
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1998

Designing a higher layer protocol for small distributed Designing a higher layer protocol for small distributed

microcontroller systems using the control area network protocol microcontroller systems using the control area network protocol

Long G. Nguyen
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Nguyen, L. G. (1998). Designing a higher layer protocol for small distributed microcontroller systems
using the control area network protocol. https://ro.ecu.edu.au/theses/1603

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1603

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.ecu.edu.au%2Ftheses%2F1603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1603

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

EDITti COWAN UNIVERSITY
LIBRARY

DESIGNING A HIGHER LAYER PROTOCOL FOR

SMALL DISTRIBUTED MICROCONTROLLER

SYSTEMS USING THE CONTROL AREA

NETWORK PROTOCOL

L. G. NGUYEN

MEngSc

(1998)

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

DESIGNING A HIGHER LAYER PROTOCOL FOR

SMALL DISTRIBUTED MICROCONTROLLER

SYSTEMS USING THE CONTROL AREA

NETWORK PROTOCOL

By

Long Giang Nguyen

BEng, Grad DipSc (Computer Studies)

A Thesis Submilled in Fulfilment r~lthe Requirements for the Award of

/V/aster r4Engineering Science

at the School (4Engineering and J\4athematics.

Edith Cowan University,

Perth, Western Australia.

Date of Submission: 3'' September !998

ABSTRACT

This thesis is concerned with designing a Higher Layer Protocol (HLP) for small

distributed microcontroller systems using a well-established network protocol: the

Control!er Area Network tCAN) protocol which. currently. is widely used in the

automation industries. Steps were taken to investigate three popular HLPs based on

the Ct\N protocol: namely. Sma11 Distributed System (SOS). DeviceNet. and CAN

l..:.ingdom. Following the comparison of the three HLPs. the CAN Kingdom

protocol was chosen for the task of designing the HLP in this project in order to

satisfy the restrictions associated with small systems. Thus. the HLP (named the

Small CAN Kingdom protocol) of this pr~ject was designed according to the

principles of the CAN Kingdom protocol. which contains many advantages for open

net\\'Ork solutions. This enables designers to enhance a system's performance

relatively easil).

A complete hardware and sotlv.are design of a small CAN-based system, utilising

the Motorola MC68HC 11 rnicrocontrollers, the lntel 8~527 CAN controller chips,

and DS3695 (RS485 standard) transceivers. has been described. This small system

can be used to demonstrate the performance of the Small CAN Kingdom protocol.

The development of the system software has also taken into account the rules

associated with this protocol.

- I -

DECLARATION

I certify that this thesis does not incorporate. without acknowledgment, any material

previously submitted for a degree or diploma in any institution of higher education

and that. to the best of my knowledge and belief. it does not contain any material

pre\'iously rublished or written by another person except where due reference is

made in the text.

- 11 -

Long Giang Nguyen

Date: 03/0911998

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my gratitude to people. without

whom this thesis could not be completed.

First of all. l would like to extend my sincere appreciation to Mr Barry Kauler for

gi\'ing me the opportunity to pa11icipate in this research field. for his advice and

support when I started my study and during my project progress.

Secondly. I W'ltlld like to express my indebted gratitude to Mr Mike Wetton, my

supervisor. for his countless support and guidance throughout the completion oft11is

project. His sympathy. encouragement. enthusiasm, and patient assistance during

the difficult periods were very much appreciated.

I <>incerely thank Or Binh Anson, Mr !an Morris and Dr David McDougall who all

provided me assistance with my written English expression.

I also thank A/Prof. Abdesselam Bouzerdoum. Dr Hon Cheung. Dr Daryoush

Habibi. Or Xiaoli Zhao cmd all the staff members of Engineering Department,

Library. and lntemational Office at Edith Cowan University for their assistance

during my study.

Finally, I would like to extend my genuine and heartfelt gratitude to my sister, my

parents. my grandparents. my fiancee. Mrs 1-fuong and my friends for their love,

encouragement. supp011 and sacrifices. Without them, I would not have reached this

far.

~ Ill -

CONTENTS

CHAPTER I INTRODUCTION ..•..•........••.•.........•.• I

1.1 0\'ERVJEW ··•········· I

1 . .2 SrRliCTURE OF THE THESIS ... 4

CHAPTER 2 NETWORK TOPOLOGIES AND CONTROLLER AREA

NETWORK (CAN) ..••........ 7

1.1 ~I f\\/ORK TOPtlLOGJES .. 7

~-!.I Introduction to Computer Network ...

2./.:! LANs and !nduMrial NefH'orks.

············· 7

......... ··········· ············ 9

2.1.2.1 Topologies of LANs ... 10

2.1.2.2 LANs in Industry ... 12

2.2 CONTROLLER AREA NFJ"WORK (CAN) PROTOCOL ... 14

2.1.1 Introduction.. f.l

1.1.1 Lc~ver Ar{:hitecture o(CA!v'.

1.2.3 CAN Basic Concept.

2.2.3. I Bus Arbitration

16

18

······························· 18

2.2.3.2 Message Filtering .. 20

2.2.3.3 Error 1-.fandling .. 20

2. 2 . ../ Data Transmission.. 21

2.2.4.1 Data fi·ame and Remote frame ... 22

2.2.4.1.1 Start of Frame (SOF) .. 23

2.2.4.1.2 Arbitration field and Control field .. 2.)

2.2.4.1.3 Data field ... 26

2.2.4.1.4 Cyclic Redundancy Check field (CRC) 26

2.2.4.1.5 Acknowledge field (ACK) .. 27

2.2.4. I .6 End of Frame (EOF) ... 27

2.2 .4.2 Error Fra1ne .. 28

2.2.4.3 Overload fran1e .. 29

2.2.5 Implementation ofCAN protocol]/

- iv-

2.1.6 Advantages and Disadvantages of the CAN Protocol 32

1.2.6.1 Advantages ... 32

1.1.6.1 Disadvantages .. 33

1.3 CONCLUSION ... 34

CHAPTER 3 HIGHER LAYER PROTOCOLS FOR CONTROLLER AREA

NETWORK .. 35

3.1 AN OVI:RV!EW OF HIGHER LAYER PROTOCOLS FOR CAN 35

3.~ S\!AR r DISTRIBliTED SYSTEM (SOS) .. 39

3 __ ,_//ntroduction to SDS... 39

3 .:.1 .:! SDS Basic Concepr.... 40

3-1.3 SDS Application Proroc·of..

3.2.-1 Ach·ontage5 and Di.Huimntages ~;l.f:JDS

····· 46

. .. 52

3.2.4.1 Advantages .. 52

3.2.4.2 Disadvantages ... 52

3.3 0FVJt"ENI-:T 53

3.3.1 Introduction to De1·iceNet 53

3.3.2 Device Net Basic Concept.. 54

3.3.3 Device Ne! Application Protocol... 58

3.3.3.1 Use of CAN Identifier in the DeviceNet protocol 58

3.3.3.2 Use of CAN Data field in DeviceNet .. 60

3.3.-1 Adl'£111/ages and tlisad\·anlu_!!,£'S of DeviceNet ... ········· 62

3.3.--f.l Advantages ... 62

3.3.4.1 Disadvantages .. 63

3 .4 CAN KINGDOM ... 63

3.-1./ Introduction to CAN Kingdom.. 63

3.-1.2 CAN Kingdom Basic Concept... 65

3.4.2.1 CAN Kingdom model and terminologies .. 65

3.4.2.2 Basic concept of CAN Kingdom ... 68

3.-1.3 App/icmion Layer Protocol... 70

J..J.-1 Advantages and Disadvantages a/CAN Kingdom............ 75

3.4.4.1 Advantages ... 75

3.4.4.2 Disadvantages .. 76

3.5 CONCLUSION ... 76

- V-

CHAPTER 4 DESIGNING A HLP FOR SMALL DISTRIBUTED

MICROCONTROLLER SYSTEMS USING CAN ... 78

4.\ (1-!00S!NG A HIGHER LAYER PROTOCOl ... 78

4.2 DESIGNING THE SMALL CAN KINGDOM PROTOCOL 81

-I.:!.. I lmroduction. ···································· ... 81

-1.::.::. The King ············ 84

-1.::..3 Cities 88

...J.3 Dl·Slti~' A SMALL CAN KINGDOM SYSTEM ... 91

-1 3 I Introduction. ············ ·················· 91

-1.3.:! Srsrem design 92

4.3.~.1 The King .. 91

4.3.2.2 City 1 .. 93

4.3.2.3 City 2 96

4.3.2.4 City 3 ··································· 98

-1.3.3 System oper.llion. 102

4.3.3.1 Set-up phase ... 104

4.3.3.2 Run phase .. 104

4.4 CONCJ .LJS!DN .. I 06

CHAPTER 5 INTRODUCTION TO MICROCONTROLLERS AND

CAN CONTROLLER CHI PS .. I 07

5.1 M!Cf{()CONTROLLI::RS .. 107

5. /.I Overviell' 107

5. /.2 MC68HC! I Block Diagram. 110

5. /.3 .~)'stem development environment.... Ill

5.1.3.1 Hardware design environment .. 112

5 .I .3 .2 Software design environment.. ... 113

5.2 CAN CONTROLLERS ... 115

5.1. I Choosing CAN controllers ················ ··············· 115

5.1.1 lnte/ 81517 CAN controller ·································· 116

5.3 CONCLUSION ... 119

- VI -

CHAPTER 6 HARDWARE DESIGN .. 120

6.1 INTRODUCTION .. 120

6.2 INTERFACING THE INTEL 82527 TO AN MC68HCII \23

6.3 INTERFACING THE INTEL 82527 TO A TRANSCEIVER CHIP] 29

td. 1 CAN hus review and introduction to CAN transceiver chips 129

6.3:; PCA82C250 CAN rransceil't!r.. 130

0.3.3 DS36!J5 transceiver 131

h.J . .J A4od!f.·ing the DS3695 133

6.3.5 hue/825:!7-DS3695 imer/i:rce circuit diagram............. !35

b.-i iNTHtFAC!: BI:TW!·:FN TilE K!NU AND AN IBM PC 136

6.5 INTERFACl!\'U AID DEVICI:S TO MC68HC 11 .. 137

6.6 iNTERf-ACING Tl-IE LCD TO INTEI. 82527 .. 138

6. 7 DESIGNING A REMOTE Rtl)liEST DEVICI: .. 140

6.8 DESIGNING]1\DIC /\TORS ... ! 41

6.9 COI\CLLJSION ... 141

CHAPTER 7 SOFTWARE DESIGN ... I44

7 .! [NTRODliCTION 144

7."2 SYSTEM OPF:RA rJON ····································· 148

7 J SOFTWARE IMPU:MEN"I t\ 1"1< JN .. 152

7.3. 1 CoJ?/iguring the CA/'•i conrroller clujJs 1 5]

7.3.1.1 Resetting a CAN controller chip .. !52

7 .3.1.2 Initialising a CAN controller chip ... !53

7.3.:! Designing Imerr11p1 Sen·ice Routine r!SR) !56

7.3.3 Servtcing King's messages.. 160

7.3../ King software .. ······························· /64

7.3.4.1 King's main program .. 164

7.3.4.2 NO OP subroutine ... 165

7.3.4.3 8 SET subroutine .. 165

7.3.4.4 King Menu progran1 ... 166

7.3.4.4.1 Introduction .. 166

7.3.4.4.2 Designing the King Menu program .. 170

7.3.5 Designing I he so.fiware to service King Pages in Cities 174

7.3.5.1 PG_O subroutine ... 174

- vii -

7.3.5.2 PG~l subroutine ... l75

7.3.5.3 PG~2 subroutine ... 175

7.3.5.4 PG 3 subroutine ... 176

7.3.5.5 PG 4 subroutine ... 176

7.3.6 Cities· softu·are .. 176

7 .3.6.1 Assigning address for JSR .. 177

7.3.6.2 Initialisation ... 177

7 .3.6.3 Set-up phase .. 178

7.3.6.4 Run phase ... 178

7.3.6.4.1 City \ .. 178

7.3.6.4." City 2... ... I 30

7.3.6.4.3 City 3 .. 181

7.4 TESTING ... 184

7. -1.1 Set-up phase /8./

7.-1.1 Run phase ... 187

7.4.2.1 Testing communication between City 1 and City 3 187

7.4.2.2 Testing communication between City 2 and City 3 187

7 .-1.3 Additional testing.. 188

7.4.3.1 Changing message Identifiers ... 188

7.4.3 .1.1 Changing communication priority between City 1 and City 3 188

7 . .f.3.1.2 Changing communication priority between City 2 and City 3 190

7.4.3.2 Changing Cities· addresses .. 191

7.4.3.3 Assigning a group address to Cities ... 192

7.4.3.4 Ungrouping a group or restoring the Cities' original addresses 193

7.4.3.5 Changing baud rate .. 194

7 .4.3.6 Adding a new City to the system ... 196

7.4.3.7 Testing the role of the King ... 198

7. -I.-I Testing the behaviour of the King Menu progJam 199

7.5 CONCLUSION ... 200

CHAPTER 8 CONCLUSION ... 202

8.\ SUMMARY ... 202

8.2 FUTURE TRENDS AND SUGGESTIONS .. 211

REFERENCES ... 213

- Vlll -

APPENDIX A ..•................•...................•.•...•................. 218

APPENDIX B ..•...... 221

APPENDIX C ... 225

APPENDIX D .. 227

- IX -

LIST OF FIGURES

FIGURE 2-1 ISO/OS! REFERENCE MODEL. ... 8

FIGURE 2-2 STAR NETWORK .. 1 Q

FlGURt 1 -3 RING NETWORK .. !I

FJGURJ· 2-4 LINEAR Bus TOPOLOGY .. 12

_FJ(il:RJ- 2-5 CAN's LAYERS PART A ... 16

FKil:Rr· '-6 CAN's LAYERS PART 8 .. 17

Frut ·r~L_2-7 EXAMPLE OF PRJrlRITY IN CAN BlJS ... 19

Fllll'RJ· 2-8

F!GUR!:" 2-9

DA rA FRA~·IE 22

REMOTE FRAME ····························· 23

fiGURE 2-10 ARBITRATION FIELD- STANDARD .. 24

F!Gl 1TU: 2-!l ARBITRATION FIUJ)- EXTENDJ:D FOR,\1AT 24

FrGURF2-12 CvcucRLDlll\ "l>.ICYCHEn: ! .. Jf.t.o .. 26

FIGURE 2-!3 ACKNOWI.E/Jlif: F!FI !J ... 27

FJGURJ:2-14 ERRORFRA/1.-11' .. 28

FJGURJ: 2-15 OVERLOAD FRA"'~f: ... 30

FJGURI: 3-1 ISO/OS! R/.1-L:RI'NlT MoDEL FOR CAN ... 36

fiGURl:. 3-2 MODEl. OF lJ n: OS/ APPI.JCATION LAYER ... 3 7

FIGURl: 3-3 SMART DISTRIBUTED SYSTEM MODEL .. 40

FIGL1R!·. 3-4 STANDARD CAN FRAME FORMAT ... 46

FIGURE 3-5 SDS Hl:r\DI:R ... 47

F!GURF 3-6 NON-FRAGMENTED FORMAT ... 50

fiGURl: 3-7 FRAGMENTED FORMAT ... 50

FIGURE 3-8 DEVICENET HIERARCHICAL VIEW OF CLASSES AND OBJECTS 54

FiGURE 3-9 A DEVICE NET NODE.. .. 55

FJGURI. 3-! 0 DEVJlTNET MoDEL .. 56

fiGURE 3-11 DEVICENET'S USE or THE CAN IDENTIFIER FIELD 58

FIGURE 3-12 I/0 MESSAGE FORMAT ... 60

FJGURl 3-13 EXPLICIT MESSAGE FORMAT .. 60

FIGURE 3-1·4 I/0 MESSAGE FRAGMENT FORMAT ... 61

fiGURE 3-J ~ EXPLICIT MESSAGE FRAGMENT FORMAT .. 62

FlOUR!~ 3-16 CAN KINGDOM MODEL .. 65

F!GURI· 3-17 A CAN KINGDOM LETrER .. 67

FrCJtJRJ·. 3-18 sr:r-1 IJ> PI rAsF ... 69

Fl(iLIRI· 3-19 Rt 1]\' I'IJASI: .. 69

E.\AMI'LF m A K!Nti P."til' FoR/\1.. ... 71

f::jlil 'J~t }_:~j E:\AMPLF OF A FORM Hl IH· IISI'll IN RIJN PIIASJ: 73

J.J.~.t. I\. I ~ -_ -~

J-'j(,t "' -1-3

Flt!J_:m :-~-~

Filii 'RI :-1-6

Frta :ru· -l--7

S\!:\1.1 CAN Kl~lo!JOi'v! Mol>t·r ... 81

rto· KINti Prwnss ··············· 93

Cl rv I ·s OJ>I:RATHlN Prwcr:ss .. 94

T111: CITY I ·s Kll\'(i Doe! '\·lFN-1 ... 94

('II'Y l'sTR.·\Ns~rlr DtJ('t't-.lu"rr ... ··········· 95

er rv 2's 0!'!-Rt\ rrot\ PR(wr-ss 97

CIJY 2's TRA:--.:·S\!11 DotT·~·li:KI ... 98

Frc;r;Rr: -l--8 er rv 3 ·s OPI:RA lltJN PruJct·.ss ································· 99

FIG! 'RI: -l--9 err y 3 's Rl·n:r\'1- DmTMJ:NT (Foruvl HJR FoJ.Dt:R 2) 100

Fl(il 'IU -l--1 0 er rY .rs RH 'I.J\'1 Duct '\lFN J (FORM FUR FU!.!)J:l{ 3) I 0 I

FruL:Rr -l--11 TI!!:S:>.-rALLCAN KJN<ir>0.\1svsn:~fsSET-UI'Pl!ASE l03

FIG! :ru-_ 4-12 Till' SMALL CAN KIN(iDOM SYSTLM' S RUN PI !ASE 1 03

FIGI'RI 4-13 CrrY]'SMI:SSMil-

FltJI'RI -l--14 CITY 2's ,\11 SS.·\<il

.. !M

.. !M

FrCil'Rl- 5-l MC68HC I! SUlCI\. DIAliRAivl ... 110

F!GL'IU· 5-1 SYSTEM DEVEUJPMENT ENVIRONMEJ\'T ... 114

FICilTJU: 5-J THE 82517 BLOCK D!MiRAM ... 117

FJGliRJ. 5-4]NTE!. 82517 AD[)Rl:SS MAP .. 118

FICil!RI' 6-1 Till·. SMALL CAN KINGDOM SYSTEM BLOCK DIAGRAM 122

FltiLJRI: 6-2 MC68HCII AND INTEL 82527 INTERFACE CIRCUIT DIAGRAM 125

F!GUR!o 6-3 MC68HC !I MEMORY MAP ... 126

F!GURJ: 6-4 ADDRESS DECODER CIRCUIT I .. 127

FIGURE 6-5 ADDRESS DECODER CIRCUIT 2 .. 128

F!liURE 6-6 PCA82C250 CAN TRANCEIVER ... 130

F!GURl' 6-7 DS3695 (RS485) TRANCEIVER ... 131

• XI -

fiGURE 6-8 MOLJIFIED DS3695 CIRCUIT DIAGRAM ... 134

fiGURE 6-9 INTEL 82527-053695 INTERFACE CIRCUIT DIAGRAM•.......... 135

fiUl/RI: 6-10 INTJ:RFACE BETWEEN TilE KING AND AN IBM PC 136

fi<.iURI:6-Il A'D J)J:VIlT- MC681-!Cll JNTEJH'ACE•............... 137

Frtil'RI 6-1~ l~n-L8~527- LCDL"IRnrn DIAGRAM .. I39

lli!!..B:l!:J.:..l.J RI'MOTI; Rl:()lii:Sl DE\'ICI:("]]{(."\'11 JJIA<iRAM 140

!)~_!_!..:ill ~!.: H i"'lDJ<."ATuRs CJRCl :1 r ntMiRAM ... 141

F1~ ol "' 7_] SOI-T\VAIH MODI U .F~ HlR 1"111· KINO ... 145

!"JELill z~~ SoFI WARI· 1\·\1 J[){ 'I l·S FOR CITY I 1~

f""itil RI· 7-3 SoFTWARI· MoJJliJ.J-.s HJR CJ l'Y 2 ···························· 146

Fltil :Kr 7-4 SOJ·T\VARE MO[Jlll I:S FOR CtTY 3 .. 146

FlUllRJ· 7-5 KIN<.i Fl.O\V-CI/.'\R r .. 148

Flc;t:RI· 7-Q CITY l"s 1·1.0\~·-cllART ... 149

FIULTRJ· 7-7 Cny 2's FI.OW-t'lli\IU ···················· ······································· 150

FlGl~/U·. 7-S Cl! y J's 1-um -Cfr.-un !51

FJGL'RJ· 7-9 Ktt-.\i MI·.l"ll ... 166

fiGURI·. B-1 PIN LAYfll'T 1 .. 223

FIGt:RL B-2 PIN L\ vm; r 2 .. 224

- XII -

TABLE I-I

TABLE 3-1

TAIU.E 3-2

T.HJI.E 3-3

T\111~ 6-1

TAULE 6-2

TABLE 6-3

TABLE 6-4

TABLE 6-5

TABLE 7-f

TABLE 7-2

TABLE 7-3

TABLE 7-4

TABLE 7-5

TABLE 7-6

TABLE7-7

TABLE B-1

TABLE B-2

TABLE B-3

LIST OFT ABLES

Cl lMl ILATIVE B\ IS N<>DI:S S< JI./J l JJ' IJNTII. Tf!E END or 1995 2

EXAMPLJ, OF AN SOS COMI'ONI:N J DOCUMENT 43

S~:RvrcrTYPJ, ,.At trr- HJR SrJ<>R·r h>RM MJ~ssAuEs 48

S FR \'ICE TYPI' \'AI \ 1L H lR LON(i foRM MFSSAGES 49

PCA82C250 l'lt>.' IJLSCRJI' rroN 130

PCA8.2C250 JR\I[JJ l'ABI.l· 131

DS3695 PIN /Jl-.SCRWrHJN. 132

DS3695TR\1TIIIABI.J· .. 132

TRun r ·r ABJ.J· IJF n 11- M(l/JtFJJ·D DS3695 rRANSCEJVER 134

VAUJl·_s 0!· IN rt·l 8.25.2Ts INTER/WPT REGISTER I 57

INTERRUPT SI:RVICL VI.CTOR TABU' .. I 58

KING PAGE VECTOR l'ABI.F .. I6I

BUFFALO's 1: ''ll.!TY S!IBIWUTINES ... 170

BAUD RAT!· VAI.lii:S .. 195

TESTING KING MENIJ PROGRAM .. 199

SMALL CAN KINGDOM PROTOCOL SUBROUTINE FOR A CiTY 201

INTERFACE BFTWITN MC68HCII AND INTEL 82527 221

1:-.JTERFACI: BETWEEN lNTEL 82527 AND 053695 222

INTERFACE BETWEEN INTEL 82527 AND L20 12 222

- XIII -

CHAPTER I

INTRODUCTION

1.1 Overview

De-mand for tht- use of "intelligent"' devices to control manufacturing processes in

autom:ninn industries has rapidly increased in the recent years. Accordingly, these

de\ i~.:es are forced to transfer data between each other. A critical issue for the

cnnununication between such devices is the use ofprotocols.

The overall a11n of this thesis is to design an application layer protocol (Higher

Layer Protocol) for a small distributed microcontroller system based on the

Controller Area Netw"Ork (CAN) protocoL which is a widely-used network protocol

in automation industries.

According to Cena and Valenzano (1995). one of the most essential requirements

for industrial networks is that they must guarantee deterministically bounded

response times; and hence. the protocols utilised in such networks have to satisfy

this requirement.

There is a range of architecture and protocols which has been used in industrial

networks to date. such as CAN. SP~SO FieldBus. MAP, Profibus, and FIP (Zuberi &

Shin. 1995). Among these networks. CAN has gained widespread acceptance in

industry Jue to its speed, Jow~cost network architecture, and especially, high

reliability in noisy environments. According to Farsi and Ratcliff (1997), CAN has

long been a market leader in the industrial fieldbus arena; and by the end of 1995,

more than 6 million CAN nodes were installed (Table I ~I).

- I -

Introduction

Table 1-1 Cumulative bus nodes sold up until the end of 1995

Bus Chips Cumulative Quantity

P-Net 35,000

FIP 65,000

ASI 80,000

Profibus 500,000

Interbus S 1,000,000

LON 1,500,000

BITBUS 2,500,000

CAN 6,000,000

The CAN protocol provides users with many powerful features including

multimaster functionality, and the ability to broadcast and multicast telegrams. The

most important characteristic of the protocol is its priority-base arbitration which

allows short response times for high priority messages (see Chapter 2).

However, to ensure inter-operability between CAN components, several Higher

Layer Protocols (HLPs) have been developed to allow devices to communicate with

each other in a standardised manner. These include Smart Distributed System

(SDS), DeviceNet, CAN Kingdom, CANopen, and SAE Jl939 (Korane, 1996; Farsi

& Ratcliff, 1997). Chapter 3 ofthis thesis reviews the first three protocols in detail,

especially, their cuiTent use in a broad range of industrial applications (Bladin,

Bradley, Danioux, Gray, & Loaic, 1997). Each one of these protocols has taken a

different approach for controlling systems, with respect to the application services

provided to its users.

Although many HLPs have been developed for different kinds of CAN-based

systems, there is still demand for a simpler HLP in order to simplify the control

tasks of small distributed systems which utilise tiny 8-bit microcontrollers such as

- 2-

Introduction

the Motoro]a MC68HC 11 or lntel 8051. The two main requirements of a HLP for

small systems are as follows:

• To achieve a design methodology which is easy to understand, and

• To lit into a limited amount of on-chip memory available to small

m icrocontrollers.

h is t!ltportant that the requirements above are taken into consideration because in

man~ small systems it may not be necessary to use a complex HLP. such as SOS or

Device Net. Moreover. in some cases. it is not financially viable to increase the cost

of circuit design by introducing extemalmemory.

After comparing the main characteristics of SOS. DeviceNet and CAN Kingdom,

the author of this thesis concluded that the CAN Kingdom protocol contains more

advantages than the other two, with respect to the requirements of simplicity and

ease of design for small systems. Additionally, the CAN Kingdom protocol allows

devices that utilise other 1-ILPs to be integrated into a CAN Kingdom system, with

only minor changes to the control software (see Chapter 3).

Despite the above. full implementation of the CAN Kingdom protocol is a complex

matter: and hence, it is the aim of this thesis to show that further simplifications can

be made to the protocol in order to suit the requirements of small CAN-based

distributed systems.

The HLP designed in this thesis, based on the CAN Kingdom protocol, is named the

Small CAN Kingdom protocol. The programming codes written for this small

protocol easily fit into 51~ bytes EEPROM of MC68HC [I microcontrollers used in

this project. TI1e protocol also provides an open solution which enables later

designers to enhance the application progress.

The main idea behind the Small CAN Kingdom protocol is that a master node in the

system, the King, is responsible for the whole network configuration and governs

- 3 -

Introduction

the communications between devices. The King, however, can be removed after

setting up the network; and the system. therefore, can inherit the full potential of the

CAN protocol such as multimaster. broadcasting or multicasting which are not

efficiently utilised in other protocols {e.g. SOS or DeviceNet).

The CAN nodes in a Small CAN Kingdom system are called Cities. The Cities can

ht• designed independently from each other without any concem for their inter

wmmunkation role in a particular network: responsibility !Or this lies with the

King. rhe major consideration. in designing a City, is that it must be able to obey

the King's instructions.

In order to develop the software and to demonstrate the performance of the Small

CAN Kingdom protocol, a small distributed system is also designed in this project.

The aim of this system is to illustrate the responsibility of the King, the

communication bet\\·een the King and Cities. and the communication between the

Cities themselves.

1.2 Structure of the thesis

The remaining chapters of this thesis are concemed with details of the research

which are summarised as follows:

Chapter 2 presents an overview of network topologit:s and industrial networks. 1l1e

main feature:; ~f the CAN protocol are also discussed in this chapter in order to

show that the protocol is well-suited for industrial environments.

Chapter 3 introduces the importance of HLPs for CAN-based systems. The

architecture of three popular 1-!LPs are covered:

I. Smart Distributed System (SOS) from Honeywell,

2. DeviceNet from Allan Bradley, and

3. CAN Kingdom from K vaser.

-4-

Introduction

The advantages and disadvantages of these three HLPs are also discussed in order

to select the HLP employed for the task of designing a simpler protocol in this

thesis.

Chapter 4 details the design of the Small CAN Kingdom protocol, utilising the

main ideas of CAN Kingdom. following the comparison of the three HLPs covered

in Chapt~r 3. The methodology of designing a small distributed system is also

introdu..:l'd in this chapter. The small system consists of:

• A master node (the King) which ts responsible for the network

conligurations. and

• Three Cities. each of which carries out particular tasks for its specific role

in the system.

Chapter 5 reviews the two physical components used in the design of the two main

parts of a CAN node: a microcontroller which controls the node's operations, and a

CAN controller which manages the node's communication. The hardware and

software development environments are also covered in this chapter in order to

provide an efficient mechanism for the design of the Small CAN Kingdom system.

Chapter 6 presents the steps associated with the design of the hardware part of the

system. All the interfaces between the components used in each CAN node are

described. In addition, the chapter includes the steps of modifying the DS3695

(RS485 standard) transceiv.;!r chips in order to suit the requirements of the CAN

bus. The DS3695 transce,ver chips were used in this thesis due to time restrictions

and the difficulty of obtaining standard CAN transceiver chips in Perth, Western

Australia.

Chapter 7 is concerned with the design of the software which controls the small

system in this project. ll1e implementation of the software has taken into account

the rules associated with the Small CAN Kingdom protocol. The designs of the

software for the King, as well as the three Citi'!s, are described in detail including

- 5 -

I

Introduction

algorithms for each so~ware module. Finally, efficient testing schemes, which were

used to check the performance of the system, are covered in this chapter.

Chapter 8 is reserved for concluding remarks which were made following the

completion of the research program. Some suggestions are then proposed

concerning future developments and research.

Appendix A provides the description of the system development environments.

Appendix B contains the pin connection tables for each hardware interface design,

and the diagrams showing the pin layout of these components. These tables and

diagrams were used for wire-wrapping purpose in the hardware design.

Appendix C describes the steps associated with how system designers can use the

King to set up the network.

Finally. Appendix D gives the complete program listing of the software designed in

this project.

- 6 -

CHAPTER2

NETWORK TOPOLOGIES AND THE CONTROLLER

AREA NETWORK (CAN) PROTOCOL

This chapter provides an overview of network topologies and industrial networks,

,lJld tht.'ir protocols. including the Controller Area Network (CAN) protocol. Tite

promine111 features of the CAN protocol are described in order to explain why it is

suitable tOr hazardous industrial environments.

2.1 Network Topologie~

2.1.1 Introduction to Computer Network

Hughes (199~. p. 3) states that ··communications, whether among humans, animals,

or computers. involve the transfer of information". With computers becoming

widespread in society. the needs of communications have increased. In the home,

for example. a data file is transferred from one personal computer to another or

information can be accessed from a public database. In the office and educational

institutions. communication channels are used to exchange e-mails or to share

expensive peripherals such as laser printers or plotters. In the process industry, the

transfer of information is necessary to coordinate the control of instrumentation

associated with a plant. In the manufacturing industry. dat<= is transmitted from one

automated UJlit to another (Halsall. 1996, p. 3).

This exchange of information is called networking. Depending on the geographical

distance of the communication. there are two types of network: Local Area

Networks (LANsl and Wide Area Networks (WANs). The term LAN is used when

computers are distributed around a single office or building. If the computers are

located in different sites, then the tenn WANs is applicable (Halsall, 1996, p. 6) .

. 7 •

Network Topologies and Controller Area Network (CAN)

In response to the growth in computer networks, the International Standards

Organisation (ISO) has developed a reference model (Figure 2-1) for computer

networking known as Open Systems Interconnect (OSI). According to this model,

the entire communication subsystems are broken down into a number of layers,

each of which pertOrms a well-defined function. Henshall & Shall (1988) describe

these layers as follows:

l.ayer

7 Application Layer Top

6 Presentation Layer

5 Session Layer
~-----

4 Transport Layer
C----

3 l Network Layer

2 I Data Link Layer
C---

j Physical Layer Bottom
--- ----- ___ _j

Figure 2-1 ISO/OSI Reference Model

The Application Layer contain:-; a variety of protocols that are commonly needed.

It provides the means for incompatible computers to communicate with each other.

The Presentation Layer is concerned with the syntax and semantics of the

information transmitted. This may include character code translation, data

conversion, or data compression and expansion.

The Session Layer focuses on providing the serv1ces used to orgamse and

synchronise the dialogue that occurs between users, and to manage the data

exchange.

- 8 -

Network Topologies and Controller Area Network (CAN)

The Transport Layer contains functions, which accept data from the session layer

and split them up into smaller units, if required. It also determines what type of

service to provide the session layer and users of the network.

The Network Layer is concerned with the task of controlling the operation of the

subnet. lt determines how packets are routed from source to destination.

The Data Link Layer provides reliable data transmission from one node to another.

it is responsible for the error-free transmission of data frames.

The Physical Layer is responsible for transmitting raw bits over a communication

channel.

2. 1.2 LANs and Industrial Networks

According to Nunemacher (1990. p. 17). the generally accepted definition of a LAN

is that two or more microcomputers are connected and conununicate with one other

through some physical media. such as twisted-pair or coaxial cable, in order to

share data and peripheral devices. These microcomputers are usually located in the

same limited geographic area.

In addition, Zuberi and Shin (1996) also state that a LAN protocol should fit the

requirements of industrial automation. This is due to the fact that devices which

exchange data are usually located in the same plant or the same factory.

- 9 -

Network Topologies and Controller Area Network (CAN)

2.1.2.1 Topologies of LANs

1l1e topology of a LAN describes how the LAN is constructed. Nunemacher (1990,

pp. 26-30) claims that there are three basic topologies:

I. St?r

Ring

' _, Linear Bus

Firstly. the Star Network has a central hub to which all the workstations, or nodes,

and tile server are attached via cable (Figure 2-2). The hub is the "heart" of the star,

and all net\\'ork traffic must pass through the hub. The advantage of this type of

network is that it is easy to maintain and modify, since the only area of

concentration is at the hub. However. because all nodes must be connected to the

hub, large amounts of cable are required, and the potential for network failure

increases. An example of the star topology is the Janet network (Crowcoft et al.,

1993).

Workstation Workstation

Star Network

- I 0 -

Network Topologies and Controller Area Network (CAN)

Secondly, the Ring Network connects workstations on a single transmission, which

forms a ring (Figure 2-3). Data travels around the ring in one direction and passes

through each node. it is obvious that less cable is needed for this topology than the

Star network. However. the entire network will fail if one node fails. and thus, it can

be difficult to diagnose the fault. In order to maintain the system integrity, a bypass

mechanism can be used to detect a faulty workstation. This topology is employed

b: the T oh: en Ring network (Nunemacher. 1990. p. I 03).

Workstation

WorJ..station

Workstation

W orkstation

Figure 2-3 Ring Network

Finally. tile Linear Bus Network consists of a number of nodes which are attached

to a common cable or bus (Figure 2-4). The data travels on the bus in both

directions and does not have to go through each node. The advantages of this

topology are the short cable length and the simple wiring layout. Moreover, if one

node goes down. it does not affect the whole network. This type of network is also

easy to extend and to add nodes when required. However, the disadvantages of the

bus topology are that the bus can be a bottleneck to the network when network

traffic is very heavy, and that the fault diagnosis and isolation are difficult to

maintain because all nodes in the bus can be the concentrators or hubs at one time.

- 11 -
I

Network Topologies and Controller Area Network (CAN)

A well-known e:-.ample of network architecture which uses the Linear Bus

Topology is Ethernet (Nunermacher, 1990, p. 83).

Workstation

Bus

Wtlrkstatitl!l Workstation

Figure 2-4 Linear Bus Topolog)

2.1.2.2 LANs in Industry

As mentioned previously. Local Area Network (LAN) architecture is suitable for

industrial networks. Cena and Valenzano (1995), in discussing Ethernet. state that:

The most popular and diffuse network in the office automation
environment is without doubt Ethernet, based on the CSMA/CD
approach. TI1e reason for this is mainly due to the fact that the
mechanism adopted to manage access to the shared transmissive medium
is very simple. and allows components and communication boards to be
used which are cheaper than those employed in other kinds of networks,
such as for Token Ring.

CSMA/CD is an acronym for Carrier Sense Multiple Access with Collision

Detection. The basics of CSMA/CD are that every node, which has messages to

- 12 -

Network Topologies and Controller Area Network (CAN)

transmit. listens to the traffic on the bus, and the node can access the bus when it is

idle (free). If two or more nodes try to transmit messages at the same time, then a

collision occurs. All nodes have to withdraw from the bus and wait for a random

period of time betOre trying to access the bus again (Halsall, 1996. p. 280).

In addition. with respect to the requirements of industrial networks, Cena and

Valenzano (!995) indicate that .. though CSMA/CD is well-suited for office

automation. it is not considered to be satisfactory for the automated factory

em·ironment". This is due to the fact that the industrial automation environment

needs deterministic transfer time and synchronisation activities, while a random

mechanism is used in the CSMAICD to decide which station has the right to access

the shared network. Moreover. as the network load increases, so does the number of

collisions. This means the network throughput can be significantly reduced; hence,

the required transfer time is not satisfied (Cena. Demartini. & Durante, 1996).

