin (1996) also state that a LAN protocol should fit the
requirements of industrial automation. This is due to the fact that devices which

exchange data are usually located in the same plant or the same factory.

Network Topologies and Controller Area Network (CAN)

2.1.2.1 Topologies of LANs

The topology of a LAN describes how the LAN is constructed. Nunemacher (1990,
pp. 26-30) claims that there are three basic topologies:

1. Ster
2. Ring

3. linear Bus

Firstly, the Star Network has a central hub to which all the workstations, or nodes,
and file server are attached via cable (Figure 2-2). The hub is the “heart™ of the star,
and all network traffic must pass through the hub. The advantage of this type of
network is that it is easy to maintain and modify, since the only area of
concentration is at the hub. However, because all nodes must be connected to the
hub, large amounts of cable are required, and the potential for network failure

increases. An example of the star topology is the Janet network {Crowcoft et al.,

19G3).

Workstation Workstation
Workstation - Workstation
File Server
or
Controller
Workstation Workstation

Figure 2-2 Star Network

- 10 -

Network Topologies and Controler Area Network (CAN)

Secondly, the Ring Network connects workstations on a single transmission, which
forms a ring {Figure 2-3). Data travels around the ring in one direction and passes
through each node. [t is obvious that less cable is needed for this topology than the
Star network. However. the entire network will fail if one node faiis. and thus, it can
be difficult to diagnose the fault. In order to maintain the system integrity, a bypass
mechanism can be used to detect a faulty workstation. This topology is employed

by the Token Ring network (Nunemacher. 1990, p. 103).

Workstation

Workstation

Workstation

Workstation

Workstation

Figure 2-3 Ring Network

Finally, the Linear Bus Network consists of a number of nodes which are attached
to a common cable or bus (Figure 2-4). The data travels on the bus in both
directions and does not have to go through each node. The advantages of this
topology are the short cable length and the simple wiring layout. Moreover, if one
node goes down, it does not affect the whole network. This type of network is also
easy to extend and to add nodes when required. However, the disadvantages of the
bus topology are that the bus can be a bottleneck to the network when network
traffic is very heavy, and that the fault diagnosis and isolation are difficult to

maintain because all nodes in the bus can be the concentrators or hubs at one time.

-11-

Network Topologies and Controller Area Network (CAN)

A well-known example of network architecture which uses the Linear Bus

Topology is Ethernet (Nunermacher, 1990, p. 83).

Workstation Workstation

Bus

Workstation Workstation

Figure 2-4 Linear Bus Topology

2.1.2.2 LANSs in Industry

As mentioned previously. l.ocal Area Network (LAN) architecture is suitable for

industrial networks. Cena and Valenzano (1995), in discussing Ethernet, state that:

The most popular and diffuse network in the office automation
environment is without doubt Ethernet, based on the CSMA/CD
approach. The reason for this is mainly due to the fact that the
mechanism adopted to manage access to the shared transmissive medium
is very simple. and allows components and communication boards to be
used which are cheaper than those employed in other kinds of networks,
such as for Token Ring.

CSMA/CD is an acronym for Carrier Sense Multiple Access with Collision
Detection. The basics of CSMA/CD are that every node, which has messages to

-12-

Network Topologies and Controller Area Network (CAN)

transmit, listens to the traffic on the bus, and the node can access the bus when it is
idle (free). If two or more nodes try to transmit messages at the same time, then a
collision occurs. All nodes have to withdraw from the bus and wait for a random

period of time before trying to access the bus again (Halsall, 1996, p. 280).

In addition, with respect to the requirements of industrial networks, Cena and
Valenzano (1995) indicate that “though CSMA/CD is well-suvited for office
automation. it is not considered to be satisfactory for the automated factory
environment™. This is due to the fact that the industrial automation environment
needs deterministic transfer time and synchronisation activities, while a random
mechanistn is used in the CSMA/CD to decide wiich station has the right to access
the shared network. Moreover, as the network load increases, so does the number of
collisions. This means the network throughput can be significantly reduced; hence,

the required transfer time is not satisfied (Cena. Demartini, & Durante, 1996).
Consequently, this problem has stimulated technoiogical inquiry and architecture
has been proposed for industrial LANs such as Controller Area Network (CAN),
SP-50 FieldBus, MAP, Profibus, FIP, and so on (Zuberi & Shin, 1993).

Of these network protocols, CAN has gained widespread acceptance in the industry
because of its speed. low cost. real-time support, reliability in noisy environments,

and priority-base arbitration (Zuberi & Shin. 1995).

The main features of the CAN protocol are described in the fellowing section.

-13-

Network Topologies and Controller Area Network (CAN}

2.2 Controller Area Network (CAN) Protocol

2.2.1 Introduction

Controller Area Network {CAN) protocol (CAN Specification Version 2.0, 1991} is
an advanced serial protocol. which was developed by Robert Bosch GmbH in the
early 1980s. It was primarily used in the automotive industry, which is known to be
both physically harsh and electronically noisy (Croft, 1996). Due to its versatility,
CAN has recently been discovered to be suited to a broader class of applications in
various automated factory environments (Cena & Valenzano, 1995} such as i pilot
plant (Gollmer & Posten, 1994), in electrical wheelchairs (Van Woerden et al.,
1994), in controlling motnle robots (Wargui, et al., 1996), and in manufacturing tin

cans (Kirk, 1996).

The CAN protocol is based on the CSMA/CD access method, but it takes a much
more systematic approach, which is known as Bus Arbitration mechanism (see
section 2.2.3.1), to solve bus contention. This new method utilised by the CAN
protocol guarantees that when a collision occurs, only the station transmitting the
message with the highest priority is able to access the bus; and hence, the time
critical requirement in industrial environments is satisfied (Cena &Valenzano,

1995).

It is noted that unlike many serial communication protocols, a CAN message
contains no information related to the destination or the source addresses. Instead,
messages are broadcast to all nodes in a CAN-based system; any number of nodes,
therefore, can receive data simultaneously (Multicast Reception) (Ekiz, et al.,
1996). However, each CAN message has a network-wide unique Identifter, which
serves as the name of the message and the means to indicate its priority. This unique
Identifier enables a CAN node to read only the messages which interest it (Cena

&Valenzano, 1995).

-14-

Network Topologies and Controller Area Network (CAN)

Moreover, a CAN system employs Linear Bus topology; hence, any node can have
access to the bus (Multimaster). This also makes the system easy to expand and to

convert into different configurations (Croft. 1996).

A further advantage of the CAN protocol is its speed, according to Ekiz, et al.

(1996). its baud rate can be up to a maximum of 1 Mbit/sec at 50m bus length.

The CAN Specification Version 2.0 (1991) provides a complete description of the
CAN protacol. The specification consists of two parts: Part A and Part B. The main
difference between the two parts is that Part A describes the original CAN protocol
with 11-bit identifier messages (*Standard Format™), while Part B provides a larger
address range for message identification of 29-bit (“Extended Format™), and also
includes the Standard Format with some modifications. Therefore, the protocol
specified in part B enables both types of messages to coexist within the same

network.

-15-

Network Topologies and Controller Area Network (CAN)

2.2.2 Layer Architecture of CAN

To achieve design transparency and implementation flexibility, the ISO/OSI
reference model and its layers’ architecture are addpted for the specification of the

CAN protocol.

In the CAN Version 2.0 Part A, the original CAN protocol is divided into three
layers (Figure 2-5):

e ~ The CAN Object layer
e The CAN Transfer layer
e The Physical layer

Application Layer

Object Layer
- Message Filtering
- Message and Status Handling

Transfer Layer

- Fault Confinement
- Error Detection

- Error Signalling

- Message Validation
- Acknowledgment

- Arbitration

- Message Framing

- Transfer Rate and Timing

Physical Layer
- Signal Level and Bit Representation

- Transmission Medium

Figure 2-5 CAN’s layers part A

-16 -

Network Topologies and Controller Area Network (CAN)

In part B, the layers of the CAN protocol are divided into two layers as shown in
Figure 2-6:

o The Data Link layer consists of two sublayers:
- The Logical Link Control (LLC) sublayer

- The Medium Access Control (MAC) sublayer.

e The Physical layer

Application Layer

Data Link Layer

Logical Link Control (LLC)
- Acceptance Filtering
- Overload Notification

- Recover Management

Medium Access Control (MAC)

- Data Encapsulation/Decapsulation

- Frame Coding (Stuffing/Destuffing)
- Medium Access Management

- Error Detection

- Error Signalling

- Acknowledgment

- Serialisation/Desirialisation

Physical Layer

- Bit Encoding/Decoding
- Bit Timing
- Synchronisation

- Driver/Receiver Characteristic

Figure 2-6 CAN’s layers part B

17 -

Network Topologies and Controlier Area Network (CAN)

According to Figure 2-5 and Figure 2-6, the CAN Object layer and the CAN
Transfer layer in Part A are included in the Data Link layer (ISO/OSI Layer 2) of
Part B. Hence. the CAN protocol only contains the Data Link layer and Physical
layer of the ISO/OSI model. However, the CAN specification provides a framework
for data transmission which is the function of the Data Link layer. Consequently,
upper and lower layers must be added to constitute an actual operational network

(Bladin, et al.. 1997).

2.2.3 CAN Basic Concept

The most important part of a CAN message is the Identifier field (see section 2.2.4),
which is the outstanding feature of the CAN protocol. Tindell, Hansson and

Wellings (1994 state that the Identifier serves two purposes:

], Assigning a priority to the message, and

2. Enabling receivers to filter messages.

These tasks are done by the Bus Arbitration and the Message Filtering mechanisms

specified in the CAN protocol, respectively.

2.2.3.1 Bus Arbitration

An essential feature of the CAN protocol is Bus Arbitration, which is a systematic
approach of the CAN protocol with respect to message priorities and bus
contention. Like any of the CSMA/CD protocols, a station in a CAN network starts
to transmit its messages when the bus is idle (free). However, instead of
withdrawing and waiting for a period of time when a collision occurs, the Bus
Arbitration mechanism decides which station has the right to access the bus (Baba,

Ekiz, Kutlu, & Powner, 1996).

This determination of station access is achieved through bit transmission. In CAN

terminology, there are twe it levels: a “recessive” bit {usually, logic level ‘1°) and

- 18-

Network Topologies and Controller Area Network (CAN)

a “dominant™ bit (usually, logic level ‘0°). If more than one station transmits data
concurrently and one station transmits a dominant bit, then the bus maintains the
dominant state regardless of the recessive bits (if any)} transmitted from the other
stations. The bus is only at the recessive state when all nodes in the system transmit
recessive bits. In effect, the CAN bus acts like a large AND-gate, with each station

being able to see the output of the gate (Tindell, et al., 1994).

Furthermore. when transmitting data, the Identifier is the first part of the message
being transmitted onto the bus from the most-significant bit to the least-significant
bit. According to the Bus Arbitration mechanism, if the station transmits a recessive
bit (bit "17) and monitors the bus with dominant state (bit *0’), it stops transmitting
since it knows that its transmitting message is not the highest priority on the bus.
The station winning arbitration takes control of the bus, and the station losing
arbitration becomes a receiver. This method enables the highest priority message to

always be transmitted even though the bus load is heavy.

An example of the Bus Arbitration mechanism is given in Figure 2-7.

Node | transmit:

0 [10110110100

Node 2 transmit:

Node 2 loses arbitration,
stops transmitting and
becomes a receiver

0 10110111

Bus:

lo r10110110100 Node 1 takes control the
CAN bus

Identifier Field

Figure2-7 Example of Priority in CAN bus

-19-

Network Topologies and Controller Area Network (CAN)

2.2.3.2 Message Filtering

As mentioned earlier, CAN is a multicast protocol; thus, all stations can receive
data simultaneously. Nevertheless, a station may be configured to accept particular
messages through the Message Filtering mechanism. Typically, this is done with the
aid of mask registers (Tindell, et al., 1994). Every bit of the mask registers must be
prograntmable, which means they can be either enabled or disabled for message
filtering. The length of a mask register can comprise the whole Identifier or just part

of it.

[t is important to note that any bit in the register can be set to “don’t care™, i.e. the
CAN controlter will not compare the message Identifier in the respective bit
position. Consequently, a mask register can be used to select a particular message or

a group of messages from the bus (CAN Specification Version 2.0, 1991, p. 56).

2.2.3.3 Error Handling

With respect to data consistency, Baba et al. (1996) state that “the CAN protocol
implements powerful error detection mechanisms focusing on Cyclic Redundancy
Check (CRC), bit stuffing, and both positive and negative acknowledgment”.
According to the CAN Specification Version 2.0 (1991, p. 59), these mechanisms

include the following five error detection types:

1. A Bit Error is detected when a node transmits a dominant bit but

monitors a recessive bit on the bus or vice versa,

2. A Stuff Error occurs when a CAN message contains six consecutive bits
with the same bit level. This violates the Bit Stuffing Rule, which allows
only five consecutive bits with the same polarity (CAN Specification
Version 2.0, 1991, p. 58).

=20 -

Network Topologies and Controller Area Network (CAN)

A Cyclic Redundancy Check (CRC) Error occurs if there is a mismatch
value between the CRC field of a CAN message and the actual value

calculated by the receiving node.

A Form Error is detected when a fixed form field of a message contains

one or more illegal bits.

An Acknowledgment Error occurs if none of the nodes has received a

transmitted message correctly.

With this five types of error detection scheme, the CAN protocol can detect almost

every error in the system. The significant feature of this error detection scheme is

that all stations in the network will be informed when an error occurs. This enables

the transmitter to retransmit the message which has been corrupted. If repetitive

errors are detected, the faulty station will remove itself from the bus (Baba, et al.,

1996).

2.2.4 Data Transmission

In a CAN network, message transfer is manifested and controlled by four different

frame types:

1.

A Data frame carries data between nodes.

A Remote frame is used to request a certain message to be sent to the bus,

An Error frame informs all stations in the network that an error caused by

the last message has been detected.

An Overload frame is sent by a station when it requires a delay to process

data.

Network Topologies and Controller Area Network (CAN)

In addition, a CAN message can be in Standard or Extended formats, with both
being covered by part B of the CAN specification. The following sections describe
the format of the four frame types covered in Part B, and indicate the differences

between the two parts.

2.2.4.1 Data frame and Remote frame

The main frame type in the CAN protocol is the Data frame, which is used to
transmit data between stations in a CAN system. If a station wants to receive a
particular message however, it can reques! the data by sending a Remote frame with

the same Identifier as the respective Data frame.

The formats of Data frames (Figure 2-8) and Remote frames (Figure 2-9) are almost

identical except for two significant differences:

1. There is no Data field in a Remote frame as it is used to request data.

2. The Remote Transmission Request (RTR) bit is recessive in Remote

frames. while it is dominant in Data frames.

Inter Data FRAME Inter
Frame -l oot Frame
Space . Space
or Overload
Frame

Start of Frame

Arbitration field
Control field
[Drata field
CRC field
ACK field
End of frame

Figure 2-8 Data Frame

Network Topologies and Controller Area Network (CAN)

Inter REMOTE FRAME Inter
Frame . -l Frame
Space Space
or Overload
Frame

Start of Frame

Adrbitration field

Control field

CRC field
ACK fietd

End of frame

Figure 2-9 Remote Frame

2.2.4.1. 1 Start of Frame (SOF)

Start of Frame is a single dominant bit, which marks the beginning of Data frames

or Remote frames.

It is of interest to note that the Error frame and Overload frame do not have this bit
because they are used to indicate special conditions of the CAN nodes. The
descriptions of these two frames are covered in section 2.2.4.2 and 2.24.3,

respectively.

2.2.4.1.2 Arbitration field and Control field

The Arbitration field, the “heart™ of the CAN protocol, contains the message
Identifier, which acts as the name of the message and the priority of the message
(Baba, et al.,, 1996). The prominent difference between Standard and Extended
formats is that a Standard message contains an ! 1-bit Identifier, while the Identifier

of an Extended message has 29 bits.

-23 .

Network Topologies and Controller Area Network (CAN)

It should be noted that according to CAN Specification Version 2.0 (1991, p. 44),

the seven most significant bits of this field must not all be recessive.

The Control field of a CAN message informs the receiving stations of the number

of data bytes (0-8 bytes) contained in the message. This is indicated by the 4-bit
Data Length Code (DLC).

The formats of these two fields are slightly different between Standard and

Extended messages as shown in Figure 2-10 and Figure 2-11.

Standard Format

Arbitration Field Control Field Data Field

N .
o B

y
v

J\
v

1
D
B DLC

Qw:
el

11-bit Identifier

O

Figure 2-10 Arbitration Field - Standard

Extended Format

Arbitration Field Control Field, Data Field
S S11 R
%) 11-bit Identifier 11% E 18-bit Identifier 1;T{ { (r) DLC

Base ID

Figure 2-11 Arbitration Field — Extended Format

-4 -

Network Topologies and Controller Area Network (CAN)

As seen in Figure 2-10 and 2-11, it is noted that:

Firstly, the Remote Transmission Request (RTR) bit is located at the end of the
Arbitration field. This bit indicates whether the frame is Data frame or Remote
frame. It is dominant in Data frame and recessive in Remote frame. With the
Arbitration mechanism of the CAN protocol. a dominant bit will overwrite a
recessive bit if the two bit levels are sent concurrently to the bus. Therefore, in the
unlikely situation when a Data frame and a Remote frame, with the same Identifier,
are tra..amitied at the same time, the Data frame wins arbitration due to the
dominant bit following the Identifier. In this case. the node that has transmitted the

Remote frame receives the desired data immediately.

Secondly, the Substitute Remote Request (SRR) bit is a recessive bit, which is
transmitted in Extended frame. It is located in the same position of the RTR bit in
Standard frame, and so substitutes the RTR bit in the Standard frame. When the
Base ID of the Extended frame is the same as the Identifier of the Standard frame,
and in the event of a collision between these two frames, the Standard frame has a

higher priority according to the Bus Arbitration mechanism.

Finally. the ldentifier Extension (IDE) bit indicates whether the message is
Standard or Extended. This bit 1s located in the same position in either Standard or
Extended frame. It is dominant in Standard frame and recessive in Extended frame.
This construction of the IDE bit ensures that even in a collision between a Standard
Remote frame and an Extended frame (Data or Remote), the Standard frame always

wins arbitration.

Additionally, the r0 and rl bits are reserved bits for future use. These bits are

always recessive.

Note that the formats of Data and Remote frames in Part A of the CAN
specification are the same as the Standard formats of those in Part B except the IDE
bit was the reserved bit (bit r1) in Part A (CAN Specification Version 2.0, 1991, p.
12).

Network Topologies and Controller Area Network (CAN)

2.2.4.1.3 Data field

The Data field is transmitted within Data frames. It contains information that is

exchanged between nodes in the CAN system.

The length of the Data field can be 0 to 8 bytes indicated by the Data Length Code
(DL.C). Each data byte contains 8 bits with its Most Significant Bit (MSB) being
transmuitted first {CAN Specification Version 2.0. 1991, p. 47).

22444 Cyelie Redundaney Check field (CRC)

The CRC field contains the CRC sequence which consists of 15 bits and a recessive
CRC Dehimiter bit (Figure 2-12). The transmitter calculates special check bits for
the bit sequence from the start of a frame until the end of the Data field. This CRC
sequence is transmitled in the CRC field. The receivers, after receiving a frame,
calculate the CRC sequence using the same formula and perform a comparison with
the received sequence. If a mismatch is detected. a CRC error has occurred, and
hence. an Error frame is generated. Consequently. the original message is repeated

{CAN Specification Version 2.0, 1991, p. 47).

Data or
Control Field

-y o
= Lo

CRC Field ACK Field

il
5

Y

A
h J

CRC Sequence CRC Delimiter

Figure 2-12 Cyclic Redundancy Check Field

Network Topologies and Controller Area Network (CAN)

2.2.4.1.5 Acknowledge field (ACK)

The Acknowledge field, containing an ACK Slot bit and a recessive ACK
Delimiter bit (Figure 2-13), is used to indicate if a message has been received
correctly. To achieve this, during the ACK Slot bit interval, the transmitter sends
out a recessive bit. Then, any node that has received an error free frame
acknowledges the correct reception of the frame by sending back a dominant bit. If
during the ACK Slot bit interval the transmitter does not detect a dominant bit, this
means none of other nodes have received the frame correctly, an ACK occurs and
the original message has to be repeated (CAN Speéiﬁcation Version 2.0, 1991, p.
47).

CRC Field P ACK Field - End Of Frame

.
>

y
¥
1
Y

ACK Slot ACK Delimiter

Figure 2-13 Acknowledge Field

2.2.4.1.6 End of Frame (EOF)

This field contains 7 recessive bits to indicate the end of a frame.

-27 -

Network Topologies and Controller Area Network (CAN)

2.2.4.2 Error Frame

During transmitting its message, a station also monitors the bus. As a result, if an
error occurs, the station will send an Error frame to inform the other nodes of this
error. Moreover, if the repetitive errors are detected, it will withdraw itself from the
bus according to the Fault Confinement Rules (CAN Specification Version 2.0,
1991, p. 61).

An Error frame consists of two fields: the Superposition of Error Flags that is
contributed from different stations, and the Error Delimiter containing 8 recessive

bits. The structure of an Error frame is shown in Figure 2-14.

Interframe
Data frame ERROR FRAME Aspace or

o,
B <

A
i

Error Flag

a

A

Overload
frame

&
¥

Superposition of

Error Flags Error Delimiter

Figure 2-14 Error Frame

Depending on the Error flag being Active or Passive, then the Error frame is Active

or Passive, respectively:
e An Active Error flag consists of six consecutive dominant bits.

e A Passive Error flag consists of six consecutive recessive bits unless it is

overwrittén by dominant bits from other nodes.

228 -

Network Topologies and Controller Area Network (CAN)

When detecting an error, a node will send an Active Error frame or Passive Error
frame depending on its status as specified in the Fault Confinement Rules. Two

further aspects regarding the error frame are highlighted as below.

Firstly. an Error flag construction violates the Bit Stuffing Rule of the CAN
protocol, in which a sequence of a normal bit stream contains a maximum five
consecutive bits with the same polarity. Therefore, a node will detect that there is an
error if monritoring an abnormal bit stream on the bus, during the transmission or the

reception of a message.
Secondly. the length of the Superposition of Error flags can be six bits up to a

maximum of twelve; this depends on the number of bits sent by the different

stations in detecting errors (CAN Specification Version 2.0, 1991, p. 51).

2.2.4.3 Overload frame

According to the CAN Specification Version 2.0 {1991, p. 51), there are three

conditions which lead to the transmission of an overload frame from a node:

1. The internal conditions of a receiver which require a delay of the next data

frame or remote frame.

2. Detection of a dominant bit at the first and the second bit of Intermission.

3. A node samples a dominant bit at the eighth bit (the last bit) of an Error

Delimiter or Overload Delimiter.
Note that in the second condition, the term Intermission indicates the first three bits

of the Interframe space, which is used to separate a Data or Remote frame from a

preceding frame (CAN Specification Version 2.0, 1991, p. 53).

-29.

Network Topologies and Controller Area Network (CAN)

An Overload frame consists of two fields: 6 dominant bits of the Overload Flag and

8 recessive bits of the Overload Delimiter as shown in Figure 2-15.

End of frame or Interframe
Error Delimiter or | OVERLOAD FRAME _space or
Overload Delimiter | Overload Flag
Overload
frame

r
A

Superposition of

Overload Flags Overload Delimiter

Figure 2-15 Overload Frame

As shown in Figure 2-15, an Overload frame has the same format as an Active Error
frame. Therefore, in order to differentiate an Overload frame from an Error frame,
the CAN protocol specifies that an Overload frame can only be generated during

Intermission, while an Error frame is sent during the transmission of a message.

-30 -

Network Topologies and Controller Area Network (CAN)

2.2.5 Implementation of CAN protocol

According to Croft (1996), the first working silicon CAN protocol controllers (CAN
modules) became available in 1987. There are three recognised implementations of

CAN protocol supported by silicon manufacturers which are the:

1. Basic CAN
2. Full CAN
3. CAN+

The significant differences between these CAN chips are in their functional

implementations.

The Basic CAN chips only implement the basic functions of the protocol in
hardware, for instance, the generation and the check of the bit stream. Other jobs
are left for the host CPU such as Acceptance Filtering and whole message
management. Therefore, these devices should only be used at low baud rates and
low bus loads with a few different messages. Nevertheless, the advantage of Basic

CAN is that the small size of the chips lead to its low cost.

The second implementation of the CAN protocol is the Full CAN controllers, which
implement the whole CAN protocol in hardware including Acceptance Filtering and
message management. Hence, these devices can alleviate the host CPU's load and
can handle higher baud rates; consequently, higher bus loads can be performed.

These chips, however, are more expensive than the Basic CAN devices.

The third version of silicon CAN controllers is CAN+, which combines the best

features of the both previous device types.

-3]-

Network Topologies and Controller Area Network {CAN)

CAN controllers also have the following characteristics:

Firstly, if the modules were specified prior to CAN Specification Version 2.0 Part
B, they are only able to transmit and receive Standard CAN frames (11-bit

identifier): and therefore, messages using 29-bit identifier will cause errors.

Secondly. with respect to CAN modules specified after the introduction of CAN
Specification Version 2.0 Part B, there are two different types. Devices named “Part
B Passive™ can transmit and receive Standard frames, but tolerate Extended frames
without generating errors. Devices named “'Part B Active™ can transmit and receive

both Standard and Extended frames (Kvaser CAN Pages: The CAN protocol, n.d.).

Currently, a wide range of CAN controllers are available from different
semiconductor companies such as 82527 from Intel (82527 serial communications
controller architecture overview, 1996), SAB-81C90 and SAB-81C91 from
Siemens (SAE 81C90/91 stand-alone Full-CAN controller data sheet, 1997).
Moreover, microcontroliers with an integrated CAN module are also available such
as C167CR from Siemens (C167CR 16-bit CMOS single-chip microcontroller data
sheet, 1995) and 68HC12 from Motorola (Blandin, et al., 1997).

2.2.6 Advantages and Disadvantages of the CAN Protocol

2.2.6.1 Advantages

Since the introduction to the CAN protocol, it has been employed in a wide range of

industrial networks. The main altractions are as follows:

e Cheap to implement

+ Easy to install and uninstall a unit into or out of the system.

-32-

Network Topologies and Controller Area Network (CAN)

A fast network: up to 1 Mbit per second.

Rehiable: CAN systems can work well in a hazardous industry

environment.

Well-suited for distributed control systems due to its prioritisation

characteristic.

2.2.6.2 Disadvantages

The CAN protocol, however, does contain disadvantages relating to its

functionality, These include:

All nodes in the CAN system have to work at the same baud rate,

Limitation of data byte in a message to maximum of 8 bytes.

The multimaster concept may slow down the speed of the nodes in the
system, especially for Basic CAN chips. This is because every node has to
receive a frame, then uses the acceptance filtering method to decide

whether to accept it or not.

Every node may have to deal with error or overload conditions, caused by

other nodes, while it is performing other jobs.
In a heavy bus load condition, lower priority messages can be delayed

indefinitely by higher priority messages due to the CAN Arbitration

mechanism.

-33-

Network Topologies and Controller Area Network (CAN)

2.3 Conclusion

This chapter has provided an overview of computer networks and the ISO/OSI
reference model for computer networking. The Local Area Networks (LANs)
topologies. and the requirements of industrial networks were described. Some of the
industrial network architecture available was mentioned, and the significant features

of the Controller Area Network protocol were highlighted.

In summary, the CAN protocol provides a means to develop low cost, fast, and
highly reliable networks for control systems. Notably, its real-time support
characteristic has resulted in the protocol being accepted by a wide range of
automation industries. The CAN's Arbitration concept allows different priorities for
CAN messages. Thus, it is highly suitable for implementing complex distributed
control systems in which nodes can be grouped together by message Identifiers; and
hence, receive similar types of messages simultaneously and ignore messages for

other nodes or group of nodes.

In addition, the ISO/OSI based model of the CAN protocol allows it to acineve
design transparency and implementation flexibility. The error detecting methods
used by CAN enable its system to detect almost every error on the bus. Faulty nodes
withdraw themselves from the network operation without disturbing the other

nodes.

The CAN protocol, however, only specifies how a small packet of data transfers on
the network. It does not cover topics such as flow control, node addresses,
establishing communication, and transportation of data greater than 8 bytes. These
topics are all necessary to design actual network operations. Consequently, they are
for designers to address in Higher Level Protocols (HLPs), which are covered in the

following chapter.

-34 -

CHAPTER 3

HIGHER LAYER PROTOCOLS (HLPS) FOR
CONTROLLER AREA NETWORK (CAN)

This chapter describes the architecture of three popular CAN Higher Layer

Protocols (HLPs) currently used in automation industries:

1. Smart Distributed System (SDS) from Honeywell,

]

DeviceNet from Allan Bradley, and
3. CAN Kingdom from Kvaser.

The advantages and disadvantages of these three protocols are discussed in order to

choose a suitable HLP for the task of designing a simpler HLP in this project.

3.1 An Overview of Higher Layer Protocols for CAN

As discussed in Chapter 2, the CAN protocol is developed in accordance with the
ISO/0OS1 model which contains seven layers. The implementation of a CAN system

however, usually utilises three layers including:

e Application layer,
s Data Link layer, and

+ Physical layer.

The main reason for this difference is noted by Cena, et al. (1996) who claim that
“The network, transport, session and presentation layers have been omitted in order

to get shorter response times for data transfer”.

-35-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Figure 3-1 shows the ISO/OSI model of a CAN system in comparison with the
ISO/OSI seven-layer model.

Layer Layer
7 Application Layer 7
6 Presentation Layer
5 Session Layer
4 Transport Layer
3 Network Layer
2 Data Link Layer 2
1 Physical Layer 1
ISO/OSI Layers CAN Layers

Figure 3-1 ISO/OSI Reference Model for CAN

However, while the CAN specification only deals with the Data Link Layer (see
Chapter 2), the lower and the higher layers (Physical layer and Application layer)

must be added to a CAN-based system in order to perform actual operations.

Although there are many publications relating to the use of the CAN protocol and
the needs of HLPs for CAN systems, there is not much literature available solely for
HLPs, except for the specifications themselves. This is because CAN is a new
technology, and as Korane (1996) claims “one reason is simply that many designers

are still learning how to use it”.

The infancy of CAN and its associated technological requirements has seen various

responses, by designers, to address perceived issues. However, there remains much

-36 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

work to be done as many areas lack attention in sufficient detail. For example, all
CAN-based systems need a HLP to ensure inter-operability between CAN
components. Yet, in this regard, there are no worldwide standards for HLPs. As a
result, many CAN user groups have developed HLPs that meet their own needs.
Korane (1996) notes that up to 31 different CAN HLPs are currently in use; thus,
designers may choose a proprietary protocol for their CAN system or, as is the case

in this project, design their own according to one of the existing HLPs.

The three HLPs, Smart Distributed System, DeviceNet and CAN Kingdom,
highlighted in this thesis, are all widely-used and popular among industry (Blandin,
et al., 1997). Furthermore, they are all well-supported in terms of literature and

physical materials available to enable designers to implement a system.

In order to understand the CAN’s HLPs, it is desirable to have an overview of the
OSI Application layer (Figure 3-2). Dickson and Lloyd (1992) state that “the OSI
Application Layer standards define a range of system independent application
services to support real ‘users’ or user programs”. These services are built on the

functions of the lower layers in order to support distributed systems.

User - Device

OSI services defined APPLICATION
in terms of a virtual LAYER
device

Lower Layer Services

Figure 3-2 Model of the OSI Application Layer

-37 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN})

As shown in Figure 3-2:

* The User Application is a local system independent part that interfaces to

the user or devices.

» The Application Entity provides the standardised functionality of the

Application layer to the user application.

Each of the three HLPs described in this thesis has a different design approach and
provides different application layer services to its users. The main features of these

protocols, according to Lennartsson and Fredriksson (1995}, are:

s SDS, fundamentally, is point-to-point communication between a master

{Host) and remote Input/ Qutput devices.

o DeviceNet is an open bus system where all modules have the same right

to use the bus, and the use of the bus is only restricted by a few rules.

e CAN Kingdom specifies a set of protocol primitives which system
designers can use to build a final protocol satisfying their system needs.
The basic idea of CAN Kingdom is that a module, when connected to a
system, has to wait for configuration instructions from the King (the

Master node} before it can perform its work.

The following sections of this thesis describe and compare the aforementioned three

HLPs in greater detail.

-38-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.2 Smart Distributed System (SDS)

3.2.1 Introduction to SDS

i

Smart Distributed System. introduced by Honeywell's Micro Switch Division in

1994, includes a device-level control network based on the CAN protoco’l:_ﬁ"fhe
design of SDS meets the requirements of speed, reliability and flexibility for

manufacturing automation applications and rcal-time control.

Basically, the SDS protocol specifies point-to-point communication between a host
controller and remote Input/Output devices such as sensors, actuators, analog /O

devices. etc.

The development of the protocol has overcome some of the disadvantages of CAN

such as data transfer no larger than 8 bytes, node addressing, and flow control.

-39.

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.2.2 SDS Basic Concept

An SDS system is developed based on the model as shown in Figure 3-3.

