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Abstract 

Conditional sequential simulation algorithms have been used in geostatistics for many 

years but we currently find new developments are being made in this field. This thesis 

presents two new direct sequential simulation with histogram reproduction algorithms 

and compares them with the efficient and widely used sequential Gaussian simulation 

algorithm and the otiginal direct sequential simulation algorithm. We explore the 

possibility of reproducing both the semivariogram and the histogram without the need 

for a transformation to nmmal space, through optimising an objective function and 

placing linear constr·.tints on the local conditional distributions. Programs from the 

GSLIB Fortran library are expanded to provide a simulation environment. An isotropic 

and an anisotropic data set are analysed. Both sets are positively skewed and the 

exhaustive data is available to define global target distributions and for comparing the 

cumulative distribution functions of the simulated values. 
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1 Introduction 

1.1 Background and Significance 

Geostatistics developed from a need to evaluate recoverable reserves in mineral de­

posits and provides statistical tools for the description and modelling of spatial and 

spatiotemporal variables. It takes into account both the structure and the random­

ness inherent in any deposit. In 1962 G. Matheron defined geostatistics as "the 

application of the formalism of random functions to the reconnaissance and estima­

tion of natural phenomena.'' Geostatistics can be considered as a set of statistical 

procedures that deal with the characterisation of spatial attributes. Geostatistics 

is now used in many different fields, wherever there is a need for evaluating spa­

tially correlated data, such as in mining, petroleum, oceanography, hydrogeology 

and environmental science. 

The two principal components of geostatistics are estimation and simulation. Es­

timation is used to infer attribute values at unsampled locations from the (known) 

values at sampled locations. The most common geostatistical estimation method is 

lcriging, which is a generalised linear regression technique that provides at each lo­

cation a best linear unbiased estimator (BLUE) for the unknown attribute studied. 

Many variants of kriging have been developed, but all rely on the same concepts. 

Three types of parametric kriging for a single attribute can be differentiated de­

pending on the model used for the mean (Remy et al, 2001). These are termed 

simple kriging (SK), ordinary kriging (OK) and kriging with a trend model (KT). 

A non-parametric type of kriging is indicator kriging (IK). 

Least-squares interpolation algorithms tend to smooth out local details of the 

spatial variation of the attribute (Goovaerts, 1998). Kriging tends to unevenly 

smooth the data, that is, kriging estimates have less spatial variability than the 

real values and the smoothing is inversely proportional to the data density. Con­

sequently values below the sample mean are overestimated and values above the 

sample mean are underestimated. The smoothing distortion is also evidenced by 

the experimental semivariogram of the estimates differing from the sampling experi­

mental semivariogram, and the histogram of the sample differing from the histogram 
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of the estimated values (Olea, 1999). 

Conditional simulation was initislly developed to correct the smoothing effect 

produced by kriging (Deutsch & Journel, 1998). Conditional simulations are spa­

tially consistent Monte Carlo simulations (Chiles and Delfiner, 1999) and are used 

to characterise the uncertainty associated with the prediction of attril'mte values at 

unsampled location..c; while honouring the data values at sample locations. A large 

number of equiprobable realisations are generated so as to obtain global accuracy 

by the reproduction of properties such as histograms and semivariograms. Condi­

tional simulations are used qualitatively to obtain maps of spatial variability, and 

quantitatively to evaluate the effect of spatial uncertainty on the results of complex 

procedures, allowing for sensitivity and risk analysis. 

Sequential simulation is a widely accepted and computationally efficient tool used 

to obtain simulations that reproduce df'.sired properties through the use of condi­

tional distributions. Sequential Gaussian simulation is one of the main methods that 

rely on the multi Gaussian approach. At each unsampled location, an observation is 

randomly drawn from the normal distribution with mean equal to the simple kriging 

mean and variance equal to the simple kriging variance. Journel {1994) showed that 

this normality assumption can be relaxed, and any type of local conditional distrib­

ution can be used to simulate the values, as long as its mean and variance are equal 

to the simple kriging parameters. This led to the development of direct sequential 

simulation (dss), which ensures variograrn reproduction but not necessarily global 

histogram reproduction. 

In this study we explore two direct sequential simulation algorithms with his­

togram reproduction, the first using the one norm ( dssPl) and the second the two 

norm {dss£2). We examine the possibility of a simulation algorithm being able tore­

produce both the histogram and the experimental semivariogram model without the 

need for a transformation to normal space. This project allows us to link numer­

ical analysis, operations research and computer programming with geostatistics. 

Fortran code was developed by modifying and adding to GSLIB code, and other 

programs were incorporated with this to achieve the programs required to run the 

simulation algorithms. 
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1.2 Objective of the Study 

In this study we develop and investigate in detail, a new direct sequential simulation 

technique dssl2 and compare it to earlier direct sequential simulation methods dss 

and dssfl and also to sequential Gaussian simulation. This new direct sequential 

simulation algorithm that uses quadratic programming to determine local condi­

tional probability distributions from which the resulting realisations will depend on. 

In addition, the algorithms for sequential Gaussian simulation and the earlier direct 

sequential simulation methods will be outlined and discussed. 

These simulation algorithms are applied to sample data sets that have different 

statistical and spatial features, and the results are evaluated and compared. Two 

data sets, Permeability and Potassium, have been selected for analysis, in order 

to present comparisons of the simulation methods. Both data sets are positively 

skewed, albeit only slightly for Potassium. The two data sets also exhibit differ­

ent patterns of spatial continuity. The Permeability data are isotropic, while the 

Potassium data are anisotropic. 

1.3 Thesis Outline 

Chapter 2 presents the theoretical background of the random function model, sta­

tionarity and simple kriging. In Chapter 3 we look at sequential simulation algo­

rithms, outline the mathematical background of optimisation and discuss the imple­

mentation of the simulation algorithms. In Chapter 4 we discuss the programming 

algorithms developed in the research. In Chapter 5 and Chapter 6 the isotropic 

data set and the anisotropic data set respectively, are presented. We present the 

quantitative and qualitative performance assessments used in this study in Chapter 

7. In Chapter 8 we discuss the results and findings of the study. 
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1.4 Notation 

The gcostatistical notation used in this thesis follows Goovaerts (1997) and the 

GSLIB user's manual (Deutsch & Journel, 1998). In particular: 

V for all 

A study region 

a 

G(O) 

G(h) 

Cov f.l 
E{-) 

F(u;z) 

F(u; zi (n)) 

range parameter 

stationary variance of the random variable 

Z(u) 

stationary covariace of the random function 

Z(u) for lag h 

covariance 

expected value· 

cumulative distribution function of the ran-

dom variable Z(u) 

conditionat cumulative distribution function 

of a random variable Z(u) 

F(up ... , UNjZ1, .•• , zN)multivariate cumulative distribution func­

tion 

,Q(h) 

!(h) 

t(h) 
h= lhl 
h 

/( 

~~K (u) 

m(u) 

m 

N(h) 

model semivariogram at lag vector h 

semivariogram at lag vector h 

experimental semivariogram at lag vector h 

separation distance or Jag 

separation vector 

number of threshold values Zk 

Simple Kriging weight of attribUte value at 

sampled location Ua for estimation of the at­

tribute value at location u 

expected value of the random variable Z(u) 

constant mean of the random variable Z(u) 

number of sample data pairs separated by lag 

vector h 
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n 

p(h) 

llullt 
I lull, 
Var{•) 

Z(u) 

z(u) 

z(u.) 

Z(u.) 

Z'(u) 

number of data values z(ua) available over 

the region A 

correlogram of the random function Z(u) at 

lag vector h 

one-norm 

two-norm 

variance 

random variable at sample location u 

actual attribute value at location u 

sample attribute value at location u 

random variable at location. Ua 

random variable of estimated value at loca­

tion u 

Simple Kriging estimator of Z(u) 
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2 Geostatistical Framework 

2.1 Random Functions 

Geostatistics deals with the characterisation of spatial attributes in a given region 

A in two- or three-dimensional space. The attribute values are usually only known 

at some locations in the region A and in order to carry out any statistical infer­

ence it is necessary to impose a conceptual model that will allow one to obtain a 

realisation of the attribute over the entire region. This conceptual model is known 

as the random function model. Suppose that the attribute values are known at the 

locations ua E A, a = 1, ... , n. A known sample value z(ucr) is considered as one 

particular realisation of a random variable Z{uQ'). Any unknown attribute z(u) is 

regarded as one realisation of a random variable Z(u) (Armstrong, 1998; Chiles & 

Delfiner, 1999; Goovaerts, 1997). The random variable Z(u) is completely defined 

by its cumulative distribution function given by 

F(u;z) = Pr{Z(u) $z} for all z E JR. (1) 

The family of (usually) dependent random variables {Z(u), u E A} is called a 

random function. The random function is fully characterised by the set of all its 

N-variate cumulative distribution functions, for any number N and any choice of 

the N locations Un 1 n = 1, ... , N: 

F(u, ... , u";z, ... ,z") = Pr {Z (u,) 9,. .. , Z (u") $zN} (2) 

A multivariate cumulative density function is used to model the joint uncertainty 

about the N values z(u1), ••• ,z(uN). Generally, the number of data available is 

insufficient to infer the joint distribution function, so in practice the spatial analysis 

is limited to cumulative density functions involving no more than two locations at a 

time, and their corresponding moments. The first two moments of the distribution 

provide an w::ceptable approximate solution. 
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2.2 Distributions 

Most of the theoretical concepts in geostatistics rely on data that follow a particular 

probability distribution. The most widely used of these is the Gaussian or 'nor­

mal' distribution whose probability density function, called the normal curve, is the 

symmetric bell-shaped curve with positive and negative tails that stretch to infin­

ity in both directions. The probability density function of the normal probability 

distribution (Walpole & Myers, 1989) with mean Jl and variance u2, is given by 

1 (1 (z-~)') g(z) = av'2ii' exp 2 -a- ' where - oo < z < oo. (3) 

The standard normal distribution has mean Jl = 0 and variance u2 = 1, and in this 

case Equation (3) becomes 

g(z) =- exp --1 ( z') 
y'2ii' 2 

where - oo < z < oo. (4) 

Any normal random variable Z with mean J.t and standard deviation acan be trans­

formed to a standard normal random variable Y by letting 

z-~ Y=--. 
a 

Another distribution often used in geostatistics is the lognormal distribution, 

where the logarithms of the data values are normally distributed. The lognormal 

model is a natural choice for positively skewed data such as gold grades, pollution 

levels and permeability. The random variable Z is lognormal if Y = log Z is normal. 

A logarithmic transformation can convert a skewed variable into a more symmetric 

form, and it may also be useful in stabilising the variance. When the variance is 

proportional to the mean, a logarithmic transformation may be able to correct this 

condition. 

2.3 Stationarity 

In the case of the data under consideration in geostatistics, repeated measurements 

at any one location are usually impossible so a structure needs to be imposed on 
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the random function that enables us to carry out statistical inference. The ob­

served data z(Ua), a= 1, · · ·, n are considered as a single realisation of the process 

{Z(u): u EA}. When replication of data is not available, this can be overcome 

with assumptions concerning the spatial behaviour. A random function is said to be 

stationary if the probabilistic structure looks similar in different parts of the study 

region A. Replication within a single set of data is then possible from different 

subregions. 

A random function is stationary within a study region A if its multivariate 

cumulative density function is invariant under translation, that is, the characteristics 

of a random function stay the same when shifting a given set of N points from 

one part of the study region to another. A random function is said to be strictly 

stationary if for any set of N locations u1 , ••• , uN and any translation vector h 

F(u1 , ••• , uN;z11 ... ,zN) = F(u1 + h, ... , uN + h;z11 ••• ,zN) (5) 

As long as two pairs of observations have the same separation vector h, they both 

can contribute in the estimation of z(u). The vector h is called the lag vector 

between two spatial locations. 

A random function is said to be second-order stationary when the mean E{Z(u)} 

exists and does not depend on the location u, and the covariance function C (h) exists 

and depends only on the separation vector h: 

E(Z(u)} = E{Z(u+h)} 

Cov{Z(u),Z(u +h)}= C(h) 

C (0) = Var{Z(u)} 

(6) 

(7) 

(8) 

Second-order stationarity assumes the existence of a finite variance. There are 

many physical phenomena, for example Brownian Motion (Serway & Beichner, 

2000), and associated random functions that do not have a finite variance or covari­

ance, so the assumption of strict stationarity is replaced by the weaker hypothesis 

of second-order intrinsic stationarity. An intrinsic random function assumes that 

for every vector h the increment Z (u +h) - Z (u) is second-order stationary and 

is characterised by the relationships 

E{Z(u+h)- Z(u)} = 0 (9) 
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and 

Var{Z(u+h)- Z(u)} = 27(h) (10) 

where 2f(h) is the variogram function. The semivariogram -y(h) shows how the 

dissimilarity between Z (u) and Z (u +h) changes with separation h. The greater 

the value of 1{h), the less close the relationship between values at points separated 

by h. The semivariogram is an even, nonnegative function equal to 0 at h = 0: 

7(h) =7(-h) 7(h) ~ 0 7(0) =D (11) 

The parameters commonly used to summarise the bivariate behaviour of a sta­

tionary random function are the covariance function C (h), correlogram p {h), and 

semivariogram 7 (h) and these are related by: 

1 (h) = C (D) - C(h) (12) 

(h)= C(h) = 1- 7(h) 
P C (D) C(D) 

(13) 

The correlogram expresses how the correlation between locations changes with spa­

tial separation. 

If a random process is second-order stationary, then it is also intinsically station­

ary, but the converse is not true. That is, if C{h) is defined, then the semivariogram 

is necessarily defined, but the existence of the semivariogram does not imply the 

existence of C(h). If the process is intrinsically stationary but not second-order 

stationary, the covariance function does not exist. This is evident in the power var­

iog::arn 7(h) = blhiP with 0 < p < 2 and b > 0, which cannot be obtained from a 

covariance function as it is unbounded. 

2.4 Relationship Between Covariogram and Semivariogram 

Assuming that the process is second-order stationary so that C(O) is defined, then 

C(D) = Var{Z(u)}. A second order stationary process has C(h) ~ 0, from which 

IC(h)l ::> C(O) and C(D) ~ 0. AB llhll increases C(h) tends to zero, so the semivar­

iogram of a second-order stationary process has an asymptote equal to 0{0). This 

helps to provide a way of checking for stationarity. The semivariogram of the process 

9 



should flatten out with increasing separation distance of data points. If the semi­

variogram steadily increases then the process is not second-order stationary. The 

semivariograru is intrinsically stationary if 

21(h) --> o as IJhll --+ oo 
llhll' 

2.5 Inference and Modelling 

(14) 

Once a random function model is chosen, its parameters, the mean and covariance, 

are inferred from the sample information available over the study region A. The 

sample statistics are used as estimates of population parameters, so the sample needs 

to be representative of the study region. 

The semivariogram, rather than the covariance, is commonly used to model 

spatial variability, although kriging systems are more easily solved with covariance 

matrices (Deutsch & Journel, 1998). The semivariogram measures the average dis­

similarity between data separated by a vector h and is inferred by the sample (ex­

perimental) semivariogram, whereas the covariance measures similarity. The sample 

semivariogram used for modelling is computed as half the average squared difference 

between the attribute values of every data pair: 

1 
N(h) 

'i (h) = 2N(h) !; [z(u.) - z(u, + h)]
2 (15) 

where z(ua) and z(ua+h) are the data values at locations Ua and ua+h respectively, 

and N(h) is the number of pairs of data values separated by the vector h. The sample 

semivariogram may not tend to zero when h tends to zero, although by definition 

/(0) = 0. 

2.6 Range and Sill 

The rate of increase of the sample semivariograrn with distance indicates how quickly 

the influence of a sample reduces with distance. The sample semivariogram can 

increase indefinitely if the variability of the attribute has no limit at large distances, 

10 



and this is indicative of nonstationary behaviour. If the random function is second­

order stationary, the sample sernivariogram fluctuates about a limiting value, and the 

range of the spatial process is the distance at which this limit is reached. This limit 

is called the sill of the semivariogram and it signifies that after a certain separation 

distance there is no longer any correlation between samples. (Armstrong, 1998}. If 

the semivariogram approaches its sill asymptotically, then the practical range is the 

value at which the semivariogram reaches 95 % of its sill. The variograrn can reveal 

nested structures, each characterised by its own range (Chiles & Delfiner, 1999}. 

The sample semivariogram provides a set of experimental values for a finite 

number of lags, hkl k = 1, ... ,K, and directions. Continuous functions must be 

fitted to these experimental values so as to deduce semivariogram or covariance 

values for any possible lag h required b:v kriging, and also to smooth out sample 

fluctuations. (Goovaerts, 1997}. 

