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Abstract

Conditional sequential simulation algﬁrithms have been used in geostatistics for many
" years but we currently find new developments are being made in this field, This thesis
presents two new direct sequential simulation with histogram reproduction algorithms
and compares them with the efficient and widely used sequential Gaussian simulation
algorithm and the original direct sequential simulation algorithm. We explore the
possibility of reproducing both the semivariogram and the histogram without the need
for a transformation to normal space, through optimising an objective function and
placing linear constrsints on the local conditional distributions. Programs from the
GSLIB Fortran library are expanded to provide a simulation environment, An isotropic
and an anisotropic data set are analysed. Both sets are positively skewed and the
exhaustive data is available to define gfobal target distributions and for comparing the

cumulative distribution functions of the simulated values.



To

Nathan, Kaylee, Stephen & Louise.



Declaration

I cerajj) that this thesis does not, to the best of my knowledge and belief:

(1)  incorporate without acknowledgement any material previously submitted for
a degree or diploma in any institution of higher education;

(it)  contain any material previously published or written by amother person
except where due reference is made in the text; or

(1)  contain any defamatory material.

Signature: ... l

Date: 23]2}o3

i



Acknowledgements

I wish to express my deepest thanks to my children Nathan, Kaylee, Stephen and Louise
for their love, support and patience which has enabled me to complete my degree. I also
wish to thank my supervisors Ute Mueller and Lyn Bloom for their help and guidance in

completing my degree and thesis at Edith Cowan University.

iv



Table of Contents

ADSIFACE ..ottt sensn s csrebssssssassesestasanes

Dedic;ltion L T Ty L L Ty L e L I T T T Ty

Declaration.......o.cciconnnrnisinnns

Acknowledgements....................

1 Introduction

1.1

1.2

13

1.4

2.1

2.2

2.3

24

25

2.6

2.7

2.8

Geostatistical Framework

wodi

vorees 1l

walV

Background and Significance...........cucrvermmcrrmreneconn

Objective of the Study .....ovvenrvicirnninisesn

ThesiS QUINE...u..cciiirsnecerieirissisisssuesisnestsssresassnsssessssssssmssssssnssrssssnsanssnsrnsse

Notation L Ty T R e T e T L Py

RandOm FUNCHONS ....oveveiieerassessemssereesessssrissssssessssorsensosssseassssissssamassssisssesans

DHSITDULIONS | 11ireerrererrrsssersrsemsissiosemsnsssasstsasssontassssrssssmesssnmernressnseserssnssessnnvas

StAtONATILY..cciivsirrirrireserssesmiisscsississre i

Relationship between Covariogram and Semivatiogram......c.ovumeienn

Inference and Modelling......ccooiuieen

Range and Sill...........croimmenminomeiiinmmmemenimemn,

The Nugget Effect ......coemrmmmasiiciinn

Isotropy and Anisotropy ...........

e 100

—

e 11

vervorarnn 12



2.9

2.10

2.11

281 Geometric ARISOLIOPY. ..o vereriericecrermmrecenesma e ssseessaneanenenses
2..8.2 Zonal Anisotropy........ ST et be e ens
Isotropic Semivariogram Models
291 Nugget effect model..................... et e omeeereeeeee
292 Spherical MOdel .............covveiieiii e
293 Exponential model ...
294  QGaussian model

295 Power model......oooovvivvivvivereccinnneens

2.10.1  Simple Kriging .........ccoccovevverienireierenensiecon,

Simulation ...........ooeveceeevrvens

e 13

13

14

14

e 15

15
15

N [

w17

3 Sequential Simulation Methods and their Implementation......... .19

3.1

32

33

34
35
3.6
37

3.8

.Sequentiai ‘Simulation AlZOTthIN ....cccovvrveiiicrce e,

Parametric Algonthms
3.2.1 Sequential Gaussian Simulation...........cococceeenierviceneinrnnnns
3.2.2 Direct Sequential Simulation...........ccoccrviiniincninnn,
Non-Pa_irémetric Algcm'tﬁms oo
33.1 Direct Sequential Simulation with Histogram Identification.......
Constrained Optimisation............ccooovivervemririmrmcsens s
Linear Prograrnmi.ng Problems
One-norm Approximation with‘ Linear Constraints............cccooveverereccnvcncnn
Quadratic Programming.......c...ccccverireeccneecvrsimssenessessesssessnsneien
Implementation and Speciﬁcat.ions......................... .

3.8.1 Sequential Gaussian simulation - SGSIM................ccevvvinnnen.

vi

19

voens 20

20

21

.. 21

21

24

24

28

.29

.31



4 Performance Assessment

4.1

42

S Application to the Isotropic Case

3.1

5.2

5.3

34

3.5

5.6

3.8.2

3.8.3

3.84

3.8.5

386

Direct sequential sImulation ......cociionmnseseen:

DSSIM - Original direct sequential simulation ...
Direct sequential simulation with histogram reproduction.......

DSSL1 - Direct sequential simulation with hlstogram

reproduction using the one-norm

DSSL2 - Direct sequential simulation with hlstogram

reproduction using the two-norm

w33

w33

34

34

w37

39

Qualitative Assessment .........

4.1.1

4,1.2

4.1.3

Probability Maps......coseee.

QuAntile Maps.......ooeoesescminmmniiinnsasiaesssier

Conditional VAITANCE vvevecrernsorersesnans

Quantitative Assessment .......

42.1

4.2.2

Histogram Reproduction...........cu..

Semivariogram Reproduction .....ueomessesecissons

e 39
w39
.39
1
w40
) | |

vorend2

43

Exp]oratory Data Analysis .......cccrvrereee

Variography ...

ST 0N, aeriirearriesssirencsrcsunssanreernossestnssnesstsssssstensnsensesssassesssressssstnenes

Histogram Reproduction ........vvvciieimmrsenesioscsemsssiossessssesmsesienens

Variogram Reproduction.......

Spatial Uncertainty ........

vii

.
S

w48
.l |
rorrenns 60

w02



5.7 Summary for Permeability ...........cccovvcrimvnniernrneeries e e erens 65

6 Application to the Anisotropic Case S crernenes 06

6.1 Exploratory Data Aalysis .............coocevormcssinnicmminenrinianscnsnsnnnns, 66
6.2 VATOBIAPRY ..o vevooore e ereseresessssssses s sseesssesssessssssessesssoseeseas s sescssnes 68
6.3 SHMUIAHON . o.oecvvcecrrieer e ssecesee s seessnnssenesesssisnesescessees 71
6.4 Histogram Reproduction.........'............._ ..... | R T .72
6.5 Variogram Reproduction...........c.ccvvervmevmrcrniinreeencomeeccssnssonssnecrernnns 82
6.6 Spatial Uncertainty ............cccoooveviierimeriesssmireeresrresesesraesene R 84

6.7 Summary for POaSSIUIM ...........cccceevrevmnerircesrenssnmsssssesecesssessssesassasssssns 89

7 Results and Conclusions ..... .- cosseens |

8  ReferenCeS..osresmssmesrsenssressensens " vensesansese 34

9 Appendices

9.1 APPERAIX A ceoovvveoeeeereres et eeseeres e ssesaeneeees R . 96

92 AppPendix B.........cooviiiiiiirieec ittt e sereenaese s asanens. LOZ

viii



1 Introduction

1.1 Background and Significance

Geostatistics developed from a need to evaluate recoverable reserves in mineral de-
posits and provides statistical tools for the description énd modelling of spatial and
spatiotemporal variables. It takes into account both the structure and the random-
ness inherent in a.njr deposit. In 1962 G. Matheron defined geostatistics as “the
application of the formalism of random functions to the reconnaissance and es.timar
tion of natural phenomena.” Geostatistics can be considered as a set of statistical
procedures that deal with the characterisation of spatial attributes. Geostatistics
is now used in many different fields, wherever there is a need for evaluating spa-
.tially correlated data, such as in mining, petroleum, oceanography, hydrogeology
and environmental science.

The two principal components of geostatistics are estimation and gimulation. Es-
timation is used to infer attribute values at unsampled locations from the (known)
values at sampled locations. The most common geostatistical estimation method is
kriging, which is a generalised linear regression teéhnique that provides at each lo-
cation a best linear unbiased estimator (BLUE) for the unknown attribute studied.
Many variants of kriging have been developed, but all rely on the same concepts.
Three types of pérametric kriging for a single attribute can be differentiated de-
pending on the model used for the mean (Remy et al, 2001). These are termed
simple kriging (5K}, ordinary kriging (OK) and kriging with a trend model (KT).
A non-parametric type of kriging is indicator kriging (TK).

- Least-squares interpolation é,lgorithms tend to smooth out local details of the
spatial variation of the attribute (Goovaerts, 1998). Kriging tends to unevenly
smooth the data, that is, kriging estimates have. less spatial variability than the
real values and the smoothing is inversely proportional to the.data density. Con-
sequently values below the sample mean are overestimated and values above the
sample mean are underestimated. The smoothing distortion is also evidenced by
the experimental semivariogram of the estimates differing from the sampling experi-

mental semivariogram, and the histogram of the sample differing from the histogram
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of the estimated values (Olea, 1999).

Conditional simulation was initially developed to correct the smoothing effect
produced by kriging (Deutsch & Journel, 1998). Conditional simulations are spa-
tially consistent Monte Carlo simulations (Chilés and Delfiner, 1999) and are used -
to characterise the uncertainty associated with the prediction of attribute values at
unsampled locations while honouring the data values at samplé locations. A large
number of equiprobable realisations are generated so as to obtain global accuracy
by the reproduction of properties such as histograms and semivariograms. Condi-
tional simulations are used qualitatively to obtain maps of spatial variability, and
quantitatively to evaluate the effect of spatial uncertainty on the results of complex

procedures, allowing for sensitivity and risk analysis.

Sequential simulation is a widely accepted and computationally efficient tool used
to obtain simulations that reproduce desired properties through the use of condi-
tional distributions. Sequential Gaussian simulation is one of the main methods that
rely on the multiGaussian approach. At each unsampled location, an observation is
randomly drawn from the normal distribution with mean equal to the simple kriging
mean and variance equal to the simple kriging variance. Journel (1394) showed that
this normality assumption can be relaxed, and any type of local conditional distrib-
ution can be used to simulate the values, as long as its mean and variance are equal
to the 'simple kriging p:ctrameters. This led to the development of direct séquential
simulation {(dss), which ensures variogram reproduction but not necessarily global

histogram reproduction.

In this study we explore two direct sequential simulation algorithms with his-
togram reproduction, the first using the one norm (dssf1) and the second the two
norm {dssf2). We examine the possibility of a simulation algorithm being able to re-
producé both the histogram and the experimental semivariogram model without the
need for a transformation to normal space. This project allows us to link numer-
ical analysis, operations research and computer programming with geostatistics.
Fortran code was developed by modifying and adding to GSLIB code, and other
programs were inéorporated with this to achieve the progrmns reqﬁired to run the

simulation a.lgorithms.



1.2 Objective of the Study

In this study we develop and investigate in detail, a new direct sequential simulation
technique .d.ss€2 and compare it to earlier direct sequential simulation methods dss
and dssfl and also to sequential Gaussian simulation. This new direct sequential
simulation algorithm that uses quadratic programming to determine local condi-
tional probability distributions from which the resulting realisations will depend on.
in addition, the algorithms for Sequelltial Gaussian simulation and the earlier direct
sequential simulation methods will be outlined and discussed.

These simulation algorithms are applied to sample data sets that have different
statistical and spatial features, and the results are evaluated and compared. Two
data sets, Permegbility and Potassium, have been selected for analysis, in order
to present comparisons of the simulation methods. Both data sets are positively
skewed, albeit only slightly for Potassium. The two data sets also exhibit differ-
ent patterns of spatial continuity. The Permeability data are isotropic, while the

Potassium data are anisotropic.

1,3 Thesis Outline

-.Chapter 2 presents the theoretical background of the random function model, sta-
tionarity and simple kriging. Iﬁ Chapter 3 we look_at' sequential simulation algo-
rithms, outline the mathematical background of optimisation and discuss the imple-
mentation of the simulation algorithms. In Chapter 4 we (iisbuss the programming
a.lgofithms developed in the research. In Chapier 5 and Chapter 6 the isotropic
data set and the anisotropic data set respectively, are presented. We present the
‘quantitative and qualitative performancé asséssme_nts used in this study in Chapter

7. In Chapter 8 we discuss the results and findings of the study.



1.4 Notation

The geostatistical notation used in this thesis follows Goovaerts (1997) and the

GSLIB user’s manual (Deutsch & Journel, 1998), In particulaf:
v for all ' |

A ' study region

a range parameter

C(0} _ stationary variance of the random‘ variable
Z(u)

C(h) stationary covariace of the random function
Z(u) for lag h |

Cov {-} covariance

E{} expected value |

F(u;z) cumulative dist_'ribution function of the ran-

-dom variable Z(u)
F(u, 2| (n)) conditional cumulative distribution function

of a random variable Z(u)

Flu,,...,u,;2,, ..., 2,)multivariate cumulative distribution func-
tion |
g(h) inodel semivariogram at lag vector h
-~ v(h) : seﬁlivariogram at lag vector h
4(h) experimental semivariogram at lag vector h
h=|h| ' separation distance or lag
h Separation vector
K number of threshold values 2y
MK () Simple Kriging weight of attribute value at

sampled location u, for estimation of the at-

tribute value at location u

m(u) . expected vélue of the random variable Z(u)

m ' COnstan_f; mean of the random variable Z{u)

N{h) ) number of sample dafa. pairs séparated by lag
vector h



[[ulty
[[ull,
Var {e}
Z(u)
z(u)
z{Us)
Z(uy)
z*(u)

Zgx(u)

number of data values 2(u,) available over
the region A
correlogram of the random function Z{u) at

lag vector h

- one-norm

two-norm

variance

random variable at sample location u
actual attribute value at location u

sample attribute value at location u
random variable at locatior u,

random variable of estimated value at loca~
tion u

Simple Kriging estimator of Z(u)



2 Geostatistical Framework

2.1 Random Functions

Geostatistics deals with the characterisation of spatial attributes in a given region
A in two- or three-dimensional space. The attribute values are usually only known
at some locations iﬂ the region .4 and in order to carry out any statistical infer-
ence it is necessary to impose a conceptual model that will allow one to obtain a
realisation of the attribute over the entire region. Thié conceptual model is known
as the random funCtidn model. Suppbse that the attribute values are known at the
locations u, € A, @ = 1,...,n. A known sample value z{u,)} is considered as one
particular realisation of a random variable Z{u,). Any unknown attribute z(u) is
regarded as one realisation of a random variable Z (u) (Armstrong, 1998; Chilés &
Delfiner, 1999; Goovaerts, 1997). The random variable Z(u) is completely defined

by its cﬁmulative distribution function given by
F(u;z) =Pr{Z(u) <z} forallzeR. (1)

The family of (usually) dependent random variables {Z(u), n € A} is called a
random function. The random function is fully characterised by the set of all its
N-variate cumulative distribution functions, for any number N and any choice of

the N locations up, n=1,...,N:
F(ull' "1uN.’zll""zN) =Pr{Z (ul)szll°"1z(uN) SzN} (2)

A multivariate cumulative density function is used to model the joint uncertainty
about the NV values z(u,),...,z{u,). Generally, the number of data available is
insufficient to infer the joint distribution function, so in practice the spatial analysis
is limited to cumulative density functions involving no more than two locations at a
time, and their corresponding moments. The first two moments of the distribution

provide an acceptable approximate solution.



2.2 Distributions

Most of the theoretical concepts in geostatistics rely on data that follow a particular
probability distribution, The most widely used of these is the Gaussian or ‘nor-
mal’ distribution whose probability density function, called the normal curve, is the
symmetric bell-shaped curve with positive and negative tails that stretch to infin-
ity in both directions. The probability density function of the normal probability
distribution (Walpole & Myers, 1989) with mean y and variahce o?, is given by

g{z) = 1 exp (-;- (z — p:) 2) , where — 00 < z < 00. (3)

a2 o

The standard normal distribution has mean . = 0 and variance 02 = 1, and in this

case Equation (3) becomes

2
g(z) = —E exp (—%—) where — o0 < 2z < 00. | (4)

Any normal random variable Z with mean y and standard deviation ocan be trans-

formed to a standard normal random variable Y by letting

Another distribution often used in geostatistics is the lognormal distribution,
where the logarithms of the data values are normally distributed. The lognormal
model is a natural choice for positively skewed data such as go.Id grades, pollution
levels and permeability. The random variable Z is lognormal if Y = log Z is normal.
A logarithmic transformation can convert a skewed variable into a more symmetric
form, and it may also be useful in stabilising the variance. When the variance is
proportional to the mean, a logarithmic transformation may be able to correct this

condition.

