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Abstract 

The management of weeds in agriculture is a time consuming and expensive 

activity, including in Australia where the predominant strategy is blanket 

spraying of herbicides. This approach wastes herbicide by applying it in areas 

where there are no weeds. Discrimination of different plant species can be 

performed based on the spectral reflectance of the leaves. This thesis describes 

the development of a sensor for automatic spot spraying of weeds within crop 

rows. The sensor records the relative intensity of reflected light in three narrow 

wavebands using lasers as an illumination source.  

A prototype weed sensor which had been previously developed was evaluated 

and redesigned to improve its plant discrimination performance. A line scan 

image sensor replacement was chosen which reduced the noise in the recorded 

spectral reflectance properties. The switching speed of the laser sources was 

increased by replacing the laser drivers. The optical properties of the light 

source were improved to provide a more uniform illumination across the viewing 

area of the sensor. A new opto-mechanical system was designed and 

constructed with the required robustness to operate the weed sensor in outdoor 

conditions. Independent operation of the sensor was made possible by the 

development of hardware and software for an embedded controller which 

operated the opto-electronic components and performed plant discrimination. 

The first revised prototype was capable of detecting plants at a speed of 

10 km/h in outdoor conditions with the sensor attached to a quad bike. 

However, it was not capable of discriminating different plants. The final 

prototype included a line scan sensor with increased dynamic range and pixel 

resolution as well as improved stability of the output laser power. These 

changes improved the measurement of spectral reflectance properties of plants 

and provided reliable discrimination of three different broadleaved plants using 

only three narrow wavelength bands. A field trial with the final prototype 
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demonstrated successful discrimination of these three different plants at 5 km/h 

when a shroud was used to block ambient light. 

A survey of spectral reflectance of four crops (sugarcane, cotton, wheat and 

sorghum) and the weeds growing amongst these crops was conducted to 

determine the potential for use of the prototype weed sensor to control spot-

spraying of herbicides. Visible reflectance spectra were recorded from individual 

leaves using a fibre spectrometer throughout the growing season for each crop. 

A discriminant analysis was conducted based on six narrow wavebands 

extracted from leaf level spectral reflectance measured with a spectrometer. 

The analysis showed the potential to discriminate cotton and sugarcane from 

important weeds growing amongst those crops with 85-95% accuracy. 
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Chapter 1 

Introduction 

1.1 Background 

Agriculture plays an important role in the economies and health of our world. 

Wherever land is put to agricultural use, weeds will grow. The Australian Weeds 

Strategy considers a weed to be a plant “that requires some form of action to 

reduce its harmful effects on the economy, the environment, human health and 

amenity” [1]. Weeds have significant environmental as well as socio-economic 

impacts, causing damage to natural landscapes, agricultural lands, waterways 

and coastal areas, interfering with recreational activities on the water and in the 

bush, competing with production (leading to low yields), contaminating produce 

and poisoning livestock. In addition, some weeds affect human and animal 

health, causing allergies and respiratory problems, as well as poisoning, thus 

increasing health-care costs. Furthermore, weeds can provide high fuel loads 

that increase bushfire intensity, resulting in increased losses of properties, rural 

infrastructure and biodiversity. 

In Australia, agricultural businesses occupy approximately 425 million ha which 

covers 55% of Australia's land area. These businesses range from large 

pastoral holdings occupying millions of hectares to small market gardens and 

undercover agriculture industries occupying less than 1 hectare [2]. The value 

of agricultural production contributes around $36 billion to Australia’s 

economy [3]. Australia spends considerable time and money each year in 

combating weed problems and protecting ecosystems and primary production 

on private and public land. The total economic cost of weeds to agriculture in 
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Australia, including lost production and opportunity costs, is around $4 billion 

per annum [2, 4]. 

Of the 2700 species of introduced plants now established in Australia, 429 have 

been declared noxious or are under some form of legislative control in Australia, 

and pose ongoing challenges to the government, the industry and the country, 

resulting from (i) the introduction of exotic plants and (ii) movement by native 

species into new areas in response to changed land and water use and 

management practices. Even with the strongest quarantine procedures and 

excellent weed management programs, new weed invasions and weed 

problems continue to occur in Australia. For example, in Victoria more than 200 

species have naturalised outside their native range, while in Western Australia 

90 species are similarly recorded. 

Many industries, such as agriculture, livestock, forestry, horticulture, nursery, 

landscaping, fishing, aquaculture, transport and tourism, are now promoting 

policies, guidelines, standards and activities to manage and control the spread 

of weeds, and understand the weed problem in order to reduce the weed-

related costs and enhance their profitability and sustainability. Therefore, 

innovative research and development of advanced weed sensors that can 

identify plants and discriminate weeds from crops would benefit the Australian 

government and many Australian industries and put Australia at the forefront of 

weed control and management and strengthen collaborative research and 

development capabilities that address weed problems and threats around the 

globe. 

1.2 The Impact of Weeds on Agriculture 

Weed problems are complex, with multiple causes, and in order to reduce their 

impacts, efforts must be coordinated across all layers of a nation, to ensure that 

priorities are identified and consistent guidance is established for the 

management of existing weeds and prevention of the development of new 

weeds. The presence of weeds in agriculture not only affects the production and 

quality of crops but also harms the health of livestock. In agricultural crops, 

weeds compete with crops for water, light and the nutrients in the soil. 

Competition from weeds reduces the quantity of the harvested crop and can 
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affect quality through contamination. The presence of weed material that 

harbours pests and diseases may also adversely affect the crop. Management 

of agricultural weeds increases the production cost of crops by the investment 

in machinery and expenditure on labour and herbicides. 

1.2.1 Current Weed Management Practices 

Most weed control in Australian agriculture is mechanised through either 

cultivation or application of herbicides. For reasons of land and soil 

conservation, Australian agriculture has shifted from cultivation to minimum 

tillage with a greater reliance on herbicides [5]. The adaptability of weed 

populations to herbicides and the changing populations of weeds are constant 

challenges to agricultural productivity. These challenges have brought about a 

need to combine weed management techniques with scientific and 

technological knowledge that is economically and environmentally sustainable.  

Weed management practices used in Australia include cultivation of the soil, 

herbicide application to directly kill weeds, biological control of weeds using 

insects, fungi and bacteria, and crop selection including the use of cover crops 

to smother weed growth through competition [6]. The use of each of these 

techniques has an immediate weed control effect and also a long-term impact 

on weed populations and farm productivity. Integrated weed management 

(IWM) is a “sustainable management system that combines all appropriate 

weed control options” [5]. IWM targets all weeds at some phase of the cropping 

cycle, with the aim to reduce the weed seed bank and decrease the impact of 

weeds on the crop. 

Research and development into new technology for agriculture can support 

IWM by providing new weed control techniques and improved data collection 

and management. Detailed information about the variability of soil conditions, 

crop health and weed density allows site-specific crop management to be 

undertaken. This modern return to localised decision making combines the 

benefits of traditional small-scale agriculture with the productivity of modern 

agriculture. The use of this technology in farming is known as precision 

agriculture (PA). As with integrated weed management, PA is a whole of farm 
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management system which considers the impact of crop management 

decisions on the productivity and profitability of the farm [7]. 

1.2.2 Site specific weed management 

The only commercially available sensor for variable-rate herbicide application is 

the WeedSeeker® by NTech Pty Ltd. The WeedSeeker is a spectral reflectance 

sensor which uses red and near infra-red LEDs for illumination and a 

photodiode to detect the intensity of reflected light [8]. This system is designed 

for discrimination of green vegetation from soil and has seen adoption for use in 

fallow (no crop) and with hooded sprayers for between row herbicide spraying.  

The maximum benefit from reduction of herbicide use requires reliable 

information on weed abundance and distribution. Weed mapping is one 

approach which involves the production of a detailed weed map, combined with 

other data to determine a variable rate treatment map. Mapping relies on 

human observation, which is time consuming, expensive and inefficient, or 

remote sensing. Remote sensing can produce weed maps where patches of 

weeds are of sufficient size, but provides limited spatial resolution while 

requiring considerable time and expense for image acquisition and 

processing [9]. 

Proximate sensing can use either imaging or non-imaging sensors, and 

provides resolution below the size of individual leaves. It is an alternative to 

remote sensing which offers the potential for real-time detection and spot 

spraying of weeds. Several advantages over remote sensing include high 

spatial resolution and the ability to use artificial lighting to illuminate the ground. 

Such a sensor may operate on a similar principle to the WeedSeeker to 

determine spectral properties of the crop and weeds, or use an imaging sensor 

and apply machine vision techniques to classify crop and weeds based on leaf 

size and shape, colour, and/or texture. The potential of these technologies to 

target spray weeds is promising and would reduce the cost and volume of 

herbicide used, the associated labour costs, environmental impacts and provide 

greater opportunity to implement site specific weed management.  
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1.3 Previous weed sensor development 

In 2002, Photonic Detection Systems (PDS, then known as Weed Control 

Australia) developed a series of weed sensor prototypes consisting of sensor 

modules mounted on agricultural spray equipment less than 1 m above ground. 

The sensor had multiple groups of red and infrared lasers combined with a 

photodetector. Eight groups of lasers and photodiode were spaced 60 mm apart 

in a 0.5 m box as shown in Figure 1.1. The laser output beams and 

photodetector were aligned to detect plant leaves at a specified height above 

the ground and several boxes were mounted on a boom. This weed sensor 

prototype only used two wavelengths and had the capacity to differentiate green 

plants from soil or stubble, based on the spectral response. As with the 

WeedSeeker, this allowed precise spraying of green plants only – "green from 

brown" as opposed to blanket spraying. Differentiation between green plants 

was not reliable with only two wavelengths. 

 

Figure 1.1. Prototype weed sensor developed by Photonic Detection Systems 

with 8 modules consisting of two lasers and a photodiode. 

Using information about the speed of the sensor while scanning over the 

ground, it was possible to estimate the leaf size. Determination of the leaf size 

combined with the spectral reflectance ratio allowed differentiation of dissimilar 

sized plants, however similar sized plants could not be accurately differentiated 

with this sensor design. Additionally, small plants were only detected if they 

passed under one of the laser/photodiode groups and only if they were at the 

correct distance from the sensor. 

In 2005, PDS approached The WA Centre of Excellence for MicroPhotonic 

Systems (COMPS) at Edith Cowan University (ECU) seeking assistance with 
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the development of their weed sensor design. Based on the requirement of 

discriminating “green from green” using the reflected intensity of multiple (3 or 

more) lasers and operating at a vehicle speed of 15 km/h, COMPS designed a 

prototype spectral reflectance based weed sensor. The device, presented by 

Sahba et al. [10] and discussed in detail in Chapters 2 and 4, uses a laser 

combiner module to combine the output laser beams. This combiner was 

designed to align the three lasers along one direction, maintaining beam 

overlap over a long working distance. The beam combiner was used in 

conjunction with a novel optical cavity to generate an array of laser beams. The 

reflected light from all beams was captured by a line scan sensor in the centre 

of the device. Only two sets of lasers were used, reducing the cost of the device 

while increasing the spatial resolution compared to the original PDS design. 

1.4 Scope of Study 

The purpose of this project was to further develop the prototype weed sensor 

with a goal of meeting the following objectives: 

• Real-time operation – the sensor should operate at a typical speed of 

farm vehicles used for herbicide application (>15 km/hr); 

• Robustness to variations in terrain – detection of plants and crop/weed 

classification should not be hampered by changes in sensor height; 

• “Green from Green” discrimination – improve the plant discrimination 

capability such that discrimination of green plants in a controlled outdoor 

environment is possible at 15 km/hr 

• Assess required wavelengths – based on analysis of spectral reflectance 

of a crop and weeds, what are the most suitable wavelengths to use? 

• Determine limitations of the sensor – is the weed sensor design able to 

discriminate between crops and weeds? 

1.5 Thesis Outline 

Chapter 2 reviews previous research to provide an overview of management of 

agricultural weeds. The impact of weeds on Australian agriculture and the 

economy will be discussed along with current weed management techniques. 
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The potential for use of new weed management technology in cotton and 

sugarcane is considered as well as management of noxious weeds. The 

previous research on weed mapping including remote sensing is considered 

followed by a review of previous research on real-time sensors for crop/weed 

classification. 

Chapter 3 provides further detail of the initial prototype weed sensor’s design 

and describes the use of a fibre spectrometer to record spectral reflectance 

data. The components which make up the weed sensor are described and 

characterised followed by detailed description of the improvements required to 

improve the performance of the weed sensor. 

Chapter 4 will describe the initial prototype weed sensor and the further 

development of two revised models culminating in a working field prototype. For 

each revision of the weed sensor a description of the design and function will be 

given with reference to the components described in Chapter 3. 

Chapter 5 presents results of the spectral reflectance data recorded from a 

cotton farm and a sugarcane farm. At each stage of the weed sensor’s 

development, its ability to detect and discriminate between different plants was 

assessed. The results of this assessment carried out under various conditions 

in the laboratory and on an outdoor testing ground are presented.  

Chapter 6 draws conclusions on the performance of the prototype weed sensor 

and the potential for its use in the sugarcane, cotton and other agricultural 

industries. Lastly, some ideas for improvement of the sensor performance are 

provided. 
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter outlines previous research and development to provide an 

overview of management of agricultural weeds. The impact of weeds on 

Australian agriculture and the economy will be reviewed. The current 

management techniques will be introduced, including an overview of Integrated 

Weed Management. The adoption of Precision Agriculture to manage the 

variability on farms through the use of spatial and monitoring technology is 

explored and provides and insight into the missing pieces of agricultural 

technology. The potential for use of new weed management technology in 

cotton and sugarcane is considered along with the current methods of plant 

recognition which are available. 

The available methods for detecting weeds amongst a crop include weed 

mapping using remote sensing and real time detection with proximate sensing. 

Remote sensing typically involves spectral reflectance imaging whereas 

proximate sensing uses either machine vision or non-imaging sensors based on 

spectral reflectance. Previous studies of past work covering a range of spatial 

resolution from 1 m down to 1 mm using these techniques will be reviewed. The 

spectral reflectance of plants is determined by their physiological characteristics 

and is determined by a wide range of factors and requires methods of extracting 

the desired characteristics such as species. A range of previous 

implementations of weed sensing technology will be reviewed. This review 

informs the design of an optical weed sensor that is capable of discriminating 
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between different plant types in an agricultural cropping environment in order to 

spot spray weeds. 

2.2 Weeds in Australia  

Weeds have major economic, environmental and social impacts in Australia, 

with detrimental effects on agricultural land, natural landscapes, parks and 

gardens, waterways and coastal areas. They are dispersed through a range of 

processes that move plants to new areas where the environment is suitable for 

their growth and spread. Many weeds are introduced plants which were 

intended to provide food crops, pasture for grazing, shelter, medicines, or 

enjoyment in gardens and parklands. Unintentional weed introduction has 

occurred with human travel and the movement of plant material as 

contaminants in seed, soil, fleece or bedding and fodder [11]. 

Examining the non-economic impacts of weeds, Sinden equates the well-being 

of the whole community to the sum of the producers’ surplus and the amount 

the consumer has to pay in the market place [4]. The economic impacts of 

weeds primarily originate in Australia’s large agricultural sector and are 

examined in detail in Section 2.2.1. In order to manage the impact of weeds, the 

agriculture industry has developed many different strategies. Integrated weed 

management (IWM) is a method of farm management which considers the long-

term effects of any weed control action. In parallel with IWM has come the 

development of precision agriculture technology, allowing farmers to manage 

their crops according to local requirements and increase their farm productivity. 

Integrated weed management and precision agriculture are explored in 

Sections 2.2.2 and 2.2.3. 

2.2.1 Impact of Weeds on Agriculture 

The presence of weeds has a significant impact on the Australian economy and 

the environment. Weeds impact on our ability to grow and produce food. To 

maintain a level of agricultural production that is economically viable, the 

technological development in agricultural tools, and farming practices in 

response to this challenge and to the suppression of weeds will be described. 
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The Australian Bureau of Statistics reported the total value of agricultural 

produce in 2006-07 to be $36 billion [3]. In the same year $1.6 billion was spent 

by producers on weed management [2]. Australia is a strong competitor in the 

world market with approximately two thirds of total agriculture produce exported. 

Exports of Australian agricultural produce in 2006-07 accounted for 18% of 

Australian merchandise exports [12]. The agricultural industry has a need to 

maintain high levels of production, to adapt to environmental changes, market 

pressure and to reduce financial inputs. Weeds reduce the quality and quantity 

of product from the agricultural, horticultural and forestry sectors, improved 

technological advances will help reduce these impacts. 

Crop productivity is determined by the crop’s access to nutrients (nitrogen, 

phosphorous and potassium), water and light. Weeds compete with the crop for 

these resources and are often more successful in obtaining them. Agriculture 

production costs are increased by a need to manage weeds before emergence 

of the crop and post-emergent when there are weed germination events such 

as rainfall. The germination of crop and weed seeds differs in time, with 

evidence that weeds which emerge before or with the crop causes the greatest 

yield losses. The length of time the crop is required to be kept weed free in 

order to prevent yield loss depends on the crop, the weed species and on the 

farm location and conditions [13, p. 172]. 

Climate change is anticipated to have a significant impact on agriculture in 

Australia and worldwide as changes occur in rainfall, water quality, temperature, 

distribution of pests and diseases. These factors increase the competition 

between weeds and crop and make the crop more vulnerable. The projected 

higher temperatures and lower rainfall would result in a positive carbon 

fertilisation effect for some plants. However, climate change projections indicate 

that that crop quality would be reduced, and these impacts would decrease 

agricultural productivity in Australia and throughout the world. [14]. 

Advances in Australian agricultural practice over the last decade has seen a 

greater reliance on herbicide application for weed control and a shift to 

minimum tillage with a greater reliance on herbicides for weed management 

[15]. An ABS survey of Australian agricultural land management practices 

reported that 53% of agricultural businesses growing crops and pastures 
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throughout the country preferred to use minimum tillage or zero tillage [16]. 

There are about 30 herbicides in common use in WA. Herbicides differ in their 

mode of action and in the method of application. They may be applied to the 

foliage, rely on uptake through roots or both. Residual herbicides remain active 

in the soil and control weed seedlings as they germinate. Herbicides may be 

selective, affecting only some species of plants whilst knock-down herbicides 

affect all plants they contact [11]. 

2.2.1.1 Economic Impact  

In 2006 the Australian Bureau of Statistics conducted a national agricultural 

census. Of the 20,000 Australian agricultural businesses surveyed more than 

94% reported undertaking natural resource management activities to manage 

weeds, pests, land and soil. In total, undertaking these activities cost almost 

$3 billion. Of this $3 billion spent, $1.6 billion was spent on managing weeds 

including $982 million spent for herbicides [2]. In addition to weed control costs, 

the Cooperative Research Centre for Australian Weed Management estimated 

that in 2001 weeds caused production losses of between $2 billion and 

$2.5 billion per annum [4]. 

To reduce agricultural production costs farmers need effective weed 

management tools that will reduce the use of the chemicals and the cost 

associated with application of herbicides. A real-time optical weed sensor that 

can deliver herbicide with precision to weeds at the most suitable dosage would 

provide effective weed control and economic benefits. It would be an important 

part of sustainable agricultural practices that increase productivity while 

minimising degradation of the environment.  

2.2.2 Integrated Weed Management 

The widespread use of chemicals in agriculture developed after field trials with 

2,4-D in 1945 as a selective herbicide. Other herbicides were developed over 

the following decades and their adoption resulted in a reduction in labour, 

greater mechanisation of farming and improvement in crop quality and 

production [13]. Selective herbicides began to replace the traditional means of 

weed control using tillage, mulching, hoeing, flooding, burning, mowing and 
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collecting weed seed in the harvester’s “seconds box” [17]. Over time, problems 

have emerged with the ongoing use of herbicides, particularly in minimum and 

no-till farming systems where herbicide resistance is greatest. 

Resistance to herbicides occurs when a small number of plants survive 

herbicide application and the genetic adaptation leads to an emerging herbicide 

tolerant weed becoming dominant. Herbicide resistance was first reported in 

Australia in the 1980’s. In 2006 there were 25 weed species with herbicide-

resistant populations recorded in Australia [18].  

Species shift occurs when the population distribution of weed species changes 

over time. This change can occur as a result of cultivation, use of different or 

selective herbicides or environmental impacts such as fire, flood and drought. 

As weeds recover from these incidents at different rates, a previously small 

weed species population can rapidly expand in the changed environment and 

become the dominant weed [19]. Species shift and the development of 

herbicide resistance can both be effectively managed using Integrated Weed 

Management (IWM). 

Integrated Weed Management is a systemized approach to weed management 

which is modelled on Integrated Pest Management (IPM), a management 

technique in development since the 1950’s. IPM, and hence IWM, emphasise 

the use of a wide range of techniques to control pests and weeds with 

consideration of the long-term effects of any control action. IWM practice uses a 

combination of preventative, cultural, mechanical and chemical control practices 

as the basis for a weed management program. A range of different agronomic 

practices should be combined to keep weeds "off balance” and less able to 

adapt to a constantly changing system that uses many different control 

practices [5]. IWM aims to maintain weed densities at manageable levels while 

preventing shifts in weed populations to more difficult-to-control weeds. In 

practice these strategies prevent weed seed production, reducing weed 

emergence and minimises crop competition. Whilst IWM does not completely 

control weeds, it assists the decisions being made about crop/weed 

management to reduce the impact of weeds while reducing the risk of new 

weed problems emerging [20]. 
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Figure 2.1. The many aspects of integrated weed management combine to give 

an effective weed management strategy. (Source: [21]) 

Weed management techniques in Australia include the cultivation of the soil, 

herbicide application to directly kill weeds, biological control of weeds using 

insects, fungi and bacteria, and crop selection, including the use of cover crops 

to smother weed growth through competition [6]. Each of these practices has 

costs and risks associated with the financial benefit attainable. The chosen 

strategies for weed management and the choice of which crop to grow depend 

on many external factors including demand for and the price of the crop, the 

climate and weather, and the availability and cost of inputs such as fertiliser, 

water and labour. The best decisions can be made by considering all these 

factors, combined with the local conditions specific to each farm and each field 

within the farm. This site specific data is used in models of crop yield which 

guide crop management, including an integrated approach to weed 

management [22]. 
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2.2.3 Precision Agriculture 

The development of spatial information technology which provide localised crop 

and paddock information allows site specific crop management. Known as 

precision agriculture (PA), this technology gives farmers the capacity to 

increase farm productivity while considering environmental impacts. PA 

recognises that the potential productivity of agricultural land can vary 

considerably, even over very short distances (a few metres). The fundamental 

technology utilised by precision agriculture are the Global Positioning System 

(GPS) to provide location information and geographic information systems (GIS) 

to make precise management decisions based on the farm data provided by 

tools such as yield monitoring and soil sampling and remote sensing [23]. 

The United States, Canada and Australia were the pioneering nations that 

developed precision agriculture. Broad-acre farming made it more difficult for 

growers to understand the variability within fields to optimise crop productivity 

with appropriate and timely adjustment to farm inputs [22]. By the end of the 

1980s the practice of grid sampling resulted in the first practical field maps for 

fertilizer and pH corrections. Further soil chemical sampling was then used in 

the US to determine the application rate of chemical fertilisers [22]. In Australia, 

steering guidance, steering assist and auto steering in agricultural vehicles have 

minimised soil compaction, allowing inter-row sowing, and cultivation as well as 

improving soil moisture management and reducing labour inputs. 

