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ABSTRACT 

Malaria is one of the most prevalent and devastating health problems worldwide. It is   

a highly endemic disease in Ghana, which poses a major challenge to both the public 

health and socio-economic development of the country. Major factors accounting for 

this situation include variability in environmental conditions and lack of prevention 

services coupled with host of other socio-economic factors. Ghana’s National Malaria 

Control Programme (NMCP) risk assessment measures have been largely based on 

household surveys which provided inadequate data for accurate prediction of new 

incidence cases coupled with frequent incomplete monthly case reports. These raise 

concerns about annual estimates on the disease burden and also pose serious threats to 

efficient public health planning including the country’s quest of reducing malaria 

morbidity and mortality cases by 75% by 2015. 

 
In this thesis, both geostatistical space-time models and time series seasonal 

autoregressive integrated moving average (SARIMA) predictive models have been 

studied and applied to the monthly malaria morbidity cases from both district and 

regional health facilities in Ghana. The study sought to explore the spatio-temporal 

distributions of the malaria morbidity incidence and to account for the potential 

influence of climate variability, with particular focus on producing monthly spatial 

maps, delimiting areas with high risk of morbidity. This was achieved by modelling 

the morbidity cases as incidence rates, being the number of new reported cases per 

100,000 residents, which together with the climatic covariates were considered as 

realisations of random processes occurring in space and/or time. 

 
The SARIMA models indicated an upward trend of morbidity incidence in the regions 

with strong seasonal variation which can be explained primarily by the effects of 

rainfall, temperature and relative humidity in the month preceding incidence of the 

disease as well as the morbidity incidence in the previous months. The various space-

time ordinary kriging (STOK) models showed varied spatial and temporal distributions 

of the morbidity incidence rates, which have increased and expanded across the 

country over the years. The space-time semivariogram models characterising the 

spatio-temporal continuity of the incidence rates indicated that the occurrence of the 

malaria morbidity was spatially and temporally correlated within spatial and temporal 

ranges varying between 30 and 250 km and 6 and 100 months, respectively. The 
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predicted incidence rates were found to be heterogeneous with highly elevated risk at 

locations near the borders with neighbouring countries in the north and west as well as 

the central parts towards the east. The spatial maps showed transition of high risk areas 

from the north-west to the north-east parts with climatic variables contributing to the 

variations in the number of morbidity cases across the country. The morbidity 

incidence estimates were found to be higher during the wet season when temperatures 

were relatively low whilst low incidence rates were observed in the warm weather 

period during the dry seasons. 

 
In conclusion, the study quantified the malaria morbidity burden in Ghana to produce 

evidence-based monthly morbidity maps, illustrating the risk patterns of the morbidity 

of the disease. Increased morbidity risk, delimiting the highest risk areas was also 

established. This statistical-based modelling approach is important as it allows short-

term prediction of the malaria morbidity incidence in specific regions and disticts and 

also helps support efficient public health planning in the country. 
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Chapter 1 

Introduction 

1.1 Background 

Malaria is a mosquito-borne infectious disease which is one of the most prevalent and 

devastating health problems worldwide, particularly in Sub-Saharan Africa (SSA) and 

South-East Asia (SEA). It has wide global distribution, although its risk and disease 

burden have always been geographically specific and biased towards SSA (Chatterjee 

& Sarkar, 2009; Gallup & Sachs, 2001; Okafor & Amzat, 2007; WHO, 2008). 

Approximately half of the world’s population (3.3 billion) is exposed to the risk of 

malaria transmission; currently, the World Health Organisation (WHO) considers 104 

countries and territories to be malaria endemic and has classified them into six 

endemic regions, namely, African; Americas, European, South-East Asia, Eastern 

Mediterranean and Western Pacific (WHO, 2011, 2012). Bell, Wongsrichanalai, and 

Barnwell (2006) provide the spatial distribution pattern of malaria risk in 109 countries 

and territories in endemic regions, as shown in Figure 1.1.1. It is estimated that 

globally, there are 200–300 million new clinical cases and 0.655–1.238 million deaths 

annually; about 80% of the new cases and 90% of the deaths occur in developing 

countries in the WHO-African region, with children under five years of age and 

pregnant women being the most severely affected (Cibulskis, Aregawi, Williams, 

Otten, & Dye, 2011; Cibulskis et al., 2007; Hay et al., 2010; Murray et al., 2012; 

WHO, 2008, 2011, 2012). According to the World Malaria Report 2011, India, which 

is in the second highest endemic region (SEA), together with six other African 

countries (Nigeria, Democratic Republic of the Congo, Tanzania, Uganda, 

Mozambique and Cote d’Ivoire) accounts for nearly 60% of the estimated total malaria 

disease case-burden; however, Nigeria and the Democratic Republic of the Congo 

account for over 40% of the global deaths (WHO, 2011).  

In SSA, malaria is the single most important infectious disease in children, causing 

25% of all childhood deaths (Chatterjee & Sarkar, 2009; Goodman, Coleman, & Mills, 

2000; WHO, 2003). Pregnant women are particularly susceptible to the disease and 

malaria during pregnancy often causes severe anaemia, miscarriage, stillbirth, and 

maternal death. In most endemic countries, malaria may account for up to 40% of 
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preventable low birth weight cases among  new-borns (Brabin, 1991; Guyatt & Snow, 

2004), and is the greatest risk factor for neonatal death (McCormick, 1985; Schantz-

Dunn & Nawal, 2009; Steketee, 2001).  

Doubts are often expressed about the reliability of estimates for the high-burden SSA 

countries which lack credible reporting systems and facilities for diagnostic analysis of 

cases of the disease. Often reports of incidence of morbidity and death cases are based 

on the clinically diagnosed treatments in only the public sector facilities (Agyepong & 

Kangeya-Kayonda, 2004; Cibulskis et al., 2011; Doudou et al., 2012; WHO, 2012), 

and these limitations tend to affect progress in the global fight against malaria. Malaria 

interventions in Africa face challenges due to the complexity of the disease and lack of 

effective development of comprehensive strategies, especially in the high prevalence 

areas. These contributed to the failure of the earlier global effort in the 1950’s to 

eradicate the disease in the region (AMMREN, 2008) and still seriously impede the 

slow socio-economic progress as malaria still remains a leading cause of morbidity and 

mortality (Okafor & Amzat, 2007; Okorosobo, Okorosobo, Mwabu, Orem, & Kirigia, 

2011; WHO, 2008, 2012). The current renewed efforts, unlike the previous attempts in 

the continent, make use of new tools such as insecticides, medications and vaccines as 

well as effective health care systems coupled with massive support of the community 

and international development partners. These eradication programmes have been 

greatly enhanced by Roll Back Malaria (RBM), a global partnership initiated by WHO, 

UNDP, UNICEF and the World Bank in 1998. RBM seeks to work with governments, 

other development agencies including, non-governmental organisations (NGOs) and 

private sector companies to reduce the human and socio-economic burden of malaria 

by 75% by the year 2015, using 2010 as the baseline (UNICEF, 2008; WHO, 2011). 

Using Ghana as a case study, this study is undertaken to estimate the malaria morbidity 

incidence cases and to describe its distribution pattern over space and time.  

 

1.1.1 Malaria Situation in Ghana  

In Ghana, malaria is not only the burden of the health sector but it also permeates 

every aspect of the social as well as economic lives of her people (GHS, 2011). The 

entire population is at risk of the disease (WHO, 2012) with the most vulnerable being 

children under 5 years of age and expectant mothers who together account for 20% of 

the  population (GHS, 2011; NMCP/GHS, 2010).  Malaria is the leading cause of both  
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Global Distribution of Malaria Risk 

Figure 1.1.1: Geographic distribution of malaria risk in the WHO endemic regions and malaria-free 
areas world-wide (Bell et al., 2006). 
 
 

morbidity and mortality cases in Ghana, accounting for about 38% of all out-patient 

illness, 36% of all admissions, and 33% of all deaths in children under 5 years (GHS, 

2007, 2011; NMCP, 2008; PMI, 2009, 2012; WHO/UNICEF, 2005). Between 3 and 4 

million clinical cases of malaria per year have variously been reported by public health 

centres or estimated over the period 2000–2011 of which nearly 1 million cases are 

children of less than 5 years of age (GHS, 2011; WHO, 2008, 2012). The World 

Malaria and Ghana Health Service (GHS) annual reports estimate that up to 20,000 

children under 5 years die from malaria in Ghana each year, and in the case of 

pregnant women, out of the total number of those reporting at health institutions (GHS, 

2007; WHO, 2008; WHO/UNICEF, 2005), 13.8% suffer from malaria and 9.4% of 

deaths in pregnant women are a result of the disease (GSS, NMIMR, & Macro, 2004a). 

Other major effects of the malaria burden in Ghana include poverty, low productivity, 

school and work absenteeism, and high treatment cost. It is also the leading cause of 

workdays lost due to illness, contributing more to potential income loss than any other 

disease (NDPC & IMF, 2005; Okorosobo et al., 2011). It was also found that about 

50% of Ghanaians spend money on mosquito control products such as coils, sprays, fly 

proof nets and mosquito repellent whilst almost every household spends money on the 

curative treatment of malaria (GSMF, 2004). Several factors which account for this 

worrisome state of affairs may include poor environmental conditions (Chinery, 
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1999b); inappropriate medication and lack of adequate medical care to manage cases; 

access to effective treatment and prevention services; climate variability; and a host of 

socio-economic factors (NMCP, 2007; NMCP/GHS, 2009; RBM/NMCP/GHS, 2010).    

Prompt access to effective treatment of malaria saves lives and is critical element of 

malaria control (WHO/UNICEF, 2003). Ghana perceives the principles of the WHO 

global effort to combat malaria, the RBM Initiative, as being consistent with the 

overall goal of the National Malaria Control Strategy 2008-2015 (NMCP/GHS, 2010). 

The initiative seeks to reduce malaria morbidity and mortality by 75% by 2015 

through improved prevention, better access to care (early detection and rapid treatment 

of cases), higher quality and efficiency in service delivery, and increased partnership in 

the context of overall sector-wide development. Thus, Ghana is to facilitate human 

development by reducing the malaria disease burden in the country by 75% (using 

2010 as baseline) through overall health sector development, improved strategic 

investments in malaria control, and increased coverage of malaria treatment and 

prevention interventions, especially at the community level. The principles also accord 

with the objectives of the medium term health strategy of the Ministry of Health 

(MOH): increasing access, improving quality and efficiency in service delivery and 

building partnerships in the context of overall sector-wide development 

(RBM/NMCP/GHS, 2010). The National Malaria Control Programme (NMCP) of the 

Ghana Health Service (GHS) spearheads the campaign against malaria. Its malaria 

control interventions include: case management at health facility and community 

levels, using artemisinin-based combination therapies (ACTs) as first line treatment of 

uncomplicated cases due to the increasing resistance of the chloroquine; personal 

protection including chemoprophylaxis in pregnancy; and environmental management 

through the use of insecticide treated nets (ITNs) and indoor residual spraying (IRS), 

which are implemented essentially in an integrated fashion.  

Malaria has been identified as the national priority disease for control in the medium 

term policy. However, the coverage of malaria control in the country has been 

constrained by limited geographical and financial access to basic health services in 

both public and clinical cure services; inadequate funding of health services; inefficient 

allocation of resources; and poor community, intersectional and private sector 

participation. In spite of the partnerships with the RBM and other donors, including the 

Global Fund, President’s Malaria Initiative (PMI), UNICEF and World Bank, to 
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mobilise resources and rapidly scale-up these intervention activities, the number of 

new incidence cases being reported annually is alarming (GHS, 2011; WHO, 2012). 

Ghana’s NMCP and WHO annually present reports evaluating these multi-

interventional activities toward the malaria reduction burden. This study among others, 

seeks to provide information for independent assessment of the likelihood for 

achieving the set target by 2015 through seasonal forecast of the malaria morbidity 

incidence cases, and also contribute to knowledge on malaria prevalence in Ghana, 

stimulating further research. 

1.1.2 Malaria Transmission 

Malaria is the most wide-spread vector-borne disease mainly transmitted through the 

bites of female Anopheles mosquitos, one of the most capable vectors which feed on 

human blood. The disease is caused by five species of Plasmodium protozoa, namely 

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae 

and Plasmodium falciparum knowlesi, which infect the human hosts alternatively. 

Among these species, Plasmodium falciparum accounts for the majority of the 

infections and is by far the most lethal, accounting for almost all malaria deaths and 

more than 90% of child mortality in SSA (Chatterjee & Sarkar, 2009; Crawley, Chu, 

Mtove, & Nosten, 2010; Holding & Snow, 2001; WHO, 2012; WHO/UNICEF, 2003). 

There are many species of Anopheles mosquitoes which transmit to human hosts; some 

feed indoors, some outdoors and others almost exclusively on humans, making them 

effective malaria vectors; whilst others feed on a number of different vertebrate hosts 

making them less effective vectors. Each mosquito species has its own breeding site 

preferences and will respond differently to changing environmental conditions. 

Anopheles gambiase, Anopheles arabiensis and Anopheles funetus are the most 

common species, which dominate the SSA landscape and transmit to mostly humans. 

However, Anopheles gambiase is the primary malaria vector; this is attributed to its 

relatively long life, and strong tendencies to target humans for blood meals and to enter 

and rest inside houses of would-be victims. The adult mosquitoes emerge to feed at 

night and their larvae tend to develop in relatively clean temporary bodies of water 

such as those typically found near agricultural sites, empty containers (cans, tins, tyres, 

etc.), trees trunks, pools or excavations, drainages or flooded areas. Increased rainfall 

creates standing waters that favour these Anopheles mosquitoes, making them 

successful vectors (Coetzee, Craig, & le Sueur, 2000; Holt, 2002). However, heavy 



6 
 

down pour of rain tends to sweep away and kills the mosquito larvae to reduce 

transmission of the disease (Huang, Zhou, Zhang, Wang, & Tang, 2011). 

In Ghana, the proportions of people who test positive for malaria parasites in survey 

areas (crude parasite rates) range from 10 to 70%; Plasmodium falciparum accounts 

for 85–90% of all malaria infections including health life-years lost whilst 

approximately 10–15% of the infections can be attributed to Plasmodium malariae and 

Plasmodium ovale (Crookston et al., 2010; MICS, 2006, 2011). The major vectors 

include Anopheles gambiae complex and Anopheles funestus which are commonly 

found respectively in the rural and peri-urban areas; Anopheles melas and Anopheles 

arabiensis are also found in the mangrove swamps of the south-west and in savannah 

areas of northern Ghana (de Souza, Kelly-Hope, Lawson, Wilson, & Boakye, 2010; 

NMCP/GHS, 2009). The numerous factors which may increase transmission can be 

classified as natural and man-made. Both are principally linked or led to environmental  

changes such like ecological, societal, economical and political (Reiter, 2008), which 

favour the vectors that transmit the malaria parasite. Human activities such as poor 

sanitation environment, irrigation and urbanisation can lead to predictable increases in 

malaria transmission. In contrast, climatic variations, natural disasters, and other 

disturbances can lead to unexpected outbreaks; sometimes, these changes are 

accompanied by large-scale population movements which may also foster epidemics 

(Baragatti et al., 2009; Montalvo & Reynal-Querol, 2007; Small, Goetz, & Hay, 2003). 

This often happens, for example, during civil wars when health services degrade, 

surveillance within the control services becomes deficient and control measures are 

lacking (Montalvo & Reynal-Querol, 2007; Tumwiine, Mugisha, & Luboobi, 2010).  

Studies have strongly linked malaria to poverty as estimated incidence rates are highest 

in countries with a lower gross national income (GNI) per capita (Gallup & Sachs, 

2001; Sachs & Malaney, 2002). The majority of people in such countries, whose daily 

income is less than 1.25 US dollars are not only at increased risk of malaria infection 

or death, but they are also unable to afford preventive measures or seek prompt 

effective treatment (Adams, Darko, & Accorsi, 2004; Lynch & Hewitt, 2012; WHO, 

2012). They usually live in rural settlements where the transmission risk is higher. 

Malaria episodes often result in significant direct and indirect costs for households and 

financial constraints for the poor. As there is a vicious cycle between malaria and 

poverty, lowering the malaria burden yields positive economic benefits at the 
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household level, improved living standards and increased overall household income 

(Gallup & Sachs, 2001; Lynch & Hewitt, 2012). Binka et al. (1996) studied the 

Kassena-Nankana district in the Upper East Region, one of the most deprived of areas 

in Ghana with high mortality and morbidity rates. They found that the cost of malaria 

treatment was 34% of the income of poor households whilst it was just 1% of the 

income of the rich. This supports the fact that access to health services in Ghana is also 

affected by the “inverse care law” in which people with the greatest overall needs for 

health care (that is, socially and economically deprived persons) are the least able to 

obtain it (Hart, 1971; Watt, 2002), a well-known concept in Economics. The 

estimation of morbidity and mortality of malaria attributable to a single cause may be 

complicated by its interrelationship with other diseases like anaemia and HIV 

(Crawley et al., 2010; Sachs & Malaney, 2002). However, anaemia may also be related 

to several causes including iron deficiency and malnutrition.  Age and gender related 

analysis may also become useful for assessing the possible associations between 

diseases which tends to show overlapping morbidity patterns. In Ghana, both high 

peaks of malaria and anaemia in childhood and low incidence cases in older age 

groups have been reported  (Adams et al., 2004; GHS, 2007), thus supporting the 

hypothesis that anaemia incidence cases are mainly related to malaria in Ghana.  

As a result of the severe health and socio-economic cost of malaria both globally and 

nationally, there is growing interest in epidemiological modelling of the disease. 

Modelling infectious diseases such as malaria provides a tool to study the mechanisms 

by which they occur (Daley & Gani, 2005). Various methodologies have been 

developed for determining the potential risk factors and areas for estimating the 

disease’s burden. These studies have been conducted worldwide and at continental, 

national and local levels, yielding different spatial and temporal distribution patterns of 

the malaria incidence. They also establish the most favourable risk factor(s) 

responsible for the increased episodes of the disease in each case. A review of such 

studies is presented in section 1.2. This study will be limited to estimating malaria 

morbidity burden in space and time accounting for climatic environmental conditions. 

1.2 Malaria Epidemiological Studies 

Mathematical modelling has contributed immensely to epidemiological studies of 

malaria by providing insight into the dynamics of malaria transmission and thus 
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helping with devising effective interventions (Anderson & May, 1991; Mabaso, 2007; 

McKenzie & Samba, 2004; Murray et al., 2012; Tumwiine et al., 2010; WHO, 2012). 

Following the first descriptions of the malaria parasite and its life cycle by Sir Ronald 

Ross in 1897, several mathematical models were developed for malaria transmission. 

Ross (1855) cited by McKenzie and Samba (2004) described a mathematical model as 

an abstract way of representing ideas about the underlying mechanisms and 

interactions that generate the phenomena being investigated. These mathematical 

models not only helped with understanding the malaria transmission, but also 

improved the vectorial control strategies by describing the propagation of the disease 

using the rate at which susceptible members of a population become infected, and the 

recovery of infected members. They focus on the basic reproductive rate ( 0r ), the 

expected number of individuals (secondary cases) caused by an infected individual in a 

population that has no immunity to the disease, where the disease spreads if 0 1r   and 

declines if 0 1r  . In this way, many of the models assist in the design of malaria 

intervention programmes, providing useful understanding of the complexity of the 

disease such as predicting future outbreaks and also evaluating strategies to control 

such epidemics (Buckee & Gupta, 2009; Daley & Gani, 2005; Gaudart et al., 2009; 

Reiner et al., 2013).  

Mathematical modelling now plays a key role in policy making, including health-

economic aspects; emergency planning and risk assessment; control-programme 

evaluation; and monitoring of surveillance data. In research, it is essential in study 

design, inferential analysis (such as parameter estimation and hypothesis testing) and 

interpretation for implementation. Public health and pharmaceutical industry 

professionals, policy makers and infectious disease researchers increasingly need to 

understand the transmission pattern and to interpret and critically evaluate both 

epidemiological data, and the findings of mathematical modelling studies. Recently, 

several statistical models have been developed and applied to malaria risk predictions 

as herein reviewed in the chapter. They include the generalised linear regression 

(GLR) models, seasonal autoregressive integrated moving average (SARIMA) models 

(for time series forecasting) and space-time statistical models (using geostatistical 

analysis). The SARIMA and geostatistical space-time statistical models, as applied in 

this thesis, can also incorporate risk factors such as environmental (including climatic 

conditions), socio-economic, biological, demographical, anthropogenic (land use) 
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change, population movement, and poverty related issues or variables as the main 

determinants of malaria risk. In this study, the focus will be on the potential effect of 

the climatic covariates of rainfall, temperature and relative humidity on malaria 

morbidity incidence cases in Ghana as justified by the following review of the 

literature. 

1.2.1 Spatial Epidemiology of Malaria 

The malaria disease is preventable and curable. However, in order to prevent or cure 

the disease in the context of its epidemics in most endemic areas such as the Sub-

Saharan African (SSA) including Ghana, decision-makers need to be aware of the risk 

of epidemic occurring in space and time. Specifically, it is necessary to identify the 

geographic locations, or areas under their jurisdiction, and the time, when malaria 

epidemics are most likely to occur (Thomson & Connor, 2001). Spatial epidemiology 

is the study of the geographical (spatial) distribution of the incidence of a disease and 

its association with some potential risk factors (Bailey, 2001; Beale, Abellan, 

Hodgson, & Jarup, 2008). This research field dates back to 1855 with the seminal 

work of Snow (1855) who mapped the incidence of cholera cases and found that 

contaminated water caused most of the cases in London (Bingham, Verlander, & 

Cheal, 2004; Gemperli, 2003). The incidence of malaria varies with the geographical 

location and time or season if not both. Spatial statistical modelling of the disease can 

identify areas of high risks (“hot spots”) and assess potential ecological or 

environmental and socio-economic risk factors which can explain the incidence 

variations in space and by time. Exploring the relationship between malaria incidence 

and environmental changes allows prediction of the impact that environmental changes 

have on malaria risk, including the effect of the global warming and human activities 

(such as farming, urbanisation, dam construction and irrigation). The environmental 

impact on malaria provides important information for effective malaria control, 

focusing not only on the parasite directly, but also on the mosquito vector and its living 

conditions (de Souza et al., 2010; Gemperli, 2003).  

Studying the spatial and temporal distributions of malaria incidence provides better 

understanding of the crucial questions faced in the health sector of many developing 

economies. This is often accomplished by applying statistical methods to data 

collected during disease surveillance and generating a map that describes the variations 

in risk of the disease in space and by time (Appiah, Mueller, & Cross, 2011; Osnas, 
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Heisey, Rolley, & Samuel, 2009; Snow, Guerra, Noor, Myint, & Hay, 2005; Zacarias 

& Anderson, 2011). Thus, spatial statistics provides tools for analysing spatially and/or 

temporally distributed data by capitalising on the correlation between observations to 

interpolate the attribute of interest and to delineate areas with high disease risk. A 

powerful tool of spatial technology that has revolutionised epidemiological research is 

the geostatistical technique of kriging which is used for making predictions at 

unobserved locations. Its extensive application in malaria epidemiology has facilitated 

quantification of spatial features of the disease’s transmission to allow its spatial 

interpolation within the environment (Gething et al., 2007; Gething et al., 2008; 

Saxena, Nagpal, Srivastava, Gupta, & Dash, 2009). However, its application in malaria 

control in the WHO African region has been limited. 

Geostatistics is a branch of spatial statistics which consists of a set of techniques for 

analysing and predicting values of a variable distributed in space or time (Ali et al., 

2006; Carrat & Valleron, 1992; Webster, Oliver, Munir, & Mann, 1994). Space-time 

data, as noted earlier, are correlated in both space and time such that observations in 

close proximity are more likely to be influenced by similar factors and thus affected in 

a similar way, described as Tobler’s first law of geography (Cressie & Kornak, 2003; 

Tobler, 1970). In the case of malaria prevalence, spatial and temporal correlations are 

present at both short and large scales, reflecting the transmission of infection by 

mosquitos which fly over short distances and the effects of environmental factors due 

to seasonal changes which determine mosquito survival over larger areas (Hellmuth, 

Moorhead, Thomson, & Williams, 2007). Classical statistical methods assume 

independence of observations, and when used to analyse spatially correlated data often 

underestimate the standard errors of the covariate parameters and thus leads to the 

overestimation of the p-values, which determine the statistical significance of the 

covariates  (Cressie, 1993; Cuzick & Elliott, 1992; Thomson et al., 1999). Of particular 

interest in this study is the application of concepts and tools of geostatistics to 

determine whether the observed malaria morbidity cases obtained at the district 

locations in Ghana display any spatio-temporal dependence (autocorrelation); that is, 

do nearby observed space-time locations have values of morbidity incidence that are 

similar, in contrast to locations that are far apart? The space-time (or spatial) 

correlation structure of the morbidity incidence data (as established in chapter 5) then 

become  important which if ignored  leads  to  inaccurate  estimates  for the  prediction  
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process (Cressie, 1993; Kleinschmidt, Bagayoko, Clarke, Craig, & Le Sueur, 2000).  

1.2.2 Methodological Approaches  

The estimation of malaria burden is challenging but is important for efficient public 

health planning. In most prevalent countries, the systems for tracking the malaria 

episodes are very poor, which tends to affect the quality of information on the number 

of cases and deaths. WHO via its World Malaria Report, provides annual estimates of 

the disease burden globally, regionally and nationally to assist with monitoring 

progress of national malaria control programmes. This progress will influence the 

meeting of the United Nations (UN) Millennium Development Goals (MDGs) of 

reducing poverty in disease-burden countries by 75% by 2015. However, these 

estimates rely on adjustments due to incompleteness of the national health-facility 

reporting which leads to large degree of uncertainty. Other efforts to estimate the 

disease burden have generated criticism because they have often yielded highly 

variable results (Carneiro, Roca-Feltrer, & Schellenberg, 2005; Dhingra et al., 2010; 

Lynch et al., 2012). Cibulskis et al. (2007) provides a review of issues for quantifying 

the burden of malaria whilst Cibulskis et al. (2011) and WHO (2008) summarise the 

current methodological approaches as being mainly based on: 

(i) The use of surveillance case reports from routine national information systems;  

(ii) The use of population-based surveys of parasite prevalence and risk maps; and  

(iii) The reported deaths, adjusted for incomplete reporting, involve dividing the 

number of cases by an estimated case fatality rate.  

WHO uses a combination of the approaches for modelling and estimating malaria 

incidence depending upon the region of the endemic country or territory. 

The surveillance case reports method estimates the number of malaria cases per year, 

with lower and upper bounds, using inputs on both confirmed and unconfirmed cases, 

completeness facility reports and population with suspected malaria (fever) treatments 

provided by the National Malaria Control Programmes in the respective countries 

(Cibulskis et al., 2011; WHO, 2008, 2011). The difference between the upper and 

lower limits reflects the extent to which malaria cases treated are at the health centres. 

The upper limit represents an estimate of the number of malaria cases assuming all 

fever cases were likely to be tested positive whilst the lower limit estimates the number 

of malaria cases if only those with fever cases who seek treatment actually have 
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malaria. The true number of cases tends to be close to the lower limit in areas where 

health services are highly accessibility and all cases that need treatment actually seek 

it. It will lie closer to the upper limit in areas where accessibility is poor and many 

malaria cases are untreated whilst the true value of lies between the two limits (see 

WHO, 2008 and 2011). 

The second method uses an empirical relationship between measures of the malaria 

transmission risk and incidence rates following the Malaria Atlas Project (MAP), 

including studies by , Craig, Snow, and le Sueur (1999), Hay et al. (2009), Hay et al. 

(2010), Korenromp (2005), Patil et al. (2009) and Snow et al.(2005). It is mainly used 

in the African region where data from routine health information system are 

considered sufficiently complete, classifying the population in each country as at high, 

low or no risk of malaria according to climatic suitability (MARA Project, 1998) and 

the incidence rates are inferred from the risk zones using longitudinal studies carried 

out in the population without malaria interventions. The incidence rates are then 

adjusted downwards for each country depending on the expected impact of vector 

control interventions.  

Cibulskis et al. (2011) apply both methods to update the WHO’s 2009 estimates for the 

99 countries and also provide a critique of the estimates obtained. They compute 225 

million cases worldwide with 95% confidence interval of 146–315 million cases and 

176 (110–248) million cases in Africa compared with the WHO’s of 222 (163–292) 

and 179 million cases, respectively. Hay et al. (2010) estimated 271 (241–301) million 

cases in 2007 compared with what WHO computed, 229 (169–304) million cases 

globally. Recently, Murray et al. (2012), using the database on vital registration and 

verbal autopsy over the period 1980–2010, developed  predictive models including 

spatio-temporal and mixed models to provide a systematic assessment of malaria 

mortality for the WHO endemic countries. There have been many concerns about their 

findings (Lynch et al., 2012). The number of global deaths which occurred in 2010 

was estimated at 1.238 (0.929–1.685) million, nearly double the value, provided in the 

2012 WHO report (WHO, 2012) of 0.655 (0.537–0.907) million for the same year. 

Murray and colleagues also found more adults deaths. WHO disputes the use of verbal 

autopsy for computing malaria deaths as they contend that there is no scientific 

evidence of establishing the reliability of verbal autopsies of people aged 5 years and 

over (GMP/WHO, 2012). Nevertheless, the high number of deaths as estimated by 
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Murray et al. (2012) is consistent with the study of Dhingra et al. (2010) who similarly 

use verbal autopsy records to obtain 200,000 deaths in India compared to WHO’s 

estimate of 24,000 deaths for the same period. However, some of the models that have 

been used are considered as too simplistic to generate the required precision of results 

(Carneiro et al., 2005). 

1.2.3 Spatial Statistical Studies in Malaria 

There have been a number of research projects in malaria epidemiology that have been 

done using spatial statistical modelling coupled with time series and GLR models. In 

the area of spatial statistics, several of these studies have produced risk maps 

describing the distribution and patterns of the malaria burden both at global and 

continental (Cibulskis et al., 2011; Hay et al., 2009; Hay, Guerra, Tatem, Noor, & 

Snow, 2004; Mabaso, 2007; MARA Project, 1998; Noor, Alegana, Gething, & Snow, 

2009; Small et al., 2003; Thomson & Connor, 2001) and regional and national (de 

Souza et al., 2010; Gemperli et al., 2006; Gething et al., 2007; Gething et al., 2006; 

Gosoniua, Vounatsou, Sgobab, Mairea, & Smith, 2009; Kazembe, Kleinschmidt, 

Holtz, & Sharp, 2006; Kleinschmidt, Omumbo, et al., 2001; Lin et al., 2009; Nobre, 

Schmidt, & Lopes, 2005) levels. These studies describe spatial and temporal variations 

of malaria risk across the various landscapes, all in an effort to aid public health-care 

decision making on malaria control. The MARA Collaboration (MARA Project, 1998) 

which was established in 1996, for example, produces estimates of the malaria risk 

distribution in Africa. The project defines the theoretical distribution and duration of 

malaria transmission across the whole African continent based on biological 

constraints of climate suitability for parasite and vector development (Craig et al., 

1999). It also estimates the number of people at risk at a continental level (Snow, 

Craig, Deichmann, & Marsh, 1999). Gemperli et al. (2006) use a transmission-based 

models to map Mali, and two sub-regions (West and Central Africa) for different 

seasons and age groups, unlike the other MARA studies which are limited to a 

particular season and children under 10 years of age.  

Malaria risk maps interpolating estimates of disease occurrence from a regional 

database to a continuous surface have been constructed using geostatistical kriging 

techniques, a very powerful spatial technique. Kleinschmidt et al. (2000) and 

Kleinschmidt (2001) use kriging, coupled with a GLR model to estimate the malaria 

prevalence data from surveys on childhood populations, to predict malaria risk at the 
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local level in Mali and West Africa, respectively. Gething et al. (2006, 2008) use 

space-time kriging to predict the monthly malaria cases seen at the public health 

facilities in Kenya where records were missing to obtain reliable estimates of the 

national outpatient malaria treatment burden for accurate quantification for health 

system planning. In another paper Gething et al. (2007) compare three different 

methodologies of kriging, ordinary kriging, space-time ordinary kriging, and local 

space-time ordinary kriging, through cross-validation predictions of the proportion of 

outpatient treatments for malaria at health facilities within the Kenyan health 

management and information system. A review, of classes of space-time covariance 

(semivariogram) models which dominate geostatistical prediction but are limited in 

malaria epidemiology, is given by De Iaco (2010) in her comparative analysis of the 

existing models. They include the generalised product-sum model (De Iaco, Myers, & 

Posa, 2001), which is deemed more general and easily applied. This is one of the 

models considered in this study for the structural analysis of the malaria incidence 

rates. Kyriakidis and Journel (1999) give a review of two types of space-time models 

as presented in Chapter 3. The choice of these models depends on the relative 

abundance of data in the two-dimensional domains.    

Nadine et al. (2010) developed Bayesian geostatistical models to analyse data from 

Zambia’s national malaria indicator survey conducted in 2006, to establish the 

relationship between the malaria parasitaemia data (quantitative measure of parasite 

load in the blood) and climatic predictors of the disease. The results led to the 

production of the first contemporary empirical parasitaemia risk map of malaria 

incidence for evaluation of malaria interventions in the country. Nobre et al. (2005) 

used spatio-temporal modelling of Bayesian hierarchical models to model the rainfall 

effect on malaria incidence, accounting for spatial dependence in counties in the 

Brazillian state of Pará; they adopted a conditional autoregressive (CAR) model, a 

generalisation of spatio-temporal prior distributions proposed by Besag, York, and 

Molliè (1991). Kazembe et al. (2006) applied a model-based geostatistical approach 

with variograms based on logit to explore spatial correlation and prediction of malaria 

prevalence in Malawi, computing the parameters of the model using the maximum 

likelihood and Bayesian approaches. 

Baragatti et al. (2009) contribute to better understanding of spatial analysis of malaria 

epidemiology in their study in urban areas of Quagadougou in Burkina Faso by using a 
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generalised linear mixed (GLM) model nested with random effects. Malaria prevalence 

was observed heterogeneous due to the spatial and temporal distributions of vector 

larval breeding sites. The results also indicated low urban malaria transmission with 

marked seasonality and high prevalence of malaria risk among children who lived in 

sparsely populated and irregularly built-up areas. In addition, children in poorer 

households were found to be at greater risk of malaria infection, independent of bed-

net use, and that travel outside the city increases the risk of being exposed to malaria 

transmission and high parasitaemia.  

 

1.2.4 Time Series Analysis of Malaria Epidemics 

Time series analysis, coupled with generalised linear regression (GLR) models, has 

proved to be a very powerful warning tool for predicting malaria epidemics 

particularly when vulnerability variables such as environmental factors are included. 

An autoregressive integrated moving average (ARIMA), coupled with generalised 

least squares regression modelling, has been applied to monthly incidence of malaria 

with climatic variables in Shuchen County, China for the period 1980-1991 (Bi, Tong, 

Donald, Parton, & Ni, 2003). The study indicated temperature, relative humidity, and 

precipitation to be possible predictors for regions with similar geographic, 

environmental, or socio-economic conditions to those of Shuchen County. The 

regression analysis results showed significant effect of monthly mean minimum 

temperature and total monthly rainfall with a one-month lag effect, as well as 

seasonality. There was also a declining long-term but non-periodic trend in the 

incidence of malaria and it was suggested that the above variables could be included in 

a model as possible predictors of this incidence. A similar study by Tian et al. (2008) 

also established the potential impact of climate variability on malaria transmission in a 

tropical rainforest of Mengla County, China. The study in Rwanda proved that 

monthly malaria incidence in high-altitude regions was related to changes in minimum 

temperature whereas in low-altitude zones, rainfall and mean temperature were the 

most significant climatic factors (Loevinshn, 1994). Gomez-Elipe, Otero, van Herp, 

and Aguirre-Jaime (2007) developed an ARIMA model using data for the period 

1997–2003 to predict the expected malaria incidence based on the observed malaria 

incidence rates and a combination of climatic factors (rainfall, temperature and 

vegetation index) for the month. Small et al. (2003) fitted an autoregressive AR(p) 

model to time series malaria incidence data for 1911–1995 in their analysis of climate 
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suitability of malaria transmission in Africa, testing for the autocorrelation using an 

ADF test (Dickey & Fuller, 1979) in as attempt to address the concerns of effect of 

seasonal noise on long-term trend analysis.  

Several authors have also established a strong correlation between the malaria 

incidence rates and variations in environmental variables during several preceding 

months or season (Craig, Kleinschmidt, Nawn, Le Sauur, & Sharp, 2004; Loevinsohn, 

1994; Thomson, Mason, Phindela, & Connor, 2005). The model by Loevinsohn 

(1994), for an unstable malaria transmission area in Rwanda, which did not take into 

account the influence of the malaria incidence rate in the preceding month, included 

minimum temperature in the preceding one and two months, and rainfall in the 

preceding two and three months whilst Thomson et al. (2005), using historical rainfall 

data and malaria incidence data from Botswana, linked higher rainfall totals with 

increased malaria incidence several weeks later. Malaria transmission was found to be 

complex, being influenced by other factors besides climate, but when trends in non-

climatic factors were quantified and accounted for, variability in rainfall was found to 

explain more than two-thirds of the incidence variation. This means that rainfall 

monitoring can give several lead weeks or months warning of possible epidemics; 

malaria incidence is also linked to sea surface temperatures which affect continental 

rainfall and are used for seasonal forecasting. Subsequent analysis confirmed that 

seasonal forecasts can provide useful indications of the likelihood of an epidemic 

several months in advance (Thomson et al., 2006). This led to the development of the 

malaria early warning and response system (MEWS) by the partners of the RBM 

initiative (which includes the national ministries of health) to gather adequate 

information on when and where epidemics are most likely to occur. MEWS has five 

components: vulnerability assessment and monitoring; seasonal climate forecasting; 

environmental monitoring; sentinel case surveillance; and planning, preparedness and 

response. It was piloted in several epidemic-prone countries in Southern Africa and 

holds promise for use in other malarial endemic areas in Asia and Latin America 

(Hellmuth et al., 2007). Seasonal climate forecasting is of great interest to this study as 

it seeks to establish a link between climate and malaria morbidity incidence cases to 

provide a reliable forecasting method that can help predict epidemics. Seasonal 

analysis gives seasonal trend patterns and lead time forecast to allow effective control 

and other measures to be implemented (Silal, Barnes, Kok, Mabuza, & Little, 2013). 
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1.2.5 Malaria Studies in Ghana 

Epidemiological research currently available in Ghana can be classified according to 

three main factors of malaria transmission, as presented by the following findings: 

Climate suitability and vegetation Cover: The seasonal variation in climatic 

conditions, coupled with differences in vegetation cover, directly affects mosquito 

habitats and thus potential for malaria transmission. Studies in Ghana on the impact of 

climate variability on malaria incidence or prevalence establish a link, notwithstanding 

the numerous limitations highlighted in this chapter. Danuor et al. (2010) establish a 

link between malaria incidence and variability of rainfall, temperature and relative 

humidity, using correlation and regression analyses to predict the occurrence of the 

disease but their study was limited to only two public centres located in the forest 

vegetation zone. They highlighted the need for monthly time series data for at least 10 

years, covering more health facilities to obtain a clear picture of the malaria pandemic 

and to allow comparison of seasonal variability of the disease which should underpin 

the rationale for seasonal forecasts an efficient malaria early warning system. de Souza 

et al. (2010) geo-referenced and mapped study sites, of available survey data on 

Anopheles gambiase species, widely spread in Ghana. The GLR model used produced 

varied distribution of vectors across the country, driven mainly by different 

environmental factors such as elevation, vegetation cover, precipitation, temperature 

and humidity obtained via remote-sense satellite sources. 

Non-climatic environmental conditions: Non-climatic environmental factors which 

promote mosquito breeding are mainly due to human activities including poor 

sanitation conditions resulting from poor design and construction of drainage and 

sewerage systems, lack of garbage disposal facilities (Osei, Duker, Augustijn, & Stein, 

2010), urbanization via road/building and dams for irrigation and hydroelectricity 

(Jobin, 2004) and farming activities (Chinery, 1999b; Klinkenberg et al., 2005). 

Malaria is the most wide-spread of the water-associated diseases in the tropics; the 

association is that it is transmitted by Anopheles mosquitos which must have access to 

stagnant water-bodies for egg-laying. If the water stands for more than a week, the 

eggs of these blood-sucking insects have time to develop and hatch (Jobin, 2004). 

Jobin (2004) discusses the health hazards of ten well documented hydro-dams 

including Akosombo Dam in Ghana, indicating that dams and their reservoirs play 

three roles in the transmission of tropical diseases. Firstly, the reservoirs can serve as 
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breading habitats for the aquatic insects and snails which transmit the tropical diseases. 

Secondly, the reservoirs attract large numbers of people because of the potential for 

fishing or other economic activities related to water. Lastly, the dams often displace 

people from the flooded zone of reservoirs, requiring construction of large resettlement 

centres, most of which are poorly constructed. Careful siting and selection of simple 

changes in the design of dams can reduce the risks of lethal tropical diseases such as 

malaria and cholera, as he suggested.  

Asenso-Okyere (1994)’s study based on four districts in the Greater Accra region 

revealed that poor environmental conditions and other variables including excessive 

heat, mosquitoes, malnutrition, fatigue, and unsafe drinking water were perceived to be 

the most important factors for contributing to malaria outbreaks. He also found that 

almost all the adolescents at that time had no idea of how the disease is transmitted. 

Symptoms of clinical malaria were also frequently considered to be yellowish eyeballs, 

chills and shivering headache, a bitter taste, body weakness and yellowish urine. Rapid 

urbanisation increases artificial mosquito breeding-water habitats as well as 

eliminating or modifying many natural mosquito-breeding waters (Chinery, 1999a; 

Klinkenberg et al., 2005). Klinkenberg et al. (2005) used a GLM model to investigate 

malaria prevalence in children living in an urban area of Ghana; the associated risk 

factors were low haemoglobin concentration, low socioeconomic status, and higher 

age. A high parasitemia level of 14.9 (6–22)% was also found, contrary to what is 

usually associated with most urban communities in Africa, with high population 

densities, for example, 8.8 (2–14)% for Pikine in Senegal (Vercruysse, Jancloes, & 

Van de Velden, 1983).  

Socio-economic factors: Lack of social amenities coupled with socio-economic 

factors such as poor nutrition, poverty, low level of education, inappropriate 

medication and access to health care have been considered as major causes for 

infection by water-associated diseases such as malaria and cholera. Most communities 

in Africa including Ghana lack or have limited sewage and sanitation facilities. The 

surface run-off from waste dump sites contaminates water bodies and causes 

stagnation and increases organic nutrients, putting inhabitants at risk of these water-

borne diseases (Chinery, 1999b; Osei et al., 2010). Osei et al. (2010) uses spatial 

statistical modelling to determine the dependency of prevalence of other infectious 

disease on contaminated surface water bodies and establish association between the 
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spatial distribution of the disease prevalence and proximity to contaminated surface 

water bodies. Malnutrition impacts on both the manifestation of and susceptibility to 

malaria. Research has shown that malnutrition increases susceptibility to malaria 

whilst other studies indicate that malaria increases the likelihood of a child having poor 

nutritional outcomes (Caulfield, Richard, & Black, 2004; Nyakeriga, Troye-Blomberg, 

Chemtai, Marsh, & Williams, 2004). Malaria is the most significant human parasitic 

disease and is the chief cause of anaemia (Crookston et al., 2010) as most episodes of 

uncomplicated malaria in Ghana can cause mild anaemia. Crookston et al. (2010) use a 

logistic regression model to explore the relationship between chronic malnutrition and 

asymptomatic malaria in children under five years in a community in Kumasi, Ghana. 

The study did not show any significant association between chronic malnutrition as 

measured by stunting (mild, moderate, or severe) and presence of asymptomatic 

malaria. However, the results indicate that children who experience anaemia and an 

increased spleen size are more likely to be positive for malaria without symptoms (a 

moderate association found between asymptomatic parasitaemia and malnutrition).  

An investigative study of the economic burden malaria causes in six African countries 

including Ghana was recently conducted by Okorosobo et al. (2011). They used 

econometric models to establish a significant impact of malaria (as indicated by 

morbidity incidence rate per 100,000 people) on economic growth in Ghana, indicated 

by gross domestic product (GDP). A decline in GDP growth of 0.435% per year was 

found for every unit increase of the malaria burden. This confirms the earlier work of 

Gallup and Sachs (2001) who obtained a higher decrease of 1.3% and a much closer 

value for SSA (0.55%) as reported in McCarthy et al. (2000). Agyepong and Kangeya-

Kayonda (2004) contribute to the estimation of malaria burden issue through a case 

study in rural communities in the Dangme East and West districts with their findings 

suggesting under-utilisation of health facilities. They found that for every febrile case 

of illness treated at a public health facility, there were 4 or 5 others who never had the 

opportunity to receive treatment. This contradicts the conclusions of a similar study in 

Niger (Doudou et al., 2012) which overestimates the suspected cases of malaria 

reported at formal health facilities, thus highlighting the inadequacies in the national 

health management and information system. In a very recent study, it was found that 

malaria among children decreased with increasing socio-economic status of families as 

classified by principal component analysis in Krefis et al. (2010). Higher malaria risk 
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was further established in highly endemic rural communities with limited use of 

protective measures where socio-economic differences are not much different.  

Biological factors: These include propensity and frequency of mosquito bites; 

abundance of Anopheles species and their susceptibility to the human parasite and the 

rate at which the parasite develops in mosquitoes, persistence of suitable aquatic 

habitats until  maturity of the mosquitoes, which in turn largely depends on climate 

variability (Baird et al., 2002; de Souza et al., 2010; Klinkenberg et al., 2005; Obiri-

Danso, Weobong, & Jones, 2005; Ofori et al., 2009). Appawu et al. (2004) studied 

malaria transmission dynamics in a proposed site for testing malaria vaccines at the 

Kassena-Nankana district of Northern Ghana, using data from a one-year sampling 

survey on mosquitoes collected via human landing catches in the three micro-

ecological sites (irrigated, low and rocky highlands). A highly seasonal malaria 

transmission was established, mostly occurring between the months of June and 

October. Malaria transmission intensity was observed to be higher for people in the 

irrigated communities, whilst approximately 60% of the transmission in the district 

occurred indoors during the dawn hours. Earlier studies conducted in the same district 

produced similar patterns of malaria risk (Baird et al., 2002; Binka et al., 1996). 

Specifically, Baird et al. (2002) estimated that malaria prevalence accounts for over 

25% of the under-five mortality in the whole northern part of the country. Furthermore, 

Binka et al. (1996) indicated intense malaria transmission of approximately 4–7 

infections/person-year, mostly in the wet season, and relatively low risk of infection if 

the rates of severe anaemia among children were low. The use of insecticide treated 

nets (ITNs) provides significant individual protection; however, the direct and indirect 

effects on malaria transmission of treated and untreated nets in a community of bed net 

users and non-users need much insight, despite the recent progress (MICS, 2011). 

Randomised clinical trials in different malaria transmission regions examined the 

spatial effect of ITNs on mortality of children. In the Northern Ghana the estimated 

mortality risk in individuals without insecticide nets increased by 6.7% with every 100 

metres movement from the nearest home where treated nets are used (Binka, Indome, 

& Smith, 1998). Ofori et al. (2009) characterised pregnancy associated with malaria in 

a rural community along the coast of Greater Accra Region, linking high prevalence of 

placental malaria parasite infection to low haemoglobin and observed women in their 

first and second pregnancies were highly at risk.   
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1.3 Research Problem and Objectives 

Inspite of Ghana’s NMCP numerous intervention strategies to contain the malaria 

burden for the last decade, the disease remains the country’s most prevalent health 

problem (GMAG, 2007; NMCP, 2008; PMI, 2012). The proportion of the total 

outpatient department (OPD) cases attributed to malaria continues to increase whilst 

geographic variation in morbidity cases still persists due to various environmental and 

socio-economic factors (GHS, 2011; MICS, 2011). This emphasizes the need for 

accurate quantification of the disease burden and its distribution pattern across Ghana 

as this should assist effective malaria control. Environmentally-driven studies of the 

malaria risk and population maps, as reviewed above, have proved to be useful for 

describing and/or explaining the public burden of the disease (Craig et al., 1999; 

Gosoniu, Vounatsou, Sogoba, & Smith, 2006; WHO/UNICEF, 2003). Numerous 

efforts, as enshrined in the nation’s malaria interventions, include focused research to 

reduce the disease’s burden but little attention is paid to a spatial statistical model-

based approach to malaria epidemiology. Most available health research in Ghana 

focuses solely on biological aspects and characteristics of the people contracting the 

disease (Obiri-Danso, Okore-Hanson, & Jones, 2003; Osei et al., 2010), but neglects 

the spatial (Osei & Duker, 2008)  and temporal patterns of incidence. Though these 

studies have been useful, they cannot establish the potential risk factors and also 

identify areas, with high prevalence of the disease, that require health policy 

interventions (Osei & Duker, 2008). Periodic risk measures reported on Ghana were 

based on household surveys, largely from the Demography and Health Surveys (DHS) 

and Multiple Indicator Cluster Surveys (MICS), which are conducted at limited 

sentinel sites and through public health information systems. It should also be noted 

that, expert opinion is sometimes sought. These national surveys are not conducted 

annually (or regularly), and do not provide sufficient data for accurate prediction of 

new and future incidence cases, as well as the rate of change in prevalence in different 

areas. In addition, many health facilities in the country never report or report 

intermittently resulting in spatially and temporally incomplete data in the CHIM data 

base. This greatly limits the planning and management of relevant health care delivery 

systems in the country.  

The study is motivated by efforts such as MAP and MEWS, which specifically link 

malaria incidence rates to climate characteristics through spatial statistical and time 
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series seasonal predictive models. The current malaria prevalence model for Ghana 

was obtained by Kleinschmidt, Omumbo, et al. (2001), based on parasite survey data. 

That study was part of the MARA Project (1998), which produced a malaria risk map 

for the West African Region. Most countries in the survey region, including Ghana, 

were poorly covered. A lack of adequate survey-referenced points and wide spacing of 

the study locations resulted in inaccurate prediction of the malaria risk for these 

countries. Since this first study, no attempt has been made to update the malaria risk 

map of Ghana despite the abundance of both published and unpublished data on 

incidence cases of malaria for all districts. In addition, their study was based only on 

population prevalence surveys on children less than 10 years of age, which might not 

be representative enough for estimation of the actual malaria risk burden in the 

country.  

The geographical and seasonal variations of malaria transmission in Ghana are widely 

attributed to differences in climate and vegetation, which have direct links to mosquito 

habitats (Chinery, 1999b; Danuor et al., 2010; de Souza et al., 2010; WHO/VBCD, 

1989). Spatio-temporal modelling, coupled with adequate data, has been shown to 

better define the public burden of the disease, providing risk maps to describe the 

incidence variation in space and by time and also identifying high risk areas (“hot 

spots”) for relevant policy decisions and implementation. Inspite of its wide 

application in environmental and air pollution studies, not much is seen in West Africa 

and for that matter Ghana. The studies by Gething (2008, 2007 and 2006) in Kenya 

appeared to be the first application of geostatistical space-time kriging methodology to 

malaria epidemiology in Africa. The studies by Gething and colleagues did neither 

account for any environmental effect nor did they consider all people at data locations 

at risk of the disease.  

The thesis seeks to explore the spatio-temporal distribution of the malaria morbidity 

incidence and the potential influence of climate variability, which can be used to 

predict malaria risk by location and time using monthly available data by district and 

region over the period 1998-2011. This is achieved by applying the geostatistical 

methodology of space-time kriging, coupled with time series SARIMA predictive 

models, to the monthly morbidity cases reported on disease data from health facilities; 

and population and climatic data at the district and regional levels. The data for the 

study covered all districts and regions in the country. The ultimate aim of the study is 
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to produce monthly evidence-based risk maps of malaria, estimating its incidence rates 

and describing the distributional patterns over space and time that incorporate climatic 

data for rainfall, temperature and relative humidity, with particular focus on 

delineating areas with high risk of malaria morbidity incidence. Modelling the malaria 

morbidity cases observed as incidence rates, the specific objectives of the study are as 

follows: 

(i) To perform seasonal analysis to establish temporal distributional patterns of the 

morbidity incidence rates in the regions which can be used to provide 

predictive forecasts of malaria risk. This will have various benefits including 

assessing progress of meeting the NMCP’s target of reducing malaria cases by 

75% by the year 2015. Thus, various smoothing analyses coupled with the 

multiplicative SARIMA model forecasting of the malaria morbidity incidence 

rates at each region are performed.  

(ii) To characterise the correlation structure of the space-time (district-month) 

morbidity incidence rates at the district and time locations in the whole country 

(nationally), Brong Ahafo Region, and the three epidemiological zones. This is 

achieved via construction of the space-time semivariogram models that 

describe the spatial and temporal correlations of the morbidity incidence rates 

for each study area.    

(iii) To obtain optimal predictions of morbidity incidence rates at the unsampled 

locations, where data are missing for each of the three study areas, based on 

monthly the malaria risk maps using ordinary kriging and space-time ordinary 

kriging techniques. 

(iv) To establish the potential effect of the climatic covariates (rainfall, temperature 

and relative humidity) on the morbidity incidence rates using SARIMAX 

modelling and space-time co-kriging. The SARIMAX is applied to the regional 

incidence rates data whereas a linear model of coregionalisation (LMC) is used 

for the space-time incidence data at the district-month locations.     

 

1.4 Thesis Outline 

The thesis concerns the spatio-temporal distribution of monthly malaria morbidity 

cases as based on disease reports from district and regional health facilities in Ghana. 

This chapter, being the introduction to the study, gives the background information on 
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the malaria burden, its control and transmission worldwide and in Ghana. It also 

reviews malaria epidemiological studies, including the spatial epidemiology, 

methodological approaches for estimating malaria burden and spatial as well as 

temporal statistical studies in malaria transmission. Finally, the research problem and 

objectives of the study are delineated. The rest of the study is structured into five 

chapters as indicated as follows: 

Chapter 2 focuses on the theoretical frameworks for analysing the data using spatial 

and time series models. It outlines the concepts of spatial statistics and specifically 

geostatistics in relation to the analysis of geographical distribution of the malaria 

incidence rates data. It then presents the semivariogram and covariance functions and 

their estimation; fitting of linear models of regional and linear models of 

coregionalisation (as multivariate analysis in spatial statistics) for characterising spatial 

correlations and accounting for exogeneous variables; and geostatistical spatial 

kriging, being the technique for optimal predictions at unsampled district locations of 

the malaria incidence data. Finally, time series analysis of smoothing techniques and 

the use of multiplicative SARIMA predictive models for forecasting are presented.  

Chapter 3 covers the geostatistical space-time statistical modelling, which represents 

the second theoretical framework for studying the morbidity incidence rates, 

considered as a realisation of a random function distributed in space and time. This 

chapter is structured into three main sections, covering the space-time semivariogram 

and covariance functions, permissible models and their estimation; geostatistical 

space-time kriging techniques; and space-time conceptual modelling approaches. 

Chapter 4 provides exploratory analysis of the research data. It establishes the 

distributional properties of the malaria morbidity cases, which are modelled as 

incidence rates, (defined as the number of new reported morbidity cases per unit 

resident population of 10,000). It first presents the background information for the 

study area and description of the research data collection. Time-plots and smoothing 

analysis of the regional data are provided, followed by the post plots (spatial maps) of 

the space-time incidence data. Multiple linear regression analysis of the morbidity 

incidence rates with the climatic covariates is also performed to establish the potential 

effects of the covariates. The chapter ends with the multiplicative SARIMA predictive 

future forecasts of malaria risk in each of the ten regions in Ghana. 
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Chapter 5 applies the theoretical concepts in chapters 2 and 3 to the space-time malaria 

morbidity cases, modelled as incidence rates. The analysis includes the global trend 

modelling, which involves detrending and deseasonalising the space-time morbidity 

incidence rates and further analysis of the trend model coefficients. It also comprises 

structural analysis and optimal predictions of morbidity incidence rates. The former 

explores the spatial and/or temporal correlations of the observed spatial and space-time 

incidence study data, including the generalised product-sum semivariogram model of 

the incidence data and linear model of coregionalisation (LMC) with the covariates to 

establish climatic effect on the morbidity incidence rates. The latter, via space-time 

ordinary kriging techniques, leads to the predictions of morbidity incidence rates at the 

unsampled district-month locations resulting in production of the monthly risk maps of 

the malaria morbidity. Finally, the results of the analyses are summarised and 

discussed. 

The study is concluded in Chapter 6, which summarises and discusses the findings; 

highlights the limitations; characterises the contributions to knowledge made ; and 

provides recommendations for future work. 
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Chapter 2  

Spatial and Temporal Statistical Modelling 

2.1 Introduction 

Statistical modelling, as noted in chapter 1, plays an indispensable role in malaria 

epidemiological studies, providing better understanding of the dynamics of the malaria 

epidemics and other infectious diseases. In this chapter, the concepts of both spatial 

and time series predictive modelling approaches employed to analyse the malaria 

morbidity incidence in this study are outlined. Spatial statistics specifically deals with 

geographically referenced data, and unlike the classical statistical modelling which 

assumes independence, it obeys Tobler’s first law of Geography, that nearby 

observations in space tend to be more alike than those farther apart (Tobler, 1970). 

This dependency assumption extends spatial statistics, dealing with data correlated in 

space and time as well. Spatial statistics is a relatively new development within 

Statistics, having progressed slowly from various areas of applications, including 

mining engineering, which subsequently led to the development of geostatistics 

(Matheron, 1963); agriculture with spatial consideration informed by the thinking of 

Fisher (1935) via his concepts on randomisation and blocking; and forestry, as 

appeared in a seminal PhD dissertation of Bertil Matèrn (Matèrn, 1960). The last two 

decades have seen some remarkable achievements in spatial statistical modelling with 

an explosion of interest in space and space-time problems which has facilitated the 

collection of large spatial and spatio-temporal data sets across many fields of study 

(Christakos, 2012; Cressie & Wikle, 2011; Gelfand, Diggle, Fuentes, & Guttorp, 

2010). In the process, spatial statistics has been brought into the mainstream of 

statistical research with several state-of-the-art works including the texts by Chilès and 

Delfiner (2012), Cressie and Wikle (2011), Goovaerts (1997), Gelfand et al. (2010) 

and Kyriakidis, Shortbridge, and Goodchild (1999). This is the new scientific phase of 

statistical modelling of data according to Cressie & Wikle (2011).                    

Time series analysis provides useful tools or scientific techniques for analysing and 

interpreting processes which vary over time. A time series is sequence of data points 

tz generating from a process or event, which are measured successively at a specific 

time ,t and often at a uniform time interval. Time series analysis comprises of methods 
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that attempt to understand such time series, often either the underlying context of the 

data points (where did tz  come from, and what generated them?), or to make forecasts 

(predictions). The time series forecasting uses a model to forecast future events based 

on known past events (that is, to forecast the future values tz  based on previous 1tz   

values). The forecasting models considered in this study included multiplicative 

ARIMA processes for modelling non-stationary data, which can be extended to 

account for seasonality and exogenous variables. These models were used to establish 

seasonality patterns, fit the climatic covariates to determine whether an association 

exits and forecast the malaria risk at regional level of the country. Modelling with 

ARIMA models forecast methodology involves the estimation of a series of 

parameters to account for the inherent dynamics in the time series, including the trends 

and autoregressive and moving average processes. The ARIMA models were first 

introduced by Box and Jenkins (1976) and explicitly includes differencing for 

stationarity to be achieved. 

In the following sections an outline is presented of concepts of both spatial and time 

series seasonal predictive models used for analysing the malaria morbidity incidence in 

this study.  

 

2.2 Basic Concepts of Spatial Analysis  

In many scientific disciplines including health, environmental and geology, spatial 

statistical studies are becoming more and more common due to the availability of low 

cost spatial technology with user-friendly interfaces (Cressie & Kornak, 2003) for the 

understanding of data distributed in space and time as well. Spatial technology coupled 

with other integrated programs allows the spatial visualisation of attributes such as 

incidence of diseases or mineral deposits in a region using maps. Apart from the visual 

perception of a spatial distribution, it is useful to translate the existing patterns into 

objective and measurable quantities, for example, in the following contexts: 

(i) Data collected on the occurrence of diseases: Does the distribution of cases of a 

disease form pattern in space? Is there an association with the environment? Is 

there any evidence of contagion, if so does it vary with time?  

(ii) Estimation of mineral resources in an exploration region based on sample data: 

Can those observed samples be used to estimate the mineral distribution in that  
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region?  

(iii) Investigation of the spatial concentration in the distribution of criminal 

activities: Are crimes that occur in certain areas of a community correlate with 

socio-economic characteristics of the areas under study?  

These problems form part of spatial analysis of geographical data. The emphasis of 

spatial analysis is to measure properties and relationships, taking into account the 

spatial location of the phenomenon being studied in a direct way. When a spatial 

dimension is present in a phenomenological process as in epidemiology (or health 

sciences) there is the need to create a modelling framework within which inferences on 

process parameters can be carried out. Spatial dependency when incorporated into the 

statistical analysis leads to improved and efficient inferential results.  

2.2.1 Spatial Models 

The ultimate goal of spatial statistical study is data description, extending bounds to 

further characterise the sampled population. The key aspect of this process is the 

application of a quantitative modelling approach to the observed spatial data over the 

study region. In statistics, mathematical models are used to represent the reality (or 

unknown) of the phenomenon being studied. Though unique, the reality may have 

several possible representations, depending on the information available and the aim of 

the study. The phenomenon being studied (for example, occurrence of a disease, 

mineral deposits, or rainfall), denoted Z is called an attribute, the location of the 

observation or measurement, u  where dD   is d  dimensional Euclidean space 

and ( )Z u  is the spatial observation over the study area (or region) ,D  called domain. 

In modelling the attribute over the domain D  steps are taken: 

(i) To ensure that all relevant information (for example spatial continuity) is 

incorporated;  

(ii) To employ a simple model yet realistic to infer from based on limited sample 

data; and  

(iii) To use an appropriate model (with a causative component) directed towards the 

aims and objectives of the study (Cressie, 1993; Goovaerts, 1997). 

 

Statistical models are classified as either being deterministic or probabilistic (random 

or stochastic), depending on whether the representation is unique and deemed exact or 

the model consists of a set of alternative representations of the uncertainty about the 
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unknown observations (Goovaerts, 1997). In view of the uncertainties about 

measurements at data locations we assume probabilistic models in analysing spatial 

data rather than the deterministic models which provide a single estimate for the 

unknown ( )Z u without further inferences. The choice of such models reflects our 

imperfect knowledge of the unsampled value ( )z u and, more generally of the 

distribution of Z within the study area.  

If randomness is incorporated into the behaviour of the observational process across 

the study area, ( )Z u is considered as a random variable whose particular realisation or 

outcome is ( ).z u  The set of (usually dependent) random variables ( ),Z u one for each 

location u in the domain ,D  ( ) :Z u u D is called random function (or field). The 

attribute of interest Z is a stochastic process with domain (or index set) Dwhich itself 

is a subset of .d Thus, given a set of spatially distributed data { ( ); 1,..., }z n  u  of 

an attribute Z at n  locations across a study area, d D where u is a vector of spatial 

coordinates, Z becomes a random function whose values are the random variables 

 : ( ) : .Z Z D u u D  Usually D is assumed to be a fixed (non-random) subset of 

d but a more general assumption is that it is a random set, a measurable mapping 

from a probability space onto a measure space of (closed) subset of d (Cressie, 1993). 

In addition, we may assume that D  as well as Z  vary from one realisation to another. 

It is also possible (as the case of this study) to allow for spatially and temporally 

(spatio-temporally) distributed data by considering the random variable ( , ),Z tu  but in 

this section it will be assumed that data are purely spatial either aggregated over time 

or considered at a fixed instant time. We must note here that the spatial data: 

1( ),..., ( ),nZ Zu u  should not be misconstrued as the same variable Z observed n  times 

over: 1,..., ,nZ Z  as in time series analysis, rather the variables { ( ); 1,..., }Z n  u are 

observed once at a point. 

2.2.2 Types of Spatial Data 

Spatial statistical problems are modelled based upon type of the sampled spatial data. 

The data may be continuous or discrete, spatial aggregations or observations at points 

in space; their spatial locations may be regular or irregular, and those locations may be 

from a spatial continuum or a discrete set. As noted in the preceding section, a 

stochastic modelling approach is the ideal way to summarise the scale or predict 



30 
 

unobserved data. The spatial data can be thought of as resulting from observations in a 

stochastic process. If the domain D  is a fixed (non-random) subset of d that contains 

a d  dimensional rectangle of positive volume and ( )Z u  is a random vector at 

location ,u D  then we obtain geostatistical data. In this case the spatial index u  

varies continuously throughout the domain .D  The number of locations at which 

observations and predictions can be made is not countable. Thus, between any two 

sample locations u and u infinitely many additional samples can be observed. 

Geostatistical data are also regarded as spatial data with continuous variation due to the 

continuity of D (Cressie, 1993). This is irrespective of whether the attribute Z  is 

discrete or continuous; for example, parasites’ presence/absence or count cases of a 

disease (discrete), rainfall precipitation or soil PH (continuous) are geostatistical data 

unless there is only a countable number of sample locations or the domain changes 

from one realisation to another realisation of the random function at random (Cressie, 

1993).  

The other types of data are lattice and point patterns, which arise if D  is fixed and 

discrete (regular or irregular) collection of countably many points of or a point process 

in d . Spatial statistical modelling using lattice or geostatistical data focuses on the 

( )Z   process (since the domain is not random), in contrast to point pattern data 

analysis where the attention is on the domain .D  This thesis considers a particular case 

of geostatistical data where aggregated data from various health facilities are reported 

on a number of districts and used as point-referenced locations. 

2.2.3  Stationarity and Spatial Dependency Measures 

Suppose that ( )z u  and ( )z u h  are two observations at locations u  at u h  

respectively, the vector h  (called lag) is the displacement by which we move from u  

to .u h  If the random function is replicating, the stochastic properties of ( )Z u and 

( )Z u h  should be similar, and to estimate the correlation between locations distance 

h  apart, we might consider all pairs  ( ), ( )i iZ Z u u h  in the estimation process, 

regardless of where iu  is located. In simple terms, stationarity is the absence of an 

origin, the spatial process has reached a state of equilibrium (Schabenberger & Pierce, 

2002). Stationarity assumption is also made for time series data where the concept is 

considered in terms of time shift. In the spatial context, stationarity means the lack of 
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importance of absolute coordinates. A stationary random function in which the 

orientation (angle) of coordinate differences is not of consequence is called isotropic. 

Three important properties of stationarity are strict, second-order and intrinsic 

stationarity. These are detailed in section 2.3.  

Spatial dependence is a key concept for understanding and analysing a spatial 

phenomenon. The presence of a spatial pattern in an attribute can be investigated using 

various graphical and/or numerical tools. The computational expression of the concept 

of spatial dependence is the spatial autocorrelation. This stems from the statistical 

concept of correlation, used to measure the relationship between two random variables. 

The preposition “auto” indicates that the measurement of the correlation is done with 

same random variable, measured in different places in space. There are different 

indicators used to measure the spatial autocorrelation, all of them being based on the 

same idea of verifying how the spatial dependency varies by comparing the variation 

of the sample observations and their neighbours. They include Moran’s index for 

testing for geographical areas; D-statistic, a non-parametric method (Walter, 1992) and 

semivariogram (or covariance) function. The semivariogram (or covariance) is a very 

important indicator of spatial dependence. It provides a measure of spatial correlation 

by describing how sample data are related to distance and direction. The 

semivariogram computes the square of the difference of the values to ( )Z u  and 

( )Z  u h  as defined in (2.3.16). It is extensively used in this thesis to characterise the 

spatial as well as temporal dependence of the malaria morbidity incidence cases in 

Ghana. This is studied further in sections 2.3.4 and 3.2.2.   

2.3 Geostatistical Spatial Analysis 

Geostatistics originated from the concept of a regionalised variable distributed in space 

and assumed spatially auto-correlated such that samples closer in space are more alike 

than those further apart (Isaaks & Srivastava, 1989; Matheron, 1963). Its development 

in the 1960’s resulted from the need for a methodology to evaluate the recoverable 

reserve in mining deposits, and until the late 19980’s, it was essentially viewed as a 

means to describe spatial patterns and interpolate the value of the attribute of interest at 

unsampled locations. Geostatistics is a powerful spatial technology which contributes 

immensely to prediction of random processes distributed in space or time (Ali et al., 

2006; Carrat & Valleron, 1992; Webster, Atteia, & Dubios, 1994). Nowadays, 
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geostatistics is not only used to analyse point data, but also increasingly in 

combination of various geographic information system (GIS) data sources, for 

example, to explore spatial variation in remote sensing data (Hengl, 2009) to improve 

digital elevation model (DEM) generation and for simulations (Hengl & Reuter, 2008; 

Kyriakidis et al., 1999), and has also been extensively applied in epidemiological 

studies facilitating quantification of spatial features of disease’s transmission to allow 

its spatial interpolation accounting for effect of the environmental conditions 

(Kleinschmidt et al., 2000; Saxena et al., 2009). Geostatistics is increasingly being 

used to model the uncertainty about unknown values through the generation of 

alternative images (realisations) that all honour the data and reproduce aspects of the 

patterns of spatial dependence or other statistics deemed consequential for the problem 

at hand; stochastic imaging is one of the most vibrant and promising areas of research 

in geostatistics (Goovaerts, 1997).  

Typical questions which often arise in geostatistical analysis include (Hengl, 2009): 

How does an attribute vary in space and time?; Where to locate samples and to 

describe their spatial variability?; What controls its variations in space and time?; 

What is the value of the variable at some new location/time?; What is the uncertainty 

of the estimated values? The answers to these questions address the three main 

scientific objectives of geostatistics proposed in Diggle and Ribeiro Jr. (2007):  

(i) Model estimation (the inference about the variogram model parameters);  

(ii) Prediction of unobserved values of target variable (often resulting in 

generation of spatial maps or images);  

(iii) Hypothesis testing (which concerns the uncertainty associated with the 

decision of spatial prediction).  

Wackernagel (2003) presents a framework for a geostatistical study through data 

description, which need to be visually explored for spatial, temporal and multivariate 

structure; interpretation, evaluation of graphical displays from numerical statistics, 

thus interpretation of spatial/temporal structure, association and causal relations; 

estimation, the objective being to estimate values of phenomenon under study at 

various scales and at locations different from sample points. These methods are usually 

based on the least squares estimation techniques and need to be adapted to a wide 

variety of model formulations in different situations and for different problems 

encountered in practice. 
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In this section various procedures of characteristing spatial continuity of a random 

process are presented, whilst the the spatial optimal prediction techniques are 

considered in section 2.4. 

2.3.1 Random  Function and Stationarity Properties 

Geostatistical techniques assume a stochastic process in modelling the spatial 

continuity of the attribute being studied which is based on the concept of a random 

function. The concepts of probability models for the spatial random variable that varies 

continuously over the domain dD  (where d = 2-dimensional Euclidean space) are 

herein presented.   

Let ( )Z u be a random variable of the attribute Z at locationu . Then the collection of 

random variables as defined as in section 2.2.1: 

  ( ) : dZ  u u D         (2.3.1) 

(called a random function) has a well-defined joint distribution. For each sample 

location ,u  the sample value ( )z u is regarded as a particular realisation of the 

random variable ( ),Z u whilst ( )z u at an unknown or unsampled location u can be 

thought of as one realisation of the random variable ( ).Z u The random variable ( )Z u is 

characterised by its cumulative distribution function (cdf) for all ( ),z Z u  which 

models the uncertainty of the sample value ( ) :z u  

 ( ; ) ( )F z P Z z u u
       (2.3.2) 

where { ( ) : }dz  u u D  is a realisation of the spatial random function (2.3.1). The 

observed data are considered as one such realisation. The distribution of the random 

function { ( ) : }dZ  u u D   is given by its associated collection of the finite-

dimensional joint distributions: 

 1 1 1 1( ,..., ; ,..., ) ( ) ,..., ( )n n n nF z z P Z z Z z  u u u u    (2.3.3) 

for every collection 1,..., nu u  in .D   Equation (2.3.3) models the joint uncertainty of 

the unsampled values 1( ),..., ( ).nz zu u   If ( )Z u  is considered as a vector of random   

variables, then the concept is extended to the multivariate spatial stochastic process 

applied in linear model of coregionalisation and cokriging (as presented in sections 
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2.3.6 and 2.4.3, respectively). The random function (2.3.1) characterised by its finite 

dimensional joint distributions (2.3.3),  1 1( ),..., ( ) : ,...,n nF Z Z u u u u D  is invariant 

under translation of the coordinates u by h  if the joint distribution of 1( ),..., ( )nZ Zu u

is identical to the joint distribution of 1( ),..., ( )nZ Z u h u h  for each separation 

vector ,h and it is said to be strictly stationary. Thus, for all ,dh   

 

   

   

1 1 1 1

1 1 1 1

( ) ,..., ( ) ( ) ,..., ( ) ,

or

,..., ; ,..., ,..., ; ,...,

n n n n

n n n n

P Z z Z z P Z z Z z

F z z F z z

       


   

u u u h u h

u u u h u h

(2.3.4) 

In practice (2.3.4) is impossible to test due to data limitations so we rely on a weaker 

assumption of second order stationary (SOS) by considering the cdfs involving just 

two locations at a time. The assumption of SOS requires that the first moment of the 

random variables ( )Z u exists and is invariant within D  and that the spatial covariance 

of all pairs of random variables (second moment) exists and depends only on the 

separation distance :h  

 

   
    

( ) ( ,

( ) ( ), ( ) ( ) ( ) ,

and d

m E Z E Z

C Cov Z Z E Z m Z m

     
         

   

u u h u D

h u u h u u h

u D h 
 (2.3.5) 

where m  is the mean and ( )C h is called the covariance function. The conditions under 

SOS are often not satisfied and so we assume the intrinsic hypothesis which considers 

the increments ( ) ( )Z Z u h u as SOS: 
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( ) ( ,

2 ( ) ( ) ( ) ( ) ( ) ,

and d

m E Z E Z

Var Z Z E Z Z

     
         
   

u u h u D

h u h u u h u

u D h 

  (2.3.6) 

If the random function (2.3.1) satisfies the conditions of the intrinsic hypothesis (2.3.6) 

it is called intrinsic stationary (IS). It should be noted that SOS implies IS, but the 

converse is not true. The function ( ) h  is called semivariogram (or variogram for 

2 ( ) h ) which is the main structural tool used in modelling a random function and an 

important component of optimal spatial linear prediction (kriging), discussed in section 
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2.3.4. From the stationarity assumptions in (2.3.5) the following properties of 

covariance function and semivariogram are obtained:  

       2 2 2( ) ( ) ( ) ( ) ( ) ,C E Z m Z m E Z m Var Z             0 u u 0 u u  

the variance of ( )Z u  which is referred to as the sill of the semivariogram. It 

describes the observational error in potentially repeated measurements at 

location u . 

 ( )C h is an even function and satisfies the Schwartz’s inequality for an SOS: 

   2 2( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

C E Z Z m E Z Z m C

C C

        




h u u h v h v h

h 0
 

 For an SOS process, ( ) ( ) ( )C C  h 0 h  (see Figure 2.3.1 for this 

relationship): 
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since    ( ) ( ) .Var Z Var Z u h u  If ( ) 0C h  as ,h then ( ) ( ).C h 0  

 For intrinsic stationarity, we have: 
2

( )
lim 0

( )





h

h

h
. Also, ( ) 0, 0 but there 

could be a discontinuity just after ,h 0 and ( ) ( ) 0.   h h  

 
Definition 3.3.1 (Smoothness property): 

A spatial random process { ( ) : }dZ  u u D   is said to be mean square continuous if 

 2
( ) ( ) 0E Z Z    u u h as 0.h  For an SOS process   2

( ) ( )E Z Z   u u h

 2 ( ) ( ) .C C 0 h Thus, the mean square continuity is equivalent to the covariance 

function being continuous at the origin (and for that matter elsewhere), though such a 

process need not have continuous sample paths and vice versa (Banerjee & Gelfand, 

2003; Gelfand et al., 2010).  

There may be several reasons which account for the superiority of IS over SOS and 

hence the general use of the semivariogram instead the covariance function. They 

include the following (Cressie & Grondona, 1992; Sherman, 2011):  
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0( )C c0  is called the partial sill. The range and actual magnitude of the sill can 

depend on direction, a property known as anisotropy. The characteristics of the 

semivariogram plots and models can provide the following additional information 

(Christakos, 1992): 

 The investigation of the semivariogram variation in different directions 

provides information about the anisotropy structure of the random process. 

 The semivariogram also indicates the neighbourhoods of influence from any 

given location. 

 The behaviour of the semivariogram at large distances provides information 

about the stationarity of the data. Asymptotic behaviour is a strong indication 

of stationarity. However, under IS hypothesis, the semivariogram could be 

unbounded which is not characterised by the presence of a sill.    

 The behaviour of the semivariogram close to and at the origin indicates the 

degree of short-scale variability in the process. Three types of behaviour can be 

observed at the origin, namely nugget effect, linear, and parabolic. The nugget 

effect represents the discontinuity (at the origin) arising from the erratic 

behaviour or noise in the data. A linear form is indicative of continuity at the 

origin and the semivariogram does not present erratic behaviour and abruptly 

changes at small distances. The parabolic behaviour is indicative of very 

regular and smooth spatial variation as it is twice differentiable at the origin 

(Gómez-Hernández, 1996). 

  Proportion of the total variance of the random function (spatial variability) that 

is not accounted for due to spatial variability defined as the ratio of nugget 

effect to the total sill (relative nugget effect).  

The theoretical semivariogram and covariance function are inferred from their 

respective experimental (or sample) semivariogram and covariance function, which are 

computed under second order stationarity (2.3.6) and intrinsic stationarity (2.3.5) 

conditions, respectively. A natural estimator of the semivariogram is based on the 

method of moments by Matheron (1962-1963), as defined by (2.3.16) in section 2.3.4.   

Definition 3.3.1 (Anisotropy and Isotropic Process):  

If the covariance or the semivariogram function varies jointly with distance and its 

direction then it is together with the random process are anisotropic.  However, when 
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the spatial dependence is the same in all directions the process is isotropic resulting in 

the relation:  

 ( ) , dC  h h h        (2.3.7)                                               

for some continuous function :[0, )     with ( ) 1 0  and ( ) 1.C 0  The 

contours produced from an isotropic process (2.3.7) are concentric circles or spheres 

around the origin which we compute the covariance while contours of an anisotropic 

process are instead ellipses or ellipsoids.  

 

There are two types of anisotropy. A geometric anisotropy is defined in terms of 

semivariograms that have same sill c and different ranges r  for the different spatial 

directions. If the semivariogram or covariance function is anisotropic, then the 

observed spatial data along a specific direction may be more highly correlated than 

those along other directions.The concentric ellipses about the origin have the major 

axis which indicates the direction of greater continuity (that is, more gradual change in 

this direction) and the minor axis indicates the direction of least continuity (more rapid 

change in the direction). However, if the sill depends on the spatial direction, then the 

anisotropy is known as zonal.  

 

2.3.3 Permissible Models of the Semivariogram and Covariance 
Function   

 

The principal concern of inference of the semivariogram or covariance function using 

the experimental semivariogram or the experimental covariance function is the choice 

of the theoretical semivariogram or covariance function deemed to be permissible (or 

valid). This is subject to two very critical requirements of conditional negative-

definiteness and positive-definiteness that the semivariogram and the covariance 

function must adhere to, respectively. In this study the model fitting procedures are 

discussed in terms of the semivariogram. However, given stationary data, fitting a 

covariance function model can be performed following the relation (2.3.8):  

( ) ( ) ( )C C  h 0 h        (2.3.8) 

Theorem 2.3.1 (Cressie, 1993; Goovaerts, 1997; Schabenberger & Pierce, 2002; 

Wackernagel, 2003):  

Let  Z  be  a second-order stationary random function, with covariance function ( )C h  
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and semivariogram ( ) h  be defined  in (2.3.5) and (2.3.6), respectively. Then for any 

finite collections of spatial locations { : 1,..., }n  u  and real numbers 

{ : 1,..., }n   the variance of the finite linear combination of the random variables 

( ),Z u ; 1,...,i n  D  is non-negative if and only if: 

(i) ( )C h is positive-definite, satisfying the condition: 

1 1 1

( ) ( ) 0
n n n

Var Z C     
  

  
  

 
   

 
 u u u    (2.3.9) 

(ii) ( ) h is conditionally negative-definite satisfying the condition: 

1 1 1

( ) ( ) 0,
n n n

Var Z     
  

     
  

 
     

 
 u u u   (2.3.10) 

such that the sum of weights in  2.3.10) is  zero:
1

0
n








 
(further reading and proof of 

theorem can be found in Cressie (1993), Goovaerts (1997) and Wackernagel (2003)). 

 
Theorem 2.3.2 (Cressie, 1993): 

If ( ) h is continuous function on d satisfying the condition ( ) 0, 0 then the 

following three properties are equivalent: 

(i)  2 ( ) h is conditionally negative-definite. 

(ii) For all 0,  exp( ( )) h is positive-definite. 

(iii) 2 ( ) h is of the form: 

 2

1 cos( )
2 ( ) ( ) ... ( )

T h
Q G d

 


 

 


   h h     (2.3.11) 

where ( ) 0Q h  is a quadratic form and ( )G   is a positive symmetric measure 

continuous at the origin that satisfies   12
... 1 cos ( )G d 

 

 
     (see Cressie 

(1993) for further reading and proof of the theorem). 

A simple way of modelling a semivariogram (or covariance function) is to infer from 

the graphical representation of the experimental semivariogram ˆ( ) h or covariance 

function ˆ( ).C h  Properties including stationarity, anisotropy and definiteness conditions 

and the three paramerers (sill, range and nugget effects) should be taken into account 

when deciding which model to fit to the data. Any function used to fit the 
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semivariogram or covariance function needs to satisfy the condition of the negative 

semi-definiteness though we do not need to check this property for every basic model 

involved in the fitting. We usually restrict ourselves to a list of semivariogram or 

covariance models for which the condition of non-negative positive definite has been 

established. Basically, fitting a parametric model to the experimental semovariogram is 

to ensure smoothness for accurate prediction at unsampled locations. Gelfand et al. 

(2010) provide three reasons for smoothing the experimental semivariogram. Firstly, it 

is too rough so smoothing reduces the noise, increasing our understanding of the 

spatial dependence in the data. Secondly, the conditionally  non-negative definite 

property must be met to ensure that the error or estimation variance in the prediction is 

non-negative for all locations in .D  Finally, the prediction at some unobserved 

locations requires estimates of the semivariogram at lags not included among the 

chosen 11,..., k
h h nor do they exist between data locations, smoothing can provide these 

needed estimates. 

To smooth the experimental semivariogram, a valid or permissible parametric model 

and a method for fitting that model need to be selected. The selection of a suitable 

model among the collection of valid semivariogram models is informed by 

examination of the experimental semivariogram and other considerations such as prior 

knowledge, computational simplicity and sufficient flexibility (Gelfand et al., 2010). 

The following conditions are necessary and sufficient for a semivariogram model to be 

permissible if and only if, for all 0( , , ) ,c c r θ Θ where Θ is the parameter space for 

:θ  

(i)  ( ; ) 0, 0 θ  (i.e., vanishing at 0). 

(ii) ( ; ) ( ; ),  h θ h θ (i.e., evenness). 

(iii) 
1 1

( , ) 0,
n n

   
 

  
 

 u u  for all ,n 1,..., nu u  and 1,..., n   such that 
1

0
n









 (conditionally negative definiteness).  

There are several models which satisfy the above validity requirements (in ,d where  

2d  or 3d  ) including the monotonicity and isotropy following the construction 

(2.3.10) and elsewhere by Christakos (1984), Journel and Huijbregts (1978) and 

Yaglom (1957) but we present the following, being the most frequently used (Cressie, 
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1993; Gelfand et al., 2010; Goovaerts, 1997; Schabenberger & Pierce, 2002; Sherman, 

2011), including the three basic models (spherical, exponential and exponential-cosine)  

used in this study to characterise the malaria morbidity incidence rates:       

(i)  Nugget effect ( 0c is obtained as h  ): 

 
0

0, 0
;

, 0nug

h
h

c h
 


         (2.3.12) 

where 0 0,c   which represents the microscale variation causing the 

discontinuity at origin (white-noise). 

(ii) Spherical model (valid in , 1 3d d  ): 

      3

0 1

0 1

0 0

; (3 2) (1 2) , 0sph

h

h c c h r h r h r

c c h r




    


 

θ   (2.3.13)  

where 0 1( , , )Tc c rθ and 0 1, ,c c 0.r   The spherical model is very popular for 

fitting SOS random processes. It has a linear behaviour near the origin; beyond 

r there exists no spatial correlation. 

(iii) Exponential model (valid in , 1d d  ): 

     exp 1
0 1

0, 0
;

1 exp 3 , 0

h
h

c c h r h
 

     
    (2.3.14) 

where 1
0 1( , , ) ,Tc c rθ 1

0 1, , 0c c r   and 1 3 ,r r called the practical (or 

effective) range. This is another most useful fitting model with linear behaviour 

near the origin and whose spatial correlation decays to zero. If the sill exits, 

then the range becomes the smallest value of h  for this exp ( ; )h θ  is equal to its 

sill. However, if the range does not exit, then  practical range is defined, as the 

smallest value of h  for which exp ( ; )h θ  reaches 95% of its sill (i.e.,

exp (3 ) 0.95r  ).  

 (iv) Exponential-cosine model (valid in  , 1 3d d  ): 

    expcos
0 1

0, 0
( ; )

1 exp 3 cos , 0

h
h

c c h r bh h


     
θ   (2.3.15) 

where 0 1( , , ) ;Tc c rθ 0 1, , 0c c r   and 2 ,b    called angular frequency and  
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 is the wavelength or period of the function, which is very useful for 

modelling periodic cycles or seasonal patterns in the data. 

In most practical situations two or more basic models are combined to form a nested 

model to fit the semivariogram. When this happens the sill of the nested 

semivariogram model is the sum of the structural components of each constituent 

models. The ratio of the nugget to the sill, termed the relative nugget effect, is an 

indicative of the proportion of the total variance of the random function that is not due 

to spatial variability. 

2.3.4 Semivariogram Estimation and Fitting 

The semivariogram is frequently used for structural analysis of spatially (and 

temporally) distributed data. There are several procedures which have been proposed 

for its estimation and also model fitting (Armstrong & Delfiner, 1980; Chilès & 

Delfiner, 1999; Cressie, 1985, 1993; Cressie & Hawkin, 1980; Journel & Huijbregts, 

1978; Matèrn, 1960; Matheron, 1963; Miller, 1974; Webster & Oliver, 1992). The 

estimator of the semivariogram proposed by Matheron (1962-1963) is the most widely 

used. It is defined by  

 
 2

( )

1
ˆ( ) ( ) ( ) ,

2 ( ) n

Z Z
n        

h

h u u u u h
h    (2.3.16) 

where ( ) {( , ) : },n     h u u h denotes the sample of pairs lagged by vector h and 

( )n h  is the number of distinct elements of ( ).n h  It is an unbiased estimator but can 

hardly satisfy the conditionally negative definiteness property. This can be resolved by 

fitting valid parametric models to smoothen the experimental estimates. If the random 

function is isotropic, h is replaced by h . The estimator (2.3.16) is known as classical 

semivariogram estimator due to Matheron (1962-1963) and also called the Matheron’s 

estimator. The precision of an empirical estimator at a given lag depends on enough 

pairs used for averaging. There have been various suggestions for an appropriate 

unique number of pairs to be available for every lag vector h or distance h but 

Webster and Oliver (1992) proposed at least 200–300 observed pairs after their 

simulation study as the most reliable to estimate the semivariogram as opposed to 50 

and 30 proposed by Chilès and Delfiner (1999) and Journel and Huijbregts (1978), 

respectively (Schabenberger & Pierce, 2002).  Cressie (1985)  shows that the variance  
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of Matheron’s estimator (2.3.16) can be approximated by:  

  
22 ( ; )

ˆ( )
( )

Var
n

 
h θ

h
h

      (2.3.17) 

The goal of semivariogram estimation is not to estimate the empirical semivariogram 

estimators (2.3.16) and others but to estimate the unknown parameters θ of the 

theoretical semivariogram model ( ; ). h θ  If the semivariance (2.3.16) is computed at 

lags 11,..., ,
k

h h then 11
ˆ ˆ( ),..., ( )

k
h h  serve as the data to which the semivariogram model 

is fit. This is an indirect approach to the semivariogram estimation since an empirical 

estimate is obtained first which then serves as the data. However, choosing more lag 

classes can increase the size of this set (Schabenberger & Pierce, 2002). The methods 

for fitting the semivariogram models are presented as follows.  

A semivariogram is a measure of spatial dependence and the idea behind its model 

fitting is to search for a valid theoretical model that is able to mimic the spatial 

dependence present in the data (Cressie, 1993). The space of all valid semivariograms 

is a very large set which may be impossible to search from so we usually choose from 

a parametric family of valid semivariogram models  ( ; ) :P  h θ θ Θ as the ones in 

(2.3.12)–(2.3.15). The characterisation of correlation structure of spatial data set is a 

very critical process prior to kriging at unsampled locations. In geostatistics the usual 

procedure is to adopt a goodness-of-fit criterion coupled with visual or manual fitting 

(initial guess of possible models and parameters) all aiming to provide statistically 

sound model which can incorporate field-specific knowledge of the user (Zimmerman 

& Zimmerman, 1991). The goodness-of-fit criteria seek to find best elements of a 

parametric family of valid semivariogram models  ( ; ) : .P  h θ θ Θ There are 

several of these methods but the most commonly used in geostatistics are the least 

squares and likelihood-based methods notwithstanding their computational issues 

widely raised in the literature (Chilès & Delfiner, 1999; Cressie, 1993; Gelfand et al., 

2010; Jian, Olea, & Yu, 1996; Miller, 1974; Schabenberger & Pierce, 2002; Vecchia, 

1988; Zimmerman & Zimmerman, 1991). These methods are automatic model-fitting 

procedures for the selection of the parameters and models. They provide a more 

objective modelling procedure for different users to obtain same results. In addition, 

they become very useful when numerous semivariograms are to be modelled on a 

regular basis. Their main criticisms are that not all the models selected are permissible, 
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a condition required for the unique solution of kriging system; many permissible 

(nested) models can be fitted, which requires several models to be selected from. The 

least squares methods are usually preferred to the likelihood-based techniques, which 

rely heavily on Gaussian distributional assumptions and also provide seriously biased 

estimates due to data limitation (Cressie, 1993; Jian et al., 1996).  

In this study, manual fitting coupled with automatic sill fitting was used due to the 

erratic behaviour of most of the computed experimental semivariograms. The 

automatic fitting procedure using the least squares methods choose the most valid 

model minimising the weighted sum of squares (WSS). Thus, they are based on the 

concept of closeness measured by the sum of squares of differences between the 

estimator ˆ( ) h and the model ( ; ) h θ (Cressie, 1993; Schabenberger & Pierce, 2002). 

2.3.5 Linear Model of Regionalisation (LMR) 

In structural analysis of spatial dependence, two or more basic models can be 

combined to form a nested model to fit the experimental semivariogram (or 

covariance), though not such all combinations can result in a permissible semivarigram 

(or covariance) function. One possible way of achieving this is through a random 

function. A linear model of regionalisation (LMR) builds a random function ( )Z u as a 

linear combination of ( 1)p  independent random functions ( ),ly u each with mean 

zero and basic covariance functions:  

( ) :lc h
0

( ) ( ) ,
p

l

l

Z y m


 u u       (2.3.18)     

where  ( )m E Z u  and ( ) 0,lE y l    u ; and  

 1
1( ), ( ) ,

( )
0, if otherwise

ll

l

Cov y y l l
c

   


u u h
h      (2.3.19) 

from which we can have: 

 

 

 1 1

10 0

2

0 0

( ) ( ), ( )

( ), ( )

( ) ( ), ( ) 0

p p
l ll l

l l

p p
l l l l l

l l
l l

C Cov Z Z

a a Cov y y

a a c b c b a

 

 

 

 

   



 

h u u h

u u h

h h

   (2.3.20) 

where (since ( )'ly su are independent) lb  is the sill of the basic covariance model ( )lc h   
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and 0( )b is the nugget effect, for 0l  . The sufficient conditions for ( )C h to be a 

linear covariance model are that the basic functions ( )lc h are permissible covariance 

models; and the sill lb of each covariance model ( )lc h is positive (Goovaerts, 1997). 

Applying the concept of LMR to semivariogram, we let ( )lg h denote the 

semivariogram of the random function ( ),ly u with the cross semivariogram between 

any two different random functions ( )ly u and 1 ( )ly u equal to zero:
 

  1 1
1( ) ( ) ( ) ( ) ,

( )
0, if otherwise

l ll l

l

E y y y y l l
g

         


u u h u u h
h   (2.3.21)  

The semivariogram model ( ) h is then expressed as a positive linear combination of 

the basic semivariogram models ( ) :lg h   

 2 2

0

1
( ) ( ) ( ) ( ), ( ) 0

2

p
l l l

l
l

E Z Z b g b a


        h u u h h
  (2.3.22)

 

where the positive coefficient lb  is the variance contribution of the corresponding 

basic semivariogram model ( ).lg h  

In fitting the experimental semivariogram one must decide whether to use isotropic or 

anisotropic model and to be sure that the model chosen is permissible and how many 

of such basic models ( )lg h to use. Additional information such as physical knowledge 

of the phenomenon being studied and robust measures must be utilized. Over fitting of 

the semivariogram must be avoided, and also the parameters (nugget, sill and range) 

for each model used must properly be identified to ensure accuracy. The measurement 

error and microscale variations (that is, the extent of nugget effect and large amount of 

variation) if can be distinguished should be modelled using a transition models with a 

finite range shorter than the shortest sampling interval (Goovaerts, 1997; Goovaerts & 

Chiang, 1993).  

2.3.6 Modelling Coregionalisation 

The concepts of spatial modelling presented in the previous sections view the 

regionalised variable ( )Z u as a realisation of a random function { ( ) : }.Z u u D  A 

generalisation can be considered which is a multivariate spatial process for which 

( )Z u  is a random vector, denoted .Z Modelling such a random process called, 
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coregionalisation, is to infer ( 1) 2k k  direct and cross semivariogram (or covariance) 

models. The models are built dependently in order to satisfy the established non-

negativity conditions of variance of any linear combinations of random variables 

((2.3.9) or (2.3.10)). This extends the linear model of regionalisation concept to the 

multivariate version known as linear model of coregionalisation (LMC). In this section 

the properties of the random vector functions and construction of the LMC are 

presented. 

Let  1( ) ( ), ..., ( )
T

kZ u Z u Z u be a random vector of k  random variables observed at 

location .u Then the multivariate random function defined over the domain D  whose 

components are vectors of random functions is given by (2.3.23): 

 1: ( ), ..., ( ) :k Z D Z u Z u u D      (2.3.23) 

Given the set of locations { : 1,..., } ,n   u D we define the marginal cumulative 

distribution function (cdf) as:  

   1 1 1 1, ..., ; , ..., ( ) , ..., ( ) ,t n t tn t t t n tnF P  u u z z Z u z Z u z   (2.3.24) 

(for 1,...,t k ), whilst the joint cumulative distribution functions are given by 

 
 

1 1 1

1 1 1 1

,..., ;( ,..., ),..., ( ,..., )

( ) ,..., ( ) ,..., ( ) ,..., ( ) ,

it n i in k kn

i i i n in k i k n kn

F

P    

u u z z z z

Z u z Z u z Z u z Z u z
  
(2.3.25) 

(for , 1,...,i t k ), which characterises the uncertainty of the n  unobserved vectors of 

1( ) [ ( ),..., ( )] .T
kz u z u z u  The set of n  point cumulative distributions of the k 

variates, for every possible choice of locations in  constitutes the spatial law of 

multivariate random vector (2.3.23), which we will infer, just like the univariate case 

in (2.3.1); this then requires the approximation of the first and second moments via the 

stationarity assumptions. The random vector function Z  is said to be strictly stationary 

if for every separation vector h D  for the two random vectors of random variables 

 1( ), ..., ( )nZ u Z u  and  1( ), ..., ( )n Z u h Z u h  is invariant under the translation: 

    1 11 1 11, ..., ; , ..., , ..., ; , ..., ,n nk n nkF F  u u z z u h u h z z
  (2.3.26) 

for all 1,..., nuu and .h D   Under the joint second order stationarity for all the k

random functions, we define the mean vector and the covariance matrix by (2.3.27): 
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( )

( ) ( ) ( ) ( )

( )

( )
T

E

E   


    

Z u

Z u m u Z u h m u

m u

C h
   (2.3.27) 

where 1( ) [ ( ),..., ( )] ,T
km mm u u u the mean vector and ( )C h is the matrix of covariance 

functions ( )itC h for all pairs ( , ) 1,..., .i t k The function ( )itC h is called direct covariance 

function for i t  and when ,i t  it is referred to as cross covariance function which 

can either  be even or odd depending on the order of the variables. Thus, 

( ) ( ),it tiC C h h  however ( ) ( )it tiC Ch h  and ( ) ( ).it itC C h h The intrinsic 

stationarity assumption is evoked if the SOS is not met. In this case the increments 

( ) ( ) Z u h Z u are considered as SOS: 

 
 

  

( ) ( )

( ) ( ) ( ) ( )
1

( )
2

T

E

E

 

   



    

Z u h Z u

Z u h Z u Z u h Z u

0

Γ h
  (2.3.28) 

where ( )Γ h is the matrix of semivariogram functions ( )it h  for all pairs ( , ) 1,..., .i t k  

If ,i t  ( )it h is called cross semivariogram function and for ,i t  it is known as 

direct semivariogram function. The semivariogram is even function and is symmetric. 

The existence of ( )C h under the SOS implies existence of the finite priori variance:

   2
( ) ( )( ) ( ),tt t ttm CVar E     Z u uZ u 0 which leads to the following relationship: 

 ( ) ( ) ( ) Γ h C 0 C h        (2.3.29) 

where ( )C 0 is the variance-covariance matrix of k  random variable provided if it 

exists. In practice the asymmetry property of ( )C h is usually ignored, the reasons 

being that ( )Γ h is often used for structural analysis based on its symmetric property 

and also the difficulty (if not impossibly) of verifying the presence of a lag effect due 

to lack of adequate data (Goovaerts, 1997). In this thesis we adopt the semivariogram 

matrix ( )Γ h as the main structural tool to characterise the spatial dependence of 

malaria morbidity incidence in Ghana and its potential risk factors.   

The degree of correlation between the pair ( )i Z u h and ( )tZ u for all , 1,...,i t k

usually decreases as h increases. Hence ( ) 0itC h  as h ,  and ( ) 0;itC h

( ) ( )it itC h 0 as ,h  called priori covariance. This limiting value is the sill and 

the distance at which this value is reached is the range (denoted by sc and sr , 
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respectively in this thesis). The correlation function (correlogram) of the random 

function is defined as: 

 
( )

( ) ,
( ) ( )

it
it

ii tt

C

C C
 

h
h

0 0
      (2.3.30) 

which is bounded as 1.it   The vector h  accounts for both distance and direction. If 

the covariance function exhibits the same spatial behaviour in all direction for all h

then ( ) ( )C h C h and the function is said to be isotropic and is called anisotropic, if 

otherwise. Under the assumption of SOS the functions ( ),C h ( )Γ h and ( )ρ h depend 

only on the separation vector ,h  and not functions of the location .u  Each pair of 

values [ ( ), ( )]i i Z u Z u  separated by the vector h  can be considered as a different 

realisation of the pair of random variables ( ), ( )[ ],i t Z u Z u for all , 1,...,i t k and 

.    This provides the many realisations of the random function necessary to made 

the required statistical inferences. 

The permissible model version conditions of ( )C h and ( )Γ h are obtained as follows: 

Let  ( ); 1,...,t t kZ u  be a set of k interdependent random functions, ; 1,..., n  u  be  

n data locations and Y be a linear combination of finite random variables

( ); ;t   Z u u D  for 1,..., .t k  Then 

1 1

( )
k n

t t
t

Y  



 

 Z u ,        (2.3.31) 

where: 
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 Z u λ u u λ   (2.3.32) 

1( ,..., )T
k   λ and ( ) ( ) ,tjC C       u u u u  a k k matrix. To satisfy the    

condition (2.3.32),  the  matrix of auto  and cross covariance models  must  be  positive  

semi-definite. Then from (2.3.29) we have:  
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which ensures the non-negativity condition of the variance of ,Y  where the matrix of 

semivariogram models must be conditionally negative semi-definite subject to the sum 

of vectors  being the null vector. The multivariate semivariogram inference then 

provides a set of matrices ˆ ˆ( ) [ ( )]t ij tΓ h h  for a finite number of lags, ; 1,...,t t kh , 

and directions: 

  
( )

1

1

2 ( )
ˆ ( ) ( ) ( ) ( ) ( )

n

tj t t j j
n

   





    
h

T

h
h Z u h Z u Z u h Z u

 (2.3.34) 

for 1,.., ,t k where ( )n h is the number of pairs of sample locations separated by the lag 

vector .h  The difficulty of this modelling lies in the fact that the 1k   semivariograms 

cannot be built independently from one another. The simplest approach consists of 

modelling the 1k   semivariograms as a linear combinations of the same set of basic 

semivariograms model, called linear models of coregionalisation (LMC) (Goovaerts, 

1999). A permissible combination of functions can be built through the use of LMC.  