2.3 Stationarity

In the case of the data under consideration in geostatistics, repeated measurements

at any one location are usually impossible so a structure needs to be imposed on
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the random function that enables us to carry out statistical inference. The ob- |
served data z(u,), @ =1, -+ , n are considered as a single realisation of the process
{Z(1) : u€A}. When replication of data is not available, this can be overcome
with assumptions concerning the spatial behaviour, A random function is said to be
stationa.ry if the probabilistic structure looks similar in different parts of the study
.region A. . Replication within a single set of data is then possible from different
.subregions. o '

A random function is stationary within a study region A4 if its multivariate
cumulative density function is invariant under translation, that is, the characteristics
of a random function stay the same when shifting a given selt of N points from
one part of the study region to another. A random function is said to be strictly

stationary if for any set of ¥V locations u,,...,u, and any translation vector h
Flu,,...,0,;2,...,2y) = F(u,+h,...,u, +hyz,...,2,) (5)

As long as two pairs of obsefvatiOns have the same separation vector h, they both
can contribute in the estimation of z(u). The vector h is called the lag vector
between two spatial locations.

A random function is said to be second-order stationary when the mean E{Z(u)}
exists and does not depend on the location u, and the covariance function C'(h) exists

and depends only on the separation vector h:

E{Z(w)} = E{Z(u+h)} * (©)
CoufZ(w), Z(u+m}=CH) (D)
C (0) = Var{Z(u)} - ®

- Second-order stationarity assumes the existence of a finite variance. There are
many physical phenomena, for example Brownia.n Motion (Serway & Beichner,
2000), and associated random funétions that do not have a finite variance or covari-
ance, so the assumption of strict stationarity is replaced by the weaker hypothesis
of second-order intrinsic stationarity, An intrinsic random function assumes that
for every vector h the increment Z (u+h) — Z (u) is second-order stationary and

is characterised by the relationships
E{Z(u+h)~Z(u)} =0 (9)

3



and

Var{Z{u+h)— Z(u)} = 2v(h) (10)

where 27(11). is the variogram function. The semivariogram v(h) shows how the
dissimilarity between Z (u) and Z (u+h) changes with separation h. The greater
the value of y{(h), the less close the relationship between values at points separated

by h. The semivariogram is an even, nonnegative function equal to 0 at b = O:

y(h) =+(-h) ()20 4(0)=0 Y

The parameters commonly used to summarise the bivariate behaviour of a sta-
tionary random function are the covariance function C (h), correlogram p(h), and

semivariogram -y (h} and these are related by:

1W=cO-cm (12)
o) -gi =128 (13

The correlograin expresses how the correlation between locations changes with spa-
tial separation. '

If a random process is second—order stationary, then it is also intinsically station-
© ary, but the converse is not true. That is, if C(h} is defined, then the semivariogram
" is necessarily déﬁned, but the existence of the semivariogram does ﬁot imply the
existence of C(h). If the process is intrinsically stationary but not second-order
stationary, the covariance function does not exist. This is evident in the power var-
iogram y{(h) = b|h|’ with 0 < p < 2 and b > 0, which cannot be obtained from a

covariance function as it is unbounded.

2.4 Relationship Between Covariogram and Semivariogram

Assuming that the process is second-order stationary so that C(0) is defined, then
C(0) = Var{Z(u)}. A second order stationary process has C'(h) > 0, from which
|Cth)| < C(0) and C(0) > 0. As |}h| increases C(h) tends to zero, so the semivar-
iogram of a second-order stationary process has an asymptote equal to C(0). This

helps to provide a way of checking for stationarity. The semivariogram of the process

9



should flatten out with increasing separation distance of data points. ]_[f the semi-
variogram steadily increases then the process is not second-order stationary. The
semivariogram is intrinsically stationary if

2y(h)
[

—0as [[hff =00 _ (14)
2.5 Inference and Modelling

Once a random function model is chosen, its parameters, the mean and covariance,
are inferred from the sample information available over the study region A. The
sample stat istics a,re used as estimates of population parameters, so the sample needs
to be fepreseﬁtative of the study region. |

- The sernivariogram, rather than the covariance, is commonly used to model
spﬁtial variability, although kriging systems are more easily solved with covariance
matrices (Deutsch & Journel, 1998). The semivariogram measures the avefage dis-
similarity between data separated by a vector h and is inferred by the sample (ex-
perimental) serivariogram, whereas the covariance measures similarity, The sample
semivariogram used for modelling is computed as half the average squared difference
between the attribute values of every data pair: |

Lo
¥(h) = SN(R) Z [#{ua) — 2(ua + h)]? (15)

where z(u,) and z(u,+h) are the data values at locations 1, and u,+h respectively,
and N{(h) is the number of pairs of data values separated by the vector h, The sample

semivariogram may not tend to zero when h tends to zero, although by definition
7(0) = 0. "

2.6 Range and Sill
The rate of increase of the sample semivariogram with distance indicates how quickly

the influence of a sample reduces with distance. The sample semivariogram can

increase indefinitely if the variability of the attribute has no lim1t at _Ia.fge distances,

10



and this is indicative of nonstationary behaviour, If the random function is second-
order stationary, the sample semivariogram fluctuates about a linﬁting value, and the
range of the spatial process is the distance at which this limit is reached. This limit
is called the sill of the semivariogram and it signifies that after a certain separation
distance there is no longer any correlation between samples. (Armstrong, 1998). If
the semivariogram approaches its sill asymptotically, then the practical range .is the
value at which the semivariogram reaches 95 % of its sill. The @iogm can reveal
nested structures, each characterised by its own range (Chilés & Delfiner, 1999).
The sample semivariogram provides a set of experimental values for a finite
number of lags, hy, £ = 1,...,K, and directions. Continuous functions must be
fitted to these experimental values so as to deduce semivariogram or covariance
values for any possible lag h required by kriging, and also to smooth out sample

fluctuations. (Goovaerts, 1997).

2.7 The Nugget Effect

From the definition of the semivariogram we have:
7(h) =y(-h) and ¥(0) =0 (16)

In some applications y(h) tends to ¢y # 0 as h tends to 0. This implies that
observation differences at the same location have a positive variance. This is due to
measurement error and /or a spatial process operafing at lag distances shorter than
the smallest lag observed in the data set. If this micro-scale process has sill ¢psg and

if 0%, denotes the variance of the measurement error, then
Co= sz + Cus. (17)

When either of the two components is not zero, the semivariogram exhibits a discon-
tinuity at the origin. This discontinuity at the origin is called the nugget effect. The
term originated from the idea that gold nuggets are dispersed thoughout a larger
body of rock but (possibly) at distances smaller than the smallest sampling distance.
When a semivariogram has nugget ¢; and sill C (0), the difference C (0) —cp is called

11



the partial sill of the sénﬁvariogram. The nugget effect is obvious in many data sets.
In the absence of measurement error, the nugget effect is an indication that the

sampling interval was not small enough.

2.8 Isotropy and Anisotropy

The covariance and the semivariogram are said to be anisotropic if they depend
on both distance and direction. They are said to be isotropic if they depend only
on the magnitude of h. When experimental semivariograms exhibit anisotropy, a
coordinate transformation can be applied to obtain an isotropic model. (Godwaerts,
1997; Wackernagel, 1998). To determine the presence of anisotropy we need to
look at directional experimental semivariograms. A semivariogram surface, which
is essentially a contour plot of the directional semivariograms, visually indicates
the direction of greatest spatial continuity. It is important that any pronounced
anisotropy is modelled and not ignored. Anisotropy can be classified as either geo-

metric anisotropy or zonal anisotropy.

2.8.1 Geometfic Anisotropy

A semivariogram has a geometric anisotropy when it has the same sill in all direc-
tidns but different ranges in at. least two directions. A plot of the calculated range
of the semivariogram in various directions appears ellipsoidal, and this ellipse can
be transformed to a circle with radius equal to the minor axis via a rotation and

subsequent dilation.

2.8.2 Zonal Anisotropy

A semivariogram exhibits zonal anisotropy when its sill values vary with direction.
This type of anisotropy can be modelled as the sum of two componenf:s;'an isotropic
semivariogram in both coordinates and a one-dimensional semivariogram that de- -

pends only on the distance in the direction of greater variance. The coordinate
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system is rotated so that the y-axis coincides with the direction of maximum conti-
nuity.

Thus a semivariogram model is completely speciﬁed by stating the direction of
greatest continuity, and the anisotropy ratio (minor/rhajor axis in the case of geo-
metric anisotropy, and zero in the case of zonal anisotropy) and a suitable isotropic
model function In the next section we will consider isotropic semivariogram models.
These basic models are used to form a linear model that can be isotropic or display

either type of anisotropy.

2.9 Isotropic Semivariogram Models

Only certain functions can be used as models for semivariograms and covariances.
Covariances must be positive definite functions, and so semivariograms have to be

conditionally negative semi-definite, that is

i i a,-aj2'y fui - llj) < 0 (18)

i=l j=1

for any set of locations u,,..,u, and constants a,,...,a,. It is common practice
to fit a positive linear combination .of basic models that are known to be permis-
sible (Goovaerts,.lgg'?). 'This eliminates the need to test the permissibility of a
semivariogram model after it has been constructed. The folloﬁing isotropic semi-
variogram models depend only on scalar diﬁ'erences between the locations, h = |h,

. not, directions,

2.9.1 Nugget effect model

The nugget effect model is a semivariogram for a pure white-noise process. It is
defined by -
[0 forn=0

g(h) = .
l ¢ forh>0

(19)

where ¢ 2 0. The nugget effect is used to model a discontinuity at the origin of the

semivariogram and since it reaches the sill as soon as k > 0, it is bounded.
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2.9.2 Spherical model

_ The spherical model has range a and sill ¢. It is defined by
- : 3\ -
' c éi—-1—(-}}-) for0<h<a ' oo
gh)=4q \%2a 2\ec | - (20)
c forh>a

where ¢; > 0. The semivariogram. exhibits linear behaviour near the origin, and once

‘the range is reached, the semivariogram is bounded and remains constant.

2.9.3 Exponential model

"The exponential mode] reaches its sill asymptotically and has a practical range a.
The model is defined by

Q(h)=.c(1—exp(:-2&)) forh>0 (21)

The exponential model is bounded and exhibits linear behaviour near the origin.
Differentiating the spherical and exponential mode] functions with respedt to h,
we find the gradient of the spherical model at the origin is |

3 3n?
10 = (5-3) 22)
2a 2@3 h=0 (
-3
T 2
and the gradient of the exponential m(}del is
70 = 2o () (23)
' @ Jlh=0 '

Rl o

Clearly we have 53; < 2 for all values of a € R, so the exponential model is steeper

near the origin.
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2.9.4 QGaussian model

The Gaussian model has practical range a and is bounded as it reaches the sill ¢

asymptoticaily. It is defined by

2
c(l—exp(—%)) forh>0 ' (24)

The model exhibits parabolic behaviour near the origin, and is infinitely differen-

=~

—
o

 —
il

tiable everywhere. It is characteristic of highly regular attributes.

2.9.5 Power model

The power model is unbounded and has no sill. It is defined by

(k)= ch* forh20 . (25)

where 0 < w < 2, w € R. The power model plays an important role in the theory of

turbulence and its application to meteorology.

2,10 Kriging

Kriging is a local estimation technicjue which provides a best linear unbiased es-
timator of the attribute z at location u. This method uses the modelled spatial
~ correlation estimated from the sample data. The estimator used in kriging is 2* (u)

which is defined as

n(u) -

2 () = m () + Y e ()12 (02) = m ()] (2)

a=1

where m (u) and m (u,) are the expected values of the ra..ndom. _variablés Z(u) and
Z (u,), and Xu is the weight given to the sample value at location u,. The number of
data used in the estimation, as well as their weights, may change from one location
to another. Generally only the n (u) data closest to the location 1 being estimated

are retained. The weights are chosen 5o as to minimise the error \}ari_ance_
0% () =Var {Z* (u) - Z (u)} (27)
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under the unbiasedness constraint that
E{Z° ()~ Z (u)} =0 : (28)

This means that kriging is a best linear unbiased estimaf.ion (BLUE) method. The
kriging estimator is an exact interpolator because it honours the data values z (ug) at
their locations. Different kriging methods are used according to the model considered
for the trend m (u).

- The simulation algorithms that we outline in the next chapter use simple kriging
(SK), which considers the mean m (u) to be known and constant throughout the
study region, that is _

m{u)=m forall uecA o (29)

2.10.1 Simple Kriging

The simple kriging estimator is a linear combination of the 7 random variables z (u,)

and the mean value m. In this case equation (26) becomes

n() a{u) '
Ze (w) = D235 () Z (wa) + [1 =YK (U)] m (30)

where the n weights A5 (u) are the simple kriging weights determined to minimise
the error variance, Z*(u) is the random variable of the estimated value and Z(u,)
is the random variable at the sample location 1,. This minimisation results in the
following set of n (1) normal equations:

afu) .
> AﬁK (u)C(uy ~w)=Cu,—u) fore=1,.,n(u). (31)
B=1

The corresponding simple kriging variance is:

osx () = Var(Z5y (u) - Z (u)] (32)
n{u)
= C0)= > XX (u)C(u-ua)>0 (33)

Simple kriging will be applied in the sequential simulation algorithms discussed
in the next chapter to obtain estimates of the first two moments of the local distri-

butions used in the simulation.
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2.11 Simulation

Simulation is often preferred to estimation because it allows the generation of maps,
or realisations, tha.t reproduce the Sample varjability. By geherating many realisa-
tions that reproduce global statistics such as the histogram and the semivariogram
‘the uncertainty about the spatial distribution of the attribute values can be assessed.
The set of geostatistiéal realisations allows local uncertainty, s patial uncertainty and
response uncertainty to be modelled. The models of uncertainty and subsequent risk
quantification is influenced by the decisions made along the modelling process, These
decisions include the choice of conceptual model, the selection of _simulat__ion algo-
rithin and the number of realisations generated to explore the space of uncertainty,
and the inference of the parameters of the random function model (Goovaerts, 2001).
There are numerous simulation algorithms used in geostatistical applications.
These differ in the underlying random function model, the amount and type of in-
formation accounted for, and computational requirements. Sequential simulation is
based on Monte Carlo simulation which generates realisations of random processes.
For the purpose of this research, we are interested in sequential Gaussian simulation
and direct sequential simulation. Both these methods involve the se(juential sam-
pling of a conditional cumulative distribution function. In sequential simulation, a
random péth visiting all Iocations once and only once is defined and each.location is
simulated when it is visited. With conditioné.l simulation, the resulting rea]isétions
honour the data values at their locations. _
Sequential Gaﬁssian simulation assumes that the given random field is multi-
variate normal, which implies that the given data are normally distributed._ Before
sequential Gaussian simulation is applied, the originall data usually require a trans-

formation into normal score data to honour the normality requirement. Direct se-

 quential simulation does not rely on the multi-Gaussian assumption, so it does not

require stich a transformation and the simulation is performed directly in the original
data space. Variogram reproduction is ensured by Journel’s result (Journel, 1994)
which states that for the Sequent;ial simulation algorithm. to reproduce a specific
covariance model, it suffices that all conditional.c_umulative d_istl;ibution functions

used in sequential simulation have the mean and variance equal to the corresponding
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simple kriging mean and simple kriging veriance. We discuss the algorithm in more
detail in the next chapter |

* The limitations of sequential Gaussxan mmulatmn (Caers, 2000b) are tha.t 1t

e assumes a multivariate Gaussian field, which can never be fully checked in

practice.

e requires a back-transformation after simulation if a normal score transform

was applied.

o does not reproduce the original semivariogram model, only the normal score

semivariogram model.

'The limitations of direct sequential simulation are that it does not always re-
produce the histogram, only the mean and variance (covariance model) A post
processing algorithm may be necessary to identify the target hlstogram, but this
may destroy the variogram reproductlon (Caers, 2000b).
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3 Sequential Simulation Methods and their

Implementation

In this chapter we discuss the sequential simulation methods we considered, provide

the relevant mathematical background and explain their implementation algorithms.

3.1 Sequential Simulation Algorithm

The simulation anoi'ithms we use in this study all belong to a class of simulation
algorithms known as sequential simulation algorithms. A conditional cumulative
distribution function is modelled and sampled at each 6f the N nodes visited along
a random path. Reproduction of the semivariogram model is ensured by making
each conditional cumulative distribution function conditional on both the original »
data and the values simulated at previously visited locations.

The sequential simulation process consists of the following steps:

s Define a random path through all nodes to be simulated, visiting each node

once and only once,
e For each node u;,i =1,..., N;

~ Determine the parameters for the local conditional cumulative distrib-
ution function at the node such that its mean and variance equals the

simple kriging mean and simple kriging variance respectively.

— Draw asimulated value from the conditional cumulative distribution func-

tion at lecation u;,

~ Add the simulated value to the data set.
¢ Loop until all V nodes have been simulated.

Each of the sequential simulation algorithms we use follow these steps but they
take different approaches to determining the local conditional cumulative distri-

bution functions. The algorithms used to determine the conditional cumulative
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distribution functions can be divided into two main categories - parametric and

non-parametric.

3.2 Parametric Algorithms

In this section we discuss simulation algorithms for which the local conditional dis-

tribution can be written as a function of the mean and variance.