To utilise the PA and SSCM tools for fields and crop, farmers need the 

agronomic history of yield as well as soil analysis and topography to better 

understand of the causes of yield variability. Information about soil ph and 

sodicity/salinity issues, the effectiveness of weed control, and elevation 

mapping to help with water management, provide the background information 

for crop management and decision-making. These steps along with vehicle 

navigation aids contribute to managing inter-field and across-farms variability for 

the input of fertilisers, pesticides, fungicides and soil ameliorants to better match 

the specific conditions of the site [7]. 
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2.2.3.1 Economic benefits 

Australian farmers have adopted precision agriculture practices, particularly 

vehicle navigation and variable rate technology (VRT) for application of fertiliser 

based on yield maps and soil sampling. A whole farm economic analysis of six 

farms in NSW and WA estimated the economic benefit of PA technologies 

being used on those farms. The technology being used on these farms included 

vehicle navigation, auto-steer, NDVI monitoring, VRT for fertiliser application 

and in one case VRT for insecticide application. Across the six farms the capital 

investment amounted to $14-44/ha while the annual benefit ranged from $14-

30/ha. Analysis showed that the capital outlay was recovered in 2-5 years [24]. 

The use of site specific weed management has been adopted on some farms in 

America and Australia. The methods used range from weed mapping using 

remotely sensed data and sensor based spot spraying (for weed control in 

fallow or between rows with hooded sprayers). Variable rate herbicide 

application has been reported to provide equivalent weed control to 

conventional spraying and offer reductions in herbicide use from 15-95%, which 

is largely dependent on the weed density present [25-27]. The net economic 

benefit is not as clear as in some cases the increased application costs erode 

the savings from reduced herbicide application [26]. This highlights the need to 

consider the adoption of technology based on a whole of farm analysis and 

consider new opportunities afforded by the use of this technology. Swinton [9] 

argues that the greatest benefit of adoption of site-specific weed management 

will come from production of value added products and benefit from reduced 

environmental impact. Improved management of herbicide resistant weeds is 

another opportunity not directly related to herbicide savings [28]. 

Australian farmers spend over $3 billion annually on herbicides, pesticides, 

fertilisers and soil conditioners. Precision application of these agrochemicals to 

crops is necessary to maximise the benefit from their application. Precision 

agriculture provides both economic and environmental benefits which will keep 

Australian farms competitive. 



 16 

2.3 Industry applications of weed discrimination 

The agriculture sector has benefited from the advances in technology that utilise 

data collected from yield mapping, soil analysis, and the use of GPS and GIS to 

assist with traffic management and the variable rate of application of fertiliser 

and soil conditioners. The cotton industry as an example has developed both 

biological and precision technologies that have increased its profitability and 

productivity. Similarly, the sugar industry has been developing PA tools to 

remain competitive in the world market. Both industries also need to manage 

weed populations within the crop to maintain productivity. Governments in 

support of the agriculture industry can have a focus on eradication and control 

of weed infestations that threaten the large cropping regions. Skeleton weed is 

one such weed that is seen as a real threat to cereal producers and was subject 

to an eradication program in Western Australia for three and a half decades. 

Site specific weed management is a minimally practised management tool on 

large farms. Manual weed removal and spot spraying are effective on small 

scales but labour intensive and costly. In many cases this may be the only 

option if targeted treatment is required. Physical devices such as “weed wipers” 

can apply herbicide to weeds which are taller than the crop using a roller, but 

they cover only a narrow swath and their scope of application is limited. Weed 

mapping allows the creation of a digital variable rate treatment map which is 

subsequently used to apply the required herbicide rate. Such maps can be 

produced by scouting [25] or from remotely sensed data [29]. However, use of 

such maps comes with high cost for surveying or data acquisition and data 

processing as well as a lag time between collection of data and use of the map. 

Sensor based systems are currently used in fallow weed control [27] or in-

between row spraying and have shown efficient reduction in herbicide use, but 

there is currently no sensor based system to detect weeds growing amongst the 

crop. 

2.3.1 Cotton in Australia 

Australia’s cotton industry is comparatively small but is the world’s third largest 

exporter in the world, generating revenue of $1 billion per year. Cotton is grown 

in central and north-western NSW and central and southern Queensland 
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encompassing around 500,000 hectares. These farms are heavily mechanised 

and technologically sophisticated in order to manage large areas under crop, 

84% of which are irrigated.  

Over the last two decades, Australian cotton production has undergone a series 

of changes driven by the adoption of genetically modified (transgenic) cotton 

varieties. Since 2004 over 95% of Australian cotton growers have planted 

transgenic cotton. The most widely used transgenic varieties are herbicide 

resistant varieties such as Roundup Ready Flex® and varieties which are toxic 

to one of the main cotton insect pests, the Helicoverpa caterpillar, such as 

Bolgard II® [30]. 

The cotton industry in Australia is heavily reliant upon glyphosate used with 

farming strategies that include reduced tillage and ‘over the top’ spraying of 

glyphosate on genetically modified glyphosate tolerant cotton varieties. The 

increased reliance on glyphosate has altered the weed spectrum with a shift 

towards naturally tolerant weed species. An integrated management approach 

focuses on diminishing the weed seed bank to ensure that glyphosate is of 

value to the industry for the future [31]. 

2.3.2 Sugarcane in Australia 

The sugarcane industry in Australia covers 390,000 ha along the eastern 

Queensland and northern New South Wales coast. It produces 32-35 million 

tonnes of cane per year, which is processed in Australian mills located within 

the growing regions [32]. Of the 4.5-5 million tonnes of sugar produced about 

80% is exported and 20% refined for the domestic market. The value of 

production is between $1.5-2.5 billion annually depending on production and 

global price [33]. The average sugarcane farm size in Australia is 100 ha which 

is considerably smaller than the average farm size for cereal and cotton 

growers. The average farm size has been steadily growing each year as cane 

farmers have adopted new technology allowing them to expand their business. 

The Australian sugarcane industry is focussing its research effort on reduction 

of the cost of farming as it faces a reduction in the value of production and 

increasing input costs. To offset some of these costs, the industry is moving 

towards a minimum tillage farming system and a reliance on herbicides for 
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weed management. The use of GPS for guidance and auto steer has seen 

demonstrated benefits in more even row spacing, reduced overlap of fertilizer 

and herbicides, increasing machine efficiency and reduced driver fatigue whilst 

maintaining the capacity to operate at night [34]. 

Remote sensing provides an estimate of the size of the crop to the 

management of harvesting and milling operations and marketing the end 

product. There have been a number of attempts to monitor yield within a block 

to offset concerns of sugar loss that in some cases, is estimated to exceed 

20%. The development of a reliable yield monitor for the sugarcane industry has 

been slow and at this point in time there is no commercially available monitor. A 

prototype yield monitor developed by the University of South Queensland was 

used in combination with soil sampling for a case study on a 100 ha farm 

Burdekin, Queensland. A variable rate of gypsum was applied to ameliorate the 

soil sodicity. This study showed a $563 per ha benefit over 5 years when 

compared to standard input application [35]. 

Weeds which are particularly difficult to control in sugar cane are mostly 

perennial grasses such as guinea grass, green panic and Johnson grass. 

These grasses have similar leaf shape, texture and colour to sugarcane. The 

spatial similarity amongst different species presents challenges to the 

development of a ground-based optical weed sensor for the industry. The 

sugarcane industry would benefit from precision spray technologies that target 

weeds in crop. This development would have the potential to contribute to 

greater productivity and a reduction of herbicide use. 

2.3.3 Surveying for Skeleton Weed Eradication 

Skeleton weed (Chondrilla juncea L.) is an herbaceous perennial weed of 

Eurasian and North African origin that became established in south-eastern 

Australia early this century. Skeleton weed is found throughout New South 

Wales, South Australia, Victoria and in the wheat belt of Western Australia. 

Although a long established, widespread weed in south-eastern Australia, 

skeleton weed was not detected in Western Australia until 1963 and is a 

Declared Plant in Western Australia under the Agriculture and Related 

Resources Act 1976 [36].  
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Since 1974 it was the subject of an eradication program in Western Australia, 

costing between $3 million and $4 million per annum, funded from a levy on all 

Western Australian grain growers [37]. This program significantly limited the 

weed’s impact and rate of spread [36]. In 2008 a review of the Skeleton Weed 

Committee’s operation recommended that the focus be revised from eradication 

to monitoring and management, however in areas where plant density is low 

eradication continues to be a goal [37]. 

The skeleton weed eradication program was both labour intensive and costly. 

Dodd considered a range of plant species which have been the target of 

eradication programs from among approximately 200 species declared noxious 

and the subject of eradication programs [38]. Very few species have been 

successfully eradicated, and those which have were only present in a limited 

and known range or eradicated from a part of their previous distribution. Dodd 

promotes the use of ecological studies in assessing both the need for 

eradication and the potential for success thereof [38]. An important aspect of 

any successful eradication programme would be knowledge of where individual 

plants and patches of the target species are. Automated recognition of plant 

species could become an important part of such a programme. 

2.4 Spectral reflectance of plants 

The spectral reflectance of plants is determined by the cellular and biochemical 

structure of the leaves and the structure of the leaf canopy. Figure 2.2 shows 

the reflectance and transmittance spectra of a single leaf. The difference 

between the reflectance and transmittance spectra is the due to absorption. 

Within the visible spectrum (400-700 nm) the spectra are dominated by 

absorption due to various pigments, primarily chlorophylls. In the very near 

infra-red region of the spectrum the reflectance is high (close to 50%) and flat. 

Above 1300 nm, reflectance decreases again due to absorption by water 

present in the leaf structure. 
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Figure 2.2. Typical reflectance (below) and transmittance (above) spectrum of a 

green leaf (source: [39]). 

2.4.1 Leaf structure and biochemistry 

The characteristic green colour of plant leaves is due to the chemicals used for 

photosynthesis. Through photosynthesis, plants convert carbon dioxide and 

water into organic compounds using energy from light (CO2 + H2O photons → 

CH2O + O2). Plants use a range of chemicals for this purpose, primarily 

chlorophylls, specifically “chlorophyll a” and “chlorophyll b”, which are contained 

in chloroplasts within the mesophyll cells. Each of the chlorophylls absorbs light 

in a fairly narrow band of both the red and blue ends of the visible spectrum. 

Plants also contain other pigments, including carotenoids and xanthophylls, 

which absorb light and aid photosynthesis, however at a lower efficiency than 

that of the chlorophylls. Figure 2.3 shows the absorption spectrum of the two 

chlorophylls, the carotenoids and also of water and cellulose. 
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Figure 2.3. Specific absorption coefficient of chlorophyll a+b and carotenoids 

(cm2/mg) on the left axis; and of water (/cm) and cellulose (cm2/g) on the right 

axis (data source: [40]). 

The absorption spectrum of water starts at wavelengths longer than 950 nm but 

has little effect below 1200 nm. There are three main absorption peaks at 1450, 

1940 and 2500 nm as shown in Figure 2.3. The absorption spectrum of leaf dry 

matter is very low in the visible and near-infrared, and stronger at wavelengths 

longer than 1200 nm. None of these compounds absorbs much energy in the 

region between 750 nm and 1250 nm, which explains why leaf reflectance and 

transmittance are high in this region. The high reflectance in the NIR plateau is 

determined by multiple scattering of light from interfaces between the cell walls 

and air gaps, particularly in the palisade mesophyll, as shown in Figure 2.4. [39, 

41]. 

The variation in reflectance spectra of plants can be explained by variation of 

pigment concentrations and cell structure within the leaves of different plants. 

Within a single species and individual plant these properties are affected by a 

range of factors, including the age and growth stage of the plant, water stress, 

nutrient deficiency and disease. 
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Figure 2.4. Diagram of leaf structure showing layers within the leaf and cell 

structure (source: [42]). 

When observing the reflectance spectra from a distance, as with remote 

sensing, the plant organisation also affects the observed spectra. The canopy 

reflectance is primarily determined by the leaf level reflectance but also affected 

by the leaf orientation and angle of incidence of light, the distribution of leaf 

angles and the multiple reflections of light from different leaves above and 

below each other. Many different models have been put forward to describe the 

interaction of light with leaves (both for single leaves and leaf canopies). The 

most widely tested and used is PROSAIL: a combination of PROSPECT for leaf 

reflectance modelling and SAILH, a bidirectional model of canopy 

reflectance [39]. 

SAILH (Scattering Arbitrary Inclined Leaves) is a one dimensional model of 

canopy reflectance which solves the scattering and absorption of specular and 

diffuse light incident on a leaf canopy (and the ground below). The model input 

is wavelength dependent transmittance and reflectance of the leaves and the 

reflectance of the soil. PROSPECT (Leaf Optical Properties Spectra) models 

the leaf as a stack of several plates with partially isotropic light source to model 

the surface roughness. The optical properties of, and the number of, plates are 
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determined by input parameters which describe the leaf structure, the average 

number of cell wall/air interfaces, the equivalent water thickness, the total 

chlorophyll content, the total carotenoid content and the dry matter (cellulose, 

lignin and protein) content. The radiative transfer is then calculated based on 

summing all the partial reflected and transmitted components of the incident 

light at each interface of the model [43]. These two models combined as 

PROSAIL can be used to estimate the leaf biophysical parameters which 

produced a measured reflectance spectra. 

2.4.2 Use of hyperspectral reflectance in remote sensing 

The relationship between plant physical properties and their reflectance spectra 

has been utilised by remote sensing in order to determine many different 

characteristics of plants from their reflectance spectra. The range of plant 

properties which have been examined in relation to their multi-spectral and 

hyperspectral reflectance data includes: vegetation type [44, 45], leaf cover and 

wet biomass [46, 47], plant health [48], nitrogen status and requirements of a 

crop [49], chlorophyll and other pigment concentrations [50], the relationship of 

chlorophyll concentration to stress [48], plant uptake of heavy metals [51], as 

well as the presence of weeds [52]. Many other studies have also looked at the 

relationship between plant biophysical properties and the reflectance spectra 

observed either at the leaf level, canopy level or from remote sensing and found 

correlations between them. The goal with most such studies is to find a 

relationship between one or more of these inter-related factors and the resulting 

spectra which can be used to make predictions about the biophysical parameter 

across a broad range of species and environmental conditions. 

Remote sensing with hyperspectral reflectance data usually provides a large 

volume of data related to the properties of plants of which a large fraction is 

redundant or not related to the plant characteristics of interest. There are 

broadly two different approaches to dealing with this volume of data for the 

purpose of determining the properties of plants. The first is to use all of the data 

available in the spectrum and to use a model such as PROSAIL to determine 

the biophysical parameters which best match the measured spectra. This is a 

computationally intensive approach; however it does give the most reliable 

results. The second approach is to determine which part of the spectrum is 
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most highly correlated with the plant properties of interest and derive an 

empirical relationship between those properties and an index made up of some 

combination of reflectance values at given wavelengths. Hatfield et al. provided 

a comprehensive review of such indices relevant to agriculture [53]. 

2.4.2.1 Methods of optimal waveband determination  

A range of techniques have been used to determine the optimal wavebands for 

estimation of biophysical parameters and also for plant classification. Selecting 

wavebands with a high correlation between the parameter of interest and the 

reflectance in that waveband is frequently used to find one or a few wavebands 

which can be used to form a predictive index e.g. Zhao, et al. found optimum 

reflectance ratios to estimate nitrogen content in cotton leaves via linear 

regression analysis of reflectance and leaf nitrogen content [54]. A similar 

exploratory technique was used by Gitelson et al. to find features in spectral 

reflectance with a high correlation to carotenoid content [55]. In the domain of 

classification, a broader range of techniques have been used. This may be 

classification into species or other classes such as healthy/diseased or 

crop/weed. Thenkabail et al. reported a study of hyperspectral reflectance data 

for plant discrimination with a range of crops, weeds and shrubs [56]. The study 

explored techniques to identify and discard redundant information in the 

spectral data and stepwise discriminant analyses to identify optimal wavebands 

for plant classification. A lambda-lambda R2 model determined cross-correlation 

between two wavebands (λi, λj) for all pair of wavebands. Pairs of wavebands 

with a high correlation were associated with redundant information. Low 

correlation indicated unique information about the plant species. This test was 

best suited to individual species where the spectra were mostly similar. 

Two other techniques assessed by Thenkabail et al. were principle component 

analysis and stepwise discriminant analysis [56]. Both these techniques have 

been used broadly for the determination of optimal wavebands or formulation of 

new indices. A discriminant analysis determines a function of variables which is 

able to separate observations into classes. This function is often a linear 

combination but many other functions have been used. For spectral reflectance 

data a stepwise method is used where wavebands which improve the 

classification are retained and wavebands which inhibit classification are 
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rejected [56-58]. Principal component analysis (PCA) transforms a set of 

observations (in this case the reflectance at each waveband) into a linear 

combination of principle components. The principle components are linearly 

independent eigenvectors calculated to have decreasing magnitude, i.e. the first 

principle component accounts for as much of the variability in the data as 

possible and each successive component accounts for as much of the 

variability as possible while being linearly independent of the previous 

components. Principle component analysis of hyperspectral data using only two 

components (followed by discriminant analysis) was used by Castro-Esau et al. 

to classify 12 species of lianas (woody vines) and 5 species of tree into two 

classes [44]. An alternative to principle component analysis is wavelet analysis; 

see for example Okamoto et al., where wavelet analysis was used to classify 

sugarbeet and weeds with hyperspectral reflectance data [59]. 

2.5 Weed detection for site specific weed management 

Reliable information on weed abundance, distribution, and change over time is 

essential to evaluate control strategies, prevent spread to clean areas and 

improve weed management. Weed mapping which relies on human observation 

is time consuming, expensive and inefficient, especially when the target weeds 

cover a wide area. Several attempts have been made to discriminate plants with 

optical and near-infrared images using either multispectral or hyperspectral 

imagery. These images may be captured from aerial or satellite platforms as 

well as proximate sensing from vehicle mounted devices. Remote sensing is 

limited to imaging and has lower resolution – generally at the scale of whole 

plants or larger. Proximate sensing can use either imaging or non-imaging 

sensors, and provides resolution below the size of individual leaves. A selection 

of previous studies using these techniques is presented here. 

2.5.1 Weed mapping 

Weed detection on a large (whole field) scale gives a weed map for the field. 

This weed map can be integrated with other available information when making 

decisions about weed control strategies to increase crop yield and quality. 

Timmermann et al. conducted a four year long study on the effect of site 
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specific weed management in four crops [25]. Weed maps were created from 

manual sampling of weed density on a grid with a spacing of 7.5-15 m and 

linear triangular interpolation between the sampling points. Significant herbicide 

savings (on average 54%) were attained for all crops over the four year period 

from this very labour intensive process. While such study does not present an 

economically viable method of site-specific weed management, it does show 

what benefits might be afforded from weed maps which are produced from 

remotely sensed data. 

Remote sensing with multispectral or hyperspectral imaging has been 

investigated for determination of crop type and for weed presence. Thenkabail 

used hyperspectral data from Hyperion with a spatial resolution of 30 m and 

multispectral data from IKONOS with a spatial resolution of 4 m to estimate 

biomass and classify African forests into different classes [45]. An accurate 

classification rate of 96% was achieved in this study with the hyperspectral 

data, but the multispectral data showed poor performance. Even with a similar 

accuracy for weed classification in crop, the 30 m resolution is not sufficient to 

manage small patches of weeds which frequently occur. Aerial imagery has 

higher spatial resolution, such as the multispectral imagery with a spatial 

resolution of 1 m collected by Goel et al. [52]. This study attempted to detect 

weeds in corn and soybean at a density above a predetermined economic 

threshold with success for some weeds but was not able to detect grasses in 

either corn or soybean. 

Hyperspectral reflectance data has also been collected from a few meters 

above the canopy [56, 60] and from leaf level [57, 58]. Okamoto et al. used a 

hyperspectral camera to record images with high spectral and spatial resolution 

of sugarbeet and weeds [59]. Rather than selecting specific wavebands a 

wavelet analysis of the resulting spectra was used and better than 80% 

accuracy in identifying sugarbeet and weeds was reported. 

An interesting outcome from the remote sensing studies, which is confirmed by 

the leaf level hyperspectral reflectance sensing, is that narrow wavebands 

generally provide improved classification over broad wavebands. Where 

classification of weeds is successful, the number of wavebands required ranges 

from 5-22, depending on the number of species, their similarity and the 
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environmental conditions. In all such cases addition of further wavebands does 

not improve the classification which confirms that there is much redundant 

information in the reflectance spectra. Careful selection of the wavebands used 

is required which considers the range of environmental conditions to be 

experienced. 

The ability to combine weed maps with previous field data to produce a 

treatment map prior to application is an advantage over real-time mapping. 

However; the limited spatial resolution, the time delay and the cost of data 

collection and analysis have so far seemed to prevent this method from 

becoming economically viable [9]. 

2.5.2 Real-time weed detection 

Proximate or on the ground sensors which are mounted to a vehicle or a spray 

boom allow real-time detection and immediate treatment of weeds in a crop 

field. Interpretation of this information in real time is required to automate 

herbicide spraying as the machinery passes over the crop. Real time methods 

can be performed at an individual plant scale allowing spot spraying in place of 

uniform treatments over large areas. 

Ground based sensing can provide resolution at the single leaf scale or smaller 

which allows a range of different techniques to be used for plant classification. 

Small weeds can also be detected which can be important to prevent a single 

successful weed from leading to future problems. There is a greater degree of 

control available on the ground with the potential for use of artificial lighting, 

control of ambient lighting and multiple viewing angles. Artificial lighting also 

allows the use of fluorescence spectroscopy which may aid in discrimination of 

weeds from crops [61]. 

2.5.2.1 Non-imaging sensors based on spectral reflectance 

Several multiple narrow spectral band sensors have been developed which 

capture light using a single sensor. The field of view of these sensors is still 

larger than individual plants but they have been successful detecting small 

plants including patches of seedlings. They have been successful in detecting 
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green plants against a soil background (Green-from-Brown) but not 

discriminating different plants. 

Felton et al. developed an optical sensor based on the ratio of reflectance 

between red and near infra-red wavebands [62]. Two photodetectors fitted with 

appropriate filters recorded the reflected light which was adjusted for incident 

solar radiation by two corresponding photodiodes which were directed upwards. 

The device was commercially available as the DetectSpray® system for a period 

of time, but is no longer available. Its use in fallow weed control was reported by 

Blackshaw et al. along with limitations on size of plants detectable and the 

daytime operation [63]. 

NTech Industries manufactures weed detection equipment called 

WeedSeeker®, which is a commercially available sensor for Green-from-Brown 

detection. This device uses two red and infrared light emitting diodes to 

illuminate the ground and a photodetector to record the reflected light. It is used 

in fallow weed control [27] and has also been used under hooded sprayers for 

between row weed control [64]. WeedSeeker appears to be the only 

commercially available device for automatic plant detection in the agricultural 

industry. 

Wang et al. developed an optical weed sensor using a five band multi-spectral 

sensor based on the spectral characteristics of weeds, crops and soil [58]. This 

system still had low spatial resolution but correct classification of crop vs. weeds 

was reported when the density of plants was above single plants. 

2.5.2.2 Imaging sensors and machine vision 

Higher spatial resolution is attainable with image captured from a video camera 

and more recently from a high-resolution digital camera. Plant detection is 

dependent on machine vision to recognize plants in the image, occasionally 

with the benefit of broadband spectral information from RGB cameras. Machine 

vision sensors have for a long time been limited by the image data processing 

time required – however the limitation on vehicle speed will decrease with 

increasing processing power. 
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The general process used with machine vision starts with image acquisition – 

either with a colour camera or perhaps with filters placed in front of a black and 

white camera sensitive to the visible and very near infrared. Image 

enhancement is applied to improve the quality of the image for subsequent 

processing. The result is another image with enhanced edges, contrast, colour 

or other improvement in image quality. Calculation of indices from individual 

waveband information may also be used to create a new image containing the 

red-green ratio, the red-NIR ratio where NIR is also available or some other 

combination. Segmentation then detects individual leaf and plant regions, 

separating them from the background soil. Feature extraction can involve 

analysis of leaf shape, texture analysis or plant organisation (via fractal 

dimension). Finally, classification determines which plant best matches the 

extracted features. 