According to the Smart Distributed System Application Layer Protocol
Specification Version 2.0 (1996), each node in the system contains three primary

elements:

e Physical Component
e - Logical Device

e Embedded Object

Physical Physical Physical
Component Component Component
Logical Logical Logical Logical
Device Device Device Device
Embedded Embedded Embedded
Object Object Object Embedded
Object
CAN CAN CAN
Controller Controller Controller
SDS Bus

Figure 3-3 Smart Distributed System Model

- 40 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

The definitions of these elements are as follows:

A Phyyical Component is a single physical package of hardware and
software. It consists of 1 to a maximum of 126 Logical Devices.
Typically, a Physical Component is an actual CAN node, which contains

only one CAN controller circuit (chip).

A Logieal Device is an abstraction representing a separate entity within a
Physical Component. [t contains at least 1 and no more than 32 Embedded
Objects. Each Logical Device has a unique address in an entire SDS

system.

The term Embedded Object is used to present an actual device such as
switch. sensor. actuators, and so on. Each Embedded Object has a specific
address within a lLogical Device. The network address of an Embedded
Object is the combination of its address, called Embedded Object
Identification (EOID). and the Logical Device address, to which the
Embedded Object belongs.

For example. to differentiate between the Embedded Object 2 of the Logical Device

3 and the Embedded Object 2 of the Logical Device 5. the combined addresses are

shown below:

Logical Address #3: EQID #2
Logical Address #5: EOID #2

-41 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Additionally, in order to communicate with each other in the network, each SDS
component (Physical, Logical or Embedded Object) has to be documented. The
component's document contains attributes, actions, and events that are specific to
the device (SDS Component Modelling Specification, 1995). These are defined as

follows:

s Attributes provide information about the component such as vendor

name. software version, data type and data structure.
e Actions contain the operations, which can be done by a device.
s Events are used to report the occurrence of an event for a device. For

example, a state of a switch being ON or OFF.

Each attribute, action, and event has a unique Identification, respectively called
Attribute 1D, Action 1D, and Event ID, in order to distinguish each document aspect

from the other.

Note that these IDs are held by Honeywell Micro Switch. Accordingly, any device

that uses the SDS protocol has to follow their standard.

Table 3-1 gives an example of an SDS component document.

-42.

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Table 3-1 Example of an SDS Component Document
Attributes | Description Primitive Tag Default Value
1D
R/W | Type | Size | Cnth
0 Network Data Descriptor R Uns | Byte 5 12h,00h.00h,00h,00h.00h
1 Baud Rate R Uns Und 0 0
11 Serial Number R Uns Long 0 N/A
12 Date Code R Char | Bwte 3 N/A
35 Manufacturing Codes R Uns Byte 0 N/A
61 Configuration Register R/W Uns Byte 0 0
Action vescription Paramecter Parameters Data Type
ID Type
0 No operation
] Change Address [nput Addr, Uns 8,
<Device [D>, Uns 8,
<Partner 1D. S-Num> Uns 16. Uns 32
2 Self Test
8 Enrol Logical Device | Output S-Nuni. Partner 1D Uns 16,Uns 32
57 Password Input Password Uns 8
Event ID | Description Output Parameters Output Data Type
0 Diagnostic Event Counter Counter Value Uns §
3 Eng of Timer Attribute [D. Data Uns 8, Uns 16
Spec COS_ON
Spec COS_OFF

-43.

Higher Layer Protocols {HLPs) for Controller Area Network (CAN)

While an SDS system is in operation, the values of Attributes, Actions, and Events

of a component can be read or changed. In doing so, the SDS Application Protocol

provides several services which are described below:

The Read service is used to read an attribute value of an Embedded Object
{EQ). For example, this service can be used to read the present value of a

sensor.

The Write service modifies or changes an attribute value of an EQ. This

may be used to set an actuator output to ON or OFF.

The Event service reports the occurrence of an event in an EQO. For

instance, a Logical Device may report a self-test failure.

The Action service is used to execute the operations specified for an EQ.

This may be used to initiate a self-test.

Moreover. if a device has only one Embedded Object such as a single binary input,

simplified services are provided. by means of SDS short form messages (see section

3.2.3). to increase the system throughput as described below:

The Change Of State ON (COS ON) service is used by a Logical Device
to report a change of state to ON of its Embedded Object.

The Change Of State OFF (COS OFF) service reports a Change of State
to OFF of the object.

The Write ON State service is used to write an ON state to a device.

The Write OFF State service writes an OFF state to a device.

- 44 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Furthermore, SDS Higher Layer Protocol also provides two special services to

establish the connection and communication channels between devices as follows:

s The Connection service establishes a connection between two Logical
Devices. It is used by one device to request a connection with another
device. The two devices are then able to transfer data to each other

following the successful connection establishment.

o The Channel service is used after a successful Connection service to
provide communication channels for devices such as Multicast and bi-
directional Peer-to-Peer channels (Smart Distributed System Application

Layer Protocol Specification Version 2.0, 1996, p. 34).

Note that each SDS Application service contains parameters which include
information related to the device addresses, Attribute 1D, Action ID, Event ID,
channel number, and so on. These parameters are responsible for the exchange of
information between devices {Smart Distributed System Application Layer Protocol

Specification Version 2.0, 1996).

_45 .

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.2.3 SDS Application Protocol

This section describes how the SDS application protocol uses the CAN Data frames

(see Chapter 2) to provide its services to user applications.

It is important to note that the CAN remote frames are not used in the SDS protocol.
In addition, the protocol only utilises the CAN Standard format messages with 11-
bit Identifiers specified in part A of the CAN Specification Version 2.0 (1991, p.
11).

In summary, a Standard CAN frame can be described as shown in Figure 3-4.

Bit
7 6 5 4 3 2 1 0
ID-10 ID-9 ID-8 ID-7 ID-6 1D-5 ID-4 ID-3 CAN
ID-2 ID-1 ID-0 RTR DLC3 DLC2 DLC1 | DLCO | Header
B Data Byte 1
Y Data Byte 2
T Data Byte 3 CAN
E Data Byte 4 Data
S Data Byte S Field
Data Byte 6
Data Byte 7
Data Byte 8

Figure 3-4 Standard CAN frame format

- 46 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

According to the Smart Distributed System Smart Distributed System Application
Layer Protocol Specification Version 2.0 (1996), the Identifier of the CAN header
(Figure 3-4), whiéh contains the Arbitration and Control fields, is divided into 3
subfields (Figure 3-5):

1. The Direction/Priority,
2. The Logical Address, and
3. The Service Type.

Bit
7 6 | 5 | 4 [3 | 2 | 1 | o
Dir/Pri Logical Address {0...125}
Service Type {0...7} | RTR l Data Length Code

Figure 3-5 SDS header

The descriptions of these subfields are as follows:

o The Direction/Priority (Dir/Pri) subfield is presented by the most
significant bit of the 11-bit CAN Identifier (ID-10). This bit determines
the direction of the frame with respect to the content of the Logical

Address subfield.

- If Dir/Pri=1, the Logical Address subfield is the source address.
- If Dir/Pri=0, the Logical Address subfield contains the destination

address.
Moreover, the Dir/Pri bit is used in Channel service to determine the

priority of a message. The message with Dir/Pri=0 has higher priority
than the message with Dir/Pri=1.

- 47 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

o The Logical Address subfield specifies the address of a Logical Device.
The subfield starts from bit 3 through bit 9 of the CAN Identifier (ID-3 to
1D-9). This allows a range of Logical Addresses from 0 to 125.

Note: the address 126 and 127 cannot be used due to the restriction of the
CAN specification, which means that the 7 most significant bits ID-10 to
ID-4 must not all be recessive (CAN Specification Version 2.0, 1991, p.
I,

¢ The Service Type subfield is from bit 0 through bit 2 (ID-0 to ID-2). This
indicates the type of the service specified for the message. The value of
this subfield is 0 to 7 depending on the service carried by the message (see
Table 3-2 and Table 3-3). The meaning of this field is different for Short
Form and Long Form, which are two message formats used to transfer

data in SDS protocol.

Table 3-2 Service Type value for Short Form messages
Service Value Service Name
0 Change of State OFF
1 Change of State ON
2 Change of State OFF ACK
3 Change of State ON ACK
4 Write OFF State
5 Write ON State
6 Write OFF State ACK
7 Write ON State ACK

Note that the services with acronym ACK are used to inform the transmitters that

the receivers have received the corresponding services successfully.

- 48 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Table 3-3 Service Type value for Long Form messages

Service Value | Service Name
0 Channel
1 Connection
2 Not use
3 Not use
4 Write
5 Read
6 Action
7 Event

Also note that the SDS Application protocol does not make use of the Remote CAN
frames. Therefore, the Remote Transmit Request (RTR) bit is always a dominant bit

(*0").

As mentioned earlier. an SDS message can be one of the two formats: Short Form,
and Long Form. The Short Form format is used for Change Of State ON (COS
ON), Change Of State OFF (COS OFF), Write ON, and Write OFF services. The
format of a Short Form frame is the same as shown in Figure 3-5. The value of the
Data Length Code subfield in the Short Form format is always 0, which means there
is no CAN data field in the message. Hence, this configuration increases the system

throughput.

The Long Form format is used by other SDS services. The difference between
Long Form and Short Form is that a message in the Long Form format contains at
least two or more CAN data bytes. Long Form messages are used to access devices
with more than one Embedded Object. Thus, some bits in the CAN data field are
used to indicate the Embedded Object address (EOID).

-49.

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Moreover, the Long Form format can be one of two forms: Non-fragmented and
Fragmented. The Fragmented format can carry data greater than 8 bytes by

dividing the data into fragments and transferring one fragment at a time.

Figure 3-6 and Figure 3-7 show the formats of the two types of Long Form frames.

‘ Bit
7 | 6 | s | 4 1 3 | 2 | 1] o
Dir/Pri Logical Address {0...125}
Service Type {0...7} RTR=0 | Data Length Code
Service Specifier ' EOQID
Service Parameters
Data
(6 byte max)
Figure 3-6 Non-fragmented Format
Bit
7 6 | s | 4 | 3 [2 [1] o
Dir/Pri Logical Address {0...125}
Service Type {0...7} RTR=0 | Data Length Code
Service Specifier EOID
Service Parameters
Fragmentation
Data
(4 byte max)

Figure 3-7 Fragmented Format

- 50 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

As shown in Figure 3-6 and Figure 3-7, some of the CAN data bytes are used to
carry information related to the SDS messages (Smart Distributed System
Application Layer Protocol Specification Version 2.0, 1996, p. 44). The following

describes the informatien contained in each field of SDS Long Form messages:

» The Service Specifier field indicates whether the frame is fragmented or
not. It is also used to request a specific service from a provider or to

indicate if the requested service is successful.

» The Embedded Object Identifier (EOID) specifies the address of the
Embedded Object. The value of this field can be 0 to 3.

¢ The Service Parameter field contains the parameters for the service

carried by the message such as Attributed ID, Action ID, Event ID, ete.
o The Fragmentation field is used in Fragmented Long form format to

indicate the fragment number and the total bytes of the fragmented

message.

-5] -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.2.4 Advantages and Disadvantages of SDS

The SDS protocol. with its many advantages, provides a good solution for designing

CAN-based systems. However, it also contains disadvantages that do not utilise the

CAN protocol as efficiently as possible.

3.2.4.1 Advantages

SDS overcomes the limitation of CAN protocol such as transferring data

larger than 8 bytes, and node addressing.

The design of SDS meets the requirements of flexibility, speed, and

reliability of a real-time control system.

SDS is a complete Higher Layer Protocol for a CAN network and is an

ideal solution for controlling or monitoring I/O devices.

3.2.4.2 Disadvantages

SDS only uses the CAN Standard format frame (11-bit Identifier)

The formats of SDS frames cannot be changed. Hence, any CAN system
that uses the SDS protocol has to follow exactly the SDS Standard.

The priority of a CAN message depends on its Logical Device. In other

words, the Logical Address decides the message priority.

SDS does not use the Remote Frame specified in the CAN protocol.

SDS uses a Master/Slave concept while the CAN protocol is based on the

multi-master approach.

-850

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3 DeviceNet

3.3.1 Introduction to DeviceNet

Young (1993) writes that the purpose of the DeviceNet protocol 15 that it “simply
defines the Application Layer that sits on top of CAN to specify how various
devices communicate across the network™. [n doing so. it overcomes disadvantages

of the CAN protocol such as node addressing and flow control.

DeviceNet is an open communication network mainly designed to connect factory
devices such as push buttons. sensors, motor starters. and drives to control systems
(Simonye. Alpena, & Witte, 1997). It provides a more versatile approach to module
communication on the network where all nodes have the same right to access the

bus.

In addition, DeviceNet uses the object-oriented method which provides efficient
ways to model and design real-world objects (Hawryszkiewycz, 1994, p. 236).
However. in DeviceNet, inheritance of the objects from one to another is not

implemented (Moyne, Shah, McLaughlin, & Tang, 1997).

The references to the DeviceNet specification in this section are referred to by the
Volume number and Section number of the specification. This is because the
specification comes on a CD-ROM, and thus, the page number will be different for

each updated version.

-53-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3.2 DeviceNet Basic Concept

According to the DeviceNet 2.0 Specification (VoLl, Section 1-3), each node of a
DeviceNet network is considered as a collection of Objects, each of which is an
abstraction representing a particular component within a product. Similar kinds of
Objects belongs to a Class. An Object Instance is the actual presentation of a
certain Object within a Class. For example, an Instance of a Vehicle Class is a car or

a truck. A cat is an Instance of an Animal Class.

Each Instance in a Class has the same set of Attributes specifying the
characteristics of the Class, but the values of Attributes vary from one Object

Instance to another.

An Object or a Class also provides a set of Services which are used to perform the
tasks for the Object or the Class. It can be said that this feature of DeviceNet
provides designers with greater flexibility than the Smart Distributed System (SDS).
Instead of specifying fixed application services, DeviceNet allows its users to

design different services that are more relevant to their Objects or Object Classes.

The DeviceNet hierarchical view of Classes and Objects is shown in Figure 3-8.

Class 1 Class 2
Class 1’s ﬂ Class 2’s ﬂ
Services Services
Object 1 Object 2 Object 1 Object 2 Object 3
Attribute #1 Attribute #1 Attribute #1
Attribute #1 Attribute #1 Attribute #2 Attribute #2 Attribute #2
Attribute #2 Attribute #2 Attribute #3 Attribute #3 Attribute #3
Figure 3-8

DeviceNet hierarchical view of Classes and Objects

-54 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

DeviceNet also provides a set of common services to be used for devices that follow
the DeviceNet standard. These services are fully described in Appendix G of the
DeviceNet 2.0 Spevciﬁcation (1997, Vol. 1). For example:

e Get_Attribute All service tells an Object or a Class to return all its
Attributes.

e Set_Attribute_All service modifies the attribute contents qf a Class or an
Object.

e Reset service is used to reset a specified Class or Object.

e Start service places an Object into running mode.

e Stop service places an Object into stop or idle mode.

Furthermore, an Object or a Class has its distinct Behavior for particular events. In
other words, the Behavior of an Object or a Class specifies how it responds to

particular events.

Figure 3-9 illustrates the structure of a DeviceNet node.

DeviceNet Node

itell

Object Class bjeciLInstance

O

Figure 3-9 A DeviceNet node

- 55 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

A node in a DeviceNet network is identified by a unique Media Access Control
Identifier (MAC ID). Similarly, a Class has a Class ID; an Object Instance has an

Instance ID; an Attribute has an Attribute ID; and a Service has a Service Code.

In order to distinguish an Object within a network, a combined Identifier of MAC
ID, Class ID, and Instance ID is used (e.g. MAC ID #4: Object Class #5: Instance
#2).

The model of a DeviceNet system is shown in Figure 3-10.

MAC ID #1
,w“"”'Object Class #7"""%.,,
= - | MAC ID #2
" Object Class #4 ™. P
T~) bje;tSClass;"""‘.a
Autribute #1 i L

Attribute #2

Instance #]

DeviceNet Link

MACID #4

"""""""""""""""""""""""""""""""""""" ~Object Class ™,
""""""""""""""""""""""""" " Object Class#5 ™./ #7

nstance
b
Instance
#1

Attribute #1
Attribute #2

Attribute #1
Attribute #2

Instance #2

lnstance

Instance #1

Figure 3-10 DeviceNet Model

-56-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

With respect to the relationship between CAN and DeviceNet, a DeviceNet network

utilises CAN's Data frames 1o exchange its messages. Data is exchanged in a

DeviceNet network by means of Explicit messages and Input/Output (1/O)

messages.

Explicit messages are used to transfer generic, multi-purpose data such as
requesting a connection with other devices. reporting errors, and so on

{DeviceNet 2.0 Specification, Vol. 1, section 4-2).

It is noted that the common services (as mentioned in the examples

previously) are transferred within Explicit messages,

1/0 messages are used to exchange special-purpose data. These types of
messages are used by 1'O devices to transfer their information during the

performance of their tasks.

Note: DeviceNet does not define any protocol for the Data field of an 1/O
message (DeviceNet 2.0 Specification. Vol. 1. section 4-2). This enables
users to design data formats that suit their needs. This feature of
DeviceNet further reflects its flexibility in comparison with the SDS

protocol.

The formats of these two types of DeviceNel messages are described in section

3.3.3.2.

-57.

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3.3 DeviceNet Application Protocol

3.3.3.1 Use of CAN Identifier in the DeviceNet protocol

As referred to previously, each DeviceNet’s node has a unique MAC ID which
serves as its identifier in a network. In the DeviceNet protocol, the 11-bit Standard
format Identifier of a CAN message is used to assign the MAC ID to a node, as well
as the message identifier (Message ID).

A DeviceNet node can belong to one of four groups: Group 1, Group 2, Group 3,
and Group 4. The formats of these Groups’ messages ID and MAC ID are shown in

Figure 3-11.

Identifier bits Hex Range Group
1w]o]s[7]e6][s5][4]3]2]1]0
0 Message ID Source MAC ID 000-3FF 1
1o MAC ID | MessageID | 400-SFF 2
1 1 | Message ID Source MAC ID 600-7BF 3
1 1 1)1 1 Message ID 7CO-7EF 4
vl x]x][x][x]| 7Fo-7FF Not use

Figure 3-11 DeviceNet’s use of the CAN Identifier Field

According to the CAN protocol, messages in Group 1 have the highest priority, and

Group 4 messages have the lowest priority.

Note that the MAC ID fields in Group 1 and Group 3 contain the source nodes’
addresses. In Group 2, the MAC ID field can be either the source or destination
address (DeviceNet 2.0 Specification, Vol. 1, section 3-2).

When assigning a MAC ID to a node, or message ID to a message, the group
priority should be considered. For example, in a car, the node controlling the air bag
should be one of the highest priority modules; thus, its MAC ID should be assigned

to Group 1. The node (or nodes) which carries out the tasks of engine management

-58-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

could belong to Group 2. The node controlling the air conditioning could be one of

the lowest priority: hence, its MAC ID could belong to Group 3.

Messages in Group 4 do not contain a MAC ID, hence. any node can utilise the
Group 4 messages. These messages are solely used for system administration
purposes such as recovering nodes which have gone off-line due to having the same
network addresses with other nodes (DeviceNet 2.0 Specification, 1997, Vol. I,

section 3.2.4).

[n addition. the message priorities within a group are determined as follows:

» For Group 1 and Group 3. the message with the lower message 1D has
higher priority. When two or more messages try to access the bus
simultaneously. the lowest message 1D will gain the bus access. If the
messages have the same message 1D, then the message with the lowest

MAC [D wins arbitration.

For example. within Group 1. the device with MAC [D=20 and message
ID=2 has higher priority than the device with MAC 1D=5 and message

ID=6.

e For Group 2. the lower MAC 1D device has higher priority. When two or
more messages try to access the bus at a same time, the lowest MAC [D

node will gain the bus access.

For example, within Group 2. the device with MAC [D=0 has higher
priority than the device with MAC ID=1.

-59 .

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3.3.2 Use of CAN Data field in DeviceNet
Messages are exchanged in a DeviceNet network by means of Explicit and IO

messages.

I/0 messages are left for users to define the information contained in the Data field

of the messages (Figure 3-12).

CAN Header

Data Field

CAN Trailer

Figure 3-12 /O message format

Explicit messages carry the common service information, which has been described

in section 3.3.2. The format of an Explicit message is shown in Figure 3-13.

CAN Header

Data Field

CAN Trailer

Figure 3-13 Explicit message format

- 60 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

The Message Header of an Explicit message contains information about:

Whether the message is fragmented or not, and

e The MACID.

Note that if the MAC ID in the Identifier field is the source ID, then the
MAC ID carried in the Message Header is the destination ID, and vice

versa.

The Message Body carries the service parameters of a specific service.

A typical DeviceNet message contains 0 to 8 bytes. However, data larger than 8
bytes can be transmitted as fragmentation, and is thus catered for in the protocol.
The formats of fragment frames for I/O messages and Explicit messages are shown

in Figure 3-14 and Figure 3-15, respectively.

The Fragmentation protocol field utilises the first data byte of the CAN data field.
It contains information of the fragment type (i.e. the first, middle or last fragment),

and the fragment number (DeviceNet 2.0 Specification, 1997, Vol. 1, section 4.4.1)

CAN Header

Data Field

CAN Trailer

Figure 3-14 1/0 message fragment format

-61 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

CAN Header

Data Field

CAN Trailer

Figure 3-15 Explicit message fragment format

3.3.4 Advantages and disadvantages of DeviceNet

3.3.4.1 Advantages

The DeviceNet protocol is a complete Higher Layer protocol for CAN-based

systems. It has the following advantages:

Provides a solution for low cost networks.

e [t is an open network for I/0 devices.

e It has flexible data formats which utilise I/O messages.

e The design of DeviceNet meets the requirements for real-time control

systems.

-62 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3.4.1 Disadvantages

The design of DeviceNet protocol has disadvantages as follows:
o [t only utilises the Standard CAN format (11-bit Identifier)

o The use of the CAN Identifier is not efficient. No two nodes can have the
same MAC ID. This violates the CAN specification where two or more

nodes can have the same CAN ID to transmit or receive data.

e Amendment of the priority of a node or a message is an extremely

complex task and time consuming.

o Only 64 nodes can exist on one DeviceNet link because the MAC ID

range 1s 0 to 63.

If a network needs to contain more than 64 nodes, however, it can be
divided into subnets consisting of a maximum of 64 nodes. The subnets
are connected together by Nenvork Routers (DeviceNet 2.0 Specification,

1997, Vol. I, section 1-6).

3.4 CAN Kingdom

3.4.1 Introduction to CAN Kingdom

This section introduces another approach for HLPs, called CAN Kingdom, which
was developed by Kvaser AB (CAN Kingdom 3.01 Specification, 1996-1997).

Lennartsson and Fredriksson (1995), in discussing the basic idea of the CAN
Kingdom protocol, state that “instead of specifying how modules should be finally

designed, CAN Kingdom specifies how modules can be adjusted to actual system

«H3-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

needs”. Whereas, in other HLPs such as Smart Distributed System (SDS) and

DeviceNet, modules have to follow the standards exactly,

Problems arise with SDS, DeviceNet or other CAN HLPs when modules following
different protocols are not able to work on the same network. This inconsistency is
due to the conflicting interpretation of messages at the Application Layer Protocol.
In addition, a module cannot know which other modules to communicate with in

SDS and DeviceNet systems {Lenartsson and Fredriksson, 1995).

In order to overcome these disadvantages of other HLPs, instead of developing a
complete new HLP, Kvaser AB introduced a new approach for the CAN Kingdom
protocol. The protocol consists of a set of protocol printitives which designers can

use to build their final HLP to suit their system needs.

In order to highlight this feature of CAN Kingdom, Korane (1996) quotes the
president of Kvaser, Lars-Berno Fredriksson, who claims that: *The advantage of
CAN Kingdom not being a protocol but a set of protocol primitives is that,
especially for real-time systems, the system designer can choose the topology and
bus access management best suited for the application”. Lennartsson and
Fredriksson (1995) also note that “'In fact, DeviceNet and SDS modules can be

integrated into CAN Kingdom systems (but not vice versa)™.

The fundamental aspect of a CAN Kingdom system is the Network Manager, called
the King, which is responsible for the whole network configuration and decides
which nodes communicate with each other. Nevertheless, after setting up the
network and dectding upon the communication between modules, the King can
usually be removed from the system. Then, the system can inherit the full potential
of the CAN protocol such as Multi-Master and Broadcasting (see Chapter 2). In
some cases, the system can even be designed to work in other modes {Lennartsson

and Fredriksson, 1995).

- 64 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.4.2 CAN Kingdom Basic Concept

3.4.2.1 CAN Kingdom model and terminologies -

According to the CAN Kingdom 3.01 Specification (1996-1997), a CAN Kingdom

system is described as being analogous to a country, a Kingdom, with a master node

(called the King or the Capital), and CAN modules (called Cities). The exchanges

of information between Cities, as well as between the King and Cities, are done by

means of letters (or mails) via a postal system. Figure 3-16 shows the model of a

CAN Kingdom system.
City 1 City 2 City 3
1/0 Device 1/0 Device 1/0 Device
Capital]] |
King May[or 1 Ma]':r 2 Ma%'or 3
Form Form Form
King Page .
Form
I:If)il;ir Folder Folder Folder
i s I [st B I [s st B [ettt sty
| caN E i CAN || ! CAN i | CcaN |
: Controller ' ' Controller | | ! Controller l ‘| Controller ||
| t i ¥ i | i |
i i | | | | | 3
I JL] 1 | i J i
__d [1 [i I i i
Postal System

Figure 3-16 CAN Kingdom Model

- 65 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

The following list introduces terminologies defined in the CAN Kingdom

specification:

The Capital and the King are actually the Network Manager node and the

software for controlling the network, respectively.

A City and the Mayor of the City are the actual CAN node and the

software to control this node.

Input / Qutput (I/0) Devices are the devices to carry out the tasks of the

CAN node such as sensors, actuators, switches, and so on.

Forms are the tools in the CAN Kingdom protocol used to encode and
decode CAN messages into meaningful information. A Form tells other
Cities where on a page a certain piece of information should be placed or
is expected. and in which format (BCD, Integer, etc.) the information is

presented.

Folders serve as lztterboxes for incoming and outgoing Letters (CAN
messages). Unlike normal letterboxes, each Folder contains one Letter at a
time and has a Folder number from 0 to 255. A Folder has a Form (or
Forms) associated with it so that the software knows how to encode and

decode the data.

The Postal system includes the CAN bus and the CAN protocol.

The Kingdom Founder is the system designer, who decides how the

system works,

The City Founder is the module designer, who is responsible for the

control mechanism that actuates the tasks of the CAN module (City).

- 66 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

An Envelope is the CAN Identifier of CAN messages.

¢ A Line is one CAN data byte in the Data field of a CAN message.

e A Page is the CAN data field. As the CAN data field consisting of 0 to 8

bytes, each Page contains 0 to 8 Lines.

o Letters are the messages which are exchanged in the system. A letter
consists ol an Envelope and a Page. The Envelope serves as the
destination address, to which the letter should go. The Page contains

information of the Letter.

The Figure 3-17 shows the relationship between a CAN Data Frame and a CAN

Kingdom Letter.

CAN Data Frame

. Conlrol .
'''' Identifier Field Field Data Field T

Envelope Page (0 to 8 Lines)

Figure 3-17 A CAN Kingdom Letter

-67-

Higher Layer Protocols (HLPs} for Controller Area Network (CAN)

3.4.2.2 Basic concept of CAN Kingdom

In the CAN Kingdom specification, the operation of a CAN Kingdom system can be

divided into two phases:

» Set-up phase. and

» Run phase.

All the system configurations including data formats. bus management, CAN
ldenmifier assignments. and so on. are executed during the Set-up phase. In the Run
phase. the svstem operates according fo the configurations cstablished in the Set-up

phiase.

The basic idea of the CAN Kingdom is that at initialisation {the Set-up phase), all
Cities have to wait for instructions from the King. The King is responsible for the
configuration of the system. [t owns all the Envelopes and assigns them to the
Folders that kecp messages to be transferred in the svstem. In other words. the King
Founder usually decides upon the priorities of the messages and the communication

between Cities during this phase.

It is clear that when designing a Citv. the City Founder {the Module Designer) does
not need 1o be concerncd about how his or her City will communicate in a particular
svstem. Instead. the duty of the City is only to know how to receive and to follow

the King's mstructions.
Furthermore, because a City, when connecting to the system. cannot do anythiaig
before the King sanctions i1, any City with a wrong baud rate sefting can never

destroy the system { Lennaitsson and Fredriksson, 1995),

After setting up all necessary configurations for the system. the King tells the Cities

when the Set-up phase has finished: then, the Cities can start to work as designed.

-68 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

At the Run phase, the King can be removed; and thereafter, it does not get involved

in the system operations.

The concept of Set-up phase and Run phase in the CAN Kingdom protocol can be
demonstrated in Figure 3-18 and Figure 3-19.

City 1 City 2 City 3
3 A A
l | 'l CAN Bus
S -]]
[[e osist it B
1S v
KING City 4
(Master Node)

Figure 3-18 Set-up phase

City 1 City 2 City 3
/::_ /_1"\: T ::_::_jf_\ _/j\. _______________ CAN Bus
.
| VIV
KING City 4
(Master Node)

Figure 3-19 Run phase

- 69 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.4.3 Application Layer Protocol

The application services are provided in the CAN Kingdom protocol by means of
Forms (see section 3.4.2). The Forms in the CAN Kingdom inform Cities where the
expected data should be placed. Upon reception of 2 message (a Letter), a City picks

up the Form associated with the receiving Folder in order to decode the data.

In the CAN Kingdom specification, there are several predefined Forms for King
Pages as well as Forms to be used in Cities (CAN Kingdom 3.0 Specification.
1996-1997, p. 38}). The CAN Kingdom Forms provide a flexible way which enables
designers to construct suitable data formats for their system needs because the Form
formats can easily be changed when required. The description of Forms used in Set-

up phase and Run phase are detailed below.

During the Set-up phase, the King sends out its instructions to Cities via the King
Pages which are constructed according to the King Page Forms. Upon reception of a
King Page. the City (or Cities) uses a similar King Page Form to decode the Page

mto a meaningful instruction.

Note that a City has a unique address among the network so that the King can talk
to an individual City. The King can also broadcast its messages to all Cities, or to a
group of Cities if necessary. In the CAN Kingdom protocol. the highest priority

Envelope (CAN Identitier) is reserved for identification of King Pages.

An example of a King Page Form is shown in Figure 3-19.

-70-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Document Name:

Document List:

King Document
T1 Capital / 0 City

Document Number: 0 Capital / 0 City

Document Type: Transmit (Capital)
Receive (City)

Page Description.

Page Number: 0

Number of Lines: 8

Data Description:

The King Page 0. Terminates the Set up phase. Order the Mayor to set its

City into a specific working mode, eg in a Run or Freeze mode.

Line Description

Line 0: City or Group Address

Line 1: 00000000
Line 2: rrrrerAA

Line 3: rrrrrrCC

Line 4: MMMMMMMM

Line 5: rrrrrrer
Line 6: rrrrrrrr

Line 7: rrrrrerr

(Page 0)
Action Mode
AA=00 Keep current Mode
AA=01 Run
AA=10 Freeze
AA=11 Reset
=0 Reserved

Communication Mode

CC=00 Keep current Mode
CC=01 Silent
CC=10 Listen only
CC=11 Communicate
=0 Reserved
City Mode
M=0 Keep the current Mode
M=0 Modes according to the City specification
1= Reserved
= Reserved
=0 Reserved

Figure 3-20 Example of a King Page Form

-71 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

The purpose of the King Page in Figure 3-20 is to inform the Cities that the Set-up

phase has finished and the Cities can start to work in the mode specified by the

page.
This King Page reveals:

e Line 0 of the page contains the City or Group address; thus, the City or the
group of Cities with the address specified on the Line must follow the

mstruction presented by this King Page. Other Cities ignore this Page.

e Line | of the page contains the Page number (Page 0). which enables the

receiving City to pick up the corresponding Form to decode the Page.

» The other Lines of the Page contain configuration information that the

Cities have 1o follow when receiving this Page.

Importantly, during the Set-up phase the King sends many King Pages of

information in order to establish each City’s role in the Kingdom.

After the Set-up phase, the CAN Kingdom system can work as designed. This stage
1s called the Run phase. At this stage the King can be removed, as previously noted,

from the system if no configuraticn changes are required.

In the Run phase, Cities communicate with each other as specified in the Set-up
phase. They transmit and receive mformation to and from each other via Letters
{CAN messages). Upon reception of Letters, a City uses Forms to decode the
Letters to meaningful information. The data type of the message is also described in

the Forms.

Note that if two or more Cities want to exchange information, they must have

exactly matching forms in each City’s itinerary.

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Figure 3-21 gives an example of a Run phase Form for Cities which are typically

used in temperature measurement applications.