2. 7 The Nugget Effect 

From the definition of the semivariogram we have: 

7(h) = 7( -h) and 1(0) = 0 (16) 

In some applications "t(h) tends to eo i 0 as h tends to 0. This implies that 

observation differences at the same location have a positive variance. This is due to 

measurement error and/or a spatial process operating at lag distances shorter than 

the smallest lag observed in the data set. If this micro-scale process has sill CMs and 

if aLE denotes the variance of the measurement error, then 

- 2 + Co - (J ME CMS• (17) 

'When either of the two components is not zero, the semivariograrn exhibits a discon­

tinuity at the origin. This discontinuity at the origin is called the nugget effect. The 

term originated from the idea that gold nuggets are dispersed thoughout a larger 

body of rock but (possibly) at distances smaller than the smallest sampling distance. 

When a sendvariogram has nugget eo and sill C (0), the difference C (0) - C{) is called 
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the partial sill of the semivariogram. The nugget effect is obvious in many data sets. 

In the absence of measurement error, the nugget effect is an indication that the 

sampling interval was not small enough. 

2.8 Isotropy and Anisotropy 

The covariance and the semivariogram are said to be anisotropic if they depend 

on both distance and direction. They are said to be isotropic if they depend only 

on the magnitude of h. When experimental semivariograms exhibit anisotropy, a 

coordinate transformation can be applied to obtain an isotropic model. ( Goovaerts, 

1997; Wackernagel, 1998). To determine the presence of anisotropy we need to 

look at directional experimental semivariograms. A semivariogram surface, which 

is essentially a contour plot of the directional semivariograrns, visually indicates 

the direction of greatest spatial continuity. It is important that any pronounced 

anisotropy is modelled and not ignored. Anisotropy can be classified as either gecr 

metric anisotropy or zonal anisotropy. 

2.8.1 Geometric Anisotropy 

A semivariogram has a gr..:ometric anisotropy when it has the same sill in all direc­

tions but different ranges in at least two directions. A plot of the calculated range 

of the semivariogram in various directions appears ellipsoidal, and this ellipse can 

be transformed to a circle with radius equal to the minor axis via a rotation and 

subsequent dilation. 

2.8.2 Zonal Anisotropy 

A semivariograrn exhibits zonal anisotropy when its sill values vary with direction. 

This type of anisotropy can be modelled as the sum of two components; an isotropic 

semivariogram in both coordinates and a one-dimensional semivariogram that de­

pends only on the distance in the direction of greater variance. The coordinate 
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system is rotated so that the y-rods coincides with the direction of maximum conti­

nuity. 

Thus a semivariogram model is completely specified by stating the direction of 

greatest continuity, and the anisotropy ratio {minor/major axis in the case of geo­

metric anisotropy, and zero in the case of zonal anisotropy) and a suitable isotropic 

model function In the next section we will consider isotropic semivariogram models. 

These basic models are used to form a linear model that can be isotropic or display 

either type of anisotropy. 

2.9 Isotropic Semivariogram Models 

Only certain functions can be used as models for semivariograms and covariances. 

Covariances must be positive definite functions, and so semivariograms have to be 

conditionally negative semi-definite, that is 

n n 

L;L;a;a;2'Y(u, -u;) :S 0 (18) 
i=l j=l 

for any set of locations uP ... , 11n and constants aP ... , an. It is common practice 

to fit a positive linear combination of basic models that are known to be permis­

sible (Goovaerts, 1997). This eliminates the need to test the permissibility of a 

semivariogram model after it has been constructa:l.. The following isotropic semi­

variogram models depend only on scalar differences between the locations, h = I hi, 
not directions. 

2.9.1 Nugget effect model 

The nugget effect model is a semivariogram for a pure white-noise process. It is 

defined by 

9 
(h) = J 0 for h = 0 

l c forh>O 
(19) 

where c;::: 0. The nugget effect is used to model a discontinuity at the origin of the 

semivariogram and since it reaches the sill as soon as h > 0, it is bounded. 
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2.9.2 Spherical model 

The spherical model has range a and sill c. It is defined by 

- { (3h I (h)') 
9 (h) = : 2;;- 2 ;; 

for0$h<a 
{20) 

for h 2:: a 

where Cs 2:: 0. The semivariogram exhibits linear behaviour near the origin, and once 

the range is reached, the semivariogram is bounded and remains constant. 

2.9.3 Exponential model 

The exponential model reaches its sill asymptotically and has a practical range a. 

The model is defined by 

{21) 

The exponential model is bounded and exhibits linear behaviour near the origin. 

Differentiating the spherical and exponential model functions with respect to h, 

we find the gradient of the spherical model at the origin is 

rJ (0) = ( 3 3h')l 
2a 2a3 h=o 

3 
2a 

and the gradient of the exponential model is 

g' (0) = ~exp (-3h) I 
a a h=O 

3 
a 

{22) 

{23) 

Clearly we have ;a <~for all values of a E JR., so the exponential model is steeper 

near the origin. 
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2.9.4 Gaussian model 

The Gaussian model has practical range a and is bounded as it reaches the sill c 

asymptotically. It is defined by 

g(h) = c(l-exp (-
3
:,')) for h 2:0 (24) 

The model exhibits parabolic behaviour near the origin, and is infinitely differen­

tiable everywhere. It is characteristic of highly regular attributes. 

2. 9.5 Power model 

The power model is unbounded and has no sill. It is defined by 

g(h) = ch" for h 2:0 (25) 

where 0 < w < 2, w E lit The power model plays an important role in the theory of 

turbulence and its application to meteorology. 

2.10 Kriging 

Kriging is a local estimation technique which provides a best linear unbiased es­

timator of the attribute z at location u. This method uses the modelled spatial 

correlation estimated from the sample data. The estimator used in kriging is Z* (u) 

which is defined as 

n(u) 

z· (u) = m (u) + L "· (u) [Z (u.)- m (u.)] (26) 
0:=1 

where m (u) and m(u.) are the expected values of the random vru:iables Z (u) and 

Z (ua), and Ao: is the weight given to the sample value at location Ua. The number of 

data used in the estimation, as well as their weights, may change from one location 

to another. Generally only then (u) data closest to the location u being estimated 

are retained. The weights are chosen so as to minimise the error variance 

u1 (u) = Var {Z' (u)- Z (u)} (27) 

15 



under the unbiasedness constraint that 

E{Z'(u)- Z(u)} = 0 (28) 

This means that kriging is a best linear unbiased estimation (BLUE) method. The 

kriging estimator is an exact interpolator because it honours the data values z ( ua) at 

their locations. Different kriging methods are used according to the model considered 

for the trend m (u). 

The simulation algorithms that we outline in the next chapter use simple kriging 

(SK), which considers the mean m (u) to be known and constant throughout the 

study region, that is 

m(u) = m for all u EA. (29) 

2.10.1 Simple Kriging 

The simple kriging estimator is a linear combination of the n random variables z ( ua) 

and the mean value m. In this case equation (26) becomes 

(30) 

where then weights A!K (u) are the simple kriging weights determined to minimise 

the error variance, z•(u) is the random variable of the estimated value and Z(ua) 

is the random variable at the sample location ua. This minimisation results in the 

following set of n (u) normal equations: 

n(u) 

L: >Y (u) C (u.- u~) = C (u.- u) for"= 1, ... , n (u). (31) 
fJ:l 

The corresponding simple kriging variance is: 

"'~K (u) - Var [ZsK (u)- Z (u)) 
n(u) 

- C(O)-L,\~K(u)C(u-u.)~O 
a:l 

(32) 

(33) 

Simple kriging will be applied in the sequential simulation algorithms discussed 

in the next chapter to obtain estimates of the first two moments of the local distri­

butions used in the simulation. 

16 



2.11 Simulation 

Simulation is often preferred to estimation because it allows the generation of maps, 

or realisations, that reproduce the sample variability. By generating many realisa­

tions that reproduce global statistics such as the histogram and the semivariogram 

the uncertainty about the spatial distribution of the attribute values can be assessed. 

The set of geostatistical realisations allows local uncertainty, spatial uncertainty and 

response uncertainty to be modelled. The models of uncertainty and subsequent risk 

quantification is influenced by the decisions made along the modelling process. These 

decisions include the choice of conceptual model, the selection of simulation algo­

rithm and the number of realisations generated to explore th~ space of uncertainty, 

and the inference of the parameters of the random function model (Goovaerts, 2001). 

There are numerous simulation algorithms used in geostatistic~ applications. 

These differ in the underlying random function model, the amount and type of in­

formation accounted for, and computational requirements. Sequential simulation is 

based on Monte Carlo simulation which generates realisations of random processes. 

For the purpose of this research, we are interested in sequential Gaussian simulation 

and direct sequential simulation. Both these methods involve the sequential sam­

pling of a conditional cumulative distribution function. In sequential simulation, a 

random path visiting all locations once and only once is defined and ea.ch location is 

simulated when it is visited. With conditional simulation, the resulting realisations 

honour the data values at their locations. 

Sequential Gaussian simulation assumes that the given random field is multi­

variate normal, which implies that the given data are normally distributed. Before 

sequential Gaussian simulation is applied, the original data usually require a trans­

formation into normal score data to honour the normality requirement. Direct se­

quential simulation does not rely on the multi-Gaussian assumption, so it does not 

require such a transformation and the simulation is performed directly in the original 

data space. Variogram reproduction is ensured by JOurnal's result (Journel, 1994) 

which states that for the sequential simulation algorithm to reproduce a specific 

covariance model, it suffices that all C'Jnditional cumulative distribution functions 

used in sequential simulation have the mean and variance equal to the corresponding 
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simple kriging mean and simple kriging veriance. We discuss the algorithm in more 

detail in the next chapter. 

The limitations of sequential Gaussian simulation (Caers, 2000b) are that it: 

• assumes a multivariate Gaussian field, which can never be fully checked in 

practice. 

• requires a ba+k-transformation after simulation if a normal score transform 

was applied. 

• does not reproduce the original semivariogram model, only the normal score 

semivariogram model. 

The limitations of direct sequential simulation are that it does not always re­

produce the histogram, only the mean and variance (covariance model). A post 

processing algorithm may be necessary to identify the target histogram, but this 

may destroy the variogram reproduction (Caers, 2000b). 
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3 Sequential Simulation Methods and their 

Implementation 

In this chapter we discuss the sequential simulation methods we considered, provide 

the relevant mathematical background and explain their implementation algorithms. 

3.1 Sequential Simulation Algorithm 

The simulation algorithms we use in this study all belong to a class of simulation 

algorithms known as sequential simulation algorithms. A conditional crnnulative 

distribution function is modelled and sampled at each of the N nodes visited along 

a random path. Reproduction of the semivariograrn model is ensured by making 

each conditional cumulativr. distribution function conditional on both the original n 

data and the values simulated at previously visited locations. 

The sequential simulation process consists of the following steps: 

• Define a random path through all nodes to be simulated, visiting each node 

once and only once. 

- Determine the parameters for the local conditional cumulative distrib­

ution function at the node such that its mean and variance equals the 

simple kriging mean and simple kriging variance respectively. 

- Draw a simulated value from the conditional cumulative distribution func­

tion at location u 1• 

- Add the simulated value to the data set. 

• Loop until all N nodes have been simulated. 

Each of the sequential simulation algorithms we use follow these steps but they 

take different approaches to determining the local conditional cumulative distri­

bution functions. The algorithms used to determine the conditional cumulative 
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distribution functions can be divided into two main categories - parametric and 

non-parametric. 

3.2 Parametric Algorithms 

In this section we discuss simulation algorithms for which the local conditional dis­

tribution can be written as a function of the mean and variance. 

3.2.1 Sequential Gaussian Simulation 

The main assumption in sequential Gaussian simulation is that the local conditional 

cumulative distribution function is from a standard normal distribution. If the orig­

inal z-data are not standard normal, or even normal, they need to be transformed 

into y-values with a standard normal distribution. This can be done by associating 

to the percentiles of the cumulative distribution of Z the corresponding percentiles 

of the standard normal distribution. This is called the normal score (nscore) trans­

formation or Gaussian anamorphosis and it preserves the rank of the sample data. 

The simulation is then carried out in normal score space where the random normal 

score deviate is calculated by 

Y = 1-LSK +TUSK (34) 

where JlsK is the kriging mean, asK is the kriging variance and r is a random number 

in [0, 1]. The resulting realisations are then back-transformed to the original variable. 

For the back-transformation the program performs a linear interpolation sep­

arately within each of the middle classes. The lower tail is extrapolated towards 

a minimum value using a power model with a strictly positive parameter, w that 

represents the power. When w = 1 the power model corresponds to a linear model. 

The upper tail is extrapolated by using a hyperbolic model as this allows the cumu­

lative distribution function values to go beyond the largest threshold value zk, and 

the parameter w ;:::: 1 controls how fast the cumulative distribution function model 

reaches its limiting value 1. The smaller w is, the longer the tail of the distribution 

will be (Goovaerts, 1997). 
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3.2.2 Direct Sequential Simulation 

As shown by Journel (1994), the conditional distribution F (u;; z I (n + i- 1)) can 

be of any type and need not be the same at each location, as long as its param& 

ters are calculated from the simple kriging mean and simple kriging variance. In 

this study we will use a lognormal distribution as the local conditional cumulative 

distribution function where the logarithmic variance u2 (u) is given by 

u' (u) =log ( a~K (u) + 1) 
(ZsK (u))2 

and the logarithmic mean Jl. (u) is 

The random deviate is given by 

z = exp (JJ.(u) + ru' (u)) 

where r is a random number in [0, IJ. 

3.3 Non-parametric Algorithms 

(35) 

(36) 

(37) 

Unlike the Gaussian approach, non-parametric algorithms do not assume any partic­

ular shape or analytical expression for the local conditional distributions ( Goovaerts, 

2001). 

3.3.1 Direct Sequential Simulation with Histogram Identification 

Caers (2000b) proposed a direct sequential simulation method that tries to overcome 

the shortcomings of sequential Gaussian simulation and the original direct sequential 

simulation by directly matching the target histogram associated with each simulation 

node. This target histogram is defined through a set of thresholds { tk, k = 0, ... , K} 

that discretise the range of values for the attribute, and probabilities Pf., where 

p'l = Pr {t,_1 < Z (u) :<:; t,} denotes the global proportion for the target histogram. 

The following describes the principles of this method. 
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For each location u the value of the local conditional probability distribution 

function corresponding to a given threshold k = 1, ... , K, is denoted by Pk (u [ (n)) 

and defined as 

Pk(u I (n)) =Pr{tk-1 < Z(u) :'Otk I (n)}. (38) 

The aim of the algorithm is to locally match the global target histogram as closely 

as possible, while at the same time, requiring that: 

1. The mean of the local conditional cumulative distribution function is equal to 

the simple kriging mean, and so 

K ( ) 
tk-1 + tk 

z8K(u) = L 2 P•(u I (n)) 
k=1 

(39) 

2. The variance of the local conditional cumulative distribution function is equal 

to the simple kriging variance, and so 

2 "'2 tk-t+tk 
K ( )' asK+ (zsK (u)) = £; 

2 
Pk (u I (n)). (40) 

3. The sum of the probabilities equals one, and so 

K 

LP• (u I (n)) = 1. ( 41) 
k=l 

4. The consistency condition 

0 :': pk(u I (n)) :'0 1, k = l, ... ,K (42) 

holds for the probabilities. 

There are many different ways to measure the match between the local condi­

tional histogram and the global target histogram. We will discuss two possibilities, 

the first, used by Caers (2000b), is to minimise the absolute deviation between the 

target, that is global, and the local conditional probabilities. This can be achieved 

by requiring the absolute deviation 

K 

O, = llp(u I (n))- !>'II,= LIP• (u I (n))- Pll (43) 
k=l 

to be minimised. 
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As a result, a nonlinear constrained minimisation problem needs to be solved at 

each location where the objective is to minimise. 

O, =liP- P'll, (44) 

where the vector p = p (u I (n)) and the vector p' is constant. Because of the 

nature of the objective function in {43) we call the resulting algorithm dsstl. This 

objective function is piecewise linear. 