Textural features in each of four broad wavebands was used by Franz et al. [65] 

to discriminate between three broadleaf weeds and soybean. Image acquisition 

used a CCD camera in a laboratory setting with controlled lighting using four 

filters to provide broadband spectral information (blue, green, red and infrared). 

Classification using a discriminant analysis was successful when the patches 

used for texture analysis were selected manually. 

Zhang and Chaisattapagon used a CCD camera with six different filters to 

capture images in a greenhouse environment from wheat and weeds [66]. They 

trialled colour, shape, and texture analysis in order to discriminate between the 

different plant species studied. The leaf shape and texture analysis (based on 

Fourier spectrum) were successful but were based on manual selection of the 

leaf areas used in the analysis. 

These early machine vision trials were conducted under stationary, controlled 

lighting conditions without real-time constraints. However several systems have 

been trialled under field conditions with modern cameras and increased 

computing power. Tian designed a machine vision system with real-time use as 

the primary design goal  [67]. A CCD camera captured images from an area 

covering multiple rows (3 m width) and a Bayesian classifier was used to detect 

plant density [68]. The plant detection was only applied to control zones in the 
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between row area, so this system is not capable of detecting single plants nor 

discriminating weeds from crop when the crop covers a larger area. 

2.5.2.3 Hybrid spatial and multispectral sensors 

A combination of narrow band spectral information and high spatial resolution 

appears to be the most likely solution to the problem of detecting weeds. High 

spatial resolution is desirable for spectral based sensors because it avoids the 

problem of spectral mixing. An imaging spectrograph has been used in several 

studies to provide both high spectral and spatial resolution. A single line from 

the ground is observed on a sensor which resolves each pixel into a spectral 

line. Vrindts used such a system to correctly discriminate corn, sugarbeet and 

weeds with an accuracy of greater than 90% [57]. However, this system was 

only tested with images collected while the device was stationary. Similar 

results were reported by Noble et al. for wheat and weeds [69]. 

Raymond et al. designed a system to measure reflectance in two narrow 

wavebands using red and NIR laser diodes and a photodiode to measure the 

response [70]. The modulated output beam is scanned across the ground 

providing a high spatial resolution. Only Green-from-Brown detection was 

attempted with this device but it was able to detect plants with a size as small 

as 5 mm wide at a speed of approximately 2 km/h. 

2.6 Laser based spectral reflectance sensor 

The Photonic Detection Systems prototype weed sensor described in 

Section 1.3 is a non-imaging spectral reflectance based sensor. It used two 

lasers in the red and very NIR bands to illuminate the ground and target plants. 

The use of lasers in place of LEDs provided reflectance properties of plants 

from a small part of the leaf area. This information was combined with 1-D 

spatial information acquired while the device travelled along the ground. The 

spacing between detection modules consisting of two lasers plus a 

photodetector significantly limited the potential to detect small plants. Leaf 

orientation also affected the leaf size determination and the device was very 

sensitive to distance from the sensor to the plant. 
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Further development of this spectral reflectance based weed sensor is part of a 

larger research project undertaken in collaboration between the Western 

Australian Centre of Excellence for MicroPhotonic Systems (COMPS) and 

Photonic Detection Systems, Pty Ltd (PDS). A prototype spectral reflectance 

based weed sensor using three wavelengths was developed by COMPS [10]. 

Three lasers were used (two red and one NIR) which created a structured light 

source to illuminate the ground and plants. The three wavebands were selected 

from a limited number of commercially available laser wavelengths and are 

within regions of the reflectance spectra which have previously been reported to 

provide sensitivity to different plant species.  

The structure of the weed sensor is shown in Figure 2.5. The laser output 

beams were collimated with a 4 mm diameter and combined using wavelength 

selective filters. This arrangement ensured that when each laser was switched 

on it illuminated the same spot on the plant or ground. The single output beam 

from each laser module was divided into 14 beams using an optical cavity. The 

front surface of this cavity was coated with a high-reflection coating (around 

90%) and the rear surface had a 100% reflection coating. The tilt angle of the 

cavity gave an output beam spacing of approximately 13 mm. A line scan 

camera provided measurement of the reflectance from each of the 28 spots 

over the 500 mm field of view. Each laser was sequentially turned on and an 

image captured from the camera. Software running on a computer controlled 

the operation of the lasers and camera as well as data processing. For each 

laser a peak was observed in the captured image. The peak values determined 

for each wavelength were used to calculate spectral slopes of the target plant 

and these slopes used to predict the target plant. The combination of high 

spatial resolution and multiple narrow waveband spectral resolution provided 

sufficient spectral information to discriminate several different plants and 

allowed detection of narrow-leaved plants [10]. 
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Figure 2.5. Laser based spectral reflectance sensor with lasers, optical cavities 

and line scan camera. Three optimised wavelengths are sequentially switched 

on for illumination along one optical path, striking the same spot on the leaf, 

stem or soil. An optical cavity enables multiple beams to be generated using a 

single laser source. A line scan camera monitors the intensity of light reflected 

by the plants or soil. The controller calculates plant spectral properties and 

detects target plants. 

Figure 2.6 shows the principle of a real-time weed monitoring and spraying 

system based on this weed sensor which is able to detect weeds within a crop 

and apply herbicide only to the weeds. 
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Figure 2.6. Principle of real-time weed detection and herbicide application 

(adapted from:[10]). 

The prototype weed sensor described above was the starting point for this 

research project. Several limitations of the design prevented it from being used 

in outdoor field conditions. Throughout this project the design was developed to 

a point where it could be used to discriminate three different broadleaf plants at 

a speed of 5 km/h. 

2.7 Summary 

The management of weeds in agriculture is an expensive and time consuming 

activity for farmers. Integrated weed management is a holistic management 

technique which advocates the use of a broad range of weed control methods. 

The long term effects of any control method used need to be considered as part 

of the decision making process. With the size of farms continuing to grow, 

software based crop management tools are essential to synthesize the 

available spatial data and assist in crop management decision making. The 

emerging practice of precision agriculture provides an even greater volume of 

spatial data on the variability across the farm. This spatial awareness and the 

availability of technology have allowed the resurgence of crop management at a 

fine-grained scale. In the area of weed management however, site-specific 

weed control is limited to fallow or between row weed management because 

there are currently no commercially available precision agriculture devices 
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Table 2.1. Summary of approaches to real-time crop/weed discrimination. 

Author Approach Used Limitations 

Felton et al. [62]. Non-imaging spectral 

reflectance using ambient light 

with 2 narrow wavebands. 

Weed/Soil discrimination only; 

limited to daytime operation. 

NTech Industries 

Inc. [8]. 

Non-imaging spectral 

reflectance with 2 narrow 

wavebands. 

Weed/Soil discrimination only. 

Wang et al. [58]. Non-imaging spectral 

reflectance using artificial 

lighting with 5 wavebands. 

Low spatial resolution; limited to 

laboratory conditions. 

Franz et al. [65]. Multi-wavelength imaging with 

four wavebands (RGB and 

NIR) using texture analysis. 

Not real-time; required manual 

image segmentation for best 

results. 

Zhang et al. [66]. Multi-wavelength imaging with 

six wavelength bands using 

leaf shape and texture 

analysis. 

Not real-time; required manual 

image segmentation for best 

results. 

Tian et al. [67]. Low resolution NIR imaging 

using intensity thresholding or 

wavelet decomposition within 

management zones. 

Weed/Soil discrimination only, 

thus limited to fallow or between 

row weed control. 

Vrindts [57] Hyperspectral line scan using 

ambient light and up to 12 

narrow wavebands. 

Not real time; reliant on uniform 

ambient light  

Raymond et al. 

[70] 

Multi-wavelength spectral 

scanning with 2 narrow 

wavelength bands. 

Weed/Soil discrimination only; 

low speed (2 km/h). 

Sahba et al. [10] Multi-wavelength spectral line 

scanning with 3 narrow 

wavebands 

Limited to laboratory conditions. 
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capable of discriminating between crops and weeds. The only exceptions to this 

are labour intensive manual spot spraying or weed mapping which relies on 

human decision making. 

Previous research into plant classification and weed detection shows promise 

for the use of narrowband multispectral sensing to detect weeds in a crop. A 

summary of previous studies attempting to discriminate weeds from crop in real-

time is presented in Table 2.1The reduction of spectral resolution to a smaller 

number of wavebands by discarding redundant information was able to maintain 

classification results. The research reported in this thesis builds on the 

multispectral sensor described in Sahba et. al., which uses a structured light 

source to provide improved spatial resolution [10]. Additionally, a survey of 

reflectance spectra was undertaken in two crops and important weeds. This 

allowed a discriminant analyses to identify wavebands useful for classification of 

plant species within a small range of wavelengths suitable for laser based 

spectroscopy. The detection of a small number of spectral reflectance features 

allows real time use on a spray boom, with the potential to correctly detect 

weeds under the required environmental conditions. The development of an 

optical weed sensor that is capable of operation under field conditions will lead 

to the development of a commercially-viable weed sensor capable of 

discriminating weeds amongst a crop. Such a sensor will provide a key 

component in precision agriculture practice and would result in substantial 

financial and environmental benefits through the reduction of herbicide use. 
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Chapter 3 

Measurement of the Spectral Reflectance of Plants 

3.1 Introduction 

Spectral reflectance based sensors have shown the potential to be able to 

discriminate different plant species from each other and could be developed into 

an automatic spot spraying tool in agriculture. Successful development of such 

a sensor requires confidence that there is sufficient difference in the spectral 

properties of plants in order for discrimination to be possible. With this 

confidence it is then necessary to have a spectral reflectance sensor capable of 

measuring plant spectral properties in real time without the carefully arranged 

setup of a laboratory spectrometer. 

This chapter covers the materials and methods used to measure the spectral 

reflectance of plants. A survey of spectral reflectance of four crops and the 

weeds growing amongst those crops was conducted as part of this research 

project. The spectrometer setup used to conduct the survey of leaf level 

spectral reflectance is described in Section 3.2. A prototype spectral reflectance 

sensor previously developed at the Centre of Excellence for Microphotonic 

Systems (COMPS) was outlined in Section 2.6. The components which make 

up this system are described and characterised in the rest of this chapter. The 

laser diodes and drivers used to control them are described in Section 3.3. The 

passive optical components used to create the structured light source from 

individual laser beams are described in Section 3.4. The line scan sensors used 

to record the intensity of reflected light are characterised in Section 3.5, along 

with an assessment of the required performance to reach typical farming vehicle 

speeds. Section 3.6 describes the ruggedisation of the prototype such that it will 
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maintain its performance in the high vibration conditions endured by agricultural 

implements. Lastly, the hardware required to independently control the 

prototype and perform data processing is described in Section 3.7. 

3.2 Methods for spectral reflectance measurements 

The difference in optical properties of plants can be used to discriminate 

between different species and monitor the status of plant growth, health, and 

water and nutrient stress. The diffuse spectral reflectance measured in the wide 

wavelength range from 400-2000 nm is used to investigate in which 

wavelengths the species differences are clearest. This information can be used 

to select the optimal wavelengths of light sources required in the system to 

discriminate plants described in this thesis. 

3.2.1 Experimental setup for spectral reflectance measurements 

The schematic diagram and the experimental setup used to measure diffuse 

spectral reflectance are shown in Figure 3.1 and Figure 3.2, respectively. Two 

fibre spectrometers are used to cover the wavelength range from 400-2000 nm. 

The visible spectrum is recorded by a USB2000 spectrometer which covers the 

range from 200-870 nm and the near-infrared (NIR) spectrum is recorded by a 

NIR256-2.1 spectrometer which covers the range from 870-2100 nm. A HL-

2000 tungsten-halogen lamp with an emission spectrum from 360-2000 nm is 

used as a broadband light source. The sample is illuminated through a multi-

core fibre ending in a probe oriented at 45° incidence. The diffusely reflected 

light is captured by the same probe and is divided between the two 

spectrometers using a trifurcated fibre assembly. Both spectrometers and the 

light source can be operated from a 12V battery power supply which allows 

spectral measurements to be made in the field. Field measurements allow the 

spectra to be measured a short time after leaf samples have been collected. 
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Figure 3.1. Schematic diagram of the setup for spectral reflectance 

measurements of plants and other objects. 

 

Figure 3.2. Setup used for spectral measurements of plants and other objects: 

1) Halogen light source; 2) Visible spectrometer; 3) NIR spectrometer; 4) Multi-

core optical fibre; 5) Acrylic stage; 6) 100% reflectance standard. 

3.2.2 Procedure for spectral reflectance measurements 

The reflectance spectra of plants were recorded using a laptop computer to 

control both spectrometers and record the data. The procedure required 

calibration of the system by recording a white reference spectrum from a 100% 

reflectance standard and a dark reference with the light source blocked. The 

standard used is a white polytetrafluoroethylene (PTFE) diffuse reflectance 

standard. Prior to this calibration the light source and NIR spectrometer were 

allowed to stabilize for five minutes. The NIR spectrometer uses a 

thermoelectric cooler to cool the sensor to -15°C. For each plant measured, 
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three leaves from the plant were collected and three spectra recorded from 

different positions of each leaf. Each leaf was placed on an acrylic stage to 

minimise back reflection of the light transmitted through the leaf. This is 

significant for the NIR spectrum because very little NIR light is absorbed by the 

leaf. The software used was supplied by the spectrometer manufacture. This 

software stores the calibration spectra, records the spectrum from each position 

on the leaf, and calculates the reflectance spectra using the calibration data. 

This calibration data was updated at the start of measurement for every plant to 

adjust for small changes in the lamp output and dark current over time. 

3.2.3 Interpretation of plant reflectance spectra 

A typical reflectance spectrum recorded from a green leaf is shown in 

Figure 3.3.The reflectance spectrum shows different behaviour across the 

visible to NIR regions of the spectrum. In the visible region (400-700 nm) the 

reflectance is low, less than 25% for all green leaves and as low as 5% in the 

red (650-690 nm) and violet and blue (400-490 nm) parts of the spectrum. 

 

Figure 3.3. Example reflectance spectra recorded from a leaf showing 

characteristic wavelengths. 

The system for discriminating plants discussed in the following section relies on 

differences in the slope of the spectral reflectance between some characteristic 

wavelengths. From Figure 3.3, several characteristic wavelengths can be 

identified which define the regions of high slope. The most striking feature is the 

red edge around 700 nm. This feature is commonly used to detect vegetation in 
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remote sensing applications and is the basis for vegetation indices calculated 

from reflectance at red (670 nm) and NIR (>750 nm) wavelengths. The other 

characteristic wavelengths considered are the peak of green reflectance at 

530 nm and the inflection at 470 nm. These features are all related to the 

pigment concentrations discussed above and could be useful for the 

determination of plant type based on differences in their physiology. 

The potential for use of this system in spot-spraying of weeds in sugarcane, 

cotton and other broad-acre crops is explored through a reflectance spectra 

survey presented in Chapter 5. The reflectance spectra survey gave an 

assessment of the potential for the three wavelength weed detection system to 

discriminate crop from weeds. In addition, a discriminant analysis explored the 

use of additional wavelengths to improve the discrimination rate and to validate 

the ability to discriminate based only on spectral reflectance at wavelengths of 

commercially available lasers. 

3.3 Laser diodes and laser drivers 

The weed detection system developed throughout this thesis determines 

spectral properties by illuminating the ground with light at specific wavelengths 

and capturing the reflected light. Using lasers as the light source for this system 

gives two main advantages over other light sources. The spectral linewidth for 

lasers is very narrow compared to other sources, from 5 nm wide to less than 

0.5 nm wide depending on the type of laser. This allows narrow features of the 

reflectance spectra to be identified and used in discrimination. Secondly, laser 

output can be collimated in a narrow beam with low divergence. This allows 

detection of the spectral properties from small samples such as individual 

leaves on young plants and the narrow leaves of grasses. Additionally the 

spectral properties of different plants within the field of view of the sensor can 

be individually determined from the separate beams which are projected. 

3.3.1 Laser specifications and selection of laser wavelengths 

The most appropriate lasers for this project are semiconductor diode lasers. 

These lasers are cost effective, compact and available with output optical power 

ranging from approximately 1 mW up to 300 mW. Power consumption for the 
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low optical power range (<100 mW) of these lasers is less than 200 mW, 

making them suitable for portable applications. Laser diodes have good 

temperature stability of the wavelength and can be driven in either continuous 

or modulation mode by using either constant current or constant power laser 

drivers. There is a relatively wide range of commercially available wavelengths, 

particularly in red and NIR parts of the spectrum. Many laser diodes are 

available in rugged packaging which makes them less susceptible to 

mechanical vibration and impact than other types of lasers. 

From Figure 3.3, the characteristic wavelengths in the visible and very near 

infra-red spectrum are 470, 530, 670 and 750 nm. The spectral slopes derived 

from these wavelengths are: 

 𝑆1 = 𝑅535−𝑅475
𝜆535−𝜆475

 (3.1) 

 𝑆2 = 𝑅670−𝑅535
𝜆670−𝜆535

 (3.2) 

 𝑆3 = 𝑅750−𝑅670
𝜆750−𝜆670

 (3.3) 

Where Rλ is the reflectance value and λn is the wavelength in nanometers. 

Semiconductor laser diodes are commercially available for 670 nm and 750 nm. 

There are commercially available lasers at 474 nm and 532 nm. These lasers 

use a complex optical process to generate the output beam. A semiconductor 

laser diode such as 808 nm is used to pump a neodymium-doped crystal 

medium which emits light at a longer wavelength. A non-linear optical crystal is 

then used to frequency double this light to produce the required output 

wavelength. The complexity of this process makes these diodes inefficient, less 

reliable and expensive for most commercial applications. More recently, blue 

laser diodes have also been developed in the wavelength range of 400-450 nm. 

The closest commercially available semiconductor laser diode to 532 nm has 

wavelength of 635 nm and maximum optical power of 30 mW. 

The maximum optical power for the 670 nm laser diode is only 10 mW. At this 

wavelength the intensity of reflected light from green leaves is very low due to 
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the high absorption by chlorophyll. To improve the signal-to-noise ratio at this 

wavelength a laser diode with higher optical power is required. A laser diode 

with wavelength of 685 nm and maximum optical power of 50 mW is 

commercially available. Similarly for 750 nm, a suitable high power laser diode 

with wavelength of 785 nm is more readily available. The initial prototype used 

three lasers with wavelengths 635, 670 and 785 nm. In the second prototype 

the 670 nm laser diode was replaced by 685 nm, all of which are supplied by 

Blue Sky Research. These laser diodes were compact and were supplied with 

precision optics used to correct the aberrations of elliptical beams emitted from 

the laser diode. The output beam was collimated to a 4 mm diameter circular 

beam and had a near gaussian optical power distribution. 

Laser diodes are frequently packaged with a monitoring diode (MD). This 

additional photodiode receives a fraction of the output light from the laser diode 

and produces a small current proportional to the output power. A schematic 

representation of the diode connections is shown in Figure 3.4. 

 

Figure 3.4. Schematic symbol for M-type laser diode (LD) with monitoring 

diode (MD). 

3.3.2 Selection of laser drivers 

To prevent damage and to operate laser diodes in continuous, modulation and 

pulsed mode a laser driver is required. Two types of laser driver are commonly 

used: constant current and constant power laser drivers. The constant current 

type uses a current source with a regulated current output. The constant power 

type uses feedback from the monitoring diode to regulate the current supplied to 

the laser diode. Both types of driver were used in the development of this 
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project based on ICs supplied by iC-Haus. The constant power driver used was 

iC-WJ and the constant current driver used was iC-HK. Figure 3.5 shows the 

block diagram and minimum circuitry required for these components. 

 

Figure 3.5. Block diagram and minimum circuitry required for (a) iC-WJ 

constant power driver and (b) iC-HK constant current driver (source: iC-Haus 

datasheets). 

Figure 3.5 (a) shows the block diagram of the iC-WJ constant power driver and 

the minimum circuitry required to operate the laser diode. The output power is 

regulated by the value of RSET, which determines the current passing through 

ISET. A comparator matches the monitoring diode current by regulating the 

current suppled to the laser diode. This allows the driver to compensate for 

(a)

(b)
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changes in the efficiency of the laser diode, which is affected by temperature 

changes and by gradual degradation of the diode over its lifetime. The feedback 

from the monitoring diode allows the constant power driver to compensate for 

these changes in efficiency and provide a stable output power. This is simple in 

continuous mode but in pulsed mode or with arbitrary modulation the circuit 

design is more complex. The selection of component values for RSET and CI in 

Figure 3.5 (a) depends on the average laser current and on the frequency of 

modulation. The operating conditions of the laser diode are then limited by RSET 

and CI and if the switching frequency changes the laser output power would not 

be uniform within each pulse. 

Figure 3.5 (b) shows the block diagram of the iC-HK laser driver and the 

minimum circuitry required to operate the laser diode. This driver uses a 

voltage-controlled current source to regulate the current supplied to the laser 

diode. A resistor divider can be used as the voltage source VCI with a 

potentiometer to adjust the output power. Once the output power is set, the 

laser can be operated at any desired frequency without changing component 

values, solely by changing the input signal at EN1. The turn on time for the 

lasers using this circuit is determined by the speed of the iC-HK internal 

switches in series with the current source. This allows the laser to operate in a 

pulsed mode with frequency range from DC to over 100 MHz. The iC-HK has 

two channels in parallel which doubles the maximum current and also provides 

flexibility with multiple output power levels by independently switching one or 

both channels. 

The disadvantage of constant current laser drivers is the lack of optical 

feedback. This causes the output power to change with changes in the 

efficiency of the laser diode which, as mentioned, can happen for a variety of 

reasons. For the iC-HK driver care also needs to be taken with oscillation of the 

laser current due to the fast switching. This can cause overshooting of the laser 

power which can cause failure of the laser diode if it is operated near its 

maximum output power. 

Independent laser drivers were designed and built using a printed circuit board 

(PCB) that accommodated three drivers and included a connector for three 

laser diodes. The circuit diagrams for power and current drivers are shown in 
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Figure 3.6 and Figure 3.7, respectively. Both types of driver were used to 

control the laser diodes at various stages of the development of the weed 

sensor prototype. The description of the two types of laser drivers above shows 

clear benefits for each type of driver, however the operation of the weed sensor 

requires lasers be operated in pulse mode at variable frequency from 100 Hz to 

1 kHz. In this mode of operation it is difficult to select component values for the 

constant power driver, which provide the required flexibility. The constant 

current driver was therefore the most suitable for our prototype development. 

 

Figure 3.6. Schematic circuit diagram for iC-WJ constant power laser driver. 

 

Figure 3.7. Schematic circuit diagram for iC-HK constant current laser driver. 
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3.3.3 Performance of constant current laser driver 

Given the choice of constant current laser drivers the optical power stability 

becomes an issue. The operation of the weed sensor depends on reliable 

measurement of the reflected light intensity from a leaf at each wavelength 

used. This depends directly on the output power of the laser and any variation 

in the output power will result in a change in the spectral properties determined 

from the measurement of reflected light. The operation of the lasers using 

constant current laser drivers was evaluated independently to determine the 

turn on behaviour and the optical power stability. 

Figure 3.8 shows the turn-on response of the lasers when pulsed with a 

frequency of 5 kHz supplied from a function generator. This is the highest 

frequency that would be required during normal operation of the weed sensor. A 

fast optical receiver connected to an oscilloscope recorded the response of the 

laser diodes over a period of 2 µs and triggered to begin recording 0.3 µs before 

the beginning of each pulse from the function generator. The oscilloscope was 

connected to a computer which controlled the collection and storage of data 

using LabVIEW software. Significant oscillation within the first microsecond is 

evident for the 785 nm laser. During the operation of the weed sensor a line 

scan is captured after each laser is turned on. The line scan acquisition typically 

takes from 50-200 µs and can begin within 1 µs of the laser turn on signal when 

the lasers are controlled by the constant current drivers. 
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Figure 3.8. Turn on response of lasers using constant current drivers with 

driving frequency of 5 kHz and duty cycle of 50 %. Laser wavelength is 

(a) 635 nm, (b) 670 nm and (c) 785 nm. 