In the multivariate sense LMC accounts for the spatial dependence between the k  

attributes from the inference of ( 1) 2k k  direct and cross experimental 

semivariograms in (2.3.34), providing the experimental matrices ˆ ( )tΓ h for the 

separation distances th to which models are then fitted. Inferring from the univariate 

case (2.3.18), the multivariate random function ,Z consisting of k interrelated random 

functions in (2.3.31), can be decomposed into spatially independent components 

( );l
tY u 1,.., ,t k  each having a mean zero and basic covariance function ( ) :lC h  

 1
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1

1
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Z u u

h
u u h

    (2.3.35) 

where [ ( )] ,t tE mZ u [ ( )] 0, , 1,.., ,l
tE Y l t k  u  and each components l

itC of the cross  

covariance matrix ( )l
itC h is a product of the coefficient l

itb (partial sills) and the 

corresponding covariance function ( ).lC h The cross covariance function for the pair 

( , )i tY Y is given as: 

0

( ) ( ), ,
k

l l
it it

l

C b C i t


 h h       (2.3.36) 
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which defines the linear model of coregionalisation (LMC); the k k  matrix [ ]l
itbB , 

called coregionalisation matrix, is symmetric from which we can obtain the matrix 

valued covariance functions as: 

 
0

( ) ( )
k

l l
l

C


 C h B h        (2.3.37) 

The conditions sufficient for the constructed model (2.3.37) to be permissible are that 

( )lC h are permissible covariance models and that ( 1)k  coregionalisation matrices lB   

are all positive semi-definite. A similar construction leads to the LMC in terms of the 

semivariogram models ( )lg h following (2.3.22): 

0

( ) ( ), ,
k

l l l
it it

l

b g i t


 h h
      (2.3.38)

0

( ) ( )
k

l l
l

C


 h B h
       (2.3.39) 

where under SOS, the value of the basic model ( ) 1lC h  at 0,h
0

( ) ,
k

l
l

C 0 B and 

provided ( )lg h  are permissible models and lB  are positive semi-definite, then (2.3.38) 

is by construction permissible. A particular case of LMC is when 1k   which is the 

linear model of regionalisation (LMR) in section 2.3.5. 

The LMC is convenient when employed for fitting a semivariogram (or covariance 

function) because we are able to verify the permissibility of the models during the 

process. The models ( )lg h models, as already noted, are selected from a list of 

functions known to be conditionally non-negative definite and the sill matrices lB  are 

required to be positive semi-definite. However, satisfying this can be challenging in 

view of the number of variables jointly to be modelled coupled with limitations 

imposed on the choice of basic models. When a basic model l
itb is selected to model a 

cross semivariogram ( )it h  it must be present in the models of both direct 

semivariograms ( )ii h and ( )tt h where 0l
itb   and 0l

ttb   for all 1,...,i k . This means 

that if the basic model is absent in the direct semivariogram it must also be absent in 

the cross semivariogram associated with the variable. However, it is not necessary for 

each direct and cross semivariogram to include all basic structures. If a structure 

appears on both direct semivariograms ( )ii h  and ( ),l
tt h  it need not be present in the 
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cross semivariogram ( ),it h that is, if 0l
iib  and 0.l

ttb   In addition, it is not necessary 

for each structure to be present in each direct semivariogram models, that is, l
ttb may be 

equal to zero for some .l  However, basic models common to all direct semivariograms 

are typically chosen as having one or more of the l
ttb equal to zero impedes derivation 

of the positive definite coregionalisation matrices. In practice, the modelling is 

performed in two steps: The direct semivariograms are modelled as linear 

combinations of selected basic structures ( ),lg h which are then used to fit the cross 

semivariograms under the conditions that the coefficients  0itb    and that 

,l l l
it ii ttb b b  ,l t and i .  

2.4 Geostatistical Spatial Optimal Prediction 

Spatial dependence, if it exists, allows prediction of values of the random function at 

unsampled locations and, in some cases estimation of the unknown mean across all 

realisations of the random process. There are several models developed for optimal 

spatial predictions. One of such class of techniques is the geostatistical methodology of 

kriging, a family of generalised least squares regression algorithms used for estimating 

or predicting attributes values at unobserved locations (Goovaerts, 1997; Olea, 1999). 

Kriging, in geostatistics means optimal prediction, a generic name adopted by 

Matheron (1963) in recognition of the pioneering work of the South African mining 

engineer D.G. Krige  in quantification of ore reserves (Cressie, 1993; Gelfand et al., 

2010; Goovaerts, 1997; Hengl, 2009; Olea, 1999). The kriging techniques seek to 

minimise the variance of the prediction error under the condition that the prediction 

error is unbiased with expectation zero; hence they are considered as best linear 

unbiased estimators (BLUE). In this section we present the kriging techniques, 

specifically the assumptions underlying optimal spatial prediction and the various 

types of kriging used for the malaria risk prediction in this study.   

 

2.4.1 Assumptions of Best Linear Unbiased Estimators (BLUE) 

The main goal of geostatistical data analysis is spatial prediction of the attribute of the 

random function ( )Z u  using the sampled observations { ( : 1,..., )}Z n  u , where 

( )Z u  varies continuously throughout the study region (domain) D . This leads to 
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production of a map for the attribute predicting locations 0u  in the study region where 

data were missing or unavailable. This process involves various steps but not limited to 

the following (Schabenberger & Pierce, 2002):  

(i) Using exploratory techniques, prior knowledge and assuming a model of 

possibly non-stationary mean including SOS or IS error for ( )Z u process that 

generated the data. 

(ii) Estimate the mean function for example, by OLS to detrend the data. If the 

mean is stationary this step is not necessary. These methods for detrending 

employed at this step usually do not take auto correlation into account. 

(iii) Using the residuals obtained in step (ii) (or original data if the mean is 

stationary) fit a semivariogram model ( ; ) h θ  by one of the methods in section 

2.3.4. 

(iv) Using statistical estimates of the spatial dependence in hand (from step (iii)), 

return to step (ii) to re-estimate the parameters of the mean function, now 

taking into account the spatial autocorrelation. 

(v) Obtain new residuals from step (iv) and iterate steps (ii)–(iv), if necessary. 

(vi) Predict the attribute Z at an unobserved location u and calculate the 

corresponding mean square prediction errors to assess the prediction accuracy. 

Spatial data exhibit autocorrelations which are functions of the proximity of 

observations. Let ( ); 1,...,Z n  u  be the attribute values observed at locations 

1,..., nu u  and 0u  the target location where the prediction is desired. If the observations 

are spatially correlated then 0( )Z u  is also correlated with the observations unless the 

target location 0u  is further removed from the observed locations than the spatial 

range. In this case we seek to find which function of the data 0( )pZ u best predicts 

0( )Z u  and how to measure the mean square prediction error. To solve this problem we 

need to define what “best” means. Kriging methods are solutions to the prediction 

problem where the predictor is said to be best linear unbiased estimator (BLUE)

0( )pZ u , if and only if, it minimises the mean square predictor error. It is a linear 

combination of the observed values ( ); 1,..., ;Z n  u and it is unbiased in the sense 

that the mean of the predicted value at 0u  of ( ).Z u  



53 
 

There are various types of kriging techniques for determining the optimal spatial 

predictor 0( ),pZ u  all depending on the model assumption for the random function 

( )Z u , which decomposes into the trend ( )m u  and residual (or error) ( )R u  under SOS 

and IS (Cressie, 1993; Goovaerts, 1997; van Beers & Kleijnen, 2003):  

( ) ( ) ( )Z m R u u u        (3.4.1) 

where  ( )Var R u  ( )Var Z u Σ is the covariance matrix,  ( ) ( )E Z mu u and 

 ( ) , ( ) .R Nu Σ θ0  In this study we limit ourselves to ordinary kriging and its and 

multivariate version called ordinary co-kriging, the most commonly used spatial 

kriging predictors, which coupled with other space-time techniques (in chapter 3) were 

used to estimate the malaria morbidity incidence rates at the various district locations 

in Ghana.  

2.4.2 Ordinary Kriging   

The ordinary kriging (OK) considers the trend (mean) ( )m u to be locally constant,  but 

unknown. In this way we are able to account for the local variation of the mean, 

limiting stationarity to only the local neighbourhood ( )H u  centred at the estimation 

location .u  The linear estimator then becomes:  
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      (2.4.2) 

Now to ensure unbiasedness of the OK predictor ( )m u  is filtered from (2.4.2) (since it  

is explicitly unknown) so that the weights ok
  sum to one, yielding: 
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( )

1

1
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     (2.4.3) 

The minimisation of the error variance  2
0( ) ( )p pVar Z Z  u u  subject to the 

unbiasedness condition: ( ( ) ( )pE Z Z m    u) u u  leads to:  

  
( )

2

1

; : 1,..., ( ) 2 1 ,
n

ok ok
ok pok okL n 



     


 
    

 


u

u   (2.4.4) 

a Lagrangian function of the OK weights ok
  and Lagrange multiplier ok  where 2

pok   
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can be written in terms of the covariance function ( )C  and the semivariogram ( )   as in 

(2.4.5):   
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( ) ( ) ( )

1 1 1
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  (2.4.5) 

Rewriting (2.4.4) in terms ( )   we to obtain (2.5.6): 
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 (2.4.6) 

Taking ( ) 1n u  partial derivatives of (2.4.6) with respective to ok
  and ok  and 

equating to zero results the following OK system:  
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   (2.4.7) 

The solution of the system (2.4.7), by partitioning, is given by:   
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    (2.4.8)  

where Γ  is a ( ) ( )n nu u  matrix whose elements are ( ) : , 1,..., ( );n    u u u γ  

denotes the vector  0 1 0 ( )( ),..., ( )
T

n   uu u u u and I  is a vector with entries 1. The 

optimal weights in (2.4.8) result in the OK estimator of the local mean with minimum  

prediction variance given respectively by  
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The semivariogram is highly sensitive to strong positive skewness in data resulting 

from extremely large or small values. The skewness may be reduced by a variance 

stabilising transformation such as the logarithmic or Box-Cox power transformation 

(Box & Cox, 1964). In the case of a logarithmic transformation, the observed data 

 ( ); 1,..., ,Z n  u then follow the lognormal distribution and lognormal ordinary 

kriging (LOK) serves an alternative to OK to offer a better estimation (Journel & 

Huijbregts, 1978). Equation (2.4.3) is therefore modified for the interpolation of ( )Z u

using the LOK estimator (Journel, 1980; Rivoirard, 1990) as given by (2.4.10):  

  2( ) exp ( ) 0.5ok
lok p ok okZ Y     u u     (2.4.10)      

where ( ) ln( ( )),Y Z u u 2
ok  is the kriging variance, ok  is the Lagrange multiplier  

of the system (2.4.7) in log scale, and 20.5 oklok  is the non-bias term, according to 

(Journel, 1980). The space-time version of the LOK which is implemented in this 

study is presented in chapter 3. 

2.4.3 Ordinary Co-kriging  

In most real situations it may be inadequate to limit stationarity within each 

neighbourhood ( )H u  as the case in OK which considers ( )m u  as locally constant 

though unknown. The trend of the non-stationary model can be appropriately and 

alternatively modelled as a smoothly varying function of spatial coordinates or 

secondary variables (covariates). This leads to a variety of kriging predictors including 

ordinary cokriging (OCK). Co-kriging incorporates the spatial continuity of the 

secondary variables into the spatial prediction. It particularly becomes useful if the 

covariates are not exhaustively sampled but there exists good correlation between the 

primary variable and the covariates. Cokriging adheres to rather stricter model 

assumptions to ensure a minimised prediction error variance. It is implemented as 

follows:  

Let 1( )Z u  be the primary variable with sampled values 1 1{ ( ) : 1,..., ( )}z n  u u  and 

correlating spatially with { ( ) : 2,..., },iZ i ku  a 1k   covariates whose observed values 

are { ( ) : 1,..., ( ); 2,..., }
ii i iz n i k   u u  at locations .

i
u The linear optimal predictor of 

1 0( )Z u  is expressed as a linear combination of all data values of k  random variables: 



56 
 

   
1

1 1 1

1

( )

1
1 1

( ) ( )

1 1 1 1
1 2 1

( ) ( ) (2.4.11)

( ) ( ) ( ) ( ) ( ) ( )

i

i i

i

i

i i i

i

nk

p i
i

n nk

p i i
i

Z Z

Z m Z m Z m

 


     
 



 

 

  






     




 

u

u u

u u

u u u u u u

 

where
1

  is the weight for the primary variable data 
11( )z u  and , 1

i
i   are the 

weights for the covariates data ( ).
iiz u  Let the expected values of the random 

variables 1( )Z u  and ( )
iiZ u  be 1( )m u  and ( ),

iim u respectively. Then the cokriging 

estimator is required to be unbiased and to minimise the prediction error variance 2
1p : 
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  (2.4.12) 

The random function ( )iZ u is also decomposed as in (2.4.1) into trend ( )im u  and 

residuals ( )iR u  components:  

 ( ) ( ) ( ); 1,...,i i iZ m R i k  u u u      (2.4.13) 

where ( )iR u  is then modelled as stationary random function with mean zero and 

covariance function ( ).
irC h  We consider all the trends ( )

ir
m u  as  locally constants but 

unknown, which becomes the multivariate version of OK, ordinary cokring (OCK). 

The ordinary co-kriging BLUE is thus obtained by minimising: 
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The system of ( ) 1n u  equations in terms of the covariance functions ( )ijC   is as 

below: 
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where 1 1,i  for 1,i  and 1 0,i   otherwise. 

In most instances the true means are unknown, IS is implied hence (2.4.16) in terms of 

semivariograms ( )ij  , following the relation: ( ) ( ) ( ); , 1,2,ij ij ijC C i j  h 0 h as in 

(2.3.29), we have the system (2.4.17): 

1

1

1

( )

1
1 1
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1
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1

( ) ( ) ( ); 1,..., ( ); 1,...,

1 (2.4.17)
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from which the optimal cokriging weights are derived.     

 

Cokriging can also be performed in terms of the residuals ( )iR u  in (2.4.13) by 

detrending each time series for the different attributes at each location. This approach 

is explored in space-time modelling in chapter 3 and applied to the district-month 

morbidity incidence rates data with the climatic covariates.  

 

2.5 Time Series Analysis 

Time series models will generally reflect the fact that observations close together in 

time will be more closely related than observations further apart, and in addition, they 

will often make use of the natural one-way ordering of time so that values in the series 

of observations tz  for a given time t  can be expressed as deriving in some way from 

past values, rather than from future.  

The analysis of time series data includes exploration, description, prediction and 

forecasting. The general exploration is concerned with graphical examination of data 

series, autocorrelation analysis to examine serial dependence, and spectral analysis to 

examine cyclic behaviour which need not be related to seasonality. The description 

looks at separation into components representing trend, seasonality, slow and fast 

variation, cyclical irregular; and simple properties of marginal distributions. The 

prediction and forecasting consists of fully-formed statistical models for stochastic 

simulation purposes to generate alternate version of the time series and representing 

what might happen over non-specific time-periods in the future (prediction); simple or 
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fully-formed statistical models to describe the likely outcome of the time series in the 

immediate future, given knowledge of the most recent outcomes (forecasting).  

The two types of techniques used for analysing the trend and seasonal patterns of the 

times series malaria morbidity data ( )I u in the 10 regions of Ghana are presented.    

2.5.1 Smoothing Techniques 

The incidence of most diseases (like sales of products) is seasonal and as such the 

trend patterns are expected to be sustained for some period. However, if successful 

interventions are introduced the incidence cases (or sales) can decrease or increase 

initially but then stabilises before increasing (or decreasing) as failure of the 

intervention measures (or competition of the market) sets in; this leads to a change of 

the level of pattern from one time period to the next, called trend (Cowpertwait & 

Metcalfe, 2009). Seasonal patterns can also change due to variation in the climatic 

conditions. An exploratory time series analysis can be performed via smoothing of the 

time sequence plots to study the long-term and seasonal behaviour of .tz  Two useful 

techniques which can be employed are the moving average smoothing (MAS) and 

Holt-Winter’s method (HWM) (Shumway & Stoffer, 2011).  

The MAS estimates the trend in a given time series by using linear filters to obtain the 

smoothed observation (Brockwell & Davis, 1987; Brockwell & Davis, 2002):         

k

t i t i
i k

m z 


                                      (2.5.1) 

where 0 ii   and 



k

ki
i 1 . A simple class of linear filters are the centred 

moving averages with equal weights: 1i  , where 12  k and kki  ,,   

for odd value of . If   even, then the weights of the MAS are given by 0i  for 

2;i   i i   and 2 0.5 ;  1i   for 2i  .  

The HWM is a generalisation of exponential smoothing with weights that decays 

exponentially. The method was first introduced by Holt (1957) and later extended by 

Winters (1960). It uses exponentially weighted moving averages to update the three 

smoothing estimates of the seasonally adjusted mean (level), trend and seasonality. 

There are two different algorithms of the method, depending on whether seasonality is 

treated as  an additive or a multiplicative component. The Holt-Winter’s  multiplicative  
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algorithm which is applied in this study is given by (2.5.2): 

 

0 0

1 1

1 1

1 1)

( ) (1 )( )

( ) (1 )

( (1 )

t t t t t

t t t t

t t t t t p

s z

a z s a b

b a a b

s z a b s

 
 
 

 

 

  


    
    
    

     (2.5.2)  

where ,ta tb  and ts  are the estimated level, trend and seasonal effect at time t ; ,   

and   (all lie between 0 and 1) are the corresponding smoothing parameters and p is 

the length of period. The forecast value for t kz   after observation at t  is: 

  ˆ ( ) ,t t t k pt k tz a kb s k p           (2.5.3) 

The smoothing parameters of model (2.5.2) can be estimated using the R function 

HoltWinters which minimises the one-step-ahead prediction errors (Cowpertwait & 

Metcalfe, 2009).  

2.5.2 Seasonal ARIMA Predictive Models 

Models for time series analysis can have many forms and represent different stochastic 

processes. When modelling variations in the levels of a process, three broad classes of 

practical importance are the autoregressive (AR), integrated (I), and moving average 

(MA) models. These classes depend linearly on previous data points, and combine 

ideas to produce an autoregressive integrated moving average (ARIMA) model. They 

will be applied to the seasonally stationary and non-stationary monthly malaria 

morbidity incidence data { ( ) : }tI t u T  observed in the various regions of the study 

area for the period 2000–2011. The general representations of the autoregressive 

model with parameter ,p ( )AR p and the moving average model with parameter ,q

( )MA q are given by (2.5.1) and (2.5.2), respectively: 

1 1 2 2t t t p t p tZ Z Z Z              (2.5.4)        

1 1 2 2t t t t q t qZ             
    (2.5.5) 

where tZ  is stationary process; , 1, 2, ,i i p   and 1

1, 1, 2, ,
i

i q    are constants 

such that 0p  and 0q  ; and t is Gaussian white noise (WN), denoted 

2~ (0, )t WN   . Applying the backward shift operator ,B we obtain the following: 
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    (2.5.6)     

for which ( ) 0B  and 1.B  The equations (2.5.4) and 2.5.5) reduce to 

( ) t tB Z  and ( ) ,t tZ B  respectively. Thus, the ARIMA model combines the

( )AR p and ( )MA q models with additional process of differencing ( )d to give an order

( , , ).p d q  It is denoted by ( , , )ARIMA p d q and defined by                              

( ) ( )d
t tB Z B           (2.5.7) 

where 2~ WN(0, ),t   tZ  1 (1 )t t tZ Z B Z   and d is differencing to obtain 

stationarity. 

If the time series { : }tZ t  is seasonal with period ,s  as in most epidemiological data 

and a case of the malaria morbidity incidence rates time series data{ ( ) : }tI t u T  in 

this study, we obtain the multiplicative seasonal ARIMA (SARIMA)  model of order 

( , , ) ( , , )p d q P D Q  which is a generalisation of (2.5.7) containing seasonal and non-

seasonal components. The SARIMA model is defined by: 

 ( ) ( ) ( ) ( )s D d s
s t tB B Z B B           (2.5.8) 

where (1 )D s D
s B    is the seasonal difference; ( )sB  and ( )sB  represent the 

seasonal components of ( )AR P  and ( )MA Q  models, respectively. In this case tZ

becomes causal and invertible process satisfying the conditions 1  and 1  , 

respectively and is identically and indenpendently distributed (iid) as 2(0, )N  .  

In this study, it is hypothesed that the malaria morbidity incidence time series data is 

seriously affected by certain external factors, such as the weather and socio-economic 

conditions (as extensively reviewed in chapter 1) which can cause temporal effects to 

the morbidity risk at the various rigions in the study area. The multiplicative SARIMA 

technique of Box and Jenkins (1976), as given in (2.5.8), is then extended to examine 

the impact of the exogenous climate covariates, resulting in a multivariate SARIMAX 

model (X, indicating effect of the exogenous variables). The details of both SARIMA 
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and SARIMAX model fitting to the observed time series data { : }tZ t  , which 

subsequently leads to the future focast values of tz , are outlined in the following 

section. 

2.5.3 Box-Jenkins SARIMA Model-Building 

The Box-Jenkins methodology offers the set modelling procedures for time series 

seasonal data { : 1,..., }.tz t T  These include model identification, estimation, 

diagnostic checking and forecasting (Box & Jenkins, 1976), which are outlined by the 

following iterative steps: 

(i) Model Identification (or Specification): Inspect the time series 

{ : 1,..., }tz t T  by transformation or differencing to remove long-term trend 

and/or further by graphs of autocorrelation function (ACF) and partial 

autocorrelation function (PACF) to establish stationarity. ACF measues the 

relation between the earlier values of t iz   and the later tz whilst PACF 

illustrates the correlation between tz and t iz  which has not been explained by 

the correlation at the lower lags (Zhang, Zhang, Young, & Li, 2014). For 

example, if the graphs of ACF and PACF cut off fairly after lags sP  and sQ  

and/or die down at lags ks ( 1,2,...)k  , then the time series { : 1,..., }tz t T is 

considered stationary (Nochai & Nochai, 2006; Shumway & Stoffer, 2011). 

Then, the tentative model(s) can be identified and patterns and components 

specified. 

(ii) Model Estimation: The model parameters ( ,  and 2
 ) are estimated by 

various statistical criteria including the maximum likelihood principle which 

allows discrimination between different model specifications by computing  

Akaike information criterion (AIC) (Akaike, 1974) or Bayesian information 

criterion (BIC) (Schwarz, 1978). The maximum likelihood method for fitting 

model (2.5.8) to the time series data { : 1,..., }tz t T is to maximise the 

likelihood function (2.5.6) with the aim of of estimating the model parameters:     

  

2 2
1

1

1 1 1
1

(z ,..., ; , , ) (z ; , , )

(z ,..., ; ) (z ,..., ; )

T

T t
t

T

t t p
t p

L z f

f z z f z

      



 





       



 β β

  (2.5.9) 
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where the conditional distribution 1 1(z ,..., ; )t tf z z β  is a Gaussian process and  

the maximum likelihood estimates (MLEs) of the model parameters, denoted 

2
1 1 1 1( ,..., , ..., ; ,..., , ,..., ; )T

p p p P q q p Q            β  are computed by  

  

 



1

1 1 1
1

ˆ arg max ln (z ,..., ; )

arg max ln (z ,..., ; ) ln (z ,..., ; )

mle T

T

t t p
t p

L z

f z z f z
 



 
  

 


β

β β

β β
 (2.5.10) 

(see Shumway and Stoffer (2011) and Pfaff (2008) for further details of the 

estimation procedure). The model order, ( , , ) ( , , )p d q P D Q , is best determined 

by the least value of AIC (or BIC), which penalises models with too many 

parameters. AIC as a measure of the goodness of fit of the estimated model in 

(2.5.8) is calculated by  

   1
ˆ2 ln z ,..., ; 2T mleAIC L z k       (2.5.11) 

where 1
ˆ(z ,..., ; )T mleL z  is the maximised value of the likelihood function for the 

estimated model and k , the estimated number of model coefficients in (2.5.10). 

(iii) Model Diagnostic Checking: Conduct a diagnostic test by examining the 

residuals from the estimated SARIMA model for randomness, normality and 

uncorrelatedness (no autocorrelation). The overall check of the model adequacy 

is provided by the Ljung-Box Q-statistic test (Ljung & Box, 1978). The test 

statistic is computed by: 

  
2

2

1

( )
( ) ( 2)

m
h

m k
h

r e
Q h n n

n h 


 
    

 χ     (2.5.12) 

where 2 ( )hr e is the residual autocorrelation at lag h , n  is the number of 

residuals and m  is the number of time lags included in the test. If the valuep 

associated with ( )Q h , which follows the chi square distribution with degrees of 

freedom m k , is large ( value )p   , then the time series tz is uncorrelated 

and the model is considered adequate for forecast. 

(iv)  Forecasting with the Model: Forecast future values of the time series ˆ(z )T l

for a specified lead time l , once the model adequacy is established. Note the 

magnititude of the forecast errors by computing the bias or mean error (ME), 

the mean absolute error (MAE) or mean absolute percentage error (MAPE) and 

root mean square error (RMSE)  as  a  way  of ascertaining accuracy of forecast  
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values and validating the model.  
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 (2.5.13)  

  Keep track the model performance to detect out of control situation.   

2.6 Summary Chapter 

In this chapter, two separate theoretical frameworks on geostatistics and time series 

analysis for analysing the malaria morbidity incidence cases in purely spatial and 

purely temporal domains have been discussed. Geostatistics is a branch of spatial 

statistics which deals with the geographical distribution of point-referenced data. It is 

based on the theory of a regionalised variable which shows spatial auto-correlation 

such that closer samples in space are more correlated than those further apart. Thus, 

the attribute being studied is assumed as a realisation of random process distributed in 

space. Geostatistical spatial analysis, as outlined in the chapter, involves two main 

procedures. It begins with structural analysis using the semivariograms and covariance 

functions as the main tools for modelling the spatial continuity or autocorrelation of 

the attribute subject to the conditions of stationarity and permissible non-negative 

definiteness. It then follows with an optimal prediction (or kriging), dealing with the 

techniques which seek to minimise the prediction error variance to obtain optimal 

predictions at unsampled locations and production of spatial maps. The two commonly 

used techniques, ordinary kriging (OK) and ordinary co-krigiing (OCK), are presented 

with the latter applied to for account for the effects of exogeneous variables.  

Time series analysis is judged as a useful scientific tool for analysing and interpreting 

random processes which vary over time. Analysis of time series mainly comprises of 

exploration, for studying the distributional properties of the data; and fully-informed 

statistical modelling process, which leads to prediction for future forecasting of the 

data. Two smoothing techniques (moving averages and Holt-Winters’s method) used 

to analyse the long-term trend and seasonal patterns and Box-Jenkins multiplicative 

seasonal autoregressive integrated moving average (SARIMA) modelling procedure 

for predictive future forecasting of time series data have been studied. The latter is 

extended to SARIMAX to account for the effect of exogenous variables(X).  
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Chapter 3 

Geostatistical Space-time Analysis 

3.1 Introduction 

Space-time (spatio-temporal) modelling provides a joint (composite) analysis of data 

distributed through space and evolving over time. The concepts for analysing space-

time observations can be seen as natural extensions of those developed for strictly 

spatial data, though most of these are new to the space-time data context. For example, 

how should the temporal and spatial correlation models interact with each other?; and 

can or should they interact with each other?. Some space-time models extend the 

purely spatial or temporal models, while others try to explicitly model space-time 

effects and interactions (Cressie & Huang, 1999; De Cesare, Myers, & Posa, 2001a; 

Kyriakidis & Journel, 1998, 1999; Sherman, 2011).  

The space-time statistical modelling presented in this chapter extends the spatial 

analytical tools reviewed in chapter 2 for modelling random processes distributed 

purely in space by an additional time coordinate to facilitate quantification of spatial 

variations for optimal prediction of dynamic processes evolving in space and time. 

This eventually leads to the presentation of a theoretical framework of space-time 

modelling of phenomena considered as realisation of random fields in 1d   

dimensional space (Kyriakidis & Journel, 1999). Thus, time becomes an important 

component as in many scientific studies, though such an extension can be complex 

(Buttafuoco, Caloiero, & Coscarelli, 2011; De Iaco, 2010; Griffith & Heuvelink, 2010; 

Kyriakidis & Journel, 1999; Yu, 2010). For instance, there are fundamental differences 

between the geographic and time domains that need to be addressed prior to a 

successful application of geostatistical techniques to the space-time data, which this 

study seeks to employ to analyse the malaria morbidity cases as public health data. In 

the following sections, we outline the geostatistical modelling framework for space-

time data in the context of the malaria risk data in Ghana as being considered in this 

thesis. Specifically, we present the space-time random function and its properties, the 

conceptual modelling approaches of the spatio-temporal continuity along with the 

possible prediction methods as applied to the space-time malaria morbidity incidence 

data.  
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3.2 Geostatistical Space-time Modelling 

Space-time geostatistics provides a stochastic modelling framework for joint analysis 

of data distributed in space and time domains and builds on the extension of 

established spatial analytical techniques (Kyriakidis & Journel, 1999; Yu, 2010). This 

results in a new domain D T  defined for the joint study of the regionalised variable 

dispersed both in space and time, where D  and T  are finite domains in space and 

time, respectively and are such that dD  and ,T   the set of positive integers. A 

space-time (or simply, spatio-temporal) random variable ( , )Z tu  is thus defined to take 

a series of values at the point u D  at the instant timeb ,tT  according to a 

probability distribution. For example, as in this study, ( , )Z tu  is the monthly count 

morbidity cases of malaria reported or recorded weather values in each of the n  district 

(county) locations in Ghana at an instant time where 1{ ,..., }n u D u u is a spatial 

location recorded in longitude and latitude (measured in kilometres), and T is subset of 

positive integers, denoting the number of months. Conceptually, the spatial domain 

u D  is continuous (but can be regarded as discrete by aggregation of cases from 

health facilities or measurements in each district) whilst the temporal domain can be 

discrete or continuous. The discreteness of the temporal dimension is often (although 

not always)  caused by sampling the continuous time coordinate at equally spaced time 

intervals (Cressie & Wikle, 2011). In addition, it could be that the data are collected 

based on one type of domain but inference is desired for another type. An example is 

the problem of upscaling where a spatial variable at coarse resolution is inferred from 

the underlying process for a much richer spatial resolution (see the change of support 

problem in Cressie & Wikle (2011), chapters 4 and 7). Spatio-temporal covariance 

functions or semivariograms offer a succinct but informative summary of random 

processes in the space-time domain .D T  It is very common to consider the 

covariance function or semivariogram as a characterisation of the random variable

( , )Z tu . 

The spatio-temporal random variable is defined to include the instant time when the 

measurement was made, where { ( , ); 1,2,..., }Z t t T u  represents a discrete, equally 

spaced time series of observations of an attribute Z  observed at location .u The set of 

stochastic random variables measured at n  locations and time instant t is given as 
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1( , ),..., ( , ),nZ t Z tu u where 1,2,..., .t T Time can be expressed in any unit (for 

example, hours, days, months or years). The random variable ( , )Z tu can therefore take 

any series of outcomes at any spatial location u D  and any time point .t T In a 

complete data set, the total number of measurements is .nT If k  attributes are 

measured at n  locations and T time points 1, 2,..., ,t T  then we obtain ( , )tZ u

1[ ( , ),..., ( , )] ,T
kZ t Z t  u u  as the vector of the k  attributes at location u  and time 

point .t  This will be considered in space-time co-kriging in section 3.4 to establish 

effect of some climatic covariates on the malaria incidence rates. 

3.2.1 Space-Time Random Function (STRF) 

The space-time observations constitute a time series of length T  at each of the  n  

spatial locations and imply the use of a regular temporal scheme (that is, the 

observations are equally spaced over time at each spatial location). This leads to a 

family of random variables defined in space-time domain. 

 

Definition 3.2.1 (Space-time random function) (Kyriakidis & Journel, 1999): 

(i) Let Z( , t)u  be a space-time random variable of a phenomenon or attribute Z at 

location denoted by ( , )tu . Then the collection (or set) of usually dependent 

random variables as defined in (3.2.1), one for each location in space u D  

and instant time ,t T  is called space-time random function or field (STRF), 

{ ( , ) : ( , t) }Z t  u u D T      (3.2.1) 

where dD  and T  which has a well-defined joint probability 

distribution as defined in (3.2.2b). 

(ii) The random variable Z( , t)u  is characterised by its cumulative distribution 

function (cdf) defined by  

( ; ( , )) [ ( , ) ],F z t P Z t z u u      (3.2.2a) 

for all ( , )Z Z t u , which models the uncertainty of the value z( , )tu  at an 

unsampled spatial locationu  and instant time .t  A realisation of the STRF is 

{z( , ) : ( , ) }t t  u u D T  a set of realisations of its component; and 
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(iii) Let the space-time domain D T  be discretised into nT sets, such that any 

assigned set corresponds to a vector of nT random variables 

1 1{ ( , ),...,( , )},n TZ t tu u  which is characterised by the cumulative function (cdf):  

  
 11 1 1

1 1 11

,..., ; ( , ),..., ( , )

[ ( , ) ,..., ( , ) ]
nT n T

n T nT

F z z t t

P Z t z Z t z  

u u

u u
  (3.2.2b) 

which is used to characterise the joint uncertainty about the nT actual values 

1 1{ ( , ),..., ( , )}.n Tz t z tu u  The set of all such nT  cdf’s, for all positive integers, ,n T  

and for any choice of space-time locations 1 1( , ),...,( , )n Tt tu u  constitutes the spatio-

temporal law of the random function ( , )Z tu . 

Inference of the spatio-temporal law requires repeated realisations of the component 

random variables at each space-time location  ( , t) , u D T  which are unavailable in 

practice. Pooling together pairs of observations separated by the same space-time 

vector ( , ) ,s th  h D T where 1
s  h u u and 1

th t t  which are used as a set of 

repetitions. This pooling corresponds to the model decision of a “two-point” space-

time stationarity using the pairs of random variables { ( , ), ( , ) :s tZ t Z t h   u u h

1,2,..., }n  . This provides the necessary number of realisations of the STRF ( , )Z tu

to make the required inferential analysis of the random process ( , )Z tu . The three types 

of spatial and space-time stationarity that are identified in geostatistical methodology 

are the strict, second order and intrinsic stationarity. The stationarity decision allows 

pooling data over areas that are deemed homogeneous.The spatio-temporal stationarity 

in 1d D T   is defined in a similar fashion as the strict, second order and intrinsic, 

just as in the case of purely spatial in .dD   

Definition 3.2.2 (Stationarity): 

The STRF ( , )Z tu  is said to be strictly stationary within D T if its spatio-temporal law 

is invariant by the translation vector ( , ) .s th  h D T Thus for any two vectors of the 

random variables 1 1{ ( , ),..., ( , )}n TZ t Z tu u  and 1 1 1{ ( , ),..., ( , )}t n n T TZ t h Z t h   u h u h  

have the same multivariate cdf, whatever the translation vector ( , ) :s th h  D T  

11 1 1

11 1 1

( ,..., ; ( , ),..., ( , ))

[ ,..., ; ( , ),..., ( , )]
nT n T

nT s t n s T t

F z z t t

F z z t h t h    
u u

u h u h
         (3.2.3)  



68 
 

for all 1 1( , ),...,( , )n Tt tu u  and 1 1( , ),..., ( , ) .s tt h  u h D T  This property is usually 

difficult to test and cannot be verified using the limited sampled observations as it 

needs to be justified by considering the family of finite-dimensional distribution 

functions of the process (Bruno, Guttorp, Sampson, & Cocchi, 2009). This leads to two 

weaker forms of stationarity: second order stationary and intrinsic stationary as 

sufficient basis for the modelling of the random function ( , ).Z tu  The assumption of 

strict stationarity is then weakened by limiting the decision of stationary to the one-

point and two-point cdfs and the two moments of the random function (Kyriakidis & 

Journel, 1999) which depends only on the separation vector ( , )st s thh h  between the 

locations ( , )tu  and 1 1( , ).tu  These two less restrictive assumptions of stationarity 

(defined below) are the second-order stationarity and intrinsic stationarity which 

account for both distance sth  and direction.  

Definition 3.2.3 (Second-Order and Intrinsic Stationarity) 

(i) The STRF { ( , ) : ( , t) }Z t  u u D T  is said to be second-order stationary (SOS) 

within the domain D T if the first moment of the vector of random variables 

exists and is constant and the covariance function of all pairs of random 

variables exists and depends only on the separation vector: 

( , ) [ ( , )], ( , )

( , ) [( ( , ) ( , ))( ( , ) ( , ))],

( , )
s t s t

m t E Z t t

C h E Z t m t Z t h m t

t

   
     
  

u u u D T

h u u u h u

u D T      
(3.2.4) 

where ( , )m tu is the space-time mean function and ( ) ( , )st s tC C hh h is called 

the space-time covariance function. 

(ii)  The STRF ( , )Z tu  is said to be intrinsically stationary (IS) within the space-

time domain D T  if the mean vector and the variance of the increments 

( , ) ( , )s tZ t Z t h  u u h exist and are translation invariant:  

2

[ ( , ) ( , )] 0, ( , )

2 ( , ) ( ( , ) ( , ))

[( ( , ) ( , )) ], ( , )

s t

s t s t

s t

E Z t Z t h t

h Var Z t Z t h

E Z t Z t h t


       


   
       

u u h u D T

h u u h

u u h u D T
     (3.2.5) 

where ( , )s th h is called the space-time semivariogram. 
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The strictly stationarity in (3.2.3) implies SOS, assuming that the first two moments 

exist, whereas SOS does not imply strict stationarity. In a Gaussian spatio-temporal 

process, SOS and strict stationarity coincide, as a Gaussian process which is 

completely specified by its mean and variance (Bruno & Cocchi, 2004; Denham, 

2012). In many cases the assumption of SOS is not met and so the much weaker 

assumption of IS needs to be relied upon. Intrinsic stationarity is a sufficient condition 

to define the space-time semivariogram. In the second order stationary case, the space-

time semivariogram is related to the covariance and correlation functions by: 

 
( , ) ( ,0) C( , )

( , ) 1 ( , ) ( ,0)
s t s t

s t s t

h C h

h h C


 

 
  

h 0 h

h h 0
     (3.2.6) 

However, as the separation distance sh  or time th   increases the correlation between 

two random variables ( , )Z tu and ( , )s tZ t h u h generally tends to zero: 

 ( , ) 0s tC h h for s h  or ,th      (3.2.7) 

whilst the sill value of a bounded space-time semivariogram tends towards a priori 

variance ( )C 0  or ( , 0)C 0 : 

 ( , ) ( ,0),s th C h 0  for s h  or .th                (3.2.8) 

The space-time covariance function ( , )s tC hh  and semivariogram ( , )s th h  are said to 

be anisotropic if they depend on both distance and direction. They are, however, 

isotropic if they depend only on the modulus of .sh  

One primary constraint of geostatistical interpolation (or simulation) is the lack of 

(departure from) stationarity – as many real-life problems generate data sets that do not 

satisfy the SOS or IS assumption. Non-stationarity is often linked to the presence of 

trend in the data which can be removed resulting in residuals which are stationary 

(Kyriakidis & Journel, 1999). Then the trend is added back to the interpolated 

estimates of the residuals or incorporated directly into the interpolation scheme. The 

trend in the data represents large scale variations in the data while the residual obtained 

from the detrending is the small-scale fluctuations around the trend (Snepvangers, 

Heuvelink, & Huisman, 2003). When considering spatial residual kriging the 

assumption of IS describes the space-time dependence given by the variogram  

  2
2 ( , ) ( , ) ( , )s t s th E r t h r t       h u h u    (3.2.9) 
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which is analogous to the purely spatial version in (2.3.6). In this case it is possible to 

replace the original data series with the residual values in each of the variogram 

equations discussed in the preceding sections of the chapter without loss of generality. 

The possible sources of non-stationarity that exist within a data set are a non-constant 

mean, non-constant variance or spatio-temporally varying covariance function 

(Elmatzoglou, 2006). However, in many cases natural processes acting over large 

scales in space and/or time are better represented by non-stationary spatio-temporal 

models. Non-stationarity is usually limited to the mean (trend) component ( , ),m tu

which is made dependent on the space location u or instant time t or both ( , ).tu   The 

non-constant mean can be dealt with by expressing the mean function in terms of the 

space-time coordinates or other related variables such as the covariates whilst the non-

constant variance can be stabilised by various forms of transformation such as 

logarithm or Box-Cox transformation (Box & Cox, 1964). Kyriakidis et al. (1999) 

review forms of spatio-temporal trend models including the permissible models of 

Dimitrakopoulos and Luo (1997), being polynomial and trigometric functions or 

combinations of the two types to detrend and/or deseasonalise the data. This mixed 

form of these functions is applied in this study to model the trend of the morbidity 

incidence rates. The details of the space-time trend modelling approaches are presented 

in section 3.4.  

3.2.2 Space-time Covariance Function and Semivariogram 

The spatio-temporal moments are based on a similar underlying structure as the purely 

spatial moments, except that the time component must be taken into account. As 

mentioned in the introduction, the order in which measurements are observed in time 

plays an important role in interpolation (and simulation). The space-time variogram, 

covariance and correlogram are based on the same structures as their spatial 

counterparts when the temporal factor is included. The variability in the data is 

described by the graphical representation of the variogram as a function of the spatial 

lag vector ( sh ) and temporal lag distance ( th ). The spatial and temporal distances 

respectively describe the spatial and temporal continuity between the measurements 

(De Cesare, Myers, & Posa, 1997; Kyriakidis & Journel, 1999; Rouhani & 

Wackernagel, 1990). As already noted, geostatistical modelling basically focuses on 

the inference of the first two moments (the mean and covariance function or 
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semivariance) of a random function ( , )Z tu  which are required by subsequent 

estimation or simulation procedures (Sherman, 2011). Theoretical models of the 

spatio-temporal continuity of the random process are therefore required in order to 

obtain values of the covariance function or the semivariogram vector for any 

separation ( , ).st s th h h The space-time covariance function and semivariogram 

moment estimators are defined completely analogously to that in the purely spatial 

setting in chapter 2. The experimental space-time semivariogram is given by (2.3.10): 

 2

( , )

1
ˆ ( , ) ( , ) ( , )

2 ( , )
s t

st s t j s j t
n hs t

h Z t Z t h
n h      

h

h u u h
h

 (3.2.10) 

where ( , ) {[ , ), ( , )] : and }s t j v s j v tn h t t t t h       h u u u u h  and ( , )s tn hh  is the 

number of elements in the set ( , ).s tn hh  The lag values sh and th describe the spatial 

and temporal continuity between the observed samples (De Cesare et al., 1997; 

Kyriakidis & Journel, 1999; Rouhani & Wackernagel, 1990). The experimental space-

time semivariogram is the primary tool for inference in geostatistical space-time 

analysis. In this study we use the semivariogram to perform all the structural analysis 

of the morbidity incidence rates. The graphical representation of the semivariograms

ˆ ( , )st s th h becomes a three-dimensional surface plot. The definitions of the range, sills 

and nugget effect as define in chapter 2 remain unchanged. 

In the case of a multivariate random vector function 1( , ) [ ( , ),..., ( , )]T
kt Z t Z tZ u u u  we 

define the space-time cross-variogram and covariance function with their 

corresponding estimators defined as follows: 

The space-time cross-variogram is given by 

2 ( , ) ( ( , ) ( , )

( , ) ( , ) , , 1,...,

ij s t i i s j t

j j j s j t

h E Z t Z t h

Z t Z t h i j k
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whilst its the experimental crosss-variogram is calculated as: 
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The space-time cross covariance function is defined by 

 ( , ) ( ( , ) ( , )

{( ( , ) ( , )}

{ ( , ) ( , )}
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Z t m t
E

Z t h m t h

 

 

 

   

  
  

      

h u u h

u u

u h u h
  (3.2.13) 

and its its sample cross covariance calculated as: 
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The interpolation process is to fit a model to the scatter plot of the semivariogram. It is 

necessary to have a model that enables computing a variogram value for any possible 

separation distance, so continuous functions must be fitted to the experimental values. 

A theoretical model that best captures the overall features of the experimental 

semivariogram is then chosen. Only certain functions or combination of functions may 

be used to model the theoretical covariance function or semivariogram. The 

semivariogram estimator is unbiased (as in the purely spatial cases) at observed space-

time lags, whilst the covariance estimator is slightly biased. 

The space-time covariance function and the semivariogram are subject to the non-

negativity condition as in the traditional geostatistical analysis. This is given by the 

following theorem. 

Theorem 3.2.1 (Permissible conditions((Gregori, Porcu, Mateu, & Sasvári, 2008)): 

Let  ( , )Z tu  be a second-order stationary STRF, with covariance function ( , )st s tC hh  

and  semivariogram ( , )st s th h , as defined in (3.2.4) and (2.3.5), respectively . Then for 

the finite collections of spatio-temporal locations {( , ) : 1,..., }A t n  u : 

 (i)  
1 1 1

( , ) ( ; ) 0
n n n

stVar Z t C t t      
  

  
  

 
    

 
 u u u   (3.2.15) 

 (ii)  
1 1 1

( , ) ( ; ) 0
n n n

stVar Z t t t      
  

   
  

 
     

 
 u u u   (3.2.16) 

where ( , ) dt   u   and for all    such that 
1

0
n







 . 

As in the purely spatial case, the moment estimators of the covariance and variogram  
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functions do not satisfy these properties, in general. For this reason, we consider 

models that are guaranteed to be valid ones. Further, to carry out optimal prediction we 

require stC and st  at an unobserved location 0( , )s th . Estimates of these covariances or 

variances through direct empirical estimation are not available. Again, it is desirable to 

have space-time models. Stationary space-time covariance functions have a spectral 

representation, in an analogous to the purely spatial and purely temporal stationary 

covariance functions as was discussed in chapter 2. This representation can simply be 

viewed as an extension of the Bochner’s Theorem in 1d  by time dimension (see 

Cressie and Wikle (2011), chapter 6 for further reading).  

 
3.2.3 Space-time Permissible Models 

The two most crucial concerns when modelling spatio-temporal dependence are the 

choice of the model for the covariance function or semivariogram and the estimation of 

the model parameters. The space-time covariance function (or semivariogram) models 

must be valid (permissible), satisfying the condition of positive definiteness for the 

covariance function (or conditionally negative definiteness for the semivariogram), and 

the chosen model(s) is/are sufficiently flexible to allow fitting to the data through a 

careful estimation of the model parameters (and also to ensure that the kriging systems 

in section 3.3 have a unique solution). Although a well-established set of permissible 

models exists for the semivariograms (Deutsch & Journel, 1998), a more diverse range 

of models has been developed for modelling of space-time autocorrelation structures 

(De Iaco et al., 2001; Griffith & Heuvelink, 2010; Kyriakidis & Journel, 1999). These 

models are classified as either being separable (Gneiting, Genton, & Guttorp, 2007) or 

non-separable (De Iaco, 2010; De Iaco et al., 2001; Ma, 2008). 

A separable space-time covariance function or semivariogram considers the spatio-

temporal process ( , )Z tu  as a joint process of two independent processes, one that 

occurs in space and the other in time, resulting in a purely spatial and temporal 

components, although the two processes are not observed separately but jointly 

(Denham, 2012). This formulation allows for computationally efficient estimation and 

inference procedures which has led to separable covariance models being used even on 

situations in which they are not physically justifiable (Bruno & Cocchi, 2004; Cressie 

& Huang, 1999). Separability is restrictive and often requires unrealistic assumptions. 

Studies have suggested ways of testing for separability (Fuentes, 2006; Li, Genton, & 
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Sherman, 2007; Mitchell, Genton, & Gumpertz, 2005, 2006). Separable models are 

characterised by the decomposition of the SOS variable C ( , t)st u into its purely spatial 

( )s sC h  and purely temporal ( )t tC h  components (De Cesare et al., 1997; Rodriguez-

Iturbe & Mejia, 1974), which are reassigned in different combinations. The spatial and 

temporal zonal anisotropic factors are thus respectively included in the purely spatial 

and purely temporal covariances. Non-separable models are specifically constructed to 

take into account the interaction between the spatial and temporal characteristics data. 

In such cases statistical methods, such as Fourier transforms pairs in d are used 

(Cressie & Huang, 1999). The models are then restricted to a small class of functions 

for which the closed form solution to the d  variate Fourier integral is known. De 

Iaco (2010) presents some classes of space-time covariance models that dominate in 

the literature in her comparative analysis of these existing models. They include a non-

separable generalised product-sum model (De Cesare et al., 2001a; De Iaco et al., 

2001).  

In this study the product-sum class of models is applied, among the other space-time 

variography approaches, to the malaria morbidity incidence rates for the following 

reasons (De Iaco et al., 2001):  

(i) It offers a large class of flexible models that impose fewer constraints of 

symmetry between the spatial and temporal correlation components than other 

classes; the admissible values for just one parameter are dependent on the sill 

values of space-time components varying which leads to a necessary and 

sufficient condition for positive definiteness; 

(ii) It does not require an arbitrary space-time metric to be imposed, and the model 

can be fitted to data using relatively straight-forward techniques similar to 

those established for the purely spatial case.   

The product-sum models have wide range of applications, though their applications in 

malaria epidemiological modelling are limited in the literature, as discussed in chapter 

1 and the introductory section. Separable models which provide a useful base for 

deriving non-separable models include the metric model (Armstrong, Chetboun, & 

Hubert, 1993; Dimitrakopoulos & Luo, 1994), linear model (Christakos & Bogaert, 

1996; Rouhani & Hall, 1989); and the product model (De Cesare et al., 1997; Posa, 
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1993; Rodriguez-Iturbe & Mejia, 1974) . The product-sum model (De Cesare et al., 

2001a; De Cesare, Myers, & Posa, 2001b, 2002; De Iaco et al., 2001) is an extension 

of the product model to include an additional term being the sum of the spatial and 

temporal covariance models. The two models are presented as follows: 

The product model is one simple way of modelling the space-time covariance 

function where the spatial and temporal domains are kept separate by product 

decomposition as defined by: 

 ( , ) . ( ). ( )st s t s s t tC h k C C hh h       (3.2.17) 

where k  . The space-time semivariogram version of (3.2.17) can be obtained in 

terms of marginal functions by  

 ( , ) [ ( ) ( ) (0) ( ) ( ) ( )]st s t s t t t s s s s t th k C h C h      h 0 h h   (3.2.18) 

from which the parameter k  is obtained by putting both sh  and th  to equal to zero in 

(3.2.17):  

( ,0) ( ). (0)st s tk C C C 0 0
      

(3.2.19) 

where ( ,0)stC 0  is the spatio-temporal (or global) sill and is such that it is equal to both 

the spatial and temporal sills: 
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h
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0
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 (3.2.20)  

The product-space-time semivariogram (3.2.18) is derived by the relations: 

( , ) ( ,0) ( , )

( ) ( ) ( )

( ) (0) ( )

st s t st st s t

s s s s s

t t t t t

h C C h

C C

h C C h





 
  
  

h 0 h

h 0 h
     (3.2.21)

 

The product model requires only the global sill which equals both the spatial and 

temporal, in its fitting (Myers, 2004). Like the metric and linear models (Christakos & 

Bogaert, 1996; Dimitrakopoulos & Luo, 1994), the product model shares similar 

limitations as the variability in space and time which do not interact. In addition, for 
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any pair of time points, the cross covariance function of the two spatial processes 

always has similar shape (3.2.22) just as the same result holds for any pair of spatial 

locations and the cross-covariance function of the two time series:  

 
1 2 1 2

1 2 1 2

( , ) ( , ), fixedspatiallags and

( , ) ( , ), fixedspatiallags and

st s t st s t s s

st s t st s t s s

C h C h

C h C h t t


 

h h h h

h h   (3.2.22) 

Thus, no allowance is made for the possibility that the structure may change over time.               

Consequently, the product model was extended to the product-sum model to include 

an additional term being the sum of the marginal spatial and temporal covariance 

models.  

The product-sum model as earlier mentioned belongs to the class of non-separable 

models. It is defined by: 

 1 2 3( , ) ( ) ( ) ( ) ( )st s t s s t t s s t tC h k C C h k C k C h  h h h    (3.2.23) 

and can equivalently be written in terms of the semivariograms as: 

          2 1 3 1 1( , ) [ (0)] ( ) [ ( )] ( ) ( ) ( )st s t t s s s t t s s t th k k C k k C h k h        h h 0 h   (3.2.24) 

where ( )s sC h  and ( )t tC h  are the valid spatial and temporal covariance functions and 

( )s s h  and ( )t th  are spatial and temporal semivariograms with corresponding sill 

values ( )sC 0  and (0)tC .  

By the SOS assumption, using the definition, ( ,0) ( ) (0) 0,st s t    0 0  it is sufficient 

to ensure that the semivariograms are asymptotically bounded and therefore have sills  

and for positive definiteness it is then sufficient that 1 0,k  2 0k  and 3 0k  . It then 

follows that: 

2 1

3 1

( ,0) [ (0)] ( ) ( )

( , ) [ ( )] ( ) ( )
st s t s s s s s

st t s t t t t t

k k C k

h k k C h k h

  
  

  
   

h h h

0 0
    (3.2.25)  

where sk  and tk  are respectively considered as coefficients of proportionality between 

the space-time semivariograms ( ,0)st s h  and ( , )st th 0 , and the spatial and temporal 

semivariograms, ( )s s h  and ( )t th (De Iaco et al., 2001). These two values were 
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earlier assumed to be equal to 1 in De Cesare et al. (2001b) for easier determination of 

1,k 2k and 3k , and fitting of the model. Deducing from (3.2.23), we have: 

1 2 3( ,0) ( ) (0) ( ) (0)st s t s tC k C C k C k C  0 0 0     (3.2.26)  

from which together with (3.2.25) we obtain the system: 

2 1

3 1

(0)

( )
s t

t s

k k k C

k k k C

 
   0

       (3.2.27) 

which consequently leads to the following theorems on the asymptotic and bounded 

behaviour of semivariograms.  

Theorem 3.2.2 (Asymptotic behaviour of semivariograms (De Iaco et al., 2001)): 

Let ( , )Z tu  be a SOS space-time random function. Assume that the space-time 

covariance function stC  has the form in (3.2.23) and suppose that is continuous in 

space-time domain ; 2d d   D T   . Then by (3.2.18), the following holds: 

 

lim lim ( , ) ( ,0)

lim ( ,0) ( )

lim ( , ) (0)
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      (3.2.28) 

 It then follows that:  

 

( , ) ( ,0) ( , )

( ,0) ( ,0) ( ,0)

( , ) ( ,0) ( , )

st s t st st s t

st s st st s

st t st st t

h C C h
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h 0 h

h 0 h

0 0 0

     (3.2.29) 

and that these semivariograms ( , ),st s th h ( ,0)st s h and ( , )st th 0 do not attain the same 

sill value. 

Theorem 3.2.3 (Sufficiency for Admissibility (De Iaco et al., 2001)): Let ( , )Z tu  be a 

SOS STRF with covariance function (3.2.23) and is continuous in the space-time 

domain ; 2.d d   D T   Assume that for the space-time semivariogram defined 

in (3.2.24) with the value of k  as defined in (3.2.32).  Then the parameters: 1 0,k   

2 0k   and 3 0k  if and only if k satisfies the following inequality: 
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1

0
max{ [ ( ,0)]; [ ( , )]}st s st t

k
sill sill h 

 
h 0

    (3.2.30) 

It also follows that if either ( ,0)st s h  or ( , )st th 0 is unbounded, then:  

(i)  there is no choice of k , satisfying the inequality (3.2.30) such that (3.2.33 ) is a 

valid space-time semivariogram; and 

(ii)  space-time semivariogram (3.2.24) is not a valid model for any choice of the 

coefficients 1,k 2k and 3k .    

Following Theorems 3.2.2 and. 3.2.3 the coefficients 1,k 2k and 3k  are derived in terms 

of the sills ( ,0),stC 0 ( )sC 0 and (0)tC , and the parameters sk  and tk  as defined 

by: 
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(3.2.31)  

whilst the single parameter k  is defined as: 

 1( ) (0) ( ,0)
,

( ) (0)
s s t t st

s s t t s t

k C k C C k
k

k C k C k k

 
 

0 0

0
    (3.2.32) 

which must satisfy condition (3.2.30) in Theorem (3.2.3). The space-time 

semivariogram (3.2.24) is then re-defined in terms of the single parameter (3.2.32) to 

obtain the generalised product-sum (GPS) model (De Iaco et al., 2001): 

( , ) ( ,0) ( , ) ( ,0) ( , )st s t st s st t s s t th h k h      h h 0 h 0 ,   (3.2.33) 

which modifies the earlier proposals by De Cesare et al. (2001a, 2001b) to make it 

more flexible in its general implementation as earlier discussed.  

The generalised product-sum model (3.2.33) exhibits some interesting properties as 

demonstrated by the previous two theorems. Theorem 3.2.2 ensures the strictly 

positive-definiteness of the model for any class of covariance models since it is related 

to the sill values of the marginal covariance functions. This is an important 
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requirement for a unique solution of kriging system during the prediction process. It 

also requires that the global sill is greater than the spatial and temporal sills, but less 

than their combined value. It has recently been shown that the generalised product-sum 

covariance model is strictly positive definite if the marginal functions are strictly 

positive definite (De Iaco, Myers, & Posa, 2011a, 2011b).  

The product-sum model allows for the specification of different types of covariance or 

semivariogram models for the spatial and temporal directions. It also offers a 

mechanism for the interaction of dependence between space and time, making its use 

more flexible (user friendly) than the more simplistic separable models and the other 

wider class of non-separable models proposed by Cressie and Huang (1999) and 

Gneiting (2001) which are too complex and difficult to implement. The spatial and 

temporal marginal structures of the product and product-sum models can be modelled 

with their own nugget effects. The alternative way is to add a global nugget effect to 

the models presented (De Iaco, Myers, Palma, & Posa, 2010). As for the spatial and 

temporal semivariogram models, space-time semivariogram models can be fitted 

manually or automatically. Statistical criteria, such as weighted least-squares outlined 

in section 2.3.4 of chapter 2 can be used to help justify the choice of a particular model 

and its sets of parameters. In this study manual fitting was used to take into account the 

observed behaviour of the experimental semivariograms.  

3.2.4 Model Parameter Estimation 

Space-time autocorrelation analysis, as in the strictly spatial context, basically consists 

of computing the experimental semivariogram (or covariance function) and fitting 

valid model (or its components) to it through its estimation of parameters. There may 

be some complications in the process due to anisotropies or non-stationarity, though 

(De Iaco et al., 2001). In both cases the simplest approach to fitting a spatio-temporal 

covariance function or semivariogram is to reduce the problem to one similar to those 

encountered in the strictly spatial (or traditional) case. This procedure is practical 

because a large class of known valid models is available and additional models can be 

generated as positive convex combinations of the simpler models  (De Iaco et al., 

2001). In addition, there are some key basic geometric features which can be looked 

for in plotting, for example, the experimental semivariogram that can be used to 

choose the type of model. The problem of choosing valid space-time models has been 

considered in the previous section. One way of fitting a model to space-time data is to 
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estimate and model the spatial and temporal semivariogram via the traditional 

approach, separately from the observed space-time data and then combine, as in the 

product or product-sum model, to obtain the final space-time model (De Cesare et al., 

1997; De Cesare et al., 2001b). The weighted least squares approach (Cressie, 1993) 

could also be used as a criterion to determine parameters in either or both of the 

semivariogram components, which also requires determining the model type(s) 

separately where cross validation can be used to evaluate the resulting fit (Myers, 

1991).  

The generalised product-sum (GPS) model as presented in the previous section is 

widely used, including modelling of spatio-temporal dependence of malaria morbidity 

incidence rates of Ghana in this study. The following outlines its estimation and 

modelling procedures (De Cesare et al., 2001b; De Iaco et al., 2010; De Iaco et al., 

2001; De Iaco, Myers, & Posa, 2003; De Iaco & Posa, 2012):  

Let ( , )Z tu  be a STRF and {( , ), 1,..., ; 1,..., }j s tA t n j n   u  be a set of space-time 

sample data satisfying the SOS property. Then the fitting procedure of the model 

(3.2.33) basically involves estimating and modelling the spatial and temporal marginal 

semivariograms, ( ,0)st s r  and ( , )st tr 0 , which proceeds as follows:  

If {( , ), 1,..., ; 1,..., }j s tA t n j n   u  is a set of space-time sample data locations of 

STRF ( , )Z tu satisfying the SOS property, then:  

(i)  Compute the experimental marginal spatial and temporal semivariograms by 

(3.2.10), averaging over time for each data time point and averaging over space 

for each data spatial location: 
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 (3.2.34) 

where sr  is a vector lag with spatial tolerance s and similarly ,tr  a vector lag 

which has the corresponding temporal tolerance s ; ( )sn r  and ( )tm r  are, 

respectively the cardinalities of the sets ( )sn r  and ( )tm r :  

( ) {( , ) ; ( , ) : }

( ) {( , ) ; ( , ) : }

s s s s s

t t t t t

n t A t A

m r t h A t A r h





      


     

r u h u r h

u u
  (3.2.35) 
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Usually, the spatial locations need not be on a regular grid, whilst the temporal 

points are regularly spaced and it is not necessary to use a temporal distance 

classes.  

(ii)  Choose valid/permissible models, ( ,0)st s r and ( , )st tr 0 for the estimators in step 

(i) with the sills estimated values, ( )s sk C 0  and (0)t tk C , respectively. 

(iii)  Compute the experimental space-time semivariogram as in (3.2.10): 

 2

( , )

1
ˆ ( , ) ( , ) ( , )

2 ( , )
s t

st s t s t
n rs t

r Z t h Z t
n r

    
r

r u h u
r

 (3.2.36) 

where ( , )s tn rr  is the cardinality of the set: ( , ) {( , ) ;s t s tn r t h A   r u h

( , ) :t Au s s s r h and }t t tr h   . 

(iv)   Estimate the global sill ( ,0).stC 0 This can be done visually by plotting the 

experimental space-time surface ˆ ( , ).st s th h  Alternatively, the weighted least 

squares (WLS) criterion (Cressie, 1993; De Iaco et al., 2001) can be used to fit 

ˆ ( , )st s th h  to the generalised product-sum model (3.2.33).  

(iv) Compute the value of k  by (3.2.32), making sure that condition (3.2.30) is 

satisfied. If not, replace it by an admissible value, usually closet to the least 

squares estimate; that is, the global sill ( ,0)stC 0  value can be estimated through 

the mean value of the semivariogram surface in the neighbourhood around the 

space-time range (corresponding to the spatial and temporal ranges of the 

marginal semivariograms). Note that if the parameter k  is estimated, the global 

sill is univocally determined and vice versa.  

 

3.3 Geostatistical Space-Time Kriging Techniques 

Once statistical dependencies in space-time have been characterised, optimal linear 

prediction (kriging) is carried out based on the modelled space-time semivariogram (or 

covariance function). The goal of space-time kriging is to predict ( , )Z tu  at 

unobserved location 0( , )tu , usually based on incomplete and noisy data observed in 

the neighbourhood of 0( , )tu (Cressie & Wikle, 2011). As in the case for the traditional 

method of kriging discussed in chapter 2, an unbiased linear predictor 0( , )pZ tu of 

( , )stZ tu  has the property that its mean square prediction error can be expressed in 
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terms of the covariance function ( , )st s tC hh or semivariogram ( , )st s th h , which satisfies 

the non-negative condition in (3.2.15 and (3.2.16), respectively. Unlike the parameter 

estimation during structural analysis, kriging does require a stationarity (Cressie & 

Wikle, 2011), like ordinary kriging which requires intrinsic stationarity. To develop 

the space-time kriging based on the covariance function (or semivariogram), assume 

the STRF can be decomposed into a global trend ( , )m tu  and residual component 

( , )R tu  as: ,( , ) ( , )m t R tu u  where the residual has a distribution with mean zero and 

covariance ,stΣ where [ ( , )] ( , ).E Z t m tu u  This allows some degree of robustness for 

the stationarity to be attained. Then for the observed values { ( , ), 1,..., ;j sZ t n  u  

1,..., }tj n  and following (2.4.1)–(2.4.5), we obtain the space-time linear predictor 

which is a linear combination of the ( , )n tu  random variables ( , )Z tu  plus a constant 

local mean ( , )m tu  which leads to the space-time ordinary kriging (STOK) predictor, 

as obtained in section 3.3.1. Also presented in the following sub-sections, focusing 

particularly on those applied to the malaria morbidity incidence cases in Ghana, are 

space-time lognormal ordinary kriging (STLOK) and space-time ordinary co-kriging 

(STOCK), being the log-transformed and multivariate versions of the STOK 

technique, respectively. 

 

3.3.1 Space-Time Ordinary kriging (STOK)  

As extension of OK, the space-time ordinary kriging (STOK) predicts at specific 

unsampled locations 0( , )tu using the ( , )n tu  observed samples in space and time made 

in those neighbourhoods:  
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To ensure that (3.3.1) is BLUE, the sum of weights must be equal to 1: 

 
0

1 1

1 1

ˆ ( , ) ( , )

subject to : 1

s t

s t

n n
stok

stok j j
j

n n
stok

j
j

Z t Z t 









 

 






 





u u

     (3.3.2) 



83 
 

where the weights are estimated such that the expected error is zero, thus

0
ˆ[ ( , ) ( , )] 0stokE Z t m t u u  and the prediction error variance,  

 2
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  (3.3.3)  

is minimised via the Lagrangian function with multiplier ( , )u t which accounts for the 

constraint on the weights (Christakos & Hristopulos, 1998; Liu & Koike, 2007): 
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which under the IS condition is further simplified following the OK procedure in 

section 2.4.2 and the work of (Christakos & Hristopulos, 1998) to obtain STOK 

system:  
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 (3.3.5) 

 

3.3.2 Space-Time Lognormal Ordinary Kriging (STLOK) 

The STOK technique can also be applied to highly positively skewed space-time data, 

as the case of the observed district-month malaria morbidity incidence rates 

{ ( , ) : 1,..., ; 1,..., }I t n t T   u  in this study in section 4.3.2 of chapter 4. The space-

time data is log-transformed to  stabilise the variations in the observed data set and 

also improve the normality assumption (Journel, 1980; Journel & Huijbregts, 1978)}. 

The STOK predictor ˆ ( , )stokZ tu  in (3.3.2) is thus modified to obtain the optimal space-

time lognormal ordinary kriging (STLOK) predictor:  
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1 1

ˆ ( , ) ( , )
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where in this case ( , ) ln ( , )Z t I t u u . The interpolated ˆ ( , )stlokZ tu  values are back-

transformed to obtain the STLOK predictor at the unsampled space-time locations

( , )tu : 

2ˆ ˆ( , ) exp[ ( , ) 0.5 ]stlok stlok stlok stlokI t Z t    u u     (3.3.7) 

where 2
stlok  is the kriging variance and stlok  is the Lagrangian multiplier in log scale.  

3.3.3 Space-Time Ordinary Co-kriging (STOCK)  

Space-time co-kriging is a multivariate geostatistical kriging technique used for 

modelling of spatio-temporal continuity multivariate attributes. The multivariate STRF 

then becomes the real-valued vector function, 1 2( , ) [ ( , ), ( , ),..., ( , )] ,T
kt Z t Z t Z tu u u uZ

where 2k  , 1( , ) dt   u D T   denotes the space-time domain and the components 

assumed to be SOS and the semivariogram matrix, ( , ) [ ( , )]s t ij s th hh hΓ exists and 

does not depend on ( , )tu  where ( , ),st s thh h 1
s  h u u  and 1

th t t  ;  

        ( , ) [ ( , ) ( , )],[ ( , ) ( , )]ij s t i s t i j s t jh Cov Z t h Z t Z t h Z t       h u h u u h u     (3.3.8) 

, 1, 2,...,i j k  are the cross-semivariograms between the ( , )iZ tu  and ( , )jZ tu  STRF’s, 

when i j  and the direct semivariograms of the STRF’s ( , )iZ tu when .i j  

Assuming each component of ( , )tuZ  to be a linear combination of uncorrelated SOS 

random functions: 

 1 1( , ) [ ( , ), ( , ),..., ( , )]T
l kt Y t Y t Y tu u u uY , 1, . . . ,l L    (3.3.9) 

from which we obtain:  

 
1

( , ) ( , )
L

l l
l

t Y t


u A uZ ,      (3.3.10) 

where lA  is a ( )k k  coefficient matrix for each 1,..., .l L  The space-time LCM for 

the semivariogram matrix ( )sthΓ can be written as: 

 
1

( , ) ( , )
L

s t l l s t
l

h g h


 h B hΓ ,      (3.3.11) 

where [ ]T l
l l l ijb B A A  and 1,..., ,l L , 1,...,i j k  are positive definite ( )k k  matrices 

and ( , )l s tg hh  are basic space-time semivariograms representing different scales of 

variability.  
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The LMC in space-time framework can be extended using a product-sum model, 

where each basic space-time semivariogram ( , )l s tg hh  is modelled as generalised 

product-sum model (De Iaco, Maggio, Palma, & Posa, 2012; De Iaco et al., 2001, 

2003; De Iaco, Palma, & Posa, 2005): 

 ( , ) ( ,0) ( , ) ( ,0) ( , ),l s t l s l t l l s l tg h h k h     h h 0 h 0 1,...,l L  (3.3.12) 

where ( ,0)l s h  and (0, )l th  are spatial and temporal marginal semivariogram models 

respectively, and ,lk 1,...,l L  are the parameters defined by 

 
[ ( ,0)] [ ( , )] [ ( , )]

[ ( ,0)] [ ( , )]
l s l t l s t

l
l s l t

sill sill h sill g h
k

sill sill h

 
 
 




h 0 h

h 0
   (3.3.13)  

which must satisfy the necessary and sufficient condition (3.2.30) (De Iaco et al., 

2001) to ensure that ( , )l s tg hh is strictly conditionally negative definite. Substituting 

(3.3.12) in (3.3.11), the space-time LCM with basic generalised product-sum 

semivariogram models is determined by the marginal LMC in space and time 

respectively: 

 1

1

( ,0) ( ,0)

( , ) ( , )
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s l l s
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t l l t
l

h g h










 






h B h

0 B 0

Γ

Γ
      (3.3.14  

The diagonal elements of lB  are determined after modelling marginal direct 

thesemivariograms whilst the off-diagonal elements are obtained by marginal cross 

semivariogram models in such a way to ensure positive definiteness of the matrices lB

(De Iaco et al., 2012; De Iaco et al., 2010).   

The space-time ordinary co-kriging (STOCK) then becomes natural extension of 

spatial OCK to the space-time data (De Iaco et al., 2005) with the optimal predictor 

taking the form (3.3.15), from (3.314): 

 
( , )

1

( , ) ( , ) ( , )ˆ
n t

stok t t t 


 
u

u Λ u Z uZ      (3.3.15) 

where ( , ); 1, 2,..., ( , )t n t  Λ u u are ( )k k  matrices of weights whose elements 

( , )ij t u  are the weights assigned to the jth  variable at data location ( , )tu  to predict 
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the ith  variable at the point ( , ) .t  u D T  The predicted space-time random vector, 

( , )ˆ
stok tuZ with components ˆ ( , ); 1, 2,..., ,iZ t i k u is obtained by using all the data 

available at the points ( , ) ; 1, 2,..., ( , ).t n t   u D T u The matrices of weights,

( , )tΛ u  are determined by ensuring the unbiased and efficiency conditions for the 

predictor ( , )ˆ
stok tuZ  by minimising the prediction error variance (Goovaerts, 1997). De 

Iaco et al. (2010) propose a modified GSLIB routine code “COK2ST’ for producing 

predictions multivariate in space-time domain using the space-time LMC in (3.3.11).  

3.3.4 Prediction Uncertainty and Accuracy  

The space-time (or spatial) prediction variance, 2
p  is used as a criterion for the 

determination of optimal values for the space-time kriging system. It provides useful 

information about each kriging procedure. The prediction variance which depends on 

the semivariogram (or covariance) model and the spatio-temporal configuration of the 

data in relation to the data locations{( , ); 1, 2,..., ; 1, 2,..., }jt n j T   u  is used as a 

measure of uncertainty of each prediction made (Gething, 2006). The prediction 

uncertainty increases with large spatial or spatio-temporal variances and for 

predictions that are more distant from data location. As the kriging variance is 

independence of the observed data its use is restricted to a relative measure of 

uncertainty which permits a relative comparison of uncertainty of the individual 

predictions and different data configurations estimate (Gething, 2006). After, for 

example, the predictor (3.3.2) is implemented for interpolation at the q  unampled 

locations{( , ); 1, 2,..., },t q  u  it worth to assess the closeness of the predicted values 

to the observed ˆ( ( , ) ( , ))stokZ t Z tu u  as a away of validating the accuracy of the 

prediction. However, in practice the set of q  true values { ( , ); 1, 2,..., }Z t q  u  is by 

definition unknown for the accuracy of the predictions to be determined with certainty. 

There are various methods, including the cross-validation and Jacknife procedures, 

which can be employed to assess the predictive power of the developed space-time 

kriging models (Deutsch & Journel, 1998). 

Cross-validation allows the prediction method to be tested at the locations of existing 

observations (Goovaerts, 1997). It proceeds by the removal of one datum ( , )Z tu  at a 

time from the data set and re-estimation of this value from the remaining data using the 
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kriging technique in question, noting the prediction error ˆ( , ) ( , ) ( , ).e t Z t Z t   u u u

The removed datum is then replaced and another removed, repeating for all n T  data 

locations to provide a complete set of predicted values for comparison with the 

observed data set. Cross-validation allows for the assessment of the impact of a 

semivariogram and kriging models used. It is a measure of the performance of the 

space-time kriging process within the prediction neighbourhood of the data set. It can 

also detect what might have gone wrong but does not necessarily ensure the procedure 

will be successful. The interpolated and actual values can be compared to assess the 

performance of the model by computing the associated error values ( , )e tu which must 

be symmetric, centred on zero mean with minimum spread of which should not show 

any trend in space or time (Denham, 2012).  

Typical measures of kriging accuracy for comparison include correlation coefficient

ˆ ,
ZZ

 indicating the degree of linear association between the observed and predicted 

data sets. It also measures the variation explained 2( )r  in the data and relates the root 

mean square error ( );RMSE the mean error ( )ME which measures the bias of the model 

prediction and should be as close to zero for unbiasedness; the mean absolute error 

( )MAE  and RMSE  which serve as measures of mean accuracy with smaller values 

indicating better performance of the kriging estimator. They are defined as follows:  

 
1 1

1 ˆ( , ) ( , )
n T

t

MAE Z t Z t
n T  

 

 
  u u     (3.3.16) 

 2

1 1

1 ˆ( , ) ( , ) ( )
n T

t

RMSE Z t Z t SSE
n T  

 

  
  u u   (3.3.17) 

Prediction accuracy assessment by the cross-validation method may be adversely 

affected by the strictly dependence on the datum to which it is compared (Denham, 

2012; Gething, 2006). For example, when a datum is removed temporarily to generate 

a cross-validation prediction at that point, the semivariogram is not recomputed. 

However, for large data observations with absence of extreme outliers, the influence of 

an individual datum on the experimental semivariogram is negligible in most cases. 

Another limitation is the use of simple arithmetic averages to generate estimates of 

ME and MAE which may result in biased estimates when the data are clustered.   
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The Jacknife method is used to obtain an unbiased prediction estimate and to minimise 

the risk of overfitting by reducing the estimation variance (Abdi & Williams, 2010). It 

was originally proposed by Quenouille (1956) as a non-parametric way of minimising 

the bias of an estimator of a population parameter and further expanded by Tukey 

(1958) to include estimation of variance of the estimator. The Jacknife evaluation 

procedure begins by dropping in turn each observation and fitting the model for the 

remaining set of data. The model is then used to predict the removed observation. 

Proceeding in this way, each observation is predicted to obtain a new set of data. In the 

context of this study, the predictive power of the space-time kriging models is assessed 

by applying the Jacknife procedure to a small portion of the data set which will not be 

used in the modelling process. The predicted estimates Ẑ( , )tu  obtained at each 

space-time location ( , )tu are compared with the observed (validation) data set 

Z( , )tu  by computing the prediction accuracy measures as in (3.3.16) and (3.3.17).  

 

3.4 Conceptual Modelling Approaches of STRF 

There are two main schools of thought for modelling spatio-temporal data (Kyriakidis 

& Journel, 1999). In the first view, the space-time data set is considered as a single 

random function ( , )Z tu , integrating both space and time components (Christakos, 

1992), where the joint space-time semivariogram model can be used to characterise the 

spatio-temporal discontinuity. The second conceptual view considers STRF ( , )Z tu  as 

vectors of random functions or time series, depending on which domain has sufficient 

data. If ( , )Z tu  is a vector of random functions, then it is considered as a collection of 

finite number of T temporally correlated space random functions ( ),Z u where 

1( , ) [ ( ),..., ( )]T
TZ t Z Zu u u and the spatial maps of the space-time random variable are  

generated at limited time instants 1,2,..., .t T  In the case of ( , )Z tu  being vector of 

time series, then it becomes a collection of finite number of spatially correlated time 

series (spatial time series) and 1( , ) [ ( ),..., ( )] ,T
nZ t Z Zu u u  where constructions of the 

time series are made at the sparse locations ; 1,..., .n  u   In each of these modelling 

approaches, the STRF ( , )Z tu  can be decomposed into the mean ( , )m tu and a 

stochastic residual component ( , )R tu  as was initially indicated in section 3.3. The 

mean function ( , )m tu models the average variability, being the trend and/or seasonal 
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cycles, whilst ( , )R tu  models the space-time fluctuations around the trend function. 

There are two types of decompositions which are usually considered, depending on 

whether the trend function ( , )m tu  is deterministic or stochastic (Kyriakidis & Journel, 

1999). The modelling of ( , ),m tu  where ( , )Z tu  is considered as vectors of spatially 

correlated time series, is presented in the following section. 

 

3.4.1 Modelling of Space-Time Trend Component  

The deterministic space-time trend ( , )m tu component of the STRF is often, modelled 

by the function: 

0 0

( , ) ( , ), ( , ) ,
L K

kl kl
l k

m t b f t t
 

   u u u D T     (3.4.1) 

which is made up of KL known basis functions ( , )klf tu chosen to fit the observed 

space-time data, and , 1, ..., ; 1, ...,klb k K l L  are unknown coefficients to be 

determined. The basis functions ( , )klf tu  can be polynomial or piece-wise continuous 

functions to model smooth variations or discontinuities in space, whilst periodic 

functions are used to account for seasonal variations in the temporal domain. 

Dimitrakopoulos & Luo (1997) proposed various forms of trend models,  which 

include a mix of a polynomial of order n  and trigonometric functions and to fit an 

upward trend as well as the cycles in the space-time data: 

0 1 1

2

( , ) ( ) ( ) ... ( ) ( ) cos( )

( )sin( )

n
n n

n

m t b b t b t b t

b t
    










    



u u u u u

u   (3.4.2) 

where ( ); 0,1,...,ib i n u  are the coefficients of the trend component of the model 

whereas 1( )nb  u  and 2 ( )nb  u are the coefficients of the periodic component which 

are linked to the amplitude ( )a u  and phase ( ) u  of the cycles in the data with 

angular frequency 2    of period .  The amplitude and the phase are defined by: 

2 2
1 2

1
2 1

( ) [ ( )] [ ( )]

( ) tan [ ( ) ( )]

n n

n n

a b b

b b

  

  
 


 

  


 

u u u

u u u
     (3.4.3) 

The coefficients ( )ib u  of  the  trend model (3.4.2)  are  treated as precise data at each  
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location u  and may be computed with the ordinary least squares (OLS) method 

(Chatterjee & Hadi, 2006; Draper & Smith, 1981). The OLS method minimises the 

sum of squares of the residuals[ ( , )] [ ( , )],TR t R t u u  resulting in the estimation of the 

trend coefficients: 

1ˆ [ ( ) ( )] ( ) ( )T TZ Z Z R      u u u u      (3.4.4)  

where 0 1 2
ˆ [ , ,..., ,..., ] .T

n nb b b b   If the trend coefficients are modelled as outcomes of 

random variables, then the basis functions ( , )klf tu  are considered as random and the 

model (3.4.1) becomes stochastic model. In this case, the coefficients klb  can be 

spatially estimated by using the simple or ordinary kriging technique (Fernández-

Cortes, Calaforra, Jimènez-Espinosa, & Sánchez-Martos, 2006; Oehlert, 1993) to 

obtain the interpolated surfaces: 

( )

1

( ) ( ) ( ), 0,1,..., 2
i

i

n
ok ok
i ib b i n 






  
u

u u u ,    (3.4.5) 

for the optimal prediction of the global trend function to be determined by: 

( )2

0 1

ˆ ( , ) [ ( ) ( )] ,
i

i

nn
ok ok i

i
i

m t b t  





 


u

u u u      (3.4.6) 

for each { 1,.., , }t t T  T . 
 

3.4.2 Optimal Prediction of STRF  

The optimal prediction of the space-time randon function (STRF) at the unsampled 

location  ( , )tu  is obtained through an established link between the two conceptual 

approaches as discussed above. The optimal trend estimator in (3.4.6) combines with 

the interpolated residuals ˆ ( , )stokR tu  via the single spatio-temporal random function 

modelling approach as in (3.3.2), yielding the space-time optimal predictor (3.4.7): 

 ˆ ˆˆ( , ) ( , ) ( , ),stok stokZ t m t R t u u u      (3.4.7)  

for each tT , from which continuous spatial maps can be generated to illustrate the 

distributional pattern of the estimated value of the random variable ( , )Z tu .  
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3.5 Summary Chapter 

The chapter provided the geostatistical space-time stochastic modelling framework for 

the joint analysis of data distributed in space and time domains which serves as an 

extension of those techniques developed for purely spatial analysis presented in 

chapter 2. It focused on those modelling procedures mainly used to explore the spatio-

temporal distribution of the malaria morbidity incidence cases and its potential climatic 

effect. The space-time random functions and their properties coupled with the 

modelling approaches of the spatio-temporal continuity including the generalised 

product-sum model fitting of the space-time semivariograms were covered.  

Also outlined in the chapter were the space-time kriging techniques, namely space-

time ordinary kriging (STOK) and its two main variants, space-time lognormal 

ordinary kriging (STLOK) and space-time ordinary co-kriging (STOCK) to account 

for the highly positive skewed data and effect of exogeneous variables, respectively. 

Finally, the two conceptual approaches of spatio-temporal modelling were discussed. 

The first considers space-time data as a joint single random function, integrating both 

space and time components, whilst the second views the space-time random function 

(STRF) and as vectors of random functions or time series. The choice between the two 

depends on the domain with relatively sufficient data.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

Chapter 4 

Exploratory Data Analysis 

4.1 Introduction 

This chapter presents the exploratory analysis of the study data as a preliminary step 

for the spatio-temporal modelling of the malaria morbidity incidence in Ghana. The 

malaria morbidity cases are modelled as a realisation of random process occurring in 

space and time and so it is necessary to establish the distributional properties of the 

data. This will help to make informed decisions concerning which analytical tools best 

suit the data and prepare the required output for easier interpretation. In the following 

sections of this chapter an overview of the study area, the data collection process and 

description will be presented. Sections 4.2 and 4.3 provide the exploratory analysis of 

the data and additional tools that are used to describe the spatial characteristics of the 

malaria incidence data. In Section 4.4 we undertake correlation and regression analyses 

of the data to determine the potential climatic covariates on malaria risk for future 

forecast and prediction at the regions and unsampled district locations, respectively. 

Section 4.5 presents the global analysis of the incidence rates observed in the ten 

regions using the multivariate time series modelling of seasonal autoregressive 

integrared moving average (SARIMA) for the future forecast and to establish the effect 

of climate.  
 

4.1.1 Study Area   

Ghana is a tropical country in West Africa. It is centrally located in the sub-region, 

lying within latitudes 4.5o and 11.5o north, and longitudes 1.5o east and 3.5o west, 

covering a total land surface area of about 238,540 square kilometres with a coastline 

of approximately 550 kilometres (Baatuuwie & Van Leeuwen, 2011; GSS, NMIMR, & 

Macro, 2004b). It has a maximum north-south extent of about 750 kilometres and a 

maximum east-west extent of about 500 kilometres. Ghana shares borders with Cote 

d’Ivoire to the west, Burkina Faso to the north, Togo to the east; and to the south are 

the Gulf of Guinea and the Atlantic Ocean. The terrain is mostly low plain, with a 

dissected plateau in the south-central area with approximately half of the country lying 

less than 152 metres above sea level whilst the highest point of 885 metres is located in 

the range in the east, close to the border with Togo (see the gridded elevation map in 
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Figures 4.1.1, right). It has an estimated population of 25.03 million people, with an 

annual growth rate of approximately 2.7%, and is divided into ten administrative 

regions (see Figure 4.1.1, left), where each region is also subdivided into decentralised 

districts to ensure efficient and effective local administration. As at 2005/2006, there 

were 138 districts, which have since been re-organised by splitting some and others 

up-graded to the metropolitan or municipal status, bringing the current number to 170 

(PSS/GSS, 2009). The population density in the country varies from 31 to 893 per 

square kilometre in the Northern Region and Greater Accra Region, respectively and 

54% of the population live in rural areas (GSS, 2002; PSS/GSS, 2009).  

 

 
Figure 4.1.1: Map of Ghana showing the ten administrative regions (left), and digital elevation model 
(DEM) of Ghana, obtained from IntraSearch (2011). 
 
 
Ecologically the country can be divided into three broad malaria zones, based on the 

vegetation types in the country, namely the northern savannah, tropical 

(evergreen/semi-deciduous) rainforest in the central and south-west and the coastal 

savannah/mangrove swamps (NMCP/GHS, 2009; RMSC/FC, 2011) as shown in 

Figure 4.1.2 (left). It should also be noted that multiple forest reserves exist in each 

zoneAccording to the National Malaria Control Programme (NMCP), each zone 

exhibits different characteristics in relation to Anopheles mosquitos and the parasites 

which cause the malaria disease (NMCP/GHS, 2009). Anopheles gambiase and 

Anopheles arabiensis are predominant in northern savannah. The former species (the 
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most efficient vector) breeds in temporary stagnant waters, bites indoors, rests 

outdoors and is anthropophilic whilst the latter bites and rests outdoors and is more 

zoophilic. The tropical rainforest zone is dominated by Anopheles gambiase and 

Anopheles funestus; the latter breeds throughout the year in permanent stagnant waters 

and bites and rests indoors, and is anthropophilic. In the coastal zone the Anopheles 

gambiase and Anopheles funestus along with the Anopheles melas which is 

anthropophilic and bites and rest indoors. Differences in temperature, rainfall and 

humidity patterns as well as the ecological characteristics account for these variations 

(de Souza et al., 2010).  

 

Figure 4.1.2: Data locations of study area (plus signs) indicating the three malaria epidemiological zones 
as classified by vegetation types (left map) (NMCP/GHS, 2009): northern savannah (N), tropical 
rainforest (F) and coastal and mangrove swamps (C); the map on the right shows the location of Brong 
Ahafo Region and its districts within Ghana (insert map).  
 

The climate is warm and relatively dry along the southeast coast and hot and humid in 

the central and southwest, with a prolonged dry season in the north due to the north-

east trade winds from the Sahara desert. There are two main seasons, the rainy season 

from April to October and dry season from November to March. Temperatures vary 

relatively little throughout the country, with a mean annual temperature between 26oC 

and 29oC. Annual average rainfall ranges from about 1,100 mm in the north to 2,100 

mm in the southwest, whilst average relative humidity varies from nearly 85% in the 

south to 70% in the north (Ghana Web, 2013). The transmission of the disease is stable 
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and takes place all year, although there is a perceptible seasonal variation in the 

northern savannah zone because of the prolonged dry season from September to April. 

The normal duration of the intense malaria transmission season in the northern part of 

the country is around six months beginning May and lasting to September/October.  

4.1.2 Data Description 

The data on malaria morbidity cases were obtained from the Centre for Health 

Information and Management (CHIM) and Regional Health Information Units of 

Ghana Health Services (GHS). The data included monthly morbidity cases reported 

from the district health facilities at outpatient departments (OPD) based in the 138 

districts covering the whole country (see Figure 4.1.2) for the period 1998–2011, 

comprising 132 (or 168) months with records for several months missing for some 

districts, especially for the years 1998–2004. Population data over the same period 

were also collected from the Population Statistics Section (PSS) of Ghana Statistical 

Service (GSS), and used to compute the monthly reported morbidity incidence rates 

(MIR) data as defined by (4.2.1). Climatic data on rainfall, temperature, relative 

humidity and number of sunshine hours were received on 77 districts and for the 

regions from the Ghana Meteorological Agency (GMet), and a digital elevation model 

(DEM) of Ghana was obtained from Mapmart IntraSearch (IntraSearch, 2011). The 

monthly malaria morbidity cases in the districts were point-referenced using 

coordinates of their capitals in longitudes and latitudes (in degrees) which were 

transformed to the Universal Transverse Mercator (UTM) coordinate system, easting 

and northing (in kilometres). The climatic data together with the elevation derived 

from DEM were used as covariates to establish spatio-temporal correlations to predict 

the morbidity incidence rates at district locations, thus delineating areas with a high 

risk of the disease.  

The data reporting format of the malaria morbidity cases varied across the districts in 

the country; whilst some districts reported to CHIM by age and sex, others recorded 

just the total cases coupled with no recording or misreporting of cases. In view of this 

inconsistency and differences in the data reporting, the study uses two data sets for the 

analysis. One is the regional data, aggregated cases observed on each of the ten 

regions structured by sex and into age groups, 0–4, 5–14, 15–59 and 60+ years, to 

which the time series predictive modelling (SARIMA) is applied for the global 

forecast of future morbitdity incidence rates. The second is the space-time data, the 
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larger data set, consisting of only the total morbidity cases at sampled district locations 

used to perform the space-time analysis of the disease’s incidence at the local level. 

The spatio-temporal analysis considers this data set not only on all districts in the 

country which we shall refer to as national study, but also the Brong Ahafo Region 

(BAR) and vegetation types (coastal savannah/mangrove, tropical rainforest and 

northern savannah), according to the epidemiologic zones of the disease by Ghana’s 

National Malaria Control Programme (NMCP/GHS, 2009), which in this study are 

simply referred to as coastal, forest, and northern, respectively. The maps of the 

vegetation zones and BAR indicating the districts are as shown in Figure 4.1.2.  

The interest of a local spatial as well as temporal dependency at a regional level, using 

BAR, stems from its strategic position in the country (see map in Figure 4.1.2, right). It 

is centrally located, lying within longitudes 3oW and 0.25oE and latitudes 6.5o and 9oN, 

and covering an area of approximately 39,560 square kilometres with 19 

administrative districts with estimated total population of 2.36 million, each varying 

between 77,000 and 236,800 (PSS/GSS, 2009). Although the region falls within the 

tropical rainforest zone, its northern part exhibits characteristics similar to the 

vegetation type of the northern savannah. Additionally, the region has the most 

exhaustive data of all the reported cases of the disease for the period 1998–2011 in the 

temporal domain. Generally, BAR has a tropical climate with high temperatures 

averaging 25oC and a bimodal rainfall pattern, the annual average total rainfall ranging 

from 1000 to 1400 millimetres. The study by vegetation zones is informed by the 

direct links to mosquito habitats due to the differences in climate and vegetation cover 

which eventually lead to wide spread of malaria transmission (de Souza et al., 2010; 

Klinkenberg et al., 2005). The indirect effect of vegetation is studied by comparing 

results of the data analysis for these vegetation types.  

The analysis of the monthly count of malaria morbidity cases from the health facilities 

both at spatial and temporal scales begins with the standardisation of the morbidity 

cases as incidence rates after which the exploratory behaviour of time series of the 

observed incidence rates in the regions and at the districts locations is considered. This 

will ensure proper application of the various temporal and spatio-temporal modelling 

techniques to be employed to characterise and also predict the morbidity risk patterns 

as presented in chapter 5. 
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4.2 Exploratory Time Series Analysis of Regional 
Data 

 
In this thesis a malaria morbidity case is defined as a diagnosis of simple or severe 

malaria recorded at an OPD of a health facility in Ghana. In Ghana, most outpatient 

cases are diagnosed on the basis of clinical symptoms and treatment is presumptive, 

rather than based on laboratory confirmation (Adams et al., 2004). The whole 

population is at risk of malaria and, in view of the high incidence of the disease in all 

the districts, the monthly morbidity case counts reported will be modelled as the 

incidence rates time series for each district or region, defined as the number of reported 

morbidity new cases per unit resident population of 10,000 based on PSS/GSS (2009) 

and following Huang, Zhou, Zhang , Zhang , and Li (2011): 
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  (4.2.1) 

where ( )tMC u is the number of reported new malaria morbidity cases at district or 

region for month t , ( )tP u  is the mid-year population for the same month, 138n   is 

number of districts (or 10n   regions) sampled, and T  is the number of consecutive 

months ( )tMC u  is reported at a district (or region) within the study period, 1998-

2011. The computation of the morbidity incidence rates (MIR) will be useful to 

determine the needs for malaria treatments at the various district locations. Such 

information when made available can be used to compare levels of access to treatment 

and to constraint resources torwards the high priority areas in the country. 

4.2.1 Descriptive Summary of the MIR Data  

Using the equation (4.2.1) we obtain the monthly malaria MIR observed for 132 

consecutive months for each region over the period 2000–2011 (except for Brong 

Ahafo Region for which there were 168 sampled monthly observations, beginning 

1998). The numerical summaries of the MIR data for the regions are reported by sex 

and the adopted age groupings. In this section only the descriptive statistics for the 

grand total incidence cases and for 0–4 year old group (children under 5 years of age, 

the people most severely affected by the disease in the country) are presented; the 

descriptive summaries for the other age groups are shown in Tables A-1.1–A.1.4 in 

Appendix A-1. The grand totals are used as proxy for the other age groups as 
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evidenced by the exploratory time plots in section 4.2.2. Tables 4.2.1 and 4.2.2 present 

the summary descriptive statistics for the monthly MIR data by region.  

 
Table 4.2.1: Summary statistics of monthly malaria morbidity incidence rates computed for the grand 
total cases including that of the males and females in the ten regions of Ghana 
Region 
(Total) 

Data Min Max Mean Q1 Med Q3 StD Skew Kurt 

 

Ashanti 

Total 93 264 164 130 161 192 41.28 0.376 -0.674 

Male 86 251 149 116 146 175 39.95 0.553 -0.450 

Female 100 322 183 147 177 208 50.09 0.580 -0.240 

 

Brong 

Ahafo 

Total 105 382 227 186 230 266 56.20 0.114 -0.477 

Male 98 330 203 174 208 234 47.10 0.079 -0.372 

Female 112 432 251 201 248 292 66.18 0.168 -0.574 

 

Eastern 

Total 74 397 188 130 176 241 73.76 0.667 -0.331 

Male 65 340 159 114 152 197 57.67 0.673 0.008 

Female 82 453 217 146 196 284 90.97 0.671 -0.560 

 

Greater 

Accra 

Total 58 183 104 87 103 101 24.62 0.795 0.650 

Male 49 156 91 76 89 101 21.11 0.788 0.520 

Female 66 211 117 97 115 129 27.29 0.805 0.811 

 

Western 

Total 75 358 185 124 161 242 78.43 0.627 -0.748 

Male 64 319 167 114 149 217 69.00 0.492 -0.865 

Female 85 396 201 136 174 263 88.21 0.725 -0.647 

 

Northern 

Total 72 346 188 142 180 223 61.19 0.504 -0.529 

Male 65 327 174 131 166 202 56.89 0.509 -0.481 

Female 78 364 202 150 193 246 65.89 0.514 -0.549 

 

Upper 

West 

Total 80 624 252 158 222 320 117.21 0.832 0.112 

Male 86 593 241 162 222 298 105.60 0.927 0.512 

Female 72 654 264 156 225 352 129.8 0.761 -0.192 

 

Upper 

East 

Total 102 658 295 193 275 358 147.00 1.347 1.841 

Male 100 735 280 183 250 342 128.90 1.272 1.658 

Female 105 908 321 201 285 374 167.40 1.394 1.880 

 

Central 

Total 63 243 115 84 109 134 37.18 0.906 0.675 

Male 62 225 105 78 98 119 33.21 1.147 1.321 

Female 63 262 125 90 118 152 41.82 0.739 0.205 

 

Volta 

Total 134 356 196 152 180 225 52.67 0.885 -0.162 

Male 114 286 164 131 152 182 41.09 0.955 -0.023 

Female 148 403 225 174 204 263 62.47 0.751 -0.473 
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Table 4.2.2: Summary statistics of monthly malaria morbidity incidence rates computed for the grand 
total cases of age group (0-4) years in the ten regions of Ghana  
Region 
(0-4) 

Data Min Max Mean Q1 Med Q3 StD Skew Kurt 

 

Ashanti 

Total 181 560 303 235 278 370 88.97 0.793 -0.291 

Male 177 557 302 239 278 358 84.10 0.816 -0.062 

Female 179 563 305 228 305 378 95.45 0.812 -0.397 

 

Brong 

Ahafo 

Total 191 686 410 343 404 471 99.73 0.481 0.005 

Male 207 695 427 360 418 488 99.23 0.422 -0.116 

Female 175 735 394 327 388 452 101.45 0.583 0.322 

 

Eastern 

Total 154 662 332 255 312 372 104.20 1.045 0.794 

Male 162 663 335 259 322 376 104.70 1.037 0.875 

Female 143 667 328 258 302 370 106.10 1.042 0.724 

 

Greater 

Accra 

Total 125 445 236 196 229 263 59.50 0.759 0.698 

Male 127 402 242 200 237 270 59.76 0.549 -0.078 

Female 124 511 229 191 222 256 60.32 1.77 2.925 

 

Western 

Total 126 719 331 220 293 391 157.20 0.900 -0.255 

Male 124 747 344 228 302 410 164.00 0.896 -0.232 

Female 129 692 319 208 282 396 151.40 0.888 -0.310 

 

Northern 

Total 181 710 391 294 377 460 117.20 0.614 -0.301 

Male 170 742 402 310 384 480 125.20 0.601 -0.245 

Female 192 679 380 288 365 444 111.00 0.645 -0.283 

 

Upper 

West 

Total 205 1300 612 426 570 741 225.90 0.872 0.222 

Male 215 1350 610 440 564 745 237.90 0.870 0.260 

Female 190 1370 614 412 551 740 258.20 0.885 0.259 

 

Upper 

East 

Total 284 1940 802 538 704 1010 355.00 0.956 0.586 

Male 280 1900 779 524 698 992 339.10 1.021 0.788 

Female 268 1980 828 539 738 1040 378.00 0.923 0.408 

 

Central 

Total 101 443 221 170 208 226 71.01 0.698 -0.408 

Male 98 418 214 159 200 259 69.57 0.637 -0.295 

Female 105 470 229 176 216 274 73.67 0.765 0.210 

 

Volta 

Total 228 653 376 288 352 438 112.76 0.804 -0.387 

Male 214 650 367 275 342 432 114.40 0.839 -0.337 

Female 228 657 384 289 356 449 115.20 0.665 -0.599 
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The reported morbidity incidence rates in the ten regions range from 58 to 658 cases 

per 10,000 resident people per month with Upper East having the highest mean 

incidence rate of 295 cases followed by Upper West with a mean rate of 252 cases. 

Ashanti and Greater Accra, the most populated regions, are among the three regions 

which recorded the lowest mean incidence rates of 104 and 164 respectively, the third 

being Central Region with 115 cases. In all regions the incidence among females is 

higher than that for males. The monthly incidence rates in the regions are positively 

skewed and appear to be similarly distributed among males and females but with 

higher variations. As expected, the most vulnerable group (0–4 year olds) recorded the 

highest incidence rates among all the age groups including the regional total. The total 

morbidity incidence of the disease in this age group is more variable, ranging from 101 

to 1940 with the highest mean of 802 per 10,000 residents in the Upper East Region 

and lowest mean rate of 221 cases in Central Region (see Table 4.2.2). As the case for 

the regional total cases, the incidence cases for young children are positively skewed 

with the female morbidity cases being more variable except in the northern and 

western regions. It is also observed that occurrence of morbidity of the disease among 

the children under 5 years of age is approximately equally likely (in terms of the mean 

rates) between sexes except in Brong Ahafo, Northern and Upper East regions. Brong 

Ahafo Region is ranked third to the two northern most regions (Upper East and Upper 

West) with 410 cases but Ashanti, Central and Greater Accra regions consistently have 

the lowest mean incidence rates of 303, 221 and 236 cases, respectively.   

It worth noting that the three northern regions, Northern, Upper East and Upper West 

which form the northern savannah zone, recorded the highest incidence rates in the 

country. The environmental conditions coupled with the economic activities in the 

regions favour the mass breeding of mosquitos which cause the disease. The Upper 

East and West regions, relatively the most deprived in terms of resources, have high 

rates of malnutrition and anaemia which are common symptoms of malaria disease in 

Ghana (Baird et al., 2002). Malaria intervention activities and studies are often carried 

out in several parts of the regions which could prompt people to visit the health centres 

regularly to treat the disease. The low incidence rates of the disease in the two densely 

populated regions (Ashanti and Greater Accra) could be attributed to the numerous 

health facilities located in and around their regional capitals and other urban centres 

coupled with much improvement in the health delivery services compared with the 
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other regions. Also, they have most of the infrastructural developments in the country 

in addition to hosting the two largest cities, Accra and Kumasi, the former being the 

capital city of Ghana.  

In Ghana, children under 5 years and pregnant women are the people most affected by 

the malaria disease (GHS, 2011; NMCP, 2008; UNICEF, 2012). The high morbidity 

incidence rates of these young children and older females confirm the vulnerability of 

these two categories of people in the country. The incidence within these two groups 

generally characterises the behaviour of the disease in the regions as exemplified by 

the time sequence plots and smoothing analysis in sections 4.2.2 and 4.2.3, 

respectively. In this thesis we shall use the total incidence cases computed for the 

regions, districts and 0–4 year olds to model the malaria morbidity incidence in Ghana 

both at global (regional) and local (district) levels. This choice is justified by the time 

sequence plots of the disease’s morbidity incidence for the period 1998-2011 at all 

regional levels across the country.  

4.2.2 Time Sequence Plots of MIR 

In this section time sequence plots of the monthly morbidity incidence rates per 

resident population of 10,000 for the regional total and age groups in the regions for 

the period 1998–2011 are presented. These plots are produced to visually establish the 

general trend pattern of the time series data, the series being the monthly morbidity 

incidence rates. This then leads to the future forecast of the incidence rates at the 

regions which will be considered in section 4.5. Figures 4.2.1–4.2.3 provide the time 

sequence plots for some selected regions in each vegetation zone, whilst the plots for 

the other regions are shown in Appendix A-2.  