A more natural approach is investigated in this thesis. We use the least squares 

principle and minimise the sum of the squares of the deviations between the local 

and global histograms: 

/( 

O, = liP (u I (n))- P'lli = l)P• (u I (n))- J7k) 2
• (45) 

k=l 

The measure O, is a differentiable function with respect to Pk (u I (n)). The objec­

tive function in (45) minimises the squared difference between the local and global 

probabilities and hence we call this algorithm dsst2. At each location we are required 

to solve a constrained least squares problem. We need to minimise 0 2 subject to 

the constraints (39)-(42). Equation (45) can be rewritten as 

K 

o, = 2::: ((P• (u I (n)))
2

- 2J7kp• (u I (n)) + (p-%J') 
k=l 

(46) 

K 
which, after dropping the constant term, L: (.r/k)2 gives us the new objective function 

k=l 

K K 

O, = L (pk (u I (n))) 2 - L 2p".v• (u I (n)). (47) 
k=l k=l 

The resulting problem can be formulated as a quadratic programming problem where 

the objective is to minimise 

(48) 

where the vector p = p (u I (n)), the vector p' is constant, and the (K x K) di­

mensional matrix Q = 21. 

For both problems the optimal solution, where it exists, results in local proba­

bility density function values 

p' (u) = {Pl (u I (n))} ,k = l, ... ,K. (49) 
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These values are regarded as the frequencies of a histogram that has the same thresh­

old classes as the target histogram, and this new histogmm will be used to draw 

random deviates. Given a random number r E [0, 1] and a threshold class (zi, zi+l] 

with cumulative distribution function values F (zi) and F (zi+l), the random deviate 

x is linearly interpolated using the definition 

(r- F (z;)) (zHl - z;) 
X = ( ( ) ( )) + Z;. Fzi+1-Fzi 

(50) 

These two simulation algorithms both encounter convergence problems when 

the simple kriging mean is less than the midpoint of the first threshold. When this 

occurs an optimal solution does not exist. A random deviate needs to be found in an 

altemative way. This could be done by using a different local conditional cumulative 

distribution function, for example a normal distribution, or as in the case of this 

study, by setting the random deviate equal to the simple kriging mean. 

3.4 Constrained Optimisation 

In the previous section we have identified two constrained optimisation problems 

that need to be solved in order to determine the local conditional cumulative dis­

tribution function. The constraints are linear equations and/ or inequalities and the 

objective function is either piecewise linear or quadratic. The two problems are 

called an 1!.1 approximation problem and a quadratic programming problem respec­

tively. They can both be rewritten as linear programming problems, that is, as 

problems with a linear objective function and linear constraints. 

3.5 Linear Programming Problems 

A linear progranuning problem is characterised by a linear objective function and 

linear constraints. The standard form of a linear program is 

Minimise 

f (x) = CTX (51) 
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subject to 

(52) 

where x is ann--dimensional column vector, cT is ann-dimensional row vector, A 

is an m x n matrix, and b is an m-dimensional column vector. Inequalities are 

converted to equality equations by introducing new positive variables Yi known as 

slack variables. This allows us to rewrite the inequalities in (52) as a system of m 

linear equations in n + m unknowns 

A'x' = b (53) 

where A' = [A, I,.] and (x'f = [x, y]. If B is a nonsingular m x m submatrix of 

A', then the solution to Bxn = b is called a basic solution of Equation (53). The 

basic variables are the components of x associated with colunms of B. 

A feasible solution of the linear programming problem is a solution for which 

all the constraints are satisfied. A vector that satisfies Equation (52) is said to be 

feasible for these constraints. A feasible constraint that is also basic is known as 

a basic feasible solution. An infeasible solution is a solution for which at least one 

constraint is violated. We call the collection of all feasible solutions the feasible 

region. If the feasible region is bounded, the optimisation problem is bounded, 

otherwise it is said to be unbounded. The optimal solution is a feasible solution 

that results in the objective function having the smallest value when minimising. 

When the constraints are inconsistent, an optimisation problem has no solution> and 

the problem is said to be infeasible. 

Feasible regions that are defined by linear constraints are com.-ex. In general, a set 

S E JR.n is convex if, given any two points in the set, every point on the line segment 

jOining these two points is also a member of the set. A hyperplane in JR.n is the set 

of points H = { x E lRn : aT x =c} , where a =f. 0 is an n-dimensional column vector 

in IRn and c is a real number. A hyperplane is a set of solutions to a single linear 

equation. The closed hUJ.f spaces are defined by H = { x E Jitn : aT x ~c} and H = 

{ x E JR.n : aT x :$c}. Tho open half spaces are defined by H = { x E 1Rn : aT x >c} 

and H = { x E JR.n : aT x ~c} . A convex polytope is a set which can be expressed 

as the intersection of a finite number of closed half spaces. Convex polytopes are 

the sets of solutions obtained from a system of linear inequalities. Each inequality 
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defines a half space and the solution is the intersection of these half spaces. A 

polytope may be empty, bounded or unbounded. A nonempty polytope is called a 

polyhedron. 

An extreme point of a convex set is a point x in the convex set that does not 

lie strictly within the line segment connecting two other points of the set. Adjacent 

extreme points are points that lie on a common edge. Any polytope has at most a 

finite number of extreme points (Luenberger, 1984; Wismer & Chattergy, 197F.t 

A function f(x) is called convex in Ill" if 

f (>.x + (1- >.)y) S >.j (x) + (1- >.)! (y) (54) 

for all x, y E lit" and A E [0, 1}. A function is strictly convex if this definition holds 

with strict inequality when 0 < >. < 1 and x ':f:. y. A convex function is defined only 

over the domain of a convex set. The definition does not require that f be either 

continuous or differentiable. 

A vector x is an extfeme point of a polytope K if and only if x is a basic feasible 

solution to Equation (52). 

Denote by K the polytope of all (feasible) solutions of (52). The relationship 

between extreme points and basic feasible solutions is as follows: 

1. If the convex set K corresponding to Equation (52) is nonernpty, it has at least 

one extreme point. 

2. If there is a finite optimal solution to a linear programming problem, there is 

a finite optimal solution which is an extreme point of the constraint set. 

3. The constraint set K corresponding to Equation (52) possesses at most a finite 

number of extreme points. 

4. If the convex polytope K corresponding to Equation (52) is bounded, then K 

is a convex polyhedron and K consists of points that are convex combinations 

of a finite number of points. 

The optimal solution for a linear programming problem must lie on the boundary 

of the feasible region. Any point on the boundary of the feasible region lies on one 
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or more of the hyperplanes defined by the respective constraint boundary equations. 

The hyperplanes define a polytope with vertices at which at least n of these planes 

meet. At least one member of the optimal set is at a vertex, and in general the 

number of vertices can be prohibitively large, even for small problems. 

The simplex method, originally formulated by Dantzig in 1947 (Gillet al., 1984), 

is an algebraic procedure for determining the optimal solution of a linear program­

ming problem that has underlying geometric concepts. The set of all feasible solu­

tions to Equations (51)-(52) is defined by the set K = { x E ll!." : aT x :::; b, x ~ 0} 

and the linear progranuning problem consists of finding an extremum of f (x) on 

K. When the objective is linear, and when an optimal solution exists then there is 

at least one vertex of K at which this optimum is attained. 

There are two phases to the Simplex Method. Phase I is the process of locating a 

vertex of the polytope. Extra slack variables and constant offsets are added to all of 

the inequalities to help find a feasible vertex. Phase I concludes when a basic feasible 

solution is obtained for the artificial vectors, and this solution is used as the initial 

basic feasible solution for applying the simplex method to the objective function in 

Phase II. Once we reach a vertex for which the slack variable is zero, we have found a 

vertex of the original polytope and we then continue with Phase II on that polytope. 

We then move from one vertex to an adjacent one, checking the objective function 

after each move to determine if further improvement is possible. The algorithm 

proceeds to move on the surface defined by the working set of constraints to an 

improved point until the optimal vertex is reached. The vector to enter the basi.'! 

is chosen as that with the greatest nonnegative marginal cost. The vector leaving 

the basis is chosen from among all basic vectors by selecting that which causes the 

maximum reduction in the objective function, allowing many intermediate simplex 

vertices to be bypassed. 

The objective functions we will be concerned with axe piecewise linear and 

quadratic respectively, and both problems can be rewritten in such a way that the 

problem becomes a linear progTamrning problem, which can be solved using a two 

phase simplex algorithm. 
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3.6 One-norm Approximation with Linear Constraints 

The constrained one-norm linear approximation problem is to 

Minimise 
m 

1/b- Axl/ 1 =I; Jb,- A;xJ 

subject to the linear constraints 

Cx - d 

Ex $ f 

(55) 

(56) 

(57) 

where the vector x = [xb x2, ... , xnf E JR.n and we are given the vector b = 

[b1, b2, ••. , bmf and the m x n matrix A, the k x n matrix C and the l x n matrix 

E. 
The problem (55)-(57) can be formulated as the linear programming problem 

(Barrodale and Roberts, 1978): 

Minimise 

e(u + v) (58) 

subject to 

A(x'- x") +u- v - b (59) 

C (x'- x") - d 

E (x' - x") + u" - f 

x' x" u u11 v I I I I 2: 0 
' 

where e = [1,1, ... ,1] E JR.m, u = [ul!u2,··•,um]T, v = [v1tv2,···,vmf and 

u" = [u'{, U~, ... , u'!]T. The vector v is introduced as a slack vari~bk to convert 

the inequality constraint Ex S: f to an equivalent equality constraint. This aug-­

mented form is needed in order to apply the simplex method. 

To start the simplex iterations, artificial variables need to be introduc~~d fur 

t,he purpose of being the initial basic variable for their respective equation. These 

variables have the usual nonnegativity constraints placed on them, and the objective 

function is modified so an exorbitant penalty is imposed if their values are larger 

than zero. 
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After introducing the artificial vectors u', v', and v", we can restate problem 

(58)-(59) in the form: 

Minimise 

e(u + v) + Me'(u' + v') + Me"v'' (60) 

subject to 

A(x'- x'') +u- v = b (61) 

C (x'- X
11

) + u'- v 1 - d 

E(x' -x'') + u"- v" = f 

Ill Ill Ill x,x,u,u,u,v,v,v > 0 

e" are row vectors of 1 's of dimensiOns k and l respectively. The quantity M in 

the objective function is a large positive number which represents the cost of each 

artificial vector. 

The iterations of the simplex method automatically force the artificial variables 

to become zero, one at a time. When all the artificial variables are zero, the real 

problem is solved (Hillier and Lieberman, 1995). The initial basis normally includes 

some of the artificial vectors so the algorithm is implemented using the two-phase 

simplex method. The objective function e1(u1 +v') +e"v" is used in phase I, and if 

the optimal solution to this problem is positive, then no feasible solution to the con­

straints (56) and (57) exists, and the algorithm tenninates. If the optimal solution 

is zero, the algorithm proceeds with Phase II using the objective function e( u + v). 

3.7 Quadratic Programming 

A linearly constrained optimisation problem with a quadratic objective function is 

called a quadratic program. The general quadratic program can be written as 

Minimise 

(62) 

subject to 

and X~ 0, 
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where cT is an n-dimensional row vector containing the coefficients of the linear 

terms in the objective function, and Q is a (n x n) symmetric matrix containing 

the coefficients of the quadratic terms. The decision variables are denoted by the n­

dimensional colurrm vector x, and the constraints are defined by an (m x n) matrix 

A and an m-dimensional column vector b of right-hand-side coefficients. 

The Lagrangian function for the quadratic program is 

(63) 

where the vector A is called the vector of Lagrange multipliers. The Karush-Kuhn­

Thcker conditions (WISmer & Chattergy, 1978) for the quadratic program are first­

order necessary conditions for optimality that are sufficient for a global minimum 

when Q is positive definite. The Karush-Kuhn-'lUcker conditions for a local mini-

mum are: 

CT +xTQ +>.A<': 0 (64) 

Ax- b:s; 0 (65) 

xT(c+Qx+AT>.) =0 (66) 

>.(Ax- b)= 0 (67) 

x, A 2:: 0. (68) 

We then introduce surplus variables y ElRn to the inequalities in Equation(64) 

and nonnegative surplus variables v ElRn to the inequalities in (65). The Karush­

Kuhn-Thcker conditions {64)-(68) can now be expressed in a form that closely re­

sembles linear programming: 

Qx+AT>.-y=-c 

Ax+v=b 

X~ 0, A;:::: 0, y ~ 0, v 2: 0 

' yTx=O,Av=O 

(69) 

(70) 

(71) 

(72) 

where equations (69)-(70) are linear equalities, condition(71) restricts all the vari­

ables to be nonnegative, and condition(72) is called the complementary slackness 

condition and it ensures that all ..\s are zero for inactive constraints and positive for 

active constraints (Wismer & Chattergy,l978; Gill et al, 1984). 
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Introducing n slack variables z ~ 0 we can rewrite the quadratic problem as the 

linear programming problem. This problem is given as 

Minimise 

subject to 

n 

Z= Lz; 
i=l 

Qx+AT.>--y+z=-c 

Ax+v=b 

(73) 

(74) 

(75) 

(76) 

The goal is to find the solution that minimises Equation (73) whilst ensuring that 

the complementary slackness conditions are also satisfied at each iteration. The rule 

for selecting the entering variable is modified to accommOdate this condition. If the 

sum is zero, the solution will satisfy (69) to (72). The entering variable will be the 

one whose coefficient is most negative provided that its complementary variable is 

not in the basis or would !eave the basis on the same iteration. At the conclusion 

of the algorithm, the vector x defines the optimal solution. 

This algorithm works well when the objective function is positive definite, and 

·the computational effort required is comparative to the linear programming problem 

with m + n constraints, where m is the number of constraints and n is the number 

of variables in the quadratic program. 

3.8 Implementation and Specifications 

In this section we describe in detail the specific algorithms used to implement the 

sequential simulation methods discussed in Sections 3.2 and 3.3. In order to imple­

ment these algorithms we first had to create a simulation environment comprising 

a set of Fortran programs. The flowchart shown in Figure 3.1 outlines the steps 

involved in the sequential simulation algorithm discussed in Section 3.1. The main 

difference between the simulation algorithms is associated with the subroutine in 

which a random deviate is drawn from a local conditional distribution. 
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Figure 3.1. Flow chart fonthe sequential simulation algorithm. 
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3.8.1 Sequential Gaussian simulation-SGSIM 

The SGSIM algorithm used the program sgsim. exe from the Geostatistical Software 

Library (GSLIB). The only modification that was required to run this program was 

an adjustment to the dimension of some matrices, since the Penneability data set 

was larger than the preset default values. The parameter files for the Permeability 

and Potassium data sets are included in Appendices AI and Bl respectively. The 

program requires a semivariogram model for the normal scores, and the kriging 

variance is directly interpreted as the variance of the conditional distribution, so 

the nugget constant and the sill parameters must add to 1.0. (Deutsch & Journel, 

1998). 

3.8.2 Direct sequential simulation 

In the case of the three direct sequential simulation algorithms we need to input 

a non-standardised semivariogram model derived from the original sample data. 

The programs do not require that the data be transformed to normal scores. Our 

implementation is based on a modification of SGSIM. As a first step the subroutine 

krige was changed to incorporate the sample mean into the formula for the kriging 

mean, as SGSIM calculates the simple kriging mean using a global mean of zero. 

This program will be referred to as dssim.exe. Additional requirements for the 

particular direct sequential simulation algorithms were then added where necessary. 

3.8.3 DSSIM - Original direct sequential simulation 

This program is a modification of dssim.exe so that the local conditional probability 

distribution is no longer assumed to be normally distributed. The code was amended 

to allow the random deviate associated with a location to be drawn from a lognormal 

distribution. The parameters for this distribution are calculated from the simple 

kriging mean Wid simple kriging variance using Equations (35)-(36). The parameter 

files are for the Permeability and Potassium data sets are seen in Appendices A2 

and B2 respectively. 

33 



3.8.4 Direct seqnential simulation with histogram reproduction 

The two algorithms, DSSLl and DSSL2 require a global target histogram at the 

start of the programs. These histograms consist of 40 equiprobable classes with a 

maximum and minimum value determined by the parameters zmin and zmax. The 

thresholds and global probabilities for the Permeability and Potassium data sets are 

given in Appendices A5 and B5 respectively. These programs differ from SGSIM and 

DSSIM in that they make use of special subroutines which return a local probability 

distribution from which a random deviate is drawn, as shown in Figure 3.2. 

3.8.5 DSSLl R Direct sequential simulation with histogram reproduction 

using the one-norm 

For this algorithm we included Algorithm 552 from the Association for Computing 

Machinery (ACM) Transactions of Mathematical Software (Barrodale & Roberts, 

1980) as a subroutine in the modified dssim.exe program. The parameter file for 

dssil.exe for the Permeability and Potassium data sets are given in Appendices A3 

and B3 respectively. From Equations (55)-(57) the parameters listed in Table 3.1 

must be passed to the Algorithm 552 subroutine at execution time. 

The only parameters that are continuously updated from location to location are 

C and d. The subroutine returns the solution vector through an array and a logical 

flag which indicates if an optimal solution was found. 