The optical power stability of the lasers was evaluated by recording the optical 

power over a period of 10s. During this time the laser was turned on and left on 

until the end of the measurement. Each wavelength was recorded separately. 
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The lasers were installed in the weed sensor and the optical power of the first 

beam measured with a Newport power meter. The recorded output power when 

using constant power drivers shows the expected constant power with variation 

less than 1%. The stability of the output power when using constant current 

laser drivers varies depending on the laser wavelength. The reduction in output 

power was measured by monitoring the difference between the maximum 

output power and the power at the end of the 10 s measurement interval. 

Table 3.1 presents these results for both types of driver. 

Table 3.1. Optical power for beam 1 over a period of 10s when using constant 

current drivers on independent driver PCB. 

 Constant current laser driver Constant power laser driver 
  635 nm 670 nm 785 nm 635 nm 670 nm 785 nm 
Max Power (µW) 832 685 415 594 582 384 
Final Power (µW) 711 664 380 591 581 383 
Decay (%) 15 3 8 0.5 0.2 0.3 
 

The optical power of the lasers using constant current drivers was not stable 

after the initial turn on of the laser. There was a reduction of up to 15% of the 

laser power which was most likely due to the effect of localised heating in the 

laser driver and the laser diode. An increase in temperature of the laser diode 

junction reduces the efficiency and therefore the output power of the laser. The 

independent driver PCB with constant current laser drivers used in this 

experiment did not have a thermal contact pad for the driver ICs. For the 

second prototype of the weed sensor a single PCB was designed to control the 

lasers, image sensor and data processing. This PCB included a thermal pad, 

which gave some improvement in the optical power decay. Figure 3.9 shows 

the total optical power of the 635 nm laser. The laser was pulsed at 125 Hz with 

a duty cycle of 25 % and the optical power recorded with the Newport power 

meter, using its statistics function to capture the data. This showed a decay of 

5 % in optical power during the first three pulses and stable average optical 

power for the next 0.5 s. After one minute the optical power remained within 

1 % of this stable output power. It is apparent that the optical power of the laser 

was not stable during the pulse. This effect was probably due to the thermal 

effects in the laser diode itself. The average power during each pulse was very 

stable and this was the important factor in determining reliable measurement by 

the weed sensor of the reflected intensity for each wavelength. 
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Figure 3.9. Optical power of 635 nm laser when using constant current drivers 

and pulse frequency of 125 Hz. 

3.3.4 Improvement of constant current laser driver 

Several modifications were made to the constant current laser driver circuit to 

improve the performance as characterized in the previous section. The second 

channel in the constant current driver was enabled permanently to provide a 

below threshold current to the laser diode while it is switched off. This 

modification reduced the change in current when the laser was switched on or 

off and also warmed up the driver and laser diode while they were switched off. 

The second modification was insertion of an inductor in the switching channel to 

lengthen the turn on time of the laser diode. This change was intended to 

suppress the oscillation in output power after laser turn on. The circuit diagram 

of the modified laser driver is shown in Figure 3.10. 
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Figure 3.10. Schematic diagram of 2-channel constant current laser driver with 

additional inductance to lengthen turn on time. 

The inductor L1 and resistance R4 in Figure 3.10 give a time constant of: 

 𝜏 = 𝐿
𝑅

=  150µH
10Ω

= 15µs (3.4) 

Figure 3.12 shows the turn on response of the 785 nm laser when using this 

modified laser driver as measured by a fast optical receiver connected to a 

digital oscilloscope. The laser enable signal occurs at 0 µs and the laser 

reaches threshold around 5 µs later. After 35 µs the output power has reached 

its maximum value. The inductance used is certainly sufficient to remove the 

oscillation shown previously however it could be lowered to reduce the turn on 

time. The output power stability with this driver is also improved. Figure 3.11 

shows the total optical power of the 635 nm laser after the first pulse and 

Table 3.2 shows the initial and final optical power for one beam from the weed 

sensor recorded over an 18 hour period while the lasers were continuously 

operating with a switching frequency of 120 Hz. 
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Figure 3.11. Optical power of 635 nm laser when using constant current drivers 

with additional inductance and pulse frequency of 120 Hz. 

 

Figure 3.12. Turn on response of 785 nm lasers using constant current drivers 

with additional inductance to lengthen turn on time. The laser enable signal 

starts when time = 0 µs 
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Table 3.2. Optical power for beam 1 of two lasers over a period of 18 hours 

when using 2-channel constant current drivers. 

  635 nm 785 nm 

Initial Power (µW) 214 383 

Final Power (µW) 220 366 

Change (%) 3 5 
 

The 2-channel constant current driver shows significant improvement in the 

laser optical power stability when compared with the original constant current 

driver. While the turn-on time is longer than necessary, this additional 

stabilisation time can occur during data transfer of the previous scan and has 

negligible impact on the speed of the weed sensor. 

3.4 Thin film coatings 

The illumination of multiple targets with light from multiple lasers as described in 

Section 2.6 required a beam combiner and a multi-spot beam generator. These 

optical components required specific reflectance and transmittance properties at 

the wavelengths of the lasers used for illumination. For each beam combiner a 

high reflectance at one wavelength and high transmittance at other wavelengths 

was required to minimise the loss of optical power. For the optical cavity a 

specified uniform transmittance was required over the range of laser 

wavelengths used so that the total optical power of the laser was distributed 

over all beams generated by the cavity. Thin film optical filters are well suited for 

this purpose because they can be designed to meet specific requirements on 

reflectance and transmittance over a wide range of wavelengths. 

3.4.1 Thin film interference filters 

Thin film optical filters made from layers of dielectric materials or metals have 

been in development and use since the 1930’s. They are composed of a stack 

of layers of materials with different refractive indices and thicknesses less than 

the wavelength of light. There are many different structures of thin films made 

up of stacks of alternating layers of different materials. The interaction of light at 

the boundary of each layer results in partial reflection and transmission of the 
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light at each boundary. Multiple reflected and transmitted beams recombine at 

the top and bottom surfaces of the thin film and this recombination can be either 

constructive (additive) or destructive (subtractive) depending on the phase 

difference between the separate components [71]. The multiple reflected and 

transmitted components from a single layer thin film are shown in Figure 3.13. 

 

Figure 3.13. Multiple reflected and transmitted beams from the interfaces 

between air, a single layer thin film and substrate. 

The reflectance and transmittance properties of thin film optical filters can be 

determined from the summation of the interference effects between the multiple 

beams transmitted through each interface. This depends on the angle of 

incidence and the refractive index and thickness of each layer which make up 

the thin film. Through selection of materials with different refractive indices and 

careful design of the layer structure and the thickness of each layer, it is 

possible to tailor the optical properties of the film for many different applications. 

Some of the applications of thin film optical filters include: antireflection coatings 

on lenses or substrates, high reflectance coatings on mirrors, band-pass filters, 

dichroic filters and band-stop filters. Each type of filter is characterised by the 

range of wavelengths for which they are transmissive and reflective [71]. 

3.4.2 Beam combiners for laser module 

The arrangement of lasers and photodiodes used by Weed Control Australia, 

Pty Ltd, in their original weed sensor prototype required the target to be at a 
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specific distance from the sensor for a consistent measurement of the reflected 

light intensity. To overcome this problem the lasers need to be aligned up to the 

maximum distance from the sensor to the ground. This could be achieved by 

combining the output beams with two beam splitters oriented at 45°. One beam 

splitter (F1) combines the beams from the two visible lasers (LD1 and LD2) and 

the second beam splitter (F2) adds the beam from the IR laser (LD3) as shown 

in Figure 3.14. The beam combiner directs the beams from each laser into a 

single path making them collinear (or on the same line). 

 

Figure 3.14. Schematic of laser module showing an independent laser driver 

PCB, three laser diodes and two thin film beam combiners. 

The laser diodes are each held in place by a block of aluminium with a 

cylindrical hole slightly larger in diameter than the case of the laser diode. An 

adhesive is used to fix the laser diode in place. This aluminium block and the 

base of the beam combiner module also serve as a heat sink for the laser 

diodes. The output beams of the three lasers are aligned by careful adjustment 

of the position of the beam splitters, which are fixed in place with an epoxy 

adhesive. 

To maximise the available power the beam splitters were coated with multi-layer 

thin film interference filters. Each thin film was designed to be highly 

transmissive below a cut-off wavelength and highly reflective above this cut-off 

wavelength. For F1 the cut-off wavelength was around 650 nm and for F2 the 

cut-off wavelength was near 730 nm. The range of reflectance and 

transmittance measured for four different beam splitters is shown in Table 3.3. 

Only the values which are desired to be high reflectance and high transmittance 

LD
1

LD2

LD3La
se

r D
riv

er



 55 

are shown. A large variation is seen in the measured values, which is due to 

variation in the thin film manufacturing process and also a strong angular 

dependence, particularly for the 685nm reflectance from F1. During the 

alignment process it was possible to improve the loss from the beam combiner 

by careful adjustment of the angle of the 685nm laser and F1. 

Table 3.3. Range of reflectance and transmittance of four different beam 

splitters used in the beam combiner. 

 635nm 685nm 785nm 

F1 R(%)  72-93%  

F1 T(%) 92-97%   

F2 R(%)   90-99% 

F2 T(%) 91-97% 94-98%  

 

3.4.3 Optical cavity for multi-spot beam generation 

The outgoing beams from each laser module were divided into 15 beams using 

a multi-spot beam generator. The multi-spot beam generator used in the weed 

sensor was a 200 mm long optical cavity with thin film coatings on the front and 

rear surfaces. The coatings of the rear and front surfaces had reflectivities of 

99.5% and 92% respectively (both coatings were uniform for all wavelengths). 

An uncoated entrance window on the rear surface was used, through which the 

combined laser beam entered at an angle of 18º. This angle determined the 

spacing between the beams. The optical power for each beam was 8% of the 

internal beam power. The resulting array of 15 beams had a spacing of 15 mm. 

Using two laser modules and two multi-spot beam generators on either side of a 

central image sensor allows small plants to be illuminated by several beam 

whilst only requiring two sets of lasers to cover a 500 mm span. Note that the 

beam spacing is small enough to ensure all but the smallest plants are 

illuminated by at least one of the outgoing beams. 
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Figure 3.15. Generation of multiple beams through reflection in an optical cavity 

with uniform thin film coatings. 

Figure 3.15 shows the optical path of the laser beam through the optical cavity. 

The alignment of the three laser wavelengths was maintained for all fifteen 

beams. This was important to ensure that the same spot on a leaf was 

illuminated by each wavelength laser. Figure 3.16 shows the optical power for 

each beam measured with a Newport 1918C optical power meter. The total 

power for the 785 nm lasers was relatively low to prevent saturation of the 

image sensor when measuring the response from a leaf which has high 

reflectivity for infrared wavelengths but low reflectivity for red wavelengths. The 

effect of the uniform cavity was a reduction in the optical power in each 

successive beam as the total optical power within the cavity was reduced. 
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Figure 3.16. Beam optical power (BOP) for all 30 beams from prototype weed 

sensor at three wavelengths using optical cavities with uniform coatings. The 

optical power for 635 nm and 670 nm is 9 mW and the optical power for 785 nm 

is 3.5 mW. 

In order to equalise the intensities for all beams, non-uniform coatings were 

needed at the front surface, as illustrated in Figure 3.17. Table 3.4 shows the 

transmission coefficients of the front surface required to generate 15 optical 

beams of equal intensities. Figure 3.18 shows the beam optical power for 30 

beams generated by two optical cavities with different thin-film coatings for each 

beam. The input optical power was 10 mW for all lasers. 

Table 3.4. Desired transmission coefficients (T) for multi-spot beam generator 

with uniform output power for 15 beams. 

Beam 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

T (%) 5.8 6.2 6.6 7.1 7.7 8.4 9.2 10 11 13 15 18 21 28 38 
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Figure 3.17. Generation of multiple beams through reflection in an optical cavity 

with individual thin film coatings for each output beam. 

 

Figure 3.18. Beam optical power for 30 beams from weed sensor using two 

multi-spot beam generators with individual thin-film coatings for each beam. 

Input optical power is 10 mW for all lasers. 

3.4.4 Solar filter 

The image sensor used in the experiments measured the intensity of reflected 

light from each beam at the wavelength of each laser. These measurements 

were affected by the broad spectrum ambient light due to solar radiation. The 

spectrum of solar irradiation is shown in Figure 3.19, which shows the peak in 

the middle of the visible spectrum. The reflected intensity value recorded for 
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each beam is determined by the sum of the response of the image sensor to the 

ambient light reflected by the target plus the response to the reflected laser 

beam. The line scan sensor response to ambient plus laser light reflected from 

a green card reference is shown in Figure 4.7 (a). Under shaded conditions the 

signal due to ambient light is approximately equal to the signal from each beam, 

and under full sun, the ambient light signal is 5-10 times larger than the signal 

from each beam. In order to reduce the impact of ambient light on the 

measurement of reflected laser light, it is desirable to block out as much of the 

ambient light as possible. 

 

Figure 3.19. The solar irradiation spectrum above the atmosphere (A) and at 

sea-level (B). Spectrum C is the absorption spectrum of chlorophyll a, which 

absorbs strongly in the blue (about 430 nm) and the red (about 680 nm) regions 

of the spectrum (from Mauseth, 2003). 

Other laser-based remote sensing applications use a narrow band pass optical 

filter to block more than 95% of the ambient light due to solar radiation. These 

filters have pass-bands at centre wavelengths close to the laser wavelengths 

used in the device and their pass-bands exhibit narrow bandwidths. They are 

typically made using an interference filter design because this design allows 

careful selection of the centre wavelength and the bandwidth in order to 

optimise the performance of the sensor. With a single pass band it is possible to 

have a transmittance above 95% at the centre wavelength. The design of the 

weed sensor requires high transmission for the three laser wavelengths and 
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suppression of unused part of the solar spectrum. Interference filters with 

multiple narrow bands are much harder to realize, and as the bandwidth of the 

pass bands is reduced, the transmittance at the centre wavelengths is also 

reduced. A feasible design for this application is a two-band-pass filter with 

pass-bands for the red and near infra-red regions of the spectrum. A filter with 

pass bands specified at 648±43 nm and 783±29 nm and transmittance above 

95% in both bands was designed and manufactured by China Daheng 

Corporation. The transmission spectrum for this filter measured with a 

spectrophotometer is shown in Figure 3.20. Comparison with the spectrum of 

ambient light due to solar irradiation in Figure 3.19 indicates that a large fraction 

of the ambient light will be blocked by this filter. 

 

Figure 3.20. Transmission spectrum for solar filter measured at normal incidence 

(0°) and 20° incidence using a spectrophotometer. 

The application of thin film filters presented in this section allows the generation 

of many output beams using only a small number of laser diodes and provides a 

significant reduction in the level of background light when the sensor is used in 

outdoor conditions. 

3.5 Selection of image sensor 

The image sensor shown in Figure 2.5 is used to measure the intensity of 

reflected light from each beam generated by the two multi-spot beam 
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generation cavities positioned on either side of the sensor. In order to give 

consistent results for objects with the same reflectivity, the sensor used for this 

purpose must exhibit high sensitivity, high frame rate and low noise. The 

intensity of each spot detected by the camera is dependent upon the optical 

power of each beam in the array, the spectral reflectance of the object and the 

geometry of the measurement setup. During the development of the weed 

sensor, three different line scan image sensors were trialled. The sensor used 

in the initial prototype, as described by Sahba [10], was a Spyder3 SG-10-

01K40 line scan camera manufactured by Teledyne DALSA and designed for 

industrial machine vision applications. In the improved prototype described in 

Section 4.3 this camera was replaced with a custom built camera using a 

TSL3301 digital line scan sensor from TAOS Inc. The final prototype used an 

s9227-03 analogue line scan sensor made by Hamamatsu. 

3.5.1 Image sensor performance criteria  

Four main factors are considered in evaluation of the sensor, namely, i) the 

stability of the pixel response; ii) the sensitivity of the sensor; iii) the frame rate 

or line rate of the sensor; and iv) the cost of alternative devices. The geometry 

of the weed sensor was well suited to using a line scan sensor provided that the 

image of all 30 beams was carefully aligned with the optical axis of the lens and 

the single line of pixels on the sensor. The use of an area sensor was also 

investigated. The main advantage of using an area sensor is in alignment of the 

30 output beams with the sensor; however, the frame rate of area sensors is 

much less than the line rate of line scan sensors.  

The first factor considered for any potential sensor used was the speed of the 

sensor. The optical weed sensor was designed to travel along the ground at a 

speed of up to 15 km/h (≈ 4.2 m/s). As the array of laser beams was scanned 

across the ground, the response from the object was recorded sequentially for 

the two lasers of each wavelength. During a single measurement, four line 

scans were recorded by the image sensor: one for each wavelength laser and 

one for the background with all lasers turned off. The period of this 

measurement cycle had to be less than the time required to travel a distance of 

approximately 4 mm, equal to the diameter of the collimated beams from the 

laser module. This ensured that the reflected signal for each wavelength was 
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received from approximately the same spot on the leaf. The maximum speed 

meeting this requirement can be calculated from the sensor’s operating 

parameters using the following equations: 

 𝜏𝑠𝑐𝑎𝑛 = 4 × �𝜏𝑒𝑥𝑝 + 𝜏𝑟𝑒𝑎𝑑� + 𝜏𝑝𝑟𝑜𝑐 (3.5) 

 𝑣 = 𝑠/𝜏𝑠𝑐𝑎𝑛 (3.6) 

where 𝜏𝑠𝑐𝑎𝑛 is the period of a complete scan, 𝜏𝑒𝑥𝑝 is the exposure time, 𝜏𝑟𝑒𝑎𝑑 is 

the read-out time, 𝜏𝑝𝑟𝑜𝑐 is the time required for data processing, 𝑠 is the 

distance travelled, and 𝑣 is the speed of travel. Equation 3.6 gives a limit on the 

period of a complete scan of: 

 𝜏𝑠𝑐𝑎𝑛 = 𝑠
𝑣

= 4mm
4.17m/s

= 0.96 ms (3.7) 

which, according to Equation 3.5, requires a line rate for the sensor of: 

 𝑓 = 1
�𝜏𝑒𝑥𝑝+𝜏𝑟𝑒𝑎𝑑�

≈ 4
𝜏𝑠𝑐𝑎𝑛

= 4.2 kHz (3.8) 

Equation 3.8 neglects 𝜏𝑝𝑟𝑜𝑐 since data processing from one scan could be 

carried out during the image acquisition period of the following scan. 

3.5.2 Spyder3 camera 

The Spyder3 SG-10-01K40 line scan camera used is an off-the-shelf camera 

which used a CCD sensor with a dual line of 1024 pixels having 12-bit 

resolution. The line height was 14 μm and the pixel pitch was also 14 μm. The 

maximum frame rate of the camera was 36 kHz, but practically, this was limited 

by the exposure time (40 μs) and read-out time required. A C-mount lens was 

fitted to the camera, which had a focal length of 12.5 mm and adjustable 

aperture set to f/4. Figure 3.21 shows the spectral responsivity of the CCD 

sensor, which indicates a relative responsivity in excess of 85% for the 

wavelength range 620-800 nm. The high line rate of this camera was the reason 

it was chosen for the first prototype as it was suitable for operation at the speed 

required when used with farming equipment. However, the camera was too 
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expensive for use in a commercial weed sensor and was primarily chosen to 

show a proof of concept. 

 

Figure 3.21. Spectral responsivity of Spyder3 line scan sensor (source: 

datasheet). 

3.5.3 TAOS TSL3301 sensor 

The TAOS TSL3301-LF is a linear optical sensor array with 102 pixels in an 8 

pin dual-in-line (DIP) packaged IC. Each pixel is 85 µm high by 77 µm wide with 

a pixel pitch of 85 µm covering a total light sensitive area of 0.085 x 8.7 mm. 

The IC includes an analogue to digital converter with 8-bit resolution and uses a 

serial interface for control and pixel value readout. The maximum line rate is 

10 kHz but with an integration time of 200 μs and readout time of 100 μs the 

line rate is reduced to 3.3 kHz. This is below the 4.2 kHz in Equation 3.8 but 

was still sufficient for a speed above 10 km/h. 

The pixel response linearity of the TSL3301-LF sensor was characterised by 

using the line scan sensor in the setup shown in Figure 2.5 with the output 

beams incident on a reference card at a distance of 650 mm. The response of 

the image sensor was measured with all 3 wavelength lasers using beams 1 

and 13 in order to test linearity across a large power range and test for 

wavelength dependence of the sensor linearity. The cavity used was the single 

coating type shown in Figure 3.15 which gave a much lower output power for 



 64 

beam 13 then beam 1 (where beam number is counted from first beam closest 

to entry window of the optical cavity). The output power of beam 1 was adjusted 

to 600 µW using constant power drivers and decreased in increments of 

100 µW down to 100 µW.  

The image sensor response to beam 1 and 13 incident on the green card was 

recorded at each power setting and a peak value calculated using the method 

described in Section 4.3.2. Figure 3.22 shows a plot of the calculated peak 

value against optical power for each wavelength. The correlation coefficient 

seen in Figure 3.22 for all of these lines is greater than 0.99, indicating a strong 

linear pixel response of the TSL3301 line scan sensor. 

 

Figure 3.22. Linearity of TSL3301 response to beam optical power measured 

with two beams of weed sensor by adjusting laser output power. 

Figure 3.23 (A) shows the relative spectral responsivity of the TSL3301 sensor, 

which exhibits high sensitivity in the region of 600-800 nm, as for the Spyder3 

camera. A camera housing with C-mount lens attachment was designed to hold 

the TSL3301 line scan sensor for the second prototype of the weed sensor. The 

low cost of the TSL3301 line scan sensor combined with high speed made it a 

good replacement for the Spyder3 camera in the improved prototype optical 

weed sensor. 
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(A)

 

(B)

 

Figure 3.23. Spectral responsivity of (A) TAOS TSL3301-LF line scan sensor 

(source: datasheet) and (B) Hamamatsu S9227-03 line scan sensor (source: 

datasheet). 

3.5.4 Hamamatsu S9227-03 sensor 

The S9227-03 sensor is a small CMOS linear image sensor with a single line of 

512 photodiodes and accompanying charge amplifiers. Each pixel is 250 µm 

high by 10 µm wide with a pitch of 12.5 µm and total active area of 6.4 x 

0.25 mm. The pixel readout rate is up to 5 MHz with a voltage range of 4.3 V 

and dynamic range of 72 dB. The relative spectral responsivity of the sensor 

(without glass cover plate) is shown in Figure 3.23 (B). The sensitivity of this 

sensor is lower than the TSL3301 and therefore the exposure time required was 

longer. Depending on the output beam power the exposure time used was 

between 1-2 ms. The captured line scan was digitized by an analogue to digital 

converter (ADC) peripheral on the dsPIC microcontroller used in the control 

system. This ADC was operated at 512 kHz and 10-bit resolution giving a read-

out time of 1 ms and overall line rate of between 200-300 Hz. 

3.6 Opto-mechanical design requirements 

The optical weed sensor reported by Sahba et al. is an implementation of the 

proposed design described in Section 3.3 [10]. The sensor illuminated plants 

using lasers of three different wavelengths and the intensity of reflected light at 
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each wavelength was measured using a line scan camera. The reliability of this 

measurement depended on precise alignment of the lasers and other optical 

components. This weed sensor prototype enabled some adjustment of the 

optical components but did not provide the necessary control process for 

precise optical alignment. This section describes the alignment requirements of 

the weed sensor and design considerations of the improved prototype. 

3.6.1 Alignment requirements 

The mechanical design of the prototype was reviewed and redesigned to 

improve the alignment capability of the prototype. At the same time the optical 

components were reviewed to improve the effectiveness of the weed sensor in 

an outdoor environment where the level of background light is significantly 

higher than under laboratory conditions. 