The examination of the entire regional incidence rates of the disease generally reveals 

increasing but fluctuating periodic trend patterns in all the regions, which is an 

indication of non-stationarity. In general, the female incidence rates are slightly higher 

than that of the males and the regional totals but there appears to be no substantial 

difference in the incidence between sexes (see Figures 4.2.1 and 4.2.2). The patterns 

by age groupings (see Figure 4.2.3) are comparable with the patterns for regional total 

incidence rates, except for the 0-4 years group.  For this year group which recorded  

the highest incidence rates there is some irregular trend behaviour throughout the study 

period especially in Ashanti, Brong Ahafo, Eastern and Volta regions which fall within 
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Figure 4.2.1: Time sequence plots of morbidity incidence rates of grand total (black), male (green) and 
female (red) cases observed in the selected regions: Upper West and Northern (top), Brong Ahafo and 
Ashanti (middle) and Greater Accra and Central (bottom). 
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Figure 4.2.2: Time sequence plots of morbidity incidence rates of total (black), male (green) and female  
(red) cases observed for the 0-4 year age group in the selected regions: Upper West and Northern (top), 
Brong Ahafo and Ashanti (middle) and Greater Accra and Central (bottom). 
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Figure 4.2.3: Time sequence plots of morbidity incidence rates of grand total (black) and age groupings 
observed for the regions, Upper East and Northern (top); Brong Ahafo and Ashanti (middle); Greater 
Accra and Western (bottom). 
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the forest zone. The incidence rates for aged people (60+ years) tend to rise steadily 

from 2006 or 2007 onwards (particularly in Ashanti, Brong Ahafo and Eastern to equal 

the incidence cases of childern under 5 years old) except in the Upper East Region 

which consistently appeared to remain the same with the other year groupings 

throughout the entire study period (see Appendix A-2.2). 

The three regions in the northern part of Ghana (Upper East, Upper West and 

Northern) have very pronounced variations and distinctive seasonal patterns whilst the 

other regions are observed to experience continuous linear or exponential growth. In 

particular, the incidence rates in the Greater Accra Region which have the least 

variation appeared to be mean stationary whereas Western Region increased its 

incidence of the disease exponentially. All the lowest incidence rates appeared to have 

occurred in Greater and Central regions whilst the extreme high cases were reported 

among Brong Ahafo and the two northern most regions (Figures 4.2.2 and 4.2.3) in the 

northern savannah zone.  

4.2.3 Smoothing Analysis of MIR  

The moving averages and Holt-Winter’s method smoothing models (2.5.1) and (2.5.2) 

in chapter 2 (section 2.5) were applied to the monthly morbidity  incidence rates data 

in the regions to reduce effects of irregularities and to study the trend and seasonal 

patterns in the incidence data; this enhances the estimation of quantities such as the 

standard errors of the mean for an improved future forecast (Cai, 2009; Shumway & 

Stoffer, 2011). The 12-point moving average smoothing method was applied to 

establish the long-term trend pattern whilst a 6-point smoothing is used particularly to 

identify seasonal cycles in the data and help ease prediction of the incidence as 

presented in section 4.5. The Holt-Winter’s method complements the moving averages 

analysis by computing the trend model coefficients and also seasonal indices. In this 

section the total monthly incidence rates for the regions and also for the 0–4 year 

grouping are used instead of a separate study of the male, female and other age 

groupings incidence rates. This is because of the similarity in the behaviour exhibited 

by the time sequence plots and also, in all cases, the total monthly incidence rates are 

either equal or lie between the male and female incidence rates. In addition, they 

appear more representative of the other age groupings  except  for  the  aged  whose  

morbidity incidence  rates  are  observed  to be  higher,  especially for the year 2006 

and onwards.      
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The moving averages smoothing graphs for the total monthly morbidity incidence and 

0-4 year group are displayed in Figures 4.2.4 and 4.2.5 (and Appendix A-3). 

Observation of the smoothing graphs for regional total incidence rates confirms the 

clear periodicity and generally indicate a steady linear or exponential increase in  

reports of the disease from onset of the study to the end of 2008 or 2009, after which it 

seems to be stabilising if not decreasing. In particular, the incidence in the regions in 

the northern savannah zone (Upper West and Northern) has a gradual growth before 

reaching its highest peak in 2007 after which it begins to level off. Brong Ahafo and 

Ashanti regions, in the forest zone, tend to exhibit almost similar behaviour. Critical 

analysis of both graphs shows an initial linear increase until 2002 after which the 

growth remains constant only to rise again from 2004 to attain their various peaks in 

2006, 2007 and 2009. Each appears to begin to level off in incidence of the disease 

after 2010. Also noteworthy is Brong Ahafo’s incidence reduction of the disease from 

approximately 300 per 10,000 residents in 2006 to 230 cases in 2008 and Ashanti’s 

increase and decrease reports almost every two years after 2002. In Greater Accra, the 

only region completely within the coastal zone, the occurrence of the disease follows a 

trend pattern similar to that of the Brong Ahafo Region, beginning with a constant rate 

until 2002 at which point it rises sharply and fluctuates between 2003 and 2006 after 

which there is a sharp rise again to its highest peak in 2007, recording approximately 

160 cases per 10,000 people. It then declines to 100 cases in 2008 and rises again in 

2009 after which we observe a steady decrease in growth. A very peculiar trend pattern 

is observed in Western and Central regions which lie within the forest and coastal 

zones. The incidence trend graphs show a steady rise and fall until 2004 after which 

they begin to increase exponentially until 2009 and then decrease at the same growth 

rate after which they begin to level off or increase. The trend patterns of the vulnerable 

group (0–4 year olds) are similar to the respective regional total except in Ashanti and 

Brong Ahafo where the incidence rates in young children do not appear to stablilise 

after 2010.  

The varied distributional patterns as in observed in the time sequence and smoothing 

plots of the morbidity incidence in the regions could be due to several factors including 

climatic conditions and interventions such as the introduction of the policies on the use 

of insecticide treated nets (ITNs) and anti-malarial drugs such as Artesunate+ 

Amodiaquine to treat uncomplicated cases  and  mass  spraying  of   homes with 
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insecticides through indoor residual spraying (IRS) to kill the femal Anopheles 

mosquitoes, the main cause of the malaria in the country. The time series forecasting 

models of the morbidity incidence rates in section 4.5 can be used to assess whether 

the reduction of the count morbidity cases of the disease can be sustained to achieve 

the countrry’s NMCP target of 75% reduction by 2015.       

Applying the Holt-Winters’ method with multiplicative seasonal indices (2.5.2) to the 

time sequence plots of the morbidity incidence rates results in the seasonal 

decomposition components, the smoothing parameters and the trend coefficients which  

establish the level and growth rate of the morbidity incidence of the disease in each 

region. The plots of seasonal factors (as shown in Figure 4.2.6) indicate that the 

highest seasonal values of the morbidity incidence of the disease occur during the 

months May to November and the lowest from December to April (see Figure 4.2.6 

and Tables A-4.1 and A-4.2 in Appendix A-4). The high and low peaks incidentally 

coincide respectively with the wet and dry seasons in Ghana, an indication of climatic 

influences on the malaria morbidity incidence in the country. This potential study is 

further explored in the following two sections and in chapter 5.  

The Holt-Winters’ smoothing parameters and coefficients values are shown in Table 

4.2.3. The trend coefficient ( )b  values are positive for all the regions except in Brong 

Ahafo which recorded among its young vulnerable age group a monthly slow growth 

rate of -0.145396, levelling off at a value ( )a  of 529 cases per 10,000 people. However, 

the morbidity incidence for the other 0-4 year olds showed higher growth. This 

negative trend value can be explained as a sign of decline in cases of the disease in the 

region. Upper East, Eastern, Western and Volta are the top four regions with the 

highest positive growth rates of approximately 5, but with the incidence in the Upper 

East levelling off at an extremely high incidence rate of 1,412 whilst the lowest trend 

coefficient (0.086684) is incidentally computed in the sister region (Upper West) and 

also stabilising at a very high value of 1,058. For the total incidence rates, the 

predicted incidence cases per month (3.053145) are highest in the Western Region 

with an incidence rate of 347 cases as its plateau value. It is then followed by Eastern 

(1.759470), Volta (1.701900), Ashanti (1.489656) and Upper West (1.350233) regions 

respectively. The slowest growth rate (0.220134) is observed as expected in 

BrongAhafo Region at a level of 277 cases whilst the smallest level value (113) occurs  
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in Greater Accra Region.  

 

 

 
Figure 4.2.4: 6-point and 12-point moving average smoothing of morbidity incidence rates observed for 
the selected regions: Upper West and Northern (top), Brong Ahafo and Ashanti (middle) and Greater 
Accra and Western (bottom).   
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Figure 4.2.5: 6-point and 12-point moving average smoothing of morbidity incidence rates observed for 
the 0-4 year group f the selected regions: Upper West and Northern (top), Brong Ahafo and Ashanti 
(middle) and Greater Accra and Western (bottom). 
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Figure 4.2.6: Seasonal plots derived from Holt-Winter’s smoothing of the morbidity incidence rates by 
region for the total (left) and 0-4 year group (left). 
 
Table 4.2.3: Holt-Winters’ smoothing parameters and model coefficients of the morbidity incidence 
rates by region for the total and 0-4 year group. 
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Smoothing Parameters Coefficients 
Level ( )  Trend ( ) Seasonal ( ) Level ( )a Trend ( )b  
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Upper East 0.422417 0.000000 0.763038 511.142600 0.499417 

Northern 0.168405 0.018941 0.389516 258.024002 1.030066 
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The smoothing parameters for seasonal ( )  and level ( ) are higher in the northern 

savannah zone, where the Upper West and Upper East regions have seasonal 

components of 1 and 0.763038, respectively for the region as whole with 

corresponding level values of 0.780167 and 0.422417, respectively whilst the seasonal 

component in the Upper East Region is 0.819571 for the 0–4 age group with a level 

values of 0.482853. Greater Accra Region records the lowest seasonal smoothing 

parameters, 0.054159 for the total incidence rates and 0.083731 for the 0–4 year old 

children whilst the lowest respective level values, 0.168405 and 0.125381, are 

observed in the Northern Region. The presence of a long-term trend in the incidence 

data is evidenced by the non-zero  values which predominately occurred in the 

Central, Northern, Volta and Upper East regions. In particular, the incidence rates in 

Ashanti and Brong Ahafo regions do not exhibt long-term trend and appear to behave 

quite similarly in seasonal patterns and level of incidence. However, higher seasonal 

values are observed in Ashanti for both the total and 0-4 age groups (0.425722 and 

0.506730), whilst Brong Ahafo Region records higher level value (0.367290) for its 

total incidence rates. 

 

4.3 Exploratory Analysis of Space-time MIR Data 

The analysis of the space-time (district-month) malaria morbidity incidence rates data, 

{ ( , ) : 1,..., ; 1,..., }I t n t T   u  involving the 138 districts and 72–168 consecutive 

months observed at each district location is categorised into three main case studies, 

national, Brong Ahafo Region (BAR) and vegetation types, based on  the morbidity 

count reports on all the 138 districts across the country, the 19 districts in BAR and the 

districts in each of the three epidemiologic zones (northern, forest and coastal), 

respectively. This has been designed for detailed investigation of the spatial 

dependence of the morbidity incidence at various local scales and to delimit areas of 

high risk of the disease. The spatial and temporal availability of the morbidity 

incidence rates { ( , ) : ( , ) }I t t  u u D T  are regarded as a random process and 

characterised by the semivariograms presented in chapter 5, which are key elements 

for the prediction techniques employed in this thesis in that chapter. This section gives 

the preliminary analysis of the data to explore the spatio-temporal distribution of the 

malaria morbidity incidence data. Statistical packages used to perform the analyses 
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include ISATIS (Geovariances, 2013), used in geostatistics and R (R Development 

Core Team, 2011), an  open source programming language for statistical analysis.  

 

4.3.1 Descriptive of Summary of Space-time Data   

The summary statistics for the various case studies of the space-time data sets are 

shown in Tables 4.3.1 and 4.3.2. Nationally, we observe a monthly morbidity 

incidence range of 42–1574 cases per 10,000 people with a mean of 241 cases and 

standard deviation of 141.95, which was reported per district whilst the regional case 

study in BAR recorded a higher mean incidence rates of 288 cases and a standard 

deviation of 165.68. In the vegetation zones, the northern savannah has the highest 

mean incidence rate (268 cases) and more variable, whilst the lowest occurred in the 

coastal savannah/mangrove (186 cases). It is also observed that the mean numbers of 

incidence cases in the northern and forest zones are greater than that for the national 

study data but less than what occurred in BAR whilst the mean incidence rates for the 

coastal zone is lower.  

The summaries for each calendar month are also reported based on the national data 

set (see Table 4.3.2). The statistics indicate higher mean incidence rates between May 

and November, coinciding with the wettest months across the country and lower 

incidence rates occur between December and April during which there are two dry 

seasons in the north and south of Ghana. This suggests the possibility of a climatic 

effect which we seek to explore in section 4.4. The number of incidence cases reported 

within the wet season is relatively more variable than that in the other months, 

probably due to the greater number of incidence cases of the disease observed in the 

two northern-most regions and BAR during this season.  

In all the case studies, the space-time data sets indicate highly positively skewed 

distributions (as depicted by the histograms in Figures 4.3.1 and 4.3.2) to which a 

logarithm transformation was applied to reduce variability in the data sets and also 

approximate to normality for further exploration of autocorrelation and predictions at 

the unsampled locations. These analyses are performed in sections 5.3 and 5.4 of 

chapter 5.         
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Table 4.3.1: Summary statistics for the sampled morbidity incidence rates at district-month locations at 
the study areas for 2000-2010/2011. Data set involving case study areas were on reported cases in all 
districts in Ghana, districts in Brong Ahafo Region and districts in each of the three vegetation zones, 
hereafter referred to as national, BAR and vegetation types (northern, forest and coastal), respectively.  
Case 
Study 

No. of  
Dist. 

 
Min 

 
Q1 

 
Med 

 
Mean 

 
Q3 

 
Max 

 
StD 

 
Skew 

 
Kurt 

National   138 42 141 204 241 298 1574 141.95 1.932 6.080

BAR   19 64 174 258 288 350 1275 165.68 1.790 4.480

Coastal     26 45 122 167 186 229 882 96.97 1.873 6.417

Forest       59 42 149 214 246 304 1275 135.66 1.830 5.408

Northern  34 50 143 129 268 342 1574 170.78 1.716 4.575

 
 
Table 4.3.2: Summary statistics for the seasonal malaria morbidity incidence rates observed at all 
district-month locations (national) for each calendar month during 2000-2010.  
Month Min Q1  Med Mean Q3 Max StD Skew Kurt

January 46 126 179 204 260 867 109.56 1.709 4.750

February 42 119 168 194 244 810 104.58 1.622 3.992

March 44 114 163 194 244 895 111.95 1.850 5.116

April 50 120 174 205 260 931 111.69 1.827 4.953

May 52 145 204 236 293 1030 127.79 1.722 4.767

June 50 164 242 276 345 1040 150.87 1.528 3.342

July 55 176 246 286 364 1160 159.98 1.685 4.133

August 57 159 224 264 320 1440 157.14 2.113 7.149

September 51 149 210 254 310 1570 157.38 2.209 8.405

October 52 160 233 277 344 1340 166.49 1.832 4.902

November 46 152 217 256 321 1100 148.65 1.728 4.397

December 45 137 199 227 287 998 127.19 1.771 4.972

 
 
 

4.3.2 Distribution of Space-time Data      

The sampled locations as given in Figure 4.1.2 illustrate how the central parts of the 

country towards south are densely populated compared to the northern parts where 

they are sparsely inhabited. The space-time morbidity incidence rates for the case 

studies, namely national, Brong Ahafo Region and the vegetation types, are all found 

to be highly positively skewed. They have been log-transformed to reduce the effect of 

high values in the data sets and improve the normality assumption (see Table 4.3.1 and 

Figures 4.3.1 and 4.3.2) for structural analysis and space-time lognormal kriging to be 

implemented (Journel, 1980; Journel & Huijbregts, 1978; Lee & Ellis, 1997; Roth, 
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1998). The variogram maps for the monthly incidence rates (see Figure 4.3.3), 

calculated using 15 lags at a spacing of 30 km, 36 directions and tolerance of 4 sectors, 

showed no obvious evidence of anisotropy for short separation distances mostly less 

than 250 km.   

 

Figure 4.3.1: Histograms of the observed morbidity incidence rates (MIR) and logMIR for National 
(top) and Brong Ahafo Region (BAR) (bottom) data sets. 
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Figure 4.3.2: Histograms of the observed morbidity incidence rates (MIR) and logMIR for the three 
vegetation zones, northern (top), forest (middle) and coastal (bottom)   
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Figure 4.3.3: Variogram map (left) and number of pairs (right) of the observed morbidity incidence rates 
for the whole study area (national). In the middle is graph of variograms in various directions showing 
lack of anisotropy for short separation distances.       
 

The temporal profiles of the morbidity incidence rates at some selected district 

locations (Figure 4.3.4) indicate varied patterns of the disease across the country. After 

an initial period of stability the districts in the northern savannah zone (for example, 

Bolgatanga and Tamale) showed continuous rise of morbidity incidence. However, the 

incidence rates at some locations in the two other zones (for example, Berekum, 

Obuasi, Accra, and Nzema East) are found to be increasing and/or decreasing. The 

temporal variability in the data is further studied by the analysis of the trend 

coefficients in section 5.2 of Chapter 5. 

The post-plots of the observed space-time morbidity incidence rates at the various 

district locations in Ghana are shown in Appendix B-2 whilst Figures 4.3.5 and 4.3.6 

present the incidence data observed in 2010 for all the districts and in BAR, 

respectively. High morbidity incidence rates are observed during months between May 

and November but tend to be lower from December to April. In addition, there appears 

to be evidence of spatial heterogeneity as high morbidity incidence values are observed 

mostly in the northern (northern savannah zone), western and central parts (forest 

zone) towards the south (coastal zone). Similar seasonal pattern can also be identified 

in the Brong Ahafo Region where the high risk locations are mostly found in the 

western parts of the region close to the border with La Cote d’Ivoire, a country with an 

equally high risk of the malaria disease (WHO, 2008). A critical inspection of the 

variogram map of the incidence data and its corresponding number of pairs in the 

spatial domain for the whole study areas show no strong evidence of anisotropy for 

short lag distances (see Figure 4.3.3). The variography of the morbidity incidence data 

sets { ( , ); 1,..., ; 1,..., }I t n t T   u  was performed by calculating and modelling the 
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semivariograms as isotropic spatially correlated processes. This modelling procedure is 

implememented in chapter 5, beginning from section 5.3.   

 

 

 
Figure 4.3.4: Temporal profiles of the malaria incidence rates superimposed with 6- and 12-point 
moving averages smoothing at some district locations selected across the study area, namely, BolgaM, 
TamaleM (northern); Berekum, ObuasiM (forest); Accra metropolitan area (AMA), NzemaE (coastal 
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Figure 4.3.5: Post-plots of monthly morbidity incidence rates distribution observed nationally at the 
sampled district locations for the selected months in 2010 (where Months 121–132 correspond to 
January to December). 
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Figure 4.3.6a: Post-plots of monthly morbidity incidence rates distribution at the sampled locations in 
the Brong Ahafo Region for the selected months in 2010 (where Months 145–152 correspond to January 
to August). 
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Figure 4.3.6b: Post-plots of monthly morbidity incidence rates distribution at the sampled locations in 
the Brong Ahafo Region for the selected months in 2010 (where Months 153–156 correspond to 
September to December). 

 

4.3.3 Distribution of Climate Covariates 

Climatic data on rainfall, temperature, relative humidity and number of sunshine hours 

could not be obtained from all the districts. The observed monthly data from the 77 

district locations over the period 1998–2011 are summarised in Table 4.3.3. The 

climatic data are further illustrated graphically and provided in Figure 4.3.7. 

 
Table 4.3.3: Summary statistics of the climatic covariates values obtained at the district-month locations 
over the whole study area in Ghana 
Covariate Count Min Max Mean Median StDev CV Skewness 

Rainfall 10164 0 762.8 100.1 84.5 85.273 0.860 1.093 

MaxTemp 10164 17.6 41.1 32.0 31.8 2.742 0.086 0.297 

MinTemp 10164 13.0 30.1 22.6 22.7 1.746 0.077 -0.621 

RH0600  10164 22.0 99.0 89.2 94.0 12.713 0.143 -2.796 

RH1500 10164 10.0 89.0 59.5 65.0 16.691 0.281 -1.027 

Sunshrs 10164 1.10 10.1 6.40 6.60 1.572 0.246 -0.464 

 

The distributions of these weather values typically depict the seasonal patterns in the 

country. The monthly rainfall and relative humidity values are more variable and 
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and district locations in Ghana. The multiple regression analysis uses the global 

(regional) incidence rates computed from the monthly reported count morbidity cases 

of the disease (via equation (4.2.1)) and the observed climatic covariates at each of the 

ten administrative regions. Cross-correlation analysis of the space-time data, 

comprising of the monthly total morbidity incidence rates and the observed climatic 

covariates and elevation data at the district locations is also performed. 

 

4.4.1 Multiple Linear Regression Analysis of Regional Data 

Classical multiple  linear regression modelling is performed to examine and determine 

the potential risk factors of the morbidity incidence rates observed in the ten regions. 

For accurate quantification of the auto-correlations of the morbidity incidence rates 

and their cross-correlations with the climatic covariates, the upward temporal trends in 

the morbidity incidence data are eliminated by detrending (Horvatic, Stanley, & 

Podobnik, 2011). A quadratic function in time t  in months (4.4.1), which proved to be 

more appropriate to account for the varied temporal incidence profiles in the regions 

(see graphs in sections 4.2.2 and 4.2.3), was chosen: 

2
0 1 2( ) ( ) ( ) ( ) ( )t tI b b t b t R       u u u u u    (4.4.1)  

In this way, the resultant residuals ( )tR u with periodic cycles are able to reveal the 

true correlations existing with the covariates, which equally exhibit strong seasonality 

patterns (Horvatic et al., 2011). This paves way for further analysis of the residuals to 

be considered in section 4.5.1. The detrended incidence data set { ( ); 1,..., }tR t T u  for 

each region   is cross-correlated with and regressed on the climatic covariates 

,1 ,6( ),..., ( ),t tX X u u being the data on rainfall, maximum and minimum temperatures, 

relative humidity at 0600 and 1500 hours and number of sunshine hours, respectively 

in the month t  together with their data in 1t   and 2t  incidence months (lag 1p   

and 2 ), as predictor variables for each of the 132T  months, beginning from January 

2000 to December 2011 except for the BAR which has time sequence data of 168 

months starting from January 1998:  

  ( ) ( ) ( ),T
t t tR X u     u u  for each 1,....,10  ,   (4.4.2) 

where ,1 ,6( ) [ ( ),..., ( )],T
t t p t pX X   X u u u for 0,1,2p  and each 1,2,...,132t   or 

168  is a vector of covariates with components at incidence time lags ;p  

0 ,1 ,6[ , ,..., ]T
t p t p       is the vector of regression coefficients; and ( ),t  u  a 
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vector of residuals of the unobservable random errors with the components 

2( ) (0, )t N  u   as white noise.  

The backward stepwise elimination method, an automated iterative regression process 

based on the ordinary least squares (OLS) method (3.4.4), is employed to sequentially 

select the potential predictors of morbidity risk in the model (4.4.2) for each region. 

This iterative process first considers all the predictor variables, and was preferred to 

forward regression which adds variables progressively and might result in rendering 

some already included variable(s) non-significant (Draper & Smith, 1981; Lindsey & 

Sheather, 2010). Interaction terms were ignored so as not to compound the 

multicolinearity problem between the potential predictors (Jaccard, Wan, & Turrisi, 

1990) (further readings on issues of interaction effects can be found in Aiken and West 

(1991) and Morris, Sherman, and Mansfield (1986)). The OLS method minimising the 

sum of squares of the residuals, ( ) ( ),T
tR R u u  results in the estimation of the 

regression coefficients: 

1ˆ [ ( ) ( )] ( ) ( )T T
t t t tX X X R      u u u u     (4.4.3)  

with components: 0
ˆ
  as the intercepts and ,1 ,

ˆ ˆ,..., ,t i t i k   indicating the contributions 

of the morbidity risk by each of the k  selected predictors for its unit change. Detailed 

results of the multiple regression model in (4.4.2) based on a selection criterion of

value 0.05,p    prescribed in the R function code for the computations, for all the ten 

regions are as displayed by Results A-5.2 and A-5.3 in Appendix A-5. Tables 4.4.1 

and 4.4.2 show the cross-correlations of the incidence rates and their residuals with the 

atmospheric covariates in the month t including the previous month ( 1)t  recorded 

data (lag 1 month) whilst Tables 4.4.3 and 4.4.4 produce the estimated output of model 

(4.4.3) using the detrended incidence rates data with the same covariates at lags 0 and 

1 for some selected regions. 

The cross-correlation analysis indicates varied but significant influence of the climatic 

covariates on the incidence rates (with the p-values mostly being less than 0.01). The 

detrended incidence data correlate more strongly with the covariates than the actual 

incidence rates and correlations are also higher when the climatic variables are lagged 

by 1 or 2 month(s), with the former appearing to be stronger. Generally, morbidity 

incidence in the regions correlates positively with monthly rainfall and relative 

humidity (at both 0600 and 1500 hours) and negatively with (maximum and minimum)  
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Table 4.4.1a: Cross-correlation analysis results of morbidity incidence rates (total) and their residuals 
with climatic covariates in the month of incidence.     
Region Data (Total) Rainfall MaxT MinT RH0600 RH1500 Sunshrs 

Upper 
East 

MIR 0.37517 -0.41299 -0.33456 0.40830 0.41626 -0.28713 
Residuals 0.51698 -0.68095 -0.22902 0.60715 0.62679 -0.44292 

Upper 
West 

MIR 0.29325 -0.29108 -0.00606 0.32827 0.32870 -0.23930 
Residuals 0.40126 -0.47068 -0.05591 0.48821 0.52229 -0.37294 

 
Northern 

MIR 0.36101 -0.48360 -0.08874 0.42511 0.45753 0.27157 
Residuals 0.45752 -0.65031 -0.21757 0.50955 0.52660 -0.2049 

Brong 
Ahafo 

MIR 0.15688 -0.25353 -0.09649 0.23809 0.40653 -0.05015 
Residuals 0.15053 -0.42017 -0.07398 0.31553 0.40983 -0.14929 

 
Ashanti 

MIR 0.14858 -0.18715 -0.23007 0.08023 0.25167 -0.22743 
Residuals 0.23776 -0.44149 -0.07784 0.21189 0.40956 -0.39887 

 
Eastern 

MIR 0.22215 -0.32198 0.11401 0.04429 0.28893 -0.19682 
Residuals 0.29221 -0.46909 -0.20356 0.25504 0.47270 -0.31009 

 
Western 

MIR 0.15543 -0.09984 0.02935 0.24307 0.14636 -0.09859 
Residuals 0.24507 -0.24988 -0.10537 0.19628 0.22637 -0.22165 

 
Central 

MIR 0.21676 -0.13425 0.22943 0.12558 0.24541 -0.02805 
Residuals 0.38345 -0.27906 0.10467 0.12685 0.34065 -0.24029 

Greater 
Accra 

MIR 0.15809 -0.40176 -0.25700 0.02224 0.28055 -0.33633 
Residuals 0.13479 -0.45900 -0.40380 -0.0918 0.28419 -0.37415 

 
Volta 

MIR 0.20809 -0.32084 -0.00028 0.20879 0.42504 -0.16029 
Residuals 0.47196 -0.58961 -0.18044 0.35642 0.56342 -0.33388 

 

Table 4.4.1b: Cross-correlation analysis results of the total morbidity incidence rates and their residuals 
with climatic covariates in the month incidence prior to (lag 1).     
Region Data (Total) Rainf_1 MaxT_1 MinT_1 RH06_1 RH15_1 Sunsh_1 

Upper 
East 

MIR 0.51606 -0.49244 -0.22680 0.47298 0.52387 -0.39751 
Residuals 0.72212 -0.79891 -0.07478 0.69590 0.78774 -0.59413 

Upper 
West 

MIR 0.33739 -0.23875 0.11896 0.30810 0.31513 -0.25485 
Residuals 0.45157 -0.37505 0.09673 0.43166 0.47889 -0.37607 

 
Northern 

MIR 0.48570 -0.52721 0.08041 0.48248 0.55299 0.20777 
Residuals 0.62385 -0.70276 0.01941 0.58662 0.66410 -0.28291 

Brong 
Ahafo 

MIR 0.45313 -0.21375 0.03172 0.32966 0.48800 -0.05323 
Residuals 0.55671 -0.35952 0.09767 0.44066 0.52513 -0.15010 

 
Ashanti 

MIR 0.23463 -0.12400 -0.13836 0.12290 0.24697 -0.15814 
Residuals 0.36898 -0.30664 -0.10452 0.28899 0.39366 -0.23722 

 
Eastern 

MIR 0.34222 -0.23523 0.22164 0.02103 0.28450 -0.15642 
Residuals 0.50095 -0.29716 0.00354 0.22781 0.46041 -0.21592 

 
Western 

MIR 0.21585 -0.03846 0.11174 0.27824 0.14384 -0.04284 
Residuals 0.41807 -0.03782 0.17156 0.29435 0.19618 -0.01222 

 
Central 

MIR 0.23317 0.04402 0.37522 0.10921 0.13675 0.13927 
Residuals 0.37440 0.05255 0.34972 0.10107 0.13518 0.07852 

Greater 
Accra 

MIR 0.42891 -025737 -0.07888 0.15450 033715 -0.16853 
Residuals 0.44835 -0.29100 0.19286 0.24283 0.35052 -0.17769 

 
Volta 

MIR 0.29835 -0.23516 0.15384 0.18383 0.42778 -0.12820 
Residuals 0.58054 -0.39501 0.10841 0.32747 0.53287 -0.21328 
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Table 4.4.2a: Cross-correlation analysis results of morbidity incidence rates for 0-4 year group and their 
residuals with climatic covariates in the month of incidence.  
Region Data (0-4) Rainfall MaxT MinT RH0600 RH1500 Sunshrs 

Upper 
East 

MIR  0.44853 -0.57040 -0.35826 0.53177 0.53625 -0.35787 
Residuals 0.48942 -0.68752 -0.26809 0.60782 0.61674 -0.41648 

Upper 
West 

MIR  0.44248 -0.50628 -0.08284 0.52973 0.53802 -0.37002 
Residuals 0.51795 -0.64743 -0.14107 0.64859 0.67758 -0.46419 

 
Northern 

MIR  0.49203 -0.65342 -0.15825 0.56514 0.59426  0.04485 
Residuals 0.51733 -0.70702 -0.22318 0.58344 0.59550  -0.25563 

Brong 
Ahafo 

MIR  0.22586 -0.34475 -0.10461 0.34493 0.52909 -0.11305 
Residuals 0.22407 -0.44395 -0.02470 0.39123 0.49593 -0.15184 

 
Ashanti 

MIR  0.18244 -0.15050 -0.15556 0.09606 0.26158 -0.19386 
Residuals 0.31245 -0.37249 -0.04866 0.18681 0.40668 -0.31949 

 
Eastern 

MIR   0.28202 -0.41649 -0.00500 0.20552 0.41118 -0.26115 
Residuals 0.31179 -0.49940 -0.21685 0.34313 0.51118 -0.32242 

 
Western 

MIR 0.15246 -0.08379 0.05382 0.25694 0.15420 -0.06976 
Residuals 0.24389 -0.20443 0.01882 0.24107 0.23527 -0.14161 

 
Central 

MIR 0.20810 -0.11843 0.24373 0.13012 0.23591 -0.01763 
Residuals 0.36230 -0.23500 0.14130 0.12880 0.31148 -0.24004 

Greater 
Accra 

MIR 0.10116 -0.23175 -0.12674 -0.0078 0.18473 -0.16534 
Residuals 0.07489 -0.27326 -0.24433 0.06614 0.18837 -0.17850 

 
Volta 

MIR  0.14527 -0.25426 -0.01523 0.21132 0.35776 -0.08600 
Residuals 0.33423 -0.43242 -0.19647 0.32049 0.42699 -0.17210 

 
 
Table 4.4.2b: Cross-correlation analysis results of morbidity incidence rates for 0-4 year group and their 
residuals with climatic covariates in the month incidence prior to (lag 1).     
Region Data (0-4) Rainf_1 MaxT_1 MinT_1 RH06_1 RH15_1 Sunsh_1 

Upper 
East 

MIR 0.64298 -0.65607 -0.19395 0.62833 0.67833 -0.48869 
Residuals 0.70797 -0.78181 -0.08187 0.71278 0.77732 -0.55706 

Upper 
West 

MIR 054980 -0.45458 0.11903 0.52971 0.55615 -0.45486 
Residuals 0.63745 -0.57207 0.00932 0.62889 0.68318 -0.55459 

 
Northern 

MIR 0.67370 -0.71520 0.10190 0.65140 0.73620 -0.07270 
Residuals 0.71216 -0.76944 0.06404 0.67600 0.75344 -0.37972 

Brong 
Ahafo 

MIR 0.56859 -0.29668 0.04198 0.44211 0.61177 -0.16370 
Residuals 0.61522 -0.38489 0.13972 0.50234 0.59318 -0.20817 

 
Ashanti 

MIR 0.23557 -0.08441 -0.09651 0.11827 0.23179 -0.14389 
Residuals 0.37145 -0.23864 0.07382 0.22454 0.34642 -0.19768 

 
Eastern 

MIR 0.45085 -0.32846 0.11820 0.17518 0.41430 -0.25700 
Residuals 0.51628 -0.37277 -0.05498 0.31131 0.50630 -0.30144 

 
Western 

MIR 0.21232 -0.03190 0.13496 0.27611 0.15196 -0.03410 
Residuals 0.41678 -0.01182 0.25837 0.29382 0.20252 0.01660 

 
Central 

MIR 0.22015 0.07147 0.38985 0.10159 0.11443 0.15602 
Residuals 0.34830 0.08700 0.36450 0.08610 0.10128 0.10170 

Greater 
Accra 

MIR 0.29865 -0.17830 -0.06057 0.10991 0.24573 -0.08446 
Residuals 0.31234 -0.21064 -0.16161 0.20447 0.26321 -0.08434 

 
Volta 

MIR 0.26552 -0.23710 0.11709 0.20734 0.39508 -0.13720 
Residuals 0.48688 0.37613 0.00667 0.33264 0.45897 0.20800 
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temperatures and number of sunshine hours (see Table 4.4.1 and 4.4.2).  However, the 

morbidity incidence in Central Region exhibit direct linear relationships with 

minimum temperature and sunshine hours. Relatively, the correlations appear stronger 

in the three regions forming the northern zone (Upper East, Upper West and Northern) 

and weaker in Ashanti, Central and Western regions, although, statistically there are 

some significant relationships with the rainfall, minimum temperature and relative 

humidity at 1500 hours (p-values  0.05). The incidence rates among the young 

children correlate more highly with rainfall, temperature and relative humidity in the 

northern zone and Brong Ahafo Region, than in the other regions except Greater Accra 

Region. 

Rainfall, temperature and relative humidity are highly correlated, as observed from 

Results A-5.1. However, relative humidity (at 1500 hours) exhibits stronger 

correlations with rainfall and maximum temperature, ranging mostly between -0.4 and 

-0.9. This is evidence of multicollinearity which affects the choice of the predictors 

and estimates of regression coefficients retained in the predictive model, though it does 

not reduce the predictive power or reliability of the model as a whole (Chatterjee & 

Hadi, 2006; Draper & Smith, 1981; Farrar & Glauber, 1967). The variations of the 

incidence rates from the model fitting of (4.4.2) are highly  explained in the northern-

zone regions and Brong Ahafo Region, the observed coefficient of determination 2ˆ( )R

values, ranging from 0.3052 to 0.720 (see Results A-5.2 and A-5.3 in Appendix A-5). 

Thus, the retained covariates can be very useful for predicting malaria risk in these 

regions, but differ between the total incidence rates and those of the 0-4 year group, 

unlike in the other regions which appeared to be modelled by same set of predictors. 

The morbidity incidence variations in the other regions, especially in Ashanti and 

Western, are poorly explained by the potential covariates. Rainfall and maximum 

temperature and relative humidity (at 15 hours) lagged by one month significantly 

relate with the morbidity incidence rates in most of the regions ( -value < 0.005)p . In 

particular, the incidence for regions in the coastal and forest zones (e.g. Greater Accra 

and Western) can be significantly ( -value < 0.005)p  predicted by only rainfall in the 

previous month whilst that for regions in the northern zone is strongly impacted by 

maximum temperature and/or relative humidity in the previous month (see Tables 

4.4.3 and 4.4.4). However, rainfall which correlates positively (0.21232–0.72212) with 

the  residuals  across  the  country, proves to have no significant effect in  the  northern  



127 
 

Table 4.4.3: Multiple regression analysis results for the detrended morbidity incidence rates (total) with 
climatic covariates at lags 0 and 1 in the regions, neglecting interaction terms not to compound problem 
of multicolinearity among the covariates (Jaccard, et al., 1990). All predictor variables are retained at 

-value < 0.05.p  

 
Covariate 

Upper West Region (Total) 

-estimate  std error  -statistict  -valuep  

Intercept 7.324 67.056 0.11 0.913 
Rainfall -0.226 0.130 -1.73 0.086 
MinTemp_1 -5.166 3.027 -1.71 0.090 
RH1500 3.062 0.601 5.09 1.2e-06 

SSE   61.5;                 ˆ 2R =  0.305 (0.289);              AIC   1083 
 
Covariate 

Northern Region (Total) 

-estimate  std error  -statistict  -valuep  

Intercept 391.96 32.91 11.91 <2.0e-16 
MaxTemp -7.530 2.45 -3.07 0.00260 
MaxTemp_1 -10.87 2.26 -4.80 4.4e-06 
Sunshrs 3.950 1.84 2.14 0.0340 

SSE   28.5;                 ˆ 2R =  0.532 (0.521);              AIC   882 
 
Covariate 

Brong Ahafo Region (Total) 

-estimate  std error  -statistict  -valuep  

Intercept -111.92 87.108 -1.28 0.20072 
Rainfall_1 0.1599 0.0457 3.50 0.00061 
MaxTemp_1 -5.9272 2.4328 -2.44 0.01593 
MinTemp 7.0121 3.2191 2.18 0.03084 
RH1500_1 1.0199 0.3177 3.21 0.00160 
Sunshrs 10.7022 3.0118 3.55 0.00050 

SSE   31.2;                 ˆ 2R =  0.408 (0.390);              AIC  1155 
 
Covariate 

Ashanti Region (Total) 

-estimate  std error  -statistict  -valuep  

Intercept -39.401 34.155 -1.15 0.2508 
Rainfall_1 0.0799 0.0215 3.72 0.0003 
MinTemp_1 3.1338 1.6874 1.86 0.0656 
Sunshrs -6.0406 1.2990 -4.65 8.2e-06 

SSE   32.2;                 ˆ 2R =  0.367 (0.341);              AIC  915.4 
 
Covariate 

Greater Accra Region (Total) 

-estimate  std error  -statistict  -valuep  

Intercept 97.175 35.699 2.72 0.00740 
Rainfall_1 0.0984 0.0247 3.98 0.00011 
MaxTemp -2.6224 1.2973 -2.02 0.04534 
Sunshrs -3.3279 1.5660 -2.13 0.03551 

SSE   17.9;                 ˆ 2R =  0.315 (0.298);              AIC =  759.2 
 
Covariate 

Western Region (Total) 

-estimate  std error  -statistict  -valuep  

Intercept -357.785 252.624 -1.42 0.1592 
Rainfall_1 0.07960 0.0286 2.78 0.0062 
MaxTemp -10.8348 4.7431 -2.28 0.0241 
MaxTemp_1 5.53440 2.5887 2.14 0.0345 
RH0600_1 4.96860 2.0702 2.40 0.0179 
RH0600 -1.7423 0.9070 -1.92 0.0570 

SSE   22.8;                 ˆ 2R =  0.243 (0.206);              AIC   826 
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Table 4.4.4: Multiple regression analysis results for the detrended morbidity incidence rates (0-4) with 
climatic covariates at lags 0 and 1 in the regions, neglecting interaction terms not to compound problem 
of multicolinearity among the covariates (Jaccard, et al., 1990). All predictor variables are retained at 

-value < 0.05.p  

 
Covariate 

Upper West Region (0-4) 

-estimate  std error  -statistict  -valuep  

Intercept 159.930 140.077 1.14 0.25571 
Rainfall -0.795 0.280 -2.84 0.00531 
MinTemp_1 -22.717 5.958 -3.81 0.00021 
RH1500 10.125 1.268 7.98 7.3e-13 

SSE   132;                 ˆ 2R =  0.539 (0.528);              AIC   1284 
 
Covariate 

Northern Region (0-4) 

-estimate  std error  -statistict  -valuep  

Intercept 654.98 117.99 5.55 1.6e-07 
MaxTemp_1 -30.18 5.06 -5.96 2.3e-08 
MinTemp -11.63 6.35 -1.83 0.06954 
RH0600 3.520 1.04 3.40 0.00091 

SSE   63.8;                 ˆ 2R =  0.627 (0.618);              AIC   1093 
 
Covariate 

Brong Ahafo Region (0-4) 

-estimate  std error  -statistict  -valuep  

Intercept -526.868 170.619 -3.09 0.00238 
Rainfall_1 0.3746 0.0923 4.06 7.7e-05 
MaxTemp_1 -8.5882 4.7825 -1.80 0.07442 
MinTemp 27.1362 6.9540 3.90 0.00014 
RH1500_1 3.3678 0.6829 4.93 2.0e-06 
Sunshrs_1 15.0853 6.1011 2.47 0.01446 

SSE   61.1;                 ˆ 2R =  0.507 (0.488);              AIC  1380 
 
Covariate  

Ashanti Region (0-4) 

-estimate  std error  -statistict  -valuep  

Intercept 19.039 20.639 0.92 0.3580 
Rainfall 0.0918 0.0541 1.70 0.0921 
Rainfall_1 0.1703 0.0534 3.19 0.0018 
Sunshrs -8.5780 3.0515 -2.81 0.0057 

SSE   44;                 ˆ 2R =  0.219 (0.201);              AIC   995.4 
 
Covariate 

Greater Accra Region (0-4) 

-estimate  std error  -statistict  -valuep  

Intercept 364.326 189.921 1.92 0.0573 
Rainfall_1 0.1932 0.0666 2.90 0.0044 
MinTemp_1 -7.7359 4.3666 -1.77 0.0789 
RH0600 -3.6469 2.1979 -1.66 0.0995 
RH1500 2.0327 1.4529 1.40 0.1642 

SSE   47.3;                 ˆ 2R =  0.137 (0.110);              AIC   1015 
 
Covariate 

Western Region (0-4) 

-estimate  std error  -statistict  -valuep  

Intercept -907.899 337.734 -2.69 0.0081 
Rainfall_1 0.161 0.042 3.83 0.0002 
MinTemp_1 13.938 5.962 2.34 0.0210 
RH0600_1 6.021 3.329 1.81 0.0729 

SSE   43.8;                 ˆ 2R =  0.231 (0.213);              AIC   994.4 
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zone, except in the under 5-year old group  in Upper West Region (p-value = 0.00531) 

which rather decreases the residuals by 0.795 per unit change. This can be attributed to 

the effect of multicollinearity with the other covariates. 

As noted above, relative humidity confounds with rainfall due to high collinearity 

between them whilst a similar stronger correlation exists between maximum 

temperature and sunshine hours. Thus, malaria risk in the regions can be significantly 

influenced by rainfall and maximum temperature lagged one month, confirming the 

earlier assertion of rainfall, temperature and humidity as the main contributors to 

malaria transmission in Ghana. The varied regression models established at the regions 

give an indication of the spatial distributions of the malaria morbidity incidence which 

could be attributed to the effect of variations in climatic conditions. This is explored 

further in section 4.5 via SARIMA predictive models and in section 4.5, using the 

space-time incidence data and the covariates observed at the district-month locations. 

4.4.2 Correlation Analysis of Space-time Data 

Cross-correlation analysis of the observed district-month (space-time) data is 

performed with the ultimate aim of identifying the potential climate variables which 

relate strongly with elevation and the morbidity incidence rates and then used for 

developing suitable linear models of coregionalisation (LMC) in chapter 5. Elevations 

of district locations of the observed monthly count cases of malaria morbidity were 

first extracted from the exhaustive information source, DEM (IntraSearch, 2011). The 

results by month (shown in Appendix B-3) indicate that elevations correlate 

significantly with the morbidity incidence rates and climatic covariates 

( value 0.05),p    though not strongly with the former where correlation coefficients 

mostly range between 0.20000 and 0.40000. However, they relate more strongly with 

the climatic covariates, and are often used as proxy for atmospheric variables in 

meteorological studies (Goovaerts, 1999; Hudson & Wackernagel, 1994; Kyriakidis, 

Miller, & Kim, 2004; Spadavecchia & Williams, 2009). In particular, increasing 

elevation correlates highly with decreasing minimum temperature and relative 

humidity measured at 1500 hours with monthly observed spatial correlation 

coefficients ranging mostly between -0.10000 and -0.80000 but poorly with increasing 

maximum temperature. Rather, rainfall relates positively and negatively with elevation 

depending on the month of observation. Relative humidity (at 1500 hours) correlates 
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positively and highly with minimum temperature and negatively with maximum 

temperature which happens to be stronger from November to December (see the 

spatial correlation results in Appendix B-3). 

Table 4.4.5: Correlation analysis of residuals for the observed the morbidity incidence rates with the 
climatic covariates observed at the district-month locations over the whole the study area in Ghana 

Covariate MIR Rainfall MaxT MinT RH0600 RH1500 Sunshr 

MIR 1       
Rainfall 0.157 1      
MaxTemp -0.102 -0.366 1     
MinTemp -0.112 0.049 0.236 1    
RH0600 0.037 0.402 -0.578 0.131 1   
RH1500 0.056 0.495 -0.743 0.175 0.799 1  
Sunshrs -0.020 -0.301 0.649 0.125 -0.413 -0.548 1 
Covariate Residuals Rainf MaxT MinT RH0600 RH1500 Sunshr 

Residuals 1       
Rainfall 0.277 1      
MaxTemp -0.332 -0.366 1     
MinTemp -0.090 0.049 0.236 1    
RH0600 0.288 0.402 -0.578 0.131 1   
RH1500 0.321 0.495 -0.743 0.175 0.799 1  
Sunshrs -0.194 -0.301 0.649 0.125 -0.413 -0.548 1 
Covariate Residuals Rainf_1 MaxT_1 MinT_1 RH06_1 RH15_1 Sunsh_1 

Residuals 1       
Rainfall_1 0.380 1      
MaxTemp_1 -0.283 -0.368 1     
MinTemp_1 0.026 0.049 0.234 1    
RH0600_1 0.318 0.402 -0.578 0.131 1   
RH1500_1 0.360 0.498 -0.745 0.176 0.798 1  
Sunshrs_1 -0.179 -0.300 0.649 0.125 -0.414 -0.550 1 
Covariate Residuals Rainf_2 MaxT_2 MinT_2 RH06_2 RH15_2 Sunsh_2 

Residuals 1       
Rainf_2 0.304 1      
MaxTemp_2 -0.160 -0.369 1     
MinTemp_2 0.150 0.049 0.232 1    
RH0600_2 0.266 0.403 -0.581 0.132 1   
RH1500_2 0.286 0.499 -0.748 0.178 0.799 1  
Sunshrs_2 -0.150 -0.300 0.651 0.124 -0.415 -0.550 1 

 

Table 4.4.5 and Appendix B-4 give the spatial and temporal correlations between the 

detrended morbidity incidence rates (residuals) and potential climatic covariates for the 

study areas. Nationally, there is a significant effect of the climatic covariates on the 

residuals at the district-time locations. The residuals exhibit higher correlations with 

maximum temperature, relative humidity and rainfall (at lags 0 and 1) which is 
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consistent with the temporal correlations observed in the regions, where increase in 

rainfall/relative humidity (or maximum temperature) leads to increased (or decreased) 

risk of the disease. Similar and more variable correlations are observed in BAR and the 

vegetation zones (see Results B-4.1). However, as in the former, the effect of the 

potential covariates, rainfall, maximum temperature and relative humidity (at 1500 

hours) is more pronounced in the northern savannah zone where the correlation 

coefficients between the morbidity risk (via residuals) and the three potential 

covariates are relatively stronger. Malaria morbidity risk as observed in the coastal and 

forest zones is poorly correlated with the covariates but significant increased risk of the 

disease can statistically be predicted by increasing rainfall and relative humidity. 

Temporally, the correlations of morbidity incidence with the potential covariates at the 

district weather locations are much stronger than in the spatial domain with higher 

correlation coefficient values mainly observed in the northern-zone regions and Brong 

Ahafo Region (see Results B-4.2). 

 

4.5 Seasonal ARIMA Models of the Global MIR 

The classical multiple regression analysis of the global (or regional) morbidity 

incidence rates conducted in the previous section appeared to be insufficient for 

explaining some of the interesting dynamics existing within the time series incidence 

data. The residuals obtained from such a modelling approach are likely to exhibit serial 

correlation, violating the underlying normality (white noise) assumption (Bepari & 

Mollik, 2009; Box & Pierce, 1970; Cowpertwait & Metcalfe, 2009; Shumway & 

Stoffer, 2011). Thus, the detrended incidence data arising from the fitting of the second 

order polynomial model in time (4.4.1) to the morbidity incidence data are further 

examined for the application of appropriate predictive and forecast models of the 

morbidity cases in the regions. The autoregressive integrated moving average 

(ARIMA) models of time series analysis, as discussed in section 2.5 of chapter 2, are 

capable of modelling the non-stationarity in the observed morbidity incidence data due 

to the large scale trend and seasonal effects, which are achieved through an integrated 

process of differencing (Box & Jenkins, 1976; Cowpertwait & Metcalfe, 2009). In this 

section the residual analysis of the detrended incidence time series data is performed 

and then followed by application of the multiplicative seasonal autoregressive 

integrated moving average (SARIMA) modelling of the morbidity incidence rates for 
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future  forecasting in the regions. The SARIMA predictive model of the incidence 

rates (as outlined in section 2.5.3) is then extended to SARIMAX model to incorporate 

the effects of variation in rainfall, relative humidity and temperature as exogenous 

variables(X) to characterise the morbidity incidence in the regions. 

4.5.1 Autocorrelation Analysis of the Detrended Incidence Rates 

The monthly detrended incidence rates ( )tR u , by (4.4.1), in the regions are analysed 

using the autocorrelation functions (ACFs) and their partial autocorrelation functions 

(PACFs) coupled with Augmented Dickey-Fuller test (ADF) test for stationarity 

(Dickey & Fuller, 1979) and Q-Q plots via the Shapiro-Wilk test (Royston, 1982; 

Shapiro & Wilk, 1965). This gives a very useful visual impression of the correlations 

among close observed incidence rates of the disease and eventually leads to the 

accurate SARIMA model and other applicable methodology to achieve the desired 

prediction (Johnson & Wichern, 1992; Shumway & Stoffer, 2011). The time sequence 

and Q-Q plots as well as the autocorrelation functions of the residuals of the regions 

are produced in Figures 4.5.1 and 4.5.2 and Appendix C-1.  

The analysis of the residuals, generally, indicates similar behaviour of the morbidity 

incidence in the regions with very strong serial correlations at lag 1. The time sequence 

plots of the residuals which centred at zero mostly show significant fluctuations but 

with some highly extreme values and also indicating the periodic cycles in the 

incidence data. The seasonal effects are further evidenced by autocorrelation and 

partial autocorrelation functions which are characterised by high spikes observed at lag 

12 and its multiples (24, 36, …), after which they decay exponentially and die out 

eventually. The residuals appear stationary ( value 0.05)p   by the ADF test (Dickey 

& Fuller, 1979) and also close to the normal but with pronounced outliers noticed in 

the tails of plots, especially in Upper West, Upper West, Greater Accra, Eastern and 

Ashanti regions. Shapiro-Wilk tests (Shapiro & Wilk, 1965) were performed which 

yielded valuesp  of mostly less 0.01, which implies that the detrended incidence data 

in the regions are not normally distributed but can be improved by differencing (or 

integration) (Cai, 2009; Cowpertwait & Metcalfe, 2009; Shumway & Stoffer, 2011). 

The modelling process is improved by the application of a multiplicative seasonal 

ARIMA modelling process (Box & Jenkins, 1976) with an alternative 

diagnosticsprocedure such as Ljung-Box Q-test (Ljung & Box, 1978) which uses a chi-  
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Figure 4.5.1: Time sequence and QQ plots (left), ACFs and PACFs (right) of residuals in Upper West, 
Northern (top), Brong Ahafo, Ashanti (middle), Greater Accra and Western (bottom) regions for 
regional total morbidity incidence rates 
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Figure 4.5.2: Time sequence and QQ plots (left), ACFs and PACFs (right) of residuals in Upper West, 
Northern (top), Brong Ahafo, Ashanti (middle), Greater Accra and Western (bottom) regions for the 
morbidity incidence rates of the 0-4 year old group  
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square distribution with  heavier tails than the normal distribution to establish 

goodness-of-fit of the modeling. This methodology has extensively been applied to the 

morbidity incidence rates and the results are presented in section 4.5.2. 

4.5.2 Multiplicative SARIMA Models of the Malaria Morbidity 
Incidence Rates   

 

The multiplicative seasonal autoregressive integrated moving average (SARIMA) 

model of order ( , , ) ( , , ),p d q P D Q  introduced by Box and Jenkins (1976) and given 

in  (2.5.8),  was applied to time series morbidity incidence data ( )tI u  in the regions 

due to the strong autocorrelations exhibited by the detrended data as observed in 

previous section. Stationarity of the incidence time series data in each region was 

achieved by taking the first (or second) and seasonal order differences through the 

integrated process of the SARIMA model (2.5.8) to remove the linear (or quadratic) 

trend and seasonal effects within the data. This was further confirmed by ADF tests 

(Dickey & Fuller, 1979) conducted, which all proved statistically significant

( value 0.01)p   , rejecting the non-stationarity of the differenced incidence data. The 

advantage of the differencing being, unlike the detrending, it does not require 

parameter estimation (Shumway & Stoffer, 2011).  

The Box-Jenkins model-building is continued with parameter estimation by fitting a 

wide range of multiplicative models to the morbidity incidence rates data using the 

maximum likelihood estimation (MLE) method, by (2.5.9) and (2.5.10). The best-

fitting models obtained were based on two main criteria of model adequacy, the 

Akaike information criterion (AIC) by Akaike (1974), which measures how the models 

fit to the incidence rates time series using the least value of AIC (2.5.11) and the 

Ljung-Box Q-test (Ljung & Box, 1978), which performed the diagnostics of the fitted 

models using the residuals via (2.5.12). In choosing the best-fitting morbidity 

incidence model of the disease for each region, two types of predictive models were 

developed, following Wangdi et al. (2010). Model I is the univariate SARIMA model 

used to provide forecasts of the morbidity incidence cases in the region. This model 

was developed based on the trend pattern of the morbidity incidence rates over the 

years and under the presumed stable environmental and socio-economic conditions 

such as climatic, vegetation, access to health care for treatment, intervention measures, 

population movement and poverty in the region. The potential impact of these factors 
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on malaria transmission is detailed in chapters 1 and 6. Model II is the multivariate 

SARIMA model which extends Model I to account for the effects of the potential 

climatic covariates as exogenous variables (hereafter and elsewhere referred to as 

SARIMAX) model. The exogenous variables included rainfall, temperature, relative 

humidity and number of sunshine hours, lagged one month to allow sufficient time for 

the development of the disease and its subsequent reporting (Wangdi et al., 2010). The 

parameter estimates for best-fitting predictive SARIMA and SARIMAX models for 

each region are presented in Appendix C-2 whilst Tables 4.5.1 and 4.5.2 list the 

summary results of the developed predictive models. The results of Ljung-Box Q-tests 

for model adequacy by residual analysis of the predictive models are shown in 

Appendix C-3, whilst results for some selected regions are given in Figures 4.5.3 and 

4.5.4. All the multiplicative SARIMA and SARIMAX model-building procedures 

were carried out using functions and codes in the  R program (R Development Core 

Team, 2011) as shown in Appendix H-1.3. 

Overall, the SARIMA models for predicting the morbidity incidence rates vary (see the 

best-fitted models obtained as shown in Table 4.5.1 and 4.5.2) due to the different 

morbidity patterns of occurrence of the disease in the regions. The predictions are 

strongly influenced by both the seasonal and non-seasonal components of the 

autoregressive and moving average processes whose parameters are mostly found to be 

highly statistically significant ( value 0.01).p    The predictive models of the 

morbidity incidence for the 0-4 year olds are different from the total incidence except 

in three regions, namely, Upper East, Northern and Ashanti, which were modelled, in 

both cases by the predictive models, 12ARIMA(1,1,1) (0,1,1) , 12ARIMA(1,1,4) (1,1,0)  

and 12ARIMA(3,1,0) (3,2,1) , respectively. The morbidity incidence rates among the 

vulnerable young children are estimated higher with the highest incidence cases mainly 

occurring in Upper East, Upper West, Brong Ahafo and Western regions. The 

SARIMA models developed for all the regions appear to provide adequately fits as 

evidenced by the Ljung-Box Q-tests for the model diagnostics (see Figures 4.5.3 and 

4.5.4 Appendix C-3), where the time sequence plots of the standardised residuals show 

no obvious pattern, except for some few outliers which can be observed. In addition, 

the autocorrelation functions of the residuals do not indicate any apparent departure 

from the model assumptions, as evidenced by the high estimated values,p   which 

appear higher in most cases for the 0-4 year group predictions.  
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Table 4.5.1: Summary results of multiplicative SARIMA and SARIMAX predictive models of 
morbidity incidence rates (total) for the ten regions of Ghana with the potential exogenous variables (X). 
Also indicated are the AIC, MAE and RMSE values obtained for the models.  

Region 
(Total) 

SARIMA(X) 
Model 

Exogenous 
Variables (X) 

AIC 
 

MAE 
 

RMSE 
 

 

Upper 

East 

12ARIMA(1,1,1) (0,1,1)  - 1225 27.17 37.32 

12ARIMAX(1,1,1) (0,1,1)  MaxTemp; RH1500 

Sunshrs 

1216 26.90 

 

36.74 

 

 

Upper 

West 

12ARIMA(1,0,0) (0,1,1)  - 1239 27.35 38.32 

12ARIMAX(1,0,0) (0,1,1)  Rainfall_1; 

Sunshrs_1 

1226 26.24 37.22 

 

Northern 
12ARIMA(1,1,4) (1,1,0)  - 1098 15.17 21.20 

12ARIMAX(1,1,4) (1,1,0)  RH1500; 

Sunshrs_1 

1081 14.29 20.05 

 

Brong 

Ahafo 

12ARIMA(3,1,0) (0,1,1)  - 1465 17.33 23.96 

12ARIMAX(3,1,0) (0,1,1)  Rainfall; 

RH1500_1 

1447 16.97 22.37 

 

Ashanti 
12ARIMA(3,1,0) (3,2,1)  - 1034 12.98 18.68 

12ARIMAX(3,1,0) (3,2,1)  RH1500_1; 

MinTemp_1 

1027 13.01 18.41 

 

Eastern 
12ARIMA(1,1,2) (0,1,1)  - 1141 17.80 25.25 

12ARIMAX(1,1,2) (0,1,1)  MinTemp_1; 

Sunshrs_1 

1129 16.56 24.40 

 

Western 
12ARIMA(0,1,1) (2,1,2)  - 1069 12.07 17.07 

12ARIMAX(0,1,1) (2,1,2)  Rainfall;  Rainfall_1 

MaxTemp 

1055 12.00 16.33 

 

Central 
12ARIMA(0,0,2) (1,1,0)  - 1020 10.00 15.49 

12ARIMAX(0,0,2) (1,1,0)  RH1500; 

MinTemp_1 

1013 10.77 15.33 

 

Greater 

Accra 

12ARIMA(0,1,1) (2,1,0)  - 1012 10.79 14.94 

12ARIMAX(0,1,1) (2,1,0)  Rainfall_1; Sunshrs 

RH1500_1 

1000 10.49 14.57 

 

Volta 

 

12ARIMA(1,1,2) (0,1,2)  - 610 10.29 14.41 

12ARIMAX(1,1,2) (0,1,2)  Rainfall_1; Sunshrs 600 9.94 13.67 
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Table 4.5.2: Summary results of multiplicative SARIMA and SARIMAX predictive models of 
morbidity incidence rates (0-4) for the ten regions of Ghana with the potential exogenous variables (X); 
Also indicated are the AIC, MAE and RMSE values obtained for the models.  

Region 
(0-4) 

SARIMA(X) 
Model 

Exogenous 
Variables (X) 

AIC 
 

MAE 
 

RMSE 
 

 

Upper 

East 

12ARIMA(1,1,1) (0,1,1)  - 1517 88.74 124.70 

12ARIMAX(1,1,1) (0,1,1)  MinTemp_1; 

RH1500 

1506 88.65 122.80 

 

Upper 

West 

12ARIMA(1,1,1) (0,1,1)  - 1487 78.70 108.60 

12ARIMAX(1,1,1) (0,1,1)  Rainfall_1; 

Sunshrs_1 

1470 76.94 105.40 

 

Northern 
12ARIMA(1,1,4) (1,1,0)  - 1306 35.63 51.17 

12ARIMAX(1,1,4) (1,1,0)  Sunshrs_1 1288 34.57 49.38 

 

Brong 

Ahafo 

12ARIMA(0,1,2) (0,1,1)  - 1692 38.68 51.89 

12ARIMAX(0,1,2) (0,1,1)  MaxTemp; 

RH1500_1 

1672 36.62 49.75 

 

Ashanti 
12ARIMA(3,1,0) (3,2,1)  - 1212 31.96 43.90 

12ARIMAX(3,1,0) (3,2,1)  Rainfall, 

MaxTemp_1 

1201 31.27 43.90 

 

Eastern 
12ARIMA(0,1,2) (0,1,1)  - 1316 38.30 53.42 

12ARIMAX(0,1,2) (0,1,1)  Rainfall_1; 

MinTemp_1 

1304 37.43 52.07 

 

Western 
12ARIMA(0,1,1) (0,1,1)  - 1232 26.77 37.80 

12ARIMAX(0,1,1) (0,1,1)  RH0600; 

RH0600_1 

1215 25.48 35.95 

 

Central 
12ARIMA(0,1,3) (0,1,2)  - 1179 19.56 27.90 

12ARIMAX(0,1,3) (0,1,2)  MaxTemp_1; MinT 

MinTemp_1 

1169 19.97 27.26 

 

Greater 

Accra 

12ARIMA(0,1,1) (1,2,1)  - 1184 29.13 42.98 

12ARIMAX(0,1,1) (1,2,1)  Rainfall_1, 

RH1500_1; Sunshrs 

1170 27.91 41.12 

 

Volta 
12ARIMA(1,1,0) (0,1,1)  - 755 29.31 40..21 

12ARIMAX(1,1,0) (0,1,1)  RH1500_1; 

Sunshrs_1 

746 27.97 38.65 
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The SARIMAX models, which were established by fitting the already developed 

SARIMA models with the covariates as exogeneous variables to account for the effect 

of the climatic conditions, contribute to further predictions of the morbidity incidence 

rates and explanation of the variations in morbidity incidence in the various regions. 

The SARIMAX models showed different climatic predictors and significant impact on 

the morbidity incidence for the different regions. However, rainfall and number of 

sunshine hours (both lagged one month) which confound with maximum temperature 

are generally found to be significant predictors of the morbidity incidence for regions 

in the northern savannah zone whilst current or prior one month rainfall and relative 

humidity (or temperature) prove to be the important predictors of the incidence for 

regions in the other two vegetation zones. The effects of these potential predictors tend 

not to show any particular relationship as they are found to either increase or decrease 

the incidence rates per unit change of their observations. In particular, rainfall is 

observed to decrease morbidity whilst relative humidity appears to increase morbidity 

for regions in the northern zone. In contrast, the impact of some covariates is the 

opposite in some regions (Ashanti, Greater and Western) in the other two zones (see 

results in Appendix C-2).  

The impact of the climatic covariates can further be observed by the significant 

reductions in the AIC, MAE and RMSE values, compared with those obtained by the 

SARIMA models (see Tables 4.5.1 and 4.5.2). The SARIMAX model diagnosis of the 

morbidity incidence rates also showed significant increase of the p–values. The 

parameters of both predictive SARIMA and SARIMAX models show that the 

morbidity incidence rates within the last four months and three seasons coupled with 

rainfall, maximum temperature and relative humidity in the preceeding one month 

highly influence the morbidity incidence in the current month. This can be interpreted 

that the malaria morbidity incidence in the last few months and seasons and that of 

variations in climatic conditions affect the reported new morbidity incidence cases in 

the current month in the regions. The results can be used to provide an early warning 

system for malaria epidemics in the various regions and also serve a guide for further 

analysis in the following chapter.  
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Figure 4.5.3: SARIMA model diagnostics of the morbidity incidence rates (total) by the Lyung-Box Q-
test indicating the standardised residuals (top), ACF of residuals (middle) and the p-values (bottom) for 
Upper West, Northern, Brong Ahafo, Ashanti, Greater Accra and Central regions 
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Figure 4.5.4: SARIMA model diagnostics of the morbidity incidence rates (0-4) by the Lyung-Box Q-
test indicating the standardised residuals (top), ACF of residuals (middle) and the p-values (bottom) for 
Upper West, Northern, Brong Ahafo, Ashanti, Greater Accra and Central regions 
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4.5.3 SARIMA Predictive Model Forecast of MIR and Validation  

The SARIMA models established in section 4.5.3 are used to make future forecasting 

of the morbidity incidence rates. A three-year forecast of the monthly morbidity 

incidence is proposed for the period 2011–2013/2014. The results of the forecasting 

when implemented will assist the monitoring of progress towards Ghana’s NMCP 

Strategy Plan 2008-2015 for achieving 75% reduction of morbidity cases by 2015. The 

forecast values are presented in Appendix C-5 whilst the graphs are displayed in 

Figures 4.5.5 and 4.5.6 and Appendix C-4. Tables 4.5.3 and 4.5.4 show the validation 

results for the 2011 (and 2012 for BAR) forecast values.   

As observed from the forecast tables and figures, varied results have been produced 

across the country but followed similar seasonal and also trend behaviours, especially 

for regions in the same vegetation zone (see Appendix C-4). On the whole, the 

incidence rates for the northern zone are forecated higher and appear to remain 

constant within the prediction period, except Upper East which appears to show a 

sharp increase. However, the forecasts for the regions in the forest zone (for example, 

Brong Ahafo and Ashanti) show gradual increase whilst the forecasts of morbidity 

incidence in Greater Accra, which is part of the coastal zone, decreases. The three 

regions (Central, Western and Volta) in both forest and coastal zones exhibit almost 

similar characteristics with their forecasted incidence rates following the same trend 

pattern as observed in the forest zone. The incidence rates among the most vulnerable 

people (0-4 year old children) are increasingly forecasted higher except in Greater 

Accra Region which decreases like the total incidence forecast.  

The prediction performance of the models is assessed using the 2011 morbidity 

incidence rates as validation data which were not included in forecasting. Comparing 

the forecated incidence values with the actual values for 2011, they are found to be 

very close (as clearly evidenced by the mean values in Tables 4.5.3 and 4.5.4 and 

graphs in Figures 4.5.5 and 4.5.6). The forecast estimates are all observed to lie within 

the 95% confidence interval values. The estimates also correlate very highly with the 

observed morbidity incidence with correlation cofficients for both the total and 0-4 

year grouping incidence rates ranging between 0.771 and 0.989 (see Tables 4.5.3 and 

4.5.4).  However, the RMSE and MAE values for the regions in the northern savannah 

zone and Volta Region which falls in both the forest and coastal zones are higher, 

compared with the other regions. These forecast results as earlier indicated have policy  
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Table 4.5.3: Forecasted MIR values for 2011(and 2012 for BAR), compared with the observed 
sampleand measures of prediction accuracy for the regional total incidence rates data 

Region MIR Min Max Mean StDev. ME MAE RMSE Corr. 

Upper 
East 

Sample 417 717 550.25 110.47 - - -  
Forecast 445.62 688.24 549.23 87.810 -1.023 28.418 31.828 0.970 

Upper 
West 

Sample 285 498 377.92 76.378 - - - - 
Forecast 324.74 468.51 382.99 56.553 5.073 24.698 27.696 0.952 

 
Northern 

Sample 183 311 240.33 46.720 - - - - 
Forecast 190.17 320.67 246.94 48.274 6.650 8.692 9.624 0.989 

Brong 
Ahafo 

Sample 229.00 346 284.67 38.070 - - - - 
Forecast 243.09 320.20 282.18 30.059 -2.489 11.503 15.102 0.922 

 
Ashanti 

Sample 214.00 272 238.67 19.114 - - - - 
Forecast 204.65 267.50 240.17 22.060 1.506 10.209 12.902 0.789 

 
Eastern 

Sample 255.00 391 307.83 44.022 - - - - 
Forecast 272.31 365.01 314.23 32.558 6.402 15.352 16.844 0.953 

 
Western 

Sample 287.00 342 310.92 17.906 - - - - 
Forecast 299.29 399.85 314.07 15.910 3.149 10.594 11.594 0.769 

 
Central 

Sample 151.0 223 182.42 23.434 - - - - 
Forecast 147.55 203.75 168.59 19.101 -13.82 14.710 16.933 0.966 

Greater 
Accra 

Sample 90.00 124 106.67 9.1880 - - - - 
Forecast 80.041 127.93 100.25 14.684 -6.418 8.575 10.198 0.858 

 
Volta 

Sample 240.0 370 295.08 44.570 - - - - 
Forecast 256.30 383.62 315.29 44.353 20.208 20.208 21.908 0.980 

 
Table 4.5.4: Forecasted MIR values for 2011 (and 2012 for BAR), compared with the observed sample 
and measures of prediction accuracy for the 0-4 year group incidence rates data  

Region MIR Min Max Mean StDev. ME MAE RMSE Corr. 

Upper 
East 

Sample 720 1951 1259.5 423.05 - - - - 
Forecast 979.61 1717.6 1302.9 283.46 43.33 139.17 151.76 0.985 

Upper 
West 

Sample 575 1255 897.33 251.12 - - - - 
Forecast 733.79 1140.6 925.52 164.89 28.167 94.667 111.32 0.937 

Northern 
Sample 311 703 500.00 146.31 - - - - 
Forecast 365.54 712.60 527.99 129.59 27.958 36.445 43.950 0.975 

Brong 
Ahafo 

Sample 423 681 556.92 92.80 - - - - 
Forecast 470.66 683.79 575.97 73.328 19.050 29.158 33.552 0.967 

 
Ashanti 

Sample 427 605 529.17 59.853 - - - - 
Forecast 448.18 614.73 538.31 46.938 9.148 25.987 28.738 0.886 

Eastern 
Sample 453 686 565.92 84.305 - - - - 
Forecast 478.64 660.13 557.95 61.526 -7.963 28.055 37.592 0.908 

Western 
Sample 591 717 655.17 37.479 - -  - 
Forecast 615.75 721.13 676.13 31.169 20.966 31.118 31.118 0.771 

Central 
Sample 322 465 376.83 36.244 - - - - 
Forecast 334.08 448.38 382.26 31.242 5.422 16.867 18.075 0.863 

Greater 
Accra 

Sample 215 325 273.50 35.019 - - - - 
Forecast 234.97 316.43 297.50 29.494 5.994 9.470 10.931 0.970 

Volta 
Sample 486 673 576.08 63.189 - - - - 
Forecast 544.32 704.68 619.76 55.574 43.675 43.675 46.656 0.966 
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Figure 4.5.5: SARIMA model forecast of monthly morbidity incidence rates (total) for 2011–2013/2014 
in Upper West, Northern, Brong Ahafo, Ashanti, Greater Accra and Central regions 
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Figure 1 Figure 4.5.6: SARIMA model forecast monthly morbidity incidence rates (0-4) for 2011–
2013/2014 in Upper West, Northern, Brong Ahafo, Ashanti, Greater Accra and Central regions 
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implications, as they will provide useful and reliable information for evaluation of 

reducing the morbidity cases of malaria in the country by 75% by the year 2015.      

4.6 Chapter Summary  

The exploratory analysis of the malaria morbidity cases carried out in this chapter 

aimed at establishing the distributional properties of the morbidity incidence rates for 

implementation of suitable predictive models of morbidity risk at both regional and 

district levels in Ghana. First, the study presented background information of the study 

area, highlighting on its geographical location and climatic conditions, and collection 

of the morbidity data, classified as regional (global) and space-time, together with the 

climatic covariates and elevation for the temporal and spatio-temporal analyses of 

morbidity incidence cases of the disease in the regions and at districts, respectively. 

The morbidity data were modelled as incidence rates, defined as the number of new 

cases per 10,000 resident people in a region or district and then considered as a 

realisation of random process occurring in space and by time as well.  

The time sequence plots and smoothing analysis of the incidence rates revealed 

continuous upward trend coupled with fluctuating periodic cycles, an indication of 

non-stationarity of the incidence time series data observed in the regions and at 

districts. Multiple regression analysis of the global data was then explored to establish 

the potential effect of climatic covariates of which the classical linear regression model 

proved insufficient to account for the detailed dynamics existing within the incidence 

rates at the regions. Consequently, the multiplicative SARIMA models were fitted, 

taking into account of non-stationarity of the incidence data and effect of the covariates 

for the best-fitting predictive models for the future forecast of the malaria morbidity 

risk to be determined in each region. The fitted models produced varied morbidity 

incidence patterns in the regions with strong significant influence of both the seasonal 

and non-seasonal components coupled with significant effect of rainfall, maximum 

temperature and relative humidity in the month preceding incidence of the disease. The 

forecast values of the morbidity incidence rates which followed similar upward or 

downward trend showed very strong correlation with the observed and also found 

lying within 95% confidence interval estimates.   

In the case of the space-time morbidity incidence data, the analysis was categorised 

into three studies, namely national, BAR and vegetation types (northern, forest and 
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coastal zones) to facilitate better description of local variation and quantification of the 

morbidity burden in a fine-scale. The cross-correlation analysis of the space-time 

incidence data sets revealed strong positive correlations of elevation of district 

locations with climatic covariates but with various significant effects of the covariates 

on the morbidity incidence. In the following chapter, spatio-temporal analysis of the 

morbidity incidence rates at the district locations is conducted, incorporating the effect 

of the potential climatic covariates via structural analysis of linear modelling of 

coregionalisation. 
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Chapter 5 

Space-time Statistical Analysis of the Malaria 
Morbidity Incidence Rates 

5.1 Introduction 

In this chapter the theoretical framework of spatial and space-time statistical analysis 

presented in chapters 2 and 3 is applied to the counts malaria morbidity cases observed 

at the district health facilities over the period 1998-2011 in Ghana. The study seeks to 

model the spatial and spatio-temporal distributions of the monthly malaria morbidity 

incidence rates, incorporating climate effects with particular focus on delineating areas 

with high risk of malaria morbidity. Thus, the methodology is designed to characterise 

the correlation structure of the morbidity incidence of the disease spatially and 

temporally by using various semivariogram models, leading to the local prediction of 

the morbidity risk. The district-month morbidity incidence rates (MIR) data, as defined 

in (4.2.1), are assumed to be a realisation of the space-time random function (STRF),

{ ( , ) :( , ) },I t t  u u D T where 2D  is the study area and T   is the temporal 

domain. The exploratory analysis conducted in Chapter 4 and a previous preliminary 

study (Appiah et al., 2011) of the  observed space-time incidence data revealed some 

pertinent characteristics. These include non-stationarity due to the presence of a large-

scale trend and annual periodicity as well as potential effects of rainfall, temperature 

and relative humidity on malaria incidence at the district-local level. As per the 

geostatistical conceptual framework discussed in chapter 3, the district-month MIR are 

modelled based on the assumption of stationarity of the STRF, characterised by a 

bounded semivariograms. Thus, following Kyriakidis and Journel (1999), the observed 

morbidity incidence rates ( , )I tu  are modelled as joint single randon function and 

also spatially correlated time series at each district location u . The large-scale noise 

in the incidence rates is reduced by log-transformation, whilst the trend and seasonal 

cycles occuring in the temporal domain are removed, using the space-time trend model 

(5.2.1). The resulting trend coefficients (or parameters) are then regionalised 

(interpolated) in space to account for their spatio-temporal autocorrelations. The 

residuals independently obtained from the detrending and deseasonalising at the 

district-month locations are then modelled as a realisation of a stationary spatio-
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temporal process, which eventually leads to the reconstruction of STRF at an 

unsampled spatial location u  at an instant time t  (Kyriakidis & Journel, 1999, 2001; 

Kyriakidis et al., 2004). 

The focus of the study is on Ghana as a whole, applying the geostatistical space-time 

methodological approaches, as stated above, to the morbidity incidence data at all 

district locations across the country. However, two other cases studies considering the 

morbidity incidence occuring only at district locations in Brong Ahafo Region (BAR)  

and the three vegetation (or malaria epidemiological) zones are investigated. These 

have been designed to facilitate detailed investigation of spatio-temporal dependence 

of the morbidity incidence at various local scales and to delimit areas of high risk due 

to the economic importance of these sub-areas. In Ghana, the predominantly vector 

Anopheles mosquito species which cause the disease are classified according to the 

vegetation  types (northern savannah, tropical rainforest and coastal savannal) due to 

differences in distributions of their habitats in these zones (NMCP/GHS, 2009). The 

choice of the case study in BAR is informed by its central strategic position in the 

country, which exhibits both the northern savannah and tropical rainforest types of 

vegetation, despite its relatively limited availability of data in the spatial domain. 

The detailed spatio-temporal analysis of the morbidity incidence data conducted in this 

chapter are structured into six main sections. Section 5.2 considers  the global analysis 

of space-time trend model, estimating the incidence rates at the district locations across 

the country and its regionalisation at unsampled locations. The structural analysis of 

the district-month data is performed in section 5.3 to characterise the spatial and 

temporal autocorrelations of the observed morbidity incidence rates using space-time 

semivarigrams models of log-transformation of the incidence data (logMIR) and 

residuals from detrending and deseasonalising of the observed incidence rates at the 

district-month data locations. Also presented in this section, are the generalised 

product-sum semivariogram models (De Iaco et al., 2001) of the space-time residuals 

and cross-validation of the space-time semivariogram models. Section 5.4 implements 

the space-time kriging techniques of the morbidity incidence rates, which are 

developed based on the semivariogram models to estimate the morbidity risk at the 

unsampled locations and explain its distribution patterns in space and time as well. 

These are the space-time lognormal ordinary kriging (STOLK), applied to logMIR and 

space-time ordinary kriging (STOK) to the residuals. The effect of the climatic 
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covariates on the malaria morbidity incidence is established in section 5.5, presenting 

the linear models of coregionalisation using the detrended incidence data and space-

time ordinary co-kriging (STOCK) for the prediction of morbidity risk. Section 5.6 

compares and validates the kriging estimates with a brief discussion of the results. The 

spatio-temporal modelling of the morbidity incidence in BAR and the vegetation zones 

are considered in sections 5.7 and 5.8, respectively, where the key results of the 

incidence data analysis are presented. Finally, the chapter is concluded in section 5.9, 

summarising the results of the data analysis.  

All the space-time statistical analyses of the malaria morbidity incidence rates were 

implemented using the geostatistical software packages, ISATIS version 2013 

(Geovariances, 2013) and modified GSLIB routines “GAMV” and “KT3D” programs 

(De Cesare et al., 2002). The pre-and post-processing of the data and and results from 

the geostatistical software were done using Microsoft Excel 2010 and R version 2.13.2 

(R Development Core Team, 2011). 

 

5.2 Analysis of Space-time Global Trend Model of  
MIR 

 
Following a series of smoothing analyses of the morbidity incidence rates performed at 

the 138 district-locations ( , ),tu  for 1, ... ,132t   in section 4.3.2 of chapter 4, an 

increasing linear or quadratic trend coupled with seasonal patterns of period 12 months 

were established (see Figure 4.3.4). The large-scale trend and seasonal variability are 

therefore removed or reduced prior to modelling of the spatio-temporal continuity and 

kriging of the malaria morbidity risk at the district-month locations where data were 

missing or unobserved. A case where the large-scale variation in the observed 

morbidity incidence rates is removed by detrending and deseasonalising is considered 

in this section. This leads to computation of the space-time trend model and analysis of 

its coefficients for the global trend surface of the morbidity risk to be estimated at the 

district locations. The resulting space-time residuals are regionalised spatially and 

temporally for further modelling procedures as presented in sections 5.3 and 5.4. Thus, 

in this secion, the global estimates of the morbidity incidence rates are computed via 

the analysis of the space-time trend model (5.2.1). 
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5.2.1 Estimation of the Trend Model at District Locations 

The observed space-time morbidity incidence rate data{ ( , ) : 1,..., ; 1,..., }I t n t T   u  

are independently detrended and deseasonalised at each district location u  which 

results in the decomposition of the morbidity incidence rates into a trend model 

( , )m tu  and a stochastic component ( , ).R tu  The deterministic trend function ( , )m tu  is 

modelled by fitting various polynomial functions coupled with a periodic (cosine and 

sine trigonometric functions) function in time t  scales to the morbidity incidence data 

( , ),I u t  following (3.4.2). The following second order polynomial nested with the 

periodic function of cosine and sine is obtained as the best fitting model to obtain 

(5.2.1):  

2
0 1 2 3

4

( , ) ( ) ( ) ( ) ( ) cos[(2 ) ]

( )sin[(2 ) ]

m t b b t b t b t

b t
    



 
 

   



u u u u u

u
 (5.2.1)  

where 12   months, being the seasonal period of the morbidity incidence data. The 

model coefficients 0 ( ),b u 1( ),b u 2 ( ),b u 3 ( )b u and 4 ( )b u are computed by 

regressing the incidence data { ( , ); 1,...,132},I t t u as response variable at each 

location ( , ),tu 1,...,138  , on the second order polynomial and trigonometric basis 

functions of time t  which spans 132 months from January 2000 to December 2010, 

following the OLS method (3.4.4). The computed trend coefficients are presented in 

Appendix D-1 together with the coefficients of determination 2( ).r The temporal 

profiles of the morbidity incidence rates, superimposed with the estimated trend model 

(5.2.1), at selected district locations across the study area are presented in Figure 5.2.1 

(and Appendix B-1). The base maps of the trend coefficients and coefficients of 

determination, which account for the proportion of the variation explained by the basis 

functions used in the model, are shown in Figure 5.2.2. 

The morbidity incidence rate profiles at the district locations which have been 

superimposed with the trend model indicate varied temporal pattern of distributions, 

capturing various aspects of the incidence variability (see Figure 5.2.1). This is 

evidenced by the trend coefficients values which exhibit various negative and positive 

values (see Figure 5.2.2 and Tables D-1.1 and D-1.2 in Appendix D-1). The 0b 

values estimate the incidence rates at the onset of the study (January 2000 but 1998 for 
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BAR) which tend to be lower in the central and north-eastern parts of Ghana but 

relatively higher at district locations in the northern and some other parts. The negative 

values are associated with the district locations where there were no case-reports for 

the disease at the start of the study. The corresponding linear terms ( 1b  values) tend 

to be highly positive resulting in high correlations between the intercepts 0b  and the 

trend coefficients ( 1b and 2b ), with the intercept estimates having a stronger negative 

correlation (-0.9585) with 1b . The inverse relationship is inherent in any modelling 

procedure where a high intercept results in smaller slope or vice-versa (Kyriakidis & 

Journel, 2001).  

As observed from the base maps in Figure 5.2.2 and the parameter tables in Appendix 

D-1, there are quite a number of negative 1b  and 2b values which indicate the long-term 

decrease of the morbidity incidence rates at these locations whilst positive values 

indicate a long-term increase over the period of study 2000-2010. These are typically 

illustrated by the different temporal profiles of the incidence rates as shown by the 

graphs in Figure 5.2.1. Generally, there is an increased risk of malaria morbidity across 

the country, except in the north-west parts where the risk appeared to have been 

reduced over the years under study. The coefficients 3b  and 4b  are associated with 

amplitude and phase of the annual cycles in the time series data whilst the coefficients 

of determination ( 2r ) account for the proportion of the morbidity incidence’s variation 

that can be explained by the trend model for the long-term trend and cycles in the 

incidence data. The coefficient of determination values, range from 0.195 to 0.912 

with an average of 0.673, indicating that most of the districts’ incidence rate profiles 

differ significantly from the spatial average profile. It is also observed from the base 

map (shown in Figure 5.2.2) that high values of 2r  are estimated in the northern 

(mostly at the district locations in the Upper East Region) and central parts of the 

country.  

Further analysis of the trend coefficients by spatial regionalisation is considered. The 

regionalised coefficients of the trend model are presented in section 5.2.2 for the trend 

surfaces of the morbidity risk to be computed in section 5.2.3. 
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Figure 5.2.1: Temporal profiles of the morbidity incidence rates superimposed with the estimated trend 
model (5.2.1) at some district locations selected across the study area, Bolgantaga and Tamale 
municipals in Northern zone, Berekum and Kumasi (KMA) in forest zone and Nzema East and Accra 
(AMA) in coastal zone. 
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Figure 5.2.2: Base maps of coefficients of determination ( 2r ), being proportions of the observed 
incidence variations explained due to the basis functions (top left) and coefficients of the trend model 
(b0, b1, b2, b3 and b4). 
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5.2.2 Regionalisation of Trend Model Coefficients 

The trend coefficients, { ( ); 1,..., 4},ib i u computed from model (5.2.1) in section 

5.2.1, are treated as precise data but then modelled as outcomes of random variables in 

space (Kyriakidis et al., 2004) to obtain their spatial correlation structures and pave the 

way for the estimation of morbidity risk in space and time. Models for the spatial 

continuity of the coefficients are then obtained by calculating the experimental 

semivariogram ( )ˆ ( )i
s s h for each trend coefficient ( )ib u and fitting a nested model 

consisting of spherical and exponential functions with a nugget effect. The 

experimental semivariograms were computed using a spatial lag spacing of 30 km for 

15 lags (see Table E-1.1 in Appendix E-1) with an angular tolerance of 90o and a 

tolerance of 50% at slicing of height 1.55, which produced the best smoothing for the 

model fitting. The results of the model parameters for this global analysis are as 

displayed in Table 5.2.1 and the fitted semivariogram models are shown in Figure 

5.2.3. Cross-validation of the semivariogram models of the trend coefficients (based on 

search neighbourhoods of 150 and 200 km and other parameters as specified in Table 

E-4.3 in Appendix E-4 are conducted to assess the ordinary kriging (OK) performance 

of the spatial interpolation of the coefficients. However, kriging with a search radius of 

200 km of data locations was chosen as it yielded the least mean and standardised 

mean errors.  

The experimental semivarigrams show a consistent autocorrelation pattern in structure 

(except for that of the sine coefficient ( 4b )) and appeared to be characterised by similar 

short and long ranges from 50 to 250 km. The relative nugget effect values increase 

from 0.329 for the intercept 0( )b  to 0.393 for 2.b  There are extremely high 

semivariance values for the long lags. This could be attributed to the nature of pairs of 

district locations at these separation distances, where a disproportionate number of 

these pairs are cross-type (that is, districts of the same status, either metropolitan, 

municipal or just ordinary district are rarely found so close together), as more 

commonly seen in most cases where large health facilities such as hospitals, at distant 

locations from each other, are surrounded by a number of smaller health facilities 

(Gething et al., 2007). These different facility types are more likely to have different 

morbidity incidence rate values than their spatial separations would otherwise suggest, 

resulting in a relatively larger semivariance values at the short and/or long lags 
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(Gething et al., 2007). This is the typical case for this study in Ghana. For example, 

each of the regional administrative capitals (such as Accra in Greater Accra Region or 

Sunyani in Brong Ahafo Region) is district location, which also serves as either 

municipal or metropolitan and mostly bordered with other smaller districts in the 

region. 

Table 5.2.1: Spatial semivariogram model parameters of the regionalised trend model coefficients of 
morbidity incidence rates for the national study involving all the district locations 

Coefficient 
ib  

Model 
( )h  

Sill 
( )sc  

Range 
sr  (km) 

Relative 
Nugget 

 
(Intercept) 

0b  

nugget  25000 -  
0.329 spherical  21000 65 

exponential  30000 200 

 
( )t  

1b  

nugget  15 -  
0.357 spherical  12 65 

exponential  15 210 

 
2( )t  
2b  

nugget  0.00055 -  
0.393 spherical  0.00030 65 

exponential  0.00055 200 

 
(cos)  

3b  

nugget  55 -  
0.297 spherical  30 50 

exponential  100 190 

 
(sin)  

4b  

nugget  50 -  
0.110 spherical  50 60 

exponential  450 250

 

The ordinary kriging (OK) technique was then used, as outlined in section 2.4.2 of 

chapter 2, to obtain the interpolated surfaces of { ( )}ib u  at unobserved locations u  by 

employing the modelled semivariograms and 8 to 20 closet neighbouring observations 

within the search circle radius of 200 km as inputs, following the Matheron estimator 

(2.3.16) and models (3.4.5) to obtain the optimal OK estimates of { ( )}ib u : 

 
( )

1

( ) ( ) ( ), 0,1,..., 4
i

i

n
ok ok
i ib b i 






 
u

u u u ,    (5.2.2)  

which leads to the prediction of month by month spatial maps of the global trend 

surfaces of the morbidity risk. The grid interpolated surfaces of the estimated trend 

coefficients of the morbidity incidence are given in Figure 5.2.4. The results give a 

strong indication of linear rise of the morbidity incidence rates across the country. The 
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Figure 5.2.4: Spatial interpolated surfaces of trend model coefficients as computed by the optimal linear 
predictor (5.2.2). 
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5.2.3 Estimation of Global Trend Surfaces of MIR 

The monthly global trend surfaces of the morbidity incidence rates are computed, 

following the optimal predictor (5.2.3), via a batch file looping in the ISATIS software 

program (Geovariances, 2013):   

         
2

3 4
0

ˆ ( , ) ( ) ( ) cos[(2 12) ] ( )sin[(2 12) ],ok i ok ok
ok i

i

m t b t b t b t 


  u u u u      (5.2.3) 

for each 1,...,t T . The generated spatial maps for the estimated trend surfaces of the 

malaria morbidity risk at the distict locations are labelled from “Month 1” (January 

2000) to “Month 132” (December 2010), except BAR which produced 156 spatial 

maps, starting from January 1998 to December 2010. In the case of the national study, 

the trend surfaces can be interpreted as the average estimated risks of the morbidity for 

each district location for the total period of 132 months, starting from the year 2000. 

These estimates will provide the baseline for the space-time prediction process to be 

considered in the following sections. Figures 5.2.5 and 5.2.6 provide the spatial maps 

for some selected months for transition period from 2000–2004 to 20006–2010, whilst 

the other risk maps are shown in Appendix D-2.  

As observed from the monthly spatial maps, the temporal trend surface profiles of the 

incidence rates follow similar distributional pattern of morbidity risk within the whole 

country. Generally, there have been varied spatial and temporal transmissions of 

malaria incidence over the years under review. There is also a transition of both high 

and low morbidity incidence which is observed from the period 2000–2005 to 2006–

2010 in several parts of the country (see Figures 5.2.5 and 5.2.6 and Appendix D-2). 

This is particularly seen in the north-west, where the initially high risk of malaria 

morbidity has moved to the north-east, whilst suspected district locations in the west 

and central parts have consistently increased their incidence of the disease. There is 

also potentially increasing risk of malaria morbidity towards the coast and south-east 

locations. The rise in the risk of malaria morbidity during the period 2006–2010 appear 

to cover larger geographical area with locations of high incidence rates mostly found in 

the northern and western parts close to the borders with neighbouring countries. The 

temporal trend surfaces of the estimated incidence for months from May to November 

are observed higher for most parts of the country. These months are the typical rainy 

weather period during which bleeding sites of mosquitoes increase resulting in high 

malaria transmission.  
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Figure 5.2.5: Estimated trend surfaces of the morbidity incidence rates for the selected monthsMarch, 
July, October and December (from top to bottom) for years 2000 (left), 2002 (middle) and 2004 (right). 
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Figure 5.2.6: Estimated trend surfaces of the morbidity incidence rates for the selected months March, 
July, October and December (from top to bottom) for years 2006 (left), 2008 (middle) and 2010 (right). 
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5.3 Structural Analysis of Morbidity Incidence Rates 

Structural analysis, as discussed in chapter 3, is one of the most important steps in 

geostatistical analysis. It is explored in this section for further investigation into the 

spatio-temporal correlations of the observed morbidity incidence rates (MIR). Space-

time semivariogram models are used to characterise the correlations structure of the 

incidence rates at the district locations and over time across the whole study area. 

Initial exploration of the space-time data analysis indicated no obvious evidence of 

anisotropy in the spatial domain for short separation distances mostly less than 250 km 

(see variogram maps in Figure 4.3.3). Thus, all the experimental semivariograms were 

calculated and modelled as isotropic using a spatial angular tolerance of 90o and lag 

tolerance 50% at slicing height of 1.55 whilst the the temporal domain used an angular 

tolerance of 10o. The appropriate lag spacings in both domains for the contruction of 

experimental space-time semivariograms for the whole study area in Ghana (national) 

and the two other studies in the Brong Ahafo Region and three vegetation zones are 

provided in the calculation parameter table in Appendix E-1. The structural analysis of 

the space-time data conducted in this section includes the variography of the log-

transformed space-time MIR, residuals of the morbidity incidence rates and the 

generalised product-sum modelling of space-time semivariogram of the residuals.  

5.3.1 Variography of Log-transformed Space-time MIR Data 

The district-month morbidity incidence data { ( , ); 1,..., ; 1,..., },I t n t T   u  observed 

nationally and geo-referenced by the space-time coordinates ( , ),tu  produced 14,568 

sampled locations, representing 80% of the entire data locations. Initial exploration of 

the space-time morbidity incidence data sets showed highly positively skewed 

distributions, which were log-transformed to stabilise the variability and approximately 

tend to normality (see section 4.3.2 of chapter 4) and also allow space-time lognormal 

ordinary kriging (STLOK) to be used (Journel, 1980; Journel & Huijbregts, 1978). To 

account for the spatio-temporal distributions of the malaria risk at the district locations, 

the logMIR data, ( , )]( , ) ln[I tZ t   uu  were first used to obtain the joint space-time 

experimental semivariogram, following (3.2.10) (Gething et al., 2007; Kyriakidis & 

Journel, 1999; Sherman, 2011), as presented in Chapter 3. Each district location is 

point-referenced by its spatial ( )u , being easting and northing (in kilometres), and 

temporal t locations, where the time (in months) is treated as the additional third 



163 
 

dimension. Ghana has a land area approximately of size 500 km by 750 km (see the 

elevation and vegetation zones maps in Figures 4.1.1 and 4.1.2, respectively), so 

choosing a lag spacing of 30 km for 15 lags with a tolerance of 50% and temporal lags 

for 70 months at 1 month spacing (as specified in Table E-1.1 in Appedix E-1) were 

sufficient to cover the required range and to calculate a smooth experimental 

semivariogram for the national data set, following (Cressie, 1993; Goovaerts, 1997). 

The resultant space-time experimental semivariogram was fitted using the nested 

model (5.3.1) comprising of two isotropic models, spherical ( )sph  and exponential

(exp) , and a periodic function, exponential-cosine (cosexp)  of period 12 coupled with 

a nugget effect as denoted by (5.3.1): 

          0 1 1 2 2( , ) ( ) ( ) exp( ) cosexp( )st s t s s s s s s t t th nug h c sph h r c h r c h r    h    (5.3.1) 

where 0( )nug h  represents the nugget effect in both spatial and temporal directions; 1sc  

and 1sr  denote partial sill and range for spherical model structure respectively; 2sc  and 

2sr  denote the respective sill and range for exponential model structure; and tc and tr  

are the sill and range of the exponential-cosine model used in the temporal domain. 

Although the exponential-cosine model is only semi-definite, when nested with a 

conditionally negative-definite model, it results in a valid semivariogram model (De 

Iaco et al., 2003). Also modelled by (5.3.1) for comparison with the same lag spacings 

is the experimental semivariogram for observed (untransformed) MIR (shown in Table 

E-1.2 in Appendix E-1). Table 5.3.1 presents the space-time semivariogram model 

parameters whilst the fitted experimental semivariograms are as shown in Figure 5.3.1.  

The space-time experimental semivariogram of the log-transformed morbidity 

incidence rates shows that there is strong evidence of both spatial and temporal 

dependence of incidence of the disease at the local (district) levels across Ghana, as 

indicated by the smaller values of the nugget-to-sill ratios (relative nugget effects) 

values. As per (5.3.1), the experimental semivariogram in spatial domain is modelled 

as isotropic with the spherical and exponential functions nested with a nugget effect of 

0.025. The space-time semivariogram model exhibits both short and long ranges; the 

range of the spatial autocorrelations varies from 35 to 250 km with a maximum sill of 

0.208 compared with the semivariogram of the untransformed incidence data which 

has relatively a longer range of autocorrelation, varying between 30 and 300 km (see 
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Table E-1.2 in Appendix E-1). The temporal component which differs significantly in 

structure from the spatial is fitted using the exponential-cosine function of period 12 

plus the same basic structures for the spatial domain modelling. It also exhibits a linear 

trend with annual cycles of the incidence rates until it attains its maximum sill of 0.228 

at the shortest temporal range of correlations of 85 months (see Figure 5.3.1), 

providing further evidence of seasonality in the observed incidence rates of the disease.  

Table 5.3.1: Space-time semivariogram model parameters of log-transformed malaria incidence rates 
data for the for the national study 

 
Data 

Model 
( )h  

Sill 

sc / tc  

Spatial range 
sr  (km) 

Temporal range 
tr  (months) 

Relative 
Nugget 

 
 
LogMIR 
 
 

nugget  0.025 - -  
0.120 spherical  0.112 35 85 

exponential  0.071 250 300 (0.110) 

expcosine  0.020 10000 400 

Note: In parentheses is relative nugget effect in the temporal domain. 

Figure 5.3.1: Space-time experimental semivariograms (dotted green) fitted with variogram models 
showing spatial (left) and temporal (right) autocorrelation of log-transformed malaria incidence rates for 
national study.  

 
5.3.2 Variography of Space-time Residuals  

The space-time residuals, ( , )R tu as per the temporal trend model (5.2.1), are 

considered as a space-time random function, R { ( , ); ( , ) }R t t  u u D T where the 

spatio-temporal dependence of ( , )I tu can be described by the semiovariogram of R .

Following (3.2.10), the experimental semivariograms for the space-time residuals, 

were calculated using the lag spacing values as specified in Table E-1.1 in Appendix 

E-1. They were then fitted in both spatial and temporal domains with a nugget effect,  

two spherical variogram models and one exponential variogram model as  denoted  by  
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(5.3.2):   

0 1 1 2 2( , ) ( ) exp( ) ( ) ( )st s t s s s s s s t t th nug h c h r c sph h r c sph h r    h  (5.3.2) 

The estimates of the model parameters and the space-time semivariogram model of the 

residuals produced for the national study are as shown in Table 5.3.2 and Figure 5.3.2, 

respectively.  

The removal of the large-scale trend and variations in the temporal domain leads to the 

faster attainment of both sills of the semivariogram which then improves the modelling 

fitting with relatively fewer structures. The temporal range of correlation has reduced 

considerably with short and long ranges falling between 12 and 30 months whilst the 

sill continues to dominate that of the spatial (Table 5.3.2). The spatial range appears to 

remain the same as for the log-transformed modelling of the incidence rates, 

characterised with short and long ranges. Also, the variations in the residuals are 

observed to be much smaller in both domains with estimated total sills of 2950 

spatially and 3700 temporally. The temporal correlation, by the relative nugget effect 

value of 0.351, is stronger compared with the spatial value of 0.441.   

Table 5.3.2: Space-time semivariogram model parameters of residuals of observed morbidity incidence 
rates for the national study 

Model 
( )h  

 
Sill 

Spatial range 

sr (km) 

Temporal range 

tr  (months) 

Relative 
 Nugget 

nugget  1300 - -  
0.441 

(0.351) 
spherical 800 35 12 

exponential 850 250 15 

spherical 750 10000 30 

Note: In parentheses is the relative nugget effect in the temporal domain. 
 

 
Figure 5.3.2: Space-time experimental semivariograms (dotted green) with fitted variogram models of 
residuals of observed morbidity incidence rates for national study. 
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5.3.3 Product-Sum Semivariogram Modelling of MIR 

The generalised product-sum model (De Iaco et al., 2001; De Iaco & Posa, 2012), as 

given in (3.2.33), is considered and applied in this section to characterise the spatio-

temporal continuity of the morbidity incidence rates. This choice, as already discussed 

in chapter 3, is informed by its relatively wide spread of application, efficiency and 

flexibility. Following the modelling procedure as outlined in sections 3.2.3 and 3.2.4, 

the space-time semivariograms of the residuals, ( , )R tu  were estimated (including that 

for each other two case studies being investigated in this thesis, as presented in 

sections 5.7 and 5.8). The space-time experimental semivariograms were calculated 

using the spatial and temporal lag spacing values specified in Table E-1.1 in Appendix 

E-1. In each case study, the number of lags has been chosen to allow the maximum 

spatial lag distance (250–450 km) and the maximum temporal lag time (80–100 

months) to be attained (Deutsch & Journel, 1998; Goovaerts, 1997). The marginal 

spatial and temporal semivariograms have also been obtained and modelled separately 

with nugget effects, using a single structure of an exponential model and/or a spherical 

model, respectively. The space-time experimental semivariogram surfaces were plotted 

and the global sills ( ,0)stC 0  determined by a visual inspection, which were then used 

to compute the space-time parameter k , following (3.2.32) for the generalised product-

sum model to be obtained and space-time semivariogram surfaces plotted. The values 

of the global sills have all been chosen to be greater than both the total spatial and 

temporal sills but less than the their sum in order to satisfy condition (3.2.30) and 

ensure validity of fitting product-sum modelsto the space-time experimental 

semivariograms (De Iaco et al., 2001).  