The program also requires values for the following three parameters: 

• Iter - an upper bound on the maximum number of iterations allowed. It is set 

to the suggested value of 10 (k + l + m). This parameter is actually calculated 

in the program after k is input. 

• Kode- a parameter that on exit informs the main program if an optimal solu­

tion has been found. On entry though, if set equal to one, the nonnegativity 

constraints on the probabilities are included implicitly in the constraints. This 

has been coded into the program and no further input is required. If the flag 

returned with the solution vector informs the main program that a solution 

34 



Call program 

Alg552/ LSSOL 

]. 
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Calculate random deviate 

using linear 
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Figure 3.2. Flowchart for calculating a random deviate with DSSL11DSSL2 . 
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was not folllld, the estimate is set equal to the simple kriging mean, and the 

program continues. 

e Toler - a small positive tolerance for which empirical evidence suggests be set 

as toler= lQ(-;"') where d represents the munber of decimal digit,s of accuracy 

available. The subroutine cannot distinguish between zero and any quantity 

whose magnitude does not exceed toler. It will not pivot on any number whose 

magnitude does not exceed toler. The tolerance is preset at a value of 10-5 in 

the program code. 

Table 3.1. Parameters for Algoritlun 552. 

Parameter Description and input 

K 

L 

M 

N 

A 

c 

E 

b 

d 

f 

Number of rows of matrix A = 40 

Number of rows of matrix C = 3 

Number of rows of matrix E = 0 

Number of columns of the matrices A,C,E = 40 

0 

I 0 0 

0 I 

0 0 

("i'') 
("t'•)' 

I 

0 

I 

(''i'') 
(''i")' 

1 

(pj,V,,··· ,ptf 

(z_9K, a~K + (z8K)2, l)T 
0 
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3.8.6 DSSL2- Direct sequential simulation with histogram reproduction 

using the two-norm 

This algorithm solves the quadratic progn.mming problem in Equation (48). In 

order to accomplish this we use the software package LSSOL, version 1.0. This is 

a set of Fortran subroutines for linearly constrained linear least-squares and convex 

quadratic programming. LSSOL uses the two--phase, active-set type method. (Gill 

et al, 1986). The reader is reierrcd to the user's guide for an in-depth discussion of 

the program and parameters. 

The LSSOL subroutine is included in a modified dssim.exe program. The pa­

rameter files for dss£2. exe for the Permeability and Potassium data sets are given 

in Appendices A4 and B4 respectively. The LSSOL program states the quadratic 

programming in the general form 

Minimise 

(77) 

subject to 

(78) 

where I and u are the lower (BL) and upper (BU) bounds respectively. 

The program requires an initial estimate (X) of the solution be entered. The 

LSSOL subroutine requires the following parameters to be input at execution time. 

The only parameters that are continuously updated from location to location are 

C, BL and BU. The subroutine returns the solution vector through an array and 

a logical flag which indicates if an optimal solution was found. Before calling the 

lsmain subroutine with the required inputs, we call the subroutine lsoptn to select 

a programming problem of type QP2. 

37 



Table 3.2. Parameters for LSSOL. 

Parameter Description and input 

M 

N 

NCLIN 

NROWC 

NROWA 

c 

B!, 

BU 

X 

A 

c 

Nwnber of rows of matrix A = 40 

Number of variables = 40 

Nwnbcr of general linear constraints = 3 

Row dimension of C = 3 

Row dimension of A = 40 

I I I 

(~) (''i'') c ... -~+tk) 
( ''i'' ) 2 (''i'•)' e,.-~+t,.)2 

[ 0 0 0 ... 0 I zSK cr~K + (z~K )2 J 

[ l l I ... 0 I • ZsK O"~K + (z,SK )2 J 
fuitial cst.imate = (JJJ ,~, •.. ,PJ.)T 

I 0 0 

0 I 0 

0 0 I 

(p'{,]f,, ... ,pff 
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4 Performance Assessment 

Multiple realisations generated by simulation algorithms provide a measure of the 

uncertainty about the spatial distribution of attribute estimates. This uncertainty 

arises from our imperfect knowledge of the phenomenon under study. It is dependent 

on both the data and the model specifying our prior decisions about the phenom­

enon (Goovaerts, 1997). There are several ways in which the spatial uncertainty 

can be assessed. Qualitative assessment includes visualisation of realisations and 

various types of displays. Quantitative assessment focusses on the reproduction of 

key statistics such as the target histogram and semivariogram. 

4.1 Qualitative Assessment 

For each simulation algorithm, we generate a set of L realisations. These sets can 

be post-processed and the spatial uncertainty can be visualised through different 

displays, including probability maps, quantile maps and conditional variance. 

4.1.1 Probability Maps 

At each simulated grid node uj, the probability of exceeding a given threshold zk is 

evaluated as the proportion of the L simulated values that exceed that threshold. 

The map of such probabilities is referred to as a probability map. 

4.1.2 Quantile Maps 

The p-quantile of the distribution F (x) is the value Xp such that 

F(xp) = Pr(X ~ x,) = p. (79) 

Quantile maps display the p-quantile values corresponding to any given probability 

p. In this study we will be comparing xo.bthe median xo.s and xo.9· Local differences 

between realisations can be depicted through the changes in the quantile maps. 
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4.1.3 Conditional Variance 

The conditional variance u2 (u) measures the spread of the conditional probability 

distribution around its mean zE (u) : 

a2 (u) = L: [z- z'E;(u)] 2 f (u[ (n)) dz. (80) 

In practice, this is approximated by the discrete sum 

K+l 

a2 (u)"' L [z- zE, (u)] 2 [F (u;z. (n))- F (u; Zk-1 (n))] (81) 
k=l 

where zk, k = 1, ... , K, are the threshold values discretising the range of variation 

of z-values, Zk is the mean of the class (zk_1, Zk], which depends on the within-class 

interpolation model, and zE (u) is the expected value of the conditional cumulative 

dbtribution function approximated by the discrete swn 

K-t-1 

z;, (u)"' L z IF (u;zk(n))- F (u; Zk-1 (n))]. (82) 
k=l 

The variance estimate in (81) depends on the K within-class means Zk. The 

COnditional variance cr (u) I COnditional CUmulative distribution function mean and 

upper tail mean can be very sensitive to the choice of extrapolation model. Local 

differences between realisations can be depicted through mapping a measure of the 

spread of the distribution of L simulated values at each simulated grid node. 

4.2 Quantitative Assessment 

The quality of a realisation could be defined as its ability to match a priori knowl­

edge about the spatial distribution of the attributes values (Goovaerts, 2001). The 

structural characteristics of a simulation, which include the histogram and the semi­

variogram, are evaluated from its values at the nodes of the discretisation grid, which 

differ from the characteristics of the theoretical model or the sample data. (Chiles 

& Delfiner, 1999). 

The performance of the simulations can be checked both visually and quanti­

tatively by comparing the histogram and the semivariogram reproduction for each 
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realisation. These allow us to calculate the fluctuation variance of the spatial mean 

of the simulation and, in the Gaussian case, the spatial variance of the simulation 

and of its variogram. This enables us to see if the deviations of these characteristics 

from their theoretical values are acceptable. 

4.2.1 Histogram Reproduction 

Two quantitative measures used to compare the target histogram and the histogram 

of the realisations is given by the mean absolute deviation (MAD) and the mean 

squared deviation (MSD) between the target quantiles and the quantiles of the 

realisation. If there are K classes the mean absolute deviation is given by 

E jz,- z)'l j 
H ~·-='1'---=--MAn= K 

and the mean squared deviation as 

K ( .(£))2 I: Zi-Zi 
i=l 

HMsv= K 

(83) 

(84) 

where Zi and Zi denotes the ith quantile of the target distribution and the fth re­

alisation respectively. When the mean squared deviation is very large, the natural 

way to reduce the magnitude of the measure is to take the square root. The mag­

nitude of the discrepancies between realisation and model statistics are referred to 

as ergodic fluctuations and they depend on several factors, including the density of 

the conditioning data, the semivariogram parameters and the size of the simulation 

grid. 

Both measures of accuracy are used in comparing the histogram reproduction for 

the simulation algorithms as the mean average deviation is comparative to DSSLl 

and the mean squared difference is comparative to DSSL2. By considering both 

measure we can eliminate any bias towards a particular algorithm. 
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4.2.2 Semivariogram Reproduction 

To compare the semivariogram of the realisations with the theoretical model we 

calculate the mean square deviation between the theoretical model and the exper­

imental semivariogram values. For an isotropic data set, this is done by using an 

omnidirectional model and omnidirectional expedrr:.ental semivariogram for each re­

alisation and the mean squared deviation is given by 

L 2 L: (7 (h;)- 'i (h;)) 
MSD1 = :c:;~"-1----;---­

L 
(85) 

where l1i denotes the ith lag vector, L denotes the number of lags and 'Y and .:Y 

denote the theoretical semivariogram and the experimental semivariogram of the 

realisation respectively. 

"When the data set is anisotropic we sum the mean squared deviation in the 

directions of maximum and minimum continuity. This mean squared deviation is 

given by 

where 'Yma.x and 'Ymin are the experimental semivariograms in the directions of max­

imum and minimum continuity respectively. When the mean squared deviation is 

very large, the natural way. to reduce the magnitude of the measure is to take the 

square root. 

42 



5 Application to the Isotropic Case 

The Permeability data set comes from Goovaerts (2001) and consists of of perme­

ability values in a 2-D section of a reservoir. The 10404 data measurements are 

located on a 102 x 102 regular grid which has a grid spacing of 1.0 unit. The sam­

ple set Perm50 also comes from Goovaerts (2001) and consists of fifty permeability 

values randomly drawn from Permeability. 

5.1 Exploratory Data Analysis 

Descriptive statistics for the permeability variable from Permeability and Perm50 

are listed in Table 5.1. 

Table 5.1. Descriptive statistics for the Permeability and Perm50 data sets. 

Permeability Perm50 

n 10404 50 

Mean 582.95 592.53 

Std Deviation 502.5 481.653 

Variance 252502 231989 

Skewness 1.265 1.184 

Kurtosis 1.370 1.417 

Minimum 1.03 4.47 

1st quartile 194.21 194.28 

Median 480.69 576.30 

3rd quartile 869.17 853.42 

Maximum 2498.87 2081.85 

IQR 674.96 659.14 

!Umge 2497.84 2077.38 

The data sets have similar means and standard deviations, but there is a notice­

able difference in minimum, median and maximum values. The sample data have a 

higher minimum and median and a lower maximum than the exhaustive data. The 
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positive skewness evident in the histograms, and seen in Figure 5.1, is confirmed by 

the summary statistics, but overall the sample data appear to reflect the smnmary 

statistics of the exhaustive data. Neither set is normally distributed. 
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Figure 5.1. Histograms for· Permeability (left) and Perrn50 (right). 

There are several extreme values in the data sets. The maximum Permeability 

and P erm50 values are approximately equal to fom times the mean. These extreme 

values will influence the simple kriging means. These values are sometimes deleted 

from a sample data set or adjusted to reduce their influence, but since they originated 

from an exhaustive data set, they must be incorporated into the analysis in this case. 

The cumulative frequency distributions and the Q-Q plot comparing the exhaus­

tive and sample permeability data sets are shown in Figure 5.2. 
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Figure 5.2 Q-Q plot (left) and cumulative frequency distribution (right). 

We notice the cumulative frequency cmves arc almost identical to begin with 

and then there are some deviations in their shapes. The sample does not contain 
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the extreme high values present in the exhaustive data set, but the fit is reasonably 

good considering the sample size is relatively small. 

The forty permeability thresholds are used to define the global probability distri­

bution in DSSLl and DSSL2 are given in Appendix A5. These values are bounded 

by a minimum value of 1 and a maximum value of 2500. For each simulation we will 

consider the conditional cumulative frequency function at two locations u 1 ( 46, 94) 

and u2(88, 52) whose exact values are known to be 421.02 and 26.11 respectively. 

Location u 1 is situated in a sparsely sampled region of above average values and 

location u2 is situated in close proximity to three low values. 

Figure 5.3 shows plots of the permeability values for Permeability and Per-rn50. 

The sample data are randomly located within the study region. The Perm50 data 

are sparsely situated in the southern and north-eastern regions and do not capture 

the spread of high values evident in the exhaustive Permeability data. 
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Figure 5.3. Plots of permeability values for Permeability (left) and Perm50 (right). 

5.2 Variography 

The direct simulation algorithms we investigate all make use of simple kriging, and 

for this to be applied we must first calculate an experimental semivariogram and fit 

an appropriate model. The direct sequential simulation algorithms do not requn:e 

the data to be transformed, but in order to apply sequential Gaussian simulation 

the Perm50 data must first be transformed to obtain standard normal scores. The 
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variogram surfaces from Perm50 and the Perm50 Normal Scores data sets were 

created using 4 lags with a lag spacing of 10 and are shown in Figure 5.4. There 

appears to be no strong evidence of anisotropy evident in either data set, so an 

isotropic model was fitted in both instances. 

0 
Perm50 Variogram Surface 
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Perm50 Normal Scores Variogram Surface 
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Figure 5.4. Variogram surface for Perm50 and Perm50 Normal Scores. 

T he omnidirectional experimental semivariogram for Perm50 was calculated us­

ing 12 lags at a lag spacing of 5.5. The fitted model and its parameters are shown 

in Figm e 5.5 and Table 5.2 respectively. T he model consists of a nugget effect and 

two spherical structures. The contribution of the nugget is approximately 19% of 

the total sill and the two spherical structures have ranges of 10 and 50 respectively. 
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Figure 5.5. Omnidirectional experimenLal semivariogram model for Perrn50. 
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Table 5.2. Omnidirectional semivariogram model for Penn50, 

1st Structure 2nd Structure 3rd Structure 

Type Nugget Spherical Spherical 

Range 10.0 50.0 

Sill 43680 63000 124000 

The omnidirectional experimental semivariogram for the Perm50 Normal Scores 

was calculated using 8 lags at a lag spacing of 10 and its parameters are given in 

Table 5.3. The model is shown in Figure 5.6 and it consists of a nugget contributing 

14% of the total sill and one spherical structure with a range of 24. 

7CI•D Omnidirectional 
• • • ----- • ,. • 

00 

0.4 

" 
0 

0 • " 24 .. ., .. " "' 72 .. ,., 
Figure 5.6. Omndircctional semivariogram model for Perm50 Nonnal Scores. 

Table 5.3. Omnidirectional semivarigram model for Perm50 Normal Scores. 

Type 

Range 

Sill 

1st Structure 2nd Structure 

Nugget 

0.14 

47 

Spherical 

24.0 
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5.3 Simulation 

The Permeability data set is positively skewed, so when using SGSIM, the lower tail 

is extrapolated using a negatively skewed power model with w = 2.5 and for the 

upper tail a hyperbolic model with w = 2.0. The cumulative frequenccy distribution 

for Permeability, shown in Figure 5.2, has a relatively long tail, and we do not 

want to understate the probability of occurrence of very large values. The minimum 

value for the permeability values is set to 1. The DSSIM algorithm does not have a 

maximum value set but the other algorithms have their maximum value set to 2500. 

The positive skewness visible in the Permeability data set suggf'..sts considering a 

lognormal local conditional distribution, by transforming the mean and variance of 

the data using Equations (35)-(36). 

To reduce computational effort, the conditioning data is locatOO within a neighM 

bourhood of the location being simulated. At least four and at most twenty origiM 

nal data values, ar._i up to twelve simulated values are used in each simulation. A 

multiple-grid concep~ is used, whereby a coarse grid is simulated first and then used 

to condition a second, finer grid simulation. The grid refinement is performed three 

times and this results in better reproduction of the long range variogram structure. 

The random number generator draws independent seed values uniformly distrib­

uted in [0, lJ. Each realisation is identified by its random number seed, and this 

number remains the same for each simulation algorithm. This means, for example, 

that realisation #1 using SGSIM was generated using the same random path as 

realisation #1 using DSSIM. For each algorithm we generate 100 realisations. 

In Figure 5.7 and Figure 5.8 we compare the mosaic maps for the realisations with 

the minimum, median and maximum mean absolute deviation and mean squared 

deviation from the Permeability data set respectively. The realisations with the 

maximum deviations are the same for both accuracy measures for all simulation 

algorithms except DSSLI. The realisations with the minimum deviations are the 

same for both accuracy measures when using DSSIM and DSSL2. There does not 

appear to be any significant differences between the corresponding realisations of 

the different measures. 

The SGSIM and DSSIM algorithms appear to overestimate the values in most 
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Figure 5.8. Post plots for realisations with mmunum, median and maxtmum mean squared 

deviation. 