The use of a centrally positioned linear sensor allows the detection of the 

reflected light signal for each beam over a large range of distance from the 

sensor. This requires all the laser beams to be carefully aligned with the optical 

axis of the lens and the active area of the image sensor. The three lasers in 

each laser module were mounted in an aluminium block which was fixed in 

place and had a hole bored for each laser. The output beams of the three lasers 

were aligned by careful positioning of the thin film beam combiners, which were 

then fixed in place with epoxy glue. Each laser module and corresponding multi-

spot beam generation cavity was mounted on a stage made from an aluminium 

plate with two tilt adjustments. These allowed adjustment of the angle of the 

outgoing beam array. The camera was mounted on a separate stage which also 

had a tilt adjustment that allowed adjustment of the pitch. The two beam arrays 

could be made coplanar via this angle adjustment and then aligned with the 

camera. 

Note that the beams from the lasers directed at the target must be precisely 

adjusted in order to sufficiently illuminate the image sensor’s active area. 

Precise alignment was also required to ensure the fraction of power in each 

reflected beam received by the image sensor is the same for each wavelength. 

The beam size of the lasers used was 4 mm. To ensure that a consistent 

fraction of power from each laser was received by the sensor the beam centre 
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for each laser was required to be within 1 mm or less. The alignment of the 

lasers to the image sensor was required over a working range of up to 1 m, 

therefore, including the distance travelled through the cavity for Beam 15, the 

maximum total beam path over which laser alignment was necessary was 2 m. 

The polarisation angle of the three lasers in each laser module also required 

alignment. There are two reasons the polarisation angle was important. First, 

the beam splitters used to combine the three laser beams and the transmissive 

coating on the optical cavity were sensitive to the polarisation angle which 

affected the beam power; and second, the reflectance of leaf surfaces depends 

on the polarisation angle of the incident light. The thin film filter used on the 

beam combiner was designed for one polarisation. The efficiency of the desired 

reflection or transmission was reduced for the opposite polarisation, in some 

cases reduced from 90% down to 40%. This is particularly important for filters 

used to split or combine light of two wavelengths within 50 nm. The original 

design of the prototype required the polarisation of the three lasers to be 

aligned to avoid the reflected light signal being dependent on the polarisation 

angle of each laser. 

3.6.1.1 Laser alignment 

The laser module described in Section 3.4.2 combines the output beams of 

three lasers with an alignment process conducted during manufacture of the 

module. Each laser and thin film beam combiner was fixed in place in a solid 

aluminium block using epoxy glue. This construction reduced the ability to make 

further adjustment of alignment or the replacement of lasers. The laser module 

was then mounted on a large alignment stage which was a heavy aluminium 

plate.  

Three alternative designs for the construction of the laser module were 

considered, namely: 

i) A precision manufactured combiner made from a single block with three 

holes bored for each laser and slots cut for the thin film beam 

combiners. No adjustment capability was included in this design, which 

instead relied on precision manufacturing for alignment. 
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ii) A fibre based laser combiner with a fibre pigtail attached to each laser 

and a fibre coupler or linear waveguide coupler leading to an output 

collimator. 

iii) A laser module with each laser independently adjustable and the beam 

combiners fixed in place. 

The viability of design i) was evaluated experimentally. A beam combiner 

module was designed in collaboration with, and manufactured by, Raven 

Engineering. The combiner was manufactured from a single block of derlin 

which is an insulating thermoplastic with high stiffness. This combiner had no 

adjustment for laser diodes or thin film combiners, as shown in Figure 3.24. The 

alignment accuracy of this combiner was assessed by fitting lasers to the three 

holes bored into the block and inserting beam combiners into the two slots cut 

at 45°. The beam offset was measured by marking the beam circumference of 

each laser on a target at a distance of 1 m and measuring the offset of the three 

beam centres. This offset ranged from 3-7 mm for the three lasers. This result 

was explained by measuring the beam pointing accuracy of the same three 

lasers, which was found to be between 1.1-2.6 mrad and accounts for a beam 

offset of over 7 mm. The specified beam pointing accuracy for the laser 

packaging is 25 mrad. To have a beam offset of less than 2 mm at the working 

distance of 2 m for beam 15, the required beam pointing accuracy is 0.5 mrad. 

The laser manufacturer offered to select lasers with a better beam pointing 

accuracy than that specified but could not guarantee 0.5 mrad. 

 

Figure 3.24. A precision manufactured combiner, made by Raven Engineering, 

using a single block with three holes bored for each laser and slots cut for the 

thin film beam combiners. 
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The use of optical fibre in design ii) provides an advantage in alignment of the 

outgoing beams. The alignment would be ensured by the containment of the 

beam within the fibre. However, the simplest design using fibre couplers would 

have high loss of optical power due to the efficiency of fibre couplers and the 

coupling loss from laser to fibre. These losses can be reduced by careful 

selection of the fibre used and custom design of the fibre couplers. However, 

this development process would be a significant effort in itself and result in a 

laser combiner module which is considerably more expensive than the thin film 

combiner based design. 

Design iii) was a flexible and practical construction that offered independent 

adjustment of all laser beams. The concept for adjustment of the laser 

alignment was initiated after consideration of the problems with the first two 

designs. Mechanical adjustment gives four degrees of freedom for each 

outgoing beam: translation in the horizontal and vertical directions as well as tilt 

around the horizontal and vertical axes. The design was developed in 

collaboration with China Daheng Group. 

 

Figure 3.25. Model of laser module with three lasers and beam combiners 

showing adjustment allowing four degrees of freedom. 
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3.6.1.2 Polarisation alignment 

The polarised nature of light emitted by lasers is not critical to the determination 

of spectral properties by the optical weed sensor however there are two 

reasons that the polarisation angle of each laser needs to be considered. These 

are the sensitivity of thin film filters to polarisation angle and the effect of 

polarisation angle on the reflectance of the leaf surface. 

The sensitivity of thin film filters to polarisation angle is particularly important for 

filters used to split or combine light of two wavelengths within 50nm. The 

670 nm wavelength laser has the lowest maximum output power of the three 

lasers and the efficiency of the thin film filters for 670 nm has a strong 

dependence on the polarisation angle. The polarisation angle of the 670 nm 

laser was therefore adjusted to ensure the maximum transmission of optical 

power from this laser. 

The original design of the prototype required the polarisation of the three lasers 

to be aligned to avoid the reflected light signal being dependent on the 

polarisation angle of each laser. The polarisation alignment procedure doesn’t 

specify the polarisation angle but only ensures that all the lasers have the same 

polarisation and that it matches what is required by the thin film filters. 

A power meter is used to measure the output power of the laser module at 

670 nm (after reflection from one filter and transmission through the second). 

The polarisation angle of the laser was adjusted by rotating the laser body until 

the maximum possible output power was obtained. A polarising filter was then 

aligned to the opposite polarisation by rotating the filter to minimise the 

transmission through the filter. This polarising filter was then used to adjust the 

polarisation angle of the other lasers by rotating each laser until the angle with 

minimum transmission through the filter had been found. Each laser was locked 

into place in its holder with a grub screw. 

3.6.1.3 Line scan sensor alignment 

The optical cavities either side of the line scan sensor project an array of laser 

beams. The light from these beams which was reflected by the ground and 

plants below the sensor was imaged by the lens and focused on the line of 

pixels in the line scan sensor. 



 71 

The required alignment could be achieved by adjustment of the: 

i) Camera height, 

ii) Camera tilt (pitch of lens optical axis), and 

iii) Rotation of sensor around optical axis of lens 

The camera in the first prototype did not have adjustment for i) or iii). This 

alignment could only be performed by adjustment of the laser beam array. Due 

to the small pixel height in the line scan sensor it was required to precisely align 

the output beam arrays from the two optical cavities so that the beams imaged 

by the lens were uniformly incident on the pixel line in the camera. Figure 3.26 

shows the image of seven beams incident on a line of pixels in the TSL3301 

sensor. In this sensor the pixel height is 85 µm, six times higher than the 14 µm 

pixel height of the sensor used in the first prototype. The second example in 

Figure 3.26 shows the effect of misalignment of the sensor rotation with the 

outgoing beam array. The lack of adjustment for sensor rotation about the lens’ 

optical axis combined with narrow pixel height made this alignment difficult and 

a time consuming process. 

 

Figure 3.26. Alignment effects for line scan sensor with 102 pixels showing 

image of seven beams on 21 pixels. 

3.6.2 Field of view 

In designing this image sensor it is important to ensure that the lens is selected 

to have a focal length which ensures that all the beams are imaged by the line 

scan sensor. The first prototype used a 50 mm diameter lens resulting in a large 

gap between the two outgoing laser beams either side of the lens. A large gap 

of approximately 80 mm occurred when the sensor is scanned across the 

ground which resulted in any plant falling within that gap could not be detected. 

The only way to reduce this gap was to select a lens with a narrower diameter. 
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It is important to note that there is a range of lenses used in CCTV applications 

that have a narrow diameter, and that the focal length of the lens determines 

the field of view in combination with the length of the image sensor. 

The required field of view for the camera is determined by the requirement that 

all 30 beams are visible at the minimum working distance. For a minimum 

working distance of 700 mm, the optimum focal length was found to be 

12.3 mm. Therefore, an off the shelf lens with a focal length of 12 mm was 

selected from the range of commercially available lenses. 

An experiment was carried out to check the maximum range at which the 

beams can be resolved with the TSL3301 sensor. It was observed that if the 

lens was chosen for a range of 800 mm then plants of height up to 

200 mm were still within the field of view and successfully detected.  

3.6.3 Component layout 

Figure 3.27 shows the layout of the optical components in the weed sensor. The 

spacing between adjacent beams in the first prototype was 12 mm and the 

collimated beam diameter was 4mm. The spacing between the optical cavities 

was 70 mm to accommodate the lens of the line scan imager which had a 

diameter of 50 mm. In the second prototype a line scan imager with a smaller 

lens diameter was used to reduce the required spacing between the optical 

cavities to 35 mm, thus enabling 30 beams with a spacing of 15 mm to be 

generated by a 500 mm wide sensor module. 
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Figure 3.27. Layout of optical components in weed sensor. 

3.6.4 Mechanical stress on cavity causing polarisation rotation 

The stress applied to the optical cavity by the cavity holder induced mechanical 

birefringence in the cavity which rotated the beam polarisation. The resulting 

degradation in optical transmission for some beams reduced the signal to noise 

ratio. In order to suppress the birefringence some rubber spacers were used at 

the ends of the cavity to ensure that negligible stress was applied to the cavity. 

3.6.5 Vibration testing 

The prototype must be used in a harsh environment so it was necessary to test 

the tolerance of the laser sources and other optical components to mechanical 

shock and vibration. One laser module was subjected to vibration and shock 

testing. Three lasers and two thin film combiners were installed in this module, 

aligned and fixed in position with an epoxy resin. The laser module passed the 

vibration and shock testing and maintained the required alignment of the three 

lasers. Moreover the laser diodes were individually tested for shock and 

vibration tolerance by the manufacturer and they were found to be extremely 

robust and tolerant to shocks and vibration levels exceeding the levels that are 

expected to be encountered in the field. 
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Finally it is important to note that the complete system alignment requires the 

alignment of the individual components, namely the laser sources, the optical 

cavities and the image sensor, as described in section 3.7.1. The construction 

of the prototype was required to be sufficiently rigid so that this alignment was 

maintained when the system was operated in the field. 

3.7 Control system hardware design 

To be able to trial the weed sensor as a stand-alone unit that can travel over the 

ground at low speed required the development of a control system with high 

speed acquisition of the images and data processing. Using a microcontroller to 

control these functions is one solution to meet this requirement. A 

microcontroller is a single programmable integrated circuit which contains a 

processor (algorithmic logic unit or ALU), flash memory for program storage, 

volatile memory for temporary storage and a range of peripherals for input and 

output of signals (I/O). Microcontrollers are frequently used where a self-

contained system is required to perform a dedicated task in a real time manner 

(i.e. with a predictable response time). These self-contained systems are 

referred to as embedded systems. An embedded system for the weed sensor 

requires a regulated power supply, a microcontroller, laser drivers, a 

communication system and supporting circuitry. 

3.7.1 Selection of microcontroller 

There is a very wide range of microcontrollers available covering many different 

architectures, data width from 8-bit to 64-bit and many different peripherals. The 

microcontroller chosen for the weed sensor was the Microchip 16-bit digital 

signal processor (dsPIC33F series). A digital signal processor is a 

microcontroller dedicated to signal processing and typically contains one or 

more arithmetic logic units optimized for efficient multiply and accumulate 

operations. 

The Microchip dsPIC33F series of microcontrollers operate at a clock frequency 

up to 40 MHz and provide a broad instruction set and capable arithmetic logic 

unit (ALU). The ALU provides an integer multiply instruction which executes in a 

single cycle and a divide instruction which requires 18 clock cycles. These 
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instructions both operate on 16-bit integer or 16-bit fixed point fractional 

operands. The DSP core provides two 40 bit accumulators and a multiply and 

accumulate (MAC) instruction which executes in a single cycle. The series 

provides up to 256 kB of program memory, up to 30 kB of RAM, up to 85 

general purpose I/O pins and many peripheral devices, some of which are 

optional depending on the device. In particular many chips provide a Controller 

Area Network (CAN) bus controller which simplifies the implementation of a 

CAN bus. 

The functionality and suitability of this microcontroller was evaluated using a 

development kit to connect to and control the laser drivers and the image 

sensor. The algorithms for data acquisition, which will be described in detail in 

the following chapter, were implemented with the development kit. There was 

no problem with the interface to the lasers and image sensor nor with the 

algorithm for peak detection which operates only on integer data. Further data 

processing requires operation on rational numbers, specifically for the 

calculation of the normalised peak value and the spectral indices such as NDVI. 

Rational numbers can be represented using a floating point notation or a fixed-

point fractional notation. The dsPIC33F does not have floating point support but 

the fixed point fractional format can be used. There was a floating point library 

available but the time required for multiplication and division operations 

depends on the value of the operands and in some cases can require several 

hundred instructions. The total time for data processing may exceed 0.5 ms, 

which was within the available time at low speed but would limit the maximum 

operating speed to under 10 km/h. Additional data processing tasks that may be 

required would further reduce the maximum operating speed and limit the 

flexibility of the discrimination process. Hence the fixed point fractional format 

was used to represent sensor response and calculated spectral properties. 

3.7.2 Design of embedded controller 

The PCB design process used Altium Designer to create the schematic, board 

layout and design files required to build the PCB. A block diagram of the 

controller is shown in Figure 3.28 which shows the signal connection between 

different components. Two versions of the PCB which controlled the weed 

sensor were made. Several issues were uncovered with the first design which 
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necessitated a redesign. This included additional functionality required to test 

laser operation and a voltage reference for the laser driver to improve the laser 

power stability. The monitoring diode in each laser is unconnected to the driver 

circuitry and can instead be used to ensure the correct operation of the laser. 

This is achieved with an op-amp in a trans-impedance amplifier configuration. 

 

Figure 3.28. Block diagram of the main PCB for the weed sensor’s embedded 

controller. 

3.7.3 Spray controller with speed sensor 

A separate PCB was designed and manufactured which monitors the vehicle 

speed and opens the solenoid valves which are connected to spray nozzles on 

the boom. The PCB would receive a positive strike signal when a weed is 

detected by the sensor. A position encoder attached to the wheel of the vehicle 

provided a signal with frequency proportional to the vehicle speed. One part of 

the spray controller software determined the vehicle speed from this signal. 

When a strike signal was received by the spray controller it calculated the delay 

and duration required to open the solenoid valve and spray the detected weed. 

The discrimination trials reported in Chapter 5 were conducted on a circuit and 

dye on the plants would interfere with detection. A signal tower was used to 

indicate plant detection rather than spraying the plant with dye, hence the spray 

controller was not required. 
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3.8 Summary 

In this chapter the measurement of spectral reflectance has been discussed. A 

fibre spectrometer setup was described which has been used to conduct a 

survey of leaf level spectral reflectance for a range of crops and weeds. 

Measurement of spectral reflectance is a potential means for automated 

detection and spot spraying of weeds in a crop. This requires a proximate 

sensor which can be operated while traversing the ground behind a farming 

vehicle. The components which make up a prototype weed sensor have been 

described and characterised. Such a system requires reliable determination of 

the spectral properties of plants while travelling at a speed of up to 15 km/h.  

The important design aspects of the prototype weed sensor were considered 

and where necessary, improved to meet the reliability required. These design 

aspects were: 

i) the selection of lasers and laser drivers to illuminate plants with a stable 

optical power; 

ii) the thin film coatings used in the passive optical components for 

generation of a structured light source; 

iii) the selection of a cost effective and high performance line scan sensor; 

iv) the optomechanical design of the sensor required to withstand vibration; 

and, 

v) the design of a control system to allow independent operation of the 

weed sensor. 

In Chapter 4 the integration of these components in a complete system will be 

discussed. 
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Chapter 4 

Development of an Optical Weed Sensor 

4.1 Introduction 

The weed sensor design for each prototype developed was based on the 

principle of measuring spectral reflectance from leaves using lasers as a 

narrow-band illumination source. Each prototype used a laser module to align 

the output from three lasers using thin-film beam combiners. An optical cavity 

divided the laser module output into 15 evenly spaced and parallel beams. Each 

laser was sequentially turned on and the reflected light from the ground and 

leaves captured by a broadband line-scan sensor. A control system processed 

the data from the sensor and determined if the calculated spectral properties 

matched those of the target plants. This chapter will describe the initial 

prototype weed sensor and the further development of two revised models 

culminating in a working field prototype. For each revision of the weed sensor a 

description of the design and function will be given with reference to the 

components described in Chapter 3. 

The first prototype was a bench-top demonstrator with limitations that prevented 

it from being tested under field conditions. The whole system was evaluated to 

determine its ability to collect and process data, to calculate spectral properties 

and to discriminate different plants under laboratory conditions. The main 

limitations of the prototype’s design which prevented its use in field-testing were 

the low speed operation of the lasers illuminating the sample, the low signal to 

noise ratio of the image sensor and the lack of rigidity of the system which 

made the optical alignment highly sensitive to movement and vibration. Field-
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testing also required operation using an embedded system that could function 

independently or be connected to a computer to collect discrimination results. 

To overcome these limitations, the prototype was redesigned with a focus on 

the opto-mechanical system, building an embedded system and replacing some 

individual components. The redesign process is described in this chapter 

beginning with the evaluation and replacement of individual components. Two 

components were identified that required replacement: the laser drivers, which 

regulated the operation of the laser diodes, and the line scan sensor, which 

captured the reflected light. Following replacement of the sensor the software 

which operated the prototype was redeveloped and updated to interface with 

the new sensor. Once the required components had been identified, the opto-

mechanical structure of the prototype was redesigned and a new prototype built 

which could maintain the alignment of the optical components. A micro-

controller based system was designed and built to allow independent operation 

of the system. Lastly, software was developed to operate this system as an 

independent device. 

The design of the final prototype was based on the second prototype but with 

replacement of the line scan sensor and refinements to the laser drivers and 

electronics for the embedded controller. 

4.2 Initial prototype 

4.2.1 Description of system 

The initial prototype weed sensor was comprised of two laser combination 

modules, two multi-spot beam generators and a line scan image sensor, all 

mounted on a rigid base-plate and separate stages for optical alignment. The 

arrangement of these components is shown in Figure 4.1. Each laser beam 

combiner module and optical cavity was mounted on a separate aluminium 

plate. This whole section could be aligned with the line scan camera in the 

centre of the prototype by adjustment of the height at the centre and rear of the 

module. 
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Figure 4.1. Photograph of initial prototype weed sensor showing layout of 

optical components. 

The beam combiner used to align the three lasers is described in Section 3.5.2. 

It had each laser fixed in place and did not provide any adjustment of the 

individual laser diodes. The laser drivers used in this prototype were located on 

a PCB within the laser module and were of the constant power type described 

in Section 3.4.2. For the data collected under simulated dynamic conditions the 

laser drivers were replaced with independent constant current laser drivers. The 

optical cavity used for multi-spot beam generation has a uniform transmissivity 

coating creating 15 output beams with gradually decreasing optical power. The 

optical properties of this cavity have been described in Section 3.5.3. The 

optical beam power for the first beams emitted was near 700 µW for the red 

lasers and 350 µW for the 785 nm lasers. The intensity of the reflected light was 

recorded by a line scan camera located between the two optical cavities shown 

in the centre of the photograph in Figure 4.1. The camera used is a Spyder3 

SG-10-01K40 manufactured by DALSA and is described in Section 3.62. A C-

mount lens with 50 mm diameter, focal length of 12.5 mm and adjustable 

aperture and focus was used to image the reflected beams on the line scan 

sensor. 

4.2.2 Control software and data processing 

The control system for this initial prototype was software running on a Windows 

PC. The software was written with Microsoft Visual C++ and provided a 
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graphical user interface (GUI) to control the operation of the weed sensor. The 

functions of this software was to control switching of the lasers, capture of 

image data, processing of image data and discrimination of plants using 

spectral data. The interface between the PC and laser drivers was a National 

Instruments digital I/O device and the line scan sensor data was recorded via 

the camera’s GigE ethernet connection. A flow chart showing the actions 

performed during a complete cycle is shown in Figure 4.2. 

 

Figure 4.2. Flow chart for a single acquisition cycle used by the software 

controlling the original weed sensor prototype. 

The detection cycle begins by switching on each laser and capturing an image 

of the reflected light intensity with the line scan camera. The captured image 
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has a peak for each of the 30 beams projected from the weed sensor. A peak 

detection algorithm searches the image for regions above a threshold which is 

automatically set slightly above the background intensity level. Within each 

region the maximum pixel intensity (Iλ) is found and stored. The detected peaks 

for each wavelength laser are checked to ensure that the peaks found 

correspond to each individual beam. Figure 4.3 shows the pixel response from 

one half of the line scan camera with 15 beams clearly visible. An alternative 

peak value calculation was later implemented using a quadratic fit which is also 

shown in Figure 4.3. 

 

Figure 4.3. Intensity profile of 14 output beams from a 635 nm laser illuminating 

a background screen recorded by the image sensor. Inset shows quadratic 

fitting of measured intensity profile for three peaks. 

Each peak is then corrected for the relative optical power of the corresponding 

beam using Equation 4.1, where Pλ is the beam optical power recorded using a 

Newport power meter. 

 𝑅λ = 𝐼λ
𝑃λ

 (4.1) 

Rλ is representative of the reflectance of the surface on which the beam was 

incident but is not calibrated for the physical properties of the sensor. Two 

separate discrimination procedures are available using the corrected peak 

values Rλ. The “green from brown” discrimination calculates the normalised 

difference vegetative index (NDVI) from the corrected peak values for 670 nm 
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and 785 nm using Equation 4.2. When the NDVI is above a specified threshold 

a strike signal is generated which indicates that a green plant was detected. 

 
670785

670785
RR
RR

NDVI
+
−

=  (4.2) 

“Green from green” discrimination is based on calculation of a slope value 

which corresponds to the spectral slope between each pair of neighbouring 

wavelengths, shown in Equation 4.3. The range of slope values representative 

of four separate plants could be entered in the GUI. When both the calculated 

slope values are within the range specified for one of these plants a strike signal 

is generated which indicates which plant was detected. 
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In the bench-top demonstration version of the weed sensor the discrimination 

process based on results from individual beams was unreliable. The average 

value of NDVI, S1 and S2 was calculated for four beams of the weed sensor and 

the average value used in the discrimination process described above. 

4.2.3 Performance and Refinement of Initial Prototype 

The uniform coating on the optical cavity used in this prototype results in each 

subsequent beam having a lower optical power and the last beam (closest to 

the line scan sensor) has an optical power which is less than one third of the 

first beam (see Figure 3.16). The recorded intensity of the 15th beam was so low 

that it was frequently not found by the peak detection. For the experimental 

work performed with this prototype this beam was covered and not used in data 

processing. 