Consequently, this problem has stimulated technological inquiry and architecture

has been proposed for industrinl LANs such as Controller Area Network (CAN),

SP-50 FieldBus. MAP. Protibus. FIP. and so on (Zuberi & Shin, 1995).

Of these network protocols, CAN has gained widespread acceptance in the industry

because of its speed. low cost. real-time support, reliability in noisy environments,

and priority-base arbitration (Zuberi & Shin. 1995).

The main features of the CAN protocol are described in the fcllowing section.

- 13 -

Network Topologies and Controller Area Network (CAN)

2.2 Controller Area Network (CAN) Protocol

2.2.1 Introduction

Controller Area Network (CAN) protocol (CAN Specification Version 2.0, 1991) is

an advanced serial protocoL which was developed by Robert Bosch GmbH in the

early 1980s. lt was primarily used in the automotive industry, which is known to be

both physically harsh and electronically noisy (Croft, 1996). Due to its versatility.

CAN has recently been discovered to be suited to a broader class of applications in

various automated factory environments (Cena &Valenzano, 1995) such as ;u pilot

plant (Gollmer & Posten, 1994), in electrical wheelchairs (Van Woerden et al.,

1994), in controlling mobile robots {Wargui. et al., \996), and in manufacturing tin

cans(Kirk, 1996).

The CAN protocol is based on the CS MA/CD access method, but it takes a much

more systematic approach, which is known as Bus Arbitration mechanism (see

section 2.2.3.1), to solve bus contention. This new method utilised by the CAN

protocol guarantees that when a collision occurs, only the station transmitting the

message with the highest priority is able to access the bus; and hence, the time

critical requirement in industrial environments is satisfied (Cena &Valenzano,

1995).

It is noted that unlike many serial communication protocols. a CAN mes:.age

contains no information related to the destination or the source addresses. Instead,

messages are broadcast to all nodes in a CAN~based system; any number of nodes,

therefore, can receive data simultaneously (Multicast Reception) (Ekiz, et al.,

1996). However, each CAN message has a network-wide unique Identifier, which

serves as the name of the message and the means to indicate it£. priority. This unique

Identifier enables a CAN node to read only the messages which interest it (Cena

&Valenzano, 1995).

- 14-

Network Topologies and Controller Area Network (CAN)

Moreover, a CAN system employs Linear Bus topology~ hence, any node can have

access to the bus (Multimaster). This also makes the system easy to expand and to

convert into different configurations (Croft. 1996).

A further advantage of the CAN protocol is its speed, according to Ekiz, et al.

(1996). its baud rate can be up to a maximum of 1 M bit/sec at 50m bus length.

The CAN Specification Version .2.0 (1991) provides a complete description of the

CAN protocol. The specification consists of two parts: Part A and Part B. The main

difference between the two parts is that Part A describes the original CAN protocol

with 11-bit identifier messages ("Standard Format"); while Part B provides a larger

address range for message identification of 29-bit ("Extended Format"), and also

includes the Standard Format with some modifications. Therefore, the protocol

specified in part B enables both types of messages to coexist within the same

network.

- 15 -

Network Topologies and Controller Area Network (CAN)

2.2.2 Layer Architecture of CAN

To achieve design transparency and implementation flexibility, the ISO/OSI

reference model and its layers' architecture are adopted for the specification of the

CAN protocol.

In the CAN Version 2.0 Part A, the original CAN protocol is divided into three

layers (Figure 2-5):

• The CAN Object layer

• The CAN Transfer layer

• The Physical layer

Application Layer

Object Layer

-Message Filtering

- Message and Status Handling

Transfer Layer

-Fault Confmement

- Error Detection

- Error Signalling

- Message Validation

- Acknowledgment

-Arbitration

- Message Framing

-Transfer Rate and Timing

Physical Layer

- Signal Level and Bit Representation

- Transmission Medium

Figure 2-5 CAN's layers part A

- 16-

Network Topologies and Controller Area Network (CAN)

In part B, the layers of the CAN protocol are divided into two layers as shown in

Figure 2-6:

• The Data Link layer consists of two sublayers:

- The Logical Link Control (LLC) sublayer

- The Medium Access Control (MAC) sublayer.

• The Physical layer

Application Layer

Data Link Layer

Logical Link Control (LLC)

- Acceptance Filtering

- Overload Notification

- Recover Management

Medium Access Control (MAC)

- Data Encapsulation/Decapsulation

-Frame Coding (Stuffing/Destuffing)

- Medium Access Management

- Error Detection

- Error Signalling

- Acknowledgment

- Serialisation/Desirialisation

Physical Layer

- Bit Encoding/Decoding

-Bit Timing

- Synchronisation

- Driver/Receiver Characteristic

Figure 2-6 CAN's layers part B

- 17-

Network Topologies and Controller Area Network (CAN)

According to Figure 2-5 and Figure 2-6, the CAN Object layer and the CAN

Transfer layer in Part A are included in the Data Link layer (ISO/OSI Layer 2) of

Part B. Hence. the CAN protocol only contains the Data Link layer and Physical

layer of the ISO/OS! model. However, the CAN specification provides a framework

for data transmission which is the function of the Data Link layer. Consequently,

upper and lower layers must be added to constitute an actual operational network

I Bladin. et al.. 1997).

2.2.3 CAN Basic Concept

TI1e most important pa11 of a CAN message is the Identifier field (see section 2.2.4),

which is the outstanding feature of the CAN protocol. Tindell, Hansson and

Wellings (I 994! state that the Identifier serves two purposes:

I. Assigning a priority to the message. and

2. Enabling receivers to filter messages.

These tasks are done by the Bus Arbitration and the Message Filtering mechanisms

specified in the CAN protocol. respectively.

2.2.3.1 Bus Arbitration

An essential feature of the CAN protocol is Bus Arbitration. which is a systematic

approach of the CAN protocol with respect to message priorities and bus

contention. Like any of the CS MA/CD protocols. a station in a CAN network starts

to transmit its messages when the bus is idle (free). However, instead of

withdrawing and waiting for a period of time when a collision occurs, the Bus

Arbitration mechanism decides which station has the right to access the bus (Baba,

Ekiz, Kutlu, & Pawner, 1996).

This detennination of station access is achieved through bit transmission. In CAN

tenninology, there are tw1 it levels: a "recessive" bit (usually, logic level 'I') and

- 18 -

Network Topologies and Controller Area Network (CAN}

a "dominant" bit (usually, logic level '0'). If more than one station transmits data

concurrently and one station transmits a dominant bit, then the bus maintains the

dominant state regardless of the recessive bits (if any) transmitted from the other

stations. The bus is only at the recessive state when all nodes in the system transmit

recessive bits. In effect, the CAN bus acts like a large AND-gate, with each station

being able to see the output of the gate (Tindell, et al.. \994).

Furthermore. when transmitting data, the Identifier is the first part of the message

being transmitted onto the bus from the most-significant bit to the least-significant

bit. According to the Bus Arbitration mechanism, if the station transmits a recessive

bit (bit· I') and monitors the bus with dominant state (bit '0'), it stops transmitting

since it knows that its transmitting message is not the highest priority on the bus.

The station winning arbitration takes control of the bus, and the station losing

arbitration becomes a receiver. This method enables the highest priority message to

always be transmitted even though the bus load is heavy.

An example of the Bus Arbitration mechanism is given in Figure 2-7.

Node I transmit:

Node 2 transmit:

Bus:

jo j1o110IIOIOO j

I 0 11 0 I I 0 I I I I Node 2 loses arbitration,
stops transmitting and
becomes a receiver

[o [IoiiOIIOIOO [

Identifier Field

Node 1 takes control the
CAN bus

Figure 2-7 Example of Priority in CAN bus

- 19 -
I

Network Topologies and Controller Area Network (CAN)

2.2.3.2 Message Filtering

As mentioned earlier, CAN is a multicast protocol; thus, all stations can receive

data simultaneously. Nevertheless, a station may be configured to accept particuJar

messages through the Message Filtering mechanism. Typically, this is done with the

aid of mask registers (Tindell, et al.. 1994). Every bit of the mask registers must be

programmable. which means they can be either enabled or disabled for message

filtering. The length of a mask register can comprise the whole Identifier or just part

of it.

lt is important to note that any bit in the register can be set to "don't care", i.e. the

CAN controller will not compare the message Identifier in the respective bit

position. Consequently, a mask register can be used to select a particular message or

a group of messages from the bus (CAN Specification Version 2.0, 1991, p. 56).

2.2.3.3 Error Handling

With respect to data consistency. Baba et al. (1996) state that "the CAN protocol

implements powerful error detection mechanisms focusing on Cyclic Redundancy

Check (CRC), bit stuffing, and both positive and negative acknowledgment".

According to the CAN Specification Version 2.0 (1991, p. 59), these mecl1anisms

include the following five error detection types:

I. A Bit Error is detected when a node transmits a dominant bit but

monitors a recessive bit on the bus or vice versa.

2. A Stuff Error occurs when a CAN message contains six consecutive bits

with the same bit level. This violates the Bit Stuffing Rule, which allows

only five consecutive bits with the same polarity (CAN Specification

Version 2.0, !991. p. 58).

- 20-

Network Topologies and Controller Area Network (CAN)

3. A Cyclic Redund-ancy Check (CRC) Error occurs if there is a mismatch

value between the CRC field of a CAN message and the actual value

calculated by the receiving node.

4. A Form Error is detected when a fixed form field of a message contains

one or more illegal bits.

~. An Acknowledgment Error occurs if none of the nodes has received a

transmitted message correctly.

With this five types of error detection scheme, the CAN protocol can detect almost

every enor in the system. The significant feature of this error detection scheme is

that all stations in the network \\'ill be informed when an error occurs. This enables

the transmitter to retransmit the message which has been corrupted. If repetitive

errors are detected, the faulty station will remove itself from the bus (Baba, et al.,

1996).

2.2.4 Data Transmission

In a CAN network, message transfer is manifested and controlled by four different

frame types:

I. A Data frame carries data between nodes.

2. A Remote frame is used to request a certain message to be sent to the bus.

3. An Error frame informs all stations in the network that an error caused by

the last message has been detected.

4. An Overload frame is sent by a station when it requires a delay to process

data.

Network Topologies and Controller Area Network (CAN)

In addition, a CAN message can be in Standard or Extended formats, with both

being covered by part B of the CAN specification. The following sections describe

the format of the four frame types covered in Part B. and indicate the differences

between the two parts.

2.2.4.1 Data frame and Remote frame

The main frame type in the CAN protocol is the Data frame, which is used to

transmit data between stations in a CAN system. If a station wants to receive a

particular message however, it can request the data by sending a Remote frame with

the same Identifier as the respective Data frame.

The formats of Data frames (Figure 2-8) and Remote frames (Figure 2-9) are almost

identical except for two significant differences:

\. There is no Data field in a Remote frame as it is used to request data.

2. The Remote Transmission Request (RTR) bit ts recessive in Remote

frames. while it is dominant in Data frames.

Inter
F rame
s pace

s tart ofFramJ

Arbitration field
Control field

Figure 2-8 Data Frame

Data FRAME Inter
Frame
Space

or Overlo ad
Frame

Data field
CRC field

ACK field

End of frame

- 22-

Network Topologies and Controller Area Network (CAN)

Inter
F rame
s pace

s tact ofCmmJ
Arbitration field

REMOTE FRAME

Control field

CRC field

ACK field

End of!fame

Figure 2-9 Remote Frame

2.2.4.1.1 Start of Frame rSOFJ

Inter
Frame
Space

or Over! oad
Frame

Start of Frame is a single dominant bit, which marks the beginning of Data frames

or Remote frames.

It is of interest to note that the Error frame and Overload frame do not have this bit

because they are used to indicate special conditions of the CAN nodes. The

descriptions of these two frames are covered in section 2.2.4.2 and 2.2.4.3,

respectively.

2.2.4.1.2 Arbitration field and Control field

The Arbitration field, the '"heart" of the CAN protocol, contains the message

Identifier, which acts as the name of the message and the priority of the message

(Baba, et al., 1996). The prominent difference between Standard and Extended

formats is that a Standard message contains an 11-bit Identifier, while the Identifier

of an Extended message has 29 bits.

- 23 -

Network Topologies and Controller Area Network (CAN)

It should be noted that according to CAN Specification Version 2.0 (1991, p. 44),

the seven most significant bits of this field must not all be recessive.

The Control field of a CAN message informs the. receiving stations of the number

of data bytes (0-8 bytes) contained in the message. This is indicated by the 4-bit

Data Length Code (DLC).

The formats of these two fields are slightly different between Standard and

Extended messages as shown in Figure 2-1 0 and Figure 2-11.

Standard Format

Arbitration Field

I~
1

Control Fiold I
~... ~ ...

Data Field

s R 1
0 11-bit Identifier T D
F R E

Figure 2-10 Arbitration Field- Standard

Extended Format

Arbitration Field I Contwl Field I Data Field
~... ~... ~ I~

-~1 s 1 R
11-bit Identifier R D 18-bit Identifier T r r DLC

R E R 1 0

Base ID

Figure 2-11 Arbitration Field- Extended Format

-24-

Network Topologies and Controller Area Network (CAN)

As seen in Figure 2-10 and 2-11, it is noted that:

Firstly, the Remote Transmission Request (RTR) bit is located at the end of the

Arbitration field. This bit indicates whether the frame is Data frame or Remote

frame. It is dominant in 0Atd frame and recessive in Remote frame. With the

Arbitration mechanism of the CAN protocol. a dominant bit will overwrite a

recessive bit if the two bit levels are sent concurrently to tl>e bus. Therefore, in the

unlikely situation when a Data frame and a Remote frame, with the same Identifier,

are tra .. :.mitted at the same time. the Data frame wins arbitration due to the

dominant bit following the Identifier. In this case. the node that has transmitted the

Remote fi·ame receives the desired data immediately.

Secondly. the Substitute Remote Request (SRR) bit is a recessive bit. which is

transmitted in Extended frame. lt is loc<Jted in the same position of the RTR bit in

Standard frame, and so substitutes the RTR bit in the Standard frame. When the

Base ID of the Extended frame is the same as the Identifier of the Standard frame,

and in the event of a collision between these two frames, the Standard frame has a

higher priority according to the Bus Arbitration mechanism.

Finally. the Identifier Extension (!DE) bit indicates whether the message is

Standard or Extended. This bit is located in the same position in either Standard or

Extended frame. It is dominant in Standard frame and recessive in Extended frame.

TI1is construction of the IDE bit ensures that even in a collision between a Standard

Remote frame and an Extended frame (Data or Remote), the Standard frame always

wins arbitration.

Additionally, the rO and rl bits are reserved bits for future use. These bits are

alwflys recessive.

Note that the formats of Data and Remote frames in Part A of the CAN

specification are the same as the Standard fonnats ofthofie in Part B except the IDE

bit was the reserved bit (bit rl) in Part A (CAN Specification Version 2.0, 1991, p.

12).

- 25-

Network Topologies and Controller Area Network (CAN)

2.2.-1.1.3 Data field

The Data field is transmitted within Data frames. It contains information that is

exchanged between nodes in the CAN system.

The length of the Data field can be 0 to 8 bytes indicated by the Data Length Code

(Ol.C). Each data byte contains 8 bits with its Most Significant Bit (MSB) being

transmincd first {CAN Specification Version 2.0. \991. p. 47).

-~ ~ -1. / . ../ c:rclic Redulllkmcy Check.fie!d rCRO

The CRC field contains the CRC sequence which consists of 15 bits and a recessive

CRC Delimiter bit (Figure 2-12). The transmitter calculates special check bits for

the bit sequence from the sta11 of a frame until the end of the Data field. This CRC

sequence is transmitted in the CRC field. The receivers. after receiving a frame,

calculate the CRC sequence using the same formula and perform a comparison with

the received sequence. If a mismatch is detected. a CRC error has occurred, and

hence. an Error frame is generated. Consequently. the original message is repeated

(CAN Specification Version2.0. 1991. p. ~7).

Drtta or

c
'
ontrol FidJ CRC FidJ

CRC Sequence

Figure 2-12 Cyclic Redundancy Check Field

- 26-

ACK Field

CRC Delimiter

Network Topologies and Controller Area Network (CAN)

2.2.4.1.5 Acknowledge field (ACK)

The Acknowledge field, containing an ACK Slot bit and a recessive ACK

Delimiter bit (Figure 2-13), is used to indicate if a message has been received

conectly. To achieve this, during the ACK Slot bit interval, the transmitter sends

out a recessive bit. Then, any node that has received an enor free frame

acknowledges the correct reception of the frame by sending back a dominant bit. If

during the ACK Slot bit interval the transmitter does not detect a dominant bit, this

means none of other nodes have received the frame correctly, an ACK occurs and

the original message has to be repeated (CAN Specification Version 2.0, 1991, p.

47).

CRC Field + ACK Field lEnd Of Frame
Oil ~

I

ACK Slot ACK Delimiter

Figure 2-13 Acknowledge Field

2.2.4.1.6 End of Frame (EOF)

This field contains 7 recessive bits to indicate the end of a frame.

-27-

Network Topologies and Controller AreaNetwork (CAN)

2.2.4.2 Error Frame

During transmitting its message, a station also monitors the bus. As a result, if an

error occurs, the station will send an Error frame to inform the other nodes of this

error. Moreover, if the repetitive errors are detected, it will withdraw itself from the

bus according to the Fault Confinement Rules (CAN Specification Version 2.0,

1991, p. 61).

An Error frame consists of two fields: the Superposition of Error Flags that is

contributed from different stations, and the Error Delimiter containing 8 recessive

bits. The structure of an Error frame is shown in Figure 2-14.

I

Interframe

Data fram~..,.,.I--_____ E_RR_O_R_F_RA_ME _____ _.~+-· ,.,..s_p_ac_e or

En-or Flag

Figure 2-14 Error Frame

..
Superpos1t10n of

Enor Flags

Overload
frame

Error Delimiter

Depending on the Error flag being Active or Passive, then the Error frame is Active

or Passive, respectively:

• An Active Error flag consists of six consecutive dominant bits.

• A Passive Enor flag consists of six consecutive recessive bits unless it is

overwritten by dominant bits from other nodes.

- 28-

Network Topologies and Controller Area Network (CAN)

When detecting an error. a node will send an Active Error frame or Passive Error

frame depending on its status as specified in the Fault Confinement Rules. Two

further aspects regarding the error frame are highlighted as below.

Firstly. an Error Oag construction violates the Bit Stuffing Rule of the CAN

protocol, in which a sequence of a normal bit stream contains a maximum five

consecutive bits with the same polarity. Therefore. a node will detect that there is an

error if !llCl"itoring an abnormal bit stream on the bus. during the transmission or the

reception of a message.

Secondly. the length of the Superposition of Error flags can be six bits up to a

maximum of twelve; this depends on the number of bits sent by the different

stations in detecting errors (CAN Specification Version 2.0. 1991. p. 51).

2.2.4.3 Overload frame

According to the CAN Specification Version 2.0 (1991, p. 51), there are three

conditions which lead to the transmission of an overload frame from a node:

l. The intemal conditions of a receiver which require a delay of the next data

frame or remote frame.

2. Detection of a dominant bit at the first and the second bit oflntermission.

3. A node samples a dominant bit at the eighth bit (the last bit) of an Error

De1imiter or Overload Delimiter.

Note that in the second condition, the term lntem1ission indicates the first three bits

of the lnterframe space, which is used to separate a Data or Remote frame from a

preceding frame (CAN Specification Version 2.0, 1991, p. 53).

- 29-

Network Topologies and Controller Area Network (CAN)

An Overload frame consists of two fields: 6 dominant bits ofthe Overload Flag and

8 recessive bits of the Overload Delimiter as shown in Figure 2-15.

Enor Delimiter or OVERLOAD FRAME space or
End of frame or I I Interframe

--~~~··~----------------------------~~~~~--

Over! oad Delimiter Overload Flag

..
Superpos1t10n of
Overload Flags

Figure 2-15 Overload Frame

Overload
frame

Overload Delimiter

As shown in Figure 2-15, an Overload frame has the same format as an Active Error

frame. Therefore, in order to differentiate an Overload frame from an Error frame,

the CAN protocol specifies that an Overload frame can only be generated during

Intermission, while an EITor frame is sent during the transmission of a message.

- 30-

Network Topologies and Controller Area Network (CAN}

2.2.5 Implementation of CAN protocol

According to Croft (1996), the first working silicon CAN protocol controllers (CAN

modules) became available in 1987. There are three recognised implementations of

CAN protocol supported by silicon manufacturers which are the:

I. Basic CAN

Full CAN

3. CAN+

The significant differences between these CAN chips are m their functional

implementations.

The Basic CAN chips only implement the basic functions of the protocol in

hardware, for instance, the generation and the check of the bit stream. Other jobs

are left for the host CPU such as Acceptance Filtering and whole message

management. Therefore. these devices should only be used at low baud rates and

low bus loads with a few different messages. Nevertheless, the advantage of Basic

CAN is that the smal! size of the chips lead to its low cost.

The second implementation of the CAN protocol is the Full CAN controllers, which

implement the whole CAN protocol in hardware including Acceptance Filtering and

message management. Hence. these devices can alleviate the host CPU's load and

can handle higher baud rates; consequently, higher bus loads can be performed.

These chips, however, are more expensive than the Basic CAN devices.

The third version of silicon CAN controllers is CAN+. which combines the best

features of the both previous device types .

. 31 .

Network Topologies and Controller Area Network (CAN)

CAN controllers also have the following characteristics:

Firstly, if the modules were specified prior to CAN Specification Version 2.0 Part

8, they are only able to transmit and receive Standard CAN frames (11-bit

identifier); and therefore, messages using 29-bit identifier will cause errors.

Secondly. with respect to CAN modules specified after the introduction of CAN

Specification Version 2.0 Part 8, there are two different types. Devices named "Part

8 Passive" can transmit and receive Standard frames, but tolerate Extended frames

without generating errors. Devices named "Part 8 Active" can transmit and receive

both Standard and Extended frames (Kvaser CAN Pages: The CAN protocol, n.d.).

Currently, a wide range of CAN controllers are available from different

semiconductor companies such as 82527 from Intel (82527 serial communications

controller architecture overview, 1996), SA8-81 C90 and SA8-81 C91 from

Siemens (SAE 81 C90/91 stand-alone Full-CAN controller data sheet, 1997).

Moreover, microcontrollers with an integrated CAN module are also available such

as C167CR from Siemens (Cl67CR 16-bit CMOS single-chip microcontroller data

sheet, \995) and 68HC 12 from Motorola (Blandin, et al., \997).

2.2.6 Advantages and Disadvantages of tbe CAN Protocol

2.2.6.1 Advantages

Since the introduction to the CAN protocol, it has been employed in a wide range of

industrial networks. The main attractions are as follows:

• Cheap to implement

• Easy to install and uninstall a unit into or out of the system.

- 32 -

Network Topologies and Controller Area Network (CAN)

• A fast network: up to I Mbit per second.

• Reliable: CAN systems can work well in a hazardous industry

environment.

• Well-suited for distributed control systems due to its prioritisation

characteristic.

2.2.6.2 Disadvantages

The CAN protocol, however. does contain disadvantages relating to its

functionality. These include:

• All nodes in the CA;-..! system have to work at the same baud rate.

• Limitation of data byte in a message to maximum of 8 bytes.

• The multimaster concept may slow down the speed of the nodes in the

system, espetially for Basic CAN chips. This is because every node has to

receive a frame, then uses the acceptance filtering method to decide

whether to accept it or not.

• Every node may have to deal with error or overload conditions, caused by

other nodes, while it is performing other jobs.

• In a heavy bus load condition, lower priority messages can be delayed

indefinitely by higher priority messages due to the CAN Arbitration

mechanism.

- 33 -

Network Topologies and Controller Area Network (CAN)

2.3 Conclusion

This chapter has provided an overview of computer networks and the ISO/OSI

reference model for computer networking. The Local Area Networks (LANs)

topologies. and the requirements of industrial networks were described. Some of the

industrial network architecture available was mentioned, and the significant features

of the Controller Area Network protocol were highlighted.

In summary, the CAN protocol provides a means to develop low cost, fast, and

highly reliable networks for control systems. Notably, its real-time support

characteristic has resulted m the protocol being accepted by a wide range of

automation industries. The CAN's Arbitration concept allows different priorities for

CAN messages. Thus, it is highly suitable for implementing complex distributed

control systems in which nodes can be grouped together by message Identifiers; and

hence, receive similar types of messages simultaneously and ignore messages for

other nodes or group of nodes.

In addition, the ISO/OS I based model of the CAN protocol allows it to achieve

design transparency and implementation flexibility. The error detecting methods

used by CAN enable its system to detect almost every error on the bus. Faulty nodes

withdraw themselves from the network operation without disturbing the other

nodes.

The CAN protocol, however, only specifies how a small packet of data transfers on

the network. it does not cover topics such as flow control, node addresses,

establishing communication, and transportation of data greater than 8 bytes. These

topics are all necessary to design actual network operations. Consequently, they are

for designers to address in Higher Level Protocols (HLPs), which are covered in the

following chapter.

- 34-

CHAPTER3

HIGHER LAYER PROTOCOLS (HLPS) FOR

CONTROLLER AREA NETWORK (CAN)

This chapter describes the architecture of three popular CAN Higher Layer

Protocols (HLPs) currently used in automation industries:

I. Smart Distributed System (SOS) from Honeywell,

' DeviceNet from Allan Bradley, and

3. CAN Kingdom from K vaser.

The advantages and disadvantages of these three protocols are discussed in order to

choose a suitable HLP for the task of designing a simpler HLP in this project.

3.1 An Overview of Higher Layer Protocols for CAN

As discussed in Chapter 2, the CAN protocol is developed in accordance with the

ISO/OS! model which contains seven layers. The implementation of a CAN system

however, usually utilises three layers including:

• Application layer,

• Data Link layer, and

• Physical layer.

The main reason for this difference is noted by Cena, et al. (1996) who claim that

"The network, transport, session and presentation layers have been omitted in order

to get shorter response times for data transfer".

- 35-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Figure 3-1 shows the ISO/OSI model of a CAN system in comparison with the

ISO/OSI seven-layer model.

Layer

7

6

5

4

3

2

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

ISO/OSI Layers

Layer

7

2

Figure 3-1 ISO/OSI Reference Model for CAN

CAN Layers

However, while the CAN specification only deals with the Data Link Layer (see

Chapter 2), the lower and the higher layers (Physical layer and Application layer)

must be added to a CAN-based system in order to perform actual operations.

Although there are many publications relating to the use of the CAN protocol and

the needs of HLPs for CAN systems, there is not much literature available solely for

HLPs, except for the specifications themselves. This is because CAN is a new

technology, and as Korane (1996) claims "one reason is simply that many designers

are still learning how to use it".

The infancy of CAN and its associated technological requirements has seen various

responses, by designers, to address perceived issues. However, there remains much

- 36-

Higher Layer Protocols (HLPs) for Contwller Area Network (CAN)

work to be done as many areas lack attention in sufficient detail. For example, all

CAN-based systems need a HLP to ensure inter-operability between CAN

components. Yet, in this regard, there are no worldwide standards for HLPs. As a

result, many CAN user groups have developed HLPs that meet their own needs.

Korane (1996) notes that up to 31 different CAN HLPs are currently in use; thus,

designers may choose a proprietary protocol for their CAN system or, as is the case

in this project, design their own according to one of the existing HLPs.

The three HLPs, Smart Distributed System, DeviceNet and CAN Kingdom,

highlighted in this thesis, are all widely-used and popular among industry (Blandin,

et al., 1997). Furthermore, they are all well-supported in terms of literature and

physical materials available to enable designers to implement a system.

In order to understand the CAN's HLPs, it is desirable to have an overview of the

OSI Application layer (Figure 3-2). Dickson and Lloyd (1992) state that "the OSI

Application Layer standards define a range of system independent application

services to support real 'users' or user programs". These services are built on the

functions of the lower layers in order to support distributed systems.

User Device

OSI services defined
in terms of a virtual

device

Lower Layer Services

Figure 3-2 Model of the OSI Application Layer

- 37-

APPLICATION
LAYER

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

As shown in Figure 3-2:

• The User Application is a local system independent part that interfaces to

the user or devices.

• The Application Entity provides the standardised functionality of the

Application layer to the user application.

Each of the three HLPs described in this thesis has a different design approach and

provides different application layer services to its users. The main features of these

protocols, according to Lennartsson and Fredriksson (1995), are:

• SOS, fundamentally, is poinf.·to-point communication between a master

(Host) and remote Input/ Output devices.

• DeviceNet is an open bus system where all modules have the same right

to use the bus, and the use of the bus is only restricted by a few rules.

• CAN Kingdom specifies a set of protocol rrimitives which system

designers can use to build a final protocol satisfying their system needs.

The basic idea of CAN Kingdom is that a module, when connected to a

system, has to wait for configuration instructions from the King (the

Master node) before it can perform its work.

The following sections of this thesis describe and corn pare the aforementioned three

HLPs in greater detail.

- 38-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.2 Smart Distributed System (SOS)

3.2.1 Introduction to SDS

Smart Distributed System. introduced by Honeywell's Micro Switch Division in

1994. includes a device~level control network based on the CAN protocol. The

design of SOS meets the requirements of speed, reliability and flexibility for

manufacturing automation applications and real-time control.

Basically, the SOS protocol speciiies point~to~point communication between a host

controller and remote Input/Output devices such as sensors. actuators, analog J/0

devices. etc.

The development of the protocol has overcome some of the disadvantages of CAN

such as data transfer no larger than 8 bytes, node addressing, and flow control.

- 39 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.2.2 SDS Basic Concept

An SDS system is developed based on the model as shown in Figure 3-3.

According to the Smart Distributed System Application Layer Protocol

Specification Version 2.0 (1996), each node in the system contains three primary

elements:

• Physical Component

• Logical Device

• Embedded Object

Physical Physical Physical
Component Component Component

Logical Logical Logical Logical
Device Device Device Device

I
Embedded Embedded Embedded I

Object Object Object Embedded
Object r-

CAN CAN CAN
Controller Controller Controller

SDS Bus

Figure 3-3 Smart Distributed System Model

-40-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

The definitions of these elements are as follows:

• A Phy~'ical Component is a single physical package of hardware and

software. it consists of 1 to a maximum of 126 Logical Devices.

Typically, a Physical Component is an actual CAN node, which contains

only one CAN controller circuit (chip).

• A Logical Device is an abstraction representing a separate entity within a

Physical Component. it contains at least I and no more than 32 Embedded

Objects. Each Logical Device has a unique address in an entire SOS

system.

• 1l1e term Embedded Object is used to present an actual device such as

s\Vitch. sensor. actuators. and so on. Each Embedded Object has a specific

address within a Logical Device. The network address of an Embedded

Object is the combination of its address, called Embedded Object

Identification (EOID). and the Logical Device address, to which the

Embedded Object belongs.

For example. to differentiate between the Embedded Object 2 of the Logical Device

3 and the Embedded Object 2 of the Logical Device 5. the combined addresses are

shown below:

• Logical Address #3: EO ID #2

• Logical Address #5: EOID #2

-41 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Additionally, in order to communicate with each other in the network, each SDS

component (Physical, Logical or Embedded Object) has to be documented. The

component's document contains attributes, actions. and events that are specific to

the device (SOS Component Modelling Specification. 1995). These are defined as

follows:

• Attributes provide information about the component such as vendor

name. software version. data type and data structure.

• Actions contain the operations. which can be done by a device.

• Events are used to report the occurrence of an event for a device. For

example, a state of a switch being ON or OFF.

Each attribute. action, and event has a unique Identification, respectively called

Attribute ID. Action ID. and Event ID. in order to distinguish each document aspect

from the other.

Note that these JDs are held by Honeywell Micro Switch. Accordingly, any device

that uses the SOS protocol has to follow their standard.

Table 3~ I gives an example of an SOS component document.

-42-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Table 3-1 Example of an SDS Component Document

Attributes Description Primitive Tag Default Value

ID

R!W Type Size Cnt.h

0 Network Data Descriptor " Uns Byte 5 12h,OOh,OOh,OOh.OOh.OOh

I Baud Rate " Uns Und 0 0

11 Serial Number R Un• Long 0 NIA

" Date Code R Char Byte 3 NIA
-

5:" Manufacturing Codes R Uns Byte 11 NIA

61 Conligurntion Register R!W Uns Byte 0 0

Action tJeseriplion Parameter Parameters Data Type

ID TJPC

0 No operation

I Change Address Input Addr, Uns 8,

<Device ID>. Uns 8,

<Panner ID. S-Nwn> Uns 16. Uns 32

' SelfTest

8 Enrol Logical Device Output S-Num. Panner ID Uns 16,Uns 32

57 Password Input Password Uns 8

EwntiD Description Output Parameters Output Data Type

0 Diagnostic Event Counter Counter Value Uns 8

3 End of Timer Attribute ID. Data Uns 8, Uns 16

Spec COS ON

Spec COS_OFF

-43-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

While an SDS system is in operation, the values of Attributes, Actions, and Events

of a component can be read or changed. In doing so, the SOS Application Protocol

provides several services which are described below:

• The Read service is used to read an attribute value of an Embedded Object

(EO). For example, this service can be used to read the present value of a

sensor.

• ·nle Write service modifies or changes an attribute value of an EO. This

may be used to set an actuator output to ON or OFF.

• The Event serv1ce reports the occurrence of an event m an EO. For

instance, a Logical Device may report a self-test failure.

• The Action service is used to execute the operations specified for an EO.

This may be used to initiate a self-test.

Moreover. if a device has only one Embedded Object such as a single binary input,

simplified services are provided. by means ofSDS short form messages (see section

3.2.3). to increase the system throughput as described below:

• TI1e Change Of State ON (COS ON) service is used by a Logical Device

to report a change of state to ON of its Embedded Object.

• The Change Of State OFF (COS OFF) service reports a Change of State

to OFF of the object.

• The Write ON State service is used to write an ON state to a device.

• The Write OFF State service writes an OFF state to a device.

-44-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Furthermore, SDS Higher Layer Protocol also provides two special seiVices to

establish the connection and communication channels between devices as follows:

• The Connection seiVice establishes a connection between two Logical

Devices. It is used by one device to request a connection with another

device. The two devices are then able to transfer data to each other

following the successful connection establishment.

• The Channel service is used after a successful Connection serv1ce to

provide communication channels for devices such as Multicast and bi~

directional Peer·tO·Peer channels (Smart Distributed System Application

Layer Protocol Specification Version 2.0, 1996, p. 34).

Note that each SOS Application service contains parameters which include

information related to the device addresses, Attribute ID, Action ID, Event ID,

channel number, and so on. These parameters are responsible for the exchange of

information between devices (Smart Distributed System Application Layer Protocol

Specification Version 2.0, 1996).

-45-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.2.3 SDS Application Protocol

This section describes how the SDS application protocol uses the CAN Data frames

(see Chapter 2) to provide its services to user applications.

It is important to note that the CAN remote frames are not used in the SDS protocol.

In addition, the protocol only utilises the CAN Standard format messages with 11-

bit Identifiers specified in part A of the CAN Specification Version 2.0 (1991, p.

11).

In summary, a Standard CAN frame can be described as shown in Figure 3-4.

Bit
7 6 5 4 3 2 1 0

ID-10 ID-9 ID-8 ID-7 ID-6 ID-5 ID-4 ID-3 CAN
ID-2 ID-1 ID-0 RTR DLC3 DLC2 DLC1 DLCO Header

B Data Byte 1
y Data Byte 2
T Data Byte 3 CAN
E Data Byte 4 Data
s Data Byte 5 Field

Data B_yte 6
Data Byte 7
Data Byte 8

Figure 3-4 Standard CAN frame format

-46-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

According to the Smart Distributed System Smart Distributed System Application

Layer Protocol Specification Version 2.0 (1996), the Identifier of the CAN header

(Figure 3-4), which contains the Arbitration and Control fields, is divided into 3

subfields (Figure 3-5):

1. The Direction/Priority,

2. The Logical Address, and

3. The Service Type.

I Bit
I 7 I 6 I 5 I 4 I 3 I 2 I I 0

11 Dir/Pri I Logical Address {0 ... 125}
11 c. rvice Type {0 ... 7} I RTR I Data Length Code

Figure 3-5 SDS header

The descriptions ofthese subfields are as follows:

• The Direction/Priority (Dir/Pri) subfield is presented by the most

significant bit of the 11-bit CAN Identifier (ID-1 0). This bit determines

the direction of the frame with respect to the content of the Logical

Address subfield.

IfDir/Pri=1, the Logical Address subfield is the source address.

If Dir/Pri=O, the Logical Address subfield contains the destination

address.

Moreover, the Dir/Pri bit is used in Channel service to determine the

priority of a message. The message with Dir/Pri=O has higher priority

than the message with Dir/Pri= 1.

-47-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

• The Logical Address subfield specifies the address of a Logical Device.

1l1e subfield starts from bit 3 through bit 9 of the CAN Identifier (ID-3 to

10-9). 1l1is allows a range of Logical Addresses from 0 to 125.

Note: the address 126 and 127 cannot be used due to the restriction of the

CAN specification, which means that the 7 most significant bits ID-10 to

10-4 must not all be recessive (CAN Specification Version 2.0, 1991, p.

11).

• The Service Type subfield is from bit 0 through bit 2 (ID-0 to ID-2). This

indicates the type of the service specified for the message. The value of

this subfield is 0 to 7 depending on the service carried by the message (see

Table 3-2 and Table 3-3). The meaning of this field is different for Short

Form and Long Form, which are two message formats used to transfer

data in SOS protocol.