3.2.1 Sequential Gaussian Simulation

The main assumption in sequential Gaussian simulation is that the local conditional
cumulative distribution function is from a standard normal distribution. If the orig-
inal z-data are not standard normal, or even normal, they need to be transformed
into y-values with a standard normal distribution. This can be done by associating
to the percentiles of the cumulative distribution of Z the corresponding percentiles
of the standard normal distribution. This is called the normal score (nscore) trans-
formation or Gaussian anamorphosis and it preserves the rank of the sample data.
The simulation is then carried out in normal score space where the random normal

score deviate is calculated by
Y = hisk + 705K (34)

where pigy is the kriging mean, ogx is the kriging variance and r is a random number
in {0, 1). The resulting realisations are then back-transformed to the original variable.

For the back-transformation the program performs a linear interpolation sep-
arately within each of the middle classes. The lower tail is extrapolated towards
a mipimum value using a power model with a strictly positive parameter, w that
represents the power. When w = 1 the power mddel corresponds to a linear model.
The upper tail is extrapolated by using a hyperbolic model as this allows the curnu-
lative distribution function values to go beyond the largest threshold value 2, and
the parameter w > 1 controls how fast the cumulative distribution function model
reaches its limiting value 1. The smaller w is, the longer the tail of the distribution
will be (Goovaerts, 1997).
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3.2,2 Direct Sequential Simulation

As shown by Journel (1994}, the conditional distribution F (w2 | (n+ ¢ — 1)) can
be of any type and need not be the same at each location, as long as its parame-
ters are calculated from the simple kriging mean and simple kriging variance. In
this study we will use a lognormal distribution as the local conditional cumulative

distribution function where the logarithmic variance o2 (u) is given hy

o (u) = log (é&f?%)}f ¥ 1) (35)
and the logarithmic mean () is
b (0) = log (Zc () ~ 2. (36
The random deviate is given by
z = exp (u(u) + ro? (u)) (37)

where 7 is a random number in [0, 1].

3.3 Non-parametric Algorithms

Unlike the Gaussian approach, non-parametric algorithms do not assume any partic-
ular shape or analytical expression for the local conditional distributions (Goovaerts,
2001).

3.3.1 Direct Sequential Simulation with Histogram Identification

Caers (2000b) proposed a direct sequential simulation method that tries to overcoine
the shortcomings of sequential Gaussian simulation and the original direct sequential
simulation by directly matching the target histogram associated with each simulation
node. This target histogram is defined through a set of thresholds {#;, & = 0,..., K}
that discretise the range of values for the attribute, and probabilities pf, where
p1 = Pr{ts_; < Z{u) <t} denotes the global proportion for the target histogram.
'The following describes the principles of this method. |
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For each location u the value of the local conditional probability distribution
function corresponding to a given threshold & = 1,..,, K, is denoted by pi (u | (n))
and defined as |

pe (] () = Pr{ts < Z(u) <tx | (n)}. - (38)

The aim of the algorithm is to locally match the global target histogram as closely

| as possible, while at the same time, requiring that:

1. The mean of the local conditional cumulative distribution function is equal to

the simple kriging mean, and so
X i1+t
s () =3 (2 ) e (u] o) (39
k=1

2. The variance of the local conditional cumulative distribution function is equal

to the siﬁaple kriging variance, and so

K t + tk 2
* k-1
et G =3 () i), @
f=1
3. The sum of the probabilities equals one, and so
K
> m(ul(m) =1L (41)
k=1
4. The consistency condition
0<m(ul| (n) <1, k=1,.,K (42)

holds for the probabilities.

There are many different ways to measure the match between the local condi-
tional histogram and the global target histogram. We will discuss two possibilities,
the first, used by Caers (2000b), is to minimise the absolute deviation between the
target, that is global, and the local conditional probabilities. This can be achieved

by requiring the absolute deviation

Or=p(u| (M) ~pll =D Ipc(u| () - pil (43)
to be minimised.
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As a result, a nonlinear constrained minimisation problem needs to be solved at

each Jocation where the objective is to minimise.

O = lip - p*l, (44)

where the vector p = p(u](n)) and the vector p? is constant. Because of the
nature of the objective function in (43) we call the resulting algorithm dssf1. This
objective function is piecewise linear.

A more natural approach is investigated in this thesis. We use the least squares
principle and minimise the sum of the squares of the deviations between the local

and global histograms:
K

Or = llp(ul (m) - Pl = (s (u| (n) - p})°. (45)

k=1
The measure O is & differentiable function with respect to py (u | (n)). The objec-
tive function in (45) minimises the squared difference between the local and global
probabilities and hence we call this algorithm dssf2, At each location we are required
to solve a constrained least squares problem. We need to minimise O, subject to

the constraints (39)-(42). Equation (45) can be rewritten as
K

0=y ((pe(w ] (M) = 20ips (u | (0) + ()°) (46)

k=1

K
which, after dropping the constant term, ) (p,’{)2 gives us the new objective function
k=1

K K
O2=3 (e (ul (W) -3 2pipe (u| (n)). (47)
k=1 k=1

The resulting problem can be formulated as a quadratic programming problem where

the objective is to minimise
9 v 17
0, =~2(p) p+5P Qp (48)

where the vector p = p(u | (n)), the vector p? is constant, and the (K x K) di-
mensional matrix Q = 2I.
For both problems the optimal solution, where it exists, results in local proba-

bility density function values

P (u) = {PZ (u | (n))} k=1, K. (49)
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These values are regarded as the frequencies of a histogram that has the same thresh-
old classes as the target histogram, and this new histogram will be used to draw
random deviates. Given a random number r € [0, 1] and a threshold class (2, 211
with cumulative distribution function values F (z;) and F' (2:41), the random deviate

z is linearly interpolated using the definition

(r — F(2)) (2141 — 2)
S ) - F@) T )

These two simulation algorithms both encounter convergence problems when

the simple kriging mean is less than the midpoint of the first threshold. When this
occurs an optimal solution does not exist. A random deviate needs to be found in an
alternative way. This could be done by using a different local conditional cumulative
distribution function, for example a normal distribution, or as in the case of this

study, by setting the random deviate equal to the simple kriging mean.

3.4 Constrained Optimisation

In the previous section we have identified two constrained optimisation problems
that need to be solved in order to determine the local conditional cumulative dis-
tribution function. The constraints are linear equations and /or inequalities and the
objective function is either piecewise linear or quadratic. The two problems are
called an £ approximation problem and a quadratic programming problem respec-
tively. They can both be rewritten as linear programming problems, that is, as

probleins with a linear objective function and linear constraints.

3.5 Linear Programming Problems

A linear progremming problem is characterised by a linear objective function and
linear constraints. The standard form of a linear program is
Minimise

£ ) = T (51)
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subject to
Ax<bandx>0 (52)

where x is an n-dimensional column vector, ¢¥ is an n-dimensional row vector, A
is an m x n matrix, and b is an m-dimensional column vector. Inequalities are
converted to equality equations by introducing new positive variables 3 known as
slack variables. This allows us to rewrite the inequalities in (52) as a system of m

linear equations in n <+ 7 unknowns
AY =b (53)

where A’ = [A,1,] and (x¥')7 = [x,¥]. If B is a nonsingular m x m submatrix of
A’, then the solution to Bxp = b is called a basic solution of Equation (53). The
basic variables are the components of x associated with columns of B.

A feasible solution of the linear programming problem is a solution for which
all the constraints are satisfied. A vector that satisfies Equation (52) is said to be
feasible for these constraints. A feasible constraint that is also basic is known as
a basic feasible solution. An infeasible solution is a solution for which at least one
constraint is violated. We call the collection of all feasible solutions the feasible
region. If the feasible region is bounded, the optimisation problem is bounded,
otherwise it is said to be unbounded. The optimal solution is a feasible solution
that results in the objective function having the smallest value when minimising,
When the constraints are inconsistent, an optimisation problem has no solution, and
the problem is said to be infeasible. _

Feasible regions that are defined by linear constraints are convex. In general, a set
S € R* is convex if, given any two points in the set, every point on the line segment
joining these two points is also a member of the set. A hyperplane in R is the set
of points H = {x eR": al'x =c} , where a # 0 is an n-dimensional column vector
in R® and c is a real number. A hyperplane is a set of solutions to a single linear
equation. The closed half spaces are defined by H = {x cR*:alx Zc} and H =
{xcR":aTx <c}. The open half spaces are defined by H = {x e R":a"x >c}
and H = {x eR":alx <c} . A convex polytope is a set which can be expressed
as the intersection of a finite number of closed half spaces. Convex polytopes are

 the sets of solutions obtained from a system of linear inequalities. Each inequality
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defines a half space and the solution is the intersection of these half spaces. A
polytope may be empty, bounded or unbounded. A nonempty polytope is called a
polyhedron.

An extreme point of a convex set is a point x in the convex set that does not
lie strictly wiﬁhin the line segment connecting two other points of the set. Adjacent
extreme points are points that lie on & common edge. Any polytope has at most a
finite number of extreme points (Luenberger, 1984; Wismer & Chattergy, 1978).

A function f(z) is called convex in R™ if

FOT+1 -2y SAf (@) + 1 - NF () (54)

for all z,y € R™ and X € [0,1]. A function is strictly convex if this definition holds
with strict inequality when 0 < A < 1 and 2z # y. A convex function is defined only
over the domain of a convex set. The definition does not require that f be either
continuous or differentiable.

A vector x is an extreme point of a polytope K if and only if x is a basic feasible
solution to Equation (52).

Denote by K the polytope of all (feasible) solutions of (52). The relationship

between extreme points and basic feasible solutions is as follows:

1. If the convex set X corresponding to Equation (52) is nonempty, it has at least

—~

one extreme point.

2. If there is a finite optimal solution to a linear programming problem, there is

a finite optimal solution which is an extreme point of the constraint set.

3. The constraint set K corresponding to Equation (52) possesses at most a finite

number of extreme points.

4. If the convex polytope K corresponding to Equation (52) is bounded, then K
is a convex polyhedron and X consists of points that are convex combinations

of a finite number of points.

The optimal solution for a linear programming problem must lie on the boundary

of the feasible region. Any point on the boundary of the feasible region lies on one

26



or more of the hyperplanes defined by the respective constraint boundary equations.
The hyperplanes define a polytope with vertices at which at least n of these planes
meet. At least one member of the optimal set is at a vertex, and in general the
number of vertices can be prohibitively large, even for small problems.

The simplex method, originally formulated by Dantzig in 1947 (_Gil] et al., 1984),
is an algebraic procedure for determining the optimal solution of a linear program-
ming problem that has underlying geometric concepts. The set of all feasible solu-
tions to Equations (51)-(52) is defined by the set K = {x € R” : aTx < b,x > 0}
and the linear programming problem consists of finding an extremum of f(x) on
K. When the objective is linear, and when an optimal solution exists then there is
at leést one vertex of K at which this optimum is attained.

There are two phases to the Simplex Method. Phase I is the process of locating a
vertex of the polytope. Extra slack variables and constant offsets are added to all of
the inequalities to help find a feasible vertex. Phase I concludes when a basic feasible
solution is obtained for the artificial vectors, and this solution is used as the initial
basic feasible solution for applying the simplex methed to the objective function in
Phase II. Once we reach a vertex fbr which the slack variable is zero, we have found a
vertex of the original polytope and we then continue with Phase II on that polytope.
We then move from one vertex to an adjacent one, checking the objective function
after each move to determine if further improvement is possible. The algorithm
proceeds to move on the surface defined by the working set of constraints to an
improved point until the optimal vertex is reached. The vector to enter the basis
is chosen as that with the greatest nonnegative marginal cost. The vector leaving
the basis is chosen from among all basic vectors by selecting that which causes the
maximum reduction in the objective function, allowing many intermediate simplex
vertices to be bypassed.

The objective functions we will be concerned with are piecewise linear and
quadratic respectively, and both problems can be rewritten in such a way that the
problem becomes a linear programming problem, which can be solved using a two

phase simplex algorithm,
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3.6 One-norm Approximation with Linear Constraints

The constrained one-norm linear approximation problem is to

Minimise .
b~ Ax|l, = 3 Jbs — Asx| (55)
i=1
subject to the linear constraints
Cx = d (56)
Ex £ f (57)
where the vector x = [:cl,a:g,...,a:n]T € R™ and we are given the vector b =

[br,62, ... ,bm]" and the m x n matrix A, the & X n matrix C and the I X n matrix
E.

The problem (55)-(57) can be formulated as the linear programming preblem
(Barrodale and Roberts, 1978):

Minimise
e(u+v) (58)
subject to
AX -x"Y+u-v = b (59)
Cx-x") = d
E(x'—x”)-{-u” - f
xX, x,y,u",v > 0
[ 4
where ¢ = [1,1,...,1] € R™, u = [uy,us,.. S tm), Vo= [vl,'uz,...,'um]T and
= [uf,d},.. ] The vector v is introduced as & slack varicbic to convert

the inequality constraint Ex < f to an equivalent equality constraint. This aug-
mented form is needed in order to apply the simplex method.

To start the simplex iterations, artificial variables need to be introducad for
the purpose of being the initial basic variable for their respective equation. These
variables have the usual nonnegativity constraints placed on them, and the objective
function is modified so an exorbitant penalty is imposed if their values are larger

than zero,
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After introducing the artificial vectors w',v/, and v”, we can restate problem

(58)-(59) in the form:

Minimise .
e{u+v) + Me'(0' +v') + Me'v' (60)
subject to
AX -x"Y+u~-v = b (61)
Cx-x"Y+u'-v = d
E'-x")+u"-v" = f
xr’ X", u, u:’ u, v, V’, v > 0
where u = [}, 1, ..., w47, v/ = [}, ... v, V' = [}, 04,...,9}]" and € and

e” are row vectors of 1’s of dimensions & and ! respectively. The quantity M in
the objective function is a large positive number which represents the cost of each
artificial vector. |

The iterations of the simplex method automatically force the artificial variables
to become zero, one at a time. When all the artificial variables are zero, the real
problem is solved (Hillier and Lieberman, 1995). The initial basis normally includes
some of the artificial vectors so the algorithm is implemented using the two-phase
simplex method. The objective function e'(u’ + v') 4+ e"v" is used in phase I, and if
the optimal solution to this problem is positive, then no feasible solution to the con-
straints (56) and (57) exists, and the algorithm terminates. If the optimal solution
is zero, the algorithm proceeds with Phase II using the objective function e{u +v).

3.7 Quadratic Programming

A linearly constrained optimisation problem with a quadratic objective function is
called a quadratic program. The general quadratic program can be written as
Minimise _
flx)= ch-{-%xTQx (62)
subject to
Ax<b and x>0,

29



where ¢? is an n-dimensional row vector containing the coefficients of the linear
terms in the objective function, and Q is a (n X n) symmetric matrix containing
the coefficients of the quadratic terms. The decision variables are denoted by the n-
dimensional column vector x, and the constraints are defined by an (m x n) matrix
A and an m-dimensional column vector b of right-hand-side coefficients.

The Lagrangian function for the quadratic program is
Lx,A)=cTx+ % TQx + A(Ax—Db) (63)

where the vector A is called the vector of Lagrange multipliers. The Karush-Kuhn-
Tucker conditions (Wismer & Chattergy, 1978) for the quadratic program are first-
order necessary conditions for optimality that are sufficient for a global minimum

when Q is positive definite. The Karush-Kuhn-Tucker conditions for a local mini-

mMum are:
T+xTQ+AA 20 (64)
Ax—-b<0 (65)
X (c+Qx+A"A) =0 (66)
A(Ax—b)=0 (67)
XA > 0. (68)

We then introduce surplus variables y €R™ to the inequalities in Equation(64)
and nonnegative surplus variables v €R™ to the inequalities in (65). The Karush-
Kuhn-Tucker conditions {64)-(68) can now be expressed in a form that closely re-

sembles linear programming;:

Qx+ATA~y=—c (69)
‘Ax+v=>b ~(70)
x20,A>0,y>0,v>0 (71)
T yTx=0,Av=0 (72)

where equations (69)-(70} are linear equalities, condition(71) restricts all the vari-
ables to be nonnegative, and condition(72) is called the complementary slackness
condition and it ensures that all As are zero for inactive constraints and positive for

active constraints (Wismer & Chattergy,1978; Gill et al, 1984).
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Introducihg n slack variables z > 0 we can rewrite the quadratic problem as the

linear programming problem. This problem is given as

Minimise .
z=3 z (73)
i=1
subject to
Qx+ATA-y+z=—c (74)
Ax+v=Db (75)
X, v, ¥, A>0 (76)

The goal is to find the solution that minimises Equation (73} whilst ensuring that
the complementary slackness conditions are also satistied at each iteration. The rule
for selecting the enterfng variable is modified to accommodate this condition. If the
sum is zero, the solution will satisfy (69) to (72). The entering variable will be the
one whose coefficient is most negative provided that its complementary variable is
not in the basis or would leave the basis on the same iteration. At the conclusion
of the algorithm, the vector x defines the optimal solution. .