The peak value calculated by the software was simply the maximum pixel value 

within each region above the threshold value. The response of the image 

sensor to the 14 beams incident on a green card reference is shown in 

Figure 4.3. The uncertainty in the peak value was equal to the uncertainty in 

each individual pixel value, which was very high, as discussed in Section 3.6.2. 

The shape of the detected peak is approximately Gaussian and this can be 
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used to reduce the peak value uncertainty by fitting a curve to the shape of the 

peak. Gaussian fitting would be the best solution but was not practical due to 

the complexity of non-linear regression. Quadratic fitting was chosen and 

implemented as a seven point quadratic fit centred on the maximum pixel value. 

The peak detection using this method is shown in the inset in Figure 4.3 and 

results in a reduction in standard deviation of the measured peak value. A 

disadvantage of this method is that the peak value is lower than that calculated 

with Gaussian fitting, particularly when the peak is narrow. 

An improved design was required to solve the above issues, including: 

replacement of the Spyder3 line scan sensor to reduce the pixel noise; 

improvement of the constant current laser driver to increase optical power 

stability and modification of the uniform transmittance optical cavity which 

caused peaks with low power. To allow the prototype to be tested in the field, 

the opto-mechanical alignment system was reviewed and the computer 

replaced by an embedded control system.  

4.3 Improved prototype 

Following on from the assessment made of the performance of the original 

prototype the selection of components for, and the design of, each part of the 

system was carefully considered. The components used are described in 

Section 3 and included: laser diodes of three wavelengths (635 nm, 685 nm and 

785 nm); constant current laser drivers; optical cavities having non-uniform 

transmittance on the front surface; the TSL3301-LF line scan sensor; and a 

custom designed PCB with microcontroller for independent operation. In 

addition, the opto-mechanical layout was revised to improve the coverage of 

ground illuminated by the lasers and improve the mechanical alignment of the 

system as well as its rigidity. 

4.3.1 Description of System 

Figure 4.4 shows the revised layout of the improved prototype with arrangement 

of optical components. All the components were mounted on a single base-

plate made of 6 mm thick aluminium. Each laser diode was mounted in an 

alignment block along with two fixed thin-film beam combiners which made up 
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the laser module. This laser module is described as design 4 in Section 3.6.1.1. 

It allowed each laser to be independently aligned such that all beams were 

overlapping and aligned with the line scan sensor in the imager. Four laser 

wavelengths were used with this prototype – the 635, 670 and 785 nm 

combination was used initially with indoor experiments. During the outdoor trials 

the absorption of light from the 670 nm laser by leaves was so high that the 

signal to noise ratio of the peak detected by the sensor was very poor. The 

10 mW maximum output power was insufficient so it was replaced with a 

685 nm laser diode with maximum output optical power of 50 mW. The optical 

cavities are longer than those in the original prototype and positioned at a larger 

angle. This increased the spacing between beams from 12 mm to 15 mm and 

reduced the gap between the two beams closest to either side of the image 

sensor. The gap between the outside edge of the weed sensor and the outside 

beam was also reduced to 15 mm. The optical cavities with partially 

transmissive coatings on the front surface were replaced with cavities which 

had individual filters for each beam. For each subsequent beam the 

transmissivity is gradually increased in order to maintain a uniform output 

power. The properties of this replacement optical cavity have been described in 

Section 3.4.3. 

 

Figure 4.4. Layout of improved prototype showing laser modules, optical 

cavities and image sensor mounted on a single base plate. 
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An embedded controller was developed for this prototype which used a 

dsPIC33F microcontroller to control the lasers and image sensor and carry out 

data processing to determine spectral properties of the soil and plants. During 

the evaluation of the system a desktop computer continued to be used. The 

computer operated separately from the embedded controller. It used the same 

National Instruments digital I/O device as in the original prototype connected to 

a constant current driver version of the independent laser drivers and an 

evaluation board with serial interface to control the line scan sensor. 

The prototype sensor was packaged within an aluminium case to prevent dust 

and water entry into the lasers, sensor and electronics. This case is made up of 

the 6 mm aluminium base with a rubber seal around the edge and a 1 mm 

aluminium lid. The lid includes an acrylic window to allow illumination of the 

ground and detection of the reflected lit as well as sealed connectors for power 

and control signal wiring. 

4.3.2 Line scan sensor performance 

The most important changes for plant detection capability with this version of 

the prototype were in stability of the measured reflectance. During experiments 

with the original prototype weed sensor the calculated spectral properties were 

observed to have a surprisingly high variability. The TSL3301-LF line scan 

image sensor described in Section 3.6.1.2 replaced the Spyder3 camera used 

previously. This line scan sensor proved to have much lower variability in the 

pixel response which gave repeatability in the measurement of spectral 

properties. The stability of the response of the TSL3301 line scan sensor was 

compared with that of the Spyder3 camera by recording the peak value 

detected by each sensor while a green card reference was sequentially 

illuminated by the 635, 670 and 785 nm lasers. 

Figure 4.5 shows the variation in the digital response of the two optical image 

sensors over time to one spot on a reference sample. This spot was 

sequentially illuminated by 635, 670 and 785 nm laser beams at ten second 

intervals over a period of 10 minutes. The Spyders3 line scan camera readings 

(dashed lines) showed significant fluctuation for all three wavelengths in 

comparison with the TSL3301 linear sensor array (thin lines). 
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Figure 4.5. Response in digital numbers (DN) of two optical image sensors over 

time to one beam on a reference sample sequentially illuminated by 635, 670 

and 785 nm laser beams. Dashed lines are for the Spyder3 line scan camera 

(left axis) and thin lines are for the TSL3301 linear sensor array (right axis). 

Figure 4.6 shows a single line scan image recorded with this system with one 

laser turned on and all 30 beams incident on a reference card at a distance of 

650 mm. The non-uniform coatings were used to generate the multi-spot beam 

array and generated an array with beam optical power similar to that shown in 

Figure 3.23. The increased beam power for the central beams is exacerbated in 

this case by the shorter distance to the sensor and reflection which is close to 

normal incidence. This effect was undesirable for the signal to noise ratio of 

outer beams but did have an advantage with peak detection. As outlined below, 

the peak detection began in the centre of the image and scanned towards the 

edge. The larger signal for the central beams ensured that they were always 

detected in the image even when the reflectance of the target was very low.  
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Figure 4.6 Single line scan image for TSL3301 line scan sensor with 685nm 

laser turned on. All 30 beams are incident on a reference card at a distance of 

650 mm. 

An optical filter to reject solar background radiation was fitted to the sensor in 

this prototype, as described in Section 3.5.4. The effect of this filter on the line 

scan sensor performance was measured by recording the response of the weed 

sensor with and without the filter to a reference card at a distance of 650 mm. 

The weed sensor was placed outdoors in a range of lighting conditions, 

including under shade and under full sun. The effect of the optical filter on the 

recorded peak value is shown in Figure 4.7 for shaded conditions, where the 

response of the image sensor is not saturated by the background light. The 

exposure time for both scans shown is 180 µs and the reduction in background 

light by the solar filter is clearly seen. 

The average reduction in background level (after subtracting dark signal of 

6 DN) over all pixels in the line scan is 75%. Without this reduction the response 

for nearly all beams is saturated in the line sensor. In order to have an 

unsaturated response for all beams the exposure time would have to be halved, 

which significantly reduced the signal to noise ratio. 
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Figure 4.7. Response of line scan sensor to 30 beams illuminating a green 

reference card under shaded outdoor conditions (a) without solar filter and (b) 

with solar filter. 

The high sensitivity of this sensor ensured the exposure time required was 

below 200 µs. With a read-out time of 100 µs, processing time of 200 µs and 

allowing a travel distance of 5 mm per scan, Equations 3.5-3.7 give a maximum 

travel speed of 7 km/h. 

4.3.3 Development of control software 

During the evaluation of the TAOS sensor as a replacement image sensor an 

evaluation board provided by the manufacturer was used. This evaluation board 

provided a serial interface to control the sensor and acquire data. The same 

National Instruments digital I/O device (NIDAQ) used in the original prototype 

was used to control the laser switching. There were two large sections of the 
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weed sensor software which needed to be adapted for the TAOS image sensor 

– the image acquisition and the peak detection. To simplify the process of 

rewriting these tasks and making further modifications to the Weed Sensor 

software the whole software program was rewritten in LabVIEW. 

LabVIEW is a graphical programming environment allowing efficient 

programming which was introduced in 1986. Its design is centred on simplifying 

tasks involving instrument control, data acquisition and analysis, signal 

processing and data visualization. LabVIEW is a useful programming 

environment for ongoing development because it gives a flow chart 

representation of the algorithms used and allows immediate visualisation of the 

data flow at any point in the program [72]. 

The LabVIEW interface to the TAOS sensor used LabVIEW’s built-in serial 

driver to communicate with the evaluation board. The NIDAQ device was 

controlled with the LabVIEW driver for the device which provided simple 

controls to configure the required outputs and switch each laser independently. 

After initial testing of the TSL3301-LF sensor a LabVIEW version of the control 

software was developed. A flow chart of the scanning cycle is shown in 

Figure 4.8. The software included a data collection routine, a data processing 

routine and a graphical interface. The data collection routine switched each 

laser on sequentially and captured an image for each laser. The data 

processing routine detected peaks in each image, corrected these peaks for 

beam optical power and calculated the required spectral properties. The 

graphical interface provided control of the laser and sensor parameters and 

displayed the calculated peak data and spectral properties. A Green from 

Brown detection was also implemented based on a NDVI threshold and the 

collected data could be saved to a file for further analysis. The algorithms 

implemented in LabVIEW are very similar to those used in the software 

controlling the original prototype, except for the communication with the TAOS 

evaluation board and the peak detection. 
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Figure 4.8. Flowchart for a single acquisition cycle used by software executed 

by the second prototype weed sensor. 

4.3.4 Algorithm for peak detection 

The TAOS line scan sensor has 102 pixels. Thirty beams were imaged with this 

sensor which implies there were at most 3 pixels per beam. Each beam is 

incident on one or two pixels leaving a gap of one pixel between each spot in 

the recorded image; see Figure 3.26 and sample line scans in Figure 4.6. The 

built-in peak detection routines were not used as they did not work well for such 

narrow peaks. This peak detection was also required in the software developed 

for the microcontroller used in the local controller. A simple algorithm for peak 

detection was developed and implemented in LabVIEW. 
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A three pixel window is scanned along the line scan image. If the centre pixel is 

a local maximum and is also above a pre-determined threshold then it is 

detected as a peak. The peak value calculation assumes only two of the three 

pixels are exposed to the reflected beam and the third pixel can be used to 

compensate for the background noise due to ambient light and sensor dark 

current. The peak value Pk is the sum of the two largest pixel values and is 

calculated using Equation 4.4. 

 𝑃𝑘 = 𝑃𝑖𝑥2 + max(𝑃𝑖𝑥1,𝑃𝑖𝑥3) − 2 × min(𝑃𝑖𝑥1,𝑃𝑖𝑥3) (4.4) 

where Pix2 is the centre pixel and Pix1 and Pix3 are the pixels either side. The 

window is scanned by shifting Pix2 one pixel at a time until the whole image has 

been scanned or 15 peaks have been found in each half of the image. After 

outdoor testing it was apparent that frequently there was no intermediate pixel 

between two beams and the background subtraction actually reduced the peak 

value from its true value. A separate background scan was added to the 

scanning sequence and this scan was used for background subtraction in place 

of the above method. 

4.3.5 Algorithm for plant discrimination 

During the evaluation of the TAOS image sensor the only detection attempted 

was green from brown discrimination. The method used is the same as 

described in Section 4.2.1. The NDVI value is calculated for each beam using 

Equation 4.6. If the NDVI for any beam is greater than a threshold value then a 

strike signal is generated. Each beam has a strike indicator in the graphical 

interface. The NDVI threshold is adjustable to determine the value which will 

provide most reliable discrimination. The value used was typically between 500 

and 600. For the purpose of display it was also useful to have a combined strike 

indicator which was activated when any individual strike was activated. 

Once a beam had been determined to be green according to the NDVI, it was 

tested to determine if it matched any of the criteria for desired plants. Two 

different types of criteria were used during the testing of the improved prototype 

weed sensor. The slope method used in the original prototype was also 

implemented in the LabVIEW program. Slopes S1 and S2 were calculated 
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according to Equation 4.5. For each target plant a range of S1 and S2 were 

determined. If the calculated values of S1 and S2 for a beam both within the 

specified range, then the beam recorded a strike for that plant. 

 𝑆1 = 𝑅635−𝑅670
𝜆635−𝜆670

 and 𝑆2 = 𝑅785−𝑅670
𝜆785−𝜆670

 (4.5) 

During testing of the sensor it became apparent that there were many factors 

which affected the calculated slope values, particularly those which reduced or 

increased the intensity of light at all three wavelengths. Such factors included 

the distance from sensor to leaf, the orientation of the leaf and the exposure 

time of the line scan sensor. This is contrary to the results with the previous 

prototype; however these effects were most likely obscured by the noisy peak 

values recorded by the Spyder3 line scan camera. Normalization was required 

to account for these factors. In line with the NDVI a similar normalised 

difference index was calculated from the two red wavelengths. This value is 

labelled the RDI and is shown in Equation 4.6.  

 𝑅𝐷𝐼 = 𝑅635−𝑅670
𝑅635+𝑅670

 and 𝑁𝐷𝑉𝐼 = 𝑅785−𝑅670
𝑅785+𝑅670

 (4.6) 

The alternate plant discrimination method was based on the slope method, but 

with S1 and S2 replaced by RDI and NDVI. Again, for each target plant a range 

a characteristic range of RDI and NDVI was determined. If the calculated values 

for and beam matched the ranges for one of the target plant then a strike was 

recorded. 

4.3.6 Embedded controller design 

An important step in transferring the weed sensor from the lab to outdoor 

operation was the development of an independent embedded controller. The 

control system described in Section 3.8 was developed for this version of the 

weed sensor. The PCB designed for this purpose included a regulated 5 V and 

3.3 V DC supply for the electronics, a dsPIC33F microcontroller, constant 

current laser drivers, and a CAN bus driver for communication. 

After initial power on, or device reset, an initialisation routine was run to 

configure the microcontroller inputs, outputs and peripheral devices. Memory 
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used by the program was initialised, which included loading the beam optical 

power table and the plant discrimination lookup table into memory. The TAOS 

sensor was then initialised which required sending a reset sequence followed 

by a short period of continuous clock pulses without sending any data. This 

sequence prepared the analogue and digital circuitry in the sensor ensuring it 

did not return nonsense data. The TSL3301-LF has programmable gain and 

offset correction for the analogue to digital conversion which were in an 

indeterminate state after power on. The offset correction was set to 0 and the 

gain to 1 during initialisation. 

Following the initialisation the program entered the main loop. This loop carried 

out the operations for a single scan as described above and ran continuously 

until the device was turned off. All the operations of the LabVIEW program were 

converted to run on the microcontroller including output of a strike signal for 

green from brown detection and for detection of the target plants. The strike 

signals controlled a visible indicator to monitor the detection results of the weed 

sensor. 

4.3.7 Outdoor operation 

A frame was made to hold the weed sensor at an adjustable height above the 

ground. Figure 4.9 shows the sensor mounted on this static test rig with the lid 

removed. This setup was used to determine the response of the sensor to 

different outdoor light conditions as reported above. Dynamic testing was 

conducted with the weed sensor mounted on a frame attached to the front of a 

quad bike as shown in Figure 5.11. The quad bike provided an important test for 

the weed sensor, namely whether the optical alignment would be maintained 

after being subjected to continuous vibration from the engine. After several 

hours of operation the prototype was brought back into the lab and the 

alignment of lasers checked. All six lasers were found to be maintained within 

the 1 mm tolerance at a distance of 1 m and the line scan sensor was still 

aligned with the output beam array. 
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Figure 4.9. Improved prototype weed sensor on a static test rig for outdoor 

testing. Visible strike indicator not shown. 

4.3.8 Discussion 

The outdoor background light is a difficult problem for all optical weed sensors. 

With the solar filter employed in the weed sensor significant reduction in the 

recorded background level was observed. A signal was obtainable in sunny 

conditions provided that the exposure time was reduced, however reliable green 

plant detection was only possible under shaded conditions. With dynamic 

operation the effect of background light was more pronounced. The problem 

was not so much the light level but rapid, large changes in the background light 

level when the weed sensor travelled over surfaces with varying reflectance. 

Particularly problematic were plants themselves, which have a very high 

reflectance in the NIR compared to soil. The NIR light within the passband of 

the solar filter caused large changes in the recorded background level when 

travelling over plants. 

Green from Brown detection was reliable under shaded conditions with some 

false positives on rough soil surfaces. Determination of spectral properties gave 

unreliable results because of low reflectance of leaves in the red wavebands 

and the corresponding low sensor signal. The low dynamic range of the line 

scan sensor’s 8-bit digital output was the largest factor in this unreliability. The 
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discrimination performance of the improved prototype is presented in 

Section 5.4 and further improvements to the design are presented in the next 

section. 

4.4 Final prototype 

The final revision of the prototype weed sensor was designed to overcome the 

difficulty with determining accurate spectral properties of plants experienced 

with the previous prototype. It shares much of its design with the previous 

prototypes – the differences being replacement of the digital line scan sensor 

and a number of refinements which reduced the measurement error in 

recording reflectance from the leaf as well as variability in the calculated 

spectral properties. After investigation of the sensor response to a reference 

target, and monitoring the optical beam power with a high speed photodetector 

it was determined that both components needed improvement. 

4.4.1 Description of system 

The layout of optical components is the same as the previous prototype shown 

Figure 4.4. The laser modules, optical cavities and camera housing were all 

kept the same. The 8-bit digital line scan sensor was replaced with an analogue 

sensor with low noise and high dynamic range. The sensor used was an 

S9227-03 linear array described in Section 3.5.4. The choice of this sensor was 

a trade-off between low noise and sensitivity. Although the reduced sensitivity 

required an exposure time of 1-2 ms and slowed the scanning rate of the sensor 

considerably, the high dynamic range and low noise allowed evaluation of the 

discrimination performance of the weed sensor with more precise 

measurements of the leaf spectral properties. Additionally, the use of an 

analogue sensor allowed separate characterisation of the sensor performance 

and analogue to digital converter (ADC) performance. The constant current 

laser driver used with the previous prototype was refined to improve the output 

power stability using the circuit described in Section 3.3.3 to reduce ringing 

during the laser turn on and to minimise thermal fluctuations. The output power 

was also increased to approximately 20 mW for each of the red lasers and 
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15 mW for the 785 nm laser. This ensured a useable signal with the exposure 

time reduced to 1 ms. 

Several improvements had been made to the electronic design of the local 

controller over the course of development. These improvements were 

incorporated into a modular design for the Controller PCB which included 

separate boards for the regulated DC power supply, microcontroller board, laser 

driver board, image sensor driver and the option to install the spray controller. 

The image sensor driver provided a clock to drive pixel readout, exposure time 

control and a buffer to interface the 5 V analogue output with the 3.3 V input of 

the dsPIC33F. The ADC peripheral on the dsPIC33F was used to digitise the 

pixel voltage. With the ADC operating in 10-bit mode it had a maximum sample 

rate of 500 ks/s resulting in a read-out time of 1.1 ms. Using Equations 3.5-3.6 

and given 1 ms exposure time, 1.1 ms read-out time, 1.2 ms processing time 

and 5 mm travel distance, the maximum travel speed is 2 km/h. The processing 

time was more than 5 times longer than previously because the peak detection 

was more complicated and needed to scan through 512 pixels in place of 102. 

In practice, restriction of the plants used in discrimination trials to broad-leaved 

plants with a flat leaf surface allowed a travel speed of up to 7 km/h. 

4.4.2 Data processing 

Several changes were made to the data processing algorithms to accommodate 

the higher resolution line scan sensor and to improve the discrimination 

performance. Figure 4.10 shows a sample reading from the line scan camera 

when six beams are incident on a leaf. The scan for the 635 nm laser is omitted 

for clarity. Each beam covers from 5-9 pixels so a similar peak detection 

algorithm to that used in the original prototype weed sensor was employed. 

Each peak in the 785 nm scan is detected using the same region of interest 

(ROI) method as before. The quadratic fitting to determine peak value was 

replaced with a sum over the pixel values of each pixel within the ROI. These 

same ROIs were then used to calculate reflected intensity values for the two red 

lasers. This technique ensured that even when the local maxima for a beam 

was very small – even if below the threshold used to find peaks – the peak 

value could still be detected.  
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Figure 4.10. Line scan sensor reading for two lasers (685 nm and 785 nm) and 

the background scan using S9227-03 sensor. Only one half of the image with 15 

beams is shown. Six beams from the outside edge of the weed sensor are 

incident on a leaf. 

Investigation of the variability in the red laser peak values when the beam was 

incident on a leaf also led to a change in the spectral properties used for 

discrimination. Because both red peak values are low, the RDI value had 

significantly larger variability than the NDVI value. Instead, a second NDVI 

value was calculated using the 635 and 785 nm peak value, as shown in 

Equation 4.7. These two values are referred to as NDVI635 and NDVI685. 
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The common 785 nm peak value used in both NDVIs resulted in a strong 

correlation between the two values. This is evident in the scatter plots of 

spectral properties shown in Section 5.5. To accommodate this correlation the 

simple min/max range criterion used previously was replaced by a 

parallelogram criterion in the NDVI635, NDVI685 space. This allowed more 

compact range criteria to have less false negatives when the spectral properties 

recorded from a leaf were near the limit of the criterion for the plant. When a 

beam matched the discrimination criterion stored for a target plant, an individual 

beam strike was recorded. Initially any strike recorded would turn on the strike 

indicator but this proved to have a very high false positive rate for different 
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plants. A strike aggregation algorithm was implemented to reject individual 

beam false positives. This algorithm simply summed all the individual beam 

strikes for a target plant from a set of scans. If the aggregated sum of individual 

beam strikes was above the threshold then the strike indicator was activated.  

A flowchart for the modified software is shown in Figure 4.11. The software for 

the microcontroller was written in C and made use of the library available to 

control the CAN bus driver. This allowed the prototype weed sensor to be 

controlled via the CAN bus with a laptop. A communication protocol was set up 

to allow control of each step in the single scan, to read out pixel data and 

results, to update the beam optical power table and the discrimination criteria 

for different plants and to put the weed sensor in and independent scanning 

mode. The interface on the laptop was programmed in LabVIEW and had 

similar functionality to the LabVIEW program used for the previous prototype. 

The program also allowed the recorded spectral data and discrimination results 

from the weed sensor to be displayed in real-time – albeit at a lower scan rate 

due to the time taken to transfer data over the CAN bus. 

4.4.3 Discussion 

The final version of the prototype weed sensor presented in this section has 

significantly improved upon the performance of the previous versions. Reliable 

indoor and outdoor discrimination of three plants was achieved with this sensor, 

as presented in Section 5.5. The critical factors in this improvement were 

stability of the output laser power and improved signal to noise ratio of the 

detected leaf reflectance. A low noise, high dynamic range line scan sensor 

provides reliable detection of the intensity of reflected light from leaves and soil. 

The data processing algorithms take advantage of the reliability of the 785 nm 

laser to determine the location of each beam in the image and for normalization 

of the signals from the two red lasers. 
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Figure 4.11. Flowchart for single scan operation run on the microcontroller of the 

final prototype weed sensor. 

Additional spectral information could be determined with the addition of more 

laser wavelengths which would improve the reliability of plant discrimination. 

The use of only three narrow wavebands is a limitation imposed on this system 

by the sequential scanning nature of reflectance data acquisition combined with 

time constraints due to the travel speed. With consideration of the current speed 

of operation being well below the desired speed, the inclusion of additional 

lasers was not tested with this prototype. 