Table 3-2 Service Type value for Short Form messages

·-
Service Value Service Name

0 Change of State OFF

I Change of State ON

2 Change of State OFF ACK

3 Change of State ON ACK

4 Write OFF State

5 Write ON State

6 Write OFF State ACK

7 Write ON State ACK

Note that the services with acronym ACK are used to inform the transmitters that

the receivers have received the corresponding services successfully.

- 48 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Table 3-3 Service Tvoe value for Long Form messages

Service Value Service Name

0 Channel

I Connection

2 Not use

3 Not use

4 Write

5 Read

6 Action

7 Event
L_

Also note that the SOS ApplicRtion protocol does not make use of the Remote CAN

frames. Therefore, the Remote Transmit Request (RTR) bit is always a dominant bit

('0').

As mentioned earlier. an SOS message can be one of the two formats: Short Form,

and Long Form. 1l1e Short Form format is used for Change Of State ON (COS

ON), Change Of State OFF (COS OFF), Write ON, and Write OFF services. The

format of a Short Form frame is the same as shown in Figure 3-5. The value of the

Data Length Code subfield in the Short Form format is always 0, which means there

is no CAN data field in the message. Hence, this configuration increases the system

throughput.

The Long Form format is used by other SOS services. The difference between

Long Form and Short Form is that a message in the Long Form format contains at

least two or more CAN data bytes. Long Form messages are used to access devices

with more than one Embedded Object. Thus, some bits in the CAN data field are

used to indicate the Embedded Object address (EOID).

-49-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Moreover, the Long Form format can be one of two forms: Non-fragmented and

Fragmented. The Fragmented format can carry data greater than 8 bytes by

dividing the data into fragments and transferring one fragment at a time.

Figure 3-6 and Figure 3-7 show the formats of the two types ofLong Form frames.

Bit
7 I 6 I 5 I 4 I 3 1 2 1 1 1 0

Dir/Pri I Logical Address {0 ... 125}
Service Type {0 ... 7} I RTR=O I Data Length Code

Service Specifier I EOID
Service Parameters

Data

(6 byte max)

Figure 3-6 Non-fragmented Format

Bit
7 I 6 I 5 I 4 I 3 I 2 I 1 I 0

Dir/Pri I Logical Address {0 ... 125}
Service Type {0 ... 7} I RTR=O I Data Length Code

Service Specifier I EOID
Service Parameters

Fragmentation

Data

(4 byte max)

Figure 3-7 Fragmented Format

-50-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

As shown in Figure 3-6 and Figure 3-7, some of the CAN data bytes are used to

carry information related to the SOS messages (Smart Distributed System

Application Layer Protocol Specification Version 2.0. 1996, p. 44). The following

describes the information contained in each field ofSDS Long Form messages:

• The Service Specitier field indicates whether the frame is fragmented or

not. it is also used to request a specific service from a provider or to

indicate if the requested service is successful.

• The Embedded Object Identifier (EO ID) specifies the address of the

Embedded Object. The value of this field can be 0 to 31.

• The Service Parameter field contains the parameters for the serv1ce

carried by the message such as Attributed ID, Action ID, Event ID, etc.

• The Fragmentation field is used in Fragmented Long form format to

indicate the fragment number and the total bytes of the fragmented

message.

- 51 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.2.4 Advantages and Disadvantages of SOS

The SDS protocol. with its many advantages, provides a good solution for designing

CAN·based systems. However, it also contains disadvantages that do not utilise the

CAN protocol as efficiently as possible.

3.2.4.1 Advantages

• SOS overcomes the limitation of CAN protocol such as transferring data

larger than 8 bytes, and node addressing.

• The design of SOS meets the requirements of flexibility, speed, and

reliability of a real-time control system.

• SOS is a complete Higher Layer Protocol for a CAN network and is an

ideal solution for controlling or monitoring 1/0 devices.

3.2.4.2 Disadvantages

• SOS only uses the CAN Standard format frame (11-bit Identifier)

• The formats of SDS frames cannot be changed. Hence. any CAN system

that uses the SDS protocol has to follow exactly the SOS Standard.

• The priority of a CAN message depends on its Logical Device. In other

words, the Logical Address decides the message priority.

• SOS does not use the Remote Frame specified in the CAN protocol.

• SDS uses a Master/Slave concept while the CAN protocol is based on the

multi-master approach.

• 52 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3 DeviceNet

3.3.1 Introduction to DeviceNet

Young (1995) writes that the purpose of the DeviceNet protocol is that it "simply

defines the Application Layer that sits on top of CAN to specify how various

derices communicate across the network"'. In doing so. it overcomes disadvantages

of the CAN protocol such as node addressing and flow control.

DeviceNet is an open communication network mainly designed to connect factory

devices such as push buttons. sensors. motor starters. and drives to control systems

(Simonye. Alpena. & Witte. \997). lt provides a more versatile approach to module

communication on the network where all nodes have the same right to access the

bus.

In addition, DeviceNet uses the object~oriented method which provides efficient

ways to model and design real~world objects (Hawryszkiewycz, 1994, p. 236).

However. in DeviceNet, inheritance of the objects from one to another is not

implemented (Moyne, Shah. McLaugh!in. & Tang, 1997).

The references to the Device Net specification in this section are referred to by the

Volume number and Section number of the specification. TI1is is because the

specification comes on a CD-ROM, and thus. the page number will be different for

each updated version.

- 53 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3.2 DeviceNet Basic Concept

According to the DeviceNet 2.0 Specification (Vol.l, Section 1-3), each node of a

DeviceNet network is considered as a collection of Objects, each of which is an

abstraction representing a particular component within a product. Similar kinds of

Objects belongs to a Class. An Object Instance is the actual presentation of a

certain Object within a Class. For example, an Instance of a Vehicle Class is a car or

a truck. A cat is an Instance of an Animal Class.

Each Instance in a Class has the same set of Attributes specifying the

characteristics of the Class, but the values of Attributes vary from one Object

Instance to another.

An Object or a Class also provides a set of Services which are used to perform the

tasks for the Object or the Class. It can be said that this feature of DeviceNet

provides designers with greater flexibility than the Smart Distributed System (SDS).

Instead of specifying fixed application services, DeviceNet allows its users to

design different services that are more relevant to their Objects or Object Classes.

The DeviceNet hierarchical view of Classes and Objects is shown in Figure 3-8.

Class 1

lc'"''''p.J Services

I
I

Object 1 Object 2

Attribute #I Attribute #I
Attribute #2 Attribute #2

Object 1

Attribute# I
Attribute #2
Attribute #3

Class 2

Object 2

Attribute #I
Attribute #2
Attribute #3

Figure 3-8 DeviceN et hierarchical view of Classes and Objects

-54-

Object 3

Attribute #I
Attribute #2
Attribute #3

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

DeviceNet also provides a set of common services to be used for devices that follow

the DeviceNet standard. These services are fully described in Appendix G of the

DeviceNet 2.0 Specification (1997, Vol. 1). For example:

• Get_Attribute_All service tells an Object or a Class to return all its

Attributes.

• Set Attribute All service modifies the attribute contents of a Class or an

Object.

• Reset service is used to reset a specified Class or Object.

• Start service places an Object into running mode.

• Stop service places an Object into stop or idle mode.

Furthermore, an Object or a Class has its distinct Behavior for particular events. In

other words, the Behavior of an Object or a Class specifies how it responds to

particular events.

Figure 3-9 illustrates the structure of a DeviceNet node.

DeviceN et Node

... ······· ······

\,
··

Figure 3-9 A DeviceNet node

-55-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

A node in a DeviceNet network is identified by a unique Media Access Control

Identifier (MAC ID). Similarly, a Class has a Class ID; an Object Instance has an

Instance ID; an Attribute has an Attribute ID; and a Service has a Service Code.

In order to distinguish an Object within a network, a combined Identifier of MAC

ID, Class ID, and Instance ID is used (e.g. MAC ID #4: Object Class #5: Instance

#2).

The model of a DeviceNet system is shown in Figure 3-10.

MAC ID #1

Object Class #7

.·····
.. ···· Object Class #4 ·· · \l

\

.. ·· ·· .. ·················

MACID#2

Object Class
#5

DeviceN et Link

MACID#4
MACID#3

Object Class #4

.............
.. .-object cl a~~····· ...

/ #7 ...
·····

..... ·····abject Class #5 ·· ... ·········· ...

/
· .. ·

/

··· ···

·······················

Figure 3-10 DeviceNet Model

-56-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

With respect to the relationship between CAN and DeviceNet, a DeviceNet network

utilises CAN·s Data frames to exchange its messages. Data is exchanged in a

DeviceNet network by means of Explicit messages and Input/Output (1/0)

messages.

• Explicit messages are used to transfer generic. multi-purpose data such as

requesting a connection with other devices. reporting errors, and so on

(Device Net 2.0 Specification, Vol. I. section 4-2).

it is noted that the common ser\'ices (as mentioned 111 the examples

previously) are transferred within Explicit messages.

• 1/0 messages are used to exchange special-purpose data. These types of

messages are used by I '0 devices to transfer their information during the

performance of their tasks.

Note: Device Net does not define any protocol for the Data field of an 110

message (Device Net ~.0 Specification. Vol. I. section 4-2). This enables

users to design data formats that suit their needs. This feature of

DeviceNet further reflects its flexibility in comparison with the SDS

protocol.

The formats of these two types of Device Net messages are described m section

3.3.3.c.

-57-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3.3 DeviceNet Application Protocol

3.3.3.1 Use of CAN Identifier in the DeviceNet protocol

As referred to previously, each DeviceNet's node has a unique MAC ID which

serves as its identifier in a network. In the DeviceNet protocol, the 11-bit Standard

format Identifier of a CAN message is used to assign the MAC ID to a node, as well

as the message identifier (Message ID).

A DeviceNet node can belong to one of four groups: Group 1, Group 2, Group 3,

and Group 4. The formats ofthese Groups' messages ID and MAC ID are shown in

Figure 3-11.

Identifier bits Hex Range Group
10 9 s I 1 I 6 s I 4 I 3 I 2 I 1 I o
0 Message ID Source MAC ID 000-3FF 1

1 0 MAC ID I Message ID 400-SFF 2

1 1 Message ID SomceMAC ID 600-7BF 3

1 1 1 I 1 I 1 Message ID 7C0-7EF 4

1 1 1 1 1 1 1 1l11xlxlxlx 7F0-7FF Not use

Figure 3-11 DeviceNet's use of the CAN Identifier Field

According to the CAN protocol, messages in Group 1 have the highest priority, and

Group 4 messages have the lowest priority.

Note that the MAC ID fields in Group 1 and Group 3 contain the source nodes'

addresses. In Group 2, the MAC ID field can be either the source or destination

address (DeviceNet 2.0 Specification, Vol. 1, section 3-2).

When assigning a MAC ID to a node, or message ID to a message, the group

priority should be considered. For example, in a car, the node controlling the air bag

should be one of the highest priority modules; thus, its MAC ID should be assigned

to Group 1. The node (or nodes) which carries out the tasks of engine management

-58-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

could belong to Group 2. The node controlling the air conditioning could be one of

the lowest priority: hence. its MAC ID could belong to Group 3.

Messages in Group 4 do not contain a MAC ID, hence. any node can utilise the

Group 4 messages. These messages are solely used for system administration

purposes such as recovering nodes which have gone off-line due to having the same

network addresses with other nodes (DeviceNet 2.0 Specification. 1997, Vol. I.

sedion ~.:!.4).

In addition. the message priorities within a group are determined as follows:

• For Group I and Group 3. the message with the lower message ID has

higher priority. When two or more messages try to access the bus

simultaneously. the lowest message ID will gain the bus access. If the

messages have the same message ID. then the message with the lowest

MAC ID wins arbitration.

For example. within Group I. the device with MAC 10=20 and message

10=2 has higher priority than the device with MAC 10=5 and message

JDc6.

• For Group 2. the lower MAC ID device has higher priority. When two or

more messages try to access the bus at a same time, the lowest MAC ID

node will gain the bus access.

For example. within Group 2. the device with MAC 10=0 has higher

priority than the device with MAC ID= I.

-59-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3.3.2 Use of CAN Data field in DeviceNet

Messages are exchanged in a DeviceNet network by means of Explicit and I/0

messages.

I/0 messages are left for users to define the information contained in the Data field

of the messages (Figure 3-12).

Data Field

0
1

7

Figure 3-12 1/0 message format

CAN Header

CAN Trailer

Explicit messages carry the common service information, which has been described

in section 3.3 .2. The format of an Explicit message is shown in Figure 3-13.

CAN Header

0

1
Data Field

7

CAN Trailer

Figure 3-13 Explicit message format

- 60-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

The Message Header of an Explicit message contains information about:

• Whether the message is fragmented or not, and

• The MAC ID.

Note that if the MAC ID in the Identifier field is the source ID, then the

MAC ID carried in the Message Header is the destination ID, and vice

versa.

The Message Body carries the servi~e parameters of a specific service.

A typical DeviceNet message contains 0 to 8 bytes. However, data larger than 8

bytes can be transmitted as fragmentation, and is thus catered for in the protocol.

The formats of fragment frames for VO messages and Explicit messages are shown

in Figure 3-14 and Figure 3-15, respectively.

The Fragmentation protocol field utilises the first data byte of the CAN data field.

It contains information of the fragment type (i.e. the first, middle or last fragment),

and the fragment number (DeviceNet 2.0 Specification, 1997, Vol. 1, section 4.4.1)

CAN Header

0
1

Data Field

7

CAN Trailer

Figure 3-14 1/0 message fragment format

- 61 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

CAN Header

0

1

Data Field 2

7

CAN Trailer

Figure 3-15 Explicit message fragment format

3.3.4 Advantages and disadvantages of DeviceNet

3.3.4.1 Advantages

The DeviceNet protocol is a complete Higher Layer protocol for CAN-based

systems. It has the following advantages:

• Provides a solution for low cost networks.

• It is an open network for I/0 devices.

• It has flexible data formats which utilise I/0 messages.

• The design of DeviceNet meets the requirements for real-time control

systems.

-62-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.3.4. J Disadvantages

The design of DeviceNet protocol has disadvantages as follows:

• It only utilises the Standard CAN fOrmat (11-bit Identifier)

• The use of the CAN Identifier is not efficient. No two nodes can have the

same MAC ID. This violates the CAN specification where two or more

nodes can have the same CAN ID to transmit or receive data.

• Amendment of the priority of a node or a message 1s an extremely

complex task and time consuming.

• Only 64 nodes can exist on one DeviceNet link because the MAC ID

range is 0 to 63.

If a network needs to contain more than 64 nodes, however, it can be

divided into subnets consisting of a maximum of 64 nodes. The subnets

are connected together by /'v'eMork Routers (Device Net 2.0 Specification,

1997, Vol. l.sectionl-6).

3.4 CAN Kingdom

3.4.1 Introduction to CAN Kingdom

This section introduces another approach for HLPs, called CAN Kingdom, which

was developed by Kvaser AB (CAN Kingdom 3.01 Specification, 1996-1997).

Lenna1tsson and Fredriksson (1995), in discussing the basic idea of the CAN

Kingdom protocol, state that "instead of specifying how modules should be finally

designed, CAN Kingdom specifies how modules can be adjusted to actual system

- 63-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

needs''. Whereas, in other HLPs such as Smart Distributed System (SOS) and

DeviceNet, modules have to follow the standards exactly.

Problems arise with SOS, DeviceNet or other CAN HLPs when modules following

different protocols are not able to work on the same network. This inconsistency is

due to the conflicting interpretation of messages at the Application Layer Protocol.

In addition, a module cannot know which other modules to communicate with in

SOS and DeviceNet systems (Lenartsson and Fredriksson, 1995).

In order to overcome these disadvantages of other HLPs, instead of developing a

complete new HLP, Kvaser AB introduced a new approach for the CAN Kingdom

protocol. The protocol consists of a set of protocol primitives which designers can

use to build their final HLP to suit their system needs.

In order to highlight this feature of CAN Kingdom, Korane (1996) quotes the

president of Kvaser. Lars-Berno Fredriksson, who claims that: "TI1e advantage of

CAN Kingdom not being a protocol but a set of protocol primitives is that,

especially for real-time systems, the system designer can choose the topology and

bus access management best suited for the application". Lennartsson and

Fredriksson (1995) also note that ''In fact, OeviceNet and SOS modules can be

integrated into CAN Kingdom systems (but not vice versa)".

The fundamental aspect of a CAN Kingdom system is the Network Manager, called

the King, which is responsible for the whole network configuration and decides

which nodes communicate with each other. Nevertheless, after setting up the

network and deciding upon the communication between modules, the King can

usually be removed from the system. Then, the system can inherit the full potential

of the CAN protocol such as Multi-Master and Broadcasting (see Chapter 2). In

some cases, the system can even be designed to work in other modes (Lennartsson

and Fredriksson, 1995).

- 64-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.4.2 CAN Kingdom Basic Concept

3.4.2.1 CAN Kingdom model and terminologies ·

According to the CAN Kingdom 3.01 Specification (1996-1997), a CAN Kingdom

system is described as being analogous to a country, a Kingdom, with a master node

(called the King or the Capital), and CAN modules (called Cities). The exchanges

of informatio11 between Cities, as well as between the King and Cities, are done by

means of letters (or mails) via a postal system. Figure 3-16 shows the model of a

CAN Kingdom system .

.

City 1 City 2 City 3

I'~ D"'"pJ I "' D'"'"pJ I.~ 'k''" pJ
Capital l l I

I Mayor3
King

Mayor 1 Mayor 2

I I I I

~ ~ ~ King Page~
Form

I I I
I

~ ~ ~ King
Folder

i-------1-------i i-------1-------i i-------b------i i------1-------i
I I I I I I I I
I CAN I I CAN I I CAN I I CAN I
I I I I I I I I
I Controller I I Controller I I Controller I I Controller I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I

_.J L ______ J
L------1 L----- _I

I_ __
r -~

Postal System
I I
I I
I I
I I
I I

~---!

Figure 3-16 CAN Kingdom Model

- 65-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

The following list introduces tenninologies definl'd m the CAN Kingdom

specification:

• The Capital and the King are actually the Network Manager node and the

software for controlling the network. respectively.

• A City and the Mayor of the City are the actual CAN node and the

software to control this node.

• Input I Output (1/0) Devices are the devices to carry out the tasks of the

CAN node such as sensors. actuators, switches. and so on.

• Forms are the tools in the CAN Kingdom protocol used to encode and

decode CAN me~sages into meaningful infonnation. A Form tells other

Cities VYhere on a page a certain piece of information should be placed or

is expected. and in which format (BCD, Integer. etc.) the information is

presented.

• Folders serve as btterboxes for mcommg and outgoing Letters (CAN

messages). Unlike normalletterboxes, each Folder contains one Letter at a

time and has a Folder number from 0 to 255. A Folder has a Form (or

Forms) associated with it so that the software knows how to encode and

decode the data.

• The Postal system includes the CAN bus and the CAN protocol.

• The Kingdom Founder IS the system designer, who decides how the

system works.

• The City Founder is the module designer. who is responsible for the

control mechanism that actuates the tasks of the CAN module (City).

-66-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

• An Envelope is the CAN Identifier of CAN messages.

• A Line is one CAN data byte in the Data field of a CAN message.

• A Page is the CAN data field. As the CAN data field consisting of 0 to 8

bytes, each Page contains 0 to 8 Lines.

• Letters are the messages which are exchanged in the system. A letter

consists of an Envelope and a Page. The Envelope serves as the

destination address, to which the letter should go. The Page contains

information of the Letter.

The Figure 3-17 shows the relationship between a CAN Data Frame and a CAN

Kingdom Letter.

CAN Data Fmml.'

----. Identifier Field
Control

Dma Field ----·
Field

E:nveloJIC Page (0 to 8 Lines)

Figure 3-17 A CAN Kingdom Letter

- 67-

Higher Layer Protocols (1-ILPs) for Controller Area Network (CAN)

3.-t2.2 Basic concl'pt of CAN Kingdom

In tile CAN Kingdom specification. tile operation of a CAN Kingdom system can be

dn·ided into two phases:

• Set-up phase. and

• R11n phase .

.-\ll tlle s~stem ..:onfigurations including data formats. bus man:l_;Pment, CAN

ldcnufter assignments. and SL) on. are e\ccuted d•tring the Set-up phase. In the Run

plwse. thC' s~stem oper3tes :1ccording to the configurations established in the Set-up

ph~SC'.

The basic idea of the CAN Kingdom is that at initialisation (the Set-up phase). all

Citie~ han~ to \\ait for instructions fi·om the King. The King is responsible for the

configuration of the S)Stem. it O\\·ns all the Envelopes and assigns them to the

Folders that keep messages to be transferred in the system. In other \Vords. the King

F='under u<>ually decides upon thc priorities oft he messages and the cvmmunicmion

between Cities during this pha:-.c.

lt is clear that \\hen desil!ninl!. a CitY. the CitY Founder (the Module Designer) does
~ - - "' -

not need to he concernul abmn hm\ his or her City will communicate in a partit.:ular

system. Instead. the duty of tile Cit) is only to know huw to receive anJ ltl follow

the King's instructions.

Funlwrmore. because a Cit~. when connecting to the system. cannot do an}'lhio~g

bl'l-~.m the King sanctions it. any City with a wrong baud rate setting can never

destr0) the system (Lennartsson and Fredriksson. 1995).

After setting up all necessary configurations for the system. the King tells the Cities

\\hen the Set-up phase has linishcd: then. the Cities can stm1 to work as designed.

- 68-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

At the Run phase, the King can be removed; and thereafter, it does not get involved

in the system operations.

The concept of Set-up phase and Run phase in the· CAN Kingdom protocol can be

demonstrated in Figure 3-18 and Figure 3-19.

City 1 City 2 City 3

![\ A !j\
I

I I I CAN Bus
'L ___ I r-----..J· _____ j

I I ,-,-=--=--=---=-----------:;-
I I I I \V

KING City4

(Master Node)

Figure 3-18 Set-up phase

City 1 City 2 City 3

""
A A ![\ ,1\ ![\

I
L ___________ .J

I
CAN Bus L- --------~-----------

--1--------~ _______ J I

T 1----, r----~..J

I ~ ~
KING City 4

(Master Node)

Figure 3-19 Run phase

- 69-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.4.3 Application Layer Protocol

The application services are provided in the CAN Kingdom protocol by means of

Forms (see section 3.4.2). The Forms in the CAN Kingdom inform Cities where the

expected data should be placed. Upon reception of a message (a Letter), a City picks

up the Form associated with the receiving Folder in order to decode the data.

In the CAN Kingdom specification. there are :everal predefined Forms for King

Pages ns well ns Forms to be used in Cities (CAN Kingdom 3.01 Specification.

\996-\9Q7. p. 58). The CAN Kingdom Forms provide a nexible way which enables

designers to construct suitable data formats for their system needs because the Form

formats can easily be changed when required. The description of Forms used in Set

up phase and Run phase are detailed below·.

During the Set-up phase. the King sends out its instructions to Cities via the King

Pages which are constructed according to the King Page Forms. Upon reception of a

King Page. the City (or Cities) uses a similar King Page Form to decode the Page

into a meaningful instruction.

Note that a City has a unique address among the network so that the King can talk

to an individual City. The King can also l)roadcast its messages to all Cities, or to a

group of Cities if necessary. In the CAN Kingdom protocol. the highest priority

Env-!lope (CAN Identifier) is reserved for identification of King Pages.

An example of a King Page Form is shown in Figure 3~ 19 .

. 70.

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Document Name: King Document

Document List: T1 Capital I 0 City

Document Number: 0 Capital I 0 City

Document Type: Transmit (Capital)

Receive (City)

Page Description.

Page Number: 0

Number of Lines: 8

Data Description: The King Page 0. Terminates the Set up phase. Order the Mayor to set its

City into a specific working mode, eg in a Run or Freeze mode.

Line Description

Line 0: City or Group Address

Line 1: 00000000 (Page 0)

Line 2: rnnrAA Action Mode

AA=OO Keep cunent Mode

AA=Ol Run

AA=lO Freeze

AA=ll Reset

J=O Reserved

Line 3: tn1TrCC Communication Mode

CC=OO Keep cunent Mode

CC=Ol Silent

CC=lO Listen only

CC=ll Communicate

r=O Reserved

Line 4: MMMMMMMM City Mode

M=O Keep the cunent Mode

MtO Modes according to the City specification

Line 5: nTnm r=O Reserved

Line 6: nTITriT t=O Reserved

Line 7: nnTnr r=O Reserved

Figure 3-20 Example of a King Page Form

- 71 -

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

The purpose of the King Page in Figure 3-20 is to inform the Cities that the Set-up

phase has finished and the Cities can start to work in the mode specified by the

page.

This King Page reveals:

• Line 0 of the page contains the City or Group address; thus, the City or the

group of Cities with the address specified on the Line must follow tht:

instruction presented by this King Page. Other Cities ignore this Page.

• Line l of the page contains the Page number (Page 0). which enables the

receiving City to pick up the corresponding Form to decode the Page.

• The other Lines of the Page contain configuration information that the

Cities have to foliO\\ when receiving this Page.

Importantly. during the Set-up phase the King sends many King Pages of

information in order to establish each City's role in the Kingdom.

After the Set-up phase, the CAN Kingdom system can work as designed. This stage

is called the Run phase. At this stage the King can be removed, as previously noted,

from the system if no configuraticn changes are required.

In the Run phase, Cities communicate with each other as specified in the Set-up

phase. They transmit and receive information to and from each other via Letters

(CAN messages). Upon reception of Letters, a City uses Forms to decode the

Letters to meaningful information. The data type of the message is also described in

the Forms.

Note that if two or more Cities want to exchange information, they must have

exactly matching forms in each City's itinerary .

. 72 .

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Figure 3-21 gives an example of a Run phase Form for Cities which are typically

used in temperature measurement applications.

Form List: RO

Form No: 9

Document Name: TEMPERATURE 1

TEMPERATURE 2

Document No: R0.2, R0.3

Document Type: Receive

Page Description

Number of Lines: 1

Data Description; TEMPERATURE

Range: 0-255oc

Line Description

LineO Temperature in Centigrade

Resolution: 1 °C

0 oc = 00000000

Data Format: 8-bit unsigned Integer

Figure 3-21 Example of a Form to be used in Run phase

The purpose ofthe Form in Figure 3-21 is to encode and decode the temperature in

Centigrade. A message constructed by this form contains one Line (CAN data byte).

The information carried by this line is temperature with the 1 °C resolution in 8-bit

unsigned integer format. A transmitter sends temperature information according to

this Form. Then, a receiver uses a similar Form to decode the incoming message.

In using the concept of Forms, City Founders (node designers) have the opportunity,

and flexibility, to design their own Forms for their modules.

In order to inform the system designer (the King Founder) of details about the tasks

of the Cities, the City Founders have to document all the Cities' Forms when

designing their Cities.

- 73-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

Each City may contain a document for transmitting and a document for receiving

information. A docoment consists of a set of Forms. Therefore, by studying the

Cities' documents. the King Founder can decide which Cities are suitable for the

system and the role of each City in the <.ystem.

Furthermore, unlike Smart Distributed System and Device Net which only utilise the

CAN Stand<1rd format (11-bit Identifier messages). the CAN Kingdom protocol is

specified for use of both Standard and Extended formats (29-bit Identifier

mcs-;ag.es) (Lenna1tsson and Fredriksson. 1995).

The CAN Kingdom protocol also speci!ies how to transfer data larger than a normal

Page l8 bytes). In doing so, at least some bits of a Line in a Page are reserved for

pagination, and the data usually is transferred in the same Envelope. Upon

reception. the receiver can rcarnmge the data in the right order by looking at the

Page numbers. Hence. if any Page has already been received, it can easily be

omitted.

One example of transferring data larger than one Page is the transmitting of King

Pages. where all King Pages are transmitted in the same Envelope (Envelope 0), and

Line 1 of each King Page contains the Page number. When receiving the Page, the

Cities know which Forms are to be used to decode the data by looking at the Page

number (CAN Kingdom 3.0! Specification, 1996-1997, p.56).

- 74-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.4.4 Advantages and Disadvantages of CAN Kingdom

3.4.4.1 Advantages

The main purpose of the CAN Kingdom is to develop an open protocol with a set of

protocol primitives. which the System Designers can use to construct a suitable

protocol for their own needs. This approach has several advantages:

• The nodes following different Higher Layer Protocols for CAN can be

integrated into a CAN Kingdom system with only minor adjustments in

software.

• A node with a wrong baud rate setting in the CAN Kingdom system does

not ruin the system because it has to obey the King's instructions when

connecting to the network. and cannot do any1hing before the King gives

penniss10n.

• Although the King is responsible for establishing any communication in

the Kingdom (CAN System), it can be removed from the network after

providing all the necessary configurations and consistency checks for the

system. Nevertheless, whenever required, the King can be reconnected and

can send instructions to the system.

• Both Standard and Extended CAN frame formats can be used.

• The Remote Transmit Request (RTR) bit is utilised in a CAN Kingdom

system.

- 75 -

•

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

3.4.4.2 Disadvantages

TI1e disadvantages of the CAN Kingdom protocol are;

• CAN Kingdom is not a complete Higher Layer Protocol

• System Designers have to build up their own final protocol

Ho\\ ever. the purpose of the CAN Kingdom protocol is a versatile system based on

an open approach for Controller Area Network (CAN).

3.5 Conclusion

This chapter has presented an overview and discussed the importance of Higher

Layer Protocols (HLPs) for CAN~based systems. The main features of three popular

HLPs have been described.

As discussed, the Smart Distributed System provides an efficient protocol for

communications between 110 devices and host controllers. The protocol meets the

requirements of speed, reliability, and real-time supp011 in control systems used in a

wide range of automation industries. However, the protocol has disadvantages that

reduce the potential use of the CAN protocol (e.g. only Standard fonnat frames are

utilised in the SOS protocol). Moreover. the SOS protocol is not flexible to provide

users opportunities to enhance their systems.

DeviceNet is an open network where all nodes have the same right to access the

bus. The protocol is also efficiently used to control 110 devices. The Object

Oriented approach of DeviceNet makes it more flexible than SOS. Instead of

specifying fixed application services as SOS does, each object in DeviceNet can

provide different services. Users also have more control when designing their

- 76-

Higher Layer Protocols (HLPs) for Controller Area Network (CAN)

systems with the means of I/0 messages. However, similar to SOS, DeviceNet uses

only the Standard CAN format.

In addition. no two or more nodes can have the same Logical Addresses in an SDS

system or MAC ID in a DeviceNet system. This violates the use of CAN Identifier

where two or more modules can utilise tile same CAN ID for the exchange of data.

Furthermore. it is not easy to change a Logical Address or a MAC ID once it has

been assigned. In other words, the priority of a node or a message cannot be

changed without a complex redesign of d1e system.

The CAN Kingdom protocol provides more flexibility to its users. The features of

the CAN protocol are used more effectively in a CAN Kingdom system. Designers

are free to develop their own CAN modules. This means users can design their

modules independently without being concemed about how the modules are going

to work in a specific system.

The master node, the King, in a CAN Kingdom system decides the role of each

module in the system. As a result. the priorities of messages or nodes can easily be

changed even when the system is in nuHime.

One of the great advantages of the CAN Kingdom protocol is that SOS, Device Net

or other HLPs modules can be integrated in a CAN Kingdom system. In fact, CAN

Kingdom system designers can select any suitable modules for their system.

The disadvantage of the CAN Kingdom protocol is that it is not a complete

protocol; hence. designers have to construct their own final protocol.

- 77-

CHAPTER4

DESIGNING A HIGHER LAYER PROTOCOL FOR

SMALL DISTRIBUTED MICROCONTROLLER

SYSTEMS USING THE CONTROLLER AREA

NETWORK PROTOCOL

This chapter is concerned with designing a Higher Layer Protocol (HLP) for small

Distributed Microcontroller Systems using the Controller Area Network (CAN)

protocol. This follows the choice of one of the three 1-JLPs, which were discussed in

Chapter 3. the CAN Kingdom protocol. A small CAN-based distributed system is

then designed to implement and to test the protocol.

4.1 Choosing a Higher Layer Protocol

The main purpose of the design of the HLP in this project is:

• To achieve a simpler HLP for small CAN systems which have restrictions

such as the limited amount of memory for control program, and the ease

of system design.

• To ensure that the design methodology of the HLP is easy to understand.

• To provide opportunities for later designers to expand the application of

this project's progress.

As discussed in Chapter 3, Smart Distributed System (SOS), DeviceNet, and CAN

Kingdom protocols are a!! based on the CAN protocoL Each one of them i~ suitable

• 78-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

for particular applications in automation processing industries. The main features of

these protocois are summarised as follows:

• SDS is based on point-to-point communication between a master (Host)

and remote Input I Output (1/0) devices.

• DeviceNet is an open system in which all modules have the same right to

access the bus.

• CAN Kingdom specifies a set of protocol primitives which system

designers can use to build a final HLP to suit their needs. The principle of

the CAN Kingdom protocol is that a master node in a system, the King, is

responsible for the entire network configuration; yet. the King can be

removed after the system is set up. Jnd leave the Cities to perfonn the

task of the system.

Nevertheless, the main disadvantages of the SOS and DeviceNet protocols are that

designers have to follow the standards exactly. and hence, there are a few chances

to modify the protocols to satisfy the requirements of a particular system. Moreover,

these protocols utilise only the Standard format of the CAN protocol {see Chapter

3), and they are too complex to fit into the small amount of memory available in a

small system. Furthermore. the designers, following SOS and DeviceNet standards,

must be fully aware of how their nodes are going to work in a certain system. They

also have to decide in advance the communication between the nodes.

The CAN Kingdom. on the other hand. is more flexible, as rlesigners can easily

select the services that are suitable for their system. in other words, the CAN

Kingdom services can be chosen to fit into the small amount of memory if the

restrictions of the system are the limitation of memory and the ease of design.

In addition, when designing a node, the designer does not need to be concerned

about its communication in a typical CAN Kingdom system. This is the role of the

King to decide which nodes communicate with each other. This means that module

- 79-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

designers can concentrate on the design of their modules to do particular tasks,

without having to know how they will be used in a specific network.

For example. if a temperature measurement module is designed to measure the

temperature in a coolant system, the main task of the designer is to design the

module so that it can get the temperature information and store it into a Folder.

When this module is connected to a CAN Kingdom network. the King will decide

which other nodes receive its temperature information.

This tCature of the CAN Kingdom protocol enables the nodes which follow the

rules of other HLPs such as DeviceNet or Smart Distributed System to be integrated

into CAN Kingdom systems (Lennartsson and Fredriksson, I 995).

Fmthermore. the CAN Kingdom protocol is also specified to use both Standard and

Extended CAN formats (CAN Kingdom 3.0 l Specification, 1996-1997), Therefore,

designers can utilise the latest technology of the CAN protocol.

Despite the advantages such as the above. the full implementation of the CAN

Kingdom protocol is a complex matter; and hence. it is the aim of this thesis to

show that further simplifications can be made to the protocol in order to suit the

requirements of a small system.

It should be noted that the design of the Higher Layer Protocol in this project is

based on the basic ideas of the CAN Kingdom protocol such as the responsibility of

the King, and the use of Forms. Yet. the implementation of the protocol is different

from the CAN Kingdom protocol such as the addressing method, and Fonn design.

Because the HLP in this project has been Jesigned according to CAN Kingdom

specification, it is named the Small CAN Kingdom protocol.

Note that the Small CAN J(ing.!om protocol uses the same terminologies as the

CAN Kingdom protocol, such as the King, Cities, Forms, and so on (see Chapter 3).

- 80-

Designing a HLP for Sm<1ll Distributed Microcontroller Systems using CAN

4.2 Designing the Small CAN Kingdom protocol

4.2.1 Introduction

The main idea behind the CAN Kingdom proto<:ol is that a node, when connected to

a system. has to wait for instructions from the King. The King tells each node which

other nodes it will communicate with. In doing so, the King sends a set of King's

me.ssage.s to a node or a group of nodes in order to set up the rules for the Kingdom.

To enable the King to send instructions to a particular City. each City has to have a

unique address among lhe network. In tbe Small CAN Kingdom protocol described

in this thesis, a simpler addressing method is used to access the Cities. Each City

reserves one byte of memory to store an integer value in a range of ! to 255. This

integer value serves as a City's address in the Kingdom.

Note that the address 0 is reserved for the King to send broadcast orders. 'Ibis

means that all Cities in the network belong to a group with address 0.

btch City can be designed independently without any pnor knowledge, on the

design~r's behalf. of the network to which it will eventually be connected.

However. the Cities have to be able to receive and obey the King instructions. In

other words. the node designers should follow some rules to enable their Cities to

receive the King Pages when they are connected to a system. These rules are

describl!d in the fOllowing sections.

The model of a Small CAN Kmgdom system can be visualised in the same way as a

CAN Kingdom system and is shovvn in figure 4-1 .