50 



regions and the spatial features are not reproduced very well. The maps show that 

the high regions seen in the Permeability map have not been reproduced. The algo­

rithms have attempted to replicate the region of higher values in the southeast corner 

and the region of low values near the central eastern border. The DSSLl and DSSL2 

algorithms ropruduce the spatial features well and indicate that there are high values 

in the southwe.:1t and northeast corners but they tend to underestimate the low3r 

values. 'T'h~, also indicate the presence of high values in the southeastern corner 

and low values near the central eastern border, There is far better reproduction of 

the low values within the western half using the DSSLl and DSSL2 algorithms than 

with SGSIM and DSSIM. 

The region of very high values seen the the southwest corner in the Permeabil­

ity map has not been reproduced by any of the simulation algorithms but this is 

understandable since the this area was not sampled from. The realisations relating 

to DSSL! and DSSL2 appear more disjointed and scattered than the SGSIM and 

DSSIM realisations. The DSSIM realisation appear to be smoother than the others, 

and there seems to be a lot of locations with values closer to the mean. 

5.4 Histogram Reproduction 

The histograms for the realisations with the best, worst and median reproduction 

are shown in Figure 5.9. The SGSIM realisations match closely to the Perm50 

distribution, but they do not reproduce the Permeability distribution. The DSSIM 

realisations are influenced by the local conditional distribution used in the simulation 

process, and this lognormal distribution is clearly evident in the graphs. As the mean 

absolute deviation increases there is a noticeable change in the shape of the DSSIM 

distributions. The distribution of the realisation with the maximum deviation 

appears to be almost normally distributed. The distributions for DSSLl and DSSL2 

are very similar and both reproduce the Penneability distribution very well. The 

large spikes of low values are due to the random deviate being set equal to the simple 

kriging mean when the algorithms fail to find a solution. This problem occurs when 

the simple kriging mean is less than the midpoint for the first global probability 

threshold. The spike increases in size as the mean absolute deviation increases. 
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Figure 5.10. Histograms for minimum, median and maximum mean squared deviation. 
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Figure 5.10 compares the probability distribution functions for the realisations 

with the minimum, median and maximum mean squared deviation. The SGSIM 

realisations again match closely to the Perm50 distribution and they do not match 

the Permeability distribution. The DSSIM realisations are influenced by the local 

conditional lognormal distribution with relatively smooth distributions. The DSSLl 

and DSSL2 distributions are very similar and the low value spikes are noticeable. 

The reproduction of the Permeability distribution is evident. 

For the SGS!M algorithm realisation #100 has the worst match with the global 

distribution for both. The choice of measure does not have a significant effect on 

the SGSIM distributions. The DSSIM distributions are noticeably different for the 

realisations with both minimum and maximum deviations. There does not appear 

to be a significant difference in the DSSLl and DSSL2 realisations between the 

different measures of accuracy. The spike of low values appears to be slightly lower 

for the DSSLl realisations using the mean squared deviation rather than the mean 

absolute deviation. 

From Table 5.4 we see that for the realisations with the minimum mean absolute 

deviation, the DSSL2 algorithm appears to perform better, but when we look at 

those with the median and maximum mean absolute deviation, the DSSIM algorithm 

provides a better fit to the Permeability data set. 

Table 5.4. Mean absolute deviation between realisation and target distribution. 

Histogram MAD SGSIM DSSIM DSSL1 DSSL2 

Rank # MAD # MAD # MAD # MAD 

Minimum 37 53.47 60 41.51 4 49.79 39 33.70 

Median 17 87.28 31 75.79 13 96.99 99 88.05 

Maximum 100 170.00 34 158.91 57 183.10 30 207.51 

A similar result is seen in Table 5.5 when comparing the realisations using the 

mean squared deviation. The difference between the two deviation methods is seen 

in the realisations with the median deviations. For the mean absolute deviation we 

find DSSIM <SGSIM<DSSL2<DSSL1 but for the mean squaxed deviation the order 
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has changed to DSSIM<DSSL2<DSSL1<SGSIM. The DSSLl performs better than 

the DSSL2 algorithm for the realisations with the minimum and median deviations. 

Table 5.5. Mean sqared deviation between realisation and target distribution. 

Histogram MSD SGSIM DSSIM DSSLl DSSL2 

Rank # MSD # MSD # MSD # MSD 

Minimum 45 79.03 60 52.26 23 67.53 39 45.17 

Median 64 128.46 44 99.; 92 124.04 13 106.30 

Maximum 100 203.48 34 176.81 65 213.60 30 234.65 

Table 5.6 and Table 5.7 compare the realisations with the minimum mean ab-

solute deviation and the mean squared deviation respectively. For DSSLl and 

DSSL2, the median values are higher and the lower quartiles are less than the target 

values. The upper quartile for SGSIM with both accuracy measures is significantly 
> 

lower than the upper quartile for Permeability. 

Table 5.6. Comparison of realisations with minimum mean absolute deviation. 

Minimum MAD SGSIM DSSIM DSSL1 DSSL2 Permeability Perm50 

Mean 556.24 588.19 542.52 570.63 582.95 592.53 

Std Deviation 520.47 500.73 495.70 517.48 502.5 481.65 

Skewness 1.45 1.06 1.05 1.23 1.26 1.18 

Minimum 1.84 1.00 1.00 1.00 1.03 4.47 

1st quartile 192.80 187.27 127.51 174.97 194.21 194.28 

Median 469.76 476.76 496.90 503.56 480.69 576.30 

3rd quartile 794.00 867.67 866.35 870.32 869.17 853.42 

Maximum 2500 3559.29 2498.92 2497.78 2498.87 2081.85 

No restriction was placed on the maximum value for the DSSIM algorithm and 

this value is very high. The SGSIM has a higher standard deviation than Perme­

ability when using the mean absolute deviation, but when using the mean squared 

deviation the standard deviation is less. Compared to Perrneability1 both DSSIM 

and DSSL2 have a lower degree of skewness for both accuracy measures. 
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Table 5.7. Comparison of realisations with minimum mean squared deviation. 

MinimumMSD SGSIM DSSIM DSSLJ DSSL2 Permeability Perm50 

Mean 557.90 588.19 553.67 570.63 582.95 592.53 

Std Deviation 446.91 500.73 492.!3 517.48 502.5 481.65 

Skewness 1.35 1.06 1.00 1.23 1.26 J.J8 

Minimwn 2.00 1.00 !.OJ 1.00 1.03 4.47 

1st quartile 194.31 !87.27 !37.06 174.97 194.21 194.28 

Median 562.02 476.76 525.43 503.56 480.69 576.30 

3rd quartile 785.01 867.67 870.81 870.32 869.17 853.42 

Maximum 2500 3559.29 2499.82 2497.78 2498.87 2081.85 

There are quite a few differences between the realisations with the median mean 

absolute deviations and median mean squared deviation, seen in Table 5.8 and Table 

5.9. The most significant difference is with the lower quartile values where DSSLl is 

markedly less than Permeability when we use the mean absolute deviation. Although 

not quite as low, the lower quartile value for DSSL2 is also significantly less than 

for Permeability with both accuracy measures. 

Table 5.8. Comparison of realisations with median mean absolute deviation. 

Median MAD SGSIM DSSIM DSS!,J DSSL2 Permeability Perm50 

Mean 614.81 600.16 483.55 497.22 582.95 592.53 

Std Deviation 479.32 433.22 473.22 487.96 502.5 481.65 

Skewness 1.37 0.80 1.21 1.36 1.26 J.J8 

Minimum 2.61 1.00 1.03 1.02 1.03 4.47 

1st quartile 198.19 259.66 57.51 101.31 194.21 194.28 

Median 585.54 541.05 324.51 327.25 480.69 576.30 

3rd quartile 841.35 865.26 763.03 8!9.11 869.!7 853.42 

Maximum 2500 3327.74 2495.29 2499.37 2498.87 2081.85 

The median values are also lower for DSSLl and DSSL2 when using the mean 

absolute deviation, and DSSL2 is also lower when using the mean squared deviation. 

The SGSIM: values are significantly higher than those for Permeability for both 
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measures. The DSSIM realisations are not a<> skewed as the target distribution 

of the other realiastions generated by the other algorithms. Again we notice the 

DSSIM realisations have very high maximum values. All realisations, except for 

SGSIM when using the mean squared deviation, have a lower standard deviation 

than Pe1meability. 

Table 5.9. Comparison of realisations with median mean squared deviation. 

Median MSD SGSIM DSSIM DSSL1 DSSL2 Permeability Perm50 

Mean 635.24 557.76 528.53 493.81 582.95 592.53 

Std Deviation 517.80 401.38 474.32 491.53 502.5 481.65 

Skewness 1.28 0.87 1.11 1.36 1.26 1.18 

Minimum 2.05 1.00 1.00 1.03 1.03 4.47 

1st quartile 195.11 240.96 156.4.4 104.22 194.21 194.28 

Median 593.64 496.35 492.93 283.60 480.69 576.30 

3rd quartile 865.27 795.96 846.61 807.29 869.17 853.42 

Maximum 2500 2988.07 2494.21 2499.09 2498.87 2081.85 

The summary statistics for the realisations with the maximum mean absolute 

deviation and maximum mean squared deviation are given in Table 5.10 and Table 

5.11 respectively. 

Table 5.10. Comparison of realisations with maximum mean absolute deviation. 

Maximum MAD SGSIM DSSIM DSSL1 DSSL2 Permeability Perm50 

Mean 711.36 709.97 398.18 375.29 582.95 592.53 

Std Deviation 449.30 425.24 428.36 415.05 502.5 481.65 

Skewness 0.96 0.64 !.52 1.68 1.26 1.18 

Minimum 1.65 1.00 1.01 1.01 1.03 4.47 

lst quartile 369.75 382.90 37.15 49.21 194.21 194.28 

Median 724.26 668.65 203.55 196.17 480.69 576.30 

3rd quartile 874.07 983.12 643.59 607.66 869.17 583.42 

Maximum 2500 3136.33 2498.34 2494.34 249P.87 2081.85 
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Table 5.11. Comparison of realisations with maximum mean squared deviation. 

MaximumMSD SGSIM DSSIM DSSL1 DSSL2 Permeability Perm50 

Mean 711.36 709.97 472.70 375.29 582.95 592.53 

Std. Deviation 449.30 425.24 454.40 415.05 502.5 481.65 

Skewness 0.96 0.64 1.25 1.68 1.26 1.18 

Minimum 1.65 1.00 1.00 1.01 1.03 4.47 

1st quartile 369.75 382.90 64.59 49.21 194.21 194.28 

Median 724.26 668.65 334.72 196.17 480.69 576.30 

3rd quartile 874.07 983.12 737.95 607.66 869.17 583.42 

Maximum 2500 3136.33 2495.16 2494.34 2498.87 2081.85 

The SGSIM and DSSIM realisations have much greater means than the target 

distribution, whereas those from DSSLl and DSSL2 have significantly lower means. 

This also appears to be the case with the lower quartile values, medians and upper 

quartile values. The SGSIM, DSSIM and DSSL2 algorithms have the same realisa­

tion with maximum mean absolute deviation as maximum mean squared deviation. 

The SGSIM and DSSIM realisations are not as skewed as the Permeability data set. 

The cumulative distributions for the mean absolute deviation and the mean 

squared deviation are shown in Figure 5.11 and they indicate that DSSLl and DSSL2 

better represent the cumulative distribution function of the target distribution. The 

deviation in the lower half of the SGSIM and DSSJM distributions is significant, 

although the SGSIM realisation with the minimum deviation has a very good fit 

to the target distribution. There is very little difference between the two accuracy 

measures for DSSL2. The target cumulative distribution function for DSSLl is well 

reproduced for the lower values when the mean absolute deviation is compared. 

The greatest deviation for DSSLl and DSSL2 for the realisations with the smaller 

deviations, is seen in the upper quartile region. 

Looking at the cumulative distributions for both the mean absolute deviation 

and the mean sqared deviation, and taking into accoWlt the difference between the 

best and worst fitted realisations, the DSSLI algorithm appears to result in the best 

histogram reprodUction. 
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Figure 5.11. Cumulative distribution functions for nununum, median and maximum mean 
absolute deviation (left) and mean squared deviation (right). 
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5.5 Variogram Reproduction 

The omnidirectional experimental semivariograrns are displayed together with the 

semivariogram model in Figure 5.12 (left). The program used to calculate the ex­

perimental semivariograms did not start at lag 0, as the semivariogram model does, 

and this accounts for the difference in the graphs. The fan shape they produce 

indicates that there is a wide range in sill values. As expected the SGSIM semivari­

ogram model is very well reproduced, but this is calculated using the normal scores. 

SGSIM appears to have a good short range coincidence of model and experimental 

sernivariograms. The majority of experimental semivariograms however understate 

the variability compared to the target, although the range of the target appears 

to be approximately reproduced. The DSSIM model has a higher sill than all but 

a few of the omnidirectional experimental seroivariograros calculated and there are 

a couple of experimental semivariograms that have very large deviations from the 

semivariogram model which results in a wide spread overall. The short range fit is 

relatively good, although there is a tendency to understate it. 

We notice with the DSSLl model that approximately seventy percent of the 

omnidirectional semivariograrns understate the sill. The short range variability is 

overstated with most graphs of experimental semiV'cU"iograms above the model. The 

DSSLl model also has the smaller spread of sill values when compared to DSSIM 

and DSSL2. The DSSL2 algorithm appears to have an overall gTeater variability. 

The short range behaviour is very similar to DSSLl. Approximately half the exper­

imental semivariograms overstsate the long range variability. 

In Figure 5.12 (right} we compare the experimental semivariograms with the 

minimum, median and maximum deviations from the target model. These graphs 

show the shape of the experimental semivariogTarns more clearly. Comparing the ex­

perimental semivariograrns with the minimum deviation, we notice that the SGSIM 

model is reproduced the best, followed by the DSSLl and DSSL2 models. The 

DSSIM algorithm has a larger spread in sill values between the omnidirectional 

experimental semivariograms with the minimum and maximum deviations. 

Table 5.12 confirms that overall the DSSLl and DSSL2 methods are both better 

than SGSIM and DSSIM in reproducing the target semivariogTarn model, with the 
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Figure 5.12. Omnidirectional experimental semivariograms for 100 realisations (left) and 
with minimum, median and maximum mean squared deviation (right). 
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DSSLl algoritlun fitting better than DSSI.J2, since it is more central to the fan of 

omnidirectional experimental semivariograms. 

Table 5.12. Comparison of mean squared deviation for experimental semivariograms. 

Semivariogram SGSIM DSSIM DSSLI DSSL2 

l:Umk # MSD # MSD # MSD # MSD 

Minimum 32 O.QJ 72 3788.8 75 8965.2 97 9288.8 

Median 53 0.09 59 25686.4 25 94!3.0 61 22097.5 

Maximum 55 0.25 62 105915.8 20 62951.3 4 71623.6 

5.6 Spatial Uncertainty 

The quantile plots in Figure 5.13 display the rmccrtainty in the simulated values. 

The DSSLl, DSSL2 and to a lesser extent DSSIM, have dark blue sections nem the 

central eastern border in the 0.9-quantilc maps. These areas indicate that there is 

a high degree of certainty in the simulated values being low values. The DSSIM 

algorithm does not indicate this area. 

WheJl comparing the 0.1-quantile and 0.9-quantile maps, the cimulated values 

generated using the DSSllvl algorithm have a lower degree of uncertainty, as they 

have the greatest difference in values. The highest degree of tmcertainty appears 

to arise when the SGSIM algorithm is mwd. 111e remits for DSSIJl and DSSL2 

alguriUmts arc very similar to each other. 

Two grid nodes were selected from regions displaying different spatial uncertainty 

to compare the parametric and non-parametric algorithms. The true permeability 

values at locations u 1 = {88,52) and u 2 = (46,94) arc 26.11 and 421.02 n::~pectively 

and these are represented by the dashed lines in Figure 5.11. 
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Figure 5.13. Mosaic plots comparing the 0. 1-decile, 0.5-decile and 0.9-decile. 
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Figure 5.14. Local conditional cumulat ive distributions. 

At location u 1 there is a greater difference between the uncertainty models than 

at location u 2 . The SGSIIvi model is controlled by the kriging variance which is 

related to the distance the location is from neighbouring sample data, and this has 

a greater spread at location u 2 than location u 1 which is close to sample data. The 

DSSIM model has a large spread of values at both locations. 

The conditional variance for each algorithm is displayed through mosaic maps 

in Figure 5.15. 
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Figure 5.15. Comparison of conditional variance for the algorithms. 



The conditional variance is very low for the DSSIM algorithm compared to the 

other algorithms. The DSSL! and DSSL2 are very similar, although there are some 

regions for which the DSSL2 algorithm results in a greater variation in values. The 

SGSIM algorithm has the highest variatioP in simulated values. These regions are 

located in areas of higher values and where the data were sparsely sampled. 