Form List: RO

Form No: 9

Document Name: TEMPERATURE 1
TEMPERATURE 2

Document No: RO0.2, R0O.3

Document Type: Receive

Page Description
Number of Lines: 1

Data Description: TEMPERATURE
Range: 0-255°C

Line Description

Line 0 Temperature in Centigrade
Resolution: 19C

0 °C = 00000000

Data Format: 8-bit unsigned Integer

Figure 3-21 Example of a Form to be used in Run phase

The purpose of the Form in Figure 3-21 is to encode and decode the temperature in

Centigrade. A message constructed by this form contains one Line (CAN data byte).
The information cartied by this line is temperature with the 1°C resolution in 8-bit

unsigned integer format. A transmitter sends temperature information according to

this Form. Then, a receiver uses a similar Form to decode the incoming message.

In using the concept of Forms, City Founders (node designers) have the opportunity,

and flexibility, to design their own Forms for their modules.

In order to inform the system designer (the King Founder) of details about the tasks
of the Cities, the City Founders have to document all the Cities’ Forms when

designing their Cities.

-73 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Each City may contain a document for transmitting and a document for receiving
information. A document consists of a set of Forms. Therefore, by studying the
Cities” documents. the King Founder can decide which Cities are suitable for the

system and the role of each City in the svsiem.

Furthermore. unlike Smart Distributed System and DeviceNet which only utilise the
CAN Standard format (11-bit ldentifier messages). the CAN Kingdom protocol is
specified for use of both Standard and Extended formats (29-bit Identifier

messages) (Lennartsson and Fredriksson. 1995).

The CAN Kingdom protocol also specifies how to transfer data larger than a normal
Page (8 bytes). In doing so, at least sone bits of a Line in a Page are reserved for
pagination, and the data usually is transferred in the same Envelope. Upon
reception. the receiver can rearrange the data in the right order by looking at the
Page numbers. Hence. if any Page has already been received, it can easily be

omitied.

One example of transferring data larger than one Page is the transmitting of King
Pages. where all King Pages are transmitted in the same Envelope (Envelope 0), and
Line 1 of each King Page contains the Page number. When receiving the Page, the
Cities know which Forms are to be used to decode the data by looking at the Page

number (CAN Kingdom 3.01 Specification, 1996-1997, p.56).

=74 .

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.4.4 Advantages and Disadvantages of CAN Kingdom

3.4.4.1 Advantages

The main purpose of the CAN Kingdom is to develop an open protocol with a set of
protocol primitives. which the System Designers can use to construct a suitable

protocol for their own needs. This approach has several advantages:

¢« The nodes following different Higher Layer Protocols for CAN can be
integraled into a CAN Kingdom system with only minor adjustments in

software.

* A node with a wrong baud rate setting in the CAN Kingdom system does
not ruin the system becauvse 11 has to obey the King's instructions when
connecting to the network. and cannot do anything before the King gives

permission.

» Although the King is responsible for establishing any communication in
the Kingdom (CAN System), it can be removed from the network after
providing all the necessary configurations and consistency checks for the
system. Nevertheless, whenever required, the King can be reconnected and

can send instructions to the system.

e Both Standard and Extended CAN frame formats can be used.

e The Remote Transmit Request (RTR) bit is utilised in a CAN Kingdom

system.

-75-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.4.4.2 Disadvantages

The disadvantages of the CAN Kingdom protocol are:

e CAN Kingdom is not a complete Higher Layer Protocol

e System Designers have to build up their own final protocol

However. the purpose of the CAN Kingdom protocol is a versatile system based on

an open approach for Controller Area Network (CAN),

3.5 Conclusion

This chapter has presented an overview and discussed the importance of Higher
Layer Protocols {HLPs) for CAN-based systems. The main features of three popular

HLPs have been described.

As discussed, the Smart Distributed System provides an efficient protocol for
communications between [/O devices and host controllers. The protocol meets the
requirements of speed, reliability, and real-lime support in control systems used in a
wide range of automation industries. However, the protocol has disadvantages that
reduce the potential use of the CAN protocol (e.g. only Standard format frames are
utilised in the SDS protocol). Moreover, the SDS protocol is not flexible to provide

users opportunities to enhance their systems.

DeviceNet is an open network where all nodes have the same right to access the
bus. The protocol is also efficiently used to control /O devices. The Object-
Oriented approach of DeviceNet makes it more flexible than SDS, Instead of
specifying fixed application services as SDS does, each object in DeviceNet can

provide different services. Users also have more control when designing their

-76 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

systems with the means of I/O messages. However, similar to SDS, DeviceNet uses

only the Standard CAN format.

In addition, no two or more nodes can have the same Logical Addresses in an SDS
system or MAC ID in a DeviceNet system, This violates the use of CAN Identifier
where two or more modules can utilise the same CAN ID for the exchange of data.
Furthermore. it is not easy to change a Logical Address or a MAC ID once it has
been assigned. In other words, the priority of a node or a message cannot be

changed without a complex redesign of the system.

The CAN Kingdom protocol provides more flexibility to its users. The features of
the CAN protocol are used more effectively in a CAN Kingdom system. Designers
are free to develop their own CAN modules. This means users can design their
modules independently without being concerned about how the modules are going

to work in a specific system.

The master node, the King, in a CAN Kingdom systermn decides the role of each
module in the system. As a result, the priorities of messages or nodes can easily be

changed even when the system is in run-time.
One of the great advantages of the CAN Kingdom protocol is that SDS, DeviceNet
or other HLPs modules can be integrated in a CAN Kingdom system. In fact, CAN

Kingdom system designers can select any suitable modules for thetr system.

The disadvantage of the CAN Kingdom protocol is that it is not a complete

protocol; hence. designers have to construct their own final protocol.

-77-

CHAPTER 4

DESIGNING A HIGHER LAYER PROTOCOL FOR
SMALL DISTRIBUTED MICROCONTROLLER
SYSTEMS USING THE CONTROLLER AREA
NETWORK PROTOCOL

This chapter is concerned with designing a Higher Layer Protocol (HLP) for small
Distributed Microcontroller Systems using the Controller Area Network (CAN)
protocol. This foilows the choice of one of the three FLPs, which were discussed in
Chapter 3. the CAN Kingdom protocol. A small CAN-based distributed system is

then designed to implement and to test the protocol.

4.1 Choosing a Higher Layer Protocol

The main purpose of the design of the HLP in this project is:

o To achieve a simpler HLP for small CAN systems which have restrictions

such as the ltmited amount of memory for control program, and the ease

of system design.

» To ensure that the design methodology of the HLP is easy to understand.

e To provide opportunities for later designers to expand the application of

this project’s progress.

As discussed in Chapter 3, Smart Distributed System (SDS), DeviceNet, and CAN

Kingdom protocols are all based on the CAN protocol. Each one of them is suitable

-78 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

for particular applications in automation processing industries. The main features of

these protocois are summarised as follows:

s SDS is based on point-to-point communication between a master {Host)

and remote Input / Output (I/O) devices.

* DeviceNet is an open system in which all modules have the same right to

access the bus.

e CAN Kingdom specifies a set of protocol primitives which system
designers can use to build a final HLP to suit their needs. The principle of
the CAN Kingdom protocol is that a master node in a system, the King, is
responsible for the entire network configuration; yet, the King can be
removed after the system is set up, and leave the Ciiies to perform the

task of the system.

Nevertheless, the main disadvantages of the SDS and DeviceNet protocols are that
designers have to follow the standards exactly. and hence, there are a few chances
to modify the protocols to satisfy the requirements of a particular system. Moreover,
these protocols utilise only the Standard format of the CAN protocol (see Chapter
3), and they are too complex to fit into the small amount of memory available in a
small system. Furthermore. the designers, following SDS and DeviceNet standards,
must be fully aware of how their nodes are going to work n a certain system. They

also have to decide in advance the communication between the nodes.

The CAN Kingdom. on the other hand, is more {lexible, as designers can easily
select the services that are suitable for their system. In other words, the CAN
Kingdom services can be chosen to fit into the small amount of memory if the

restrictions of the system are the limitation of memory and the ease of design.

In addition, when designing a node, the designer does not need to be concemned
about its communication in a typical CAN Kingdom system. This is the role of the

King to decide which nodes communicate with each other. This means that module

-79 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

designers can concentrate on the design of their modules to do particular tasks,

without having to know how they will be used in a specific network.

For example. if a temperature measurement module is designed to measure the
temperature in a coolant system, the main task of the designer is to design the
module so that it can get the temperature information and store it into a Folder.
When this module is connected to a CAN Kingdom network. the King will decide

which other nodes receive its temperature information,

This teature of the CAN Kingdom protocol enables the nodes which follow the
rules of other HLPs such as DeviceNet or Smart Distributed System to be integrated

into CAN Kingdom systems (Lennartsson and Fredriksson, 1995).

Furthermore, the CAN Kingdom protocol is also specified to use both Standard and
Extended CAN formats (CAN Kingdom 3.0 Specification, 1996-1997). Therefore,

designers can utilise the latest technology of the CAN protocol.

Despite the advantages such as the above. the full implementation of the CAN
Kingdom protocol is a complex matter; and hence, it is the aim of this thesis to
show that further simplifications can be made to the protocol in order to suit the

requirements of a small system.

It should be noted that the design of the Higher Layer Protocol in this project is
based on the basic ideas of the CAN Kingdom protocol such as the responsibility of
the King, and the use of Forms. Yet, the implementation of the protocol is different

from the CAN Kingdom protocol such as the addressing method, and Form design.

Because the HLP in this project has been designed according to CAN Kingdom

specification, it is named the Small CAN Kingdom protocol.

Note that the Small CAN King.lom protocol uses the same terminologics as the

CAN Kingdom protocol, such as the King, Cities, Forms, and so on (see Chapter 3).

-80-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.2 Designing the Small CAN Kingdom protocol

4.2.1 Introduction

The main idea behind the CAN Kingdom protocol 1s that a node, when connected to
a system. has to wait for instructions from the King. The King tells each node which
other nodes it will communicate with. In doing so, the King sends a set of King’s

messages to a node or a group of nodes in order to set up the rules for the Kingdom.

To enable the King to send instructions 1o a particular City, each City has to have a
unique address among Lhe network. In the Small CAN Kingdom protocol described
in this thesis, a simpler addressing method is used to access the Cities. Each City
reserves one byte of memory to store an integer value in a range of 1 to 255. This

integer value serves as a City's address in the Kingdom.

Note that the address 0 is reserved for the King to send broadcast orders. This

means that all Cities in the network belong to a group with address 0.

Each City can be designed independently without any prior knowledge, on the
designer’s behalf. of the network to which it will eventually be connected.
However. the Cities have to be able to receive and obey the King instructions. In
other words. tiie node designers should follow some rules to enable their Cities to
receive the King Pages when they are connected to a system. These rules are

described in the following sections.

The model of a Small CAN Kingdom system can be visualised in the same way as a

CAN Kingdom system and is shown in Figure 4-1.

-81 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

City 1 City 2 City 3
1/0 Device 1/0 Device 1/0 Device
Capital 1 | [
M 1
King a)ior , I l
Form Form Form
King Page
Form
Flgigg Folder Folder Folder
cr
e e e e B e e
CAN | ; CAN | ; CAN || : CAN ||
Controller ' ! Controller | | ! Controller | | | Controller | !
i | i | | I I
| | i | | ! !
! | | | i | 1
) I e | I

Figure 4-1

Small CAN Kingdom Model

-82-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Typically, a system designed according to the Small CAN Kingdom protocol

consists of’

e A Capital with the King being responsible for the entire network

configurations.

e A number of Cities, each of which has a unique network address so that
the King can talk to each individual City. Each City carries out particular

tasks specifying its role in the Kingdom.

The basic operations performed between the King and Cities and between the Cities

themselves are described as follows:

The King sends instructions to the Cities via King Pages. The format of each King
Page follows a specific King Page Form, which are used by a node to encode or
decode the Page into a meaningful instruction. Before a King Page is sent out, it is
stored into the King Folder, which acts as the bridge between the King and the
postal system. It should be noted that the King Folder contains only one King Page

at a time.

Each City has a Mayor, which is the software responsible for all the City’s
operations. A City also has a number of Forms, which are used to encode and
decode incoming and outgoing messages. The City’s Folders are the bridges
between the Mayor and the postal system. They are used to store messages before

being transmitted or read by the Mayor.

- 83 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.2.2 The King

The King is responsible for the entire network configuration. In fact, it is the
responsibility of the system (network) designer. The system designer knows exactly
how the system is intended to work, and how the Cities should communicate with
each other in the system. His or her knowledge is then passed to the King and
subsequently, the King sends instructions to the Cities to perform the configuration

set-up.

The orders from the King are sent to the Cities by means of King Pages. Each King
Page consists of two or more Lines (CAN data bytes). Each Line contains
information meaningful to the Cities which receive the Page.

In all King Pages, the first Line of a Page contains the City’s address, or the group
address to which the City belongs. The second Line specifies the Page number
indicating a specific King command. The other Lines, which may be included in a

King Page, contain information required for the Page to execute a particular set-up.

Five King Pages of the Small CAN Kingdom protocol, which were designed and

implemented in this thesis, are as follows:
1. Page 0: Terminate Set-up phase. The Cities are ordered to start to work.
2. Page 1: Assign an Envelope to a Folder.

3. Page 2: Change the City’s address, or assign a City or a group to a new
group

4. Page 3: Restore the original City’s address or ungroup a group

5. Page 4: Baud rate setting

-84 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

The descriptions of these King Pages are as follows:

e Page 0 tells the Cities that the Set-up phase has finished. All the
necessary configurations for the systems have been done, and hence, the

Cities can start to work as designed.

e Page 1 is responsible for assigning an Envelope (CAN ID) to a particular
Folder. Folders are the parts of a City in which the City keeps its
messages that are in the process of being, or having been, transmitted or
received. This Page can be used to enable or disable a Folder. This means
the King can enable or disable a City to transmit or receive a specific

message.

o Page 2: The main purpose of this Page is to assign a City, or a group of
Cities, into a new group. This enables the King to send orders to a group

of Cities. This Page can also be used to change a City’s address.

e Page 3 is used to ungroup a group or restore the original City’s address.
When a group of Cities is ungrouped, the original address of each City is
automatically restored. Consequently, if the King wants to talk to
ungrouped Cities, the King has to send instructions to their original

addresses.

e Page 4 is used to set a new baud rate for the system. When connecting to
the network, all Cities listen to the King’s commands at a fixed baud rate.
Then, new baud rates can be applied to the system by using this Page. It is
noted that when the King changes the system baud rate, it has to change
its own baud rate so that it can communicate with the Cities later on
because all nodes in a CAN system have to operate at the same baud rate

(see Chapter 2).

Note that the first two King Pages (Page 0 and Page 1) would be sufficient for a

system which does not require complex set-up procedures. This is the minimum

-85 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

requirement for a Small CAN Kingdom based system. In other words, these two

Pages are mandatory for the system.

For example, when a system contains a few nodes, it may not be necessary to
include King Page 2 and 3 (grouping and ungrouping instructions). However, the
King can broadcast its instructions to all Cities by using the group address 0
because all Cities initially belong to group 0. In addition, if the system always

works at a fixed baud rate, King Page 4 can also be omitted.

The information contained in each Line of a King Page Form is described as

follows:

Page 0
Line 0: City or Group address
Line 1: Page number (Page 0)

Page 1

Line 0: City or Group address

Line 1: Page number (Page 1)

Line 2: Folder number

Line 3: Envelope value MSB (Most Significant Bit)
Line 4: Envelope value

Line 5: Envelope value

Line 6: Envelope value LSB (Least Significant Bit)

Line 7: Configuration

Note: Line 7 of Page 1 contains information to:
e [Enable/Disable the Folder,
e Set the Letter in the Folder to Transmit/Receive, and

o Set a Letter to Standard/Extended format.

- 86 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Page 2

Line 0: City or Group address

Line 1: Page number (Page 2)

Line 2: New City’s or Group address

Page 3
Line 0: City or Group address
Line 1: Page number (Page 3)

Page 4 ,

Line 0: City or Group address (should be the group address 0)
Line 1: Page number (Page 4)

Line 2: Baud rate value

Line 3: Baud rate value

Note that Lines 2 and 3 of Page 4 contain information for setting the system baud

rate. This information is discussed in Chapter 7.

It should also be noted that only five King Pages have been described and
implemented due to the time restrictions of this project and the limitation of on-chip
memory available in the MC68HC11 microcontrollers. However, it is possible for

later designers to add more King Pages for future expansion.

-87-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.2.3 Cities

As mentioned previously, Cities have to wait for instructions from the King before
they can start to work. Moreover, they should also be able to obey the King’s
instructions while they are performing their normal tasks. Therefore, the design of a

City has the following requirements:
e A City must always be able to receive and obey the King’s commands.

e The King’s instructions should have the highest priority so that the Cities
can receive and perform the instructions immediately while they are

working.

Firstly, to achieve the requirements above, each City has a special Folder for the
reception of King Pages and a set of King Page Forms associated with this Folder to
decode the King Pages. These Forms are the same as the King Page Forms
contained in the Capital. When a King Page arrives, by looking at the Page number,
the City’s Mayor can select the right Form to decode and perform the Page’s task.

Secondly, each City reserves the highest priority Envelope (CAN ID) for the
reception of King Pages. This allows the City to receive the Pages immediately,

even though the bus load on the network is high.

In addition, and as discussed earlier, a City can be designed independently from
another, and it does not need to be aware of how it is intended to work within a
specific system. The King (or actually, the system designer) is responsible for that
role. Therefore, each City has to be documented to inform the system designer what
tasks it can do, and what information it transmits or needs to receive. This enables

the designer to decide the communications between the Cities.

- 88 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Each City may consist of three sets of documents as follows:

1. The King Document which contains information relating to the original
address of the City and a set of King Page Forms. Note that the original
address of a City should be left for the system designer to assign in order to

avoid conflict between Cities.

2. The Transmit Document which informs the system designer what type of
information the City can send out, where the information is located (Folder

- number), and which Forms to decode the information.

3. The Receive Document which tells the system designer what type of
information the City needs to receive, where the information will be stored

(Folder number), and which Forms are required to decode the information.

It is noted that when designing a system, the designer should ensure that each City
can receive all the King Pages used in the system; although this is not mandatory,
because the King can send orders to an individual City. However, if Page 4 (Baud
rate setting) is used in a system, all the Cities must be able to perform it. Otherwise,
the system could be out of action because all nodes in a CAN-based system have to

work at the same baud rate.

Furthermore, if two or more Cities exchange information, they have to contain
exactly matching Forms. For example, the documents housed in City 1 and City 2
inform the system designers that City 1 transmits temperature information from
Folder 2, and City 2 receives temperature information in Folder 3. The Cities’
documents also state that the Form for encoding data in Folder 2 of City 1 is the
same as the Form to be used to decode data in Folder 3 of City 2. Therefore, during
Set-up phase, the designer orders the King to assign the same Envelope to the two

Folders so that the two Cities can communicate with each other.

For the sake of simplicity of the Small CAN Kingdom protocol, each City contains
fifteen Folders with the Folder number in the range of 1 to 15. The first Folder

- 89 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

(Folder number 1) is reserved to receive King Pages. The rest of fourteen Folders
can be used to store the City’s Letters while it is working. However, the number of

Folders can be increased, if required for future expansion.

During the network’s run-time, each Folder can be used to store messages for a
specific I/O device. When the device has something to be sent to another node (or
nodes), the Mayor uses one of the Forms associated with this Folder to encode the
data to form a Page, then stores the Page into the Folder. This Page and the Folder’s
Envelope, which is assigned by the King, are used to construct a Letter. The Letter
can then be sent straight away by the City’s Mayor, or by remote request from other
Cities. A City sends remote requests by means of CAN Remote frames (see Chapter
2).

When a new Letter arrives, it is stored in a Folder. Then, the Mayor is notified (by
an interrupt, for instance) and the reverse process is performed to control the I/O
device. In other words, the Mayor picks up one of the Forms associated with the

Folder in order to decode this Letter and then send the data to the I/O device.

Note that although one Folder is usually used to control one device, two or more
similar devices can utilise the same Folder. For example, one single command can
be invoked to set parallel switches to ON or OFF at the same time, and

consequently, only one Folder is required for performing this task.

The operations of a Small CAN Kingdom system can be more fully understood by

undertaking the design of an actual system as described in the following section.

- 90 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.3 Design a Small CAN Kingdom system

The aim of this section is to introduce the methodology for the design of a small

distributed microcontroller system utilising the Small CAN Kingdom protocol. The

actual hardware and software designs are covered in the later chapters.

4.3.1 Introduction

The purpose of the system is:

To build a complete Higher Layer Protocol (HLP) for a small distributed

system, and

To make it easy to demonstrate the performance of the HLP in such a way
as to illustrate the responsibility of the King, and the method of the
communication between the King and Cities, as well as between Cities

themselves.

The system is designed to include a Capital with the King controlling the network,

and three Cities:

The King, the master node, is responsible for the system configurations

and deciding the communication paths within the system.

City 1 gets Analog / Digital (A/D) signals from an I/O device and sends
to the CAN bus whenever the signal has been changed.

City 2 also gets A/D signals from an I/O device but only sends to the

CAN bus when it receives a remote request (CAN Remote frames) from

City 3.

-91 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

e City 3 is responsible for receiving information from both City 1 and City
2. The information is then displayed on a Liquid Crystal Display (LCD)
along with the transmitting City’s address. This City also sends a request

to City 2 if the data is needed.

The reasons for choosing A/D signals for the City 1’s and City 2’s tasks are that
A/D signals are used widely in devices such as temperature or speed measurement
sensors. The LCD in City 3 provides a visual way to demonstrate the operations of

the system.

4.3.2 System design

4.3.2.1 The King

The King is designed to receive set-up information from the system designer. The
information is then encoded according to the King Page Forms and sent to Cities via

the King Folder and the postal system.

Note that the King is also notified when a Page is successfully transmitted. This
enables the King to configure itself if necessary. For example, if the King sends out
Page 4 (Baud rate setting), it also needs to change its own working baud rate to that

of the network.

The operation process of the King is shown in Figure 4-2.

-92-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

King Page
Forms

Coded
message

Encoding
message

King Folder }|———n>

King’s message

Designer

King’s message

Transmitted message notice

Figure 4-2 The King Process

4.3.2.2 City 1

The task of City 1, during run-time, is to get A/D signals from an I/O devices and
send it to the CAN bus whenever the signal value has been changed.

The A/D signal is encoded to ASCII values by a Form, called the A/D Form in the
City’s Transmit Document. The data is stored in Folder 2 of the City. Then, the

City’s Mayor sends the data along with the City’s address onto the bus.

The operation process of the City is shown in Figure 4-3.

-03 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

King’s message King’s message

Folder 1

City 1’s Letter

A/D Data Folder2 |———m3p

Mayor’s instruction /

A/D

City 1’s Data

Encoding or
Decoding Data

City 1’s
documents

Figure 4-3 City 1’s Operation Process

City 1 has two documents which inform the system designer about its task. The two
documents are the King Document and the Transmit Document as shown in Figures

4-4 and 4-5.

Note that the City does not have the Receive Document as it does not receive any

data.

The King Document

City’s Address: 001

List of King Pages

e King Page 0
e King Page 1
e King Page 2
e King Page 3

e King Page 4 |

Figure 4-4 The City 1’s King Document

-94 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

The King Document informs the system designer that the City’s address is 001 and

that the City can receive all five King Pages (from Page 0 to Page 4).

Transmit Document

This document contains the A/D Form associated with Folder 2. City 1’s messages

(Letters) are constructed according to this Form.

Form Type: Transmit
Location: Folder 2

Remote Request: No

Data Type: ASCII code (for all Lines)

Line Description

Line 0: City’s Address (Hundreds)
Line 1: City’s Address (Tens)

Line 2: City’s Address (Units)

Line 3: ©:* character

Line 4: A/D Value (Hundreds)

Line 5: A/D Value (Tens)

Line 6: A/D Value (Units)

Line 7: EOT (End of String character)

Figure 4-5 City 1’s Transmit Document

- 95 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

The A/D Form carries the following information:

e It is used to encode the transmitting messages.

e The messages are located in Folder 2.

o The messages are transmitted to the CAN bus straight away without any
request.

e Data types for all Lines in the messages are ASCII code. Note that it is
possible to design different data types in each Line.

e Line 0 to Line 2 contain the City’s address (001). This address can be
changed by the King.

e Line 3 consists of the ‘:’ character to separate the City’s address and the
A/D value.

e Line 4 to Line 6 carry the values of A/D signals.

e Line 7 is the End Of String character (04 Hex). This indicates the end of
an ASCII string.

4.3.2.3 City 2

The task of City 2 is to get A/D signals from an I/O device and send it to the CAN

bus when it receives a remote request.

The A/D signal is encoded to ASCII values by a Form, called the A/D Form in the
City’s Transmit Document. This Form is similar to the A/D Form in City 1, except
the messages are sent only when requested. The data is stored in Folder 2 of the
City. Then, the City’s Mayor sends the data along with the City’s address on to the

bus in response to a remote request.

The operation process of the City is shown in Figure 4-6.

- 06 -

Designing a HL.P for Small Distributed Microcontroller Systems using CAN

King’s message King’s message

Folder 1

City 1’s Letter

Mayor’s instruction / Folder2 p—o-w—>

City 1’s Data

Encoding or
Decoding Data

Remote request from City 3

City 2’s
documents

Figure 4-6 City 2’s Operation Process

City 2 also contains two documents:

1. The King Document is the same as City 1’s King Document as shown in

Figure 4-4 except the City’s address is 002.

2. The Transmit Document is shown in Figure 4-7.

City 2 does not have the Receive Document because it does not receive any data.

-97 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Form Type: Transmit
Location: Folder 2

Remote Request: Yes

Data Type: ASCII code (for all Lines)

Line Description

Line 0: City’s Address (Hundreds)
Line 1: City’s Address (Tens)
Line 2: City’s Address (Units)
Line 3: ‘2’ character

Line 4: A/D Value (Huhdreds)
Line 5: A/D Value (Tens)

Line 6: A/D Value (Units)

Line 7: EOT (End of String character)

Figure 4-7 City 2’s Transmit Document

Note that the description of this Form is the same as the Form for City 1 except the

Remote Request is set to “Yes”.

4.3.24 City 3

This City is designed to receive and display data in Liquid Crystal Display (LCD),
typically, from City 1 and City 2.

Folder 2 and Folder 3 are used to receive a string of ASCII characters. The string

length is no more than 8 bytes with the last byte being an EOT character.

The operation process of City 3 is shown in Figure 4-8.

- 98-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

King’s message King’s message

Folder 1

Mayor’s instruction/) Received data

IASCII Data Folder 2 legt——-——o

LCD

eceived data

Encoding or

Decoding data Mayor’s instruction /) Received data
Folder3 |t
Received data
City 3’s ’
documents Remote request
>

Figure 4-8 City 3’s Operation Process

City 3 contains two documents:
1. The King Document is the same as City 1’s and City 2’s King Documents
as shown in Figure 4-4. This means that City 3 can also receive all five

King Pages. Note that the City’s address is 003.

2. The Receive Document contains two Forms associated with Folder 2 and

Folder 3 as shown in Figures 4-9 and 4-10.

Note that this City does not have a Transmit Document as it is used to receive data.

-99 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Form Type: Receive
Location: Folder 2

Remote Request: No

Data Type: ASCII code (for all Lines)

Line Description

Maximum 8 Lines.
Each Line is ASCII code.

The last Line must be EOT.

Figure 4-9 City 3’s Receive Document (Form for Folder 2)

The Form in Figure 4-9 records the following information:

e It is used to decode arriving messages.

e The messages are located in Folder 2.

e The Mayor does not generate Remote Request to receive the messages in
this Folder.

e All Lines contain ASCII values at any range.

o The Folder 2 can receive a maximum of 8 bytes and the last byte must be

EOT.

- 100 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Form Type: Receive
Location: Folder 3

Remote Request: Yes

Data Type: ASCII code (for all Lines)

Line Description

Maximum 8 Lines.
Each Line is ASCII code.

The last Line must be EOT.

Figure 4-10 City 3’s Receive Document (Form for Folder 3)

The information contained in this Form is the same as for Folder 2, except:

e The location is Folder 3, and

e The Mayor sends remote request to receive messages for this Folder.

- 101 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

City 1
Envelope 1

Folder 2 T

City 2 .

ty The King

Envelope 2

Folder 2 ,

City 3
Envelope 1

Folder 2 ﬂ e
Envelope 2

Folder 3 j :

Figure 4-11 The Small CAN Kingdom system’s Set-up phase

City 1

Folder 2

Remote Reques}l Clty 2

Folder 2

City 3

City 1I’s Messages

Folder 2 g

Folder 3
City 2’s Messages | ‘

Figure 4-12 The Small CAN Kingdom system’s Run phase

- 103 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.3.3.1 Set-up phase

During this phase, the King uses King Page 1 to assign the same Envelope (for
example, Envelope 1) to City 1’s Folder 2 and City 3’s Folder 2, and to enable the
two Folders.

The King also assigns a similar Envelope (for example, Envelope 2) to City 2’s
Folder 2 and City 3’s Folder 3, and again enables the two Folders.

Optionally, the King may send other King Pages for further configuration such as to
change the baud rate by King Page 4, or to change City address by King Page 2.

After completing the entire network configuration, the King sends King Page 0 to

tell the Cities that the Set-up phase is finished and the Cities can begin their work.

It is noted that King Page 4 should be broadcast to all Cities by utilising the Group

address 0. This enables all Cities to start their work simultaneously.

4.3.3.2 Run phase

In this phase, City 1 transmits its messages via its Folder 2 whenever it detects a
changing value from the A/D device. City 3 receives the messages via its Folder 2.
The Mayor 3 then uses the Form associated with this Folder to decode the messages

and sends them to the LCD for display.

The Mayor 2 always updates its information and stores the information in Folder 2.
The Mayor sends a CAN remote frames to City 2 in order to request the
information. For example, a Remote frame can be generated by pressing a push
button on City 3 (see Chapter 6). Consequently, the Mayor 2 sends out the message
stored in Folder 2. Subsequently, City 3 receives this message via Folder 3 and

displays the data in the LCD.

Examples of City 1’s and City 2’s messages displayed on City 3’s LCD are shown
in Figure 4-13 and 4-14, respectively.
-104 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

* CAN SYSTEM DEMO *
CITY 001:128

Figure 4-13 City 1’s message

The value 001 indicates the City 1’s address. The value 128 is an example of an
A/D value from City 1.

* CAN SYSTEM DEMO *
CITY 002:096

Figure 4-14 City 2’s message

The value 002 indicates the City 2’s address. The value 096 is an example of an
A/D value from City 2.

As mentioned earlier, the King can be removed at the Run phase if no more system
configuration is required. However, it can also send its instructions to the Cities
during this phase. For example, the King can change the baud rate of the network,

or change the Envelope for the messages, in order to change the message priority.

- 105 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.4 Conclusion

In conclusion, the CAN Higher Layer Protocol developed in this project, called the
Small CAN Kingdom protocol, is based on the basic ideas of the CAN Kingdom
protocol. The protocol provides an open approach which enables later designers to
enhance their system’s performance. For example, more King Pages can be added
to the protocol easily to provide more services (see Chapter 7). However, some
King Pages can be omitted if the system is restricted in hardware configuration such

as the amount of memory, or if the system does not require complex configurations.
Furthermore, the simplicity of the Small CAN Kingdom protocol makes it easier. to
understand. The programming code of this protocol has been reduced to fit into the

small amount of on-chip memory of a small CAN-based system (see Chapter 7).

The details of hardware and software designs for a Small CAN Kingdom system are

provided in later chapters.

- 106 -

CHAPTER 5

INTRODUCTION TO MICROCONTROLLERS AND
CAN CONTROLLER CHIPS

The aim of this chapter is to introduce the physical components used to design the
two main parts of a Small CAN Kingdom system’s node: The node manager (the
Mayor or the King) which controls the node operétions, and the CAN controller

which is responsible for the node communication.

5.1 Microcontrollers

5.1.1 Overview

The responsibilities of the node managers are to control the operation of the nodes;

thus, they should be “smart” enough to perform this role.

One of the most efficient ways to add “intelligence” to devices today is to use
microcontrollers. Since their birth in the early 1970s, microcontrollers have become
increasingly popular in domestic and industrial applications. Most machines and
appliances in our daily lives contain microcontrollers, such as cordless and portable
telephones, security systems, automobiles and gas pumps, automated teller
machines, and much more. “In fact, electric lights are almost the only electrically
powered devices that do not use microcontrollers, and even here things are
changing with the welcome advent of power-saving and quick-starting intelligent
ballast fluorescent lamps” (Khan, 1996). In addition, the architecture of
microcontrollers ideally supports real-time applications which are the usual
requirements in automation industries (Wetton, 1995, p. 24). Microcontrollers are

embedded in various parts of manufacturing systems in order to control them.

- 107 -

Introduction to Microcontrollers and CAN Controller Chips

A microcontroller contains many peripherals on a single chip such as
Analog/Digital (A/D) converters, pulsewidth modulation channels, on-chip
memory, and so on. This inclusion of I/O circuits and memory enables designers to
develop various applications using single chip computers (microcontrollers). As a

result, the costs of system designs are significantly reduced.