• 81 •

Designing a HLP for Small Distributed Microcontroller Systems using CAN

City 1 City 2 City 3

~uo~"~pJ I vo D"'"pJ I"~ ""'"pJ
Capital I I I

I King
Mayor 1 Mayor2 Mayor3

l I I I

~ ~ ~ ~

King Page
Form t-

1 I I
J E]JJ E]JJ E]JJ King

Folder

r------1-------,
I I

r------1-------,
I I

r------1-------,
I I

r------4-------,
I I

I I I I I I I I
I CAN I I CAN I I CAN I I CAN I
I I I I I I I I
I Controller I I Controller I I Controller I I Controller I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I

_.J L------1
L ______ J

L----- .I
I ___

1- "I

Postal System
I I
I I
I I
I I
I I
I . I
-----------------------------~r---~

Figure 4-1 Small CAN Kingdom Model

- 82-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Typically, a system designed according to the Small CAN Kingdom protocol

consists of:

• A Capital with the King being responsible for the entire network

configurations.

• A number of Cities, each of which has a unique network address so that

the King can talk to each individual City. Each City carries out particular

tasks specifying its role in the Kingdom.

The basic operations performed between the King and Cities and between the Cities

themselves are described as follows:

The King sends instructions to the Cities via King Pages. The format of each King

Page follows a specific King Page Form, which are used by a node to encode or

decode the Page into a meaningful instruction. Before a King Page is sent out, it is

stored into the King Folder, which acts as the bridge between the King and the

postal system. It should be noted that the King Folder contains only one King Page

at a time.

Each City has a Mayor, which is the software responsible for all the City's

operations. A City also has a number of Forms, which are used to encode and

decode incoming and outgoing messages. The City's Folders are the bridges

between the Mayor and the postal system. They are used to store messages before

being transmitted or read by the Mayor.

- 83 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.2.2 The King

The King is responsible for the entire network configuration. In fact, it is the

responsibility of the system (network) designer. The system designer knows exactly

how the system is intended to work, and how the Cities should communicate with

each other in the system. His or her knowledge is then passed to the King and

subsequently, the King sends instmctions to the Cities to perform the configuration

set-up.

The orders from the King are sent to the Cities by means of King Pages. Each King

Page consists of two or more Lines (CAN data bytes). Each Line contains

information meaningful to the Cities which receive the Page.

In all King Pages, the first Line of a Page contains the City's address, or the group

address to which the City belongs. The second Line specifies the Page number

indicating a specific King command. The other Lines, which may be included in a

King Page, contain information required for the Page to execute a particular set-up.

Five King Pages of the Small CAN Kingdom protocol, which were designed and

implemented in this thesis, are as follows:

1. Page 0: Terminate Set-up phase. The Cities are ordered to start to work.

2. Page 1: Assign an Envelope to a Folder.

3. Page 2: Change the City's address, or assign a City or a group to a new

group

4. Page 3: Restore the original City's address or ungroup a group

5. Page 4: Baud rate setting

- 84-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

The descriptions of these King Pages are as follows:

• Page 0 tells the Cities that the Set-up phase has finished. All the

necessary configurations for the systems ·have been done, and hence, the

Cities can start to work as designed.

• Page 1 is responsible for assigning an Envelope (CAN ID) to a particular

Folder. Folders are the parts of a City in which the City keeps its

messages that are in the process of being, or having been, transmitted or

received. This Page can be used to enable or disable a Folder. This means

the King can enable or disable a City to transmit or receive a specific

message.

• Page 2: The main purpose of this Page is to assign a City, or a group of

Cities, into a new group. This enables the King to send orders to a group

of Cities. This Page can also be used to change a City's address.

• Page 3 is used to ungroup a group or restore the original City's address.

When a group of Cities is ungrouped, the original address of each City is

automatically restored. Consequently, if the King wants to talk to

ungrouped Cities, the King has to send instructions to their original

addresses.

• Page 4 is used to set a new baud rate for the system. When connecting to

the network, all Cities listen to the King's commands at a fixed baud rate.

Then, new baud rates can be applied to the system by using this Page. It is

noted that when the King changes the system baud rate, it has to change

its own baud rate so that it can communicate with the Cities later on

because all nodes in a CAN system have to operate at the same baud rate

(see Chapter 2).

Note that the first two King Pages (Page 0 and Page 1) would be sufficient for a

system which does not require complex set-up procedures. This is the minimum

- 85-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

requirement for a Small CAN Kingdom based system. In other words, these two

Pages are mandatory for the system.

For example, when a system contains a few node·s, it may not be necessary to

include King Page 2 and 3 (grouping and ungrouping instructions). However, the

King can broadcast its instructions to all Cities by using the group address 0

because all Cities initially belong to group 0. In addition, if the system always

works at a fixed baud rate, King Page 4 can also be omitted.

The information contained in each Line of a King Page Form is described as

follows:

PageO

Line 0: City or Group address

Line 1: Page number (Page 0)

Page 1

Line 0: City or Group address

Line 1: Page number (Page 1)

Line 2: Folder number

Line 3: Envelope value

Line 4: Envelope value

Line 5: Envelope value

Line 6: Envelope value

Line 7: Configuration

MSB (Most Significant Bit)

LSB (Least Significant Bit)

Note: Line 7 ofPage 1 contains information to:

• Enable/Disable the Folder,

• Set the Letter in the Folder to Transmit/Receive, and

• Set a Letter to Standard/Extended format.

- 86-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Page 2

Line 0: City or Group address

Line 1: Page number (Page 2)

Line 2: New City's or Group address

Page3

Line 0: City or Group address

Line 1: Page number (Page 3)

Page 4

Line 0: City or Group address (should be the group address 0)

Line 1: Page number (Page 4)

Line 2: Baud rate value

Line 3: Baud rate value

Note that Lines 2 and 3 of Page 4 contain information for setting the system baud

rate. This information is discussed in Chapter 7.

It should also be noted that only five King Pages have been described and

implemented due to the time restrictions of this project and the limitation of on-chip

memory available in the MC68HC 11 microcontrollers. However, it is possible for

later designers to add more King Pages for future expansion.

- 87-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.2.3 Cities

As mentioned previously, Cities have to wait for instructions from the King before

they can start to work. Moreover, they should also be able to obey the King's

instructions while they are performing their normal tasks. Therefore, the design of a

City has the following requirements:

• A City must always be able to receive and obey the King's commands.

• The King's instructions should have the highest priority so that the Cities

can receive and perform the instructions immediately while they are

working.

Firstly, to achieve the requirements above, each City has a special Folder for the

reception of King Pages and a set of King Page Forms associated with this Folder to

decode the King Pages. These Forms are the same as the King Page Forms

contained in the Capital. When a King Page arrives, by looking at the Page number,

the City's Mayor can select the right Form to decode and perform the Page's task.

Secondly, each City reserves the highest priority Envelope (CAN ID) for the

reception of King Pages. This allows the City to receive the Pages immediately,

even though the bus load on the network is high.

In addition, and as discussed earlier, a City can be designed independently from

another, and it does not need to be aware of how it is intended to work within a

specific system. The King (or actually, the system designer) is responsible for that

role. Therefore, each City has to be documented to inform the system designer what

tasks it can do, and what information it transmits or needs to receive. This enables

the designer to decide the communications between the Cities.

- 88-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Each City may consist of three sets of documents as follows:

1. The King Document which contains information relating to the original

address of the City and a set of King Page Forms. Note that the original

address of a City should be left for the system designer to assign in order to

avoid conflict between Cities.

2. The Transmit Document which informs the system designer what type of

information the City can send out, where the information is located (Folder

number), and which Forms to decode the information.

3. The Receive Document which tells the system designer what type of

information the City needs to receive, where the information will be stored

(Folder number), and which Forms are required to decode the information.

It is noted that when designing a system, the designer should ensure that each City

can receive all the King Pages used in the system; although this is not mandatory,

because the King can send orders to an individual City. However, if Page 4 (Baud

rate setting) is used in a system, all the Cities must be able to perform it. Otherwise,

the system could be out of action because all nodes in a CAN-based system have to

work at the same baud rate.

Furthermore, if two or more Cities exchange information, they have to contain

exactly matching Forms. For example, the documents housed in City 1 and City 2

inform the system designers that City 1 transmits temperature information from

Folder 2, and City 2 receives temperature information in Folder 3. The Cities'

documents also state that the Form for encoding data in Folder 2 of City 1 is the

same as the Form to be used to decode data in Folder 3 of City 2. Therefore, during

Set-up phase, the designer orders the King to assign the same Envelope to the two

Folders so that the two Cities can communicate with each other.

For the sake of simplicity of the Small CAN Kingdom protocol, each City contains

fifteen Folders with the Folder number in the range of 1 to 15. The . first Folder

- 89-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

(Folder number 1) is reserved to receive King Pages. The rest of fourteen Folders

can be used to store the City's Letters while it is working. However, the number of

Folders can be increased, if required for future expansion.

During the network's run-time, each Folder can be used to store messages for a

specific I/0 device. When the device has something to be sent to another node (or

nodes), the Mayor uses one of the Forms associated with this Folder to encode the

data to form a Page, then stores the Page into the Folder. This Page and the Folder's

Envelope, which is assigned by the King, are used to construct a Letter. The Letter

can then be sent straight away by the City's Mayor, or by remote request from other

Cities. A City sends remote requests by means of CAN Remote frames (see Chapter

2).

When a new Letter arrives, it is stored in a Folder. Then, the Mayor is notified (by

an interrupt, for instance) and the reverse process is performed to control the I/0

device. In other words, the Mayor picks up one of the Forms associated with the

Folder in order to decode this Letter and then send the data to the I/0 device.

Note that although one Folder is usually used to control one device, two or more

similar devices can utilise the same Folder. For example, one single command can

be invoked to set parallel switches to ON or OFF at the same time, and

consequently, only one Folder is required for performing this task.

The operations of a Small CAN Kingdom system can be more fully understood by

undertaking the design of an actual system as described in the following section.

- 90-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.3 Design a Small CAN Kingdom system

The aim of this section is to introduce the method.ology for the design of a small

distributed microcontroller system utilising the Small CAN Kingdom protocol. The

actual hardware and software designs are covered in the later chapters.

4.3.1 Introduction

The purpose ofthe system is:

• To build a complete Higher Layer Protocol (HLP) for a small distributed

system, and

• To make it easy to demonstrate the performance of the HLP in such a way

as to illustrate the responsibility of the King, and the method of the

communication between the King and Cities, as well as between Cities

themselves.

The system is designed to include a Capital with the King controlling the network,

and three Cities:

• The King, the master node, is responsible for the system configurations

and deciding the communication paths within the system.

• City 1 gets Analog I Digital (A/D) signals from an 1/0 device and sends

to the CAN bus whenever the signal has been changed.

• City 2 also gets AID signals from an 1/0 device but only sends to the

CAN bus when it receives a remote request (CAN Remote frames) from

City 3.

- 91 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

• City 3 is responsible for receiving information from both City 1 and City

2. The information is then displayed on a Liquid Crystal Display (LCD)

along with the transmitting City's address. This City also sends a request

to City 2 if the data is needed.

The reasons for choosing AID signals for the City 1 's and City 2's tasks are that

AID signals are used widely in devices such as temperature or speed measurement

sensors. The LCD in City 3 provides a visual way to demonstrate the operations of

the system.

4.3.2 System design

4.3.2.1 The King

The King is designed to receive set-up information from the system designer. The

information is then encoded according to the King Page Forms and sent to Cities via

the King Folder and the postal system.

Note that the King is also notified when a Page is successfully transmitted. This

enables the King to configure itself if necessary. For example, if the King sends out

Page 4 (Baud rate setting), it also needs to change its own working baud rate to that

of the network.

The operation process of the King is shown in Figure 4-2.

- 92-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

King Page
Forms

Designer King Folder 1----~~

King's message King's message

Transmitted message notice

Figure 4-2 The King Process

4.3.2.2 City 1

The task of City 1, during run-time, is to get AID signals from an I/0 devices and

send it to the CAN bus whenever the signal value has been changed.

The AID signal is encoded to ASCII values by a Form, called the AID Form in the

City's Transmit Document. The data is stored in Folder 2 of the City. Then, the

City's Mayor sends the data along with the City's address onto the bus.

The operation process of the City is shown in Figure 4-3.

- 93 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

AID

King's message

Encoding or
Decoding Data

City 1 's
documents

Mayor's instruction I

City 1 's Data

Figure 4-3 City l's Operation Process

Folder 1
King's message

City 1 's Letter
Folder 2

City 1 has two documents which inform the system designer about its task. The two

documents are the King Document and the Transmit Document as shown in Figures

4-4 and 4-5.

Note that the City does not have the Receive Document as it does not receive any

data.

The King Document

City's Address: 001

List of King Pages

• King Page 0

• King Page 1

• King Page 2

• King Page 3

• King Page 4

Figure 4-4 The City 1 's King Document

- 94-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

The King Document informs the system designer that the City's address is 001 and

that the City can receive all five King Pages (from Page 0 to Page 4).

Transmit Document

This document contains the AID Form associated with Folder 2. City 1 's messages

(Letters) are constructed according to this Form.

Form Type: Transmit

Location: Folder 2

Remote Request: No

Data Type: ASCII code (for all Lines)

Line Description

Line 0: City's Address (Hundreds)

Line 1: City's Address (Tens)

Line 2: City's Address (Units)

Line 3: ' :' character

Line 4: AID Value (Hundreds)

Line 5: AID Value (Tens)

Line 6: AID Value (Units)

Line 7: EOT (End of String character)

Figure 4-5 City 1 's Transmit Document

- 95 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

The AID Form carries the following information:

• It is used to encode the transmitting messages.

• The messages are located in Folder 2.

• The messages are transmitted to the CAN bus straight away without any

request.

• Data types for all Lines in the messages are ASCII code. Note that it is

possible to design different data types in each Line.

• Line 0 to Line 2 contain the City's address (001). This address can be

changed by the King.

• Line 3 consists of the ':' character to separate the City's address and the

AID value.

• Line 4 to Line 6 carry the values of AID signals.

• Line 7 is the End Of String character (04 Hex). This indicates the end of

an ASCII string.

4.3.2.3 City 2

The task of City 2 is to get AID signals from an I/0 device and send it to the CAN

bus when it receives a remote request.

The AID signal is encoded to ASCII values by a Form, called the AID Form in the

City's Transmit Document. This Form is similar to the AID Form in City 1, except

the messages are sent only when requested. The data is stored in Folder 2 of the

City. Then, the City's Mayor sends the data along with the City's address on to the

bus in response to a remote request.

The operation process of the City is shown in Figure 4-6.

- 96-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

AID
AID Data

Encoding or
Decoding Data

King's message
Folder 1

Mayor's instruction I
Folder 2

City 1 's Data

Remote request fi·om City 3

Figure 4-6

City 2's
documents

City 2's Operation Process

City 2 also contains two documents:

King's message

City 1 's Letter

1. The King Document is the same as City 1 's King Document as shown in

Figure 4-4 except the City's address is 002.

2. The Transmit Document is shown in Figure 4-7.

City 2 does not have the Receive Document because it does not receive any data.

- 97-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Form Type: Transmit

Location: Folder 2

Remote Request: Yes

Data Type: ASCII code (for all Lines)

Line Description

Line 0: City's Address (Hundreds)

Line 1: City's Address (Tens)

Line 2: City's Address (Units)

Line 3: ' :' character

Line 4: AID Value (Hundreds)

Line 5: AID Value (Tens)

Line 6: AID Value (Units)

Line 7: EOT (End of String character)

Figure 4-7 City 2's Transmit Document

Note that the description of this Form is the same as the Form for City 1 except the

Remote Request is set to "Yes".

4.3.2.4 City 3

This City is designed to receive and display data in Liquid Crystal Display (LCD),

typically, from City 1 and City 2.

Folder 2 and Folder 3 are used to receive a string of ASCII characters. The string

length is no more than 8 bytes with the last byte being an EOT character.

The operation process of City 3 is shown in Figure 4-8.

- 98-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

LCD

City 3 's
documents

King's message

eceived data

Mayor's instruction I

Received data

Remote request

Figure 4-8 City 3's Operation Process

City 3 contains two documents:

Folder 1
King's message

Received data

Folder 2

Received data

Folder 3

1. The King Document is the same as City 1 's and City 2 's King Documents

as shown in Figure 4-4. This means that City 3 can also receive all five

King Pages. Note that the City's address is 003.

2. The Receive Document contains two Forms associated with Folder 2 and

Folder 3 as shown in Figures 4-9 and 4-10.

Note that this City does not have a Transmit Document as it is used to receive data.

- 99-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Form Type: Receive

Location: Folder 2

Remote Request: No

Data Type: ASCII code (for all Lines)

Line Description

Maximum 8 Lines.

Each Line is ASCII code.

The last Line must be ·EOT.

Figure 4-9 City 3's Receive Document (Form for Folder 2)

The Form in Figure 4-9 records the following information:

• It is used to decode arriving messages.

• The messages are located in Folder 2.

• The Mayor does not generate Remote Request to receive the messages in

this Folder.

• All Lines contain ASCII values at any range.

• The Folder 2 can receive a maximum of 8 bytes and the last byte must be

EOT.

- 100-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

Form Type: Receive

Location: Folder 3

Remote Request: Yes

Data Type: ASCII code (for all Lines)

Line Description

Maximum 8 Lines.

Each Line is ASCII code.

The last Line must be EOT.

Figure 4-10 City 3's Receive Document (Form for Folder 3)

The information contained in this Form is the same as for Folder 2, except:

• The location is Folder 3, and

• The Mayor sends remote request to receive messages for this Folder.

- 101 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

City 1

I I
Envelope 1

Folder 2

~

City 2
The King

I I
Envelope 2

r-----Folder 2

City 3

I Folder 2 I
Envelope 1

Envelope 2

I I Folder 3

Figure 4-11 The Small CAN Kingdom system's Set-up phase

City 1

l Folder 2 ~ -

RemoteR equest.,. City 2
...

r-~ Folder 2 I

City 3 City 1 's Messages

I Folder 2 ~ 1---

City 2's M
'--~ Folder 3 I

essages

Figure 4-12 The Small CAN Kingdom system's Run phase

- 103-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.3.3.1 Set-up phase

During this phase, the King uses King Page 1 to assign the same Envelope (for

example, Envelope 1) to City 1's Folder 2 and City 3's Folder 2, and to enable the

two Folders.

The King also assigns a similar Envelope (for example, Envelope 2) to City 2's

Folder 2 and City 3's Folder 3, and again enables the two Folders.

Optionally, the King may send other King Pages for further configuration such as to

change the baud rate by King Page 4, or to change City address by King Page 2.

After completing the entire network configuration, the King sends King Page 0 to

tell the Cities that the Set-up phase is finished and the Cities can begin their work.

It is noted that King Page 4 should be broadcast to all Cities by utilising the Group

address 0. This enables all Cities to start their work simultaneously.

4.3.3.2 Run phase

In this phase, City 1 transmits its messages via its Folder 2 whenever it detects a

changing value from the AID device. City 3 receives the messages via its Folder 2.

The Mayor 3 then uses the Form associated with this Folder to decode the messages

and sends them to the LCD for display.

The Mayor 2 always updates its information and stores the information in Folder 2.

The Mayor sends a CAN remote frames to City 2 in order to request the

information. For example, a Remote frame can be generated by pressing a push

button on City 3 (see Chapter 6). Consequently, the Mayor 2 sends out the message

stored in Folder 2. Subsequently, City 3 receives this message via Folder 3 and

displays the data in the LCD.

Examples of City l' s and City 2' s messages displayed on City 3 's LCD are shown

in Figure 4-13 and 4-14, respectively.

- 104-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

* CAN SYSTEM DEMO *
CITY 001:128

Figure 4-13 City l's message

The value 001 indicates the City 1 's address. The value 128 is an example of an

AID value from City 1.

* CAN SYSTEM DEMO *
CITY 002:096

Figure 4-14 City 2's message

The value 002 indicates the City 2's address. The value 096 is an example of an

AID value from City 2.

As mentioned earlier, the King can be removed at the Run phase if no more system

configuration is required. However, it can also send its instructions to the Cities

during this phase. For example, the King can change the baud rate of the network,

or change the Envelope for the messages, in order to change the message priority.

- 105 -

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.4 Conclusion

In conclusion, the CAN Higher Layer Protocol developed in this project, called the

Small CAN Kingdom protocol, is based on the basic ideas of the CAN Kingdom

protocol. The protocol provides an open approach which enables later designers to

enhance their system's performance. For example, more King Pages can be added

to the protocol easily to provide more services (see Chapter 7). However, some

King Pages can be omitted if the system is restricted in hardware configuration such

as the amount of memory, or if the system does not require complex configurations.

Furthermore, the simplicity of the Small CAN Kingdom protocol makes it easier. to

understand. The programming code of this protocol has been reduced to fit into the

small amount of on-chip memory of a small CAN-based system (see Chapter 7).

The details of hardware and software designs for a Small CAN Kingdom system are

provided in later chapters.

- 106-

CHAPTERS

INTRODUCTION TO MICROCONTROLLERS AND

CAN CONTROLLER CHIPS

The aim of this chapter is to introduce the physical components used to design the

two main parts of a Small CAN Kingdom system's node: The node manager (the

Mayor or the King) which controls the node operations, and the CAN controller

which is responsible for the node communication.

5.1 Microcontrollers

5.1.1 Overview

The responsibilities of the node managers are to control the operation of the nodes;

thus, they should be "smart" enough to perform this role.

One of the most efficient ways to add "intelligence" to devices today is to use

microcontrollers. Since their birth in the early 1970s, microcontrollers have become

increasingly popular in domestic and industrial applications. Most machines and

appliances in our daily lives contain microcontrollers, such as cordless and portable

telephones, security systems, automobiles and gas pumps, automated teller

machines, and much more. "In fact, electric lights are almost the only electrically

powered devices that do not use microcontrollers, and even here things are

changing with the welcome advent of power-saving and quick-starting intelligent

ballast fluorescent lamps" (Khan, 1996). In addition, the architecture of

microcontrollers ideally supports real-time applications which are the usual

requirements in automation industries (Wetton, 1995, p. 24). Microcontrollers are

embedded in various parts of manufacturing systems in order to control them.

- 107-

Introduction to Microcontrollers and CAN Controller Chips

A microcontroller contains many peripherals on a single chip such as

Analog/Digital (A/D) converters, pulsewidth modulation channels, on-chip

memory, and so on. This inclusion of I/0 circuits and memory enables designers to

develop various applications using single chip computers (microcontrollers). As a

result, the costs of system designs are significantly reduced.

The main aim of designing the Small CAN Kingdom protocol in this thesis is to

provide a CAN Higher Layer Protocol that can be utilised by small distributed

systems. These systems consist of microcontrollers with hardware restrictions such

as memory and the size of devices. Two such popular microcontrollers currently in

use are the MC68HC 11 from Motorola, and the 8051 from In tel.

Although any microcontroller could have been used to develop the system in this

project, the MC68HC 11 microcontroller appeared to be a suitable choice because it

is one of the most versatile 8-bit microcontroller and is still used in a wide range of

control applications (Chen, Rabb, & Taylor, 1996; Voskamp & Rosenstiel, 1996;

Maskell & Grabau, 1998).

According to the HC11 M68HC11 E Series Technical Data (1993) manual, the

MC68HC 11 microcontroller contains a large number of features in a single chip

which include:

• Single-chip or Expanded multiplex operation modes

• Eight channels 8-bit Analog-to-Digital (A/D) converter

• A fast Serial Peripheral Interface which allows the MCU to communicate

with an IBM PC or with other microcontrollers utilising a master-slave

connection

• Four 8-bit I/0 ports with varying capabilities

• Multiplex·ed 16-bit address and data bus in Expanded mode

- 108-

Introduction to Microcontrollers and CAN Controller Chips

• Internal EEPROM and RAM

• Serial Communication Interface (SCI). A dedicated RS232C serial port

with 8-bit data word transmission capability

• Multiple counter/timers with companson functions and wave-form

generation capability

• Sophisticated inteiTupt handling structure including a real-time interrupt

mechanism

• 16-bit operations, including multiplication and division

The MC68HC11 is also supplied with a ROM-base monitor program, which

contains various functions for application developments.

Another reason for choosing the MC68HC 11 microcontroller is that Motorola, in

Perth, Western Australia, provides excellent hardware evaluation equipment and

software support for this series of products. Moreover, Edith Cowan University has

several evaluation boards readily available, and also staff with expertise in HCll

technology. Furthermore, there are numerous documents related to this type of

microcontroller. Hence, programmers do not have to get involved with designing

the basic microcontroller units. In the case ofthis project, therefore, more effort can

be allocated to the Higher Layer Protocol level of design.

- 109-

Introduction to Microcontrollers and CAN Controller Chips

5.1.2 MC68HC11 Block Diagram

According to Greenfield (1992, p. 61), a MC68HC11 microcontroller comes as a

single Integrated Circuit (I C) packaged in either· a 52-pin Plastic Leadless Chip

Carrier (PLCC) or a 48-pin Dual In-line Package (DIP). The main features and the

architecture of the microcontroller are illustrated in Figure 5-l.

MODAl
LIR

MODS/
VsTBY XTAL EXTAL E

• t
MODE

CONTROL

i
t

8 KBYTES ROM

:::~:::;::1 ===::::::;=t;:::: I I' 512 BYTES EEPROM

0 I CPU ::1 ====25=6=B=YT=E=S=R=AM===~
~==============~ ~~

f- '
j
::J
::::<
::J
0
0
<(

w
~
::J
CL

TIMER
SYSTEM

CIRCUITRY ENCLOSED BY DOTIED LINE IS EQUIVALENTTO MC68HC24.

Figure 5-l MC68HC11 Block Diagram

- 110-

SPI SCI

Cl Cl

~~
~o oo
CLo_

AID CONVERTER

Introduction to Microcontrollers and CAN Controller Chips

5.1.3 System development environment

To assist in designing and debugging a microcontroller system based on the

MC68HC11, Motoro1a provides users with three types of evaluation boards which

have the following charateristics:

• M68HC11EVB - Evaluation Board, provides a small, low-cost tool for

debugging and evaluating MC68HC 11 based systems. The main

disadvantage of this board is that the users can only utilise Single-chip

mode operation. Extemal components are required to make use of the

Expanded mode.

• M68HC11EVBU - Universal Evaluation Board, is a low-cost

development tool. The board provides a wire-wrap area for custom

interfacing. It supp01is both Single-chip and Expanded-multiplexed mode

operations without additional circuitry.

• M68HC11EVM - Evaluation Module, provides users with more

powerful and flexible tools for MC68HC11 based system development.

The board simplifies user evaluation of prototype hardware/software

products by providing timing and 110 circuitry. Single-chip and

Expanded-multiplexed mode operations are supported. Pseudo ROM

space is also provided on board.

In this project, the M68HC11EVBU evaluation boards were used in order to take

advantage ofMotorola's supp01i to design the hardware part. Fmihermore, because

this type of evaluation board already supp01is Expanded mode operation, it is well

suited for designing the interface between a HC 11 MCU and a CAN controller chip

(see Chapter 6). There are also a number ofEVBU boards available at Edith Cowan

University with software support development environment.

The following section describes the mam features of the M68HC11EVBU

evaluation board and its use in designing hardware interface.

- 111 -

Introduction to Microcontrollers and CAN Controller Chips

5.1.3.1 Hardware design environment

The M68HC11EVBU evaluation board comes complete with good support tools for

system development.

This type of evaluation board can be connected to a host personal computer (PC)

via an RS232C terminal 1/0 port. Communication between the board and the host

PC is controlled by a communication program such as Kermit or Procomm program

for an IBM-PC, and Red Ryder program for Apple Macintosh (M68HC11EVBU

Universal Evaluation Board User's Manual, 1992, p. 4/37). This connection, along

with the BUFFALO monitor program, can be used to design the user interface

between the King in the Small CAN Kingdom system and the system designer (see

Chapter 7).

The BUFFALO, a ROM based monitor program inside the microcontroller,

provides great support in assisting users to debug their programming codes easily.

The program also contains a set of I/0 and utility routines which can be used to

develop applications. User codes can be assembled either by using the line

assembler on the monitor program or by an assembler on the host PC, and then

downloaded to the EVBU user RAM or EEPROM via Motorola S-records

(M68HC11EVBU Universal Evaluation Board User's Manual,1992, p. 3/1).

In addition, a wue-wrap area is provided on the EVBU for MCU custom

interfacing. With the wire-wrap hole pattern provided, most standard DIP or PLCC

device wire-wrap sockets, strip sockets, headers, and connectors can be installed.

Wire-wrap components can be installed on the top-side, and the wire wrapping can

be performed on the bottom-side of the EVBU (M68HC11EVBU Universal

Evaluation Board User's Manual,1992, p. 2/18). This area is used to design the

external peripherals for a City in the Small CAN Kingdom system such as the CAN

controller chip, LCD, and AID devices (see Chapter 6).

- 112-

Introduction to Microcontrollers and CAN Controller Chips

5.1.3.2 Software design environment

In order to design complete applications, users should be able to write their source

software with a suitable programming language. The source code is then compiled

and translated to Motorola S-records. Finally, it is downloaded to the target

microcontroller board for execution.

During the period of this research, the readily available programming languages for

MC68HC 11 were Assembly and C. In addition, one of the main requirements of

developing the Small CAN Kingdom protocol is that the protocol should fit into the

small amount of on-chip memory of the microcontroller. Hence, Assembly

language was chosen because it was suitable for small control programs. A further

reason for choosing the Assembly language is that the programming code could be

easily debugged by the use ofthe BUFFALO monitor program.

In this project, an IBM PC was used to communicate with the M68HC11EVBU

boards during both designing and setting up the system. Besides using the

BUFFALO program, there were also other requirements for the development of the

system as follows:

• A text editor to write the source programming codes

• An assembler to compile the program

• A program to create Motorola S-records

• A serial communication program

After considering the MC68HC11 features, the Motorola portable assembler

(P ASM) was the preferred language as it provided sufficient software design

capabilities for a MC68HC11 based system. The programming codes were written

by using an MS-DOS text editor (Edit program). The Ubuilds program was used to

createS-records, and the MS-Kermit program was used for communication between

the IBM PC and the evaluation boards.

- 113-

Introduction to Microcontrollers and CAN Controller Chips

In addition, there are four MS-DOS batch files created by the author of this thesis to

provide a more efficient software environment:

1. K.BAT to invoke the MS-Kermit program

2. ASM.BAT to compile the programming codes

3. B.BAT to build the Motorola S-records

4. T.BAT to transmit an S-record file to the M68HC11EVBU board via a

RS232C serial cable.

The description of these batch files is given in Appendix A.

The system development environment is shown in Figure 5-2.

PC Software Development Tools

• EDIT
• PASM
• UBUILDS
• MS-KERMIT

IBM PC
System

RS232C serial link J
~

., ,
M68HC11EVBU CAN Interface CAN Controller

..... loo. and
Evaluation Board ,...

I/0 Devices

MC68HC11 Software

• BUFFALO program

Figure 5-2 System development environment

- 114-

Introduction to Microcontrollers and CAN Controller Chips

5.2 CAN controllers

5.2.1 Choosing CAN controllers

As mentioned previously, CAN controller chips are used to manage communication

between a CAN node and the CAN bus. In other words, the chips are the means for

the Cities' managers (Mayors) to communicate with each other and with the King.

A CAN controller chip can be Basic CAN, Full CAN, CAN+, or can be "Part B

Passive" or "Part B Active" chip (see Chapter 2). With respect to the aims of this

project, the Full CAN controller chips were recommended to be used to reduce the

workload for the 8-bit microcontrollers with a limited amount of on-chip memory.

Moreover, the Small CAN Kingdom protocol has been developed based on the

CAN Kingdom protocol, which utilises both Stand and Extended CAN frame

formats. Therefore, the appropriate CAN controller chips are "Part B Active" which

support both ofthe message formats.

Considering the aforementioned discussions, the Intel 82527 CAN controller chips

appeared to be a suitable choice. This type of chip was considered better than the

similar 82C200 CAN controller from Philips with respect to real-time performance

(Tindell, et al., 1994). In addition, the SAB-81C90 and SAB-81C91 from Siemens,

support Standard frames but tolerate Extended frames without generating errors

("Part B Passive" chips). On the other hand, the Intel 82527 supports both Standard

and Extended CAN frame formats ("Part B Active" chip).

- 115-

Introduction to Microcontrollers and CAN Controller Chips

5.2.2 Intel 82527 CAN controller

According to the 82527 serial communications controller architecture overview

(1996), the Intel 82527 has a number of features that are ideally suited to be used to

interface with a microcontroller to form a complete CAN node. The main features

ofthe Intel 82527 chip are as follows:

• Support Standard and Extended CAN frames

• 15 Message Objects of 8-byte data length to store incoming and outgoing

messages

• Flexible CPU Interface

8-bit Multiplexed

16-bit Multiplexed

8-bit Synchronous Non-Multiplexed

8-bit Asynchronous Non-Multiplexed

• Serial interface to CPU is available, when a parallel CPU interface is not

required

• Flexible interrupt structure, including Message Object interrupts and the

chip's status interrupts

• Two 8-bit bidirectional VO ports can be used as general VO ports. This is

an advantage of the Intel 82527 chip when the microcontroller ports are

not available.

The architecture of the chip can be demonstrated by its block diagram as shown in

Figure 5-3.

- 116-

Introduction to Microcontrollers and CAN Controller Chips

AD7
AD6
ADS
AD4
AD3
AD2
AD!
ADO

AS
RIW#

E

INT#
RESET#

CPU
Interface
Logic

I"'-:~lr!~~<"'!-:C!

o:o:o:o:o:o:o:o:
r--\Ol{")-..:::f"("f')N-0
r-i<'i<'i<'i<'ir-i<'i<'i
0...0...0...0...0...0...0...0...

CAN
Manager

V ss!
Vss2

V cc

TXO

TXI

RXO

RXI

Figure 5-3 The 82527 block diagram

The descriptions of the diagram as follows:

• The CPU Interface Logic is responsible for the interface between the

host CPU and the CAN controller. The interface mode depends on the

value of Mode 0 and Mode 1 pins.

• The CAN manager controls the data stream between the RAM (parallel

data) and the CAN bus.

• The RAM contains the set of registers which the CPU can be used to

control the chip.

• Clockout is the on-chip clock generator consisting of an oscillator, clock

divider register and a driver circuit.

• Port 1 and Port 2 can be used as general-purpose 8-bit I/0 ports.

The CPU controls the CAN controller chip via a set of registers which can be

mapped onto the CPU's memory map (see Chapter 6). The 82527 address map is

shown in Figure 5-4. The details of the uses of these registers to control

communication in Jl CAN based system are given in Chapter 7.

- 117-

Introduction to Microcontrollers and CAN Controller Chips

OOH Control Register

01H Status Register

02H CPU Interface Register

03H Reserved
04-05H High Speed Read Register

06-07H Global Mask- Standard

08-0BH Global Mask - Extended

OC-OFH Message 15 Mask

10-lEH M~ssage.l ·•.· ••
..

I
lFH CLKOUT Register

20-2EH M~ssage2 . /•. ·I
2FH Bus Configuration Register

30-3EH Messag~3 I
3FH Bit Timing Register 0

40-4EH ··M~ssl:(ge4
·•. ·.

.··· 'I
4FH Bit Timing Register 1

50-5EH M~ss~gy}
·:.

I . : ·:

5FH Interrupt Register

60-6EH Message6 .•. ' ·. I
6FH Reserved

70-7EH Messl)ge7 • .. · I
7FH Reserved

80-8EH :rvfessag~8
.·:· .. ·. .··. I

8FH Reserved

80-9EH Message.9 . I
9FH PlCONF

AO-AEH MessagelO· . ·•··· ...•.... I
AFH P2CONF

BO-BEH Messl;lge 11 .. · ··.· ... ·.··.·.;I
: . ..

BFH PliN

CO-CEH Messagel2···· •• . .· .. I
CFH P2IN

Message IS ··••• •••••••••••

.., . ..
. I DO-DEH . .

DFH PlOUT

EO-EEH M~ssage14 . I
EFH P20UT

FO-FEH 1V!essagel5 I
FFH SPI Reset Address

Figure 5-4 Intel 82527 address map

- 118-

Introduction to Microcontrollers and CAN Controller Chips

5.3 Conclusion

This chapter introduced the physical components which are used to design the two

main parts of a CAN node: the node manager (the Mayor or the King), and the

CAN controller.

The discussion of selecting suitable devices for the project was presented. The

MC68HC 11 microcontrollers have been used as the host CPU to control the node

operations. The Intel 82527 CAN controller chips manage the communication of the

nodes.

In addition, the hardware and software environments for system development were

also described in this chapter. The actual design is covered in the following

chapters.

- 119-

CHAPTER6

HARDWARE DESIGN

This chapter describes the steps associated with designing the hardware part of the

Small CAN Kingdom system which was introduced in Chapter 4. The pin

connection tables between the chips, and the diagrams showing the pin layout of

these components are shown in Appendix B. These tables and diagrams were used

for wire-wrapping purpose in the hardware design.

6.1 Introduction

The aim ofthe system in this project is to build a platform which enables the Small

CAN Kingdom protocol to be designed and tested. The system consists of:

• A master node (called the King or the Capital) which is responsible for

network configurations,

• City 1 transmits Analog/Digital (A/D) inf01mation,

• City 2 transmits AID information in response to a remote request (a CAN

Remote frame) from City 3, and

• City 3 displays the data from City 1 and City 2. It is also able to send

Remote frames to City 2 when the data is needed.

- 120-

Hardware Design

Each node in the system contains an MC68HC 11 microcontroller (MCU), an Intel

82527 CAN controller, and a Transceiver chip:

• The MC68HC11 controls the node's operations.

• The Intel 82527 performs the communication according to the CAN

protocol.

• The Transceiver chip acts as the interface between the Intel 82527 CAN

controller and the CAN bus.