This algorithm works well when the objeétive function is positive definite, and
"the computational e.ﬁ‘ort required is comparative to the linear programming problem
with m 4+ n constraihts, where m is the number of constraints and n is the number

of variables in the quadratic program.

3.8 Implementation and Specifications

In this section we describe in detail the specific algorithms used to implement the
sequential simulation methods discussed in Sections 3.2 and 3.3. In order to imple-
ment these algorithms we first had to create a simulation environmens comprising
a set of Fortran programs. The flowchart shown in Figure_ 3.1 outlines the steps
involved in the sequential simulation algorithm discussed in Section 3.1. The main
difference between the simulation algorithms is associated with the subroutine in

which a random deviate is drawn from a local conditional distribution. |
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Figure 3.1. Flow chart for the sequential simulation algorithm,
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3.8.1 Sequential Gaussian simulation-SGSIM

The SGSIM algorithm used the program sgsim.eze from the Geostatistical Software
Library (GSLIB). The only modification that was required to run this program was
- an adjustment to thé dimension of some matrices, since the Permeability data set
was larger than the preset default values. The parameter files for the Permeability
and Potessium data sets are included in Appendices Al and Bl respectively. The
program requires a semivariogram modet for the normal scores, and the kriging
variance is directly interpreted as the variance of the conditional distribution, so
the nugget constant and the sill parameters must add to 1.0. (Deutsch & Journel,
1998). |

3.8.2 Direct sequential simulation

In the case of the three direct sequential simulation algorithms we need to input
a non-standardised semivariogram meodel derived from the original sample data.
The programs do not require that the data be transformed to normal scores. Qur
implementation is based on a modjﬁcation of SGSIM. As a first step the subroutine
krige was changed to incorporate the sample mean into the formula for the kriging
mean, as SGSIM caleulates the simple kriging mean using a global mean of zero.
This program will be referred to as dssim.eze. Additional requirements for the

particular direct sequential simulation algorithms were then added where necessary.

3.8.3 DSSIM - Original direct sequential simulation

This program is a modification of dssim.eze so that the local conditional probability
distribution is no longer assumed to be normally distributed. The code was amended
to allow the random deviate associated with a location to be drawn from a lognormal
distribution. The parameters for this distribution are calculated from the simple
kriging mean and simple kriging variance using Equations (35)-(36). The parameter
files are for the Permeability and Potassium data sets are seen in Appendices A2

and B2 respectively.
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3.8.4 Direct sequential simulation with histogram reproduction

The two algorithms, DSSL1 and DSSL2 require a global target histogram at the
start of the programs. These histograms consist of 40 equiprobable classes with a
maximum and minimum value deterniined by the pa.rametei's zmin and zmax. The
thresholds and global probabilities for the Permeability and Potassium data sets are
given in Appendices A5 and B3 respectively. These programs differ frdrn SGSIM and
DSSIM in that they make use of special subroutines which return a local probability

distribution from which a random deviate is drawn, as shown in Figure 3.2.

3.8.5 DSSL1 - Direct sequential simulation with histogram reproduction

using the one-norm

For this algorithm we included Algorithm 552 from the Association for Computing
- Machinery (ACM) Transactions of Mathematical Software (Barrodale & Roberts,
1980) as a subroutine in the modified dsstm.exe program. The parameter file for
dssfl.eze for the Permeability and Potnssium data sets are given in Appendices A3
and B3 respectively. From Equations (55)-(57) the parameters listed in Table 3.1
must be passed to the Algorithm 552 subroutine at execution time.

The only parameters that are continuously updated from location to location are
C and d. The subroutine returns the solution vector through an array and a logical
flag which indicates if an optimal solution was found.

The program also requires values for the following three parameters:

o Iter - an upper bound on the maximum number of iterations allowed. It is set
to the suggested value of 10 (k +{ + m). This parameter is actually calculated
in the program after % is input.

¢ Kode - a parameter that on exit informs the main program if an optimal solu-
tion has been found. On entry though, if set equal to one, the nonnegativity
constraints on the probabilities are included implicitly in the constraints. This
has been coded into the program and no further input is required. If the flag

returned with the solution vector informs the main program that a solution
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Figure 3.2. Flowchart for calculating a random deviate with DSSL.1/DSSL2 ,
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was not found, the estimate is set equal to the simple kriging mean, and the

program continues.

Toler - a small positive tolerance for which empirical evidence suggests be set
as toler = 10{F) where d representé the number of decimal digits of accuracy
available. The subroutine cannot distinguish between zero and a.ny quantity
whose magnitude does not exceed toler. It will not pivot on ény number whose
magnitude does not exceed toler. The tolerance is preset at a value of 1075 in

the program code.

Table 3.1. Parameters for Algorithm 552.

Parameter Description and input

K Number of rows of matrix A = 40
L Number of rows of matrix C = 3
M Number of rows of matrix E = 0
N Number of columns of the matrices A,C,E = 40
(10 ... 0]
A 61 .0
] 00 1 |
(B52)  (%5%) (257)
¢ (ag2)" (432)" - (g’
1 1 se 1
E 0
b (.25, )"
d (2%k, 0%y + (25x)°, I)T
f 0
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3.8.6 DSSL2 - Direct sequential simulation with histogram reproduction

using the two-norm

This algorithm solves the quadratic programming problem in Equation (48). In
order to accomplish this we use the software package LSSOL, version 1.0. This is
a set of Fortran subroutines for linearly constrained linear least-squares and convex
quadratic programming. LSSOL uses the two-phase, active-set type method. (Gill
et al, 1986). The reader is referred to the user’s guide for an in-depth discussion of
the program and parameters,

The LSSOL subroutine is included in a modified dssim.exe program. The pa-
rameter files for dssf2.eze for the Permeability and Potassium data sets are given
in Appendices A4 and B4 respectively. The LSSOL program states the quadratic

programming in the general form

Minimise
F(x)=cTx + %xTAx (77)
subject to
I< * <u (78)
Cx

where 1 and u are the lower (BL) and upper (BU) bounds respectively.

The program requires an initial estimate (X) of the solution be entered, The
LSSOL subroutine requires the following parameters to be input at execution time.
The only parameters that are continuously updated from location to location are
C, BL and BU. The subroutine returns the solution vector through an array and
a logical flag which indicates if an optimal solution was found. Before calling the
Ismain subroutine with the required inputs, we call the subroutine Isoptn to select

a programming problem of type QP2.
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Table 3.2. Parameters for LSSOIL.

Parameter Description and input

M Number of rows of matrix A = 40
N Number of variables = 40
NCLIN Number of general linear constraints = 3

NROWC Row dimension of C = 3
NROWA Row dimension of A = 40

1 1 .. 1
¢ () () - ()
() (ag8)" o (et
B, 00 0 v 01 a3 okt (he) |
BU (111 ... 01 Zhy a§x+(z§x)2]
X Tnitial cstimate = 5,05, , 007
(10 ... 0]
A 01 .- 0
(00 -+ 1|
c (o], 28, o)
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4 Performance Assessment

Multiple realisations generated by simulation algorithms p'rovide a measure of the
uncertainty about the spatial distribution of attribute estimates. This uncertainty
arises from our imperfect knowledge of the phenomenon under study. It is dependent
on both the data and the model specifying our prior decisions about the phenom-
enon (Goovaerts, 1997). There are several ways in which the spatial uncertainty
can be assessed. Qualitative assessment mcludes viéualisation of realisations and
various types of displays. Qué.ntitative assessment focusses on the reproduction of

key statistics such as the target histogram and semivariogram.

4.1 Qﬁalitative Assessment

For each simulation algorithm, we generate a set of L realisations. These sets can
be post-processed and the spatial uncertainty can be visualised through different

displays, including probability maps, quantile maps and conditional variance.

4,1.1 Probability Maps

At each simulated grid node uj, the probability of exceeding & given threshold z is
evaluated as the proportion of the I simulated values that exceed that threshold.

The map of such probabilities is referred to as a probability map.

4.1.2 Quantile Maps

The p-quantile of the distribution F (z) is the value z, such that
F(z))=Pr(X<g,)=p. (79)

Quantile maps display the p-quantile values corresponding to any given probability
p. In this study we will be comparing zg,;,the median x5 and zp9. Local differences

between realisations can be depicted th:oug_h the changes in the quantile maps.
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4.1.3 Conditional Variance

The conditional variance ¢ (u} measures the spread of the conditional probability

distribution around its mean 25 (u) :

)= [ =S () de )
In practice, this is approximated by the discrete sum
K+1
o® () = ) [2— 25 (w)] [F (w2 (n)) — F (0 241 (n))] (81)
k=1

where 2, k = 1,..., K, are the threshold values discretising the range of variation
of z-values, Z is the mean of the class (z;_,, 2], which depends on the within-class
interpolation model, and z}; (u} is the expected value of the conditional cumulative
distribution function approximated by the discrete sum

Al :
25 (a) ~ Z Z[F (u; 2 (n)) — F (u; 21 (n))]. (82)

k=1

The variance estimate in (81) depends on the K within-class means Z,. The
conditional variance o2 (u), conditional cumulative distribution function mean and
upper tail mean can be very sensitive to the choice of extrapolation model. Local
differences between realisations can he depicted through mapping a measure of the

spread of the distribution of I simulated values at each simulated grid node.

4.2 Quantitative Assessment

The quality of a realisation could be defined as its ability to match a priori knowl-
edge about the spatial distribution of the attributes values (Goovaerts, 2001). The
structural characteristics of a simulation, which include the histogram and the semi-
variogram, are evaluated from its values at the nodes of the discretisation grid, which
differ from the characteristics of the theoretical model or the sample data. (Chilés
& Delfiner, 1999).

The performance of the simulations can be checked both visually and quanti-

tatively by comparing the histogram and the semivariogram reproduction for each
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realisation. These allow us to calculate the fluctuation variance of the spatial mean
of the simulation and, in the Gaussian case, the spatial variance of the simulation
and of its variogram. This enables us to see if the deviations of these characteristics

from their theoretical values are acceptable.

4.2.1 Histogram Reproduction

‘Two quantitative measures used to compare the target histogram and the histogram
of the realisations is given by the mean absolute deviation (MAD) and the mean
squared deviation (MSD) between the target quantiles and the quantiles of the

realisation. If there are K classes the mean absolute deviation is given by

> lzi -3
i=1

HMAD = '—'—E“-—" (83)

and the mean squared deviation as

i (zi - z"w)2

Hysp = _L——T{_——— (84)

where z; and 2; denotes the ith quantile of the target distribution and the £ re-
alisation respectively, When the mean squared deviation is very large, the natural
way to reduce the magnitude of the measure is to take the square root. The mag-
nitude of the discrepancies between realisation and model statistics are referred to
as ergodic fluctuations and they depend on several factors, including the density of
the conditioning data, the semivariogram parameters and the size of the simulation
grid. |

Both measures of accuracy are used in comparing the histogram reproduction for
the simulation algorithms as the mean average deviation is comparative to DSSL1
and the mean squared difference is comparative to DSSL2. By considering both

measure we can eliminate Iany bias towards a particular algorithm.
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4.2,.2 Semivariogram Reproduction

To compare the semivariogram of the realisations with the theoretical model we
calculate the mean square deviation between the theoretical model and the exper-
imental semivariogram values. For an isotropic data set, this is done by using an
omnidirectional model and omnidirectional experirrental semivariogram for each re-
alisation and the mean squared dévia.tion is given by

Y- (7 (hs) — 4 (hy))"
M8D; == 7

(85)

where h; denotes the ith lé,g vector, L denotes the number of lags and 4 and #
denote the theoretical semivariogram and the experimental semivariogram of the
realisation respectively.

When the data set is anisotropic we sum the mean squéred deviation in the
directions of maximum and minimum continuity. This mean squared deviation is
given by |

55 (7 (55) e — 7 () + 55 (7 () min = () P

MSDy== L‘=l -~ (86)

where ¥, and 4, are the experimental semivariograms in the directions of max-
imum and minimum continuity respectively. When the mean squared deviation is
very large, the natural way. to reduce the magnitude of the measure is to take the

square root.
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5 Application to the Isotropic Case.

The Permeability data set comes from Goovaerts (2001) and consists of of perme-
ability values in a 2-D section of a reservoir. The 10404 data measurements are
located on a 102 x 102 regular grid which has a grid spacing of 1.0 unit. The sam-
ple set Permb0 also comes from Goovaerts (2001} and consists of fifty permeability
values randomly drawn from Perme&bz'lity. .

5.1 Exploratory Data Analysis

Descriptive statistics for the permeability variable from Permeability and Perm50¢
are listed in Table 5.1.

| Table 5.1. Descriptive statistics for the Permeability and Perm50 data sets.

Permeability Perm&0

n 10404 50
Mean 582.95 592.53
Std Deviation 502.5 481.653
Variance 252502 231989
Skewness 1.265 1.184
Kurtosis 1.370 1.417
Minimum 1.03 447
1st quartile 194.21 194.28
Median 480.69 576.30
3rd quartile 869.17 853.42
Maximum 2498.87 2081.85
IQR 674.96 659.14
Range 2497.84 2077.38

The data sets have similar means and standard deviations, but there is a notice-
able difference in minimuim, median and maximum values. The sample data have a

higher minimum and median and a lower maximum than the exhaustive data. The
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positive skewness evident in the histograms, and seen in Figure 5.1, is confirmed by
the summary statistics, but overall the sample data appear to reflect the summary

statistics of the exhaustive data. Neither set is normally distributed.

B Permeability _— Perms
0.2 0.2
L -
2 015 g o015
7 W
= =
-2 -2
g o & o
0.05 0.05
1] o
0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400
Fermeability Permeability

Figure 5.1. Histograms for Permeability (left) and Perm50 (right).

There are several extreme values in the data sets. The maximum Permeability
and Permb0 values are approximately equal to four times the mean. These extreme
values will influence the simple kriging means. These values are sometimes deleted
from a sample data sel or adjusted to reduce their influence, but since they origmated
from an exhaustive data set, they must be incorporated into the analysis in this case.

The cumulative frequency distributions and the Q-Q) plot comparing the exhaus-

tive and sample permeability data sets are shown in Figure 5.2.

Q-0 Plot Cumulative Frequency Distribution
2500 - . » e et —
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i & 3 —+— Permeabiity —a— PermS0
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AT 1IN 2000 — 2 o 500 1000 1500 2000 2500
Permeability Permeability

Figure 5.2 Q-Q plot (left) and cumulative frequency distribution (right).

We notice the cumulative {requency curves are almost identical to begin with

and then there are some deviations in their shapes. The sample does not contain
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the extreme high values present in the exhaustive data set, but the fit is reasonably
good considering the sample size is relatively small.

The forty permeability thresholds are used to define the global probability distri-
bution in DSSL1 and DSSL2 are given in Appendix A5. These values are bounded
by a minimum value of 1 and a maximum value of 2500. For each simulation we will
consider the conditional cumulative frequency function at two locations uy (46, 94)
and 1,(88,52) whose exact values are known to be 421.02 and 26.11 respectively.
Location u, is situated in a sparsely sampled region of above average values and
location us is situated in close proximity to three low values.

Figure 5.3 shows plots of the permeability values for Permeability and Permb0.
The sample data are randomly located within the study region. The Permb0 data
are sparsely situated in the southern and north-eastern regions and do not capture

the spread of high values evident in the exhaustive Permeability data.

~ PERM 50
0.0 ‘,J
420 000
= 120 0D
= o0 aon
B 250 000 o
= 430 000 =
00 000 ' 2 W
780000 .
80 000 Kl
1340000
2000.000 a ™
2500.000 B

o0
120000
B 90 000

51
]
Ed

2000.000
2500.000

)
]

Figure 5.3. Plots of permeability values for Permeability (left) and Perm&0 (right).

5.2 Variography

The direct simulation algorithms we investigate all make use of simple kriging, and
for this to be applied we must first calculate an experimental semivariogram and fit
an appropriate model. The direct sequential simulation algorithms do not require
the data to be transformed, but in order to apply sequential Gaussian simulation

the Perm50 data must first be transformed to obtain standard normal scores. The
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variogram surfaces from Permb(0 and the Perm50 Normal Scores data sets were
created using 4 lags with a lag spacing of 10 and are shown in Figure 5.4. There
appears to be no strong evidence of anisotropy evident in either data set, so an

isotropic model was fitted in both instances.

o Perm50 Variogram Surface o Perm50 Normal Scores Variogram Surface
= T =1 0.0 T = ‘ 0.0
“ 50000.000 ‘ 0.250
1.000=2+05 0.500
- 1.5002+05 0.750
2.000=+05 1.000
2.500e+05 i.250
= o 3.000e+05 ||O 1.500
3.500a+05 1.750
4.000g+05 2.000
4.500+05
o o
o &
-40 0 40 -40 o 40

Figure 5.4. Variogram surface for Perm50 and Perm50 Normal Scores.

The omnidirectional experimental semivariogram for Perm&( was calculated us-
ing 12 lags at a lag spacing of 5.5. The fitted model and its parameters are shown
in Figure 5.5 and Table 5.2 respectively. The model consists of a nugget effect and
two spherical structures. The contribution of the nugget is approximately 19% of
the total sill and the two spherical structures have ranges of 10 and 50 respectively.