The main aim of designing the Small CAN Kingdom protocol in this thesis is to
provide a CAN Higher Layer Protocol that can be utilised by small distributed
systems. These systems consist of microcontrollers with hardware restrictions such
as memory and the size of devices. Two such popular microcontrollers currently in

use are the MC68HCI11 from Motorola, and the 8051 from Intel.

Although any microcontroller could have been used to develop the system in this
project, the MC68HC11 microcontroller appeared to be a suitable choice because it
is one of the most versatile 8-bit microcontroller and is still used in a wide range of
control applications (Chen, Rabb, & Taylor, 1996; Voskamp & Rosenstiel, 1996;
Maskell & Grabau, 1998).

According to the HC11 M68HCI11 E Series Technical Data (1993) manual, the
MC68HC11 microcontroller contains a large number of features in a single chip
which include:
e Single-chip or Expanded multiplex operation modes
e Eight channels 8-bit Analog-to-Digital (A/D) converter
o A fast Serial Peripheral Interface which allows the MCU to communicate
with an IBM PC or with other microcontrollers utilising a master-slave
connection
o Four 8-bit I/O ports with varying capabilities

e Multiplexed 16-bit address and data bus in Expanded mode

- 108 -

Introduction to Microcontrollers and CAN Controller Chips

Internal EEPROM and RAM

e Serial Communication Interface (SCI). A dedicated RS232C serial port

with 8-bit data word transmission capability

e Multiple counter/timers with comparison functions and wave-form

generation capability

e Sophisticated interrupt handling structure including a real-time interrupt

mechanism

e 16-bit operations, including multiplication and division

The MC68HCI11 is also supplied with a ROM-base monitor program, which

contains various functions for application developments.

Another reason for choosing the MC68HC11 microcontroller is that Motorola, in
Perth, Western Australia, provides excellent hardware evaluation equipment and
software support for this series of products. Mareover, Edith Cowan University has
several evaluation boards readily available, and also staff with expertise in HC11
technology. Furthermore, there are numerous documents related to this type of
microcontroller. Hence, programmers do not have to get involved with designing
the basic microcontroller units. In the case of this project, therefore, more effort can

be allocated to the Higher Layer Protocol level of design.

- 109 -

Introduction to Microcontrollers and CAN Controller Chips

5.1.2 MC68HC11 Block Diagram

According to Greenfield (1992, p. 61), a MC68HC11 microcontroller comes as a
single Integrated Circuit (IC) packaged in either a 52-pin Plastic Leadless Chip
Carrier (PLCC) or a 48-pin Dual In-line Package (DIP). The main features and the

architecture of the microcontroller are illustrated in Figure 5-1.

MODA/ MODBY o o
bR Veray XTAL EXTAL E R XRa RESET
A | 8 KBYTES ROM A
y ¥ Vpp
MODE OSCILLATOR Ves
coNTROL A OCKLOa INTERRUPT LOGIC J::_
& 512 BYTES EEPROM
& & CPU
o £ —Van
= 256 BYTES RAM v
o AL
o | g Yy
o Q
5 i BUS EXPRSION ADDRESSIDATA i,
= T Y YYYYVYNRE!
3| sYSTEM L AAAAARA A T A
e " YYYYYYVYY YYYYVVYY VYV SPl sl AID CONVERTER
wi
2 I STROBE AND HANDSHAKE " oemo
. , D oQ
> : PARALLEL 110 w5s2|| 22
I Y KAARAAAAL (A AAKRK I YYYYYYY!
' YYVYVYVYY VV VYV y
VYVYYY ©y Jv AARAA CONTROL : CONTROL
[PORT A 3 PORT B] PORT C ‘ PORT D | PORTE]
il—lllATT ' AAAAAAAA A ¢¢¢¢ ¢¢
L1 YYYVVYVY \AA (AR
————— v — O T MO Y N - O MO ON-D m<|' (X0 an MOouT O~ Q
583B50CE | EEEEBBEB LSLISELS BE| B33 23 sg2Egszs
08385 SINGLE CHP MODE 7 2388 22 LEpiodog
L s e e e e o gy =gel aa conoooaan
$2533 2729:-222 58858068 E2
a L XL << QoooQoQQ9 <
sEEE £22I2IZT
E£XPANDED MODE

CIRCUITRY ENCLOSED BY DOTTED LINE IS EQUIVALENT TO MC68HC24.

Figure 5-1 MC68HC11 Block Diagram

- 110 -

Introduction to Microcontrollers and CAN Controller Chips

5.1.3 System development environment

To assist in designing and debugging a microcontroller system based on the

MC68HC11, Motorola provides users with three types of evaluation boards which

have the following charateristics:

M6SHC11EVB - Evaluation Board, provides a small, low-cost tool for
debugging and evaluating MC68HC11 based systems. The main
disadvantage of this board is that the users can only utilise Single-chip
mode operation. External components are required to make use of the

Expanded mode.

M6SHCI1EVBU - Universal Evaluation Board, is a low-cost
development tool. The board provides a wire-wrap area for custom
interfacing. It supports both Single-chip and Expanded-multiplexed mode

operations without additional circuitry.

M6S8HC11EVM - Evaluation Module, provides users with more
powerful and flexible tools for MC68HC11 based system development.
The board simplifies user evaluation of prototype hardware/software
products by providing timing and I/O circuitry. Single-chip and
Expanded-multiplexed mode operations are supported. Pseudo ROM

space is also provided on board.

In this project, the M68BHC11EVBU evaluation boards were used in order to take

advantage of Motorola’s support to design the hardware part. Furthermore, because

this type of evaluation board already supports Expanded mode operation, it is well

suited for designing the interface between a HC11 MCU and a CAN controller chip
(see Chapter 6). There are also a number of EVBU boards available at Edith Cowan

University with software support development environment.

The following section describes the main features of the M68HC11EVBU

evaluation board and its use in designing hardware interface.

- 111 -

Introduction to Microcontrollers and CAN Controller Chips

5.1.3.1 Hardware design environment

The M68HC11EVBU evaluation board comes complete with good support tools for

system development.

This type of evaluation board can be connected to a host personal computer (PC)
via an RS232C terminal I/O port. Communication between the board and the host
PC is controlled by a communication program such as Kermit or Procomm program
for an IBM-PC, and Red Ryder program for Apple Macintosh (M68HC11EVBU
Universal Evaluation Board User's Manual, 1992, p. 4/37). This connection, along
with thé BUFFALO monitor program, can be used to design the user interface
between the King in the Small CAN Kingdom system and the system designer (see
Chapter 7). |

The BUFFALO, a ROM based monitor program inside the microcontroller,
provides great support in assisting users to debug their programming codes easily.
The program also contains a set of I/O and utility routines which can be used to
develop applications. User codes can be assembled either by using the line
assembler on the monitor program or by an assembler on the host PC, and then
downloaded to the EVBU user RAM or EEPROM via Motorola S-records
(M68HC11EVBU Universal Evaluation Board User's Manual, 1992, p. 3/1).

In addition, a wire-wrap area is provided on the EVBU for MCU custom
interfacing. With the wire-wrap hole pattern provided, most standard DIP or PLCC
device wire-wrap sockets, strip sockets, headers, and connectors can be installed.
Wire-wrap components can be installed on the top-side, and the wire wrapping can
be performed on the bottom-side of the EVBU (M68HCI11EVBU Universal
Evaluation Board User's Manual, 1992, p. 2/18). This area is used to design the
external peripherals for a City in the Small CAN Kingdom system such as the CAN
controller chip, LCD, and A/D devices (see Chapter 6).

-112 -

Introduction to Microcontrollers and CAN Controller Chips

5.1.3.2 Software design environment

In order to design complete applications, users should be able to write their source
software with a suitable programming language. The source code is then compiled
and translated to Motorola S-records. Finally, it is downloaded to the target

microcontroller board for execution.

During the period of this research, the readily available programming languages for
MC68HC11 were Assembly and C. In addition, one of the main requirements of
devéloping the Small CAN Kingdom protocol is that the protocol should fit into the
small amount of on-chip memory of the microcontroller. Hence, Assembly
language was chosen because it was suitable for small control programs. A further
reason for choosing the Assembly language is that the programming code could be

easily debugged by the use of the BUFFALO monitor program.

In this project, an IBM PC was used to communicate with the M6GHC11EVBU
boards during both designing and setting up the system. Besides using the
BUFFALO program, there were also other requirements for the development of the

system as follows:

o A text editor to write the source programming codes
e An assembler to compile the program
e A program to create Motorola S-records

e A serial communication program

After considering the MC68HC11 features, the Motorola portable assembler
(PASM) was the preferred language as it provided sufficient software design
capabilities for a MC68HC11 based system. The programming codes were written
by using an MS-DOS text editor (Edit program). The Ubuilds program was used to
create S-records, and the MS-Kermit program was used for communication between

the IBM PC and the evaluation boards.

-113 -

Introduction to Microcontrollers and CAN Controller Chips

In addition, there are four MS-DOS batch files created by the author of this thesis to

provide a more efficient software environment:

K.BAT to invoke the MS-Kermit program

ASM.BAT to compile the programming codes

B.BAT to build the Motorola S-records

T.BAT to transmit an S-record file to the M68HC11EVBU board via a
RS232C serial cable.

el

The description of these batch files is given in Appendix A.

The system development environment is shown in Figure 5-2.

PC Software Development Tools

EDIT

PASM
UBUILDS
MS-KERMIT

IBM PC
System

RS232C serial link 1

M68HC11EVBU CAN Interface CAN Co(riltroller
Evaluation Board an .
I/0 Devices

MC68HC11 Software

e BUFFALO program

Figure 5-2 System development environment

-114-

Introduction to Microcontrollers and CAN Controller Chips

5.2 CAN controllers

5.2.1 Choosing CAN controllers

As mentioned previously, CAN controller chips are used to manage communication
between a CAN node and the CAN bus. In other words, the chips are the means for

the Cities’ managers (Mayors) to communicate with each other and with the King.

A CAN controller chip can be Basic CAN, Full CAN, CAN+, or can be “Part B
Passive” or “Part B Active” chip (see Chapter 2). With respect to the aims of this
project, the Full CAN controller chips were recommended to be used to reduce the

workload for the 8-bit microcontrollers with a limited amount of on-chip memory.

Moreover, the Small CAN Kingdom protocol has been developed based on the
CAN Kingdom protocol, which utilises both Stand and Extended CAN frame
formats. Therefore, the appropriate CAN controller chips are “Part B Active” which

support both of the message formats.

Considering the aforementioned discussions, the Intel 82527 CAN controller chips
appeared to be a suitable choice. This type of chip was considered better than the
similar 82C200 CAN controller from Philips with respect to real-time performance
(Tindell, et al., 1994). In addition, the SAB-81C90 and SAB-81C91 from Siemens,
support Standard frames but tolerate Extended frames without generating errors
(“Part B Passive” chips). On the other hand, the Intel 82527 supports both Standard
and Extended CAN frame formats (‘“Part B Active” chip).

- 115 -

Introduction to Microcontrollers and CAN Controller Chips

5.2.2 Intel 82527 CAN controller

According to the 82527 serial communications controller architecture overview
(1996), the Intel 82527 has a number of features that are ideally suited to be used to
interface with a microcontroller to form a complete CAN node. The main features

of the Intel 82527 chip are as follows:

Support Standard and Extended CAN frames

15 Message Objects of 8-byte data length to store incoming and outgoing

messages

Flexible CPU Interface
- 8-bit Multiplexed
- 16-bit Multiplexed

- 8-bit Synchronous Non-Multiplexed
- 8-bit Asynchronous Non-Multiplexed

e Serial interface to CPU is available, when a parallel CPU interface is not

required

o Flexible interrupt structure, including Message Object interrupts and the

chip’s status interrupts
e Two 8-bit bidirectional I/O ports can be used as general I/O ports. This is

an advantage of the Intel 82527 chip when the microcontroller ports are

not available.

The architecture of the chip can be demonstrated by its block diagram as shown in

Figure 5-3.

- 116 -

Introduction to Microcontrollers and CAN Controller Chips

~onNTno—o ~ONTAN—O
A A A AL B A ISEMISEVISINGY
AAAAAAAA AAAAAAAA Vee
YYYYVYYY YYYYYYYY ’
Port 1 Port 2)
Vssi
Vss2
N A A —
e =
AD4 ; ; h
AD3 €——> CpPU o
AD2 = > > TX0
AD| <——>| Interface 4 »
ADO<—> | 5aic * > TX1
CAN >
AS > Manager
R/WH > RAM B e RXO0
E >
INTH < R < RXI
RESET# - CLK Out
\ \ A A

Mode 0

Mode 1

XTAL1

XTAL2
CLKOUT =

Figure 5-3 The 82527 block diagram

The descriptions of the diagram as follows:

The CPU Interface Logic is responsible for the interface between the

host CPU and the CAN controller. The interface mode depends on the

value of Mode 0 and Mode 1 pins.

e The CAN manager controls the data stream between the RAM (parallel
data) and the CAN bus.

e The RAM contains the set of registers which the CPU can be used to
control the chip.

e Clockout is the on-chip clock generator consisting of an oscillator, clock

divider register and a driver circuit.

e Port 1 and Port 2 can be used as general-purpose 8-bit I/O ports.

The CPU controls the CAN controller chip via a set of registers which can be
mapped onto the CPU’s memory map (see Chapter 6). The 82527 address map is
shown in Figure 5-4. The details of the uses of these registers to control

communication in a CAN based system are given in Chapter 7.

- 117 -

Introduction to Microcontrollers and CAN Controller Chips

Figure 5-4

00H Control Register

01H Status Register

02H CPU Interface Register

03H Reserved

04-05H High Speed Read Register

06-07H Global Mask — Standard

08-0BH Global Mask - Extended

0C-0FH

Message 15 Mask
Message 1 -
CLKOUT Reglster

2FH
30-3EH
3FH

ABus Conﬁguratlon Reglster
| Message 3 ’

” InterrupthReglster -

Blt T1m1ng Reglster 0 o

60-6EH ':M‘ess@ge,ﬁy,; - o

Reserved

7FH
80-8EH
8FH

Reserved

Reserved

80-9EH
9FH

PICONF
"~M3$33g3"1.ﬁ'ﬂ T
P2CONF
Message 11
P1IN
M3886g812 T
P2IN

AFH

BFH

CO0-CEH
CFH

P1OUT

P20UT
Message 15 ,
SPI Reset Address

FFH

Message 14 T

Intel 82527 address map

- 118 -

Introduction to Microcontrollers and CAN Controller Chips

5.3 Conclusion

This chapter introduced the physical components which are used to design the two
main parts of a CAN node: the node manager (the Mayor or the King), and the
CAN controller.

The discussion of selecting suitable devices for the project was presented. The
MC68HC11 microcontrollers have been used as the host CPU to control the node
operations. The Inte] 82527 CAN controller chips manage the communication of the

nodes.
In addition, the hardware and software environments for system development were

also described in this chapter. The actual design is covered in the following

chapters.

-119 -

CHAPTER 6

HARDWARE DESIGN

This chapter describes the steps associated with designing the hardware part of the
Small CAN Kingdom system which was introduced in Chapter 4. The pin
connection tables between the chips, and the diagréms showing the pin layout of
these components are shown in Appendix B. These tables and diagrams were used

for wire-wrapping purpose in the hardware design.

6.1 Introduction

The aim of the system in this project is to build a platform which enables the Small

CAN Kingdom protocol to be designed and tested. The system consists of:

e A master node (called the King or the Capital) which is responsible for

network configurations,
e City 1 transmits Analog/Digital (A/D) information,

e City 2 transmits A/D information in response to a remote request (a CAN

Remote frame) from City 3, and

e City 3 displays the data from City 1 and City 2. It is also able to send

Remote frames to City 2 when the data is needed.

- 120 -

Hardware Design

Each node in the system contains an MC68HC11 microcontroller (MCU), an Intel

82527 CAN controller, and a Transceiver chip:

The MC68HC11 controls the node’s operations.

The Intel 82527 performs the communication according to the CAN

protocol.

The Transceiver chip acts as the interface between the Intel 82527 CAN

- controller and the CAN bus.

In addition, each node includes peripherals to carry out its tasks:

An IBM PC is connected to the Capital node via a RS232C serial link in

order for system designers to enter King Pages (see Chapter 4).

A/D devices are utilised in City 1 and City 2.

A Liquid Crystal Display (LCD) and a remote request device are included
in City 3.

Indicators (LEDs) to indicate which phase (Set-up or Run phase) the City

is in.

The block diagram of the whole system is shown in Figure 6-1.

- 121 -

Hardware Design

Intel Transceiver
IBM PC MC68HC11 82527 Chip
The King
Indicators
A/D Intel Transceiver
Device MC68HCI 1, 82527 Chip
City 1
Indicators
A/D Intel Transceiver
Device MC68HCI1 82527 Chip
City 2
Indicators
Intel Transceiver
LCD MC68HC11 82527 Chip
Remote
Request Device
City 3

Figure 6-1 The Small CAN Kingdom system block diagram

-122 -

CAN BUS

Hardware Design

6.2 Interfacing the Intel 82527 to an MC68HC11

The following highlights the important issues of the interface design between a
Motorola MC68HCI11 microcontroller and an Intel 82527 CAN controller chip
(Figure 6-2). Four of these interfaces were later constructed, tested and used in this

project.

In order to interface the Intel 82527 with the MC68HCI11, the latter should be
operating in the Expanded mode. In this mode, Portb B pins of the MC68HCI11 are
used as the high order address output signals. Port C pins serve as the low order
address and 8-bit data bus (multiplexed using the same pins). The MC68HCI11
signals used to control the Intel 82527 CAN controller are via AS, R/W# and E
pins. AS pin is used to control an external address latch. R/W# pin is used to
indicate the direction of data transfer. E pin is used as timing reference when the
MC68HC11 communicates with the Intel 82527 (HC11 M68HC11 E Series
Technical Data, 1993).

Because the MC68HC!11 is a non-Intel MCU, the Intel 82527 should be used in
mode 2 (8-bit multiplexed, non-Intel). This CAN controller chip also has AS, R/W#
and E pins that match the corresponding pins of the MC68HC11 (82527 Serial

Communications Controller Architecture Overview, 1996).

Data transfer between the MC68HCI11 and the Intel 82527 was made in 8-bit
parallel form using the Intel 82527 pins ADO to AD7, which were connected,
respectively, to the MC68HC11’s pins PCO to PC7 of Port C.

The INT# pin of the Intel 82527 was used to generate an interrupt to the MCU when
the CAN controller chip receives or successfully transmits a message. This pin was
connected to pin IRQ# of the MC68HCI11. This connection required an external
pull-up resistor (10k€2).

- 123 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.3.3 System operation

Initially, when the nodes are connected together on the CAN network, they all work
at a fixed baud rate (for example, 125 kbit/sec). All the Cities receive the King
commands via Folder 1 with the highest priority Envelope (Envelope 0).

The King is responsible for the network configuration. In doing so, the system
designer studies the Documents of all the Cities. He or she should know that City 1
and City 2 transmit their messages with the data types in ASCII format. Each
message of both Cities contains 8 bytes and the last byte is EOT character. This
satisfies the requirements of the Forms in City 3. Hence, City 3 can receive

messages from both City 1 and City 2.

Furthermore, the Form associated with City 3’s Folder 3 informs that the Mayor of
this City will send a remote request (Remote frame) in order to receive messages for
Folder 3. Therefore, this Folder can be used to receive messages from City 2 as it

only sends its messages when receiving a Remote Request.
As a result, the system designer can assign Folder 2 of City 3 to receive messages
from City 1; and Folder 3 is used to receive messages from City 2. The assignments

are carried out in the Set-up phase.

The Set-up phase and the Run phase operations are illustrated in Figures 4-11 and

4-12.

- 102 -

Hardware Design

The RESET# pin of Intel 82527 can be tied to an MC68HC11 Port pin or a reset
circuit. In this project, the MC68HC11’s pin PA6 of Port A was used to reset the
Intel 82527.

The CS# pin of the Intel 82527 enables the MCU to select the chip. This pin was

connected to the MCU via an Address Decoder circuit.

In addition, pins XTAL1 and XTAL2 of the Intel 82527 were connected to a Quartz
crystal circuit in order to provide the clock signals for the operations of the CAN

controller chip. The chip’s operations are controlled by two internal clocks:

e The system clock (SCLK), and

e The memory clock (MCLK).

The frequency of the Quartz crystal is called XTAL. The frequency of the SCLK
can be equal to XTAL or XTAL/2 by programming. With the 8 MHz SCLK, the
Intel 82527 can be interfaced to a 1Mbit/sec CAN bus.

The frequency of the MCLK can be equal to SCLK or SCLK/2 by programming.
The maximum frequency of the MCLK is § MHz.

According to the Intel 82527 architecture overview, the chip was tested with XTAL
setting to 8 MHz and 16 MHz. This project used 16MHz Quartz crystals due to their
availability. Therefore, the Intel 82527 chip should be set: SCLK=XTAL/2 and
MCLK=SCLK.

- 124 -

Hardware Design

w [T =L

‘I__I U I_T 16 MHz ;ystal

XTAL1 XTAL2

AS B AS +5V
— R/WH | R/w#
- E P -
o ?3 g Vee |
omo PB7 :; =R

PB6 Address — O
& —’ CS#
&) PB5 }—Pp| Decoder ® Vg2
2 PB4 i Vssl

PCO -PC7 H AD7 — ADO RS SE—

+5V
10K
IRQ# |- INT#

PA6 : P RESET#

MODE 0 MODE1

4‘

— +5v

Figure 6-2 MC68HC11 and Intel 82527 interface circuit diagram

Designing the Address Decoder

The Address Decoder was used to map the Intel 82527 into the MC68HCI11’s
memory map. It can be designed by using either a conventional 4-input AND-gate
chip (74LS20) or an address decoder chip (74LS138). In this project, both circuit

designs were used.

During the early stage of the project, the 4-input AND-gate chips were used for
address decoding in City 1 and City 2 of the system. Therefore, in order to minimise
the number of chips, the address range 7000H to 7FFFH of the MC68HC11 was
used to map the internal Intel 82527’s RAM into the MCU addressable space.

The MC68HC11 system memory map is shown in Figure 6-3.

- 125 -

Hardware Design

0000H
01FFH

1000H
103FH

7000H
7FFFH

B600H
B7FFH

D000H

FFFFH

512 BYTES RAM

EXTERNAL

-64 BYTES REGISTER BLOCK

EXTERNAL

CAN CONTROLLER

EXTERNAL

512 BYTES EEPROM

EXTERNAL

12 KBYTES ROM / EPROM

Figure 6-3 MC68HC11 memory map

- 126 -

Hardware Design

The address decoder circuit design is as follows:

Al5 | Al4 | A13 | Al2

The Chip Select (CS#) is active-low when the address bus has:

W.X.y.z

The logic circuit is as shown in Figure 6-4:

PB7 W W’
PB6 X
PBS Y CS#
PB4 4
MC68HC11 74LS20 Intel 82527

Figure 6-4 Address Decoder circuit 1

- 127 -

Hardware Design

In order to add external memory to the MC68HCI11 systerhs for subsequent
applications, address decoder chips (74LS138) were used in the Capital and City 3
of the system. In the design of this interface circuit, pin Y3 of the 74LS138 chip
was used to select the Intel 82527 so that the software controlling all CAN nodes

could utilise the same address locations shown in Figure 6-3.

The alternative address decoder circuit design is shown in Figure 6-5.

+5V
Gl _J
PB7 — C
Y3 |——1pp| CS#
PB6 P B
G2AH
PB5 | A
G2B#
MC68HC11 7418138 — Intel 82527

Figure 6-5 Address Decoder circuit 2

Note that when using the 741.S138 chip for address decoding, the address range for
Intel 82527 in MC68HC11 is 6000H to 7FFFH.

- 128 -

Hardware Design

6.3 Interfacing the Intel 82527 to a transceiver chip

6.3.1 CAN bus review and introduction to CAN transceiver chips

The CAN bus uses Non-Return to Zero (NRZ) with bit-stuffing. There are two
different signalling states: dominant (logical 0) and recessive (logical 1). These
correspond to the electrical levels utilised by the physical layer. The CAN modules
are connected to the bus in a Wired-And fashion: if only one node is driving the bus
to the dominant state, then the whole bus is in that state regardless of the number of

nodes transmitting recessive bits (see Chapter 2).

A typical CAN bus consists of two vwires, called CAN high (CAN_H) and CAN low
(CAN_L). When the CAN bus is in dominant state, CAN_H is at a high voltage
(5V) and CAN L is at a low voltage (0V). When the CAN bus is in recessive state,
both CAN H and CAN_L are floating. This characteristic of the CAN bus means
that whenever a CAN node transmits a dominant bit, the bus will be in dominant

state (CAN_H is high voltage and CAN_L is low voltage).

The purpose of the Transceiver chip is to provide an interface between the Intel
82527 and the CAN bus. There are several Transceiver chips manufactured by
companies such as Philips, Bosch, Siemens, Siliconix and Unitrode. The most
common chip used in the automation industry is the 82C250 transceiver from

Philips, which implements the physical layer for CAN-based systems.

However, due to the time restrictions and the difficulty of obtaining these chips in
Perth, Western Australia, the conventional RS485 standard chips (typically,
DS3695 chips) with some modifications were used and deemed to be satisfactory

for this project.

The features of both PCA82C250 and DS3695 transceivers were reviewed and
compared in order to modify the DS3695 circuitry to suit the requirements of the

CAN bus.

- 129 -

Hardware Design

6.3.2 PCA82C250 CAN transceiver

The pin connections of the PCA82C250 are shown in Figure 6-6:

TxD [

—

GND] 2
Vee 1 3

RxD] 4

1 Rs
— CAN H
— CAN L

—] Vref

Figure 6-6 PCAS82C250 CAN tranceiver

The description of the chip pins are in Table 6-1.

Table 6-1 PCA82C250 pin description

Symbol Pin | Description

TxD 1 Transmit data

GND 2 Ground

Vee 3 Supply voltage

RxD 4 Receive data

Vref 5 Reference voltage output

CAN H 6 LOW level CAN voltage input / output
CAN L 7 HIGH level CAN voltage input / output
Rs 8 slope resistor input

The truth table of the PCA82C250 is provided in Table 6-2.

- 130 -

Hardware Design

Table 6-2 PCAR2C250 truth table

TxD CAN_H CAN_L .| Bus State
0 High Low dominant
1 (or floating) floating floating recessive

6.3.3 DS3695 transceiver

The pin connections of the DS3695 are shown in F igure 6-7:

RO] | 8 [Vee
RE#] 2 7 |3 DO#/RI#
DE] 3 6 [DO/RI
DI] 4 5 | GND

Figure 6-7 DS3695 (RS485) tranceiver

The description of the chip pins are in Table 6-3.

- 131 -

Hardware Design

Table 6-3

DS3695 pin description

Symbol Pin | Description

RO 1 Receive output

RE# 2 Receive enable

DE 3 Data enable

DI 4 Data input

GND 5 Ground

DO /RI 6 Data output / Receive input

DO# / RI# 7 Reversed Data ouput / Reversed Receive input
Vee 8 Supply voltage

The truth table of the DS3695 is provided in Table 6-4.

Table 6-4 DS3695 truth table
Transmitting
Inputs Outputs
RE# DE DI DO# DO
1 1 0 1
1 0 1 0
0 X High 7. High 7
Receiving
Inputs Output
RE# DE RI-RI# RO
0 0 2+0.2V 1
0 0 <-0.2V 0
1 -0 X High Z

Hardware Design

6.3.4 Modifying the DS3695

In this project, the Intel 82527 was configured to transmit data via TX0 and to

receive data via RXO0.

Comparing the truth tables of PCA82C250 and DS3695, it is noted that if the CAN
bus is in recessive state (logical 1), then the CAN H and CAN L pins of the
PCA82C250 chip are floating. This corresponds to High Z state of DO#/RI# and
DO/RI pins of the DS3695.

Note that DS3695 transceivers transmit data via pin DI. According to the
consideration above, if pin DI is at logical 1 (recessive), the DO# and DO pins
should be in High Z state. From the DS3695 truth table, this corresponds to DI=X

(“don’t care” condition) and DE=0.

Also, in the DS3695 truth table, it can be seen that, if DI=0 (dominant state) and
DE=1, then DO#/RI# = 1 and DO/RO = 0. This situation is the same as CAN_H
and CAN_L pins of the PCA82C250 being in dominant state, respectively. Hence,
DO#/RI# pin can be used as CAN_H, and DO/RI pin can be used as CAN L.

From the discussions above, TX0 pin of the 82527 chip can be connected to DI pin
of the DS3695. Moreover, the TX1 pin of the 82527 is always the reverse state of
TXO0 (if TX1 is enable). Thus, TX1 can be connected to DE. This ensures that when

Dl is at logic 0, DE is at logic 1, and vice versa.

It should also be noted that, the 82527 chip monitors the bus when sending
messages. Hence, the RE# pin of the DS3695 should always be enabled. In other

words, this pin should always be connected to ground.

During the reception of a message, the TX0 and TX1 pins are always in recessive

state. This corresponds to TX0 =1 and TX1 = 0. Thus, DE = 0.

The DS3695 receiving truth table shows that if the CAN bus is in dominant state
(DO#/RI# =1, DO/RI=0) or RI - RI# <-0.2 V, then RO = 0 (dominant state).

-133-

Hardware Design

However, if the CAN bus is in recessive state (DO#/RI# and DO/RI pins are in
High Z state), the RO pin could be undefined. According to the CAN protocol, this
pin should be at lbgic 1. Therefore, RO pin was connected to Vcc (logic 1) via a

pull-up resistor (10kQ).

The modified circuit diagram is shown in Figure 6-8.

+5v
10K +5V
RX0 RO r
Vee
TX0 =P DI
DO#RI |——— CAN H
TX! —e——3p| DE

DORI ([@——p CAN L

DS3695 —

Figure 6-8 Modified DS3695 circuit diagram

The truth table for the modified circuit above is shown in Table 6-5.

Table 6-5 Truth table of the modified DS3695 transceiver

DI DE RE# DO#/RI# DO/RI RO
1 0 0 High Z High Z 1
0 1 0 1 1 0

- 134 -

Hardware Design

6.3.5 Intel 82527-DS3695 interface circuit diagram

After being modified, the DS3695 chip satisfied the requirements of the CAN bus.
The chip were interfaced with an Intel 82527 CAN controller chip according to the

circuit diagram shown in Figure 6-9.

Intel 82527

TXO0

TX1

+§V

10K

=

RO
Vce
DI
DO#/RI#
DE
DO/RI
RE#
GND

DS3695

+5V

§———p CAN H

@ CAN L

Figure 6-9

- 135-

Intel 82527-DS3695 interface circuit diagram

Hardware Design

6.4 Interface between the King and an IBM PC

As mentioned in Chapter 5, M68HC11EVBU evaluation boards were used to design
the CAN nodes in this project. To enable system designers to communicate with the
King during setting up the system, an IBM PC was connected to the King via
RS232C terminal /O port of the M6SHCI11EVBU. The connection has already

been discussed in Chapter 5.

The system designers enter values for a King Page via a King Menu program which

is desigried in Chapter 7.

Figure 6-10 shows the connection diagram between the King and an IBM PC.

IBM PC -
RS232C Link The King

King Menu

Figure 6-10 Interface between the King and an IBM PC

- 136 -

Hardware Design

6.5 Interfacing A/D devices to MC68HC11

The Port E pins of the MC68HCI11 can be used as inputs for A/D signals. A/D
signals can be generated from any devices such as temperature or speed

measurement sensors.

In this project, 10 KQ rotary potentiometers were used to produce A/D signals. The
signals were input to pin PE.4 of port E. The City’s software application has been
designed to receive and decode A/D signals (see Chapter 7).

It should be noted that VRL and VRH pins are used to provide reference voltage for
the A/D converter circuitry. In the case of this project, VRL was connected to 0V

and VRH was connected to 5V.

Figure 6-11 shows the circuit diagram of the interface.

10K PE.4

+5V
+5V
vl]
L

MC68HC11
A/D device

Figure 6-11 A/D device - MC68HC11 interface

- 137 -

Hardware Design

6.6 Interfacing the LCD to Intel 82527

The Intel 82527 has two general purpose 1/O ports: Port 1 and Port 2, which can be
used to interface with external devices (see Chapter 5). Because MC68HC11 port
pins can be used for various purposes, they may be reserved for future use. City 3 of

this project used Port 1 and Port 2 of the Inte] 82527 to control an LCD module.

In this project, the L2012 LCD was used. It is a low-power-consumption dot matrix
LCD module with high contrast, wide viewing angle.LCD panel with a CMOS LCD
drive controller built-in. The controller has built-in character generator ROM/RAM,
and display data RAM. All the display functions can be controlled by the LCD’s

instructions. The module can easily be interfaced with an MCU.
It should be noted that as the 1.2012 user manual was not readily available, the LCD
design in this project referred to the Liquid Crystal Display module L4042 user
manual (1988). All the pins and functions of these two types of LCD are the same
except L2012 contains 20 characters on each line (the L4042 contains 40 characters
on each line).
The control of LCD is maintained by three pins:

e E: the signal activates data write or read.

e R/W# is used to select Read or Write mode.

e RS: Register selection mode. This pin combined with the R/W# pin can
instruct the LCD to perform certain functions (see the Liquid Crystal
Display module L4042 user manual, 1988, p. 13-14).