In addition, each node includes peripherals to carry out its tasks:

• An IBM PC is connected to the Capital node via a RS232C serial link in

order for system designers to enter King Pages (see Chapter 4).

• AID devices are utilised in City 1 and City 2.

• A Liquid Crystal Display (LCD) and a remote request device are included

in City 3.

• Indicators (LEDs) to indicate which phase (Set-up or Run phase) the City

IS Ill.

The block diagram ofthe whole system is shown in Figure 6-1.

- 121 -

Hardware Design

IBM PC F- MC68HC11 F-
Intel

F-
Transceiver

82527 Chip

The King

Indicators

I
AID t- MC68HC11 t- Intel Transceiver

Device 82527
F-

Chip

City 1

Indicators

I
AID

F- MC68HC11 F-
Intel

t- Transceiver
Device 82527 Chip

City 2

Indicators

I
LCD - MC68HC11 F-

Intel
F-

Transceiver
82527 Chip

Remote I
Request Device

~it)r3

Figure 6-1 The Small CAN Kingdom system block diagram

- 122-

Hardware Design

6.2 Interfacing the Intel82527 to an MC68HC11

The following highlights the important issues of the interface design between a

Motorola MC68HC 11 microcontroller and an Intel 82527 CAN controller chip

(Figure 6-2). Four of these interfaces were later constructed, tested and used in this

project.

In order to interface the Intel 82527 with the MC68HC11, the latter should be

operating in the Expanded mode. In this mode, Port B pins of the MC68HC11 are

used as the high order address output signals. Port C pins serve as the low order

address and 8-bit data bus (multiplexed using the same pins). The MC68HC11

signals used to control the Intel 82527 CAN controller are via AS, R/W# and E

pins. AS pin is used to control an extemal address latch. R/W# pin is used to

indicate the direction of data transfer. E pin is used as timing reference when the

MC68HC11 communicates with the Intel 82527 (HC11 M68HC11 E Series

Technical Data, 1993).

Because the MC68HC11 is a non-Intel MCU, the Intel 82527 should be used in

mode 2 (8-bit multiplexed, non-Intel). This CAN controller chip also has AS, R/W#

and E pins that match the corresponding pins of the MC68HC11 (82527 Serial

Communications Controller Architecture Overview, 1996).

Data transfer between the MC68HC11 and the Intel 82527 was made in 8-bit

parallel form using the Intel 82527 pins ADO to AD7, which were connected,

respectively, to the MC68HC11 'spins PCO to PC7 of Port C.

The INT# pin of the Intel 82527 was used to generate an intenupt to the MCU when

the CAN controller chip receives or successfully transmits a message. This pin was

connected to pin IRQ# of the MC68HC 11. This connection required an extemal

pull-up resistor (1 OkQ).

- 123-

Designing a HLP for Small Distributed Microcontroller Systems using CAN

4.3.3 System operation

Initially, when the nodes are connected together on the CAN network, they all work

at a fixed baud rate (for example, 125 kbit/sec). All the Cities receive the King

commands via Folder 1 with the highest priority Envelope (Envelope 0).

The King is responsible for the network configuration. In doing so, the system

designer studies the Documents of all the Cities. He or she should know that City 1

and City 2 transmit their messages with the data types in ASCII format. Each

message of both Cities contains 8 bytes and the last byte is EOT character. This

satisfies the requirements of the Forms in City 3. Hence, City 3 can receive

messages from both City 1 and City 2.

Furthermore, the Form associated with City 3's Folder 3 informs that the Mayor of

this City will send a remote request (Remote frame) in order to receive messages for

Folder 3. Therefore, this Folder can be used to receive messages from City 2 as it

only sends its messages when receiving a Remote Request.

As a result, the system designer can assign Folder 2 of City 3 to receive messages

from City 1; and Folder 3 is used to receive messages from City 2. The assignments

are carried out in the Set-up phase.

The Set-up phase and the Run phase operations are illustrated in Figures 4-11 and

4-12.

- 102-

Hardware Design

The RESET# pin of Intel 82527 can be tied to an MC68HCII Port pin or a reset

circuit. In this project, the MC68HC 11 's pin P A6 of Port A was used to reset the

Intel 82527.

The CS# pin of the Intel 82527 enables the MCU to select the chip. This pin was

connected to the MCU via an Address Decoder circuit.

In addition, pins XTALl and XTAL2 ofthe Intel 82527 were connected to a Quartz

crystal circuit in order to provide the clock signals for the operations of the CAN

controller chip. The chip's operations are controlled by two internal clocks:

• The system clock (SCLK), and

• The memory clock (MCLK).

The frequency of the Quatiz crystal is called XT AL. The frequency of the SCLK

can be equal to XTAL or XTAL/2 by programming. With the 8 MHz SCLK, the

Intel 82527 can be interfaced to a IMbit/sec CAN bus.

The frequency of the MCLK can be equal to SCLK or SCLK/2 by programming.

The maximum frequency of the MCLK is 8 MHz.

According to the Intel 82527 architecture overview, the chip was tested with XTAL

setting to 8 MHz and 16 MHz. This project used 16MHz Quatiz crystals due to their

availability. Therefore, the Intel 82527 chip should be set: SCLK=XTAL/2 and

MCLK=SCLK.

- 124-

Hardware Design

22pF l I
-ID 16 MHz Crystal

~

~ u
= 00
'..e u
~

Figure 6-2

AS
RJW#

E

PB7
PB6
PB5
PB4

PCO-PC7

IRQ#

PA6

XTALI XTAL2
AS
RJW#

E

CS#

AD7-ADO

~----~~----~ rnT#
1--------111~ RESET#

-t---
~M

...... l()
I:IM
~00

MODEO MODEl

V cc

Vss2
Vssl

MC68HC11 and Intel 82527 interface circuit diagram

Designing the Address Decoder

+5V

+5v

The Address Decoder was used to map the Intel 82527 into the MC68HC11 's

memory map. It can be designed by using either a conventional 4-input AND-gate

chip (74LS20) or an address decoder chip (74LS138). In this project, both circuit

designs were used.

During the early stage of the project, the 4-input AND-gate chips were used for

address decoding in City 1 and City 2 of the system. Therefore, in order to minimise

the number of chips, the address range 7000H to 7FFFH of the MC68HC 11 was

used to map the internal Intel 82527's RAM into the MCU addressable space.

The MC68HC11 system memory map is shown in Figure 6-3.

- 125-

Hardware Design

OOOOH

OlFFH

lOOOH

103FH

7000H

7FFFH

B600H

B7FFH

DOOOH

FFFFH

512 BYTES RAM

EXTERNAL

64 BYTES REGISTER BLOCK

EXTERNAL

CAN CONTROLLER

EXTERNAL

512 BYTES EEPROM

EXTERNAL

12 KBYTES ROM I EPROM

Figure 6-3 MC68HC11 memory map

- 126-

Hardware Design

The address decoder circuit design is as follows:

7

A15 A14 A13 A12

0 1 1 1

w X y z

The Chip Select (CS#) is active-low when the address bus has:

w'. x. y. z

The logic circuit is as shown in Figure 6-4:

PB7 WE[)~
--

PB6 X

PB5 V CS#

PB4 z

-
MC68HC11 74LS20 lntel82527

Figure 6-4 Address Decoder circuit 1

- 127-

Hardware Design

In order to add external memory to the MC68HC11 systems for subsequent

applications, address decoder chips (7 4 LS 13 8) were used in the Capital and City 3

of the system. In the design of this interface circuit, pin Y3 of the 7 4 LS 13 8 chip

was used to select the Intel 82527 so that the software controlling all CAN nodes

could utilise the same address locations shown in Figure 6-3.

The alternative address decoder circuit design is shown in Figure 6-5.

+5V

G1 LJ
PB7 c ,...

Y3 .. CS#
PB6

.... B
.... ,..

G2A# ---.. PBS ... A
G2B# -

MC68HC11 74LS138
....

lntel82527 --

Figure 6-5 Address Decoder circuit 2

Note that when using the 74LS138 chip for address decoding, the address range for

Intel 82527 in MC68HC11 is 6000H to 7FFFH.

- 128-

Hardware Design

6.3 Interfacing the Intel82527 to a transceiver chip

6.3.1 CAN bus review and introduction to CAN transceiver chips

The CAN bus uses Non-Return to Zero (NRZ) with bit-stuffing. There ~re two

different signalling states: dominant (logical 0) and recessive (logical 1). These

correspond to the electrical levels utilised by the physical layer. The CAN modules

are connected to the bus in a Wired-And fashion: ifonly one node is driving the bus

to the dominant state, then the whole bus is in that state regardless of the number of

nodes transmitting recessive bits (see Chapter 2).

A typical CAN bus consists of two wires, called CAN high (CAN_ H) and CAN low

(CAN_L). When the CAN bus is in dominant state, CAN_H is at a high voltage

(5V) and CAN_L is at a low voltage (OV). When the CAN bus is in recessive state,

both CAN_ H and CAN_L are floating. This characteristic of the CAN bus means

that whenever a CAN node transmits a dominant bit, the bus will be in dominant

state (CAN_H is high voltage and CAN_L is low voltage).

The purpose of the Transceiver chip is to provide an interface between the Intel

82527 and the CAN bus. There are several Transceiver chips manufactured by

companies such as Philips, Bosch, Siemens, Siliconix and Unitrode. The most

common chip used in the automation industry is the 82C250 transceiver from

Philips, which implements the physical layer for CAN-based systems.

However, due to the time restrictions and the difficulty of obtaining these chips in

Perth, Western Australia, the conventional RS485 standard chips (typically,

DS3695 chips) with some modifications were used and deemed to be satisfactory

for this project.

The features of both PCA82C250 and DS3695 transceivers were reviewed and

compared in order to modify the DS3695 circuitry to suit the requirements of the

CAN bus.

- 129-

Hardware Design

6.3.2 PCA82C250 CAN transceiver

The pin connections of the PCA82C250 are shown in Figure 6-6:

TxD 8 Rs

GND 2 7 CAN H

V cc 3 6 CAN L

RxD 4 5 Vref

Figure 6-6 PCA82C250 CAN tranceiver

The description of the chip pins are in Table 6-1.

Table 6-1 PCA82C250 pin description

Symbol Pin Description

TxD 1 Transmit data

GND 2 Ground

V cc 3 Supply voltage

RxD 4 Receive data

Vref 5 Reference voltage output

CAN H 6 LOW level CAN voltage input I output

CAN L 7 HIGH level CAN voltage input I output

Rs 8 slope resistor input

The truth table ofthe PCA82C250 is provided in Table 6-2.

- 130-

Hardware Design

Table 6-2 PCA82C250 truth table

TxD CAN H CAN L Bus State

0 High Low dominant

1 (or floating) floating floating recessive

6.3.3 DS3695 transceiver

The pin connections of the DS3695 are shown in Figure 6-7:

Figure 6-7

RO

RE#

DE

DJ

1

2

3

4

8

7

6

5

DS3695 (RS485) tranceiver

V cc

DO#/RI#

DO/RI

GND

The description ofthe chip pins are in Table 6-3.

- 131 -

RxD

0

1

Hardware Design

Table 6-3 DS3695 pin description

Symbol Pin Description

RO 1 Receive output

RE# 2 Receive enable

DE 3 Data enable

DI 4 Data input

GND 5 Ground

DO/RI 6 Data output I Receive input

DO# I RI# 7 Reversed Data ouput I Reversed Receive input

V cc 8 Supply voltage

The truth table of the DS3695 is provided in Table 6-4.

Table 6-4 DS3695 truth table

Transmitting

Inputs Outputs

RE# DE DI DO# DO

X 1 1 0 1

X 1 0 1 0

X 0 X HighZ HighZ

Receiving

Inputs Output

RE# DE RI- RI# RO

0 0 :?:+0.2V 1

0 0 ~-0.2V 0

1 ·.0 X HighZ

- 132-

Hardware Design

6.3.4 Modifying the DS3695

In this project, the Intel 82527 was configured to transmit data via TXO and to

receive data via RXO.

Comparing the truth tables of PCA82C250 and DS3695, it is noted that if the CAN

bus is in recessive state (logical 1), then the CAN_ H and CAN_ L pins of the

PCA82C250 chip are floating. This corresponds to High Z state of DO#IRI# and

DO/RI pins of the DS3695.

Note that DS3695 transceivers transmit data v1a pin DI. According to the

consideration above, if pin DI is at logical 1 (recessive), the DO# and DO pins

should be in High Z state. From the DS3695 truth table, this corresponds to DI=X

("don't care" condition) and DE=O.

Also, in the DS3695 truth table, it can be seen that, if DI=O (dominant state) and

DE=1, then DO#/RI# = 1 and DO/RO = 0. This situation is the same as CAN_H

and CAN_L pins of the PCA82C250 being in dominant state, respectively. Hence,

DO#/RI# pin can be used as CAN_ H, and DO/RI pin can be used as CAN_ L.

From the discussions above, TXO pin of the 82527 chip can be connected to DI pin

of the DS3695. Moreover, the TX1 pin of the 82527 is always the reverse state of

TXO (ifTXl is enable). Thus, TX1 can be connected to DE. This ensures that when

DI is at logic 0, DE is at logic 1, and vice versa.

It should also be noted that, the 82527 chip monitors the bus when sending

messages. Hence, the RE# pin of the DS3695 should always be enabled. In other

words, this pin should always be connected to ground.

During the reception of a message, the TXO and TX1 pins are always in recessive

state. This corresponds to TXO = 1 and TX1 = 0. Thus, DE= 0.

The DS3695 receiving truth table shows that if the CAN bus is in dominant state

(DO#/RI# = 1, DO/RI=O) or RI- RI# s -0.2 V, then RO = 0 (dominant state).

- 133-

Hardware Design

However, if the CAN bus is in recessive state (DO#/RI# and DO/RI pins are in

High Z state), the RO pin could be undefined. According to the CAN protocol, this

pin should be at logic 1. Therefore, RO pin was connected to V cc (logic 1) via a

pull-up resistor (10kQ).

The modified circuit diagram is shown in Figure 6-8.

+5V

RXO RO
V cc

TXO DI
DO# !RI# CAN H

TXl DE
DO/RI CAN L

RE#
GND

DS3695

Figure 6-8 Modified DS3695 circuit diagram

The truth table for the modified circuit above is shown in Table 6-5.

Table 6-5 Truth table of the modified DS3695 transceiver

DI DE RE# DO# /RI# DO/RI RO

1 0 0 HighZ HighZ 1

0 1 0 1 1 0

- 134-

Hardware Design

6.3.5 Intei82527-DS3695 interface circuit diagram

After being modified, the DS3695 chip satisfied the requirements of the CAN bus.

The chip were interfaced with an Intel 82527 CAN ·controller chip according to the

circuit diagram shown in Figure 6-9.

+5V

RXO RO
V cc

TXO DI
DO# !RI# CAN H

TXl DE
DO/RI CAN L

RE#
GND

lntel82527 DS3695

Figure 6-9 Intel 82527-DS3695 interface circuit diagram

- 135-

Hardware Design

6.4 Interface between the King and an IBM PC

As mentioned in Chapter 5, M68HC11EVBU evaluation boards were used to design

the CAN nodes in this project. To enable system designers to communicate with the

King during setting up the system, an IBM PC was connected to the King via

RS232C terminal I/0 port of the M68HC11EVBU. The connection has already

been discussed in Chapter 5.

The system designers enter values for a King Page via a King Menu program which

is designed in Chapter 7.

Figure 6-10 shows the connection diagram between the King and an IBM PC.

IBM PC
RS232C Link The King

King Menu

Figure 6-10 Interface between the King and an IBM PC

- 136-

Hardware Design

6.5 Interfacing AID devices to MC68HC11

The Port E pins of the MC68HC11 can be used as inputs for AID signals. AID

signals can be generated from any devices such as temperature or speed

measurement sensors.

In this project, 10 KQ rotary potentiometers were used to produce AID signals. The

signals were input to pin PE.4 of port E. The City's software application has been

designed to receive and decode AID signals (see Chapter 7).

It should be noted that VRL and VRH pins are used to provide reference voltage for

the AID converter circuitry. In the case of this project, VRL was connected to OV

and VRH was connected to SV.

Figure 6-11 shows the circuit diagram of the interface.

+5V

AID device

PE.4
VRH t----'

VRL t-----r

MC68HC11

Figure 6-11 AID device- MC68HC11 interface

- 137-

+SV

Hardware Design

6.6 Interfacing the LCD to Intel 82527

The Intel 82527 has two general purpose I/0 ports: .Port 1 and Port 2, which can be

used to interface with extemal devices (see Chapter 5). Because MC68HC11 port

pins can be used for various purposes, they may be reserved for future use. City 3 of

this project used Port 1 and Port 2 of the Intel 82527 to control an LCD module.

In this project, the L20 12 LCD was used. It is a low-power-consumption dot matrix

LCD module with high contrast, wide viewing angle LCD panel with a CMOS LCD

drive controller built-in. The controller has built-in character generator ROM/RAM,

and display data RAM. All the display functions can be controlled by the LCD' s

instructions. The module can easily be interfaced with an MCU.

It should be noted that as the L2012 user manual was not readily available, the LCD

design in this project referred to the Liquid Crystal Display module L4042 user

manual (1988). All the pins and functions of these two types of LCD are the same

except L2012 contains 20 characters on each line (the L4042 contains 40 characters

on each line).

The control ofLCD is maintained by three pins:

• E: the signal activates data write or read.

• R/W# is used to select Read or Write mode.

• RS: Register selection mode. This pin combined with the R/W# pin can

instruct the LCD to perform certain functions (see the Liquid Crystal

Display module L4042 user manual, 1988, p. 13-14).

Pins DBO to DB7 of the LCD enable the MCU to output data a-byte-at-a-time to the

LCD.

- 138-

Hardware Design

The two general I/0 ports of the Intel 82527 (Port 1 and Port 2) can be used as

additional port of the MCU:

• Port 1 was used to output data to the LCD.-

• Pins P2.4 to P2.6 of Port 2 were used to control the LCD. They were

connected toE, RS, R/W# of the LCD, respectively.

Pin VLC is used to adjust the contrast of the LCD.

Figure 6-12 shows the circuit diagram ofthe interface between the Intel 82527 and

the LCD. The program to control the LCD is designed in Chapter 7.

~
4~ +5

Pl.O- P1.7 Ill"'" DB7-DBO

V

Voo

V Le

P2.6 E
P2.5 RS
P2.4 R/W#

V ss

82527 L2012 ---

Figure 6-12 lntel 82527- LCD circuit diagram

- 139-

Hardware Design

6. 7 Designing a Remote Request device

The Remote Request device in City 3 was used tq invoke the generation of CAN

Remote frames to request data from City 2. Typically, the device was a push button

connected to an input capture pin of the MC68HC 11. Whenever the button is

pressed, the logic level at the input capture pin is changed. The MCU detects the

level change of the pin, then it generates a Remote frame. The software used to

detect hardware level changes, and to send Remote frames is described in Chapter

7.

Pin PAO of the MC68HC11 's Port A was used for an input capture function. The

circuit diagram is shown in Figure 6-13.

+5V

Push Button

PAO

MC68HC11

Figure 6-13 Remote Request Device circuit diagram

From Figure 6-13, the logic level ofPAO is normally 1. When the button is pressed,

PAO will be dragged down to less than or equal to 0.2 V (a logic 0).

The voltage at PAO, when the button is pressed, can be calculated by the following

formula:

VrA.o = (R2/(R1 +R2))*5V

Ifthe chosen value ofR1 is 10kQ and VPA.O < 0.2 V, then R2 < 416Q. The chosen

value ofR2 was 330Q.

- 140-

Hardware Design

6.8 Designing Indicators

In this project, Light Emitting Diodes (LEDs) were used to indicate whether a City

was at Set-up phase or Run phase.

Each City contained a red LED to indicate that it was at Set-up phase and a green

LED to indicate that it was at Run phase. Accordingly, a dual-colour LED was used

to reduce space.

A transistor was also needed to drive each LED. Any general-purpose transistor

which allows a collector current of20mA can be used (BC109 or BC549).

The Intel 82527's pins P2.0 and P2.1 of Port 2 were used to drive the red and green

LEDs, respectively.

The circuit diagram is shown in Figure 14.

+5V +5V

R'2
P2.1

P2.0

82527

Figure 6-14 Indicators circuit diagram

- 141 -

Hardware Design

From Figure 6-14, it is noted that because the two LEDs were the same, R' 1 =R1,

and R'2=R2, the transistor types ofT and T' should also be of the same type

(BC549).

The current value going through R2 and R'2 can be chosen to be at lmA. The

voltage which drops in the LEDs is approximately 1 V.

Therefore, R2=R'2= 4V/lmA=4kQ. The chosen value ofthe resistors was 4.7KQ.

The current value which goes through the LEDs can be 1 0-20mA.

Therefore, RI =R' 1 =4V /20mA =0.2P. The chosen value of the resistors was 3300.

6.9 Conclusion

This chapter described the design of the hardware part of the Small CAN Kingdom

system which was introduced earlier in Chapter 4. The system consisted of four

CAN nodes: The King and three Cities.

Each CAN node contained:

• AN MC68HC 11 microcontroller being responsible for controlling the

tasks ofthe node,

• An Intel 82527 CAN controller chip managing the communication

protocol for the node,

• A modified DS3695 (RS485 standard) transceiver chip being used to

provide an interface between the Intel 82527 and the CAN bus, and

• Peripherals to perform its tasks in the system.

- 142-

Hardware Design

The performance of the system is summarised as follows:

• The King is the network manager.

• City 1 and City 2 transmit AID information to City 3.

• City 3 is responsible for displaying the values received from City 1 and

City 2. It also generates Remote frames to City 2 in order to request

information. The Remote frames are transmitted in a response to pressing

a push button at the City 3.

In addition, each City contained a. dual-colour LED to indicate its stage (Set-up

phase or Run phase). Red indicated the Set-up phase and green indicated the Run

phase ofthe City.

- 143-

CHAPTER 7

SOFTWARE DESJGN

This chapter is concerned with the design of the software which controls the small

system introduced in Chapter 4. The implementation of the software takes into

account the rules associated with the Small CAN Kingdom protocol of this thesis.

The complete programming codes are presented in Appendix D.

7.1 Introduction

The main tasks ofthe software are:

• To provide the means for users to design and download King Pages from a

personal computer (PC) to the King. These King Pages are then sent to the

Cities to perform the system configurations.

• To enable the Cities to receive and obey the King's instructions.

In addition, each City contains an application to execute its run-time role in the

Kingdom. The role of each City is summarised as follows:

• City 1 transmits Analog/Digital (A/D) information,

• City 2 transmits AID information after receiving a remote request (a CAN

Remote frame) from City 3, and

• City 3 displays the data from City 1 and City 2. It is also able to send

Remote frames to City 2 for requesting data.

- 144-

Software Design

The software modules required for each node are shown in the following diagrams

(Figures 7-1,7-2, 7-3, 7-4).

King
Software

I I
Configuring Interrupt Service King Menu
CAN Chip Routine Program

Servicing King
Pages

Figure 7-1 Software modules for the King

City 1
Software

I I
Configuring Interrupt Service City 1
CAN Chip Routine Application

Servicing King
Pages

Figure 7-2 Software modules for City 1

- 145-

Software Design

City 2
Software

I I
Configuring Intenupt Service City 2
CAN Chip Routine Application

Servicing King
Pages

Figure 7-3 Software modules for City 2

City 3
Software

I

I I I
Configuring InteiTupt Service Controlling LCD City 3
CAN Chip Routine Application

I I
Servicing King Servicing City 1 's Servicing City 2's

Pages Messages Messages

Figure 7-4 Software modules for City 3

- 146-

Software Design

The most important part of the software, in each CAN node (a City or the Capital),

is the Interrupt Service Routine (ISR). This ISR can perform the following tasks:

• To decide the precise subroutine to service· a King Page which arrives at a

City,

• To enable the King to re-configure itself in accordance with the King's

command which has been successfully transmitted, and

• To select the right Form to decode messages being transferred in the

system.

The Con:figuring CAN chip modules are responsible for all the necessary set-up of

the CAN controller chips (Intel 82527).

Each City (including the Capital) contains an application program to perform its

specified role in the system:

• The Capital has a set of subroutines, including the King Menu program,

which enables system designers to enter data for King Pages and to format

the data according to King Page Forms.

• City 1 includes a set of subroutines which enables the City to get AID data

from the AID device to construct Letters according to its AID Form (see

Chapter 4), and to send the Letters to the CAN bus.

• City 2 consists of similar subroutines to City 1, but it only sends its Letters

after receiving a request (a Remote frame) from City 3.

• City 3 contains subroutines to display data from City 1 and City 2, and to

send Remote frames to City 2 when City 2 's data is needed.

The Controlling LCD module in City 3 contains a set of subroutines which are

responsible for the operations of the LCD.

- 147-

Software Design

7.2 System operation

The operation of each node in the system is describ~d in the flow-charts in Figure 7-

5, 7-6, 7-7, and 7-8:

Figure 7-5

Assign address
for ISR

Configure CAN
controller chip

Assign Values for
vector tables

King flow-chart

Enter data for a
King Page

Retum to
BUFFALO

program

- 148-

Software Design

Olllll No

Figure 7-6 City 1 's flow-chart

Assign address ·
for ISR

Configure CAN
controller chip

Assign Values
for vector tables

Wait for a King's
instruction

GetA/D
values

Send to the
CAN bus

- 149-

Perform the
instruction

Software Design

111111

No

Assign address
for ISR

Configure CAN
controller chip

Assign Values
for vector tables

Wait for a King's
instruction

Get AID
values

Send to the
CAN bus

Figure 7-7 City 2's flow-chart

- 150-

Perform the
instruction

Software Design

Assign address
for ISR

Configure CAN
controller chip

Assign Values
for vector tables

Wait for a King's
instruction

Figure 7-8 City .3's flow-chart

- 151 -

Perfonn the
instruction

Display City 1 's
data

Send a Remote
frame to City 2

Display City 2's
data

Software Design

7.3 Software implementation

7.3.1 Configuring the CAN controller chips

The Configuring CAN chip modules consist of two subroutines:

• RESET_ C (Resetting a CAN controller chip): the CAN controller chip is

reset when its RESET# pin is driven to logic 0 for a minimum of 1ms.

This is done by setting the Port A's pin PA6 of the MC68HC11 to 0 for

1ms and driving it back to 1.

• INIT _ C (Initialising a CAN controller chip): this subroutine is responsible

for the configuration of the CAN chip. The initial baud rate (125 kbit/s)

and Mask Registers are set up during the operation of this subroutine.

7.3.1.1 Resetting a CAN controller chip

RESET C subroutine algorithm

1. Set Port A's pin PA6 to 0

2. Delay 1ms

3. Set Port A's pin PA6 to 1

The delay time is achieved by a DELAY subroutine. The value ofthe index register

IY specifies the multiples of 50 microseconds ofthe delay time.

DELAY subroutine algorithm

1. Load Accumulator B (Ace B) with 0

2. Increase the value of Ace B by 1

3. If the value of Ace B is not equal to 10 (the value for delaying 50

microsecond), then go back to step 2. Otherwise, continue to step 4.

4. Decrease the value of IY by 1

5. Go backto step 1 ifiY is not zero. Otherwise, continue to step 6

6. Retum from subroutine

- 152-

Software Design

7.3.1.2 Initialising a CAN controller chip

Programming issues

While RESET# pin of the Intel 82527 is held low, the Hardware Reset Status

(RstSt) bit of the CPU Interface Register is 1 (i.e. no access to the CAN chip is

possible). Therefore, the Initialising subroutine (INIT _C) should continually check

this bit until it returns to 0.

The Change Configuration Enable (CCE) bit of the Control Register of the Intel

82527 should be set to 1 to enable the MCU to access the configuration registers.

The Initialisation (Init) bit should also be set to 1 to prevent any incoming or

outgoing messages during the initialisation.

The System Clock (SCLK) is set to XTAL/2 and the Memory Clock (MCLK) is

equal to the SCLK (MCLK =SCLK).

TXO and RXO pins are used to transmit and to receive messages, respectively.

The initial baud rates for all CAN nodes are set to 125kbit/s. All Cities are set up at

this fixed baud rate when they are connected to the system for the first time.

It is noted that the King has a special subroutine (called B _RATE) which is used to

set up its baud rate. The King's baud rate values are stored into two bytes of

memory (BTRO and BTRl). The values from these two bytes are assigned by

designers at the time the King is connected to the system, or by the King itself

whenever it changes the system baud rate.

The system designers assign the values for BTRO and BTR1 by the use of a modify

memory command of the BUFFALO program (More details ofhow to use the King

program are given in Appendix C).

All Message Objects of the Intel 82527 should be initially made invalid in order to

prevent unused Message Objects being involved in the network communication.

- 153-

Software Design

Then, the user applications only validate the Message Objects which are used by the

applications.

In this project, all bits of the mask registers are set to "must match". This means a

particular Message Object can only transmit or receive one specified message.

Nevertheless, this rule can be changed by a designer, as and when required in the

future use.

In addition, all the Cities ofthis project use pins PLO and Pl.l ofthe Intel82527's

Port 1 to control the LEDs which are used for the indication purposes. City 3 uses

both Port 1 and Port 2 for controlling the LCD module. To simplify the

programming codes, all pins of these Ports are set to output. It should be noted that

the unused pins ofthese Ports can be reconfigured later if required.

After setting up the necessary configurations, the CCE and Init bits must be reset to

logic level 0 to prevent any accidental writing to the Intel 82527's configuration

registers, and to enable this chip to communicate with the network.

The Message Object 1 of the Intel 82527 CAN controller in the Capital serves as

the King Folder. It is assigned with Identifier 0 (in Standard format), which is the

highest priority ID, to transmit King's messages. The Transmit Interrupt Enable

(RXIE) bit of this Message Object should be enabled so that when the Intel 82527

successfully transmits a King message, it notifies the King by interrupting its host

MCU.

The Message Object 1 of all Cities is also assigned with Identifier 0 (in Standard

format) to receive King's messages. The Receive Intenupt Enable (RXIE) bit of

this Message Object must be enabled so that when the Intel 82527 receives a King's

message, it interrupts the MCU in order to service the message.

As a consequence of the aforementioned programmmg Issues, the INIT C

subroutine was designed as follows:

- 154-

Software Design

INIT C subroutine algorithm

1. Continually check bit RstSt until it is 0

2. Set CCE and Init bit to 1

3. Set SCLK=XTAL/2, MCLK=SCLK

4. Use TXO and RXO for transmitting and receiving messages. Set logic 0 is

dominant and logic 1 is recessive.

5. Set baud rate (125 kbit/s initially)

6. Set Port 1 and Port 2 to output (for Cities only)

7. Reset Control Registers of all 15 Message Objects (including Message

Object invalidation)

8. Set Mask Registers to "must match"

9. Set CCE and Init bit to 1

10. Enable Global Interrupt

11. Assign ID 0 (Standard format) to Message Object 1

12. Validate Message Object 1, enable Receive Interrupt for Cities, and enable

Transmit Interrupt for the King.

Note that there is a difference in step 5 (Baud rate setting) for the King and Cities:

• Assign fixed baud rate (125 kbit/s) for all Cities

• The B _RATE subroutine is used to set up baud rate for the King.

B RATE subroutine

Variables

• BTRO (1 RAM byte) is used to store the value to set up Bit Timing

Register 0 ofthe Intel 82527

• BTR1 (1 RAM byte) is used to store the value to set up Bit Timing

Register 1 ofthe Intel 82527

B RATE subroutine algorithm

1. Write the value in BTRO to Bit Timing Registers 0

2. Write the value in BTRl to Bit Timing Registers 1

3. Return from subroutine

- 155-

Software Design

7 .3.2 Designing Interrupt Service Routine (ISR)

Programming issues

The mechanism for servicing incoming and outgoing messages in CAN nodes is the

ISR (I_SERV). When the Intel 82527 chip in a City receives a message (a King's

message or a message from other Cities), it generates an interrupt to its host

microcontroller. The ISR determines the interrupt source and invokes the

corresponding subroutine to service the interrupt.

A similar ISR is applied to the King after it successfully transmits a message. In

other words, the Intel 82527 interrupts the host MCU (in the Capital) after it

transmits a King's message. The ISR is responsible for calling a subroutine (B _SET

subroutine) which enables the King to re-configure itself in accordance with its

sending command.

The Interrupt Register of the Intel 82527 contains the value which specifies the

interrupt source. By reading this value, the ISR can invoke the correct subroutine to

service the Interrupt.

Table 7-1 shows the value of the Interrupt Register corresponding to each intetTupt

source.

- 156-

Software Design

Table 7-1 Values oflntel 82527's Interrupt Register

Interrupt Source Register Value (Hex)

none 0

Status Register 1

Message Object 15 2

Message Object 1 3

Message Object 2 4

Message Object 3 5

Message Object 4 6

Message Object 5 7

Message Object 6 8

Message Object 7 9

Message Object 8 A

Message Object 9 B

Message Object 10 c

Message Object 11 D

Message Object 12 E

Message Object 13 F

Message Object 14 10

- 157-

Software Design

To enable the ISR to invoke the precise subroutine, each City includes an Interrupt

service vector table (Table 7-2) which keeps the address of the subroutine servicing

each interrupt source. Each location of the table contains a two-byte address for

each routine. The table is located in the on-chip· RAM from address 0 lEOH to

address 01 FFH. The City's application assigns the address of the service subroutine

to its corresponding location in the table.

Table 7-2 Interrupt service vector table

Memory Location Subroutine Address

(Hex number)

I PTR
OlEO Status Register

lo .. OlEl I ADD

01E2 Message Object 15
01E3

01E4 Message Object 1
01E5

01E6 Message Object 2
01E7

01E8 Message Object 3
01E9

OlEA Message Object 4
OlEB

OlEC Message Object 5
OlED

OlEE Message Object 6
OlEF

OlFO Message Object 7
OlFl

01F2 Message Object 8
01F3

01F4 Message Object 9
01F5

01F6 Reserved

OlFF

- 158-

Software Design

The design of the I_ SERV Intenupt Service Routine (ISR) is as follows:

Variables

• I_PTR: pointer variable (2 bytes). I_PTR points to the location of the

service subroutine in the vector table.

• I_ADD: pointer variable (2 bytes). I_ADD points to the actual address of

the service subroutine for a corresponding Message Object.

If the value of the Interrupt Register of the Intel 82527 is named as Int _ Reg, then

I PTR is calculated as follows:

I_PRT=(Int_Reg- 1) * 2 +The Base address of the vector table (01 EOH) (*)

Note that the Base address of the vector table can be changed to map the table in

another memory location.

The memory location pointed by I_ PR T contains the address of the service

subroutine for a corresponding Message Object.

I SERV ISR algorithm

1. Load the Interrupt Register value

2. Calculate I_PRT by the formula(*)

3. Load the content of the memory location pointed by I_ PTR into I_ ADD

4. Call the subroutine specified by I_ ADD

5. Reset the Interrupt Pending (IntPnd) bit of the corresponding Message

Object.

6. Return from interrupt

- 159-

Software Design

7.3.3 Servicing King's messages

Programming issues

When a King Page arrives at a City or the King successfully transmits a King's

command, the Intel 82527 interrupts its host MCU. The King's message (stored in

the Message Object 1) is serviced by a subroutine called MSG _OB 1.

Note that the address of the MSG OB 1 subroutine is assigned to the Message

Object 1 's location in the Interrupt service vector table.

The MSG _OB 1 subroutine has the following tasks:

• For a City to decide whether to accept the King Page or not, the

MSG OB 1 subroutine compares the City's address contained in the Page

(Line 0) with the City address. If Line 0 of the King Page contains the

address which matches the City's address or contains the group address 0

(Broadcasting message), the King Page is accepted.

• If the City accepts a King Page, or after the King successfully transmits a

King Page, the MSG _OB 1 subroutine invokes a corresponding subroutine

to service the Page according to its Page number (Line 1).

To enable the MSG OB 1 subroutine to call the correct subroutine to service the

particular King Page. Each City (including the Capital) contains a King Page vector

table (Table 7-3) located at address OlCOH to 01DFH. Each location consists of a

two-byte subroutine address which is used to invoke the appropriate service routine

for the Page. The City's or the Capital's application assigns the subroutine address

to its corresponding location in the table.

- 160-

Software Design

Table 7-3 King Page vector table

Memory Location Subroutine Address

(Hex number)

OICO Page 0 OICI P PTR P ADD

OIC2 Page 1
OIC3

OIC4 Page 2
OIC5

OIC6 Page 3
OIC7

01C8 Page 4
OIC9

OICA Page 5
OICB

01CC Page 6
OlCD

01DA Page 13
01DB

01DC Page 14
01DD

01DE Page 15
01DF

- 161 -

Software Design

Although only five King Pages were implemented in this project, later designers

can have the opportunity to add up to 16 King Pages into the Small CAN Kingdom

protocol to enhance the system's performance.

The design ofthe MSG_OB1 subroutine is as follows:

Variables

• C_ADD: the City's working address (1 byte)

• P _PTR: pointer variable (2 bytes). P _PTR points to the location of the

service subroutine in the King Page vector table.

• P _ADD: pointer variable (2 bytes). P _ADD points to the actual address of

the subroutine.

P _PTR is calculated according to the following formula:

P _PTR=(Value of Line 1 * 2)+ The Base address of the vector table (01COH) (**)

It is noted that the Base address of the vector table can be changed to map the table

in another memory location.

The memory location pointed by P _PR T contains the address of the subroutine to

service a corresponding King Page.