A modified GSLIB program, gamvmod.exe (De Cesare et al., 2002),as per the 

parameter file shown in Appendix H-2.1, was used to compute and model the 

experimental semivariograms of the malaria incidence data. This is complemented by 

the R version 2.13.2 (R Development Core Team, 2011) functions and code, which 

were used for the post-processing of the results generated. Table 5.3.3 provides the 

parameters of the marginal spatial and temporal semivariogram models as well as the 

space-time generalised product-sum semivariogram model of the residuals for the 

national study. Figure 5.3.3 displays graphs of the marginal semivariograms and the 

space-time semivariogram surfaces produced from the model fitting. In Appendix E-1 
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The marginal temporal semivariograms of the observed morbidity incidence rates (as 

observed from Figure E-1.2 in Appendix E-1) produced continuous upward trend and 

seasonal variations in the incidence data (as opposed to the residuals). The generalised 

product-sum model, when applied to the detrended and deseasonalised space-time 

incidence rates (residuals) data, improved the model fit, using two exponential 

varigram models with nugget effects (see Table 5.3.3 and Figure 5.3.3). The nugget 

effects of the marginal semivariograms are comparable with the joint space-time 

semivariogram model of the residuals (in section 5.3.2) with same values. However, 

the relative nugget effect values for marginal spatial and temporal semivariogram 

models which are 0.481 and 0.342 respectively differ slightly in each domain from the 

joint modeling in section 5.3.2. The shapes of the marginal semivariograms are similar 

to the ones produced by the joint space-time modelling approach applied to the 

residuals incidence data. However, the product-sum semivariogram model used fewer 

basic structures to fit to the space-time experimental semivariograms, characterising 

the spatial continuity of the incidence of the disease with shorter ranges and smaller 

sills. It produced a global sill of 3850 whilst the range of the autocorrelation varies 

within 110 km and 16 months compared with the range of correlations of 35–250 km 

(spatially) and 12–30 months (temporally) of the joint model (5.3.2).  

 
5.3.4 Neighbourhood Selection for the Space-time Models 

Cross-validation of the semivariogram models established in the previous sections is 

performed in this section to ascertain the suitability of the space-time models for 

prediction of the malaria incidence rates and to select suitable search neighbourhoods 

for the subsequent space-time kriging process of the incidence rates at the district 

locations. Accordingly, the kriging processes were carried out using the various 

moving (search) neighbourhoods as specified in Table E-4.1 in Appendix E-4. Such a 

choice of a search neighbourhood is deemed convenient as it reasonably limits the 

stationarity assumption to small areas for the kriging techniques to be appropriately 

applied to the non-stationary morbidity incidence with varying mean but stationary 

semivariogram (Berterretche et al., 2005; De Iaco & Posa, 2011; Journel & Rossi, 

1989). In the case of the national study the cross-validation processes were conducted 

using search neighbourhoods of radii varying between 100 and 250 km and within a 

period of 5 months with a minimum of 2 nodes and maximum of 20 nodes. ISATIS 

version 2013  and GSLIB software packages were used to produce the estimates of  the  
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incidence rates.  

The results included the kriging estimation errors, correlations between the estimates 

and the observed incidence rates and some graphical display of the estimates. The 

space-time model estimates which characterise the malaria morbidity risk at the district 

locations nationally are presented in Table 5.3.4. The graphical summaries of the 

models, consisting of the basemaps for the data; scatter plots of the true values versus 

the estimates; histograms of the standardised errors; and scatter plots of the standard 

errors against the estimated values are displayed in Figures E-4.1 and E-4.2 in 

Appendix E-4. 

Table 5.3.4: Cross-validation estimates of the semivariogram models for different moving 
neighbourhoods within a period of 5 months with number of samples per angular sector for national 
study area.   
 

Model 
Neighbourhood Error Standardised Error  

Corr. 
Coeff. 

Search 
radius 

No. of 
samples 

Mean Variance Mean Variance 

 

 

STOLK 

(logMIR) 

 

150km 

2 – 10 0.00100 0.02646 0.00465 0.68618 0.953 

4 – 20 -0.00026 0.02576 -0.00144 0.67614 0.955 

 

200 km 

2 – 10 -0.00064 0.02559 -0.00337 0.69091 0.950 

4 – 20 0.00012 0.02491 0.00048 0.64127 0.956 

 

250 km 

2 – 10 -0.00698 0.04850 -0.00942 0.77435 0.912 

4 – 20 -0.00024 0.02640 -0.00126 0.65743 0.954 

 

 

STROK 

(Residuals) 

 

 

150 km 

2 – 10 -0.03304 1716.087 -0.00059 0.89809 0.659 

4 – 20 0.07627 1702.647 0.00183 0.88422 0.662 

 

200 km 

2 – 10 0.06859 1534.180 0.00137 0.74320 0.705 

4 – 20 0.01559 1567.302 0.00019 0.77644 0.698 

 

250 km 

2 – 10 0.14966 1673.845 0.00266 0.75263 0.670 

4 – 20 0.06497 1567.370 0.00118 0.76538 0.699 

 

 

STROK_PS 

(Residuals) 

 

200 km 

2 – 10 

4 – 20 

-0.04236 

-0.04236 

1808.373 

1808.373 

-0.00080 

-0.00080 

0.81534 

0.81534 

0.699 

0.699 

 

200 km 

2 – 10 

4 – 20 

-0.04236 

-0.04236 

1808.373 

1808.373 

-0.00080 

-0.00080 

0.81534 

0.81534 

0.699 

0.699 

 

200 km 

2 – 10 

4 – 20 

-0.04236 

-0.04236 

1808.373 

1808.373 

-0.00080 

-0.00080 

0.81534 

0.81534 

0.699 

0.699 
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Generally, the mean error and standardised mean error of the estimates for the space-

time predictive models, namely space-time lognormal ordinary kriging (STLOK) and 

the space-time ordinary kriging of the residuals by the joint modelling of the 

semivariogram (STROK) and that via the generalised product-sum modelling approach 

(STROK_PS) were small in magnitude, with the latter two well-centred around zero. 

Also, the estimates exhibited strong positive correlations with the observed values for 

all the neighbourhoods, ranging from 0.659 to 0.956. However, kriging using the 

search radius of 150 km or 200 km with closet samples ranging from 8 to 20 produced 

better results with least standardised errors and/or stronger correlations (see Table 

5.3.4). The variance of the standardardised errors were higher and close to 1 (by 

Wackernagel (1998) criterion as cited by Goovaerts (2009)), especially for STROK 

and STROK_PS which were 0.77644 and 0.81534, respectively. The histograms of the 

standard errors appear normally distributed though there are some outliers, as quite a 

number of the plots are located outside the 99% confidence limits (see Figures E-4.1 

and E-4.2 in Appendix E-4). This could be attributed to some effects of interventions 

which were not considered in this study. A moving neighbourhood of search radius 

200 km was deemed most suitable and thus chosen for the space-time kriging process 

of the national malaria morbidity risk to be considered in the following section. 

5.4  Applications of Space-time Kriging Techniques to  
 Morbidity Incidence Rates 

Spatial statistical analysis of the morbidity incidence rates is conducted within the 

framework of geostatistics to produce malaria morbidity risk maps of Ghana, with the 

ultimate aim of illustrating the patterns of morbidity risk over space and time. In this 

section the space-time ordinary kriging techniques employed for the interpolation 

process of the morbidity incidence rates include the space-time lognormal ordinary 

kriging (STLOK), applied to the log-transformed morbidity incidence rates data,

 { ( , )} {ln ( , ) }Z t I t u u  and space-time ordinary kriging (STOK) of the observed 

morbidity incidence rates via the residuals data{ ( , ); 1, 2,...,138; 1,2,...,132}R t t   u  

arising from the detrending and deseasonalising of ( , ),I tu  using two approaches: by 

the joint modelling of space-time semivariogram of the residuals (STROK) and 

generalised product-sum modelling of the space-time semivariogram of the residuals 

(STROK_PS).  
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5.4.1 Space-time Lognormal Ordinary Kriging of MIR 

Following the variography of {ln ( , )}I tu  in section 5.3.1, the nested semivariogram 

models from (5.3.1) were used as inputs for the space-time lognormal ordinary kriging 

(STLOK) applied to the log-transformed incidence data for estimation of the morbidity 

risk{ ( , )}I tu  at district-month locations where data were missing or unobserved. A grid 

file approximately coinciding with the DEM interpolation grid in Figure 4.1.1 was 

created (see Table E-4.2 in Appendix E-4) after which the optimal linear predictor 

(STLOK) in (3.3.6) was used to interpolate ˆ ( , )stlokZ tu  in log-transformed scale. It was 

then back-transformed following (3.3.7), yielding the result ˆ ( , )stlokI tu , as the estimated 

values of the morbidity incidence rates at the unsampled location ( , )tu  to produce the 

monthly morbidity risk maps. A selection of the monthly morbidity risk maps 

estimated by STLOK nationally for the years in 2000, 2002, 2004, 2006, 2008 and 

2010 are shown in Figures 5.4.1 and 5.4.2, with the spatial maps for all months made 

available by Results E-5.1 in Appendix E-5. 

The monthly spatial maps display seasonality and increasing morbidity risk of the 

disease occurring over time, particularly from the initial years 2000–2004 to 2005–

2010. The results also indicate spatial heterogeneity across the country with highly 

elevated cases occurring at locations near the borders with the two neighbouring 

countries in the north (Burkina Faso) and west (Cote d’Ivoire) (see Figure 5.4.2) which 

equally report high incidence cases of malaria (WHO, 2008). The results are consistent 

with the seasonal variations in the occurrence of the disease, where low incidence 

cases are mostly observed during the months from January to April, whilst the months 

May to December are associated with the high risk of incidence. Nationally, high 

morbidity incidence rates are estimated in the northernmost and western areas 

extending to central parts towards the east, which are all located within the northern 

and forest zones. The initial years (2000–2004) are characterised predominantly with 

low incidence rates, mostly in the central parts of the north and along the coast in the 

south. However, malaria morbidity risk estimates for the disease are high for the later 

years (2008-2010) and cover larger geographical areas. The risk surfaces, as also 

observed from the spatial maps, appear rough. They can be smoothened to increase the 

prediction accuracy by the space-time kriging techniques considered in the following 

sections. 
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Figure 5.4.1: Morbidity incidence rates estimated by space-time log-normal ordinary kriging (STLOK) 
for the selected months March, July, October and December (from top to bottom) for years 2000 (left), 
2002 (middle) and 2004 (right). 
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Figure 5.4.2: Morbidity incidence rates estimated by space-time lognormal ordinary (STLOK) for the 
selected months March, July, October and December (from top to bottom) for years 2006 (left), 2008 
(middle) and 2010 (right).in 2000 (left) and 2005 (right). 
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5.4.2 Space-time Ordinary Kriging of Residuals 

In this section the space-time ordinary kriging (STOK) is applied to account for the 

non-stationarity in the morbidity incidence data, as observed in the STLOK prediction 

in section 5.3.1. This is done by considering the incidence rates as a collection of finite 

number of spatially correlated time series at each district location. Thus, STROK is 

implemented using the joint space-time semivariogram model of the stationary random 

process ( , ),R tu which gave a better representation of the autocorrelation structure of 

the observed morbidity incidence rates (as was established section 5.3.2) and also a 

useful predictor of the morbidity risk at the district-month locations. The prediction 

process begins with the estimation of the monthly trend surfaces ˆ ( , )okm tu , obtained by 

model (5.2.3) in section 5.2. The STROK technique using (3.3.2) was then applied to 

the space-time residuals ( , ),R tu  to interpolate at each grid node by applying the same 

search neighbourhoods as in the previous predictions to obtain ˆ ( , )strokR tu . 

1 1

ˆ ( , ) ( , )
n T

stok
stok t

t

R t R t 



 

u u      (5.4.1) 

The STROK estimates of the residuals ˆ ( , )stokR tu obtained were added to the trend 

estimates ˆ ( , )okm tu , which have been characterised spatially and temporally by the 

model (5.2.3), to obtain the monthly optimal prediction values of the morbidity 

incidence rates at the unsampled district locations (5.4.2): 

ˆ ˆˆ( , ) ( , ) ( , ),stok ok strokI t m t R t u u u  for each .t T     (5.4.2)  

A second modelling approach of generating the residual estimates ˆ ( , )strokR tu  is 

considered in section 5.4.3. Spatial maps of the estimated morbidity risk for the whole 

areas by the STROK model (5.4.2) are provided in Appendix E-5.2 whilst Figures 

5.4.3 and 5.4.4 present the risk maps for the selected months in the years 2000, 2002, 

2004, 2006, 2008 and 2010. 

The spatial morbidity risk maps obtained by the STROK technique show similar 

spatial and temporal patterns as were estimated by the temporal trend model (5.2.3) 

and STLOK. However, the STROK results appear less variable as the spatial 

heterogeneity of morbidity risk of the disease tends to produce more smoothed 

surfaces  spreading over larger geographical areas. The results  also  indicate  transition  
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Figure 5.4.3: Morbidity incidence rates estimated by the space-time ordinary kriging of residuals 
(STROK) for the selected months March, July, October and December (from top to bottom) for years 
2000 (left), 2002 (middle) and 2004 (right). 
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Figure 5.4.4: Morbidity incidence rates estimated by space-time ordinary kriging of residuals (STROK) 
for the selected months March, July, October and December (from top to bottom) for years 2006 (left), 
2008 (middle) and 2010 (right). 



177 
 

of higher morbidity incidence rates from the upper western (north-western) to the 

upper eastern (north-eastern) parts of the country (see Figure 5.4.3). In addition, most 

parts of the country appear to have been underestimated for the months in 2000-2004. 

Morbidity incidence observed at the district-month locations during this period were, 

relatively low and appeared to confirm the wide-spread of under reporting of cases 

from the district to the CHIM data bases coupled with several missing records, which 

resulted in negative estimates.  

5.4.3 Space-time Ordinary Kriging of Residuals using the Product-
Sum Model 

 

In section 5.4.2, a joint space-time semivariogram model constructed was used as input 

for the space-time ordinary kriging of residuals (STROK) estimates in (5.4.2). The 

second type of residual estimates is obtained in this section by the use of the 

generalised product-sum models to fit the space-time semivariograms of the residuals, 

as in section 5.3.3. Figures 5.4.5 and 5.4.6 provide risk maps generated by STROK via 

the generalised product-sum modeling approach (STROK_PS) for selected months. 

The morbidity incidence rates which were estimated by the product-sum modelling of 

residuals exhibit similar distribution pattern as the previous estimates. However, the 

risk maps produced appeared more smoothed and regions of high morbidity risk of the 

disease have expanded further towards areas in the east and south. Like the previous 

predictions, the high risk areas are mainly observed in the north-eastern and western 

parts of the country bordering with the neigbouring countries. These high risk areas are 

mostly inhabited by people who engage in commercial activities such as fishing, 

farming, and trading. The areas are often liable to flooding from the two large rivers, 

Afram and Volta, resulting in suitable environmental conditions for mass breeding of 

mosquitoes. The west, east and north borders of Ghana with the neibouring countries 

are well-known for their large movement of people across the border for commercial 

and business activities. The morbidity risk of the disease is seasonal. Predicted values 

are high from May to December, coinciding with the wet season during which the 

weather is relatively cool to support the Anopheles mosquito vector breeding and their 

survival. The months from January to April record lower numbers of incidence cases. 

Generally, this period is relatively dry and warm across the whole country which is 

often not very favourable for the agents of transmission of the disease. 
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Figure 5.4.5: Malaria incidence rates estimated by the product-sum modelling of residuals (STOK_PS)  
for the selected months March, July, October and December (from top to bottom) for years 2000 (left), 
2002 (middle) and 2004 (right) . 
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Figure 5.4.6: Malaria incidence rates estimated by the product-sum modelling of residuals (STOK_PS)  
for the selected months March, July, October and December (from top to bottom) for years 2006 (left), 
2008 (middle) and 2010 (right) . 
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5.5  Space-Time Prediction of the MIR Accounting 
for Climatic Effects  

 

Sections 5.2–5.4 focused on space-time and spatial structure of the morbidity incidence 

rates without considering the potential covariates. As an alternative way of 

characterising the patterns of local distribution of the incidence rates, the effect of 

climate is incorporated, taking into account their spatio-temporal autocorrelations. The 

multivariate analyses conducted in chapter 4 (sections 4.4 and 4.5) gave an indication 

that the malaria transmission, as observed at the various districts and regions, could be 

influenced by environmental factors that vary in space and by time. This relationship is 

further established by coregionalising the detrended morbidity incidence rates with the 

climatic covariates: total rainfall, relative humidity (at 1500 hours) and maximum 

temperature, identified as the potential climatic risk factors of the disease incidence at 

the local level. As was the case for the regional morbidity incidence rates, the district-

month incidence data were detrended, following (4.4.1), which showed the presence of 

a higher degree of interdependence between the dispersed values of ( , )I tu  and the 

potential covariates 1( , )tY t u  at different spatial and temporal scales. The ordinary 

cokriging (OCK) and space-time ordinary co-kriging (STOCK) techniques were then 

applied to the detrended morbidity incidence data (residuals), ( , )dR tu  via linear 

models of coregionalisation to account for the spatial and temporal continuity of the 

potential covariates into the optimal space-time predictions of malaria risk at the 

various district locations. The effect of climate on morbidity incidence is explored by 

first spatially interpolating the three potential but sparse covariates (total rainfall, 

temperature and relative humidity) available at only 77 district locations at the national 

level, taking advantage of the secondary and exhaustive data on elevation via the 

digital elevation model (DEM) of Ghana (IntraSearch, 2011). This is considered in the 

following section.  

5.5.1 Interpolation of Climatic Covariates    

This was achieved by using collocated cokriging via a linear model of 

coregionalisation (LMC) with elevation whose values were generated from the digital 

elevation map of Ghana. The elevation map (Figure 4.1.1), gridded on a denser and 

regular resolution consisting of 52  76 cells of size approximately 9.5  9.5 km2, 

provided an exhaustive source of information on elevation at every location, from 
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which the elevation data were extracted for each of the 138 district-locations. Joint 

experimental semivariograms of total rainfall, temperature (maximum and minimum) 

and relative humidity with elevation were separately computed for each month t using 

an average lag spacing of 30 km for 15 lags. They were then modelled with nugget 

effects, nested with either one or two spherical models. Spatial maps of the 

interpolated values of the covariates, using DEM as the collocated variable were 

produced for each month, some of which are provided for the years 2000, 2005 and 

2010 in Figures 5.5.1 and 5.5.2. The fitted linear models of coregionalisation for the 

multivariate semivariograms and their parameters are shown in Appendix E-2. 

The results of the above linear models of coregionalisation indicate that elevation is 

able to account for the large-scale spatial variations with the potential covariates. The 

direct semivariogram and cross semivariogram models obtained from the 

interpolations of the three potential covariates are characterised by long range of 

correlations varying from 100 to 200 km. However, the linear coregionalisation 

models of maximum  (or minimum) temperature and rainfall with elevation, relatively, 

appeared to have stronger correlations and smaller ranges, all varying from 100 to 180 

km, whilst that of relative humidity (at 1500 hours) with elevation, fitted by one 

spherical model with nugget effect, have ranges of either 180 km or 200 km. 

The monthly spatial maps of covariates arising from the collocated cokriging conform 

to the seasonal patterns of the climatic conditions in the country but with some 

variations though hardly to discern from the maps (see Figures 5.5.1 and 5.5.2). This is 

an indication of variations in the weather conditions over the years. The months from 

December to March are characterised with dry weather when virtually rainfall hardly 

occur across the country. High temperatures (exceeding 35oC) and low relative 

humidity (less than 40%) are recorded during this period, especially in the northern 

parts. The spatial maps also show the wet season occurring between May and 

November with high relative humidity and relatively low maximum temperatures of 

approximately 30oC. The central and south-west parts, which are mostly in the tropical 

rainforest zone, are observed with high amounts of rainfall and relatively humidity 

exceeding 300 mm and 75%, respectively.   
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Figure 5.5.1: Spatial maps of total rainfall for March, July, October and December in 2000, 2005 and 
2010.  

 



183 
 

 
Figure 5.5.2: Spatial maps of maximum temperature for March, July, October and December in 2000, 
2005 and 2010.  
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5.5.2 Linear Coregionalisation Models of MIR with Climate    

Having incorporated elevation via the DEM to account for the sparse climatic data 

locations via LMC, the detrended district-month morbidity incidence data, ( , )dR tu  

were coregionalised separately with the above potential covariates at the same or 

preceeding month of incidence (lag ;t i 0, 1i  ) and to avoid multicolinearity. The 

space-time experimental direct and cross semivariograms were computed using 15 lags 

at an average spacing of 30 km, following (3.3.8) to obtain a multivariate system of 

semivariograms ˆ ( , ).
t iIY s t


γ h  Rainfall, relative humidity (lagged one month) and 

maximum temperature at same month of incidence of the disease proved to have 

significantly and higher correlations with the detrended incidence rates

( - value 0.01)p   and were considered for semivariogram model fitting. Consequently, 

a LMC was fitted, for each potential covariate 1( , )tY t u  to space-time experimental 

semivariogram in both space and time domains simultaneously using the linear 

combination of spherical and/or exponential models with nugget effect (5.5.1), 

following the procedure of Goovaerts (1997) and Goulard (1989) as given in (3.3.11).  

 

0 1 2 3
1 2( , ) ( ) ( ) ( );

for , 1, 2

ij s t ij ij s ij s ij t th b b exp h r b sph h r b cosexp h r

i j

    



h

 (5.5.1) 

Also constructed were purely the spatial semivariogram models of the morbidity 

incidence rates 
1
( )

i

t
Y 


u with each of the potential climatic covariates using same 

nested model (5.5.1) to  investigate the spatial variations of the incidence data ( )tI u  

for each month .t  This was to compare the monthly OK spatial maps of malaria risk 

produced with that by the space-time kriging techniques. The model parameters and 

graphs of the space-time linear coregionalisation models fitted separately to the direct 

and cross experimental semivariograms of the morbidity incidence rates with the 

potential covariates are shown in Table 5.5.1 and Figures 5.5.3 and 5.5.4, respectively. 

However, the parameters and graphs relating to relative humidity which confounds 

with rainfall are presented in Table E-3.1 and Figure E-3-.1, respectively in Appendix 

E-3. The results of purely spatial direct and cross semivariogram models for the 

months in 2010 are provided in Appendix E-2. The dashed red lines in the cross 

semivariograms, called hulls of perfect correlation, give the ranges within which the 

linear  models of coregionalisation are assumed to be positive semidefinite and  perfect  
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correlations exist (Wackernagel, 2003; Webster & Oliver, 2007). 

As observed from the space-time semivariogram models, rainfall lagged by one month, 

relative humidity and maximum temperature correlate significantly with the detrended 

morbidity incidence rates, though not very strongly. Rainfall and relative humidity 

increase the spatial dependence of the disease, varying from 35 to 250 km, whilst 

maximum temperature decreases the spatial continuity and varies with same spatial 

range of correlations. However, the morbidity incidence due to effects of the covariates 

appeared to vary across the country in a different manner with varying temporal 

ranges. In particular, maximum temperature varies more continuously (20–200 

months) compared with the other two covariates (10–100 months). 

The total sills observed from the effect of rainfall in the preceeding one month are 

comparable, being almost equal both spatially and temporally. In addition both 

multivariate space-time semivariograms have same nugget effect of 1500, unlike the 

effect of relative humidity which has a higher nugget effect and temporal sill of 1600 

and 5000, respectively (see Appendix E-2). 

Table 5.5.1: Parameters of space-time linear models of coregionalisation of detrended morbidity 
incidence rates with rainfall and (lagged one month) and current month maximum temperature for the 
national data set study  
 
Variable 

Spatial Temporal 

0( )nug h  ( 35)exp h  ( 250)sph h  cosexp

( 10 60)h   

Residuals 1500 1100 500 1700 
Rainfall_1 1500 1800 800 2900 
Resid&Rainf_1 50 250 150 1700 
Variable 

0( )nug h  exp( 35)h  ( 250)sph h  cosexp  
( 20 200)h   

Residuals 1500 800 800 1780 
MaxTemp 0.80 0.7 1 3.2 
Resid& MaxT -10 5 6 -57 

 

In the purely spatial case, the direct semivariograms for the monthly morbidity 

incidence rates, rainfall (at lag 1), minimum temperature and relative humidity (at 

1500 hours) are mostly observed to be unstable due to lack of sufficient data in the 

space domain. The correlations of the incidence rates with the lagged rainfall vary 

within short and long ranges from 60 to 260 km. However, the two other potential 

covariates  differ  with  long  ranges, mostly between 150  and  280 km.  Generally, the  
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Figure 5.5.3: Space-time linear model of coregionalisation of detrended morbidity incidence rates 
(residuals) with lagged one month rainfall showing spatial (top) and temporal (bottom) correlations for 
the national study. 
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Figure 5.5.4: Space-time linear model of coregionalisation of detrended morbidity incidence 
rates (residuals) with maximum temperature showing spatial (top) and temporal (bottom) correlations 
for the national study 
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cross-correlations are not strong as they are mostly found farther from the hulls of 

correlation, unlike the cross-correlations of the LMC of elevation with the covariates 

which appeared relatively stronger (see figures in Appendix E-2). The graphs of the 

experimental semivariograms appear to be consistent (vary similarly) in structure 

across the different months. The monthly structural analysis also indicate higher 

variations in the incidence rates during the months, May–November but lower in 

August–September and December-April, compared with the variation of the covariates 

which appear to be more pronounced during the wet months in May–October/ 

November. This coupled with the cross-correlation results affirms the extent of impact 

of the climatic covariates on the morbidity incidence. 

5.5.3 Neighbourhood Selection for LMC Semivariograms 

The cross-validation incidence estimates of the space-time models implementing the 

linear models of coregionalisation with the climatic covariates of rainfall and 

maximum temperature in the preceeding month are shown in Table 5.5.2. The 

graphical summary of the estimates are displayed in Figures E-4.1 and E-4.2 in 

Appendix E-4.  

 
Table 5.5.2: Cross-validation estimates of the space-time ordinary co-kriging models for different 
moving neighbourhoods within a period of 5 months with number of samples per angular sector for 
national study area.   

 
Model 

Neighbourhood Error Standardised Error Corr. 

Coeff. Search 
radius 

No. of 
samples 

Mean Variance Mean Variance 

 

STOCK_ 

Rainf_1 

 

 

150km 

2 – 10 -0.00311 1791.239 -0.00022 0.87176 0.773 

4 – 20 0.03225 1656.899 0.00059 0.82090 0.796 

 

200 km 

2 – 10 0.01562 1619.344 0.00022 0.75910 0.804 

4 – 20 -0.09787 1613.111 -0.00217 0.77298 0.807 

 

250 km 

2 – 10 0.04731 1765.041 0.00078 0.78352 0.781 

4 – 20 -0.06484 1626,582 -0.00154 0.77185 0.806 

 

STOCK_ 

MaxT 

 

 

150km 

2 – 10 -0.04981 1783.578 -0.00137 0.86111 0.773 

4 – 20 0.14297 1705.109 0.00293 0.78355 0.788 

 

200 km 

2 – 10 0.04448 1607.926 0.00082 0.74133 0.803 

4 – 20 0.07958 1617.028 0.00148 0.76394 0.803 

 

250 km 

2 – 10 0.09144 1760.469 0.00157 0.75691 0.779 

4 – 20 0.07882 1626.510 0.00141 0.75908 0.803 
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As observed for the STOLK and STOK models, the mean and standardised errors of 

the estimates for all the moving neighbourhoods tested are smaller with the search 

radius of 150 km or 200 km using a mimimum of 8 and maximum of 20 sample 

observations producing the best results. However, kriging with the larger search radius 

(200 km) yielded more reliable estimates. For this moving neighbourhood, the mean 

errors for the STOCK estimates accounting for rainfall and maximum temperature in 

the previous month are -0.09787 and 0.07958, respectively, whilst that for the 

standardised mean errors are -0.00217 and 0.00148, respectively. In addition, the 

STOCK model influenced by rainfall (lagged one month) appeared more appropriate 

as it yields a higher standardised error variance of 0.77298 and relatively higher 

correlation coefficient of 0.807 between the observed and the estimated values values 

of residuals.  

5.5.4 Space-time Ordinary Co-kriging of MIR  

In this section the space-time ordinary co-kriging (STOCK) of the morbidity incidence 

via the residuals with the main potential covariates is carried out.  Following (3.3.15) 

in chapter 3 (section 3.3.3), the STOCK linear optimal predictor with each of potential 

covariates ( )t iY  u ; 0,1i  being rainfall (lagged one month) and maximum 

temperature were implemented. STOCK estimates of the residuals were computed by 

collocating with the interpolated covariates, using the grid cells and moving search 

neighbourhood as described in the previous sections. The kriged residuals 

;
ˆ ( , t)d stockR u  are then added to the estimated trend surface (5.5.2), following (5.2.3) 

and (5.4.2) to obtain the monthly climate induced spatial maps of the malaria 

morbidity risk.  

 
2

0

ˆ ( , ) ( ) , for each 1,2,...,132,ok ok i
d i

i

m t a t t


 u u    (5.5.2) 

where , 0,1,2ia i  are the trend coeffiecients and 
( )

1

( ) ( ) a ( ).
i

n
ok ok
i i ia 






 
u

u u u  Figures 

5.5.5–5.5.8 show selected spatial maps accounting for the effects of the two covariates.  

Critical examination of the monthly spatial maps show smoothed surfaces, which 

confirms that the climatic covariates significantly impacted on the malaria morbidity 

incidence.  Areas of high rainfall and low temperatures in the preceeding month of are 

usually  associated  with high increased morbidity incidence rates of the disease, which  
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Figure 5.5.5: Selected monthly spatial maps of malaria incidence rates estimated by space-time ordinary 
cokriging, incorporating the effect of rainfall lagged one month (STOCK_Rain) for 2000-2004.  
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Figure 5.5.6: Selected monthly spatial maps of malaria incidence rates estimated by space-time ordinary 
cokriging, incorporating the effect of rainfall lagged one month (STOCK_Rain) for 2006-2010.  
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Figure 5.5.7: Selected monthly monthly spatial maps of malaria incidence rates estimated by space-time 
ordinary cokriging (STOCK_MaxT), incorporating the effect of maximum temperature 2000-2004. 
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Figure 5.5.8: Selected monthly monthly spatial maps of malaria incidence rates estimated by space-time 
ordinary cokriging (STOCK_MaxT), incorporating the effect of maximum temperature 2006-2010. 
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vary across the country. These are often observed during the wet season (May-

November) when temperatures are relatively low in the country. As identified by the 

other kriging techniques, the period from  December to  April  is  characterised by dry 

and warm weather conditions, which results in a significant reduction in the incidence 

of morbidity cases. High risk areas of malaria morbidity are consistently located in the 

northern, western and central parts towards east and the coast. 

5.6 Comparison and Validation of Kriging Estimates 

In this section the prediction estimates of the morbidity incidence rates by the various 

space-time kriging techniques implemented in the previous sections are compared. 

This is done by using prediction estimates at the unsampled locations and then making 

forward predictions (spatial forecasts) for the monthly 2011 incidence rates data in 

order to assess the overall prediction performance of the space-time kriging models. In 

all, five predictions have been made at the unsampled district-month locations, as per 

the trend and structural analyses of the morbidity incidence data conducted in sections 

5.2 and 5.3, respectively. The space-time lognormal ordinary kriging (STOLK) 

estimates were obtained via the space-time variography of the log-transformed 

observed incidence rates. The space-time ordinary kriging (STOK) technique was used 

to produce two estimates, one based on the joint space-time semivariogram modelling 

of residuals (STROK) and the other, the generalised product-sum model fitting to the 

residuals (STROK_PS). The space-time ordinary co-kriging (STOCK) technique 

estimates, accounting for the rainfall and maximum temperature) are represented by 

STOCK_Rain and STOCK_MaxT, respectively.  

5.6.1 Summary Statistics of Kriging Estimates 

The summary statistics of the kriging estimates produced at the unsampled locations 

are given in Table 5.6.1. Generally, all the kriging techniques underestimate the 

sample mean value. Nationally, the predicted morbidity incidence rates range from 0   

(-812.25) to 1197.89 cases per 10,000 resident people, compared with the observed 

sample values which vary from 42 to 1574 with an average of 240.94 per 10,000 

residents population. However, they do not differ significantly from each other, except 

the estimates obtained through the residuals by STROK and STOK_PS, which have 

extreme high negative values, resulting from the detrending and deseasonalising of the 

observed incidence rates in section 5.2. Assuming non-negativity incidence rates may 
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tend to improve these prediction processes. As observed from the spatial risk maps, 

rainfall in the previous month leads to increased risk of the disease across the country. 

Its effect is measured by the STOCK_Rain estimates, which are more variable with a 

range of 0 (-812.25)–980.77 and records the highest mean incidence rates of 238.24. 

The decreasing effect of maximum temperature on morbidity incidence of the disease 

is evidenced by its relatively low values but highly variable as estimated by 

STOCK_MaxT, ranging from 0 (-808.33) to 973.75 with a standard deviation of 

127.34.  

 
Table 5.6.1: Summary statistics of kriging estimates of malaria morbidity incidence rates compared with 
the observed incidence data. 

 
Kriging 
Estimate 

National 

Count Min Max Mean StdDev CV 

Sample 14568 42.00 1574.00 240.94 141.95 0.589 

Trend 315216 -746.65 940.89 213.08 109.01 0.512 

STOLK 315480 59.07 1197.89 228.98 92.69 0.405 

STROK 314952 -754.37 979.95 213.41 111.37 0.523 

STROK_PS 314952 -711.46 900.81 213.21 111.04 0.521 

STOCK_Rain 308668 -812.25 980.77 238.24 126.84 0.581 

STOCK_MaxT 308067 -808.33 973.75 211.19 127.34 0.584 

  

5.6.2 Validation of Kriging Estimates 

The forward predictions of the incidence data were done by following the Jacknife 

procedure. The observed malaria incidence rates data for 2011 were excluded from the 

structural analysis but used as input data for the predictions at the sampled locations to 

validate the estimates by the established space-time models. Table 5.6.2 shows the 

predicted estimates and their measures of prediction accuracy as wellas the summary 

statistics of the sample data. Spatial maps of the observed and predicted values at the 

data locations as well as the grid estimates are also provided in Figures 5.6.1-5.6.3. 

The results appear to reproduce the observed incidence rates as they are either 

predicted higher or lower and follow similar patternsas the observed incidence. The 

estimates produced by the models range from 65.01 to 1214 compared with that of the 

sample of 101–1209 with mean 387.93 and standard deviation of 173.16. As indicated 

from previous results in Table 5.6.1, the two kriging techniques of STOK (STROK and 

STOK_PS) prove to estimate close to the sample observations. The estimates correlate 
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strongly with the observed incidence data, the correlation coefficients being 0.785 and 

0.876. They also performed better with lower MAE (84.85 and 75.36) and RMSE 

(120.68 and 117.23) values compared with the other techniques which have 

corresponding figures of 121.55–200.12 and 155.23-195.17. However, higher 

prediction accuracy is achieved by STROK_PS, which implemented the generalised 

product-sum modelling using the incidence residuals data. It yielded the smallest MAE 

and RMSE values. STLOK consistently produced the least variable estimates whilst 

STOCK estimates are more variable. They appeared to have performed equal, though 

the latter’s correlation with the observed incidence data is not very strong as the former 

but highly significant ( 0.001)p - value  .  

Table 5.6.2: Prediction estimates for 2011 compared with the sample data and their measures of 
prediction accuracy in the national study 
 
Kriging 
Estimate 

National 

Min Max Mean Std. CV ME MAE RMSE Corr. 

Sample 101.00 1209.0 387.93 173.16 0.446 - - - - 

STOLK 124.31 688.70 314.94 77.16 0.145 -70.95 131.55 155.325 0.918 

STROK 65.01 1204.0 345.52 167.77 0.486 -33.53 84.850 120.680 0.785 

STROK_PS 54.83 1214.0 356.74 163.28 0.458 -31.18 75.358 117.231 0.876 

STOCK_ 

Rain 

210.12 905.76 401.15 211.54 0.527 12.15 200.12 195.165 0.643 

STOCK_ 

MaxT 

185.99 755.40 362.10 116.96 0.323 -24.23 155.56 161.430 0.618 

 

Critical examination of the spatial maps of the predicted 2011 values (see Figures 

5.6.1-5.6.3) shows that the high and low observed incidence rates are reproduced at the 

data locations and also follow similar distribution patternsas produced by the modelled 

data. The grid estimates appear to behave similarly, mimicking the high risky areas in 

the west and the low in the east. The incidence ratesare predicted at larger geographical 

during the rainy season. The low incidence rates predicted in the east can be attributed 

to lack of sufficient data as that part of the region is sparsely populated. The westis part 

of the tropical rainforest area and predominantly made up of densely populated rural 

communities. Most people who live in these areas practice subsistence farming in food 

and economic crops and always exposed to the bites of mosquitoes. The area is also 

known for the exodus of people to and from an endemic neighbouring country, where 

there is high co-infection of the disease with HIV. 
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Figure 5.6.1: Posting of the observed malaria incidence rates (left) compared with the trend (with 
periodic cycles, shown middle) and STROK (right) estimates  
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Figure 5.6.2: Posting of the observed malaria incidence rates (left) compared with STLOK (middle) and 
STROK_PS (right) estimates  
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Figure 5.6.3: Posting of the trend (without period cyclest) of the observed malaria incidence rates (left) 
compared with STOCK_MaxT (middle) and STOCK_Rain (right) estimates  
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5.7 Malaria Morbidity Risk in Brong Ahafo Region 

The estimation of the malaria morbidity incidence cases in the Brong Ahafo Region 

(BAR) is considered in this section. The analysis of the incidence data has been 

performed alongside with the national study. The main results of the space-time 

semivariogram models, characterising the spatio-temporal continuity of the disease 

coupled with the monthly spatial maps, estimating the morbidity risk at the district 

locations are presented and discussed. BAR has 19 district locations but with the larger 

temporal data set observed from 1998 to 2011 for modelling processes, which 

produced approximately 2,460 (83%) of the district-month data locations. As per the 

national study the various space-time semivariogram and kriging models have been 

developed to describe the spatio-temporal autocorrelation structures and estimate the 

morbidity incidence rates in the region. These include the space-time trend, space-time 

log-normal kriging, space-time ordinary kriging models. The results of estimation of 

the global trend surfaces for the morbidity incidence and space-time ordinary kriging 

via the residuals using the generalised product-sum modelling of semivariogram 

approach are presented and discussed. The detailed results of structural analysis and 

the optimal prediction process of the morbidity incidence are given in Appendix F.    

 
5.7.1 Estimation of Trend Surfaces of MIR  

The global trend surfaces for the morbidity incidence rates in BAR were estimated, 

following (5.2.1) and (5.2.3). The computed trend coefficients{ ( ); 1,.., 4)}ib i u  and 

the spatial regionalised results are presented in Appendix D-1 and Table 5.7.1, 

respectively. The experimental semivariograms of the trend coefficients were modelled 

as per Table 5.7.1 and Figure F-1.1 in Appendix F-1. As for the national study the 

trend coefficients 1b and 2b are characterised by both negative and positive values, 

indicating rise and fall of the incidence at the various locations. Relatively, the 

coefficients of determination recorded for districts in the region are higher, ranging 

from 0.6306 to 0.9128 with an average of 0.7748. In addition, the spatial 

semivariogram models of the trend coefficients show substantial spatial correlations 

with shorter range from 50 to 140 km, despite the some extreme semivariance values 

(Figure F-1.1). The spatial continuity of the coefficients appears to vary similarly in 

both short and long ranges. However, values for the two parameters (nuggets and sills) 

differ remarkably, compared with the national trend parameters. The total sills for the 
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intercept 0( )b and the linear coefficient 1( )b  are 260,000 and 76, respectively compared 

with the national trend coefficients which are modelled with much lower sills. The 

periodic coefficients 3 4( and ),b b  rather have smaller sill values of 146.5 and 151, 

respectively. The extremely high semivariance values for the first lag of the trend 

coefficients for BAR could be attributed to the cross-type of pairs of district locations, 

(Gething et al., 2007), as earlier explained in section 5.2.2.  

 
Table 5.7.1: Spatial semivariogram model parameters of the regionalised trend model 
coefficients of malaria incidence rates for BAR   
Coefficient 

ib  
Model 

( )ˆ ( )i
s s h  

Sill 
( )sc  

Spatial Range 
( sr in km) 

Relative 
Nugget 

 
(Intercept) 

0b  

nugget 25000 -  
0.096 spherical  35500 65 

spherical  199500 110 

 
( )t  

1b  

nugget 2.5 -  
0.033 spherical  70 110 

spherical  3.5 75 

 
2( )t  
2b  

nugget 0.00015 -  
0.117 spherical  0.00005 50 

spherical  0.00108 120 

 
(cos)  

3b  

nugget 1.50 -  
0.010 spherical  105 50 

spherical  40 100 

 
(sin)  

4b  

nugget 1.00 -  
0.007 ( )sph h r  5.00 60 

( )sph h r  145 140 

 
R squared 

2ˆ( )R  

nugget 0.0002 -  
0.013 ( )sph h r   0.0022  50 

( )sph h r   0.0125  115 

 
The estimation of the trend surfaces by (5.2.3) generated 156 spatial maps, indicating 

the monthly average risk estimates of the malaria morbidity in the region for the period 

1998-2010. Figures 5.7.1 and 5.7.2 display spatial maps of the temporal surface 

profiles of the estimated risk for selected months in 2000, 2004, 2008 and 2010. High 

incidence of the disease in the region is consistently localised in the west and south-

west, bordering with the neighbouring country, Cote d’Ivoire and has also been 

extended to the central part of the region in recent times. Consistently, the eastern part 

is observed with the least estimated morbidity risk. This part of the region is the least 

inhabited and has the fewer number of sample locations. As it pertains nationally, the 
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reported morbidity cases of malaria have risen sharply over the years but appear to be 

stabilising or increasing at large geographical areas towards the central parts of the 

region after 2008.  

 

 

 

 
Figure 5.7.1: Estimated trend surfaces of the malaria morbidity incidence rates for the selected months, 
March, July, October and December in 2000 and 2004. 
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Figure 5.7.2: Estimated trend surfaces of the malaria morbidity incidence rates for the selected months, 
March, July, October and December in 2008 and 2010 
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5.7.2 Space-time Ordinary Kriging of MIR 

The space-time ordinary kriging of the residuals (STROK) via the generalised product-

sum (GPS) modelling of the space-time semivariogram of the residuals is among the 

various models considered for the estimation of morbidity risk in BAR. The GPS 

models produced better characterisation of the correlation structure of the morbidity 

incidence, as also observed by the national study. Table 5.7.2 provides the parameters 

of the marginal spatial and temporal semivariograms and the space-time generalised 

product-sum semivariogram models of the residuals. Figures 5.7.3 displays graphs of 

the marginal semivariograms and the space-time semivariogram surfaces whilst the 

modelling parameters for the non-stationary observed morbidity incidence rates are 

given in Table F-2.1 and the graphs shown in Figure F-2.1 in Appendix F-2. 

The results indicate stronger autocorrelations of the incidence rates with smaller 

relative nugget effects of 0.128 spatially and 0.140 temporally, compared with the 

corresponding figures 0.302 and 0.255 by the joint modelling of the residuals (see 

Table F-1.3) and national study figures of 0.481 and 0.342 (see Table 5.3.3), 

respectively. The GPS modelling also provides better spatio-temporal continuity of the 

incidence with shorter ranges of 80 km and 18 months and global sill of 4800. The 

dissimilarity of the malaria morbidity incidence rates, as illustrated by the sills of 

semivariograms, are higher in the BAR, compared with that values which were 

obtained nationally. Following (5.4.1) and (5.4.2) the estimates of STROK are 

obtained for the temporal surface profiles and estimated risk of the morbidity incidence 

in BAR to be generated. Figures 5.7.4 and 5.7.5 display some of the spatial maps 

produced for 2000, 2004, 2008 and 2010.  

High morbidity incidence of the disease in the region is consistently localised in the 

west and south-west, bordering with the neighbouring country, Cote d’Ivoire and in 

recent times been extended to the central part of the region. The eastern part of the 

region has the fewer number of sample locations, and consistently, as trend earlier 

observed by the global trend profiles, has the least estimated morbidity risk. As it 

pertains nationally, the reported morbidity cases of malaria have risen sharply over the 

years but appear to be stabilising or increasing at large geographical areas towards the 

central parts of the region after 2008.  
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Table 5.7.2: Parameters of the marginal semivariograms and product-sum semivarigram models of the 
detrended malaria incidence rates (residuals) for the study in BAR  
 

Model 

Spatial Temporal Product-sum 

Sill 

(RN) 

Range Sill 

(RN) 

Range Global 

Sill 

 

k  

nugget  500 

(0.128) 

- 650 

(0.140) 

-  

 

4800 

 

2.068 10-4 

(2.151 10-4) exponential  3400 80 - - 

exponential  - - 4000 18 

In parentheses are the relative nugget (RN) effects of marginal semivariograms and maximum k limit 
values for the product-sum model. 
 
 
 

 
Figure 5.7.3: Marginal spatial and temporal semivariogram models of the residuals incidence rates (top) 
and space-time experimental semivariogram surfaces together with their product-sum models (bottom) 
for the study in Brong Ahafo Region 
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Figure 5.7.5: Monthly spatial maps of malaria risk estimated by space-time ordinary kriging by the 
generalised product-sum modelling of residuals (STROK_PS) in BAR for some selected months in 2008 
and 2010. 
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5.7.3 Validation of Kriging Estimates  

The space-time kriging estimates in the region by Tables 5.7.3 and 5.7.4 are 

summarised and validated by forward predictions of the 2011 incidence data. The 

estimates are higher and more variable due to the large extreme values, just like the 

observed incidence samples. The sample incidence data range from 64 to 1275 and 

record an average of 288 incidence cases with a standard deviation of 165.60. Malaria 

morbidity incidence in the region is predicted to occur from 0 (-1065.3) to 1275 cases 

per 10,000 resident people and as was the case for the national, the STOLK estimates 

are less variable and predict more close to the observed sample data (see Table 5.7.3). 

Table 5.7.3: Summary statistics of kriging estimates of malaria incidence rates together with their 
prediction standard deviations compared with the observed incidence data. 
Kriging 
Estimate 

Brong Ahafo Region (BAR) 
Count Min Max Mean StDev. CV 

Sample 2460 64.00 1275.00 288.33 165.60 0.574 

STOLK 242553 76.20 1275.00 244.56 126.90 0.519 

STROK 243204 -1065.3 1274.98 151.20 208.67 1.375 

STOK_PS 242537 -1059.7 1274.98 152.43 208.65 1.369 

 

As judged by the Jacknife prediction of the 2011 incidence data in the region (see 

Table 5.7.4), predictions by the space-time kriging techniques which employ 

variography of the residuals coupled with or without the generalised product-sum 

modelling approach appear more close to the samples. However, the latter technique 

(STOK_PS) proved more superior with least MAE and RMSE values of 44.732 and 

56.663, respectively. This is further evidenced by the spatial maps which revealed 

detailed information (as observed from the national maps) regarding the dynamics of 

the incidence of the disease in the region. 

 

Table 5.7.4: Prediction estimates for 2011 compared with the sample data and their measures of 
prediction accuracy in BAR   
Kriging 

Estimate 

Brong Ahafo Region (BAR) 

Min Max Mean Std. CV ME MAE RMSE Corr. 

Sample 144.00 940.00 434.99 156.68 0.360 - - - - 

STOLK 269.00 622.00 470.65 95.19 0.202 43.48 118.39 162.271 0.400 

STROK 34.79 1077.1 461.76 205.46 0.445 -26.77 69.718 85.624 0.934 

STOK_PS 127.44 926.49 442.20 161.80 0.366 -7.21 44.732 56.553 0.938 
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5.8 Malaria Morbidity Risk in the Vegetation Zones 

Having holitiscally and exhaustively investigated the spatio-temporal distribution of 

malaria morbitiy incidence rates in Ghana, the morbidity risk of the disease by 

vegetation types in the country, like in BAR, is considered because of their economic 

importance, as outlined in section 5.1. As was the case for the Brong Ahafo Region in 

section 5.7, results of the main space-time kriging models used to explore the spatio-

temporal distributions of the malaria incidence rates in three vegetation (northern, 

forest and coastal) zones are presented in this section. These include the structural 

analysis of the incidence rates by the generalised product-sum modelling and the 

subsequent space-time kriging process of the incidence rates at the unsampled district-

month locations. The results for the other space-time prediction models considered for 

the analysis, namely STLOK, STROK and STOCK, are presented in Appendix G. 

 

5.8.1 Product-Sum Semivariogram Models of MIR  

The results for the generalised product-sum modelling of space-time semivariograms 

of malaria incidence rates by the vegetation types, following the same procedure as in 

the previous sections, are as shown in Table 5.8.1 and Figures 5.8.1 and 5.8.2.  

 
Table 5.8.1:  Parameters of the marginal semivariograms and product-sum semivarigram models of the 
detrended malaria incidence rates (residuals) for the vegetation zones study  

 
Zone 

 

 

Model 

Spatial Temporal Product-sum 

Sill 

(RN) 

Range Sill 

(RN) 

Range Global 

Sill 

k  

 
Northern 
 

nugget  1950 
(0.448) 

- 2200 
(0.358) 

-  

 

6500 

 

1.495 10-4 

(1.626 10-4) 
exponential  2400 100 - - 

exponential  - - 3950 16 

 
Forest 
 

nugget  1500 
(0.556) 

- 1000 
(0.286) 

-  

 

3550 

 

2.804 10-4 

(2.817 10-4) 
exponential  1200 55  - 

exponential  - - 2500 18 

 
Coastal 
 

nugget  500 
(0.364) 

- 600 
(0.364) 

-  

 

1750 

 

5.620 10-4 

(6.061 10-4) 
exponential  875 100 - - 

exponential  - - 1050 16 

In parentheses are the relative nugget (RN) effects of marginal semivariograms and maximum k  limit 
values for the product-sum model 
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 Figure 5.8.1: Marginal spatial and temporal semivariogram models of the residuals(top) and space-time 
experimental semivariogram surfaces together with their product-sum models (bottom) for the  northern  
and forest zones. 
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Figure 5.8.2: Marginal spatial and temporal semivariograms modelsof residuals (top) and space-time 
experimental semivariogram surfaces together with their product-sum models (bottom) for the coastal 
zone 
 

The space-time semivariogram surfaces of both the observed incidence rates and the 

residuals for the three zones, generally appear to be similar but with varied global sills. 

As expected, they are highest in the northern zone but lowest in the coastal zone. The 

variography of the residuals, as evidenced in the two previous studies, provides a better 

representation of the correlation structure of disease’s incidence in the three zones (see 

Figures 5.8.1 and 5.8.2 and Appendix G). The relative nugget effects of the residuals 

for zones vary from 0.364 to 0.556, spatially and 0.286 to 0.364, temporally, compared 

with the national study values of 0.481 and 0.342, respectively which are higher than 

the observed incidence rates, just like the previous modelling approaches. Malaria risk 

in the northern and forest zones appears to be spatially and temporally heterogeneous 

which in the latter case could be influenced by the high incidence in BAR. The ranges 

of the autocorrelation vary across the zones from 55 to 100 km, spatially and 16 to 18 
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months, temporally, with the shortest range in the spatial domain occurring in the 

forest zone. The global sill is highest (6500) in the northern zone and lowest (1750) in 

the coastal zone, with the forest zone recording a value (3550) between the two values. 

The marginal spatial semivariograms of the observed incidence rates show more 

continuity of the disease occurrence in the northern and coastal zones (100 km) than 

the forest zone (80 km). Contrary, the temporal dependence varies more continuously 

in the forest zone (85 months) than the other two zones (80 months); however, the 

morbidity incidence in the northern zone has very distinct seasonal variations (Table 

5.8.1 and Figures G-2.1–G-2.3 in Appewndix G-2). 

 

5.8.2 Space-time Ordinary Kriging of MIR in the Northern Zone 

As observed from the spatial maps in the national study, areas in the northern zone 

appeared highly risk of the malaria morbidity. In view of this only the spatial maps of 

the northern zone will be presented and compare (like the BAR) with the national risk 

maps. The STROK technique, utilising the generalised product-sum semivariogram 

models of the residuals developed in section 5.8.1, is then applied to obtain the 

morbidity incidence rate estimates at the unobserved district-month locations. Figures 

5.8.3 and 5.8.4 present the spatial maps generated by STROK_PS for some selected 

months in 2000, 2002, 2008 and 2010. 

The estimated incidence rates by the spatial maps follow similar pattern of distribution 

as observed from the national maps, revealing more details of the risk of the disease in 

the zone. The higher risk areas are mainly found at locations near the boaders with the 

neigbouring countries Burkina Faso and La Cote d’Ivoire and the spatial range of 

incidence of the disease has expanded significantly over recent years. Also potential of 

high risk of the malaria morbidity are the other parts towards the east, where there has 

been significant transition of the disease from the north-west. The effects of the 

climatic covariates of rainfall and maximum temperature, which correlate highly with 

the morbidity incidence, contribute to the high morbidity cases in the zone. This is 

evidenced by the spatial maps generated by the STOCK_Rain and STOCK_MaxT 

techniques using the effects of rainfall and maximum temperature in the preceding one 

month. The morbidity incidence rate surfaces observed for the zone appeared more 

heterogeneous and relatively spread over larger geographical areas.  
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Figure 5.8.3: Monthly spatial maps of malaria risk estimated by space-time ordinary kriging by the 
generalised product-sum modelling of residuals (STROK_PS) in northern zone for some selected 
months in 2000 and 2002. 
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Figure 5.8.4:  Monthly spatial maps of malaria risk estimated by space-time ordinary kriging by the 
generalised product-sum modelling of residuals (STROK_PS) in northern zone for some selected 
months in 2008 and 2010. 
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5.9 ChapterSummary 

In this chapter, the malaria morbidity incidence rates observed at the district-month 

locations in Ghana have been modelled using geostatistical space-time kriging 

techniques. The analysis sought to describe the spatio-temporal distribution of the 

monthly malaria morbidity case reports from the district health facilities and to account 

for the environmental effect of rainfall, relative humidity and temperature, with 

particular attention to identifying areas with high risk of morbidity incidence in the 

country. This has been achieved by applying the geostatistial methodology to three 

different case studies, nationally, regionally (using BAR) and by vegetation (or malaria 

epidemiological) zones. For each case study, structural analysis was performed to 

develop semivariogram models to quantify the spatial and temporal correlations of the 

morbidity incidence rates leading to the predictions of incidence rates at unsampled 

locations. Three main kriging techniques STOLK, STROK and STOCK, based on the 

structural analysis were employed. STOLK was applied to the log-transformed 

morbidity incidence rates data; STROK used the detrended and deseasonalised 

incidence data coupled with the generalised product-sum model; and STOCK, which 

used the LMC to account for the potential influence of rainfall, temperature and 

relative humidity on morbidity incidence rates.  

The space-time semivariogram models constructed showed spatial and temporal 

correlations of the incidence rates in short and long ranges. The semivariogram models 

fitted by the generalised product-sum model exhibited shorter ranges of 

autocorrelations and characterised the continuity of incidence rates with fewer basic 

structures of spherical and exponential variogram models. The LMC of morbidity 

incidence rates with the potential covariates accounted for significant spatial and 

temporal continuity of morbidity incidence in all the study areas, with rainfall lagged 

one month contributing to higher of the morbidity incidence variation with shorter 

range of correlation. The space-time kriging predictive models established increased 

risk of morbidity which is seasonal across the country. However, highly elevated 

incidence cases of the disease can be observed at locations near the borders with the 

neighbouring countries. Rainfall and maximum temperature contributed significantly 

to the increased morbidity incidence in Ghana. Validation analysis was conducted 

which proved the STROK techniques predicting the morbidity incidence rates of the 

disease with higher degree of accuracy.    
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Chapter 6 

Conclusions and Recommendations 

6.1 Summary of Analysis and Findings 

Malaria is a highly endemic disease which poses serious threats to both the public 

health and socio-economic development of Ghana, in spite of high knowledge of its 

mode of transmission and prevention among the general population. Detailed 

knowledge of its distribution in space and time, coupled with accurate quantification of 

the disease (morbidity and mortality) burden has become important for the efficient 

management of malaria control programmes and public health planning in the country. 

Ghana’s National Malaria Control Programme (NMCP) faces such challenges as often 

incomplete monthly case reports are recorded in the national data base. This raises 

concern about the annual estimates released on the disease burden. Spatial and 

temporal distributions of malaria incidence provide a rationale for interventions, 

making it possible to determine estimates at unsampled locations and time instances. 

In this thesis, the concepts of both geostatistical space-time statistical and time series 

SARIMA predictive models were studied and applied to the malaria morbidity case 

reports from the district and regional health facilities in Ghana. The purpose of the 

study was to explore both the spatial and temporal distributions of the malaria 

morbidity incidence cases as reported in the country over period 1998-2011 and to 

account for the potential influence of environmental variability. More specifically, the 

study sought:  

(i) To perform seasonal analysis of morbidity cases in the regions with the aim of 

establishing temporal distributional patterns and providing predictive models 

for seasonal forecasting of the malaria risk;  

(ii) To characterise the spatio-temporal continuity of the malaria incidence rates at 

the district-month locations across the country and to identify and account for 

potential climatic effects; and  

(iii) To produce evidence-based risk maps of malaria incidence, estimating its 

incidence rates and describing distributional patterns over space and time, with 

a particular focus on delineating areas with high risk of malaria infection in 

Ghana. 
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The monthly malaria morbidity count data considered for the study were new clinically 

diagnosed outpatient (non-laboratory confirmed) cases for the period 1998-2011. They 

were obtained from the data base of CHIM and complemented by the available records 

at Regional Health Information Units of GHS. As per reasons previously given in 

Chapter 4, the whole data set was classified as regional (global), comprising morbidity 

cases from all the 10 regions, and space-time (district-month), being the observed 

cases from the districts for the seasonal and spatio-temporal analyses performed at the 

regional and district levels, respectively. The analysis was pursued by first 

standardising the monthly case count data as incidence rates, in view of the high 

occurrence of malaria in all parts of the country. Thus, the morbidity incidence rate 

(MIR) was defined as the number of new morbidity cases per unit district or region 

resident population of 10,000. The MIR data together with the climatic covariates, 

collected from the Ghana Meteorological Agency (GMet), were considered as 

realisations of random processes occurring in space and/or time and modelled as per 

the various temporal and spatio-temporal techniques employed in this study.  

Generally, the results showed varied spatial and temporal distribution of the morbidity 

incidence cases, which have increased over the years across the country. This could 

partly be attributed to the seasonal variability in environmental conditions such as 

rainfall and temperature which create favourable conditions for breeding of the 

Anopheles mosquito vector. This was evidenced by the significant impact of the 

weather variables considered in the analysis. Other possible causes which are widely 

believed to have links with malaria occurrence but were not investigated in this study 

include socio-economic and biological factors. In the following sections, the detailed 

summary of the research findings of the analyses conducted in chapters 4 and 5 

together with the discussion are presented. Also, outlined in the chapter are the 

limitations of the research, the significant findings contributing to knowledge, and 

recommendations for possible future research and policy interventions for malaria 

control.  

6.1.1 Seasonal Analysis of MIR at Regions 

The time series plots coupled with the smoothing analyses were performed to examine 

the long-term trends and seasonal dynamics of the morbidity incidence rates at a 

regional level. The incidence rates showed a continuous upward trend, characterised by 

similar but strong seasonal variations. High and low peaks were observed, occurring 
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during the wet (May-November) and dry (December-April) seasons, respectively. The 

highest peaks of the incidence rates were observed between 2006 and 2009, after 

which they seemed to be levelling off. However, the seasonal variations in the three 

regions forming the northern savannah zone were very distinctive with continuous 

linear or exponential growth. For them, together with the Brong Ahafo region, the 

number of new incidence cases was highest, whilst the lowest incidence cases were 

observed in Greater Accra and Central regions. In all cases, the smoothing analyses 

showed that the female incidence rates were slightly higher than those for men whilst 

the monthly incidence rates for children up to age 4 were highest with high growth 

rates, as observed from the moving average and Holt-Winter’s smoothing results. The 

predictive forecast of new incidence cases followed a similar trend pattern which 

appeared to be either increasing or stabilising in Brong Ahafo, Ashanti, Greater Accra, 

Northern and Upper West. The malaria morbidity incidence in these regions was 

strongly influenced by both seasonal and non-seasonal components of autoregressive 

and moving average processes and strongly influenced by the rainfall, temperature and 

relative humidity in the preceding month as evidenced by the significant reductions in 

the AIC, RMSE and MAE values. The forecasted values for 2011 appeared close to the 

observed, as they were all found lying within 95% confidence intervals of the 

estimates and also strongly correlate with the observed values with the correlations for 

both the total and the under 5 year groups ranging between 0.771 and 0.889. 

6.1.2 Structural Analysis of Space-time MIR at District Locations 

The space-time semivariogram models characterising the spatio-temporal continuity of 

the morbidity incidence rates indicated that the occurrence of the malaria morbidity 

cases was spatially and temporally correlated. Nationally, the spatial range of 

dependence varied from 35 to 250 km and the temporal range from 10 to 85 months. 

The range of spatial autocorrelation of the incidence in the Brong Ahafo Region was 

between 35 and 140 km, whilst that for temporal autocorrelation was between 20 and 

80 months. The corresponding spatial and temporal ranges observed for the incidence 

rates in the malaria epidemiological (vegetation) zones were between 35 and 160 km 

and 6 to 100 months, respectively, with the incidence rates in the forest zone varying 

more continuously with longer ranges. However, the generalised product-sum 

semivariogram models which characterised the incidence rates with fewer basic 

structures exhibited shorter ranges of autocorrelations, mostly between 55 and 120 km 
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and 16 and 100 months. The relative nugget effect values arising from the product-sum 

modelling of the spatio-temporal semivariograms were much smaller, ranging from 

0.098-0.354 (spatially) and 0.045-0.313 (temporally), compared with the 

corresponding joint space-time results of 0.302-0.441 and 0.255-0.370, respectively, 

which facilitated the space-time kriging at the district-month locations with increased 

higher precision.     

Spatially and temporally, the morbidity incidence rates at the district locations 

correlated positively with rainfall and relative humidity and negatively with 

temperature. The LMC of the incidence rates with the climatic covariates separately 

showed that rainfall (lagged 1 month) and instantaneous maximum temperature and 

relative humidity (at 1500 hours) accounted for much of the spatial continuity of the 

morbidity incidence at the district locations. Rainfall in the preceeding month of 

malaria incidence resulted in relatively longer ranges of correlation (35-280 km), 

compared with the other potential covariates which ranges were from 35 to 200 km. In 

the purely spatial case, rainfall and relative humidity increased the range of spatial 

dependence to between 60 and 260 km whilst temperature has rather longer range of 

continuity of 150-280 km. In the vegetation zones and BAR, the impact of potential 

covariates of rainfall, maximum temperature and relative humidity in the preceding 

month on the incidence rates followed the similar pattern and stronger effect of spatial 

and temporal correlations but with smaller range of correlations. 

6.1.3 Prediction of Space-time MIR at District Locations 

The space-time optimal predictions at the unsampled district locations were based on 

the spatio-temporal continuity of the malaria morbidity incidence rates. The results 

showed that malaria morbidity risk is seasonal and has increased across the country 

over the years, particularly from the period 1998/2000-2004 to 2005-2010. There has 

also been a spatial expansion and transition of high morbidity risk of the disease from 

areas in the north-west (Upper West Region) to the north-east (Upper East Region) 

parts. The morbidity incidence rates were found to be heterogeneous with highly 

elevated incidence rates at locations near the borders with neighbouring countries in 

the north (Burkina Faso), west (La Cote d’Ivoire) and central parts towards the east 

(with Republic of Togo). The effect of weather changes contributed significantly in the 

distribution of the morbidity cases reported from the district health facilities, as 

established by the seasonal variations. The incidence rates of the disease were 
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estimated to be high mostly in the wet season when temperatures were relatively low 

whilst low incidence rates were observed during the warm weather period in the dry 

season. The findings were in line with the space-time ordinary co-kriging (STOCK) 

results which established significant impact of rainfall and temperature on morbidity 

incidence at the district and regional locations. Whilst rainfall in the preceding month 

contributed to an increased risk of malaria morbidity across the whole study area of 

Ghana, the effect of maximum temperature was more pronounced in the northern, 

western, and at central parts towads the coast. Areas with high amount of rainfall (or 

relative humidity) coupled with low or decreasing maximum temperatures were found 

to be associated with an increased risk of malaria morbidity, mostly at the district 

locations in the south, through the central, to the north. The findings are also consistent 

with the different temporal profiles of the incidence rates and the results of the 

estimated trend model (5.5.1) which showed long-term increase or decrease of the 

incidence rates at the district locations with high variations.      

The prediction of MIR in the Brong Ahafo Region, which was chosen for its strategic 

position in Ghana, consistently estimated higher incidence rates at locations in the 

west, close to the border with La Cote d’Ivoire. Lately, the high morbidity risk of the 

disease has also expanded to the central parts of the region, noted for commercial 

activities such as crop farming and inland fishing. As was the case for the national 

study, increased (or decreased) risk of malaria morbidity in the region was associated 

with high rainfall in the preceding month (or decreasing maximum temperature) which 

appeared stronger. The variations in the morbidity risk were estimated higher. In the 

vegetation zones, the space-time predictive kriging models produced results which 

affirmed the spatial heterogeneity of the morbidity incidence rates, which was strongly 

associated with the two potential risk factors in the preceding month.  In particular, the 

incidence rates in the northern savannah zone were estimated to be high and found to 

be more variable due to favourable environmental conditions for the transmission of 

the disease in that part of the country, as discussed below in section 6.1.4.  

Also of worthy of note are the monthly spatial maps produced by the STROK and 

STOCK techniques, which showed much smoother risk surfaces with detailed patterns 

of the morbidity incidence over larger locations across the country. The validation 

analysis proved the space-time ordinary kriging technique of residuals using the 

generalised product-sum modelling, as  being  more  efficient  for  producing estimates  
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with least errors of estimation.   

6.1.4 Discussion of Results 

The intense malaria intervention activities over the years in Ghana do not appear to 

yield the much desired impact as recent national studies on the disease showed 

increased infant and maternal mortality rates across the country, far from the highly 

envisaged Millennium Development Goal-6 (MDG-6) reduction target of 75% by 2015 

(MICS, 2011; UNICEF, 2012). This could be partly attributed, particularly, to 

persistent high level of transmission and lack of accurate information on new incidence 

cases of the disease to identify the high risk areas. Thus, baseline data and reliable 

monitoring of key malaria indicators are needed to measure whether the goals for 

morbidity and mortality reduction are being achieved. Data from health facilities 

become potentially useful for monitoring malaria patterns and trends, but have several 

limitations. The crucial factor affecting the representativeness of health facility records 

is the extent to which these statistics reflect the burden of disease in the population 

under investigation. In Ghana, severe malaria cases are only included in the health 

statistics that are also affected by the accessibility of hospital services and by the 

health-care seeking behaviour of the people. Demographic and health surveys and 

other sources indicate that less than 50% of malaria morbidity and mortality cases are 

seen in formal health facilities (GSS et al., 2004b), indicating that only a fraction of the 

total burden can be accounted for by health statistics. These raise concerns of both 

under and over reporting for the malaria morbidity data captured in the database of 

CHIM, on which this study’s results were based. Despite these limitations, health 

statistics may be acceptable for monitoring trends if their low sensitivity remains 

consistent over time (Adams et al., 2004).  

The study was carried out with the ultimate aim of updating the inadequacies of the 

national data base on the disease with the view of strengthening the country’s malaria 

prevention and control measures. This has been achieved by the development of time 

series predictive SARIMA and geostatistical space-time kriging models of the malaria 

morbidity incidence rates at the regional and district levels of Ghana and to account for 

the characteristics of the underlying spatial continuity of the potential climatic 

covariates. The SARIMA models provided the temporal seasonal forecasts at the 

regions whilst the space-time models described the autocorrelation structure of the 

malaria incidence rates at the district locations and over time. The space-time models 
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were then used to produce monthly spatial maps estimating the malaria morbidity risk 

at locations where data were not available, and more importantly, highlight the high 

risk locations of the disease. In this way, the seasonal forecasts and spatial maps 

provide useful analytical tools for resource allocation to reduce the morbidity burden 

of the disease at the local level.  

The time sequence plots and the smoothing analyses of the incidence rates in the 

regions have established varied demographic (age and sex) regional patterns of the 

disease’s occurrence, which will enhance effective monitoring and reduction of new 

incidence cases. Generally, the results revealed a steady increase in new reports of the 

disease from onset of the study, characterised by similar seasonal patterns until 2009, 

after which seemed to be levelling off. The highest incidence rates were observed 

between 2006 and 2009, which appeared to be the “epidemic” or outbreak of the 

disease in all the regions. This period coincided with the introduction of free maternal 

care treatment and passage of the National Health Insurance Scheme (NHIS) bill in 

2006 (PMI, 2013) and 2007, respectively in Ghana. The introduction of these two new 

policies requires that expectant mothers be treated and that health cost delivery be 

much more affordable in the country as opposed the previous “cash and carry” system 

which demanded largely unaffordable spot payments for treatment. These 

interventions, as already established elsewhere (Burgert et al., 2011; Landoh et al., 

2012), could potentially contribute to the increased examination of morbidity cases. 

The decline observed in other time sequence plots of MIR (Greater Accra and Upper 

West regions) could be due to several combined factors including malaria 

interventions, notably the introduction of the policies on the use of insecticide treated 

nets (ITNs), anti-malarial drugs (ACTs) such as Artesunate+Amodiaquine to treat 

uncomplicated malaria cases and mass spraying of homes with insecticides through 

indoor residual spraying (IRS) to kill the female Anopheles mosquitoes, the main cause 

of the malaria in the country.  

The findings of more malaria morbidity cases among females and in 0-4 year group are 

consistent with other recent studies in the country (Krefis et al., 2010; Kreuels et al., 

2008) and elsewhere in Ethiopia (Woyessa, Deressa, Ali, & Lindtjørn, 2013), which 

linked malaria infections with demographic factors, such as sex and age.  However, the 

results of these studies were based on clinical trials conducted in rural communities, 

contrary to this study which used morbidity cases from all regions in the country. The 
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results further reflect how highly vulnerable these people are to most of the severe 

clinical symptoms due to their low levels of immunity from the disease. The variability 

in climate played a prominent role as it contributed to the extreme dry and wet periods 

experienced in the country. The seasonal predictive models established for the 

incidence rates for the 0-4 year group and regional total significantly accounted for 

impact of rainfall, temperature, and relative humidity including the incidence rates in 

the preceding months. Rainfall, maximum temperatures and relative humidity (at 1500 

hours) in the previous month variously proved to be important predictors of the 

increased malaria risk, especially in the most endemic regions. The finding agrees with 

several other studies including Yѐ, Louis, Simboro, and Sauerborn (2007) who 

established high risk of malaria infection with the same climatic conditions. This result 

has policy implication, as the lag one month effect of the climatic covariates appeared 

to be in agreement with the development of the malaria parasites in the mosquito 

vector, which was largely influenced by favourable weather conditions during this 

period. The dependence on rainfall and temperature in the previous month will aid in 

planning and serve as a valuable early warning tool to avert potential outbreak of the 

disease in the regions.  

The space-time analysis of the study has shown remarkable spatio-temporal variation 

of the new malaria morbidity incidence rates at the district locations with increased 

spatial expansion of the incidence of the disease over the study period, coupled with 

high risk areas. The locations of high risk areas varied over time in each 

epidemiological zone and were mainly found close to the borders with neighbouring 

countries (in the north, west and east) and along the coast. These findings could be 

ascribed to the location which people live, an important risk factor, which is often 

associated with the local environmental conditions (Carter, Mendis, & Roberts, 2000). 

Consequently, the results serve as indicators of the potential changes of the malaria 

transmission patterns and increasingly risk for the low occurrence areas in the other 

parts of the country. The high risk areas identified in this study appear to be consistent 

with recent national health surveys (MICS, 2011), which used malaria parasite 

prevalence in children aged between 0.5 and 5 years (GHS, 2011). The regions in the 

northern savannah zone were found to have the highest prevalence rates of malaria 

(43.7–50.7%), followed by Brong Ahafo (37.1%) and Western (36.5%) in the forest 

zone, which border with Cote d’Ivore in the western part of the country, whilst the 
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lowest (4.1%) was for the Greater Accra Region in the coastal zone, compared with the 

national prevalence rate of 27.5%. Ghana’s three neighbouring countries, Burkina 

Faso, Cote d’Ivoire and Togo, are endemic countries with equally high reports of 

malaria morbidity and mortality cases (WHO, 2008, 2011). The frequent exodus of 

population across the borders puts susceptible resident locals at risk of the disease. 

Often, migrants to the high endemic areas tend to be biologically more vulnerable to 

malaria infections due to lack of immunity; they are also highly suspected carriers to 

the low risk regions (Ricci, 2012; Sachs & Malaney, 2002; Silal et al., 2013; Tumwiine 

et al., 2010). Baragatti et al. (2009) observed that travel outside urban areas increases 

the risk of being exposed to malaria transmission in their spatial analysis of malaria 

epidemiology in Burkina Faso, whilst other studies have associated significantly an 

increased risk of malaria with people engaged in regular farming activities or live close 

to forest areas, where mosquito breeding is very conducive  (Klinkenberg et al., 2005; 

Kreuels et al., 2008; Ricci, 2012). In Ghana, like most typical SSA countries, many 

settlements (especially in rural and peri-urban areas) are surrounded by various 

vegetative covers where the Anopheles mosquito vectors are very predominant.  

The short and long ranges of auto-correlation for the space-time semivariograms were 

indications of the spatial heterogeneity of the morbidity risk at the district locations, as 

observed in the monthly spatial maps. This finding is consistent with other studies 

(Kreuels et al., 2008; Lindsay et al., 1990; Reid et al., 2010), involving small-area 

variation in the disease risk and national mapping of the disease risk in Bangladesh. 

The study of Kreuels et al. (2008), conducted in a tropical forest area as in this thesis, 

concluded a marked morbidity risk which varies across the communities considered 

and over short distances. Reid et al. (2010) using a model-based geostatical approach 

observed spatial autocorrelation of malaria prevalence within a range of 50 km. Spatial 

heterogeneity may also be due to  the spatial (de Souza et al., 2010; WHO/VBCD, 

1989) and temporal distributions of habitats of vector mosquitoes which differ 

according to the varying environmental local conditions, which can lead to the 

detection of high-risk groups for the selection of intervention measures (Carter et al., 

2000; Coulibaly et al., 2013). This important result recognises differences in malaria 

infections at various district locations, which implies that health facilities in same 

district or districts close together might share similar conditions or common vector 

mosquito breeding places. Spatial homogeneity of the morbidity risk also suggests an 



225 
 

uneven application of malaria intervention activities with more focus on highly risk 

areas.     

This study focused attention on the spatio-temporal structure of the malaria morbidity 

incidence rates, taking into account of spatial and temporal correlations with only 

climatic covariates of rainfall, temperature and relative humidity. Many studies have 

suggested the various negative effects of climate on human health including infectious 

diseases (Ricci, 2012). The one-month lagged effect of rainfall and maximum 

temperature on malaria morbidity incidence infection is consistent with the 

development of mosquitoes, the external period of incubation of malaria parasite in the 

host and the possible delay in the disease occurrence or reporting, as previously 

reported in several studies herein cited, including Kleinschmidt, Sharp, Clarke, Curtis, 

and Fraser (2001), Thomson et al. (2005) and Tian et al. (2008). Rainfall (which 

confounds with relative humidity) and temperature are important in the transmission of 

malaria infections, as mosquito larvae require suitable temperature and moderate 

amount of water for breeding. For example, the high-risk areas found in the various 

vegetation zones may be due to the wide presence of permanent breeding conditions 

provided by irrigation facilities and ponds resulting from rivers running offs since the 

mosquito vectors are known to be associated with flooded areas and rainfall (de Souza 

et al., 2010; Klinkenberg et al., 2005). The forest and coastal zones in the western part 

of the country record high rainfall and low temperatures in Ghana. However, the study 

by Reid et al. (2010) in Bangladesh did not find a significant relationship with rainfall 

but rather established positive association with temperature and vegetation cover in the 

forest. The heavy rainfall typically asoociated with the tropical rainforest regions can 

destroy larvae of moquitoes, leading to a decrease in transmission of the disease.  

There are many other non-climatic factors, such as socio-economic, access to health 

care and intervention measures, known to have significant influence on the 

transmission of malaria (Huang, Zhou, Zhang , et al., 2011; Kurane, 2009). The high 

morbidity incidence which occurred at the district locations in the northern parts of the 

country could be also attributed to poverty, a socio-economic factor. This part of the 

country is considered as the most deprived, lacking the resources needed for the 

provision of social services and infrastructural developments, coupled with high 

malnutrition rates (Baird et al., 2002). Most malaria intervention activities in Ghana 

are piloted in suspected areas of high incidence of the disease. These studies include 
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Appawu et al. (2004), Baird et al. (2002) and Binka et al. (1998), one of which 

estimates malaria as accounting for over 25% of under-five mortality at the Kessena-

Nakana district in the Upper East Region. Efforts to intensify malaria campaigns at 

these targeted areas will surely reduce malaria burden in the country. WHO 

recommends the stratification of malaria risk, making it possible to set up clinical 

trials, targeting high-risk areas on fine geographical scales (WHO, 1986, 2000). Thus, 

the spatial and temporal heterogeneities established in this study, become important 

tools for defining local patterns and predictors of the malaria morbidity transmission 

and infection in space and time. This will facilitate the selection of appropriate study 

population and allocation of intervention resources which will enhance the accuracy 

and efficacy of the analysis describing the impact of the study interventions (Coulibaly 

et al., 2013; Gaudart et al., 2006). In addition, the malaria vaccine trials currently being 

conducted at two sites (Agogo and Kintampo) in the forest zone (GHS, 2011) could be 

implemented and expanded in a sustained manner. 

6.2 Limitations 

The study has been conducted and achieved the targeted objectives, as outlined in 

sections 1.3 and 6.1. However, the following  limitations must be noted that could have 

affected the findings obtained.  

 Malaria morbidity cases considered for the study were clinically diagnosed 

cases as opposed to the confirmed. The reason was that malaria cases recorded 

by health facilities in Ghana only account for a small fraction (15%) of the 

actual infections, as most of these new cases are not microscopically tested or 

confirmed due to limited laboratory facilities (Agyepong & Kangeya-Kayonda, 

2004; NMCP, 2008). However, the number of mobidity cases could equally be 

balanced by under reporting as large proportion of cases are not reported at the 

formal health centres. The under-reporting may also arise when people infected 

by the malaria parasites have subclinical infections and/or did not seek medical 

attention.  

 The reported malaria morbidity cases were aggregated by regions and districts 

from the health centres, which might have prevented the analysis of incidence 

rates of the disease at a higher spatial resolution at health-facility levels. This 

might have led to locations of high risk of the disease being obscured or 
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wrongly sighted. However, this was the only highest resolution on occurrence 

of new cases that could be made available and easily collected.  

 Different filing of records at the district and regional health offices coupled 

with inconsistency of reporting were often observed which severely impact on 

accuracy of the data base system of CHIM. As a routine, the districts were 

reqiured to report monthly via their regional health information units, but whilst 

some reported by specific age groupings and sex, others submitted returns 

differently or just on the total cases. In many cases, the monthly reports on the 

disease were not received (or promptly), leading to missing records (or wrong 

recordings). Lack of logistics to facilitate collection and storing information at 

the district level constitutes yet another problem. 

 There is also the possibility of variation in the quality of the CHIM data base 

system as awareness of malaria among the public and medical practioners 

might have varied with time and places of health facilities, which according to 

Hu, Clements, Williams, and Tong (2011), invariably tend to affect the 

assessment of the spatio-temporal distribution of the disease.  

 In the space-time analysis, the incidence rates of the disease could not be 

computed for sex and age since such demographic data on population were not 

available at the district level. However, accounting for the effect of age might 

have probably led to a negligible impact on the results, as previous studies 

elsewhere have shown that age distribution of cases follow age distribution of 

the population (Kleinschmidt, Sharp, et al., 2001).  

 

6.3 Recommendations for Further Work 

The following recommendations are made based upon the findings of the research. 

 The study investigated the distribution patterns of malaria morbidity incidence 

spatially and temporal, focusing only on effect of climate variability but did not 

examine the other key environmental and socio-economic risk factors. Future 

research using similar methodology should determine the environmental 

factors, such as vegetation and mosquito density as realisation of random 

processes, which affect the transmission patterns of malaria. Another possible 

cause which will be worth investigating into to establish its effect is poverty, as 

it is widely assumed to have severe impact on malaria risk. However, poverty 
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encompasses several socio-economic factors including deprivation of economic 

opportunities and access to health services (Ricci, 2012). The impact of socio-

economic factors (such family’s income or financial situation) may be difficult 

to assess due to the lack of standardised economic data of income and tax in 

Ghana (Krefis et al., 2010).   

 The malaria morbidity incidence time series data could seriously be affected by 

certain external factors such as the intervention policies of free maternal care 

treatment, passage of the National Health Insurance Scheme (NHIS) bill and 

use of insecticide treated nets (ITNs) and anti-malarial drugs (ACTs), as being 

speculated in this study. Though these interventions were not examined in this 

study, they appeared to have created more awareness for prompt treatments of 

the disease at the health facility centres, after which there was a substantial 

reduction of reported cases across most parts (regions) of the country. A further 

study testing these interventions explicitly will be needed to confirm the 

significant impact on the occurrence of the disease in the country. This will 

require adequate monthly time series data on such interventions activities and 

updates of the malaria morbiditty data in Ghana.  

 The study had been based on classical geostatistical modelling approach. The 

potential use of the model-based approaches such as Bayesian hierarchical and 

Poisson kriging modelling to account for the uncertainty of the model 

parameters (Beale et al., 2008) and also obtain more stable estimates of the 

disease risk at sparse data locations (Best, Richardson, & Thomson, 2005) is 

recommended for future studies. It will be worth comparing the estimates of 

the classical models obtained in this study with those that will be produced by 

these model-based methods. Also worth investigating into are the applications 

of other advanced time series models for further analysis of the regional data. 

These include the GARCH models which are very useful for analysing highly 

variable data and state-space models which consider the ARIMAX models as a 

vector with autocorrelated errors (Shumway & Stoffer, 2011).         

6.4 Contributions to Knowledge    

The thesis further builds on the preliminary analysis work of the malaria morbidity 

incidence data in Appiah et al. (2011) and a poster presentation for the ECU industry 

engagement 2011 (see Appendix I). In addition, the findings have the potential to 
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contribute to research in malaria epidemiology towards the quantification of malaria 

morbidity burden and consequently help in the review of the existing and also identify 

malaria control programmes needed to achieve significant reduction of the disease by 

2015. The contributions of the findings of the study are summarised in the following:  

 Review of literature on spatial statistical modelling indicates its wide 

applications to public health data, particularly, of the use of space-time models 

to quantify spatially and temporally the distribution burden of infectious 

diseases coupled with delineating the most endemic or areas, although not 

much has been documented in malaria epidemiological studies. The study 

appeared to be among the few applications (and first in Ghana) of geostatistical 

space-time kriging methodology to investigate the spatio-temporal variation of 

the malaria epidemics at both local and regional levels, taking into account of 

climatic effects. The generalised product-sum modelling of space-time 

semivariogram (De Iaco et al., 2001) has proved to be effective for this study. 

 Delineating geographical areas of high risk of malaria forms an important basis 

for locating appropriate interventions for its control and means to monitoring 

their effectiveness. Such a result further supports stratification of malaria risk  

and other research studies on malaria vaccine trials (GHS, 2011; WHO, 2000), 

which can only be improved by such precise epidemiological modelling 

(Gaudart et al., 2006). It also provides a possibility for identifying socio-

economical, ecological and biological factors with which the disease can be 

associated with.  

 In this study an innovation to introduce geostatistical space-time modelling into 

the predictions of malaria morbidity incidence at unsampled locations in the 

face of under or over reporting coupled with missing or failure reports has been 

introduced. The findings will help to eradicate the inadequacies or 

incompleteness in the data base of CHIM. The study contributes to the efforts 

of NMCP in providing a complete morbidity data to WHO and also review of 

the current malaria intervention programmes to achieving its overall goal of 

75% reduction of morbidity cases by 2015. WHO computes the disease burden 

of malaria annually for each of the endemic countries in the world. These 

findings will serve as a baseline for further research in estimation of the malaria 

morbidity burden in Ghana.    
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 Seasonal forecasting of the disease is also of immense contribution to 

knowledge in the area of malaria early warning system (MEWS). The lag effect 

of the climatic covariates on the morbidity incidence will aid in planning 

intervention programmes to avert possible future outbreak of the disease. The 

rainfall and maximum temperature in the preceding month contribute to the 

significant variation in the morbidity incidence and increased risk of malaria 

across the country. This has particularly been established during the months of 

June-December and in the northern most, western and southern parts which 

may be an important revelation for the NMCP in their malaria control 

activities.      

 In spite of the limitations listed section 6.2 the study contributes to improving 

the data limitation problem, which in most studies have focused attention on 

survey data for the estimation of malaria morbidity and mortality burden. In 

contrast, this study employed available data on malaria morbidity cases from all 

public health facilities coupled with available data on rainfall, temperature, 

relative humidity and elevation across the country.  

 
In conclusion, the study has established increased malaria morbidity risk both spatially 

and temporally in Ghana, which is seasonal, heterogeneous and varies according to 

changes in climatic conditions. The spatio-temporal distribution of malaria morbidity 

burden has been estimated for areas in the country where there were no detailed health 

outcomes. It has also been used to delimit areas of high morbidity risk of the disease. 

Thus, the study could be used as a platform to make health information on the disease 

available to the public health practitioners. In addition, the current malaria control 

efforts could be more beneficial through application of targeted interventions at the 

district locations of high morbidity cases by prioritising the most vulnerable (children 

less than 5 years of age) and also embarking on these interventions timely, especially 

during the wet weather periods which are associated with relatively low temperatures. 

This will require efficient early warning systems such as the methodology employed in 

this study to improve the effectiveness of the national malaria control programmes.  
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Appendices 
 

Appendix A: 
Exploratory Analysis of Regional Data 
 
A-1: Summary Statistics of Monthly MIR for Age Groups 
 
Table A-1.1: Summary statistics of monthly malaria incidence rates of age group (0-4) in the regions  

Region Min Max Mean Q1 Med Q3 StDev CV 

 

Ashanti 

Total 181 496 288.6 229.8 267.5 334.2 77.823 0.270 

Male 177 502 289.1 236.8 268.5 319.5 75.428 0.261 

Female 179 497 288.0 226.0 265.5 335.2 81.843 0.284 

 
Brong 
Ahafo 

Total 191 686 390.0 334.5 382.0 454.0 85.480 0.219 

Male 207 637 407.5 350.8 402.0 471.2 85.832 0.211 

Female 175 735 373.1 319.8 369.5 432.5 86.669 0.232 

 

Eastern 

Total 154 611 316.4 252.0 299.0 357.0 91.829 0.290 

Male 162 625 321.8 257.8 298.5 360.2 95.226 0.296 

Female 143 598 311.0 249.5 289.5 347.8 90.611 0.291 

 
Greater
Accra 

Total 125 445 235.8 197.5 230.0 265.5 60.933 0.258 

Male 127 402 242.2 201.0 237.5 270.2 61.073 0.252 

Female 124 511 229.2 191.2 222.5 257.0 61.923 0.270 

 

Western 

Total 126 673 301.1 208.0 269.0 352.8 129.47 0.430 

Male 124 714 312.3 217.5 285.0 370.0 135.44 0.434 

Female 129 633 290.4 195.0 263.0 339.2 124.79 0.430 

 

Northern 

Total 181 661 382.4 290.8 373.0 437.0 110.22 0.288 

Male 170 691 392.7 306.0 381.5 464.5 117.85 0.300 

Female 192 643 372.4 286.5 363.5 420.8 104.55 0.281 

 

Upper 
West 

Total 205 1285 585.0 422.2 555.0 700.2 224.56 0.384 

Male 215 1207 582.6 422.2 543.0 693.5 212.73 0.365 

Female 190 1371 588.3 404.5 543.5 703.5 241.32 0.411 

 
Upper 
Eeast 

Total 284 1515 756.8 515.8 672.5 963.0 303.80 0.401 
Male 280 1523 734.9 506.8 674.9 934.5 288.37 0.392 
Female 268 1642 781.9 518.2 714.0 1006 328.00 0.419 

 
Central 

Total 101 347 207.1 162.0 202.0 250.5 56.798 0.274 
Male 98 333 200.6 156.8 194.5 255.8 56.902 0.284 
Female 105 373 214.0 168.2 208.0 263.0 58.095 0.271 

 
Volta 

Total 228 653 376.0 288.0 352.0 438.0 112.76 0.300 
Male 214 650 367.0 275.0 342.0 432.0 114.40 0.312 
Female 228 657 384.0 289.0 356.0 449.0 115.20 0.300 
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Table A1.2: Summary statistics of monthly malaria incidence rates of age group (5-14) in the regions  

Region Min Max Mean Q1 Med Q3 StDev CV 

 

Ashanti 

Total 63 211 110.3 87.5 106.0 123.0 31.839 0.289 

Male 64 204 108.3 84.8 104.5 125.0 30.332 0.280 

Female 62 217 112.4 88.0 108.5 127.0 33.956 0.302 
 
Brong 
Ahafo 

Total 62 285 148.4 109.0 146.0 183.5 50.666 0.341 

Male 62 285 144.5 106.8 143.5 178.2 49.442 0.342 

Female 63 287 152.0 110.8 147.5 185.5 52.787 0.343 
 

Eastern 

Total 36 340 124.4 78.8 112.5 151.8 59.586 0.479 

Male 34 358 121.1 76.0 108.5 149.8 58.784 0.486 

Female 31 321 128.0 82.0 115.0 159.0 60.828 0.475 
 

Greater
Accra 

Total 35 150 76.1 62.8 74.0 88.0 21.344 0.280 

Male 33 144 76.6 61.8 75.0 88.3 21.255 0.278 

Female 35 156 75.6 58.5 75.0 86.3 22.327 0.295 
 

Western 

Total 29 277 113.8 75.8 96.5 150.0 57.527 0.505 

Male 29 270 113.0 76.0 98.5 151.8 55.794 0.494 

Female 29 284 114.6 75.8 96.5 153.0 59.419 0.519 
 

Northern 

Total 34 246 111.6 71.0 100.0 141.0 49.917 0.447 

Male 36 244 112.7 72.8 102.5 140.2 50.129 0.445 

Female 32 249 110.6 69.5 98.5 142.2 50.096 0.453 
 
Upper 
West 

Total 30 441 139.5 69.8 101.0 194.2 85.811 0.615 

Male 31 420 137.0 72.0 100.0 187.2 81.946 0.598 

Female 28 464 142.2 66.8 102.5 210.2 90.547 0.637 
 
Upper 
Eeast 

Total 48 575 167.4 96.8 138.5 194.5 101.45 0.606 

Male 46 527 161.7 94.0 131.5 187.2 93.752 0.580 

Female 49 626 173.4 99.3 139.5 206.0 110.25 0.636 
 

Central 

Total 37 151 73.0 55.0 71.0 86.3 22.423 0.307 

Male 35 149 68.9 52.0 67.0 82.0 22.374 0.325 

Female 39 153 77.4 58.8 74.5 91.3 24.278 0.314 
 

 

 

 

 

 

 

 



250 
 

Table A-1.3: Summary statistics of monthly malaria incidence rates of age group (15-59) in Regions  

Region Min Max Mean Q1 Med Q3 StDev CV 

 

Ashanti 

Total 73 202 135.5 111.0 138.5 156.2 29.928 0.221 

Male 63 195 112.5 90.0 109.5 131.2 28.694 0.255 

Female 81 245 157.5 135.8 159.5 180.0 34.845 0.221 
 

Brong 
Ahafo 

Total 104 358 198.3 166.0 196.0 229.2 49.610 0.250 

Male 88 284 161.7 131.8 158.5 185.2 39.066 0.242 

Female 119 447 234.3 195.8 226.0 271.8 62.438 0.266 
 

Eastern 

Total 62 336 156.3 105.5 153.0 199.0 60.584 0.388 

Male 46 234 114.2 78.0 111.0 143.5 39.878 0.349 

Female 75 434 197.2 127.8 183.5 245.8 84.844 0.430 
 

Greater
Accra 

Total 51 155 86.8 72.0 85.0 97.3 21.291 0.245 

Male 41 119 68.3 57.8 65.5 75.5 17.037 0.249 

Female 61 189 106.4 88.8 104.5 118.5 25.169 0.236 
 

Western 

Total 75 305 169.7 136.2 163.0 206.0 54.623 0.322 

Male 54 230 134.1 94.8 127.0 175.0 46.614 0.348 

Female 95 383 204.9 158.8 198.0 233.8 66.134 0.323 
 

Northern 

Total 56 277 144.4 103.0 138.0 179.2 50.587 0.350 

Male 47 277 118.9 87.0 111.5 145.5 42.788 0.360 

Female 64 319 169.3 119.8 163.5 214.5 60.170 0.355 
 

Upper 
West 

Total 45 524 173.8 94.0 134.5 231.8 97.781 0.563 

Male 46 602 200.3 89.5 159.5 292.8 126.13 0.630 

Female 44 453 149.7 97.8 123.0 182.5 74.922 0.500 
 

Upper 
East 

Total 86 472 189.8 131.8 162.5 236.8 80.598 0.425 

Male 74 461 161.7 111.5 140.0 195.0 68.755 0.425 

Female 93 507 215.0 149.2 180.5 261.0 93.289 0.434 
 

Central 

Total 49 159 91.7 71.0 91.0 114.0 25.257 0.275 

Male 46 144 77.6 63.0 73.5 91.0 19.373 0.250 

Female 47 191 105.2 77.8 105.5 131.0 33.023 0.314 
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Table A-1.4: Summary statistics of monthly malaria incidence rates of age group (60+) in the regions  

Region Min Max Mean Q1 Med Q3 StDev CV 

 

Ashanti 

Total 99 515 220.5 135.0 198.0 295.2 106.06 0.481 

Male 68 353 162.4 95.8 144.5 218.0 73.684 0.454 

Female 116 722 284.5 172.8 246.0 369.5 141.89 0.499 
 

Brong 
Ahafo 

Total 91 517 260.4 174.0 229.5 354.5 109.91 0.422 

Male 80 396 198.7 140.5 186.0 253.5 73.855 0.382 

Female 97 669 320.1 203.0 273.0 453.0 146.28 0.457 
 

Eastern 

Total 87 642 245.2 124.5 205.0 342.5 140.34 0.572 

Male 62 458 183.1 93.5 159.5 253.0 99.896 0.546 

Female 99 793 296.2 152.0 217.6 438.0 177.65 0.600 
 

Greater
Accra 

Total 53 280 121.8 83.0 107.5 161.2 50.579 0.415 

Male 36 279 94.0 58.0 78.0 130.2 46.972 0.500 

Female 70 321 147.9 105.8 135.5 184.2 55.017 0.372 
 

Western 

Total 60 473 175.2 93.8 123.0 286.0 109.42 0.624 

Male 45 427 142.2 74.8 105.0 204.0 86.722 0.610 

Female 66 583 209.4 113.0 146.0 332.2 134.27 0.641 
 

Northern 

Total 52 470 227.3 121.0 198.0 323.2 115.10 0.506 

Male 42 406 185.7 97.0 170.5 253.8 98.755 0.532 

Female 63 539 271.0 148.5 245.0 392.2 134.43 0.496 
 

Upper 
West 

Total 60 879 313.8 137.8 255.0 472.2 185.82 0.592 

Male 51 847 280.1 121.8 223.0 419.2 170.11 0.607 

Female 67 910 347.4 161.0 245.0 534.5 222.51 0.641 
 
Upper 
East 

Total 61 483 168.3 110.0 130.0 216.8 84.619 0.503 

Male 65 431 147.6 106.5 123.0 171.8 65.101 0.441 

Female 57 542 188.3 115.5 144.5 254.0 105.54 0.561 
 

Central 

Total 60 313 129.4 87.0 107.0 166.5 55.574 0.429 

Male 59 288 114.9 78.0 96.5 152.0 45.831 0.399 

Female 61 332 140.1 89.8 116 174,2 65.261 0.466 
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A-2: Time Sequence Plots of MIR 
 
A-2.1:   Time Sequence Plots of MIR by Regional Total and Sex   
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A-2.2: Time sequence plots of MIR by Age Groups and Regions 
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A-3: Smoothing Analysis of MIR    
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A-4: Holt-Winters Seasonal Decomposition of Regional MIR 
 
Table A-4.1. Holt-Winters’ seasonal decomposition components of malaria incidence rates (total) for the 
regions   

Month Upper West Upper East Northern B. Ahafo Ashanti 
January 0.871655 0.933945 0.798768 0.896663 0.903082 
February 0.904765 0.794230 0.744541 0.842107 0.838867 
March 0.917928 0.813948 0.741003 0.875110 0.860415 
April 0.853518 0.743936 0.700060 0.867786 0.914353 
May 0.883255 0.728440 0.768882 1.007253 0.969000 
June 1.075545 0.900800 1.054455 1.165803 1.014723 
July 1.085521 1.150065 1.204889 1.205207 1.097901 
August 1.019101 1.415770 1.133462 1.042299 1.006436 
September 1.107718 1.356356 1.096492 0.977498 0.982698 
October 1.122465 1.427843 1.234310 1.155185 1.049673 
November 0.909005 1.141288 1.050640 1.130961 0.958573 
December 0.845238 0.956704 0.868235 0.969106 0.864209 
Month Eastern Western Central G. Accra Volta 
January 0.809170 0.955310 1.0359289 1.052247 0.943727 
February 0.819776 0.835751 1.0151672 0.904334 0.924968 
March 0.820277 0.890902 0.9546183 0.960912 0.928386 
April 0.876343 0.882397 1.0226564 0.895993 0.957209 
May 1.058103 0.969803 1.1048608 1.050543 1.064183 
June 1.225875 1.056672 1.2729343 1.217151 1.262835 
July 1.224988 1.078190 1.2180762 1.322008 1.120080 
August 1.053184 0.977051 0.9911275 1.039689 0.992264 
September 1.003100 0.894179 0.8843430 0.892876 0.920433 
October 1.033448 0.941945 1.0020658 0.949713 1.080057 
November 0.974604 0.945130 0.9094960 0.850986 1.019742 
December 0.841334 0.854563 0.9030709 0.847510 0.913254 
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Table A-4.2: Holt-Winters’ seasonal decomposition components of malaria incidence rates (0-4 year 
group) for regions   

Month Upper West Upper East Northern B. Ahafo Ashanti
January 0.796416 0.894403 0.772878 0.879058 0.877666
February 0.752038 0.705670 0.671653 0.840088 0.835674
March 0.732730 0.695095 0.639286 0.887506 0.915009

April 0.760370 0.632532 0.650991 0.965559 0.954643
May 0.906226 0.633704 0.789798 0.991015 0.954331
June 1.243180 0.881380 1.101185 1.160751 1.009482

July 1.236240 1.371960 1.257165 1.235958 1.091648
August 1.104160 1.548959 1.216681 1.093767 0.969167

September 1.273650 1.426993 1.186670 1.018860 0.957733

October 1.244670 1.491184 1.343708 1.239868 1.063113
November 0.931077 1.194678 1.077209 1.181847 0.971777
December 0.793648 0.888930 0.871861 0.982595 0.827666

Month Eastern Western Central G. Accra Volta
January 0.740151 0.998694 1.028379 0.968577 0.937770
February 0.775859 0.867442 1.017701 0.868870 0.895658
March 0.752075 0.955189 0.962103 0.871682 0.877777

April 0.838074 0.945223 1.021605 0.850699 0.935334
May 0.973993 0.999255 1.111964 0.984229 1.069381
June 1.144929 1.054189 1.281663 1.201600 1.234542

July 1.211709 1.085799 1.234565 1.259587 1.073485
August 1.000080 0.967290 1.003956 1.000101 0.997357
September 0.954682 0.880846 0.881113 0.928979 0.961627
October 1.104985 0.966819 1.001550 1.072092 1.155821
November 0.954506 0.993454 0.900921 1.009257 1.077718
December 0.781972 0.910612 0.898104 0.949403 0.945356
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A-5: Multiple Regression and Correlation Analysis of the Regional 
MIR Data with Climatic Covariates 

 
Table A-5.1 Cross-correlation results of malaria incidence rates (total) and their detrended (residuals) 
with climatic covariates at same month of incidence.     
Region Data 

(Total) 
Rainfall MaxTemp MinTemp RH0600 RH1500 Sunshrs 

Upper 
East 

MIR 0.37517 -0.41299 -0.33456 0.40830 0.41626 -0.28713 
Residuals 0.51698 -0.68095 -0.22902 0.60715 0.62679 -0.44292 

Upper 
West 

MIR 0.29325 -0.29108 -0.00606 0.32827 0.32870 -0.23930 
Residuals 0.40126 -0.47068 -0.05591 0.48821 0.52229 -0.37294 

 
Northern 

MIR 0.36101 -0.48360 -0.08874 0.42511 0.45753  0.27157 
Residuals 0.45752 -0.65031 -0.21757 0.50955 0.52660  -0.2049 

Brong 
Ahafo 

MIR 0.15688 -0.25353 -0.09649 0.23809 0.40653 -0.05015 
Residuals 0.15053 -0.42017 -0.07398 0.31553 0.40983 -0.14929 

 
Ashanti 

MIR 0.14858 -0.18715 -0.23007 0.08023 0.25167 -0.22743 
Residuals 0.23776 -0.44149 -0.07784 0.21189 0.40956 -0.39887 

 
Eastern 

MIR 0.22215 -0.32198 0.11401 0.04429 0.28893 -0.19682 
Residuals 0.29221 -0.46909 -0.20356 0.25504 0.47270 -0.31009 

 
Western 

MIR 0.15543 -0.09984 0.02935 0.24307 0.14636 -0.09859 
Residuals 0.24507 -0.24988 -0.10537 0.19628 0.22637 -0.22165 

 
Central 

MIR 0.21676 -0.13425 0.22943 0.12558 0.24541 -0.02805 
Residuals 0.38345 -0.27906 0.10467 0.12685 0.34065 -0.24029 

Greater 
Accra 

MIR 0.15809 -0.40176 -0.25700 0.02224 0.28055 -0.33633 
Residuals 0.13479 -0.45900 -0.40380 -0.0918 0.28419 -0.37415 

 
Volta 

Total 0.20809 -0.32084 -0.00028 0.20879 0.42504 -0.16029 
Residuals 0.47196 -0.58961 -0.18044 0.35642 0.56342 -0.33388 