The choice of line scan sensor was a compromise on the desired speed of 

operation of the weed sensor. There are however several possibilities to 

Start – All 
Lasers Off

Plant 
Discrimination 
Look Up Table

Capture Image → 
Record in array Data(BG)

For each Laser:
λ = { 785nm, 

685nm, 635nm }

Turn On Laser and Wait 
for Settling Time

Capture Image → 
Record in array Data(λ)

Turn Off Laser

Plant Discrimination based on 
NDVI635 and NDVI685

Peak Detection for 785nm
(Pixel sum in ROI above threshold): →

Record locations in Locns(785)
Record peaks in Peaks(785)

Next Laser

Data Processing 
Routine

Is aggregated strike
count > Threshold?

No

Yes

Send Strike Signal →
Turn on Indicator for Plant

Beam Normalisation →
Record in NormPeaks(λ)

Beam  Optical
Power

Look Up Table

Calculate Spectral Properties →
NDVI635 and NDVI685

Call Data Processing 
Routine

Subtract Background
Data(λ) = Data(λ) – Data(BG)

For each Laser:
λ = { 785nm, 685nm, 635nm }

END Routine

For each peak in Locns(785):
Calculate peak in Data(λ) and

Record peak in Peaks(λ)

For each Laser:
λ = { 685nm, 635nm }

Aggregate strikes for each plant 



 101 

increase the speed of operation. In addition there was another advantage to 

using the S92207-03 sensor. The tall pixel height simplified the alignment of the 

line scan sensor with the output beam array. It meant that the camera need not 

be perfectly aligned with the output beam array in order for all beams to be 

incident on the active area of the sensor. Even with a small shift in position the 

beams remained within the active area.  

The potential improvement in speed of operation could be realized by a 

combination of the following: 

i) Increasing laser power so that the exposure time can be reduced. All the 

lasers were operated well below their maximum output power, but it is 

also desirable to operate below the rated maximum for longevity of the 

laser diodes. 

ii) Search for an alternate sensor with similar dynamic range to the S9227-

03 but a higher sensitivity. Additionally a pixel count of 200-250 would 

be sufficient to provide the spatial resolution required and would halve 

the read-out time. 

iii) Many linear sensors (including the S9227-03) have the capability of 

starting the following exposure while the previous scan is read out. This 

overlap of operations would reduce the total time for a single scan. 

iv) Replacing the 4mm diameter lasers with 1mm diameter lasers. Focusing 

the beam power on a smaller point would increase the intensity on the 

central pixels and allow the exposure time to be reduced. 

v) Faster microcontroller – this would reduce processing time and allow 

more complex algorithms to be used. 

vi) Choosing a faster ADC for analogue pixel readout. Either an 

independent ADC or a microcontroller with faster peripheral ADC. If an 

independent ADC is used the speed of digital input of the microcontroller 

would be important too. 

More complex algorithms were considered for both the plant discrimination and 

for the strike aggregation. Different shaped criteria as well as a generalised 

distance scheme and other statistical methods were considered for the plant 

discrimination. The aggregation method could also be improved to make better 

use of the clustering of individual beam strikes associated with an individual 
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plant. However, these methods would all require more processing time and the 

simple algorithms were sufficient to demonstrate successful discrimination of 

different plants as shown in Chapter 5. 

4.5 Summary 

Three revisions of the prototype weed sensor have been presented in this 

chapter. The important design elements have been explained and the effect of 

these components on the operation of the weed sensor shown. The difficulty 

measuring the spectral properties of plants from a moving platform are evident 

in the care required to have a stable and reliable system. This work has 

culminated in a design which is effective and will explore the potential of 

reflectance spectroscopy to discriminate different plants with only a small 

number of narrow wavebands. 
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Chapter 5 

Experimental Data and Discussion 

5.1 Introduction 

A survey of the spectral reflectance of leaves from various crops and weeds 

was conducted to assess the potential application of the prototype weed sensor 

in several intensively farmed Australian crops. Six field trips to Queensland, 

Australia (Qld), were conducted over a period from July 2008 to Jan 2009, each 

about a month apart. Two farms were visited during these trips: a cotton and 

cereal farm near Dalby, and a sugar cane farm near Bundaberg, Qld. The 

spectral reflectance data collected during these field trips was used to conduct a 

discriminant analysis using a small number of wavelengths to show the potential 

for weed detection over the period of the growing season. There are many 

factors which affect the spectral reflectance of individual plants and this analysis 

gave a sense of the possibility for using such a system over the whole growing 

season. 

At each stage of the prototype weed sensor’s development, its ability to detect 

and discriminate between different plants was assessed. This assessment was 

carried out under various conditions: stationary in the lab, simulated dynamic 

conditions in the lab, stationary while outdoors and at low speed on a testing 

ground under shade. The initial prototype in particular could not be tested 

outdoors, but the second and final prototypes were attached to a quad bike for 

dynamic testing of their plant detection performance. 
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5.2 Spectral reflectance of crops and weeds 

The spectral reflectance of leaves belonging to crops and weeds was recorded 

over a period of up to three months at two different sites in Queensland, 

Australia. The target industries were sugar cane and cotton farming. In addition 

two cereal crops were also examined, wheat and sorghum. The primary 

application for this work is to enable automatic detection of weeds for spot 

spraying. This requires classifying plants as either the crop or other plant (and 

therefore a weed to be sprayed). Previous studies with hyperspectral reflec-

tance measurements found an increase in spectral resolution to be important for 

accurate identification and characterization of biophysical parameters such as 

species type [56]. With the increased spectral resolution there is some added 

complexity to using hyperspectral data. The increased volume of data leads to 

longer processing times and complex algorithms for data processing. The 

analysis of spectral data conducted here aimed to find optimal wavelengths for 

identification of these individual crops among their surrounding plants. 

5.2.1 Survey for spectral reflectance of plants 

The cotton (Gossypium hisutum), wheat (Triticum aestivum) and sorghum 

(Sorghum bicolor) were located at Arrawatta farm near Dalby, Qld. Dalby is in 

the Darling Downs region of Queensland which is a productive agricultural 

region covering approximately 8 million hectares. Due to different growing 

seasons the wheat was recorded in July and September while the cotton and 

sorghum where measured monthly from October to January. Five weeds were 

monitored when they were present during this period: flaxleaf fleabane (Conyza 

bonariensis), sow thistle (Sonchus oleraceus), climbing buckwheat (Fallopia 

convolvulus), sesbania pea (Sesbania cannabina) and feathertop Rhodes grass 

(Chloris virgata). There are many more weeds which are prevalent on cotton 

farms in eastern Australia, these five are included in this survey due to their 

presence at Arrawatta farm and because they are widespread problems [73] or 

in the case of fleabane, emerging problems – particularly for minimum till 

farming operations [74]. 
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Figure 5.1. Cotton field at Arrawatta farm, near Dalby, Queensland. (Photo 

taken December 2008). 

The sugar cane (Saccharum spp.) spectral reflectance data was recorded at 

Fairymead farm near Bundaberg, which is in one of the main sugar growing 

regions on the east coast of Australia. Four visits were made to Fairymead from 

October to January where spectral reflectance of sugar cane and major weeds 

were recorded. The two weeds monitored were guinea grass (Panicum 

maximum) and Johnson grass (Sorghum halepense), both perennial grasses. 

Like all crops, competition from weeds in sugarcane can significantly reduce 

yield. In addition, the burden of perennial grasses can build each year 

culminating in yield reduction which makes cropping uneconomically viable. The 

available management options are to manually control the perennial grasses 

with hand-held spot spraying or to plough out the cane and perennial weeds 

and then replant the field (often with an intervening rotation crop for one 

season). The replanting cost is a significant fraction of the total cost for the 3-7 

year production cycle. For this reason in particular, automated precision weed 

spot spraying in the sugarcane industry has significant potential economic 

benefits [75, 76]. 
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Figure 5.2. A sugar cane field at Fairymead, near Bundaberg, Queelsland. 

Two fibre spectrometers were used to measure the spectral reflectance over the 

range from 400-2100 nm. The fibre probe used examines a small area on a leaf 

(approx 3 mm in diameter) allowing the spectral reflectance of the leaf alone to 

be recorded. The diffusely reflected light is captured by orienting the fibre probe 

at 45° to the leaf – avoiding the specular reflection from the surface of the leaf. 

Both spectrometers could be operated from a vehicle battery power supply, 

along with a laptop for control and data recording. The detailed procedure used 

for spectral reflectance measurement is described in Section 3.2. 

5.2.2 Discriminant analysis of spectral reflectance 

The field surveys conducted during this project contributed to creating a 

database of spectral reflectance characteristics for several crops and a range of 

common weeds. The leaf level spectral reflectance data recorded closely 

matches the scale of the reflectance measurement made by the prototype weed 

sensor. However there is far greater spectral information available from the 

spectrometer which it is not possible to gather with single laser reflectance 

measurements. The use of this spectral data to validate the weed sensor design 

required significant reduction in the spectral information density. After selection 

of a small number of wavelengths, a discriminant analysis was performed to test 

the potential for discrimination of crop from weeds based on these selected 

wavelengths. 

For each survey conducted a selection of spectral data was made from each 

crop and weed species. Samples from weeds which were flowering were 

recorded, but excluded from this analysis. The selection was based on 



 107 

approximate age and size of the plants to include crops that were in their early 

growing stage (when in crop herbicide application is most important). Samples 

from young weeds only (i.e. not flowering) were included on the basis that the 

presence of old weeds is unlikely due to pre-emergent weed treatment. 

For each species the selected samples were divided into two sets on a 

chronological basis. In each case the set from the youngest plants was used as 

a training set for the discriminant analysis and the other set was used to 

validate the discriminant criterion developed. The wavelengths selected for the 

analysis were based on the discussion in Section 3.2. Wavelengths included 

were based on readily available laser diodes and the wavelength of other 

prominent spectral features. The NIR spectrometer data (above 870 nm) was 

not used in this analysis because including them in the prototype weed sensor 

would require using a line sensor sensitive to NIR light and cooling the sensor 

to avoid thermal noise affecting the sensor response. 

Prior to the discriminant analysis some pre-processing was required. The 

spectral resolution of the visible spectrometer is approximately 0.3 nm. For each 

wavelength chosen all data within a 3 nm wide band were averaged. This 

reduced the noise present in the spectral data, particularly near the extremes of 

the wavelength range. Despite the calibration process used which provided very 

good relative spectral reflectance there was a large error in the absolute 

reflectance due to geometrical effects in the optical setup. The proximity of the 

optical fibre probe to the sample meant any surface roughness or shift in leaf 

position changed the distance from probe to sample. The fraction of reflected 

light captured by the probe and returned to the spectrometer was affected by 

this distance. To prevent the discriminant analysis being affected by this error 

the variables used in the discriminant analysis were normalised difference 

indices, calculated in the same way as the NDVI used by the prototype weed 

sensor. Two wavelengths (750 nm and 785 nm) in the NIR plateaux of the 

reflectance spectra were used to normalise the other wavelengths using 

Equations 5.1 and 5.2. The complete set of wavelengths used was λ = 470, 

530, 635, 670, 685, 750, 785 and 810 nm. 

 𝑁𝐷𝐼750_𝜆𝑖 = 𝑅750−𝑅𝜆𝑖
𝑅750+𝑅𝜆𝑖

× 1000 (5.1) 
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 𝑁𝐷𝐼785_𝜆𝑖 = 𝑅785−𝑅𝜆𝑖
𝑅785+𝑅𝜆𝑖

× 1000 (5.2) 

Predictive discriminant analysis measures the variance in variables such as the 

NDI values (known as the predictive variables) and determines an equation 

which is a function of these variables. This discriminant criterion is then used to 

predict which group a sample belongs to, also known as classification. The 

software used to perform the discriminant analysis was Octave [77] with the 

‘nan’ statistics package. Two classifiers were trialled: a linear discriminant 

analysis (LDA) and a generalised distance based classifier (GDBC) [78]. The 

GDBC consistently performed better than the LDA so only results based on the 

GDBC are presented here. 

Combinations of two to six NDI values selected from those normalised by either 

750 or 785 nm were entered into the discriminant analysis. For each 

combination of NDIs the discriminant analysis used the training set of data to 

determine a discriminant criterion. This criterion was then tested by applying it 

to the training set (re-substitution) and to the testing set (validation). Evaluation 

of the classification performance was based on the error rate from both sets, 

particularly the validation result. A slight emphasis was placed on the crop / 

weed and weed / crop overall error rates i.e. the weed-weed error rate is not as 

important. 

5.2.3 Spectral reflectance of cotton, sorghum and wheat 

During the six field trips to Arrawatta farm each of the three crops and five 

weeds were monitored when they were present. The wheat was harvested after 

the September trip and the sorghum and cotton germinated prior to the October 

trip. Average spectra for each species are shown in Figure 5.3. 

For the discriminant analysis, only measurements taken prior to flowering and 

seed set were used. For wheat this meant that only the data for July was used; 

for sorghum, data from October and November was used; and for cotton, data 

from October, November and December was used. The weed spectra were 

selected to only include young weeds and those not yet flowering. This meant 

that there was only a small sample size which couldn’t be divided into separate 
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training and testing sets. The classifier test therefore relied on re-substitution for 

the weeds which would decrease the error rate observed. 

 

 

 

Figure 5.3. Average spectral reflectance curves for (A) three crops; and (B) five 

weeds. Spectra from Arrawatta farm near Dalby, Qld. A standard normal variate 

transform was applied to remove geometrical effects prior to averaging over 

multiple spectra for each species. 

For all crops there was generally improvement in classification rate with 

increasing number of NDIs used, up to the maximum of five different indices. 

Tables 5.1, 5.2 and 5.3 give the classification results for test data with the 
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highest performing discrimination criterion. In most cases there was only a small 

difference between using 750 or 785 nm for normalization and a similarly small 

difference when using either the 670 or 685 nm NDI. 

In some situations as few as two variables also provided good classification for 

sorghum. Two NDI provided equal performance for crop classification on the 

test data however weed classification was significantly worse. Similarly 

NDI785_635 and NDI785_685 correctly classified 30/36 of the cotton training samples 

in the training set and 31/36 from the testing set. Again, the error rate for weeds 

classified as crop increased from 0% to 5%. 

Table 5.1. Classification results for cotton and weeds using a Generalised 

Distance Based Classifier with 5 normalised indices: NDI785_470, NDI785_530, 

NDI785_635, NDI785_670, and NDI785_810. 

 Predicted Species 

Total Error 
% total Actual 

Species Cotton F. F. Milk 
thistle C. B. S.P. Ft. R. 

grass 

Cotton 32 4 0 0 0 0 36 3.3 

Flaxleaf 
fleabane 0 18 1 0 0 0 19 0.8 

Milk thistle 0 0 15 0 3 0 18 2.5 

Climbing 
buckwheat 0 1 0 11 0 0 12 0.8 

Sesbania pea 0 0 1 0 16 0 17 0.8 

Feathertop 
Rhodes grass 0 0 1 0 0 17 18 0.8 

 120 10.8 
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Table 5.2. Classification results for sorghum and weeds using a Generalised 

Distance Based Classifier with 5 normalised indices: NDI750_470, NDI750_530, 

NDI750_635, NDI750_670, and NDI750_810. 

 Predicted Species 

Total Error 
% total Actual 

Species Sorg. F. F. Milk 
thistle C. B. S.P. Ft. R. 

grass 

Sorghum 12 0 4 0 0 2 18 5.9 

Flaxleaf 
fleabane 0 15 0 4 0 0 19 3.9 

Milk thistle 0 0 16 0 2 0 18 2 

Climbing 
buckwheat 0 1 0 11 0 0 12 1 

Sesbania pea 0 0 1 0 16 0 17 1 

Feathertop 
Rhodes grass 0 0 0 0 0 18 18 0 

 102 13.8 

 

Table 5.3. Classification results for wheat and weeds (training set) using a 

Generalised Distance Based Classifier with 5 normalised indices: NDI750_470, 

NDI750_530, NDI750_635, NDI750_670, and NDI750_810. 

 Predicted Species 

Total Error 
% total Actual 

Species Wheat F. F. Milk 
thistle C. B. S.P. Ft. R. 

grass 

Wheat 28 3 0 1 0 0 32 3.4 

Flaxleaf 
fleabane 0 16 0 3 0 0 19 2.6 

Milk thistle 0 0 16 0 2 0 18 1.7 

Climbing 
buckwheat 0 1 0 11 0 0 12 0.9 

Sesbania pea 0 0 1 0 16 0 17 0.9 

Feathertop 
Rhodes grass 0 0 0 0 0 18 18 0 

 116 9.5 

 

These results are promising for the use of a weed sensor with only three 

wavelengths but the scope of application will be limited. There is a need to 
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determine the extent to which these differences in spectral properties are 

maintained with a wider range of growing conditions. Additionally the prototype 

weed sensor would not be able to perform as well as classification based on 

carefully collected spectral reflectance data with a calibrated spectrometer if it 

relied on spectral data alone. However, there is the potential to extract and use 

leaf size information, particularly for a crop like cotton, with the dynamic nature 

of the data collection. Combined with the spectral information this would be able 

to provide an effective sensor for precision spot spraying of weeds in cotton and 

other broad-acre crops. 

5.2.4 Spectral reflectance of sugar cane  

During the four field trips to Fairymead spectral reflectance measurements were 

undertaken with five different varieties of sugarcane and the two weeds which 

are most problematic: guinea grass and Johnson grass. During the final trip in 

January all the cane plants were above 1.5 m in height. It would not be feasible 

to apply herbicide at this stage due to the crop height and density so these 

results were not included in the analysis. The guinea grass and Johnson grass 

reflectance measurements used were selected from those made at times when 

the weeds were not flowering. Figure 5.4 shows the average spectral 

reflectance from a small number of samples for these three plants. There is only 

small variation evident; however a discriminant analysis demonstrated the 

potential to use spectral reflectance properties to detect guinea grass in 

particular, and to a lesser extent Johnson grass, in sugar cane. 
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Figure 5.4. Average spectral reflectance curves for sugarcane and problem 

weeds at Fairymead farm in Bundaberg. A standard normal variate transform 

was applied to remove geometrical effects prior to averaging over multiple 

spectra for each species. 

A total of 200 sugar cane samples, 66 guinea grass samples and 44 Johnson 

grass samples were selected for this analysis. As described above these 

samples were divided based on chronological order so that the training set 

contained samples recorded from October and November, and the validation 

set contained samples from November and December (and January for guinea 

grass). As for cotton, wheat and sorghum there was improvement in the error 

rate with increasing number of indices. With most combinations of indices there 

was also little change in error rate with either 785 or 750 nm used for 

normalization. The best combination of indices was found to be: NDI750_470, 

NDI750_530, NDI750_635, NDI750_670, and NDI750_810. Tables 5.4 and 5.5 give the 

classification results for re-substitution and for validation of the discriminant 

criterion. 
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Table 5.4. Classification results for training data using a generalised distance 

based classifier with 5 normalised indices: NDI750_470, NDI750_530, NDI750_635, 

NDI750_670, and NDI750_810. 

Actual 
Species 

Predicted Species 
Total Error 

% total Sugar 
cane 

Guinea 
grass 

Johnson 
grass 

Sugar cane 83 3 14 100 11 

Guinea grass 0 33 0 33 0 

Johnson grass 1 1 20 22 1.3 

 155 12.3 

 

Table 5.5. Classification results for validation data using a generalised 

distance based classifier with 5 normalised indices: NDI750_470, NDI750_530, 

NDI750_635, NDI750_670, and NDI750_810. 

Species 
Predicted Species 

Total Error 
% total Sugar 

cane 
Guinea 
grass 

Johnson 
grass 

Sugar cane 73 10 17 100 17.4 

Guinea grass 3 30 0 33 1.9 

Johnson grass 12 3 7 22 9.7 

 155 29.0 

 

In the re-substitution test the weeds classified as crop error rate is very low 

(3.6 %) but crop classifieds as weeds error rate is 17 %. Most of these samples 

are assigned to Johnson grass. The validation test results are not as good, 

particularly classification of Johnson grass, where over half the samples were 

classified as sugar cane. The error rate for sugar cane also increased with 27 % 

classified as either guinea grass or Johnson grass. While these error rates 

seem high it may be possible to use this information to target guinea grass 

while leaving 90 % of the sugar cane. Due to the way sugar cane grows a small 

number of lost plants early in the growing season need not affect the yield 

because neighbouring plants can utilise the resources made available. 

Additionally the longer term effect of better guinea grass control within the crop 

row can provide significant economic benefit. 



 115 

With only three wavelengths the error rate is significantly higher. Table 5.6 

shows the classification results for the validation set using the best combination 

of three wavelengths: λ = 635, 685, 785 nm. This is a poor result, however 

targeting of guinea grass alone may still be feasible. This analysis included a 

larger variation in spectral reflectance due to the sampling of plants over a 

period of four months. While a weed sensing system needs to be able to 

operate without manual adjustment of discrimination parameters, the error rate 

for guinea grass detection may be low enough when the system is calibrated for 

the spectral reflectance properties at one particular growing stage. There were 

insufficient guinea grass samples collected at a single growing stage from a 

single field trip to undertake a discriminant analysis.  

Table 5.6. Classification results for validation data using a generalised 

distance based classifier with 2 normalised indices: NDI785_635, NDI785_685. 

Species 
Predicted Species 

Total Error 
% total Sugar 

cane 
Guinea 
grass 

Johnson 
grass 

Sugar cane 50 20 30 100 32.3 

Guinea grass 8 23 2 33 6.5 

Johnson grass 13 5 4 22 11.0 

 155 49.8 
 

A potential problem with both this analysis and the one in Section 5.2.3 was that 

the NDI variables used in the analysis were normalised with the same 

reflectance value, either R750 or R785. Some form of normalisation is required 

and using a single reflectance value to do so may be the best option. However, 

it would also be possible to form NDI values where there are no wavelengths in 

common and conduct a similar discriminant analysis. 

There is a need to determine if the prototype weed sensor would be capable of 

the same discrimination performance, particularly with a reduced number of 

wavelengths and additional error in measurement of the spectral response. 

Additionally the weed sensor would be able to use leaf size information and leaf 

density information as suggested by Rees et al. [75] which is not available in 

this discriminant analysis. This capability would ultimately lead towards the 
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development of a weed sensor for use in the precision spraying of guinea grass 

in sugar cane. 

5.3 Experimental data for initial prototype 

The initial prototype weed sensor was developed prior to the start of this thesis. 

It’s potential to discriminate four different plants was reported in [10] and the 

discrimination of four plants is shown in Figure 5.5. Each box surrounds the 

slope data recorded for each plant and is derived from the mean +/- 2 times the 

standard deviation for the spectral slopes of each plant. Due to the high 

variability of the line scan camera reported in Section 3.6.2 it was necessary to 

calculate the slopes as an average of the slope for four beams. 

 

Figure 5.5. Discrimination of four plants based on slopes S1 and S2. 

(Source: [10].) 

The ability of the initial prototype weed sensor to detect plants at typical farming 

speed was tested by simulating vehicle movement with leaf samples mounted 

on a rotating stage. This test was conducted under static conditions and at 

average linear velocities of 7 and 22 km/h with a single leaf of Spathiphyllum 

fixed to the rotating stage. For this experiment the laser drivers were replaced 

with constant current drivers to allow the lasers to be switched at the high speed 

required. The weed sensor was continuously carrying out the operations 

described in Section 4.2.1 and recorded the calculated spectral properties of the 
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leaf whenever it was detected – determined by the NDVI value being larger than 

a threshold of 500. All calculated values of S1, S2 and NDVI presented in 

Figure 5.6 are for 30 mm wide Spathiphyllum leaves covering 4 laser beams at 

distances of 58 cm, 69 cm and 80 cm from the weed sensor. Each data point is 

an average over 10 measurements from each of four laser beams illuminating 

the leaf. There is no significant change in the calculated values of S1, S2 and 

NDVI for variation in the distance to the leaf sample or for simulated speeds of 7 

and 22 km/h. These results were reported in Paap et al. [79]. 