Note that each City has two memory locations for addressing purposes:

• The original City's address (ADDRESS) is stored in 1 byte EEPROM

• The C _ADD is initialised with the same value as the ADDRESS, but it

can be changed by the King to assign group addresses or new City

addresses.

- 162-

Software Design

MSG OB 1 subroutine algorithm

1. Reset the New Data (NewDat) bit in the Control Register 1 of the Message

Object 1 (for Cities only)

2. Load Line 0 of the King Page (for Cities only)

3. If Line 0 contains the same value with the City's address or the group

address 0, then continue to step 4. Otherwise, jump to step 8 (for Cities

only)

4. Load Line 1 of the King Page

5. Calculate P _PTR according to the formula(**)

6. Load the content of the memory location pointed by P _PTR into P _ADD

7. Call the subroutine specified by P _ADD

8. Return from subroutine

It is noted that the steps from 1 to 3 enable a City to decide whether to accept the

Page or not.

- 163-

Software Design

7.3.4 King software

Programming issues

The King's software controls the whole task of the King in the system. After

successfully transmitting an instruction, the King is interrupted by the Intel 82527.

The I_SERV ISR orders the MSG_OBl subroutine to call a corresponding

subroutine to service the interrupt.

If the King sends Page 0 to Page 3, it does nothing upon the interrupt. This is done

by the subroutine NO_ OP. The address of NO_ OP subroutine is assigned to the

locations for Page 0 to Page 3 in the King Page vector table.

If the King sends Page 4 (baud rate setting), it will configure itself to the new baud

rate. This is done by the subroutine B_SET. The address of the B_SET subroutine is

assigned to the Page 4 location in the King Page vector table.

In addition, communication between the King and system designers is controlled by

the King Menu program (KING subroutine).

The following sections describe the design of each software module used by the

King.

7.3.4.1 King's main program

King's main program algorithm

1. Reset CAN controller chip

2. Initialise the CAN controller chip

3. Enable the MC68HC11 interrupt

4. Assign address of the MSG_OBl subroutine to address 01E4H in the

Interrupt Service vector table

- 164-

Software Design

5. Assign address of the NO_ OP subroutine to address 01 COH, 01 C2H,

01C4H, and 01C6H in the King Page vector table

6. Assign address of the B_SET subroutine to address 01C8H in the King

Page vector table

7. Call the KING subroutine (King Menu program) to enable designers to

enter data

8. Set Data Length Code (DLC), Transmit, and Standard format for the King

Folder (Message Object 1). Note that the DLC is calculated within the

King Menu program

9. Send the King Page entered in the King Menu program

1 0. Wait for interrupt

11. Ask the designer whether to enter a new King Page or not. If not, continue

to step 12. Otherwise, go back to step 7.

12. Return to the prompt of BUFFALO monitor program

7.3.4.2 NO OP subroutine

NO OP subroutine algorithm

1. No operation (NOP)

2. Retum from subroutine

7.3.4.3 B SET subroutine

B SET subroutine algorithm

1. Write the value in Line 3 of King Page 4 to BTRO

2. Write the value in Line 4 of King Page 4 to BTR1

3. Set CCE bit in Control Register oflntel 82527 to logic 1

4. Call B _RATE to change the baud rate

5. Set CCE bit in Control Register of Intel 82527 to logic 0

6. Retum from subroutine

- 165-

Software Design

7.3.4.4 King Menu program

The aim of this program is to enable system designers to design King Pages

corresponding to the configuration instructions for· the system. The design of each

King Page is done by using an IBM PC. Next, the Page is downloaded to the

Capital's microcontroller and sent to a City or a group of Cities. The software

which enables the King Pages to be designed is referred to as the King Menu

program.

7.3.4.4.1 Introduction

The King Menu program has two tasks:

1. Enabling system designers to enter King Pages

2. Formatting the entered data according to King Page Forms

System designers enter a King Page via the PC's keyboard, the data is echoed on

the PC's monitor. The menu on the monitor would appear as shown in Figure 7-9.

Figure 7-9

KING PAGE

LINE 0:01

LINE 1: 01

LINE 2:20

LINE 3: OA

LINE 4:40

LINE 5: 00

LINE 6: 00

LINE 7: 88

Send? (Y/N): Y

New page? (Y/N): N

>(BUFFALO prompt)

King Menu

- 166-

Software Design

The King Page shown in Figure 7-9 is an example of a King Page 1. Each Line on

the screen corresponds to a Line on King Page 1 Form.

Each Line consists of two Hexadecimal numbers which carry the information

corresponding to a particular King Page as described earlier in Chapter 4.

After the user finishes entering data for a King Page, the King Menu program asks

the user whether or not to send the Page. If a 'Y' character is entered, the King

Menu program returns to the main program to send the Page. Otherwise, the Page is

discarded and the prompt for entering a new Page is displayed on the monitor.

After finishing the system configurations, the user can return to the BUFFALO

program by entering an 'N' character at the 'New Page? (Y/N):' prompt.

The King Menu program also provides the following facilities to assist users to

conect the data being currently entered:

• If the current character being entered is not in the ranges of Hexadecimal

characters, the current Line is discarded. The program repeats this Line to

prompt the user to re-enter the data.

• After entering data for a Line, the user presses <Enter> to confirm the

Line. The monitor will prompt the user to enter value for the next Line.

• Data for a Line can be changed by pressing <Ctrl+ X> instead of <Enter>.

• If a King Page contains less than eight Lines, after pressing <Enter> to

confirm the value of the last Line, the user can press <Ctrl+ESC> to

ignore the rest of the Lines.

- 167-

Software Design

The format of each Line in a King Page is as follows:

Page 0

Line 0: CC (Hex number- indicate City or Group address)

Line 1: 00 (Page 0- Finish Set-up phase)

Page 1

Line 0: CC

Line 1: 01 (Page 1 -Assign Envelop to Folder)

Line 2: FR

Line 3: AA (Arbitration 0) MSB

Line 4: AA (Arbitration 1)

Line 5: AA (Arbitration 2)

Line 6: AA (Arbitration 3) LSB

Line 7: llllruTdxrr (Binary number)

Note:

Line 2: F-Folder or Message Object number

R- Reserved, always being 0

Line 3, Line 4, Line 5, Line 6: contain the Arbitration values of the Arbitration field

in each Message Object ofthe CAN controller chip (Intel 82527)

Line 7: mm- enable/disable the Folder

01- disable

10- enable

11- unchange

d- direction ofthe message contained in the Folder

0- Receive

1- Transmit

x- message format

0- Standard

1- Extended

- 168-

Software Design

Page 2

Line 0: CC

Line 1: 02 (Page 2- Assign new City's or Group address)

Line 2: NN (new City's or Group address)

Page 3

Line 0: CC

Line 1: 03 (Page 3- Ungroup/Restore the original City's address)

Page 4

Line 0: CC (should be 00- broadcast message)

Line 1: 04 (Page 4- Baud rate setting)

Line 2: SJWS;wbbbbbb (Binary)

Line 3: sspitrsEG2hsEmtrsEmtrsEGihsEoitrsEGitrsEGI (Binary)

Note:

Line 2:

Line 3:

s1wsJw- (Re)Synchronisationjump width- Value: 0-3 (Decimal)

bbbbbb- Baud rate prescaler- value 0-63 (Decimal)

sspi - Sampling mode

0- The CAN bus is sample once per bit time

1- The CAN bus is sample three times per bit time

trsEG2 hsEG2 trsEG2 -Time segment 2 -Value: 1-7 (Decimal)

trsEoJhSEGihsEGihsEGI- Time segment 2- Value: 1-15 (Decimal)

- 169-

Software Design

7.3.4.4.2 Designing the King Menu program

The King Menu program uses four utility subroutines of the BUFFALO monitor

program contained in the MC68HC11 on chip ROM as shown in Table 7-4:

Table 7-4 BUFFALO's utility subroutines

Address Subroutine Description

FFAOH .UPCASE Conve1i a lower case character 111 Accumulator A to

upper case

FFC4H .OUTCRL Output ASCII carriage return follow by a line feed

FFC7H .OUTSTR Output a string of ASCII bytes pointed by address in the

index register IX until encountering the EOT character

(04H)

FFCD .IN CHAR Input an ASCII character into Accumulator A and echo

back

The King Menu program (called KING subroutine) also has the following

subroutines:

• K _DISP controls the process of entering King Pages and calculates the

number of Lines on the Pages.

• L _ENTER controls the value entering process for a Line.

• HEXBYTE gets two ASCII characters entered from the user, converts

them to Hexadecimal numbers, and stores the numbers into TMP 1 (1

byte).

• HEXBIN convetis a character in Accumulator A into a Hexadecimal

number.,·.

- 170-

Software Design

King Menu program messages

The following messages are output to the PC screen to prompt the designers to enter

values:

MSGO: 'New Page? (Y/N):'

MSG1: '***KING PAGE***'

MSG2: 'LINE 0:'

MSG3: 'LINE 1:'

MSG4: 'LINE 2:'

MSG5: 'LINE 3:'

MSG6: 'LINE 4:'

MSG7: 'LINE 5:'

MSG8: 'LINE 6:'

MSG9: 'LINE 7:'

MSG10: 'Send? (Y/N):'

Variables

• TMP1 (1 byte) stores the hexadecimal value of a Line

• PTR1 (2 bytes) points to the memory location of the Menu program

messages

• PTR2 (2 bytes) points to the location to store the entered value (the Data

field ofthe Message Object 1)

• NHEX (1 byte) indicates the value entered is not a Hexadecimal number if

NHEX is not equal to 0

• STOP (1 byte): if this byte contains <Ctrl+ESC> character, the current

Line is ignored

• COUNT (I byte) indicates the number of Lines containing in a King Page.

Note that the number of Lines is specified by the upper-half of COUNT,

the lower-half is unused.

- 171 -

Software Design

KING subroutine algorithm

1. Reset COUNT to calculate the number of Lines for a new Page

2. Output MSG1 to the PC screen

3. Load the memory address ofMSG2 to PTR1

4. Load the address of the first byte in the Data field of Message Object 1 to

PTR2

5. Call K DISP subroutine

6. Output MSGIO to the PC screen

7. Receive character 'Y' or 'N' from users. If 'Y', then go to step 8 to return

to the main program. If 'N', then go to step 1 to re-enter the Page

8. Return from subroutine

K DISP subroutine algorithm

1. Call L ENTER subroutine to enter values for a Line

2. If STOP contains <Ctrl+ESC> character, then go to step 8. Otherwise,

continue to step 3.

3. Store the Line values to the address specified by PTR2

4. Increase COUNT by lOH.

5. Increase the value of PTR2 to point to the next location

6. Compare the content ofPTRl with the address ofMSG9. If equal, then go

to step 1. If not equal, increase PTR1 to point to the next Menu program's

message address location.

7. Go to step 1

8. Return from subroutine

- 172-

Software Design

L ENTER subroutine algorithm

1. Output the message to prompt users to enter values for a particular Line

2. Call HEXBYTE subroutine

3. If STOP contains <Ctrl+ESC> character, then go to step 7. Otherwise,

continue to step 4.

4. If the entered value is not a Hexadecimal number, then go to step 1 to re-

enter the value

5. If <Ctrl+ X> is pressed, then ignore the value and go to step 1

6. If <Enter> is pressed, then go to step 7

7. Return from subroutine

HEXBYTE subroutine algorithm

1. Reset NHEX

2. Get a character from the user (by calling .INCHAR subroutine). It is noted

that the character is stored in Accumulator A

3. Store the character to STOP

4. If STOP contains <Ctrl+ESC> character, then go to step 13. Otherwise,

continue to step 5.

5. Call HEXBIN subroutine to convert the character to a Hexadecimal

number

6. Go to step 12 ifthe value is not a Hexadecimal number

7. Store this number into the upper-half of TMP 1

8. Get a character from the user (Call .INCHAR subroutine).

9. Call HEXBIN subroutine to convert the character to a Hexadecimal

number

10. Go to step 12 ifthe value is not a Hexadecimal number

11. Store this number into the lower-half of TMP1

12. Increase NHEX

13. Return from subroutine

- 173-

Software Design

HEXBIN subroutine algorithm

1. Call .UPCASE subroutine

2. If the value in Accumulator A is in the ranges of '0' to '9' or 'A' to "F',

then convert it to a Hexadecimal number

3. If the value is not in either the ranges mentioned in step 2, then load Ace

A with FFH to indicate the value is not a Hexadecimal number

4. Retum from subroutine

7.3.5 Designing the software to service King Pages in Cities

When a King Page arrives at a City (or Cities), the MSG _OB 1 subroutine calls a

corresponding subroutine to service the Page according to its Page number.

In this project, five subroutines were designed to service the five King Pages:

1. PG_ 0 subroutine services King Page 0

2. PG_l subroutine services King Page 1

3. PG_ 2 subroutine services King Page 2

4. PG_3 subroutine services King Page 3

5. PG_ 4 subroutine services King Page 4

The application program must assign these subroutines' addresses into their

locations in the King Page vector table (Table 7-3)

7.3.5.1 PG 0 subroutine

Variables

• WORK (1 byte) indicates that the Set-up phase has finished

- WORK= 0: Set-up phase

- WORK= 1: Set-up phase has finished and the City can start to work

- 174-

Software Design

PC 0 subroutine algorithm

1. Assign WORK:=1

2. Return from subroutine

7.3.5.2 PG 1 subroutine

Variable

• OBJ_NO (2 bytes): the Base address which is the first memory address of

the Folder number (Message Object number).

PG 1 subroutine algorithm

I. Determine the Folder number by reading the value of Line 2

2. Disable the Folder

3. Store Arbitration 0

4. Store Arbitration 1

5. Store Arbitration 2

6. Store Arbitration 3

7. Configure the Folder according to the value of Line 7

8. Return from subroutine

7.3.5.3 PG 2 subroutine

PG 2 subroutine algorithm

1. Store the value of Line 3 to C ADD (the 1 RAM byte for City's

addressing)

2. Return from subroutine

- 175-

Software Design

7.3.5.4 PG 3 subroutine

PG 3 subroutine algorithm

1. Get the original City's address in ADDRESS (the 1 EEPROM byte for

City's addressing)

2. Store the original City's address to C_ADD (the 1 RAM byte for City's

addressing)

3. Return from subroutine

7.3.5.5 PG 4 subroutine

PG 4 subroutine algorithm

1. Set CCE bit to 1 in Control Register to enable writing to Bit Timing

Registers

2. Store the value of Line 2 to Bit Timing Register 0

3. Store the value of Line 3 to Bit Timing Register 1

4. Set CCE bit to 0 in Control Register to disable writing to Bit Timing

Registers

5. Return from subroutine

7.3.6 Cities' software

The software in each City includes four parts:

1. Assigning address for the Interrupt Service Routine (ISR)

2. Initialisation being responsible for initialising CAN controller chip,

assigning values for the two vector tables.

3. Set-up phase waiting for set-up instructions from the King

4. Run phas·e controlling the designed operations of the City

- 176-

Software Design

An important observation is the fact that the first three parts of the City application

are almost the same for all three Cities with the fourth part different for each.

7.3.6.1 Assigning address for ISR

At the beginning of a City program, the command

JMP I SERV

is placed at address OOEEH of the Interrupt Vector table in the MC68HC 11 on-chip

memory.

When an IRQ interrupt occurs, the Program Counter points to the address of

I SERV ISR.

7.3.6.2 Initialisation

Algorithm for the Initialisation part

1. Reset CAN controller chip

2. Initialise the CAN controller chip

3. Initialise the LCD (for City 3 only)

4. Display the message '* CAN SYSTEM DEMO *' on LCD (for City 3

only)

5. Tum ON the Red LED to indicate Set-up phase

6. Assign the original address (ADDRESS) to C_ADD

7. Assign WORK to 0 to indicate Set-up phase

8. Assign address of the MSG_OB1 subroutine to address 01E4H in the

Intenupt Service vector table

9. Assign addresses of the MSG _ OB2 and MSG _ OB3 subroutines to address

01E6H and 01E8H, respectively in the Intenupt Service vector table (for

City 3 only)

10. Assign addresses of PG_O, PG_1, PG_2, PG_3, and PG_ 4 subroutines to

address 01COH, 01C2H, 01C4H, 01C6H, and 01C8H, respectively in the

King Page.vector table

11. Enable intenupt for MC68HC 11

- 177-

Software Design

Note:

• City 3 contains a set of subroutines to control the LCD such as initialising

LCD (INIT_L) and displaying messages in the LCD (DISP). These

subroutines are described in Section 7.3.6-.4.3

• City 3 receives messages from City 1 and City 2. Folder 2 and Folder 3

(Message Object 2 and Message Object 3) of City 3 are used to store

messages from City 1 and City 2, respectively. MSG _ OB2 subroutine is

used to decode messages in Folder 2. MSG _ OB3 subroutine is used to

decode messages in Folder 3.

7.3.6.3 Set-up phase

Algorithm for Set-up phase in a City's main program

1. Wait for a King instruction

2. IfWORK=O, then go back to step l. Otherwise, continue to Run phase

7.3.6.4 Run phase

7.3.6.4.1 C7itv I

In Run phase, City 1 gets the AID value from AID device, formats the value

according to the AID form (see Chapter 4), and sends it to the CAN bus whenever

the value has been changed.

Algorithm for Run phase in City 1 's main program

1. Turn on the Green LED to indicate the Run phase

2. Set the Data Length Code of the Message Object 2 to 8 bytes

3. Get AID value

4. Ifthe value is changed, then continue to step 5. Otherwise, go back to step

3

- 178-

Software Design

5. Set the CPU update (CPUUpd) and New data (NewDat) bits in the Control

Register 1 ofMessage Object 2 to logic 1

6. Get City 1 's address.

7. Convert the address to ASCII characters, and store them into the first three

bytes of the Data field (by calling ASCII subroutine)

8. Store the ':' character into the fourth byte of the Data field

9. Convert the AID value to ASCII characters, and store them into the next

three bytes of the Data field (by calling ASCII subroutine)

10. Store the End of String (EOT) character (04H) into the eighth byte of the

Data field

11. Reset CPUUpd bit to 0

12. Transmit the message

13. Go back to step 3

ASCII subroutine

This subroutine is used first to convert two Hexadecimal numbers contained in Ace

B into their equivalent Decimal numbers, then to convert the Decimal numbers into

ASCII characters, and store the characters to the memory addresses specified by

Index Register IY

ASCII subroutine algorithm

1. Convert the Hexadecimal numbers into Decimal numbers

2. Convert the Decimal numbers into ASCII characters

3. Store the characters into memory location specified by IY

- 179-

Software Design

7.3.6.4.2 C7i(Y 2

In Run phase, City 2 gets the AID value from AID device, formats the value

according to the AID form (see Chapter 4), and se~ds it to the CAN bus when the

City receives a request (Remote frame) from City 3.

Algorithm for Run phase in City 2' s main program

1. Turn on the Green LED to indicate Run phase

2. Set the Data Length Code of the Message Object 2 to 8 bytes

3. Get AID value

4. Set the CPU update (CPUUpd) and New data (NewDat) bits in the Control

Register 1 of Message Object 2 to logic I

5. Get the City 2's address.

6. Convert the address to ASCII characters, and store them into the first three

bytes of the Data field (by calling ASCII subroutine)

7. Store the ':' character into the fourth byte of the Data field

8. Convert the AID value to ASCII characters, and store them into the next

three bytes of the Data field (by calling ASCII subroutine)

9. Store the End of String (EOT) character (04H) into the eighth byte of the

Data field

10. Reset CPUUpd bit to 0

11. Delay 2msecs to allow the Intel 82527 CAN controller to complete the

transmission of the message if there is a request from City 3

12. Go back to step 3

- 180-

Software Design

7.3.6.4.2 City 2

In Run phase, City 2 gets the AID value from AID device, formats the value

according to the AID form (see Chapter 4), and sends it to the CAN bus when the

City receives a request (Remote frame) from City 3.

Algorithm for Run phase in City 2' s main program

1. Turn on the Green LED to indicate Run phase

2. Set the Data Length Code of the Message Object 2 to 8 bytes

3. Get AID value

4. Set the CPU update (CPUUpd) and New data (NewDat) bits in the Control

Register 1 ofMessage Object 2 to logic 1

5. Get the City 2's address.

6. Convert the address to ASCII characters, and store them into the first three

bytes ofthe Data field (by calling ASCII subroutine)

7. Store the ':' character into the fourth byte of the Data field

8. Conveli the AID value to ASCII characters, and store them into the next

three bytes of the Data field (by calling ASCII subroutine)

9. Store the End of String (EOT) character (04H) into the eighth byte of the

Data field

10. Reset CPUUpd bit to 0

11. Delay 2msecs to allow the Intel 82527 CAN controller to complete the

transmission of the message if there is a request from City 3

12. Go back to step 3

- 180-

Software Design

In Run phase. City 3 checks the Remote Request device (the push button). If the

push button is pressed. then the City sends a Remote frame to City 2 to request data.

The ISR controls the data display of messages from City I and City 2.

[\]llil_dthm_fur Run phase in City 3's main program

1. Turn on the Green LED to indicate Run phase

<.;et Recein:: Interrupt Enable (RXIE) for Message Object 2 and Message

Object 3

3. If the button is pressed (PAO eO). then send Remote fi·ame to City 2

-L Delay 1 sec

~- CJo hack to step 3

It is noted that \\hen a message arrives. the JSR invokes a corresponding subroutine

tu decode it:

• MS(i OB~ suhroutme decodes the messages from City 1

• MSG OBJ subroutine decodes the messages from City .2

I.

3.

Determine the Base addn:ss JOr the Message Object .2 (7020H)

Call LCD subroutine to displa~ data

Return from subroutine

MSG 083 subroutine algorithm

1. Determine the Base address for the Message Object 3 (70JOH)

3.

Call LCD subroutine to display data

Return from subroutine

LCD subroutine algorithm

1. Con figure to display data on the second line of the LCD

2. Display the message in the corresponding Message Object

3. Return from subroutine

- 181 -

Software Design

Subroutines to control the LCD

The LCO control subroutines were developed and thoroughly tested by Wetton

(1995). The subroutines are listed as follows:

• !NIT_ L Initialising the LCD

• DISP: Display a string. in the LCD with the string's address specified by

index register IX

• Ol .ITPUT: output instructions from Ace A to the LCO

• SCREEN: Output datn ti·om Ace A to the LCD

In this project, these subroutines were utilised with minor changes in the software

due to some differences in the hnrdware design (see Chapter 6).

!NIT L subroutine algorithm

I. Delay I (>m secs

" Output an initialising instruction to LCD

3. Delay a period of time required for each instruction

4. Go back to step 2 until the last instruction is fetched

5. Rellrm from subroutine

DISP subroutine algorithm

1. Load a character at the address specified by IX to Ace A

" If the character is EOT. then go to step 6. Otherwise. continue to step 3

3. Call SCREEN to display the character

4. Delay 50 micro secs

5. Go back to step I

6. Retum from subroutine

- 182-

Software Design

OUTPUT subroutine algorithm

I. Load an instruction to Port 1 of the lntel 82527

2. Set LCD's pins RS=O, RIW#=O, E=O

3. Set LCD's pins RS=O, RIW#=O. E= I

4. Set LCD's pins RS=O. R/W#=O. E=O

5. Retum from subroutine

SCREEN subroutine algorithm

I. Load data to Port I of the lntel 82527

..., Set LCD's pins RS= I. R/Wii'==O. E:::O

3. Set LCD's pins RS=i. RIW#•=O, E=l

4. Set LCD's pins RS• I. R.'W#=O. E=O

5. Retum from subroutine

- 183 -

Software Design

7.4 Testing

The following testing schemes were performed to check the system operations:

7.4.1 Set-up phase

.-\Her eilch Citv had been reset. all the Cities waited for instructions from the King.

full:'.~te!l_.and actual result: The red LEDs in all of the Cities were tumed ON to

indicate that the Cities were \.\ailing for the King's instructions.

The King sent King Page l messages to each City to determine communicalions

between Cities. The values of Page I for each City were as follows:

ToCitvl:

Assigning ID 2 (Standard format) to Folder2.

Page I

LineO:Ol (City ll

Line I: 0 I I Page I)

Line 2: 20 (Folder 2)

Une 3:00 (Arbitration 0) MSB

Line 4:40 (Arbitration I)

Line 5: 00 (Arbitration 2)

Line 6: 00 (Arbitration 3) LSB

Line 7: 88 (Enable the Folder. Tra;Jsmit, Standard)

- 184.

Software Design

To City 2:

Assigning ID 3 (Standard format) to Folder 2.

Page I

Line 0:02 (City 2)

Line 1:01 (Page IJ

!.in!..'~: ~0 (Folder 2)

Line 3: 00 (Arbitration 0) MSB

Line -L 60 (Arbitration I)

LineS: 00 (Arbitration 2)

Line 6: 00 (Arbitration 3) LSB

Line 7: 88 (Enable the Folder. Transmit. Standard)

To City 3:

Assigning ID~ (Standard fOrmat) to Folder 2.

Page I

Line 0: 03(City 3)

Line I: 01 (Page I I

Line 2: 20 {Folder 2)

Line 3: 00 (Arbitration 0) MSB

Line 4: 40 (Arbitration I)

Line 5: 00 (Arbitration :n
Line 6: 00 (Arbitration 3) LSB

Line 7: 80 (Enable the Folder. Receive, Standard)

- 185 -

Software Design

Assigning ID 3 (Standard format) to Folder 3.

Page l

Line 0:03 (City 3)

Line 1:01 (Page I)

Line~: 30 (Folder 3)

Line 3: 00 (Arbitration 0) MSB

I ine 4: 60 (Arbitration I)

Line 5: 00 (Atbitration 2)

Line 6:00 (Arbitration 3) LSB

Line 7: 80 {Enable the Folder, Receive. Standard)

After sending these Pages to the Cities. the King then sent King Page 0 to all Cities

to inform them that the Set-up phase had been completed. The values of the Page

\Verc as follows:

PageO

Line 0: 00 (Broadcast to all Cities)

Line I: 00)Page 0)

Expected and actual results:

• The red LEDs were !Llllled OFF

• The green LEDs were !tuned ON to indicate that the Cities started to work

• Fmm then. the Cities communicated with each other as designed

- 186-

Software Design

7.4.2 Run phase

7.4.2.1 Testing communication between City I and City 3

• Adjusting the AID device in City I

Expected and actual result: City 3 received the data and displayed it in the LCD.

The LCD displayed the following information:

'CAN SYSTEM DEMO*
CITY OOI:IC8

Note that the value 128 was the A'D v,due from City !. The value was changed

whenever the A'D device v.as manually adjusted.

7.4.2.2 Testing communication between City 2 and City 3

• Adjusting the AiD device in City 2

• Pressing the button on City 3

These two actions were executed several times to test the system fully.

Expected and actual result: City 3 received the data and displayed it in the LCD.

The LCD displayed the following information:

CAN SYSTEM DEMO
CITY 002:068

Note that the value 68 was the AID value from City 2. The value was changed

whenever the AID device was manually adjusted.

- 187-

Software Design

7.4.3 Additional testing

7.4.3.1 Changing message Identifiers

Whilst the system is working in the Run phas~. the King can change the Identifier

for Cities' Folders in order to change message priorities. This was done by sending

King Page 1 messages to corresponding Cities.

- .J.3 I I ('hanging communication priority he/ll'een City I and City 3

Be,ausc the messages in City 1 are sent immediately. whenever the AID values are

changed. Folder 1 of City 1 should be disabled before changing Folder 2 of City 3's

message ID. Othe1wise. if City 1 sends its messages and no City receives, the

S)stem could malfunction. The order of changing message ID steps was as follows:

• Disabling the Folder 1 of City 1

• Assigning new message rD for Folder2 of City 3

• Assigning the same message ID for Folder 2 of City I

According to the algorithm of PG 1 subroutine. a Folder can be disabled by sending

the first three Lines of King Page I. The following King messages were sent:

To City I:

Disabling Folder 2

Page I

Line 0: 01 (City I)

Line 1:01 (Page I)

Line 1: 20 (Folder 2)

- 188-

Software Design

To City 3:

Assigning ID 10 (Extended format) to Folder 2.

Page 1

Line 0: 03 (City 3)

Line L 01 (Page I)

Line~: ~0 f raider 2)

l.inc J: 00 (Arbitration 0) MSB

Line ..J.: 00 (Arbitration I)

Line 5: 00 (Arbitration 2)

Line 6: 50 (Arbitration 3) LSB

Line 7: 84 (Enable the Folder. Receive, Extended)

To City I:

Assigning ID 10 (Extended format) to Folder 2.

Page 1

Line 0: 01 (City I)

Line I: 01 (Page I)

Line 2: 20 (Folder 2)

Line 3: 00 (Arbitration 0) MSB

Line 4: 00 (Arbitration I)

Line 5: 00 (Arbitration 2)

Line 6: 50 (Arbitration 3) LSB

Line 7: SC (Enable the Folder. Transmit, Extended)

Expected and actual result: The two Cities communicated with each other as

specified. This was done by repeating the test in Section 7 .4.2.1.

- 189-

Software Design

7.-1.3.1. 2 Changing communicalion priority f?etween City 2 and City 3

City 2 sends its messages only when it receives Remote frames from City 3, hence,

in this case. the order of changing the message IDs is not important and it is not

necessary to disable City 2"s Folder. The King sent the following messages to City

~and City 3:

To CitY~;

Assigning ID 9 (Extended format) to Folder 2.

Page 1

Line 0: 02 (City 2)

Line 1:01 (Page 11

Line 2: 20 (Folder 2)

Line 3; 00 (Arbitration 0) MSB

Line 4: 00 (Arbitration I)

Line 5; 00 (Arbitration 2)

Line 6: 48 (Arbitration 3) LSB

Line 7: SC (Enable the Folder. Transmit. Extended)

To City 3:

Assigning ID 9 (Extended format) to Folder 2.

Page I

Line 0: 03 (City 3)

Line 1:01 (Page I)

Line 2: 30 (folder 3)

Line 3: 00 (Arbitration 0) MSB

Line 4: 00 (Arbitration I)

Line 5: 00 (Arbitration 2)

Line 6: 48 (Arbitration 3) LSB

Line 7: 84 (Enable the Folder, Receive, Extended)

- 190 -

Software Design

Expected and actual result: The two Cities communicated with each other as

designed. This was done by repeating the test in Section 7.4.2.2.

7.4.3.2 Changing Cities' addresses

Tht' King sent King Page:! to the Cities to assign a new address to a City. This test

\\as done by the following steps:

• Assigning City's address 005 to City I

• Assigning City's address 006 to City 2

The values of King Page 2. sent to each City. were as follows:

To City l:

Page 2

LineO:OI !.City I)

Line 1:02 (Page 2)

Line 3: 05 (new City or group address 005 J

To Citv 2:

Page 2

Line 0: 02 (City 2)

Line I: 02 (Page2)

Line 3:06 (new City or group address 006)

l::.xpected and actual result: The Cities operated as specified. This was done by

repeating the tests in Section 7.4.2

- 191 -

Software Design

The display in the LCD of City 3 appeared as follows:

City 1:

City 2:

* CAN SYSTEM DEMO *
CITY 001:140

* CAN SYSTEM DEMO *
CITY 002:008

7.4.3.5 Changing baud rate

Initially, the system was working at 125kbit/s. In order to change the baud rate of

the system, the King broadcasted King Page 4 to all Cities with a new baud rate

setting.

For example, setting 100kbit/s to the system; the values of King Page 4 were as

follows:

Page 4

Line 0: 00 (Broadcast message)

Line 1 : 04 (Page 4)

Line 2: 43 (value for Bit Timing Register 0)

Line 3: 7A (value for Bit Timing Register 1)

Expected and actual result: The Cities operated as specified. This was checked by

repeating the tests in previous sections.

- 194-

Software Design

Expected and actual result The Cities operated as designed. This was done by

repenting the tests in Section 7 .4.2

The display in the LCD of City 3 appeared as follows:

Cit~ I:

Cit\· 2:

'CAN SYSTEM DEMO'
CITY 007:240

'CAN SYSTEM DEMO'
CITY 007: I 02

7.4.3.4 Ungrouping a group or restoring the Cities' original addresses

The King sent King Page 3 to group 007 to ungroup the group. This test also

demonstrated that the King could talk to a group through the group address.

The values of King Page 3 sent to group 007 were as follows:

Page 3

Line 0: 07 (group 007)

Line I: 03 (Page 3)

Expected and actual result: The Cities operated as specified. This was done by

repeating the testing in Section 7.4.2

- 193-

Software Design

The display in the LCD of City 3 appeared as follows:

Cit~ 1:

' l'AN SYSTEM DEMO'
Cl I"Y 11111:1411

'CNi SYSIL~I DE~10'
lilY OOc:OOX

7.-t .. lS Changiug baud nllc

Initial!). the system \\as working at 1~5kbil-"s. In order to change the baud rate of

the system. the King broadcasted King P<~ge 4 to all Cities with a new baud rate

setting.

For example. setting lOOk bits to the system: the values of King Page 4 were as

follows:

Page 4

Line 0: 00 (Broadcast message)

Line I: 04 (Page 4)

Line~: 43 (\'aluc for Bit Timing Register 0)

Line 3: 7A (value for Bit 'l iming Register I)

Expected and actual result: The Cities operated as specified. This was checked by

repeating the tests in previous sections.

- 194-

Software Design

The values of the Bit Timing Register 0 and Bit Timing Register 1 were checked by

examining their memory locations at the addresses 703FH and 704FH, respectively.

This was done by a memory display command of the BUFFALO monitor program

when the King Menu program returned to the monitor program. This examination is

reliable due to the fact that all nodes in a CAN-based system always work at the

same baud rate, and the values of the Bit Timing Registers are not changed when

exiting the King Menu program.

This test was checked with different baud rates of: 50, 100,200, 125,250 kbit/s.

Baud rates of over 250 kbit/s, such as 500 kbit/s or 1Mbit/s, could not be performed

by the system because the modified RS485 transceivers was not able to work at

these baud rates.

Table 7-5 shows the values of Line 2 and line 3 of King Page 4 for the tested baud

rates.

Table 7-5 Baud rate values

Baud Rate Values for Line 2 and Line 3 of
(kbit/s) King Page 4

250
Line 2: 41

Line 3: 67

200
Line 2:43

Line 3: 34

125
Line 2:43

Line 3: 67

100
Line 2: 41

Line 3: 7A

50
Line 2: 47

Line 3: 7A

- 195-

Software Design

7.4.3.6 Adding a new City to the system

This te~t illustrated that during the Run phase a new City could be connected to the

system. This was done by removing a City (fOr example. City I). then reconnecting

it to th~ system. The test consisted of two stnges:

Stagt.• I

Thi' ~ta~(' of the test demonstrated that when a City was set to a different baud rate

from that of the systcl!l. it did not dal!lagc the system .

.-\~s.pmption.;

• The system baud rate at this stage was 200 kbitis or any other baud rate

different to 125 kbit s (initial baud rate)

• Folder 2 of City 3 was configured to recc1ve a message with ID I 0

(Extended format)

It should be noted that the ad~lrcss of City I after reset was 001.

Testing:

• Reconnecting City I and resetting it. The City waited for the Set-up

instructions from the King.

• The King sent King Page I to asstgn ID 10 (Extended format) to the

Folder 2 of City I. The \·a lues of the King Page \Vere as follows:

Page I

Line 0: 01 (City I)

Line 1:01 (Page I)

Line 2: 20 (Folder 2)

Line 3:00 (Arbitration 0) MSB

Line 4: 00 (Arbitration I)

Line 5:00 (Arbitration 2)

Line 6: 50 (Arbitration 3) LSB

Line 7: 8C (Enable the Folder. Transmit, Extended)

- 196-

Software Design

• The King sent King Page 0 to City I to tell the City that the Set-up phase

had finished. The values for the King Page were as follows:

Page 0

Line 0:01 (City 1 l

I. me 1: 00 Wage 0)

• rh~ red LED on the Cit) l \\as still ON. This meant the City had not

rcccin!d the 1\.ing"s instructions hccause it was listening to the King at a

baud rate- of l ~5 kbit s.

• llu: rest of the systelll was in normal operation. This was tested by

repeating the test at Section 7.4.2.2.

Stage 2

This stage \Vas to test that a City could be connected to the system when the system

baud rate v.as 125 kbit,-s (initial baud rate\. The following steps were taken:

• The King changed the system baud rate to 125 kbit/s by sending out King

Page 4. The values of the Page were as follows:

Page 4

Line 0: 00

Line 1: 04

Line 2: 43

Line3:67

- 197-

Software Design

• Resetting City I.

• Repeating the steps in the Testing section of Stage 1.

Expe_cted and actual result: Cit) I communicated with City 3 as specified. This was

ched,ed h~ repeating the test in Section 7.4.~.1.

7 .4.3. 7 Testing the role of the King

:\t the Run phase. and if there is no further requirement for the system

configuration. the King can be removed from the network. lt can be reconnected to

the system at an_y time if required. The test was performed by the following steps:

• Removing the King. from the network. This was done by resetting the

Kinv

Exp~cted and actual result:

-The PC monitor returned to the BUFfALO prompt.

-The S)Stem was working nonnally without the King. This was checked by the test

described in Section 7.-l.~.

• Reconnecting the King to the network. This was done by running the King

program (more details of how to use the King program are given in

Appendix C).

• Performing the previous tests to check the operation of the King.

Expected and actual result: The King worked in the same way as it had done when

it was originally connected to the network.

- 198-

Software Design

7.4.4 Testing the behaviour of the King Menu program

Table 7-6 shows the testing schemes were employed during the entering a King

Page stage of the King Menu program.