Table A-5.2: Cross-correlation results of malaria incidence rates (total) and their detrended (residuals) 
with climatic covariates at previous month of incidence (lag 1).     
Region Data 

(Total) 
Rainfall 
_1 

MaxTemp
_1 

MinTemp
_1 

RH06_1 RH15_1 Sunshrs_1 

Upper 
East 

MIR 0.51606 -0.49244 -0.22680 0.47298 0.52387 -0.39751 
Residuals 0.72212 -0.79891 -0.07478 0.69590 0.78774 -0.59413 

Upper 
West 

MIR 0.33739 -0.23875 0.11896 0.30810 0.31513 -0.25485 
Residuals 0.45157 -0.37505 0.09673 0.43166 0.47889 -0.37607 

 
Northern 

MIR 0.48570 -0.52721 0.08041 0.48248 0.55299 0.20777 
Residuals 0.62385 -0.70276 0.01941 0.58662 0.66410 -0.28291 

Brong 
Ahafo 

MIR 0.45313 -0.21375 0.03172 0.32966 0.48800 -0.05323 
Residuals 0.55671 -0.35952 0.09767 0.44066 0.52513 -0.15010 

 
Ashanti 

MIR 0.23463 -0.12400 -0.13836 0.12290 0.24697 -0.15814 
Residuals 0.36898 -0.30664 -0.10452 0.28899 0.39366 -0.23722 

 
Eastern 

MIR 0.34222 -0.23523 0.22164 0.02103 0.28450 -0.15642 
Residuals 0.50095 -0.29716 0.00354 0.22781 0.46041 -0.21592 

 
Western 

MIR 0.21585 -0.03846 0.11174 0.27824 0.14384 -0.04284 
Residuals 0.41807 -0.03782 0.17156 0.29435 0.19618 -0.01222 

 
Central 

MIR 0.23317 0.04402 0.37522 0.10921 0.13675 0.13927 
Residuals 0.37440 0.05255 0.34972 0.10107 0.13518 0.07852 

Greater 
Accra 

MIR 0.42891 -025737 -0.07888 0.15450 033715 -0.16853 
Residuals 0.44835 -0.29100 0.19286 0.24283 0.35052 -0.17769 

 
Volta 

MIR 0.29835 -0.23516 0.15384 0.18383 0.42778 -0.12820 
Residuals 0.58054 -0.39501 0.10841 0.32747 0.53287 -0.21328 
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Table A-5.3: Cross-correlation results of observed malaria incidence rates (total) and their detrended 
(residuals) with climatic covariates at previous two months of incidence (lag 2).    
Region Data  

(Total) 
Rainf_2 MaxT_2 MinT_2 RH06_2 RH15_2 Sunsh_2 

Upper 
East 

MIR 0.53744 -0.38402 -0.04811 0.45742 0.50068 -0.37052 
Residuals 0.72169 -0.60760 0.18392 0.65997 0.72592 -0.51783 

Upper 
West 

MIR 0.29138 -0.09228 0.24457 0.21429 0.21306 -0.19693 
Residuals 0.35739 -0.12515 0.27707 0.27774 0.29948 -0.25873 

 
Northern 

MIR 0.47521 -0.40645 0.29857 0.43278 0.50472 0.17633 
Residuals 0.59212 -0.51968 0.33339 0.51677 0.59381 -0.31318 

Brong 
Ahafo 

MIR 0.37469 -0.11514 0.14384 0.28093 0.41422 -0.13506 
Residuals 0.43709 -0.22111 0.25217 0.36846 0.42481 -0.26149 

 
Ashanti 

MIR 0.18445 0.02363 -0.08875 0.06045 0.14455 -0.05811 
Residuals 0.25874 -0.02452 0.22096 0.17927 0.20395 -0.03030 

 
Eastern 

MIR 0.31975 -0.11544 0.37804 -0.0231 0.19072 -0.13930 
Residuals 0.43019 -0.05569 0.29036 0.15202 0.26777 -0.14243 

 
Western 

MIR 0.15307 0.03115 0.16391 0.21639 0.09062 -0.01624 
Residuals 0.20836 0.13664 0.28728 0.16035 0.04245 0.10670 

 
Central 

MIR 0.10750 0.20827 0.47974 0.03157 0.00484 0.26401 
Residuals 0.13161 0.35002 0.53079 -0.0089 -0.0963 0.32934 

Greater 
Accra 

MIR 0.39398 -0.04220 0.12143 0.06939 0.21317 0.03100 
Residuals 0.40534 -0.04147 -0.04156 0.14277 0.20577 0.05422 

 
Volta 

MIR 0.22840 -0.11081 0.29524 0.09731 0.32077 -0.14384 
Residuals 0.41683 -0.14165 0.34479 0.18149 0.32018 -0.17789 

 
 
Table A-5.4 Cross-correlation results of malaria incidence rates for 0-4 year group and their detrended 
(residuals) with climatic covariates at same month of incidence.  
Region Data  

(0-4) 
Rainfall MaxT MinT RH0600 RH1500 Sunshine 

Upper 
East 

MIR  0.44853 -0.57040 -0.35826 0.53177 0.53625 -0.35787 
Residuals 0.48942 -0.68752 -0.26809 0.60782 0.61674 -0.41648 

Upper 
West 

MIR  0.44248 -0.50628 -0.08284 0.52973 0.53802 -0.37002 
Residuals 0.51795 -0.64743 -0.14107 0.64859 0.67758 -0.46419 

 
Northern 

MIR  0.49203 -0.65342 -0.15825 0.56514 0.59426  0.04485 
Residuals 0.51733 -0.70702 -0.22318 0.58344 0.59550  -0.25563 

Brong 
Ahafo 

MIR  0.22586 -0.34475 -0.10461 0.34493 0.52909 -0.11305 
Residuals 0.22407 -0.44395 -0.02470 0.39123 0.49593 -0.15184 

 
Ashanti 

MIR  0.18244 -0.15050 -0.15556 0.09606 0.26158 -0.19386 
Residuals 0.31245 -0.37249 -0.04866 0.18681 0.40668 -0.31949 

 
Eastern 

MIR   0.28202 -0.41649 -0.00500 0.20552 0.41118 -0.26115 
Residuals 0.31179 -0.49940 -0.21685 0.34313 0.51118 -0.32242 

 
Western 

MIR 0.15246 -0.08379 0.05382 0.25694 0.15420 -0.06976 
Residuals 0.24389 -0.20443 0.01882 0.24107 0.23527 -0.14161 

 
Central 

MIR 0.20810 -0.11843 0.24373 0.13012 0.23591 -0.01763 
Residuals 0.36230 -0.23500 0.14130 0.12880 0.31148 -0.24004 

Greater 
Accra 

MIR 0.10116 -0.23175 -0.12674 -0.0078 0.18473 -0.16534 
Residuals 0.07489 -0.27326 -0.24433 0.06614 0.18837 -0.17850 

 
Volta 

MIR  0.14527 -0.25426 -0.01523 0.21132 0.35776 -0.08600 
Residuals 0.33423 -0.43242 -0.19647 0.32049 0.42699 -0.17210 
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Table A-5.5: Cross-correlation results of malaria incidence rates for 0-4 year group and their residuals 
with climatic covariates at same month of incidence at previous month of incidence (lag 1).     
Region Data 

 (0-4) 
Rainfall 

_1 
MaxTemp 

_1 
MinTemp

_1 
RH06_1 Rh15_1 Sunsh_1 

Upper 
East 

MIR 0.64298 -0.65607 -0.19395 0.62833 0.67833 -0.48869 
Residuals 0.70797 -0.78181 -0.08187 0.71278 0.77732 -0.55706 

Upper 
West 

MIR 054980 -0.45458 0.11903 0.52971 0.55615 -0.45486 
Residuals 0.63745 -0.57207 0.00932 0.62889 0.68318 -0.55459 

 
Northern 

MIR  0.67370 -0.71520 0.10190 0.65140 0.73620 -0.07270 
Residuals 0.71216 -0.76944 0.06404 0.67600 0.75344 -0.37972 

Brong 
Ahafo 

MIR  0.56859 -0.29668 0.04198 0.44211 0.61177 -0.16370 
Residuals 0.61522 -0.38489 0.13972 0.50234 0.59318 -0.20817 

 
Ashanti 

MIR  0.23557 -0.08441 -0.09651 0.11827 0.23179 -0.14389 
Residuals 0.37145 -0.23864 0.07382 0.22454 0.34642 -0.19768 

 
Eastern 

MIR  0.45085 -0.32846 0.11820 0.17518 0.41430 -0.25700 
Residuals 0.51628 -0.37277 -0.05498 0.31131 0.50630 -0.30144 

 
Western 

MIR  0.21232 -0.03190 0.13496 0.27611 0.15196 -0.03410 
Residuals 0.41678 -0.01182 0.25837 0.29382 0.20252 0.01660 

 
Central 

MIR  0.22015 0.07147 0.38985 0.10159 0.11443 0.15602 
Residuals 0.34830 0.08700 0.36450 0.08610 0.10128 0.10170 

Greater 
Accra 

MIR  0.29865 -0.17830 -0.06057 0.10991 0.24573 -0.08446 
Residuals 0.31234 -0.21064 -0.16161 0.20447 0.26321 -0.08434 

 
Volta 

MIR  0.26552 -0.23710 0.11709 0.20734 0.39508 -0.13720 
Residuals 0.48688 0.37613 0.00667 0.33264 0.45897 0.20800 

 
 
Table A-5.6: Cross-correlation results of malaria incidence rates for 0-4 year group and their residuals 
with climatic covariates at same month of incidence at previous two months of incidence (lag 2).     
Region Data 

 (0-4) 
Rainfall_

2 
MaxTemp

_2 
MinTemp

_2 
RH06_2 RH15_2 Sunsh_2 

Upper 
East 

MIR 0.66777 -0.49934 0.06737 0.60717 0.64855 -0.45451 
Residuals 0.71951 -0.58724 0.21336 0.68192 0.72932 -0.49981 

Upper 
West 

MIR 0.48477 -0.23561 0.33513 0.40324 0.41644 -0.39142 
Residuals 0.53784 -0.28147 0.35058 0.46452 0.49256 -0.45392 

 
Northern 

MIR 0.64399 -0.55308 0.40834 0.57502 0.67599 -0.11822 
Residuals 0.66793 -0.58211 0.40537 0.59043 0.68442 -0.42219 

Brong 
Ahafo 

MIR 0.44221 -0.17128 0.15220 0.33979 0.47901 -0.26040 
Residuals 0.45870 -0.23963 0.26888 0.38012 0.44126 -0.31848 

 
Ashanti 

MIR 0.14887 0.04687 -0.05474 0.02417 0.11927 -0.06347 
Residuals 0.19849 0.00048 0.18150 0.06698 0.14966 -0.03130 

 
Eastern 

MIR 0.39753 -0.17152 0.33407 0.11051 0.29287 -0.22425 
Residuals 0.43350 -0.15642 0.22568 0.23538 0.34034 -0.23261 

 
Western 

MIR 0.13840 0.02116 0.16905 0.20950 0.09899 -0.02930 
Residuals 0.16703 0.11277 0.32506 0.13922 0.04512 0.07098 

 
Central 

MIR 0.09453 0.22647 0.45432 0.00188 -0.0256 0.26699 
Residuals 0.12253 0.34720 0.46750 -0.0484 -0.1224 0.31274 

Greater 
Accra 

MIR 0.25857 -0.09469 0.01309 0.05685 0.18023 0.00493 
Residuals 0.26370 -0.11141 -0.06972 0.13818 0.18615 0.01913 

 
Volta 

MIR 0.23232 -0.17792 0.23660 0.15493 0.34737 -0.21780 
Residuals 0.40107 -0.25627 0.20837 0.25963 0.36709 -0.28848 
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Results A-5.1: The following are the cross-correlation analysis results of malaria 
incidence rates with climatic covariates in the ten regions  
------------------------------------------------------------------------- 
Upper East Region  
             mir   mir05    resid  resid05   rainf  rainf_1     maxT  maxT_1 
mir       1.0000  0.8991  0.61543  0.55930  0.3682  0.52178 -0.41448 -0.4898 
mir05     0.8991  1.0000  0.76000  0.83685  0.4429  0.64700 -0.57248 -0.6521 
resid     0.6154  0.7600  1.00000  0.90891  0.5138  0.72448 -0.68185 -0.7968 
resid05   0.5593  0.8369  0.90891  1.00000  0.4864  0.71044 -0.68825 -0.7798 
rainf     0.3682  0.4429  0.51385  0.48643  1.0000  0.73114 -0.75029 -0.4424 
rainf_1   0.5218  0.6470  0.72448  0.71044  0.7311  1.00000 -0.77941 -0.7498 
maxT     -0.4145 -0.5725 -0.68185 -0.68825 -0.7503 -0.77941  1.00000  0.7441 
maxT_1   -0.4898 -0.6521 -0.79677 -0.77976 -0.4424 -0.74976  0.74414  1.0000 
minT     -0.3440 -0.3669 -0.23387 -0.27268  0.2212 -0.05424  0.31593  0.4360 
minT_1   -0.2170 -0.1847 -0.06929 -0.07636  0.4411  0.21333 -0.05876  0.3223 
rh0600    0.4019  0.5271  0.60469  0.60565  0.8215  0.84952 -0.71509 -0.5103 
rh0600_1  0.4790  0.6323  0.69842  0.71515  0.5821  0.82201 -0.76642 -0.7138 
rh1500    0.4106  0.5321  0.62459  0.61471  0.9125  0.85278 -0.81921 -0.5576 
rh1500_1  0.5286  0.6812  0.78934  0.77900  0.6784  0.91325 -0.79962 -0.8177 
sunsh    -0.2890 -0.3599 -0.44394 -0.41729 -0.7439 -0.55169  0.60171  0.4089 
sunsh_1  -0.3943 -0.4848 -0.59193 -0.55503 -0.6086 -0.73874  0.51752  0.6023 
             minT   minT_1  rh0600 rh0600_1  rh1500 rh1500_1   sunsh sunsh_1 
mir      -0.34404 -0.21698  0.4019   0.4790  0.4106   0.5286 -0.2890 -0.3943 
mir05    -0.36694 -0.18466  0.5271   0.6323  0.5321   0.6812 -0.3599 -0.4848 
resid    -0.23387 -0.06929  0.6047   0.6984  0.6246   0.7893 -0.4439 -0.5919 
resid05  -0.27268 -0.07636  0.6056   0.7151  0.6147   0.7790 -0.4173 -0.5550 
rainf     0.22115  0.44112  0.8215   0.5821  0.9125   0.6784 -0.7439 -0.6086 
rainf_1  -0.05424  0.21333  0.8495   0.8220  0.8528   0.9132 -0.5517 -0.7387 
maxT      0.31593 -0.05876 -0.7151  -0.7664 -0.8192  -0.7996  0.6017  0.5175 
maxT_1    0.43602  0.32228 -0.5103  -0.7138 -0.5576  -0.8177  0.4089  0.6023 
minT      1.00000  0.72090  0.1986  -0.3023  0.1817  -0.1742 -0.2401 -0.1752 
minT_1    0.72090  1.00000  0.5619   0.1936  0.4655   0.1786 -0.2166 -0.2300 
rh0600    0.19865  0.56191  1.0000   0.8206  0.9465   0.8693 -0.5473 -0.6931 
rh0600_1 -0.30227  0.19356  0.8206   1.0000  0.7379   0.9468 -0.3025 -0.5423 
rh1500    0.18169  0.46547  0.9465   0.7379  1.0000   0.8295 -0.7099 -0.6993 
rh1500_1 -0.17419  0.17861  0.8693   0.9468  0.8295   1.0000 -0.4651 -0.7063 
sunsh    -0.24014 -0.21662 -0.5473  -0.3025 -0.7099  -0.4651  1.0000  0.5577 
sunsh_1  -0.17518 -0.23004 -0.6931  -0.5423 -0.6993  -0.7063  0.5577  1.0000 
> 
Upper West Region 
               mir    mir05    resid  resid05   rainf rainf_1      maxT  maxT_1 
mir       1.000000  0.90363  0.62221  0.54094  0.2867  0.3374 -0.293043 -0.2387 
mir05     0.903629  1.00000  0.69532  0.78182  0.4374  0.5498 -0.510756 -0.4546 
resid     0.622214  0.69532  1.00000  0.88392  0.4010  0.4516 -0.470695 -0.3750 
resid05   0.540937  0.78182  0.88392  1.00000  0.5146  0.6374 -0.649927 -0.5721 
rainf     0.286661  0.43741  0.40103  0.51458  1.0000  0.6679 -0.784018 -0.4656 
rainf_1   0.337393  0.54980  0.45157  0.63745  0.6679  1.0000 -0.786582 -0.7820 
maxT     -0.293043 -0.51076 -0.47069 -0.64993 -0.7840 -0.7866  1.000000  0.7449 
maxT_1   -0.238747 -0.45458 -0.37504 -0.57207 -0.4656 -0.7820  0.744949  1.0000 
minT     -0.002332 -0.09299 -0.05729 -0.14810  0.1099 -0.1125  0.347326  0.4420 
minT_1    0.118959  0.11903  0.09673  0.09321  0.3543  0.1038 -0.009497  0.3561 
rh0600    0.321737  0.52545  0.48831  0.64603  0.7670  0.7922 -0.702324 -0.5208 
rh0600_1  0.308108  0.52971  0.43166  0.62889  0.5638  0.7666 -0.760657 -0.7004 
rh1500    0.322500  0.53415  0.52244  0.67537  0.8823  0.8361 -0.833141 -0.5932 
rh1500_1  0.315128  0.55615  0.47889  0.68318  0.6417  0.8821 -0.804824 -0.8313 
sunsh    -0.238175 -0.37030 -0.37265 -0.46405 -0.8071 -0.5971  0.685635  0.4757 
sunsh_1  -0.254846 -0.45486 -0.37607 -0.55459 -0.6280 -0.8049  0.613988  0.6853 
              minT    minT_1  rh0600 rh0600_1  rh1500 rh1500_1   sunsh  sunsh_1 
mir      -0.002332  0.118959  0.3217   0.3081  0.3225   0.3151 -0.2382 -0.25485 
mir05    -0.092994  0.119034  0.5254   0.5297  0.5342   0.5561 -0.3703 -0.45486 
resid    -0.057293  0.096728  0.4883   0.4317  0.5224   0.4789 -0.3726 -0.37607 
resid05  -0.148097  0.093207  0.6460   0.6289  0.6754   0.6832 -0.4641 -0.55459 
rainf     0.109905  0.354301  0.7670   0.5638  0.8823   0.6417 -0.8071 -0.62800 
rainf_1  -0.112504  0.103830  0.7922   0.7666  0.8361   0.8821 -0.5971 -0.80491 
maxT      0.347326 -0.009497 -0.7023  -0.7607 -0.8331  -0.8048  0.6856  0.61399 
maxT_1    0.441989  0.356093 -0.5208  -0.7004 -0.5932  -0.8313  0.4757  0.68527 
minT      1.000000  0.700880  0.1657  -0.3599  0.1204  -0.2469 -0.1938 -0.08275 
minT_1    0.700880  1.000000  0.5233   0.1580  0.4047   0.1137 -0.2012 -0.18404 
rh0600    0.165684  0.523345  1.0000   0.8134  0.9437   0.8582 -0.6000 -0.73798 
rh0600_1 -0.359881  0.157960  0.8134   1.0000  0.7405   0.9436 -0.3428 -0.59592 
rh1500    0.120421  0.404686  0.9437   0.7405  1.0000   0.8304 -0.7609 -0.76020 
rh1500_1 -0.246900  0.113700  0.8582   0.9436  0.8304   1.0000 -0.5058 -0.75831 
sunsh    -0.193773 -0.201216 -0.6000  -0.3428 -0.7609  -0.5058  1.0000  0.61267 
sunsh_1  -0.082755 -0.184038 -0.7380  -0.5959 -0.7602  -0.7583  0.6127  1.00000 
> 
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Northern Region 
              mir   mir05    resid  resid05   rainf   rainf_1    maxT  maxT_1 
mir       1.00000  0.9122  0.67685  0.63942  0.3554  0.485698 -0.4818 -0.5272 
mir05     0.91219  1.0000  0.84036  0.87981  0.4882  0.673669 -0.6526 -0.7152 
resid     0.67685  0.8404  1.00000  0.95207  0.4592  0.623851 -0.6513 -0.7028 
resid05   0.63942  0.8798  0.95207  1.00000  0.5165  0.712161 -0.7066 -0.7694 
rainf     0.35543  0.4882  0.45922  0.51646  1.0000  0.640992 -0.8298 -0.5763 
rainf_1   0.48570  0.6737  0.62385  0.71216  0.6410  1.000000 -0.7682 -0.8303 
maxT     -0.48179 -0.6526 -0.65133 -0.70658 -0.8298 -0.768195  1.0000  0.8016 
maxT_1   -0.52721 -0.7152 -0.70276 -0.76944 -0.5763 -0.830342  0.8016  1.0000 
minT     -0.09381 -0.1628 -0.21754 -0.22471  0.2366  0.009615  0.1262  0.3309 
minT_1    0.08041  0.1019  0.01941  0.06404  0.3936  0.230986 -0.2581  0.1299 
rh0600    0.42121  0.5626  0.51095  0.58274  0.7067  0.755332 -0.7131 -0.5916 
rh0600_1  0.48248  0.6514  0.58662  0.67600  0.4570  0.709278 -0.7334 -0.7137 
rh1500    0.45214  0.5908  0.52894  0.59503  0.8682  0.768513 -0.8697 -0.6405 
rh1500_1  0.55299  0.7362  0.66410  0.75344  0.6652  0.873599 -0.8502 -0.8709 
sunsh     0.26945  0.0415 -0.20486 -0.25719 -0.5355 -0.325020  0.5157  0.3739 
sunsh_1   0.20777 -0.0727 -0.28291 -0.37972 -0.5027 -0.524380  0.4754  0.5128 
              minT   minT_1  rh0600 rh0600_1  rh1500 rh1500_1    sunsh  sunsh_1 
mir      -0.093807  0.08041  0.4212   0.4825  0.4521  0.55299  0.26945  0.20777 
mir05    -0.162804  0.10195  0.5626   0.6514  0.5908  0.73621  0.04150 -0.07270 
resid    -0.217543  0.01941  0.5109   0.5866  0.5289  0.66410 -0.20486 -0.28291 
resid05  -0.224714  0.06404  0.5827   0.6760  0.5950  0.75344 -0.25719 -0.37972 
rainf     0.236590  0.39364  0.7067   0.4570  0.8682  0.66523 -0.53553 -0.50268 
rainf_1   0.009615  0.23099  0.7553   0.7093  0.7685  0.87360 -0.32502 -0.52438 
maxT      0.126242 -0.25809 -0.7131  -0.7334 -0.8697 -0.85017  0.51572  0.47544 
maxT_1    0.330889  0.12990 -0.5916  -0.7137 -0.6405 -0.87091  0.37393  0.51275 
minT      1.000000  0.61857  0.3119  -0.2849  0.2941 -0.07511 -0.07123 -0.02315 
minT_1    0.618571  1.00000  0.5761   0.3124  0.5222  0.29761 -0.09656 -0.05423 
rh0600    0.311892  0.57611  1.0000   0.7079  0.8710  0.82294 -0.30165 -0.39500 
rh0600_1 -0.284907  0.31240  0.7079   1.0000  0.6196  0.87191 -0.18353 -0.29852 
rh1500    0.294085  0.52222  0.8710   0.6196  1.0000  0.83051 -0.44332 -0.42419 
rh1500_1 -0.075113  0.29761  0.8229   0.8719  0.8305  1.00000 -0.32474 -0.44536 
sunsh    -0.071230 -0.09656 -0.3016  -0.1835 -0.4433 -0.32474  1.00000  0.77517 
sunsh_1  -0.023154 -0.05423 -0.3950  -0.2985 -0.4242 -0.44536  0.77517  1.00000 
> 
Brong Ahafo Region 
              mir    mir05    resid  resid05   rainf  rainf_1     maxT  maxT_1 
mir       1.00000  0.86846  0.71508  0.61201  0.1471  0.45313 -0.24952 -0.2138 
mir05     0.86846  1.00000  0.73478  0.85499  0.2211  0.56859 -0.34260 -0.2967 
resid     0.71508  0.73478  1.00000  0.85816  0.1536  0.55671 -0.42195 -0.3595 
resid05   0.61201  0.85499  0.85816  1.00000  0.2257  0.61522 -0.44480 -0.3849 
rainf     0.14713  0.22108  0.15356  0.22573  1.0000  0.44571 -0.44083 -0.2133 
rainf_1   0.45313  0.56859  0.55671  0.61522  0.4457  1.00000 -0.57747 -0.4433 
maxT     -0.24952 -0.34260 -0.42195 -0.44480 -0.4408 -0.57747  1.00000  0.8204 
maxT_1   -0.21375 -0.29668 -0.35952 -0.38489 -0.2133 -0.44333  0.82041  1.0000 
minT     -0.12009 -0.11874 -0.07154 -0.02453  0.1041 -0.08808  0.42689  0.5389 
minT_1    0.03172  0.04198  0.09767  0.13972  0.2250  0.11444  0.04966  0.4116 
rh0600    0.21824  0.34234  0.33437  0.40838  0.6058  0.59633 -0.61876 -0.4029 
rh0600_1  0.32966  0.44211  0.44066  0.50234  0.3396  0.60950 -0.72800 -0.6083 
rh1500    0.39546  0.52863  0.42225  0.50669  0.6562  0.66620 -0.75767 -0.5038 
rh1500_1  0.48800  0.61177  0.52513  0.59318  0.3682  0.66666 -0.80729 -0.7533 
sunsh    -0.04400 -0.10978 -0.15080 -0.15232 -0.3168 -0.23462  0.78083  0.6383 
sunsh_1  -0.05323 -0.16370 -0.15010 -0.20817 -0.4132 -0.31959  0.65907  0.7814 
             minT   minT_1   rh0600 rh0600_1   rh1500 rh1500_1   sunsh  sunsh_1 
mir      -0.12009  0.03172  0.21824   0.3297  0.39546  0.48800 -0.0440 -0.05323 
mir05    -0.11874  0.04198  0.34234   0.4421  0.52863  0.61177 -0.1098 -0.16370 
resid    -0.07154  0.09767  0.33437   0.4407  0.42225  0.52513 -0.1508 -0.15010 
resid05  -0.02453  0.13972  0.40838   0.5023  0.50669  0.59318 -0.1523 -0.20817 
rainf     0.10409  0.22498  0.60578   0.3396  0.65621  0.36824 -0.3168 -0.41322 
rainf_1  -0.08808  0.11444  0.59633   0.6095  0.66620  0.66666 -0.2346 -0.31959 
maxT      0.42689  0.04966 -0.61876  -0.7280 -0.75767 -0.80729  0.7808  0.65907 
maxT_1    0.53889  0.41161 -0.40293  -0.6083 -0.50385 -0.75333  0.6383  0.78138 
minT      1.00000  0.50686  0.09753  -0.4222 -0.07984 -0.43211  0.3207  0.33176 
minT_1    0.50686  1.00000  0.18269   0.1448  0.14221 -0.03627  0.2045  0.30633 
rh0600    0.09753  0.18269  1.00000   0.5700  0.86251  0.60822 -0.4306 -0.45171 
rh0600_1 -0.42223  0.14481  0.56995   1.0000  0.65312  0.86808 -0.3532 -0.42934 
rh1500   -0.07984  0.14221  0.86251   0.6531  1.00000  0.77896 -0.5871 -0.55841 
rh1500_1 -0.43211 -0.03627  0.60822   0.8681  0.77896  1.00000 -0.4932 -0.58759 
sunsh     0.32065  0.20451 -0.43056  -0.3532 -0.58708 -0.49318  1.0000  0.68045 
sunsh_1   0.33176  0.30633 -0.45171  -0.4293 -0.55841 -0.58759  0.6805  1.00000 
> 
Ashanti Region 
             mir   mir05   resid resid05   rainf rainf_1    maxT  maxT_1 
mir       1.0000  0.8833  0.5260  0.3783  0.1401  0.2346 -0.1831 -0.1240 
mir05     0.8833  1.0000  0.4025  0.5502  0.1770  0.2356 -0.1474 -0.0844 
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resid     0.5260  0.4025  1.0000  0.7292  0.2376  0.3690 -0.4415 -0.3066 
resid05   0.3783  0.5502  0.7292  1.0000  0.3092  0.3715 -0.3708 -0.2386 
rainf     0.1401  0.1770  0.2376  0.3092  1.0000  0.3818 -0.3536 -0.1140 
rainf_1   0.2346  0.2356  0.3690  0.3715  0.3818  1.0000 -0.4978 -0.3534 
maxT     -0.1831 -0.1474 -0.4415 -0.3708 -0.3536 -0.4978  1.0000  0.7959 
maxT_1   -0.1240 -0.0844 -0.3066 -0.2386 -0.1140 -0.3534  0.7959  1.0000 
minT     -0.2231 -0.1504 -0.0792 -0.0444  0.0781 -0.0153  0.2921  0.3687 
minT_1   -0.1384 -0.0965  0.1045  0.0738  0.0869  0.0730  0.0377  0.2941 
rh0600    0.0769  0.0938  0.2116  0.1853  0.4474  0.4523 -0.4600 -0.2819 
rh0600_1  0.1229  0.1183  0.2890  0.2245  0.1881  0.4497 -0.5579 -0.4608 
rh1500    0.2447  0.2569  0.4100  0.4041  0.5907  0.6350 -0.8162 -0.5398 
rh1500_1  0.2470  0.2318  0.3937  0.3464  0.2829  0.5956 -0.8556 -0.8168 
sunsh    -0.2243 -0.1913 -0.3967 -0.3179 -0.2547 -0.1887  0.8249  0.6626 
sunsh_1  -0.1581 -0.1439 -0.2372 -0.1977 -0.3169 -0.2502  0.6617  0.8253 
            minT   minT_1   rh0600 rh0600_1  rh1500 rh1500_1  sunsh sunsh_1 
mir      -0.2231 -0.13836  0.07687    0.123  0.2447   0.2470 -0.224  -0.158 
mir05    -0.1504 -0.09651  0.09377    0.118  0.2569   0.2318 -0.191  -0.144 
resid    -0.0792  0.10452  0.21162    0.289  0.4100   0.3937 -0.397  -0.237 
resid05  -0.0444  0.07382  0.18529    0.225  0.4041   0.3464 -0.318  -0.198 
rainf     0.0781  0.08692  0.44743    0.188  0.5907   0.2829 -0.255  -0.317 
rainf_1  -0.0153  0.07300  0.45228    0.450  0.6350   0.5956 -0.189  -0.250 
maxT      0.2921  0.03769 -0.46002   -0.558 -0.8162  -0.8556  0.825   0.662 
maxT_1    0.3687  0.29413 -0.28189   -0.461 -0.5398  -0.8168  0.663   0.825 
minT      1.0000  0.46196  0.37239   -0.206  0.0268  -0.2640  0.313   0.268 
minT_1    0.4620  1.00000  0.00137    0.369  0.1223   0.0204  0.165   0.314 
rh0600    0.3724  0.00137  1.00000    0.317  0.6628   0.3962 -0.243  -0.273 
rh0600_1 -0.2060  0.36859  0.31690    1.000  0.5108   0.6629 -0.229  -0.244 
rh1500    0.0268  0.12227  0.66275    0.511  1.0000   0.7811 -0.614  -0.507 
rh1500_1 -0.2640  0.02043  0.39617    0.663  0.7811   1.0000 -0.592  -0.616 
sunsh     0.3125  0.16534 -0.24256   -0.229 -0.6137  -0.5915  1.000   0.681 
sunsh_1   0.2684  0.31433 -0.27316   -0.244 -0.5070  -0.6160  0.681   1.000 
 
Greater Accra Region 
             mir    mir05   resid resid05   rainf rainf_1   maxT maxT_1    minT 
mir       1.0000  0.92874  0.8712  0.7979  0.1540  0.4289 -0.400 -0.257 -0.2577 
mir05     0.9287  1.00000  0.7787  0.8486  0.0950  0.2987 -0.229 -0.178 -0.1274 
resid     0.8712  0.77869  1.0000  0.9160  0.1401  0.4484 -0.463 -0.291 -0.4043 
resid05   0.7979  0.84864  0.9160  1.0000  0.0794  0.3123 -0.276 -0.211 -0.2445 
rainf     0.1540  0.09503  0.1401  0.0794  1.0000  0.2898 -0.172  0.165 -0.0629 
rainf_1   0.4289  0.29865  0.4484  0.3123  0.2898  1.0000 -0.432 -0.172 -0.2768 
maxT     -0.4001 -0.22891 -0.4629 -0.2763 -0.1715 -0.4320  1.000  0.783  0.8610 
maxT_1   -0.2574 -0.17830 -0.2910 -0.2106  0.1654 -0.1723  0.783  1.000  0.7859 
minT     -0.2577 -0.12744 -0.4043 -0.2445 -0.0629 -0.2768  0.861  0.786  1.0000 
minT_1   -0.0789 -0.06057 -0.1929 -0.1616  0.2992 -0.0589  0.591  0.860  0.6739 
rh0600    0.0253 -0.00371  0.0892  0.0638  0.2873  0.2878 -0.426 -0.338 -0.2074 
rh0600_1  0.1545  0.10991  0.2428  0.2045  0.0311  0.2813 -0.359 -0.422 -0.4712 
rh1500    0.2788  0.18200  0.2874  0.1910  0.3737  0.4521 -0.730 -0.481 -0.4125 
rh1500_1  0.3371  0.24573  0.3505  0.2632  0.0785  0.3748 -0.699 -0.730 -0.6805 
sunsh    -0.3387 -0.16825 -0.3734 -0.1774 -0.1106 -0.1679  0.598  0.265  0.4694 
sunsh_1  -0.1685 -0.08446 -0.1777 -0.0843  0.1125 -0.1037  0.512  0.595  0.4057 
          minT_1   rh0600 rh0600_1 rh1500 rh1500_1   sunsh sunsh_1 
mir      -0.0789  0.02527   0.1545  0.279   0.3371 -0.3387 -0.1685 
mir05    -0.0606 -0.00371   0.1099  0.182   0.2457 -0.1682 -0.0845 
resid    -0.1929  0.08924   0.2428  0.287   0.3505 -0.3734 -0.1777 
resid05  -0.1616  0.06378   0.2045  0.191   0.2632 -0.1774 -0.0843 
rainf     0.2992  0.28729   0.0311  0.374   0.0785 -0.1106  0.1125 
rainf_1  -0.0589  0.28784   0.2813  0.452   0.3748 -0.1679 -0.1037 
maxT      0.5906 -0.42627  -0.3594 -0.730  -0.6990  0.5981  0.5121 
maxT_1    0.8597 -0.33798  -0.4223 -0.481  -0.7303  0.2654  0.5945 
minT      0.6739 -0.20737  -0.4712 -0.413  -0.6805  0.4694  0.4057 
minT_1    1.0000 -0.31007  -0.2055 -0.299  -0.4115  0.1306  0.4644 
rh0600   -0.3101  1.00000   0.1204  0.819   0.3171  0.1351 -0.0968 
rh0600_1 -0.2055  0.12044   1.0000  0.172   0.8157 -0.0381  0.1382 
rh1500   -0.2990  0.81942   0.1718  1.000   0.5162 -0.2497 -0.3398 
rh1500_1 -0.4115  0.31709   0.8157  0.516   1.0000 -0.2060 -0.2471 
sunsh     0.1306  0.13511  -0.0381 -0.250  -0.2060  1.0000  0.3659 
sunsh_1   0.4644 -0.09680   0.1382 -0.340  -0.2471  0.3659  1.0000 
> 
Western Region 
             mir   mir05   resid resid05   rainf rainf_1    maxT  maxT_1 
mir       1.0000  0.9747  0.3239  0.2477  0.1477   0.224 -0.0971 -0.0420 
mir05     0.9747  1.0000  0.2434  0.3090  0.1448   0.220 -0.0810 -0.0353 
resid     0.3239  0.2434  1.0000  0.7800  0.2438   0.421 -0.2493 -0.0398 
resid05   0.2477  0.3090  0.7800  1.0000  0.2392   0.422 -0.2028 -0.0150 
rainf     0.1477  0.1448  0.2438  0.2392  1.0000   0.507 -0.1530  0.2054 
rainf_1   0.2239  0.2201  0.4213  0.4219  0.5066   1.000 -0.5204 -0.1528 
maxT     -0.0971 -0.0810 -0.2493 -0.2028 -0.1530  -0.520  1.0000  0.7980 
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maxT_1   -0.0420 -0.0353 -0.0398 -0.0150  0.2054  -0.153  0.7980  1.0000 
minT      0.0182  0.0431 -0.1089 -0.0268  0.1996  -0.183  0.5273  0.4916 
minT_1    0.1232  0.1457  0.1773  0.2665  0.4395   0.207  0.1984  0.5213 
rh0600    0.2474  0.2613  0.1972  0.2438  0.3752   0.404 -0.5019 -0.3722 
rh0600_1  0.2729  0.2710  0.2918  0.2894  0.1795   0.373 -0.5463 -0.5030 
rh1500    0.1445  0.1524  0.2258  0.2341  0.4300   0.597 -0.8427 -0.5666 
rh1500_1  0.1459  0.1539  0.1974  0.2041  0.1180   0.429 -0.8652 -0.8426 
sunsh    -0.0944 -0.0655 -0.2208 -0.1389 -0.1718  -0.401  0.8406  0.5599 
sunsh_1  -0.0480 -0.0391 -0.0152  0.0118  0.0797  -0.172  0.7119  0.8404 
            minT  minT_1  rh0600 rh0600_1  rh1500 rh1500_1   sunsh sunsh_1 
mir       0.0182  0.1232  0.2474   0.2729  0.1445    0.146 -0.0944 -0.0480 
mir05     0.0431  0.1457  0.2613   0.2710  0.1524    0.154 -0.0655 -0.0391 
resid    -0.1089  0.1773  0.1972   0.2918  0.2258    0.197 -0.2208 -0.0152 
resid05  -0.0268  0.2665  0.2438   0.2894  0.2341    0.204 -0.1389  0.0118 
rainf     0.1996  0.4395  0.3752   0.1795  0.4300    0.118 -0.1718  0.0797 
rainf_1  -0.1830  0.2073  0.4037   0.3732  0.5972    0.429 -0.4008 -0.1716 
maxT      0.5273  0.1984 -0.5019  -0.5463 -0.8427   -0.865  0.8406  0.7119 
maxT_1    0.4916  0.5213 -0.3722  -0.5030 -0.5666   -0.843  0.5599  0.8404 
minT      1.0000  0.2793  0.0882  -0.4713 -0.1445   -0.521  0.4121  0.2643 
minT_1    0.2793  1.0000  0.1007   0.0847  0.0224   -0.141  0.2040  0.4059 
rh0600    0.0882  0.1007  1.0000   0.3941  0.7203    0.553 -0.2496 -0.2952 
rh0600_1 -0.4713  0.0847  0.3941   1.0000  0.4231    0.721 -0.3563 -0.2514 
rh1500   -0.1445  0.0224  0.7203   0.4231  1.0000    0.763 -0.6913 -0.5910 
rh1500_1 -0.5210 -0.1410  0.5525   0.7211  0.7633    1.000 -0.5875 -0.6911 
sunsh     0.4121  0.2040 -0.2496  -0.3563 -0.6913   -0.587  1.0000  0.5837 
sunsh_1   0.2643  0.4059 -0.2952  -0.2514 -0.5910   -0.691  0.5837  1.0000 
> 
Eastern Region 
             mir    mir05    resid resid05   rainf rainf_1   maxT  maxT_1 
mir       1.0000  0.89997  0.53977   0.481  0.2134  0.3506 -0.319 -0.2396 
mir05     0.9000  1.00000  0.69472   0.758  0.2733  0.4578 -0.414 -0.3321 
resid     0.5398  0.69472  1.00000   0.911  0.2953  0.4992 -0.470 -0.2973 
resid05   0.4814  0.75829  0.91062   1.000  0.3058  0.5207 -0.497 -0.3755 
rainf     0.2134  0.27334  0.29531   0.306  1.0000  0.4242 -0.268 -0.0426 
rainf_1   0.3506  0.45779  0.49919   0.521  0.4242  1.0000 -0.472 -0.2678 
maxT     -0.3186 -0.41366 -0.47048  -0.497 -0.2677 -0.4718  1.000  0.7962 
maxT_1   -0.2396 -0.33206 -0.29735  -0.376 -0.0426 -0.2678  0.796  1.0000 
minT      0.1113 -0.00857 -0.20328  -0.220  0.1468 -0.0614  0.552  0.6387 
minT_1    0.2238  0.12111  0.00393  -0.052  0.2806  0.1532  0.176  0.5483 
rh0600    0.0395  0.20157  0.25597   0.341  0.4681  0.4503 -0.422 -0.2922 
rh0600_1  0.0266  0.17945  0.22811   0.314  0.2065  0.4747 -0.527 -0.4253 
rh1500    0.2820  0.40510  0.47599   0.508  0.5744  0.6192 -0.817 -0.5589 
rh1500_1  0.2923  0.42056  0.45945   0.510  0.2324  0.5766 -0.841 -0.8164 
sunsh    -0.1941 -0.25874 -0.31080  -0.321 -0.1499 -0.1002  0.786  0.6107 
sunsh_1  -0.1597 -0.25954 -0.21620  -0.303 -0.2694 -0.1456  0.591  0.7860 
             minT   minT_1  rh0600 rh0600_1  rh1500 rh1500_1  sunsh sunsh_1 
mir       0.11128  0.22383  0.0395   0.0266  0.2820    0.292 -0.194  -0.160 
mir05    -0.00857  0.12111  0.2016   0.1794  0.4051    0.421 -0.259  -0.260 
resid    -0.20328  0.00393  0.2560   0.2281  0.4760    0.459 -0.311  -0.216 
resid05  -0.22034 -0.05196  0.3407   0.3140  0.5075    0.510 -0.321  -0.303 
rainf     0.14680  0.28060  0.4681   0.2065  0.5744    0.232 -0.150  -0.269 
rainf_1  -0.06139  0.15318  0.4503   0.4747  0.6192    0.577 -0.100  -0.146 
maxT      0.55165  0.17580 -0.4220  -0.5271 -0.8167   -0.841  0.786   0.591 
maxT_1    0.63871  0.54829 -0.2922  -0.4253 -0.5589   -0.816  0.611   0.786 
minT      1.00000  0.59952  0.0791  -0.3801 -0.2293   -0.561  0.444   0.390 
minT_1    0.59952  1.00000 -0.0917   0.0800  0.0496   -0.224  0.214   0.441 
rh0600    0.07905 -0.09173  1.0000   0.3809  0.6989    0.445 -0.197  -0.319 
rh0600_1 -0.38006  0.08004  0.3809   1.0000  0.5658    0.702 -0.199  -0.201 
rh1500   -0.22928  0.04958  0.6989   0.5658  1.0000    0.780 -0.523  -0.517 
rh1500_1 -0.56145 -0.22390  0.4454   0.7021  0.7798    1.000 -0.460  -0.522 
sunsh     0.44358  0.21377 -0.1971  -0.1987 -0.5233   -0.460  1.000   0.620 
sunsh_1   0.39028  0.44118 -0.3187  -0.2009 -0.5174   -0.522  0.620   1.000 
 
Central Region 
              mir    mir05    resid resid05    rainf rainf_1    maxT   maxT_1 
mir       1.00000  0.93775  0.56795  0.4909  0.20393  0.2332 -0.1290  0.04402 
mir05     0.93775  1.00000  0.54266  0.6224  0.19685  0.2215 -0.1136  0.07147 
resid     0.56795  0.54266  1.00000  0.8706  0.37816  0.3744 -0.2764  0.05255 
resid05   0.49091  0.62241  0.87056  1.0000  0.35341  0.3483 -0.2313  0.08700 
rainf     0.20393  0.19685  0.37816  0.3534  1.00000  0.5448 -0.3482 -0.07644 
rainf_1   0.23317  0.22150  0.37440  0.3483  0.54476  1.0000 -0.6124 -0.34613 
maxT     -0.12897 -0.11362 -0.27636 -0.2313 -0.34824 -0.6124  1.0000  0.80640 
maxT_1    0.04402  0.07147  0.05255  0.0870 -0.07644 -0.3461  0.8064  1.00000 
minT      0.22204  0.23731  0.09946  0.1340  0.26172 -0.1567  0.5216  0.60851 
minT_1    0.37522  0.38985  0.34972  0.3645  0.45974  0.2703  0.1172  0.51695 
rh0600    0.11945  0.12472  0.12309  0.1234  0.49371  0.6038 -0.5274 -0.45482 
rh0600_1  0.10921  0.10159  0.10107  0.0861  0.14562  0.5028 -0.5535 -0.53175 
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rh1500    0.23842  0.22962  0.33692  0.3060  0.62117  0.7134 -0.8682 -0.62508 
rh1500_1  0.13675  0.11443  0.13518  0.1028  0.31481  0.6241 -0.8569 -0.86841 
sunsh    -0.02895 -0.01833 -0.24134 -0.2022 -0.21926 -0.3296  0.8534  0.62155 
sunsh_1   0.13927  0.15602  0.07852  0.1017 -0.14905 -0.2057  0.6765  0.85133 
             minT   minT_1   rh0600 rh0600_1  rh1500 rh1500_1    sunsh  sunsh_1 
mir       0.22204  0.37522  0.11945  0.10921  0.2384   0.1368 -0.02895  0.13927 
mir05     0.23731  0.38985  0.12472  0.10159  0.2296   0.1144 -0.01833  0.15602 
resid     0.09946  0.34972  0.12309  0.10107  0.3369   0.1352 -0.24134  0.07852 
resid05   0.13402  0.36447  0.12342  0.08610  0.3060   0.1028 -0.20215  0.10166 
rainf     0.26172  0.45974  0.49371  0.14562  0.6212   0.3148 -0.21926 -0.14905 
rainf_1  -0.15666  0.27031  0.60380  0.50277  0.7134   0.6241 -0.32965 -0.20567 
maxT      0.52157  0.11719 -0.52738 -0.55353 -0.8682  -0.8569  0.85340  0.67652 
maxT_1    0.60851  0.51695 -0.45482 -0.53175 -0.6251  -0.8684  0.62155  0.85133 
minT      1.00000  0.48348  0.08378 -0.55709 -0.1081  -0.5325  0.46371  0.36786 
minT_1    0.48348  1.00000  0.10001  0.08822  0.1797  -0.1017  0.19925  0.46633 
rh0600    0.08378  0.10001  1.00000  0.44660  0.7858   0.6219 -0.16158 -0.30478 
rh0600_1 -0.55709  0.08822  0.44660  1.00000  0.4884   0.7884 -0.24939 -0.16414 
rh1500   -0.10809  0.17970  0.78583  0.48845  1.0000   0.7939 -0.63400 -0.54925 
rh1500_1 -0.53251 -0.10169  0.62188  0.78841  0.7939   1.0000 -0.54574 -0.63130 
sunsh     0.46371  0.19925 -0.16158 -0.24939 -0.6340  -0.5457  1.00000  0.62896 
sunsh_1   0.36786  0.46633 -0.30478 -0.16414 -0.5493  -0.6313  0.62896  1.00000 
 
Volta Region 
             mir   mir05   resid  resid05  rainf rainf_1     maxT maxT_1 
mir       1.0000  0.9461  0.5172  0.43045  0.199   0.298 -0.31549 -0.235 
mir05     0.9461  1.0000  0.4694  0.55990  0.138   0.266 -0.24938 -0.237 
resid     0.5172  0.4694  1.0000  0.83672  0.473   0.581 -0.59009 -0.396 
resid05   0.4305  0.5599  0.8367  1.00000  0.332   0.487 -0.43092 -0.376 
rainf     0.1995  0.1377  0.4728  0.33208  1.000   0.427 -0.54245 -0.285 
rainf_1   0.2984  0.2655  0.5805  0.48688  0.427   1.000 -0.64391 -0.545 
maxT     -0.3155 -0.2494 -0.5901 -0.43092 -0.542  -0.644  1.00000  0.818 
maxT_1   -0.2352 -0.2371 -0.3962 -0.37613 -0.285  -0.545  0.81835  1.000 
minT     -0.0116 -0.0247 -0.1837 -0.20241  0.123  -0.144  0.44482  0.572 
minT_1    0.1538  0.1171  0.0841  0.00667  0.341   0.125  0.00492  0.437 
rh0600    0.2079  0.2104  0.3562  0.32000  0.464   0.541 -0.48596 -0.435 
rh0600_1  0.1838  0.2073  0.3275  0.33264  0.162   0.477 -0.52206 -0.490 
rh1500    0.4155  0.3496  0.5705  0.42748  0.705   0.716 -0.84756 -0.616 
rh1500_1  0.4278  0.3951  0.5329  0.45897  0.409   0.710 -0.86963 -0.844 
sunsh    -0.1628 -0.0877 -0.3343 -0.17292 -0.300  -0.178  0.73597  0.570 
sunsh_1  -0.1282 -0.1372 -0.2133 -0.20800 -0.422  -0.281  0.59346  0.733 
            minT   minT_1 rh0600 rh0600_1  rh1500 rh1500_1   sunsh sunsh_1 
mir      -0.0116  0.15384  0.208   0.1838  0.4155  0.42778 -0.1628 -0.1282 
mir05    -0.0247  0.11709  0.210   0.2073  0.3496  0.39508 -0.0877 -0.1372 
resid    -0.1837  0.08414  0.356   0.3275  0.5705  0.53287 -0.3343 -0.2133 
resid05  -0.2024  0.00667  0.320   0.3326  0.4275  0.45897 -0.1729 -0.2080 
rainf     0.1231  0.34115  0.464   0.1617  0.7052  0.40900 -0.2996 -0.4223 
rainf_1  -0.1439  0.12533  0.541   0.4772  0.7162  0.70973 -0.1782 -0.2815 
maxT      0.4448  0.00492 -0.486  -0.5221 -0.8476 -0.86963  0.7360  0.5935 
maxT_1    0.5719  0.43720 -0.435  -0.4901 -0.6160 -0.84392  0.5697  0.7326 
minT      1.0000  0.47420  0.240  -0.4336 -0.0205 -0.43518  0.3248  0.1731 
minT_1    0.4742  1.00000  0.145   0.2448  0.2920 -0.00223  0.1654  0.3373 
rh0600    0.2400  0.14472  1.000   0.2622  0.6808  0.54646 -0.0890 -0.3264 
rh0600_1 -0.4336  0.24484  0.262   1.0000  0.4270  0.67646 -0.1121 -0.0965 
rh1500   -0.0205  0.29196  0.681   0.4270  1.0000  0.81721 -0.4856 -0.5067 
rh1500_1 -0.4352 -0.00223  0.546   0.6765  0.8172  1.00000 -0.4154 -0.4712 
sunsh     0.3248  0.16536 -0.089  -0.1121 -0.4856 -0.41542  1.0000  0.6226 
sunsh_1   0.1731  0.33726 -0.326  -0.0965 -0.5067 -0.47122  0.6226  1.0000 
> 
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Results A-5.2: Stepwise regression analysis results of the detrended malaria incidence 
rates (residuals) with the climatic covariates to identify potential predictors for the total 
incidence data 
==================================================================== 
UPPER EAST REGION (TOTAL) 
Coefficients: 
            Estimate Std. Error  t-value Pr(>|t|)     
(Intercept)  456.366    105.293    4.33  2.9e-05 *** 
maxT_1       -13.809      2.609   -5.29  5.1e-07 *** 
rh1500_1       1.522      0.347    4.38  2.4e-05 *** 
sunsh         -6.133      4.150   -1.48     0.14     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 44.7 on 127 degrees of freedom 
Multiple R-squared: 0.697, Adjusted R-squared: 0.69  
F-statistic: 97.5 on 3 and 127 DF, p-value: <2e-16, AIC=1001  
============================================================== 
UPPER WEST REGION (TOTAL) 
Coefficients: 
            Estimate Std. Error   t-value Pr(>|t|)     
(Intercept)    7.324     67.056    0.11    0.913     
rainf         -0.226      0.130   -1.73    0.086 .   
minT_1        -5.166      3.027   -1.71    0.090 .   
rh1500         3.062      0.601    5.09  1.2e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 61.5 on 127 degrees of freedom 
Multiple R-squared: 0.305, Adjusted R-squared: 0.289  
F-statistic: 18.6 on 3 and 127 DF, p-value: 4.66e-10, AIC=1083  
============================================================== 
NORTHERN REGION (TOTAL) 
Coefficients: 
            Estimate Std. Error  t-value Pr(>|t|)     
(Intercept)   391.96      32.91   11.91  < 2e-16 *** 
maxT           -7.53       2.45   -3.07   0.0026 **  
maxT_1        -10.87       2.26   -4.80  4.4e-06 *** 
sunsh           3.95       1.84    2.14   0.0340 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 28.5 on 127 degrees of freedom 
Multiple R-squared: 0.532, Adjusted R-squared: 0.521  
F-statistic: 48.2 on 3 and 127 DF, p-value:< 2e-16, AIC = 882  
============================================================== 
BRONG AHAFO REGION (TOTAL): 
Coefficients: 
             Estimate Std. Error  t-value Pr(>|t|)     
(Intercept) -111.9148    87.1083   -1.28  0.20072     
rainf_1        0.1599     0.0457    3.50  0.00061 *** 
maxT_1        -5.9272     2.4328   -2.44  0.01593 *   
minT           7.0121     3.2191    2.18  0.03084 *   
rh1500_1       1.0199     0.3177    3.21  0.00160 **  
sunsh_1       10.7022     3.0118    3.55  0.00050 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 31.2 on 161 degrees of freedom 
Multiple R-squared: 0.408, Adjusted R-squared: 0.39  
F-statistic: 22.2 on 5 and 161 DF,  p-value: < 2e-16, AIC=1155  
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ASHANTI REGION (TOTAL) 
Coefficients: 
            Estimate Std. Error   t-value Pr(>|t|)     
(Intercept) -39.4011    34.1551   -1.15   0.2508     
rainf_1       0.0799     0.0215    3.72   0.0003 *** 
minT_1        3.1338     1.6874    1.86   0.0656 .   
sunsh        -6.0406     1.2990   -4.65  8.2e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 18.8 on 127 degrees of freedom 
Multiple R-squared: 0.267, Adjusted R-squared: 0.25  
F-statistic: 15.4 on 3 and 127 DF, p-value: 1.3e-08, AIC = 773  
=============================================================== 
EASTERN REGION (TOTAL) 
Coefficients: 
            Estimate Std. Error  t-value Pr(>|t|)     
(Intercept)   22.459    168.015    0.13  0.89388     
rainf_1        0.235      0.066    3.56  0.00053 *** 
maxT_1         8.085      3.978    2.03  0.04422 *   
rh0600_1      -4.111      1.662   -2.47  0.01473 *   
rh1500_1       2.271      0.766    2.97  0.00362 **  
sunsh         -8.627      3.097   -2.79  0.00617 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 32.2 on 125 degrees of freedom 
Multiple R-squared: 0.367, Adjusted R-squared: 0.341  
F-statistic: 14.5 on 5 and 125 DF, p-value: 3.55e-11, AIC=915.4  
=============================================================== 
GREATER ACCRA (TOTAL) 
Coefficients: 
            Estimate Std. Error  t-value Pr(>|t|)     
(Intercept)  97.1748    35.6989    2.72  0.00740 **  
rainf_1       0.0984     0.0247    3.98  0.00011 *** 
maxT         -2.6224     1.2973   -2.02  0.04534 *   
sunsh        -3.3279     1.5660   -2.13  0.03551 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 17.9 on 127 degrees of freedom 
Multiple R-squared: 0.315, Adjusted R-squared: 0.298  
F-statistic: 19.4 on 3 and 127 DF,p-value: 1.99e-10, AIC=759.2  
============================================================== 
WESTERN REGION (TOTAL) 
Coefficients: 
             Estimate Std. Error  t-value Pr(>|t|)    
(Intercept) -357.7847   252.6241   -1.42   0.1592    
rainf_1        0.0796     0.0286    2.78   0.0062 ** 
maxT         -10.8348     4.7431   -2.28   0.0241 *  
maxT_1         5.5344     2.5887    2.14   0.0345 *  
minT           7.2975     4.9908    1.46   0.1462    
rh0600_1       4.9686     2.0702    2.40   0.0179 *  
rh1500        -1.7423     0.9070   -1.92   0.0570 .  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 22.8 on 124 degrees of freedom 
Multiple R-squared: 0.243, Adjusted R-squared: 0.206  
F-statistic: 6.62 on 6 and 124 DF, p-value: 4.32e-06, AIC = 826  
=============================================================== 
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CENTRAL REGION (TOTAL) 
Coefficients: 
             Estimate  Std. Error t-value Pr(>|t|)     
(Intercept) 731.0402   216.5128    3.38  0.00099 *** 
rainf         0.0738     0.0353    2.09  0.03868 *   
maxT        -22.1343     4.8601   -4.55  1.3e-05 *** 
maxT_1        5.2544     3.5621    1.48  0.14276     
minT         13.4920     4.2176    3.20  0.00176 **  
minT_1       -5.9435     4.0206   -1.48  0.14192     
rh0600       -5.1561     1.4724   -3.50  0.00065 *** 
sunsh        10.1200     4.2183    2.40  0.01795 *   
sunsh_1       6.1470     3.0875    1.99  0.04872 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 17.2 on 122 degrees of freedom 
Multiple R-squared: 0.388, Adjusted R-squared: 0.348  
F-statistic: 9.69 on 8 and 122 DF, p-value: 2.47e-10, AIC = 753  
=============================================================== 
VOLTA REGION (TOTAL) 
Coefficients: 
            Estimate Std. Error  t-value  Pr(>|t|)    
(Intercept)  46.8129   126.9155    0.37   0.7133    
rainf         0.1047     0.0518    2.02   0.0468 *  
rainf_1       0.1534     0.0566    2.71   0.0083 ** 
maxT         -8.7985     2.9565   -2.98   0.0039 ** 
maxT_1       12.6829     4.4115    2.87   0.0052 ** 
minT_1      -11.8023     4.6682   -2.53   0.0135 *  
rh1500_1      1.2114     0.7252    1.67   0.0989 .  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 20.2 on 76 degrees of freedom 
Multiple R-squared: 0.496, Adjusted R-squared: 0.457  
F-statistic: 12.5 on 6 and 76 DF, p-value: 9.74e-10, AIC= 505.4  
=============================================================== 
 
 
 
Results A-5.3: Stepwise regression analysis results of the detrended malaria incidence 
rates (residuals) with the climatic covariates to identify potential predictors for the 0-4 
year group incidence data 
============================================================== 
UPPER EAST REGION (0-4) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 2166.876    270.453    8.01  6.0e-13 *** 
maxT_1       -72.510      6.763  -10.72  < 2e-16 *** 
rh0600         4.173      0.882    4.73  5.8e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 173 on 128 degrees of freedom 
Multiple R-squared: 0.666, Adjusted R-squared: 0.661  
F-statistic:  128 on 2 and 128 DF, p-value: <2e-16, AIC=1354 
============================================================== 
UPPER WEST REGION (0-4) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  159.930    140.077    1.14  0.25571     
rainf         -0.795      0.280   -2.84  0.00531 **  
minT         -22.717      5.958   -3.81  0.00021 *** 
rh1500        10.125      1.268    7.98  7.3e-13 *** 
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 132 on 127 degrees of freedom 
Multiple R-squared: 0.539, Adjusted R-squared: 0.528  
F-statistic: 49.4 on 3 and 127 DF, p-value: <2e-16, AIC=1284 
============================================================== 
NORTHERN REGION (0-4) 
Coefficients: 
            Estimate Std. Error  t-value Pr(>|t|)     
(Intercept)   654.98     117.99    5.55  1.6e-07 *** 
maxT_1        -30.18       5.06   -5.96  2.3e-08 *** 
minT          -11.63       6.35   -1.83  0.06954 .   
rh0600          3.52       1.04    3.40  0.00091 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 63.8 on 127 degrees of freedom 
Multiple R-squared: 0.627, Adjusted R-squared: 0.618  
F-statistic: 71.1 on 3 and 127 DF, p-value: < 2e-16, AIC = 1093 
=============================================================== 
BRONG AHAFO REGION (0-4) 
Coefficients: 
             Estimate Std. Error  t-value Pr(>|t|)     
(Intercept) -526.8675   170.6186   -3.09  0.00238 **  
rainf_1        0.3746     0.0923    4.06  7.7e-05 *** 
maxT_1        -8.5882     4.7825   -1.80  0.07442 .   
minT          27.1362     6.9540    3.90  0.00014 *** 
rh0600        -1.5070     0.9092   -1.66  0.09939 .   
rh1500_1       3.3678     0.6829    4.93  2.0e-06 *** 
sunsh_1       15.0853     6.1011    2.47  0.01446 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 61.1 on 160 degrees of freedom 
Multiple R-squared: 0.507, Adjusted R-squared: 0.488  
F-statistic: 27.4 on 6 and 160 DF, p-value:< 2e-16, AIC = 1380 
=============================================================== 
ASHANTI REGION (0-4) 
Coefficients: 
            Estimate Std. Error   t-value Pr(>|t|)    
(Intercept)  19.0393    20.6388    0.92   0.3580    
rainf         0.0918     0.0541    1.70   0.0921 .  
rainf_1       0.1703     0.0534    3.19   0.0018 ** 
sunsh        -8.5780     3.0515   -2.81   0.0057 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 44 on 127 degrees of freedom 
Multiple R-squared: 0.219, Adjusted R-squared: 0.201  
F-statistic: 11.9 on 3 and 127 DF, p-value: 6.45e-07, AIC=995.4  
=============================================================== 
EASTERN REGION(0-4) 
            Estimate Std. Error   t-value Pr(>|t|)     
(Intercept)  -71.328     66.999   -1.06    0.289     
rainf_1        0.527      0.121    4.34  2.9e-05 *** 
rh1500_1       1.534      0.763    2.01    0.046 *   
sunsh        -13.007      5.606   -2.32    0.022 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 64 on 127 degrees of freedom 
Multiple R-squared: 0.364, Adjusted R-squared: 0.349  
F-statistic: 24.2 on 3 and 127 DF, p-value: 1.81e-12, AIC=1093 
=============================================================== 
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GREATER ACCRA (0-4) 
Coefficients: 
            Estimate Std. Error   t-value Pr(>|t|)    
(Intercept) 364.3263   189.9214    1.92   0.0573 .  
rainf_1       0.1932     0.0666    2.90   0.0044 ** 
minT_1       -7.7359     4.3666   -1.77   0.0789 .  
rh0600       -3.6469     2.1979   -1.66   0.0995 .  
rh1500        2.0327     1.4529    1.40   0.1642    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 47.3 on 126 degrees of freedom 
Multiple R-squared: 0.137, Adjusted R-squared: 0.11  
F-statistic: 5.01 on 4 and 126 DF, p-value:0.000887, AIC = 1015 
=============================================================== 
WESTERN REGION (0-4) 
Coefficients: 
            Estimate Std. Error   t-value Pr(>|t|)     
(Intercept) -907.899    337.734   -2.69   0.0081 **  
rainf_1        0.161      0.042    3.83   0.0002 *** 
minT_1        13.938      5.962    2.34   0.0210 *   
rh0600_1       6.021      3.329    1.81   0.0729 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 43.8 on 127 degrees of freedom 
Multiple R-squared: 0.231, Adjusted R-squared: 0.213  
F-statistic: 12.7 on 3 and 127 DF, p-value: 2.48e-07, AIC=994.4 
=============================================================== 
CENTRAL REGION (0-4) 
Coefficients: 
            Estimate Std. Error  t-value  Pr(>|t|)     
(Intercept) 640.1153   490.8003    1.30   0.1946     
rainf         0.1076     0.0751    1.43   0.1546     
maxT        -45.9009    10.6484   -4.31  3.3e-05 *** 
maxT_1       24.2635     5.9619    4.07  8.4e-05 *** 
minT         33.6520    11.2362    2.99   0.0033 **  
minT_1      -20.0576    10.9603   -1.83   0.0697 .   
rh0600      -10.0077     3.3990   -2.94   0.0039 **  
rh0600_1      5.6120     2.9725    1.89   0.0614 .   
sunsh        20.3145     8.9389    2.27   0.0248 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 37.1 on 122 degrees of freedom 
Multiple R-squared: 0.344, Adjusted R-squared: 0.301  
F-statistic: 8.01 on 8 and 122 DF, p-value: 1.23e-08, AIC = 956 
=============================================================== 
VOLTA REGION (0-4) 
Coefficients: 
            Estimate Std. Error  t-value  Pr(>|t|)    
(Intercept) -161.871    228.137   -0.71   0.4801    
rainf          0.235      0.123    1.91   0.0601 .  
rainf_1        0.364      0.132    2.75   0.0074 ** 
minT_1        -9.910      6.857   -1.45   0.1524    
rh0600_1       3.572      2.253    1.59   0.1168    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Residual standard error: 54.9 on 78 degrees of freedom 
Multiple R-squared: 0.29, Adjusted R-squared: 0.253  
F-statistic: 7.96 on 4 and 78 DF, p-value: 1.97e-05, AIC=670  
 

 



277 
 

Appendix B: 
Exploratory Analysis of the Space-time MIR Data 
 

B-1: Temporal Profiles of MIR at District Locations 
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B-2: Post-plots of the observed MIR Data 
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AppendiX B-3: Monthly Spatial Corelation of MIR and Elevation 
with Climate Variables 
 
Results B-3.1: The following gives month by month spatial correlations of elevation 
with MIR and climatic covariates over the whole the study area in Ghana  
-----------------------------------------------------------------------------------------------------------------------   
Month: 1 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000  0.0841  0.2337 -0.1844 -0.227 -0.238  0.4237 
Rainf      0.0841  1.0000 -0.0462 -0.0271  0.204  0.103  0.0407 
MaxTemp    0.2337 -0.0462  1.0000 -0.2506 -0.566 -0.668  0.4820 
MinTemp   -0.1844 -0.0271 -0.2506  1.0000  0.396  0.545 -0.2275 
RH0600    -0.2269  0.2044 -0.5662  0.3957  1.000  0.802 -0.5332 
RH1500    -0.2381  0.1027 -0.6684  0.5451  0.802  1.000 -0.4122 
Sunsh      0.4237  0.0407  0.4820 -0.2275 -0.533 -0.412  1.0000 
Elevation  0.1145  0.1693  0.0840 -0.5358 -0.296 -0.414  0.1533 
          Elevation 
MIR           0.114 
Rainf         0.169 
MaxTemp       0.084 
MinTemp      -0.536 
RH0600       -0.296 
RH1500       -0.414 
Sunsh         0.153 
Elevation     1.000 
----------------------------------------------------  
Month: 2 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.0000 -0.0751   0.115  -0.273 -0.322 -0.375  0.385 
Rainf     -0.0751  1.0000  -0.286   0.116  0.380  0.209 -0.331 
MaxTemp    0.1147 -0.2859   1.000  -0.365 -0.511 -0.596  0.301 
MinTemp   -0.2725  0.1165  -0.365   1.000  0.325  0.457 -0.340 
RH0600    -0.3224  0.3805  -0.511   0.325  1.000  0.788 -0.758 
RH1500    -0.3753  0.2087  -0.596   0.457  0.788  1.000 -0.543 
Sunsh      0.3851 -0.3306   0.301  -0.340 -0.758 -0.543  1.000 
Elevation  0.1144 -0.0449   0.118  -0.439 -0.383 -0.511  0.287 
          Elevation 
MIR          0.1144 
Rainf       -0.0449 
MaxTemp      0.1183 
MinTemp     -0.4387 
RH0600      -0.3827 
RH1500      -0.5109 
Sunsh        0.2872 
Elevation    1.0000 
----------------------------------------------------  
Month: 3 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.0000 -0.0672  0.2661 -0.2175 -0.3002 -0.372  0.3259 
Rainf     -0.0672  1.0000 -0.4464 -0.1787  0.5416  0.458 -0.4328 
MaxTemp    0.2661 -0.4464  1.0000 -0.0429 -0.7850 -0.758  0.3388 
MinTemp   -0.2175 -0.1787 -0.0429  1.0000 -0.0177  0.255 -0.0533 
RH0600    -0.3002  0.5416 -0.7850 -0.0177  1.0000  0.742 -0.4519 
RH1500    -0.3718  0.4582 -0.7581  0.2553  0.7419  1.000 -0.3951 
Sunsh      0.3259 -0.4328  0.3388 -0.0533 -0.4519 -0.395  1.0000 
Elevation  0.1075 -0.0788  0.1747 -0.4693 -0.2351 -0.448  0.0826 
          Elevation 
MIR          0.1075 
Rainf       -0.0788 
MaxTemp      0.1747 
MinTemp     -0.4693 
RH0600      -0.2351 
RH1500      -0.4481 
Sunsh        0.0826 
Elevation    1.0000 
----------------------------------------------------  
Month: 4 
             MIR  Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.000 -0.133   0.303   0.170 -0.321 -0.366  0.277 
Rainf     -0.133  1.000  -0.534  -0.480  0.574  0.385 -0.432 
MaxTemp    0.303 -0.534   1.000   0.596 -0.802 -0.837  0.508 
MinTemp    0.170 -0.480   0.596   1.000 -0.646 -0.451  0.504 
RH0600    -0.321  0.574  -0.802  -0.646  1.000  0.820 -0.541 
RH1500    -0.366  0.385  -0.837  -0.451  0.820  1.000 -0.398 