5.7 Summary for Permeability 

Comparing the histogram and sernivariogram reproduction for the four algorithms, 

we find that, as expected, SGSIM reproduces the variogram for the normal score 

data and the histogram of the sample data set. DSSIM reproduced the local log~ 

normal distribution used in the algorithm, but the semivariogram model was only 

reproduced well over a short range. The DSSLl and DSSL2 both reproduced the 

target distribution but the DSSLl algorithm reproduced the sernivariogram model 

better than all the other algorithms, so it would appear to be the better algorithm 

for this isotropic case. 
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6 Application to the Anisotropic Case 

The Potassium data set is a two-dimensional simulated exhaustive data set based 

on soil samples taken originally from B.~ uncropped field in the Jimperding Brook 

catchment region in the south-west of Western Australia (Bloom & Kentwell, 1999). 

The data comprise potassium concentrations in parts per million (ppm). The 3600 

data measurements are located on a 60 x 60 regular grid which has a grid spacing 

of one metre. Data at one hundred locations were drawn at random and form the 

sample data set KJOO. 

6.1 Exploratory Data Analysis 

Descriptive statistics for the potassium variable from Potassium and KJOO are listed 

in Table 6.1. 

Table 6.1. Descriptive statistics for Potassium and K100 data sets. 

Potassium K100 

n 3600 100 

Mean 87.097 89.447 

Std Deviation 34.703 34.416 

Variance 1204.31 1184.46 

Skewness 1.035 0.603 

Kurtosis 1.962 0.08 

Minimum 23.872 34.6 

1st quartile 59.941 63.875 

Median 82.470 86.85 

3rd quartile 106.867 110.575 

Maximum 331.978 189.0 

The data sets have similar descriptive statistics, although there is a noticeable 

difference in the maximum values. The sample has a significantly lower maximum 

value than the exhaustive set. The positive skewness evident in the exhaustive data 

histogram (Figure 6.1) is confirmed by the summary statistics. We notice the sample 
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data set. Overall, the sample data appear to reflect the summary statistics of the 

exhaustive data. 
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Figure 6.1. Histograms· for Potassium (left) and KJ OO (right) . 

There are several extreme values in the data sets. T he maximum Potassium and 

K100 values are approximately fom times and twice the mean respectively. These 

extreme values will inflate estimated values in their neighbomhood. The Q-Q plot 

and cumulative distribution nmctions of the Potassi'um and the K1 00 data sets are 

shown in Figure 6.2. 
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Figure 6.2. Q-Q plot (left) and cumulative frequency function (right) for Potassium and 

KJOO. 

Comparing the distributions we notice t hat the K100 data are representat ive of 

the Potassium data. T he Q-Q plot reveals the effectiveness of the sampling. The 
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two distributions are ahnost identical as they follow the dashed line fail·ly closely, 

the only significant exception being a single extreme value. 

The forty permeability thresholds used to define the global probability distribu­

tion in DSSLl and DSSL2 are given in Appendix B5. These values are bounded by a 

minimum value of 20 and a maximum value of 360. For each simulation we will con-

sider the conditional cumulative frequency function at two locations u1 (28.5, 44.5) 

and u 2 (28.5, 22.5) whose exact values are known to be 57.975 and 202.381 respec­

tively. Location u 1 is in an area of low values and location u 2 is situated near high 

values. Figme 6.3 shows mosaic plots of the potassium values for Potassium and 

Kl 00. The sample data appear to have a good coverage of the study region. T he 

K100 data set seems to captme the spread of high and low values evident in the 

Potassium data set. 
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Figure 6.3. Plots of potassium values for Potassium (left) and K100 (right). 

6.2 Variography 

An experimental semivariogram was calculated and an appropriate model fitted so 

simple kriging could be used in the direct simulation algorithms. The direct se­

quential simulation algorithms do not require any data transformation, but in order 

to apply sequential Gaussian simulation, the K 100 data must first be transformed 

to obtain standard normal scores. The variogram surfaces of the K100 and K100 
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Nomwl Score data sets were creat ed using 7lags with a lag spacing of 3.0 and these 

are shown in Figure 6.4 . 
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Figure 6.4. Variogram surface for K100 and K100 Nor-mal Scor-es. 

The data sets both appear to exhibit anisotropy, with gTeater continuity in the 

N65W direction, and minimum continuity in the N25E direction. The experimental 

semivariog1·ams for both data sets were calculated using 10 lags with a lag spacing 

of 3. A geometric anisotropic model was fitted to the experimental semivariograms 

of the K100 and K100 normal scores. In both cases, it consists of a nugget effect 

and one spherical structme. 

l<or K100, the nugget has a relative nugget effect of approximately 7% and the 

spherical structme has a range of 22 and a nisotropy factor of 0.76. The anisotropic 

model is shown in Figure 6.5 with the experimental semivariog1:ams and the parame­

ters are given in Table 6.2. The model is fitted using the program Variowin and the 

direction is given in degrees anticlockwise from East, so direction 65 and direction 

155 relate to N25E and N65W respectively. 

Table 6.2. Geometric anisotropic model for Kl 00. 

Type 

Range 

Sill 

Anisotropic ratio 

1st Structw·e 2nd Structure 

Nugget 

84.0 

69 

Spherical 

22.0 

1104 

0.76 
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Figure 6.5. Geometric anisotropic model fitted to experimentalsetnivariogram for K100. 

For KlOO, the nugget has a relative nugget effect of approximately 8% and the 

spherical structure has a range of 25.0 and anisotropy factor of 0.64. The anisotropic 

model is fitted to the experimental semivariogram in Figure 6.6, and the parameters 

are given in Table 6.3. 
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Figur~ 6.6. Geometric anisotropic model fitted to experimental semivariogram for K100 
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Table 6.3. Geometric anisotropic model for K1 00 Normal Scores. 

1st Structure 2nd Structure 

Type Nugget Spherical 

Range 25.0 

Sill 0.08 0.92 

Anisotropic ratio 0.64 

6.3 Simulation 

The parameter files for the simulation algorithms are listed in Appendix B. The 

simulated values are located on a regular grid of size 60 x 60 and they all work 

with a limited data search neighbourhood of 40.0 tmits. A minimum of four and 

a maximum of twenty original sample data, and a maximum of twelve simulated 

values are used in each simulation. For SGSIM, the cumulative distribution func­

tion (Figure 6.2) indicates extrapolating the lower tail to the minimum value of 20, 

using a linear model and the upper tail using a hyperbolic model with w = 1.5. One 

hundred realisations were generated for each algorithm, and then ranked in increas­

ing order according to both their mean absolute deviation (MAD) and their mean 

squared deviation (MSD) from the exhaustive Potassium data set. The minimum 

and maximum values, zmin and zma.x, for the potassium values are set to 20 aJid 

360 respectively for SGSIM, DSSL! and DSSL2. 

The positive skewness visible in the Potassium data set suggests considering a 

lognormal local conditional distribution, by transforming the mean and variance of 

the data using equations (35)-(36). To reduce computational effort, the conditioning 

data is located within a neighbourhood of the location being simulated. At least 

four and at most twenty original data values, and up to twelve simulated values are 

used in each simulation. A multiple-grid concept is used, whereby a coarse grid is 

simulated first and then used to condition a second, finer grid simulation. The grid 

refinement is performed three times and this results in better reproduction of the 

long range variogram structure. 
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The random number generator draws independent seed values unifonnly distrib­

uted in [0, 1] . Each realisation is identified by its random number sred, and this 

number remains the same for each simulation algorithm. This means, for example, 

that realisation #1 using SGSIM was generated using the same random path as 

realisation #1 using DSSIM. 

6.4 Histogram Reproduction 

In Table 6.4 and Table 6.5 we compare the mean absolute deviation and mean 

squared deviation values for the realisations with the minimum, median and maxi­

mum deviations, and from these it appears SGSIM has the closest fit to the Potas­

sium data set, with DSSIM actually giving a better fit for the realisations with the 

maximlUll deviatiOilll. The DSSL2 algorithm ha<i a better fit than DSSL1 except for 

the maxinnun mean squared deviation. 

Table 6.4. Comparison of the mean absolute deviations. 

Histogram MAD SGS!M DSS!M DSSL1 DSSL2 

Ranlt # MAD # MAD # MAD # MAD 

Minimum 2 2.05 73 2.60 69 5.11 52 4.18 

Median 7 4.28 20 5.28 90 9.10 5 8.53 

Maximum 93 9.64 69 8.78 95 13.40 95 13.23 

Table 6.5. Comparison of the mean squared deviations. 

Histogram MSD SGS!M DSS!M DSSL1 DSSL2 

Rank # MSD # MSD # MSD # MSD 

Minimum 53 2.60 29 3.35 36 7.29 93 5.77 

Median 5 5.12 17 5.79 64 11.13 20 10.17 

Maximum 93 11.58 69 9.58 72 14.74 33 16.01 

Figure 6. 7 and Figure 6.8 compare the realisations ranked according to mean 

absolute deviation and mean squared deviation respectively. We notice immediately 

when viewing the pootpiots that the SGSIM and DSSllvl realisations appear very 

similar, as do DSSL1 and DSSI,2. 
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There is a noticeable difference between these two distinct groups. The DSSLl 

and DSSL2 realisations have a similar coverage of low values, but the values are 

within the lowest interval scale. The SGSIM and DSSIM realisations appear to have 

a rather large spread of high values that are well connected to each other. The high 

values from DSSLl and DSSL2 are more disjointed and scattered in appearance. 

Neither SGSIM nor DSSIM really capture the low values in the NE corner, but 

this is not surprising since the sampling is very sparse in this region. The DSSLl and 

DSSL2 realisations capture these low values best when the deviation is a maximwn. 

DSSLl and DSSL2 underestimates the low values. All four algorithms seem to 

recognise that there is a small area of higher values within the region of low values 

near the NE corner. The high values near the centre of the region are captured 

by all the algorithms, although it appears to be more evident in the SGSIM and 

DSSIM post plots. It appears that SGSJM and DSSJM may overestimate the high 

va]uP.s and DSSLl and DSSL2 both underestimate the high valued regions. The 

anisotropy is visually evident from the mosaic maps. 

The different measures of accuracy do not appear to differentiate between the 

SGSIM and DSSIM algorithms. Both the mean absolute deviation and the mean 

squared deviation result in realisation #93 having the maximum deviation for SGSIM. 

Similarly realisation #96 has the maximum deviation for the DSSIM algorithm re­

gardless of the measure of accuracy. Using the mean absolute deviation we also 

notice that the realisation #95 has the maximum deviation for both DSSLl and 

DSSL2. 

The histograms in Figure 6.9 and Figure 6.10 highlight the differences in the 

distributions of the realisations. There is very little difference between the two 

accuracy measures for both SGSIM and DSSIM realisations. The DSSIM histograms 

arc reproducing the :ocal conditional lognormal distribution that was used in the 

simulation algorithm. Large spikes of low values are seen in the DSSLl and DSSL2 

distributions and this is due to the algorithms inability to find an optimal solution 

and the random deviate was set equal to a low-valued simple kriging mean. This 

appears to have a significant affect on the shape of the histograms. 
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In Table 6.6 and Table 6. 7 we compare the swrunary statistics for the minimum 

deviation realisations for the four algorithms using both the mean absolute deviation 

and the mean squared deviation. 

'l'able 6.6. Comparison of realisations with minimum mean absolute deviation. 

Minimum MAD SGSIM DSS!M DSSL1 DSSL2 Potassium KJOO 

Mean 87.32 86.08 84,21 85.37 87.1 89.45 

Std Deviation 35.05 34.49 44.32 45.43 34.7 Z4.42 

Skewness 1.27 0.29 1.57 1.61 1.04 0.60 

Minimum 29.80 20.00 20.23 20.01 23.87 34.6 

1st quartile 56.74 59.71 49.23 49.46 59.94 63.88 

Median 82.41 84.45 83.12 82.09 82.47 86.85 

3rd quartile 107.91 109,78 107.28 106.89 106,87 110,58 

Maximum 360.00 194.97 359.42 353.69 331.98 189.0 

Table 6.7. Comparison of realisations with minimum mean squared deviation. 

MinimumMSD SGSIM DSSIM DSSLl DSSL2 Potassium KJOO 

Mean 86.89 86,56 82.73 85.21 87.1 89.45 

Std Deviation 36.56 33.91 38.24 42.13 34.7 34.42 

Skewness 1.25 0.28 1.58 1.84 1.04 0.60 

Minimum 25.05 20,00 20.23 20.02 23.87 34.6 

1st quartile 56.13 60.29 55.93 55.13 59,94 63.88 

Median 82.22 84.57 82.30 83,94 82.47 86,85 

3rd quartile 108.23 111.34 102.64 104.70 106,87 110.58 

Maximum 360.00 208.74 358.53 353.11 331.98 189,0 

All the algorithms have generated realisations with positively skewed distribu-

tions greater than the target distribution but the DSSIM algorithm has a very small 

level of skewness. The average and median values are close to the Potassium mean 

and median. The most significant difference is that the mrucimum value for DSSIM 

is a lot smaller than the maximum Potassium value, but it is vey close to the KJOO 

value. The DSSLI and DSSL2 algorithms have higher standard deviations than 
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both the Potassium and KJOO data sets and the minimmn and in particular, the 

lower quartile for t;heoe two algorithms is distindly lower. 

In Table 6.8 and Table 6.9 we compare the realisations with the median mean 

absolute deviation and the median mean squared deviation. All the algoritluns have 

less skewed distributions than the previous realisations with minimum deviatiol1'3. 

Table 6.8. Comparison of realisations with median mean absolute deviation. 

Median MAD SGSIM DSSIM DSSL1 DSSL2 Potassium [(100 

Mean 88.69 89.25 76.74 79.39 87.1 89.45 

Std Deviation 31.21 32.01 30.35 38.53 34.7 34.42 

Skewness 0.36 0.09 0.00 1.40 1.04 0.60 

Minimum 29.18 20.00 20.35 20.08 23.87 34.6 

1st quartile 65.45 65.98 50.21 45.09 59.94 63.88 

Median 88.36 89.61 79.30 79.89 82.47 86.85 

3rd quartile 108.86 111.64 99.54 100.86 106.87 110.58 

Maximum 257.01 203.63 189.02 352.00 331.98 189.0 

Table 6.9. Comparison of realisations with median mean squared deviation. 

Median MSD SGSIM DSS1M DSSL1 DSSL2 Potassium K!OO 

Mean 88.75 87.75 76.42 77.79 87.1 89.45 

Std Deviation 34.18 35.53 32.69 32.21 34.7 34.42 

Skewness 0.41 0.13 0.10 0.78 1.04 0.60 

Minimum 29.64 20.00 20.01 20.04 23.87 34.6 

1st quartile 56.77 59.21 42.10 49.20 59.94 63.88 

Median 88.12 87.34 78.02 79.79 82.47 86.85 

3rd quartile 115.08 114.94 102.76 100.02 106.87 110.58 

Maximum 273.16 204.16 214.25 358.74 331.98 189.0 

DSSL2 is the only algorithm to reproduce the maximum value of the Potassium 

data set. SGSIM overestimates the minimwn and nnderestimates the maximum 

values, although both DSSIM and DSSLI underestimate the maximum value sub­

stantially. Both SGSIM and DSSIM have higher medians than Potassium, and 

DSSLl and DSSL2 have significantly lower median values. 
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The realisations with the maximwn deviations ·are compared in Table 6.10 and 

Table 6.11. The SGSIM and DSSIM mean and median values have increased and the 

DSSLl and DSSL2 mean and median values have decreased. The standard deviation 

for SGSIM is higher than that for Potassium. Tills is also a lot higher for DSSL2 

when using the mean squared deviation. 

Table 6.10. Comparison of realisations with maximum mean absolute deviation. 

Maximum MAD SGSIM DSS!M DSSL1 DSSL2 Potassium KlOO 

Mean 95.85 93.68 72.63 72.82 87.1 89.45 

Std Deviation 42.74 36.13 30.39 29.21 34.7 34.42 

Skewness 1.39 0.10 0.17 0.19 1.04 0.60 

Minimum 21.02 20.00 20.07 20.14 23.87 34.6 

1st quartile 64.00 66.42 40.56 44.15 59.94 63.88 

Median 90.39 93.83 74.77 73.82 82.47 86.85 

3rd quartile 122.96 119.95 96.81 95.55 106.87 110.58 

Maximum 360.00 197.41 252.29 189.02 331.98 189.0 

Table 6.11. Comparison of realisations with maximum mean squared deviation, 

Maximum MSD SGSIM DSSIM DSSL1 DSSL2 Potassium KJOO 

Mean 95.85 93.68 72.65 88.56 87.1 89.•15 

Std Deviation 42.74 36.13 32.27 52.15 34.7 34.42 

Skewness 1.39 0.10 0.08 1.69 1.04 0.60 

Minimum 21.02 20.00 20.13 20.12 23.87 34.6 

1st quartile 64.00 66.42 38.15 47.16 59.94 63.88 

Median 90.39 93.83 76.39 83.10 82.47 86.85 

3rd quartile 122.96 119.95 98.72 107.85 106.87 110.58 

Maximum 360.00 197.<11 189.02 358.84 331.98 189.0 

In Figure 6.11 we compare the cumulative frequency functions for the realisations 

with minimum, median and maximum mean absolute deviation and mean square 

deviation. 