Pins DBO to DB7 of the LCD enable the MCU to output data a-byte-at-a-time to the
LCD.

- 138 -

Hardware Design

The two general I/O ports of the Intel 82527 (Port 1 and Port 2) can be used as
additional port of the MCU:

e Port 1 was used to output data to the LCD.’

e Pins P2.4 to P2.6 of Port 2 were used to control the LCD. They were
connected to E, RS, R/W# of the LCD, respectively.

Pin VLC is used to adjust the contrast of the LCD.

Figure 6-12 shows the circuit diagram of the interface between the Intel 82527 and
the LCD. The program to control the LCD is designed in Chapter 7.

+5V

DB7-DB0 I L5y
VI)D ‘

10K
Vic '—_"

!

P1.0-P1.7

P26 p—p| E
P2.5 RS
P2.4 R/W# e

=

W

82527 L2012

Figure 6-12 Intel 82527 — LCD circuit diagram

- 139 -

Hardware Design

6.7 Designing a Remote Request device

The Remote Request device in City 3 was used to invoke the generation of CAN
Remote frames to request data from City 2. Typically, the device was a push button
connected to an input capture pin of the MC68HC11. Whenever the button is
pressed, the logic level at the input capture pin is changed. The MCU detects the
level change of the pin, then it generates a Remote frame. The software used to
detect hardware level changes, and to send Remote frames is described in Chapter

7.

Pin PAO of the MC68HC11’s Port A was used for an input capture function. The

circuit diagram is shown in Figure 6-13.

+5V

R1

Push Button

PAO

J o1
oL
| ,{m
J__ MC68HC11

Figure 6-13 Remote Request Device circuit diagram

From Figure 6-13, the logic level of PAO is normally 1. When the button is pressed,
PAO will be dragged down to less than or equal to 0.2 V (a logic 0).

The voltage at PAO, when the button is pressed, can be calculated by the following

formula:
Veao = (R2/(R1+R2))*5V

If the chosen value qf R1 is 10kQ2 and VPA.0 < 0.2 V, then R2 < 416Q. The chosen
value of R2 was-330Q).

- 140 -

Hardware Design

6.8 Designing Indicators

In this project, Light Emitting Diodes (LEDs) were used to indicate whether a City

was at Set-up phase or Run phase.
Each City contained a red LED to indicate that it was at Set-up phase and a green
LED to indicate that it was at Run phase. Accordingly, a dual-colour LED was used

to reduce space.

A transistor was also needed to drive each LED. Any general-purpose transistor

which allows a collector current of 20mA can be used (BC109 or BC549).

The Intel 82527°s pins P2.0 and P2.1 of Port 2 were used to drive the red and green
LEDs, respectively.

The circuit diagram is shown in Figure 14.

+5V +5V

P21

P2.0

82527

Figure 6-14 Indicators circuit diagram

- 141 -

Hardware Design

From Figure 6-14, it is noted that because the two LEDs were the same, R’1=R1,
and R’2=R2, the transistor types of T and T’ should also be of the same type
(BC549).

The current value going through R2 and R’2 can be chosen to be at ImA. The
voltage which drops in the LEDs is approximately 1V.

Therefore, R2=R’2= 4V/1mA=4kQ. The chosen value of the resistors was 4.7KQ.
The current value which goes through the LEDs can be 10-20mA.

Therefore, R1=R’1=4V/20mA=0.2Q. The chosen value of the resistors was 330Q.

6.9 Conclusion

This chapter described the design of the hardware part of the Small CAN Kingdom
system which was introduced earlier in Chapter 4. The system consisted of four

CAN nodes: The King and three Cities.

Fach CAN node contained:

AN MC68HCI1 microcontroller being responsible for controlling the
tasks of the node,

e An Intel 82527 CAN controller chip managing the communication

protocol for the node,

e A modified DS3695 (RS485 standard) transceiver chip being used to
provide an interface between the Intel 82527 and the CAN bus, and

e Peripherals to perform its tasks in the system.

- 142 -

Hardware Design

The performance of the system is summarised as follows:
e The King is the network manager.
e City 1 and City 2 transmit A/D information to City 3.
e City 3 is responsible for displaying the values received from City 1 and
City 2. It also generates Remote frames to City 2 in order to request
information. The Remote frames are transmitted in a response to pressing
~ a push button at the City 3.
In addition, each City contained a dual-colour LED to indicate its stage (Set-up

phase or Run phase). Red indicated the Set-up phase and green indicated the Run
phase of the City.

- 143 -

CHAPTER 7

SOFTWARE DESIGN

This chapter is concerned with the design of the software which controls the small
system introduced in Chapter 4. The implementation of the software takes into
account the rules associated with the Small CAN Kingdom protocol of this thesis.

The complete programming codes are presented in Appendix D.

7.1 Introduction

The main tasks of the software are:
e To provide the means for users to design and download King Pages from a
personal computer (PC) to the King. These King Pages are then sent to the
Cities to perform the system configurations.
e To enable the Cities to receive and obey the King’s instructions.
In addition, each City contains an application to execute its run-time role in the
Kingdom. The role of each City is summarised as follows:

e City 1 transmits Analog/Digital (A/D) information,

e City 2 transmits A/D information after receiving a remote request (a CAN

Remote frame) from City 3, and

e City 3 displays the data from City 1 and City 2. It is also able to send

Remote frames to City 2 for requesting data.

- 144 -

Software Design

The software modules required for each node are shown in the following diagrams

(Figures 7-1,7-2, 7-3, 7-4).

King
Software
Configuring Interrupt Service King Menu
CAN Chip Routine , Program

Servicing King
Pages

Figure 7-1 Software modules for the King

City 1
Software
Configuring Interrupt Service City 1
CAN Chip Routine Application

Servicing King
Pages

Figure 7-2 Software modules for City 1

- 145 -

Software Design

City 2
Software
Configuring Interrupt Service City 2
CAN Chip Routine Application

Servicing King
Pages

Figure 7-3 Software modules for City 2

City 3
Software
Configuring Interrupt Service Controlling LCD City 3
CAN Chip Routine Application
Servicing King Servicing City 1’s Servicing City 2°s
Pages Messages Messages

Figure 7-4 Software modules for City 3

- 146 -

Software Design

The most important part of the software, in each CAN node (a City or the Capital),
is the Interrupt Service Routine (ISR). This ISR can perform the following tasks:

o To decide the precise subroutine to service a King Page which arrives at a
City,

e To enable the King to re-configure itself in accordance with the King’s
command which has been successfully transmitted, and

e To select the right Form to decode messages being transferred in the

system.

The Configuring CAN chip modules are responsible for all the necessary set-up of
the CAN controller chips (Intel 82527).

Each City (including the Capital) contains an application program to perform its

specified role in the system:

e The Capital has a set of subroutines, including the King Menu program,
which enables system designers to enter data for King Pages and to format

the data according to King Page Forms.

e City 1 includes a set of subroutines which enables the City to get A/D data
from the A/D device to construct Letters according to its A/D Form (see

Chapter 4), and to send the Letters to the CAN bus.

e City 2 consists of similar subroutines to City 1, but it only sends its Letters

after receiving a request (a Remote frame) from City 3.

o City 3 contains subroutines to display data from City 1 and City 2, and to
send Remote frames to City 2 when City 2’s data is needed.

The Controlling LCD module in City 3 contains a set of subroutines which are

responsible for the operations of the LCD.

- 147 -

Software Design

7.2 System operation

The operation of each node in the system is described in the flow-charts in Figure 7-

5,7-6, 7-7, and 7-8:

Reset

v

Assign address
for ISR

v

Configure CAN
controller chip

v

Assign Values for
vector tables

I

Enter data for a
King Page

Send the Page

Set baud rate

Return to
BUFFALO

program

Figure 7-5 King flow-chart

- 148 -

Software Design

Reset

v

Assign address -
for ISR

y

Configure CAN
controller chip

v

Assign Values ‘
for vector tables

R

| Wait for a King’s
instruction

Set-up
finished ?

Perform the
instruction

Get A/D
values

No

Yes

Send to the
CAN bus

y

Figure 7-6 City I’s flow-chart

- 149 -

Software Design

Reset

v

Assign address
for ISR

y

Configure CAN
controller chip

v

Assign Values
for vector tables

I

Wait for a King’s
instruction

Set-up
finished ?

Perform the
instruction

Get A/D
values

Receive
a request ?

Send to the
CAN bus

y

Figure 7-7 City 2’s flow-chart

- 150 -

Software Design

Reset

v

Assign address
for ISR

.

Configure CAN
controller chip

v

Assign Values
for vector tables

l
Wait for a King’s
instruction

Set-up
finished 7

Yes Perform the

3 instruction

Receive d
King’s inst,

Cit}i 1 s o Display City 1’s

data arrives? Jata

Push button Send a Remote Display City 2’s
pressed? frame to City 2 » data

l

Figure 7-8 City 3’s flow-chart

- 151 -

Software Design

7.3 Software implementation

7.3.1 Configuring the CAN controller chips

The Configuring CAN chip modules consist of two subroutines:

e RESET C (Resetting a CAN controller chip): the CAN controller chip is
reset when its RESET# pin is driven to logic 0 for a minimum of lms.
This is done by setting the Port A’s pin PA6 of the MC68HCI11 to 0 for

Ims and driving it back to 1.

e INIT C (Initialising a CAN controller chip): this subroutine is responsible
for the configuration of the CAN chip. The initial baud rate (125 kbit/s)

and Mask Registers are set up during the operation of this subroutine.

7.3.1.1 Resetting a CAN controller chip

RESET C subroutine algorithm
1. Set Port A’s pin PA6 to 0

2. Delay Ims
3. Set Port A’s pin PA6to 1

The delay time is achieved by a DELAY subroutine. The value of the index register

IY specifies the multiples of 50 microseconds of the delay time.

DELAY subroutine algorithm
1. Load Accumulator B (Acc B) with 0
2. Increase the value of Acc B by 1

3. If the value of Acc B is not equal to 10 (the value for delaying 50
microsecond), then go back to step 2. Otherwise, continue to step 4.

4. Decrease the value of I'Y by 1

5. Go back-to step 1 if I'Y is not zero. Otherwise, continue to step 6

6. Return from subroutine

- 152 -

Software Design

7.3.1.2 Initialising a CAN controller chip

Programming issues

While RESET# pin of the Intel 82527 is held low, the Hardware Reset Status
(RstSt) bit of the CPU Interface Register is 1 (i.e. no access to the CAN chip is
possible). Therefore, the Initialising subroutine (INIT C) should continually check

this bit until it returns to 0.

The Change Configuration Enable (CCE) bit of the Control Register of the Intel
82527 should be set to 1 to enable the MCU to access the configuration registers.
The Initialisation (Init) bit should also be set to | to prevent any incoming or

outgoing messages during the initialisation.

The System Clock (SCLK) is set to XTAL/2 and the Memory Clock (MCLK) is
equal to the SCLK (MCLK=SCLK).

TX0 and RXO0 pins are used to transmit and to receive messages, respectively.

The initial baud rates for all CAN nodes are set to 125kbit/s. All Cities are set up at

this fixed baud rate when they are connected to the system for the first time.

It is noted that the King has a special subroutine (called B_RATE) which is used to
set up its baud rate. The King’s baud rate values are stored into two bytes of
memory (BTRO and BTRI1). The values from these two bytes are assigned by
- designers at the time the King is connected to the system, or by the King itself

whenever it changes the system baud rate.

The system designers assign the values for BTR0 and BTR1 by the use of a modify
memory command of the BUFFALO program (More details of how to use the King

program are given in Appendix C).

All Message Objects of the Intel 82527 should be initially made invalid in order to

prevent unused Meﬁs'sage Objects being involved in the network communication.

- -153-

Software Design

Then, the user applications only validate the Message Objects which are used by the

applications.

In this project, all bits of the mask registers are set to “must match”. This means a
particular Message Object can only transmit or receive one specified message.
Nevertheless, this rule can be changed by a designer, as and when required in the

future use.

In addition, all the Cities of this project use pins P1.0 and P1.1 of the Intel 82527’s
Port 1 to control the LEDs which are used for the indication purposes. City 3 uses
both Port 1 and Port 2 for controlling the LCD module. To simplify the
programming codes, all pins of these Ports are set to output. It should be noted that

the unused pins of these Ports can be reconfigured later if required.

After setting up the necessary configurations, the CCE and Init bits must be reset to
logic level 0 to prevent any accidental writing to the Intel 82527’s configuration

registers, and to enable this chip to communicate with the network.

The Message Object 1 of the Intel 82527 CAN controller in the Capital serves as
the King Folder. It is assigned with Identifier O (in Standard format), which is the
highest priority ID, to transmit King’s messages. The Transmit Interrupt Enable
(RXIE) bit of this Message Object should be enabled so that when the Intel 82527
successfully transmits a King message, it notifies the King by interrupting its host

MCU.

The Message Object 1 of all Cities is also assigned with Identifier 0 (in Standard
format) to receive King’s messages. The Receive Interrupt Enable (RXIE) bit of
this Message Object must be enabled so that when the Intel 82527 receives a King’s

message, it interrupts the MCU in order to service the message.

As a consequence of the aforementioned programming issues, the INIT C

subroutine was designed as follows:

- 154 -

Software Design

INIT C subroutine algorithm

1
2
3.
4

wn

Continually check bit RstSt until it is 0

Set CCE and Init bit to 1

Set SCLK=XTAL/2, MCLK=SCLK

Use TX0 and RXO0 for transmitting and receiving messages. Set logic 0 is
dominant and logic 1 is recessive.

Set baud rate (125 kbit/s initially)

Set Port 1 and Port 2 to output (for Cities only)

Reset Control Registers of all 15 Message Objects (including Message

~ Object invalidation)

10.
11.
12.

Set Mask Registers to “must match”

Set CCE and Init bitto 1

Enable Global Interrupt

Assign ID 0 (Standard format) to Message Object |

Validate Message Object 1, enable Receive Interrupt for Cities, and enable
Transmit Interrupt for the King.

Note that there is a difference in step 5 (Baud rate setting) for the King and Cities:

Assign fixed baud rate (125 kbit/s) for all Cities
The B_RATE subroutine is used to set up baud rate for the King.

B_RATE subroutine

Variables

BTRO (1 RAM byte) is used to store the value to set up Bit Timing
Register 0 of the Intel 82527
BTR1 (1 RAM byte) is used to store the value to set up Bit Timing
Register 1 of the Intel 82527

B RATE subroutine algorithm

1.
2.
3.

Write the value in BTRO to Bit Timing Registers 0
Write the value in BTR1 to Bit Timing Registers 1

Return from subroutine

- 155 -

Software Design

7.3.2 Designing Interrupt Service Routine (ISR)

Programming issues

The mechanism for servicing incoming and outgoing messages in CAN nodes is the
ISR (I SERV). When the Intel 82527 chip in a City receives a message (a King’s
message or a message from other Cities), it generates an interrupt to its host
microcontroller., The ISR determines the interrupt source and invokes the

corresponding subroutine to service the interrupt.

A similar ISR is applied to the King after it successfully transmits a message. In
other words, the Intel 82527 interrupts the host MCU (in the Capital) after it
transmits a King’s message. The ISR is responsible for calling a subroutine (B_SET
subroutine) which enables the King to re-configure itself in accordance with its

sending command.
The Interrupt Register of the Intel 82527 contains the value which specifies the
interrupt source. By reading this value, the ISR can invoke the correct subroutine to

service the Interrupt.

Table 7-1 shows the value of the Interrupt Register corresponding to each interrupt

source.

- 156 -

Software Design

Table 7-1 Values of Intel 82527’s Interrupt Régister

Interrupt Source | Register Value (Hex)
none 0
Status Register 1
Message Object 15 2
Message Object 1 3
Message Object 2 4
Message Object 3 5
Message Object 4 6
Message Object 5 7
Message Object 6 8
Message Object 7 9
Message Object 8 A
Message Object 9 B
Message Object 10 C
Message Object 11 D
Message Object 12 E
Message Object 13 F
Message Object 14 10

- 157 -

Software Design

To enable the ISR to invoke the precise subroutine, each City includes an Interrupt
service vector table (Table 7-2) which keeps the address of the subroutine servicing
each interrupt source. Each location of the table contains a two-byte address for
each routine. The table is located in the on-chip RAM from address 01EOH to
address 01FFH. The City’s application assigns the address of the service subroutine

to its corresponding location in the table.

Table 7-2 Interrupt service vector table

Memory Location | Subroutine Address
(Hex number)
01EO Status Register
[PTR —» (1E] T > LAPD
01E2 Message Object 15
01E3
01E4 Message Object 1
01ES
01E6 Message Object 2
01E7
OIES Message Object 3
01E9
01EA Message Object 4
01EB
01EC Message Object 5
01ED
01EE Message Object 6
01EF
01F0 Message Object 7
01F1
01F2 Message Object 8
01F3
01F4 Message Object 9
01F5
01F6 Reserved
01FF

- 158 -

Software Design

The design of the [SERV Interrupt Service Routine (ISR) is as follows:

Variables
o I PTR: pointer variable (2 bytes). I PTR points to the location of the
service subroutine in the vector table.
e [ADD: pointer variable (2 bytes). [ADD points to the actual address of

the service subroutine for a corresponding Message Object.
If the value of the Interrupt Register of the Intel 82527 is named as Int Reg, then
I PTR is calculated as follows:
I PRT=(Int Reg — 1) * 2 + The Base address of the vector table (01EQH) (*)
Note that the Base address of the vector table can be changed to map the table in
another memory location.
The memory location pointed by I PRT contains the address of the service

subroutine for a corresponding Message Object.

I SERV ISR algorithm

1. Load the Interrupt Register value

2. Calculate I PRT by the formula (*)

3. Load the content of the memory location pointed by I PTR into I ADD

4. Call the subroutine specified by I ADD

5. Reset the Interrupt Pending (IntPnd) bit of the corresponding Message
Object.

6. Return from interrupt

- 159 -

Software Design

7.3.3 Servicing King’s messages

Programming issues

When a King Page arrives at a City or the King successfully transmits a King’s
command, the Intel 82527 interrupts its host MCU. The King’s message (stored in
the Message Object 1) is serviced by a subroutine called MSG _OBI.

Note that the address of the MSG _OB1 subroutine is assigned to the Message

Object 1’s location in the Interrupt service vector table.

The MSG_OBI subroutine has the following tasks:

e For a City to decide whether to accept the King Page or not, the
MSG _OB1 subroutine compares the City’s address contained in the Page
(Line 0) with the City address. If Line 0 of the King Page contains the
address which matches the City’s address or contains the group address 0

(Broadcasting message), the King Page is accepted.

e If the City accepts a King Page, or after the King successfully transmits a
King Page, the MSG_OBI1 subroutine invokes a corresponding subroutine

to service the Page according to its Page number (Line 1).

To enable the MSG_OB1 subroutine to call the correct subroutine to service the
particular King Page. Each City (including the Capital) contains a King Page vector
table (Table 7-3) located at address 01COH to 01DFH. Each location consists of a
two-byte subroutine address which is used to invoke the appropriate service routine
for the Page. The City’s or the Capital’s application assigns the subroutine address

to its corresponding location in the table.

- 160 -

Software Design

Table 7-3 King Page vector table

Memory Location | Subroutine Address
(Hex number)
01CO0 Page 0
P PTR—> oic] ¢ 4—»P ADD
01C2 Page 1
01C3
01C4 Page 2
01C5
01Ce6 Page 3
01C7
01C38 Page 4
01C9
01CA Page 5
01CB
01CC Page 6
01CD
01DA Page 13
01DB
01DC Page 14
01DD
O1DE Page 15
01DF

- 161 -

Software Design

Although only five King Pages were implemented in this project, later designers
can have the opportunity to add up to 16 King Pages into the Small CAN Kingdom

protocol to enhance the system’s performance.
The design of the MSG_OB1 subroutine is as follows:
Variables
e C _ADD: the City’s working address (1 byte)
e P PTR: pointer variable (2 bytes). P PTR points to the location of the
~ service subroutine in the King Page vector table.

e P _ADD: pointer variable (2 bytes). P ADD points to the actual address of

the subroutine.
P_PTR is calculated according to the following formula:

P_PTR=(Value of Line 1 * 2)+The Base address of the vector table (01COH) (**)

It is noted that the Base address of the vector table can be changed to map the table

in another memory location.

The memory location pointed by P PRT contains the address of the subroutine to

service a corresponding King Page.
Note that each City has two memory locations for addressing purposes:
e The original City’s address (ADDRESS) is stored in 1 byte EEPROM
e The C _ADD is initialised with the same value as the ADDRESS, but it

can be changed by the King to assign group addresses or new City

addresses.

- 162 -

Software Design

MSG OBI1 subroutine algorithm

1.

® N o v op

Reset the New Data (NewDat) bit in the Control Register 1 of the Message
Object 1 (for Cities only)

Load Line 0 of the King Page (for Cities only)

If Line O contains the same value with the City’s address or the group
address 0, then continue to step 4. Otherwise, jump to step 8 (for Cities
only)

Load Line 1 of the King Page

Calculate P_PTR according to the formula (**)

 Load the content of the memory location pointed by P PTR into P ADD

Call the subroutine specified by P ADD

Return from subroutine

It is noted that the steps from 1 to 3 enable a City to decide whether to accept the

Page or not.

- 163 -

Software Design

7.3.4 King software

Programming issues

The King’s software controls the whole task of the King in the system, After
successfully transmitting an instruction, the King is interrupted by the Intel 82527.
The I SERV ISR orders the MSG OBl subroutine to call a corresponding

subroutine to service the interrupt.

If the King sends Page 0 to Page 3, it does nothing upon the interrupt. This is done
by the subroutine NO_OP. The address of NO_OP subroutine is assigned to the
locations for Page 0 to Page 3 in the King Page vector table.

If the King sends Page 4 (baud rate setting), it will configure itself to the new baud
rate. This is done by the subroutine B_ SET. The address of the B SET subroutine is

assigned to the Page 4 location in the King Page vector table.

In addition, communication between the King and system designers is controlled by

the King Menu program (KING subroutine).

The following sections describe the design of each software module used by the

King.

7.3.4.1 King’s main program

King’s main program algorithm
1. Reset CAN controller chip
2. Initialise the CAN controller chip
3. Enable the MC68HCI11 interrupt
4. Assign address of the MSG OB1 subroutine to address 01E4H in the

Interrupt Service vector table

- 164 -

Software Design

9.
10.
11.

12.

Assign address of the NO OP subroutine to address 01COH, 01C2H,
01C4H, and 01C6H in the King Page vector table

Assign address of the B SET subroutine to address 01C8H in the King
Page vector table '

Call the KING subroutine (King Menu program) to enable designers to
enter data

Set Data Length Code (DLC), Transmit, and Standard format for the King
Folder (Message Object 1). Note that the DLC is calculated within the
King Menu program

Send the King Page entered in the King Menu program

Wait for interrupt

Ask the designer whether to enter a new King Page or not. If not, continue
to step 12. Otherwise, go back to step 7.

Return to the prompt of BUFFALO monitor program

7.3.4.2 NO_OP subroutine

NO OP subroutine algorithm

1.
2.

No operation (NOP)

Return from subroutine

7.3.4.3 B_SET subroutine

B SET subroutine algorithm

1.

2
3
4,
5
6

Write the value in Line 3 of King Page 4 to BTR0

Write the value in Line 4 of King Page 4 to BTR1

Set CCE bit in Control Register of Intel 82527 to logic 1
Call B RATE to change the baud rate

Set CCE bit in Control Register of Intel 82527 to logic 0

Return from subroutine

- 165 -

Software Design

7.3.4.4 King Menu program

The aim of this program is to enable system designers to design King Pages
corresponding to the configuration instructions for the system. The design of each
King Page is done by Vusing an IBM PC. Next, the Page is downloaded to the
Capital’s microcontroller and sent to a City or a group of Cities. The software
which enables the King Pages to be designed is referred to as the King Menu

program.

7.3.4.4.1 Introduction

The King Menu program has two tasks:

1. Enabling system designers to enter King Pages

2. Formatting the entered data according to King Page Forms

System designers enter a King Page via the PC’s keyboard, the data is echoed on

the PC’s monitor. The menu on the monitor would appear as shown in Figure 7-9.

*#% KING PAGE***
LINE 0: 01

LINE 1: 01

LINE 2: 20

LINE 3: 0A

LINE 4: 40

LINE 5: 00

LINE 6: 00

LINE 7: 88

Send ? (Y/N):'Y
New page? (Y/N): N
> (BUFFALO prompt)

Figure 7-9 King Menu

- 166 -

Software Design

The King Page shown in Figure 7-9 is an example of a King Page 1. Each Line on

the screen corresponds to a Line on King Page 1 Form.

Each Line consists of two Hexadecimal numbers which carry the information

corresponding to a particular King Page as described earlier in Chapter 4.

After the user finishes entering data for a King Page, the King Menu program asks
the user whether or not to send the Page. If a ‘Y’ character is entered, the King
Menu program returns to the main program to send the Page. Otherwise, the Page is

discarded and the prompt for entering a new Page is displayed on the monitor.

After finishing the system configurations, the user can return to the BUFFALO
program by entering an ‘N’ character at the ‘New Page? (Y/N):’ prompt.

The King Menu program also provides the following facilities to assist users to

correct the data being currently entered:
e If the current character being entered is not in the ranges of Hexadecimal
characters, the current Line is discarded. The program repeats this Line to

prompt the user to re-enter the data.

e After entering data for a Line, the user presses <Enter> to confirm the

Line. The monitor will prompt the user to enter value for the next Line.
e Data for a Line can be changed by pressing <Ctrl+X> instead of <Enter>.
o If a King Page contains less than eight Lines, after pressing <Enter> to

confirm the value of the last Line, the user can press <Ctrl+ESC> to

ignore the rest of the Lines.

- 167 -

Software Design

The format of each Line in a King Page is as follows:

Page 0
Line 0: CC (Hex number- indicate City or Group address)
Line 1: 00 (Page 0 — F inish Set-up phase)

Page 1

Line 0: CC

Line 1: 01 (Page 1 — Assign Envelop to Folder)
Line 2: FR

Line 3: AA (Arbitration 0) MSB

Line 4: AA (Arbitration 1)

Line 5: AA (Arbitration 2)

Line 6: AA (Arbitration 3) LSB

Line 7: mmrrdxrr (Binary number)

Note:
Line 2: F-Folder or Message Object number
R- Reserved, always being 0

Line 3, Line 4, Line 5, Line 6: contain the Arbitration values of the Arbitration field

in each Message Object of the CAN controller chip (Intel 82527)

Line 7: mm- enable/disable the Folder

01- disable
10- enable
11- unchange

d- direction of the message contained in the Folder
0- Receive
1- Transmit

X- message format
0- Standard

. 1- Extended

- 168 -

Software Design

Page 2

Line 0: CC

Line 1: 02 (Page 2- Assign new City’s or Greup address)
Line 2: NN (new City’s or Group address)

Page 3
Line 0: CC
Line 1: 03 (Page 3 — Ungroup/Restore the original City’s address)

Page 4

Line 0: CC (should be 00 — broadcast message)
Line 1: 04 (Page 4- Baud rate setting)

Line 2: s;ws;wbbbbbb (Binary)

Line 3: sspittsecatrseaatrsecattseaitrsecittseaitrsec: (Binary)

Note:

Line 2: siwsyw— (Re)Synchronisation jump width — Value: 0-3 (Decimal)
bbbbbb — Baud rate prescaler — value 0-63 (Decimal)

Line 3: sspl — Sampling mode

0- The CAN bus is sample once per bit time
1- The CAN bus is sample three times per bit time
trseG2 trsege trsegs — Time segment 2 — Value: 1-7 (Decimal)

trsecitTsecitrseGittsegr — Time segment 2 — Value: 1-15 (Decimal)

- 169 -

Software Design

7.3.4.4.2 Designing the King Menu program

The King Menu program uses four utility subroutines of the BUFFALO monitor
program contained in the MC68HC11 on chip ROM as shown in Table 7-4:

Table 7-4 BUFFALQ’s utility subroutines

Address | Subroutine | Description

FFAOH | .UPCASE Convert a lower case character in Accumulator A to
upper case

FFC4H | .OUTCRL | Output ASCII carriage return follow by a line feed

FFC7H | .OUTSTR | Output a string of ASCII bytes pointed by address in the
index register IX until encountering the EOT character
(04H)

FFCD INCHAR | Input an ASCII character into Accumulator A and echo
back

The King Menu program (called KING subroutine) also has the following

subroutines:

K _DISP controls the process of entering King Pages and calculates the

number of Lines on the Pages.

L _ENTER controls the value entering process for a Line.

HEXBYTE gets two ASCII characters entered from the user, converts

them to Hexadecimal numbers, and stores the numbers into TMP1 (1

byte).

HEXBIN converts a character in Accumulator A into a Hexadecimal

number...

-170 -

Software Design

King Menu program messages

The following messages are output to the PC screen to prompt the designers to enter

values:

MSGO: ‘New Page? (Y/N):’
MSG1: “***KING PAGE***’
MSG2: ‘LINE 02’

MSG3: ‘LINE 17’

MSG4: ‘LINE 2’

MSGS5: ‘LINE 37’

MSG6: ‘LINE 4:°

MSGT7: ‘LINE 5’

MSGS: ‘LINE 6:°

MSG9: ‘LINE 72’

MSG10: ‘Send? (Y/N):’

Variables

e TMP1 (1 byte) stores the hexadecimal value of a Line

e PTRI1 (2 bytes) points to the memory location of the Menu program
messages

e PTR2 (2 bytes) points to the location to store the entered value (the Data
field of the Message Object 1)

e NHEX (1 byte) indicates the value entered is not a Hexadecimal number if
NHEX is not equal to 0

o STOP (1 byte): if this byte contains <Ctrl+ESC> character, the current
Line is ignored

e COUNT (1 byte) indicates the number of Lines containing in a King Page.
Note that the number of Lines is specified by the upper-half of COUNT,

the lower-half is unused.

171 -

Software Design

KING subroutine algorithm

1.

2
3.
4

W

Reset COUNT to calculate the number of Lines for a new Page

Output MSGI to the PC screen

Load the memory address of MSG2 to PTR1

Load the address of the first byte in the Data field of Message Object 1 to
PTR2

Call K_DISP subroutine

Output MSG10 to the PC screen

Receive character ‘Y’ or ‘N’ from users. If “Y’, then go to step 8 to return

~ to the main program. If ‘N’, then go to step 1 to re-enter the Page

Return from subroutine

K DISP subroutine algorithm

1.
2.

o voA W

Call L_ENTER subroutine to enter values for a Line

If STOP contains <Ctrl+ESC> character, then go to step 8. Otherwise,
continue to step 3.

Store the Line values to the address specified by PTR2

Increase COUNT by 10H.

Increase the value of PTR2 to point to the next location

Compare the content of PTR1 with the address of MSG9. If equal, then go
to step 1. If not equal, increase PTR1 to point to the next Menu program’s
message address location.

Gotostep 1

Return from subroutine

-172 -

Software Design

L ENTER subroutine algorithm

1.
2.
3.

Output the message to prompt users to enter values for a particular Line
Call HEXBYTE subroutine

If STOP contains <Ctrl+ESC> character, then go to step 7. Otherwise,
continue to step 4.

If the entered value is not a Hexadecimal number, then go to step 1 to re-
enter the value

If <Ctrl+X> is pressed, then ignore the value and go to step 1

If <Enter> is pressed, then go to step 7

Return from subroutine

HEXBYTE subroutine algorithm

1.
2.

© % N o

11.
12.
13.

Reset NHEX

Get a character from the user (by calling .INCHAR subroutine). It is noted
that the character is stored in Accumulator A

Store the character to STOP

If STOP contains <Ctrl+ESC> character, then go to step 13. Otherwise,
continue to step 5.

Call HEXBIN subroutine to convert the character to a Hexadecimal
number

Go to step 12 if the value is not a Hexadecimal number

Store this number into the upper-half of TMP1

Get a character from the user (Call INCHAR subroutine).

Call HEXBIN subroutine to convert the character to a Hexadecimal
number

Go to step 12 if the value is not a Hexadecimal number

Store this number into the lower-half of TMP1

Increase NHEX

Return from subroutine

-173 -

Software Design

HEXBIN subroutine algorithm
1. Call .UPCASE subroutine

2. If the value in Accumulator A is in the ranges of ‘0’ to ‘9’ or ‘A’ to “F’,

then convert it to a Hexadecimal number
3. If the value is not in either the ranges mentioned in step 2, then load Acc
A with FFH to indicate the value is not a Hexadecimal number

4. Return from subroutine

7.3.5 Designing the software to service King Pages in Cities

When a King Page arrives at a City (or Cities), the MSG OB]1 subroutine calls a

corresponding subroutine to service the Page according to its Page number.
In this project, five subroutines were designed to service the five King Pages:

1. PG_0 subroutine services King Page 0
PG _1 subroutine services King Page 1
PG _2 subroutine services King Page 2

PG_3 subroutine services King Page 3

A

PG_4 subroutine services King Page 4

The application program must assign these subroutines’ addresses into their

locations in the King Page vector table (Table 7-3)

7.3.5.1 PG _0 subroutine

Variables
o WORK (1 byte) indicates that the Set-up phase has finished
- WORK = 0: Set-up phase
- WORK = 1: Set-up phase has finished and the City can start to work

-174 -

Software Design

PC 0 subroutine algorithm
1. Assign WORK:=1

2. Return from subroutine

7.3.5.2 PG_1 subroutine

Variable
e OBJ NO (2 bytes): the Base address which is the first memory address of
~ the Folder number (Message Object number).