296 
 

Sunsh      0.277 -0.432   0.508   0.504 -0.541 -0.398  1.000 
Elevation  0.160  0.188   0.130  -0.284 -0.195 -0.331 -0.071 
          Elevation 
MIR           0.160 
Rainf         0.188 
MaxTemp       0.130 
MinTemp      -0.284 
RH0600       -0.195 
RH1500       -0.331 
Sunsh        -0.071 
Elevation     1.000 
----------------------------------------------------  
Month: 5 
             MIR   Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.000 -0.0710  0.1665   0.122 -0.205 -0.242  0.171 
Rainf     -0.071  1.0000 -0.2670  -0.137  0.255  0.389 -0.129 
MaxTemp    0.166 -0.2670  1.0000   0.475 -0.744 -0.796  0.519 
MinTemp    0.122 -0.1369  0.4745   1.000 -0.567 -0.326  0.362 
RH0600    -0.205  0.2551 -0.7437  -0.567  1.000  0.742 -0.631 
RH1500    -0.242  0.3893 -0.7965  -0.326  0.742  1.000 -0.554 
Sunsh      0.171 -0.1289  0.5188   0.362 -0.631 -0.554  1.000 
Elevation  0.253 -0.0959  0.0973  -0.377 -0.112 -0.293  0.151 
          Elevation 
MIR          0.2532 
Rainf       -0.0959 
MaxTemp      0.0973 
MinTemp     -0.3771 
RH0600      -0.1119 
RH1500      -0.2928 
Sunsh        0.1513 
Elevation    1.0000 
----------------------------------------------------  
Month: 6 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.0374  0.1516  0.0909 -0.2413 -0.3306  0.3442 
Rainf      0.0374  1.0000 -0.0946 -0.1093  0.0711  0.2302 -0.3004 
MaxTemp    0.1516 -0.0946  1.0000  0.1401 -0.4924 -0.6029  0.4473 
MinTemp    0.0909 -0.1093  0.1401  1.0000 -0.4068  0.0893 -0.0158 
RH0600    -0.2413  0.0711 -0.4924 -0.4068  1.0000  0.4503 -0.3813 
RH1500    -0.3306  0.2302 -0.6029  0.0893  0.4503  1.0000 -0.7353 
Sunsh      0.3442 -0.3004  0.4473 -0.0158 -0.3813 -0.7353  1.0000 
Elevation  0.1254  0.0183  0.1569 -0.5355  0.0190 -0.2721  0.1599 
          Elevation 
MIR          0.1254 
Rainf        0.0183 
MaxTemp      0.1569 
MinTemp     -0.5355 
RH0600       0.0190 
RH1500      -0.2721 
Sunsh        0.1599 
Elevation    1.0000 
----------------------------------------------------  
Month: 7 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500  Sunsh 
MIR        1.0000  0.2996   0.285   0.187 -0.1747 -0.411  0.309 
Rainf      0.2996  1.0000   0.334  -0.142  0.0697 -0.427  0.123 
MaxTemp    0.2847  0.3339   1.000   0.209 -0.3304 -0.596  0.373 
MinTemp    0.1871 -0.1423   0.209   1.000 -0.3476 -0.167  0.201 
RH0600    -0.1747  0.0697  -0.330  -0.348  1.0000  0.362 -0.297 
RH1500    -0.4105 -0.4272  -0.596  -0.167  0.3622  1.000 -0.275 
Sunsh      0.3091  0.1227   0.373   0.201 -0.2972 -0.275  1.000 
Elevation  0.0738  0.3668   0.134  -0.479  0.2059 -0.298 -0.076 
          Elevation 
MIR          0.0738 
Rainf        0.3668 
MaxTemp      0.1342 
MinTemp     -0.4790 
RH0600       0.2059 
RH1500      -0.2985 
Sunsh       -0.0760 
Elevation    1.0000 
----------------------------------------------------  
Month: 8 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.3250   0.244  0.0876  0.1124 -0.1578  0.4782 
Rainf      0.3250  1.0000   0.556  0.0924  0.2061 -0.3988  0.5118 
MaxTemp    0.2441  0.5556   1.000  0.3291 -0.1979 -0.5980  0.4761 
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MinTemp    0.0876  0.0924   0.329  1.0000 -0.4136 -0.0629  0.2467 
RH0600     0.1124  0.2061  -0.198 -0.4136  1.0000  0.1987 -0.0538 
RH1500    -0.1578 -0.3988  -0.598 -0.0629  0.1987  1.0000 -0.2998 
Sunsh      0.4782  0.5118   0.476  0.2467 -0.0538 -0.2998  1.0000 
Elevation  0.1097  0.2346   0.173 -0.4488  0.2386 -0.2531  0.0321 
          Elevation 
MIR          0.1097 
Rainf        0.2346 
MaxTemp      0.1730 
MinTemp     -0.4488 
RH0600       0.2386 
RH1500      -0.2531 
Sunsh        0.0321 
Elevation    1.0000 
----------------------------------------------------  
Month: 9 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.0714  0.2181 -0.0232  0.1576 -0.1693  0.3480 
Rainf      0.0714  1.0000  0.3805 -0.3063  0.4043 -0.4145  0.0327 
MaxTemp    0.2181  0.3805  1.0000  0.2072 -0.2926 -0.5562  0.3526 
MinTemp   -0.0232 -0.3063  0.2072  1.0000 -0.4865  0.1489  0.1253 
RH0600     0.1576  0.4043 -0.2926 -0.4865  1.0000  0.0764 -0.2610 
RH1500    -0.1693 -0.4145 -0.5562  0.1489  0.0764  1.0000 -0.1506 
Sunsh      0.3480  0.0327  0.3526  0.1253 -0.2610 -0.1506  1.0000 
Elevation  0.0727  0.3500  0.0683 -0.5102  0.2698 -0.2805 -0.0520 
          Elevation 
MIR          0.0727 
Rainf        0.3500 
MaxTemp      0.0683 
MinTemp     -0.5102 
RH0600       0.2698 
RH1500      -0.2805 
Sunsh       -0.0520 
Elevation    1.0000 
----------------------------------------------------  
Month: 10 
              MIR  Rainf MaxTemp MinTemp  RH0600  RH1500  Sunsh 
MIR        1.0000 -0.215  0.3871  0.1253 -0.0982 -0.4655  0.153 
Rainf     -0.2147  1.000 -0.4716 -0.5567  0.6314  0.3537 -0.311 
MaxTemp    0.3871 -0.472  1.0000  0.3083 -0.5227 -0.7170  0.337 
MinTemp    0.1253 -0.557  0.3083  1.0000 -0.3824 -0.0141  0.322 
RH0600    -0.0982  0.631 -0.5227 -0.3824  1.0000  0.4671 -0.295 
RH1500    -0.4655  0.354 -0.7170 -0.0141  0.4671  1.0000 -0.243 
Sunsh      0.1531 -0.311  0.3367  0.3217 -0.2953 -0.2429  1.000 
Elevation  0.0592  0.194  0.0204 -0.5429  0.0405 -0.2525 -0.215 
          Elevation 
MIR          0.0592 
Rainf        0.1942 
MaxTemp      0.0204 
MinTemp     -0.5429 
RH0600       0.0405 
RH1500      -0.2525 
Sunsh       -0.2153 
Elevation    1.0000 
----------------------------------------------------  
Month: 11 
             MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.000 -0.2742  0.3331 -0.4165 -0.431 -0.505  0.3296 
Rainf     -0.274  1.0000 -0.5707  0.0186  0.508  0.566 -0.6415 
MaxTemp    0.333 -0.5707  1.0000 -0.2210 -0.721 -0.833  0.5509 
MinTemp   -0.417  0.0186 -0.2210  1.0000  0.257  0.427  0.0438 
RH0600    -0.431  0.5085 -0.7209  0.2572  1.000  0.792 -0.5384 
RH1500    -0.505  0.5661 -0.8329  0.4273  0.792  1.000 -0.5107 
Sunsh      0.330 -0.6415  0.5509  0.0438 -0.538 -0.511  1.0000 
Elevation  0.170 -0.0833  0.0483 -0.5110 -0.136 -0.227 -0.1619 
          Elevation 
MIR          0.1699 
Rainf       -0.0833 
MaxTemp      0.0483 
MinTemp     -0.5110 
RH0600      -0.1356 
RH1500      -0.2265 
Sunsh       -0.1619 
Elevation    1.0000 
----------------------------------------------------  
Month: 12 
             MIR  Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
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MIR        1.000 -0.181  0.2670  -0.359 -0.308 -0.380  0.346 
Rainf     -0.181  1.000 -0.5155   0.404  0.345  0.452 -0.305 
MaxTemp    0.267 -0.515  1.0000  -0.559 -0.710 -0.777  0.553 
MinTemp   -0.359  0.404 -0.5588   1.000  0.649  0.719 -0.418 
RH0600    -0.308  0.345 -0.7097   0.649  1.000  0.813 -0.716 
RH1500    -0.380  0.452 -0.7771   0.719  0.813  1.000 -0.637 
Sunsh      0.346 -0.305  0.5534  -0.418 -0.716 -0.637  1.000 
Elevation  0.120 -0.237  0.0775  -0.418 -0.249 -0.342  0.127 
          Elevation 
MIR          0.1196 
Rainf       -0.2370 
MaxTemp      0.0775 
MinTemp     -0.4176 
RH0600      -0.2493 
RH1500      -0.3419 
Sunsh        0.1269 
Elevation    1.0000 
----------------------------------------------------  
Month: 13 
             MIR  Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.000 -0.170   0.137  -0.245 -0.161 -0.293  0.278 
Rainf     -0.170  1.000  -0.400   0.215  0.350  0.364 -0.435 
MaxTemp    0.137 -0.400   1.000  -0.661 -0.676 -0.756  0.559 
MinTemp   -0.245  0.215  -0.661   1.000  0.600  0.697 -0.538 
RH0600    -0.161  0.350  -0.676   0.600  1.000  0.819 -0.712 
RH1500    -0.293  0.364  -0.756   0.697  0.819  1.000 -0.619 
Sunsh      0.278 -0.435   0.559  -0.538 -0.712 -0.619  1.000 
Elevation  0.243 -0.129   0.217  -0.397 -0.302 -0.450  0.261 
          Elevation 
MIR           0.243 
Rainf        -0.129 
MaxTemp       0.217 
MinTemp      -0.397 
RH0600       -0.302 
RH1500       -0.450 
Sunsh         0.261 
Elevation     1.000 
----------------------------------------------------  
Month: 14 
             MIR    Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.000 -0.15095   0.144 -0.2952 -0.290 -0.436  0.472 
Rainf     -0.151  1.00000  -0.460  0.0943  0.557  0.440 -0.463 
MaxTemp    0.144 -0.45957   1.000 -0.3649 -0.622 -0.669  0.576 
MinTemp   -0.295  0.09425  -0.365  1.0000  0.402  0.439 -0.316 
RH0600    -0.290  0.55712  -0.622  0.4018  1.000  0.790 -0.834 
RH1500    -0.436  0.44013  -0.669  0.4391  0.790  1.000 -0.698 
Sunsh      0.472 -0.46266   0.576 -0.3163 -0.834 -0.698  1.000 
Elevation  0.239 -0.00198   0.214 -0.4327 -0.325 -0.456  0.303 
          Elevation 
MIR         0.23872 
Rainf      -0.00198 
MaxTemp     0.21397 
MinTemp    -0.43273 
RH0600     -0.32538 
RH1500     -0.45565 
Sunsh       0.30260 
Elevation   1.00000 
----------------------------------------------------  
Month: 15 
              MIR  Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.148   0.276  0.0223 -0.295 -0.448  0.3490 
Rainf     -0.1481  1.000  -0.559 -0.4477  0.521  0.426 -0.3784 
MaxTemp    0.2762 -0.559   1.000  0.4581 -0.799 -0.834  0.5588 
MinTemp    0.0223 -0.448   0.458  1.0000 -0.471 -0.268  0.4145 
RH0600    -0.2951  0.521  -0.799 -0.4709  1.000  0.819 -0.6926 
RH1500    -0.4477  0.426  -0.834 -0.2682  0.819  1.000 -0.5123 
Sunsh      0.3490 -0.378   0.559  0.4145 -0.693 -0.512  1.0000 
Elevation  0.1318  0.107   0.157 -0.3116 -0.180 -0.372 -0.0507 
          Elevation 
MIR          0.1318 
Rainf        0.1067 
MaxTemp      0.1573 
MinTemp     -0.3116 
RH0600      -0.1797 
RH1500      -0.3718 
Sunsh       -0.0507 
Elevation    1.0000 
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----------------------------------------------------  
Month: 16 
             MIR   Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.000 -0.1324   0.169   0.138 -0.102 -0.259  0.211 
Rainf     -0.132  1.0000  -0.573  -0.469  0.529  0.484 -0.477 
MaxTemp    0.169 -0.5732   1.000   0.693 -0.786 -0.832  0.502 
MinTemp    0.138 -0.4694   0.693   1.000 -0.637 -0.493  0.488 
RH0600    -0.102  0.5293  -0.786  -0.637  1.000  0.852 -0.631 
RH1500    -0.259  0.4838  -0.832  -0.493  0.852  1.000 -0.511 
Sunsh      0.211 -0.4771   0.502   0.488 -0.631 -0.511  1.000 
Elevation  0.204  0.0128   0.128  -0.265 -0.152 -0.319  0.109 
          Elevation 
MIR          0.2036 
Rainf        0.0128 
MaxTemp      0.1276 
MinTemp     -0.2649 
RH0600      -0.1523 
RH1500      -0.3191 
Sunsh        0.1093 
Elevation    1.0000 
----------------------------------------------------  
Month: 17 
               MIR   Rainf MaxTemp MinTemp  RH0600   RH1500  Sunsh 
MIR        1.00000 -0.2587 -0.0886 -0.1414  0.1042 -0.00438  0.114 
Rainf     -0.25869  1.0000 -0.4772  0.0184  0.3422  0.58533 -0.418 
MaxTemp   -0.08858 -0.4772  1.0000  0.5708 -0.7341 -0.80975  0.577 
MinTemp   -0.14141  0.0184  0.5708  1.0000 -0.5452 -0.41791  0.420 
RH0600     0.10418  0.3422 -0.7341 -0.5452  1.0000  0.79061 -0.603 
RH1500    -0.00438  0.5853 -0.8097 -0.4179  0.7906  1.00000 -0.660 
Sunsh      0.11446 -0.4178  0.5766  0.4199 -0.6026 -0.66010  1.000 
Elevation  0.38710 -0.2857  0.0254 -0.3988 -0.0952 -0.22957  0.100 
          Elevation 
MIR          0.3871 
Rainf       -0.2857 
MaxTemp      0.0254 
MinTemp     -0.3988 
RH0600      -0.0952 
RH1500      -0.2296 
Sunsh        0.1003 
Elevation    1.0000 
----------------------------------------------------  
Month: 18 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.1707 -0.0738 -0.1566  0.0656 -0.1392  0.1522 
Rainf      0.1707  1.0000 -0.1507  0.0318  0.1165  0.2828 -0.4073 
MaxTemp   -0.0738 -0.1507  1.0000  0.2092 -0.4648 -0.6858  0.5672 
MinTemp   -0.1566  0.0318  0.2092  1.0000 -0.3694  0.0485  0.0368 
RH0600     0.0656  0.1165 -0.4648 -0.3694  1.0000  0.5013 -0.6791 
RH1500    -0.1392  0.2828 -0.6858  0.0485  0.5013  1.0000 -0.6757 
Sunsh      0.1522 -0.4073  0.5672  0.0368 -0.6791 -0.6757  1.0000 
Elevation  0.2870 -0.2151  0.0632 -0.4416  0.0686 -0.3496  0.1991 
          Elevation 
MIR          0.2870 
Rainf       -0.2151 
MaxTemp      0.0632 
MinTemp     -0.4416 
RH0600       0.0686 
RH1500      -0.3496 
Sunsh        0.1991 
Elevation    1.0000 
----------------------------------------------------  
Month: 19 
              MIR    Rainf MaxTemp MinTemp   RH0600  RH1500   Sunsh 
MIR        1.0000  0.13536  0.1328 -0.0163  0.01248 -0.2811  0.1571 
Rainf      0.1354  1.00000  0.1085  0.0825 -0.00881 -0.0248  0.0962 
MaxTemp    0.1328  0.10849  1.0000  0.3444 -0.41023 -0.6632  0.3969 
MinTemp   -0.0163  0.08245  0.3444  1.0000 -0.52403 -0.0190  0.2314 
RH0600     0.0125 -0.00881 -0.4102 -0.5240  1.00000  0.3967 -0.4841 
RH1500    -0.2811 -0.02477 -0.6632 -0.0190  0.39670  1.0000 -0.3436 
Sunsh      0.1571  0.09623  0.3969  0.2314 -0.48414 -0.3436  1.0000 
Elevation  0.1637  0.00315  0.0542 -0.4793  0.10295 -0.3669  0.0276 
          Elevation 
MIR         0.16366 
Rainf       0.00315 
MaxTemp     0.05419 
MinTemp    -0.47932 
RH0600      0.10295 
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RH1500     -0.36693 
Sunsh       0.02763 
Elevation   1.00000 
----------------------------------------------------  
Month: 20 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.3969  0.3080  0.1217  0.2345 -0.2769  0.4274 
Rainf      0.3969  1.0000  0.6058  0.2587  0.0955 -0.3533  0.5661 
MaxTemp    0.3080  0.6058  1.0000  0.5061 -0.2708 -0.5833  0.3696 
MinTemp    0.1217  0.2587  0.5061  1.0000 -0.4578 -0.0623  0.0264 
RH0600     0.2345  0.0955 -0.2708 -0.4578  1.0000  0.3342 -0.0349 
RH1500    -0.2769 -0.3533 -0.5833 -0.0623  0.3342  1.0000 -0.3069 
Sunsh      0.4274  0.5661  0.3696  0.0264 -0.0349 -0.3069  1.0000 
Elevation  0.0907  0.1546  0.0368 -0.4116  0.1346 -0.3989  0.1210 
          Elevation 
MIR          0.0907 
Rainf        0.1546 
MaxTemp      0.0368 
MinTemp     -0.4116 
RH0600       0.1346 
RH1500      -0.3989 
Sunsh        0.1210 
Elevation    1.0000 
----------------------------------------------------  
Month: 21 
              MIR   Rainf MaxTemp MinTemp RH0600  RH1500   Sunsh 
MIR        1.0000  0.1170  0.1774 -0.0708  0.279 -0.3516  0.3742 
Rainf      0.1170  1.0000  0.1884 -0.4026  0.279 -0.3310 -0.0287 
MaxTemp    0.1774  0.1884  1.0000  0.2711 -0.240 -0.6918  0.3451 
MinTemp   -0.0708 -0.4026  0.2711  1.0000 -0.454  0.0728  0.1320 
RH0600     0.2786  0.2794 -0.2401 -0.4542  1.000  0.2105 -0.2138 
RH1500    -0.3516 -0.3310 -0.6918  0.0728  0.211  1.0000 -0.3204 
Sunsh      0.3742 -0.0287  0.3451  0.1320 -0.214 -0.3204  1.0000 
Elevation  0.1130  0.2696  0.0506 -0.4563  0.198 -0.2950 -0.0689 
          Elevation 
MIR          0.1130 
Rainf        0.2696 
MaxTemp      0.0506 
MinTemp     -0.4563 
RH0600       0.1979 
RH1500      -0.2950 
Sunsh       -0.0689 
Elevation    1.0000 
----------------------------------------------------  
Month: 22 
             MIR  Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.000 -0.164  0.2825  -0.125 -0.2814 -0.489  0.4689 
Rainf     -0.164  1.000 -0.3643  -0.317  0.4180  0.335 -0.4456 
MaxTemp    0.282 -0.364  1.0000   0.332 -0.6157 -0.825  0.5697 
MinTemp   -0.125 -0.317  0.3317   1.000 -0.3904 -0.125  0.3585 
RH0600    -0.281  0.418 -0.6157  -0.390  1.0000  0.707 -0.5124 
RH1500    -0.489  0.335 -0.8252  -0.125  0.7071  1.000 -0.5017 
Sunsh      0.469 -0.446  0.5697   0.358 -0.5124 -0.502  1.0000 
Elevation  0.140  0.123  0.0507  -0.449 -0.0031 -0.172 -0.0385 
          Elevation 
MIR          0.1396 
Rainf        0.1226 
MaxTemp      0.0507 
MinTemp     -0.4489 
RH0600      -0.0031 
RH1500      -0.1721 
Sunsh       -0.0385 
Elevation    1.0000 
----------------------------------------------------  
Month: 23 
             MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.000 -0.1935  0.2079 -0.4262 -0.252 -0.382  0.3204 
Rainf     -0.194  1.0000 -0.5460  0.0865  0.385  0.537 -0.3195 
MaxTemp    0.208 -0.5460  1.0000 -0.2493 -0.724 -0.859  0.6218 
MinTemp   -0.426  0.0865 -0.2493  1.0000  0.281  0.489 -0.1229 
RH0600    -0.252  0.3848 -0.7245  0.2812  1.000  0.799 -0.5759 
RH1500    -0.382  0.5372 -0.8590  0.4892  0.799  1.000 -0.5898 
Sunsh      0.320 -0.3195  0.6218 -0.1229 -0.576 -0.590  1.0000 
Elevation  0.290 -0.0819  0.0487 -0.4830 -0.146 -0.228 -0.0154 
          Elevation 
MIR          0.2903 
Rainf       -0.0819 
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MaxTemp      0.0487 
MinTemp     -0.4830 
RH0600      -0.1462 
RH1500      -0.2281 
Sunsh       -0.0154 
Elevation    1.0000 
----------------------------------------------------  
Month: 24 
              MIR    Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.15583  0.0999  -0.336 -0.236 -0.332  0.4131 
Rainf     -0.1558  1.00000 -0.2831   0.293  0.413  0.430 -0.2410 
MaxTemp    0.0999 -0.28310  1.0000  -0.397 -0.691 -0.743  0.6141 
MinTemp   -0.3356  0.29339 -0.3966   1.000  0.620  0.760 -0.3332 
RH0600    -0.2363  0.41271 -0.6913   0.620  1.000  0.823 -0.6383 
RH1500    -0.3322  0.42971 -0.7435   0.760  0.823  1.000 -0.5389 
Sunsh      0.4131 -0.24104  0.6141  -0.333 -0.638 -0.539  1.0000 
Elevation  0.1852  0.00829  0.0313  -0.367 -0.199 -0.314  0.0997 
          Elevation 
MIR         0.18523 
Rainf       0.00829 
MaxTemp     0.03133 
MinTemp    -0.36711 
RH0600     -0.19931 
RH1500     -0.31351 
Sunsh       0.09971 
Elevation   1.00000 
----------------------------------------------------  
Month: 25 
             MIR  Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.000 -0.337  0.1408  -0.223 -0.356 -0.397  0.544 
Rainf     -0.337  1.000 -0.3621   0.598  0.496  0.538 -0.391 
MaxTemp    0.141 -0.362  1.0000  -0.463 -0.545 -0.644  0.301 
MinTemp   -0.223  0.598 -0.4633   1.000  0.545  0.694 -0.471 
RH0600    -0.356  0.496 -0.5454   0.545  1.000  0.772 -0.648 
RH1500    -0.397  0.538 -0.6438   0.694  0.772  1.000 -0.592 
Sunsh      0.544 -0.391  0.3009  -0.471 -0.648 -0.592  1.000 
Elevation  0.267 -0.281  0.0912  -0.395 -0.275 -0.356  0.345 
          Elevation 
MIR          0.2672 
Rainf       -0.2812 
MaxTemp      0.0912 
MinTemp     -0.3946 
RH0600      -0.2754 
RH1500      -0.3558 
Sunsh        0.3451 
Elevation    1.0000 
----------------------------------------------------  
Month: 26 
             MIR   Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.000 -0.2688   0.145  -0.340 -0.371 -0.483  0.411 
Rainf     -0.269  1.0000  -0.563   0.132  0.471  0.509 -0.316 
MaxTemp    0.145 -0.5635   1.000  -0.491 -0.650 -0.734  0.379 
MinTemp   -0.340  0.1324  -0.491   1.000  0.434  0.616 -0.388 
RH0600    -0.371  0.4706  -0.650   0.434  1.000  0.758 -0.633 
RH1500    -0.483  0.5094  -0.734   0.616  0.758  1.000 -0.553 
Sunsh      0.411 -0.3156   0.379  -0.388 -0.633 -0.553  1.000 
Elevation  0.242 -0.0536   0.213  -0.472 -0.280 -0.463  0.175 
          Elevation 
MIR          0.2415 
Rainf       -0.0536 
MaxTemp      0.2132 
MinTemp     -0.4722 
RH0600      -0.2795 
RH1500      -0.4631 
Sunsh        0.1746 
Elevation    1.0000 
----------------------------------------------------  
Month: 27 
               MIR    Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.00000 -0.00638   0.335   0.143 -0.437 -0.525  0.4308 
Rainf     -0.00638  1.00000  -0.470  -0.584  0.383  0.214 -0.1994 
MaxTemp    0.33535 -0.46968   1.000   0.473 -0.776 -0.809  0.3954 
MinTemp    0.14338 -0.58439   0.473   1.000 -0.490 -0.247  0.3547 
RH0600    -0.43711  0.38302  -0.776  -0.490  1.000  0.813 -0.4013 
RH1500    -0.52526  0.21446  -0.809  -0.247  0.813  1.000 -0.3365 
Sunsh      0.43077 -0.19939   0.395   0.355 -0.401 -0.336  1.0000 
Elevation  0.22639  0.22333   0.129  -0.319 -0.205 -0.352  0.0942 
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          Elevation 
MIR          0.2264 
Rainf        0.2233 
MaxTemp      0.1287 
MinTemp     -0.3192 
RH0600      -0.2055 
RH1500      -0.3524 
Sunsh        0.0942 
Elevation    1.0000 
----------------------------------------------------  
Month : 28 
              MIR  Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.139  0.0830  0.0738 -0.206 -0.276  0.0913 
Rainf     -0.1387  1.000 -0.6436 -0.3821  0.600  0.554 -0.5096 
MaxTemp    0.0830 -0.644  1.0000  0.6204 -0.797 -0.843  0.4979 
MinTemp    0.0738 -0.382  0.6204  1.0000 -0.591 -0.400  0.4835 
RH0600    -0.2062  0.600 -0.7967 -0.5912  1.000  0.833 -0.5649 
RH1500    -0.2764  0.554 -0.8429 -0.4003  0.833  1.000 -0.4263 
Sunsh      0.0913 -0.510  0.4979  0.4835 -0.565 -0.426  1.0000 
Elevation  0.3287 -0.131  0.0708 -0.2927 -0.169 -0.302 -0.0351 
          Elevation 
MIR          0.3287 
Rainf       -0.1308 
MaxTemp      0.0708 
MinTemp     -0.2927 
RH0600      -0.1690 
RH1500      -0.3017 
Sunsh       -0.0351 
Elevation    1.0000 
----------------------------------------------------  
Month: 29 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.0000  0.1328 -0.0125  -0.076 -0.0941 -0.230  0.0387 
Rainf      0.1328  1.0000 -0.3768  -0.370  0.3036  0.323 -0.5491 
MaxTemp   -0.0125 -0.3768  1.0000   0.555 -0.7093 -0.798  0.5562 
MinTemp   -0.0760 -0.3703  0.5547   1.000 -0.4989 -0.338  0.5469 
RH0600    -0.0941  0.3036 -0.7093  -0.499  1.0000  0.752 -0.6482 
RH1500    -0.2305  0.3227 -0.7976  -0.338  0.7524  1.000 -0.4826 
Sunsh      0.0387 -0.5491  0.5562   0.547 -0.6482 -0.483  1.0000 
Elevation  0.3280  0.0118  0.0150  -0.390 -0.1229 -0.259 -0.0842 
          Elevation 
MIR          0.3280 
Rainf        0.0118 
MaxTemp      0.0150 
MinTemp     -0.3898 
RH0600      -0.1229 
RH1500      -0.2594 
Sunsh       -0.0842 
Elevation    1.0000 
----------------------------------------------------  
Month: 30 
              MIR  Rainf MaxTemp MinTemp  RH0600 RH1500  Sunsh 
MIR        1.0000 -0.286  0.0793   0.103 -0.2258 -0.371  0.409 
Rainf     -0.2861  1.000 -0.3313   0.061  0.1406  0.562 -0.467 
MaxTemp    0.0793 -0.331  1.0000   0.299 -0.5396 -0.717  0.553 
MinTemp    0.1027  0.061  0.2991   1.000 -0.3411 -0.211  0.191 
RH0600    -0.2258  0.141 -0.5396  -0.341  1.0000  0.608 -0.542 
RH1500    -0.3706  0.562 -0.7166  -0.211  0.6078  1.000 -0.718 
Sunsh      0.4088 -0.467  0.5532   0.191 -0.5420 -0.718  1.000 
Elevation  0.2424 -0.357  0.0589  -0.425 -0.0992 -0.310  0.278 
          Elevation 
MIR          0.2424 
Rainf       -0.3571 
MaxTemp      0.0589 
MinTemp     -0.4249 
RH0600      -0.0992 
RH1500      -0.3100 
Sunsh        0.2781 
Elevation    1.0000 
----------------------------------------------------  
Month: 31 
             MIR    Rainf MaxTemp MinTemp  RH0600  RH1500    Sunsh 
MIR        1.000  0.14047   0.356  0.2270 -0.2547 -0.6065  0.51924 
Rainf      0.140  1.00000   0.207  0.0837  0.0598  0.0529 -0.00229 
MaxTemp    0.356  0.20674   1.000  0.2645 -0.4241 -0.6935  0.58173 
MinTemp    0.227  0.08369   0.265  1.0000  0.0252 -0.1245  0.32328 
RH0600    -0.255  0.05978  -0.424  0.0252  1.0000  0.5256 -0.40771 
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RH1500    -0.606  0.05286  -0.693 -0.1245  0.5256  1.0000 -0.60377 
Sunsh      0.519 -0.00229   0.582  0.3233 -0.4077 -0.6038  1.00000 
Elevation  0.153  0.03320   0.106 -0.3982 -0.1440 -0.3402  0.22213 
          Elevation 
MIR          0.1531 
Rainf        0.0332 
MaxTemp      0.1057 
MinTemp     -0.3982 
RH0600      -0.1440 
RH1500      -0.3402 
Sunsh        0.2221 
Elevation    1.0000 
----------------------------------------------------  
Month: 32 
              MIR   Rainf  MaxTemp  MinTemp  RH0600   RH1500   Sunsh 
MIR        1.0000  0.3598  0.16805  0.11377  0.0681 -0.28249  0.3622 
Rainf      0.3598  1.0000  0.38377  0.12644  0.1787 -0.08094  0.3484 
MaxTemp    0.1681  0.3838  1.00000  0.33011 -0.3248 -0.56586  0.2690 
MinTemp    0.1138  0.1264  0.33011  1.00000  0.0520  0.00864  0.4188 
RH0600     0.0681  0.1787 -0.32482  0.05198  1.0000  0.35594 -0.0509 
RH1500    -0.2825 -0.0809 -0.56586  0.00864  0.3559  1.00000  0.0350 
Sunsh      0.3622  0.3484  0.26896  0.41885 -0.0509  0.03497  1.0000 
Elevation  0.2347  0.1080  0.00117 -0.39239 -0.0322 -0.27811 -0.1183 
          Elevation 
MIR         0.23467 
Rainf       0.10796 
MaxTemp     0.00117 
MinTemp    -0.39239 
RH0600     -0.03221 
RH1500     -0.27811 
Sunsh      -0.11828 
Elevation   1.00000 
----------------------------------------------------  
Month: 33 
              MIR   Rainf MaxTemp  MinTemp  RH0600   RH1500   Sunsh 
MIR        1.0000  0.1955  0.2281  0.07118 -0.0589 -0.42351  0.4467 
Rainf      0.1955  1.0000  0.0409 -0.43368  0.2634 -0.38412 -0.1231 
MaxTemp    0.2281  0.0409  1.0000  0.12645 -0.3464 -0.68544  0.3804 
MinTemp    0.0712 -0.4337  0.1265  1.00000 -0.1137  0.00634  0.2759 
RH0600    -0.0589  0.2634 -0.3464 -0.11371  1.0000  0.28354 -0.3698 
RH1500    -0.4235 -0.3841 -0.6854  0.00634  0.2835  1.00000 -0.2625 
Sunsh      0.4467 -0.1231  0.3804  0.27594 -0.3698 -0.26247  1.0000 
Elevation  0.2127  0.4342  0.0116 -0.44020  0.0685 -0.26551 -0.0682 
          Elevation 
MIR          0.2127 
Rainf        0.4342 
MaxTemp      0.0116 
MinTemp     -0.4402 
RH0600       0.0685 
RH1500      -0.2655 
Sunsh       -0.0682 
Elevation    1.0000 
----------------------------------------------------  
Month: 34 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500  Sunsh 
MIR        1.0000  0.0519   0.196  0.0455 -0.3192 -0.5407  0.357 
Rainf      0.0519  1.0000  -0.316 -0.1810  0.2723  0.2065 -0.378 
MaxTemp    0.1962 -0.3162   1.000  0.1548 -0.4321 -0.7054  0.478 
MinTemp    0.0455 -0.1810   0.155  1.0000 -0.1579  0.0335  0.261 
RH0600    -0.3192  0.2723  -0.432 -0.1579  1.0000  0.5452 -0.446 
RH1500    -0.5407  0.2065  -0.705  0.0335  0.5452  1.0000 -0.483 
Sunsh      0.3574 -0.3784   0.478  0.2608 -0.4463 -0.4827  1.000 
Elevation  0.1794  0.1159  -0.022 -0.4733 -0.0837 -0.2260 -0.104 
          Elevation 
MIR          0.1794 
Rainf        0.1159 
MaxTemp     -0.0220 
MinTemp     -0.4733 
RH0600      -0.0837 
RH1500      -0.2260 
Sunsh       -0.1035 
Elevation    1.0000 
----------------------------------------------------  
Month: 35 
             MIR  Rainf  MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.000 -0.312  0.23814 -0.2018 -0.421 -0.542  0.2948 
Rainf     -0.312  1.000 -0.45466  0.2317  0.486  0.610 -0.5063 
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MaxTemp    0.238 -0.455  1.00000 -0.1732 -0.668 -0.752  0.5444 
MinTemp   -0.202  0.232 -0.17322  1.0000  0.338  0.464  0.0807 
RH0600    -0.421  0.486 -0.66754  0.3375  1.000  0.831 -0.4523 
RH1500    -0.542  0.610 -0.75191  0.4637  0.831  1.000 -0.4568 
Sunsh      0.295 -0.506  0.54439  0.0807 -0.452 -0.457  1.0000 
Elevation  0.224 -0.341  0.00369 -0.4987 -0.161 -0.232 -0.0263 
          Elevation 
MIR         0.22366 
Rainf      -0.34063 
MaxTemp     0.00369 
MinTemp    -0.49866 
RH0600     -0.16101 
RH1500     -0.23218 
Sunsh      -0.02626 
Elevation   1.00000 
----------------------------------------------------  
Month: 36 
             MIR   Rainf  MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.000 -0.2018  0.22063  -0.202 -0.295 -0.482  0.4626 
Rainf     -0.202  1.0000 -0.53102   0.202  0.396  0.485 -0.3868 
MaxTemp    0.221 -0.5310  1.00000  -0.483 -0.700 -0.730  0.5802 
MinTemp   -0.202  0.2016 -0.48255   1.000  0.511  0.667 -0.2890 
RH0600    -0.295  0.3957 -0.69998   0.511  1.000  0.841 -0.6674 
RH1500    -0.482  0.4851 -0.73021   0.667  0.841  1.000 -0.6083 
Sunsh      0.463 -0.3868  0.58024  -0.289 -0.667 -0.608  1.0000 
Elevation  0.233 -0.0953 -0.00484  -0.448 -0.292 -0.375  0.0902 
          Elevation 
MIR         0.23312 
Rainf      -0.09533 
MaxTemp    -0.00484 
MinTemp    -0.44787 
RH0600     -0.29212 
RH1500     -0.37483 
Sunsh       0.09020 
Elevation   1.00000 
----------------------------------------------------  
Month : 37 
               MIR  Rainf  MaxTemp MinTemp  RH0600 RH1500  Sunsh 
MIR        1.00000 -0.138  0.00524  -0.041 -0.0697 -0.191  0.401 
Rainf     -0.13830  1.000 -0.21946   0.413  0.4720  0.499 -0.474 
MaxTemp    0.00524 -0.219  1.00000  -0.400 -0.5659 -0.626  0.471 
MinTemp   -0.04098  0.413 -0.40043   1.000  0.5059  0.690 -0.417 
RH0600    -0.06971  0.472 -0.56595   0.506  1.0000  0.777 -0.690 
RH1500    -0.19074  0.499 -0.62641   0.690  0.7765  1.000 -0.664 
Sunsh      0.40100 -0.474  0.47138  -0.417 -0.6902 -0.664  1.000 
Elevation  0.12532 -0.123  0.07687  -0.421 -0.3184 -0.432  0.283 
          Elevation 
MIR          0.1253 
Rainf       -0.1234 
MaxTemp      0.0769 
MinTemp     -0.4213 
RH0600      -0.3184 
RH1500      -0.4321 
Sunsh        0.2826 
Elevation    1.0000 
----------------------------------------------------  
Month : 38 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.1831  0.0602 -0.0527 -0.196 -0.270  0.2842 
Rainf     -0.1831  1.0000 -0.4421 -0.1757  0.563  0.319 -0.4097 
MaxTemp    0.0602 -0.4421  1.0000 -0.1177 -0.699 -0.713  0.4177 
MinTemp   -0.0527 -0.1757 -0.1177  1.0000  0.168  0.407  0.0877 
RH0600    -0.1965  0.5635 -0.6992  0.1677  1.000  0.756 -0.3694 
RH1500    -0.2701  0.3190 -0.7126  0.4069  0.756  1.000 -0.2339 
Sunsh      0.2842 -0.4097  0.4177  0.0877 -0.369 -0.234  1.0000 
Elevation  0.1637  0.0207  0.1338 -0.4683 -0.263 -0.472 -0.0624 
          Elevation 
MIR          0.1637 
Rainf        0.0207 
MaxTemp      0.1338 
MinTemp     -0.4683 
RH0600      -0.2630 
RH1500      -0.4719 
Sunsh       -0.0624 
Elevation    1.0000 
----------------------------------------------------  
Month : 39 
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              MIR   Rainf MaxTemp MinTemp RH0600  RH1500  Sunsh 
MIR        1.0000 -0.1022  0.0853 -0.0709 -0.170 -0.2598  0.385 
Rainf     -0.1022  1.0000 -0.5921 -0.5161  0.518  0.4314 -0.357 
MaxTemp    0.0853 -0.5921  1.0000  0.2950 -0.756 -0.8000  0.466 
MinTemp   -0.0709 -0.5161  0.2950  1.0000 -0.283 -0.0588  0.146 
RH0600    -0.1696  0.5183 -0.7562 -0.2830  1.000  0.8208 -0.581 
RH1500    -0.2598  0.4314 -0.8000 -0.0588  0.821  1.0000 -0.520 
Sunsh      0.3852 -0.3569  0.4663  0.1462 -0.581 -0.5198  1.000 
Elevation  0.1386 -0.0155  0.1477 -0.3914 -0.211 -0.4153  0.144 
          Elevation 
MIR          0.1386 
Rainf       -0.0155 
MaxTemp      0.1477 
MinTemp     -0.3914 
RH0600      -0.2111 
RH1500      -0.4153 
Sunsh        0.1441 
Elevation    1.0000 
----------------------------------------------------  
Month: 40 
                MIR     Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.000000  0.000949 -0.0187 -0.0063 -0.100 -0.191  0.206 
Rainf      0.000949  1.000000 -0.5798 -0.3711  0.546  0.488 -0.410 
MaxTemp   -0.018740 -0.579771  1.0000  0.5464 -0.801 -0.791  0.443 
MinTemp   -0.006298 -0.371148  0.5464  1.0000 -0.515 -0.306  0.308 
RH0600    -0.100315  0.546273 -0.8014 -0.5152  1.000  0.834 -0.555 
RH1500    -0.191233  0.487557 -0.7915 -0.3057  0.834  1.000 -0.482 
Sunsh      0.206364 -0.410415  0.4430  0.3083 -0.555 -0.482  1.000 
Elevation  0.153387 -0.064850  0.0993 -0.2998 -0.220 -0.352  0.126 
          Elevation 
MIR          0.1534 
Rainf       -0.0648 
MaxTemp      0.0993 
MinTemp     -0.2998 
RH0600      -0.2204 
RH1500      -0.3517 
Sunsh        0.1259 
Elevation    1.0000 
----------------------------------------------------  
Month : 41 
              MIR   Rainf MaxTemp MinTemp RH0600  RH1500   Sunsh 
MIR        1.0000  0.2649 -0.2255 -0.0753  0.082 -0.0177  0.0794 
Rainf      0.2649  1.0000 -0.2811 -0.0811  0.153  0.2035 -0.2665 
MaxTemp   -0.2255 -0.2811  1.0000  0.4123 -0.735 -0.7598  0.5696 
MinTemp   -0.0753 -0.0811  0.4123  1.0000 -0.379 -0.2562  0.4365 
RH0600     0.0820  0.1527 -0.7349 -0.3794  1.000  0.7978 -0.7010 
RH1500    -0.0177  0.2035 -0.7598 -0.2562  0.798  1.0000 -0.6506 
Sunsh      0.0794 -0.2665  0.5696  0.4365 -0.701 -0.6506  1.0000 
Elevation  0.2437  0.0858  0.0814 -0.3858 -0.179 -0.3417  0.0895 
          Elevation 
MIR          0.2437 
Rainf        0.0858 
MaxTemp      0.0814 
MinTemp     -0.3858 
RH0600      -0.1795 
RH1500      -0.3417 
Sunsh        0.0895 
Elevation    1.0000 
----------------------------------------------------  
Month : 42 
              MIR   Rainf MaxTemp   MinTemp  RH0600  RH1500     Sunsh 
MIR        1.0000  0.0204 -0.0765  0.042021  0.0134 -0.1110  0.116317 
Rainf      0.0204  1.0000 -0.1473  0.028207  0.0257  0.2334 -0.295281 
MaxTemp   -0.0765 -0.1473  1.0000  0.214915 -0.5581 -0.6290  0.492556 
MinTemp    0.0420  0.0282  0.2149  1.000000 -0.1100  0.0618  0.000932 
RH0600     0.0134  0.0257 -0.5581 -0.110027  1.0000  0.6093 -0.497681 
RH1500    -0.1110  0.2334 -0.6290  0.061773  0.6093  1.0000 -0.653141 
Sunsh      0.1163 -0.2953  0.4926  0.000932 -0.4977 -0.6531  1.000000 
Elevation  0.1548 -0.2340  0.0551 -0.437082 -0.2087 -0.3687  0.197578 
          Elevation 
MIR          0.1548 
Rainf       -0.2340 
MaxTemp      0.0551 
MinTemp     -0.4371 
RH0600      -0.2087 
RH1500      -0.3687 
Sunsh        0.1976 
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Elevation    1.0000 
----------------------------------------------------  
Month : 43 
               MIR   Rainf MaxTemp MinTemp   RH0600  RH1500   Sunsh 
MIR        1.00000  0.1927  0.0825  0.0904 -0.00056 -0.2648  0.1360 
Rainf      0.19270  1.0000  0.4331  0.1542  0.06581 -0.4503  0.0383 
MaxTemp    0.08254  0.4331  1.0000  0.1805 -0.21124 -0.5820  0.3360 
MinTemp    0.09035  0.1542  0.1805  1.0000 -0.09772 -0.0827  0.3023 
RH0600    -0.00056  0.0658 -0.2112 -0.0977  1.00000  0.3369 -0.1567 
RH1500    -0.26475 -0.4503 -0.5820 -0.0827  0.33689  1.0000 -0.1844 
Sunsh      0.13599  0.0383  0.3360  0.3023 -0.15670 -0.1844  1.0000 
Elevation  0.16293  0.1443 -0.0188 -0.4306 -0.07869 -0.3415 -0.0714 
          Elevation 
MIR          0.1629 
Rainf        0.1443 
MaxTemp     -0.0188 
MinTemp     -0.4306 
RH0600      -0.0787 
RH1500      -0.3415 
Sunsh       -0.0714 
Elevation    1.0000 
----------------------------------------------------  
Month : 44 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500     Sunsh 
MIR        1.0000  0.3074  0.1935  0.1032  0.0493 -0.2421  0.301210 
Rainf      0.3074  1.0000  0.5518  0.1734  0.0051 -0.3756  0.318496 
MaxTemp    0.1935  0.5518  1.0000  0.1805 -0.3232 -0.5664  0.334132 
MinTemp    0.1032  0.1734  0.1805  1.0000 -0.0196 -0.0199  0.280356 
RH0600     0.0493  0.0051 -0.3232 -0.0196  1.0000  0.4408 -0.019672 
RH1500    -0.2421 -0.3756 -0.5664 -0.0199  0.4408  1.0000 -0.154055 
Sunsh      0.3012  0.3185  0.3341  0.2804 -0.0197 -0.1541  1.000000 
Elevation  0.1613  0.1144  0.0929 -0.3768 -0.1000 -0.3836  0.000296 
          Elevation 
MIR        0.161280 
Rainf      0.114433 
MaxTemp    0.092875 
MinTemp   -0.376816 
RH0600    -0.100048 
RH1500    -0.383558 
Sunsh      0.000296 
Elevation  1.000000 
----------------------------------------------------  
Month : 45 
              MIR  Rainf MaxTemp MinTemp  RH0600  RH1500  Sunsh 
MIR        1.0000  0.360  0.1132 -0.0822  0.1473 -0.2967  0.390 
Rainf      0.3604  1.000  0.1808 -0.4435  0.2086 -0.4038  0.147 
MaxTemp    0.1132  0.181  1.0000  0.1020 -0.3509 -0.6916  0.410 
MinTemp   -0.0822 -0.443  0.1020  1.0000 -0.2511  0.0467  0.255 
RH0600     0.1473  0.209 -0.3509 -0.2511  1.0000  0.2311 -0.203 
RH1500    -0.2967 -0.404 -0.6916  0.0467  0.2311  1.0000 -0.318 
Sunsh      0.3897  0.147  0.4099  0.2547 -0.2032 -0.3180  1.000 
Elevation  0.1789  0.366 -0.0351 -0.4733  0.0366 -0.3129 -0.102 
          Elevation 
MIR          0.1789 
Rainf        0.3660 
MaxTemp     -0.0351 
MinTemp     -0.4733 
RH0600       0.0366 
RH1500      -0.3129 
Sunsh       -0.1025 
Elevation    1.0000 
----------------------------------------------------  
Month : 46 
              MIR   Rainf MaxTemp MinTemp RH0600  RH1500  Sunsh 
MIR        1.0000 -0.2036  0.1819 -0.0397 -0.134 -0.3790  0.186 
Rainf     -0.2036  1.0000 -0.4192 -0.0779  0.208  0.3722 -0.583 
MaxTemp    0.1819 -0.4192  1.0000  0.2393 -0.459 -0.7233  0.589 
MinTemp   -0.0397 -0.0779  0.2393  1.0000 -0.120  0.0335  0.332 
RH0600    -0.1344  0.2078 -0.4594 -0.1198  1.000  0.5057 -0.422 
RH1500    -0.3790  0.3722 -0.7233  0.0335  0.506  1.0000 -0.460 
Sunsh      0.1857 -0.5829  0.5895  0.3323 -0.422 -0.4603  1.000 
Elevation  0.1680 -0.0303  0.0041 -0.4601 -0.153 -0.2916 -0.081 
          Elevation 
MIR          0.1680 
Rainf       -0.0303 
MaxTemp      0.0041 
MinTemp     -0.4601 
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RH0600      -0.1530 
RH1500      -0.2916 
Sunsh       -0.0810 
Elevation    1.0000 
----------------------------------------------------  
Month : 47 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500  Sunsh 
MIR        1.0000 -0.0136  0.0798 -0.1187 -0.3023 -0.339  0.162 
Rainf     -0.0136  1.0000 -0.5333 -0.0813  0.4460  0.556 -0.587 
MaxTemp    0.0798 -0.5333  1.0000 -0.0422 -0.6637 -0.796  0.608 
MinTemp   -0.1187 -0.0813 -0.0422  1.0000  0.0352  0.219  0.126 
RH0600    -0.3023  0.4460 -0.6637  0.0352  1.0000  0.802 -0.562 
RH1500    -0.3391  0.5561 -0.7959  0.2187  0.8018  1.000 -0.599 
Sunsh      0.1621 -0.5868  0.6077  0.1261 -0.5619 -0.599  1.000 
Elevation  0.2221 -0.0389  0.0126 -0.4407 -0.1834 -0.241 -0.101 
          Elevation 
MIR          0.2221 
Rainf       -0.0389 
MaxTemp      0.0126 
MinTemp     -0.4407 
RH0600      -0.1834 
RH1500      -0.2411 
Sunsh       -0.1006 
Elevation    1.0000 
----------------------------------------------------  
Month : 48 
              MIR  Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.0000 -0.073 -0.0442  -0.202 -0.180 -0.326  0.349 
Rainf     -0.0730  1.000 -0.3861   0.433  0.499  0.556 -0.398 
MaxTemp   -0.0442 -0.386  1.0000  -0.447 -0.701 -0.760  0.630 
MinTemp   -0.2023  0.433 -0.4471   1.000  0.478  0.686 -0.387 
RH0600    -0.1797  0.499 -0.7013   0.478  1.000  0.870 -0.687 
RH1500    -0.3257  0.556 -0.7603   0.686  0.870  1.000 -0.719 
Sunsh      0.3488 -0.398  0.6297  -0.387 -0.687 -0.719  1.000 
Elevation  0.2701 -0.247 -0.0271  -0.430 -0.273 -0.337  0.195 
          Elevation 
MIR          0.2701 
Rainf       -0.2475 
MaxTemp     -0.0271 
MinTemp     -0.4302 
RH0600      -0.2733 
RH1500      -0.3373 
Sunsh        0.1953 
Elevation    1.0000 
----------------------------------------------------  
Month : 49 
              MIR    Rainf MaxTemp MinTemp  RH0600  RH1500  Sunsh 
MIR        1.0000  0.07919 -0.0958 -0.0218 -0.0276 -0.0976  0.184 
Rainf      0.0792  1.00000 -0.4315  0.0997  0.3471  0.3793 -0.259 
MaxTemp   -0.0958 -0.43150  1.0000 -0.4342 -0.6455 -0.6834  0.621 
MinTemp   -0.0218  0.09971 -0.4342  1.0000  0.4618  0.6653 -0.555 
RH0600    -0.0276  0.34713 -0.6455  0.4618  1.0000  0.8345 -0.793 
RH1500    -0.0976  0.37927 -0.6834  0.6653  0.8345  1.0000 -0.773 
Sunsh      0.1845 -0.25913  0.6215 -0.5552 -0.7934 -0.7731  1.000 
Elevation  0.2104 -0.00441  0.0779 -0.4099 -0.2934 -0.4226  0.240 
          Elevation 
MIR         0.21040 
Rainf      -0.00441 
MaxTemp     0.07787 
MinTemp    -0.40988 
RH0600     -0.29335 
RH1500     -0.42257 
Sunsh       0.24037 
Elevation   1.00000 
----------------------------------------------------  
Month : 50 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500  Sunsh 
MIR        1.0000  0.2150 -0.2604  -0.180 -0.0192 -0.0725  0.296 
Rainf      0.2150  1.0000 -0.4647   0.030  0.5712  0.5077 -0.437 
MaxTemp   -0.2604 -0.4647  1.0000  -0.248 -0.4233 -0.5843  0.278 
MinTemp   -0.1795  0.0300 -0.2476   1.000  0.1759  0.4391 -0.201 
RH0600    -0.0192  0.5712 -0.4233   0.176  1.0000  0.8032 -0.513 
RH1500    -0.0725  0.5077 -0.5843   0.439  0.8032  1.0000 -0.506 
Sunsh      0.2963 -0.4367  0.2776  -0.201 -0.5128 -0.5058  1.000 
Elevation  0.2308  0.0358  0.0506  -0.506 -0.3089 -0.4407  0.123 
          Elevation 
MIR          0.2308 
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Rainf        0.0358 
MaxTemp      0.0506 
MinTemp     -0.5061 
RH0600      -0.3089 
RH1500      -0.4407 
Sunsh        0.1227 
Elevation    1.0000 
----------------------------------------------------  
Month : 51 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.0810 -0.1378 -0.1548 -0.0706 -0.1574  0.2791 
Rainf      0.0810  1.0000 -0.5109 -0.6073  0.5513  0.4066 -0.0516 
MaxTemp   -0.1378 -0.5109  1.0000  0.2793 -0.7307 -0.7824  0.0073 
MinTemp   -0.1548 -0.6073  0.2793  1.0000 -0.3003 -0.0229 -0.1634 
RH0600    -0.0706  0.5513 -0.7307 -0.3003  1.0000  0.8345 -0.0250 
RH1500    -0.1574  0.4066 -0.7824 -0.0229  0.8345  1.0000 -0.0457 
Sunsh      0.2791 -0.0516  0.0073 -0.1634 -0.0250 -0.0457  1.0000 
Elevation  0.1831  0.1162  0.0833 -0.4088 -0.2293 -0.3777  0.0514 
          Elevation 
MIR          0.1831 
Rainf        0.1162 
MaxTemp      0.0833 
MinTemp     -0.4088 
RH0600      -0.2293 
RH1500      -0.3777 
Sunsh        0.0514 
Elevation    1.0000 
----------------------------------------------------  
Month : 52 
              MIR  Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.119 -0.1435 -0.0283  0.0623 -0.0813  0.1783 
Rainf      0.1185  1.000 -0.1319 -0.4525  0.2090 -0.1044 -0.1785 
MaxTemp   -0.1435 -0.132  1.0000  0.4724 -0.7684 -0.7877  0.3971 
MinTemp   -0.0283 -0.453  0.4724  1.0000 -0.5026 -0.2279  0.3269 
RH0600     0.0623  0.209 -0.7684 -0.5026  1.0000  0.7962 -0.4483 
RH1500    -0.0813 -0.104 -0.7877 -0.2279  0.7962  1.0000 -0.3166 
Sunsh      0.1783 -0.179  0.3971  0.3269 -0.4483 -0.3166  1.0000 
Elevation  0.2066  0.293  0.0722 -0.3444 -0.1848 -0.3271 -0.0666 
          Elevation 
MIR          0.2066 
Rainf        0.2932 
MaxTemp      0.0722 
MinTemp     -0.3444 
RH0600      -0.1848 
RH1500      -0.3271 
Sunsh       -0.0666 
Elevation    1.0000 
----------------------------------------------------  
Month : 53 
               MIR    Rainf MaxTemp MinTemp RH0600   RH1500   Sunsh 
MIR        1.00000  0.00461 -0.1545 -0.0723  0.173  0.00811  0.0525 
Rainf      0.00461  1.00000 -0.2190 -0.3203  0.429  0.46103 -0.2894 
MaxTemp   -0.15449 -0.21896  1.0000  0.3381 -0.631 -0.69550  0.4201 
MinTemp   -0.07227 -0.32035  0.3381  1.0000 -0.384 -0.09716  0.3035 
RH0600     0.17286  0.42932 -0.6312 -0.3840  1.000  0.64047 -0.5644 
RH1500     0.00811  0.46103 -0.6955 -0.0972  0.640  1.00000 -0.4437 
Sunsh      0.05254 -0.28939  0.4201  0.3035 -0.564 -0.44372  1.0000 
Elevation  0.21412 -0.23065  0.0328 -0.3784 -0.162 -0.35108 -0.0377 
          Elevation 
MIR          0.2141 
Rainf       -0.2306 
MaxTemp      0.0328 
MinTemp     -0.3784 
RH0600      -0.1624 
RH1500      -0.3511 
Sunsh       -0.0377 
Elevation    1.0000 
----------------------------------------------------  
Month : 54 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.1051 -0.0562  0.0784  0.0802 -0.1556  0.1873 
Rainf      0.1051  1.0000 -0.1607  0.2271  0.0161  0.3358 -0.2025 
MaxTemp   -0.0562 -0.1607  1.0000  0.0896 -0.4269 -0.6480  0.5662 
MinTemp    0.0784  0.2271  0.0896  1.0000  0.0370  0.0606 -0.0155 
RH0600     0.0802  0.0161 -0.4269  0.0370  1.0000  0.5943 -0.3881 
RH1500    -0.1556  0.3358 -0.6480  0.0606  0.5943  1.0000 -0.6240 
Sunsh      0.1873 -0.2025  0.5662 -0.0155 -0.3881 -0.6240  1.0000 
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Elevation  0.1523 -0.2046  0.0933 -0.4545 -0.2235 -0.3993  0.2359 
          Elevation 
MIR          0.1523 
Rainf       -0.2046 
MaxTemp      0.0933 
MinTemp     -0.4545 
RH0600      -0.2235 
RH1500      -0.3993 
Sunsh        0.2359 
Elevation    1.0000 
----------------------------------------------------  
Month : 55 
               MIR  Rainf MaxTemp  MinTemp  RH0600 RH1500   Sunsh 
MIR        1.00000  0.168  0.1205  0.00802  0.2110 -0.211  0.1930 
Rainf      0.16761  1.000  0.2665  0.11605 -0.1235 -0.222  0.2560 
MaxTemp    0.12053  0.267  1.0000  0.08375 -0.2080 -0.562  0.3790 
MinTemp    0.00802  0.116  0.0838  1.00000  0.1151  0.163  0.2116 
RH0600     0.21097 -0.123 -0.2080  0.11511  1.0000  0.404 -0.0105 
RH1500    -0.21051 -0.222 -0.5617  0.16281  0.4042  1.000 -0.1125 
Sunsh      0.19302  0.256  0.3790  0.21158 -0.0105 -0.112  1.0000 
Elevation  0.15110  0.163  0.0699 -0.44172 -0.1010 -0.386 -0.0545 
          Elevation 
MIR          0.1511 
Rainf        0.1631 
MaxTemp      0.0699 
MinTemp     -0.4417 
RH0600      -0.1010 
RH1500      -0.3864 
Sunsh       -0.0545 
Elevation    1.0000 
----------------------------------------------------  
Month : 56 
              MIR   Rainf MaxTemp MinTemp    RH0600  RH1500   Sunsh 
MIR        1.0000  0.2501  0.1765  0.0477  0.193561 -0.0352  0.2598 
Rainf      0.2501  1.0000  0.4668  0.0284  0.075068 -0.0774  0.4409 
MaxTemp    0.1765  0.4668  1.0000  0.1391 -0.215970 -0.4384  0.4000 
MinTemp    0.0477  0.0284  0.1391  1.0000  0.102165  0.1500  0.2699 
RH0600     0.1936  0.0751 -0.2160  0.1022  1.000000  0.2030  0.2470 
RH1500    -0.0352 -0.0774 -0.4384  0.1500  0.202969  1.0000  0.0979 
Sunsh      0.2598  0.4409  0.4000  0.2699  0.247037  0.0979  1.0000 
Elevation  0.1611  0.2388  0.0615 -0.4258  0.000973 -0.1670 -0.0607 
          Elevation 
MIR        0.161084 
Rainf      0.238756 
MaxTemp    0.061464 
MinTemp   -0.425803 
RH0600     0.000973 
RH1500    -0.166967 
Sunsh     -0.060694 
Elevation  1.000000 
----------------------------------------------------  
Month : 57 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.0000  0.1469  0.0164 -0.0730  0.0227 -0.193  0.1669 
Rainf      0.1469  1.0000  0.1207 -0.2856  0.1582 -0.140  0.0237 
MaxTemp    0.0164  0.1207  1.0000  0.0101 -0.2558 -0.659  0.4576 
MinTemp   -0.0730 -0.2856  0.0101  1.0000  0.0343  0.123  0.3330 
RH0600     0.0227  0.1582 -0.2558  0.0343  1.0000  0.255 -0.3001 
RH1500    -0.1926 -0.1400 -0.6587  0.1225  0.2550  1.000 -0.3088 
Sunsh      0.1669  0.0237  0.4576  0.3330 -0.3001 -0.309  1.0000 
Elevation  0.1644  0.2249  0.0178 -0.4858 -0.0438 -0.253 -0.1000 
          Elevation 
MIR          0.1644 
Rainf        0.2249 
MaxTemp      0.0178 
MinTemp     -0.4858 
RH0600      -0.0438 
RH1500      -0.2525 
Sunsh       -0.1000 
Elevation    1.0000 
----------------------------------------------------  
Month : 58 
             MIR    Rainf MaxTemp MinTemp RH0600  RH1500   Sunsh 
MIR        1.000 -0.24749  0.1826 -0.0340 -0.238 -0.3119  0.3364 
Rainf     -0.247  1.00000 -0.6265 -0.2098  0.424  0.5227 -0.6394 
MaxTemp    0.183 -0.62653  1.0000  0.2293 -0.538 -0.8408  0.7295 
MinTemp   -0.034 -0.20978  0.2293  1.0000 -0.207 -0.0543  0.3665 
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RH0600    -0.238  0.42374 -0.5384 -0.2073  1.000  0.5800 -0.5987 
RH1500    -0.312  0.52267 -0.8408 -0.0543  0.580  1.0000 -0.7201 
Sunsh      0.336 -0.63936  0.7295  0.3665 -0.599 -0.7201  1.0000 
Elevation  0.200 -0.00147  0.0266 -0.5099 -0.119 -0.2563 -0.0344 
          Elevation 
MIR         0.19988 
Rainf      -0.00147 
MaxTemp     0.02656 
MinTemp    -0.50994 
RH0600     -0.11907 
RH1500     -0.25631 
Sunsh      -0.03445 
Elevation   1.00000 
----------------------------------------------------  
Month : 59 
               MIR    Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.00000  0.00271 -0.0323  -0.104 -0.125 -0.219  0.0712 
Rainf      0.00271  1.00000 -0.3478   0.192  0.451  0.491 -0.3748 
MaxTemp   -0.03225 -0.34778  1.0000  -0.115 -0.670 -0.720  0.4540 
MinTemp   -0.10416  0.19176 -0.1152   1.000  0.262  0.471 -0.1884 
RH0600    -0.12508  0.45097 -0.6698   0.262  1.000  0.818 -0.5730 
RH1500    -0.21939  0.49127 -0.7196   0.471  0.818  1.000 -0.5613 
Sunsh      0.07122 -0.37480  0.4540  -0.188 -0.573 -0.561  1.0000 
Elevation  0.28284 -0.12425 -0.0356  -0.541 -0.185 -0.295 -0.0904 
          Elevation 
MIR          0.2828 
Rainf       -0.1243 
MaxTemp     -0.0356 
MinTemp     -0.5408 
RH0600      -0.1854 
RH1500      -0.2954 
Sunsh       -0.0904 
Elevation    1.0000 
----------------------------------------------------  
Month : 60 
               MIR   Rainf MaxTemp MinTemp  RH0600   RH1500   Sunsh 
MIR        1.00000  0.1567 -0.1257 -0.0153  0.0764  0.00737  0.0257 
Rainf      0.15666  1.0000 -0.4493  0.2636  0.3508  0.52215 -0.2033 
MaxTemp   -0.12567 -0.4493  1.0000 -0.2787 -0.5430 -0.63929  0.5250 
MinTemp   -0.01528  0.2636 -0.2787  1.0000  0.5382  0.68723 -0.1497 
RH0600     0.07639  0.3508 -0.5430  0.5382  1.0000  0.76765 -0.5615 
RH1500     0.00737  0.5221 -0.6393  0.6872  0.7676  1.00000 -0.4122 
Sunsh      0.02566 -0.2033  0.5250 -0.1497 -0.5615 -0.41223  1.0000 
Elevation  0.24422  0.0566 -0.0582 -0.4537 -0.2484 -0.29847 -0.0553 
          Elevation 
MIR          0.2442 
Rainf        0.0566 
MaxTemp     -0.0582 
MinTemp     -0.4537 
RH0600      -0.2484 
RH1500      -0.2985 
Sunsh       -0.0553 
Elevation    1.0000 
----------------------------------------------------  
Month : 61 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000 -0.0446 -0.2154   0.046 -0.0629 -0.0441  0.0736 
Rainf     -0.0446  1.0000 -0.4202   0.152  0.2724  0.3054 -0.1917 
MaxTemp   -0.2154 -0.4202  1.0000  -0.396 -0.4461 -0.5643  0.1934 
MinTemp    0.0460  0.1519 -0.3964   1.000  0.4064  0.6460 -0.5432 
RH0600    -0.0629  0.2724 -0.4461   0.406  1.0000  0.7907 -0.6722 
RH1500    -0.0441  0.3054 -0.5643   0.646  0.7907  1.0000 -0.6252 
Sunsh      0.0736 -0.1917  0.1934  -0.543 -0.6722 -0.6252  1.0000 
Elevation  0.1724 -0.0276 -0.0559  -0.472 -0.3824 -0.4640  0.3555 
          Elevation 
MIR          0.1724 
Rainf       -0.0276 
MaxTemp     -0.0559 
MinTemp     -0.4718 
RH0600      -0.3824 
RH1500      -0.4640 
Sunsh        0.3555 
Elevation    1.0000 
----------------------------------------------------  
Month : 62 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000  0.2019 -0.1484 -0.1333 -0.113 -0.127  0.0137 
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Rainf      0.2019  1.0000 -0.4644 -0.0840  0.519  0.362 -0.2649 
MaxTemp   -0.1484 -0.4644  1.0000 -0.0505 -0.600 -0.631  0.1055 
MinTemp   -0.1333 -0.0840 -0.0505  1.0000  0.172  0.491 -0.3016 
RH0600    -0.1126  0.5193 -0.6002  0.1716  1.000  0.725 -0.4975 
RH1500    -0.1269  0.3618 -0.6306  0.4910  0.725  1.000 -0.3261 
Sunsh      0.0137 -0.2649  0.1055 -0.3016 -0.498 -0.326  1.0000 
Elevation  0.1974  0.0326  0.1141 -0.4373 -0.260 -0.439  0.1275 
          Elevation 
MIR          0.1974 
Rainf        0.0326 
MaxTemp      0.1141 
MinTemp     -0.4373 
RH0600      -0.2599 
RH1500      -0.4389 
Sunsh        0.1275 
Elevation    1.0000 
----------------------------------------------------  
Month : 63 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.0179 -0.0139 -0.0252 -0.184 -0.133  0.0283 
Rainf     -0.0179  1.0000 -0.7629 -0.5849  0.739  0.713 -0.5905 
MaxTemp   -0.0139 -0.7629  1.0000  0.5558 -0.760 -0.779  0.4873 
MinTemp   -0.0252 -0.5849  0.5558  1.0000 -0.578 -0.335  0.3247 
RH0600    -0.1840  0.7387 -0.7596 -0.5780  1.000  0.819 -0.6563 
RH1500    -0.1330  0.7134 -0.7787 -0.3352  0.819  1.000 -0.5506 
Sunsh      0.0283 -0.5905  0.4873  0.3247 -0.656 -0.551  1.0000 
Elevation  0.1865 -0.1334  0.1260 -0.2557 -0.256 -0.364  0.2089 
          Elevation 
MIR           0.186 
Rainf        -0.133 
MaxTemp       0.126 
MinTemp      -0.256 
RH0600       -0.256 
RH1500       -0.364 
Sunsh         0.209 
Elevation     1.000 
----------------------------------------------------  
Month : 64 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.0311 -0.0748 -0.0499 -0.0369 -0.0542 -0.1149 
Rainf      0.0311  1.0000 -0.3283 -0.3748  0.2870  0.2460 -0.1015 
MaxTemp   -0.0748 -0.3283  1.0000  0.5537 -0.7854 -0.7636  0.4629 
MinTemp   -0.0499 -0.3748  0.5537  1.0000 -0.5847 -0.3227  0.4160 
RH0600    -0.0369  0.2870 -0.7854 -0.5847  1.0000  0.8144 -0.5875 
RH1500    -0.0542  0.2460 -0.7636 -0.3227  0.8144  1.0000 -0.4308 
Sunsh     -0.1149 -0.1015  0.4629  0.4160 -0.5875 -0.4308  1.0000 
Elevation  0.1938  0.0134  0.0904 -0.2915 -0.1852 -0.3357 -0.0049 
          Elevation 
MIR          0.1938 
Rainf        0.0134 
MaxTemp      0.0904 
MinTemp     -0.2915 
RH0600      -0.1852 
RH1500      -0.3357 
Sunsh       -0.0049 
Elevation    1.0000 
----------------------------------------------------  
Month : 65 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.0464 -0.0279  0.0404 -0.0615 -0.0651 -0.0422 
Rainf      0.0464  1.0000 -0.5586 -0.2302  0.3922  0.4775 -0.4242 
MaxTemp   -0.0279 -0.5586  1.0000  0.4220 -0.7528 -0.7699  0.6631 
MinTemp    0.0404 -0.2302  0.4220  1.0000 -0.4532 -0.2470  0.3084 
RH0600    -0.0615  0.3922 -0.7528 -0.4532  1.0000  0.7878 -0.6812 
RH1500    -0.0651  0.4775 -0.7699 -0.2470  0.7878  1.0000 -0.7226 
Sunsh     -0.0422 -0.4242  0.6631  0.3084 -0.6812 -0.7226  1.0000 
Elevation  0.2096 -0.1025  0.0896 -0.3446 -0.1858 -0.3348  0.1695 
          Elevation 
MIR          0.2096 
Rainf       -0.1025 
MaxTemp      0.0896 
MinTemp     -0.3446 
RH0600      -0.1858 
RH1500      -0.3348 
Sunsh        0.1695 
Elevation    1.0000 
----------------------------------------------------  
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Month : 66 
              MIR  Rainf MaxTemp  MinTemp  RH0600   RH1500   Sunsh 
MIR        1.0000 -0.045  0.0485  0.05853 -0.0655 -0.08075  0.0829 
Rainf     -0.0450  1.000 -0.1493  0.23542  0.1140  0.30827 -0.2490 
MaxTemp    0.0485 -0.149  1.0000  0.25040 -0.5880 -0.67370  0.5614 
MinTemp    0.0585  0.235  0.2504  1.00000 -0.2544  0.00301  0.0248 
RH0600    -0.0655  0.114 -0.5880 -0.25436  1.0000  0.55834 -0.4628 
RH1500    -0.0807  0.308 -0.6737  0.00301  0.5583  1.00000 -0.7390 
Sunsh      0.0829 -0.249  0.5614  0.02478 -0.4628 -0.73899  1.0000 
Elevation  0.1715 -0.389  0.1199 -0.39482 -0.1174 -0.38973  0.2693 
          Elevation 
MIR           0.171 
Rainf        -0.389 
MaxTemp       0.120 
MinTemp      -0.395 
RH0600       -0.117 
RH1500       -0.390 
Sunsh         0.269 
Elevation     1.000 
----------------------------------------------------  
Month : 67 
              MIR   Rainf MaxTemp  MinTemp   RH0600   RH1500   Sunsh 
MIR        1.0000  0.0936  0.0532  0.02783  0.14673 -0.20349  0.1705 
Rainf      0.0936  1.0000  0.3884  0.27394  0.13850 -0.32309  0.3609 
MaxTemp    0.0532  0.3884  1.0000  0.18998 -0.25013 -0.55898  0.2978 
MinTemp    0.0278  0.2739  0.1900  1.00000 -0.00343  0.00539  0.1446 
RH0600     0.1467  0.1385 -0.2501 -0.00343  1.00000  0.31272  0.1058 
RH1500    -0.2035 -0.3231 -0.5590  0.00539  0.31272  1.00000 -0.0426 
Sunsh      0.1705  0.3609  0.2978  0.14461  0.10584 -0.04257  1.0000 
Elevation  0.2247 -0.0679  0.0850 -0.44564 -0.03546 -0.36154 -0.0858 
          Elevation 
MIR          0.2247 
Rainf       -0.0679 
MaxTemp      0.0850 
MinTemp     -0.4456 
RH0600      -0.0355 
RH1500      -0.3615 
Sunsh       -0.0858 
Elevation    1.0000 
----------------------------------------------------  
Month : 68 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500  Sunsh 
MIR        1.0000  0.2423  0.0740  0.0623  0.1112 -0.157  0.129 
Rainf      0.2423  1.0000  0.4596  0.1889  0.0253 -0.206  0.322 
MaxTemp    0.0740  0.4596  1.0000  0.2167 -0.1826 -0.512  0.328 
MinTemp    0.0623  0.1889  0.2167  1.0000 -0.0488 -0.103  0.271 
RH0600     0.1112  0.0253 -0.1826 -0.0488  1.0000  0.460  0.174 
RH1500    -0.1574 -0.2065 -0.5117 -0.1034  0.4605  1.000  0.146 
Sunsh      0.1289  0.3215  0.3280  0.2713  0.1737  0.146  1.000 
Elevation  0.2776  0.1958  0.0976 -0.4215  0.0849 -0.292 -0.165 
          Elevation 
MIR          0.2776 
Rainf        0.1958 
MaxTemp      0.0976 
MinTemp     -0.4215 
RH0600       0.0849 
RH1500      -0.2925 
Sunsh       -0.1647 
Elevation    1.0000 
----------------------------------------------------  
Month: 69 
              MIR    Rainf MaxTemp MinTemp RH0600  RH1500    Sunsh 
MIR        1.0000  0.06278   0.104 -0.0243  0.187 -0.2628  0.27148 
Rainf      0.0628  1.00000   0.127 -0.3920  0.285 -0.2794  0.00381 
MaxTemp    0.1040  0.12722   1.000  0.1649 -0.205 -0.6719  0.47507 
MinTemp   -0.0243 -0.39203   0.165  1.0000 -0.121 -0.0184  0.19281 
RH0600     0.1869  0.28532  -0.205 -0.1209  1.000  0.2699 -0.03798 
RH1500    -0.2628 -0.27943  -0.672 -0.0184  0.270  1.0000 -0.33049 
Sunsh      0.2715  0.00381   0.475  0.1928 -0.038 -0.3305  1.00000 
Elevation  0.2527  0.36189   0.069 -0.4850  0.071 -0.3325 -0.01047 
          Elevation 
MIR          0.2527 
Rainf        0.3619 
MaxTemp      0.0690 
MinTemp     -0.4850 
RH0600       0.0710 
RH1500      -0.3325 
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Sunsh       -0.0105 
Elevation    1.0000 
----------------------------------------------------  
Month data1[, 5]: 70 
              MIR   Rainf MaxTemp  MinTemp RH0600   RH1500   Sunsh 
MIR        1.0000 -0.1264  0.2828 -0.01886 -0.175 -0.39040  0.1814 
Rainf     -0.1264  1.0000 -0.4128 -0.10877  0.288  0.41523 -0.5066 
MaxTemp    0.2828 -0.4128  1.0000  0.08253 -0.461 -0.76472  0.5233 
MinTemp   -0.0189 -0.1088  0.0825  1.00000 -0.120 -0.00631  0.3900 
RH0600    -0.1753  0.2882 -0.4614 -0.11970  1.000  0.56178 -0.3985 
RH1500    -0.3904  0.4152 -0.7647 -0.00631  0.562  1.00000 -0.4741 
Sunsh      0.1814 -0.5066  0.5233  0.38996 -0.398 -0.47409  1.0000 
Elevation  0.2539  0.0599  0.0605 -0.46477 -0.127 -0.26560 -0.0986 
          Elevation 
MIR          0.2539 
Rainf        0.0599 
MaxTemp      0.0605 
MinTemp     -0.4648 
RH0600      -0.1275 
RH1500      -0.2656 
Sunsh       -0.0986 
Elevation    1.0000 
----------------------------------------------------  
Month : 71 
               MIR  Rainf MaxTemp MinTemp RH0600 RH1500    Sunsh 
MIR        1.00000 -0.184  0.1315 -0.0664 -0.254 -0.223  0.00344 
Rainf     -0.18409  1.000 -0.5313  0.2522  0.478  0.647 -0.50707 
MaxTemp    0.13153 -0.531  1.0000 -0.3846 -0.713 -0.783  0.48833 
MinTemp   -0.06643  0.252 -0.3846  1.0000  0.315  0.597 -0.15223 
RH0600    -0.25435  0.478 -0.7131  0.3150  1.000  0.787 -0.49252 
RH1500    -0.22263  0.647 -0.7833  0.5966  0.787  1.000 -0.48509 
Sunsh      0.00344 -0.507  0.4883 -0.1522 -0.493 -0.485  1.00000 
Elevation  0.22365 -0.149  0.0744 -0.4731 -0.195 -0.298 -0.06384 
          Elevation 
MIR          0.2236 
Rainf       -0.1493 
MaxTemp      0.0744 
MinTemp     -0.4731 
RH0600      -0.1947 
RH1500      -0.2980 
Sunsh       -0.0638 
Elevation    1.0000 
----------------------------------------------------  
Month : 72 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.0636  0.0312 -0.0147 -0.182 -0.129 -0.1211 
Rainf     -0.0636  1.0000 -0.4340  0.0250  0.396  0.356 -0.3992 
MaxTemp    0.0312 -0.4340  1.0000 -0.4067 -0.771 -0.800  0.6785 
MinTemp   -0.0147  0.0250 -0.4067  1.0000  0.397  0.579 -0.1898 
RH0600    -0.1815  0.3958 -0.7712  0.3970  1.000  0.855 -0.7041 
RH1500    -0.1295  0.3565 -0.7998  0.5789  0.855  1.000 -0.6194 
Sunsh     -0.1211 -0.3992  0.6785 -0.1898 -0.704 -0.619  1.0000 
Elevation  0.1927  0.0733  0.0553 -0.4642 -0.247 -0.286  0.0312 
          Elevation 
MIR          0.1927 
Rainf        0.0733 
MaxTemp      0.0553 
MinTemp     -0.4642 
RH0600      -0.2475 
RH1500      -0.2857 
Sunsh        0.0312 
Elevation    1.0000 
----------------------------------------------------  
Month: 73 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.0717 -0.0887 -0.0402 -0.0859 -0.0856 -0.0501 
Rainf      0.0717  1.0000 -0.3389 -0.0124  0.3100  0.1770 -0.2120 
MaxTemp   -0.0887 -0.3389  1.0000 -0.4653 -0.7490 -0.7849  0.6326 
MinTemp   -0.0402 -0.0124 -0.4653  1.0000  0.4735  0.6299 -0.3863 
RH0600    -0.0859  0.3100 -0.7490  0.4735  1.0000  0.8478 -0.6664 
RH1500    -0.0856  0.1770 -0.7849  0.6299  0.8478  1.0000 -0.6343 
Sunsh     -0.0501 -0.2120  0.6326 -0.3863 -0.6664 -0.6343  1.0000 
Elevation  0.1265  0.2677  0.1358 -0.5005 -0.2500 -0.3731  0.2255 
          Elevation 
MIR           0.127 
Rainf         0.268 
MaxTemp       0.136 
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MinTemp      -0.501 
RH0600       -0.250 
RH1500       -0.373 
Sunsh         0.225 
Elevation     1.000 
----------------------------------------------------  
Month: 74 
                MIR  Rainf MaxTemp  MinTemp  RH0600    RH1500 
MIR        1.000000  0.161 -0.1620  0.01637  0.0190 -0.000479 
Rainf      0.160593  1.000 -0.4136 -0.17306  0.4181  0.249288 
MaxTemp   -0.162023 -0.414  1.0000 -0.08147 -0.7434 -0.769449 
MinTemp    0.016366 -0.173 -0.0815  1.00000  0.0502  0.270477 
RH0600     0.019007  0.418 -0.7434  0.05015  1.0000  0.815424 
RH1500    -0.000479  0.249 -0.7694  0.27048  0.8154  1.000000 
Sunsh     -0.054077 -0.476  0.5507 -0.00476 -0.6533 -0.558090 
Elevation  0.205275  0.166  0.1303 -0.50357 -0.2324 -0.371282 
             Sunsh Elevation 
MIR       -0.05408     0.205 
Rainf     -0.47625     0.166 
MaxTemp    0.55071     0.130 
MinTemp   -0.00476    -0.504 
RH0600    -0.65329    -0.232 
RH1500    -0.55809    -0.371 
Sunsh      1.00000     0.147 
Elevation  0.14734     1.000 
----------------------------------------------------  
Month: 75 
              MIR  Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.138 -0.0875 -0.0819  0.0388 -0.0112 -0.1160 
Rainf      0.1375  1.000 -0.6498 -0.6375  0.6038  0.5022 -0.6547 
MaxTemp   -0.0875 -0.650  1.0000  0.5404 -0.8003 -0.8367  0.5850 
MinTemp   -0.0819 -0.637  0.5404  1.0000 -0.5554 -0.4281  0.5798 
RH0600     0.0388  0.604 -0.8003 -0.5554  1.0000  0.8735 -0.5451 
RH1500    -0.0112  0.502 -0.8367 -0.4281  0.8735  1.0000 -0.4674 
Sunsh     -0.1160 -0.655  0.5850  0.5798 -0.5451 -0.4674  1.0000 
Elevation  0.2157  0.100  0.1380 -0.2267 -0.2261 -0.3323 -0.0952 
          Elevation 
MIR          0.2157 
Rainf        0.1002 
MaxTemp      0.1380 
MinTemp     -0.2267 
RH0600      -0.2261 
RH1500      -0.3323 
Sunsh       -0.0952 
Elevation    1.0000 
----------------------------------------------------  
Month: 76 
              MIR  Rainf MaxTemp MinTemp RH0600  RH1500   Sunsh 
MIR        1.0000  0.106 -0.1530  -0.158  0.182  0.0632 -0.1881 
Rainf      0.1061  1.000 -0.4397  -0.453  0.420  0.2920 -0.2991 
MaxTemp   -0.1530 -0.440  1.0000   0.533 -0.790 -0.8243  0.6304 
MinTemp   -0.1585 -0.453  0.5331   1.000 -0.575 -0.4645  0.6174 
RH0600     0.1821  0.420 -0.7903  -0.575  1.000  0.8762 -0.7492 
RH1500     0.0632  0.292 -0.8243  -0.464  0.876  1.0000 -0.6976 
Sunsh     -0.1881 -0.299  0.6304   0.617 -0.749 -0.6976  1.0000 
Elevation  0.2225  0.124  0.0789  -0.272 -0.164 -0.2964  0.0115 
          Elevation 
MIR          0.2225 
Rainf        0.1244 
MaxTemp      0.0789 
MinTemp     -0.2723 
RH0600      -0.1639 
RH1500      -0.2964 
Sunsh        0.0115 
Elevation    1.0000 
----------------------------------------------------  
Month: 77 
              MIR   Rainf MaxTemp MinTemp RH0600  RH1500  Sunsh 
MIR        1.0000 -0.0389 -0.0179  0.0324  0.197  0.0603 -0.141 
Rainf     -0.0389  1.0000 -0.2927 -0.3055  0.484  0.6670 -0.568 
MaxTemp   -0.0179 -0.2927  1.0000  0.2725 -0.423 -0.5909  0.385 
MinTemp    0.0324 -0.3055  0.2725  1.0000 -0.301 -0.2236  0.156 
RH0600     0.1965  0.4839 -0.4230 -0.3007  1.000  0.7680 -0.648 
RH1500     0.0603  0.6670 -0.5909 -0.2236  0.768  1.0000 -0.732 
Sunsh     -0.1408 -0.5685  0.3848  0.1559 -0.648 -0.7316  1.000 
Elevation  0.2130 -0.2515  0.0395 -0.2934 -0.269 -0.3253  0.265 
          Elevation 
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MIR          0.2130 
Rainf       -0.2515 
MaxTemp      0.0395 
MinTemp     -0.2934 
RH0600      -0.2687 
RH1500      -0.3253 
Sunsh        0.2654 
Elevation    1.0000 
----------------------------------------------------  
Month: 78 
              MIR   Rainf MaxTemp MinTemp RH0600  RH1500   Sunsh 
MIR        1.0000  0.0505 -0.0785  0.0311  0.191 -0.0130 -0.0215 
Rainf      0.0505  1.0000 -0.4041  0.0391  0.223  0.4124 -0.3207 
MaxTemp   -0.0785 -0.4041  1.0000  0.1585 -0.616 -0.7362  0.6433 
MinTemp    0.0311  0.0391  0.1585  1.0000 -0.095 -0.0412  0.2280 
RH0600     0.1914  0.2229 -0.6158 -0.0950  1.000  0.6304 -0.5223 
RH1500    -0.0130  0.4124 -0.7362 -0.0412  0.630  1.0000 -0.5977 
Sunsh     -0.0215 -0.3207  0.6433  0.2280 -0.522 -0.5977  1.0000 
Elevation  0.1618 -0.2704  0.0418 -0.3407 -0.199 -0.3088  0.0859 
          Elevation 
MIR          0.1618 
Rainf       -0.2704 
MaxTemp      0.0418 
MinTemp     -0.3407 
RH0600      -0.1990 
RH1500      -0.3088 
Sunsh        0.0859 
Elevation    1.0000 
----------------------------------------------------  
Month: 79 
               MIR    Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.00000 -0.00517  0.0298 -0.0748  0.0182 -0.209  0.0813 
Rainf     -0.00517  1.00000  0.2569 -0.0747 -0.2220 -0.362  0.2750 
MaxTemp    0.02980  0.25685  1.0000  0.3742 -0.3695 -0.613  0.5117 
MinTemp   -0.07477 -0.07475  0.3742  1.0000 -0.2449  0.123  0.2205 
RH0600     0.01820 -0.22201 -0.3695 -0.2449  1.0000  0.422 -0.1492 
RH1500    -0.20915 -0.36200 -0.6129  0.1235  0.4219  1.000 -0.3520 
Sunsh      0.08134  0.27495  0.5117  0.2205 -0.1492 -0.352  1.0000 
Elevation  0.25198  0.09936  0.1022 -0.3834 -0.1204 -0.417  0.0701 
          Elevation 
MIR          0.2520 
Rainf        0.0994 
MaxTemp      0.1022 
MinTemp     -0.3834 
RH0600      -0.1204 
RH1500      -0.4167 
Sunsh        0.0701 
Elevation    1.0000 
----------------------------------------------------  
Month: 80 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500    Sunsh 
MIR        1.0000  0.1525  0.2027 -0.0820  0.0514 -0.386  0.15392 
Rainf      0.1525  1.0000  0.4114  0.0319  0.1764 -0.319  0.35163 
MaxTemp    0.2027  0.4114  1.0000  0.2952 -0.0734 -0.561  0.37050 
MinTemp   -0.0820  0.0319  0.2952  1.0000 -0.2219  0.120  0.23467 
RH0600     0.0514  0.1764 -0.0734 -0.2219  1.0000  0.262  0.09301 
RH1500    -0.3855 -0.3194 -0.5609  0.1196  0.2620  1.000 -0.21524 
Sunsh      0.1539  0.3516  0.3705  0.2347  0.0930 -0.215  1.00000 
Elevation  0.2515  0.0950  0.1707 -0.3562 -0.0478 -0.433  0.00955 
          Elevation 
MIR         0.25152 
Rainf       0.09500 
MaxTemp     0.17066 
MinTemp    -0.35617 
RH0600     -0.04785 
RH1500     -0.43284 
Sunsh       0.00955 
Elevation   1.00000 
----------------------------------------------------  
Month: 81 
              MIR   Rainf MaxTemp MinTemp   RH0600 RH1500    Sunsh 
MIR        1.0000  0.3219   0.161 -0.0835  0.21082 -0.206  0.24327 
Rainf      0.3219  1.0000   0.460 -0.2771 -0.01152 -0.438  0.24527 
MaxTemp    0.1610  0.4601   1.000  0.1568 -0.11627 -0.511  0.41222 
MinTemp   -0.0835 -0.2771   0.157  1.0000 -0.23656  0.220  0.13446 
RH0600     0.2108 -0.0115  -0.116 -0.2366  1.00000  0.276 -0.00624 
RH1500    -0.2060 -0.4383  -0.511  0.2203  0.27613  1.000 -0.14168 
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Sunsh      0.2433  0.2453   0.412  0.1345 -0.00624 -0.142  1.00000 
Elevation  0.2853  0.3700   0.135 -0.5352 -0.08046 -0.398 -0.01373 
          Elevation 
MIR          0.2853 
Rainf        0.3700 
MaxTemp      0.1348 
MinTemp     -0.5352 
RH0600      -0.0805 
RH1500      -0.3983 
Sunsh       -0.0137 
Elevation    1.0000 
----------------------------------------------------  
Month: 82 
               MIR    Rainf MaxTemp MinTemp   RH0600  RH1500    Sunsh 
MIR        1.00000  0.04175  0.1157 -0.0900  0.07157 -0.1715 -0.00667 
Rainf      0.04175  1.00000 -0.2322 -0.1620 -0.00672  0.1452 -0.53940 
MaxTemp    0.11565 -0.23221  1.0000  0.3401 -0.16449 -0.6378  0.56436 
MinTemp   -0.08998 -0.16196  0.3401  1.0000 -0.09859  0.0789  0.45809 
RH0600     0.07157 -0.00672 -0.1645 -0.0986  1.00000  0.3277 -0.22293 
RH1500    -0.17154  0.14516 -0.6378  0.0789  0.32766  1.0000 -0.31320 
Sunsh     -0.00667 -0.53940  0.5644  0.4581 -0.22293 -0.3132  1.00000 
Elevation  0.27162  0.18614  0.0412 -0.4456 -0.03321 -0.2835 -0.18145 
          Elevation 
MIR          0.2716 
Rainf        0.1861 
MaxTemp      0.0412 
MinTemp     -0.4456 
RH0600      -0.0332 
RH1500      -0.2835 
Sunsh       -0.1814 
Elevation    1.0000 
----------------------------------------------------  
Month: 83 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000  0.0654 -0.0630  -0.122 -0.160 -0.154 -0.0484 
Rainf      0.0654  1.0000 -0.5387   0.429  0.458  0.577 -0.5118 
MaxTemp   -0.0630 -0.5387  1.0000  -0.545 -0.667 -0.722  0.6383 
MinTemp   -0.1216  0.4286 -0.5447   1.000  0.543  0.782 -0.5173 
RH0600    -0.1598  0.4581 -0.6668   0.543  1.000  0.767 -0.7056 
RH1500    -0.1543  0.5766 -0.7223   0.782  0.767  1.000 -0.6814 
Sunsh     -0.0484 -0.5118  0.6383  -0.517 -0.706 -0.681  1.0000 
Elevation  0.3225 -0.2630  0.0595  -0.418 -0.229 -0.396  0.1054 
          Elevation 
MIR          0.3225 
Rainf       -0.2630 
MaxTemp      0.0595 
MinTemp     -0.4184 
RH0600      -0.2286 
RH1500      -0.3956 
Sunsh        0.1054 
Elevation    1.0000 
----------------------------------------------------  
Month: 84 
              MIR  Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000  0.119 -0.0710  -0.105 -0.124 -0.115 -0.0405 
Rainf      0.1185  1.000 -0.5568   0.347  0.413  0.457 -0.5096 
MaxTemp   -0.0710 -0.557  1.0000  -0.589 -0.662 -0.722  0.6476 
MinTemp   -0.1051  0.347 -0.5885   1.000  0.652  0.765 -0.4915 
RH0600    -0.1240  0.413 -0.6625   0.652  1.000  0.817 -0.7468 
RH1500    -0.1154  0.457 -0.7222   0.765  0.817  1.000 -0.6758 
Sunsh     -0.0405 -0.510  0.6476  -0.491 -0.747 -0.676  1.0000 
Elevation  0.2406 -0.101  0.0742  -0.391 -0.272 -0.380  0.0636 
          Elevation 
MIR          0.2406 
Rainf       -0.1009 
MaxTemp      0.0742 
MinTemp     -0.3911 
RH0600      -0.2721 
RH1500      -0.3797 
Sunsh        0.0636 
Elevation    1.0000 
----------------------------------------------------  
data1[, 5]: 85 
               MIR   Rainf MaxTemp MinTemp RH0600 RH1500    Sunsh 
MIR        1.00000 -0.0617 -0.0102  -0.183 -0.175 -0.229  0.00702 
Rainf     -0.06173  1.0000 -0.1379   0.137  0.251  0.132  0.08960 
MaxTemp   -0.01025 -0.1379  1.0000  -0.466 -0.516 -0.660  0.26028 
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MinTemp   -0.18260  0.1371 -0.4657   1.000  0.561  0.685 -0.31910 
RH0600    -0.17528  0.2514 -0.5164   0.561  1.000  0.812 -0.32359 
RH1500    -0.22934  0.1323 -0.6599   0.685  0.812  1.000 -0.26395 
Sunsh      0.00702  0.0896  0.2603  -0.319 -0.324 -0.264  1.00000 
Elevation  0.22722  0.1178  0.1064  -0.415 -0.381 -0.430  0.21402 
          Elevation 
MIR           0.227 
Rainf         0.118 
MaxTemp       0.106 
MinTemp      -0.415 
RH0600       -0.381 
RH1500       -0.430 
Sunsh         0.214 
Elevation     1.000 
----------------------------------------------------  
Month: 86 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000  0.0931 -0.0367 -0.0467 -0.143 -0.144  0.0203 
Rainf      0.0931  1.0000 -0.4909  0.1338  0.517  0.354 -0.3861 
MaxTemp   -0.0367 -0.4909  1.0000 -0.2969 -0.625 -0.691  0.5046 
MinTemp   -0.0467  0.1338 -0.2969  1.0000  0.380  0.615 -0.1596 
RH0600    -0.1426  0.5172 -0.6250  0.3798  1.000  0.735 -0.5874 
RH1500    -0.1443  0.3542 -0.6915  0.6153  0.735  1.000 -0.3984 
Sunsh      0.0203 -0.3861  0.5046 -0.1596 -0.587 -0.398  1.0000 
Elevation  0.2641 -0.0448  0.1702 -0.5187 -0.276 -0.461  0.1748 
          Elevation 
MIR          0.2641 
Rainf       -0.0448 
MaxTemp      0.1702 
MinTemp     -0.5187 
RH0600      -0.2757 
RH1500      -0.4608 
Sunsh        0.1748 
Elevation    1.0000 
----------------------------------------------------  
Month: 87 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.0128  0.0533 -0.0394 -0.145 -0.162  0.0431 
Rainf     -0.0128  1.0000 -0.6392 -0.1854  0.636  0.604 -0.3613 
MaxTemp    0.0533 -0.6392  1.0000  0.1601 -0.789 -0.784  0.4558 
MinTemp   -0.0394 -0.1854  0.1601  1.0000 -0.227  0.121  0.1213 
RH0600    -0.1451  0.6355 -0.7889 -0.2269  1.000  0.790 -0.4943 
RH1500    -0.1618  0.6037 -0.7840  0.1210  0.790  1.000 -0.4386 
Sunsh      0.0431 -0.3613  0.4558  0.1213 -0.494 -0.439  1.0000 
Elevation  0.3056 -0.1896  0.2040 -0.3612 -0.254 -0.503  0.2038 
          Elevation 
MIR           0.306 
Rainf        -0.190 
MaxTemp       0.204 
MinTemp      -0.361 
RH0600       -0.254 
RH1500       -0.503 
Sunsh         0.204 
Elevation     1.000 
----------------------------------------------------  
Month: 88 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000 -0.0793  0.0570  0.0161 -0.0162 -0.0938 -0.0447 
Rainf     -0.0793  1.0000 -0.2129 -0.6208  0.2608  0.1074 -0.4172 
MaxTemp    0.0570 -0.2129  1.0000  0.5756 -0.6457 -0.6779 -0.1406 
MinTemp    0.0161 -0.6208  0.5756  1.0000 -0.3759 -0.1605  0.1999 
RH0600    -0.0162  0.2608 -0.6457 -0.3759  1.0000  0.7588 -0.0665 
RH1500    -0.0938  0.1074 -0.6779 -0.1605  0.7588  1.0000  0.1976 
Sunsh     -0.0447 -0.4172 -0.1406  0.1999 -0.0665  0.1976  1.0000 
Elevation  0.2354  0.2231  0.0877 -0.3764 -0.2277 -0.3070 -0.1031 
          Elevation 
MIR          0.2354 
Rainf        0.2231 
MaxTemp      0.0877 
MinTemp     -0.3764 
RH0600      -0.2277 
RH1500      -0.3070 
Sunsh       -0.1031 
Elevation    1.0000 
----------------------------------------------------  
data1[, 5]: 89 
              MIR  Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
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MIR        1.0000  0.117 -0.1247 -0.1337  0.0762 -0.1006 -0.2273 
Rainf      0.1174  1.000 -0.2524 -0.1335  0.2256  0.2468 -0.1909 
MaxTemp   -0.1247 -0.252  1.0000  0.5763 -0.6001 -0.5303  0.4085 
MinTemp   -0.1337 -0.133  0.5763  1.0000 -0.3462 -0.0176  0.1546 
RH0600     0.0762  0.226 -0.6001 -0.3462  1.0000  0.6894 -0.4834 
RH1500    -0.1006  0.247 -0.5303 -0.0176  0.6894  1.0000 -0.4281 
Sunsh     -0.2273 -0.191  0.4085  0.1546 -0.4834 -0.4281  1.0000 
Elevation  0.2534 -0.118  0.0184 -0.4135 -0.2857 -0.4303  0.0872 
          Elevation 
MIR          0.2534 
Rainf       -0.1175 
MaxTemp      0.0184 
MinTemp     -0.4135 
RH0600      -0.2857 
RH1500      -0.4303 
Sunsh        0.0872 
Elevation    1.0000 
----------------------------------------------------  
Month: 90 
               MIR    Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.00000 -0.00302  -0.108 -0.0754  0.0813 -0.1437  0.0795 
Rainf     -0.00302  1.00000  -0.381  0.2099  0.1511  0.5343 -0.5586 
MaxTemp   -0.10824 -0.38133   1.000  0.3540 -0.5624 -0.6739  0.5998 
MinTemp   -0.07535  0.20993   0.354  1.0000 -0.3707 -0.0578  0.0473 
RH0600     0.08133  0.15110  -0.562 -0.3707  1.0000  0.5782 -0.5071 
RH1500    -0.14373  0.53430  -0.674 -0.0578  0.5782  1.0000 -0.7988 
Sunsh      0.07952 -0.55859   0.600  0.0473 -0.5071 -0.7988  1.0000 
Elevation  0.25122 -0.33511   0.164 -0.4514 -0.1920 -0.3850  0.3565 
          Elevation 
MIR           0.251 
Rainf        -0.335 
MaxTemp       0.164 
MinTemp      -0.451 
RH0600       -0.192 
RH1500       -0.385 
Sunsh         0.357 
Elevation     1.000 
----------------------------------------------------  
Month: 91 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.0000  0.0147  0.0335  0.0267 -0.0267 -0.210  0.0242 
Rainf      0.0147  1.0000  0.1885  0.4572 -0.3070  0.017  0.1112 
MaxTemp    0.0335  0.1885  1.0000  0.4562 -0.4444 -0.672  0.3735 
MinTemp    0.0267  0.4572  0.4562  1.0000 -0.3391 -0.144  0.3445 
RH0600    -0.0267 -0.3070 -0.4444 -0.3391  1.0000  0.464 -0.3055 
RH1500    -0.2102  0.0170 -0.6722 -0.1438  0.4643  1.000 -0.3183 
Sunsh      0.0242  0.1112  0.3735  0.3445 -0.3055 -0.318  1.0000 
Elevation  0.2641 -0.1232  0.1615 -0.4539 -0.1602 -0.323 -0.1012 
          Elevation 
MIR           0.264 
Rainf        -0.123 
MaxTemp       0.161 
MinTemp      -0.454 
RH0600       -0.160 
RH1500       -0.323 
Sunsh        -0.101 
Elevation     1.000 
----------------------------------------------------  
Month: 92 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.3355   0.150  0.0299  0.0514 -0.2111  0.1959 
Rainf      0.3355  1.0000   0.296  0.1388  0.0551 -0.3695  0.2940 
MaxTemp    0.1502  0.2956   1.000  0.4206 -0.1985 -0.4406  0.2705 
MinTemp    0.0299  0.1388   0.421  1.0000 -0.2096  0.1142  0.2252 
RH0600     0.0514  0.0551  -0.198 -0.2096  1.0000  0.3026  0.0279 
RH1500    -0.2111 -0.3695  -0.441  0.1142  0.3026  1.0000 -0.0292 
Sunsh      0.1959  0.2940   0.271  0.2252  0.0279 -0.0292  1.0000 
Elevation  0.2366  0.0862   0.100 -0.4618 -0.0709 -0.3714 -0.0911 
          Elevation 
MIR          0.2366 
Rainf        0.0862 
MaxTemp      0.1001 
MinTemp     -0.4618 
RH0600      -0.0709 
RH1500      -0.3714 
Sunsh       -0.0911 
Elevation    1.0000 
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----------------------------------------------------  
Month: 93 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500  Sunsh 
MIR        1.0000  0.1528  0.1722  -0.168  0.0516 -0.337  0.154 
Rainf      0.1528  1.0000  0.0488  -0.502  0.1990 -0.206 -0.240 
MaxTemp    0.1722  0.0488  1.0000   0.252 -0.2637 -0.621  0.364 
MinTemp   -0.1675 -0.5018  0.2521   1.000 -0.2009  0.229  0.174 
RH0600     0.0516  0.1990 -0.2637  -0.201  1.0000  0.191 -0.172 
RH1500    -0.3371 -0.2063 -0.6212   0.229  0.1910  1.000 -0.248 
Sunsh      0.1538 -0.2399  0.3642   0.174 -0.1725 -0.248  1.000 
Elevation  0.2588  0.5181  0.0847  -0.527  0.0135 -0.318 -0.140 
          Elevation 
MIR          0.2588 
Rainf        0.5181 
MaxTemp      0.0847 
MinTemp     -0.5271 
RH0600       0.0135 
RH1500      -0.3183 
Sunsh       -0.1403 
Elevation    1.0000 
----------------------------------------------------  
Month: 94 
              MIR  Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000 -0.202  0.1932 -0.1946 -0.1007 -0.3528  0.0801 
Rainf     -0.2016  1.000 -0.4933 -0.2967  0.1595  0.3955 -0.6206 
MaxTemp    0.1932 -0.493  1.0000  0.3631 -0.3933 -0.7278  0.6033 
MinTemp   -0.1946 -0.297  0.3631  1.0000 -0.0785  0.0416  0.2701 
RH0600    -0.1007  0.159 -0.3933 -0.0785  1.0000  0.4930 -0.3923 
RH1500    -0.3528  0.395 -0.7278  0.0416  0.4930  1.0000 -0.5259 
Sunsh      0.0801 -0.621  0.6033  0.2701 -0.3923 -0.5259  1.0000 
Elevation  0.2455 -0.123  0.0628 -0.5090 -0.1510 -0.3071  0.0133 
          Elevation 
MIR          0.2455 
Rainf       -0.1231 
MaxTemp      0.0628 
MinTemp     -0.5090 
RH0600      -0.1510 
RH1500      -0.3071 
Sunsh        0.0133 
Elevation    1.0000 
----------------------------------------------------  
Month: 95 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500    Sunsh 
MIR        1.0000  0.0918  0.1166 -0.4465 -0.223 -0.296  0.01930 
Rainf      0.0918  1.0000 -0.4008 -0.0199  0.443  0.439 -0.49529 
MaxTemp    0.1166 -0.4008  1.0000 -0.0353 -0.585 -0.790  0.62607 
MinTemp   -0.4465 -0.0199 -0.0353  1.0000  0.158  0.422 -0.06255 
RH0600    -0.2231  0.4433 -0.5850  0.1584  1.000  0.718 -0.60954 
RH1500    -0.2964  0.4387 -0.7897  0.4216  0.718  1.000 -0.64951 
Sunsh      0.0193 -0.4953  0.6261 -0.0625 -0.610 -0.650  1.00000 
Elevation  0.2559 -0.1379  0.0561 -0.5437 -0.213 -0.288  0.00709 
          Elevation 
MIR         0.25587 
Rainf      -0.13789 
MaxTemp     0.05607 
MinTemp    -0.54367 
RH0600     -0.21268 
RH1500     -0.28809 
Sunsh       0.00709 
Elevation   1.00000 
----------------------------------------------------  
Month: 96 
              MIR  Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.095  0.0340  -0.249 -0.186 -0.262 -0.0151 
Rainf     -0.0950  1.000 -0.4480   0.387  0.451  0.599 -0.3259 
MaxTemp    0.0340 -0.448  1.0000  -0.500 -0.673 -0.698  0.5714 
MinTemp   -0.2494  0.387 -0.4997   1.000  0.637  0.786 -0.4764 
RH0600    -0.1864  0.451 -0.6732   0.637  1.000  0.841 -0.7629 
RH1500    -0.2623  0.599 -0.6977   0.786  0.841  1.000 -0.6400 
Sunsh     -0.0151 -0.326  0.5714  -0.476 -0.763 -0.640  1.0000 
Elevation  0.2379 -0.302  0.0487  -0.459 -0.265 -0.385  0.0483 
          Elevation 
MIR          0.2379 
Rainf       -0.3021 
MaxTemp      0.0487 
MinTemp     -0.4593 
RH0600      -0.2650 
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RH1500      -0.3850 
Sunsh        0.0483 
Elevation    1.0000 
----------------------------------------------------  
Month: 97 
               MIR    Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.00000 -0.00868  0.0205  -0.213 -0.193 -0.264  0.121 
Rainf     -0.00868  1.00000 -0.2378   0.417  0.403  0.425 -0.472 
MaxTemp    0.02046 -0.23780  1.0000  -0.264 -0.286 -0.418  0.188 
MinTemp   -0.21259  0.41653 -0.2640   1.000  0.334  0.570 -0.511 
RH0600    -0.19327  0.40307 -0.2859   0.334  1.000  0.793 -0.709 
RH1500    -0.26353  0.42462 -0.4184   0.570  0.793  1.000 -0.739 
Sunsh      0.12068 -0.47198  0.1881  -0.511 -0.709 -0.739  1.000 
Elevation  0.27060 -0.19057  0.0518  -0.395 -0.398 -0.458  0.295 
          Elevation 
MIR          0.2706 
Rainf       -0.1906 
MaxTemp      0.0518 
MinTemp     -0.3951 
RH0600      -0.3980 
RH1500      -0.4583 
Sunsh        0.2953 
Elevation    1.0000 
----------------------------------------------------  
Month : 98 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000  0.0942  0.0809  -0.327 -0.159 -0.256  0.0257 
Rainf      0.0942  1.0000 -0.1245  -0.213  0.342  0.165 -0.2332 
MaxTemp    0.0809 -0.1245  1.0000  -0.169 -0.688 -0.723  0.2057 
MinTemp   -0.3266 -0.2130 -0.1685   1.000  0.150  0.435 -0.1422 
RH0600    -0.1594  0.3420 -0.6878   0.150  1.000  0.787 -0.4483 
RH1500    -0.2556  0.1646 -0.7227   0.435  0.787  1.000 -0.3575 
Sunsh      0.0257 -0.2332  0.2057  -0.142 -0.448 -0.358  1.0000 
Elevation  0.3056  0.0283  0.2137  -0.411 -0.325 -0.475  0.3053 
          Elevation 
MIR          0.3056 
Rainf        0.0283 
MaxTemp      0.2137 
MinTemp     -0.4107 
RH0600      -0.3254 
RH1500      -0.4754 
Sunsh        0.3053 
Elevation    1.0000 
----------------------------------------------------  
Month : 99 
              MIR  Rainf MaxTemp MinTemp RH0600  RH1500   Sunsh 
MIR        1.0000  0.200   0.064 -0.2577 -0.119 -0.1744 -0.0713 
Rainf      0.2000  1.000  -0.446 -0.5515  0.443  0.2554 -0.1681 
MaxTemp    0.0640 -0.446   1.000  0.3699 -0.770 -0.7672  0.4456 
MinTemp   -0.2577 -0.551   0.370  1.0000 -0.305 -0.0375  0.2215 
RH0600    -0.1185  0.443  -0.770 -0.3049  1.000  0.7908 -0.5749 
RH1500    -0.1744  0.255  -0.767 -0.0375  0.791  1.0000 -0.4389 
Sunsh     -0.0713 -0.168   0.446  0.2215 -0.575 -0.4389  1.0000 
Elevation  0.3131  0.197   0.178 -0.3506 -0.247 -0.4191  0.1515 
          Elevation 
MIR           0.313 
Rainf         0.197 
MaxTemp       0.178 
MinTemp      -0.351 
RH0600       -0.247 
RH1500       -0.419 
Sunsh         0.152 
Elevation     1.000 
----------------------------------------------------  
Month : 100 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.0000  0.0649   0.076  -0.164 -0.0542 -0.136  0.0493 
Rainf      0.0649  1.0000  -0.552  -0.540  0.5008  0.343 -0.3580 
MaxTemp    0.0760 -0.5516   1.000   0.640 -0.8092 -0.833  0.6407 
MinTemp   -0.1643 -0.5400   0.640   1.000 -0.5519 -0.344  0.4193 
RH0600    -0.0542  0.5008  -0.809  -0.552  1.0000  0.852 -0.6111 
RH1500    -0.1361  0.3432  -0.833  -0.344  0.8523  1.000 -0.6258 
Sunsh      0.0493 -0.3580   0.641   0.419 -0.6111 -0.626  1.0000 
Elevation  0.2919  0.1662   0.139  -0.224 -0.2064 -0.319  0.1668 
          Elevation 
MIR           0.292 
Rainf         0.166 
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MaxTemp       0.139 
MinTemp      -0.224 
RH0600       -0.206 
RH1500       -0.319 
Sunsh         0.167 
Elevation     1.000 
----------------------------------------------------  
Month: 101 
               MIR    Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.00000  0.00602  0.0428  -0.120  0.0167 -0.0771  0.0643 
Rainf      0.00602  1.00000 -0.4511  -0.321  0.4027  0.5011 -0.3755 
MaxTemp    0.04283 -0.45105  1.0000   0.607 -0.7068 -0.7731  0.6525 
MinTemp   -0.12041 -0.32142  0.6072   1.000 -0.5089 -0.3572  0.4269 
RH0600     0.01667  0.40271 -0.7068  -0.509  1.0000  0.7871 -0.7006 
RH1500    -0.07709  0.50113 -0.7731  -0.357  0.7871  1.0000 -0.6949 
Sunsh      0.06435 -0.37551  0.6525   0.427 -0.7006 -0.6949  1.0000 
Elevation  0.25115 -0.21124  0.1141  -0.227 -0.2745 -0.3341  0.0898 
          Elevation 
MIR          0.2511 
Rainf       -0.2112 
MaxTemp      0.1141 
MinTemp     -0.2269 
RH0600      -0.2745 
RH1500      -0.3341 
Sunsh        0.0898 
Elevation    1.0000 
----------------------------------------------------  
Month : 102 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.0000 -0.0201   0.121 -0.0674 -0.082 -0.200  0.177 
Rainf     -0.0201  1.0000  -0.176 -0.2163  0.222  0.233 -0.237 
MaxTemp    0.1211 -0.1761   1.000  0.4095 -0.578 -0.705  0.481 
MinTemp   -0.0674 -0.2163   0.410  1.0000 -0.412 -0.186  0.178 
RH0600    -0.0820  0.2222  -0.578 -0.4122  1.000  0.700 -0.584 
RH1500    -0.1999  0.2325  -0.705 -0.1865  0.700  1.000 -0.669 
Sunsh      0.1771 -0.2365   0.481  0.1783 -0.584 -0.669  1.000 
Elevation  0.2366 -0.0331   0.156 -0.3771 -0.220 -0.333  0.244 
          Elevation 
MIR          0.2366 
Rainf       -0.0331 
MaxTemp      0.1559 
MinTemp     -0.3771 
RH0600      -0.2203 
RH1500      -0.3330 
Sunsh        0.2445 
Elevation    1.0000 
----------------------------------------------------  
Month : 103 
               MIR   Rainf MaxTemp MinTemp   RH0600  RH1500   Sunsh 
MIR        1.00000  0.0814  0.0921 -0.1200  0.00513 -0.2656  0.1470 
Rainf      0.08145  1.0000  0.2700  0.0971 -0.01840 -0.2272  0.1192 
MaxTemp    0.09209  0.2700  1.0000  0.4044 -0.34287 -0.5951  0.3566 
MinTemp   -0.12000  0.0971  0.4044  1.0000 -0.36529 -0.0186  0.3486 
RH0600     0.00513 -0.0184 -0.3429 -0.3653  1.00000  0.2878 -0.2424 
RH1500    -0.26559 -0.2272 -0.5951 -0.0186  0.28779  1.0000 -0.1874 
Sunsh      0.14705  0.1192  0.3566  0.3486 -0.24240 -0.1874  1.0000 
Elevation  0.30648  0.0245  0.0740 -0.4508 -0.12315 -0.2751 -0.0284 
          Elevation 
MIR          0.3065 
Rainf        0.0245 
MaxTemp      0.0740 
MinTemp     -0.4508 
RH0600      -0.1232 
RH1500      -0.2751 
Sunsh       -0.0284 
Elevation    1.0000 
----------------------------------------------------  
Month : 104 
              MIR  Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.254  0.1607 -0.0514  0.1727 -0.1645  0.0804 
Rainf      0.2538  1.000  0.2950  0.1472  0.1548 -0.2197  0.1443 
MaxTemp    0.1607  0.295  1.0000  0.4129 -0.1655 -0.4732  0.1543 
MinTemp   -0.0514  0.147  0.4129  1.0000 -0.2062 -0.0459  0.4365 
RH0600     0.1727  0.155 -0.1655 -0.2062  1.0000  0.2315 -0.0672 
RH1500    -0.1645 -0.220 -0.4732 -0.0459  0.2315  1.0000  0.3027 
Sunsh      0.0804  0.144  0.1543  0.4365 -0.0672  0.3027  1.0000 
Elevation  0.2866  0.239  0.0849 -0.3648 -0.0517 -0.2579 -0.0957 
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          Elevation 
MIR          0.2866 
Rainf        0.2393 
MaxTemp      0.0849 
MinTemp     -0.3648 
RH0600      -0.0517 
RH1500      -0.2579 
Sunsh       -0.0957 
Elevation    1.0000 
----------------------------------------------------  
Month : 105 
              MIR   Rainf MaxTemp MinTemp RH0600  RH1500   Sunsh 
MIR        1.0000  0.3422  0.0815 -0.1810  0.226 -0.1812  0.2251 
Rainf      0.3422  1.0000  0.3069 -0.3380  0.154 -0.3972 -0.0245 
MaxTemp    0.0815  0.3069  1.0000  0.3077 -0.261 -0.6446  0.2634 
MinTemp   -0.1810 -0.3380  0.3077  1.0000 -0.213  0.0969  0.3571 
RH0600     0.2264  0.1543 -0.2606 -0.2126  1.000  0.2936 -0.1068 
RH1500    -0.1812 -0.3972 -0.6446  0.0969  0.294  1.0000  0.0339 
Sunsh      0.2251 -0.0245  0.2634  0.3571 -0.107  0.0339  1.0000 
Elevation  0.2996  0.4807  0.0393 -0.4765 -0.053 -0.2593 -0.1019 
          Elevation 
MIR          0.2996 
Rainf        0.4807 
MaxTemp      0.0393 
MinTemp     -0.4765 
RH0600      -0.0530 
RH1500      -0.2593 
Sunsh       -0.1019 
Elevation    1.0000 
----------------------------------------------------  
Month : 106 
              MIR   Rainf  MaxTemp MinTemp  RH0600  RH1500  Sunsh 
MIR        1.0000 -0.0755  0.19313 -0.2962 -0.0977 -0.3889  0.207 
Rainf     -0.0755  1.0000 -0.35239 -0.3341  0.3266  0.2571 -0.441 
MaxTemp    0.1931 -0.3524  1.00000  0.3397 -0.3962 -0.7514  0.483 
MinTemp   -0.2962 -0.3341  0.33969  1.0000 -0.2437  0.0745  0.426 
RH0600    -0.0977  0.3266 -0.39623 -0.2437  1.0000  0.4564 -0.453 
RH1500    -0.3889  0.2571 -0.75135  0.0745  0.4564  1.0000 -0.333 
Sunsh      0.2065 -0.4408  0.48339  0.4259 -0.4533 -0.3326  1.000 
Elevation  0.2703  0.1877  0.00158 -0.5174 -0.0792 -0.2708 -0.199 
          Elevation 
MIR         0.27026 
Rainf       0.18766 
MaxTemp     0.00158 
MinTemp    -0.51736 
RH0600     -0.07917 
RH1500     -0.27079 
Sunsh      -0.19941 
Elevation   1.00000 
----------------------------------------------------  
Month : 107 
             MIR  Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.000 -0.291   0.178  -0.502 -0.246 -0.343  0.1031 
Rainf     -0.291  1.000  -0.523   0.365  0.429  0.636 -0.4652 
MaxTemp    0.178 -0.523   1.000  -0.297 -0.694 -0.800  0.5780 
MinTemp   -0.502  0.365  -0.297   1.000  0.326  0.600 -0.2280 
RH0600    -0.246  0.429  -0.694   0.326  1.000  0.817 -0.6472 
RH1500    -0.343  0.636  -0.800   0.600  0.817  1.000 -0.6245 
Sunsh      0.103 -0.465   0.578  -0.228 -0.647 -0.624  1.0000 
Elevation  0.313 -0.375   0.081  -0.462 -0.209 -0.314  0.0502 
          Elevation 
MIR          0.3134 
Rainf       -0.3745 
MaxTemp      0.0810 
MinTemp     -0.4621 
RH0600      -0.2088 
RH1500      -0.3138 
Sunsh        0.0502 
Elevation    1.0000 
----------------------------------------------------  
Month : 108 
              MIR  Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.150  0.0459 -0.4285 -0.237 -0.315  0.1257 
Rainf     -0.1504  1.000 -0.5042  0.3909  0.549  0.622 -0.3636 
MaxTemp    0.0459 -0.504  1.0000 -0.1925 -0.746 -0.746  0.5494 
MinTemp   -0.4285  0.391 -0.1925  1.0000  0.325  0.585 -0.0335 
RH0600    -0.2372  0.549 -0.7460  0.3245  1.000  0.878 -0.6446 
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RH1500    -0.3146  0.622 -0.7465  0.5850  0.878  1.000 -0.5079 
Sunsh      0.1257 -0.364  0.5494 -0.0335 -0.645 -0.508  1.0000 
Elevation  0.2915 -0.230  0.0648 -0.4568 -0.258 -0.373 -0.0755 
          Elevation 
MIR          0.2915 
Rainf       -0.2296 
MaxTemp      0.0648 
MinTemp     -0.4568 
RH0600      -0.2582 
RH1500      -0.3733 
Sunsh       -0.0755 
Elevation    1.0000 
----------------------------------------------------  
Month : 109 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500  Sunsh 
MIR        1.0000  0.0888  -0.106  -0.182 -0.0568 -0.0778  0.124 
Rainf      0.0888  1.0000  -0.285   0.360  0.3907  0.4321 -0.293 
MaxTemp   -0.1065 -0.2848   1.000  -0.376 -0.6151 -0.6669  0.518 
MinTemp   -0.1822  0.3603  -0.376   1.000  0.5000  0.7271 -0.413 
RH0600    -0.0568  0.3907  -0.615   0.500  1.0000  0.8086 -0.729 
RH1500    -0.0778  0.4321  -0.667   0.727  0.8086  1.0000 -0.680 
Sunsh      0.1238 -0.2934   0.518  -0.413 -0.7286 -0.6798  1.000 
Elevation  0.2245 -0.2280   0.163  -0.505 -0.3440 -0.5334  0.195 
          Elevation 
MIR           0.225 
Rainf        -0.228 
MaxTemp       0.163 
MinTemp      -0.505 
RH0600       -0.344 
RH1500       -0.533 
Sunsh         0.195 
Elevation     1.000 
----------------------------------------------------  
Month : 110 
               MIR   Rainf MaxTemp MinTemp  RH0600  RH1500    Sunsh 
MIR        1.00000  0.1453 -0.0393 -0.2900 -0.0511 -0.0543 -0.00477 
Rainf      0.14528  1.0000 -0.2350 -0.1136  0.3479  0.1890 -0.34290 
MaxTemp   -0.03930 -0.2350  1.0000  0.1122 -0.6517 -0.6801  0.41167 
MinTemp   -0.29003 -0.1136  0.1122  1.0000  0.0788  0.3857  0.19485 
RH0600    -0.05111  0.3479 -0.6517  0.0788  1.0000  0.7726 -0.51942 
RH1500    -0.05428  0.1890 -0.6801  0.3857  0.7726  1.0000 -0.25788 
Sunsh     -0.00477 -0.3429  0.4117  0.1949 -0.5194 -0.2579  1.00000 
Elevation  0.25135  0.0889  0.1366 -0.4591 -0.2462 -0.4457 -0.05755 
          Elevation 
MIR          0.2514 
Rainf        0.0889 
MaxTemp      0.1366 
MinTemp     -0.4591 
RH0600      -0.2462 
RH1500      -0.4457 
Sunsh       -0.0575 
Elevation    1.0000 
----------------------------------------------------  
Month : 111 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500  Sunsh 
MIR        1.0000  0.0739 -0.0165  -0.230 -0.0962 -0.083  0.122 
Rainf      0.0739  1.0000 -0.4119  -0.673  0.4370  0.179 -0.446 
MaxTemp   -0.0165 -0.4119  1.0000   0.554 -0.7259 -0.764  0.370 
MinTemp   -0.2301 -0.6730  0.5544   1.000 -0.4243 -0.157  0.266 
RH0600    -0.0962  0.4370 -0.7259  -0.424  1.0000  0.821 -0.538 
RH1500    -0.0830  0.1795 -0.7643  -0.157  0.8206  1.000 -0.451 
Sunsh      0.1221 -0.4458  0.3700   0.266 -0.5375 -0.451  1.000 
Elevation  0.2743  0.3171  0.1380  -0.319 -0.2350 -0.395  0.063 
          Elevation 
MIR           0.274 
Rainf         0.317 
MaxTemp       0.138 
MinTemp      -0.319 
RH0600       -0.235 
RH1500       -0.395 
Sunsh         0.063 
Elevation     1.000 
----------------------------------------------------  
Month : 112 
               MIR    Rainf  MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.00000 -0.00438 -0.00862  -0.148 -0.0226 -0.0303 -0.0672 
Rainf     -0.00438  1.00000 -0.48453  -0.326  0.5242  0.4936 -0.3384 
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MaxTemp   -0.00862 -0.48453  1.00000   0.588 -0.7267 -0.7795  0.4616 
MinTemp   -0.14770 -0.32619  0.58813   1.000 -0.5113 -0.2891  0.5824 
RH0600    -0.02255  0.52421 -0.72665  -0.511  1.0000  0.8167 -0.5288 
RH1500    -0.03030  0.49365 -0.77948  -0.289  0.8167  1.0000 -0.3868 
Sunsh     -0.06716 -0.33841  0.46164   0.582 -0.5288 -0.3868  1.0000 
Elevation  0.25850 -0.14628  0.14311  -0.290 -0.2668 -0.3919 -0.1384 
          Elevation 
MIR           0.258 
Rainf        -0.146 
MaxTemp       0.143 
MinTemp      -0.290 
RH0600       -0.267 
RH1500       -0.392 
Sunsh        -0.138 
Elevation     1.000 
----------------------------------------------------  
Month : 113 
               MIR   Rainf MaxTemp MinTemp  RH0600   RH1500    Sunsh 
MIR        1.00000  0.2718 -0.0199  -0.163  0.0393 -0.00835 -0.00197 
Rainf      0.27179  1.0000 -0.3460  -0.191  0.2979  0.32136 -0.33491 
MaxTemp   -0.01986 -0.3460  1.0000   0.539 -0.6676 -0.72337  0.35270 
MinTemp   -0.16315 -0.1913  0.5391   1.000 -0.3587 -0.14930  0.16620 
RH0600     0.03935  0.2979 -0.6676  -0.359  1.0000  0.75921 -0.42012 
RH1500    -0.00835  0.3214 -0.7234  -0.149  0.7592  1.00000 -0.46527 
Sunsh     -0.00197 -0.3349  0.3527   0.166 -0.4201 -0.46527  1.00000 
Elevation  0.23890 -0.0885  0.1282  -0.429 -0.2708 -0.40241  0.13700 
          Elevation 
MIR          0.2389 
Rainf       -0.0885 
MaxTemp      0.1282 
MinTemp     -0.4292 
RH0600      -0.2708 
RH1500      -0.4024 
Sunsh        0.1370 
Elevation    1.0000 
----------------------------------------------------  
Month : 114 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.0818  0.0741 -0.0908 -0.0489 -0.0345  0.0720 
Rainf      0.0818  1.0000 -0.2253 -0.0637  0.1352  0.4754 -0.3653 
MaxTemp    0.0741 -0.2253  1.0000  0.3393 -0.5393 -0.6160  0.5283 
MinTemp   -0.0908 -0.0637  0.3393  1.0000 -0.1518  0.0917  0.0025 
RH0600    -0.0489  0.1352 -0.5393 -0.1518  1.0000  0.5921 -0.6820 
RH1500    -0.0345  0.4754 -0.6160  0.0917  0.5921  1.0000 -0.7638 
Sunsh      0.0720 -0.3653  0.5283  0.0025 -0.6820 -0.7638  1.0000 
Elevation  0.2121 -0.1781  0.1637 -0.5273 -0.2296 -0.3988  0.2708 
          Elevation 
MIR           0.212 
Rainf        -0.178 
MaxTemp       0.164 
MinTemp      -0.527 
RH0600       -0.230 
RH1500       -0.399 
Sunsh         0.271 
Elevation     1.000 
----------------------------------------------------  
Month : 115 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.0000  0.0652  0.2106 -0.1435 -0.0448 -0.185  0.2634 
Rainf      0.0652  1.0000  0.0611  0.1031 -0.2496  0.196  0.1164 
MaxTemp    0.2106  0.0611  1.0000  0.2590 -0.2476 -0.594  0.4847 
MinTemp   -0.1435  0.1031  0.2590  1.0000 -0.0786  0.156  0.0687 
RH0600    -0.0448 -0.2496 -0.2476 -0.0786  1.0000  0.272 -0.3168 
RH1500    -0.1852  0.1963 -0.5936  0.1564  0.2722  1.000 -0.2969 
Sunsh      0.2634  0.1164  0.4847  0.0687 -0.3168 -0.297  1.0000 
Elevation  0.2769 -0.0794  0.1419 -0.5591 -0.0995 -0.397  0.0785 
          Elevation 
MIR          0.2769 
Rainf       -0.0794 
MaxTemp      0.1419 
MinTemp     -0.5591 
RH0600      -0.0995 
RH1500      -0.3974 
Sunsh        0.0785 
Elevation    1.0000 
----------------------------------------------------  
Month : 116 
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               MIR  Rainf MaxTemp MinTemp  RH0600   RH1500   Sunsh 
MIR        1.00000  0.286   0.231 -0.0600  0.1380  0.00462  0.1287 
Rainf      0.28585  1.000   0.539  0.2247  0.0250 -0.22423  0.4269 
MaxTemp    0.23109  0.539   1.000  0.3816 -0.2221 -0.44282  0.2396 
MinTemp   -0.05999  0.225   0.382  1.0000 -0.1077  0.29022 -0.0275 
RH0600     0.13803  0.025  -0.222 -0.1077  1.0000  0.36127 -0.0492 
RH1500     0.00462 -0.224  -0.443  0.2902  0.3613  1.00000 -0.0168 
Sunsh      0.12869  0.427   0.240 -0.0275 -0.0492 -0.01679  1.0000 
Elevation  0.26577  0.110   0.102 -0.4837 -0.0289 -0.38471  0.1109 
          Elevation 
MIR          0.2658 
Rainf        0.1099 
MaxTemp      0.1022 
MinTemp     -0.4837 
RH0600      -0.0289 
RH1500      -0.3847 
Sunsh        0.1109 
Elevation    1.0000 
----------------------------------------------------  
Month : 117 
              MIR  Rainf MaxTemp MinTemp  RH0600 RH1500  Sunsh 
MIR        1.0000  0.290  0.2636  -0.102  0.0764 -0.251  0.255 
Rainf      0.2901  1.000  0.3186  -0.114  0.2126 -0.409  0.290 
MaxTemp    0.2636  0.319  1.0000   0.294 -0.2346 -0.665  0.359 
MinTemp   -0.1022 -0.114  0.2944   1.000 -0.2486  0.105  0.251 
RH0600     0.0764  0.213 -0.2346  -0.249  1.0000  0.260 -0.211 
RH1500    -0.2509 -0.409 -0.6652   0.105  0.2603  1.000 -0.170 
Sunsh      0.2547  0.290  0.3591   0.251 -0.2106 -0.170  1.000 
Elevation  0.2676  0.266  0.0533  -0.534  0.0799 -0.316 -0.186 
          Elevation 
MIR          0.2676 
Rainf        0.2662 
MaxTemp      0.0533 
MinTemp     -0.5340 
RH0600       0.0799 
RH1500      -0.3159 
Sunsh       -0.1859 
Elevation    1.0000 
----------------------------------------------------  
Month : 118 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.1299   0.184  -0.221 -0.0718 -0.3319  0.0595 
Rainf      0.1299  1.0000  -0.076  -0.440  0.3625 -0.0528 -0.4924 
MaxTemp    0.1836 -0.0760   1.000   0.289 -0.4248 -0.7305  0.3887 
MinTemp   -0.2214 -0.4403   0.289   1.000 -0.3427  0.1152  0.3614 
RH0600    -0.0718  0.3625  -0.425  -0.343  1.0000  0.4856 -0.4332 
RH1500    -0.3319 -0.0528  -0.730   0.115  0.4856  1.0000 -0.3620 
Sunsh      0.0595 -0.4924   0.389   0.361 -0.4332 -0.3620  1.0000 
Elevation  0.2810  0.2642   0.037  -0.575  0.0420 -0.2199 -0.2820 
          Elevation 
MIR           0.281 
Rainf         0.264 
MaxTemp       0.037 
MinTemp      -0.575 
RH0600        0.042 
RH1500       -0.220 
Sunsh        -0.282 
Elevation     1.000 
----------------------------------------------------  
Month : 119 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000  0.0563  0.1566 -0.4213 -0.206 -0.309 -0.0243 
Rainf      0.0563  1.0000 -0.5782 -0.0242  0.487  0.506 -0.5607 
MaxTemp    0.1566 -0.5782  1.0000 -0.0972 -0.654 -0.792  0.4355 
MinTemp   -0.4213 -0.0242 -0.0972  1.0000  0.236  0.495 -0.0244 
RH0600    -0.2057  0.4869 -0.6541  0.2360  1.000  0.788 -0.4870 
RH1500    -0.3094  0.5059 -0.7923  0.4945  0.788  1.000 -0.4404 
Sunsh     -0.0243 -0.5607  0.4355 -0.0244 -0.487 -0.440  1.0000 
Elevation  0.3198  0.0493  0.0520 -0.6089 -0.172 -0.297 -0.0265 
          Elevation 
MIR          0.3198 
Rainf        0.0493 
MaxTemp      0.0520 
MinTemp     -0.6089 
RH0600      -0.1715 
RH1500      -0.2965 
Sunsh       -0.0265 
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Elevation    1.0000 
----------------------------------------------------  
Month : 120 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.0000 -0.0638  0.0976  -0.197 -0.0884 -0.189  0.0856 
Rainf     -0.0638  1.0000 -0.4211   0.577  0.4901  0.670 -0.3606 
MaxTemp    0.0976 -0.4211  1.0000  -0.386 -0.6482 -0.677  0.4851 
MinTemp   -0.1969  0.5774 -0.3859   1.000  0.6611  0.785 -0.4477 
RH0600    -0.0884  0.4901 -0.6482   0.661  1.0000  0.813 -0.6415 
RH1500    -0.1893  0.6701 -0.6773   0.785  0.8134  1.000 -0.5604 
Sunsh      0.0856 -0.3606  0.4851  -0.448 -0.6415 -0.560  1.0000 
Elevation  0.3086 -0.2965  0.0641  -0.529 -0.2242 -0.393  0.0602 
          Elevation 
MIR          0.3086 
Rainf       -0.2965 
MaxTemp      0.0641 
MinTemp     -0.5292 
RH0600      -0.2242 
RH1500      -0.3929 
Sunsh        0.0602 
Elevation    1.0000 
----------------------------------------------------  
Month : 121 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500  Sunsh 
MIR        1.0000 -0.0358 -0.1714 -0.3182 -0.157 -0.111  0.113 
Rainf     -0.0358  1.0000 -0.2920  0.3302  0.445  0.314 -0.426 
MaxTemp   -0.1714 -0.2920  1.0000 -0.0819 -0.356 -0.358  0.539 
MinTemp   -0.3182  0.3302 -0.0819  1.0000  0.625  0.683 -0.320 
RH0600    -0.1569  0.4451 -0.3561  0.6253  1.000  0.728 -0.692 
RH1500    -0.1109  0.3143 -0.3576  0.6827  0.728  1.000 -0.429 
Sunsh      0.1134 -0.4263  0.5391 -0.3195 -0.692 -0.429  1.000 
Elevation  0.2413 -0.1131  0.0880 -0.4688 -0.267 -0.498  0.112 
          Elevation 
MIR           0.241 
Rainf        -0.113 
MaxTemp       0.088 
MinTemp      -0.469 
RH0600       -0.267 
RH1500       -0.498 
Sunsh         0.112 
Elevation     1.000 
----------------------------------------------------  
Month : 122 
               MIR   Rainf MaxTemp MinTemp RH0600  RH1500    Sunsh 
MIR        1.00000  0.0408 -0.0152  -0.214 -0.047 -0.0365  0.00386 
Rainf      0.04084  1.0000 -0.1595   0.149  0.503  0.4087 -0.07013 
MaxTemp   -0.01517 -0.1595  1.0000   0.208 -0.314 -0.2414  0.55514 
MinTemp   -0.21410  0.1487  0.2081   1.000  0.427  0.5856  0.17599 
RH0600    -0.04702  0.5032 -0.3136   0.427  1.000  0.6637 -0.49884 
RH1500    -0.03647  0.4087 -0.2414   0.586  0.664  1.0000 -0.09448 
Sunsh      0.00386 -0.0701  0.5551   0.176 -0.499 -0.0945  1.00000 
Elevation  0.23610 -0.0410  0.1439  -0.481 -0.287 -0.4076  0.09166 
          Elevation 
MIR          0.2361 
Rainf       -0.0410 
MaxTemp      0.1439 
MinTemp     -0.4805 
RH0600      -0.2870 
RH1500      -0.4076 
Sunsh        0.0917 
Elevation    1.0000 
----------------------------------------------------  
Month : 123 
              MIR   Rainf MaxTemp MinTemp  RH0600 RH1500   Sunsh 
MIR        1.0000  0.0411  0.0626 -0.1457 -0.1616 -0.132  0.0402 
Rainf      0.0411  1.0000 -0.4829 -0.2413  0.6120  0.463 -0.3888 
MaxTemp    0.0626 -0.4829  1.0000  0.5267 -0.5486 -0.355  0.2532 
MinTemp   -0.1457 -0.2413  0.5267  1.0000 -0.0771  0.230 -0.0240 
RH0600    -0.1616  0.6120 -0.5486 -0.0771  1.0000  0.699 -0.2911 
RH1500    -0.1325  0.4628 -0.3549  0.2297  0.6989  1.000 -0.4650 
Sunsh      0.0402 -0.3888  0.2532 -0.0240 -0.2911 -0.465  1.0000 
Elevation  0.2367 -0.0799  0.1144 -0.4099 -0.2680 -0.351  0.1346 
          Elevation 
MIR          0.2367 
Rainf       -0.0799 
MaxTemp      0.1144 
MinTemp     -0.4099 
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RH0600      -0.2680 
RH1500      -0.3513 
Sunsh        0.1346 
Elevation    1.0000 
----------------------------------------------------  
Month : 124 
               MIR  Rainf MaxTemp MinTemp  RH0600   RH1500   Sunsh 
MIR        1.00000  0.253 -0.0385 -0.1223 -0.0656 -0.00208 -0.0873 
Rainf      0.25299  1.000 -0.3532 -0.4798  0.3421  0.27302 -0.4256 
MaxTemp   -0.03845 -0.353  1.0000  0.6078 -0.3056 -0.33741  0.4511 
MinTemp   -0.12231 -0.480  0.6078  1.0000 -0.2405  0.01729  0.4733 
RH0600    -0.06556  0.342 -0.3056 -0.2405  1.0000  0.70384 -0.2016 
RH1500    -0.00208  0.273 -0.3374  0.0173  0.7038  1.00000 -0.2611 
Sunsh     -0.08727 -0.426  0.4511  0.4733 -0.2016 -0.26109  1.0000 
Elevation  0.27159  0.189  0.0582 -0.3395 -0.2124 -0.35635 -0.1180 
          Elevation 
MIR          0.2716 
Rainf        0.1890 
MaxTemp      0.0582 
MinTemp     -0.3395 
RH0600      -0.2124 
RH1500      -0.3563 
Sunsh       -0.1180 
Elevation    1.0000 
----------------------------------------------------  
Month : 125 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.1887  0.0619 -0.1377 -0.0817 -0.0748  0.0708 
Rainf      0.1887  1.0000 -0.1969 -0.0195  0.3108  0.5074 -0.1897 
MaxTemp    0.0619 -0.1969  1.0000  0.5718 -0.0264 -0.2994  0.5432 
MinTemp   -0.1377 -0.0195  0.5718  1.0000  0.0268  0.2238  0.3133 
RH0600    -0.0817  0.3108 -0.0264  0.0268  1.0000  0.6477 -0.2492 
RH1500    -0.0748  0.5074 -0.2994  0.2238  0.6477  1.0000 -0.3438 
Sunsh      0.0708 -0.1897  0.5432  0.3133 -0.2492 -0.3438  1.0000 
Elevation  0.3000 -0.2453  0.0718 -0.4073 -0.1452 -0.3791  0.0919 
          Elevation 
MIR          0.3000 
Rainf       -0.2453 
MaxTemp      0.0718 
MinTemp     -0.4073 
RH0600      -0.1452 
RH1500      -0.3791 
Sunsh        0.0919 
Elevation    1.0000 
----------------------------------------------------  
Month : 126 
              MIR   Rainf MaxTemp  MinTemp  RH0600  RH1500    Sunsh 
MIR        1.0000 -0.0675  0.1000 -0.11543 -0.2377 -0.1766  0.13316 
Rainf     -0.0675  1.0000 -0.1408  0.07534  0.1399  0.3875 -0.30948 
MaxTemp    0.1000 -0.1408  1.0000  0.45045  0.3732 -0.0691  0.43619 
MinTemp   -0.1154  0.0753  0.4505  1.00000  0.1966  0.3700  0.00582 
RH0600    -0.2377  0.1399  0.3732  0.19658  1.0000  0.5507 -0.11177 
RH1500    -0.1766  0.3875 -0.0691  0.36999  0.5507  1.0000 -0.55306 
Sunsh      0.1332 -0.3095  0.4362  0.00582 -0.1118 -0.5531  1.00000 
Elevation  0.3123 -0.2616  0.0675 -0.46300 -0.0295 -0.3134  0.22422 
          Elevation 
MIR          0.3123 
Rainf       -0.2616 
MaxTemp      0.0675 
MinTemp     -0.4630 
RH0600      -0.0295 
RH1500      -0.3134 
Sunsh        0.2242 
Elevation    1.0000 
----------------------------------------------------  
Month : 127 
              MIR   Rainf MaxTemp MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.1710  0.1126  -0.112 -0.0745 -0.1700  0.1417 
Rainf      0.1710  1.0000  0.0741  -0.188  0.0769 -0.1608  0.1649 
MaxTemp    0.1126  0.0741  1.0000   0.436  0.4950  0.0779  0.2822 
MinTemp   -0.1115 -0.1879  0.4363   1.000  0.2890  0.4005  0.2928 
RH0600    -0.0745  0.0769  0.4950   0.289  1.0000  0.4984  0.0560 
RH1500    -0.1700 -0.1608  0.0779   0.401  0.4984  1.0000  0.0816 
Sunsh      0.1417  0.1649  0.2822   0.293  0.0560  0.0816  1.0000 
Elevation  0.2762  0.3454  0.0370  -0.454 -0.0300 -0.4168 -0.0824 
          Elevation 
MIR          0.2762 
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Rainf        0.3454 
MaxTemp      0.0370 
MinTemp     -0.4543 
RH0600      -0.0300 
RH1500      -0.4168 
Sunsh       -0.0824 
Elevation    1.0000 
----------------------------------------------------  
Month : 128 
              MIR    Rainf MaxTemp  MinTemp  RH0600  RH1500   Sunsh 
MIR        1.0000  0.28830  0.1031 -0.11683 -0.0834 -0.1036  0.2744 
Rainf      0.2883  1.00000  0.2914  0.00619  0.0396 -0.2882  0.5020 
MaxTemp    0.1031  0.29138  1.0000  0.45632  0.5202  0.0957  0.2309 
MinTemp   -0.1168  0.00619  0.4563  1.00000  0.3756  0.3836  0.0568 
RH0600    -0.0834  0.03963  0.5202  0.37561  1.0000  0.5740  0.1430 
RH1500    -0.1036 -0.28821  0.0957  0.38357  0.5740  1.0000 -0.0272 
Sunsh      0.2744  0.50196  0.2309  0.05675  0.1430 -0.0272  1.0000 
Elevation  0.2645  0.31321  0.0432 -0.44143 -0.0513 -0.2643  0.0932 
          Elevation 
MIR          0.2645 
Rainf        0.3132 
MaxTemp      0.0432 
MinTemp     -0.4414 
RH0600      -0.0513 
RH1500      -0.2643 
Sunsh        0.0932 
Elevation    1.0000 
----------------------------------------------------  
Month : 129 
              MIR    Rainf MaxTemp MinTemp  RH0600  RH1500    Sunsh 
MIR        1.0000  0.03017  0.1398  -0.158 -0.0772 -0.2419  0.14030 
Rainf      0.0302  1.00000  0.0956  -0.190  0.1613 -0.0660  0.00501 
MaxTemp    0.1398  0.09560  1.0000   0.411  0.5744  0.0490  0.26075 
MinTemp   -0.1577 -0.18976  0.4112   1.000  0.3752  0.3849  0.20663 
RH0600    -0.0772  0.16131  0.5744   0.375  1.0000  0.5502  0.22443 
RH1500    -0.2419 -0.06601  0.0490   0.385  0.5502  1.0000  0.05827 
Sunsh      0.1403  0.00501  0.2608   0.207  0.2244  0.0583  1.00000 
Elevation  0.3146  0.36255 -0.0397  -0.500 -0.0369 -0.1787 -0.25665 
          Elevation 
MIR          0.3146 
Rainf        0.3625 
MaxTemp     -0.0397 
MinTemp     -0.5004 
RH0600      -0.0369 
RH1500      -0.1787 
Sunsh       -0.2567 
Elevation    1.0000 
----------------------------------------------------  
Month : 130 
               MIR   Rainf  MaxTemp MinTemp  RH0600  RH1500    Sunsh 
MIR        1.00000  0.0314  0.15586  -0.181 -0.1813 -0.3074  0.00289 
Rainf      0.03137  1.0000 -0.17014  -0.167  0.2178  0.2636 -0.29058 
MaxTemp    0.15586 -0.1701  1.00000   0.365  0.4538 -0.1306  0.43484 
MinTemp   -0.18144 -0.1668  0.36493   1.000  0.3401  0.3996  0.33637 
RH0600    -0.18129  0.2178  0.45383   0.340  1.0000  0.5062  0.12550 
RH1500    -0.30739  0.2636 -0.13062   0.400  0.5062  1.0000 -0.05076 
Sunsh      0.00289 -0.2906  0.43484   0.336  0.1255 -0.0508  1.00000 
Elevation  0.29214  0.0751 -0.00502  -0.488 -0.0805 -0.3016 -0.18806 
          Elevation 
MIR         0.29214 
Rainf       0.07505 
MaxTemp    -0.00502 
MinTemp    -0.48794 
RH0600     -0.08048 
RH1500     -0.30163 
Sunsh      -0.18806 
Elevation   1.00000 
----------------------------------------------------  
Month : 131 
             MIR  Rainf MaxTemp  MinTemp RH0600 RH1500    Sunsh 
MIR        1.000 -0.111  0.1655 -0.33579 -0.355 -0.336  0.18719 
Rainf     -0.111  1.000 -0.4488  0.30742  0.458  0.662 -0.52603 
MaxTemp    0.165 -0.449  1.0000  0.10938 -0.232 -0.413  0.57280 
MinTemp   -0.336  0.307  0.1094  1.00000  0.480  0.548  0.00519 
RH0600    -0.355  0.458 -0.2317  0.47962  1.000  0.726 -0.35493 
RH1500    -0.336  0.662 -0.4135  0.54837  0.726  1.000 -0.49671 
Sunsh      0.187 -0.526  0.5728  0.00519 -0.355 -0.497  1.00000 
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Elevation  0.290 -0.252  0.0629 -0.50358 -0.198 -0.369 -0.01069 
          Elevation 
MIR          0.2902 
Rainf       -0.2522 
MaxTemp      0.0629 
MinTemp     -0.5036 
RH0600      -0.1982 
RH1500      -0.3693 
Sunsh       -0.0107 
Elevation    1.0000 
----------------------------------------------------  
Month : 132 
              MIR   Rainf MaxTemp MinTemp RH0600 RH1500   Sunsh 
MIR        1.0000 -0.0224  0.0869  -0.182 -0.191 -0.174  0.0917 
Rainf     -0.0224  1.0000 -0.3161   0.445  0.401  0.550 -0.2340 
MaxTemp    0.0869 -0.3161  1.0000  -0.107 -0.417 -0.370  0.5597 
MinTemp   -0.1819  0.4453 -0.1069   1.000  0.640  0.749 -0.1221 
RH0600    -0.1912  0.4007 -0.4172   0.640  1.000  0.784 -0.4888 
RH1500    -0.1739  0.5505 -0.3702   0.749  0.784  1.000 -0.2969 
Sunsh      0.0917 -0.2340  0.5597  -0.122 -0.489 -0.297  1.0000 
Elevation  0.2794 -0.1637  0.0165  -0.444 -0.255 -0.383 -0.1036 
          Elevation 
MIR          0.2794 
Rainf       -0.1637 
MaxTemp      0.0165 
MinTemp     -0.4441 
RH0600      -0.2546 
RH1500      -0.3835 
Sunsh       -0.1036 
Elevation    1.0000 
---------------------------------------------------------------  
 