Omnidirectional

Figure 5.5. Omnidirectional experimental semivariogram model for Perms0.
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Table 5.2, Omnidirectional semivariogram model for PermS0.

1st Structure 2nd Structure 3rd Structure

Type Nugget Spherical Spherical
Range - 10.0 50.0
-8l 43680 63000 124000

The omnidirectional experimental semivariogram for the Perm50¢ Normal Scores
was calculated using 8§ lags at a lag spacing of 10 and its parameters are given in
Table 5.3. The model is shown in Figure 5.6 and it consisls of & nugget contributing
14% of the total sill and one spherical structure with a range of 24,

pLiLY Omnidirectional

Figure 5.6. Omndirectional semivariogram model for Perm5@ Nermal Scores.

Table 5.3. Omnidirectional semivarigram model for Perm50 Normal Scores.

1st Structure 2nd Structure _

Type Nugget Spherical
Range - 24.0
Sill 0.14 0.86
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5.3 Simulation

The Permeability data set is positively skewed, so when using SGSIM, the lower tail
is extrapolatéd using a negatively skewed power model with w = 2.5 and for the
upper tail a hyperbolic model with «w = 2.0. The cumulative frequenccy distribution
for Permeability, shown in Figure 5.2, has a relatively long tail, and we do not
want to understate the probability of occurrence of very large values. The minimum
value for the permeability values is set to 1. The DSSIM é.lgorithm does not have a
maximum value set but the other algorithms have their maximum value set to 2500.
The positive skewness visible in the Permegbility data set suggests considering a
lognormal local conditional distribution, by transforming the mean and variance of
the data using Equations (35)-(36).

To reduce computational effort, the conditioning data is located within a neigh-
bourhood of the location being simulated. At least four and at most twenty origi-
nal data values, ar1 up to twelve simulated values are used in each simulation. A
multiple-grid concep® is used, whereby a coarse grid is simulated first and then used
to condition a second, finer grid simulation. The grid refinement is performed three
times and this results in better reproduction of the long range variogram structure.

The random number generator draws independent seed values uniformly distrib-
uted in [0,1]. Each realisation is identified by its random number seed, and this
number remains the same for each simulation algorithm. This means, for example,
that realisation #1 using SGSIM was generated using the same random path as
realisation #1 using DSSIM. For each algorithm we generate 100 realisations.

In Figure 5.7 and Figure 5.8 we compare the mosaic maps for the realisations with
the minimum, median and maximum mean absolute deviation and mean squared
deviation from the Permeability data set respectively. The realisations with the
maximum deviations are the same for both accuracy measures for all simulation
algorithms except DSSL1. The realisations with the minimum deviations are the
same for both accuracy measures when using DSSIM and DSSL2. There does not
appear to be any significant differences between the corresponding realisations of
the different measures.

The SGSIM and DSSIM algorithms appear to overestimate the values in most

48



S 3G3|M {MlNFMUM #37) HAD ] SGSIM (MEDEAN 64) MSD SGSlM (MAXlMUM HW) MAD
b= = 0o 0.0
120.000 120.000
190.000 180,000
200.000 200.000
280.000 2680.000
480,000 480,000
s00.000 800,000
- 780.000 780.000
L 890.000 880.000
I 1240.000 1340.000
2000.000 2000.000
2500.000 2500.000
“ E - ' 3 =
o] 5 102 0 51 102
0o
120 000
190.000
200.000
200.000
480.000
B800.000
780.000
880.000
1340.000
2000.000
2500.000

102

Figure 5.7. Post plots for realisations with minimum, median and maximum mean absolute

deviation.
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Figure 5.8. Post plots for realisations with minimum, median and maximum mean squared

deviation.
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regions and the spatial features are not reproduced very well. The maps show that
the high regions seen in the Permeability map have not been reproduced. The algo-
rithms have attempted to replicate the region of higher values in the southeast corner
and the region of low values near the central eastern border. The DSSL1 and DSSL.2
algorithms reproduce the spatial features well and indicate that there are high values
in the southwest and northeast corners but they tend to underestimate the low:r
values. Thev also indicate the presence of high values in the southeastern corner
and low values near the central eastern border, There is far better reproduction of
the low vaiues within the western half using the DSSL1 and DSSL2 algorithms than
with SGSIM and DSSIM.

The region of very high values seen the the southwest corner in the Permeabil-
ity map has not been reproduced by any of the simulation algorithms but this is
understandable since the this area was not sampled from. The realisations relating
to DSSL1 and DSSL:2 appear more disjointed and scattered than the SGSIM and
DSSIM realisations, The DSSIM realisation appear to be smoother than the others,

and there seems to be a lot of locations with values closer to the mean.

5.4 Histogram Reproduction

The histograms for the realisations with the best, worst and median reproduction
are shown in Figure 5.9. The SGSIM realisations match closely to the Perm&0
distribution, but they do not reproduce the Permeability distribution. The DSSIM
realisations are influenced by the local conditional distribution used in the simulation
process, and this lognormal distribution is clearly evident in the graphs. As the mean
absolute deviation increases there is a noticeable change in the shape of the DSSIM
distributions. The distribution of the realisation with the maximum deviation
appears to be almost normally distributed. The distributions for DSSL1 and DSSL2
are very similar and both reproduce the Permeebility distribution very well. The
large spikes of low values are due to the random deviate being set equal to the simple
kriging mean when the algorithms fail to find a solution, This problem occurs when
the simple kriging mean is less than the midpoint for the first global probability

threshold. The spike increases in size as the mean absolute deviation increases.
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Figure 5.10. Histograms for minimum, median and maximum mean squared deviation.
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Figure 5.10 compares the probability distribution functions for the realisations
with the minimum, median and maximum mean squared deviation, The SGSIM
realisations again match closely to the Perm5@ distribution and they do not match
the Permeability distribution. The DSSIM realisations are influenced by the local
conditional lognormal distribution with relatively smooth distributions. The DSSL1
and DSSL2 distributions are véry similar and the low value spikes are noticeable.
The reproduction of the Permeability distribution is evident. |

For the SGSIM algorithm realisation #100 has the worst match with the global
distribution for both. The choice of measure does not have s significant effect on
the SGSIM distributions. The DSSIM distributions are noticeably different for the
realisations with both minimum and maximum deviations. There does not appear
to be a significant difference in the DSSL1 and DSSL2 realisations between the |
different measures of accuracy. The spike of low values appears to be slightly lower
for the DSSL1 realisations using the mean squared deviation rather than the mean
absolute deviation.

From Table 5.4 we see that for the realisations with the minimum mean absolute
deviation, the DSSL2 algorithm appears to perform better, but when we look at
those with the median and maximum mean absolute deviation, the DSSIM algorithm

provides a better fit to the Permeability data set.

Table 5.4. Mean absolute deviation between realisation and target distribution.

Histogram MAD  SGSIM DSSIM DSSL1 DSSL2

Rank # MAD +# MAD # MAD +# MAD
Minimura 37 5347 60 4151 4 49.79 39 33.70
Median 17 8728 31 7579 13 96.93 99 8R.05

Maxirnum 100 17000 34 15891 57 183.10 30 207.51

A similar result is seen in Table 5.5 when comparing the realisations using the
mean squared deviation. The difference between the two deviation methods is seen
in the realisations with the median deviations. For the mean absolute deviation we

find DSSIM <SGSIM<DSSL2<DSSL1 but for the mean squared deviation the order
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has changed to DSSIM<DSSL2<DSSL1<SGSIM. The DSSL1 performs better than
the DSSL2 algorithm for the realisations with the minimum and median deviations.

Table 5.5. Mean sqared deviation between realisation and target distribution.

Histogram MSD  SGSIM  DSSIM  DSSL1  DSSL2
Rank # MSD # MSD # MSD # MSD
‘Minimum 45 70.03 60 5226 23 67.53 30 45.17
Median 64 12846 44 99.; 92 124.04 13 106.30
Maximﬁm 100 203.48 34 176.81 65 213.60 30 234.65

Table 5.6 and Table 5.7 compare the realisations with the minimum mean ab-

solute deviation and the mean squared deviation respectively. For DSSL1 and

DSSL2, the median values are higher and the lower quartiles are less than the target

values. The upper quartile for SGSIM with both accuracy measures is significantly

lower than the upper quartile for Permeability.

Table §5.6. Comparison of realisations with minimum mean absclute deviation.

Minimum MAD SGSIM DSSIM DSSL1 DSSL2 Permeability Perm&0
Mean 556.24 588.19 542,52 570.63  582.95 502.53
Std Deviation 52047 50078 495.70  517.48 502.5 481.65
Skewness 1.45 1.06 1.05 1.23 1.26 1.18
Minimum 18 100 100  1.00 1.03 4.47
lst quartile  192.80 187.27 127.51 17497  194.21 194.28
Median 46976 47676 49690 50356  480.69 576.30
3rd quartile 79400 867.67 866.35 87032  869.17 853.42
Maximum 2500 3559.20 2498.92 2407.78  2498.87 208185

No restriction was placed on the maximum value for the DSSIM algorithm and
this value is very high. The SGSIM has a higher standard deviation than Perme-

ability when using the mean absolute deviation, but when using the mean squared

deviation the standard deviation is less. Compared to Permeability, both DSSIM

and DSSL2 have a lower degree of skewness for both accuracy measures.
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Table 5.7. Comparison of realisations with minimum mean squared deviation,

Minimum MSD SGSIM DSSIM DSSL1 DSSL2 Permeqbility Perm50
Mean 557.00 588.19 553.67 57063 582,95 592.53
Std Deviation 44691 500.73  492.13  517.48 502.5 481.65
Skewness 135 106 . 100  1.23 1.26 1.18
Minimum 200 100 101 100 1.03 447
1st quartile  194.31 187.27 137.06  174.97 194.21 194.28
Median 56202 476.76 525.43 503.56 480.69 576.30
3rd quartile 78501 867.67 870.81 87032 869.17 853.42
Maximum 2500 3550.20 2490.82 2497.78 249887 208185

There are quite a few differences between the realisations with the median mean
absolute deviations and median mean squared deviation, seen in Table 5.8 and Table

5.9, The most significant difference is with the lower quartile values where DSSL1 is

markedly less than Permeability when we use the mean absolute deviation. Although

not quite as low, the lower quartile value for DSSL2 is also significantly less than

for Permeability with both accuracy measures.

Table 5.8. Comparison of realisations with median mean absolute deviation,

Median MAD  SGSIM DSSIM DSSIL1  DSSL2 Permeability Permb0
Mean 614.81 60016 483.55 497.22 582.95 592.53
Std Deviation 479.32 433.22 473.22 487.96 502.5 481.65
Skewness 1.37 0.80 1.21 1.36 1.26 1.18
Minimum 2.61 1.00 1.03 1.02 1.03 447
lst quartile 108.19 26966 5751 10131 194.21 194,28
Median 58564  541.06 324,51  327.25 480.69 876.30
3rd quartile 841.35 865.26 763.03 819.11 869.17 853.42
Maximum 2500 332774 249520 2499.37 | 2498.87 2081.85

The median values are also lower for DSSL1 and DSSL2 when using the mean

absolute deviation, and DSSL2 is also lower when using the mean squared deviation.

The SGSIM values are significantly higher than those for Permeability for both
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measures, The DSSIM realisations are not as skewed as the farget distribution

of the other realiastions generated by the other algorithms, Again we notice the
DSSIM realisations have very high maximum values. All realisations, except for

SGSIM when using the mean squared deviation, have a lower standard deviation

than Permeability.

Table 5.9. Comparison of realisations with median mean squared deviation.

Median MSD  SGSIM DSSIM DSSL1 DSSL2  Permesbility Perm50
Mean 635.24 55776  528.53  403.81 582.95 592.53
Std Deviation 517.80 401.38 47432 491.53 502.5 481.65
Skewness 1.28 0.87 111 1.36 1.26 1.18
Minimum 2.05 1.00 1.00 1.03 1.03 4.47
1st quartile. 195.11 24096 156.44 104,22 194.21 194.28
Median 503.64 496.35 49293 28360 480.69 576.30
3rd quartile 865.27 79596 B846.61 807.29 869.17 ' 853 42
Maximum 2500 298807 2494.21 2499.09 2498.87 2081.85

The summary statistics for the realisations with the maximun mean absolute

deviation and maximum mean squared deviation are given in Table 5.10 and Table

5.11 respectively.

Table 5.10. Comparison of realisations with maxiraum mean absolute deviation,

Mazimum MAD SGSIM  DSSIM

DSSL1 DSSL2 Permeability Perm50

Mean

Std Deviation
Skewness
Minimum

1st quartile
Median

3rd quartile

Maximum

711.36

449.30

0.96
L.65
369.75
724.26
874.07
2500

709.97
425.24
0.64
1.00
382.90
668.65
983.12
3136.33

398.18  375.20
498,36  415.05

1.52 1.68
S1.01 1.0t
37.156 49.21

203.55 196.17
643.50  607.66
2498.34 2494.34

582.95
502.5
1.26
1.03
184.21
480.69
869.17
249¢.87

592,53
481.65
1.18
4.47
194.28
576.30
583.42
2081.85
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Table 5.11. Comparison of realisations with maximum mean squared deviation,

Mazimum MSD SGSIM DSSIM DSSL1  DSSL2  Permeability Perm50

Mean 71136 700.97 47270 37529 58205 502.53
Std Deviation  449.30  425.24 45440  415.05 502.5 481.65
Skewness 0.96 064 125  1.68 126 118
Minimum 165 100 100  1.01 1.03 47
1st quartile 36075 382.90 6450 4921 10421 = 19498
Median 794,96 668.65 33472 19617  480.69 576.30
3rd quartile 87407 98312 737.05 607.66  869.17 583.42
Maximum 2500 3136.33 249516 2494.34  2498.87  2081.85

The SGSIM and DSSIM realisations have much greater means than the target
distribution, whereas those from DSSL1 and DSSL2 have significantly lower means.
This also appears to be the case with the lower quartile values, medians and upper
quartile values. The SGSIM, DSSIM and DSS1.2 algorithms have the same realisa-
tion with maximum mean absolute deviation as maximum mean squared deviation.
The SGSIM and DSSIM realisations are not as skewed as the Permeability data set.

The cumulative distributions for the mean absolute deviation and the mean
squared deviation are shown in Figure 5.11 and they indicate that DSSL1 and DSSL2
better represent the cumulative distribution function of the target distribution. The
deviation in the lower half of the SGSIM and DSSIM distributions is significant,
although the SGSIM realisation with the minimum deviation has a very good fit
to the target distribution. There is very little difference between the two accuracy
measures for DSSL2., The target cumulative distribution function for DSSL1 is well
reproduced for the lower values when the mean absolute deviation is compared.
The greatest deviation for DSSL1 and DSSL2 for the realisations with the smaller
deviations, is seen in the upper quartile region. |

Looking at the cumulative di_stributions for both the mean absolute deviation
and the mean sqared deviation, and taking mto account the difference bei,ween the
best and worst fitted realisations, the DSSL1 algorithm appears to result in the best

histogram reproduction.
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Figure 5.11. Cumulative distribution functions for minimum, median and maximum mean
absolute deviation (left) and mean squared deviation (right).
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5.5 Variogram Reproduction

The omnidirectional experimental semivariograms are displayed together with the
semivariogram model in Figure 5.12 (left). The program used to calculate the ex-
perimeéntal semivariograms did not start at lag 0, as the semivariogram model does,
and this accounts for the difference in the graphs. The fan shape they produce
indicates that there is a wide range in sill values. As expected the SGSIM semivari-
ogram model is very well reproduced, but this is calculated using the normal scores.
SGSIM appears to have a good short range coincidence of model and experimental
semivariograms. The majority of experimental semivariograms however understate
the variability compared to the target, although the range of the target appears
to be approxima.tely reproduced. The DSSIM model has a higher sill than all but
a few of the omnidirectional experimental semivariograms calculated and there are
a couple of experimental semivariograms that have very large deviations from the
semivariogram model which results in a widé-spread overall. The short range fit is
relatively good, although there is a tendency to understate it.

We notice with the DSSL1 model that approximately seventy percent of the
omnidirectional semivariograms understate the sill. The short range variability is
overstated with most graphs of experimental semivariograms above the model. The
DSSL1 model also has the smaller spread of sill values when compared to DSSIM
and DSSL2, The DSSL? algorithm appears to have an overall greater variability.
The short range behaviour is very similar to DSSL1. Approximately half the exper-
imental semivariograms overstsate the long range variability.

In Figure 5.12 (right) we compare the experimental semivariograms with the
minimum, median and maximum deviations from the target model. These graphs
show the shape of the experimental semivariograms more clearly. Comparing the ex-
perimental senﬁvériograms with the minimum deviation, we notice that the SGSIM
model is reproduced the best, followed by the DSSL1 and DSSL2 models. The
DSSIM algorithm has a larger spread in sill values between the omnidirectional
experimental semivariograms with the minimum and maximum deviations.