PG 1 subroutine algorithm

1. Determine the Folder number by reading the value of Line 2

Configure the Folder according to the value of Line 7

2. Disable the Folder
3. Store Arbitration 0
4. Store Arbitration 1
5. Store Arbitration 2
6. Store Arbitration 3
7.

8.

Return from subroutine

7.3.5.3 PG_2 subroutine

PG_2 subroutine algorithm
1. Store the value of Line 3 to C_ ADD (the 1 RAM byte for City’s

addressing)

2. Return from subroutine

- 175 -

Software Design

7.3.5.4 PG_3 subroutine

PG_3 subroutine algorithm
1. Get the original City’s address in ADDRESS (the 1 EEPROM byte for

City’s addressing)
2. Store the original City’s address to C_ADD (the 1 RAM byte for City’s
addressing)

3. Return from subroutine

7.3.5.5 PG_4 subroutine

PG 4 subroutine algorithm

1. Set CCE bit to 1 in Control Register to enable writing to Bit Timing
Registers

2. Store the value of Line 2 to Bit Timing Register 0

3. Store the value of Line 3 to Bit Timing Register 1

4. Set CCE bit to 0 in Control Register to disable writing to Bit Timing
Registers

5. Return from subroutine

7.3.6 Cities’ software

The software in each City includes four parts:
1. Assigning address for the Interrupt Service Routine (ISR)

2. Initialisation being responsible for initialising CAN controller chip,

assigning values for the two vector tables.
3. Set-up phase waiting for set-up instructions from the King

4. Run phase controlling the designed operations of the City

- 176 -

Software Design

An important observation is the fact that the first three parts of the City application

are almost the same for all three Cities with the fourth part different for each.

7.3.6.1 Assigning address for ISR

At the beginning of a City program, the command
JMP 1 SERV
is placed at address 0OOEEH of the Interrupt Vector table in the MC68HC11 on-chip

memory.

When an IRQ interrupt occurs, the Program Counter points to the address of

I SERV ISR.

7.3.6.2 Initialisation

Algorithm for the Initialisation part
1. Reset CAN controller chip

2. Initialise the CAN controller chip

3. Initialise the LCD (for City 3 only)

4. Display the message ‘* CAN SYSTEM DEMO *’ on LCD (for City 3
only)

Turn ON the Red LED to indicate Set-up phase

Assign the original address (ADDRESS) to C_ ADD

Assign WORK to 0 to indicate Set-up phase

Assign address of the MSG_OB1 subroutine to address 01E4H in the

© Ny

Interrupt Service vector table

9. Assign addresses of the MSG_OB2 and MSG OB3 subroutines to address
01E6H and 01E8H, respectively in the Interrupt Service vector table (for
City 3 only)

10. Assign addresses of PG 0, PG 1, PG 2, PG 3, and PG 4 subroutines to
address 01COH, 01C2H, 01C4H, 01C6H, and 01C8H, respectively in the
King Page vector table

11. Enable interrupt for MC68HCI11

- 177 -

Software Design

Note:

City 3 contains a set of subroutines to control the LCD such as initialising
LCD (INIT L) and displaying messages in the LCD (DISP). These

subroutines are described in Section 7.3.6.4.3

City 3 receives messages from City 1 and City 2. Folder 2 and Folder 3
(Message Object 2 and Message Object 3) of City 3 are used to store
messages from City 1 and City 2, respectively. MSG_OB2 subroutine is
used to decode messages in Folder 2. MSG _OB3 subroutine is used to

decode messages in Folder 3.

7.3.6.3 Set-up phase

Algorithm for Set-up phase in a City’s main program

1.
2.

Wait for a King instruction

If WORK=0, then go back to step 1. Otherwise, continue to Run phase

7.3.6.4 Run phase

7.3.6.4.1 City 1

In Run phase, City 1 gets the A/D value from A/D device, formats the value
according to the A/D form (see Chapter 4), and sends it to the CAN bus whenever

the value has been changed.

Algorithm for Run phase in City 1’s main program

2
3.
4

1.

Turn on the Green LED to indicate the Run phase

Set the Data Length Code of the Message Object 2 to 8 bytes

Get A/D value

If the value is changed, then continue to step 5. Otherwise, go back to step

3

- 178 -

Software Design

5. Set the CPU update (CPUUpd) and New data (NewDat) bits in the Control
Register 1 of Message Object 2 to logic 1 ‘
6. Get City 1’s address.
7. Convert the address to ASCII characters, and store them into the first three
bytes of the Data field (by calling ASCII subroutine)
8. Store the ‘2’ character into the fourth byte of the Data field
9. Convert the A/D value to ASCII characters, and store them into the next
three bytes of the Data field (by calling ASCII subroutine)
" 10. Store the End of String (EOT) character (04H) into the eighth byte of the
. Data field
11. Reset CPUUpd bitto 0
12. Transmit the message
13. Go back to step 3
ASCII subroutine

This subroutine is used first to convert two Hexadecimal numbers contained in Acc

B into their equivalent Decimal numbers, then to convert the Decimal numbers into

ASCII characters, and store the characters to the memory addresses specified by

Index Register I'Y

ASCII subroutine algorithm

1.
2.
3.

Convert the Hexadecimal numbers into Decimal numbers
Convert the Decimal numbers into ASCII characters

Store the characters into memory location specified by I'Y

- 179 -

Software Design

7.3.6.4.2 City 2

In Run phase, City 2 gets the A/D value from A/D device, formats the value

according to the A/D form (see Chapter 4), and sends it to the CAN bus when the

City receives a request (Remote frame) from City 3.

Algorithm for Run phase in City 2’s main program

L.

2
3.
4

10.
11.

12.

Turn on the Green LED to indicate Run phase
Set the Data Length Code of the Message Object 2 to 8 bytes
Get A/D value |

- Set the CPU update (CPUUpd) and New data (NewDat) bits in the Control

Register 1 of Message Object 2 to logic 1

Get the City 2’s address.

Convert the address to ASCII characters, and store them into the first three
bytes of the Data field (by calling ASCII subroutine)

Store the ‘:’ character into the fourth byte of the Data field

Convert the A/D value to ASCII characters, and store them into the next
three bytes of the Data field (by calling ASCII subroutine)

Store the End of String (EOT) character (04H) into the eighth byte of the
Data field

Reset CPUUpd bit to 0

Delay 2msecs to allow the Intel 82527 CAN controller to complete the
transmission of the message if there is a request from City 3

Go back to step 3

- 180 -

Software Design

7.3.6.4.2 City 2

In Run phase, City 2 gets the A/D value from A/D device, formats the value
according to the A/D form (see Chapter 4), and sends it to the CAN bus when the

City receives a request (Remote frame) from City 3.

Algorithm for Run phase in City 2’s main program

1.

2
3.
4

10.
11.

12.

Turn on the Green LED to indicate Run phase

Set the Data Length Code of the Message Object 2 to 8 bytes

Get A/D value »

Set the CPU update (CPUUpd) and New data (NewDat) bits in the Control
Register 1 of Message Objectr2 to logic 1

Get the City 2’s address.

Convert the address to ASCII characters, and store them into the first three
bytes of the Data field (by calling ASCII subroutine)

Store the ‘:” character into the fourth byte of the Data field

Convert the A/D value to ASCII characters, and store them into the next
three bytes of the Data field (by calling ASCII subroutine)

Store the End of String (EOT) character (04H) into the eighth byte of the
Data field

Reset CPUUpd bit to 0

Delay 2msecs to allow the Intel 82527 CAN controller to complete the
transmission of the message if there is a request from City 3

Go back to step 3

- 180 -

Software Design

7.3.6.43Cinv 3

In Run phase. City 3 checks the Remote Request device (the push button). If the
push button 15 pressed. then the City sends a Remote frame to City 2 to request data.

The ISR controls the data display of messages from City | and City 2.

Algorithm for Run phase in City 3°s main program

1. Turn onthe Green LED to indicate Run phase
2. set Receive Interrupt Enable (RXIE) for Message Object 2 and Message
Object 3

It the button is pressed (PAQ=0), then send Remote frame to City 2

it

4. Delay 1 sec

"

Go back to step 3

It is noted that when a message arrives. the SR invokes a corresponding subroutine

to decode it:

e MSG OB2 subroutine decodes the messages from City |

e MSG OB3 subroutine decodes the messages from City 2

MSG_OB2 subroutine algorithm

. Determine the Base address Jor the Message Object 2 (7020H)
2. Call LCD subroutine te display data

3. Return from subroutine

MSG OB3 subrouline algorithm

1. Determine the Base address for the Message Object 3 (70,0H)
2. Call LCD subroutine to display data

3. Return from subroutine

1.CD subroutine algorithm

1. Configure to display data on the second line of the LCD
2. Display the message in the corresponding Message Object

3. Return from subroutine

- 181 -

Software Design

Subroutines to control the LCD

The LCD control subroutines were developed and thoroughly tested by Wetton

(1995), The subroutines are listed as follows:

INIT_L: Initialising the LCD

¢ DISP: Display a string in the 1.CD with the string’s address specified by

index register X

e OUTPUT: output instructions from Acc A to the .LCD

e SCREEN: Quiput data trom Acc A to the LCD

In this project, these subroutines were utilised with minor changes in the software

due to some differences in the hardware design (see Chapter 6}.

INIT L subroutine algorithm

}. Delay i6msecs

2. Output an initialising instruction to LCD
3. Delay a period of time required for each instruction
4, (o back to step 2 until the last instruction is fetched

5. Returm from subroutine

DISP subroutine algorithm

1. Load a character at the address specified by X to Acc A

2. [fthe character is EOT. then go to step 6. Otherwise, continue to step 3
3. Call SCREEN to display the character

4, Delay 50 micro secs

5. Goback to step |

6. Return from subroutine

Software Design

QUTPUT subroutine algorithm
1. Load an instruction to Port 1 of the Intel 82527

2. Set LCD’s pins RS=0, R/'W#=0, E=0
3. Set LCD’s pins RS=0, R/'W#=0, E=1
4, Set LCD's pins RS=0. R/W#=(, E=(0

Return from subroutine

SCREEN subroutine algorithin

. load data to Port | of the Intel 82527
Set LCD's pins RS=1. R/'W#=0, E=0
Set LCD’s pins RS=1., R/'W#=0, E=1
Set LCD's pins RS= [, R'W#=0, E=0

|]

oW

5. Retum from subroutine

- 183 -

Software Design

7.4 Testing

The following testing schemes were performed to check the system operations:

7.4.1 Set-up phase

After each City had been reset. all the Cities waited for instructions from the King.

Expected and actual result: The red LEDs in all of the Cities were turned ON to

indicate that the Cities were waiting for the King's instructions.

The King sent King Page ! messages to each City to determine communications

between Cities. The values of Page ! tor each City were as follows:

To City 1
Assigning ID 2 (Standard format) to Folder 2.

Page 1

Line 0: 01 (City 1)

Line 1: 01 (Page 1)

Line 2: 20 (Folder 2)

Line 3: 00 (Arbitration 0) MSB

Line 4: 40 (Arbitration 1)

Line 3: 00 (Arbitration 2)

Line 6: 00 (Arbitration 3) LSB

Line 7: 88 (Enable the Folder. Traunsmit, Standard)

- 184-

Software Design

To City 2:
Assigning [D 3 (Standard format) to Folder 2.

Page |

Line 0: 02 (City 2)

Line 1: 01 (Page 1}

[.ing 2: 20 (Folder 2)

: 00 (Arbitration 0) MSB
Line 4: 60 (Arbitration 1)

"+

L.ine

Line 3: 00 (Arbitration 2)
Line 6: 00 {Arbitration 3) L.SB
Line 7: 88 {Enable the Foider. Transmit, Standard)

To City 3:
Assigning 1D 2 (Standard format) to Folder 2.

Page 1

Line 0: 03 (City 3)

Line 1: 01 (Page 1)

Line 2: 20 {Folder 2)

Line 3: 00 {Arbitration 0} MSB

Line 4: 40 {Arbitration 1}

Line 5: 00 {Arbitration 2)

Line 6: 00 (Arbitration 3) LSB

Line 7: 80 (Enable the Folder. Receive, Standard)

- 185-

Software Design

Assigning ID 3 (Standard format) to Folder 3,

Page 1

Line 0: 03 (City 3)

Line 1: 01 (Page 1)

[.ine 2: 30 (Folder 3)

Line 3: 00 (Arbitration () MSB

[ine 4: 6U (Arbitration 1)

L.ine 3; 00 (A bitration 2)

Line 6: 00 (Arbitration 3) LLSB

Line 7: 80 (Enable the Folder, Receive, Standard)

After sending these Pages to the Cities. the King then sent King Page 0 to all Cities
to inform them that the Set-up phase had been compieted. The values of the Page

were as follows:

Page 0
Line 0: 00 (Broadcast to all Cities)
Line 1: 00 (Page 0)

Expected and actual results:

e The red LEDs were turned OFF

o The green LEDs were turned ON to indicate that the Cities started to work

¢ From then. the Cities communicated with each other as designed

- 186 -

Software Design

7.4.2 Run phase

7.4.2.1 Testing communication between City 1 and City 3

e Adjusting the A/D device in City 1

Expected_and actual result: City 3 received the data and displayed it in the LCD.

The LCD displayed the following information:

* CAN SYSTEM DEMOQ *
CITY 001:128

Note that the value 128 was the A/D value from City 1. The value was changed

whenever the A/D device was manually adjusted.

7.4.2.2 Testing communication between City 2 and City 3

e Adjusting the A/D device in City 2

e Pressing the button on City 3

These two actions were executed several times to test the system fully.

Expected and actual result: City 3 received the data and displayed it in the LCD.

The LCD displayed the following information:

* CAN SYSTEM DEMO *
CITY_002:068

Note that the value 68 was the A/D value from City 2. The value was changed

whenever the A/D device was manually adjusted.

- 187 -

Software Design

7.4.3 Additional testing

7.4.3.1 Changing message Identifiers

Whilst the system is working in the Run phase, the King can change the Identifier
for Cities” Folders in order to change message priorities. This was done by sending

King Page 1 messages to corresponding Cities.

"3 1 Changing communication priority benwveen Ciny | and City 3

Because the messages in City | are sent immediately. whenever the A/D values are
changed. Folder 2 of City 1 should be disabled before changing Folder 2 of City 3's
message [D. Otherwise. if City | sends its messages and no City receives, the

system could malfunction. The order of changing message [D steps was as follows:

e Disabling the Folder 2 of City 1
e Assigning new message [D for Folder 2 of City 3

e Assigning the same message ID for Folder 2 of City |

According to the algorithm of PG [subroutine. a Folder can be disabled by sending

the first three Lines of King Page 1. The following King messages were sent:

To City 1:
Disabling Folder 2

Page 1

Line 0: 01 (City 1)
Line 1: 01 {(Page 1)
Line 2: 20 (Folder 2)

- 188 -

Software Design

To City 3:
Assigning ID 10 (Extended format) to Folder 2.

Page 1

Line 0: 03 (City 3)

Line 1: 01 (Page 1)

Line 2: 20 {Folder 2}

L.ine 3: 00 (Arbitration Q) MSB

Line <4: 00 (Arbitration [)

Line 3: 00 (Arbitration 2)

Line 6: 50 (Arbitration 3) LSB

Line 7: 84 (Enable the Folder. Receive, Extended)

To City 1:
Assigning ID 10 (Extended format) to Folder 2.

Page 1

Line 0: 01 (City 1)

Line 1: 01 (Page 1)

Line 2: 20 (Folder 2}

Line 3: 00 (Arbitration) MSB

Line 4; 00 (Arbitration 1}

Line 5: 00 Arbitration 2)

Line 6: 50 (Arbitration 3) LSB

Line 7: 8C (Enable the Folder. Transmit, Extended)

Expected and actual result: The two Cities communicated with each other as

specified. This was done by repeating the test in Section 7.4.2.1.

- 189 -

Software Design

7.4.3.1.2 Changing communication priority between City 2 and City 3

City 2 sends its messages only when it receives Remote frames from City 3, hence,
in this case. the order of changing the message IDs is not important and it is not
necessary to disable City 2°s Folder. The King sent the following messages to City

2 and City 3:

To City 2:

Assigning [D 9 (Extended format) to Folder 2.

Page 1

Line 0: 02 (City 2)

Line 1: 01 (Page 1)

Line 2: 20 (Folder 2)

Line 3: 00 (Arbitration 0) MSB

Line 4: 00 (Arbitration)

Line §: 00 (Arbitration 2)

Line 6; 48 (Arbitration 3) LSB

Line 7: 8C {Enable the Folder. Transmit, Extended)

To City 3:
Assigning ID 9 (Extended format) to Folder 2.

Page 1

Line ¢: 03 (City 3)

Line 1: 01 (Page 1)

Line 2: 30 (Folder 3)

Line 3: 00 {Arbitration 0) MSB

Line 4: 00 { Arbitration 1)

Line 5: 00 {Arbitration 2)

Line 6: 48 (Arbitration 3} LSB

Line 7: 84 (Enable the Folder, Receive, Extended)

- 190 -

Software Design

Expected and actual result: The two Cities communicated with each other as

designed. This was done by repeating the test in Section 7.4.2.2.

7.4.3.2 Changing Cities’ addresses

The King sent King Page 2 to the Cities to assign a new address to a City. This test

was done by the following steps:

¢ Assigning City's address 005 to City |
o Assigning City's address 006 to City 2

The values of King Page 2, sent to each City. were as follows:

ToCuy I:

Page 2

Line 0: 01 «City 1)
Line 1: 02 (Page 2)

Line 3: 05 (new City or group address 005)

To City 2:

Page 2

Line 0: 02 (City 2)

Line 1: 02 (Page 2)

Line 3: 06 (new City or group address 006)

Expected and actual result: The Cities operated as specified. This was done by

repeating the tests i Section 7.4.2

-191 -

Software Design

The display in the LCD of City 3 appeared as follows:

City 1:
* CAN SYSTEM DEMO *
CITY 001:140

City 2:
* CAN SYSTEM DEMO *
CITY 002:008

7.4.3.5 Changing baud rate

Initially, the system was working at 125kbit/s. In order to change the baud rate of
the system, the King broadcasted King Page 4 to all Cities with a new baud rate

setting.

For example, setting 100kbit/s to the system; the values of King Page 4 were as

follows:

Page 4

Line 0: 00 (Broadcast message)

Line 1: 04 (Page 4)

Line 2: 43 (value for Bit Timing Register 0)
Line 3: 7A (value for Bit Timing Register 1)

Expected and actual result: The Cities operated as specified. This was checked by

repeating the tests in previous sections.

- 194 -

Software Design

Expected and actual result: The Cities operated as designed. This was done by

repeating the tests in Section 7.4.2

The display in the LCD of City 3 appeared as follows:

Cityv i

* CANSYSTEM DEMOQ *
CITY _007:240

City 2:

* CAN SYSTEM DEMO *
CITY 007:102

7.4.3.4 Ungrouping a group or restoring the Cities’ original addresses

The King sent King Page 3 to group 007 to ungroup the group. This test also

demonstrated that the King could talk to a group through the group address.
The values of King Page 3 sent to group 007 were as follows:
Page 3

Line 0: 07 {group 007)
Line I: 03 (Page 3)

Expected and actual result: The Cities operated as specified. This was done by

repeating the testing in Section 7.4.2

-193 -

Software Design

The display in the LCD of City 3 appeared as follows:

City e

* CAN SYSTEM DEMO *
CIry 001140

i 2

*CANSYSTENM DEMO *
CIHY 002:008

7.4.3.5 Changing baud rate

[nitially. the system was working at 125kbit’s. In order to change the baud rate of
the svstem. the King broadcasted King Page 4 to all Cities with a new baud rate

setting.

For example. setting 100kbit s to the system: the values of King Page 4 were as

{ollows:

Page 4

L.me 0: 00 (Broadcast message)

Line |: 04 (Page 4)

Line 2: 43 (value for Bit Timing Register 0)

LLine 3: 7A (value for Bit Timing Register |)

Expected and actual result: The Cities operated as spectfied. This was checked by

repeating the tests in previous sections.

- 194 -

Software Design

The values of the Bit Timing Register 0 and Bit Timing Register 1 were checked by
examining their memory locations at the addresses 703FH and 704FH, respectively.
This was done be a memory display command of the BUFFALO monitor program
when the King Menu program returned to the monitor program. This examination is
reliable due to the fact that all nodes in a CAN-based system always work at the
same baud rate, and the values of the Bit Timing Registers are not changed when

exiting the King Menu program.

This test was checked with different baud rates of: 50, 100, 200, 125, 250 kbit/s.
Baud rates of over 250 kbit/s, such as 500 kbit/s or 1Mbit/s, could not be performed
by the system because the modified RS485 transceivers was not able to work at
these baud rates.

Table 7-5 shows the values of Line 2 and line 3 of King Page 4 for the tested baud

rates.

Table 7-5 Baud rate values

Baud Rate Values for Line 2 and Line 3 of
(kbit/s) King Page 4
250 Line 2: 41

Line 3: 67
200 Line 2: 43
Line 3: 34
125 Line 2: 43
Line 3: 67
100 Line 2: 41
Line 3: 7A
50 Line 2: 47
Line 3: 7A

- 195 -

Software Design

7.4.3.6 Adding a new City to the system

This test illustrated that during the Run phase a new City could be connected to the
system. This was done by removing a City (for example. City 1). then reconnecting

it to the system. The test consisted of two stages:

Stage 1

This stage of the test demonstrated that when a City was set to a different baud rate

from that of the svstemn. it did not damage the system.

Assumption:
o The system baud rate at this stage was 200 kbit:s or any other baud rate
different to 125 kbit s (inittal baud rate)
o Folder 2 of City 3 was configured to receive a message with ID 10

(Extended format)

It should be noted that the ad.lress of City | after reset was 001.

Testing:
» Reconnecting Cily | and resetting it. The City waited for the Set-up
mstructions from the King.
» The King sent King Page | to assign ID 10 (Extended format) to the

Folder 2 of City 1. The values of the King Page were as follows:

Page 1

Line 0: 01 (City I)

Line 1: Ol (Page 1)

Line 2: 20 (Folder 2)

Line 3: 00 (Arbitration 0) MSB

Line 4: 00 (Arbitration 1)

Line 5: 00 {Arbitration 2)

Line 6: 50 (Arbitration 3} LSB

Line 7: 8C (Enable the Folder. Transmit, Extended)

- 196 -

Software Design

e The King sent King Page 0 to City 1 to tell the City that the Set-up phase

had finished. The values for the King Page were as follows:

Page 0
Line 0: 01 (City 1)
Lne 1: 00 {Page 0)

Expected and actual result;

o Jhe red LED on the City | was still ON. This meant the City had not
received the King's instructtons because it was listening to the King at a

baud rate of 125 kbit's.

e The rest of the system was in normal operation. This was tested by

repeating the test at Section 7.4.2.2,

Stage 2

This stage was to test that a City could be connected 1o the system when the system

baud rate was [25 kbits (initial baud rate). The following steps were taken:

o The King changed the system baud rate to 125 kbit/s by sending out King

Page 4. The values of the Page were as follows:

Page 4

Line 0: 00
Line 1: 04
Line 2: 43
Line 3: 67

-197 -

Software Design

e Resetting City 1.

e Repeating the steps in the Testing section of Stage 1.

Expected and actual resuft; City | communicated with City 3 as specified. This was

checked by repeating the test in Section 7.4.2.1.

7.4.3.7 Testing the role of the King

At the Run phase. and if there is no further requirement for the system
configuration. the King can be removed from the network. it can be reconnected to

the system at any time if required. The test was performed by the following steps:

e Removing the King from the network. This was done by resetting the

King

Expected and actual result:

- The PC monitor returned to the BUFFALO prompt.
- The system was working normally without the King. This was checked by the test

described in Section 7.4.2.
e Reconnecting the King to the network. This was done by running the King
program (more details of how to use the King program are given in
Appendix C).

e Performing the previous tests to check the operation of the King.

Expected and actual result: The King worked in the same way as it had done when

it was originally connected to the network.

- 198 -

Software Design

7.4.4 Testing the behaviour of the King Menu program

Table 7-6 shows the testing schemes were employed during the entering a King

Page stage of the King Menu program.

Table 7-6

Testing King Menu program

Test

Expected and actual result

Entered a character which was not in the

ranges of Hexadecimal numbers

Prompted the user to re-enter the data

for the current Line

Pressed <Enter> to confirm a Line

Prompted the user to enter data for the

next Line

Pressed <Ctrl+X> to re-enter value for a

Line

Prompted the user to re-enter the data

for the current Line

Entered a King Page containing 8 Lines

‘Send? (Y/N):” prompt appeared

Used <Ctrl+ESC> to enter data for a

King Page containing less than 8 Lines

‘Send? (Y/N):” prompt appeared

Entered the character ‘N’ at ‘Send? | Prompted the user to enter a new King
(Y/N):” prompt Page

Entered the character Y’ at ‘Send? | ‘New Page? (Y/N):’ prompt appeared
(Y/N):” prompt

Entered the character ‘Y’ at ‘Send? | Prompted the user to enter a new King
(Y/N):’ prompt Page

Entered the character ‘N’ at ‘Send? | Return to the BUFFALO prompt
(Y/N):” prompt appeared

- 199 -

Software Design

7.5 Conclusion

This chapter described how the author of this thesis successfully designed the
software that controlled the operation of a small system following the Small CAN

Kingdom protocol. The software was used to demonstrate and test the protocol.

The Small CAN Kingdom protocol provides an open approach, which allows later
designers 10 add more application services by means of additional King Pages in
order to enhance the performance of future systems. The address of the subroutine
used to decode a new King Page is simply assigned in the King Page vector table,

thus the City’s Mayor knows where to look for the subroutine.

Similarly, when a City implements a new Form {or Forms) for a particular Folder
{Message Object). the address of the subroutine used to decode the Form (or Forms)

Is written into the Interrupt service vector table,

If a Folder is designed to receive several messages with different Form formats (e.g.
the King Folder), a similar vector table to the King Page vector table should be used

to specify the address of the subroutine used to decode a particular Form.

When a new City is designed. the City should reserve two bytes for addressing
purposes: the original address (ADDRESS) can be stored in one byte non-volatile
memory, and the working address (C_ADD) is stored in one byte volatile memory.
[nitially, the value of ADDRESS is assigned to C_ADD. The King then assigns a
new City's address or a Group address to a City by changing the value of C_ADD.

Noie that the value of ADDRESS should be left to the system designers to

determine, in order to avoid conflict between the Cities.

Any new City following the Small CAN Kingdom protocol should be able to

receive and obey at least King Page 0 and Page 1.

Software Design

Typically, the software used to demonstrate the performance of the Small CAN
Kingdom protoc»ol described in this project was written in the M6800 assembly
language. Each CAN node in the demonstration system contains an MC68HC11
and Intel 82527 CAN controller. The nodes with the same hardware parts can utilise

similar implemented subroutines as shown in Table 7-7.

Table 7-7 Small CAN Kingdom protocol subroutine for a City

Address | Name Description

B696H | PG 4 Subroutine to decode King Page 4
B6B3H | PG 3 Subroutine to decode King Page 3
B6BAH | PG 2 Subroutine to decode King Page 2
B6CIH | PG 1 Subroutine to decode King Page 1
B6FEH | PG 0 Subroutine to decode King Page 0

B674H | ADDRESS | | byte EEPROM address for a City’s original address

B705H | MSG_OB1 | Subroutine to service Folder 1 (King’s message Folder)

B730H |I SERV Interrupt Service Routine (ISR)

B770H | DELAY Subroutine to delay a multiple of 50 micro secs. The

multiple value is specified by index register I'Y

B77DH | RESET C | Subroutine to reset CAN controller chips

B795H | INIT_C Subroutine to initialise CAN controller chips

It should be noted that the memory locations of the vector tables (Table 7-2 and
Table 7-3) as well as the memory locations used by the subroutines in Table 7-7 can
be mapped anywhere in the addressable space available to the MCU. This only

requires minor changes in the software.
The testing schemes have provided an efficient mechanism used to check the

system’s performance. All the tests were repeated many times and produced

expected results.

- 201 -

CHAPTER 8

CONCLUSION

8.1 Summary

The Controller Area Network (CAN) protocol provides designers with a powerful

mechanism 1o build ~omplex distributed systems.

The Bus Arbitration concept employed by the protocol allows messages being
transferred in the network to vie tor contention of the bus in a predelermined way.
Whenever a colliston occurs. the highest priority message always gains access to
the bus: the nodes which have attempted to transmit lower priority messages

auwtomatically become receivers.

A CAN network uses Linear Bus topology: thus, any node has the same right of
access to the bus (Multimaster). Moreover. messages are broadcast to all nodes in a
CAN-based system: therefore. any number of nodes can receive their expected data
simultaneously (Multicast reception). This enables data to be exchanged in a short

period of time.

The powerful error detection schemes of the CAN protocol provide the means for
CAN-based systems to work in physically harsh and electrically noisy industrial

environments.

In addition, CAN’z OSV/ISO based model allows the protocol to achieve design

transparency and implementation flexibility.
However, the CAN protocol only specifies the Data Link layer according to the

ISO/0SI seven layer reference model (see Chapter 2). Upper and lower layers must

be added to a CAN-based system in order to perform actual operations in a system.

-202 -

Conclusion

With respect to the critical time requirements in the automation industries, CAN-

based systems usually implement three layers including the:

¢ Application layer,
e Data Link layer, and

s Physical layer.
The Network, Transport, Session, and Presentation layers are thus omitted.

The main aim of this thesis is to deal with the Application layer of smali distributed
svstems based on the CAN protocol. [n other words. this thesis is concerned with
the design of an Application Layer protocol (Higher Layer Proiccol) for small

systems using small microcontrollers such as the MC68HC1 1.

Steps were taken to investigate three popular CAN Higher Layer Protocols (HLPs),

namely:

o Smart Distributed System (SDS).
e DeviceNet, and

e CAN Kingdom.

The study concluded that SDS provides an effective protocol for communications
between 1'O devices and the host controllers. The protocol, however, is too complex
to suit the requirements of small systems. Additionally, the SDS application
services are designed in fixed forms which means that they are extremely difficuit

to change to satisfy the needs of a particular system.

DeviceNet is an open network where all nodes have the same right of access to the
bus. The Object-Oriented approach of DeviceNet makes it more flexible than SDS.
Each object in the DeviceNet protocol can contain different services which specify
the role of the object. Moreover, users can utilise the I/O messages of DeviceNet to

provide special-purpose services for their devices (see Chapter 3).

-203 -

Conclusion

However, SDS and DeviceNet protocols do not make use of many powerful
features of the CAN protocol. They only employ the Standard message format (I 1-
bit Identifier) specified in the CAN protocol. In addition, two or more nodes cannot
have the same Logical address in an SDS system, or the same Media Access
Control Identifier (MAC 1D) in a DeviceNet system. This violates the optimum use
of CAN Identifier which has been devised so that more than one node can utilise the
same CAN ID. Therefore, the multicast functionality of CAN designed for the fast

exchange of data cannot be applied in these protocols.

Furthermore. because the message priorities depend on the Logical Address or
MAC ID of a device, they are also difficult to amend once already assigned. To do

s0 requires a complex modification in the control software,

Another disadvantage of SDS and DeviceNet is that when in the process of
designing a module. the designers must be aware of the other nodes which their
module is going to communicate with. The designers also have to assign the module
address in advance. In other words. the message priorities must be decided before

the whole system design has been completed.

Conversely, the purpose of the CAN Kingdom protocol is to provide an open
solution which enables “any module just to be hooked on the bus and then start
working as a perfect teamymate mn the systeny” (Lennartsson, & Fredriksson, 1995).
This idea is based on the facl that when modules following different protocols are
connected on the same CAN bus, problems will arise due to the conflicting
interpretation of messages at the application level. Therefore, instead of specifying
a complete HLP, CAN Kingdom defines a set of protocol primitives which

designers can use to build a firal HLP to suit their needs.

The principle of the CAN Kingdom protocol is that a master node in the system, the
King, owns all message Identifiers, then assigns them to messages transferred in the
system during a set-up phase. Normally, the King does not get involved in the run-
time of the system. Yet, it can send instructions to the Cities (CAN nodes) at any
time while the system is working, should the configurations need to be changed.

This approach enables the message priorities to be changed easily when required.

- 204 -

Conclusion

In addition, designers are free to construct the message formats for their devices.
There is no restriction of the use of CAN data field in the CAN Kingdom protocol

except for the construction of King Pages.