 
 
 
 
 
B-4: Cross-correlation Analysis of MIR with Covariates  
 
Results B-4.1: Spatial correlations of residuals (detrended MIR) with climatic covariates at the study 
areas (national, BAR and vegetation zones)  
--------------------------------------------------------------------------------------- 
National 
Residuals   1.00000  0.27652 -0.3233 -0.09078  0.2876  0.3207 -0.1942 
Rainfall    0.27652  1.00000 -0.3660  0.04911  0.4017  0.4950 -0.3010 
MaxTemp    -0.32333 -0.36602  1.0000  0.23637 -0.5782 -0.7429  0.6486 
MinTemp    -0.09078  0.04911  0.2364  1.00000  0.1307  0.1750  0.1248 
RH0600      0.28756  0.40171 -0.5782  0.13069  1.0000  0.7986 -0.4125 
RH1500      0.32072  0.49502 -0.7429  0.17501  0.7986  1.0000 -0.5477 
Sunshrs    -0.19417 -0.30103  0.6486  0.12478 -0.4125 -0.5477  1.0000 
------------------------------------------------------------------------ 
National 
            Resid1   Rainf_1   MaxT_1   MinT_1   RH0600_1 RH1500_1 Sunsh_1 
Residuals  1.00000   0.37981  -0.2827   0.02564   0.3179   0.3597  -0.1790 
Rainfall_1 0.37981   1.00000  -0.3685   0.04868   0.4017   0.4978  -0.2996 
MaxTemp_1 -0.28272  -0.36849   1.0000   0.23382  -0.5781  -0.7451   0.6494 
MinTemp_1  0.02564   0.04868   0.2338   1.00000   0.1308   0.1765   0.1251 
RH0600_1   0.31792   0.40171  -0.5781   0.13077   1.0000   0.7979  -0.4135 
RH1500_1   0.35967   0.49783  -0.7451   0.17649   0.7979   1.0000  -0.5495 
Sunshrs_1 -0.17896  -0.29958   0.6494   0.12512  -0.4135  -0.5495   1.0000 
========================================================================== 
BAR 
           Residuals1  Rainf_1  MaxT_1   MinT_1 RH0600_1 RH1500_1 Sunsh_1 
Residuals1     1.0000  0.37562 -0.2066  0.04910   0.2892   0.3591 -0.1322 
Rainf_1        0.3756  1.00000 -0.3059  0.09534   0.4944   0.5876 -0.1823 
MaxT_1        -0.2066 -0.30594  1.0000  0.14057  -0.5576  -0.7073  0.7326 
MinT_1         0.0491  0.09534  0.1406  1.00000   0.1817  -0.0473  0.1601 
RH0600_1       0.2892  0.49440 -0.5576  0.18166   1.0000   0.8295 -0.3795 
RH1500_1       0.3591  0.58757 -0.7073 -0.04730   0.8295   1.0000 -0.5851 
Sunsh_1       -0.1322 -0.18235  0.7326  0.16007  -0.3795  -0.5851  1.0000 
------------------------------------------------------------------------- 
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BAR 
           Residuals1 Rainfall MaxTemp  MinTemp  RH0600   RH1500 Sunshrs 
Residuals1    1.00000   0.1973 -0.3109 -0.07303  0.2564  0.35191 -0.2079 
Rainfall      0.19726   1.0000 -0.3070  0.09700  0.4947  0.58820 -0.1868 
MaxTemp      -0.31088  -0.3070  1.0000  0.14022 -0.5580 -0.70691  0.7324 
MinTemp      -0.07303   0.0970  0.1402  1.00000  0.1815 -0.04862  0.1583 
RH0600        0.25640   0.4947 -0.5580  0.18145  1.0000  0.82942 -0.3803 
RH1500        0.35191   0.5882 -0.7069 -0.04862  0.8294  1.00000 -0.5856 
Sunshrs      -0.20789  -0.1868  0.7324  0.15832 -0.3803 -0.58564  1.0000 
========================================================================= 
Coastal Zone 
             Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.34471  -0.07103   0.04277  0.06322  0.14283  -0.06689 
Rainfall_1    0.34471    1.00000  -0.17565  -0.02775  0.16894  0.28063  -0.19057 
MaxTemp_1    -0.07103   -0.17565   1.00000   0.53391 -0.24067 -0.72198   0.51424 
MinTemp_1     0.04277   -0.02775   0.53391   1.00000 -0.26482 -0.07982   0.47082 
RH0600_1      0.06322    0.16894  -0.24067  -0.26482  1.00000  0.45509  -0.06434 
RH1500_1      0.14283    0.28063  -0.72198  -0.07982  0.45509  1.00000  -0.19825 
Sunshrs_1    -0.06689   -0.19057   0.51424   0.47082 -0.06434 -0.19825   1.00000 
---------------------------------------------------------------------------------  
Forest Zone 
            Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1  RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.31626   -0.1944  0.027956   0.2175  0.325050   -0.1237 
Rainfall_1    0.31626    1.00000   -0.2736  0.092644   0.3830  0.548638   -0.1821 
MaxTemp_1    -0.19441   -0.27356    1.0000  0.331797  -0.3047 -0.632470    0.6111 
MinTemp_1     0.02796    0.09264    0.3318  1.000000   0.1500 -0.003617    0.1827 
RH0600_1      0.21749    0.38301   -0.3047  0.150003   1.0000  0.713302   -0.2310 
RH1500_1      0.32505    0.54864   -0.6325 -0.003617   0.7133  1.000000   -0.5051 
Sunshrs_1    -0.12372   -0.18210    0.6111  0.182747  -0.2310 -0.505144    1.0000 
----------------------------------------------------------------------------------  
Northern Zone 
             Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.5091   -0.5066   0.02884   0.4735   0.5572  -0.38908 
Rainfall_1    0.50910     1.0000   -0.7267   0.13411   0.6713   0.8181  -0.66400 
MaxTemp_1    -0.50664    -0.7267    1.0000   0.30293  -0.6529  -0.7785   0.63546 
MinTemp_1     0.02884     0.1341    0.3029   1.00000   0.1372   0.1924  -0.09998 
RH0600_1      0.47353     0.6713   -0.6529   0.13723   1.0000   0.8655  -0.48115 
RH1500_1      0.55717     0.8181   -0.7785   0.19242   0.8655   1.0000  -0.68671 
Sunshrs_1    -0.38908    -0.6640    0.6355  -0.09998  -0.4811  -0.6867   1.00000 
--------------------------------------------------------------------------------- 

 
 
Results B-4.2: Temporal correlations of residuals (detrended MIR) with climatic covariates at the 
district weather locations across the country  
==================================================================================  
Accra MA       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.48149   -0.5194  -0.41905   0.3562   0.5929  -0.26465 
Rainfall_1     0.4815    1.00000   -0.1609  -0.08735   0.3053   0.3950  -0.09171 
MaxTemp_1     -0.5194   -0.16093    1.0000   0.85388  -0.3632  -0.7036   0.65791 
MinTemp_1     -0.4190   -0.08735    0.8539   1.00000  -0.1255  -0.4008   0.51295 
RH0600_1       0.3562    0.30533   -0.3632  -0.12553   1.0000   0.7730   0.11470 
RH1500_1       0.5929    0.39495   -0.7036  -0.40075   0.7730   1.0000  -0.29355 
Sunshrs_1     -0.2646   -0.09171    0.6579   0.51295   0.1147  -0.2935   1.00000 
----------------------------------------------------------------------------------  
AframP/KwahuN  
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.09881   -0.3403  -0.16938  0.07786  0.24128  -0.33138 
Rainfall_1    0.09881    1.00000   -0.2353   0.19748  0.44379  0.59125  -0.03923 
MaxTemp_1    -0.34029   -0.23534    1.0000   0.50665 -0.43934 -0.78061   0.74018 
MinTemp_1    -0.16938    0.19748    0.5066   1.00000  0.31211  0.02926   0.33140 
RH0600_1      0.07786    0.44379   -0.4393   0.31211  1.00000  0.80156  -0.10203 
RH1500_1      0.24128    0.59125   -0.7806   0.02926  0.80156  1.00000  -0.46702 
Sunshrs_1    -0.33138   -0.03923    0.7402   0.33140 -0.10203 -0.46702   1.00000 
----------------------------------------------------------------------------------  
Agona          
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1  RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000   -0.03041    0.2497   0.19773 -0.059534  -0.1377  0.268052 
Rainfall_1   -0.03041    1.00000   -0.3162   0.05947  0.317587   0.5319 -0.115339 
MaxTemp_1     0.24974   -0.31621    1.0000   0.62247 -0.229991  -0.8256  0.768020 
MinTemp_1     0.19773    0.05947    0.6225   1.00000  0.067073  -0.2585  0.517336 
RH0600_1     -0.05953    0.31759   -0.2300   0.06707  1.000000   0.4502 -0.005548 
RH1500_1     -0.13772    0.53193   -0.8256  -0.25853  0.450194   1.0000 -0.483958 
Sunshrs_1     0.26805   -0.11534    0.7680   0.51734 -0.005548  -0.4840  1.000000 
-----------------------------------------------------------------------------------  
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Ahafo AnoN     
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.38406  -0.09409   0.22424   0.2178  0.26433  -0.01956 
Rainfall_1    0.38406    1.00000  -0.22414   0.28570   0.5541  0.55266  -0.07899 
MaxTemp_1    -0.09409   -0.22414   1.00000   0.50368  -0.5434 -0.85253   0.85829 
MinTemp_1     0.22424    0.28570   0.50368   1.00000   0.2728 -0.06598   0.42993 
RH0600_1      0.21776    0.55408  -0.54339   0.27277   1.0000  0.84670  -0.33303 
RH1500_1      0.26433    0.55266  -0.85253  -0.06598   0.8467  1.00000  -0.67200 
Sunshrs_1    -0.01956   -0.07899   0.85829   0.42993  -0.3330 -0.67200   1.00000 
----------------------------------------------------------------------------------  
Ahanta W       
           Residuals1 Rainfall_1  MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1  1.0000000    0.22098 -0.0002829   0.02541 -0.01678   0.2482  -0.01101 
Rainfall_1  0.2209808    1.00000 -0.0891678   0.25199 -0.19075   0.3142  -0.11589 
MaxTemp_1  -0.0002829   -0.08917  1.0000000   0.72092 -0.44479  -0.7866   0.71385 
MinTemp_1   0.0254097    0.25199  0.7209154   1.00000 -0.50721  -0.3624   0.48955 
RH0600_1   -0.0167768   -0.19075 -0.4447859  -0.50721  1.00000   0.4765  -0.11146 
RH1500_1    0.2481821    0.31417 -0.7865915  -0.36237  0.47652   1.0000  -0.57916 
Sunshrs_1  -0.0110056   -0.11589  0.7138454   0.48955 -0.11146  -0.5792   1.00000 
----------------------------------------------------------------------------------- 
Akatsi         
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.44454   -0.3772  -0.06113  0.21673   0.4164  -0.40401 
Rainfall_1    0.44454    1.00000   -0.1866   0.02962  0.25318   0.3517   0.04789 
MaxTemp_1    -0.37722   -0.18665    1.0000   0.74454 -0.33948  -0.5073   0.65360 
MinTemp_1    -0.06113    0.02962    0.7445   1.00000  0.14080  -0.2379   0.48823 
RH0600_1      0.21673    0.25318   -0.3395   0.14080  1.00000   0.5158   0.07528 
RH1500_1      0.41645    0.35165   -0.5073  -0.23792  0.51582   1.0000  -0.22512 
Sunshrs_1    -0.40401    0.04789    0.6536   0.48823  0.07528  -0.2251   1.00000 
----------------------------------------------------------------------------------- 
Akwapim S      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.19094   -0.1511   -0.1228 -0.03962   0.2018  -0.02003 
Rainfall_1    0.19094    1.00000   -0.2669   -0.1173  0.20684   0.4062  -0.08847 
MaxTemp_1    -0.15105   -0.26690    1.0000    0.7627 -0.22090  -0.7824   0.76909 
MinTemp_1    -0.12276   -0.11726    0.7627    1.0000 -0.15122  -0.5583   0.71922 
RH0600_1     -0.03962    0.20684   -0.2209   -0.1512  1.00000   0.3938  -0.10534 
RH1500_1      0.20178    0.40624   -0.7824   -0.5583  0.39383   1.0000  -0.45898 
Sunshrs_1    -0.02003   -0.08847    0.7691    0.7192 -0.10534  -0.4590   1.00000 
----------------------------------------------------------------------------------  
Amansie E/BM   
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1  RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.3099   -0.1517 -0.053994  0.274998   0.2911  -0.05876 
Rainfall_1    0.30993     1.0000   -0.2946  0.155639  0.513650   0.5911  -0.14818 
MaxTemp_1    -0.15169    -0.2946    1.0000  0.657207 -0.498926  -0.8013   0.88117 
MinTemp_1    -0.05399     0.1556    0.6572  1.000000  0.007197  -0.2839   0.57648 
RH0600_1      0.27500     0.5136   -0.4989  0.007197  1.000000   0.8488  -0.36196 
RH1500_1      0.29111     0.5911   -0.8013 -0.283865  0.848803   1.0000  -0.66901 
Sunshrs_1    -0.05876    -0.1482    0.8812  0.576483 -0.361958  -0.6690   1.00000 
-----------------------------------------------------------------------------------  
Aowin S        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.21418   -0.1043   0.06434  0.40557  0.15085   0.17983 
Rainfall_1    0.21418    1.00000   -0.1635   0.07073  0.36229  0.43417  -0.11970 
MaxTemp_1    -0.10426   -0.16353    1.0000   0.47010 -0.37240 -0.77538   0.74862 
MinTemp_1     0.06434    0.07073    0.4701   1.00000  0.12364 -0.03121   0.32568 
RH0600_1      0.40557    0.36229   -0.3724   0.12364  1.00000  0.64092  -0.07116 
RH1500_1      0.15085    0.43417   -0.7754  -0.03121  0.64092  1.00000  -0.60496 
Sunshrs_1     0.17983   -0.11970    0.7486   0.32568 -0.07116 -0.60496   1.00000 
-----------------------------------------------------------------------------------  
Asante AN      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.2597   -0.1868  -0.06508   0.1353   0.2095   -0.1072 
Rainfall_1    0.25968     1.0000   -0.2407   0.15406   0.4604   0.5077   -0.1091 
MaxTemp_1    -0.18684    -0.2407    1.0000   0.57061  -0.5424  -0.8561    0.8719 
MinTemp_1    -0.06508     0.1541    0.5706   1.00000   0.2366  -0.1403    0.5055 
RH0600_1      0.13532     0.4604   -0.5424   0.23660   1.0000   0.8307   -0.3879 
RH1500_1      0.20950     0.5077   -0.8561  -0.14031   0.8307   1.0000   -0.6939 
Sunshrs_1    -0.10721    -0.1091    0.8719   0.50549  -0.3879  -0.6939    1.0000 
-----------------------------------------------------------------------------------  
Assin N        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.3382  -0.07242   0.33150   0.3625  0.35319    0.0908 
Rainfall_1    0.33818     1.0000  -0.40432   0.21946   0.5239  0.63742   -0.2277 
MaxTemp_1    -0.07242    -0.4043   1.00000   0.40129  -0.4917 -0.82523    0.8051 
MinTemp_1     0.33150     0.2195   0.40129   1.00000   0.3285  0.08481    0.3741 
RH0600_1      0.36248     0.5239  -0.49168   0.32852   1.0000  0.81708   -0.1541 
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RH1500_1      0.35319     0.6374  -0.82523   0.08481   0.8171  1.00000   -0.5288 
Sunshrs_1     0.09080    -0.2277   0.80513   0.37413  -0.1541 -0.52876    1.0000 
-----------------------------------------------------------------------------------  
Asunafo N      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.49093   -0.2273  -0.03800  0.44251   0.4777  -0.11054 
Rainfall_1     0.4909    1.00000   -0.2108   0.15889  0.49106   0.5582  -0.09839 
MaxTemp_1     -0.2273   -0.21076    1.0000   0.62552 -0.45287  -0.7279   0.85599 
MinTemp_1     -0.0380    0.15889    0.6255   1.00000  0.02697  -0.2337   0.48978 
RH0600_1       0.4425    0.49106   -0.4529   0.02697  1.00000   0.8679  -0.38826 
RH1500_1       0.4777    0.55821   -0.7279  -0.23369  0.86785   1.0000  -0.64050 
Sunshrs_1     -0.1105   -0.09839    0.8560   0.48978 -0.38826  -0.6405   1.00000 
-----------------------------------------------------------------------------------  
Asuogyaman     
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.37096   -0.3868  -0.01304  0.29561  0.45995  -0.15536 
Rainfall_1    0.37096    1.00000   -0.2494   0.22722  0.40115  0.56658   0.06008 
MaxTemp_1    -0.38679   -0.24941    1.0000   0.51520 -0.44666 -0.75275   0.62382 
MinTemp_1    -0.01304    0.22722    0.5152   1.00000 -0.19873 -0.05219   0.34180 
RH0600_1      0.29561    0.40115   -0.4467  -0.19873  1.00000  0.70672   0.08125 
RH1500_1      0.45995    0.56658   -0.7528  -0.05219  0.70672  1.00000  -0.24561 
Sunshrs_1    -0.15536    0.06008    0.6238   0.34180  0.08125 -0.24561   1.00000 
-----------------------------------------------------------------------------------  
Atebubu A      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.41677   -0.4245  -0.11262   0.3110  0.49799   -0.3470 
Rainfall_1     0.4168    1.00000   -0.3517   0.07645   0.5016  0.61632   -0.1429 
MaxTemp_1     -0.4245   -0.35173    1.0000   0.24431  -0.5364 -0.76828    0.7711 
MinTemp_1     -0.1126    0.07645    0.2443   1.00000   0.2330 -0.04882    0.2502 
RH0600_1       0.3110    0.50160   -0.5364   0.23304   1.0000  0.81543   -0.2267 
RH1500_1       0.4980    0.61632   -0.7683  -0.04882   0.8154  1.00000   -0.5411 
Sunshrs_1     -0.3470   -0.14295    0.7711   0.25023  -0.2267 -0.54114    1.0000 
-----------------------------------------------------------------------------------  
Awutu ES       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1  RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.30554   0.05224    0.3196 -0.084492   0.1033  0.059416 
Rainfall_1    0.30554    1.00000  -0.10295    0.1900  0.070034   0.3312 -0.174617 
MaxTemp_1     0.05224   -0.10295   1.00000    0.6830 -0.375953  -0.8161  0.707841 
MinTemp_1     0.31960    0.18998   0.68301    1.0000 -0.105576  -0.2430  0.476539 
RH0600_1     -0.08449    0.07003  -0.37595   -0.1056  1.000000   0.6040 -0.006835 
RH1500_1      0.10329    0.33117  -0.81612   -0.2430  0.603995   1.0000 -0.531306 
Sunshrs_1     0.05942   -0.17462   0.70784    0.4765 -0.006835  -0.5313  1.000000 
-----------------------------------------------------------------------------------  
Bawku M        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.31662   -0.6309  -0.25971   0.5514   0.6048   -0.4556 
Rainfall_1     0.3166    1.00000   -0.3504  -0.05305   0.5182   0.5056   -0.2351 
MaxTemp_1     -0.6309   -0.35038    1.0000   0.16299  -0.8635  -0.8421    0.5000 
MinTemp_1     -0.2597   -0.05305    0.1630   1.00000  -0.2384  -0.1934    0.1676 
RH0600_1       0.5514    0.51816   -0.8635  -0.23839   1.0000   0.9183   -0.4805 
RH1500_1       0.6048    0.50558   -0.8421  -0.19339   0.9183   1.0000   -0.6619 
Sunshrs_1     -0.4556   -0.23512    0.5000   0.16763  -0.4805  -0.6619    1.0000 
-----------------------------------------------------------------------------------  
Berekum        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.3719   -0.2082   0.13229   0.2960  0.38228   -0.1678 
Rainfall_1     0.3719     1.0000   -0.3078   0.23648   0.5208  0.59352   -0.2034 
MaxTemp_1     -0.2082    -0.3078    1.0000   0.36851  -0.6084 -0.77560    0.7480 
MinTemp_1      0.1323     0.2365    0.3685   1.00000   0.1609  0.02959    0.2437 
RH0600_1       0.2960     0.5208   -0.6084   0.16094   1.0000  0.87697   -0.3951 
RH1500_1       0.3823     0.5935   -0.7756   0.02959   0.8770  1.00000   -0.6171 
Sunshrs_1     -0.1678    -0.2034    0.7480   0.24370  -0.3951 -0.61707    1.0000 
-----------------------------------------------------------------------------------  
Bibiani AB     
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.17532   -0.1691    0.1279  0.02385   0.3099  -0.10506 
Rainfall_1    0.17532    1.00000   -0.1325    0.2257  0.47061   0.4860   0.04609 
MaxTemp_1    -0.16911   -0.13248    1.0000    0.2256 -0.33447  -0.6850   0.54961 
MinTemp_1     0.12792    0.22570    0.2256    1.0000  0.45220   0.2091   0.20778 
RH0600_1      0.02385    0.47061   -0.3345    0.4522  1.00000   0.6564  -0.02305 
RH1500_1      0.30986    0.48596   -0.6850    0.2091  0.65644   1.0000  -0.45319 
Sunshrs_1    -0.10506    0.04609    0.5496    0.2078 -0.02305  -0.4532   1.00000 
------------------------------------------------------------------------------------  
Birim S        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.15920   -0.1509   0.08156   0.2912   0.2922   0.01311 
Rainfall_1    0.15920    1.00000   -0.1395   0.09841   0.3967   0.3842   0.13858 
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MaxTemp_1    -0.15092   -0.13947    1.0000   0.33727  -0.1520  -0.8090   0.63604 
MinTemp_1     0.08156    0.09841    0.3373   1.00000   0.2040   0.1020   0.18384 
RH0600_1      0.29121    0.39674   -0.1520   0.20398   1.0000   0.5087   0.16492 
RH1500_1      0.29223    0.38418   -0.8090   0.10197   0.5087   1.0000  -0.44176 
Sunshrs_1     0.01311    0.13858    0.6360   0.18384   0.1649  -0.4418   1.00000 
-----------------------------------------------------------------------------------  
Bole           
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.3781   -0.4351    0.1154   0.3481   0.3962   -0.3379 
Rainfall_1     0.3781     1.0000   -0.7274    0.4347   0.6212   0.7740   -0.6577 
MaxTemp_1     -0.4351    -0.7274    1.0000   -0.1431  -0.6960  -0.8358    0.7794 
MinTemp_1      0.1154     0.4347   -0.1431    1.0000   0.4591   0.5535   -0.3264 
RH0600_1       0.3481     0.6212   -0.6960    0.4591   1.0000   0.8365   -0.4686 
RH1500_1       0.3962     0.7740   -0.8358    0.5535   0.8365   1.0000   -0.7153 
Sunshrs_1     -0.3379    -0.6577    0.7794   -0.3264  -0.4686  -0.7153    1.0000 
-----------------------------------------------------------------------------------  
Bolga M        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.6787   -0.6968   0.06629   0.7345   0.7179   -0.5644 
Rainfall_1    0.67869     1.0000   -0.6990   0.25474   0.7660   0.8411   -0.7409 
MaxTemp_1    -0.69683    -0.6990    1.0000   0.30334  -0.6721  -0.7074    0.5710 
MinTemp_1     0.06629     0.2547    0.3033   1.00000   0.3364   0.3773   -0.3282 
RH0600_1      0.73449     0.7660   -0.6721   0.33641   1.0000   0.9530   -0.5954 
RH1500_1      0.71791     0.8411   -0.7074   0.37735   0.9530   1.0000   -0.7242 
Sunshrs_1    -0.56442    -0.7409    0.5710  -0.32821  -0.5954  -0.7242    1.0000 
-----------------------------------------------------------------------------------  
Builsa         
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.6570   -0.7138  -0.04641   0.6704   0.6657   -0.4812 
Rainfall_1    0.65701     1.0000   -0.7690   0.25998   0.7940   0.8824   -0.7829 
MaxTemp_1    -0.71378    -0.7690    1.0000   0.26033  -0.6872  -0.7640    0.6339 
MinTemp_1    -0.04641     0.2600    0.2603   1.00000   0.3356   0.3617   -0.2988 
RH0600_1      0.67039     0.7940   -0.6872   0.33562   1.0000   0.9484   -0.5747 
RH1500_1      0.66571     0.8824   -0.7640   0.36169   0.9484   1.0000   -0.7146 
Sunshrs_1    -0.48117    -0.7829    0.6339  -0.29884  -0.5747  -0.7146    1.0000 
-----------------------------------------------------------------------------------  
Cape CoastM    
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.45331   0.01894   0.15933  0.08912   0.1256  -0.09993 
Rainfall_1    0.45331    1.00000  -0.05631   0.22235  0.17777   0.2908  -0.13374 
MaxTemp_1     0.01894   -0.05631   1.00000   0.62552 -0.30898  -0.8320   0.72864 
MinTemp_1     0.15933    0.22235   0.62552   1.00000  0.04887  -0.1960   0.39990 
RH0600_1      0.08912    0.17777  -0.30898   0.04887  1.00000   0.5680   0.01985 
RH1500_1      0.12560    0.29075  -0.83197  -0.19604  0.56799   1.0000  -0.58428 
Sunshrs_1    -0.09993   -0.13374   0.72864   0.39990  0.01985  -0.5843   1.00000 
-----------------------------------------------------------------------------------  
Dangme E       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1   1.000000    0.17773    0.0438  -0.11383 -0.05691  -0.1031  0.002471 
Rainfall_1   0.177734    1.00000   -0.1969  -0.06829  0.28455   0.3841 -0.118453 
MaxTemp_1    0.043805   -0.19688    1.0000   0.76479 -0.35718  -0.6955  0.645114 
MinTemp_1   -0.113825   -0.06829    0.7648   1.00000 -0.08727  -0.2600  0.467586 
RH0600_1    -0.056913    0.28455   -0.3572  -0.08727  1.00000   0.8007  0.127811 
RH1500_1    -0.103112    0.38413   -0.6955  -0.26003  0.80068   1.0000 -0.267822 
Sunshrs_1    0.002471   -0.11845    0.6451   0.46759  0.12781  -0.2678  1.000000 
-----------------------------------------------------------------------------------  
Dangme W       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.47766  -0.38580  -0.26455  0.00117  0.43817  -0.13587 
Rainfall_1    0.47766    1.00000  -0.14871  -0.05668  0.01817  0.36318  -0.01399 
MaxTemp_1    -0.38580   -0.14871   1.00000   0.88814 -0.05243 -0.70214   0.54948 
MinTemp_1    -0.26455   -0.05668   0.88814   1.00000  0.03306 -0.41155   0.46435 
RH0600_1      0.00117    0.01817  -0.05243   0.03306  1.00000  0.09619  -0.10459 
RH1500_1      0.43817    0.36318  -0.70214  -0.41155  0.09619  1.00000  -0.24714 
Sunshrs_1    -0.13587   -0.01399   0.54948   0.46435 -0.10459 -0.24714   1.00000 
-----------------------------------------------------------------------------------  
Dayi S         
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.4583   -0.5802   0.25184  0.16294   0.6071  -0.43681 
Rainfall_1     0.4583     1.0000   -0.3410   0.32352  0.26164   0.5931  -0.15913 
MaxTemp_1     -0.5802    -0.3410    1.0000  -0.01830 -0.38610  -0.7423   0.64760 
MinTemp_1      0.2518     0.3235   -0.0183   1.00000  0.21170   0.4624   0.03445 
RH0600_1       0.1629     0.2616   -0.3861   0.21170  1.00000   0.5516  -0.08329 
RH1500_1       0.6071     0.5931   -0.7423   0.46243  0.55161   1.0000  -0.46461 
Sunshrs_1     -0.4368    -0.1591    0.6476   0.03445 -0.08329  -0.4646   1.00000 
-----------------------------------------------------------------------------------  
Dormaa         
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           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.37755 -0.112807 -0.092516   0.2706  0.30577  -0.09769 
Rainfall_1    0.37755    1.00000 -0.178154  0.153252   0.4821  0.53501  -0.09174 
MaxTemp_1    -0.11281   -0.17815  1.000000  0.002084  -0.3894 -0.65527   0.74838 
MinTemp_1    -0.09252    0.15325  0.002084  1.000000   0.1746  0.04255   0.18809 
RH0600_1      0.27064    0.48208 -0.389430  0.174633   1.0000  0.86504  -0.37234 
RH1500_1      0.30577    0.53501 -0.655265  0.042546   0.8650  1.00000  -0.65617 
Sunshrs_1    -0.09769   -0.09174  0.748379  0.188094  -0.3723 -0.65617   1.00000 
-----------------------------------------------------------------------------------  
E Gonja        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.28580   -0.3526  -0.07129   0.2755   0.2997  -0.19256 
Rainfall_1    0.28580    1.00000   -0.7844   0.05847   0.6204   0.8212  -0.70031 
MaxTemp_1    -0.35263   -0.78442    1.0000   0.22926  -0.6821  -0.8743   0.71671 
MinTemp_1    -0.07129    0.05847    0.2293   1.00000   0.2155   0.1499  -0.04316 
RH0600_1      0.27553    0.62041   -0.6821   0.21548   1.0000   0.8205  -0.41121 
RH1500_1      0.29967    0.82116   -0.8743   0.14987   0.8205   1.0000  -0.69340 
Sunshrs_1    -0.19256   -0.70031    0.7167  -0.04316  -0.4112  -0.6934   1.00000 
-----------------------------------------------------------------------------------  
Ejura Sekyered 
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.3804  -0.41586   0.22121   0.1860   0.4750  -0.39161 
Rainfall_1     0.3804     1.0000  -0.34463   0.12238   0.3644   0.5548  -0.27569 
MaxTemp_1     -0.4159    -0.3446   1.00000  -0.06763  -0.2993  -0.7469   0.79274 
MinTemp_1      0.2212     0.1224  -0.06763   1.00000   0.3280   0.1091   0.01015 
RH0600_1       0.1860     0.3644  -0.29926   0.32800   1.0000   0.4833  -0.20558 
RH1500_1       0.4750     0.5548  -0.74688   0.10913   0.4833   1.0000  -0.68432 
Sunshrs_1     -0.3916    -0.2757   0.79274   0.01015  -0.2056  -0.6843   1.00000 
-----------------------------------------------------------------------------------  
Fanteakwa      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.1469  -0.07479  -0.09600  0.09936  0.15363  -0.05682 
Rainfall_1    0.14691     1.0000  -0.13073   0.15970  0.26644  0.45287  -0.23853 
MaxTemp_1    -0.07479    -0.1307   1.00000   0.03709 -0.17227 -0.46706   0.45716 
MinTemp_1    -0.09600     0.1597   0.03709   1.00000  0.08445  0.00989  -0.03458 
RH0600_1      0.09936     0.2664  -0.17227   0.08445  1.00000  0.44674  -0.21275 
RH1500_1      0.15363     0.4529  -0.46706   0.00989  0.44674  1.00000  -0.55985 
Sunshrs_1    -0.05682    -0.2385   0.45716  -0.03458 -0.21275 -0.55985   1.00000 
-----------------------------------------------------------------------------------  
Ga West M      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1   RH0600_1 RH1500_1 Sunshrs_1 
Residuals1  1.0000000    0.30399  -0.08561   0.04247 -0.0006084   0.1656  -0.29004 
Rainfall_1  0.3039864    1.00000  -0.09560   0.06421  0.3058876   0.3745  -0.03944 
MaxTemp_1  -0.0856098   -0.09560   1.00000   0.87841 -0.3782201  -0.7412   0.60681 
MinTemp_1   0.0424668    0.06421   0.87841   1.00000 -0.1318058  -0.4413   0.47998 
RH0600_1   -0.0006084    0.30589  -0.37822  -0.13181  1.0000000   0.7812   0.08030 
RH1500_1    0.1655957    0.37454  -0.74119  -0.44129  0.7812034   1.0000  -0.31965 
Sunshrs_1  -0.2900383   -0.03944   0.60681   0.47998  0.0803040  -0.3197   1.00000 
-----------------------------------------------------------------------------------  
Garu Temp      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.73489   -0.7650  -0.17294   0.7107   0.7931   -0.4966 
Rainfall_1     0.7349    1.00000   -0.8201   0.02674   0.7488   0.8674   -0.7723 
MaxTemp_1     -0.7650   -0.82007    1.0000   0.36280  -0.7088  -0.8392    0.6474 
MinTemp_1     -0.1729    0.02674    0.3628   1.00000   0.1690   0.1159   -0.1959 
RH0600_1       0.7107    0.74875   -0.7088   0.16895   1.0000   0.9320   -0.5630 
RH1500_1       0.7931    0.86736   -0.8392   0.11593   0.9320   1.0000   -0.7241 
Sunshrs_1     -0.4966   -0.77227    0.6474  -0.19586  -0.5630  -0.7241    1.0000 
----------------------------------------------------------------------------------  
Ho M           
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.5711   -0.5377  -0.28488  0.14786   0.5163  -0.39618 
Rainfall_1     0.5711     1.0000   -0.4512  -0.15407  0.37491   0.6164  -0.19814 
MaxTemp_1     -0.5377    -0.4512    1.0000   0.75984 -0.50017  -0.8076   0.66643 
MinTemp_1     -0.2849    -0.1541    0.7598   1.00000 -0.07138  -0.3483   0.53602 
RH0600_1       0.1479     0.3749   -0.5002  -0.07138  1.00000   0.6967  -0.04279 
RH1500_1       0.5163     0.6164   -0.8076  -0.34831  0.69666   1.0000  -0.39790 
Sunshrs_1     -0.3962    -0.1981    0.6664   0.53602 -0.04279  -0.3979   1.00000 
-----------------------------------------------------------------------------------  
Hohoe          
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.4418   -0.4246  -0.05516  0.10541   0.3518   -0.3035 
Rainfall_1    0.44175     1.0000   -0.6317   0.00760  0.46381   0.6330   -0.3486 
MaxTemp_1    -0.42455    -0.6317    1.0000   0.50316 -0.51814  -0.7701    0.7254 
MinTemp_1    -0.05516     0.0076    0.5032   1.00000  0.07422  -0.1528    0.3312 
RH0600_1      0.10541     0.4638   -0.5181   0.07422  1.00000   0.5315   -0.1337 
RH1500_1      0.35179     0.6330   -0.7701  -0.15281  0.53152   1.0000   -0.4652 
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Sunshrs_1    -0.30346    -0.3486    0.7254   0.33121 -0.13369  -0.4652    1.0000 
-----------------------------------------------------------------------------------  
Juabeso        
           Residuals1 Rainfall_1  MaxTemp_1 MinTemp_1 RH0600_1   RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.24987 -0.0470246   0.01795   0.1013  0.1991748   0.02677 
Rainfall_1    0.24987    1.00000  0.0105312   0.18706   0.3388  0.5477733   0.03563 
MaxTemp_1    -0.04702    0.01053  1.0000000   0.90528   0.6758 -0.0007085   0.68803 
MinTemp_1     0.01795    0.18706  0.9052842   1.00000   0.8728  0.3504617   0.45246 
RH0600_1      0.10131    0.33880  0.6757511   0.87284   1.0000  0.7055800   0.20811 
RH1500_1      0.19917    0.54777 -0.0007085   0.35046   0.7056  1.0000000  -0.36037 
Sunshrs_1     0.02677    0.03563  0.6880258   0.45246   0.2081 -0.3603676   1.00000 
------------------------------------------------------------------------------------  
Kasena-N       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.6390   -0.6968  -0.09476   0.5813   0.6292   -0.4395 
Rainfall_1    0.63896     1.0000   -0.7723   0.15989   0.7521   0.8644   -0.6846 
MaxTemp_1    -0.69680    -0.7723    1.0000   0.31393  -0.6729  -0.7982    0.5333 
MinTemp_1    -0.09476     0.1599    0.3139   1.00000   0.2307   0.2155   -0.2874 
RH0600_1      0.58130     0.7521   -0.6729   0.23071   1.0000   0.9172   -0.4888 
RH1500_1      0.62916     0.8644   -0.7982   0.21550   0.9172   1.0000   -0.6401 
Sunshrs_1    -0.43948    -0.6846    0.5333  -0.28740  -0.4888  -0.6401    1.0000 
------------------------------------------------------------------------------------  
Kintampo NM    
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.39842   -0.1961   0.09534   0.3235  0.37458   -0.1100 
Rainfall_1    0.39842    1.00000   -0.5487   0.05618   0.5889  0.64504   -0.3916 
MaxTemp_1    -0.19611   -0.54870    1.0000   0.35190  -0.6092 -0.77494    0.7081 
MinTemp_1     0.09534    0.05618    0.3519   1.00000   0.1395 -0.02382    0.2419 
RH0600_1      0.32348    0.58892   -0.6092   0.13946   1.0000  0.85111   -0.4445 
RH1500_1      0.37458    0.64504   -0.7749  -0.02382   0.8511  1.00000   -0.5283 
Sunshrs_1    -0.10997   -0.39160    0.7081   0.24191  -0.4445 -0.52834    1.0000 
-----------------------------------------------------------------------------------  
Kpandu/DN      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000   0.517483   -0.4628 -0.082729   0.4092   0.5635   -0.1846 
Rainfall_1    0.51748   1.000000   -0.5559  0.003475   0.5243   0.6503   -0.4051 
MaxTemp_1    -0.46284  -0.555908    1.0000  0.592863  -0.3795  -0.7472    0.5959 
MinTemp_1    -0.08273   0.003475    0.5929  1.000000   0.2737  -0.1882    0.2696 
RH0600_1      0.40919   0.524334   -0.3795  0.273680   1.0000   0.6239   -0.1807 
RH1500_1      0.56355   0.650264   -0.7472 -0.188224   0.6239   1.0000   -0.4256 
Sunshrs_1    -0.18460  -0.405086    0.5959  0.269562  -0.1807  -0.4256    1.0000 
-----------------------------------------------------------------------------------  
Krachi/W       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.63124   -0.6698   0.10121  0.45549   0.6345   -0.4399 
Rainfall_1     0.6312    1.00000   -0.7933   0.09818  0.49440   0.7824   -0.6406 
MaxTemp_1     -0.6698   -0.79326    1.0000   0.17426 -0.58546  -0.8332    0.7625 
MinTemp_1      0.1012    0.09818    0.1743   1.00000  0.09505   0.2880    0.1244 
RH0600_1       0.4555    0.49440   -0.5855   0.09505  1.00000   0.7410   -0.2024 
RH1500_1       0.6345    0.78244   -0.8332   0.28804  0.74099   1.0000   -0.5589 
Sunshrs_1     -0.4399   -0.64064    0.7625   0.12443 -0.20242  -0.5589    1.0000 
-----------------------------------------------------------------------------------  
Kumasi MA      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000   0.235437   -0.1813 -0.109933   0.1523  0.26090  -0.06793 
Rainfall_1    0.23544   1.000000   -0.3134  0.009587   0.3579  0.49918  -0.13918 
MaxTemp_1    -0.18129  -0.313371    1.0000  0.520341  -0.4029 -0.77975   0.78137 
MinTemp_1    -0.10993   0.009587    0.5203  1.000000   0.3129 -0.05506   0.45135 
RH0600_1      0.15226   0.357931   -0.4029  0.312913   1.0000  0.76871  -0.27791 
RH1500_1      0.26090   0.499175   -0.7797 -0.055063   0.7687  1.00000  -0.58861 
Sunshrs_1    -0.06793  -0.139179    0.7814  0.451354  -0.2779 -0.58861   1.00000 
-----------------------------------------------------------------------------------  
Kwaebirem      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.4169  -0.04769   0.25777  0.05454   0.2144  -0.06792 
Rainfall_1    0.41685     1.0000  -0.18330   0.33557  0.31722   0.4904  -0.01190 
MaxTemp_1    -0.04769    -0.1833   1.00000   0.18901 -0.18911  -0.8309   0.73432 
MinTemp_1     0.25777     0.3356   0.18901   1.00000  0.15570   0.2509   0.05112 
RH0600_1      0.05454     0.3172  -0.18911   0.15570  1.00000   0.3730   0.13558 
RH1500_1      0.21442     0.4904  -0.83088   0.25092  0.37296   1.0000  -0.52451 
Sunshrs_1    -0.06792    -0.0119   0.73432   0.05112  0.13558  -0.5245   1.00000 
-----------------------------------------------------------------------------------  
Kwahu S        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.2748   -0.3565   -0.2416   0.3309   0.4688   -0.2754 
Rainfall_1     0.2748     1.0000   -0.2823   -0.1643   0.3673   0.5504   -0.3496 
MaxTemp_1     -0.3565    -0.2823    1.0000    0.8792  -0.4918  -0.7702    0.7439 
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MinTemp_1     -0.2416    -0.1643    0.8792    1.0000  -0.2444  -0.4911    0.6947 
RH0600_1       0.3309     0.3673   -0.4918   -0.2444   1.0000   0.8012   -0.3567 
RH1500_1       0.4688     0.5504   -0.7702   -0.4911   0.8012   1.0000   -0.5877 
Sunshrs_1     -0.2754    -0.3496    0.7439    0.6947  -0.3567  -0.5877    1.0000 
-----------------------------------------------------------------------------------  
Kwahu W        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.4368   -0.2454   -0.1449   0.2666   0.4489   -0.2164 
Rainfall_1     0.4368     1.0000   -0.2963   -0.1143   0.4293   0.6244   -0.3318 
MaxTemp_1     -0.2454    -0.2963    1.0000    0.8748  -0.5374  -0.8164    0.6501 
MinTemp_1     -0.1449    -0.1143    0.8748    1.0000  -0.3745  -0.5585    0.5992 
RH0600_1       0.2666     0.4293   -0.5374   -0.3745   1.0000   0.7980   -0.4235 
RH1500_1       0.4489     0.6244   -0.8164   -0.5585   0.7980   1.0000   -0.5645 
Sunshrs_1     -0.2164    -0.3318    0.6501    0.5992  -0.4235  -0.5645    1.0000 
-----------------------------------------------------------------------------------  
Lawra          
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.6006   -0.6293  -0.03183   0.6000   0.6532   -0.5213 
Rainfall_1    0.60057     1.0000   -0.7845   0.10143   0.7734   0.8861   -0.8132 
MaxTemp_1    -0.62926    -0.7845    1.0000   0.35609  -0.7004  -0.8313    0.6853 
MinTemp_1    -0.03183     0.1014    0.3561   1.00000   0.1580   0.1137   -0.1840 
RH0600_1      0.60000     0.7734   -0.7004   0.15796   1.0000   0.9436   -0.5959 
RH1500_1      0.65317     0.8861   -0.8313   0.11370   0.9436   1.0000   -0.7583 
Sunshrs_1    -0.52134    -0.8132    0.6853  -0.18404  -0.5959  -0.7583    1.0000 
-----------------------------------------------------------------------------------  
Manya K        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.2259   -0.2816  -0.03152 -0.05164   0.2208   -0.1197 
Rainfall_1    0.22592     1.0000   -0.1579   0.22809  0.32093   0.5187    0.1009 
MaxTemp_1    -0.28162    -0.1579    1.0000   0.52093 -0.26365  -0.7154    0.5409 
MinTemp_1    -0.03152     0.2281    0.5209   1.00000 -0.06616  -0.0434    0.2857 
RH0600_1     -0.05164     0.3209   -0.2636  -0.06616  1.00000   0.6063    0.3044 
RH1500_1      0.22082     0.5187   -0.7154  -0.04340  0.60632   1.0000   -0.1946 
Sunshrs_1    -0.11968     0.1009    0.5409   0.28570  0.30441  -0.1946    1.0000 
-----------------------------------------------------------------------------------  
Mfantsiman M   
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1  RH0600_1 RH1500_1 Sunshrs_1 
Residuals1   1.000000     0.4881  -0.09244  0.281750 -0.003264   0.2703  -0.16895 
Rainfall_1   0.488104     1.0000  -0.08230  0.160888  0.116012   0.3060  -0.16927 
MaxTemp_1   -0.092442    -0.0823   1.00000  0.600940 -0.278464  -0.7939   0.67263 
MinTemp_1    0.281750     0.1609   0.60094  1.000000  0.007816  -0.2338   0.43737 
RH0600_1    -0.003264     0.1160  -0.27846  0.007816  1.000000   0.5864   0.06626 
RH1500_1     0.270306     0.3060  -0.79394 -0.233753  0.586420   1.0000  -0.49455 
Sunshrs_1   -0.168954    -0.1693   0.67263  0.437366  0.066262  -0.4946   1.00000 
-----------------------------------------------------------------------------------  
N Juaben       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.26752   -0.1806   0.19044   0.1203   0.3137  -0.11590 
Rainfall_1     0.2675    1.00000   -0.2531   0.25212   0.2405   0.5479  -0.05036 
MaxTemp_1     -0.1806   -0.25311    1.0000   0.08270  -0.1958  -0.7670   0.79565 
MinTemp_1      0.1904    0.25212    0.0827   1.00000   0.1550   0.3776   0.02675 
RH0600_1       0.1203    0.24046   -0.1958   0.15500   1.0000   0.4568   0.02450 
RH1500_1       0.3137    0.54785   -0.7670   0.37757   0.4568   1.0000  -0.53694 
Sunshrs_1     -0.1159   -0.05036    0.7956   0.02675   0.0245  -0.5369   1.00000 
-----------------------------------------------------------------------------------  
Nadowli        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.6831   -0.6001    0.1700   0.5880   0.6776   -0.5531 
Rainfall_1     0.6831     1.0000   -0.8175    0.1852   0.7918   0.9085   -0.8150 
MaxTemp_1     -0.6001    -0.8175    1.0000    0.2842  -0.7150  -0.8336    0.6998 
MinTemp_1      0.1700     0.1852    0.2842    1.0000   0.2518   0.2246   -0.2116 
RH0600_1       0.5880     0.7918   -0.7150    0.2518   1.0000   0.9427   -0.5769 
RH1500_1       0.6776     0.9085   -0.8336    0.2246   0.9427   1.0000   -0.7406 
Sunshrs_1     -0.5531    -0.8150    0.6998   -0.2116  -0.5769  -0.7406    1.0000 
-----------------------------------------------------------------------------------  
Nanumba N      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.5889   -0.6018   0.01487   0.5279   0.6276  -0.45803 
Rainfall_1    0.58887     1.0000   -0.8260   0.11027   0.7203   0.8841  -0.72722 
MaxTemp_1    -0.60180    -0.8260    1.0000   0.25889  -0.7328  -0.8888   0.69497 
MinTemp_1     0.01487     0.1103    0.2589   1.00000   0.1879   0.1532  -0.03178 
RH0600_1      0.52789     0.7203   -0.7328   0.18791   1.0000   0.8977  -0.36655 
RH1500_1      0.62761     0.8841   -0.8888   0.15317   0.8977   1.0000  -0.63108 
Sunshrs_1    -0.45803    -0.7272    0.6950  -0.03178  -0.3666  -0.6311   1.00000 
-----------------------------------------------------------------------------------  
Nkwanta        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
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Residuals1    1.00000    0.52971   -0.5490   0.06596  0.33572   0.5526   -0.4998 
Rainfall_1    0.52971    1.00000   -0.7581   0.06671  0.51246   0.7854   -0.6070 
MaxTemp_1    -0.54904   -0.75807    1.0000   0.22815 -0.65766  -0.8881    0.7098 
MinTemp_1     0.06596    0.06671    0.2282   1.00000  0.05225   0.1763    0.1985 
RH0600_1      0.33572    0.51246   -0.6577   0.05225  1.00000   0.7990   -0.2180 
RH1500_1      0.55261    0.78536   -0.8881   0.17629  0.79900   1.0000   -0.5433 
Sunshrs_1    -0.49981   -0.60698    0.7098   0.19850 -0.21798  -0.5433    1.0000 
-----------------------------------------------------------------------------------  
maindata[, 1]: North T        
           Residuals1 Rainfall_1 MaxTemp_1  MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1  1.0000000    0.49928   -0.0666  0.0006472  0.37093   0.2049   0.16390 
Rainfall_1  0.4992841    1.00000   -0.1612  0.0697537  0.41410   0.3476   0.16391 
MaxTemp_1  -0.0665982   -0.16122    1.0000  0.7512466 -0.35068  -0.7122   0.55901 
MinTemp_1   0.0006472    0.06975    0.7512  1.0000000 -0.12132  -0.4666   0.44411 
RH0600_1    0.3709268    0.41410   -0.3507 -0.1213200  1.00000   0.3992   0.04559 
RH1500_1    0.2048677    0.34759   -0.7122 -0.4666280  0.39921   1.0000  -0.14936 
Sunshrs_1   0.1639043    0.16391    0.5590  0.4441052  0.04559  -0.1494   1.00000 
------------------------------------------------------------------------------------  
Nzema E        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1  RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000   0.528084  -0.05786   0.03466 -0.122348   0.1300  -0.20821 
Rainfall_1    0.52808   1.000000  -0.14043  -0.01067  0.007503   0.3431  -0.37608 
MaxTemp_1    -0.05786  -0.140428   1.00000   0.54066 -0.271947  -0.7866   0.77449 
MinTemp_1     0.03466  -0.010667   0.54066   1.00000 -0.230877  -0.2155   0.40666 
RH0600_1     -0.12235   0.007503  -0.27195  -0.23088  1.000000   0.4115  -0.08531 
RH1500_1      0.13002   0.343090  -0.78662  -0.21554  0.411479   1.0000  -0.66958 
Sunshrs_1    -0.20821  -0.376080   0.77449   0.40666 -0.085306  -0.6696   1.00000 
-----------------------------------------------------------------------------------  
Obuasi M       
           Residuals1 Rainfall_1  MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1  1.0000000     0.1591  0.0007732   0.19702  0.09179  0.12113   0.08713 
Rainfall_1  0.1591262     1.0000 -0.5857434   0.15693  0.52569  0.75177  -0.43843 
MaxTemp_1   0.0007732    -0.5857  1.0000000   0.38760 -0.55612 -0.83328   0.87196 
MinTemp_1   0.1970234     0.1569  0.3875974   1.00000  0.18933  0.03453   0.39816 
RH0600_1    0.0917917     0.5257 -0.5561204   0.18933  1.00000  0.81433  -0.34367 
RH1500_1    0.1211288     0.7518 -0.8332820   0.03453  0.81433  1.00000  -0.65943 
Sunshrs_1   0.0871329    -0.4384  0.8719595   0.39816 -0.34367 -0.65943   1.00000 
-----------------------------------------------------------------------------------  
Offinso        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.3559   -0.2853  -0.04055   0.3214  0.36974   -0.1344 
Rainfall_1    0.35594     1.0000   -0.3239   0.22870   0.5432  0.60493   -0.1773 
MaxTemp_1    -0.28525    -0.3239    1.0000   0.35207  -0.5592 -0.80363    0.8301 
MinTemp_1    -0.04055     0.2287    0.3521   1.00000   0.1592 -0.03824    0.2801 
RH0600_1      0.32143     0.5432   -0.5592   0.15915   1.0000  0.86714   -0.3206 
RH1500_1      0.36974     0.6049   -0.8036  -0.03824   0.8671  1.00000   -0.6090 
Sunshrs_1    -0.13441    -0.1773    0.8301   0.28005  -0.3206 -0.60904    1.0000 
----------------------------------------------------------------------------------  
Pru            
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.3971   -0.4798  -0.08878   0.4490   0.5765   -0.2847 
Rainfall_1    0.39711     1.0000   -0.3141   0.24727   0.4877   0.5507   -0.1651 
MaxTemp_1    -0.47984    -0.3141    1.0000   0.36712  -0.5835  -0.8167    0.7413 
MinTemp_1    -0.08878     0.2473    0.3671   1.00000   0.1688   0.0208    0.1730 
RH0600_1      0.44903     0.4877   -0.5835   0.16875   1.0000   0.8670   -0.3862 
RH1500_1      0.57646     0.5507   -0.8167   0.02080   0.8670   1.0000   -0.6405 
Sunshrs_1    -0.28465    -0.1651    0.7413   0.17302  -0.3862  -0.6405    1.0000 
----------------------------------------------------------------------------------  
Saboba-C       
           Residuals1 Rainfall_1 MaxTemp_1  MinTemp_1 RH0600_1 RH1500_1  Sunshrs_1 
Residuals1    1.00000     0.5899   -0.5678  0.0216465   0.5295   0.6253 -0.3140104 
Rainfall_1    0.58992     1.0000   -0.7630  0.1262847   0.6808   0.8406 -0.5777282 
MaxTemp_1    -0.56775    -0.7630    1.0000  0.2911355  -0.6823  -0.8644  0.6105292 
MinTemp_1     0.02165     0.1263    0.2911  1.0000000   0.2105   0.1525 -0.0004526 
RH0600_1      0.52947     0.6808   -0.6823  0.2104922   1.0000   0.9111 -0.2174262 
RH1500_1      0.62534     0.8406   -0.8644  0.1525494   0.9111   1.0000 -0.4819505 
Sunshrs_1    -0.31401    -0.5777    0.6105 -0.0004526  -0.2174  -0.4820  1.0000000 
-----------------------------------------------------------------------------------  
Sawla TK       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.5266  -0.46516   0.31317   0.3746   0.5200   -0.4234 
Rainfall_1     0.5266     1.0000  -0.69095   0.38347   0.6214   0.7884   -0.6312 
MaxTemp_1     -0.4652    -0.6909   1.00000  -0.01908  -0.7023  -0.8588    0.7992 
MinTemp_1      0.3132     0.3835  -0.01908   1.00000   0.3663   0.4659   -0.2235 
RH0600_1       0.3746     0.6214  -0.70229   0.36635   1.0000   0.8653   -0.4784 
RH1500_1       0.5200     0.7884  -0.85878   0.46590   0.8653   1.0000   -0.7523 
Sunshrs_1     -0.4234    -0.6312   0.79917  -0.22348  -0.4784  -0.7523    1.0000 
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-----------------------------------------------------------------------------------  
Sefwi Wi       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.45252  -0.19426   0.21575   0.3319  0.36723  -0.03740 
Rainfall_1     0.4525    1.00000  -0.03394   0.29735   0.2485  0.27587   0.01140 
MaxTemp_1     -0.1943   -0.03394   1.00000   0.14624  -0.4862 -0.77699   0.82157 
MinTemp_1      0.2157    0.29735   0.14624   1.00000   0.2337 -0.01626   0.05797 
RH0600_1       0.3319    0.24852  -0.48623   0.23371   1.0000  0.74064  -0.21262 
RH1500_1       0.3672    0.27587  -0.77699  -0.01626   0.7406  1.00000  -0.57916 
Sunshrs_1     -0.0374    0.01140   0.82157   0.05797  -0.2126 -0.57916   1.00000 
-----------------------------------------------------------------------------------  
Sekyere E      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.2938   -0.1432  -0.08769   0.2474  0.24268  -0.09018 
Rainfall_1    0.29380     1.0000   -0.3116   0.14088   0.5096  0.59346  -0.22566 
MaxTemp_1    -0.14316    -0.3116    1.0000   0.12777  -0.4813 -0.79086   0.84157 
MinTemp_1    -0.08769     0.1409    0.1278   1.00000   0.3517  0.08597   0.18321 
RH0600_1      0.24738     0.5096   -0.4813   0.35167   1.0000  0.71553  -0.30188 
RH1500_1      0.24268     0.5935   -0.7909   0.08597   0.7155  1.00000  -0.63066 
Sunshrs_1    -0.09018    -0.2257    0.8416   0.18321  -0.3019 -0.63066   1.00000 
-----------------------------------------------------------------------------------  
Sekyere W/Mam  
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.30986   -0.2801   0.02521   0.3176   0.4290  -0.09001 
Rainfall_1    0.30986    1.00000   -0.3256  -0.04509   0.3841   0.4982  -0.20119 
MaxTemp_1    -0.28011   -0.32565    1.0000   0.16241  -0.5121  -0.7733   0.69055 
MinTemp_1     0.02521   -0.04509    0.1624   1.00000   0.2283  -0.1043   0.29217 
RH0600_1      0.31761    0.38410   -0.5121   0.22832   1.0000   0.5677  -0.15162 
RH1500_1      0.42896    0.49819   -0.7733  -0.10426   0.5677   1.0000  -0.46351 
Sunshrs_1    -0.09001   -0.20119    0.6906   0.29217  -0.1516  -0.4635   1.00000 
-----------------------------------------------------------------------------------  
Sene           
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.4748   -0.5791  -0.14869   0.4968  0.55132   -0.4301 
Rainfall_1     0.4748     1.0000   -0.5014   0.11755   0.5905  0.62839   -0.3351 
MaxTemp_1     -0.5791    -0.5014    1.0000   0.41576  -0.5917 -0.78790    0.7674 
MinTemp_1     -0.1487     0.1176    0.4158   1.00000   0.1474 -0.09953    0.2956 
RH0600_1       0.4968     0.5905   -0.5917   0.14737   1.0000  0.74739   -0.3772 
RH1500_1       0.5513     0.6284   -0.7879  -0.09953   0.7474  1.00000   -0.5493 
Sunshrs_1     -0.4301    -0.3351    0.7674   0.29559  -0.3772 -0.54928    1.0000 
-----------------------------------------------------------------------------------  
Shama AE       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.21021   -0.1522   0.03172  0.19914   0.2418  -0.06278 
Rainfall_1    0.21021    1.00000   -0.1110   0.18367 -0.05971   0.3381  -0.17362 
MaxTemp_1    -0.15220   -0.11097    1.0000   0.72526 -0.48171  -0.7646   0.71477 
MinTemp_1     0.03172    0.18367    0.7253   1.00000 -0.35416  -0.2232   0.47598 
RH0600_1      0.19914   -0.05971   -0.4817  -0.35416  1.00000   0.5424  -0.11825 
RH1500_1      0.24179    0.33806   -0.7646  -0.22320  0.54238   1.0000  -0.52369 
Sunshrs_1    -0.06278   -0.17362    0.7148   0.47598 -0.11825  -0.5237   1.00000 
-----------------------------------------------------------------------------------  
Sissala E      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.5535   -0.5495    0.2001   0.6118   0.6507   -0.4434 
Rainfall_1     0.5535     1.0000   -0.7082    0.1351   0.7013   0.8312   -0.6834 
MaxTemp_1     -0.5495    -0.7082    1.0000    0.3150  -0.6079  -0.7642    0.5672 
MinTemp_1      0.2001     0.1351    0.3150    1.0000   0.2464   0.2180   -0.2687 
RH0600_1       0.6118     0.7013   -0.6079    0.2464   1.0000   0.9373   -0.4859 
RH1500_1       0.6507     0.8312   -0.7642    0.2180   0.9373   1.0000   -0.6643 
Sunshrs_1     -0.4434    -0.6834    0.5672   -0.2687  -0.4859  -0.6643    1.0000 
-----------------------------------------------------------------------------------  
Sunyani M      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.47999  -0.18537   0.14647   0.2911  0.39022  -0.09624 
Rainfall_1    0.47999    1.00000  -0.21019   0.03185   0.4336  0.53465  -0.08637 
MaxTemp_1    -0.18537   -0.21019   1.00000   0.01029  -0.4885 -0.64882   0.72814 
MinTemp_1     0.14647    0.03185   0.01029   1.00000   0.2678 -0.08425   0.25846 
RH0600_1      0.29111    0.43361  -0.48850   0.26785   1.0000  0.79080  -0.19786 
RH1500_1      0.39022    0.53465  -0.64882  -0.08425   0.7908  1.00000  -0.55620 
Sunshrs_1    -0.09624   -0.08637   0.72814   0.25846  -0.1979 -0.55620   1.00000 
----------------------------------------------------------------------------------  
Tamale M       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.6237   -0.5981    0.1562   0.6447   0.6796   -0.4348 
Rainfall_1     0.6237     1.0000   -0.7679    0.1933   0.6963   0.8144   -0.7064 
MaxTemp_1     -0.5981    -0.7679    1.0000    0.1123  -0.7008  -0.8531    0.6566 
MinTemp_1      0.1562     0.1933    0.1123    1.0000   0.3086   0.2986   -0.1785 
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RH0600_1       0.6447     0.6963   -0.7008    0.3086   1.0000   0.9136   -0.4439 
RH1500_1       0.6796     0.8144   -0.8531    0.2986   0.9136   1.0000   -0.6227 
Sunshrs_1     -0.4348    -0.7064    0.6566   -0.1785  -0.4439  -0.6227    1.0000 
----------------------------------------------------------------------------------  
Techiman M     
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.4887   -0.3558   0.15307  0.40232   0.4266   -0.1591 
Rainfall_1     0.4887     1.0000   -0.2887   0.18889  0.47267   0.5339   -0.1442 
MaxTemp_1     -0.3558    -0.2887    1.0000   0.45552 -0.52493  -0.7106    0.7430 
MinTemp_1      0.1531     0.1889    0.4555   1.00000  0.04733  -0.1488    0.3222 
RH0600_1       0.4023     0.4727   -0.5249   0.04733  1.00000   0.8622   -0.3298 
RH1500_1       0.4266     0.5339   -0.7106  -0.14882  0.86216   1.0000   -0.5874 
Sunshrs_1     -0.1591    -0.1442    0.7430   0.32223 -0.32981  -0.5874    1.0000 
-----------------------------------------------------------------------------------  
Tema M         
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1   1.000000   0.459029   -0.0978 -0.001564   0.1585   0.2107 -0.105785 
Rainfall_1   0.459029   1.000000   -0.1330 -0.057161   0.2691   0.2787 -0.007515 
MaxTemp_1   -0.097796  -0.133025    1.0000  0.793683  -0.4909  -0.7363  0.401901 
MinTemp_1   -0.001564  -0.057161    0.7937  1.000000  -0.3628  -0.4808  0.280678 
RH0600_1     0.158481   0.269117   -0.4909 -0.362843   1.0000   0.8056  0.169761 
RH1500_1     0.210725   0.278708   -0.7363 -0.480827   0.8056   1.0000 -0.122929 
Sunshrs_1   -0.105785  -0.007515    0.4019  0.280678   0.1698  -0.1229  1.000000 
---------------------------------------------------------------------------------  
Twifo HLD      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.3221  -0.07456   0.36617   0.3568  0.34165    0.1100 
Rainfall_1    0.32205     1.0000  -0.41446   0.20679   0.5140  0.63508   -0.2505 
MaxTemp_1    -0.07456    -0.4145   1.00000   0.40101  -0.4856 -0.82447    0.8051 
MinTemp_1     0.36617     0.2068   0.40101   1.00000   0.3315  0.08345    0.3761 
RH0600_1      0.35677     0.5140  -0.48562   0.33151   1.0000  0.81607   -0.1448 
RH1500_1      0.34165     0.6351  -0.82447   0.08345   0.8161  1.00000   -0.5234 
Sunshrs_1     0.11003    -0.2505   0.80506   0.37605  -0.1448 -0.52341    1.0000 
----------------------------------------------------------------------------------  
Upper D        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.4269  -0.04143   0.32031   0.2023  0.26154    0.1149 
Rainfall_1    0.42695     1.0000  -0.59649   0.13770   0.5146  0.75008   -0.4527 
MaxTemp_1    -0.04143    -0.5965   1.00000   0.39148  -0.5530 -0.83426    0.8723 
MinTemp_1     0.32031     0.1377   0.39148   1.00000   0.1854  0.02467    0.4007 
RH0600_1      0.20230     0.5146  -0.55302   0.18543   1.0000  0.81339   -0.3411 
RH1500_1      0.26154     0.7501  -0.83426   0.02467   0.8134  1.00000   -0.6605 
Sunshrs_1     0.11490    -0.4527   0.87233   0.40066  -0.3411 -0.66046    1.0000 
----------------------------------------------------------------------------------  
Wa C/M         
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000    0.57205   -0.5274   0.04441   0.5666  0.62447  -0.54951 
Rainfall_1    0.57205    1.00000   -0.7604   0.01424   0.7400  0.84986  -0.70613 
MaxTemp_1    -0.52740   -0.76043    1.0000   0.39685  -0.7324 -0.86024   0.71084 
MinTemp_1     0.04441    0.01424    0.3968   1.00000   0.0772 -0.01724  -0.02418 
RH0600_1      0.56664    0.74003   -0.7324   0.07720   1.0000  0.93353  -0.59631 
RH1500_1      0.62447    0.84986   -0.8602  -0.01724   0.9335  1.00000  -0.75040 
Sunshrs_1    -0.54951   -0.70613    0.7108  -0.02418  -0.5963 -0.75040   1.00000 
---------------------------------------------------------------------------------- 
Wa E           
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.71083   -0.6236   0.16510   0.7432   0.7926  -0.63292 
Rainfall_1     0.7108    1.00000   -0.7324   0.08369   0.7295   0.8402  -0.62040 
MaxTemp_1     -0.6236   -0.73241    1.0000   0.29372  -0.6998  -0.8181   0.63018 
MinTemp_1      0.1651    0.08369    0.2937   1.00000   0.2015   0.1415  -0.07243 
RH0600_1       0.7432    0.72946   -0.6998   0.20153   1.0000   0.9386  -0.52982 
RH1500_1       0.7926    0.84020   -0.8181   0.14153   0.9386   1.0000  -0.70156 
Sunshrs_1     -0.6329   -0.62040    0.6302  -0.07243  -0.5298  -0.7016   1.00000 
----------------------------------------------------------------------------------  
Wassa AE       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1   1.000000    0.43830   0.02234    0.1968   0.2496   0.1857 -0.004177 
Rainfall_1   0.438296    1.00000  -0.10042    0.1934   0.2007   0.3688 -0.038095 
MaxTemp_1    0.022344   -0.10042   1.00000    0.5864  -0.4710  -0.8390  0.833712 
MinTemp_1    0.196801    0.19338   0.58640    1.0000  -0.1150  -0.1737  0.435394 
RH0600_1     0.249562    0.20066  -0.47103   -0.1150   1.0000   0.6939 -0.184166 
RH1500_1     0.185650    0.36878  -0.83895   -0.1737   0.6939   1.0000 -0.657896 
Sunshrs_1   -0.004177   -0.03809   0.83371    0.4354  -0.1842  -0.6579  1.000000 
----------------------------------------------------------------------------------  
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Wassa W        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1  RH0600_1 RH1500_1 Sunshrs_1 
Residuals1   1.000000   0.342383    0.0876   0.29088  0.038297   0.1922 -0.003598 
Rainfall_1   0.342383   1.000000   -0.1188   0.04865 -0.001424   0.3696 -0.272917 
MaxTemp_1    0.087601  -0.118774    1.0000   0.70028 -0.367511  -0.7896  0.761862 
MinTemp_1    0.290880   0.048648    0.7003   1.00000 -0.299647  -0.2633  0.471617 
RH0600_1     0.038297  -0.001424   -0.3675  -0.29965  1.000000   0.4616 -0.040759 
RH1500_1     0.192236   0.369641   -0.7896  -0.26326  0.461572   1.0000 -0.618869 
Sunshrs_1   -0.003598  -0.272917    0.7619   0.47162 -0.040759  -0.6189  1.000000 
-----------------------------------------------------------------------------------  
Wenchi M       
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000    0.40859   -0.2091   0.15738   0.3038  0.31903   -0.1512 
Rainfall_1     0.4086    1.00000   -0.4200   0.09787   0.5502  0.64425   -0.2951 
MaxTemp_1     -0.2091   -0.41995    1.0000   0.41211  -0.5752 -0.79713    0.7786 
MinTemp_1      0.1574    0.09787    0.4121   1.00000   0.1707 -0.03074    0.2329 
RH0600_1       0.3038    0.55024   -0.5752   0.17074   1.0000  0.87963   -0.4291 
RH1500_1       0.3190    0.64425   -0.7971  -0.03074   0.8796  1.00000   -0.6270 
Sunshrs_1     -0.1512   -0.29506    0.7786   0.23290  -0.4291 -0.62700    1.0000 
----------------------------------------------------------------------------------  
West Gonja        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.4972   -0.4609    0.1656   0.3778   0.4702   -0.3923 
Rainfall_1     0.4972     1.0000   -0.7792    0.4887   0.7134   0.8775   -0.7131 
MaxTemp_1     -0.4609    -0.7792    1.0000   -0.1155  -0.7365  -0.8764    0.8274 
MinTemp_1      0.1656     0.4887   -0.1155    1.0000   0.4006   0.5151   -0.2837 
RH0600_1       0.3778     0.7134   -0.7365    0.4006   1.0000   0.8678   -0.4998 
RH1500_1       0.4702     0.8775   -0.8764    0.5151   0.8678   1.0000   -0.7652 
Sunshrs_1     -0.3923    -0.7131    0.8274   -0.2837  -0.4998  -0.7652    1.0000 
----------------------------------------------------------------------------------  
West Mamp      
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1     1.0000     0.5600   -0.5493    0.2131   0.6165   0.6364   -0.3990 
Rainfall_1     0.5600     1.0000   -0.8011    0.2570   0.7765   0.8808   -0.7855 
MaxTemp_1     -0.5493    -0.8011    1.0000    0.2004  -0.6962  -0.8094    0.6672 
MinTemp_1      0.2131     0.2570    0.2004    1.0000   0.3466   0.3522   -0.2659 
RH0600_1       0.6165     0.7765   -0.6962    0.3466   1.0000   0.9368   -0.5354 
RH1500_1       0.6364     0.8808   -0.8094    0.3522   0.9368   1.0000   -0.6934 
Sunshrs_1     -0.3990    -0.7855    0.6672   -0.2659  -0.5354  -0.6934    1.0000 
----------------------------------------------------------------------------------  
Yendi M        
           Residuals1 Rainfall_1 MaxTemp_1 MinTemp_1 RH0600_1 RH1500_1 Sunshrs_1 
Residuals1    1.00000     0.5734   -0.6187   0.02006   0.5721   0.5956   -0.3824 
Rainfall_1    0.57340     1.0000   -0.7474   0.18391   0.6051   0.8156   -0.6826 
MaxTemp_1    -0.61866    -0.7474    1.0000   0.18899  -0.6157  -0.8242    0.6417 
MinTemp_1     0.02006     0.1839    0.1890   1.00000   0.2893   0.2510   -0.1050 
RH0600_1      0.57210     0.6051   -0.6157   0.28933   1.0000   0.8269   -0.3701 
RH1500_1      0.59564     0.8156   -0.8242   0.25097   0.8269   1.0000   -0.6221 
Sunshrs_1    -0.38244    -0.6826    0.6417  -0.10499  -0.3701  -0.6221    1.0000 
---------------------------------------------------------------------------------- 
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Appendix C: 
SARIMA Model Fitting and Forecast of MIR at the 
Regions 
 
C-1: Autocorrelation Analysis of Detrended MIR Data 
 

 

 

Figure C-1.1: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (total) in Upper East 
Region (top) and Upper West Region (bottom) 
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Figure C-1.2: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (total) in Northern 
Region (top) and Brong Ahafo Region (bottom) 
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Figure C-1.3: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (total) in Ashanti 
Region (top) and Eastern Region (bottom) 
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Figure C-1.4: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (total) in Greater 
Accra Region (top) and Western Region (bottom) 
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Figure C-1.5: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (total) in Central 
Region (top) and Volta Region (bottom) 
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Figure C-1.6: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (0-4) in Upper west 
Region (top) and Volta Region (bottom) 
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Figure C-1.7: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (0-4) in Northern 
Region (top) and Brong Ahafo Region (bottom) 
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Figure C-1.8: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (0-4) in Ashanti 
Region (top) and Eastern Region (bottom) 
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Figure C-1.9: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (0-4) in Greater Accra 
Region (top) and Western Region (bottom) 
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Figure C-1.10: Time and QQ plots (left), ACF and PACF (right) of detrended MIR (0-4) in Central 
Region (top) and Volta Region (bottom) 
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C-2: SARIMA Predictive Models of MIR at the Regions 
 
Results C-2.1: Results of multiplicative SARIMA and SARIMAX models of morbidity incidence rates 
(Total) for the regions 
=============================================================== 
Upper East (Total): 
ARIMA(1,1,1)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1    sma1 
      0.594  -0.920  -0.653 
s.e.  0.094   0.047   0.087 
sigma^2 estimated as 1545:  log likelihood=-609.7 
AIC=1225;   AICc=1226;  BIC=1237 mae = 27.17; rmse = 37.32 
Box-Pierce test X-squared = 9.091, df = 24, p-value = 0.8069 
 
ARIMA(1,1,1)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1    sma1    maxT  rh1500  sunsh 
      0.596  -0.919  -0.671  -5.806   1.915  5.636 
s.e.  0.097   0.050   0.088   4.806   1.001  5.651 
sigma^2 estimated as 1475:  log likelihood=-602.2 
AIC=1216   AICc=1217   BIC=1236 
 
ARIMA(1,1,1)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1    sma1   rh1500 
      0.597  -0.922  -0.668  1.968 
s.e.  0.095   0.048   0.089  0.967 
sigma^2 estimated as 1499:  log likelihood=-603.1 
AIC=1214   AICc=1215   BIC=1228; maex= 26.9; msex= 36.74 
Box-Pierce test: X-squared = 7.156, df = 12, p-value = 0.8471 
============================================================= 
Upper West (Total): 
ARIMA(1,0,0)(0,1,1)[12]                     
Coefficients: 
        ar1    sma1 
      0.900  -0.636 
s.e.  0.046   0.107 
sigma^2 estimated as 1615:  log likelihood=-617.3 
AIC=1239   AICc=1239   BIC=1247; mae = 27.35; rmse= 38.32 
Box-Pierce test: X-squared = 31.08, df = 30, p-value = 0.4115 
 
ARIMA(1,0,0)(0,1,1)[12]                     
Coefficients: 
        ar1    sma1  rainf_1  sunsh_1 
      0.910  -0.652   -0.149  -12.954 
s.e.  0.044   0.109    0.075    5.812 
sigma^2 estimated as 1525:  log likelihood=-609 
AIC=1226   AICc=1226   BIC=1240; mae=26.24; rmse=37.22 
Box-Pierce test: X-squared = 23.85, df = 24, p-value = 0.4702 
============================================================= 
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Northern (Total): 
ARIMA(1,1,4)(1,1,0)[12]                     
Coefficients: 
         ar1    ma1     ma2     ma3    ma4    sar1 
      -0.819  0.448  -0.781  -0.491  0.288  -0.612 
s.e.   0.074  0.104   0.087   0.087  0.095   0.072 
sigma^2 estimated as 499:  log likelihood=-543 
AIC=1098   AICc=1099   BIC=1117; mae= 15.17; rmse=21.2 
Box-Pierce test: X-squared = 20.1, df = 24, p-value = 0.691 
 
ARIMA(1,1,4)(1,1,0)[12]                     
Coefficients: 
   ar1    ma1    ma2    ma3    ma4   sar1   rh1500 sunsh_1 
  -0.798  0.404 -0.860 -0.494  0.345 -0.630 0.588  7.663 
s.e.0.079 0.106  0.089  0.085  0.094  0.073 0.457  2.264 
sigma^2 estimated as 446:  log likelihood=-532.5 
AIC=1081   AICc=1083   BIC=1106; mae=14.29; rmse=20.05 
Box-Pierce test: X-squared = 22.43, df = 24, p-value = 0.5538 
=============================================================== 
Brong Ahafo (Total) 
ARIMA(3,1,0)(0,1,1)[12]                     
Coefficients: 
         ar1     ar2     ar3    sma1 
      -0.442  -0.462  -0.176  -0.898 
s.e.   0.079   0.079   0.080   0.109 
sigma^2 estimated as 622:  log likelihood=-728.4 
AIC=1465   AICc=1465   BIC=1480; mae=17.33; rmse=23.96 
Box-Pierce test: X-squared = 4.901, df = 12, p-value = 0.9612 
 
ARIMA(3,1,0)(0,1,1)[12]                     
Coefficients: 
         ar1     ar2     ar3    sma1   rainf  rh1500_1 
      -0.365  -0.438  -0.111  -0.836  -0.129      0.68 
s.e.   0.081   0.078   0.083   0.083   0.039      0.40 
sigma^2 estimated as 592:  log likelihood=-717.5 
AIC=1447   AICc=1448   BIC=1468; mae=16.97; rmse=22.37 
Box-Pierce test: X-squared = 17.87, df = 24, p-value = 0.8095 
=============================================================== 
Ashanti (Total) 
ARIMA(3,1,0)(3,2,1)[12]                     
Coefficients: 
         ar1     ar2     ar3    sar1    sar2    sar3    sma1 
      -0.488  -0.472  -0.213  -0.884  -0.588  -0.313  -0.988 
s.e.   0.097   0.100   0.099   0.110   0.146   0.122   0.151 
sigma^2 estimated as 430:  log likelihood=-509.9 
AIC=1034   AICc=1035   BIC=1055; mae=12.98; rmse=18.68 
Box-Pierce test: X-squared = 17.84, df = 24, p-value = 0.8106 
 
ARIMA(3,1,0)(3,2,1)[12]                     
Coefficients: 
   ar1  ar2    ar3    sar1   sar2   sar3  sma1  rh1500_1 minT_1 
-0.505 -0.504 -0.204 -0.892 -0.612 -0.338 -0.988 -0.657  2.944 
Se 0.10 0.102  0.103  0.109  0.146  0.123  0.153  0.521  2.279 
sigma^2 estimated as 419:  log likelihood=-504.4 
AIC=1027   AICc=1029   BIC=1054; mae=13.01; rmse=18.41 
Box-Pierce test: X-squared = 17.33, df = 24, p-value = 0.8343 
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============================================================== 
Eastern (Total): 
ARIMA(1,1,2)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1     ma2    sma1 
      0.231  -0.386  -0.353  -0.823 
s.e.  0.388   0.373   0.111   0.106 
sigma^2 estimated as 707:  log likelihood=-566.3 
AIC=1141   AICc=1141   BIC=1155; mae=17.8; rmse=25.25 
Box-Pierce test: X-squared = 28.46, df = 24, p-value = 0.241 
 
ARIMA(1,1,2)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1     ma2    sma1   minT_1  sunsh_1 
      0.367  -0.472  -0.381  -0.846  -10.538   -7.767 
s.e.  0.234   0.235   0.117   0.115    4.496    5.377 
sigma^2 estimated as 661:  log likelihood=-558.6 
AIC=1129   AICc=1130   BIC=1149; mae=16.56; rmse=24.4 
Box-Pierce test: X-squared = 26.39, df = 24, p-value = 0.3336 
============================================================== 
Greater Accra (Total) 
ARIMA(0,1,1)(2,1,0)[12]                     
Coefficients: 
         ma1    sar1    sar2 
      -0.375  -0.808  -0.385 
s.e.   0.090   0.089   0.096 
sigma^2 estimated as 255:  log likelihood=-503 
AIC=1012   AICc=1012   BIC=1023; mae=10.79; rmse=14.94 
Box-Pierce test: X-squared = 26.93, df = 24, p-value = 0.3075 
 
ARIMA(0,1,1)(2,1,0)[12]                     
Coefficients: 
         ma1    sar1    sar2  rainf_1  rh1500_1   sunsh 
      -0.390  -0.797  -0.375    0.042     0.591  -4.131 
s.e.   0.092   0.093   0.100    0.022     0.345   1.638 
 
sigma^2 estimated as 236:  log likelihood=-494.1 
AIC=1000   AICc=1001   BIC=1020; mae=10.49; rmse=14.57 
Box-Pierce test: X-squared = 25.48, df = 24, p-value = 0.3802 
============================================================= 
Central (Total): 
ARIMA(0,0,2)(1,1,0)[12]                     
Coefficients: 
        ma1    ma2    sar1 
      0.742  0.536  -0.496 
s.e.  0.080  0.072   0.093 
sigma^2 estimated as 264:  log likelihood=-507 
AIC=1020   AICc=1020   BIC=1031; mae=10.76; rmse=15.49 
Box-Pierce test: X-squared = 17.12, df = 12, p-value = 0.145 
 
 
ARIMA(0,0,2)(1,1,0)[12]                     
Coefficients: 
        ma1    ma2    sar1  minT_1  rh0600 
      0.682  0.545  -0.495   5.531   0.854 
s.e.  0.086  0.072   0.091   3.084   0.832 
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sigma^2 estimated as 259:  log likelihood=-501.6 
AIC=1013   AICc=1014   BIC=1030; mae=10.77; rmse=15.33 
Box-Pierce test: X-squared = 17.02, df = 12, p-value = 0.1488 
============================================================== 
Western (Total): 
ARIMA(0,1,1)(2,1,2)[12]                     
Coefficients: 
         ma1    sar1    sar2    sma1    sma2 
      -0.479  -0.666  -0.201  -0.375  -0.625 
s.e.   0.091   0.314   0.122   0.461   0.383 
sigma^2 estimated as 323:  log likelihood=-529.3 
AIC=1069   AICc=1069   BIC=1085; mae=12.07; rmse=17.07 
Box-Pierce test: X-squared = 11.7, df = 24, p-value = 0.9831 
 
ARIMA(0,1,1)(2,1,2)[12]                     
Coefficients: 
    ma1   sar1   sar2    sma1   sma2  rainf rainf_1 maxT 
  -0.431 -0.360 -0.210 -0.617 -0.383 -0.047 0.075  -8.183 
s.e.0.098 0.368  0.125  0.411  0.371  0.030 0.029   4.344 
sigma^2 estimated as 296:  log likelihood=-519.5 
AIC=1055   AICc=1057   BIC=1080; mae=12; rmse=16.33 
Box-Pierce test: X-squared = 14.32, df = 24, p-value = 0.939 
=============================================================== 
 
Volta(Total): 
ARIMA(1,1,2)(0,1,2)[12]                     
Coefficients: 
         ar1    ma1     ma2    sma1   sma2 
      -0.695  0.329  -0.511  -0.625  0.381 
s.e.   0.154  0.171   0.122   0.132  0.184 
sigma^2 estimated as 246:  log likelihood=-299.8 
AIC=609.7   AICc=611   BIC=623.2; mae=10.29; rmse=14.41 
Box-Pierce test: X-squared = 20.4, df = 24, p-value = 0.674 
 
ARIMA(1,1,2)(0,1,2)[12]                     
Coefficients: 
         ar1    ma1     ma2    sma1   sma2  rainf_1   sunsh 
      -0.732  0.467  -0.533  -0.614  0.370   -0.060  -5.037 
s.e.   0.102  0.146   0.141   0.133  0.173    0.022   3.594 
sigma^2 estimated as 222:  log likelihood=-293.1 
AIC=600.1   AICc=602.5   BIC=618.1; mae=9.944; rmse=13.67 
Box-Pierce test: X-squared = 18.4, df = 24, p-value = 0.7829 
============================================================== 
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Results C-2.2: Results of multiplicative SARIMA and SARIMAX models of morbidity incidence rates 
(0-4) for the regions 
=============================================================== 
Upper East (0-4): 
ARIMA(1,1,1)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1    sma1 
      0.733  -0.960  -0.753 
s.e.  0.087   0.059   0.104 
sigma^2 estimated as 17257:  log likelihood=-755.4 
AIC=1517   AICc=1517   BIC=1528; mae05=88.74; rmse05=124.7 
Box-Pierce test: X-squared = 3.35, df = 12, p-value = 0.9925 
 
ARIMA(1,1,1)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1    sma1  minT_1  rh1500 
      0.743  -0.974  -0.770  -24.97   4.777 
s.e.  0.086   0.077   0.104   21.05   3.227 
sigma^2 estimated as 16729:  log likelihood=-748 
AIC=1506   AICc=1507   BIC=1523; mae=88.65; rmse=122.8 
Box-Pierce test: X-squared = 4.378, df = 12, p-value = 0.9756 
=============================================================  
Upper West (0-4): 
ARIMA(1,1,1)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1    sma1 
      0.627  -0.966  -0.810 
s.e.  0.095   0.067   0.103 
sigma^2 estimated as 13083:  log likelihood=-740.6 
AIC=1487   AICc=1488   BIC=1498; mae=78.7; rmse=108.6 
Box-Pierce test: X-squared = 12.74, df = 24, p-value = 0.9702 
 
ARIMA(1,1,1)(0,1,1)[12]                     
Coefficients: 
        ar1     ma1    sma1  rainf_1  sunsh_1 
      0.641  -0.960  -0.785   -0.601   -45.21 
s.e.  0.097   0.065   0.101    0.252    18.81 
sigma^2 estimated as 12339:  log likelihood=-730.2 
AIC=1470   AICc=1471   BIC=1487; mae=76.94; rmse=105.4 
Box-Pierce test: X-squared = 16.11, df = 24, p-value = 0.884 
============================================================= 
Northern (0-4): 
ARIMA(1,1,4)(1,1,0)[12]                     
Coefficients: 
         ar1    ma1     ma2     ma3    ma4    sar1 
      -0.858  0.400  -0.852  -0.349  0.336  -0.576 
s.e.   0.068  0.107   0.097   0.091  0.087   0.076 
sigma^2 estimated as 2905:  log likelihood=-646.8 
AIC=1306   AICc=1307   BIC=1325; mae=35.63; rmse=51.17 
Box-Pierce test: X-squared = 18.86, df = 24, p-value = 0.7592 
  
 
 
 
 
 



356 
 

ARIMA(1,1,4)(1,1,0)[12]                     
Coefficients: 
         ar1    ma1     ma2     ma3    ma4    sar1   sunsh_1 
      -0.807  0.285  -0.891  -0.315  0.361  -0.566  18.393 
s.e.   0.102  0.125   0.092   0.085  0.084   0.080   5.838 
sigma^2 estimated as 2707:  log likelihood=-637.2 
AIC=1288   AICc=1290   BIC=1310; mae=34.57; rmse=49.38 
Box-Pierce test: X-squared = 19.09, df = 24, p-value = 0.7473 
============================================================== 
 
Brong Ahafo (0-4): 
ARIMA(0,1,2)(0,1,1)[12]                     
Coefficients: 
         ma1     ma2    sma1 
      -0.431  -0.284  -0.720 
s.e.   0.082   0.082   0.072 
sigma^2 estimated as 2918:  log likelihood=-843 
AIC=1692   AICc=1692   BIC=1704; mae=38.68; rmse=51.89 
Box-Pierce test: X-squared = 30.44, df = 24, p-value = 0.1706 
 
ARIMA(0,1,2)(0,1,1)[12]                     
Coefficients: 
         ma1     ma2    sma1    maxT  rh1500_1 
      -0.365  -0.376  -0.704  11.995     2.490 
s.e.   0.082   0.087   0.074   8.129     0.838 
sigma^2 estimated as 2684:  log likelihood=-831 
AIC=1672   AICc=1673   BIC=1690; mae= 36.62; rmse=49.75 
Box-Pierce test: X-squared = 26.62, df = 24, p-value = 0.3226 
=============================================================  
 
Ashanti (0-4): 
 ARIMA(3,1,0)(3,2,1)[12]                     
Coefficients: 
         ar1     ar2     ar3    sar1    sar2    sar3    sma1 
      -0.549  -0.548  -0.204  -0.683  -0.564  -0.314  -0.975 
s.e.   0.095   0.102   0.106   0.122   0.140   0.135   0.214 
sigma^2 estimated as 2378:  log likelihood=-598.8 
AIC=1212   AICc=1213   BIC=1233; mae=31.96; rmse=43.9 
Box-Pierce test: X-squared = 16.64, df = 24, p-value = 0.8637 
 
ARIMA(3,1,0)(3,2,1)[12]                     
Coefficients: 
    ar1    ar2    ar3    sar1   sar2   sar3  sma1  rainf maxT_1 
  -0.606 -0.578 -0.224 -0.745 -0.634 -0.304 -0.976 0.145-18.035 
s.e. 0.102 0.109  0.110 0.129  0.148  0.136  0.211 0.093  8.773 
sigma^2 estimated as 2237:  log likelihood=-591.5 
AIC=1201   AICc=1203   BIC=1228; mae=31.27; rmse=43.9 
Box-Pierce test: X-squared = 19.16, df = 24, p-value = 0.7436 
=============================================================== 
 
 
 
 
 
 
Eastern (0-4): 
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ARIMA(0,1,2)(0,1,1)[12]                     
Coefficients: 
         ma1     ma2    sma1 
      -0.196  -0.370  -0.814 
s.e.   0.087   0.091   0.097 
sigma^2 estimated as 3165:  log likelihood=-655.1 
AIC=1316   AICc=1316   BIC=1327; mae=38.3; rmse=53.42 
Box-Pierce test: X-squared = 10.38, df = 24, p-value = 0.9928 
ARIMA(1,1,2)(0,1,1)[12]                     
Coefficients: 
         ar1    ma1     ma2    sma1  rainf_1   minT_1 
      -0.240  0.037  -0.427  -0.784    0.179  -19.878 
s.e.   0.225  0.208   0.090   0.097    0.110    9.837 
sigma^2 estimated as 3009:  log likelihood=-645.9 
AIC=1304   AICc=1305   BIC=1323; mae=37.43; rmse=52.07 
Box-Pierce test: X-squared = 10.74, df = 24, p-value = 0.9907 
============================================================== 
Greater Accra(0-4): 
ARIMA(0,1,1)(1,2,1)[12]                     
Coefficients: 
         ma1    sar1    sma1 
      -0.439  -0.529  -0.991 
s.e.   0.088   0.080   0.136 
sigma^2 estimated as 2279:  log likelihood=-589.1 
AIC=1184   AICc=1185   BIC=1195; mae=29.13; rmse=42.98 
Box-Pierce test: X-squared = 24.91, df = 24, p-value = 0.4104 
 
ARIMA(0,1,1)(1,2,1)[12]                     
Coefficients: 
         ma1    sar1    sma1  rainf_1  rh1500_1    sunsh 
      -0.455  -0.534  -0.989    0.089     2.027  -11.694 
s.e.   0.086   0.083   0.143    0.067     0.982    4.564 
sigma^2 estimated as 2090:  log likelihood=-579.2 
AIC=1170   AICc=1172   BIC=1189; mae=27.91; rmse=41.12 
Box-Pierce test: X-squared = 26.93, df = 24, p-value = 0.3077 
============================================================== 
Central (0-4): 
ARIMA(0,1,3)(0,1,2)[12]                     
Coefficients: 
         ma1     ma2     ma3    sma1    sma2 
      -0.354  -0.113  -0.285  -0.845  -0.155 
s.e.   0.089   0.098   0.085   0.261   0.106 
sigma^2 estimated as 863:  log likelihood=-584.5 
AIC=1179   AICc=1180   BIC=1196; mae=19.56; rmse=27.9 
Box-Pierce test: X-squared = 10.51, df = 12, p-value = 0.5715 
 
ARIMA(0,1,3)(0,1,2)[12]                     
Coefficients: 
      ma1    ma2    ma3   sma1    sma2   maxT_1  minT   minT_1 
    -0.406 -0.095 -0.252 -0.809  -0.191 -20.69  13.378  15.922 
s.e. 0.093  0.097  0.092  0.268   0.114  10.75   7.214   7.314 
sigma^2 estimated as 825:  log likelihood=-576.7 
AIC=1169   AICc=1171   BIC=1194; mae=19.97; rmse=27.26 
Box-Pierce test: X-squared = 8.737, df = 12, p-value = 0.7252 
=============================================================== 
Western (0-4): 
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 ARIMA(0,1,1)(0,1,1)[12]                     
Coefficients: 
         ma1    sma1 
      -0.619  -0.815 
s.e.   0.068   0.120 
sigma^2 estimated as 1585:  log likelihood=-614 
AIC=1232   AICc=1232   BIC=1240; mae=26.77; rmse=37.8 
Box-Pierce test: X-squared = 20.17, df = 24, p-value = 0.6872 
 