The distributions appear very similar regardless of which accuracy measure is 

applied. The spike of low values that result for DSSLl and DSSL2 is again seen 
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Figure 6. 11. Cumulative distribution functions for realisations with nurumum, median and 
maximum mean absolute deviation (left) and mean squared deviation (right). 
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in the deviation from the lower tail of the target distribution, but it is greater for 

DSSLl thlan DSSL2. The SGSIM and DSSIM algorithms both reproduce the target 

distribution well near the lower tail. The DSSLl and DSSL2 algoritluns reproduce 

the target distribution better near the median. 

6.5 Variogram Reproduction 

Since an anisotropic semivariogram model is required, we calculated experimental 

semivariograms for e.1.ch realisation in both the N65W and the N25E directions, so 

comparisons can be made with the target model. The experimental semivariograms 

were calculated using gamv. exc from the GSLIB programs. The experimental semi­

variograms were calculated for 40 lags with an angular tolerance of 22.5° and a lag 

distance of 1.0. The mean squared deviation was calculated for each semivariogram 

using the swn of the squared deviations in both directions as in Equation (86), and 

the square root was taken to make comparisons. The SGSIM algoritlun was mod­

elled with the normal score data before it was back-transformed and this accounts 

tOr the difference in magnitude seen in the graphs. The mean squared deviation is 

calculated using the first fifteen lags in both the direction of maximtun continuity, 

N65W, and the N25E direction as this enables us to compare the same realisations 

in both direction'>. 

Table 6.12 displays the mean squared deviation for the experimental semivar­

iograms using both directions, and it appears that after SGSIM's fit, the DSSIM 

algorithm results in the closest experimental scmivariograms. 

Table 6.12. Comparison of mean squared deviations for Potassium- N65W. 

Semivariogram SGSIM DSSIM DSSLl DSSL2 

Rank # MSD # MSD # MSD # MSD 

Minimum 93 0.02 19 57.8 3 107.6 88 85.4 

Median 84 0.14 79 209.7 23 335.7 47 379.9 

Maximum 40 0.2·1 86 352.7 66 1221.6 •10 1461.<1 

In Figure 6.12 we sec the experimental scrnivariograms for the 100 realisations. 
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The program used to calculate the experimental semivariograms did not start at 

lag 0, ~ the semivariogram model docs, and this accow1ts for the difference in the 

graphs. In the direction of maximum continuity, N65W, both SGSIM and DSSIM 

have the majority of semi.variograms below the model. 

With DSSLl and DSSL2 we find the majority of experimental semivariograms 

above the model over a short range, but as the model reaches its sill, there arc 

approximately half below. There is a very large spread in the semivariograms for 

DSSLI and DSSL2 which is does not happen with DSSIM. In the minor direction, 

N25E, we find more semivariograms fall below the model than above for all the 

algorithms. Again there is a wide spread for the DSSLl and DSSL2 algoritluns. 

This is not so wide for SGSIM and DSSIM. The algorithms appear to have a similar 

nugget to the model. 

In Figure 6.13 we see that in the major direction, DSSIM is reproduced fairly 

well for a small number of realisations but this is only over a short range and the 

target sill is not reached. 

SGSIM is very well reproduce for the realisation with minimum deviation, but 

the median i.':l well tmder the sill, so this reasonable reproduction is only for a small 

number of semivnriograms. DSSLl and DSSL2 have a greater number of semivari­

ograms reproducing the target, but there is a large percentage that have very high 

sills. In the minor direction SGSilvl is reasonably well reproduced over a short range 

for almost half the experimental semivariograms, but they do not reproduce the 

overall range and sill. DSSIM appears to be reasonably reproduced for about half 

the semivariograrns as the minimwn and median deviations are fairly well repro­

duced. This also appear.; to be the case for DSSLl aud DSSL2 which have very 

good reproduction with the minimwn and median semivariograms, but the maxi­

mum has an extremely high sill. DSSLl and DSSL2 appear to have better fits in 

the minor direction than the major direction. 

6.6 Spatial Uncertainty 

The spatial Wlcertainty of a set of realisations is visualized in the decile maps of 

Figure 6.14. 
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The 0.1, 0.5 and 0.9 deciles are displayed for each algorithm. There appears 

to be a greater spread in the region of low values for SGSIM and DSSIM. All the 

algorithms have a similar distribution in the southwest. In the southeast ther are 

more high values for SGSIM and DSSIM. The red areas in the 0.1-quantile plots 

indicate that there is a high possiblity that the unknown permeability values in this 

region are high, since these values are exceeded by ninety percent of the simulated 

values. SGSIM and DSSIM have a similar uncertainty associated with there spatial 

distributions as do DSSL1 and DSSL2. 

Two grid nodes were selected from regions displaying different spatial uncertainty 

to compare the parametric and non-parametric algorithms. T he true potassium 

values at locations u 1 = (28.5, 44.5) and u 2 = (28.5, 22.5) are 57.975 and 202.381 

respectively and these are represented by the dashed lines in Figure 6.15. 
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Figure 6.15. Local conditional cumulative distributions. 

At location u 1 the cumulative histograms for DSSL1 and DSSL2 are almost 

identical, and very steep, indicating the value is likely to be less than 40. This 

is considerably less than the true value of 57.975, but all the algorithms include 

the true value in their range of potassium values. These differ markedly from the 

SGSIM and DSSIM cmnulative histograms. The DSSIM algorithm has the highest 

probability of attaining the true value at this location. 

At location u 1 the cumulative histograms are different for all a lgorithms, al­

though SGSIM and DSSIM are almost identical for the lower fifty percent of values. 
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SGSIM only has a very small probability of attaining the true potassium value, less 

than five percent. The DSSIM algorithm does not include the true value of 202.381 

in its range of potassium values. The greatest probability of the true potassium value 

being attained, approximately twenty five percent., is with the DSSL2 a lgorithm. 

The conditional variance for each algorithm is displayed through mosaic maps 

in Figure 6.16. The DSSIM algorithm does not indicate any regions of significantly 

high uncertainty. The SGSIM, DSSLl and DSSL2 all indicate some areas where 

the uncertainty is very high. This appears to be greatest in the band of high values 

where sample data are sparsely located. The greatest uncertainty within the low 

valued areas is in the NW corner, but none of ihe algorithms indicate this to be a 

significant amount. 
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Figure 6.16. Comparison of conditional variance for the algorithms. 
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6. 7 Summary for Potassium 

These results for Potas8ium have coniirmed what we already knew about the SGSIM 

algorithm. This algorithm has very good reproduction of the semivariogram model 

when using normal score data and it reproduces the sample distribution since these 

were the values used to produce the normal score data. The DSSIM algorithm did 

not reproduce the target semivariogram very well in either the direction of maxi­

mum continuity, N65W, or the minor direction, N25E. DSSIM reproduces the local 

conditional distribution that was used, in this case a Gaussian distribution. With 

the exception of the lower tail which is affected by the inability of the algorithm to 

converge and find a feasible solution, the DSSLl and DSSL2 both reproduced the 

global distribution very well. There is very little difference between the results of the 

DSSLl and DSSL2 algorithms. The DSSLl and DSSL2 algorithms both had trou­

ble reproducing the model semivariograrn for a large number of realisations. Both 

algorithms have some very extreme semivariograrns1 but for those that do show a 

reasonable reproduction, DSSL2 appears to have a larger proportion of experimental 

semivariograms closer to the target. For this anisotropic model, the DSSL2 algo­

rithm would therefore appear to provide the best reproduction of both the histogram 

and the semivariogram. 
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7 Results and Conclusions 

In this study we investigated four sequential simulation algorithms, namely se­

quential Gaussian simulation (SGSIM), the original direct sequential simulation 

(DSSIM), and two direct sequential simulation with histogram reproduction algo­

rithms, one using the one-norm (DSSLl) and the other the twe>-norm (DSSL2). We 

were interested to see how the algorithms with histogram reproduction compared to 

each other and to the more traditional SGSIM and DSSIM algorithms. 

This study used two data sets displaying different characteristics. The permeabil­

ity data display a strong positive skewness and are from a 2-D section of a reservoir. 

The potassium data exhibit a slight positive skewness and the values come from 

soil samples. Both data sets comprise a sample data set and an exhaustive data set 

which establishes a target distribution and a reference for comparing the different 

simulation algorithms. 

An important aim of this study was to determine if it is possible for a simulation 

algorithm to reproduce both the histogram and the experimerl .. W semivariogram 

model without the need for a normal score tra.nsforrnation. Secondly, we wanted to 

compare two alg;orithms, one based on the one-norm and the other on the two-norm, 

to see if the natural measure produced better r,~sults. Thirdly, we were interested 

in the computational effort required for both algorithms. 

Each simulation algorithm generated 100 realisations and the simulation results 

are produced in both tabloid and graphical form. The histograms and experimental 

semivariograms for each realisation were compared to the exhaustive data sets. Two 

measures of accuracy were used in analysing the histogram reproduction. This was 

done hecause the mean absolute deviation is related to the DSSLl algorithm and 

the mean squared deviation is related to the DSSL2 algorithm. By using both mea­

surements in the comparisons, a preference is not being unduly given to a particular 

algorithm. For the experimental semivariograms, the mean squared deviation from 

the target semivariogram model was computed. 

The realisations were ranked according to their increasing deviation from the 

target •1alues and the minimum, median and maximum realisations from each algo­

rithm were used in the comparison of results. The multiple realisations generated 
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help depict the uncertainty about the spatial distribution of the data. The results 

were analysed graphically through the use of histograms, cumulative distribution 

functions, mosaic maps and semivariograrns and with tables using the accuracy 

measurements. These results were compared between individual realisations and 

between the different algorithms. 

Histogram reproduction without the need for a transformation into normal space 

or the rnultiMGaussian assumptions was found to be possible using either the DSSLl 

or DSSL2 algorithms, although we will discuss later in this chapter some problems 

that were encountered with these two simulation algorithms. The DSSIM algorithm 

reproduced the local conditional distribution and not the target distribution, and 

SGSIM reproduced d~e sample distribution and not the target distribution. These 

two algorithms would require a transformation in order to reproduce the required 

target distribution. 

Semi variogram reproduction was best when SGSIM was used, but this was in 

normal score space. The normal score data must be backMtransfonned and the excelM 

lent variogram reproduction may then destroyed (Caers, 2000b). DSSIM was unable 

to reproduce the model experimental sernivariogram. The experimental semivariM 

ograms calculated for the DSSIM realisations were not at all representative of the 

experimental semivariogram model. Both the DSSLI and DSSL2 algorithms were 

able to reproduce the experimental semivariogram model. This was better with the 

omnidirectional Permeability data set than with the anisotropic Potassium data set. 

The results for the DSSL! and DSSL2 algorithms are very similar. 

Mosaic maps displaying the 0.1, 0.5 and 0.9 deciles were generated for each 

simuh1tion algorithm, along with conditional variance maps. These display the un­

certainty in a distribution and may influence the choice of algorithm used. These 

characteristics are also very similar with the DSSLI and DSSL2 algorithms, but the 

DSSL2 has a slightly higher variation in its higher valued areas than DSSLl. 

The DSSLI and DSSL2 algorithms both encountered situations when a feasible 

solution could not Le found to the objective function and a decision was made to set 

the random deviate equal to the simple kriging mean when this occurred. Figure 

7.1 compares the number of infeasible solutions encountered by both algorithms for 

the data sets. 
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Infeasible Solutions for Permeability Data. Infeasible Solutions for Potassium Data. 
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Figure 7.1. Comparison of infeasible solutions encountered for Permeability (left) and 

Potassium (right) . 

fu Table 7.1 we see that the average percentage of solutions that did not converge 

was significantly high, especially for the potassium data set. fu both cases DSSL2 

had fewer infeasible solutions occUlTing but the number is still very high. This 

appears to have had an impact on the number of low values within a realisation. 

The number of very low values may be artificially high and improving this situation 

should result in better histogram and variogram reproduction. 

Table 7.1. Perecentage of infeasible solutions encountered by DSSLl and DSSL2. 

Percentage of Infeasible Solutions DSSL1 DSSL2 

Permeability 10.3 9.1 

Potassium 17.7 16.3 

Fmther research is needed to find a way to overcome this problem. Adding local 

accmacy to the simulation ( Caers, 2000a) by adding a spike in the local condi­

tional distribution increases the connectivity of extreme values and may be a way to 

improve the histogram reproduction and reduce the number of infeasible solutions 

encountered by the algorithm. It is likely this will affect the variogram reproduction 

and a compromise may have to be found. 

The global distribution used in this analysis was taken to be the exhaustive data 

set. When the sample data are not truly representative of the distribution, it may 

help to use a smoothed distribution based on the exhaustive data set to create the 

threshold values Tequired for the DSSLl and DSSL2 algorithms. 
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Another factor to take into account when deciding which of the two algoritlnns 

is better, is the time taken to execute the simulations. This time factor was very 

noticeable in our study. The time will vary depending on the specifications of the 

computer system, but we found on average that the DSSL2 algorithm takes approx­

imately 3.5 times as long as the DSSLl algorithm for the Permeability data set and 

almost 6 times as long for the Potassiwn data set, as seen in Table 7 .2. 

Table 7.2. Computation time for DSSLl and DSSL2. 

Computation Time per Simulation DSSLl DSSL2 

Permeability 24 82 

Potassium 6 35 

We believe that 'improvements in the current programming structure will de­

crease this slightly, but the DSSL2 will still take longer than the DSSLl algorithm. 

These simulation methods arc both considerably slower than sequential Gaussian 

simulation and direct sequential simulation which give ahnost instantaneous results, 

so when one of those methods is suitable to the analysis required, it is recommended 

that it be used. 