Furthermore, the CAN Kingdom protocol supports both Standard and Extended
(29-bit Identifier) message formats specified in the CAN protocol. This enables
users to employ the latest technology of the CAN protocol; and hence, the two types
of messages can coexist within a CAN Kingdom svsiem which it is not possible in

SDS or DeviceNet systems.

In light of the advantages of the CAN Kingdom protocol for designing an open
protocol, the author of this thesis decided to follow its basic idea to develop a HLP

(the Small CAN Kingdom protocol) for small CAN-based distributed systems.

This small HLF has inherited the advantages of the CAN Kingdom protocol; and
thus, it provides users with the freedom to design a final protocol that suits their
system requirements, The data formats of messages can be designed without any
restriction: they must however, be conveyed to the system designer by means of
Forms (see Chapter 4). This enables the system designer to inform the King to

assign appropriate modules, with matching Forms, for the exchange of information.

Besides the hereditary benefits of CAN Kingdom, the Small CAN Kingdom
protocol also has its own advantages such as its simpler specification and small size
of programming codes. Indeed, the software. which enables a City to receive and
decode all the five King Pages, implemented in the protocol, requires only 362
bytes for the service subroutines, and 69 bytes for the variables and the two vector
tables (see Chapter 7). To simplify matters further, the subroutines for the King

Pages from Page 2 to Page 4 can be omitted if not required in particular systems.

Additionally, the implementation of the Small CAN Kingdom protocol allows users
to add more services to enhance the system’s performance by means of extra King
Pages. The addresses of the subroutines to decode the new King Pages are simply

written to their appropriate location in the King Page vector table (Table 7-3).

-205 -

Conclusion

This thesis also describes how a network of MC68HC11 microcontrollers has been
designed and successfully implemented. The software controlling the network has

been based on the Small CAN Kingdom protocol. The system design includes:

A Capital (the Master node} with the King being responsible for the

system configurations,

o City | which sends Analog / Digital (A/D) converted signals along with its

address to City 3 whenever the analog signal value changes,

e City 2 which also sends A/D signals and its address to City 3, but only if it

receives requests from City 3 by means of CAN Remote frames, and

s City 3 which receives and displays the information from both City 1 and
City 2 on a Liquid Crystal Display (LCD) module. This City has also

designed to send Remote frames to City 2 when the data is needed.

The King is connected to an iBM PC so that the designer can construct a King
Page. then the Page is downloaded to the King and sent to the network to perform

the system configuration.

All Cities are able to receive and follow the instructions, contained in the five King

Pages, associated with the Small CAN Kingdom protocol.

The LCD in City 3 provides a visual way to demonstrate the system operations.
City 1 and City 2 send their information along with their addresses; thus, it is easy
to observe the derivation of the displayed message. In addition, the system can

demonstrate the ability of CAN data frames for requesting data.
Each City also contains a dual-colour Light Emitting Diode (LED) to indicate its

states (Set-up or Run phase). Red indicates the Set-up phase; green indicates the

Run phase.

- 206 -

Conclusion

Chapter 5 discussed reasons for choosing the MC68HC 11 microcontroller and the
Inte] 82527 CAN controller. This resulted in the selection of suitable physical
components for the hardware design in this project. The details of the hardware and

software development environments were also described in this chapter.

In order to take advantage of Motorola’s hardware support. the M68HCI11EVBU

evaluation boards were used to assist the hardware design of the system.

The software of the project was developed and debugged with the aid of the

following programs:

The ROM-based BUFFALO monitor program. which is included in the

microcontroller chip’s ROM. and was used 1o load and debug software.

o The Edit (MS-DOS line editor) program which was used to write the

source programming codes,
* Motorola's portable assembler (PASM) used to compile the program.,
e Motorola’s Ubuilds program used to create Motorola S-records, and
e The MS-Kermit program employed to establish communication between

an IBM PC and the M68HCIIEVBU board's BUFFALQ monitor

program.

The complete hardware and software designs of the system were described in

Chapter 6 and Chapter 7, respectively.

In Chapter 6. the interfaces between following devices were successfully designed:

e The MC68HCI11 microcontroller and the Intel 82527 CAN controller chip
(for all CAN nodes in the system),

- 207 -

Conclusion

The MC68HC 11 microcontroller and an IBM PC (for the King).

The MC68HC 11 microcontrofler and A/D devices (for City 1 and City 2).
In the case of this project. 10k() rotary potentiometers and a +5V supply

were used to generate A:D signals.

The Intel 82527 and a DS3695 (RS485 standard) transceiver chip (for all
CAN nodes). The DS3695 chip was modified to suit the requirements of

the CAN bus.

An LCD module and the Intel 82527 (for City 3}. The two general purpose
1O ports {Port 1 and Port 2} of the Inte] 82527 were used to control the

LCD.

A push button and MCeSHC!1 for City 3). This push button was used to

invoke the generation of CAN Remote frames to City 2 to request data.

A dual-colour LED and the Intel 82527 (for all Cities). The LED

contained in each City was used to indicate the City’s state.

In Chapter 7 described the design of all the software necessary for the King to

construct and transntii its instructions and for the Cities to obey these instructions.

The software required for each node to complete its specified tasks in the system

was also been presented in detail.

The King Pages were designed on an 1BM PC. then downloaded to the
King, and subsequently. sent to the Cities via the King’s software. An
Interrupt Service Routine (ISR). contained in the King, enabled it to
reconfigure itself. if necessary, when a King Page had been successfully

transmitted.

-208 -

Conclusion

When a King Pages arrived at a City. the Intel 82527 interrupted its host
microcontroller. This forced the City's ISR to determine the interrupt

source and to invoke an appropriate subroutine to service the King Page.

During run-time. City 1's application software detected the change of the
A D signal, then ordered the Intel 82527 to send the amended information

to City 3.

City 2 always updated its information and sent to City 3 whenever it

received a remote request.

The software in City 3 captured the logical level change at the push
button. Whenever, the push button was pressed, it sent a Remote frame to
City 2 to request data. The City 3's ISR was also able to invoke the right

subroutines 1o service the messages from City [and City 2.

The testing schemes in Chapter 7 provided sufficient checks for the system’s

performance, The ftollowing tests were accomplished:

Testing the responsibilities of the King and the Cities in the Set-up phase.
In this phase the King sent the configuration instructions 1o the Cities and
decided upon the communications between the Cities (through the King
Page 1). The Cities started to work when the King told them that the Set-
up phase had been finished (through broadcasting the King Page 0 to all
Cities).

Testing the communications between Cities in the Run phase.

Changing the message Identifiers to change the priority for the messages

(through the King Page 1).

Changing the Cities” addresses (through the King Page 2).

- 209 -

Conclusion

* Assigning a group address to Cities (through the King Page 2). This

enabled the King to taik to a group of Cities at a time.

» Ungrouping a group of Cities or restoring the original Cities™ addresses

(through the King Page 3)

s Changing the system baud rate (through the King Page 4). This test was
done successfully with different baud rates: 50, 100, 125, 200, 250 kbit/s.
The baud rates above 250 kbit/s could not be performed because the
moditied DS3695 wransceiver chips were not able to work at these baud

rates.

o Adding a new City to the system. This test was done by removing a City

from the system. then reconnecting it.

e Testing the role of the King. This test was done by removing the King
from the system, then reconnecting it. This was to prove that the system
operated normally without the King. and when the King was reconnected,

it was able to send new instructions to the Cities.

In addition, another test was successfully performed to check the behaviour of the
King Menu program (see Table 7-6). This program enabled the system designer to

construct the King Pages and to correct any mistyping during entry of a King Page.

All the tests were repeated several times and the software was debugged whenever

necessary in order to achieve accurate performance of the system.

Conclusion

8.2 Future trends and suggestions

The low cost of CAN components, high data integrity. and short reaction time of the
CAN protocol together with its huge user base ensure that the future of the protocol
is a bright one. However. the lack of a worldwide standard CAN Higher Layer
Protocol has been a substantial tssue. As a result. each manufacturer may either

choose an existing apropos protocol or develop their own for their systems.

In this case, the open approach introduced in the CAN Kingdom protocol is likely
to be an advantageous mechanism which can be used to produce a final suitable

protocol for the requirements of different types of systems.

The Small CAN Kingdom protocol was developed based on the principle of CAN
Kingdom, and hence, the users can customise the protocol to suit their needs.
Furthermore, its stmplicity and small size of programming codes are an ideal

solution for small distributed systems.

Another CAN project concerned with the Intel 4051 microcontrollers is also
currently in progress at Edith Cowan Universily. Perth, Western Australia. Such
associated research in the CAN area also offers exciting prospects for the

Engineering facuilty of Edith Cowan University.

Although the software for this protocol was implemented and tested utilising an
MC68HC 11 microcontroller system. systems with different hardware components
can be hooked on to a Small CAN Kingdom bnsed system. as long as the

implementation of their software supports the King's instructions.

The software implementation of the protocol enables later designers to enhance the
system’s performance by means of additional King Pages. For example, a new King
Page to change the mask register so that a Message Object (or Folder) can transmit
or receive a group of messages, or a King Page to set up the system clock for the

network would be highly beneficial.

=211 -

Conclusion

The Small CAN Kingdom protocol does not actually specify the exchange of data
larger than 8 bytes. However. this can be done in a similar way to the transfer of

King Pages.

It is noted that the memory location for the program, as well as the vector tables in
each CAN node. can be mapped anywhere in the addressable space available to the

microcontroller with only minor changes in the seftware (see Chapter 7).

I'te King Menu program. which enables the King Pages to be constructed, could be
considered as visually unimpressive, The time restrictions of this project effectively
serve to promote this recommendation a future agenda. The program could be
written using a Graphic User Interface (GUI) environment (e.g. Windows) which
would make it easier for users to design a King Page, In this case, a PC CAN board

can be utilised to provide more powerful control tacilities for the King.

A turther observation is that the King Menu program could be designed to allow all

King Pages to be created at an initial stage. and then sent sequentially to the Cities.

In addition. if the system’s configuration is rarely changed, the Cities can store the
King's instructions in non-volatile memory so that the system does not need to be

reconfigured each time the sysient is power up.

In conclusion, this project has provided a solution for small distributed
microcontroller systems to operate as a part of a powerful industrial network
architecture: the Controller Area Network. It has also opened up an exciting

research field in the automation industries.

-212-

REFERENCES

82527 Serial Communications Controller Architecture Overview. (1996, January).
Intel Corporation.

Baba. M. D.. Ekiz. H.. Kutlu, A.. & Powner, E. T. (1996). Toward adaptable
distributed real-time computer systems. Proceedings of the Third International
Worksiwp on Real-Time Computing Svstems and Applications (pp. 170-175).

Benzekri. A Bruel, J. -M., Fuertes, J. M., & Juanole, G. (1997). Controller area
network: a formal case study. Proceeding of 1997 IEEE hternational
Workshop on Factory Comnumication Systems (Vol. 1, pp. 365-372).

Blandin, .. Bradley, S.. Danioux. R., Gray. P.. & Leaic. G. (1997). A network
architecture concept for deep ocean lander systems. Technology Transfer from
Reaseuch to Industry, Seventh International on Electronic Engineering in
Oceanography (pp. 30-33).

Boyce. C. R. (1988. December). A four-station controller area network. /EE
Colloguitm on Vehicle Nenvorks for Multiplexing and Data Communication
(pp- 9/1-9:7). London.

C167CR 16-hit CMOS single-chip microcontroller data sheet (1995, June).
Siemens.

CAN and DeviceNvr (n.d.) [on-line]. Available WWW:
http:/‘www.industry.net/c‘orgunpro/odva/overé [1997, September 20].

CAN Kingdom 3.01 Specification. (1996-1997). Kvaser AB.
CAN Specification Version 2.0. (1991). Robert Bosch GmbH.

Cena. G.. & Valenzano. A. (1995, October). A distributed mechanism to improve
faimess in CAN networks. Proceeding of 1995 IEEE WFCS '95 International
Workshop on Factory Communication Systems (pp. 3-11). Leysin. Switzerland.

Cena. G., Demartini, C.. & Durante, L. (1996). Communication service and
protocol specification using object oriented analysis. Proceeding of the IEEE
ISIE 96 International Symposium on Industrial Electronics (Vol. 2, pp. 1043-
1048).

Chen, J.. Rabb, M., & Taylor, V. (1996, February). Bridge: A retargetable extensive
profiling tool. Proceedings of the Fourth International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecommunication, MASCOTS '96
(pp. 44-50).

Croft, A. (1996). The XK8 high speed powertrain serial communication system.
IEE Colloquium on The Electrical Svsten of the Jaguar XK8 (Digest no.
1996/281. pp. 3/1-3/17).

Cross, R.. & Watson, T. (1994). The Professional Analysis (2nd ed.). Anderson
Press. Australia.

Crowcoft, J.. Hailes, S.. Handley. M., Jena. A., Lewis, D.. & Wakeman, [. (1993,
April). Some multimedia traffic characterisation and measurement results.
Fourth IEE Conference on Teleconmmmication (pp. 167-174).

DeviceNer 2.0 Specification. (Vol. 1. 1997, February). Allen-Bradley.
Dovice Ner 2.0 Specificarion, (Voi, 2. 1997, February}. Allen-Bradley.

Dickson, G.. & Lloyd, A. (1992), Open Svstems Inrerconnection. Prentice Hatl,
Australia.

Dodds. G.. Beattie, W. C.. & Schofield. R. D. (1989, September). Microcontrolier
errocard developmen. 1EE Colloguium on Ewrocard Computers — A Solution
o Low Cost Controf (Digest no. 107, pp. 4/1 - 4/10).

DS3695:D53695T/DS3696/DS3696T/-DS3697/DS3698 Multipoint RS485/RS5422
Tranceivers/Repeaters, (1996). National Semiconductor Corporation.

Ekiz, H.. Kutlu, A., Powner, E. T.. Li. G. -J., Hsu, D. F., Horiguchi, S., & Maggs,
B. (1996, June). Design and implementation of a CAN/CAN bridge.
Proceedings of the second International Symposium on Parallel Architectures,
Algorithm.:, and Nenvorks (pp. 507-513). Beijing. China.

Farsi. M. (1995). Application of a PLC as a cell controller using a communication
network. [EE Colloguinum on Application of Advanced PLC (Programmable
Logic Controiter) Svstems with Specific Experiences from Water Treatment
{Digest no, 1995/112, pp. 3/1-3/4).

Farsi. M., & Ratclift. K. (1997). CANopen: the open communication solution,
Proceeding of the ISIE "97 IEEE International Symposium on Industrial
Electronics (Vol. 1, pp. 112-116).

Gollmer, K., & Posten, C. (1994, August). Flexible automation of a
biotechnological pilot-plant with real-time network. Proceedings of the Third
IEEE Conference on Control Application (Vol. 3, pp. 1941-1946). Glasgow,
UK.

Greenfield. J. D. (1992). The 68HC] Microcontrolier. Florida: Saunders College
Publishing.

Halsall, F. (1996). Data Communications, Computer Networks and Open System
{4th ed.). Addision-Wesley Publishers Ltd, USA.

-214 -

Hands. D.H. (1997). 4 Design in Interfacing the MC68HC] to the AMD
AM29F (10 flash memory chips. Unpublished B.Eng. (Hons) thesis, Edith
Cowan Universty, Perth, Western Australia.

Hawryszkiewycz. |. T. (1994). Introduction to Systems Arnalysis and Design (3rd
ed.). Prentice Hall, Australia.

HC T M6SHC 1] E Series Technical Data. (1993). Motorola inc.
HC T MONHC [Reference Manual. (3rd rev, ed.) (1991), Motoroia Inc.
HCH MCOSHCHLES Prograniuning Reference Guide. (1990). Motorola Inc.

Henshall. J.. & Shaw, S. (1988). OS/ Explained: End-to-end computer
commitication standerds, Ellis Harwood Ltd.. England.

Hughes, L. (1992). Dara Communication. McGraw-Hill Inc.. USA.

Introduction to the controller urea network (CANJ protocol . (1993, September).
Intel Corporation.

Khan, A. R. (1996, October). Workhorses of the electronic era. JEEE Spectrum, 10
{33), 36-42.

Kirk, B. R. (1996). Improve machine performance using the controller area
network-the automation of a high-speed can production line. /EE Colioguium
on Mecharronics in Automated Handling (pp. 4/1-4/7),

Korance, K. J. (1996, September 12). Mobile machines get CAN in gear. Machine
Design, 68 (16). p. 50. Penton Publishing.

Kutlu. A., Ekiz. H., & Powner. E. T. (1996, June). Performance analysis of MAC
protocols for wireless control area network. Proceedings of the second
International Svmposivn on Parallel Architectures, Algorithms, and Network
{pp. 494-499). Beijing. China.

Kvuser CAN Pages: The CAN protocol (n.d.) [on-line). Avallable WWW:
http://www.kvaser.se/can/protocol/index.htm [1997, September 20].

Lennartsson, K., & Fredriksson, L. -B. (1995). Fundamental parts in SDS,
DeviceNet and CAN Kingdom, a brief comparison. The Second Inernational
CAN Conference.

Liguid Crystal Display Module L4042 User Manual. (1st ed.) (1988, April). Seiko
Instruments Inc., Japan.

M6SHC 1 EVBU Universal Evaluation Board User's Manual. (2nd ed.) (1992,
September). Motorola Inc.

-215-

Maskell, D. L.. & Grabau P. J. (1998, May). A multidisciplinary cooperative
problem-based leaming approach to embedded systems design. JEEE
Transaction Eduction 41 (2). 101-103.

McLaughlin, R., Tang, K. H., Moyne, J.. & Shah, J. (1997, October). DeviceNet
conformance testing procedures and experiences. Proceedings of the fourth
tmternarional CAN Conference,

MclLaughlin, R.. Tang. K. H., Moyne, J.. & Shah. J. (1997, October). DeviceNet
conformance testing procedures and experiences. Proceedings of the Fourth
irernational CAN Conference. Berlin.

Mclaughlin, R.T. (1993, March). The immunity to RF interference of a CAN
ssstem. JEE Colloguinm on Integrity of Automotive Electronic Systems (pp.
4 1-4:8). London.

Moyne. I., Shah, J.. McLaughlin. R. & Tang, K. H. (1997, October). DeviceNet
modeling on DeviceNet network. Proceedings of the fourth International CAN
Conference.

Moyne, J.. Shah, J.. McLaughlin, R.. & Tang, K. H. (1997, October). DeviceNet
modeling on DeviceNet network. Proceedings of the Fourth International CAN
Conference. Berlin.

Mustafa, M. A. (1994). Microcompurer Interfacing and Applications (2nd ed.).
London: Newnes.

Nunemacher. G. (1990). LAN Primer: An Introduction to Local Area Nerworks.
M&T Publishing Inc.. USA.

PCAS2C250 CAN controlfer interfuce specification. (1997, October). Philips
Semiconductors.

SAE 81C90/91 stand-alone Full-CAN controller data sheet (1997, January).
Siemens,

SDS Component Modeling Specification. (1995, May). Micro Switch Division,
Honeywell Inc.. USA,

Serodio, C., Cunha, J. B., Cordeiro, M., Valente, A., Morais, Salgado, P., & Couto,
C. (1997). MNet-DACS:Multi-level network data acquisition and control
system. Proceedings of the IEEE ISIE '97 International Symposium on
Industrial Electronics (Vol. 1, pp. 39-43).

Simonye, S., Alpena, L., & Witte, G. (1997). Applying DeviceNet in motor control
centers at a cemen! plant. /JEEE/PCA XXXIX Conference Record of Cement
Industry Technical Conference (pp. 113-123).

Smart Distributed System Application Layer Protocol Specification Version 2.0,
(1996, November). Micro Switch Division, Honeywell Inc., USA.

-216-

Tanenbaum, A, (1988). Compuiter Nerwork (2nd ed.). Prentice-Hall Inc., Singapore.

Tindell. K.W., Hansson. H., & Wellings, A.]. (1994, December). Analysing real-
time communication: controller area network (CAN). Proceedings of Real-
Time Svsrems Svmposivm (pp. 259-263). San Juan, Puerto Rico.

Van Woerden, J. A.. Nelisse, M. W., Perricos, C.. Jackson, R, D.. Davies, B.,
Hibberd. R. D.. & Banerjee. 1. (1994, October). M3S - a standard
communication architecture for rehabilitation applications. Computing &
Contrat Engineering Journal (Vol. 5 5, pp. 213-218). UK.

Voskamp. .. & Rosenstiel. W, (1996, March). Error detection in fauit secure
controllers using state encoding. Proceedings of ED&TC '96 European Design
and Test Conterence (pp. 200-204).

Wargut. M., Rachid. A.. de Sario. M., Maione. B.. Pugliese. P.. & Savino, M.
(1996). Application of controller area network to mobile robots. Eighth
Meditarranean Electrotechnical Conference MELECON 96 (Vol. 1, pp. 205-
207).

Wellstead. P. E. (1994. November). Automotive control overview. IEE Colloguium
on Auromorive Applications ot Advanced Modelling and Control (pp. 1/1-1/5).
l.ondon.

Wetton, M. (1995). 4 proposal for a development platform for microcontrolier-
hased devices. Unpublished master thesis. Edith Cowan Universty, Perth,
Western Australia.

Young. K.. McLaughlin, R.. & Khoh. S. B. (1995. October). DeviceNet
interoperability and compliance. Proceedings of the second International CAN
Conference.

Young, K., McLaughlin, R.. & Khoh. S. B. (1995, October). DeviceNet
interoperability and compliance. Proceedings of the Second [nternational CAN
Conference. London.

Young, K. W. (1995). A fieldbus approach to robotic systems reconfiguration. /EE
Colloguium on Fast Reconfiguration of Robotic and Automation Resources (pp.
5/1-5/4).

Zuberi. K. M., & Shin. K. G. (1995, April). Non-preemptive scheduling of
messages on controller area network for real-time control applications.
Proceedings of Real-Time Technology and Application Symposium (pp. 240-
249).

Zuberi, K. M., & Shin, K. G. (1996). Real-time decentralized control with CAN,

Proceedings of 1996 IEEE EFTA '96 Conference on Emerging Technologies
and Factory Automation (Vol. 1, pp. 93-99).

-217 -

APPENDIX A

This Appendix provides details of the software development environment used in
this project. All the programs and the software for the Small CAN Kingdom system
were stored on a floppy disk. This disk was also used as a boot-disk. The author
found that the MS-DOS mode in Windows 95 was satisfactory to develop the

systen.

Besides the system boot files contained in the floppy disk, the disk consists of the

following directories and files:

Kermit: the directory was used to store the MS-Kermit program.

Kingdom: the directory was used to store the software for the Small CAN Kingdom
system. The descriptions of the files contained in this directory are covered in

Appendix D.

Pasm: the directory was used to store the Motorola portable assembler (PASM) and

the Ubuilds program.

Mytemp and Tmp: the two directories were used to store temporary files required

during the operation of the PASM assemble.

Autoexec,bat: the batch file set up the necessary configuration for the environment,

The content of this file is as follows:

@ECHQ OFF
prompt $pSg

CD A:\Kingdom

PATH=A:\;A:\KERMIT;A: \PASM; A:\TMP;
set tmp=A:\mytmp

Asm.bat: this batch file was used to invoke the PASM program (Pasmhc] I.exe) to
comptle a source programming code. The content of this file is as follows:

A:\PASM\pasmhcll -dxs -1 %1.1lst %l.asm

-218-

B.bat: this batch file was used to invoke the Ubuilds program (Ubuilds.exe) to build
a Motorola S-record. The content of this file is as follows:

At\pasmiubuilds %l.o

K.Bat: this batch file was used to invoke the MS-Kermit program (Mskermit.exe)
to establish communication between an IBM PC and an EVBU board. The content
of this file is as {ollows:

Srvrkermitimskermit

T.bat: this batch file was used to invoke the “Type” command of MS-DOS to
download an S-record to an EVBU board. The content of this file is as follows:

type $l.mx > com

[t should be noted that the IBM PC serial port 2 was used in this project. If another

port is used in later designs, the “com2™ command must be changed to the

appropriate port.

Edit.com: an MS-DOS text editor program was used to write the source

programming codes.

The steps concerned with compiling and downloading a program (for example,
King pro.asm in the Kingdom directory) to the EVBU board are described as

follows:

After booting the IBM PC by the floppy disk, the MS-DOS prompt is as follows:

A:\Kingdom>

The King_pro.asm program was written by using the Edit program. To compile the
program, at the MS-DOS prompt, type:
A:\Kingdom>Asm King pro

The King_pro.o (the object file) is generated by the PASM assembler. To create an
S-record for the King_pro.o (King_pro.mx file), at the MS-DOS prompt, type:
A:\Kingdom>B King pro

-219 -

After the creation of the King pro.mx (S-record file). the program can now be
downloaded to an EVBU board with the use of the Kermit program and the MS-
DOS “Type” command. The procedure of how to download an S-record to an

EVBU beard is described in the M68HC11 EVBU Universal Evaluation Board
User's Manual {1992).

The Kermit program can be invoked by typing:

Sl ingdomak

To download the King_pro.nx to the EVBU board, at the MS-DOS prompt, type:

AKIngdom>T King pro

- 220 -

APPENDIX B

This Appendix provides the pin connection tables which were used for wire-

wrapping in the hardware design, and the diagrams which show the pin layout of

the chips.
Table B-1 Interface between MC68HC11 and Intel 82527
MC68HC11 | EVBU Intel Intel 7415138 741.S20
Pin Pin ANS82527 AN82527 Pin Pin
Function Number Pin Pin Number Number
Number Function
AS 4 5 AS - -
R/W# 6 7 R/W# - -

E 5 6 E - -
A15/PB7 35 - - 3 9-10-12-13
A14/PB6 36 - - 2 4
A13/PB5 37 - - 1 2
A12/PB4 38 - - - 1

- - 8 CS# 12 6

- - - - - 8-5

- - - - 4-5-8—GND 7—>GND

- - - - 6-16—>Vcc 14->Vc
ADO/PCO 9 4 ADO
ADI1/PC1 10 3 ADI1
AD2/PC2 11 2 AD2
AD3/PC3 12 43 AD3
AD4/PC4 13 42 AD4
ADS/PCS5 14 41 ADS
ADG6/PC6 15 40 AD6
AD7/PC7 16 39 AD7

IRQ# 19 24 INT#
PA6 28 29 RESET#

Note that the 74L.S20 chip and 74L.S138 chip were not used on the same board.

-221-

Table B-2

Table B-3

Interface between Intel 82527 and DS3695
Inte]l AN82527 | Intel AN82527 DS3695 DS3695
Pin Number Pin Function Pin Number Pin Function
1 VCC
20 VSS2
23 VSS1
44 Mode0
30 Model
18 XTALI1
19 XTAL2
26 TXO0 4 DI
25 X1 3 DE
22 RX0 1 RO
' 8 VCC
5 GND
6 DO/RI
7 DO#/RI#
Interface between Intel 82527 and 1.2012
Inte]l AN82527 | Inte]l AN82527 L2012 L2012
Pin Function Pin Number Pin Number Pin Function
P1.0 38 7 DBO
Pi.1 37 8 DBO0
P1.2 36 9 DB0
P1.3 35 10 DBO0
P1.4 34 11 DBO
P1.5 33 12 DBO0
Pl.6 32 13 DBO
P1.7 31 14 DBO
P2.6 11 6 E
P2.5 12 4 RS
P2.4 13 5 R/W#
1 VSS
2 VDD
3 VLC

-222 -

£l

[S]

I0[28U0D A1

N EEEEE)
TEEREEEYXEE

o

seo e
Gors
cee e

AN * |

I ®

. .W ® ¢

‘e tn @ v

N

cL @ ') ® G
4 @ e
t - ® !

v ¥ Zr tr I v
.. 98 @
A

i & & 0 08 @

€7 1 £ §

(f@® @8 oLg

Ste @9 AT

fEW @ L2G8C rig

1t @It g

LT 57 €2 12

A N RN EREE N
\.\. e © & 8 9

0t gz oz vz i 02 @l

[mode| ulg

I

584 LE
{84 ST
I¥d £F
tvd (E
Svd &2
ivd {8

#0081

90d §1
Fd £l
Z2d 11
03d &

[-g 331

ry b3

8t rid
SE 98d
e Ovd
¢ ovd
ot v
82 9w

[Ta B B

GBSy
)

o1y

A

vl

@i

[] e !
‘o ® 2
LY ~J e
£l o
* 5L °.
4 ® ® S
il (@4 7
) ‘ 8 .
a1 o ® !
-) ® g
v Ov P v I v
/#. o 00
D © ® & O @
€ 1 £ 0§
[f® @0o¢ ol @6
SE® @5¢ Zle @l
fE@ @VE hN@@N rig @€¢l
tt@ @2t ole @I
i S7 £2 12
4 BN BN BN BN BN OXJH
oﬂ\. * & © W -
82 9z vz Z¢ oz gL ol

aNS

20
A
oL

Ll

[41./h4 | Tyl
&by

40z

4322

aNoS

zinolequld Z-g 2.ansiyg

F ot

S8d LF
{8d Gt
lvd €€
tvd IE
Svd &2
ivd 22

#0U sl

92d Sl
POd €L
£2d L
02d &

3S

i

09

rr pad

8f rid
9t 98d
re Owd
Zc vy
0f ¥wd
8¢ 9vd

e9 (D
@rl S2d
®cL e
@0l 24

89 #MY
®r sy

APPENDIX C

This Appendix describes how to use the King in configuring the network.

The King program starts at the address B600. At power-up, the designer needs to set
up the baud rate for the King by using the memory modify command of the
BUFFALO monitor program (MM command) in order to assign the baud rate
values to BTRO and BTR1 (see Chapter 7).

Note that BTRO and BTRI1 are located at the address 0100H and 0101H,
respectively. These variables need to be assigned values only at power-up. When
the King changes the system baud rate, it will write the new baud rate values to

these memory locations by itself.

For example, to assign the initial baud rate to the King (125 kbit/s), at the
BUFFALO prompt, type:

> mm 100
0100 43

>mm 101
0100 67

Note: 43 and 67 are the hexadecimal numbers and are the values for the baud rate

125 kbit/s (see Table 7-5).

The King program is invoked by the “go” command of the monitor program, at the
BUFFALO prompt, type:
>g b600

The menu of the King Menu program will appear and enable the designer to enter

values for King Pages and send them to Cities as described previously in Chapter 7.

-225-

The King Menu program also provides facilities to users to correct data during

entering a King Page. The facilities can be summarised as follows:

o [fthe current character being entered is not in the ranges of Hexadecimal
characters, the current Line js discarded. The program repeats this Line to

prompt the user to re-enter the data.

» Afler entering data for a Line, the user presses <Enter> to confirm the

[ine. The monttor will prompt the user to enter values for the next Line.
¢ Data for a Line can be changed by pressing <Ctrl+X> instead of <Enter>.
e For a King Page less than eight Lines, after pressing <Enter> to confirm

the value of the last Line. the user presses <Ctrl+ESC> to ignore the

remaining Lines.

APPENDIX D

This Appendix provides the complete program listing of the software designed in

this project.

[t is noted that due to the restriction of memory. the author had to utilise all the

memory space available for user applications of the EVBU boards.

The software for the whole system is stored in the Kingdom directory (see

Appendix A), and it includes the following files:

+ King pro.asm contains the software to control the tasks of the King.

» City rou.asm contains all the subroutines necessary for a City to follow

the Small CAN Kingdom protocol (see Table 7-7).

o ADI1_City.asm is the software to control City |

e AD2 _City.asm is the software to control City 2

» AD rou.asm contains the ASCII subroutine (see section 7.3.6.4)

o LCD_City.asm is the software to control City 3

e LCD_rou.asm consists of a set of subroutines to control the LCD module

The contents of the above files are listed as follows:

L e R R e R e S R SV RVIRARrRprR N R O

This program is to enter values for a King Page.

File
Author

Date
Last modified: 12-6-1998

*
*
*
* ID
*
*
*

e e R R g g o R . .t

**%x EQU
MONITOR
. INCHAR
.UPCASE
.OQUTCRL
.OUTSTR
CTRLX
CTRLESC
ENTER
EOT

PORTA

BREG
KVAL

MSGO

* Kk
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

ORG
FCC
FCB

KING_PRO.ASM
Long Giang Nguyen

0959416
21-5-1998

SEORBRF
SFFCD
SFFAO
SFFC4
SEFC7
$18
$1B
S0D
504

$1000
$7000
BREG+517

$00
"New page? (Y/N) :
EOT

*** Assign address for ISR

ORG
JMP

$00EE
I_SERV

Iz

% Variables for the program *

BTRO
BTR1

TMP1
PTR1
PTR2
NHEX
STOP
COUNT

M OBJ
I_PTR
I_ADD
P_PTR
P_ADD
OBJ_NO

ORG

$100

=y

o NN R

N NN DN

*
*
*
*
*
*
*
Start of BUFFALO program

Change lineé's value
Exit entering King Page
Confirm value

First Data byte of Msg Obj 1

Bit Timing Register O
Bit Timing Register 1

HEX Byte

Pointer to message
Pointer to value
Indicate not HEX

The number of byte of the King Page

Pointer to ISR
Address of ISR
Pointer to King Page
Address of King Page
Msg Obj No

- 228 -

MSG1 FCC
FCB

MSG2 FCC
FCB

MSG3 FCC
FCB

MsSG4 FCC
FCB

MSG5 FCC
. FCB
MSG6 FCC
FCB

MSG7 FCC
FCB

M3G8 FCC
FCB

MSG9 FCC
FCB

MSG10 FCC
FCB

k% KING PAGE **+!