ARIMA(0,1,1)(0,1,1)[12]                     
Coefficients: 
         ma1    sma1  rh0600  rh0600_1 
      -0.629  -0.838  10.590     7.878 
s.e.   0.063   0.133   3.663     3.502 
sigma^2 estimated as 1434:  log likelihood=-603.7 
AIC=1215   AICc=1216   BIC=1229; mae=25.48; rmse=35.95 
Box-Pierce test: X-squared = 18.67, df = 24, p-value = 0.7692 
============================================================== 
Volta (0-4): 
ARIMA(1,1,0)(0,1,1)[12]                     
Coefficients: 
         ar1    sma1 
      -0.250  -0.816 
s.e.   0.115   0.253 
sigma^2 estimated as 1913:  log likelihood=-375.2 
AIC=754.5   AICc=754.8   BIC=761.2; mae=29.31; rmse=40.21 
Box-Pierce test: X-squared = 14.52, df = 24, p-value = 0.9339 
 
ARIMA(1,1,0)(0,1,1)[12]                     
Coefficients: 
         ar1    sma1  rh1500_1  sunsh_1 
      -0.229  -0.879    -2.450   -13.79 
s.e.   0.116   0.403     1.814    12.54 
sigma^2 estimated as 1771:  log likelihood=-368.9 
AIC=745.7   AICc=746.7   BIC=757; mae=27.97; rmse=38.65 
Box-Pierce test: X-squared = 14.92, df = 24, p-value = 0.9229 
============================================================= 
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C-3: Results of SARIMA Model Diagnosis by Lyung-Box Q-Test 

  
Figure C-3.1a: SARIMA model diagnostics of the morbidity incidence rates (total) by the Lyung-Box 
Q-test indicating the standardised residuals (top), ACF of residuals (middle) and the p-values (bottom) 
for Upper West and Northern regions 
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Figure C-3.1b: SARIMA model diagnostics of the morbidity incidence rates (total) by the Lyung-Box 
Q-test indicating the standardised residuals (top), ACF of residuals (middle) and the p-values (bottom) 
for Brong Ahafo and Ashanti regions 
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Figure C-3.1c: SARIMA model diagnostics of the morbidity incidence rates (total) by the Lyung-Box 
Q-test indicating the standardised residuals (top), ACF of residuals (middle) and the p-values (bottom) 
for Greater Accra and Central regions 
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Figure C-3.2a: SARIMA model diagnostics of the morbidity incidence rates (0-4) by the Lyung-Box Q-
test indicating the standardised residuals (top), ACF of residuals (middle) and the p-values (bottom) for 
Upper West and Northern regions 
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Figure C-3.2b: SARIMA model diagnostics of the morbidity incidence rates (0-4) by the Lyung-Box Q-
test indicating the standardised residuals (top), ACF of residuals (middle) and the p-values (bottom) for 
Brong Ahafo and Ashanti regions 

Standardized Residuals: Brong Ahafo (0-4))
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Figure C-3.2c: SARIMA model diagnostics of the morbidity incidence rates (0-4) by the Lyung-Box Q-
test indicating the standardised residuals (top), ACF of residuals (middle) and the p-values (bottom) for  
Greater Accra and Central regions 
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C-4: Graphs of SARIMA Model Forecasting of MIR for 2011-2014   
 

 

 

 

Figure C-4.1a: SARIMA model forecast of monthly morbidity incidence rates (total) for 2011-2013/14 
in Upper East, Upper West, Northern, Brong Ahafo, Ashanti and Eastern regions 
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Figure C-4.1b: SARIMA model forecast of monthly morbidity incidence rates (total) for 2011-2013 in  
Greater Accra, Central, Western and Volta regions 
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Figure C-4.2a: SARIMA model forecast of monthly morbidity incidence rates (0-4 year group) for 
2011-2013/14 in Upper West, Northern, Brong Ahafo, Ashanti, Eastern regions 
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Figure C-4.2b: SARIMA model forecast of monthly morbidity incidence rates (0-4 year group) for 
2011-2013 in Greater Accra, Central, Western and Volta regions 
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C-5: SARIMA Model Forecast Values for 2011-2014/2014 
 
Table C-5.1: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-
2013 in Upper East Region     

Month 
 

Upper East Region (Total) (0-4) 

Prediction 
Std 

Error Lower Upper Prediction 
Std 

Error Lower Upper 
133  515.118  39.312  436.494  593.742  1210.369  131.513  947.342  1473.395 

134  474.367  47.41  379.547  569.186  1069.946  166.246  737.455  1402.438 

135  485.699  51.036  383.626  587.772  1050.18  184.435  681.31  1419.051 

136  458.099  53.023  352.052  564.146  984.482  195.179  594.125  1374.84 

137  445.615  54.299  337.017  554.212  979.612  202.019  575.573  1383.651 

138  498.973  55.232  388.51  609.436  1143.357  206.654  730.05  1556.665 

139  592.726  55.986  480.753  704.699  1529.081  209.977  1109.128 1949.035 

140  688.241  56.643  574.954  801.528  1717.587  212.49  1292.606 2142.567 

141  663.499  57.244  549.012  777.987  1657.43  214.488  1228.454 2086.405 

142  676.641  57.81  561.021  792.261  1686.762  216.148  1254.465 2119.058 

143  576.791  58.355  460.081  693.5  1424.934  217.583  989.767  1860.1 

144  514.956  58.885  397.185  632.726  1181.436  218.866  743.704  1619.169 

145  543.206  62.691  417.824  668.587  1179.043  225.772  727.499  1630.587 

146  510.844  64.962  380.92  640.769  1068.84  230.626  607.588  1530.093 

147  527.157  66.533  394.092  660.223  1071.221  234.26  602.7  1539.741 

148  502.514  67.751  367.011  638.016  1021.752  237.122  547.509  1495.995 

149  491.786  68.781  354.224  629.347  1028.774  239.478  549.818  1507.731 

150  546.186  69.703  406.78  685.591  1201.235  241.497  718.242  1684.229 

151  640.557  70.56  499.436  781.678  1593.346  243.285  1106.776 2079.916 

152  736.44  71.378  593.684  879.196  1786.532  244.913  1296.706 2276.357 

153  711.916  72.169  567.577  856.255  1729.805  246.429  1236.948 2222.662 

154  725.187  72.942  579.303  871.071  1761.65  247.865  1265.92  2257.381 

155  625.414  73.701  478.013  772.815  1501.664  249.246  1003.171 2000.157 

156  563.624  74.448  414.728  712.521  1259.517  250.589  758.338  1760.695 

157  591.901  78.275  435.351  748.452  1258.112  257.32  743.472  1772.753 

158  559.556  80.719  398.119  720.994  1148.635  262.241  624.154  1673.116 

159  575.879  82.502  410.874  740.883  1151.546  266.067  619.411  1683.681 

160  551.241  83.943  383.354  719.128  1102.467  269.186  564.095  1640.839 

161  540.516  85.196  370.124  710.908  1109.775  271.833  566.109  1653.441 

162  594.918  86.339  422.241  767.595  1282.444  274.159  734.126  1830.763 

163  689.291  87.414  514.462  864.119  1674.708  276.263  1122.183 2227.234 

164  785.174  88.447  608.28  962.068  1868.006  278.21  1311.587 2424.426 

165  760.651  89.45  581.75  939.551  1811.362  280.046  1251.271 2371.453 

166  773.922  90.433  593.057  954.787  1843.268  281.803  1279.662 2406.873 

167  674.149  91.398  491.352  856.946  1583.326  283.504  1016.319 2150.333 

168  612.36  92.351  427.658  797.061  1341.211  285.166  770.879  1911.543 

Lower and upper values are 95% confidence intervals of forecasted values  
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C-5.2: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-2013 in 
Upper West Region     

Month 
 

Upper West Region (Total) (0-4) 

Prediction 
Std 

Error Lower Upper Prediction
Std 

Error Lower Upper 

133 328.206 40.192 247.822 408.59 792.352 114.784 562.783 1021.921 
134 324.739 54.086 216.568 432.91 747.292 137.638 472.016 1022.568 
135 333.161 63.146 206.87 459.453 733.793 147.01 439.773 1027.814 
136 330.711 69.632 191.447 469.976 765.818 151.447 462.925 1068.712 
137 366.348 74.479 217.391 515.306 848.614 153.797 541.019 1156.209 
138 468.512 78.188 312.136 624.888 1112.022 155.19 801.642 1422.402 
139 452.833 81.071 290.69 614.976 1126.957 156.112 814.734 1439.18 
140 399.937 83.336 233.264 566.609 1006.577 156.789 692.999 1320.155 
141 425.688 85.129 255.431 595.945 1140.649 157.335 825.98 1455.319 
142 458.65 86.555 285.541 631.759 1119.357 157.809 803.739 1434.975 
143 381.22 87.694 205.832 556.608 911.327 158.246 594.835 1227.819 
144 325.867 88.607 148.653 503.081 801.43 158.666 484.097 1118.762 
145 302.873 92.355 118.164 487.582 783.257 162.207 458.844 1107.67 
146 301.927 95.285 111.356 492.497 759.806 164.21 431.386 1088.227 
147 312.619 97.597 117.425 507.813 759.853 165.51 428.832 1090.874 
148 312.213 99.432 113.348 511.078 800.368 166.446 467.476 1133.26 
149 349.691 100.896 147.899 551.483 888.486 167.183 554.12 1222.851 
150 453.512 102.067 249.377 657.647 1155.229 167.807 819.615 1490.843 
151 439.325 103.007 233.31 645.34 1172.255 168.366 835.523 1508.988 
152 387.774 103.763 180.247 595.3 1053.186 168.888 715.41 1390.962 
153 414.735 104.372 205.99 623.48 1188.08 169.39 849.299 1526.86 
154 448.787 104.864 239.06 658.514 1167.302 169.885 827.532 1507.072 
155 372.339 105.26 161.818 582.859 959.595 170.381 618.832 1300.358 
156 317.869 105.581 106.708 529.031 849.9 170.887 508.127 1191.674 
157 295.671 107.852 79.966 511.375 831.854 174.563 482.728 1180.981 
158 295.441 109.66 76.122 514.761 808.483 176.708 455.067 1161.899 
159 306.779 111.104 84.571 528.987 808.579 178.15 452.279 1164.88 
160 306.954 112.261 82.432 531.476 849.126 179.221 490.683 1207.569 
161 344.955 113.191 118.574 571.337 937.263 180.087 577.089 1297.437 
162 449.248 113.939 221.369 677.126 1204.019 180.834 842.35 1565.688 
163 435.485 114.542 206.4 664.57 1221.052 181.513 858.026 1584.079 
164 384.316 115.029 154.257 614.374 1101.988 182.152 737.683 1466.293 
165 411.621 115.422 180.776 642.466 1236.885 182.771 871.343 1602.426 
166 445.983 115.74 214.503 677.464 1216.109 183.381 849.347 1582.871 
167 369.814 115.997 137.819 601.808 1008.403 183.994 640.414 1376.392 
168 315.596 116.205 83.185 548.006 898.709 184.62 529.469 1267.949 

Lower and upper values are 95% confidence intervals of forecasted values  
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C-5.3: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-2013 in 
Northern Region     

Month 
 

Northern Region (Total) (0-4) 

Prediction 
Std 
Error Lower Upper Prediction

Std 
Error Lower Upper 

133  205.274  22.331 160.611 249.936 442.151 53.897  334.357 549.944

134  212.017  26.384 159.249 264.784 391.301 61.314  268.672 513.93

135  195.206  26.6 142.006 248.405 373.163 61.478  250.206 496.119

136  190.17  26.624 136.921 243.419 365.54 61.866  241.808 489.272

137  197.961  28.239 141.484 254.439 439.617 65.986  307.646 571.589

138  243.746  28.362 187.022 300.47 508.597 66.623  375.351 641.844

139  294.563  29.52 235.523 353.603 658.746 69.853  519.041 798.452

140  299.477  29.744 239.988 358.965 688.463 70.694  547.076 829.851

141  295.165  30.643 233.879 356.45 653.112 73.349  506.414 799.81

142  320.667  30.945 258.776 382.557 712.598 74.341  563.915 861.28

143  281.586  31.687 218.213 344.96 608.169 76.608  454.953 761.384

144  227.443  32.044 163.356 291.53 494.408 77.705  338.997 649.819

145  219.876  35.426 149.025 290.728 491.757 87.65  316.457 667.057

146  204.278  36.955 130.368 278.188 418.403 91.444  235.515 601.291

147  209.597  37.71 134.177 285.017 418.569 93.406  231.757 605.382

148  185.716  38.142 109.433 261.999 393.298 94.959  203.379 583.217

149  188.87  39.351 110.169 267.572 449.335 98.573  252.189 646.481

150  254.657  39.874 174.91 334.405 575.251 100.282  374.688 775.814

151  326.89  40.897 245.095 408.685 764.868 103.425  558.018 971.719

152  305.523  41.478 222.567 388.48 740.015 105.231  529.553 950.476

153  277.038  42.381 192.276 361.799 650.834 108.038  434.759 866.91

154  328.344  42.995 242.355 414.334 762.199 109.897  542.406 981.993

155  299.389  43.814 211.761 387.018 682.637 112.455  457.726 907.548

156  240.707  44.444 151.819 329.595 550.93 114.337  322.256 779.604

157  223.639  51.135 121.37 325.909 540.127 131.096  277.935 802.318

158  221.898  54.316 113.267 330.529 480.211 138.012  204.187 756.236

159  213.522  55.363 102.796 324.249 469.426 140.525  188.377 750.476

160  201.299  56.023 89.252 313.345 454.671 143.013  168.646 740.697

161  207.192  58.058 91.076 323.308 520.811 148.545  223.72 817.901

162  260.817  58.876 143.065 378.568 614.164 151.253  311.657 916.671

163  319.873  60.575 198.722 441.024 780.816 156.078  468.661 1092.972

164  314.648  61.494 191.661 437.635 787.601 158.919  469.763 1105.439

165  300.915  62.977 174.961 426.868 729.286 163.234  402.818 1055.754

166  336.463  63.953 208.557 464.368 810.887 166.145  478.598 1143.177

167  301.28  65.289 170.701 431.858 716.875 170.083  376.71 1057.04

168  245.401  66.293 112.815 377.986 595.613 173.018  249.577 941.648
Lower and upper values are 95% confidence intervals of forecasted values  
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C-5.4: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2012-2014 in 
Brong Ahafo Region      

Month 
 

Brong Ahafo Region (Total) (0-4) 

Prediction 
Std 
Error Lower Upper Prediction 

Std 
Error Lower Upper 

169 255.799 25.098 205.604 305.995 475.327 54.023 367.282 583.372 
170 245.582 28.739 188.104 303.061 470.661 62.146 346.369 594.953 
171 247.288 29.655 187.979 306.597 495.028 64.021 366.985 623.07 
172 243.089 31.62 179.849 306.329 536.126 65.843 404.44 667.812 
173 289.782 34.741 220.301 359.264 555.756 67.616 420.525 690.988 
174 314.046 36.876 240.294 387.798 624.88 69.343 486.194 763.567 
175 320.2 38.493 243.215 397.185 661.281 71.029 519.224 803.338 
176 286.344 40.308 205.727 366.96 609.941 72.675 464.591 755.291 
177 271.367 42.21 186.948 355.787 580.132 74.285 431.562 728.702 
178 317.51 43.904 229.702 405.317 683.788 75.861 532.067 835.509 
179 317.352 45.473 226.405 408.299 657.745 77.404 502.937 812.553 
180 277.771 47.047 183.677 371.864 560.935 78.918 403.1 718.771 
181 263.028 49.38 164.269 361.788 515.757 84.61 346.537 684.978 
182 249.914 51.217 147.479 352.348 501.981 87.944 326.093 677.869 
183 254.882 52.796 149.289 360.475 526.348 90.121 346.106 706.589 
184 252.432 54.438 143.556 361.308 567.446 92.246 382.953 751.939 
185 297.355 56.126 185.103 409.608 587.076 94.324 398.428 775.725 
186 321.02 57.707 205.606 436.434 656.2 96.357 463.487 848.914 
187 327.949 59.211 209.527 446.37 692.601 98.348 495.906 889.297 
188 294.338 60.703 172.932 415.744 641.261 100.299 440.663 841.859 
189 279.001 62.175 154.652 403.35 611.452 102.213 407.025 815.878 
190 325.053 63.598 197.857 452.249 715.108 104.092 506.924 923.293 
191 325.059 64.982 195.094 455.023 689.065 105.938 477.19 900.94 
192 285.51 66.348 152.814 418.206 592.255 107.752 376.752 807.759 
193 270.694 68.314 134.065 407.322 547.077 113.238 320.602 773.553 
194 257.568 69.922 117.725 397.411 533.301 116.718 299.864 766.737 
195 262.57 71.34 119.889 405.25 557.668 119.159 319.349 795.986 
196 260.123 72.813 114.497 405.749 598.766 121.551 355.663 841.868 
197 305.031 74.333 156.366 453.696 618.396 123.897 370.602 866.19 
198 328.695 75.777 177.142 480.248 687.52 126.199 435.122 939.919 
199 335.63 77.165 181.301 489.96 723.921 128.46 467.001 980.841 
200 302.02 78.549 144.922 459.118 672.581 130.682 411.217 933.945 
201 286.68 79.923 126.835 446.525 642.772 132.867 377.039 908.505 
202 332.732 81.261 170.211 495.253 746.428 135.016 476.397 1016.46 
203 332.739 82.569 167.601 497.877 720.385 137.131 446.122 994.648 
204 293.19 83.868 125.455 460.926 623.575 139.215 345.145 902.006 

Lower and upper values are 95% confidence intervals of forecasted values  
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C-5.5: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-2013 in 
Ashanti Region     

Month 
 

Ashanti Region (Total) (0-4) 

Prediction 
Std 
Error Lower Upper Prediction

Std 
Error Lower Upper 

133  204.647  22.028 160.59  248.704 448.179 51.439  345.301 551.057

134  210.007  24.72 160.568  259.447 480.224 56.398  367.427 593.021

135  215.731  25.457 164.817  266.646 533.478 57.355  418.768 648.188

136  230.786  26.991 176.804  284.767 534.054 61.54  410.975 657.133

137  250.987  29.644 191.698  310.276 535.011 67.803  399.406 670.617

138  253.094  31.411 190.272  315.915 558.974 71.041  416.892 701.056

139  265.568  32.709 200.15  330.986 577.493 73.632  430.228 724.758

140  253.241  34.185 184.871  321.61 518.617 77.172  364.274 672.961

141  262.184  35.777 190.63  333.738 589.975 80.699  428.577 751.372

142  267.497  37.178 193.141  341.853 614.733 83.547  447.639 781.827

143  240.967  38.452 164.063  317.87 564.485 86.274  391.938 737.032

144  227.364  39.752 147.861  306.867 504.547 89.196  326.155 682.938

145  225.101  42.708 139.685  310.517 534.154 100.123  333.909 734.399

146  222.634  44.532 133.571  311.697 560.459 105.09  350.279 770.64

147  227.027  45.959 135.11  318.945 604.761 108.382  387.996 821.525

148  252.885  47.52 157.845  347.925 647.102 112.97  421.162 873.042

149  249.209  49.234 150.741  347.678 620.504 118.122  384.26 856.748

150  256.416  50.774 154.869  357.964 616.491 122.185  372.122 860.86

151  282.628  52.193 178.243  387.014 661.817 125.913  409.99 913.643

152  255.333  53.626 148.081  362.586 610.805 129.947  350.91 870.699

153  255.526  55.064 145.397  365.655 644.041 133.939  376.163 911.918

154  293.027  56.425 180.177  405.877 683.866 137.582  408.702 959.029

155  267.062  57.725 151.612  382.512 628.843 141.063  346.718 910.968

156  244.09  59.036 126.017  362.163 566.892 144.637  277.619 856.166

157  244.925  63.217 118.492  371.359 598.188 153.848  290.492 905.885

158  240.086  65.496 109.094  371.079 609.283 158.945  291.393 927.173

159  247.109  67.15 112.809  381.409 662.525 162.781  336.964 988.087

160  266.725  69.057 128.611  404.839 689.327 167.554  354.22 1024.435

161  268.217  71.267 125.683  410.751 666.931 172.758  321.416 1012.446

162  279.288  73.208 132.871  425.704 690.551 177.166  336.219 1044.882

163  304.9  74.969 154.962  454.837 734.82 181.291  372.239 1097.401

164  281.914  76.777 128.361  435.467 690.816 185.644  319.528 1062.103

165  280.523  78.615 123.292  437.753 699.59 189.989  319.612 1079.569

166  306.908  80.345 146.218  467.599 769.409 194.035  381.34 1157.478

167  283.401  81.992 119.418  447.384 739.423 197.895  343.633 1135.213

168  265.6  83.668 98.264  432.936 665.396 201.871  261.653 1069.138
Lower and upper values are 95% confidence intervals of forecasted values  
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C-5.6: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-2013 in 
Eastern Region     

Month 
 

Eastern Region (Total) (0-4) 

Prediction 
Std 
Error Lower Upper Prediction

Std 
Error Lower Upper 

133  272.314  26.679  218.955 325.673 478.638 56.406  365.825  591.451

134  272.711  34.921  202.869 342.552 484.627 72.363  339.901  629.353

135  273.357  36.981  199.395 347.32 479.122 76.397  326.328  631.917

136  286.753  38.252  210.249 363.257 509.172 80.229  348.714  669.629

137  326.655  39.349  247.957 405.353 571.224 83.885  403.453  738.995

138  359.542  40.387  278.767 440.316 623.669 87.389  448.89  798.447

139  365.006  41.393  282.221 447.792 660.131 90.758  478.615  841.647

140  329.266  42.373  244.519 414.012 591.144 94.006  403.132  779.156

141  320.17  43.331  233.508 406.833 563.473 97.146  369.182  757.764

142  333.297  44.269  244.76 421.835 619.765 100.187  419.392  820.139

143  328.868  45.188  238.491 419.244 584.532 103.138  378.255  790.808

144  302.88  46.093  210.695 395.065 529.941 106.015  317.91  741.972

145  292.657  48.154  196.349 388.965 511.577 111.737  288.104  735.05

146  292.828  49.911  193.007 392.65 523.818 116.529  290.76  756.877

147  293.423  51.163  191.097 395.749 518.314 120.113  278.088  758.54

148  306.807  52.294  202.219 411.395 548.363 123.593  301.178  795.549

149  346.706  53.381  239.943 453.468 610.416 126.977  356.461  864.37

150  379.592  54.442  270.708 488.476 662.861 130.274  402.313  923.409

151  385.056  55.481  274.093 496.019 699.322 133.489  432.344  966.301

152  349.316  56.502  236.312 462.319 630.335 136.629  357.077  903.593

153  340.22  57.504  225.213 455.227 602.665 139.698  323.269  882.061

154  353.347  58.489  236.369 470.325 658.957 142.701  373.555  944.359

155  348.918  59.46  229.998 467.837 623.724 145.642  332.439  915.008

156  322.93  60.421  202.089 443.771 569.133 148.537  272.06  866.206

157  312.707  62.401  187.904 437.51 550.768 153.821  243.127  858.409

158  312.878  64.121  184.636 441.121 563.01 158.371  246.269  879.751

159  313.473  65.4  182.672 444.273 557.506 161.922  233.662  881.35

160  326.857  66.572  193.712 460.001 587.555 165.397  256.76  918.35

161  366.755  67.706  231.344 502.167 649.607 168.801  312.005  987.21

162  399.642  68.816  262.009 537.275 702.052 172.138  357.777  1046.328

163  405.106  69.909  265.289 544.923 738.514 175.411  387.693  1089.336

164  369.366  70.984  227.398 511.333 669.527 178.624  312.279  1026.775

165  360.27  72.043  216.184 504.356 641.857 181.78  278.297  1005.417

166  373.397  73.087  227.223 519.571 698.149 184.883  328.384  1067.914

167  368.967  74.119  220.73 517.205 662.915 187.934  287.048  1038.783

168  342.98  75.143  192.694 493.266 608.325 190.949  226.426  990.224
Lower and upper values are 95% confidence intervals of forecasted values  
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C-5.7: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-2013 in 
Western Region     

Month 
 

Western Region (Total) (0-4) 

Prediction 
Std 
Error Lower Upper Prediction

Std 
Error Lower Upper 

133  309.352  18.865 271.622 347.082 663.257 39.907  583.444 743.07

134  289.294  21.257 246.779 331.808 615.755 42.7  530.356 701.154

135  294.923  23.407 248.11 341.736 654.203 45.321  563.561 744.844

136  295.845  25.375 245.096 346.594 654.732 47.798  559.135 750.328

137  312.617  27.2 258.216 367.018 684.051 50.154  583.743 784.358

138  335.614  28.911 277.792 393.436 707.714 52.403  602.908 812.521

139  339.853  30.526 278.801 400.906 721.129 54.56  612.008 830.249

140  313.696  32.06 249.576 377.816 678.948 56.635  565.678 792.218

141  308.065  33.524 241.017 375.112 644.63 58.636  527.357 761.903

142  323.642  34.926 253.789 393.494 692.376 60.572  571.232 813.519

143  327.026  36.274 254.477 399.575 715.66 62.447  590.765 840.554

144  318.857  37.574 243.709 394.006 681.134 64.268  552.598 809.669

145  338.868  39.108 260.653 417.083 718.955 68.18  582.594 855.316

146  318.324  40.417 237.491 399.158 671.454 70.525  530.403 812.504

147  329.738  41.685 246.369 413.107 709.901 72.795  564.311 855.49

148  333.5  42.915 247.67 419.331 710.43 74.996  560.439 860.421

149  359.373  44.112 271.15 447.596 739.749 77.134  585.482 894.016

150  367.592  45.276 277.04 458.145 763.413 79.214  604.985 921.84

151  370.847  46.412 278.024 463.671 776.827 81.241  614.345 939.309

152  359.299  47.52 264.259 454.339 734.646 83.219  568.208 901.083

153  343.537  48.603 246.331 440.743 700.328 85.151  530.027 870.63

154  356.196  49.662 256.871 455.52 748.074 87.04  573.995 922.153

155  350.047  50.7 248.648 451.447 771.358 88.888  593.582 949.135

156  347.278  51.716 243.845 450.71 736.832 90.699  555.433 918.231

157  365.74  52.445 260.85 470.631 774.653 94.256  586.142 963.165

158  339.895  53.245 233.405 446.385 727.152 96.538  534.075 920.229

159  349.946  54.033 241.88 458.012 765.599 98.768  568.063 963.136

160  343.176  54.81 233.557 452.796 766.128 100.949  564.231 968.026

161  361.422  55.576 250.271 472.573 795.447 103.083  589.281 1001.614

162  381.499  56.331 268.837 494.161 819.111 105.174  608.762 1029.46

163  389.589  57.077 275.436 503.742 832.525 107.225  618.076 1046.975

164  365.522  57.812 249.898 481.147 790.344 109.237  571.871 1008.818

165  352.207  58.539 235.129 469.285 756.027 111.212  533.602 978.451

166  364.681  59.257 246.167 483.194 803.772 113.153  577.466 1030.079

167  378.292  59.966 258.36 498.223 827.057 115.062  596.933 1057.18

168  361.492  60.667 240.159 482.825 792.53 116.939  558.652 1026.408
Lower and upper values are 95% confidence intervals of forecasted values  
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C-5.8: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-2013 in 
Central Region     

Month 
 

Central Region (Total) (0-4) 

Prediction 
Std 
Error Lower Upper Prediction

Std 
Error Lower Upper 

133  178.327  16.246  145.835 210.818 375.904 30.752 314.401  437.408

134  173.927  20.227  133.473 214.382 384.78 36.59 311.6  457.959

135  149.192  22.024  105.144 193.241 369.344 40.083 289.177  449.511

136  155.681  22.024  111.633 199.73 375.429 40.799 293.832  457.027

137  171.111  22.024  127.062 215.159 388.699 41.501 305.696  471.702

138  202.799  22.024  158.751 246.848 448.376 42.193 363.991  532.761

139  203.748  22.024  159.699 247.796 431.619 42.873 345.874  517.364

140  165.748  22.024  121.699 209.796 378.999 43.542 291.915  466.082

141  147.548  22.024  103.5 191.597 334.085 44.201 245.683  422.487

142  168.703  22.024  124.655 212.752 383.22 44.851 293.519  472.922

143  151.133  22.024  107.085 195.182 349.733 45.506 258.721  440.744

144  155.214  22.024  111.166 199.263 366.876 46.153 274.57  459.182

145  183.128  23.495  136.137 230.118 383.395 48.578 286.239  480.552

146  179.919  24.267  131.386 228.452 392.264 50.114 292.037  492.491

147  162.001  24.66  112.68 211.322 387.58 51.412 284.755  490.405

148  167.751  24.66  118.43 217.071 396.338 52.261 291.816  500.861

149  178.500  24.66  129.18 227.821 410.936 53.096 304.743  517.129

150  222.751  24.66  173.43 272.072 463.583 53.919 355.745  571.42

151  220.251  24.66  170.93 269.572 451.494 54.729 342.036  560.951

152  182.251  24.66  132.93 231.572 398.358 55.527 287.305  509.412

153  150.75  24.66  101.429 200.071 364.031 56.314 251.404  476.659

154  182.251  24.66  132.93 231.572 399.31 57.09 285.131  513.489

155  160  24.66  110.68 209.321 371.41 57.881 255.648  487.173

156  169.501  24.66  120.18 218.822 380.622 58.667 263.287  497.957

157  180.745  27.506  125.732 235.758 401.655 60.041 281.573  521.737

158  176.945  28.953  119.039 234.851 410.32 61.08 288.16  532.48

159  155.644  29.682  96.281 215.007 407.216 62.042 283.132  531.3

160  161.761  29.682  102.397 221.124 415.974 62.847 290.279  541.668

161  174.833  29.682  115.47 234.196 430.571 63.642 303.287  557.856

162  212.849  29.682  153.486 272.212 483.218 64.428 354.363  612.074

163  212.06  29.682  152.697 271.423 471.129 65.204 340.722  601.536

164  174.06  29.682  114.697 233.423 417.994 65.97 286.053  549.934

165  149.161  29.682  89.798 208.524 383.667 66.728 250.211  517.123

166  175.527  29.682  116.164 234.89 418.946 67.477 283.991  553.901

167  155.6  29.682  96.236 214.963 391.046 68.251 254.544  527.547

168  162.41  29.682  103.047 221.774 400.258 69.024 262.21  538.306
Lower and upper values are 95% confidence intervals of forecasted values  
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C-59: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-2013 in 
Greater Region     

Month 
 

Greater Accra Region (Total) (0-4) 

Prediction 
Std 
Error Lower Upper Prediction

Std 
Error Lower Upper 

133 100.465 15.967 68.532 132.398 279.149 55.139 168.871 389.426
134 92.848 18.826 55.196 130.499 316.273 77.753 160.766 471.779
135 93.381 21.305 50.772 135.991 316.429 95.136 126.156 506.701
136 90.541 23.524 43.494 137.588 275.036 109.801 55.434 494.637
137 104.019 25.551 52.918 155.121 284.641 122.725 39.191 530.092
138 123.091 27.428 68.234 177.948 309.764 134.413 40.939 578.589
139 127.926 29.185 69.555 186.297 315.893 145.162 25.569 606.217
140 109.558 30.843 47.873 171.244 263.24 155.169 -47.098 573.577
141 98.008 32.415 33.178 162.839 234.966 164.568 -94.17 564.102
142 102.096 33.915 34.267 169.926 263.997 173.459 -82.92 610.914
143 81.012 35.351 10.31 151.714 245.825 181.915 -118.005 609.656
144 80.041 36.731 6.578 153.503 248.771 189.996 -131.22 628.762
145 104.951 38.976 26.999 182.903 300.947 209.164 -117.382 719.276
146 98.718 40.749 17.221 180.215 355.106 226.32 -97.534 807.745
147 104.593 42.447 19.699 189.487 355.302 242.263 -129.225 839.828
148 96.582 44.08 8.422 184.742 298.64 257.22 -215.801 813.081
149 104.784 45.655 13.474 196.093 277.514 271.354 -265.194 820.223
150 126.454 47.177 32.1 220.808 290.478 284.788 -279.098 860.053
151 133.656 48.652 36.352 230.959 314.927 297.615 -280.304 910.157
152 104.385 50.083 4.219 204.55 255.919 309.912 -363.906 875.743
153 97.86 51.474 -5.088 200.808 240.87 321.74 -402.609 884.35
154 94.179 52.829 -11.479 199.837 246.242 333.148 -420.053 912.537
155 83.015 54.15 -25.285 191.315 238.066 344.177 -450.289 926.42
156 87.679 55.439 -23.2 198.557 260.139 354.864 -449.59 969.867
157 99.927 58.681 -17.436 217.289 320.444 380.406 -440.368 1081.257
158 93.967 60.951 -27.934 215.868 376.679 403.643 -430.606 1183.964
159 99.168 63.138 -27.109 225.445 377.493 425.612 -473.731 1228.717
160 91.041 65.253 -39.464 221.547 322.055 446.502 -570.949 1215.059
161 92.934 67.301 -41.668 227.537 309.178 466.457 -623.736 1242.092
162 115.94 69.289 -22.637 254.517 328.754 485.593 -642.431 1299.94
163 128.219 71.221 -14.223 270.66 344.519 504.002 -663.486 1352.524
164 95.972 73.102 -50.232 242.176 287.281 521.763 -756.245 1330.807
165 92.909 74.936 -56.963 242.781 264.503 538.939 -813.374 1342.38
166 87.777 76.726 -65.675 241.229 279.686 555.583 -831.481 1390.853
167 74.785 78.475 -82.166 231.735 264.862 571.744 -878.625 1408.35
168 81.425 80.186 -78.948 241.798 280.616 587.46 -894.304 1455.535

Lower and upper values are 95% confidence intervals of forecasted values  
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C-5.10: SARIMA three-year forecast of monthly morbidity incidence rates for the period 2011-2013 in 
Volta Region     

Month 
 

Volta Region (Total) (0-4) 

Prediction 
Std 
Error Lower Upper Prediction

Std 
Error Lower Upper 

133  263.184  15.69  231.803 294.565 566.351 44.413 477.524  655.177

134  256.296  18.579  219.138 293.453 547.639 55.414 436.812  658.467

135  261.969  19.497  222.975 300.963 544.32 66.026 412.268  676.372

136  267.006  21.358  224.29 309.721 563.504 74.827 413.85  713.158

137  306.71  22.405  261.9 351.519 605.744 82.77 440.203  771.285

138  383.622  23.833  335.957 431.288 693.238 89.998 513.241  873.235

139  358.838  24.891  309.056 408.62 655.807 96.692 462.424  849.191

140  344.265  26.096  292.072 396.457 638.479 102.95 432.58  844.378

141  329.838  27.12  275.598 384.078 626.398 108.849 408.7  844.095

142  357.772  28.192  301.388 414.156 704.677 114.444 475.789  933.564

143  342.812  29.166  284.479 401.144 670.378 119.779 430.819  909.937

144  311.185  30.149  250.887 371.484 620.562 124.881 370.801  870.324

145  298.231  33.004  232.224 364.239 616.367 132.658 351.051  881.684

146  296.714  34.894  226.927 366.502 597.042 139.116 318.811  875.274

147  302.784  36.234  230.317 375.251 593.876 145.449 302.979  884.773

148  299.729  37.823  224.082 375.376 613.022 151.478 310.066  915.978

149  342.006  39.147  263.712 420.3 655.271 157.286 340.7  969.843

150  428.445  40.562  347.321 509.569 742.763 162.884 416.995  1068.532

151  395.226  41.838  311.55 478.902 705.333 168.297 368.739  1041.927

152  381.271  43.138  294.996 467.546 688.005 173.541 340.922  1035.087

153  360.02  44.357  271.305 448.734 675.923 178.631 318.66  1033.186

154  384.313  45.573  293.167 475.459 754.202 183.58 387.042  1121.363

155  383.164  46.737  289.689 476.638 719.904 188.401 343.102  1096.706

156  357.157  47.887  261.382 452.931 670.088 193.093 283.902  1056.274

157  338.825  52.812  233.201 444.448 665.893 199.941 266.01  1065.775

158  336.267  55.774  224.718 447.815 646.568 205.794 234.979  1058.157

159  343.06  57.72  227.62 458.501 643.402 211.617 220.169  1066.635

160  339.502  60.171  219.159 459.845 662.547 217.251 228.046  1097.049

161  382.129  62.139  257.851 506.407 704.797 222.75 259.296  1150.297

162  468.325  64.304  339.716 596.933 792.289 228.115 336.058  1248.519

163  435.275  66.224  302.827 567.722 754.859 233.357 288.144  1221.574

164  421.202  68.207  284.788 557.615 737.53 238.484 260.561  1214.499

165  400.032  70.054  259.925 540.139 725.449 243.503 238.442  1212.456

166  424.269  71.907  280.454 568.084 803.728 248.421 306.887  1300.569

167  423.159  73.677  275.804 570.514 769.429 253.245 262.94  1275.919

168  397.125  75.432  246.262 547.988 719.613 257.969 203.676  1235.551
Lower and upper values are 95% confidence intervals of forecasted values  
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Appendix D: Global Trend Analysis of the Space-time 
Morbidity Incidence Rates  
 
D-1: Trend Model Coefficients  
 
Table D-1.1: Trend model parameters (coefficients and coefficient of determination) of the observed 
morbidity incidence rates for national data set 
District Region Easting Northing b0 b1 b2 b3 b4 r2 

Abura AK Central 702 590 119.451 0.234 0.004 -19.994 -23.176 0.513 

Accra MA GAccra 808 613 129.879 0.207 -0.004 -8.304 -15.235 0.546 

Adaklu-A Volta 907 723 194.384 -1.792 0.014 -14.121 -1.629 0.382 

Adansi N Ashanti 664 693 157.945 -1.805 0.024 8.532 -13.767 0.642 

Adansi S Ashanti 678 669 105.475 0.906 -0.001 3.567 -4.761 0.804 

Afigya S Ashanti 653 763 184.714 2.601 0.008 -30.026 -33.02 0.833 

AframP Eastern 826 780 156.203 -0.522 0.018 -13.959 -24.259 0.711 

Agona  Central 753 623 13.825 2.023 -0.009 -7.824 9.424 0.691 

Ahafo-AnoN Ashanti 592 772 136.078 -1.8 0.029 -14.827 -12.028 0.852 

Ahafo-AnoS Ashanti 625 753 151.232 -0.29 0.014 -13.566 -6.914 0.887 

Ahanta W Western 614 539 152.341 -1.34 0.02 -14.538 -7.967 0.789 

AjumakoEE Central 726 599 9.365 3.582 -0.016 -16.172 -4.337 0.718 

Akatsi Volta 919 677 -496.05 13.061 -0.055 -40.607 -19.978 0.770 

Akwapim N Eastern 822 660 212.562 -0.71 0.021 -31.141 -5.346 0.662 

Akwapim S Eastern 793 642 60.681 3.463 -0.011 -10.977 -12.935 0.612 

Amansie C Ashanti 641 697 -68.402 2.53 -0.009 0.141 0.717 0.421 

Amansie E Ashanti 659 712 110.012 2.513 -0.002 -10.987 -12.373 0.835 

AmansieW Ashanti 623 713 162.573 -1.669 0.026 -17.092 -9.229 0.708 

AowinS Western 522 638 273.125 -4.876 0.043 4.755 -4.392 0.820 

AsanteAN Ashanti 697 730 140.244 -1.759 0.02 -8.934 -7.175 0.696 

AsanteAS Ashanti 707 726 115.897 -1.322 0.019 -14.439 -6.79 0.710 

AsikumaOB Central 722 616 156.876 -0.983 0.016 -8.887 8.505 0.763 

Assin N Central 690 630 33.673 5.241 -0.027 -16.5 -7.413 0.717 

Assin S Central 704 609 594.672 -6.669 0.041 -18.242 -19.055 0.434 

AsunafoN BAhafo 553 751 214.361 1.203 -0.001 -18.201 -17.431 0.652 

AsunafoS BAhafo 562 739 -478.97 15.101 -0.069 -15.328 -28.137 0.623 

Asuogyaman Eastern 842 685 158.565 -0.627 0.015 -24.974 -39.031 0.526 

Asutifi BAhafo 569 770 168.758 1.286 0.023 -36.801 -31.072 0.792 

Atebubu-A BAhafo 722 856 129.754 -1.795 0.03 -16.324 -36.088 0.831 

Atiwa Eastern 768 701 -0.687 2.826 0 -25.08 -8.956 0.728 

Atwima M Ashanti 598 728 -436.83 10.536 -0.039 -9.493 -35.838 0.623 

Atwima Nw Ashanti 634 737 246.597 -3.389 0.042 -19.511 -18.741 0.786 

Awutu ES Central 774 611 113.889 -0.593 0.011 -18.707 1.152 0.635 

Bawku M UEast 800 1221 337.385 -2.946 0.04 4.014 -123.68 0.620 

Bawku W UEast 773 1202 179.406 -4.564 0.073 10.252 -103.34 0.897 

Berekum BAhafo 547 822 105.337 7.631 -0.033 -31.521 -44.348 0.710 

Bia Western 486 740 -29.526 1.465 0.007 -12.198 3.083 0.779 

BibianiAB Western 578 712 -36.136 6.272 -0.032 -3.329 -11.071 0.444 
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BirimN Eastern 721 699 83.403 1.256 -0.009 -12.399 -8.945 0.282 

BirimS Eastern 715 647 129.706 -0.36 0.016 -10.36 -18.364 0.669 

Bole Northern 557 996 433.26 -6.676 0.067 -23.301 -79.243 0.618 

BolgaM UEast 734 1190 600.736 -9.234 0.097 -13.46 -222.36 0.791 

Bongo UEast 739 1204 125.65 -0.825 0.022 4.73 -71.228 0.771 

BosomtweK Ashanti 668 722 224.303 -4.211 0.044 -12.39 -23.819 0.825 

Builsa UEast 688 1184 632.889 -11.25 0.091 7.424 -118.58 0.806 

Bunkpru-Y Northern 842 1162 -1329.4 36.69 -0.185 -71.55 -108.51 0.648 

CapeCoast Central 694 565 239.961 -3.581 0.021 -14.02 -21.896 0.906 

C Gonja Northern 669 969 254.687 -4.03 0.059 -43.235 -2.43 0.549 

DangmeE GAccra 902 639 89.428 1.398 -0.003 -2.335 2.559 0.545 

DangmeW GAccra 820 649 153.03 0.03 0.006 -26.15 -25.98 0.611 

DayiS Volta 865 734 352.258 -4.504 0.043 -39.343 -60.902 0.840 

Dormaa BAhafo 514 803 181.59 2.068 0.001 -20.069 -27.449 0.577 

East Gonja Northern 772 944 162.12 -1.515 0.018 -2.206 -25.797 0.483 

East Akim Eastern 770 680 116.728 2.047 -0.01 -11.471 -0.894 0.324 

East Mamp Northern 779 1163 413.591 -3.777 0.033 -15.974 -105.54 0.496 

Ejisu Juaben Ashanti 668 742 161.682 -4.073 0.061 -33.649 -13.904 0.901 

Ejura Sekye Ashanti 682 814 158.127 -0.91 0.012 -19.718 -30.684 0.514 

Fanteakwa Eastern 790 705 164.034 -1.029 0.013 -13.009 -6.82 0.388 

Ga East GAccra 809 632 67.256 2.658 -0.009 -18.536 -20.908 0.662 

Ga WestM GAccra 799 630 173.631 -2.654 0.02 -14.806 -3.028 0.749 

Garu Temp UEast 808 1198 1894.53 -38.28 0.217 -12.218 -102.42 0.885 

Gomoa Central 751 585 62.581 -0.155 0.007 -13.267 0.783 0.747 

Gushiegu Northern 804 1095 143.962 -0.618 0.011 -4.343 -60.674 0.670 

HoM Volta 883 729 94.583 0.462 0.005 -20.171 -29.239 0.654 

Hohoe Volta 883 790 -558.22 14.885 -0.067 -24.404 -35.95 0.560 

JamanN BAhafo 534 877 -737.62 21.24 -0.088 -27.908 -35.625 0.743 

JamanS BAhafo 525 850 35.023 13.902 -0.058 -48.758 -51.957 0.756 

Jasikan Volta 883 818 486.47 -9.677 0.07 -37.391 -20.444 0.732 

Jirapa-L UWest 535 1162 374.594 -2.276 0.018 -54.567 -83.985 0.613 

Jomoro Western 508 560 304.57 -4.174 0.027 -16.78 -12.82 0.297 

Juabeso Western 520 700 319.916 -5.438 0.052 -18.755 -15.177 0.737 

Kadjebi Volta 885 832 436.987 -10.32 0.088 -49.799 -45.607 0.870 

Karaga Northern 781 1095 62.519 1.583 -0.007 -10.994 -54.156 0.666 

Kasena-N UEast 709 1211 214.574 -3.369 0.047 -3.648 -87.109 0.839 

Keta Volta 940 652 349.373 -5.428 0.042 -24.962 -20.544 0.651 

Ketu Volta 829 863 -55.039 2.995 -0.01 -33.606 -8.748 0.695 

KintampoN BAhafo 640 889 113.058 0.72 0.012 -17.129 -14.696 0.879 

KintampoS BAhafo 638 875 -534.03 13.621 -0.054 -19.129 -17.79 0.843 

KEEA Central 676 563 116.973 0.997 0 -24.982 -4.484 0.503 

Kpandu Volta 832 773 101.592 2.153 0.007 -28.66 -49.562 0.755 

KrachiE Volta 851 888 313.538 -5.799 0.04 -13.459 -33.061 0.742 

Krachi/W Volta 824 861 390.092 -7.275 0.052 -15.289 -55.083 0.801 

KumasiMA Ashanti 652 740 137.144 1.231 -0.002 -8.362 -7.384 0.628 

Kwabre Ashanti 658 749 86.044 3.622 -0.019 -18.264 -13.562 0.286 
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Kwaebirem Eastern 739 673 123.941 0.6 0.016 -20.707 -10.763 0.824 

KwahuS Eastern 748 728 339.798 -0.918 0.009 -19.487 -51.488 0.199 

KwahuW Eastern 747 722 674.778 -12.71 0.091 -36.32 -36.145 0.805 

Lawra UWest 514 1174 248.795 -1.231 0.018 -23.564 -78.102 0.628 

ManyaK Eastern 814 713 66.415 1.16 0.011 -18.157 -17.264 0.854 

Mfantsiman Central 715 575 35.417 1.815 -0.002 -44.461 -7.218 0.696 

MpohorEW Western 648 567 110.96 -0.924 0.009 -8.507 1.944 0.516 

New Juaben Eastern 803 672 260.693 -2.738 0.054 -49.174 -28.751 0.792 

Nadowli UWest 539 1145 225.323 -0.413 0.013 -38.226 -64.181 0.681 

NanumbaN Northern 832 978 196.314 -0.94 0.014 -17.737 -58.389 0.560 

NanumbaS Northern 829 955 63.207 1.619 -0.01 -11.77 -40.377 0.745 

Nkoranza BAhafo 643 835 82.782 2.034 0.002 -17.46 -22.527 0.705 

Nkwanta Volta 882 912 321.916 -6.66 0.045 -6.08 -17.057 0.885 

North T Volta 879 671 -373.94 10.04 -0.035 -15.24 -7.674 0.780 

Nzema E Western 572 551 255.847 -0.678 0.02 -47.5 -18.611 0.743 

Obuasi M Ashanti 645 685 172.329 6.621 -0.046 -29.917 1.526 0.386 

Offinso Ashanti 631 789 167.443 -1.584 0.024 -13.061 -22.847 0.702 

Pru BAhafo 757 907 -547.51 15.71 -0.081 -15.35 -52.217 0.565 

Saboba-C Northern 860 1073 170.209 -0.02 0.013 -11.804 -69.84 0.660 

Savelugu-N Northern 738 1062 243.328 -2.552 0.026 -5.794 -72.218 0.485 

Sawla TK Northern 565 1022 75.668 0.312 0.003 -14.479 -20.344 0.511 

SefwiWi Western 557 685 19.566 1.006 0.013 -7.027 -13.564 0.912 

Sekyere E Ashanti 685 775 153.871 -2.915 0.037 -4.067 -12.367 0.830 

SekyereW Ashanti 677 778 272.594 -3.748 0.035 -18.142 -34.584 0.589 

Sene BAhafo 803 854 151.508 -1.542 0.024 -4.592 -36.963 0.834 

Shama AE Western 654 554 286.055 -4.472 0.041 -6.075 -12.01 0.718 

Sissala E UWest 613 1200 601.217 -1.954 0.015 -30.842 -78.459 0.527 

Sissala W UWest 587 1211 989.445 -19.32 0.112 -46.7 -66.354 0.713 

South T Volta 894 663 663.642 -12.89 0.079 -16.557 -9.568 0.793 

Suhum KC Eastern 782 667 74.365 1.406 0 -3.343 -3.355 0.639 

Sunyani M BAhafo 575 809 230.005 0.753 0.01 -48.144 -32.193 0.654 

Tain BAhafo 568 874 -438.06 10.786 -0.026 -48.887 -40.104 0.735 

Talensi N UEast 740 1181 14.47 2.316 0.001 -8.271 -109.55 0.796 

Tamale M Northern 737 1038 168.717 -0.37 0.013 -28.65 -68.351 0.741 

Tano N BAhafo 596 794 240.985 0.244 0.005 -17.768 -15.934 0.498 

Tano S BAhafo 608 783 82.834 4.162 -0.015 -17.024 -14.546 0.491 

Techiman BAhafo 617 836 128.872 1.711 -0.001 -20.108 -19.131 0.827 

Tema M  GAccra 832 624 105.775 -0.713 0.009 -24.647 -6.242 0.617 

Tolon K Northern 712 1040 -163.84 5.652 -0.028 -3.908 -30.874 0.573 

Twifo HLD Central 661 619 172.535 -0.463 0.009 -24.391 -12.326 0.466 

UpperD Central 635 656 123.683 1.252 0.002 -20.763 -4.509 0.785 

Wa CM UWest 556 1111 489.012 -9.073 0.068 -43.927 -79.889 0.699 

Wa E UWest 615 1135 543.133 -8.877 0.048 -21.939 -49.991 0.750 

Wa W UWest 536 1084 632.886 -10.23 0.057 -21.328 -36.453 0.719 

Wassa AE Western 601 638 409.913 -9.051 0.069 -19.728 -6.067 0.854 

Wassa AW Western 563 641 119.667 -1.015 0.03 -22.246 2.557 0.838 
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Wassa W Western 611 585 256.24 -2.865 0.031 -43.19 3.508 0.521 

Wenchi M BAhafo 599 854 159.756 1.144 -0.002 -27.876 -17.97 0.611 

West Akim Eastern 758 647 104.364 0.76 0.002 -8.258 -17.382 0.597 

West Gonja Northern 630 1002 219.24 -2.052 0.032 -28.454 -70.23 0.612 

West Mamp Northern 740 1141 161.64 -1.524 0.012 -24.164 -56.281 0.474 

YendiM Northern 827 1042 173.837 0.586 0.008 -29.267 -82.193 0.655 

YiloK Eastern 830 674 47.326 0.276 0.014 -18.849 -7.124 0.864 

Zabzugu-T Northern 873 1026 -822.14 21.267 -0.102 -41.173 -93.087 0.573 
 

 
Table D-1.2: Trend model parameters (coefficients and coefficient of determination) of the morbidity 
incidence rates in the Brong Ahafo Region (BAR) 

District Easting Northing b0 b1 b2 b3 b4 r2 

AsunafoN 553 751 220.459 0.26267 0.00482 -19.1186 -23.2182 0.7263 

AsunafoS 562 739 -532.583 12.16728 -0.04172 -17.7041 -25.3032 0.598 

Asutifi 569 770 170.516 0.05211 0.02198 -37.3104 -36.3335 0.8352 

Atebubu-A 722 856 129.385 -1.68734 0.02112 -12.9405 -37.0225 0.8448 

Berekum 547 822 87.331 4.86291 -0.00953 -34.0656 -38.5031 0.7674 

Dormaa 514 803 121.136 2.53462 -0.00275 -23.9288 -27.5754 0.6658 

JamanN 534 877 -1603.84 30.98441 -0.11214 -24.3842 -42.5845 0.6984 

JamanS 525 850 -25.965 10.07292 -0.02703 -47.6843 -51.2202 0.7861 

KintampoN 640 889 122.832 -0.73863 0.01872 -20.1328 -17.1375 0.8939 

KintampoS 638 875 -627.332 11.5834 -0.03424 -19.9187 -24.3242 0.8184 

Nkoranza 643 835 68.23 1.31974 0.00444 -18.7974 -21.2822 0.7755 

Pru 757 907 -394.78 9.31415 -0.03658 -13.932 -50.5875 0.4458 

Sene 803 854 115.05 -0.50877 0.0119 -5.55188 -35.7083 0.8248 

SunyaniM 575 809 235.316 -0.76951 0.01833 -44.3107 -31.3293 0.7673 

Tain 568 874 -475.129 7.83097 -0.00784 -53.1852 -43.3579 0.805 

TanoN 596 794 267.663 -1.00944 0.01171 -16.7548 -14.7742 0.6474 

TanoS 608 783 150.894 1.7267 -0.00133 -23.5633 -14.8137 0.5651 

TechimanM 617 836 113.979 0.91517 0.00445 -24.29 -16.3283 0.8508 

WenchiM 599 854 126.325 1.32379 -0.00212 -23.3759 -17.5812 0.6846 
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D-2: Spatial Maps of Trend Surfaces of MIR for Month 1-132 
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Appendix E: 
Space-time Prediction of the Morbidity Incidence  
Rates (MIR) at National Level 
 
E-1:  Space-time Semivariogram Models of MIR 
 
Table E-1.1: Calculation parameters for the space-time experimental semivariograms of log-transformed 
morbidity incidence rates at district locations for the whole of Ghana (nationai), vegetation zones 
(northern, forest and coastal) and Brong Ahafo Region (BAR) 

 
Study 

Spatial spacing (km) Temporal spacing (months) 

Lag 

sh  

No. of lags 

sn

Lag 

th

No. of Lags 

tn  
National 30 15 1 70 
BAR 35 8 1 80 
Northern Zone 40 8 1 70 
Forest Zone 30 10 1 70 
Coastal Zone 25 10 1 70 

 
Table E-1.2: Space-time semivariogram model parameters of log-transformed morbidity incidence rates 
compared with the untransformed malaria incidence rates data 

 
Data 

Model 
( )h  

Sill 

sc / tc  

Spatial range 
sr  (km) 

Temporal range 
tr  (months) 

Relative 
Nugget 

 
 
LogMIR 
 
 

nugget  0.025 - -  
0.120 spherical  0.112 35 85 

exponential  0.071 250 300 (0.110) 

expcosine  0.020 1000 400 

 
 
MIR 
 

 1500 -   
 

0.097 
(0.088) 

  7500 30 85 

  6500 300 250 

  1600 1000 500 

Note: In parentheses are relative nugget effects in the temporal domain. 
 
 
Table E-1.3: Parameters of the marginal semivariograms and product-sum semivarigram models of the 
observed malaria incidence rates for the national study  

 
Study 

 
Model 

Spatial  Temporal  Product-sum 
Sill 

(RN) 
Range Sill 

(RN) 
Range Global  

Sill 
k  

 
 
National 

nugget  5000 - 5000 -  

 

28000 

 

2.471 10-5 

(4.878 10-5) 

spherical  - - 15500 100 

exponential 10200 120 - - 

 expcosine  - - - -   

In parentheses are the relative nugget (RN) effects of marginal semivariograms and maximum k limit 
values for the product-sum model. 

nugget

spherical
exponential
expcosine
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E-2: LMC of MIR with Monthly Climatic Covariates   
 
Table E-2.1: Parameters for linear coregionalisation model of minimum temperature with elevation for 
the months in 2010   

 
Month 

 
Variable 

( )nug h  
1( 100 180)sph h  2 ( 170 180)sph h 

 
0
ijb  1

ijb  1
ijr  2

ijb  2
ijr  

 
January 

Min Temp  1.35 0.55 120 2.05 170 
Elevation 2000 2500 120 4500 170 
MinT and Elevation 25 -25 120 -85 170 

 
February 

Min Temp 1.75 0.50 110 1.65 170 
Elevation  2000 2500 110 4500 170 
MinT and Elevation 25 -35 110 -85 170 

 
March 

Min Temp 0.95 1.05 150 1.75 190 
Elevation 2200 2000 150 5800 190 
MinT and Elevation  25 -35 150 -100 190 

 
April 

Min Temp  0.95 1.70 120 1.15 180 
Elevation 2200 2300 120 5000 180 
MinT and Elevation 25 -35 120 -75 180 

 
May 

Min Temp  0.95 1.15 180 - - 
Elevation 2200 7700 180 - - 
MinT and Elevation 10 -105 180 - - 

 
June 

Min Temp 0.85 1.55 150 0.45 180 
Elevation 2200 2200 150 5500 180 
MinT and Elevation 15 -55 150 -48 180 

 
July 

Min Temp 0.75 0.05 120 2.15 180 
Elevation 2200 2000 120 5200 180 
MinT and Elevation 10 -5 120 -105 180 

 
August 

Min Temp 0.85 2.10 170 - - 
Elevation 2200 7500 170 - - 
MinT and Elevation 20 -115 170 - - 

 
September 

Min Temp 0.50 2.30 150 0.25 180 
Elevation 2200 2000 150 5500 180 
MinT and Elevation 10 -65 150 -35 180 

 
October 

Min Temp 0.85 2.20 170 - - 
Elevation 2200 7500 170 - - 
MinT and Elevation 15 -115 170 - - 

- 
November 

Min Temp 0.50 1.00 145 0.35 170 
Elevation 2200 2200 145 5700 170 
MinT and Elevation 15 -40 145 -40 170 

 
December 

Min Temp 1.00 2.00 180 - - 
Elevation 2300 7850 180 - - 
MinT and Elevation 10 -95 180 - - 
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Table E-2.2: Parameters for linear coregionalisation model of malaria incidence rates with relative 
humidity (at 1500 hours) for the months in 2010   

 
Month 

 
Variable 

0( )nug h  ( 180 200)sph h 
0
ijb  1

ijb  1
ijr  

 
January 

RH1500  35 160 185 
Elevation 2300 7800 185 
RH1500 and Elevation 235 -880 185 

 
February 

RH1500 105 150 200 
Elevation  2500 7950 200 
RH1500 and Elevation 375 -950 200 

 
March 

RH1500 75 95 200 
Elevation 2500 7900 200 
RH1500 and Elevation  250 -650 200 

 
April 

RH1500  25 45 195 
Elevation 2500 7780 195 
RH1500 and Elevation 200 -480 195 

 
May 

RH1500  7.50 40 200 
Elevation 2500 7900 200 
RH1500 and Elevation 100 -335 200 

 
June 

RH1500 5,50 23 190 
Elevation 2450 7700 190 
RH1500 and Elevation 90 -225 190 

 
July 

RH1500 5.0 23.5 190 
Elevation 2450 7750 190 
RH1500 and Elevation 50 -260 190 

 
August 

RH1500 3.0 28 185 
Elevation 2350 7750 185 
1500 and Elevation 60 -195 185 

 
September 

RH1500 11.5 15.5 190 
Elevation 2470 7750 190 
RH1500 and Elevation 110 -190 190 

 
October 

RH1500 11.5 24.5 180 
Elevation 2250 7755 180 
RH1500 and Elevation 80 -250 180 

 
November 

RH1500 14 55 200 
Elevation 2550 7800 200 
RH1500 and Elevation 100 -400 200 

 
December 

RH1500 10 100 195 
Elevation 2550 7680 195 
RH1500 and Elevation 140 -550 195 
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Figure E-2.3: Spatial maps of relative humidity (at 1500 hours) resulting from interpolations for March, 
July, October and December in 2000, 2005 and 2010.  
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Table E-2.3: Fitted parameters of linear models of coregionalisation of morbidity incidence rates with 
lagged one month rainfall for the months in 2010.   

 
Month 

 
Variable 

0( )nug h  ( 60 100)sph h   exp( 150 260)h   

0
ijb  1

ijb  1
ijr  1

ijb  2
ijr  

 
January 

MIR 5000 7500 60 4800 200 
Rainfall_1 100 150 60 50 200 
MIR and Rainf_1 -300 400 60 200 200 

 
February 

MIR 5000 1000 100 9000 200 
Rainfall_1 200 4800 100 100 200 
MIR and Rainf_1 800 -600 100 -450 200 

 
March 

MIR 2500 7000 60 8000 200 
Rainfall_1 200 350 60 300 200 
MIR and Rainf_1 -500 800 60 200 200 

 
April 

MIR  4000 4000 100 12500 200 
Rainfall_1 200 900 100 600 200 
MIR and Rainf_1 -800 1000 100 800 200 

 
May 

MIR  7000 5000 100 10500 250 
Rainfall_1 500 200 100 3100 250 
MIR and Rainf_1 1000 1000 100 200 250 

 
June 

MIR 8000 11000 60 12000 200 
Rainfall_1 180 1000 60 3550 200 
MIR and Rainf_1 -1200 1200 60 1500 200 

 
July 

MIR 7000 8000 100 22000 150 
Rainfall_1 3800 1600 100 1600 150 
MIR and Rainf_1 -4200 1800 100 700 150 

 
August 

MIR 6000 11500 80 13000 220 
Rainfall_1 300 2200 80 2200 220 
MIR and Rainf_1 -1100 2000 80 600 220 

 
September 

MIR 6000 10000 100 12000 230 
Rainfall_1 700 1500 100 2850 230 
MIR and Rainf_1 1800 -3500 100 2000 230 

 
October 

MIR 6000 16000 100 7500 200 
Rainfall_1 400 1900 100 3000 200 
MIR and Rainf_1 1300 -2800 100 600 200 

 
November 

MIR 6000 16000 100 9000 200 
Rainfall_1 400 3000 100 2000 200 
MIR and Rainf_1 -1500 2700 100 500 200 

 
December 

MIR 6500 9000 100 9500 260 
Rainfall_1 150 700 100 1600 260 
MIR and Rainf_1 -800 1800 100 500 260 
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Table E-2.4: Fitted parameters of linear models of coregionalisation of morbidity incidence rates with 
minimum temperature for the months in 2010.   

 
Month 

 
Variable 

0( )nug h  ( 150)sph h  exp( 200 280)h   

0
ijb  1

ijb  1
ijr  1

ijb  2
ijr  

 
January 

MIR 4500 1500 150 11500 220 
Min Temp 1.00 0.95 150 2.00 220 
MIR and MinT -2.50 -35 150 -25 220 

 
February 

MIR 4500 4500 150 5500 200 
Min Temp 1.75 1.00 150 1.10 200 
MIR and MinT -10 -60 150 20 200 

 
March 

MIR 4000 7200 150 5500 220 
MinTemp 0.55 2.05 150 1.15 220 
MIR and MinT 5 -100 150 50 220 

 
April 

MIR  6000 5000 150 9000 200 
MinTemp 0.50 5.50 150 9.50 200 
MIR and MinT 10 -65 150 -35 200 

 
May 

MIR  8000 5500 150 8500 200 
MinTemp 0.35 0.75 150 2.15 200 
MIR and MinT 0 -35 150 -10 200 

 
June 

MIR 5000 7000 150 19000 200 
MinTemp 0.65 0.75 150 1.50 200 
MIR and MinT 15 -40 150 -10 200 

 
July 

MIR 12000 12000 150 14000 200 
MinTemp 0.15 1.05 150 1.75 200 
MIR and MinT 25 -45 150 -30 200 

 
August 

MIR 5000 6500 150 1850 220 
MinTemp 0.50 1.05 150 1.50 220 
MIR and MinT 10 -60 150 20 220 

 
September 

MIR 5000 8500 150 14500 280 
MinTemp 0.30 1.85 150 1.15 280 
MIR and MinT 25 -20 150 -45 280 

 
October 

MIR 5500 10500 150 14000 200 
MinTemp 0.50 1.75 150 0.85 200 
MIR and MinT 30 -40 150 -50 200 

 
November 

MIR 12500 8000 150 11500 200 
MinTemp 0.45 0.75 150 0.70 200 
MIR and MinT 10 -75 150 10 200 

 
December 

MIR 7000 6500 150 12000 200 
MinTemp 0.55 0.25 150 2.25 200 
MIR and MinT 30 -40 150 -60 200 
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Table E-2.5: Fitted parameters of linear models of coregionalisation of morbidity incidence rates with 
relative humidity (at 1500 hours) for the months in 2010.   

 
Month 

 
Variable 

0( )nug h  ( 150)sph h exp( 200 250)h 
0
ijb  1

ijb  1
ijr  1

ijb  2
ijr  

 
January 

MIR 4000 2500 150 11000 220 
RH1500 10 30 150 155 220 
MIR and RH1500 -180 180 150 80 220 

 
February 

MIR 4500 5000 150 5200 220 
RH1500 100 40 150 115 220 
MIR and RH1500 140 -200 150 20 220 

 
March 

MIR 4000 2000 150 10800 200 
RH1500 40 35 150 90 200 
MIR and RH1500 250 -80 150 -200 200 

 
April 

MIR  6000 6000 150 8000 200 
RH1500 15 25 150 28 200 
MIR and RH1500 -50 250 150 -50 200 

 
May 

MIR  7000 4000 150 11000 200 
RH1500 2.5 12 150 28 200 
MIR and RH1500 30 -180 150 150 200 

 
June 

MIR 6000 5500 150 2000 200 
RH1500 4 4 150 19 200 
MIR and RH1500 -130 150 150 80 200 

 
July 

MIR 12500 9000 150 16500 200 
RH1500 1 4 150 25 200 
MIR and RH1500 80 -180 150 80 200 

 
August 

MIR 4000 8000 150 17500 200 
RH1500 1 12.15 150 17.55 200 
MIR and RH1500 -60 10 150 65 200 

 
September 

MIR 6000 5000 150 17500 280 
RH1500 9 11.5 150 6 280 
MIR and RH1500 10 -220 150 120 280 

 
October 

MIR 6500 8000 150 15500 200 
RH1500 5.5 6.5 150 24.5 200 
MIR and RH1500 70 -220 150 120 200 

 
November 

MIR 12000 8500 150 12000 220 
RH1500 8.50 20 150 35 220 
MIR and RH1500 100 -250 150 -20 220 

 
December 

MIR 10000 6000 150 9000 240 
RH1500 10 25 150 80 240 
MIR and RH1500 80 -350 150 160 240 
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Table E-2.6: Fitted parameters of linear models of coregionalisation of morbidity incidence rates with 
lagged one month rainfall for the months in 2010 in BAR.   

 
Month 

 
Variable 

0( )nug h  exp( 100)h  

0
ijb  1

ijb  1
ijr  

 
January 

MIR 2000 14500 100 
Rainfall_1 40 70 100 
MIR and Rainf_1 -100 -250 100 

 
February 

MIR 2500 10200 100 
Rainfall_1 5 250 100 
MIR and Rainf_1 100 -1000 100 

 
March 

MIR 3000 10000 100 
Rainfall_1 20 240 100 
MIR and Rainf_1 -200 750 100 

 
April 

MIR  5500 12000 100 
Rainfall_1 20 550 100 
MIR and Rainf_1 -250 2300 100 

 
May 

MIR  5000 15000 100 
Rainfall_1 50 1250 100 
MIR and Rainf_1 -500 1650 100 

 
June 

MIR 4000 28000 100 
Rainfall_1 10 430 100 
MIR and Rainf_1 -200 800 100 

 
July 

MIR 5000 24500 100 
Rainfall_1 200 4000 100 
MIR and Rainf_1 -1000 2000 100 

 
August 

MIR 4500 22500 100 
Rainfall_1 500 7500 100 
MIR and Rainf_1 -1200 1500 100 

 
September 

MIR 2000 20000 100 
Rainfall_1 300 2800 100 
MIR and Rainf_1 -500 2000 100 

 
October 

MIR 4000 2000 100 
Rainfall_1 200 6500 100 
MIR and Rainf_1 -600 3600 100 

 
November 

MIR 9000 21500 100 
Rainfall_1 200 20000 100 
MIR and Rainf_1 1200 1800 100 

 
December 

MIR 3000 22500 100 
Rainfall_1 100 600 100 
MIR and Rainf_1 -500 900 100 
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Figure E-2.4a: Linear coregionalisation modelling of morbidity incidence rates with rainfall in the 
previous month  for January-June  2010. 
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Figure E-2.4b: Linear coregionalisation modelling of morbidity incidence rates with rainfall in the 
previous month  for July-December  2010. 
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E-3: Space-time LMC of Residuals with Potential Climate Covariates: 
 
Table E-3.1: Parameters of space-time linear models of coreginalination of detrended morbidity 
incidence rates with lagged one month rainfall and relative humidity (1500), and current maximum 
temperature for the national data set study  
 
Variable 

Spatial Temporal 

0( )nug h  ( 35)exp h  ( 250)sph h  cosexp

( 10 60)h   

Residuals 1500 1100 500 1700 

Rainfall_1 1500 1800 800 2900 

Resid & 

Rainf_1 

50 250 150 1700 

Variable 
0( )nug h  exp( 35)h  ( 250)sph h  cosexp  

( 20 200)h   

Residuals 1500 800 800 1780 

MaxTemp 0.80 0.7 1 3.2 

MIR & MaxT -10 5 6 -57 

Variable 
0( )nug h  exp( 40)h  ( 250)sph h  cosexp  

( 10 100)h   

Residuals 1600 1100 300 2000 

Residuals 25 10 45 150 

RH1500_1 10 20 10 400 
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Figure E-3.1: Space-time linear model of coregionalisation of detrended malaria incidence 
rates (residuals) with  relative humidity (at 1500 hours) showing spatial (top) and temporal (bottom) 
correlations (bottom) for the national study 
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E-4:  Cross-Validation and Kriging Parameters 
 
Table E-4.1: Search neighbourhood parameters for STLOK containing minimum and maximum number 
of samples per angular sector of spatial and temporal radii in kilometres and months, respectively for the 
four study areas.   

 
Study 

Radius Min no. of 
samples/ 
Sector 

Max no. of 
samples/ 

sector 

No. of 
angular 
sectors 

Spatial 
(km) 

Temporal 
(months) 

National 200 5 2 5 4 

BAR 120 5 2 5 4 

Northern 150 5 2 5 4 

Forest 150 5 2 5 4 

Coastal 100 5 2 5 4 

 
 
Table E-4.2: Parameters for construction of grid for the interpolation of malaria risk in the four study 
areas (National BAR, Northern, Forest and the Coastal zones).   

 
Study 

 

Parameter 

Spatial (km) Temporal: 

Time (months) Easting Northing 

 

National 

Origin 470 520 1 

Mesh 10 10 1 

No. of  nodes 52 76 132 

 

BAR 

Origin 480 700 1 

Mesh 5 5 1 

No. of  nodes 82 56 156 

 

Northern 

Origin 500 900 1 

Mesh 10 10 1 

No. of  nodes 40 38 132 

 

Forest 

Origin 470 550 1 

Mesh 10 10 1 

No. of  nodes 45 43 132 

 

Coastal 

Origin 470 520 1 

Mesh 10 10 1 

No. of  nodes 51 20 132 
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Table E-4.3: Cross-validation OK estimates of trend coefficients for different moving neighbourhoods  
for national study.   

 
Model 

Neighbourhood Error Standardised Error  
Corr. 
Coeff. 

Search 
radius 

No. of 
samples 

Mean Variance Mean Variance 

 

 

0b  

 

150 km 

2 – 10 4.39400 119934.0 0.01024 1.94663 0.078 

4 – 20 4.05250 117924.1 0.009460 1.94456 0.070 

 

200 km 

2 – 10 4.29200 118959.9 0.00996 1.94568 0.078 

4 – 20 3.84338 117919.0 0.00877 1.94886 0.065 

 

 

 1b  

 

150 km 

2 – 10 -0.07135 62.08536 -0.00726 1.78990 0.120 

4 – 20 -0.07737 61.53279 -0.00875 1.78925 0.110 

 

200 km 

2 – 10 -0.07307 62.09028 -0.00767 1.79024 0.121 

4 – 20 -0.07661 61.8193 -0.00876 1.80192 0.0100 

 

 

2b  

 

150 km 

2 –10 0.00035 0.00198 0.00658 1.72048 0.139 

4 – 20 0.00032 0.00195 0.00061 1.71327 0.131 

 

200 km 

2 –10 0.00041 0.00198 0.00830 1.72250 0.139 

4 – 20 0.00034 0.00197 0.00673 1.73219 0.118 

 

 

3b  

 

150 km 

2 –10 0.08497 180.4835 0.00579 1.29820 0.330 

4 – 20 0.14344 1773.294 0.01069 1.25832 0.360 

 

200 km 

2 –10 0.12873 179.7913 0.00935 1.239454 0.330 

4 – 20 0.17835 172.9653 0.01348 1.25959 0.357 

 

 4b  

 

150 km 

2 –10 -0.36076 454.9101 -0.01065 2.02104 0.787 

4 – 20 -0.34218 450.333 -0.01024 2.00930 0.789 

 

200 km 

2 –10 -0.39153 454.765 -0.01242 2.02062 0.788 

4 – 20 -0.31621 448.076 -0.00895 2.00448 0.790 
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E-5:  Spatial Maps of Morbidity Incidence Rates 

Spatial maps of monthly morbidity incidence rates (MIR) from Jannuary 2000 (month 

1) to December 2010 (month 132) have been produced by each of the following space-

time kriging techniques: 

E-5.1: Space-time lognormal ordinary kriging (STLOK) of MIR. 

E-5.2: Space-time ordinary kriging of MIR via the joint modelling semivariogram of 

residuals (STROK)  

E-5.3: Space-time ordinary kriging of MIR via the generalised product-sum modelling 

of residuals (STROK_GPS) 

E-5.4: Space-time ordinary co-kriging of MIR accounting for the effect of rainfall 

(STOCK_Rainfall) 

E-5.5: Space-time ordinary co-kriging of MIR accounting for the effect of maximum 

temperature (STOCK_MaxT) 

E-5.6: Jacknife Predictions of Space-time MIR Data for 2011 
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E-5.1: STLOK Produced Spatial Maps of MIR 
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E-5.2 STROK Produced Spatial Maps 
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E-5.3 STOK_PS Produced Spatial Maps 
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E-5.4 STOCK_Rain Produced Spatial Maps 
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E-5.5 STOCK_MaxT Produced Spatial Maps 
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E-5.6: Jacknife Method Predictions for 2011 MIR Data 
 
MIR 2011 Data: 
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STLOK Estimates: 
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STROK Estimates: 
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STOK_PS Estimates: 
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STOCK_Rain Estimates: 
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STOCK_MaxT Estimates: 
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Appendix F:  
Estimation of Malaria Risk in BAR    
 

F-1: Space-time Semivariogram Models of MIR    

 
Table F-1.1: Spatial semivariogram model parameters of the regionalised trend model coefficients of 
malaria incidence rates for BAR   

 
Coefficient 

Model 
( )ˆ ( )i
s s h  

Sill 
( )sc  

Spatial Range 
( sr in km) 

Relative 
Nugget 

 
(Intercept) 

0b  

nugget 25000 -  
0.096 spherical  35500 65 

spherical  199500 110 

 
( )t  

1b  

nugget 2.5 -  
0.033 spherical  70 110 

spherical  3.5 75 

 
2( )t  
2b  

nugget 0.00015 -  
0.117 spherical  0.00005 50 

spherical  0.00108 120 

 
(cos)  

3b  

nugget 1.50 -  
0.010 spherical  105 50 

spherical  40 100 

 
(sin)  

4b  

nugget 1.00 -  
0.007 ( )sph h r  5.00 60 

( )sph h r  145 140 

 
R squared 

2ˆ( )R  

nugget 0.0002 -  
0.013 ( )sph h r  0.0022 50 

( )sph h r  0.0125 115 

 
 
Table F-1.2: Space-time semivariogram model parameters of log-transformed malaria incidence rates 
for the for case study in BAR 

 
Study 

Model 
( )h  

Sill 

sc / tc  

Spatial range 
sr  (km) 

Temporal range 

tr  (months) 
Relative 
nugget 

 

 

BAR 

 

nugget  0.025 - -  

0.095 exponential  0.018 35 80 

spherical  0.220 140 130 (0.090) 

expcosine  0.014 10000 400 

 

 



 

Figure F-1.
model param
 

Figure F-1
showing sp
national and

1: Spatial exp
meters (coeffi

.2: Space-tim
atial (left) and
d BAR 

perimental sem
icients) for Br

me experiment
d temporal (ri

4

mivariograms 
rong Ahafo Re

tal semivariog
ght) autocorre

482 

(dotted green)
egion 

grams (dotted
elation of log-

) with fitted v

d green) fitted
-transformed m

ariogram mod

d with variog
malaria incide

 

dels of trend 

 
gram models 
ence rates for 



 

Table F.1.3:
BAR study a

Mode
( )h

nugget  

spherica

exponent

spherica

Note: In par

 

Figure F_1.
residuals of 
 
 

F-2: Pr

Table F-2.1
models of th

 

Study 

 
 

BAR 

 
In parenthes
values for th
 
 
 

: Space-time s
area  
el 
 

al  

tial  

al  

rentheses is th

.3: Spatial ex
malaria incid

roduct-Su

: Parameters 
he observed m

 

Model 

nugget  

spherical

exponenti

 
ses are the rel
he product-sum

semivariogram

 
Sill 

1300 

2050 

1000 

750 

e relative nug

xperimental se
ence rates for 

um Semiv

of the margi
malaria inciden

Sp

Sill

2000

(0.098

l  - 

ial  18400

 

lative nugget 
m model. 

48

m model param

Spatial 

sr  (k

-

45

12

100

gget effect in t

emivariogram
r regional stud

variogram

inal semivario
nce rates for th
patial  

Ran

ge 

0 

8) 

- 

 

0 100 

 

(RN) effects 

83 

meters of resid

range 
km) 

 

5  

0 

00 

the temporal d

ms (dotted gre
dy in BAR 

m Models 

ograms and g
he BAR study

Tempor

Sill R

1000 

(0.050) 

19100 

- 

 

of marginal s

duals of malar

Temporal r

tr  (mont

- 

20 

25 

36 

domain. 

een) with fitt

of MIR   

generalised pr
y  
ral  

Range G

- 

480 

- 

 

semivariogram

ria incidence r

range 
ths) 

ted variogram

 

roduct-sum se

Product-

Global 

sill 

 

 

40000 

1

(4

 

ms and maxim

rates for the  

Relative 
nugget 

 
0.302 

(0.255) 

m models of 

emivarigram 

-sum 

k  

 

.219 10-6 

.902 10-5)

 

mum k limit 

 



 

 

Figure F-2.
and space-t
for Brong A
 
 
Table F-2.2
detrended m

 
Study 

 

 

BAR 

In parenthe
values for th
 
 

0
0

10000

20000

30000

40000

Spat

V
a
rio

g
ra

m

1: Marginal sp
time experime
Ahafo 

2: Parameters 
malaria incide

 
Model

nugget  

exponent

exponent

eses are the re
he product-su

50 100

tial variogram m

Lag D

patial and tem
ental semivario

of the margin
nce rates (resi

l 
S

Sill
(RN
500

(0.12

tial 3400

tial - 

elative nugget
um model. 

150 200

model of MIR (Bro

Distance (km)

4

mporal semivar
ogram surface

nal semivariog
iduals) for the
Spatial  

 
N) 

Range

0 

8) 

- 

0 80 

- 

t (RN) effects

250

ong Ahafo)

484 

ariograms mod
es together wi

grams and pr
e study in BAR

Temp

 Sill 
(RN) 
650 

(0.140) 

- 

4000 

s of marginal 

0
0

10000

20000

30000

40000

Tempor

V
a
rio

gr
a
m

dels of malaria
ith their produ

oduct-sum se
R  
poral  

Range 

- 

- 

18 

semivariogra

20 40

ral variogram mo

Lag Tim

a incidence rat
uct-sum model

mivarigram m

Produc

Global  
Sill 

 

 

4800 

2

(2

ms and maxim

60 80

odel of MIR (Bro

me (months)

 

 
ates (top)  
ls (bottom) 

models of the 

ct-sum 

k  

 

2.068 10-4 

2.151 10-4) 

mum k limit 

0 100

ng Ahafo)



 

Figure F-2.2
and space-ti
the study in 

 
F-3: Sp

The mont

kriging tec

F-3.1: Spa

F-3.2: Spa

 

   

 

 

 
 

0
0

1000

2000

3000

4000

5000

Spat

V
ar

io
g
ra

m

0
0

1000

2000

3000

4000

5000

6000

Tempo

V
a
rio

gr
a
m

2: Marginal sp
ime experimen
Brong Ahafo

patial Ma

thly morbid

chniques fo

ace-time tre

ace-time ord

50 100

ial variogram of

Lag D

20 40

oral variogram o

Lag Ti

patial and temp
ntal semivario
Region 

ps of MIR

dity risk m

r the years 

nd model es

dinary krigin

150 200

f residuals (Bron

istance (km)

60 8

of residuals (Bro

me (months)

48

 

 

poral semivar
ogram surface

R 

maps produc

1998, 2004

stimating th

ng of MIR 

250

ng Ahafo)

80 100

ong Ahafo)

85 

riogram mode
s together wit

ced by eac

and 2010:

he average m

via the gene

ls of the residu
h their produc

ch of the f

morbidity ri

eralised pro

duals incidence
ct-sum models

following s

isk  

oduct-sum m

 

 

e rates (left) 
s (right) for 

space-time 

modelling  



486 
 

F-3.1: Trend Model produced maps  
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F-3.2: STROK_PS produced maps  
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Appendix G:  
Estimation of Malaria Risk in the Vegetation Zones    
 
G-1: Space-time Semivariogram Models of MIR    
 
Table G-1.1: Space-time semivariogram model parameters of log-transformed malaria incidence rates 
for the for the vegetation types (northern, forest and coastal) 

 
Zone 

Model 
( )h  

Sill 

sc / tc  
Spatial range 

sr  (km) 
Temporal range 

tr  (months) 
Relative 
Nugget 

 
 

Northern 

nugget  0.035 -   
0.115 

(0.096) 
spherical  0.100 30 100 

exponential  0.170 170 350 

expcosine  0.058 10000 450 

 
 

Forest 
 

nugget  0.020 - -  
0.105 spherical  0.115 35 90 

exponential  0.055 180 200 (0.100) 

expcosine  0.010 10000 200 

 
 

Coastal 
 

nugget  0.020 -   
0.125 spherical  0.072 30 75 

exponential  0.068 100 300 (0.118) 

expcosine  0.010 1000 300 

Note: In parentheses are relative nugget effects in the temporal domain. 
 
Table G-1.2: Space-time semivariogram model parameters of residuals of malaria incidence rates for the 
study in the vegetation types  

 
Zone 

Model 
( )h  

 
Sill 

Spatial range 
sr  (km) 

Temporal range 
tr  (months) 

Relative 
nugget 

 
Northern 

nugget  1950 - -  
0.386 

(0.317) 
spherical  1500 35 6 

exponential  1600 140 20 

spherical  1100 10000  30 

 
Forest 

 

nugget  1200 - -  
0.436 

(0.343) 
exponential  1350 40 15 

spherical  200 160 30 

spherical  750 10000 20 

 
Coastal 

 

nugget  600 - -  
0.400 

(0.370) 
spherical  650 50 10 

exponential  250 120 20 

spherical  120 10000 15 

Note: In parentheses are relative nugget effects in the temporal domain. 
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G-2: Product-sum Semivariogram Models of MIR    
 
Table G-2.1: Parameters of the marginal semivariograms and generalised product-sum semivarigram 
models of the malaria incidence rates for the study data sets  
 
Zone 

 
Model 

Spatial  Temporal  Product-sum 
Sill Range Sill Range Global 

Sill 
k  

 
Northern 

nugget  8500  10800   
 

55000 

 
4.227 10-6 

(2.899 10-5) 
spherical  - - 23700 80 

exponential  15500 100   

 expcosine        

 
Forest 

nugget  3000 - 1300 -  
 

26000 

 
1.713 10-5 

(6.534 10-5) 
spherical  - - 14000 85 

exponential  11500 80 - - 

 expcosine  - - - -   

 
Coastal 

nugget  2700  1000 -  
 

15000 

 
1.563 10-5 

(1.250 10-4) 
spherical  -  7000 80 

exponential  5300 100 -  

 expcosine        

In parentheses are the relative nugget (RN) effects of marginal semivariograms and maximum k  limit 
values for the product-sum model 
 
 
Table G-2.2: Parameters of the marginal semivariograms and product-sum semivarigram models of the 
detrended and deseasonalised malaria incidence rates (residuals) for the study in vegetation zones  
 
Study 

 
Model 

Spatial  Temporal  Product-sum 
Sill Range Sill Range Global 

sill 
k  

Northern nugget  1950 - 2200 -  
 

6500 

 
1.495 10-4 

(1.626 10-4) 
exponential  2400 100 - - 

exponential  - - 3950 16 

 
Forest 

nugget  1500 - 1000 -  
 

3550 

 
2.804 10-4 

(2.817 10-4) 
exponential  1200 55  - 

exponential  - - 2500 18 

 
Coastal 

nugget  500 - 600 -  
 

1750 

 
5.620 10-4 

(6.061 10-4) 
exponential  875 100 - - 

exponential  - - 1050 16 

In parenthesis are the maximum limit values of k  
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G-3: Space-time LMC of Residuals with Potential Climate Covariates 
 
Table G-3.1: Parameters of space-time linear models of coreginalination of detrended malaria incidence 
rates (residuals) with lagged one month rainfall, maximum temperature and relative humidity (at 1500 
hours) for the vegetation zones study  
Northern Spatial Temporal 
 
Variable 

0( )nug h  ( 40)exp h  ( 170)sph h  cosexp

( 10 100)h   

Residuals 2600 2800 500 4200 

Rainfall_1 1500 1200 150 5000 

Resid & Rainf_1 450 250 50 3900 

Variable 
0( )nug h  exp( 40)h  ( 170)sph h  cosexp  

( 10 200)h   

Resid uals 2600 2800 500 4500 

MaxTemp_1 1.50 1 0.4 5.5 

Resid & MaxT_1 -30 15 10 -150 

Variable 
0( )nug h  exp( 40)h  ( 250)sph h  cosexp  

( 10 100)h   

Residuals 2600 2800 500 4500 

RH1500_1 40 8 5 3300 

Resid & RH1500_1 85 50 -50 1100 

Forest Spatial Temporal 
 
Variable 

0( )nug h  ( 45)exp h  ( 180)sph h  cosexp

( 10 80)h   

Residuals 1300 1350 250 1000 

Rainfall_1 2000 1150 450 2700 

Resid & Rainf_1 180 150 30 1000 

Variable 
0( )nug h  exp( 45)h  ( 180)sph h  cosexp  

( 10 80)h   

Residuals 1300 1200 300 300 

RH1500_1 20 20 5 110 

Resid & RH1500_1  -10 30 -5 35 

Coastal Spatial Temporal 
 
Variable 

0( )nug h  ( 50)exp h  ( 120)sph h  cosexp

( 6 100)h   

Residuals 600 580 200 520 

Rainfall_1 1500 2100 1000 3000 

Resid & Rainf_1 500 -500 200 850 
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Figure G-3.1a: Space-time linear model of coregionalisation of detrended MIR (residuals) with lagged 1 
maximum temperature in the northern zone.  
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Figure G-3.1b: Space-time linear model of coregionalisation of detrended MIR (residuals) with lagged 1 
month rainfall in the northern zone.  
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Figure G-3.2: Space-time linear model of coregionalisation of detrended MIR (residuals) with lagged 1 
month rainfall in the forest zone.  
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Figure G-3.3: Space-time linear model of coregionalisation of detrended MIR (residuals) with lagged 1 
month rainfall in the coastal zone.  
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Appendix H: Programme Codes for Data Analysis 
 
H-1: R Codes for Detrending and Deseasonalising and SARIMA 
Model Fitting    
 
H-1.1: Code to detrend and deseasonalise MIR  
********************************** 
rm(list=ls())head 
setwd("C:/Analysis/Regression") 
options(digits=4) 
maindat=read.csv("MainData144.csv",header=T,na="N/A") 
main=split(maindat,maindat$District) 
for(i in 1:length(main)){ 
 mir.k=main[[i]]$MIR 
 t=1:length(mir.k) 
 t2=t^2 
 cost=cos((2*pi)/12*t) 
 sint=sin((2*pi)/12*t)  

fac=gl(12,1,length=length(mir.k),label=c("jan","feb","mar","apr","may","jun","jul","a
ug","sep","oct","nov","dec")) 

 fit1=lm(mir.k~t+t2,na.action=na.exclude) 
     fit2=lm(mir.k~t+t2+cost+sint,na.action=na.exclude) 
 fit3=lm(mir.k~t+t2+fac,na.action=na.exclude) 
 residuals1=residuals(fit1) 
 residuals2=residuals(fit2) 
 residuals3=residuals(fit3) 
 trend1=fitted(fit1)  
 trend2=fitted(fit2)  
 trend3=fitted(fit3) 
 rsquare1=summary(fit1)$r.squared  
 rsquare2=summary(fit2)$r.squared 
 rsquare3=summary(fit3)$r.squared 
 coeffit1=coef(fit1) 
 coeffit2=coef(fit2) 
 coeffit3=coef(fit3) 
main[[i]]=data.frame(residuals1,residuals2,residuals3,trend1,trend2,trend3,main[[i]])  
} 
maindata=do.call("rbind",main) 
write.csv(maindata,file="MainData132_1.csv") 
 
H-1.2: Regression Analysis of the Residuals with the Climatic Covariates  
*********************************************************** 
Data input: 
baregdata=read.csv("BARegData.csv",header=T,na="N/A") 
bar=ts(baregdata,start=c(1998,1),freq=12) 
barregdata2011= read.csv("BARegData2011.csv",header=T,na="N/A") 
bar2011=ts(baregdata2011,start=c(2011,1),freq=12) 
mir=bar[,1] 
mir05=bar[,2] 
rainf=bar[,3] 
maxT=bar[,4] 
minT=bar[,5] 
rh0600=bar[,7] 
rh1500=bar[,8] 
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sunsh=bar[,9] 
rainf_1=lag(rainf,-1) 
rainf_2=lag(rainf,-2) 
maxT_1=lag(maxT,-1) 
maxT_2=lag(maxT,-2) 
minT_1=lag(minT,-1) 
minT_2=lag(minT,-2) 
rh0600_1=lag(rh0600,-1) 
rh0600_2=lag(rh0600,-2) 
rh1500_1=lag(rh1500,-1) 
rh1500_2=lag(rh1500,-2) 
sunsh_1=lag(sunsh,-1) 
sunsh_2=lag(sunsh,-2) 
 
Multiple linear regression model: 
t=1:length(mir) 
t2=t^2 
fit=lm(mir~t+t2,na.action=na.exclude) 
res=residuals(fit) 
t=1:length(mir05) 
t2=t^2 
fit05=lm(mir05~t+t2,na.action=na.exclude) 
res05=residuals(fit05) 
resbar=data.frame(res,res05) 
resba=ts(resbar,start=c(1998,1),freq=12) 
resid=resba[,1] 
resid05=resba[,2] 
badata2=ts.intersect(mir,mir05,resid,resid05,rainf,rainf_1,rainf_2,maxT,maxT_1,maxT_2,minT,minT_1

,minT_2,rh0600,rh0600_1,rh0600_2,rh1500,rh1500_1,rh1500_2,sunsh,sunsh_1,sunsh_2) 
badata1=ts.intersect(mir,mir05,resid,resid05,rainf,rainf_1,maxT,maxT_1,minT,minT_1,rh0600,rh0600_

1,rh1500,rh1500_1,sunsh,sunsh_1) 
badata0=ts.intersect(mir,mir05,resid,resid05,rainf,maxT,minT,rh0600,rh1500,sunsh) 
modelbar3=dynlm(resid~rainf_1+rainf_2+maxT_1+maxT_2+minT_1+minT_2+rh0600_1+rh0600_2+r

h1500_1+rh1500_2+sunsh_1+sunsh_2,data=badata2,na.action=na.exclude) 
modelbar3_05=dynlm(resid05~rainf_1+rainf_2+maxT_1+maxT_2+minT_1+minT_2+rh0600_1+rh060

0_2+rh1500_1+rh1500_2+sunsh_1+sunsh_2,data=badata2,na.action=na.exclude) 
modelbar2=dynlm(resid~rainf+rainf_1+rainf_2+maxT+maxT_1+maxT_2+minT+minT_1+minT_2+rh0

600+rh0600_1+rh0600_2+rh1500+rh1500_1+rh1500_2+sunsh+sunsh_1+sunsh_2,data=badata
2,na.action=na.exclude) 

modelbar2_05=dynlm(resid05~rainf+rainf_1+rainf_2+maxT+maxT_1+maxT_2+minT+minT_1+minT_
2+rh0600+rh0600_1+rh0600_2+rh1500+rh1500_1+rh1500_2+sunsh+sunsh_1+sunsh_2,data=
badata2,na.action=na.exclude) 

modelbar1=dynlm(resid~rainf+rainf_1+maxT+maxT_1+minT+minT_1+rh0600+rh0600_1+rh1500+rh1
500_1+sunsh+sunsh_1,data=badata1,na.action=na.exclude) 

modelbar1_05=dynlm(resid05~rainf+rainf_1+maxT+maxT_1+minT+minT_1+rh0600+rh0600_1+rh15
00+rh1500_1+sunsh+sunsh_1,data=badata1,na.action=na.exclude) 

modelbar0=dynlm(resid~rainf+maxT+minT+rh0600+rh1500+sunsh,data=badata0,na.action=na.exclude
) 

modelbar0_05=dynlm(resid05~rainf+maxT+minT+rh0600+rh1500+sunsh,data=badata0,na.action=na.e
xclude) 

options(digits=4) 
cor(badata2) 
 
 
 
 
 
 
 



504 
 

H-1-3: Autocorrelation Analysis of Residuals and SARIMA Model fitting 
*********************************************************** 
Residuals Analysis: 
par(mfrow=c(2,2),mex=0.5) 
plot(residbar,main="Residuals: Brong Ahafo",ylab="residuals") 
qqnorm(residbar,main="Q-Q Plot",col=2) 
qqline(residbar,main="Q-Q Plot") 
acf(as.vector(residbar),lag.max=50,main="ACF") 
pacf(as.vector(residbar),lag.max=50,main="PACF" 
 
SARIMA Model fitting: 
modelbar=arima(mir,order=c(3,1,0),seasonal=list(order=c(0,1,1),period=12)) 
residbar=modelbar$residual 
mae=sum(abs(residbar))/length(residbar) 
rmse=sqrt(sum(residbar^2)/length(residbar)) 
Box.test(residbar,lag=12) 
Box.test(residbar,lag=100) 
Shapiro.test(residbar) 
cor(badata2) 
summary(step(modelbar2)) 
badata=ts.intersect(mir,mir05,resid,resid05,maxT,maxT_1,rh0600,rh0600_1,rh1500,rh1500_1,sunsh) 
summary(step(modelbar2)) 
 
Lyung-Box Q-Test: 
{ oldpar<-par(mfrow=c(3,1),mex=0.8) 
 on.exit(par(oldpar)) 
 rs<-modelbarx$residuals  
 stdres<-rs/sqrt(modelbar05x$sigma2) 
 plot(stdres,type="h",main="Standardized Residuals_X: Brong 

Ahafo",ylab="",xlab="Time",ylim=c(-3,4)) 
 abline(h=0,col=2) 
 acf(as.vector(modelbarx$residuals),lag.max=100,plot=TRUE,main="ACF of 

Residuals",xlab="Lag",na.action=na.pass) 
 abline(h=0,col=2) 
 nlag<-100 
 pval<-numeric(nlag) 
 for (i in 1:nlag)  
 pval[i]<-Box.test(rs,i,type="Ljung-Box")$p.value 
 plot(1:nlag,pval,xlab="Lag",ylab="p value",ylim=c(0,1),col=2,main="p values for Ljung-Box 

statistic") 
 abline(h=0.05,lty=2,col="blue") 
}  
tsdiag(modelbar,gof.lag=100) 
 
Model Forecast: 
par(mfrow=c(1,1),mex=0.5) 
modelbar05=arima(mir05,order=c(0,1,2),seasonal=list(order=c(0,1,1),period=12)) 
modelbar05_pr=predict(modelbar05,n.ahead=36) 
U=modelbar05_pr$pred+2*modelbar05_pr$se 
L=modelbar05_pr$pred-2*modelbar05_pr$se 
plot(mir05,main="Brong Ahafo (0-4)",xlim=c(1998,2014),ylim=c(100,900),ylab="Incidence Rate") 
lines(U,col=3,lty=2) 
lines(L,col=3,lty=2) 
lines(modelbar05_pr$pred,col=2,lwd=2) 
lines(bar2011[,2],col=4,lwd=2) 
abline(v=2011,col=4,lty=1) 
abline(v=seq(1998,2014,1),lty="dotted") 
legend(1998,400,c("Real","Forecast","95%CI",”Real_2011”),col=c(1,2,3,4),lty=2) 
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H-2: GSLIB Programmes for Generalised Product-sum Modelling of 
Semivariograms    

 
H-2.1: Parameter file for GAMV executable programme for the experimental 
semivariograms of MIR and the residuals  
********************************************************************* 
Parameters for GAMV: 
******************* 
START OF PARAMETERS: 
forest.dat                         \data file 
1   2   3                                \column for x,y,t coordinates 
1   6                                       \nvar; column numbers... 
-9000.0     1.0e21                    \tmin, tmax (trimming limits) 
national.var                        \output file for variograms 
15                                       \nlag - the number of spatial lags 
30                                       \xlag - unit separation distance 
15                                       \xltol- lag tolerance 
90                                      \ntlag - the number of temporal lags 
1                                        \tlag - unit separation distance 
1                                        \ndir - number of directions 
0.0  90.0 15000  0 0 0             \azm,atol,bandh,dip,dtol,bandv 
0                                       \standardize sills? (0=no, 1=yes) 
1                                        \number of variograms 
1  1   1                                 \tail, head, variogram type 
 
H-2.2: Parameter file for K2ST executable programme for the estimation of malaria 
morbidity incidence rates  
 
Parameters for KT3D: 
****************** 
START OF PARAMETERS: 
national.dat                    \data file 
1   2   3   6    0                 \columns for X,Y,Z,var,sec var 
-2000.0   1.0e21                  \trimming limits 
2                                  \option:0=grid,1=cross,2=jackknife 
national2011.dat                   \file with jackknife data 
1   2   3   6   0                  \columns for X,Y,Z,vr and sec var 
2                                  \debugging level:0,1,2,3 
national.dbg            file for debugging output 
nationalOK.dat                     f ile for debugging output 
nationalOK.dat                            f ile for kriged output 
52     470    10                  \nx,xmn,xsiz 
76     520    10                  \ny,ymn,ysiz 
12     133    1                    \nz,zmn,zsiz 
1    1    1                        \x,y and z block discretization 
8    20                             \min,max data for kriging 
0                                  \max per octant(0-> not used) 
200  200  15                       \maximum search radii 
0.0  0.0  0.0                      \angles for search ellipsoid 
1    0                             \0=SK,1=OK,2=non-st SK,3=exdrift 
0 0 0 0 0 0 0 0 0                 \drift:x,y,z,xx,yy,zz,xy,xz,zy 
0                                  \0,variable;1,estimate trend 
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nodata.dat                        \gridded file with drift/mean 
0                                  \column number in gridded file 
2   5000                           \nst,spatial nugget effect 
2   10200  0.0   0.0   0.0         \it,cc,ang1,ang2,ang3 
    120    120   120                \a_hmax,a_hmin, a_vert 
6   15500  0.0   0.0   0.0         \it,cc,ang1,ang2,ang3 
    100   100   100                \a_hmax,a_hmin,a_vert 
5000 28000                        \temporal nugget,global sill 
1                                  \0=product,1=sum-product 
 
 

Appendix I: Supporting Conference Publication and 
Poster  Presentation 
 
The following peer-reviewed conference and poster presentations support the work in 
the thesis. 
 
I-1: Conference Presentation: 

Appiah, S. K., Mueller, U., & Cross, J. (2011). Spatio-temporal modelling of malaria 
incidence for evaluation of public health policy interventions in Ghana, West 
Africa. Paper presented at the MODSIM 2011, 19th International Congress on 
Modelling and Simulation. Modelling and Simulation Society of Australia and 
New Zealand, F. Chan, D. Msrinova & R.S. Anderson (eds), December, 2011  
Perth, Australia. www.mssanz.org.au/modsim2011/A10/appiah.pdf 

 
I-2: Poster Presentation: 

Appiah, S. K., Mueller, U., & Cross, J. (2011). Exploratory analysis of malaria risk in 
Ghana, West Africa. ECU industry engagement 2011, Perth, WA  
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Background
Ghana's malaria risk poses a serious
threat to health delivery system. Malaria
is the leading cause of morbidity and
mortality (38.6% of all outpatient illness),
most vulnerable children under 5 years
and pregnant women.

Spatial and temporal statistical models
are applied to monthly morbidity cases
reported from local health facilities;
geostatistical space-time lognormal
kriglng is used to estimate malaria
incidence rates (MlR) at unobserved
locations.

The Results serve baseline for resource
allocation for the disease's prevention.

Method
Ghana (in West Africa) has 10
administrative regions each subdivided
into districts. Time series were
considered for them individually.

Modelling was done using monthly MIR
(number of morbidity cases per resident
population of 10,000).

Time series moving average smoothing
were used for behaviour and trend
pattern of global incidence at regions.

Lognormal kriging was employed to
interpolate disease risk.

Results
Malaria risk maps indicate varied spatial
and temporal distribution with elevated

numbers of cases in the northern and
central parts of the country.

Hidogram of MIR and LogMlR

Variography ofspatial and iemporal directions ofMlR

Conclusions
Time series and spatial maps of malaria
incidence provide useful analytical tools
for resource allocation to reduce the
disease at the local level in Ghana.

Time series plots indicate that malaria
incidence has been increasing until 2009
but is now levelling off in the regions of
Ghana. Seasonal patterns overthe years
are similar for the regions.

Spatial maps indicate that the
distribution of malaria incidence across
Ghana is heterogeneous, with elevated
incidence values in the northern and
central parts.
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