Table 7-6 Testing King Menu program

Test Expected and actual result

Entered a character which was not in the Prompted the user to re-enter the data

ranges of Hexadecimal numbers for the current Line

Pressed <Enter> to confirm a Line Prompted the user to enter data for the

next Line

Pressed <Ctrl+ X> to re-enter value for a Prompted the user to re-enter the data

Line for the current Line

Entered a King Page containing 8 Lines 'Send? (YIN):' prompt appeared

Used <Ctrl+ESC> to enter data for a 'Send? (YIN):' prompt appeared

King Page containing less than 8 Lines

Entered the character 'N' at 'Send? Prompted the user to enter a new King

(Y IN):' prompt Page

Entered the character 'Y' at 'Send? 'New Page? (Y IN):' prompt appeared

(Y IN):' prompt

Entered the character 'Y' at 'Send? Prompted the user to enter a new King

(Y IN):' prompt Page

Entered the character 'N' at 'Send? Retum to the BUFFALO prompt

(Y IN):' prompt appeared

- 199-

Software Design

7.5 Conclusion

This chapter described how the author of this thesis successfully designed the

software that controlled the operation of a small system fOllowing the Small CAN

1\.ing.dom protocol. The software was used to demonstrate and test the protocol.

rhe Small C:\N Kingdom protocol provides an open approach. which allows later

designt·rs to add more application services by means of additional King Pages in

order tn enhance the performance of future systems. The address of the subroutine

used to decode a nev. King Page is simply assigned in the King Page vector table.

thus the City's Mayor knows where to look !Or the subroutine.

Similarly. when a City implements a new Form (or Forms) for a particular Folder

(Message Object). the address of the subroutine used to decode the Form (or Forms)

1~ written into the Interrupt servil:e vector table.

If a Folder is designed to recei\e several messages with different Form fom1ats (e.g.

the King Folder). a similar \·ector table to the King Page vector table should be used

to specify the address of the subroutine used to decode a particular Form.

When a new City is designed. the City should reserve two bytes for addressing

purposes: the original address (ADDRESS) can be stored in one byte non-volatile

memory, and the working address (C_ADD) is stored in one byte volatile memory.

Initially. the value of ADDRESS is assigned to C_ADD. The King then assigns a

new City's address or a Group address to a City by changing the value ofC_ADD.

Nme that the value of ADDRESS should be left to the system designers to

determine, in order to avoid conflict between the Cities.

Any new City following the Small CAN Kingdom protocol should be able to

receive and obey at least King Page 0 and Page I.

- 200-

Software Design

Typically, the software used to demonstrate the performance of the Small CAN

Kingdom protocol described in this project was written in the M6800 assembly

language. Each CAN node in the demonstration system contains an MC68HC11

and Intel 82527 CAN controller. The nodes with the same hardware parts can utilise

similar implemented subroutines as shown in Table 7-7.

Table 7-7 Small CAN Kingdom protocol subroutine for a City

Address Name Description

B696H PG 4 Subroutine to decode King Page 4

B6B3H PG 3 Subroutine to decode King Page 3

B6BAH PG 2 Subroutine to decode King Page 2

B6CIH PG 1 Subroutine to decode King Page 1

B6FEH PG 0 Subroutine to decode King Page 0

B674H ADDRESS 1 byte EEPROM address for a City's original address

B705H MSG OB1 Subroutine to service Folder 1 (King's message Folder)

B730H I SERV Interrupt Service Routine (ISR)

B770H DELAY Subroutine to delay a multiple of 50 m1cro secs. The

multiple value is specified by index register IY

B77DH RESET C Subroutine to reset CAN controller chips

B795H INIT C Subroutine to initialise CAN controller chips

It should be noted that the memory locations of the vector tables (Table 7-2 and

Table 7-3) as well as the memory locations used by the subroutines in Table 7-7 can

be mapped anywhere in the addressable space available to the MCU. This only

requires minor changes in the software.

The testing schemes have provided an efficient mechanism used to check the

system's performance. All the tests were repeated many times and produced

expected results.

- 201 -

CHAPTERS

CONCLUSION

8.1 Summary

rtw Cuntroller Area Network (CAN) protocol provides designers with a powerful

lncchani~m to build ·-umplex distributed systems.

The Bus Arbitration cancept employed by the protocol allows messages being

transferred in the network to vie tOr contention of the bus in a predetermined way.

Whenever a collision occurs. the highest priority message always gains access to

the bus; the nodes which have attempted to transmit lower priority messages

automatically become receivers.

A CAN network uses Linear Bus topology: thus. any node has the same right of

access to the bus (Multimaster). Moreover. messages are broadcast to all nodes in a

CAN-based system: therefore. any number of nodes can receive their expected data

simultaneously (Multicast reception). This enables data to be exchanged in a short

period of time.

The powerful error detection schemes of the CAN protocol provide the means for

CAN~based systems to work in physically harsh and electrically noisy industrial

environments.

In addition. CAN\~ OSI!ISO based model allows the protocol to achieve design

transparency and implementation flexibility.

However. the CAN protocol only specifies the Data Link layer according to the

ISO/OS! seven layer reference model (see Chapter 2). Upper and lower layers m:~st

be added to a CAN~based system in order to perform actual operations in a system.

-202-

Conclusion

With respect to the critical time requirements in the automation industries, CAN

based systems usually implement three layers including the:

• Application layer.

• Data Link layer, and

• Physical layer.

The !\,;t·t\~ork. Transp011. Session. and PresentHtion layers are thus ornitteti.

The main aim of this thesis is to deal with the Application layer of small distributed

systems based on the CAN protocol. In other words. this tht:sis is concerned with

the design of an Application Layer protocol (Higher Layer Prolt col) for small

systems using small microcontrollers such as the MC68HC 11.

Steps were taken to investigate three popular CAN Higher Layer Protocols (HLPs),

namely:

• Smart Distributed System (SOS).

• DeviceNet. and

• CAN Kingdom.

The study concluded that SDS provides an effective protocol for communications

between I '0 devices and the host controllers. The protocol, however. is too complex

to suit the requirements of small systems. Additionally, the SOS application

services are designed in fixed forms which means that they are extremely difficult

to change to satisfy the needs of a particular system.

DeviceNet is an open net\~ork where all nodes have the same right of access to the

bus. The Object-Oriented approach of DeviceNet makes it more flexible than SOS.

Each object in the DeviceNet protocol can contain different services which specify

the role of the object. Moreover. users can utilise the I/0 messages of Device Net to

provide special-purpose services for their devices (see Chapter 3).

- 203-

Conclusion

However, SDS and DeviceNet protocols do not make use of many powerful

features of the CAN protocol. They only employ the Standard message format (It

bit Identifier) specified in the CAN protocol. In addition, two or more nodes cannot

have the same Logical address in an SOS system. or the same Media Access

Control Identifier (MAC ID) in a DeviceNet system. This violates the optimum use

of CAN Identifier which has been devised so that more than one node can utilise the

same CAN !D. Therefore, the multicast functionality of CAN designed for the fast

exchange of data cannot be applied in these protocols.

Furthermore. becattSl' the message priorities depend on the Logical Address or

MAC ID of a device. they are also difficult to amend once already assigned. To do

so requires a complex modification in the control software.

Another disadvantage of SDS and DeviceNet is that when in the process of

designing a module. the designers must be aware of the other nodes which their

module is going to communicate with. The designers also have to assign the module

address in advance. In other \Vords. the ml;":;sage priorities must be decided before

the whole system design has been completed.

Conversely, the purpose of the CAN Kingdom protocol is to provide an open

solution which enables "any module just to be hooked on the bus and then start

working as a perfect teammate in the system" (Lennartsson, & Fredriksson, 1995).

This idea is based on the fact that when modules following different protocols are

connected on the same CAN bus. problems will arise due to the conflicting

interpretation of messages at the application level. Therefore, instead of specifying

a complete HLP, CAN Kingdom defines a set of protocol primitives which

designers can use to build a final HLP to suit their needs.

The principle of the CAN Kingdom protocol is that a master node in the system, the

King. owns all message Identifiers. then assigns them to messages transferred in the

system during a set-up phase. Normally, the King does not get involved in the run

time of the system. Yet, it can send instructions to the Cities (CAN nodes) at any

time while the system is working, should the configurations need to be changed.

This approach enables the message priorities to be chroTlged easily when required.

- 204-

Conclusion

In addition, designers are free to construct the message formats for their devices.

There is no restriction of the use of CAN data field in the CAN Kingdom protocol

except for the construction of King Pages.

furthermore, the CAN Kingdom protocol supports both Standard and Extended

(29-bit Identifier) message formats specified in the CAN protocol. This enables

users to employ the latest technology of the CAN protocol: and hence. the two types

or messages can coexist within a CAN Kingdom sv~l.em which it is not possible in

SDS or DeviceNet systems.

In light of the advantages of the CAN Kingdom protocol for designing an open

protocol, the author of this thesis decided to follow its basic idea to develop a HLP

(the Small CAN Kingdom protocol) for small CAN-based distributed systems.

This small HU· has inherited the advantages of the CAN Kingdom protocol; and

thus, it provides users with the freedom to design a final protocol that suits their

system requirements. The data formats of messages can be designed without any

restriction: they must hov.'ever, be conveyed to the system designer by means of

Forms (see Chapter 4). This enables the system designer to inform the King to

assign appropriate modules. with matching Forms, for the exchange of information.

Besides the hereditary benefits of CAN Kingdom, the Small CAN Kingdom

protocol also has its own advantages such as its simpler specification and small size

of programming codes. Indeed, the software. which enables a City to receive and

decode all the five King Pages, implemented in the protocol, requires only 362

bytes for the service subroutines, and 69 bytes for the variables and the two vector

tables (see Chapter 7). To simplify matters further, the subroutines for the King

Pages from Page 2 to Page 4 can be omitted if not required in particular systems.

Additionally, the implementation of the Small CAN Kingdom protocol allows users

to add more services to enhance the syst~m·s performance by means of extra King

Pages. The addresses of the Si.1broutines to decode the new King Pages are simply

written to their appropriate location in the King Page vector table (Table 7-3).

-205-

Conclusion

This thesis also describes how a network of MC68HC 11 microcontrollers has been

designed and successfully implemented. The software controlling the network has

been based on the Small CAN Kingdom protocol. The system design includes:

• A Capital (the Master node) with the King being responsible for the

system configurations.

• City I which sends Analog I Digital (A/D) converted signals along with its

address to City 3 whenever the analog signal value changes,

• City 2 which also sends AID signals and its address to City 3, but only if it

receives requests from City 3 by means of CAN Remote frames, and

• City 3 which receives and displays the information from both City I and

City 2 on a Liquid Crystal Display (LCD) module. TI1is City has also

designed to send Remote frames to City 2 when the data is needed.

The King is connected to ar. IBM PC so that the designer can construct a King

Page. then the Page is down loaded to the King and sent to the network to perform

the system configuration.

All Cities are able to receive and follow the instructions, contained in the five King

Pages, associated with the Small CAN Kingdom protocol.

The LCD in City 3 provides a visual way to demonstrate the system operations.

City I and City 2 send their information along with their addresses; thus, it is easy

to observe the derivation of the displayed message. In addition, the system can

demonstrate the ability of CAN data frames for requesting data.

Each City also contains a dual-colour Light Emitting Diode (LED) to indicate its

states (Set-up or Run phase). Red indicates the Set-up phase; green indicates the

Run phase.

- 206-

Conclusion

Chapter 5 discussed reasons for choosing the MC68HC11 microcontroller and the

Intel 82527 CAN controller. This resulted in the selection of suitable physical

components for the hardware design in this project. The details of the hardware and

software development environments were also described in this chapter.

In order to take advantage of Motorola's hardware support. the M68HC11EVBU

L'\'illuation hoards were used to assist the hardware design of the system.

The software of the project was developed and debugged with the aid of the

following programs:

• The ROM-based BUFFALO monitor program. which is included in the

microcontroller chip's ROM. and \\as used to load and debug software.

• The Edit (MS-DOS line editor) program which was used to write the

source programming codes.

• Motorola's portable assembler (PASM) used to compile the program.

• Motorola's Ubuilds program used to create Motorola S-records. and

• The MS-Kermit program employed to establish communication between

an IBM PC and the M68HCIIEVBU board's BUFFALO monitor

program.

The complete hardware and software designs nf the system were described m

Chapter 6 and Chapter 7, respectively.

In Chapter 6. the interfaces between following devices were successfully designed:

• The MC68HC 11 microcontro!ler and the Intel 82527 CAN controller chip

(for all CAN nodes in the system).

- 207-

Conclusion

• The MC68HC \I microcontroller and an IBM PC (for the King).

• The MC68HCII microcontroller and A/D devices (for City I and City 2).

In tht• case of this project. !Okn rotary potentiometers and a +5V supply

wt·re used to generate A: 0 signals.

• The lntel 82527 and a DS3695 tRS485 standard) transceiver chip (for all

CAN nodes). The DS3695 chip was modified to suit the requirements of

the CAN bus.

• An LCD module and the lntel 82527 (for City 3). The two general purpose

1·0 p011s (Pm1 I and Port 2) of the lntel 82527 were used to control the

LCD.

• A push button and MC6SHC 11 (for Cit.Y 3). This push button was used to

invoke the generation of CAN Remote frames to City 2 to request data.

• A dual-colour l.ED and the lntel 82527 (for all Cities). The LED

contained in each Cit~ \\<lS used to indicate the City's state.

In Chapter 7 d~.::scribcd the design of all the software necessary for the King to

construct and transmii its instructions and for the Cities to obey these instructions.

The software required for each node to complete its specified tasks in the system

\\as also been presented in detail.

• The King Pages were designed on an IBM PC. then downloaded to the

King. and subsequently. sent to the Cities via the King's software. An

Interrupt SerYice Routine (ISR). contained in the King, enabled it to

reconfigure itself. if necessary. when a King Page had been successfully

transmitted.

- 208-

Conclusion

• When a King Pages arrived at a City. the Jntel 82527 interrupted its host

microcontroller. This forced the City's ISR to determine the interrupt

source and to invoke an appropriate subroutine to service the King Page.

• During run-time. City l's application software detected the change of the

A D signal. then ordered the lntel 82527 to send the amended information

to City 3.

• City 2 always updated its information and sent to City 3 whenever it

received a remote request.

• The software in City 3 captured the logkal level change at the push

button. Whenever. the push button was pressed, it sent a Remote frame to

City 2 to request data. The City 3's ISR was also able to invoke the right

subroutines to ser\"ice the messages from City I and City 2.

The testing schemes in Chapter 7 provided sufficient checks for the system's

performance. The tOllowing tests were accomplished:

• Testing the responsibilities of the King and the Cities in the Set-up phase.

In this phase the King sent the configuration instructions to the Cities and

decided upon the communications between the Cities (through the King

Page I). The Cities stm1ed to wurk when the King told them that the Set

up phase had been finished (through broadcasting the King Page 0 to all

Cities).

• Testing the communications between Cities in the Run phase.

• Changing the message Identifiers to change the priority for the messages

(through the King Page I).

• Changing the Cities· addresses (through the King Page 2).

-209-

Conclusion

• Assigning a group address to Cities (through the King Page 2). This

enabled the King to talk to a group of Cities at a time.

• Ungrouping a group of Cities or restoring the original Cities· addresses

(through the King Page 1)

• Changing the system baud rate (through the King Page 4). This test was

done successfully with different baud rates: 50. 100, 125, 200. 250 kbit/s.

The baud rates above 250 kbitis could not be performed because the

moditiec! DS3695 transceiver chips were not able to work at these baud

rates.

• Adding a new City to the system. This test was done by removing a City

from the system. then reconnecting it.

• Testing the role or the King. This test was done by removing the King

from the system, then reconnecting it. This was to prove that the system

operated normally without the King. and when the King was reconnected,

it was able to send ne\\ instructions to the Cities.

In addition, another test was successfully performed to check the behaviour of the

King Menu program (see Table 7-6). This program enabled the system designer to

construct the King Pages and to correct any mistyping during entry of a King Page.

All the tests were repeated several times and the software v.'as debugged whenever

necessary in order to achieve accurate pedOrmance of the system.

- 210-

Conclusion

8.2 Future trends and suggestions

The low cost of CAN components. high data integrity. and short reaction time of the

CAN protocol together with its huge user base ensure that the future of the protocol

is a bright one. However. the lack of a worldwide standard CAN Higher Layer

Protm:ol has been a substantial issue. As a result. each manufacturer may either

.:hoosc an existing apropos protocol or develop their own for their systems.

In this cuse. the open approach introduced in the CAN Kingdom protocol is likely

to be an advantageous mechanism which can be used to produce a final suitable

protocol for the requirements of di lferent types of systems.

The Small CAN Kingdom protocol was developed based on the principle of CAN

Kingdom. and hence, the users can customise the protocol to suit their needs.

Furthermore. its simplicity and small si?e of programming codes are an ideal

solution for small distributed systems.

Another CAN project concemed with the ln!el h051 microcontrollers is also

currently in progress at Edith Cmvan University. Perth, Westem Australia. Such

associated research in the CAN area also offers exciting prospects for the

Engineering faculty ofEdith Cowan University.

Although the software for this protocol was implemented and tested utilising an

MC68HC 11 microcontroller system. systems with different hardware components

can be hooked on to a Small CAN Kingdom bsed system. as long as the

implementation of their software supports the King's instructions.

The software implementation of the protocol enables later designers to enhance the

system's perfom1ance by means of additional King Pages. For example, a new King

Page to change the mask register so that a Message Object (or Folder) can transmit

or receive a group of messages, or a King Page to set up the system clock for the

network would be highly beneficial.

- 211 -

Conclusion

The Small CAN Kingdom protocol does not actually specify the exchange of data

larger than 8 bytes. However. this can be done in a similar way to the transfer of

King Pages.

lt is noted that the memory location for the program. as well as the vector tables in

each CAN node. can be mapped anywhere in the addressable space available to the

micrm:ontroller with only minor changes in the software (see Chapter 7).

rill· I\. in~ Menu program. \vhich enables the King Pages to be constructed, could be

cnn.;idcrcd as \"isually unimpressive. The time restrictions of this project effectively

serve to promote this recommendation a future agenda. The program could be

written using a Graphic User Interface (GUI) environment (e.g. Windows) which

\\ ould make it easier for users to design a King Page. In this case, a PC CAN board

can be utilised to provide more powerful control thcilities for the King.

A fut1her observation is that the King Menu program could be designed to allow all

King Pages to be created at an initial stage. and then sent sequentially to the Cities.

In addition. if the system· s configuration is rarely changed, the Cities can store the

King's instructions in non-volatile memory so that the system does not need to be

reconfigured each time the system is power up.

In conclusion. this project has provided a solution for small distributed

microcontroller systems to Gperate as a part of a powerful industrial network

architecture: the Controller Area Network. It has also opened up an exciting

research field in the automation industries.

- 212 -

REFERENCES

8152 7 Serial ('ommunications Con/roller Architecture Overview. (1996, January).
lntel Corporation.

Baba. M. D .. Ekiz. H .. Kutlu, A .. & Pawner, E. T. (1996). Toward adaptable
distributed reaiMtime computer systems. Proceedings of the Third International
ll'orkshop on Real~ li'me Compllling S\·stems and Applications (pp. 170-175).

Benzekri. A .. Bruel. J. -M .. Fuer1cs. J. M .. & Juanole. G. (1997). Controller area
!11. .. '\\\0rk: a formal case stJdy. Proceeding o(/997 IEEE International
Workshop on Factm:\' Communiculion.~rstems (Vol. I. pp. 365-372).

Hltmdin. L Bradley. S .. Danioux. R., Gray. P .. & Loaic. G. (1997). A network
architecture concept for deep ocean lander systems. Technology Transfer from
Reaseach tu lndusi!J'. Sewnth lni£!1'/Wiiona/ on E/eclronic Engineering in
Oceanography (pf-. 30-33).

Boyce. C. R. (\988. December). A four-station controller area network. lEE
('o//oquiunl on Vehicle l\'e!lmrks /hr Mullip/exing and Data Communication
(pp. 9/1-9.7). London.

C 16 7CR I 6-hil CMOS single-chip micmcontro//er da!a sheet (1995, June).
Siemens.

CAN and Del'iceNet_(n.d.) [on-line]. Available WWW:
http:i.'www.industry.net/c 1orgunprolodva/over6 [1997. September 20].

CAN Kingclum3.0/ .SfJeci!icalion. (1996-1997). Kvaser AB.

CAN Specf/icatiun r ·,..rsion l.O. (1991). Robert Bosch GmbH.

Cena. G .. & Valenzano. A. (!995. Octobt:r). A distributed mechanism to improve
fairness in CAN netv .. ·onks. Proceeding (~l1995 IEEE WFCS '95 ln!ernationa/
Workshop on Faclm:r Communicalion Syslems (pp. 3-11). Leysin. Switzerland.

Cena. G .. Dcma11ini. C.. & Durante. L. (1996). Communication service and
protocol specification using object oriented analysis. Proceeding of the IEEE
ISlE '961nternational -~rmposium onlnduslria/ Electronics (Vol. 2, pp. 1043-
1 048).

Chen, J., Rabb, M., & Taylor, V. (!996, February). Bridge: A retargetable extensive
profiling tool. Proceedings oft he Fourth International Workshop on Modeling,
A 1w~vsis, and Simulation of Computer and Telecommunication, MASCOTS '96
(pp. 44-50).

- 213 -

Croft. A. (1996). The XK8 high speed powertrain serial communication system.
lEE Colloquium on The E!ectrica!.~vstem of/he Jaguar XK8 (Digest no.
I Q%1281. pp. Jll-3117).

Cross. R .. & Watson. T. (\994). The Professional Analysis (2nd ed.). Anderson
Press. Australia.

Cr0\vcot1. J.. 1-lai\es, S .. 1-land\ey. M., Jena. A., Lewis, D .. & Wakeman. I. (\993.
April). Some multimedia traffic characterisation and measurement results.
Fourth I EEC 'm1ference on Telecommunication (pp. 16 7-174).

l!t'l ·~t ·t ·.\"el _1. /J .\j)(:citimt ion. (Vol. I . I 997. February). A llen-Bradley.

n_,,.h ·t · .\"ei _, () .\jh'ciflcat ion. (Vol. 2. I 997. February). A llen-Bradley.

Dkkson. G .. & Lloyd, A. {I 99~). Open .\)·stems lmercrmnection. Prentice Hall,
Australia.

Dodds. G .. Beattie. W. C.. & Schofield. R. D. (1989. September). Microcontrol/er
eurocard dCI·elopme/11. lEE ('o/loquium on Eurocard Computers- A Solution
ro Loll' Cos/ Control (Digest no. 107. pp. 411 - 4110).

DS36 9 5.DS3 6 9 5 P DS36 96•DS3 6 90 T• DS36 9 7 I DS3698 Mull ipoinl RS-185/RS-12 2
Trancei\'f!r.\·lRepeaters. (1996). National Semiconductor Corporation.

Ekiz, H .. Kutlu. A., Pawner. E. T .. Li. G. -J.. Hsu. D. F., Horiguchi, S., & Maggs,
B. (1996. June). Design and implementation of a CAN/CAN bridge.
Pmceed/l?gS o(the second lntenwliona! .~1·mposium on Para/le/ Architectures,
A lgoril hm. ·. am! ,/1./ e!1mrks (pp. 507-5 !3). Beij in g. China.

Farsi. M. (1995). Application of a PLC as a cell controller using a communication
network. lEE Co!!oquium 011 Application ofAdi'Gnced PLC (Programmable
Logic Cantroiler) .):vstems ll'ith Specffic Experiences from Water Treatment
(Digest no. 199:~1\ 12. pp. 3/1-3/4).

Farsi. M .. & Ratcliff. K. (\997). CANopen: the open communication solution.
Proceeding of the ISlE '97 IEEE International Symposium on industrial
Eleclnmics {Vol. I. pp. 112-116).

Gol\mer. K., & Posten, C. {I 994, August). Flexible automation of a
biotechnological pilot-plant with real-time network. Proceedings of the Third
IEEE ('onference on Control Application (Vol. 3, pp. 1941-1946). Glasgow,
UK.

Green field. J. D. (1992). The 68HC I I Microcontro!ler. Florida: Saunders College
Publishing.

Halsall, F. (1996). Data Communications, Computer Networks and Open System
(4th ed.). Addision-Wesley Publishers Ltd, USA.

- 214-

Hands. D.H. (1997). A Design inlnte!:facing the MC68HC !/to the AMD
AM19FO!O!lash memo!)' chips. Unpublished B.Eng. (Hons) thesis, Edith
Cowan Universty, Perth, Western Australia.

Hawryszkiewycz. I. T. (1994). lmroduction to .~}'stems Analysis and Design (3rd
ed.). Prentice Hall. Australia.

fi(·I I M68HC If E Series Technical Data. (1993). Motoro/a Inc ..

If(' I I M08 HC 11 Reference Manual. (3rd rev. ed.) (1991). Motoro/a Inc.

/-/Cl I \IC68HCI 1£9 Programming Refi!rence Guide. (1990). Motorola Inc.

llt:nsha/1. J .. & Slmw. S. (J'J88). IJS/ Explained: End-to-end computer
mmmlmication standort/.1·. Ellis Harwood Ltd .. England.

Hughes. L. (I 992). Data Communication. McGmw-1-fill Inc .. USA.

Introduction tu !he controller area netll'ork /CAM protocol. (1993. September).
lntel Corporation.

Khan, A. R. (1996. October). Workhorses of the electronic era./£££ Spectrum. 10
(33), 36-42.

Kirk. B. R. (1996). Improve machine performance using the controller area
network-the automation of a high-speed can production line./££ Colloquium
on :'vie chat ronics in A uromated Handling (pp. 411-417).

Korance, K. J. (I 996, September 12). Mobile machines get CAN in gear. Machine
Design. 68 (I 6). p. 50. Pen ton Publishing.

Kutlu. A., Ekiz. H., & Pawner. E. T. (1996, June). Performance analysis of MAC
protocols fOr wireless control area network. Proceedings o.fthe second
111/ematiunoi.S:rmposium on Para/le{ Architectures. Algorithms. and Network
(pp. 494-499). Beijing. China.

Kwtser CAN Pages: The CAN protocol (n.d.) [on-line]. Available WWW:
http://www.kvaser.se/can/protocol/index.htm [1997, September 20].

Lennartsson, K .. & Fredriksson. L. -8. (1995). Fundamental parts in SOS,
DeviceNet and CAN Kingdom. a brief comparison. The Second lnernational
CAN Conj(!rence.

Liquid Crystal Display Module L-10-12 User Manual. (1st ed.) (1988, April). Seiko
Instruments Inc., Japan.

M68HCII EVBU Universal Evaluation Board User's Manual. (2nd ed.) (1992,
September). Motorola Inc.

- 215-

Maskell, D. L.. & Grabau P. J. (1998, May). A multidisciplinary cooperative
problem-based leaming approach to embedded systems design. IEEE
Transaction Eduction .f. I (2). 101-103.

McLaughlin. R., Tang, K. H .• Moyne, J.. & Shah. J. (1997. October). DeviceNet
conformance testing procedures and experiences. Proceedings of the fourth
lntenuuimw! CAN Conference.

McLnughlin. R .. Tang. K. H., Moyne, J.. & Shah. J. (1997. October). DeviceNet
confOrmance testing procedures and experiences. Proceedings of the Fourth
lmematimwl CA.V Cm?fi!rence. 8t":rlin.

Mcl.aug.hlin. R. T. (!993. March). The immunity to RF interference of a CAN
s~ :-.tem. I EE Co/!oquiu/11 on Integrity q/.1utomotive Electronic Systems (pp.
4 1--l'8). London.

Moyne. J .. Shah. J.. McLaughlin. R. & Tang, K. H. (1997, October). DeviceNet
modeling on DeviceNet network. Proceedings ofthefourth International CAN
('on/i!rence.

Moyne. J .. Shah. J .. McLaughlin, R .. & Tang. K. H. (1997. October). DeviceNet
modeling on DeviceNet network. Proceeding~ o(the Fourth International CAN
Con/i!rcncr!. Berlin.

Mustafa. M. A. (1994). Microcompll!er lntel.'facing and Applications (2nd ed.).
London; Newnes.

Nunetnacher. G. (1990). LAN Primt>r: An Introduction lo Local Area Networks.
M&T Publishing Inc .. USA.

PCA82C250 CAN controlter imer/ace spec(fication. (I 997. October). Phi lips
Semiconductors.

SA£ 8 /('9019 1 .\·!and-alone Fu/1-C'AN controller data sheet (1997, January).
Siemens.

SDS Compone/11 Mode/ing Specification. (1995, May). Micro Switch Division,
Honeywe\llnc .. USA.

Serodio, C., Cunha. J. B., Cordeiro, M .. Valente, A .. Morais, Salgado. P .• & Couto,
C. (I 997). MNet-DACS:Multi-level network data acquisition and control
system. Proceedings of the IEEE ISlE '97 International Symposium on
Industrial Electronics (Vol. I, pp. 39-43),

Simonye, S., Alpena, L., & Witte, G. (1997). Applying DeviceNet in motor control
centers at a cetnt!J;! plant. IEEEIPCA XXXIX Conference Record of Cement
Industry Technical Conference (pp. 113-123).

Smart Distributed System Application Layer Protocol Specification Version 2.0.
(1996, November). Micro Switch Division, Honeywell Inc., USA.

- 216-

Tanenbaum, A. (1988). Computer Network (2nd ed.). Prentice-Hall Inc., Singapore.

Tindell. K.W .. Hansson. H .. & Wellings. A. J. (1994, December). Analysing real
time communication: controller area network (CAN). Proceedings ofRea/
Timi! Sl·.1·rems S)·mposiwn (pp. 259-263). San Juan, Puerto Rico.

Van Woerden. J. A .. Nelisse, M. W .. Perricos. C .. Jackson. R. D .. Davies, B.,
Hihberd. R. D .. & Banerjee. D. (1994. October). M3S- a standard
,:omrnunication architecture for rehabilitation applications. Computing &
(·nnlrul Engi1wering Journal (Vol. 5 5. pp. 213-2 I 8). UK.

Voskamp. E .. & Rosenstiel. W. (1996. March). Error detection in fault secure
controllers using state encoding. Proceedings of ED& TC '96 European Design
ond Texf { 'onli'rence (pp. 200-204).

\\:argui. M .. Rachid. A .. de Sario. M .. Maione. B .. Pugliese. P .. & Savino, M.
(1996). Application of controller area network to mobile robots. Eighth
A4edirarranetm £/ectm!echnical ('oi?fi!rence MELECON '96 (Vol. I, pp. 205-
"07).

Wellstead. P. E. (1994. November). Automotive control overview. lEE Colloquium
on Awomot i1 ·e A pp/ icat ions o/ Admnced Mode fling and Control (pp. 1/1-1/5).
London.

Wetton. M. (1995). A pruposalfOr a de1·elopment platform for microcontroller~
hased de1·ices. Unpublished master thesis. Edith Cowan Universty, Perth,
Westem Australia.

Young. K .. McLaughlin. R .. & Khoh. S. B. (1995. October). DeviceNet
imeroperability and compliance. Proceedings of the second International CAN
Conti!rence.

Young. K .• McLaughlin, R .. & Khoh. S. B. (1995, October). DeviceNet
interoperability and compliance. Proceedings of the Second International CAN
Coi!fi!rence. London.

Young. K. W. (1995). A fieldbus approach to robotic systems reconfiguration. fEE
Culloquium on Fast Recm?figurarion of Robotic and Automation Resources (pp.
5/l-5/4).

Zuberi. K. M .. & Shin. K. G. (1995. April). Non-preemptive scheduling of
messages on controller area network for real-time control applications.
Proceedings of Reai~Time Technology and Application Symposium (pp. 240~
249).

Zuberi, K. M., & Shin. K. G. (1996). Real-time decentralized control with CAN.
Proceedings of /996 IEEE EFTA '96 Conference on Emerging Technologies
and Factory Automation (Vol. I, pp. 93-99).

- 217-

APPENDIX A

This Appendix provides details of the software development environment used in

this project. All the programs and the software for the Small CAN Kingdom system

were stored on a floppy disk. This disk was also used as a boot-disk. The author

found that the MS-DOS mode in Windows 95 was satisfactory to develop the

system.

B~!sides the system boot files contained in the floppy disk, the disk consists of the

following directories and files:

Kermit: the directory was used to store the MS-Kermit program.

Kingdom: the directory was used to store the software for the Small CAN Kingdom

system. The descriptions of the files contained in this directory are covered in

Appendix D.

Pasm: the directory was used to store the Motorola portable assembler (PASM) and

the Ubuilds program.

Mytemp and Tmp: the two directories were used to store temporary files required

during the operation of the PASM :tssemble.

Autoexec.bat: the batch file set up the necessary configuration for the environment.

The content of this file is as follows:

@ECHO OFF
prompt $pSg

CD A: \Kingdom
PATH-"'A: \ i A: \KERMIT; A: \ PASM; A:\ TMP;
set tmp=A: \mytmp

Asm.bat: this batch file was used to invoke the PASM program (Pasmhcll.exe) to

compile a source programming code. The content of this file is as follows:

A:\PASM\pasrnhcll -dxs -1 %l.lst %1.asm

- 218 -

B. bat: this batch file was used to invoke the Ubuilds program (Ubuilds.exe) to build

a Motorola S-record. The content of this file is as follows:

A:\pasm\ubuilds ~l.o

K.Bat: this batch file was used to invoke the MS-Kermit program (Mskennit.exe)

to establish communication between an IBM PC and an EVBU board. The content

of this tile is as follows:

,; : \ r:o:>rmi t \mskermi t

T.bl1t: this batch file was used to invoke the '"Type" command of MS-DOS to

down load an S-record to an EVBU board. The content of this file is as follows:

type ·% 1 . mx > corn::'

lt should be noted that the IBM PC serial port 2 was used in this project. If another

port is used in later designs. the "com2" command must be changed to the

appropriate p011.

Edit.corn: an MS-DOS text editor program was used to write the source

programming codes.

The steps concerned with compiling and downloading a program (for example,

King_pro.asm in the Kingdom directory) to the EVBU board are described as

follows:

After booting the IBM PC by the floppy disk, the MS-DOS prompt is as follows:

A: \Kingdom>

The King_pro.asm program was written by using the Edit program. To compile the

program. at the MS-DOS prompt, type:

A:\Kingdom>Asm Klng_pro

The King_pro.o (the object file) is generated by the PASM assembler. To creatfl an

S-record for the King_pro.o (King_pro.mx file), at the MS-DOS prompt, type:

A:\Kingdom>B King_pro

- 219-

After the creation of the King_pro.mx (S-record file). the program can now be

down loaded to an EVBU board with the use of the Kennit program and the MS

DOS .. Type'' command. The procedure of how to download an S-record to an

EVBU board is described in the M68HC!! EVBU Universal Evaluation Board

User's Manual (1992).

The Kt>rmit program can be invoked by typing:

: .. : , r-·1 nqdom~"'F

To download the King~pro.mx to the EVBU board. at the MS-DOS prompt. type:

A:\V1ngdom>T King_pro

- 220-

APPENDIXB

This Appendix provides the pin connection tables which were used for wire

wrapping in the hardware design, and the diagrams which show the pin layout of

the chips.

Table B-1 Interface between MC68HC 11 and Intel 82527

MC68HC11 EVBU Intel Intel 74LS138 74LS20

Pin Pin AN82527 AN82527 Pin Pin

Function Number Pin Pin Number Number
Number Function

AS 4 5 AS - -
R/W# 6 7 R/W# - -

E 5 6 E - -

A15/PB7 35 - - 3 9-10-12-13

A14/PB6 36 - - 2 4

A13/PB5 37 - - 1 2

A12/PB4 38 - - - 1

- - 8 CS# 12 6

- - - - - 8-5

- - - - 4-5-8~GND 7~GND

- - - - 6-16~Vcc 14~Vcc

ADOIPCO 9 4 ADO

ADIIPCl 10 3 AD1

AD2/PC2 11 2 AD2

AD3/PC3 12 43 AD3

AD4/PC4 13 42 AD4

AD5/PC5 14 41 AD5

AD6/PC6 15 40 AD6

AD7/PC7 16 39 AD7

IRQ# 19 24 INT#

PA6 28 29 RESET#

Note that the 74LS20 chip and 74LS138 chip were not used on the same board.

- 221 -

Table B-2 Interface between Intel 82527 and DS3695

Intel AN82527 Inte1 AN82527 DS3695 DS3695

Pin Number Pin Function Pin Number Pin Function

1 vcc
20 VSS2

23 VSSl

44 ModeO

30 Model

18 XTALI

19 XTAL2

26 TXO 4 DI

25 TXI 3 DE

22 RXO 1 RO

8 vcc
5 GND

6 DO/RI

7 DO# /RI#

Table B-3 Interface between Intel 82527 and L2012

Intel AN82527 Intel AN82527 L2012 L2012

Pin Function Pin Number Pin Number Pin Function

PLO 38 7 DBO

Pl.l 37 8 DBO

Pl.2 36 9 DBO

Pl.3 35 10 DBO

P1.4 34 11 DBO

Pl.5 33 12 DBO

Pl.6 32 13 DBO

Pl.7 31 14 DBO

P2.6 11 6 E

P2.5 12 4 RS

P2.4 13 5 R/W#

1 vss
2 VDD

3 VLC

-222-

"
'

""'
' ,

P

C
I

10

P
C

3
12

P
C

5
14

P
C

7
Il

l

,
.
 2

8

P
A

4
3

0

PA
2

32

PA
O

3

4

PS
6

36

P
(ll

l
3

8

PE
4

4
4

2 • 0
0

' • •
5

E

• e
9

PC
O

e
11

P

C
2

0
13

PC

il

0
15

P

C
6

• 0
1

9
 I

R
Q

#

• • • 0
27

PA

7

0
2

9

P
A

5

0
31

PA

J

0
3

3

PA
l

0
3

5

PB
7

0
3

7

PB
S

• • • • • • • • • 5
9

F
ig

u
re

 B
-J

P

in
 L

ay
ou

t
I

G
N

D

22
pF

_l

_
__

1._
 2

2
p

f

~

X
lA

ll

X
1A

l2
 "

18

20

22

24

26

28

30

••
 •

 •
 •

 . •.:

...
1

7
0

•

•
•

•
•

•
2

1
2

3
2

5
2

7

. ,

,. .,

3
2

0

0
3

1

, . 01
4

 2
8

5
2

7
 3

4
0

0

3
3

,
,
.