 

Figure 5.6. Average values of S1 (diamond), S2 (square) and NDVI (triangle) 

for static, 7 km/h and 22 km/h measurements of Spathiphyllum leaf at different 

distances. S1 and S2 are plotted against the left axis and NDVI against the right 

axis. Blue – 58 cm; Red – 69 cm; and Green – 80 cm. 

5.3.1 Initial plant discrimination results 

In order for the weed sensor to be used without the requirement of a large leaf 

covering four beams it was required that each beam be able to discriminate 

plants individually. A static discrimination trial with single leaves from four plants 

was conducted using the quadratic peak fitting method to determine peak 

values and the spectral slopes calculated independently for seven of the 28 

beams. The four plants used were Spathiphyllum sp., Anthurium sp., Acacia 

saligna and Eucalyptus marginata.  Forty measurements were recorded by 

each beam across the surface of the leaf. The average and standard deviation 
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of the slope values recorded from each leaf by a single beam are shown in 

Figure 5.7. There is significant overlap in this case which prevents this data 

being used to discriminate the plants reliably. The increased variability with 

respect to Figure 5.5 includes the increase due to using only a single beam in 

place of averaging over four beams and additionally includes variation from the 

surface of the leaf. 

 

Figure 5.7. Spectral slope values determined by initial prototype weed sensor 

for single leaves from four plants under static laboratory conditions. Average S1 

and S2 ± standard deviation of 40 samples across the surface of the leaf. 

This analysis of the performance of the weed sensor highlighted the need for an 

improved prototype. The variability of the measurements presented in 

Figure 5.6 and Figure 5.7 is due to fluctuations in the response of the line scan 

sensor and variation in the optical power of the laser diodes in time. Additionally 

the reduced optical power in beams closer to the sensor resulting from the 

uniform coating on the optical cavity was too low to be used for measurement of 

leaf spectral properties. These problems were addressed in the second 

prototype weed sensor. 

5.4 Experimental data for improved prototype 

The goal for the design of the prototype weed sensor was for the sensor to be 

able to reliably discriminate between a limited number of plants with as little as 

a single leaf illuminated by any one of the thirty beams. Meeting this goal would 

ensure that the sensor when used in agriculture would be able to detect and 
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spot spray weeds down to a size of 30 mm across. The development of the 

prototype described in Section 4.3 worked towards this goal by improving the 

stability of the reflected light measurement and building a robust device which 

could be operated independently under outdoor field conditions. 

5.4.1 Discrimination criterion 

Discrimination of plants with the original prototype weed sensor was only 

possible when the slope values were averaged over four beams incident on the 

same leaf. The reduction in variability of the sensor response achieved with the 

improved prototype allowed individual beams to be used for discrimination. This 

improvement is reflected in the results shown in Figure 5.3. The prototype weed 

sensor was used to measure the reflectance of the same four leaves used in 

the experiment shown in Figure 5.6. The values of spectral slopes for the same 

four leaves are shown.  These values were determined from a single beam and 

are the average of 40 measurements of S1 and S2 ± standard deviation across 

the surface of the leaf. 

 

Figure 5.8. Average slope values S1 and S2 (arbitrary units) for four sample 

plants as determined by the improved prototype weed sensor, PDU2. Error bars 

represent standard deviation of 40 samples across the leaf surface. 

This was a promising result but there was still difficulty using each individual 

beam. The discrimination criterion which were determined from this experiment 

could be used to discriminate three of the four plants from each other. There 

was considerable overlap between the recorded slope values for Anthurium and 

for A. saligna and these two plants were detected as the same plant. However, 
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when this same criterion was applied to other beams it failed to correctly 

classify the plants. Several methods of compensating for this beam variation 

were explored. Figure 5.9 shows the results of one of these techniques trialed. 

The slope values calculated with the standard algorithm show significant 

difference from each other and the corrected values are an improvement, but 

not sufficient to use the same criteria for each beam. Additionally some beams 

showed overlapping slope values for the two leaves and other beams were 

separated. 

 

 (A) (B) 

Figure 5.9. Slope values for two plants measured with seven different beams 

(A) using standard algorithm and (B) using a correction determined by 

characterisation of each beam with a reflectance standard. 

Using the same data, two normalized difference indices (RDI and NDVI) were 

calculated and are shown in Figure 5.10. The same correction was also applied 

to the NDIs. There is a clear separation between the NDVI values recorded for 

the two plants and the values are reasonably uniform across the seven beams.  

The RDI values are also separated for each beam individually but several 

beams show large differences in the average value. The corrected NDVI and 

RDI values appear to have improvement in the beam variation. This data was 

recorded using the computer and LabVIEW software described in Section 4.3.3. 

Following on from this work the embedded controller described in Section 4.3.6 

was built. The controller was initially used to demonstrate green from brown 

detection in dynamic outdoor conditions as opposed to the stationary laboratory 

work carried out up until that point. However the green from green algorithm 
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implemented in the controller used the NDIs in place of the slopes used 

previously. 

 

 (A) (B) 

Figure 5.10. NDI values for two plants measured with seven different beams (A) 

using standard algorithm and (B) using a correction determined by 

characterisation of each beam with a reflectance standard. 

5.4.2 Outdoor dynamic testing 

The slope values used previously worked well under laboratory conditions. For 

outdoor dynamic conditions the slopes were no longer suitable because there 

are many factors which influence the reflected light and affect the slope values. 

The normalization of the NDI values removes many of these factors and 

provides consistent measurement of the spectral properties of a target. 

The outdoor testing with the improved weed sensor prototype began with static 

testing to determine the effect of background light on the sensor. The solar filter 

used on the camera was effective at blocking a significant fraction of the 

background light, but the prototype could only be operated reliably in shady 

conditions. The green from brown performance was very good. The sensor was 

able to detect lawn reliably when driving on and off paths around the lawn. 

Small patches of grass were also detected, even when only one beam was 

incident on a small patch. Green from green detection under outdoor conditions 

was not successful and even indoors proved to be unreliable. The design of the 

weed sensor was refined further as described in 4.4 in order to solve this 

problem. 
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5.5 Experimental data for final prototype 

The final revision of the prototype weed sensor was designed to overcome the 

difficulty with determining accurate spectral properties of plants experienced 

with the previous prototype. The prototype described in Section 4.5 had 

significantly improved response for the red lasers reflected from leaves. 

However it was also more sensitive to background light and required a shroud 

to be operated during daytime, even in shady conditions. Figure 5.11 shows the 

prototype (PDU) and aluminium shroud mounted on a frame attached to the 

quad bike. A sunkisses plant can be seen in the middle of the shroud in front of 

the laser beam array. 

 

Figure 5.11. Dynamic testing of the final prototype weed sensor assembled on a 

quad bike. An aluminium shroud with plastic brushing down to the ground on the 

sides is used to block background light. 

5.5.1 Dynamic testing 

Figure 5.12 shows the four images captured in single scan while the quad bike 

travelled at approximately 3 km/h. Only one half of the camera’s field of view is 

shown. Several leaves are covered by beams in the centre of the image as can 

be identified by the beams with a high 785 nm response and a low 685 nm 

response. Several examples of data which were difficult for the original 

algorithm to process can be seen. From the right hand side, between the first 
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two beams the 785 nm response is significantly above the background level. 

This is believed to be due to the high fraction of near infra-red light scattered 

from the surface of leaves and then reflected back to the image sensor from 

another leaf or part of the leaf. The fourth beam from the right has very low 

response for all wavelengths. This beam was likely obscured in part by a leaf or 

only a fraction of the beam incident on a leaf. Discrimination with this beam 

would not be reliable, but the peak must be detected so that the remaining 

peaks are assigned the correct beam number prior to peak normalization. 

Lastly, the ninth/tenth beams are problematic. There may be one beam incident 

split over two leaves or two beams which have almost been merged on the line 

scan sensor. This beam should also be rejected as spectral properties 

calculated from the beam are likely to be inaccurate. 

 

Figure 5.12. Line scan data from final prototype weed sensor over a sunkisses 

plant. Response for 15 beams visible in half of the field of view. Travel speed 

was 3 km/h. Eight of the beams entirely incident on a leaf. Several beams are 

obscured from the sensor by the plant. 

5.5.2 Discrimination of three plants 

The discrimination performance of the weed sensor was tested with a 

discrimination trial carried out with three plants growing in pots (anthurium 

(Anthurium andraeanum), sunkisses (Ipomoea batatas var. sunkisses) and 

dandelion (Taraxacum officinale)). To determine the discrimination parameters 
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NDVI635 and NDVI685 the spectral properties of a leaf for each plant were 

measured under laboratory conditions. Ten sets of data from three spots on 

each leaf were collected. The angle of each leaf was 20° from normal incidence 

of the incident light to avoid specular reflection returning to the line scan sensor. 

Figure 5.13 shows the calculated NDVI635 and NDVI685 parameters for three 

plants. The values for these parameters are concentrated in three non-

intersecting parallelograms. The coordinates for each parallelogram were 

determined and used as the initial discrimination criterion for the outdoor 

dynamic test. 

 

Figure 5.13. NDVI scatter plot for single leaves from three plants using final 

prototype weed sensor in laboratory conditions. 

The three plants were placed in the ground on a testing circuit and the quad 

bike driven around the circuit at an average travelling speed of 3 km/h. The 

spectral properties were recorded for a single pass over each plant and are 

shown on a scatter-plot in Figure 5.14. The distribution for each plant is 

significantly more spread out under dynamic conditions for a number of 

reasons. The variation of spectral reflectance across the plant is one factor and 

the dynamic nature of the measurements is another. Additionally some of the 

points in the graph will have been measured with one of the scans recording a 

beam half on or half off the leaf. The simple aggregation method described in 

Section 4.4.2 is sufficient to correctly detect each plant with a threshold of 15. 
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Figure 5.14. NDVI scatterplot for a single pass over three plants recorded by 

final prototype weed sensor travelling at 3 km/h. Each plant is correctly detected 

with an aggregation threshold of 15 and no false positives are recorded. 

These discrimination criteria determined from one single plant specimen for 

each species were tested on multiple plants for two of the species (anthurium 

and sunkisses). Four of each plant species were placed on the testing ground 

and the quad bike driven around the circuit at a speed of approximately 5 km/h. 

The detection rate for all four anthurium plants was 100%, but the detection rate 

for sunkisses was lower, ranging from 3 out of 10 to 9 out of 10. See Table 5.6 

for results. No false positives for either plant were recorded. Further 

investigation of the plant labelled Sk4 showed that it had a slightly different 

average NDVI values across the leaf surface. A slight adjustment of the 

discrimination criterion allowed all of the plants to be detected on 90-100% of 

passes over the plant.  
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Table 5.6. Detection results for 8 plants of two species in a discrimination trial 

with the final prototype weed sensor. 

 Detection Result 

Actual 
Plant Green Sunkisses Anthurium 

A1 10 0 10 

A2 10 0 10 

A3 10 0 10 

A4 10 0 10 

Sk1 10 9 0 

Sk2 10 7 0 

Sk3 10 7 0 

Sk4 10 3 0 

 

5.6 Conclusion 

A survey to measure spectral reflectance of crops and common weeds over a 

period of the growing cycle was conducted. Broad-acre cotton, sorghum and 

wheat were measured on one farm over a period of 2-4 months along with the 

problem weeds (as identified by the farmer) growing in or near those crops. 

Another survey was conducted over four months at a sugarcane farm to monitor 

the spectral reflectance of sugar cane and two major weeds: guinea grass and 

Johnson grass. Discriminant analyses were carried out using a limited number 

of narrow wavebands selected from the survey data. There were good results 

for cotton, sorghum and wheat using five normalised difference indices formed 

from six wavelengths. In sugarcane, guinea grass was the most well separated 

weed and could be detected with 6 wavebands. Using only the three 

wavebands corresponding to the lasers used in the prototype weed sensor 

presented here did not give a good result for the combined data from the whole 

growing season. There is the potential for good results when limited to a single 

stage of the crop growth, or a combination of the spectral data and spatial 

features. 
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The prototype weed sensor developed throughout this thesis is capable of 

limited discrimination of green plants. It is based on measuring the spectral 

reflectance at three narrow wavebands using illumination by laser light. 

Developing a stable and fast laser switching circuit combined with measuring 

the reflected intensity using a high dynamic range line scan sensor have proved 

to be the most important steps in improving the performance of the weed 

sensor. It has been demonstrated to reliably detect two different broadleaved 

plants at a speed of 5 km/h with several different possibilities for increasing the 

speed of operation without affecting the discrimination performance. The 

prototype weed sensor needs to be tested on the farm to determine which crops 

it might be used in and which weeds it will be able to detect and spray. 
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Chapter 6 

Conclusion and Future Development 

6.1 Summary of results 

The presence of weeds in agriculture affects the production and quality of crops 

grown and can also harm the health of livestock. In agricultural crops, weeds 

compete with crops for water, light and the nutrients in the soil. Competition 

from weeds reduces the quantity of the harvested crop and can affect quality 

through contamination. The presence of weed material that harbours pests and 

diseases may also adversely affect the crop. Management of agricultural weeds 

increases the production cost of crops through the required investment in 

machinery and expenditure on labour and herbicides. This thesis describes the 

development of a spectral reflectance based sensor for plant discrimination 

which has the potential to be used in real-time spot spraying of weeds. The 

project achieved the following: 

• Development of the hardware for a prototype weed sensor which 

transferred plant discrimination capability from the laboratory to an 

outdoor dynamic trial. 

• Development of an embedded controller for this prototype and the 

software to reliably calculate spectral properties of different plants and 

discriminate those plants from each other. 

• Demonstrated discrimination of green from brown at 10 km/h in outdoor 

conditions with the sensor attached to a quad bike. 
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• Demonstrated successful discrimination of three plants from each other 

at 5 km/h in an outdoor trial with a shroud to block ambient light. 

• Showed the potential to discriminate cotton and sugarcane from 

important weeds growing amongst those crops with > 85-95% accuracy. 

The analysis used only a small number of narrow wavebands extracted 

from leaf level spectral reflectance measured with a spectrometer. 

6.2 Weed detection with laser-based spectroscopy 

Precision agriculture promotes site specific crop management to regulate the 

inputs to a crop in a way which accounts for the natural variability that exists in 

the field. This encompasses variation in soil properties, water and fertilizer 

needs, and crop health. Combined with yield mapping and spatial information 

technology, variable rate application technology can deliver the optimum rate 

throughout the crop in order to maximise the farm productivity. Weeds can 

currently be managed in a site specific way either when there is no crop (fallow 

weed control) or using weed maps produced from a combination of remote 

sensing and manual scouting. These weed maps are limited by the time and 

labour taken to produce them and generally are not as detailed as the true 

variability in weed density. 

An on the ground weed sensor that could detect weeds within the crop in real-

time is a missing piece of technology for precision agricultures. Such a sensor 

would allow variable rate application of herbicides to weeds where it is needed. 

This would provide significant economic benefit and savings in herbicides and 

would be an important part of sustainable agricultural practices that increase 

productivity while minimising degradation of the environment. 

The spectral reflectance of plants has been one focus for research into the 

development of a weed sensor. Remote sensing with multispectral and 

hyperspectral imaging in the visible and near infrared bands has been used for 

measurement of a wide range of biophysical parameters, including: vegetation 

cover, biomass, chlorophyll content, nitrogen and phosphorous deficiency and 

water stress. Hatfield et. al. [53] reviews the wide range of applications and 

means by which remotely sensed spectral reflectance has been used. This 
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strong relationship between plants and their spectral reflectance is promising for 

the development of a weed sensor but also highlights the difficulty brought 

about by the wide range of factors which can influence spectral reflectance. 

Proximate sensors attached to a vehicle provide the ability to be used in real-

time. There has been a broad range of research in this area from wide band 

spectral imaging with colour filters or colour cameras to hyperspectral sensing 

with spectrographs. These approaches have been reported to provide 

discrimination of weeds from a number of crops under the conditions they were 

conducted in. An alternative approach has been machine vision. Image 

processing involves segmentation of the leaves and plants from the background 

followed by further analysis to identify the plant. This could include determining 

leaf shape features, plant organization, texture analysis or combinations of 

these and other methods. The challenge for all these different methods of plant 

discrimination is to continue to be reliable under field conditions with non-

uniform lighting and changing environmental conditions. 

The weed sensor design developed in this thesis is based on the principle of 

measuring spectral reflectance from leaves using lasers as a narrow-band 

illumination source. This design was previously described in Sahba et. al. [10]. 

Two revisions of this prototype were developed during this project and all three 

prototypes were tested for their ability to determine the spectral properties of 

plants and to discriminate between different species. Each prototype used a 

laser module to align the output from three lasers using thin-film beam 

combiners. An optical cavity divides the laser module output into 15 evenly 

spaced and parallel beams. Each laser is sequentially turned on and the 

reflected light from the ground and leaves captured by a broadband line-scan 

sensor. A control system processed the data from the sensor and determined if 

the calculated spectral properties match those of the target plants. 

A survey was conducted which measured the spectral reflectance of cotton, 

sorghum, wheat and sugarcane crops along with the major weeds growing 

amongst these crops. This survey was conducted over the growing season in 

order to assess the impact of changing conditions on the reliability of spectral 

reflectance to discriminate weeds from the crop. A discriminant analysis of the 

spectral reflectance data was performed to determine the potential for 
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application of the prototype weed sensor to weed management in the two 

cropping systems. 

6.3 Conclusions 

A weed sensor design based on the principle of measuring spectral reflectance 

from leaves was the starting point for this project. The weed sensor has been 

developed through collaboration between the Western Australian Centre of 

Excellence for MicroPhotonic Systems, Photonics Detection System, Pty Ltd, 

Australia, and China Daheng Group, China. The outcome of this collaboration 

was the development of a sensor which used lasers as a narrow-band 

illumination source to investigate the spectral reflectance of a target leaf. The 

prototype used a laser module to align the output from three lasers using thin-

film beam combiners. An optical cavity divided the laser module output into 15 

evenly spaced and parallel beams. Each laser was sequentially turned on and 

the reflected light from the ground and leaves captured by a broadband line-

scan sensor. Crucially, the alignment of lasers and image sensor ensured that 

for every calculation of spectral reflectance the reflected intensity levels were 

collected from the same spot on the ground or on a leaf. A control system 

processed the data from the sensor and determined if the calculated spectral 

properties matched those of the target plants. This prototype was a bench-top 

demonstrator with limitations that prevented it from being tested under field 

conditions. 

The system was evaluated to determine its ability to collect and process 

reflectance data, to calculate spectral properties and to discriminate different 

plants under laboratory conditions. The main limitations of the prototype’s 

design which prevented its use in field-testing were assessed and an improved 

prototype designed to address the problems. The low signal to noise ratio of the 

image sensor, the lack of rigidity of the system and an embedded system that 

could function independently were addressed with two revisions to the design of 

the prototype. In addition, the opto-mechanical layout was revised to improve 

the coverage of ground illuminated by the lasers and the mechanical alignment 

of the system as well as its rigidity. 
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An improved prototype using these new designs was built which used laser 

diodes of three wavelengths (635 nm, 685 nm and 785 nm), constant current 

laser drivers, optical cavities having non-uniform transmittance on the front 

surface, a high speed digital line scan sensor, and a custom designed PCB with 

microcontroller for independent operation. The fast line scan sensor greatly 

improved variability compared with the original camera and this allowed reliable 

detection of green-from-brown. This capability was confirmed with the prototype 

weed sensor mounted on a quad bike and driven at a speed of up to 10 km/h. 

This is an improvement over the currently available technology as detection was 

successful even for weeds as small as 30 mm across. The green-from-green 

performance of this prototype remained unreliable due to errors in calculated 

NDVI and RDI values. The error originated from the low R670 and R685 

reflectance values combined with low dynamic range of the 8-bit analogue to 

digital converter (ADC). In addition, the low pixel count of the line scan sensor 

caused difficulty resolving beams when they were incident on uneven surfaces. 

The final prototype design built was a robustly packaged optical sensor with 

improved laser output stability and a high dynamic range, low noise analogue 

sensor. The data processing algorithms were improved by taking advantage of 

the reliability of the 785 nm laser to determine the location of each beam in the 

image. Normalization of the signals from the two red lasers with the 785 nm 

laser also improved the reliability. Under dynamic conditions the false positive 

rate was high and an aggregation algorithm was implemented to contend with 

this issue. The final design reliably performed green from green discrimination 

for three plants at a speed of 5 km/h. The rugged packaging ensured reliable 

operation of the sensor in a high vibration environment while protecting the 

sensor from dust, water and the outdoor environment. 

The choice of line scan sensor was a compromise on the desired speed of 

operation of the weed sensor. Its lower sensitivity increased the required 

exposure time and the time to complete a single scan. The sensor was also 

more sensitive to background light and a shroud was attached to operate in 

daylight. Another issue with the design of the sensor is shading of the viewing 

area. Incident light from beams on the soil or leaves lower down can be 

obscured by leaves closer to the sensor. 
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There is a great potential for use of this prototype weed sensor for spot spraying 

weeds in crop. The spectral survey and analysis conducted shows sufficient 

difference in spectral reflectance of some crops and weeds over a long period 

of the growing season. For cotton and sugarcane the crop was correctly 

classified 85-95% of the time. Most importantly this prototype weed sensor has 

achieved reliable discrimination of green plants with a low number of narrow 

wavebands. 

6.4 Future research and development 

There is still work to be done before the weed sensor can be used to spot spray 

weeds amongst a crop. The operation of the sensor is reliable for short periods 

of time but over longer time spans the reliability of the system needs to be 

improved. The current scan rate of the sensor has to be increased to enable 

detection of narrow leafed plants at vehicle speeds greater than 5 km/h. The 

weed sensor then needs to be trialled with crop and weeds to determine how 

reliable it will be and what the limitations are. 

Long term reliability requires temperature control of the lasers because changes 

in the ambient temperature lead to changes in the optical power which affects 

the calculated normalised difference indices (NDIs). The solution for this is to 

implement a temperature controller for the laser diodes. 

There are several possibilities to increase the speed of operation. A higher 

sensitivity sensor without significant reduction in dynamic range or increase in 

read-out noise would allow reduction in exposure time. Increasing the laser 

power would also allow a shorter exposure time. The separate operations of 

exposure, readout and data processing are performed sequentially. These 

could be overlapped to reduce the total time for a single scan. 

The spectral reflectance properties of crop and weeds have many sources of 

variation. The brief survey reported in Chapter 5 and many other surveys need 

to be built on to determine which crop and weeds could be reliably discriminated 

with 3 or 4 wavelengths (i.e. 2 or 3 NDIs) and what conditions are required for 

this to be successful. Calibration of the system at a particular point in the 

growing cycle which accounts for environmental factors may be necessary to 
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increase the discrimination rate. It is likely that limited spectral information 

would need to be combined with spatial information. An improved aggregation 

algorithm could take advantage of plant shape and leaf size information, 

particularly with a faster sensor. There is also the possibility to use one or more 

additional lasers to improve discrimination capability – however this would 

depend on the availability of a compact, cost-effective laser diode with a 

wavelength in the green to blue range. 

The data processing available with the embedded controller used was sufficient 

for the discrimination of the plants used in this study. In order to extend this 

capability it is expected that more complex algorithms will need to be employed, 

including the improved aggregation algorithm mentioned. It would also be 

possible to combine the spectral information measured with higher resolution 

spatial information using an imaging camera. This would certainly require more 

complex data processing and a more powerful processor to maintain the real-

time performance. 

The realization of a reliable plant discrimination sensor has potential for 

significant herbicide savings and economic benefit as well as environmental 

benefit. It would be another piece of the puzzle that is currently missing in 

precision agriculture technology. 
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