Table 5.12 confirms that overall the DSSL1 and DSSL2 methods are both better
than SGSIM and DSSIM in reproducing the target semivariogram model, with the
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Figure 5.12. Omnidirectional experimental semivariograms for 100 realisations (left) and
with minimum, median and maximum mean squared deviation (right).
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DSSL1 algorithm fitting better than 1DSSL2, since it is more central to the fan of

omnidirectional experimental semivariograms.

Table 5.12. Comparison of mean squared deviation for experimental semivariograms.

Semivariogram  SGSIM DSSIM DSSL1 DSSL2

Rank # MSD # MSD # MSD # MSD
Minimum 32 001 72 37888 75 89652 907 0288.8
Median - 53 0.09 59 256864 25 0413.0 61 22097.5

Maximum 55 0.25 62 1059158 20 62951.3 4 71623.6

5.6 Spatial Uncertainty

The quantile plots in Figure 5.13 display the uncertainty in the simulated values.
The DSSIL1, DSSL2 and to a lesser extent DSSIM, have dark blue sections near the
central eastern border in the 0.9-quantile maps. These areas indicate that there is
a high degree of certainty in the simulated values being low values. The DSSIM
algorithm does not indicate this area.

When comparing the 0.1-quantile and 0.9-quantile maps, the simulated values
generated using the DSSIM algorithm have a lower degree of uncertainty, as they
have the greatest difference in values. The highest degree of uncertainty appears
to arise when the SGSIM algorithm is used. The results for DSSI.I and DSSL2
algorithms arc very similar to each other.

Two grid nodes were selecied from regions displaying different spatial uncertainty
to compare the parametric and non-parametric algorithms. The true permeability
values at locations u; = (88, 52) and uy = (46,94} are 26.11 and 421.02 respectively
and these are represented by the dashed lines in Figure 5.14.
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Figure 5.14. Local conditional cumulative distributions.

At location uy there is a greater difference between the uncertainty models than
at location uy. The SGSIM model is controlled by the kriging variance which is
related to the distance the location is from neighbouring sample data, and this has
a greater spread at location 11y than location u; which is close to sample data. The
DSSIM model has a large spread of values at both locations.

The conditional variance for each algorithm is displayed through mosaic maps
m Figure 5.15.

r
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Figure 5.15. Comparison of conditional variance for the algorithms.
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The conditional variance is very low for the DSSIM algorithm compared to the
other algorithms. The DSSL1 and DSSL2 are very similar, although there are some
regions for which the DSSL2 algorithm results in a greater variation in values. The
SGSIM algorithm has the highest variatior in simulated values. These regions are

located in areas of higher values and where the data were sparsely sampled.

5.7 Summary for Permeability

Comparing the histogram and semivariogram reproduction for the four algorithms,
we find that, as expected, SGSIM reproduces the variogram for the normal score
data and the histogram of the sample data set. DSSIM reproduced the local log-
normal distribution used in the algorithm, but the semivariogram model was only
reproduced well over a short range. The DSSL1 and DSSL2 both reproduced the
target distribution but the DSSL1 algorithm reproduced the semivariogram model
better than all the other algorithms, so it would appear to be the better algorithm

for this isotropic case,
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6 Application to the Anisotropic Case

The Potassiurn data set is a two-dimensional simulated exhaustive data set based
on soil samples taken originally from s;n uncropped field in the Jimperding Brook
catchment region in the south-west of Western Australia (Bloom & Kentwell, 1999).
The data comprise potassium concentrations in parts per million {ppm). The 3600
data measurements are located on a 60 x 60 regular grid which has a grid spacing
of one metre. Data at one hundred locations were drawn at random and form the

sample data set K100.

6.1 Exploratory Data Analysis

Descriptive statistics for the potassium variable from Potassium and K100 are listed
in Table 6.1.

Table 6.1. Descriptive statistics for Potessium and K100 data sets.

Potagsium K100

n 3600 100
Mean 87.097  89.447
Std Deviation  34.703 34.416
Variance 1204.31  1184.46
Skewness 1.035 0.603
Kurtosis 1.962 0.08
Minimum 23.872 34.6
1st quartile 59.941 63.875
Medien 82.470 86.85
3rd quartile 106.867 110.575
Maximum 331.978 189.0

The data sets have similar descriptive statistics, although there is a noticeable
difference in the maximum values. The sample has a significantly lower maximum
value than the exhaustive set. The positive skewness evident in the exhaustive data

histogram (Figure 6.1) is confirmed by the summary statistics. We notice the sample
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data set. Overall, the sample data appear to reflect the summary statistics of the

exhaustive data.
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Figure 6.1. Histograms for Potassium (left) and K100 (right).

There are several extreme values in the data sets. The maximum Potassium and
K100 values are approximately four times and twice the mean respectively. These
extreme values will inflate estimated values in their neighbourhood. The Q-Q) plot
and cumulative distribution functions of the Potassium and the K100 data sets are

shown in Figure 6.2.
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Figure 6.2. Q-Q plot (left) and cumulative frequency function (right) for Potassium and
K100.

Comparing the distributions we notice that the K100 data are representative of

the Potassium data. The Q-Q plot reveals the effectiveness of the sampling. The
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two distributions are almost identical as they follow the dashed line fairly closely,
the only significant exception being a single extreme value.

The forty permeability thresholds used to define the global probability distribu-
tion in DSSL1 and DSSL2 are given in Appendix B5. These values are bounded by a
minimum value of 20 and a maximum value of 360. For each simulation we will con-
sider the conditional cumulative frequency function at two locations u, (28.5,44.5)
and 1,(28.5, 22.5) whose exact values are known to be 57.975 and 202.381 respec-
tively. Location u; 1s in an area of low values and location u, is situated near high
values. Figure 6.3 shows mosaic plots of the potassium values for Potassium and
K100. The sample data appear to have a good coverage of the study region. The
K100 data set seems to capture the spread of high and low values evident in the

Potassium data set.
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Figure 6.3. Plots of potassium values for Potassium (left) and K100 (right).

6.2 Variography

An experimental semivariogram was calculated and an appropriate model fitted so
simple kriging could be used in the direct simulation algorithms. The direct se-
quential simulation algorithms do not require any data transformation, but in order
to apply sequential Gaussian simulation, the K100 data must first be transformed

to obtain standard normal scores. The variogram surfaces of the K100 and K100
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Normal Score data sets were created using 7 lags with a lag spacing of 3.0 and these

are shown in Figure 6.4.
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Figure 6.4. Variogram surface for K100 and K100 Normal Scores.

The data sets both appear to exhibit anisotropy, with greater continuity in the

N65W direction, and minimum continuity in the N25E direction. The experimental

bl it o

semivariograms for both data sets were calculated using 10 lags with a lag spacing

| adi

of 3. A geometric anisotropic model was fitted to the experimental semivariograms

Ul

of the K100 and K100 normal scores. In both cases, it consists of a nugget eflect

and one spherical structure.

For K100, the nugget has a relative nugget effect of approximately 7% and the

Jresi

spherical structure has a range of 22 and anisotropy factor of 0.76. The anisotropic

model is shown in Figure 6.5 with the experimental semivariograms and the parame-

er"r'

ters are given in Table 6.2. The model is fitted using the program Variowin and the
direction is given in degrees anticlockwise from East, so direction 65 and direction

155 relate to N25E and N65W respectively.

kb |

‘el

Table 6.2. Geometric anisotropic model for K100.

1st Structure 2nd Structure

Type Nugget Spherical
Range - 22.0
Sill 84.0 1104
Anisotropic ratio - 0.76
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Figure 6.5. Geometric anisotropic model fitted to experimental semivariogram for K100,

For X100, the nugget has a relative nugget effect of approximately 8% and the
spherical structure has a range of 25.0 and anisotropy factor of 0.64. The anisotropic
model is fitted to the experifnental semivariogram in Figure 6.6, and the parameters

are given in Table 6.3.
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Figure 6.6. Geometric anisotropic model fitted to experimental semivariogram for K100

Normal Scores.
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Table 6.3. Geometric anisotropic model for K100 Normal Scores.

1st Structure 2nd Structure

Type . Nugget Spherical
Range : - 25.0
Sill 0.08 0.92
Anisotropic ratio - 0.64

6.3 Simulation

The parameter files for the simulation algorithms are listed in Appendix B. The
simulated. values are located on a regular grid of size 60 x 60 and they all work
with a limited data search neighbourhood of 40.0 units. A minimum of four and
a maximum of twenty original sample data, and a maximum of twelve simulated
values are used in each simulation. For SGSIM, the cumulative distribution func-
tion (Figure 6.2) indicates extrapolating the lower tail to the minimum value of 20,
using a linear model and the upper tail using a hyperbolic model with w = 1.5. One
hundred realisations were generated for each algorithm, and then ranked in increas-
ing order according to both their mean absolute deviation (MAD) and their mean
squared deviation (MSD) from the exhaustive Potassium data set. The minimum
and maximum values, zmin and zmaoz, for the potassium values are set to 20 and
360 respectively for SGSIM, DSSL1 and DSSL2.

The positive skewness visible in the Polussium data set suggests considering a
lognormal local conditional distribution, by transforming the mean and variance of
the data using equations (35)-(36). To reduce computational effort, the conditioning
data is located within a neighbourhood of the location being simulated. At least
four and at most twenty original data values, and up to twelve simulated values are
used in each simulation. A multiple-grid concept is used, whereby a coarse grid is
simulated first and then used to condition a second, finer grid simulation. The grid
refinement is performed three times and this results in better reproduction of the

long range variogram structure.
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The random number generator draws independent seed values uniformly distrib-
uted in [0,1]. Bach realisation is identified by its random nuraber se:ed, and this
number remains the same for each simulation algorithm. This means, for example,
that realisation #1 using SGSIM was generated using the same random path as
realisation #1 using DSSIM.

6.4 Histogram Reproduction

In Table 6.4 and Table 6.5 we compare the mean absolute deviation and mean
squared deviation values for the realisations with the minhmum, median and maxi-
mum deviations, and from these it appears SGSIM has the closest fit to the Potas-
sium data set, with DSSIM actually giving a better fit for the realisations with the
maximum deviations. The DSSL2 algorithm has a better fit than DSSL1 except for

the maximum mean squared deviation.

Table 6.4, Comparison of the mean absolute deviations.

Histogram MAD  SGSIM DSSIM DS8L1 DSSL2

Rank 4 MAD # MAD # MAD # MAD
Minimum 2 206 73 260 69 511 52 418
Median 7 428 20 528 90 910 5 8.53

Maximum 93 964 69 878 05 1340 95 13.23

Table 6.5, Comparison of the mean squared deviations.

Histogram MSD SGSIM  DSSIM  DSSLI DSSL2

Rank # MSD # MSD # MSD # MSD
Minimum 53 260 29 335 36 720 93 577
Median 5 512 17 579 64 1113 20 1047

Maximum 93 11,58 69 958 72 1474 33 16.01

Figure 6.7 and Figure 6.8 compare the realisations ranked according to mean
absolute deviation and mean squared deviation respectively. We notice immediately
when viewing the posiplots that the SGSTM and DSSIM realisations appear very
similar, as do DSSL1 and DSSL2.
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Figure 7.7. Post plots for realisations with minimum, median and maximum mean absolute

deviation.
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deviation.
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There is a noticeable difference between these two distinct groups. The DSSL1
and DSSL2 realisations have a similar coverage of low values, but the values are
within the lowest interval scale. The SGSIM and DSSIM realisations appear to have
a rather large spread of high values that are well connected to each other. The high
values from DSSL1 and DSSL2 are more disjointed and scattered in appearance.

Neither SGSIM nor DSSIM really capture the low values in the NE corner, but
this is not surprising since the sampling is very sparse in this region. The DSSL1 and
DSSL2 realisations capture these low values best when the deviation is a maximum.
DSSL1 and DSSL2 underestimates the low values. All four algorithms seem to
recognise that there is a small area of higher values within the region of low values
near the NE corner. The high values near the centre of the region are captured
by all the algorithms, although it appears to be more evident in the SGSIM and
DSSIM post plots. [t appears that SGSIM and DSSIM may overestimate the high
values and DSSL1 and DSSL2 both underestimate the high valued regions. The
anisotropy is visually evident from the mosaic maps.

The different measures of accuracy do not appear to differentiate between the
SGSIM and DSSIM algorithms. Both the mean absolute deviation and the mean
squared deviation result in realisation #93 having the maximum deviation for SGSIM.
Similarly realisation #96 has the maximum deviation for the D.SSIM algorithm re-
gardless of the measure of accuracy. Using the mean absolute deviation we also
notice that the realisation #95 has the maximum deviation for both DSSL1 and
DSSL2.

The histogr.anw in Figure 6.9 and Figure 6.10 highlight the diﬂ‘ereﬁces in the
distributions of the realisations. There is very little difference between the two
accuracy measures for both SGSIM and DSSIM realisations. The DSSIM histograms
are reproducing the ocal conditional lognormal distribution that was used in the
simulation algorithm. Large spikes of low values are seen in the DSSL1 and DSSL2
distributions and this is due to the algorithms inability to find an optimal solution
and the random deviate was set equal to a low-valued simple kriging mean. This

appears to have a significant affect on the shape of the histograms.
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In Table 6.6 and Table 6.7 we compare the summary statistics for the minimum
deviation realisations for the four algorithms using both the mean absolute deviation

and the mean squared deviation.

Table 6.6. Comparison of realisations with mininmm mean absolute deviation.

Minimum MAD SGSIM DSSIM DSSL1 DSSL2 Polassium K100
Mean 87.32 86.08 84,21 8337 871 89.45
Std Deviation 3505 3449 4432 4543  34.7 34.42
Skewness 1.27 0.29 1.57 1.61 1.04 0.60
Minimum 20.80 20,00 20.23 2001 23.87 34.6
1st quartile 56.74  59.71  49.23 4946 59.%4 63.88
Median 8241 8445  83.12 8209 8247 86.85
3rd quartile 107.91 109.78 10728 106.89 106.87 110.58
Maximum 360.00 19497 359.42 353.69 331.98 186.0

Table 6.7. Comparison of realisations with minimum mean squared deviation.

Minimum MSD  SGSIM DSSIM DSSL1 DSSL2 Potassium K100
Mean 86.89 8656 8273 8L 87.1 89.45
5td Deviation  36.56 33.91 38.24 4213 34.7 34.42
Skewness 1.25 0.28 1.58 1.84 1.04 0.60
Minimum 25.05 20,00 20.23 20,02 23.87 34.6
1st cuartile 56.13 60.29 §5.93  55.13 59,94 63.88
Median 82.22 84.57 8230 8394 8247 86.85
Jdrd quartile 108.23 111.34 10264 104.70 106.87 110.58
Maximum 360.00 208.74 358.53 35311 331.98 189.0

All the algorithms have generated realisations with positively skewed distribu-
tions greater than the target distribution but the DSSIM algorithm has a very small
level of skewness. The average and median values are close to the Potassium mean
and median. The most significant difference is that the maximum value for DSSIM
is a Iot smaller than the maximum Potassium value, but it is vey close to the K100

value. The DSSL1 and DSSL2 algorithms have higher standard deviations than
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both the Potassium and K{00 data sets and the minimum and in particular, the
lower quartile for these two algorithms is distinctly lower.

In Table 6.8 and Table 6.9 we compare the realisations with the median mean
absolute deviation and the median mean squared deviation. All the algorithms have

less skewed distributions than the previous realisations with minimum deviations.

Table 6.8. Comparison of realisations with median mean absolute deviation.

Median MAD  SGSIM DSSIM DSSL1 DSSL2  Potassium K100

Mean 8869 B925 76,74 79.39 87.1 89.45
Std Deviation  31.21 3201 30.35 38.53 34.7 34.42
Skewness 0.36 0.09 0,00 1.40 1.04 0.60
Minimum 2918  20.00 2035  20.08 23.87 34.6
1st quartile 6545 6598  50.21 4509 59.94 63.88
Median 8836 8961 79.30 79.89 82.47 86.85

3rd quartile 108.86 11164 9954 100.86 106.87 110.58
Maximum 257.01 20363 189.02 352.00 331.98 189.0

Table 6.9. Comparison of realisations with median mean squared deviation.

Median MSD  SGSIM DSSIM DSSL1 DSSL2 Potassium K100

Mean 8875  87.76 7642 7179 87.1 89.45
Std Deviation 34.18  35.53 = 32.60  32.21 34.7 34.42
Skewness 0.41 0.13 0.10 0.78 1.04 0.60
Minimum 2964 20,00 20001  20.04 2387 34.6
1st quartile 56.77  59.21 4210 4920 59.94 63.88
Median 8812 87.34 7802 71979 8247 86.85

3rd quartile 11508 11494 102,76 100,02 106.87 110.58
Maximum 273.16  204.16 214,25 35874 331.98 189.0

DSSL2 is the only algorithm to reproduce the maximum value of the Potassium
data set. SGSIM overestimates the minimum and underestimates the maximum
values, although both DSSIM and DSSL1 underestimate the maximum value sub-
stantially. Both SGSIM and DSSIM have higher medians than Potassium, and
DSSL1 and DSSL2 have significantly lower median values.
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The realisations with the maximum deviations ‘are compared in Table 6.10 and
Table 6.11. The SGSIM and DSSIM mean and median values have increased and the
DSSL1 and DSSL2 mean and median values have decreased. The standard deviation
for SGSIM is higher than that for Pofassium. This is also a lot higher for DSSL2

when using the mean squared deviation.