0
1

2

,. 83
5

, . .
 .,

JB
O

0

3
7

'
3

'
"

, ..
•

•
•

•
•

0
3

9

•
•

•
•

•
.
~

e
,

'
2

"
42

4

0

"

'
•

•
e

,
•

•
9

0
5

•
•

"
C

'J

'
•

C
l)

•

"
_,

3

•
"

•
"

"
lr

?Q

2
•

•
"

'
•

•
"

V
 cc

~"

~

G
N

D

-2
23

-

'
. CO

. '

3
•

<
X

)
. '

"
2

•
C

l)

•
'

,. ""
•

e

~

"
•
•

14

0 ~

"
•
•

12

0 Q
J

'
•
•

10

c 0
'

•
•

e
u

I
5
•
•

6

0
3

.
.
.
.

4
u

I

_,

'
• •

2

I

\
(

j
V

,
I

' '
"
~

I

~

A
S

'

r//
W

II

6

?C
l

10

PC
3

12

PC
5

14

PC
7

16

PA
6

28

"
"
'

30

PA
2

3
2

PA
O

34

P8
6

36

P8
4

3
8

PE
4

44

,
,

G
N

D

• •
•

22
pF

 ...
L

...L
 22

pF

•
e

s
E

~

•
•

XT
AL

 I
.
.
-
-
-
.
 X

TA
l2

e
•

9
PC

O

r-
--

--
--

--
--

-.

19

18

20

22

24

26

28

30

•
e
1

1
P

C
2

"
>

e
e

e
e

e
e

j/
'

e
e

13

P
C

J
17

e'
:4

,e

e
e

e
e

e
e
2

9

~
e

,,..
...

e
5

2
1

2
3

2
5

2
7

'-

'"
'

•
•

15

PC
6

1
5

•
e
1

6

32
e

e
3

1

3
•

r
o

•

6

'""
•

•
1

3
•

e
1

4
 28

52
7

34
•

e
3

3

2
•

f:Q

•
1

•
e
1

9
1

R
Q

II
'

1
1

•
•
1

2

36
e

e
3

5

1
•

e
a

•

•
9
•
•
 10

3

8
0

.3

7

5
3

I
43

•

•
7

•
•
•
•
•
•
•

1
1

3
9

. .

...
...

 ~"
8

6
4

2
44

42

40

41

•

•
27

PA

7

•
•

2
9

 P
A

5

•
e

31

PA
J

•
•

33

PA
l

8
•

•
9

•
•

3
5

 P
B

7
7

•
•

10

e
e

37

PB
5

C
O

-

•
•

6
.
(
'
1

'
)
5

l
l

5
•

u;

•
12

. .

--

'
4

•
-

•
13

. .

~

3
•

,...
.._

•

14

•
•

1R
Q

II
2

•
•

15

•
•

l
•

•
16

•
•

:
:

>lO
Ul

•
•

V
cc

l

6
0

59

G

N
D

F
ig

ur
e

B
-2

P

in
 L

ay
ou

t
2

-2
24

-

APPENDIXC

This Appendix describes how to use the King in configuring the network.

The King program starts at the address B600. At power-up, the designer needs to set

up the baud rate for the King by using the memory modify command of the

BUFFALO monitor program (MM command) in order to assign the baud rate

values to BTRO and BTRl (see Chapter 7).

Note that BTRO and BTRl are located at the address OlOOH and OlOlH,

respectively. These variables need to be assigned values only at power-up. When

the King changes the system baud rate, it will write the new baud rate values to

these memory locations by itself.

For example, to asstgn the initial baud rate to the King (125 kbit/s), at the

BUFFALO prompt, type:

> mm 100
0100 43

>mm 101
0100 67

Note: 43 and 67 are the hexadecimal numbers and are the values for the baud rate

125 kbit/s (see Table 7-5).

The King program is invoked by the "go" command of the monitor program, at the

BUFFALO prompt, type:

>g b600

The menu of the King Menu program will appear and enable the designer to enter

values for King Pages and send them to Cities as described previously in Chapter 7.

-225-

The King Menu program also provides facilities to users to correct data during

entering a King Page. The facilities can be summarised as follows:

• If the current character being entered is not in the ranges of Hexadecimal

characters. the current Line is discarded. The program repeats this Line to

prompt the user to re-enter the data.

• A1ier entering data for a Line. the user presses <Enter> to confirm the

Line. The monitor will prompt the user to enter values for the next Line.

• Data for a Line can be changed by pressing <Ctrl+X> instead of <Enter>.

• For a King Page lc-ss than eight Lines. after pressing <Enter> to confim1

the value of thi.! lr~st Line. the user presses <Ctrl-t-ESC> to ignore the

remaining Lines.

- 226-

APPENDIXD

This Appendix provides the complete program listing of the software designed in

this project.

lt is noted that due to the restriction of memory. the author had to utilise all the

menwr~ space available for user applications of the EVBU boards.

The snfiware for the whole svstem is stored tn the Kingdom directory (see

Appendix A), and it includes the following tiles:

• King_pro.asm contains the software to control the tasks of the King.

• Cit)' rou.asm contains all the subroutines necessary for a City to follow

the Small CAN Kingdom protocol (see Table 7· 7).

• ADI City.asm is the software to control City I

• AD2_City.asm is the software to control City 1

• AD_rou.asm contains the ASCII subroutine (see section 7.3.6.4)

• LCD City.asm is the software to control City 3

• LCD rou.asm consists of a set of subroutines to control the LCD module

The contents of the above files are listed as follows:

- 227-

*
*
*
*
*
*

This program is to enter values for a King Page.
File KING PRO.ASM
Author
ID
Date
Last modified:

Long Giang Nguyen
0959416
21-5-1998
12-6-1998

*
*
*
*
*
*

*** EQU ***
MONITOR EQU
.INCHAR EQU
.UPCASE EQU
.OUTCRL EQU
.OUTSTR EQU
CTRLX EQU
CTRLESC EQU
ENTER EQU
EOT EQU

PORTA EQU
BREG EQU
KVAL EQU

ORG

$EOBF
$FFCD
$FFA0
$FFC4
$FFC7
$18
$1B
$OD
$04

$1000
$7000
BREG+$17

$00

Start of BUFFALO program

Change line's value
Exit entering King Page
Confirm value

First Data byte of Msg Obl 1

MSGO FCC 'New page? (Y/N):'
FCB EOT

*** Assign address for ISR
ORG $00EE
JMP I SERV

*** Variables for the program ***

ORG $100

BTRO RMB 1 Bit Timing Register 0
BTR1 RMB 1 Bit Timing Register 1

TMP1 RMB 1 HEX Byte
PTR1 RMB 2 Pointer to message
PTR2 RMB 2 Pointer to value
NHEX RMB 1 Indicate not HEX
STOP RMB 1
COUNT RMB 1 The number of byte of the King Page

M OBJ RMB 1
-

I PTR RMB 2 Pointer to ISR
I ADD RMB 2 Address of ISR
P PTR RMB 2 Pointer to King Page
P ADD RMB 2 Address of King Page
OBJ NO RMB 2 Msg Obj No

-228-

MSG1 FCC '*** KING PAGE ***'

MSG2

MSG3

MSG4

MSG5

MSG6

MSG7

MSGS

MSG9

MSG10

FCB EOT

FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB

I LINE 0: I

EOT
I LINE 1: I

EOT
'LINE 2: I

EOT
I LINE 3: I

EOT
I LINE 4: I

EOT
I LINE 5: I

EOT
I LINE 6: I

EOT
I LINE 7: I

EOT
'Send? (Y /N) :'
EOT

** I SERV: Interrupt service routine for receiving a msg

I SERV EQU *

SERV

MSG N

MSG15

XXX

LDAB
DECB
LSLB
ADDB
LDAA

BREG+$5F

#$EO
#$01

STD I PTR
LDX I PTR
LDD O,X
STD I ADD
LDX I ADD,
JSR O,X

LDAA
CMPA
BEQ
CMPA
BEQ

SUBA
LSLA
LSLA
LSLA
LSLA
STAA
BRA

LDAA
STAA

LDX
LDAB
ABX
LDAA

BREG+$5F
#$1
yyy

#$2
MSG15

#$2

M OBJ
XXX

#$FO
M OBJ

#BREG
M OBJ

#%11111101
STAA O,X··

YYY RTI

Determine the source of INT

Calculate the service address

Determine the source of INT
to allocate the base address
of Msg Obj

Reset IntPnd

-229-

*** Start program in EEPROM ***

*** MAIN PROGRAM ***
ORG $B600

START LDS
JSR
JSR

CLI

LOO
STD
LOO
STD
STD
STD
STD

LOO
STD

R ENTER LDAA
STAA

JSR

LDAA
ORAA
STAA

LDAA
STAA

LDAA
STAA

WAI

JSR
LDX
JSR
JSR
JSR
CMPA
BEQ

JMP

#$47
RESET
INIT C

#MSG OB1
$01E4
#NO OP
$01CO
$01C2
$01C4
$01C6

#B SET
$01C8

#%10111111
BREG+$10

KING

#$08
COUNT
BREG+$16

#%10111111
BREG+$10

#%11101110
BREG+$11

.OUTCRL
#MSGO
.OUTSTR
.INCHAR
.UPCASE
#'Y'
R ENTER

MONITOR

Enable Int

Assign values for the vector table
Service for Msg Obj 1
Ignore the page 0 to page 3

Assign the service for King Page 4

Invalid Msg Obj 1

Enter values for a King Page

Set the DLC, Transmit, Standard

Valid Msg Obj 1

Send the page

Wait for interrupt

Return to BUFFALO program

-230-

**** SUBROUTINES *******
*** NO OP: This subroutine allows the King to ignore the King's Messages
* that do not need to be processed
NO OP EQU *

NOP
RTS

*** MSG OB1: Subroutine to decode Msg Obj 1 (King's orders)
MSG OB1 EQU *

LDAB BREG+$18
LSLB
ADDB #$CO
LDAA #$01
STD P PTR
LDX P PTR
LDD 0, X
STD P ADD
LDX P ADD
JSR O,X
RTS

*** B_RATE: Assign Baud Rate for the King
B RATE EQU *

LDAA
STAA
LDAA
STAA
RTS

BTRO
BREG+$3F
BTR1
BREG+$4F

; Set Bit Timing Registers

*** B SET: This subroutine allows the King to change its baud rate
* when it changes the system baud rate
B SET EQU *

LDAA BREG+$19
STAA BTRO
LDAA BREG+$1A
STAA BTR1

LDAA BREG+$00
ORAA #$40
STAA BREG+$00

JSR B RATE

LDAA BREG+$00
ANDA #$BF
STAA BREG+$00

RTS

Get value of Control Register
Set CCE bit

Set Baud rate for the King

Reset CCE bit

- 231 -

*** RESET: Reset CAN chip
RESET LDAA PORTA

ANDA #$BF
STAA PORTA

LDY #20
JSR DELAY

LDAA
ORAA
STAA
RTS

PORTA
#$40
PORTA

Set PA6 to 0

Delay 1ms.

Set PA6 to 1

*** INIT C : Initialise the 82527
INIT C EQU *
BEGIN

LOOP1

LDAA
ANDA

BREG+$02
#$80

BNE BEGIN

LDAA
STAA

LDAA
STAA

LDAA
STAA

JSR

LDX
LDAA
LDAB
STAA
STAA
ABX

#$41
BREG+$00

#$40
BREG+$02

#$40
BREG+$2F

B RATE

#BREG+$10
#$55
#$10
O,X
1, X

CPX #BREG+$F0+$10
BNE LOOP1

LDAA
STAA
STAA
STAA
STAA
STAA
STAA

LDAA
STAA

LDAA
STAA
STAA
STAA
STAA

LDAA
STAA

RTS

#$FF
BREG+$06
BREG+$07
BREG+$08
BREG+$09
BREG+$0A
BREG+$0B

#$02
BREG+$00

#$00
BREG+$12
BREG+$13
BREG+$14
BREG+$15

#%11101111
BREG+$10

Load CPU Interface Register
Check if RstST bit 0

Set CCE and Init bits
Store Control Register

Set CPU Interface Register
SCLK=XTAL/2, MCLK=SCLK, Disable CLKOUT

Set Bus Config Reg
By pass Input comparator, use TXO and RXO

Set Baud Rate

Reset all message control registers,
invalid all the Msg Objects

Set Global Mask to Must Match
(Standard and Extended)

Reset CCE and Init bits,
Enable Global Interrupt

Assign ID=O to Msg Obj 1

Set TXIE

-232-

** DELAY: The multiple of 50 micro sec is specified by IY

DELAY LDAB #$00
XX INCB

CMPB #10 50 micro sec per loop
BNE XX
DEY
BNE DELAY
NOP
RTS

*** KING subroutine: Display and enter values for a King Page
KING EQU *

LDAA #$00
STAA COUNT Data Length Code 0
JSR .OUTCRL
LDX #MSGl
JSR .OUTSTR
LDD #MSG2
STD PTRl
LDD #KVAL
STD PTR2
JSR K DISP

JSR .OUTCRL
LDX #MSGlO Confirm the page
JSR .OUTSTR
JSR .INCHAR
JSR .UPCASE
CMPA #'Y'
BEQ EXIT Start entering if not confirmed
BRA KING

EXIT RTS

- 233-

*** K DISP: Display a King page to enter values

K DISP JSR L ENTER
LDAA STOP Exit entering values
CMPA #CTRLESC
BEQ END K
LDAA TMP1
LDX PTR2
STAA 0, X
LDAA COUNT Increase Data Length Code
ADDA #$10
STAA COUNT

LDD PTR2 Increase pointer
ADDD #1
STD PTR2

LDD PTR1 Increase pointer to the next message
CPD #MSG9
BEQ END K
ADDD #$09
STD PTR1
BRA K DISP

END K RTS

*** L ENTER: Enter value for a line, the value is stored in TMP1

L ENTER PSHX
PSHA

LL JSR .OUTCRL
LDX PTR1
JSR .OUTSTR
JSR HEXBYTE
LDAA STOP
CMPA #CTRLESC
BEQ END L

LDAA NHEX
BNE LL

JSR .INCHAR
CMPA #CTRLX
BEQ LL
CMPA #ENTER
BEQ END L

END L PULA
PULX
RTS

-234-

**** HEXBIN: Convert Hex in ace A to Bin

HEX BIN JSR .UPCASE
CMPA #'0'
BLT HEXNOT
CMPA #'9'
BLE HEXNMB
CMPA #'A'
BLT HEXNOT
CMPA #'F'
BGT HEXNOT

ADDA #$9
HEXNMB ANDA #$OF

BRA HEXRTS
HEX NOT LDAA #$FF Indicate not HEX
HEXRTS RTS

*** HEXBYTE: Convert 2 Hex numb~r into 1 byte

HEXBYTE PSHB
PSHA
LDAA #$00 Clear Not HEX
STAA NHEX

JSR .INCHAR Get upper-haft byte
STAA STOP
CMPA #CTRLESC
BEQ MM
JSR HEXBIN
CMPA #$FF
BEQ NN

LDAB #4
SHIFT ASLA

DECB
BGT SHIFT
STAA TMPl

JSR .INCHAR Get lower-haft byte
JSR HEXBIN
CMPA #$FF
BEQ NN
ORAA TMPl
STAA TMPl
BRA MM

NN INC NHEX Indicate not HEX

MM PULA
PULB
RTS

END

- 235-

*
*
*
*

This program
File name
Author

is a set of subroutines for all CAN nodes (Except the King)*
CITY ROU.ASM *

ID
* Date
* Last modified:

Long Giang
0959416
16-5-1998
8-6-1998

Nguyen *
*
*
*

*** EQUATE ***

PORTA EQU $1000
BREG EQU $7000

*** Variables ***

ORG $01BO

WORK RMB 1
C ADD RMB 1
M OBJ RMB 1
I PTR RMB 2
I ADD RMB 2
P PTR RMB 2
P ADD RMB 2
OBJ NO RMB 2
TEMP RMB 1

*** Subroutines ***
ORG $B696

*** Subroutine for King
PG 4 EQU *

LDAA BREG+$00
ORAA #$40
STAA BREG+$00

LDAA BREG+$19
STAA BREG+$3F
LDAA BREG+$1A
STAA BREG+$4F

LDAA BREG+$00
ANDA #$BF
STAA BREG+$00
RTS

*** Subroutine for King
PG 3 EQU *

LDAA ADDRESS
STAA C ADD
RTS

Page 4

Page 3

WORK=O Set-up, WORK=1 finish Set-up
City's address

Pointer to ISR
Address of ISR
Pointer to King Page
Address of King Page
Msg Obj No

Get value of Control Register
Set CCE bit

Set Bit Timing Reg 0

Set Bit Timing Reg 1

Reset CCE bit

-236-

*** Subroutine for King Page 2
PG 2 EQU *

LDAA BREG+$19 Get Group address
STAA C ADD
RTS

*** Subroutine for King Page 1
PG 1 EQU *

LDD #BREG Get the Msg Obj No
ADDB BREG+$19
STD OBJ NO
LDX OBJ NO

LDAA #%01111111 Invalid the Msg Obj
STAA O,X

LDAA BREG+$1A
STAA 2,X Store Arbitration 0
LDAA BREG+$1B
STAA 3,X Store Arbitration 1
LDAA BREG+$1C
STAA 4, X Store Arbitration 2
LDAA BREG+$1D
STAA s,x Store Arbitration 3

LDAA BREG+$1E Set up the Msg Config Reg
ANDA #$0C
STAA TEMP
LDAA 6, X
ANDA #$FO
ORAA TEMP
STAA 6,X

LDAA BREG+$1E Enable/Disable MsgVal
ORAA #$3F
STAA 0, X

RTS

*** Subroutine for King Page 0
PG 0 EQU *

LDAA #$1 Indicate the Set up phase
STAA WORK has finished.
RTS

*** City's address
ADDRESS RMB 1

-237-

*** Subroutine to decode Msg Obj 1 King's orders

MSG1 EQU *
LDAA #%11111101 Reset NewDat
STAA BREG+$11

LDAB BREG+$17
CMPB #$00 Broadcast Msg
BEQ PROCESS
CMPB C ADD
BEQ PROCESS
RTS

PROCESS LDAB BREG+$18
LSLB
ADDB #$CO
LDAA #$01
STD P PTR
LDX P PTR
LDD 0, X
STD P ADD
LDX P ADD
JSR O,X
RTS

-238-

** I SERV: Interrupt service routine to receive a msg

I SERV EQU *

SERV

MSG N

MSG15

XXX

LDAB
DECB
LSLB
ADDB
LDAA

BREG+$5F

#$EO
#$01

STD I PTR
LDX I PTR
LOO O,X
STD I ADD
LDX I ADD
JSR O,X

LDAA
CMPA
BEQ
CMPA
BEQ

SUBA
LSLA
LSLA
LSLA
LSLA
STAA
BRA

LDAA
STAA

LDX
LDAB
ABX
LDAA

BREG+$5F
#$1
yyy

#$2
MSG15

#$2

M OBJ
XXX

#$FO
M OBJ

#BREG
M OBJ

#%11111101
STAA O,X

YYY RTI

Determine the source of INT

Calculate the service address

Determine the source of INT
to allocate the base address
of Msg Obj

Reset IntPnd

** DELAY: The multiple of 50 micro sec is specified by IY

DELAY LDAB #$00
XX INCB

CMPB #10 50 micro sec per loop
BNE XX
DEY
BNE DELAY
NOP
RTS

-239-

*** RESET: Reset CAN chip
RESET LDAA PORTA Set PA6 to 0

ANDA #$BF
STAA PORTA

LDY #20 Delay lms .
JSR DELAY

LDAA PORTA Set PA6 to 1
ORAA #$40
STAA PORTA
RTS

-240-

*** INIT C : Initialise the 82527
INIT C EQU *
BEGIN LDAA BREG+$02

ANDA #$80
BNE BEGIN

LDAA #$41
STAA BREG+$00

LDAA #$40
STAA BREG+$02

LDAA #$40
STAA BREG+$2F

LDAA #$43
STAA BREG+$3F
LDAA #$ 67
STAA BREG+$4F

LDAA #$FF
STAA BREG+$9F
STAA BREG+$AF

LDX #BREG+$10
LDAA #$55
LDAB #$10

LOOP1 STAA O,X
STAA 1, X
ABX
CPX #BREG+$F0+$10
BNE LOOP1

LDAA #$FF
STAA BREG+$06
STAA BREG+$07
STAA BREG+$08
STAA BREG+$09
STAA BREG+$0A
STAA BREG+$0B

LDAA #$02
STAA BREG+$00

LDAA #$00
STAA BREG+$12
STAA BREG+$13
STAA BREG+$14
STAA BREG+$15

LDAA #$00
STAA BREG+$16

LDAA #%10111011
STAA BREG+$10

RTS

END

Load CPU Interface Register
Check if RstST bit 0

Set CCE and Init bits
Store Control Register

Set CPU Interface Register
SCLK=XTAL/2, MCLK=SCLK, Disable CLKOUT

Set Bus Config Reg
By pass Input comparator, use TXO and RXO

Set Bit Timing Registers
Define the CAN bus frequency 125 kBits/sec

Set Port1 for Output
Set Port2 for Output

Reset all message control registers,
invalid all the Msg Objects

Set Global Mask to Must Match
(Standard and Extended)

Reset CCE and Init bits,
Enable Global Interrupt

Set ID=O to receive King Page
for Msg Obj 1

Set Msg Obj 1 to Receive, Standard

Valid the Msg Obj 1, Set RXIE

- 241 -

**
* This program is to get A/D values from PortE.4 and convert it to ASSII,*

* * then send to the CAN bus.
* File Name AD1 CITY.ASM *
* Author Long Giang Nguyen *
* ID 0959416 *
* Date 16-5-1998 *
* Last modified: 10-6-1998 *
**
*** EQUATE ***

BREG EQU $7000
RESET c EQU $B77D
INIT C EQU $B795
DELAY EQU $B770

I SERV EQU $B730
-

MSG OB1 EQU $B705
PG 0 EQU $B6FE
PG 1 EQU $B6C1

-
PG 2 EQU $B6BA
PG 3 EQU $B6B3
PG 4 EQU $B696

ADDRESS EQU $B704
C ADD EQU $01B1
WORK EQU $01BO

PCTR EQU BREG+$EF

ADCTL EQU $1030
ADR1 EQU $1031
EOT EQU $04
BASE2 EQU BREG+$20

ASCII EQU $B60B

*** Variable ***
ORG $00

BCDNO RMB 6
TEMP RMB 1

ORG $00EE
JMP I SERV

CAN registers
Reset CAN chip
Initialise CAN chip

ISR
Subroutine for Msg Obj 1
Subroutine for
Subroutine for
Subroutine for
Subroutine for
Subroutine for

EEPROM address
RAM address

King Page
King Page
King Page
King Page
King Page

0
1
2
3
4

Indicate whether the set up phase finished

Use p2.0 p2.1 for indication (LED)

A/D Control
A/D Result Register 1
End of String
Base address for Msg Obj 2

Convert Hex to ASCII

BCD Number buffer

Assign address for ISR

-242-

*** Main program ***
ORG $100

MAIN EQU *

JSR RESET c Reset CAN qontrol1er
JSR INIT C Initialise CAN controller

LDAA #$01 Red LED
STAA PCTR Indicate Set-up phase

LDAA ADDRESS
STAA C ADD

LDAA #$00
STAA WORK

LDD #MSG OBl Assign values for the vector table
STD $01E4 Service for Msg Obj 1
LDD #PG 0
STD $01CO Service for King Page 0
LDD #PG 1
STD $01C2 Service for King Page 1
LDD #PG 2
STD $01C4 Service for King Page 2
LDD #PG 3
STD $01C6 Service for King Page 3
LDD #PG 4
STD $01C8 Service for King Page 4

CLI
WAIT WAI

LDAA WORK
CMPA #$1
BEQ START
BRA WAIT

-243-

*** Get A/D value from PE4, convert it into ASSCII
*** then send it to CAN bus
START EQU *

AD

CHECK

DLY

LDAA
STAA

LDAA
STAA

LDAA
STAA

LDAA
ANDA
BEQ

LDAB
CMPB
BEQ
STAB

LDAA
STAA

LDY
LDAB
JSR

#$02
PCTR

#$88
BASE2+$6

#$04
ADCTL

ADCTL
#$80
CHECK

ADR1
TEMP
DLY
TEMP

#%11111010
BASE2+$1

#BASE2+$7
C ADD
ASCII

LDAB #':'
STAB 3,Y

LDY
LDAB
JSR

LDAB
STAB

LDAA
STAA

LDAA
STAA

LDY
JSR

#BASE2+$B
ADR1
ASCII

#EOT
$3,Y

#%11110111
BASE2+$1

#$66
BASE2+$1

#40
DELAY

BRA AD

END

Green LED
Indicate Run-phase

DLC=8, Dir = Transmit

A/D on channel AN4
Start conversion

The conversion finishes ?

Get the A/D value
Compare with the previous value
if equal, then don't send
Store new value

CPUUpd:=1, NewDat:=1

Update value
Get City's address

Get the A/D value

CPUUpd:=O

Transmit value containing
in Msg Obj 2

Delay 2 msecs
assume min bus rate

-244-

1kbit/s

**
* This program is to get A/D values from PortE.4 and convert it to ASSII *
* and send to the CAN bus if requested. *
* File Name AD2 CITY.ASM *
* Author Long Giang Nguyen *
* ID 0959416 *
* Date 8-6-1998 *
* Last modified: 10-6-1998 *
**
*** EQUATE ***

BREG EQU $7000
RESET C EQU $B77D
INIT C EQU $B795
DELAY EQU $B770

I SERV EQU $B730 -
MSG OB1 EQU $B705
PG 0 EQU $B6FE
PG 1 EQU $B6C1
PG 2 EQU $B6BA
PG 3 EQU $B6B3
PG 4 EQU $B696

ADDRESS EQU $B704
C ADD EQU $01B1
WORK EQU $01BO

PCTR EQU BREG+$EF

ADCTL EQU $1030
ADR1 EQU $1031
EOT EQU $04
BASE2 EQU BREG+$20
ASCII EQU $B60B

*** Variable ***
ORG $00

BCDNO RMB 6

ORG $00EE
JMP I SERV

';

CAN registers
Reset CAN chip
Initialise CAN chip

ISR
Subroutine for
Subroutine for
Subroutine for
Subroutine for
Subroutine for
Subroutine for

EEPROM address
RAM address

Msg
King
King
King
King
King

Obj 1
Page 0
Page 1
Page 2
Page 3
Page 4

Indicate whether the set up phase finished

Use p2.0 p2.1 for indication (LED)

A/D Control
A/D Result Register 1
End of String
Base address for Msg Obj 2
Subroutine convert Hex to ASCII

BCD Number buffer

Assign address for ISR

-245-

*** Main program ***
ORG $100

MAIN EQU *

JSR RESET C Reset CAN GOntro1ler
JSR INIT C Initialise CAN controller

LDAA #$01 Red LED
STAA PCTR Indicate Set-up phase

LDAA ADDRESS
STAA C ADD

LDAA #$00
STAA WORK

LDD #MSG OB1 Assign values for the vector table
STD $01E4 Service for Msg Obj 1
LDD #PG 0
STD $01CO Service for King Page 0
LDD #PG 1
STD $01C2 Service for King Page 1
LDD #PG 2
STD $01C4 Service for King Page 2
LDD #PG 3
STD $01C6 Service for King Page 3
LDD #PG 4
STD $01C8 Service for King Page 4

CLI
WAIT WAI

LDAA WORK
CMPA #$1
BEQ START
BRA WAIT

-246-

*** Get A/D value from PE4, convert it into ASSCII
*** then send it to CAN bus if requested

START

AD

CHECK

EQU

LDAA
STAA

LDAA
STAA

LDAA
STAA

LDAA
ANDA
BEQ

LDAA
STAA

LDY
LDAB
JSR

LDAB
STAB

LDY
LDAB
JSR

LDAB
STAB

LDAA
STAA

LDY

*

#$02
PCTR

#$88
BASE2+$6

#$04
ADCTL

ADCTL
#$80
CHECK

#%11111010
BASE2+$1

#BASE2+$7
C ADD
ASCII

#I; I

3, y

#BASE2+$B
ADR1
ASCII

#EOT
$3,Y

#%11110111
BASE2+$1

#2000
JSR DELAY

BRA AD

END

Green LED
Indicate Run-phase

DLC=8, Dir = Transmit

A/D on channel AN4
Start conversion

The conversion finishes ?

CPUUpd:=1, NewDat:=1

Update value
Get City's address

Get the A/D value

CPUUpd:=O

Delay 10 msecs

-247-

* This program contain a subroutine that converts a Hexadecimal byte
* to ASCII code

*
*
*
*
*

File Name
Author
ID

AD ROU.ASM
Long Giang Nguyen
0959416

Date 8-6-1998
Last modified: 10-6-1998

*
*
*
*
*
*
*

** Equate **

OPTION EQU
BCDNO EQU
AD PRO EQU

$1039
$00
$100

** Start program **
** This codes enable the program to start at EEPROM **

ORG $B600

LDS #$47
LDAA #$93 Enable A/D converter
STAA OPTION
JMP AD PRO Jump to main program

** ASCII: Convert 1 Hex data byte in ACC B to ASCII,
** store it into memory specified by IY
ASCII EQU *

LDAA #$00
LDX #100 Divide by 100
IDIV
STX BCDNO Store Hundreds
LDX #10 Divide by 10
IDIV
STX BCDN0+2 Store Tens
STD BCDN0+4 Store Units

LDAA BCDN0+1 Hundreds
ORAA #$30
STAA 0, y

LDAA BCDN0+3 Tens
ORAA #$30
STAA 1, y

LDAA BCDN0+5 Units
ORAA #$30
STAA 2, y

RTS

END

-248-

**
* This program
* and display on
* File Name
* Author
* ID

is to get a ASSCII values from Msg Obj 2 of the CAN chip
LCD.

LCD CITY.ASM
Long Giang Nguyen
0959416

*
*

Date 16-5-1998
Last modified: 10-6-1998

*
*
*
*
*
*
*

**
*** EQUATE ***

BREG
RESET C
INIT C
DELAY

I SERV
MSG OB1
PG 0
PG 1
PG 2
PG 3
PG 4

ADDRESS
C ADD
WORK
BASE2
BASE3

PCTR
PORTA

INIT L
DISP
OUTPUT
SCREEN
LINE2
EOT

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

*** Assign ISR
ORG
JMP

$7000
$B77D
$B795
$B770

$B730
$B705
$B6FE
$B6C1
$B6BA
$B6B3
$B696

$B704
$01B1
$01BO
BREG+$20
BREG+$30

BREG+$EF
$1000

$B616
$B634
$B64A
$B65D
$AS
$04

$00EE
I SERV

*** Messages
ORG

$00

BASE RMB 2
MSG1 FCC I* CAN SYSTEM

FCB EOT
MSG2 FCC 'CITY I

FCB EOT

;

CAN registers
Rese,t CAN chip
Initialise CAN chip
Delay subroutine

ISR
Subroutine for Msg Obj 1
Subroutine for King Page 0
Subroutine for King Page 1
Subroutine for King Page 2
Subroutine for King Page 3
Subroutine for King Page 4

EEPROM address
RAM address
Indicate whether the set up phase finished
Base address for Msg Obj 2
Base address for Msg Obj 3

Use p2.0 and p2.1 for indicator (LED)
Use port A.O to send remote frame

Initialise the LCD
Display a string on LCD
Output an instruction to LCD
Display 1 character in Ace A on LCD
Configure to display on line 2 of LCD
End of String

Assign address for ISR

Base address of the Msg Obj
DEMO *I

-249-

*** Main program ***

ORG $100

MAIN JSR RESET c Reset CAN controller
JSR INIT C Initialise CAN controller

JSR INIT L Initialise LCD
LDX #MSG1
JSR DISP

LDAA #$01 Red LED
STAA PCTR Indicate Set-up phase

LDAA ADDRESS
STAA C ADD

LDAA #$00
STAA WORK

LDD #MSG OB1 Assign values for the vector table
STD $01E4 Service for Msg Obj 1
LDD #MSG OB2
STD $01E6 Service for Msg Obj 2
LDD #MSG OB3
STD $01E8 Service for Msg Obj 3

LDD #PG 0
STD $01CO Service for King Page 0
LDD #PG 1
STD $01C2 Service for King Page 1
LDD #PG 2
STD $01C4 Service for King Page 2
LDD #PG 3
STD $01C6 Service for King Page 3
LDD #PG 4
STD $01C8 Service for King Page 4

CLI
WAIT WAI

LDAA WORK
CMPA #$1
BEQ START
BRA WAIT

-250-

START EQU

LDAA
STAA

LDAA
STAA
STAA

CHECK LDAA
ANDA
BNE
LDAA
STAA
LDY
JSR
BRA

*** Subroutine
MSG OB2 EQU

LOO
STD
JSR
RTS

*** Subroutine
MSG OB3 EQU

LOO
STD
JSR
RTS

*** Subroutine
LCD EQU

LDAA
JSR
LDY
JSR

LDX
JSR

LDX
LDAA
STAA
LDX
LDAB
ABX
JSR
RTS

END

*

#$02
PCTR

#%11111011
BASE2+$0
BASE3+$0

PORTA
#$01
CHECK
#%11101111
BASE3+$01
#20000
DELAY
CHECK

to decode Msg Obj
*
#BASE2
BASE
LCD

to decode Msg Obj
*
#BASE3
BASE
LCD

2

3

Green LED
Indicate Run phase

Set RXIE fC?r
Msg Obj 2
Msg Obj 3

Check if remote request (button pressed)
PA. 0=0 ?

Send remote frame

Delay 1 sec

to display data to LCD
*
#LINE2 Configure to display on line 2
OUTPUT
#$0001
DELAY

#MSG2
DISP

BASE
#%11111101 Reset NewDat
l,X
BASE
#$7 First data byte of the Msg Obj

DISP Display received msg

- 251 -

**
* This program is a set of subroutine to control the LCD *
* File name LCD ROU *
* Author Long Giang Nguyen *
* ID 0959416 *
* Date 16-5-1998 *
* Last modified: 10-6-1998 *
**
*** EQUATE ***

BREG EQU $7000
DELAY EQU $B770
LCD PRO EQU $0100

PDATA EQU BREG+$DF
PCTR EQU BREG+$EF
FUNC EQU $38
EOT EQU $04

ORG $B600

LDS #$47
JMP LCD PRO

TIME FCB $60
FCB $02
FCB $02
FCB $02
FCB $02
FCB $40
FCB $02
FCB $02

INSTR FCB FUNC
FCB FUNC
FCB FUNC
FCB FUNC
FCB $08
FCB $01
FCB $0C
FCB $06

CAN chip's memory location
Delay subroutine
Main program

Use port1 for output data to LCD
Use port2 bit 4-6 for control
Function set to 8 bits, 2 lines
End Of String Characters

Delay time used during initialisation

Instruction used to initialise LCD

Display OFF
Display CLEAR
Display ON
Entry Mode: inc display, no shift

-252-

*** Subroutines ***

** INIT: Initialise LCD

INIT LDY #$140 Delay 16 msec
JSR DELAY

LDX #TIME

LOOP CPX #TIME+8 Last Instr has been output
BEQ BACK

LDAA 08,X Fetch next Instr
JSR OUTPUT

LDY O,X Fetch next time value
JSR DELAY

INX
BRA LOOP

BACK RTS

** DISP: Display a string at the address specified by Reg IX

DISP PSHA

DD LDAA 0, X Load Char
CMPA #EOT End of String ?
BEQ EXIT
JSR SCREEN

LDY #$01 Delay 50 micro sec
JSR DELAY

INX
BRA DD

EXIT PULA
RTS

** OUTPUT: Output an instruction an ACC A to LCD

OUTPUT STAA PDATA Instruction for LCD

LDAA #$02 RS=O, R/W#=O, E=O
STAA PCTR

LDAA #$42 RS=O, R/W#=O, E=1
STAA PCTR

LDAA #$02 RS=O, R/W#=O, E=O
STAA PCTR

RTS

- 253-

** SCREEN: Output data on ACC A to LCD

SCREEN STAA PDATA Instruction for LCD

LDAA #$22 RS=l, R/W#=O, E=O
STAA PCTR

LDAA #$62 RS=l, R/W#=O, E=l
STAA PCTR

LDAA #$22 RS=l, R/W#=O, E=O
STAA PCTR

RTS

END

-254-

	Designing a higher layer protocol for small distributed microcontroller systems using the control area network protocol
	Recommended Citation