In sununary, this analysis has shown that it is possible to reproduce both the 

histogram {cmnulative distribution function) and the semivariogram ru.ing direct 

sequential simulation and without the need for a transformation into nonnal space 

or the assumption of nonnality. This was found to be possible using a choice of 

objective functions based on either the one-norm or the two-norm. The decision as 

to which algoritlun to use may be influenced by the computational time involved 

and the characteristics of the data. The DSSLl algorithm provided the better re­

sults for the isotropic Gata set and the DSSL2 algorithm perfonned better with the 

anisotropic data set,. 
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Al sgsim.par 

Parameters for SGSIM 
******************** 

START OF PARAMETERS: 
perrn50.dat 
1 2 0 3 
-1.0 
1 
sgsim. trn 
0 
ref .dat 
3 0 

0 0 
1. Oe21 

1.0 
2 
4 

2500.0 
2.5 
2.0 

0 
sgsim.dbg 
sgsim.dat 
100 
102 
102 
1 
69069 
4 
12 
1 
1 
0 
60.0 
o.o 

0 
no.dat 
4 

1.0 
1.0 

0.0 

20 

3 

60.0 
0.0 

0.0 

0.14 

1.0 
1.0 

1.0 

1.0 
0.0 

1.0 

1 
1 0.86 90.0 

24.0 
0. 0 o. 0 

24.0 o.o 

• • • 

-file with data 
columns for X,Y,Z,vr,wt,sec.var. 
trimming limits 

-transform the data (O=no, l=yes) 
file for output trans table 
consider ref. dist (O=no, l=yes) 
file with ref. dist distribution 
columns for vr and wt 
zmin,zmax(tail extrapolation) 
lower tail option, parameter 
upper tail option, parameter 

-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 
-nx,xmn,xsiz 
-ny,ymn,ysiz 
-nz,zmn,zsiz 
-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 
-assign data to nodes (O=no, l=yes) 
-multiple grid search (O=no, l=yes),num 
-maximum data per octant (O=not used) 
-maximum search radii (hmax,hmin,vert) 
-angles for search ellipsoid 
-ktype: O=SK,1=0K,2=LVM,3=EXDR,4=COLC 

file with LVM, EXDR, o:r: COLC variable 
column for secondary variable 

-nst, nugget effect 
-it,cc,ang1,ang2,ang3 
-a_hmax, a_hmin, a_vert 

······ 
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A2 dssim.par 

Parameters for DSSIM 
******************** 

START OF PARAMETERS: 
perm50.dat 
120300 
-1.0 l.Oe21 
0 
dssim.trn 
0 
histsmth.out 
1 2 
1.0 
1 
4 
0 

2500.0 
1.0 
2.0 

dssim.dbg 
dssim.dat 
100 
102 1.0 
102 1.0 
1 0.0 
69069 
4 20 
12 
1 
1 3 
0 
60.0 60.0 

0. 0 0. 0 

1.0 
1.0 

1.0 

0.0 
0. 0 
1.0 0 0.60 

592.53 582.95 
2 
nodata.dat 
4 
2 
1 

43680 
0.0 

0.0 
1 

63000 90.0 0.0 
10.0 10.0 

124000 90.0 o.o 
o.o 50.0 50.0 

0.0 

-file with data 
-columns for X,Y,Z,vr,wt,sec.var. 
-trimming limits 
-transform the data (O=no, l=yes) 
-file for o~tput trans table 
-consider ref, dist {O=no, l=yes) 
-file with ref. dist distribution 
-columns for vr and wt 
-zmin, zmax {tail extrapolatio;::.) 
-lower tail option, parameter 
-upper tail option, parameter 
-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 
-nx,xmn,xsiz 
-ny,ymn,ysiz 
-nz,zmn,zsiz 
-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 
-assign data to nodes {O=no, 1=yes) 
-multiple grid search {O=no, 1~es) ,num 
-maximum data per octant (O=not used) 
-maximum search radii {hmax,hmin,vert) 
-angles for search ellipsoid 
-ktyp~: O=SK,l=OK,2=LVM,3=EXDR,4=COLC 
-global mean, standard deviation 
- local dist:1-normal,2-lognormal 

file with LVM, EXDR, or COLC variable 
column for secondary variable 

-nst, nugget effect 
-it,cc,ang1,ang2,ang3 
-a_hmax, a_hmin, a_vert 
-it,cc,angl,ang2,ang3 
-a_hmax, a_hmin, a_vert 
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A3 dssll.par 

Parameters for DSSLl 
******************** 

START OF PARAMETERS: 
permS 0. da t 
120300 
-1.0 
0 

l.Oe21 

dssLl. trn 
0 
histsmth.out 
1 2 
p40.dat 
dssll.inf 
2 1 

1.0 2500.0 
1 1.0 
1 2500.0 
1 
dssLl.dbg 
dssLl.dat 
100 
102 
102 
1 
69069 
4 
12 
1 

1.0 
1.0 

0.0 

20 

1 3 
0 
60.0 60.0 

0. 0 0. 0 
0 0.60 
592.53 
nodata.dat 
4 

43680 

1.0 
1.0 

1.0 

1.0 
0.0 
1.0 

582,95 

2 
1 

1 

63000 90.0 o.o 0.0 
10.0 10.0 0.0 

124000 90.0 0.0 0.0 
50.0 50.0 0.0 

-file with data 
-columns for X,Y,Z,vr,wt,sec.var. 
-trimming limits 
-transform the data (O=no, l=yes) 
-file for output trans table 
-consider ref. dist (O=no, l=yes) 
-file with ref. dist distribution 
-columns for vr and wt 
-cdf file 
-info file 
-select(l-DSSIM,2-DSSL1)opt(l-skmean, 

2-logsim,3-normal) 
-zmin,zmax(tail extrapolation) 
-lower tail option, parameter 
-upper tail option, parameter 
-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizatiuns to generate 
-nx,xmn,xsiz 
-ny,ymn,ysiz 
-nz,zrnn,zsiz 
-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 
-assign data to nodes (O=no, l=yes) 
-multiple grid search (O=no, l=yes),num 
-maximum data per octant {O=not used) 
-maximum search radii (lunax,hJ.•in,vert) 
-angles for search ellipsoid 
-ktype: O=SK,l=OK,2=LVM,3=EXDR,4=COLC 
-global mean, standard deviation 
-file with LVM, EXDR, or COLC variable 
-column for secondary variable 
-nst, nugget effect 
-it,cc,angl,ang2,ang3 
-a_hmax, a_hmin, a_vert 
-it,cc,angl,ang2,ang3 
-a_hmax, a_hmin, a_vert 
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A4 dssl2.par 

Parameters for DSSL2 
******************** 

START OF PARAMETERS: 
permSO,dat 
1 2 0 3 
-1.0 
0 
dssL2. trn 
0 

0 0 
l.Oe21 

histsmth.out 
1 2 
p40.dat 
dssL2. in£ 
210 
1.0 
1 
1 
1 

2500.0 
1.0 

2500.0 

dssL2 .dbg 
dssL2 .dat 
100 
102 1. 0 
102 1. 0 
1 0. 0 
69069 
4 20 
12 
1 
1 3 
0 
60.0 60.0 
o. 0 0. 0 

0 0. 60 
592.53 
nodata,dat 
4 

43680 

1.0 
1.0 

1.0 

1.0 
o.o 
1.0 

582.95 

2 
1 

1 

63000 90.0 0.0 
10.0 10.0 

124000 90.0 0.0 
50.0 50.0 

o.o 
0.0 

0.0 
o.o 

-file with data 
columns for X,Y,Z,vr,wt,sec.var. 
trimming limits 

-transform the data (O=no, l=yes) 
-file for output trans table 
-consider ref. dist (O=no, l=yes) 
-file with ref. dist distribution 
-columns for vr and wt 
-cdf file 
-output info file 
-select l-DSSIM,2-DSSL2 opt: l-QP2,2-LS1 
-zmin,zmax(tail extrapolation) 
-lower tail option, parameter 
-upper tail option, parameter 
-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 
-nx,xmn,xsiz 
-ny,ymn,ysiz 
-nz,zmn,zsiz 
-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 
-assign data to nodes (O=no, l=yesl 
-multiple grid search (O=no, l=yes),num 
-maximum data per octant (O=not used) 
-maximum search radii (hmax,hmin,vert) 
-angles for search ellipsoid 
-ktype: O=SK,l=OK,2=LVM,3=EXDR,4=COLC 
-global mean, standard deviation 
-file with LVM, EXDR, or COLC variable 
-cOlumn for secondary variable 
-nst, nugget effect 
-it,cc,angl,ang2,ang3 
-~hmax, a_hmin, a_vert 
-it,cc,angl,ang2,ang3 
-a_bmax, a_hmin, a_vert 
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AS p40.dat 

p40 
3 40 
i 
k 
prob 
1 17. 5869775 0.025 
2 43.547355 0.025 
3 80.4025825 0.025 
4 117.25781 0.025 
5 146' 372725 0.025 
6 163.18037 0. 025 
7 179.987915 0. 025 
8 191.95234 0.025 
9 193.0798025 0.025 
10 194.207325 0,025 
11 195.5754475 0.025 
12 197.74167 0. 025 
13 199.9079925 0.025 
14 205.601605 0.025 
15 230.6076125 0. 025 
16 255.61362 0.025 
17 283.75861 0. 025 
18 349.414575 0. 025 
19 415.07057 0. 025 
20 480.6922 0. 025 
21 510.626525 0.025 
22 540.52645 0. 025 
23 570.426375 0. 025 
24 595.14352 0.025 
25 619.426925 0. 025 
26 643.71033 0.025 
27 706.7461425 0.025 
28 776.85997 0.025 
29 846.973945 0.025 
30 869.159725 0. 025 
31 876.8952525 0.025 
32 884.63078 0.025 
33 974.5320775 0.025 
34 1101.154505 0.025 
35 1227.776875 0.025 
36 1340.76718 0.025 
37 1445.18373 0,025 
38 1549.600405 0.025 
39 1912.615898 0.025 
40 2498.8733 0.025 
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Bl sgsim.par 

Parameters for SGSIM 
******************•• 

START OF PARAMETERS: 
klOO.dat 
120300 
-1. 0 1. Oe21 
1 
sgsim, trn 
0 
histsmth.out 
1 2 
20.0 
1 

360.0 
20.0 

4 1.5 
1 
sgsim.dbg 
sgsim.dat 
100 
60 0.5 
60 0.5 
1 0.0 
69069 
< 20 
12 
1 
1 3 
0 
40.0 40.0 

0. 0 0.0 
0 0. 0 
87.097 
nodata.dat 
4 
1 0. 08 

1.0 
1.0 
1.0 

1.0 
0.0 

1.0 
34.703 

1 0.92 115.0 
25.0 16.0 

0.0 
0.0 

0,0 

-file with data 
columns for X,Y,Z,vr,wt,sec.var. 
trimming limits 

-transform the data (O=no, l=yes) 
-file for output trans table 
-consider ref. dist (O=no, l=yes) 
-file with ref. dist distribution 
-columns for vr and wt 
-zmin,zmax(tail extrapolation) 
-lower tail option, parameter 
-upper tail option, parameter 
-debugging level: 0,1,2.3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 
-nx,xmn,xsiz 
-ny,ynm,ysiz 
-nz,znm,zsiz 
-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 
-assign data to nodes (O=no, l=yes) 
-multiple grid search {O=no, l=yes),num 
-maximum data per octant (O=not used) 
-maximum search radii (lunax,hmin,vert) 
-angles for search ellipsoid 
-ktype: O~SK,l=OK,2=LVM,3=EXDR,4=COLC 

-global mean, standard deviation 
-file with LVM, EXDR, or COLC variable 
-column for secoadary variable 
-nst, nugget effect 
-it,cc,angl,ang2,ang3 
-a_hmax, a_hmin, a_vert 
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B2 dssim.par 

Parameters for DSSIM 

***** ****** *** *** *** 

START OF 
klOO.dat 
1 2 0 
-1.0 

PARAMETERS: 

3 0 0 
l.Oe21 

0 
direct_k. trn 
0 
histsmth.out 
1 2 
20,0 
1 
4 
0 

360,0 
20.0 
1.5 

direct_k.dbg 
direct_k.dat 
100 
60 0 .s 
60 0.5 
1 0.0 
69069 
4 20 
12 
1 
1 3 
0 
40.0 40.0 

0. 0 o.o 
0 0.60 

1.0 
1.0 
1.0 

0.0 
0.0 
1.0 

89.45 34.42 
nodata.dat 
4 
1 
1 

84 
1104 115.0 0.0 o.o 

22.0 16.72 0.0 

-file with data 
columns for X,Y,Z,vr,wt,sec.var. 
trinuning limits 

-transform the data {O=no, l=yes) 
file for output trans table 
consider ref. dist (O=no, l=yes) 
file with ref. dist distribution 
columns for vr and wt 
zmin, zmax {tail extrapolation) 
lower tail option, parameter 
upper tail option, parameter 

-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 
-nx,xmn,xsiz 
-ny ,ymn,ysiz 
-nz, zrnn, zsiz 
-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 
-assign data to nodes {O=no, l=yes) 
-multiple grid search {O=no, !=yes) ,num 
-maximum data per octant {O=not used) 
-maximum search radii {hma:x,hmin,vert) 
-angles for search ellipsoid 
-ktYPe: O=SK, l=Olt, 2=LVM, 3=EXDR, 4=COLC 
-global mean, standard deviation 

file with LVM, EXDR, or COLC variable 
column for secondaiy variable 

-nst, nugget effect 
-it,cc,angl,ang2,ang3 
-a-Pmax, a_hmin, a_vert 
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B3 dssll.par 

Parameters for DSSLl 
******************** 

START OF PARAMETERS: 
klOO.dat 
120300 
-1.0 l.Oe21 
0 
dssim. trn 
0 
histsrnth.·.:mt 
1 2 
k40.dat 
dssim.inf 
2 1 

20.0 360.0 
1 20.0 
1 360.0 
1 
dssim.dbg 
dssim.dat 
100 
60 0.5 1.0 
60 0.5 1.0 
1 0. 0 1.0 
69069 
4 20 
12 
1 
1 3 
0 
40.0 40.0 1.0 

0.0 0.0 0.0 
0 0.60 1.0 
89.45 34.42 
nodata.dat 
4 
1 84 
1 1104 115.0 0.0 0.0 

22.0 16.72 0.0 

-file with data 
-columns for X,Y,Z,vr,wt,sec.var. 
-trimming limits 
-transform the data (O~no, l=yes) 
-file for output trans table 
-consider ref. dist (O=no, l=yes) 
-file with ref. dist distributi-on 
-columns for vr and wt 
-cdf file 
-info file 
-select(l-DSSIM,2-DSSLl)opt(1-skmean, 

2-logsim, 3 -normal) 
-zmin,zmax(tail extrapolation) 
-lower tail option, parameter 
-upper tail option, parameter 
-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 
-nx,xrnn,xsiz 
-ny,ymn,ysiz 
-nz,zmn,zsiz 
-random number seed 
-min and max original data fo.r sim 
-number of simulated nodes to use 
-assign data to nodes (O=no, l=yes) 
-multiple grid search (O=no, l=yes),num 
-maximum data per octant (O=not used) 
-maximum search radii (hmax,hmin,vert} 
-angles for search ellipsoid 
-ktype: O=SK,l=OK,2=LVM,3=EXDR,4=COLC 
-global mean, standard deviation 

file with LVM, EXDR, or COLC variable 
column for secondary variable 

-nst, nugget effect 
-it,cc,angl,ang2,ang3 
-a_hmax, a_hmin, a_vert 
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B4 dssl2.par 

Parameters for DSSL2 
******************** 

START OF PARAMETERS: 
klOO ,dat 
120300 
-1.0 l.Oe21 
0 
dSSL2. trn 
0 
histsmth.out 
1 2 
k40. dat 
dssL2.inf 
2 10 
20.0 
1 
1 
1 

360.0 
20.0 
360.0 

dssL2.dbg 
dSSL2.dat 
100 
60 0.5 
60 0,5 
1 0.0 
69069 
4 20 
12 
1 
1 3 

1.0 
1.0 
1.0 

0 
40.0 

0. 0 
0 
89.45 

40.0 1.0 
0. 0 0. 0 

0,60 1.0 
34.42 

nodata.dat 
4 
1 
1 

84 
1104 115.0 0.0 

22.0 16.72 0.0 
0.0 

-file with data 
columns for X,Y,Z,vr,wt,sec.var. 
trimming limits 

-transform the data (O=no, l=yes) 
-file for output trans table 
-consider ref. dist {O=no, l=yes) 
-file with ref. dist distribution 
-columns for vr and wt 
-cdf file 
-output info file 
-select l-dssim,2-dssl2 opt:10-QP2,20-LS1 
-zmin,zmax(tail extrapolation) 
-lower tail option, parameter 
-upper tail option, parameter 
-debugging level: 0,1,2,3 
-file for debugging output 
-file for simulation output 
-number of realizations to generate 
-nx,xmn,xsiz 
-ny,ymn,ysiz 
-nz,zmn,zsiz 
-random number seed 
-min and max original data for sim 
-number of simulated nodes to use 
-assign data to nodes (O=no, l=yes) 
-multiple grid search (O=no, 1=yes),num 
-maximum data per octant (O=not used) 
-maximum search radii (hnmx,hmin,vert) 
-angles for search ellipsoid 
-ktype: O=SK, 1=0K, 2=LVM, 3=EXDR, 4=COLC 
-global mean, standard deviation 
-file with LVM, EXDR, or COLC variable 
-column for secondary variable 
-nst, nugget effect 
-it,cc,angl,ang2,ang3 
-a_hnmx, a_hmin, a_vert 
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BS k40.dat 

k40 
3 40 
i 
k 
prob 
1 38.15775 0.025 
2 41.8968 0,025 
3 45.1628 0.025 
4 48 0.025 
5 49.57725 0.025 
6 51.78715 0.025 
? 53.9086 0.025 
8 55.872 0.025 
9 57.79575 0.025 
10 59.85275 0,025 
11 62.525 0. 025 
12 64.7698 0. 025 
13 67.0457 0. 025 
14 69.2315 o. 025 
15 71.778 0. 025 
16 73. 6688 0. 025 
17 76.21795 0. 025 
18 78.12165 0.025 
19 80.387 0.025 
20 82.326 0.025 
21 84.85635 0.025 
22 87.22815 0.025 
23 89.323 0.025 
24 91.367 0,025 
25 93.94825 0.025 
26 96.38045 0.025 
2? 98.5661 0.025 
28 101.1474 0.025 
29 104.115 0. 025 
30 106.8665 0.025 
31 109.6984 0.025 
32 112. 9QB 0.025 
33 117.162 0.025 
34 121.31225 0.025 
35 125.7195 0.025 
36 130.7551 0,025 
37 139.59615 0.025 
38 150.5525 0.025 
39 168.418 0.025 
40 331.978 0.025 
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