EQT

'"LINE 0: '
EOT
'LINE 1: !
EQOT
'LINE 2: '
EOT
'LINE 3:
EOT
'LINE 4: '
EOT
'LINE 5: !
EOT
'LINE 6: '
EOT
'LINE 7: "
EOT

'Send? (Y/N) :!'

EOT

** I SERV: Interrupt service routine for receiving a msg

I_SERV EQU

SERV LDAB
DECB
LSLB
ADDB
LDAA
STD
LDX
LDD
STD
LDX
JSR

LDAA
CMPA
BEQ
CMPA
BEQ

MSG N SUBA
h LSLA
LSLA

LSLA

LSLA

STAA

BRA

MSG15 LDAA
STAA

XXX LDX
LDAB
ABX
LDAA
STARA

YYY RTT

*

BREG+S$5F

#SEO
#501
I_PTR
I_PTR
0,%
I_ADD
I_ADD,
0,%

BREG+$5F
#51

YYY

#52
MSG15

#352

M _OBJ
XXX

#S$FO
M OBJ

#BREG
M OBJ

#%11111101
0,%x"

; Determine the source of INT

; Calculate the service address

; Determine the source of INT
; to allocate the base address
; of Msg Obj

; Reset IntPnd

-229 -

% Start program in EEPROM *

*%% MAIN PROGRAM ***

START

R_ENTER

ORG $B600

1.DS #547

JSR RESET
JSR INIT C
CLI

LDD #MSG_OB1
STD SO01E4
DD #NO_OP
STD $01C0
STD $01C2
STD $01C4
STD $01C6
DD #B SET
STD $01C8
LDAA #$10111111
STAA BREG+S$10
JSR KING
LDAA #s08
ORAR COUNT
STAA BREG+S$16
LDAR #$10111111
STAA BREG+5$10
LDAA #$11101110
STAR BREG+S11
WAI

JSR .OUTCRL
LDX #MSGO
JSR .OUTSTR
JSR . INCHAR
JSR .UPCASE
CMPA #'y!

BEQ R_ENTER
JMP MONITOR

; Enable Int

; Assign values for the vector table
; Service for Msg Obj 1
; Ignore the-page 0 to page 3

*; Assign the service for King Page 4

; Invalid Msg Obj 1

; Enter values for a King Page

; Set the DLC, Transmit, Standard

; Valid Msg Obj 1

; Send the page

; Wait for interrupt

; Return to BUFFALO program

-230 -

* kK k SUBROUTINES * ok ok Kk ok ok ok
% NO OP: This subroutine allows the King to ignore the King's Messages
* that do not need to be processed
NO_OP EQU *
NOP
RTS

*** M3G OBl: Subroutine to decode Msg Obj 1 (King's orders)
MSG_OBl EQU *

LDAB BREG+$18
LSLB

ADDB #$co
LDAA #$01
STD P_PTR
LDX P_PTR
LDD 0,X
STD P_ADD
LDX P_ADD
JSR 0,X
RTS

*** B RATE: Assign Baud Rate for the King
B_RATE EQU *
LDAA BTRO ; Set Bit Timing Registers
STAA BREG+S$3F
LDAA BTR1
STAA BREG+S$4F
RTS

*** B SET: This subroutine allows the King to change its baud rate
* when it changes the system baud rate
B SET EQU *

LDAA BREG+519

STAA BTRO

LDAA BREG+S1A

STAA BTR1

LDAA BREG+$00 ; Get value of Control Register
ORAA #540 ; Set CCE bit
STAA BREG+$00

JSR B RATE ; Set Baud rate for the King
LDAA BREG+$00 ; Reset CCE bit

ANDA #5BF

STAA BREG+$00

RTS

-231-

*%% RESET:

RESET

LDAA
ANDA
STAA

LDY
JSR

LDAA
CRAA
STAA
RTS

*%% INIT C

INIT C
BEGIN

LOOP1

EQU
LDAA
‘ANDA
BNE

LDAA
STAA

LDAA
STAA

LDAA
STAA

JSR

LDX
LDAA
LDAB
STAA
STAA
ABX
CPX
BNE

LDAA
STAA
STAA
STAA
STAA
STAA
STAA

LDAA
STAA

LDAA
STAA
STAA
STAA
STAA

LDAA
STAA

RTS

Reset CAN chip

PORTA
#SBF
PORTA

#20
DELAY

PORTA
#540
PORTA

Initialise the 82527

*

BREG+502
#3980
BEGIN

#s41
BREG+$00

#3540
BREG+502

#3540
BREG+52F

B_RATE

#BREG+S$10
#$55

#$10

0,X

1,X

#BREG+S$F0+510

LOOP1

#SEF

BREG+506
BREG+3$07
BREG+508
BREG+$09
BREG+S50A
BREG+$0B

#502
BREG+500

#500

BREG+512
BREG+513
BREG+514
BREG+$15

#%11101111

BREG+$10

Set PA6 to O

Delay Ilms.

Set PA6 to 1

Load CPU Interface Register
Check if RstST bit 0

Set CCE and Init bits
Store Control Register

Set CPU Interface Register
SCLK=XTAL/2, MCLK=SCLK, Disable CLKOUT

Set Bus Config Reg
By pass Input comparator, use TX0 and RX0

Set BRaud Rate

Reset all message control registers,
invalid all the Msg Objects

Set Global Mask to Must Match
(Standard and Extended)

Reset CCE and Init bits,
Enable Global Interrupt

Assign ID=0 to Msg Obj 1

Set TXIE

- 232 -

** DELAY: The multiple of 50 micro sec is specified by IY

DELAY
XX

*** KING subroutine:

KING

EXIT

LDAB
INCB
CMPB
BNE
DEY
BNE
NOP
RTS

EQU
LDAA
STAA
JSR
LDX
JSR
LDD
STD
LDD
STD
JSR

JSR
LDX
JSR
JSR
JSR
CMPA
BEQ
BRA

RTS

#3500

#10
XX

DELAY

*

#3500
COUNT
.OUTCRL
#MSG1
.OUTSTR
#MSG2
PTR1
#KVAL
PTR2

K DISP

.OUTCRL
#MSG10
.OUTSTR
. INCHAR
.UPCASE
#'Y'
EXIT
KING

; 50 micro sec per loop

Display and enter values for a King Page

; Data Length Code = 0

; Confirm the page

; Start entering i1f not confirmed

- 233 -

**% K DISP: Display a King

K DISP JSR
LDAA
CMPA
BEQ
LDAA
LDX
STAA
LDAA
ADDA
STAA

LDD
ADDD
STD

LDD
CPD
BEQ
ADDD
STD
BRA

END K RTS

%% I, ENTER:

L _ENTER PSHX
PSHA

LL JSR
LDX
JSR
JSR
LDAA
CMPA
BEQ

LDAA
BNE

JSR
CMPA
BEQ
CMPA
BEQ

END L PULA
PULX
RTS

L _ENTER
STOP
#CTRLESC
END_K
TMP1
PTR2

0,X
COUNT
#3510
COUNT

PTR2
#1
PTR2

PTR1
#MSGY
END_K
#509
PTR1
K_DISP

page

to enter values

; Exit entering values

; Increase Data Length Code

; Increase pointer

; Increase pointer to the next message

Enter value for a line, the value is stored in TMPI1

.OUTCRL
PTR1
.OUTSTR
HEXBYTE
STOP
#CTRLESC
END L

NHEX
LL

. INCHAR
#CTRLX
LL
HENTER
END L

- 234 -

**4% HEXBIN: Convert Hex in acc A to Bin

HEXBIN JSR .UPCASE
CMPA #'0°7
BLT HEXNOT
CMPA #'9
BLE HEXNMB
CMPA #'4°'
BLT HEXNOT
CMPA #1F7
BGT HEXNOT

ADDA #59
HEXNMB ANDA #SOF
BRA HEXRTS

HEXNOT LDAA #SFF ; Indicate not HEX

HEXRTS RTS

**% HEXBYTE: Convert 2 Hex number into 1 byte

HEXBYTE PSHB
PSHA

LDAR #$00 ; Clear Not HEX

STAA NHEX

JSR . INCHAR ; Get upper-haft byte

STAA STOP
CMPA #CTRLESC

BEQ MM

JSR HEXBIN

CMPA #SFF

BEQ NN

LDAB #4
SHIFT ASLA

DECB

BGT SHIFT

STAA TMP1

JSR . INCHAR ; Get lower-haft byte
JSR HEXBIN

CMPA #SFF

BEQ NN

ORAA TMP1
STAA TMP1
BRA MM

NN INC NHEX ; Indicate not HEX

MM PULA
PULB
RTS

END

-235-

AAkhk kA A A dAA XA A A Ak ARk A A A A A A AR A A AR A R A A A AR A A A AT A AR A A A A AR A AR AR A h ARk Ak h

* This program is a set of subroutines for all CAN nodes (Except the King)*
* File name : CITY ROU.ASM *
* Author : Long Giang Nguyen *
* ID : 0959416 *
* Date : 16-5-1998 . *
* Last modified: 8-6-1998 *
R o R R R 3 3

* K K EQUATE * kK

PORTA EQU $1000
BREG EQU 57000

% Variables *

ORG $01BO

WORK RMB 1 ; WORK=0 Set-up, WORK=1 finish Set-up
C_ADD RMB 1 ; City's address
M OBJ RMB 1
I PTR RMB 2 '; Pointer to ISR
I ADD RMB 2 ; Address of ISR
P PTR RMB 2 ; Pointer to King Page
P _ADD RMB 2 ; Address of King Page
OBJ NO RMB 2 ; Msg Obj No
TEMP RMB 1
k% Subroutines ***
ORG SB696
*** Subroutine for King Page 4
PG 4 EQU *
LDAA BREG+$00 ; Get value of Control Register
ORAA #540 ; Set CCE bit
STAA BREG+$00
LDAA BREG+S$19 ; Set Bit Timing Reg 0
STAA BREG+S3F
LDAA BREG+S1A ; Set Bit Timing Reg 1
STAA BREG+S$4F
LDAA BREG+500 ; Reset CCE bit

ANDA #SBF
STAA BREG+$00
RTS

*** Subroutine for King Page 3
PG 3 EQU *
B LDAA ADDRESS
STAR C_ADD
RTS

-236 -

**% Subroutine for King Page 2

PG_2 EQU
LDAA
STAA
RTS

*** Subroutine for King Page 1

PG 1 EQU
LDD
ADDB
STD
LDX

LDAA
STAA

LDAA
STAA
LDAA
STAA
LDAA
STAA
LDAA
STAA

LDAA
ANDA
STAA
LDAA
ANDA
ORAA
STAA

LDAA
ORAA
STARA

RTS

**% Subroutine for King Page 0

PG 0 EQU
LDAA
STAR
RTS

*

BREG+$19
C ADD

*

#BREG
BREG+5$19
OBJ_NO
OBJ_NO

#%01111111

0,X

BREG+S$1A
2,%
BREG+$1B
3,X
BREG+S$1C
4,%
BREG+S$1D
5,X

BREG+$1E
#s0C
TEMP

6,X

#SFO
TEMP

6,X

BREG+S51E
#S$3F
0,X

*

#51
WORK

*** City's address

ADDRESS RMB

1

; Get Group address

; Get the Msg Obj No

; Invalid the Msg Obj

; Store Arbitration O

; Store Arbitration 1

"; Store Arbitration 2

; Store Arbitration 3

; Set up the Msg Config Reg

; Enable/Disable MsgVal

; Indicate the Set up phase
; has finished.

-237 -

***% Subroutine to decode Msg Obj 1 : King's orders

MSG1

PROCESS

EQU
LDAA
STAA

LDAB
CMPB
BEQ
CMPB
BEQ
RTS

LDAB
LSLB
ADDB
LDAA
STD-
LDX
LDD
STD
LDX
JSR
RTS

*

#%11111101
BREG+S511

BREG+$17
#500
PROCESS
C_ADD
PROCESS

BREG+518

#5CO
#3501
P PTR
P _PTR
0,X
P _ADD
P_ADD
0,X

; Reset NewDat

; Broadcast Msg

-238 -

** I SERV: Interrupt service routine to recelve a msg

I_SERV

SERV

MSG_N

MSG15

XXX

YYY

** DELAY: The multiple of 50 micro sec is specified by IY

DELAY
XX

EQU *

LDAB BREG+S5F ; Determine the source of INT
DECB

LSLB

ADDB #SEO ; Calculate the service address
LDAA #501

STD I_PTR

LDX I PTR

LDD 0,X

STD I_ADD

LDX I ADD

JSR 0,X

LDAA BREG+S5F ; Determine the source of INT
CMPA #51 ; to allocate the base address
BEQ YYY ; of Msg Obj

CMPA #52

BEQ MSG15

SUBA #s2
LSLA

LSLA

LSLA

LSLA

STRA M OBJ
BRA XXX

LDAA #SFO
STAA M OBJ

LDX #BREG

LDAB M_OBJ

ABX

LDAA #%11111101 ; Reset IntPnd
STAA 0,X

RTI

LDAB #500

INCB

CMPB #10 ; 50 micro sec per loop
BNE XX

DEY

BNE DELAY

NOP

RTS

- 239 -

*x% RESET:

RESET

LDAA
ANDA
STAA

LDY
JSR

LDAA
ORAA
STAA
RTS

Reset CAN chip

PORTA
#SBF
PORTA

#20
DELAY

PORTA
#540
PORTA

; Set PA6 to O

; Delay lms

; Set PA6 to 1

- 240 -

*%% INIT C

INIT _C
BEGIN

LOOP1

EQU
LDAA
ANDA
BNE

LDAA
STAR

LDAA
STAA

LDAA
STAA

LDAA
STAA
LDAA
STAA

LDAA
STAA
STAA

LDX
LDAA
LDAB
STAA
STAA
ABX
CPX
BNE

LDAA
STAA
STAA
STAA
STAA
STAA
STAA

LDAA
STAA

LDAA
STAA
STAA
STAA
STAA

LDAA
STAA

LDAA
STAA

RTS

END

Initialise the 82527

*
BREG+502
#3580
BEGIN

#541
BREG+$00

#540
BREG+$02

#540
BREG+$2F

#$43
BREG+$3F
#3567
BREG+$4F

#SFF
BREG+S$9F
BREG+SAF

#BREG+$10
#9555

#9510

0,X%

1,X

#BREG+SF0+S$10

LOOP1

#SFF

BREG+5$06
BREG+507
BREG+508
BREG+3509
BREG+50A
BREG+$0B

#502
BREG+500

#3500

BREG+512
BREG+$13
BREG+$14
BREG+515

#3500
BREG+$16

#%10111011

BREG+$10

Load CPU Interface Register
Check if RstST bit O

Set CCE and Init bits
Store Control Regilster

Set CPU Interface Register
SCLK=XTAL/2, MCLK=SCLK, Disable CLKOUT

Set Bus Config Reg
By pass Input comparator, use TX0 and RX0

Set Bit Timing Registers
Define the CAN bus frequency 125 kBits/sec

Set Portl for OQOutput
Set PortZ for Output

Reset all message control registers,
invalid all the Msg Objects

Set Global Mask to Must Match
(Standard and Extended)

Reset CCE and Init bits,
Enable Global Interrupt

Set ID=0 to receive King Page
for Msg Obj 1

Set Msg Obj 1 to Receive, Standard

Valid the Msg Obj 1, Set RXIE

-241 -

Ahkkhhhhhhhhhdhhdhhhbhdbrhhdd Ak A AT Ak Ak dh A A hhhh kA A A kAT A A A h bbbk Ak bk Ak ke k hhdode k& &k

* ok ok ok ok ok

Author

ID 0959416

Date : 16-5-1998
* Last modified: 10-6-1998

LR RS RS R R AR EE AL LRSS ESEREREEEEESEEEEEEEEEEE R SRS RS RS R R R)

* ok ok EQUATE * kK

BREG
RESET C
INIT C
DELAY

I_SERV
MSG_OB1
PG 0

PG 1

PG 2

PG 3

PG_4
ADDRESS
C_ADD
WORK

PCTR
ADCTL
ADR1
EOT
BASEZ2

ASCIT

*** Variable ***

BCDNO
TEMP

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU

EQU
ORG
RMB

RMB

ORG
JMP

AD1 CITY.ASM

Long Giang Nguyen

$7000
$B77D
$B795
$B770

$B730
$B705
$B6FE
$B6C1
$B6BA
$B6B3
$B696

$B704
$01B1
$01BO

BREG+SEF

$1030
$1031
$04
BREG+$20

SB60B
$00
6

1

$00EE
I_SERV

; CAN registers
; Reset CAN chip
; Initialise CAN

; ISR

; Subroutine for
; Subroutine for
; Subroutine for
; Subroutine for

'; Subroutine for

; Subroutine for

; BEEPROM address
; RAM address

chip

Msg Obj 1

King
King
King
King
King

Page
Page
Page
Page
Page

; Indicate whether the set

This program is to get A/D values from PortE.4 and convert it to ASSITI,*
then send to the CAN bus.
File Name

*
*
*
*
*
*
*

W NP o

up phase finished

; Use p2.0 p2.1 for indication (LED)

; A/D Control

; A/D Result Register 1

; End of String

; Base address for Msg Obj 2

; Convert Hex to ASCII

; BCD Number buffer

; Assign address for ISR

-242 -

*** Main program ***

MAIN

WAIT

ORG

EQU -

JSR
JSR

LDAA
STAA

LDAA
STAA

LDAA
STAA

LDD
STD
LDD
STD
LDD
STD
LDD
STD
LDD
STD
LDD
STD

CLI
WAL
LDAA
CMPA
BEQ
BRA

$100

* -

RESET C
INIT C

#3501
PCTR

ADDRESS
C_ADD

#500
WORK

#MSG_OB1
S01E4
#PG 0
$01C0
#PG 1
$01cC2
#PG 2
$01C4
#PG 3
$01C6
#PG 4
$01C8

WORK
#51
START
WAIT

; Reset CAN controller
; Initialise CAN controller

; Red LED

; Indicate Set-up phase

; Assign values for the
; Service for Msg Obj 1

; Service

; Service
; Service
; Service

; Service

- 243 -

for

for

for

for

for

King Page
King Page
King Page
King Page

King Page

vector table

*** Get A/D value from PE4, convert it into ASSCITI
*** then send it to CAN bus

START EQU *
LDAA #3502 ; Green LED
STAA PCTR ; Indicate Run-phase
LDAA #588 ; DLC=8, Dir = Transmit

STAA BASE2+5$6

AD LDAA #504 ; A/D on channel AN4
STAA ADCTL ; Start conversion

CHECK LDAA ADCTL

ANDA #580 ; The conversion finishes ?

BEQ CHECK

LDAB ADRI1 ; Get the A/D value

CMPB TEMP ; Compare with the previous value
BEQ DLY ; if equal, then don't send

STAB TEMP ; Store new value

LDAA #%$11111010 ; CPUUpd:=1, NewDat:=1

STAA BASE2+$1

LDY #BASE2+$7 ; Update value
LDAB C ADD ; Get City's address
JSR ASCIT
LDAB #r:0
STAB 3,Y
LDY #BASEZ2+5B
LDAB ADR1 ; Get the A/D value
JSR ASCIT
LDAB #EOT
STAB $3,Y
LDAA #%11110111 ; CPUUpd:=0
STAA BASE2+S$1
LDAA #566 ; Transmit value containing
STARA BASE2+51 ; in Msg Obj 2
DLY LDY #40 ; Delay 2 msecs
JSR DELAY ; assume min bus rate = lkbit/s
BRA AD
END

244 -

kA hhhhAhkhkAArRAhArA A dhkh kb ddkhkrAFd A A b hk Ak kA d Ak d A hhdhh b dh ok ok kkdhkdhhkkdhkh ok hhkkkkdhddk

AD2 CITY.ASM

Long Giang Nguyen

*

* and send to the CAN bus if requested.
* File Name

* Author

* ID 0959416

* Date 8-6-1998

* Last modified: 10-6-1998

KA AAKRAAAAAAARAARAA AL A AAA A A Ak bk bk hhhhkh bk hkhkhkh b b A b b A rdrhhrhhdhhhkhhhddthkhhhht

Kok ook EQUATE * Kk &

BREG
RESET C
INIT C
DELAY

I _SERV
MSG_OB1
PG 0

PG 1

PG 2

PG 3

PG_4
ADDRESS
C_ADD
WORK

PCTR

ADCTL
ADR1
EOT
BASE2
ASCII

*%% Variable ***

BCDNO

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU

ORG
RMB

ORG
JMP

$7000
$B77D
$B795
$B770

$SB730
$B705
SB6FE
$B6C1
$SB6BA
$SB6B3
$B696

$B704
$01B1
$01BO

BRREG+SEF

$1030
$1031
$04
BREG+520
SB60B

$00

$OOEE
I_SERV

; CAN registe

rs

; Reset CAN chip
; Initialise CAN chip

; ISR

; Subroutine
; Subroutine
; Subroutine

. Subroutine

; Subroutine
; Subroutine

; EEPROM addr
; RAM address

for
for
for
for
for
for

€S58

This program is to get A/D values from PortE.4 and convert it to ASSII

Msg Obj 1

King
King
King
King
King

Page
Page
Page
Page
Page

; Indicate whether the set

*
*
*
*
*
*
*
*

S WO

up phase finished

; Use p2.0 p2.1 for indication (LED)

; A/D Control

; A/D Result Register 1
; End of String
; Base address for Msg Obj 2

; Subroutine convert Hex to ASCII

; BCD Number buffer

; Assign address for ISR

- 245 -

***% Main program ***

ORG $100
MAIN EQU - *
JSR RESET _C ; Reset CAN controller
JSR INIT C ; Initialise CAN controller
LDAA #s01 ; Red LED
STAA PCTR ; Indicate Set-up phase
LDAA ADDRESS
STAR C ADD

LDAA #500
STAA WORK

LDD #MSG_OB1 ; Assign values for the vector table
STD 501E4 ; Service for Msg Obj 1
LDD #PG_0
STD $01CO ; Service for King Page 0
LDD #PG 1 '
STD 501cC2 ; Service for King Page 1
LDD #PG 2
STD $01cC4 ; Service for King Page 2
LDD #PG_3
STD $01Cé6 ; Service for King Page 3
LDD 4PG 4
STD $01C8 ; Service for King Page 4
CLT

WAIT WAT

LDAA WORK
CMPA #51

BEQ START
BRA WAIT

- 246 -

*** Get A/D value from PE4,

*** then send it to CAN bus if requested

START

AD

CHECK

EQU -

LDAA
STAA

LDAA
STAA

LDAA
STAA

LDAA
ANDA
BEQ
LDAA
STAA
LDY
LDAB
JSR

LDAB
STAB

LDY
LDAB
JSR

LDAB
STAB

LDAA
STAA

LDY
JSR

BRA

END

*

#502
PCTR

#588
BASE2+5$6

#504
ADCTL

ADCTL
#580
CHECK

#%$11111010
BASE2+$1
#BASE2+$7
C_ADD
ASCII

3,Y
#BASE2+S$B
ADR1

ASCIIT

#EOT
$3,Y

#%11110111
BASE2+S1

#2000
DELAY

AD

Green LED

convert it into ASSCII

Indicate Run-phase

DLC=8, Dir

= Transmit

A/D on channel AN4
Start conversion

The conversion finishes ?

CPUUpd:=1,

NewDat:=1

Update value

Get City's

address

Get the A/D value

CPUUpd:=0

Delay 10 msecs

- 247 -

LR R R i R R i R R R i o o R R R R R R R R R

This program contain a subroutine that converts a Hexadecimal byte
to ASCII code
File Name

ID
Date

AD ROU.ASM

Long Giang Nguyen

0959416
8-6-1998

Last modified: 10-6-1998

*
*
*
* Author
*
*
*
*

LR R R R R R R R R R i R e R R R R R e R e i R R

** Equate **

OPTION EQU
BCDNO EQU
AD_PRO EQU

$1039
$00
$100

** Start program **
** This codes enable the program to start at EEPROM **

ORG

LDS
LDAA
STAA
JMP

SB600

#3547

#3593 "
OPTION

AD_PRO ;

** ASCII: Convert 1 Hex data byte
** store it into memory specified

ASCII EQU
LDAA
LDX
IDIV
STX
LDX
IDIV
STX
STD

LDAA
ORAA
STAA

LDAA
ORAA
STAA
LDAA
ORAA
STAA
RTS

END

*

#3500
#100 ;

BCDNO ;
#10 ;

BCDNO+2 ;
BCDNO+4 ;

BCDNO+1 ;
4530
0,Y

BCDNO+3 ;
#3530
1,7

BCDNO+5 ;
#3530
2,Y

Enable A/D converter
Jump to main program
in ACC B to ASCII,
by IY

Divide by 100

Store Hundreds
Divide by 10

Store Tens
Store Units

Hundreds

Tens

Units

- 248 -

*
*
*
*
*
*
*
*

KA A A AR A A A A AT ALK AAAA AL A A AR IR A A I AR A AR A A A A AR A A A AR A Ak kA d A kA d ok kh ok kx

*

* and display on LCD.

* File Name

* Author

* ID 0959416

* Date 16-5-1998
* Last modified: 10-6-1998

L R e R R R R R R 3

* kX EQUATE * kK

BREG
RESET C
INIT C
DELAY

I_SERV
MSG_OB1
PG 0

PG 1

PG 2

PG 3

PG 4
ADDRESS
C_ADD
WORK
BASE2
BASE3

PCTR
PORTA

INIT L
DISP
OUTPUT
SCREEN
LINE2
EOT

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

LCD_CITY.ASM
Long Giang Nguyen

$7000
SB77D
$B795
$B770

$B730
SB705
SB6FE
$B6C1
SB6BA
SB6B3
SB696

$SB704
$01B1
$01B0O
BREG+520
BREG+$30

BREG+SEF
$1000

SB616
$B634
$SB64A
$B65D
SA8
$04

***% Assign ISR ***

*** Messages ***

BASE
MSG1

MSG2

ORG
JMP

ORG

RMB
FCC
FCB
FCC
FCB

SO0EE
I _SERV

500

2

7

This program is to get a ASSCII values from Msg Obj 2 of the CAN chip

*
*
*
*
*
*
*

CAN registers

Reset CAN chip
Initialise CAN chip
Delay subroutine

ISR

Subroutine for Msg Obj 1
Subroutine for King Page
Subroutine for King Page
Subroutine for King Page
Subroutine for King Page
Subroutine for King Page

= W N O

EEPROM address

RAM address

Indicate whether the set up phase finished
Base address for Msg Obj 2

Base address for Msg Obj 3

Use p2.0 and p2.1 for indicator (LED)
Use port A.0 to send remote frame

Initialise the LCD

Display a string on LCD

Output an instruction to LCD

Display 1 character in Acc A on LCD
Configure to display on line 2 of LCD
End of String

Assign address for ISR

Base address of the Msg Obj

'* CAN SYSTEM DEMO *'

EOT
"CITY
EOT

- 249 -

**% Main program **%*

MAIN

WAIT

ORG

JSR
JSR

JSR
LDX
JSR

LDAA
STAA

LDAA
STAA

LDAA
STARA

LDD
STD
LDD
STD
LDD
STD

LDD
STD
LDD
STD
LDD
STD
LDD
STD
LDD
STD

CLI
WAT
LDAA
CMPA
BEQ
BRA

$100

RESET C
INIT C

INIT L
#MsG1
DISP

#501
PCTR

ADDRESS
C ADD

#500
WORK

#MSG_OBL1
$01E4
#MSG_OB2
$01E6
#MSG_OB3
$01E8

#PG 0
$01C0
#PG 1
$01¢2
#PG 2
$01c4
#PG 3
$01C6
#PG_4
$01C8

WORK
#31
START
WAIT

; Reset CAN controller
; Initialise CAN controller

; Initialise LCD

; Red LED

; Indicate Set-up phase

; Assign values for the

; Service

; Service

; Service
; Service
; Service
; Service

; Service

- 250 -

for

for

for

for

for

for

for

"; Service for Msg Obj 1

Msg Obj 2

Msg Obj 3

King
King
King
King

King

Page
Page
Page
Page

Page

vector table

START EQU

LDAA
STAA

LDAA
STAA
STAA

CHECK LDAA
ANDA

BNE

LDAA
STAA

LDY
JSR
BRA

*** Subroutine to decode Msg Obj 2

MSG_OB2 EQU
LDD

STD

~ JSR

'RTS

*** Subroutine to decode Msg Obj 3

MSG OB3 EQU
LDD
STD
JSR
RTS

#3502
PCTR

#$11111011
BASE2+$0
BASE3+$0

PORTA

#s01

CHECK
#%11101111
BASE3+$01
#20000
DELAY
CHECK

*

#BASE2
BASE
LCD

*

#BASE3
BASE
LCD

Green LED

Indicate Run phase

Set RXIE for

Msg Obj 2
Msg Obj 3

Check i1if remote request

PA.0=0 ?

Send remote frame

Delay 1 sec

*** Subroutine to display data to LCD

LCD EQU

LDAA

JSR
LDY
JSR

LDX
JSR

LDX

LDAA
STAA

LDX

LDAB

ABX
JSR
RTS

END

*

#LINE2
OUTPUT
#50001
DELAY

#MSG2
DISP

BASE
#%11111101
1,X

BASE

#$7

DISP

.
r

7

’

s

(button pressed)

Configure to display on line 2

Reset NewDat

First data byte of the Msg Obj

Display received msg

-251-

AAKKAAKNAFAAFA AR A A AT A A A bbb A drdr bk kkohkkkkokkkhkhhkhbrdhk A rh b hbhk kb b hA bbb bbb dhd ok ok kkhkhkhi

* This program is a set of subroutine to control the LCD *
* File name : LCD_ROU *
* Author : Long Giang Nguyen *
* ID : 0959416 ' *
* Date : 16-5-1998 *
* Last modified: 10-6-1998 *
hhhkhk bk Ak kA kA A AR A A AR AR A A AN A A A A b Ak bk h A Ak hkh bk bk bk A rA A A A A A AR AL bbbk b hh ok kh

* K Kk EQUATE * ok k

BREG EQU $7000 ; CAN chip's memory location

DELAY EQU SB770 ; Delay subroutine

LCD _PRO EQU 50100 ; Main program

PDATA EQU BREG+S$DF ; Use portl for output data to LCD
PCTR EQU BREG+SEF ; Use port2 Dbit 4-6 for control
FUNC EQU $38 ; Function set to 8 bits, 2 lines
EOT EQU 504 ; End Of String Characters

dhkkhkkhkkhkhkkhkhkhkhhkhhhirs

ORG $B600
LDS #547
JMP LCD_PRO
TIME FCB $60 ; Delay time used during initialisation
FCB $02
FCB $02
FCB $02
FCB 502
FCB 540
FCB $02
FCB $02
INSTR FCB FUNC ; Instruction used to initialise LCD
FCB FUNC
FCB FUNC
FCB FUNC
FCB 508 ; Display OFF
FCB 501 ; Display CLEAR
FCB socC ; Display ON
FCB 506 ; Entry Mode: inc display, no shift

-252-

*** Subroutines ***

*% INIT: Tnitialise LCD

INIT DY #5140 ; Delay 16 msec
JSR DELAY
LDX #TIME
LOOP CPX #TIME+8 ; Last Instr has been output
BEQ BACK
LDAA 08,X ; Fetch next Instr
JSR OuUTPUT
LDY 0,X ; Fetch next time value
JSR DELAY
INX
BRA LOOP

BACK RTS

** DISP: Display a string at the address specified by Reg IX

DISP PSHA
DD LDAA 0,X ; Load Char
CMPA #EOT ; End of String ?
BEQ EXIT
JSR SCREEN
LDY #501 . ; Delay 50 micro sec
JSR DELAY
INX
BRA DD
EXIT PULA
RTS

** QUTPUT: Output an instruction an ACC A to LCD

OUTPUT STAA PDATA ; Instruction for LCD
LDAA #3502 ; RS=0, R/W#=0, E=0
STAA PCTR
LDAA #542 ; RS=0, R/W#=0, E=1

STAA PCTR

LDAA #3502 ; RS=0, R/W#=0, E=0
STAR PCTR

RTS

-253 -

** SCREEN: Output data on ACC A

SCREEN

STAA

LDAA
STAA

LDAA
STAA

LDAA
STAA

RTS

END

PDATA

#522
PCTR

#s62
PCTR

#$22
PCTR

to LCD
; Instruction for LCD

; RS=1, R/W#=0, E=0

; RS=1, R/WH#=0, E=1

; RS=1, R/WH#=0, E=0

- 254 -

	Designing a higher layer protocol for small distributed microcontroller systems using the control area network protocol
	Recommended Citation