Table 6.10. Comparison of realisations with maximum mean absolute deviation.

Mazimum MAD SGSIM DSSIM DSSL1 DSSL2 Potassium K100

Mean 9585  93.68 7263 7282 87.1 89.45
Std Deviation = 4274  36.13  30.39 2921 34.7 34.42
Skewness 1.39 0.10 0.17 0.19 1.04 0.60

Minimum 2102 20,00 2007 2014 23.87 34.6

Ist quartile 64.00 6642  40.56 44.15 59.94 63.88
Median 90390 9383 7477 7382 82.47 86.85
3rd quartile 12296 11995 96.81 95556 106.87 10.58
Maximum 360,00 19741 252,29 189.02 331.98 189.0

Table 6.11. Comparison of realisations with maximum mean squared deviation,

Mazimum MSD SGSIM DSSIM DSSL1 DSSL2 [Potessium K100

Mean 9585 93.68 7265 8856 87.1 89.45
Std Deviation 4274  36.13 3227 52.15 34.7 - 34,42
Skewness 1.39 0,10 . 008 1.69 1.04 0.60

Minimum 21,02 20,00 2013 2012 23.87 34.6

1st quartile 64.00 66.42 3815 47.16 59.94 63.88
Median 90.39 93.83 7639 83.10 B2.47 86.85
3rd quartile 12296 11995 9872 107.85 106,87 110.58
Maximum 360.00 19741 189.02 35884 331.98 189.0

In Figure 6.11 we compare the comulative frequency functions for the realisations
with minimum, median and maximum mecan absolute deviation and mean square
deviation.

The distributions appear very similar regardless of which accuracy measure is

applied. The spike of low values that result for DSSL1 and DSSL2 is again seen
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Figure 6.11. Cumulative distribution functions for realisations with minimum, median and
maximum mean absolute deviation (left) and mean squared deviation (right).
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in the deviation from the lower tail of the target distribution, but it is greater for
DSSL1 thtan DSSL2. The SGSIM and DSSIM algorithms both reproduce the target
distribution well near the lower tail. The DSSL1 and DSSL2 algorithms reproduce
the target distribution better near the median. | | |

6.5 Variogram Reproduction

Since an anisotropic semivariogram model is required, we calculated experimental
semivariograms for each realisation in both the N65W and the N25E directions, so
comparisons can be made with the target model. The experimental semivariograms
were calculated using gamv.eze from the GSLIB programs. The experimental semi-
variograms were calculated for 40 lags with an angular tolerance of 22.5° and a lag
distance of 1.0. The mean squared deviation was calculaled for each semivariogram
using the sum of the squared deviations in both directions as in Ecjuation (86), and
the square root was taken to make comparisons. The SGSIM algorithm was mod-
elled with the normal score data before it was back-transformed and this accounts
for the difference in magnitude seen in the graphs. The mean squared deviation is
calculated using the first fiftcen lags in both the direction of maximum continuity,
N65W, and the N25E direction as this enables us to compare the same realisations
in both directions. _

Table 6.12 displays the mean squared deviation for the experimental semivar-
iograms using both directions, and it appears that after SGSIM’s fit, the DSSIM

algorithm results in the closest experimental semivariograms.

Table 6.12. Comparison of mean squared deviations for Potassium - N65W,

Semivariogram  SGSIM  DSSIM DSSL1 DSS1.2

Rank # MSD # MSD # MSD # MSD
- Minimum 93 002 19 578 3 1076 88 Bod
Median 84 014 79 2097 23 3357 47 3799

Maximum 40 024 86 352.7 66 1221.6 40 14614

In Figure 6.12 we sec the experimental semivariograms for the 100 realisations.
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The program wused to calculate the experimental semivariograms did not start at
lag 0, as the semivariogramn model does, and this accounts for the diﬂ'e_rence in the
graphs. In the direction of maximum continuity, N65W, both SGSIM and DSSIM
have the majority of semivariograms below the model.

With DSSL1 and DSSL2 we find the majority of experimental semivariograms
~ above the model over a short range, but as the model reaches its sill, there are
approximately half below. There is a very large spread in the semivariograms for
DSSL1 and DSSL2 which is does not happen with DSSIM. In the minor direction,
N25E, we [ind more semivariograms fall below the model than above for all the
algorithms. Again there is a wide spread for the DSSL1 and DSSL2 algorithms.
This is not so wide for SGSIM and DSSIM. The algorithms appear to have a similar
nugget to the model.

In Figurc 6.13 we see that in the major direction, DSSIM is reproduced fairly
well for a small number of realisations but this is only over a short range and the
target sill is not reached.

SGSIM is very well reproduce for the realisation with minimum deviation, but
the median is well under the sill; so this reasonable reproduction is only for a small
number of semivariograms. DSSL1 and DSSL2 have a greater number of semivari-
ograms reproducing the target, but there is a large percentage that have very high
sills. In the minor direction SGSIM is reasonably well reproduced over a short range
for almost hall the experimental semivariograms, but they do not reproduce the
overall range and sill. DSSIM appears to be reasonably reproduced for about half
the semivariograms as the mmmmm and median deviations are fairly well repro-
duced. This also appears to be the case for DSSL1 and DSSL2 which have very
good reproduction with the minimum and median semivariograms, but the maxi-
mum has an extremely high sill. DSSL1 and DSSL2 appear to have better fits in

the minor direction than the major direction.

6.6 Spatial Uncertainty

The spatial uncertainty of a set of realisations is visualized in the decile maps of
Figure 6.14.
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Figure 6.14. Mosaic plots comparing the 0.1-decile, 0.5-decile and 0.9-decile.

86



The 0.1, 0.5 and 0.9 deciles are displayed for each algorithm. There appears
to be a greater spread in the region of low values for SGSIM and DSSIM. All the
algorithms have a similar distribution in the southwest. In the southeast ther are
more high values for SGSIM and DSSIM. The red areas in the 0.1-quantile plots
indicate that there is a high possiblity that the unknown permeability values in this
region are high, since these values are exceeded by ninety percent of the simulated
values. SGSIM and DSSIM have a similar uncertainty associated with there spatial
distributions as do DSSL1 and DSSL2.

Two grid nodes were selected from regions displaying different spatial uncertainty
to compare the parametric and non-parametric algorithms. The true potassium
values at locations u; = (28.5,44.5) and uy, = (28.5,22.5) are 57.975 and 202.381
respectively and these are represented by the dashed lines in Figure 6.15.
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Figure 6.15. Local conditional cumulative distributions.

At location u; the cumulative histograms for DSSL1 and DSSL2 are almost
identical, and very steep, indicating the value is likely to be less than 40. This
is considerably less than the true value of 57.975, but all the algorithms include
the true value in their range of potassium values. These differ markedly from the
SGSIM and DSSIM cumulative histograms. The DSSIM algorithm has the highest
probability of attaining the true value at this location.

At location u; the cumulative histograms are different for all algorithms, al-
though SGSIM and-DSSIM are almost identical for the lower fifty percent of values.
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SGSIM only has a very small probability of attaining the true potassium value, less
than five percent. The DSSIM algorithm does not include the true value of 202.381
in its range of potassium values. The greatest probability of the true potassium value
being attained, approximately twenty five percent, is with the DSSL2 algorithm.
The conditional variance for each algorithm is displayed through mosaic maps
in Figure 6.16. The DSSIM algorithm does not indicate any regions of significantly
high uncertainty. The SGSIM, DSSL1 and DSSL2 all indicate some areas where
the uncertainty is very high. This appears to be greatest in the band of high values
where sample data are sparsely located. The greatest uncertainty within the low
valued areas is in the NW corner, but none of the algorithms indicate this to be a

significant amount.

- SGSIM CONDFTIONAL VARIANCE DSSIM CONDITIONAL VARIANCE
- 0.0 o0
200.000 200 000
400 000 400 000
ol alinlyal fAra 00
|00 000 800 D00
1000 000 1000 000
1200.( 'JC.' 1200.000
1400 000 1400 000
1800, 000 1800, BO0
1800 00 1800 000
2000.000 2000.C00
0 230 &0
., DSSL1 CONDmONAL VARIANCE DSSLZ CONDITIONAL ' VARIANCE
' o0 ao
200 000 200.000
400 oo 4110 000
000 Q00 Bin) 000
800 OO SO0 OO0
1000 000 1000.000
1200.000 1200 000
1400 000 1 400, COD
1800 Dan 1800 000D
1EOD 000 1 BO0 DO
2000 000 2000 000

Figure 6.16. Comparison of conditional variance for the algorithms.
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6.7 Summary for Potassium

These results for Potassium have confirmed what we already knew about the SGSIM
algorithm. This algorithm has very good reproduction of the semivariogram model
when using normal score data and it reproduces the sample distribution since these
were the values used to produce the normal score data. The DSSIM algorithm did
not reﬁroduce the target semivariogram very well in either the direcﬁion of maxi-
mum continﬁity, N65W, or the minor direction, N25E. DSSIM reproduces the local
conditional distribution that was used, in this case a Gaussian distribution. With
the exception of the lower tail which is affected by the inability of the algorithm to
converge and find a feasible solution, the DSSL1 and DSSL? both reproduced the
global distribution very well. There is very little difference between the results of the
DSSL1 and DSSL2 algorithms. The DSSL1 and DSSL2 algorithms both had trou-
ble reproducing the model semivariogram for a large number of realisations. Both
algorithms have some very extreme semivariograms, but for those that do show a
reasonable reproduction, DSSL2 appears to have a larger proportion of experimental
semivariograms closer to the target. For this anisotropic model, the DSSL2 algo-
rithm would therefore appear to provide the best reproduction of both the histogram

and the semivariogram.
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7 Results and Conclusions

In this study we investigated four sequential simulation algorithms, namely se-
quential Gaussian simulation (SGSIM), the original direct sequential simulation
(DSSIM), and two direct sequential simulation with histogram reproduction algo-
rithms, one using the one-norm (DSSL1) and the other the two-norm (DSSL2). We
were interested to see how the algorithms with histogram reproduction compared to
each other and to the more traditional SGSIM and DSSIM algorithms. |

T_his stﬁdy used two data sets displaying different characteristics. The permeabil-
ity data display a strong.positive skewness and are from a 2-D section of a reservoir.
The potassium data exhibit a slight positive skewness and L'he._va.lues come from
soil samp'les. Both data sets comprise a sample data set and an exhanstive data. set
which establishes a target distribution and a reference for bomparing the different
simulation algdrithms.

An important aim of this study was to determine if it is possible for a simulation
algorithm to reproduce both the histogram and the experimen.ul semivariogram
model without the need for a normal score transformation. Secondly, we wanted to
compare two algorithms, one based on the one-norm and the other on the two-norm,
to see if the natural measure produced better rosult‘.s.. Thirdly, we were interested
in the computational effort required for both a.lgorithins.

Each simulation algorithm generated 100 realisations and the simulation results
are produced in both tabloid and graphical form. The histograms and experimental
semivariograms for each realisation were compared to the exhaustive data sets. Two
measures of accuracy were used in analysing the histogram reproduction. This was
done hecause the mean absolute deviation ié related to the DSSL1 algorithm and
the mean squared deviation is related to the DSSL2 algorithm. By using both mea-
surements in the comparisons, a preference is not being unduly given to a particular
algorithm. For the experimental semivariograms, the mean squared deviation from
the target samivaridgram model was computed.

The realisations were ranked according to their increasing deviation from the
target values and the mjnimﬁm, median and maximum realisations from each algo-

rithm were used in the comlpa.rison of results. The multiple realisations generated
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help depict the uncertainty about the spatial distribution of the data. The results
were analysed graphically through the use of histograms, cumulative distribution
functions, mosaic maps and semivariograms and with tables using the accuracy
measurements. These results were compared bétween individual realisations and
between the different algorithms. _ |

o Histogram reproduction without the need for a transformation into normal space
or the multi-Gaussian assumptions was found to be possible using either the DSSL1
or DSSL2 algorithms, although we will discuss later in this chapter some problems
that were encountered with these two simulation algorithrhs. The DSSIM algorithm
reproduced the local conditional distribution and not the target distribution, and
SGSIM reproduced i)e sample distribution and not the target distribution. These
two algorithms would require a transformation in order to reproduce the required
target distribution.

Semivariogram reproduction was best when SGSIM was used, but this was in
normal score space. The normal score data must be back-transformed and the excel-
lent variogram reproduction may then destroyed (Caers, 2000b). DSSIM was unable
to reproduce the model experimental semivariogram. The experimental semivari-
ograms calculated for the DSSIM realisations were not at all representative of the
experimental semivariogram medel. Botk the DSSL1 and DSSL2 algorithms were
able to reproduce the expériment;al semivariogram model. This was better with the
omnidirectional Permeability data set than with the anisotropic Potassium data set.
The results for the DSSL1 and DSSL2 algorithms are very similar,

Mosaic mapé displaying the 0.1, 0.5 and 0.9 deciles were generated for each
simujation algorithm, along with conditional variance maps. These.diSplay the un-

certainty in a distribution and may influence the choice of algorithm used. These
characteristics are also very similar with the DSSL1 and DSSL2-algorithrhs, but the
DSSL2 has a slightly higher variation in its higher valued éreas than DSSL1.

The DSSL1 and DSSL2 algorithms both encountered situations when a feasible
solution could not Le found to the objective fﬁnction and a decision was made to set
the random deviate equal to the simple kriging mean when this occurred, Figure
7.1 compares the number of infeasible solutions encountered by both a.lgbrithms for

the data sets.
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Infeasible Solutions for Permeability Data. Infeasible Solutions for Potassium Data.

40
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Figure 7.1. Comparison of infeasible solutions encountered for Permeability (left) and

Potassium (right).

In Table 7.1 we see that the average percentage of solutions that did not converge
was significantly high, especially for the potassium data set. Tn both cases DSSL2
had fewer infeasible solutions occurring but the number is still very high. This
appears to have had an impact on the number of low values within a realisation.
The number of very low values may be artificially high and improving this situation

should result in better histogram and variogram reproduction.

Table 7.1. Perecentage of infeasible solutions encountered by DSSL1 and DSSL2.

Percentage of Infeasible Solutions DSSL1 DSSL2
Permeability 10.3 9.1
Potassium 177 16.3

Further research is needed to find a way to overcome this problem. Adding local
accuracy to the simulation (Caers, 2000a) by adding a spike in the local condi-
tional distribution increases the connectivity of extreme values and may be a way to
improve the histogram reproduction and reduce the number of infeasible solutions
encountered by the algorithm. It is likely this will affect the variogram reproduction
and a compromise may have to be found.

The global distribution used in this analysis was taken to be the exhaustive data
set. When the sample data are not truly representative of the distribution, it may
help to use a smoothed distribution based on the exhaustive data sel to create the
threshold values required for the DSSL1 and DSSL2 algorithms.
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Another factor to take into account when deciding which of the two algorithms
is betfer, is the time taken to execute the simulations. This time factor was very
noticeable in our study. The time will vary depending on the specifications of the
computer swteﬁ, but we found on average that the D5SL2 algorithm takes approx-
imately 3.5 times as long as the DSSL1 algorithm for the Permeability data set and

almost 6 times as long for the Potassium data set, as seen in Table 7.2.

Table 7.2, Computation time for DSSL1 and DSSL2,

Computation Time per Simulation DSSL1 DSSL2
Permeability 24 .82
Potassium 6 36

We believe that improvements in the current programming structure will de-
crease this slightly, but the DSSL2 will still take longer than the DSSL1 algorithm.,
These sirulation methods are both considerably slower than sequential Gaussian
simulation and direct sequential simulation which give almost instantaneous results,
so when one of those methods is suitable to the analysis required, it is recommended
that it be used.

In summary, this analysis has shown that it is possible to reproduce both the
histogram (cumulative distribution function) and the semivariogram using direct
sequential simulation and without the need for a transformation into normal space
or the assumption of normality. This was found to be poésible using a choice of
objective functions based on either the one-norm or the two-norm. The decision as
to which algorithm to use may be influenced by the computational time involved
and the characteristics of the data. The DSSL1 algorithm provided the better re-
sults for the isotropic data set and the DSSL2 algorithm performed better with the

anisotropic data set.
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9 Appendices

APPENDIX A.

Parameter files for Isotropic Case

Al
A2,
Ad.
Ad. .

AS.

sgsim.par
désim.par_
dssll.paf
dssi2,par

target distribution thresholds
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97

98

99

100
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Al  sgsim.par

START OF PARAMETERS:

perm50.dat

i 2 0 3 0 0
-1.0 1.0e21
1

sgsim.trn

0

ref.dat

30

1.0 2500.0

2 2.5

4 2.0

0

sgsim,dbg
sgsim.dat

100

102 1.0 1.
102 1.0 1.
i 0.0 1.0
69069

4 20

12

1

1 3

0

60.0 60,0 1.0
0.0 0.0 0.0
0 0.0 1.0

no.dat

4

1 0.14

1 0.86 50.0

oo

Parameters for SGSIM
kkkdkrhkhkhhkdthrh ki htii

0.0

0.0
24.0 24.0 0.0

N

-file with data .

- columng for X,Y,2,vr,wt,sec.var.

~ trimming limits

-transform the data (O=no, l=yes}

- file for output trans table

- congider ref. dist {0=no, l=yes)

- file with ref, dist distribution

~ columns for vr and wt

~ zmin,zmax({tail extrapolaticn}

~ lower tail option, parameter

- upper tail option, parameter
-debugging level: 0,1,2,3

-file for debugging output

-file for simulation output

~number of realizationg to generate
—NX, Xmn, Xsiz

-ny,ym, ysiz

-nz,zmn, zsiz

-random number seed

-min and max original data for sim
~number of simulated nodes to use
~assign data to nodes {0=no, l=yes)
~multiple grid search (0=no, l=yes),num
~maximum data per octant {0=not used)
-maximym search radii (hmax,hmin,vert}
-angles for search ellipsoid

-ktype: 0=8K,1=0K, 2=LVM, 3=EXDR, 4=COLC
- file with LVM, EXDR, or COLC variable
- column for secondary variable
-nst, nugget effect
-it,cc,angl,ang?, angl

-a_hmax, a_hmin, a_vert

Ly [ Ml
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A2 dssim.par

START OF PARAMETERS:

perms0.dat

1 2 ¢ 3 0 0

-1.0 1.0e2l

0

dssim.trn

0

histsmth.out

1 2

1.0 2500.0

1 1.0

4 2.0

0

dssim. dbg

dssim.dat

100

102 1.0 1.0

102 1.0 1.0

1 0.0 1.0

69069

4 20

12

1

1 3

0

60.0 60.0 0.0

0.0 0.0 0.0

4 0.60 1.0

592.53 582.95

2

nodata.dat

4

2 43680

1 63000 ©90.0
10.0

1 124000 90.0
50.0

10.0

50.0

0.

Parameters for DSSIM
[ RS EX TR EL AR 82 EEET LS ]

-file with data

-columns for X,Y¥Y,Z,vr,wt,sec.var.
-trimming limits :
-transform the data (0O=no, l=yes)
-file for owvtput trans table
-consider ref, dist {0=no, l=yes)
~file with ref. dist distribution
-columngs for vr and wt

-zmin, zmax({tail extrapoclatioa}

-lower tail option, parameter

-upper tail option, parameter
~debugging level: 0,1,2,3

-file for debugging output

~-file for simulation ocutput

-number of realizations to generate
DX, XTI, Xsiz '

-ny,ymn,ysiz

-nz,zmn, zsiz

-random number seed

-min and max original data for sim
~number of simulated nodes to use
-asgsign data to nodes (O=no, l=yes)
-multiple grid search {0=no, l=yes),num
-maximum data per octant {0=not used)
~-maximum search radii {(hmax,hmin,vert}
-angles for search ellipsoid

~ktype: 0=8K,1=0K, 2=LVM, 3=EXDR, 4=COLC
~global mean, standard deviation

- local dist:1-normal,2-lognormal

- file with LVM, EXDR, or COL{C variable
- column for secondary variable
-nst, nugget effect
-it,cc,angl,ang2, ang3

-a_hmax, a_hmin, a_vert
-it,ecc,angl, ang2, ang3

. —a_hmax, a_hmin, a_vert
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A3 dssll.par

Parameters for DSSL1
(23 TR SRR AL R 2L RS

START OF PARAMETERS:

perm50.dat
1 2 0 3 0 0

0.0
]
0.

-1.0 1.0e21

4]

dssLil.trn

¢

higtsmth.out

1 2

p40.dat

dssll.inf

2 1

1.0 2500.0

1 1.0

1 2500.0

1

dssLl.dbg

dssll .dat

100

102 1.0 1.0

102 l.0 1.0

1 g.0 1.0

69069

4 20

12

1

1 3

0

60.0. 80.0 1.0

0.0 0.0 0.0

0 0.60 1.0

592.53 582.95

nodata.dat

4 .

2 43680 .

1 63000 %0.0
1¢.0 10,

1 124000 90.0
50.0 50,

0

0

0.

0.

0
0

.0

0.

D

~file with data

~columns for X,¥,2,vr,wt,sec.var.

~trimming limits

-transform the data {0=no, l=yes)

-file for output trans table

-consider ref. dist {0O=no, l=yes}

-file with ref. dist distribution

-columns for vr and wt

-cdf file

-info file ' .

-select (1-DSSIM, 2-DS5L1)opt {1-skmean,
2-logsim, 3-normal)

-zmin, zmax(tail extrapoclaticn)

-lower tail option, parameter

-upper tail option, parameter

-debugging level: 0,1,2.,3

-file for debugging ocutput

-file for simulation output

~number of realizations to generate

-nX, Xmi, xsiz

-ny,ymn, ysiz

-nz,zmn, zsiz

-random number seed

-min and max original data for sim

~number of simulated nodes to use

~aggign data to nodes ({{=no, l=yes)

-multiple grid search {0=nec, l=yes),num

-maximum data per octant {0=nct used)

-maximum search radii {(hmax,hi'in,vert}

-angles for search ellipsoid

~ktype: 0=5K,1=0K, 2=L.VM, 3=EXDR, 4=COLC

~glebal mean, standard deviation

~-file with LVM, EXDR, or COLC variable

-column for secondary variable
-nst, nugget effect
-it,cc,angl,ang2,ang3
-a_hmax, a_hmin, a_vert
~-it,cec,angl, ang2, ang3

-a_hmax, a_hmin, a_wert
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A4 dsslZ.par

START O? PARAMETERS:

perm50 . dat

1 2 ¢ 3 0 0

-1.0 1.0e21

0

dssLZ.trn

0

histsmth.out

1 2

p40.dat

dssL2.inf

2 10

1.0 2500.0

1 1.0

i 25¢00.0

1

dssL2.dbg

dssLZ.dat

100

102 1.0 1.0

102 1.0 1.0
1 0.0 1.0
69069

4 20

12

1

1 3

0

60.0 60.0 1.0
.0 0.0 . 0.0
0 0.60 1.0
592,53 582,95

nodata,dat

4

2 43680

1 63000 90.0

10.0 10.0

1 124000 30.0

50.0 50.0

Parameters for DSSL2
***t*t**_ﬁ*t***kt*i**

-file with data

- columns for X,Y,Z,vr,wt,sec.var.

- trimming limits

-transform the data (0=no, l=yes)
-file for output trans table
~consider ref., dist (0=noc, l=yes)
~file with ref. dist distribution
-¢plumns for vr and wt

-cdf file

-output info. file

-select 1-DS5IM,2-DSSL2 opt: 1-QP2,2-LS1
-zmin, zmax (tail extrapolation)

-lower tail option, parameter

-upper tail option, parameter
~debugging level: 0,1,2,3

-file for debugging output

-file for simulation output

-number of realizations to generate
-nx,xmn, xsiz

'.nY:YTm:YBiZ

-nz,zmn, zsiz

~-random number seed

~-min and max original data for sim
-number of simulated nodes t¢ use
-aggign data to nodes (0=no, l=yes)
-multiple grid search (O0=no, l=yes),num
-maximum data per octant (0=not used)
-maximum search radii (hmax,hmin,vert)
~angles for search ellipsoid

-ktype: 0=5K, 1=0K, 2=LVM, 3=EXDR, 4=COLC
-global mean, standard deviation

-file with LvM, EXDR, or COLC variable
-column for secondary variable

-ngt, nugget effect
-it,ecc,angl,ang?,ang3

-a_hmax, a_hmin, a_vert
-it,cc,angl, ang?, ang3

~a_hmax, a_hmin, a_vert
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p40.dat

40

17.5869775
43.547355

80.4025825
.25781

146.
.18037

.987915
191.
193.
.207325
.5754475
197.
199.
205.
230.
255.
75861

117

163
178

194
195

283

349.
415.
480.
510.
.52645
570.
585,
426925
L71033

540

619

643
706.
776.
846,
869.
876.

g84
974

.63078
-5320775
1161.154505
1227.776875
1340.76718
1445.18373
154%.600405
1912.615898
2498,8733

372725

95234
0798025

74167
95079825
601605
6076125
61362

414575
07057
6922
626525

426375
14352

7461425
85937

973945
159725
8952525

COOoOOoODOoOO0O0o DO D000 0 000D C0COoO0D0 0O OO0 DOoOO0COoOOOoOOQO

025
,025
,025
.025
.025
.025
.025
.025
025
025
.025
.025
.025
.025
.025
,025
.025
.025
.025
. 025
.025
.025
025
.025%
.025
,025
.025
.025
.025
, 025
.025
.025
,025
.025
.025
,025
.025
.025
.025
.025
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APPENDIX B.

Parameter files l‘or'}\nis'otropic Case

Bi.
B2.

B3.

B4,

B5.

sgsim.par .
dssim.par
dssll.par
dssiZ.par

target distribution thresholds

102

103

104
105
106

167



B1 sgsim.par’

Parameters for S5GSIM
*hkkthhkhhhkwkhkdkdkdh

START OF PARAMETERS:

k1p0.dat -file with data

1 2 0 3 0 0 - c¢olumns for X,Y,2,vr,wt,sec.var.
-1.0 1.0e21 - trimming limits

1 -transform the data (0=no, l=yes}
sgeim,.trn ' -file for output trans table _
0 -congider ref. dist (0=no, l=yes)
histsmth.out -file with ref. dist distributiocn

1 2 - -golumng for vr and wt

20.0 360.0 -zmin,zmax(tail extrapolation)

1 20.0 -lower tail option, parameter

4 1.5 -upper tail option, parameter

1 -debugging level: 0,1,2,3
sgsim.dbg -file for debugging ocutput
sgsim.dat -file for simulation output

100 -number of realizations to generate
60 0.5 1.0 -NX, Xir, xsiz

6o 0.5 1.0 -ny,ymn,ysiz

1 0.4 1.0 ~nz, 2, zs8iz

63069 -random number seed

4 20 -min and max original data for sim
12 -number of simulated nodes to use

1 ~assign data to nodes (0O=no, l=yes)

1 3 -multiple grid search {0=no, ls=yes},num

0 . -maximum data per octant (0=not used)}

40.0 40.0 1.0 -maximum search radii (hmax, hmin, vert}
0.0 0.0 0.0 -angles for search ellipsoid

0 0.0 1.0 -ktype: 0=5K, 1=0K, 2=LVM, 3=EXDR, 4=COLC

87.087 34.703 -global mean, standard deviation

nodata.dat -file with LVM, EXDR, or COLC wvariable

4 -column for secondary variable

1 0.08 -nst, nugget effect
1 0.%2 1115.0 G.0 ¢©.0 -it,cc,angl,ang2,ang3
0.0 -a_hmax, a_hmin, a_vert

25.0 16.0
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B2  dssim.par

START OF PARAMETERS:

k100.dat

1 2 g 3 0 0
-1.0 1.0e2l
0

direct_k.trn

0

histsmth.out
1 2

20,0 360.0
1 20.0
4. 1.5

0

direct_k.dbg
direct_k.dat

1c0
60 0.5 1.0
60 0.5 i.0
1 0.0 1.0
69069
4 20
12
1
1 3
g
40.0 40.0 0.0
0.0 0.0 0.0
0 0.60 1.0
89.45 34.42
nodata.dat
4
1 B84
1 1104 115.0 0.0
22.0 16.72

0.
0.0

G

Parameters for DSSIM

*t**********if'k*t**** .

~file with data

~ ecolumns for X,Y,2,vr,wkt,sec.var,

- trimming limits

-transform the data (0=no, l=yes)

- file for ocutput trans table

- consider ref, dist {(D=no, l=yes)

- file with ref, dist distribution

- columns for vr and wt

- zmin,zmax(tail extrapolation)

- lower tail option, parameter

- upper tail opticn, parameter
-debugging level: 0,1,2,3

-file for debugging output

-file for simnlation output

~number of realizations to generate
-nx, xmn, xsiz '
-ny,ymn,ysiz

-nz,zmn, zsiz )

-random number seed

-min and max original data for sim
~-nmaeher of simulated nodes to use
-assign data to nodes {0=no, l=yes)
-multiple grid search (O=no, l=yes),num
-maximum data per octant (0=not used)
-maximum search radii {hmax, hmin,vert)
~angles for search ellipsoid

~ktype: 0=8K,1=0K, 2=LVM, 3=EXDR, 4=COLC
-global mean, standard deviation

- file with LVM, EXDR, or COLC variable
~ column for secondary variable
-nst, nugget effect
-it,ce, angl, ang2,ang3

-a_hmax, a_hmin, a_wvert
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B3  dssllpar

Parameters for DSSLL1
(2 F RS RIS AR LRSS REE]

START OF PARAMETERS:

k100.8at . -file with data
1 2 0 3 0 0 ~g¢olumns for X,Y,Z,vr,wt,sec.var.
~1,0 1.0e2l ~trimming limits
0 ~transform the data (U=no, l=yes)
dssim.trn -file for output trans table
0 -consider ref. dist {(O=ng, l=yes}
histsmth.aut -file with ref. dist distribution
1 2 -columns for vr and wt ’
kd0.dat -cdf file
dssim.inf ~-info file
2 1 -select (1-DSSIM, 2-DSSL)opt (1~skmean,
2-logsim,3-normal)
20.0 360.0 -zmin, zmax{tail extrapolation)
1 20.0 -lower tail option, parameter
1 360.0 -upper tail option, parameter
1 -debugging level: 0,1,2,3
dssim.dbg -file for debugging output
dssim.dat -file for simulation cutput
100 ~-number of realizations to generate
60 0.5 1.0 -nx,xmn,Xsiz
60 0.5 1.0 -ny,ymn,ysiz
1 0.0 1.0 -nz,zmn, zsiz
69069 ~random number seed
4 20 -min and max original data for sim
12 -number of simulated nodes to use
1 -assign data to nodes (0=no, l=syes)
1 3 -multiple grid search (0=no, l=yes),num
0 ~maximum data per octant (0O=not used)
40.0 40.0 1.0 -maximum search radii (hmazx, hmin,vert)
c.0 0.0 0.0 -angles for search ellipsoid
0 0.60 1.0 -ktype: 0=5K,1=0CK, 2=1LVM, 3=EXDR, 4=C0LC
89.45 3¢.42 -global mean, standard deviation
nodata.dat - file with LVM, EXDR, or COLC variable
4 - column for secondary variable
1 84 -nst, nugget effect
1 1104 115.9 6.0 0.0 -it, ec,angl, ang2, ang3
22.0 1e6.72 0.0 -a_hmax, a_hmin, a_vert
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B4  dssi2.par

" Parameters for DSSL2
EETEEEEZIIEEEAEE TR N T L]

START OF PARAMETERS:

kl0o.dat -file with data
1 2 0 3 ¢ ¢ - columns for X,¥,%,vr,wt,sec.var,
-1.0 1.0e2l - trimming limits
0 -transform the data {0O=no, l=yes)
dssL2.trn -file for output trans table
0 -consider ref. dist {0=no, l=yes)
histsmth.out ~file with ref. dist distribution
1 2 i -¢olumns for wr and wt
x40, dat -cdf file '
dssL2, inf -output info file
210 -selegt l-dssim, 2-dssl2 opt:10-QP2,20-LS1
20.0 360.0- ~zmin, zmax {tail extrapolation}
1 20.0 -lower tail option, parameter
1 360.0 -upper tail option, parameter
1 -debugging level: 0,1,2,3.
dss2.dbg -file for debugging cutput
dssL2.dat -file for simulation output
100 -umber of realizaticns to generate
60 0.5 1.9 -nx,xmn,xsiz
60 4.5 1.0 -ny,ymn,ysiz
1 0.0 1.0 -nz,zmn,zsiz
69069 ~random nunber Seed
4 20 -min and max original data for sim
12 -number of simulated nodes to use
1 -agsign data to nodes (0=no, l=yes)
1 3 -multiple grid search (0=no, l=yes),num
0 -maximum data per octant (0=not used)
40.0 40.¢ 1.0 -maximum search radii (hmax,hmin,vert)
0.0 0.0 0.0 -angles for search ellipsoid
0 0.60 1.0 -Ktype: 0=8K, 1=0K, 2=LVM, 3=EXDR, 4=COLC
85.45 34.42 -global mean, standard deviation
nodata.dat -file with LVM, EXDR, or COLC variable
4 -column for secondary variable
1 84 -nst, nugget effect
i1 1104 115.0 ¢.0 0.0 -it, ce, angl,ang2, ang3
22.0 16.72 0.0

~a_hmax, a_hmin, a_vert
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B3

k40

k40.dat
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