
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2001

Storage free terrain simulation Storage free terrain simulation

Warren Creemers
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Graphics and Human Computer Interfaces Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Creemers, W. (2001). Storage free terrain simulation. https://ro.ecu.edu.au/theses_hons/548

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/548

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/548

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Storage Free Terrain Simulation

A Thesis Submitted by Warren Creemers.

In Partial Fulfillment of the Requirements for the Award of
Bachelor of Science, Honours (Computer Science)

At the
Faculty of Communications, Health and Science

Edith Cowan University.

August, 2001.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Use of Thesis

This copy is the property of Edith Cowan University. However the literary rights of the author

must also be respected. If any passage from this thesis is quoted or closely paraphrased in a

paper or written work prepared by the user, the source of the passage must be

acknowledged in the work. If the user desires to publish a paper or written work containing

passages copied or closely paraphrased from this thesis, which passages would in total

constitute an infringing copy for the purpose of the Copyright Act, he or she must first obtain

the written permission of the author to do so.

DECLARATION

I certify that this thesis does not incorporate without acknowledgment any material

previously submitted for a degree or diploma in any institution of higher education; and that

to the best of my knowledge and belief it does not contain any material previously written by

another person except where due reference is made in the text.

Signature_

ACKNOWLEDGMENTS

I wish to thank Maurice Danaher for his valuable advice.

I would also like to thank Daphne Brosnan for her proofing and comments.

2

Content�·

ABSTRACT ... , 6

1.INTRODUC'rlON .. 7

[. I TIIE ST1\TE OF TECI INOLOGY AND IIJSTOIUCAL \.\'IIRK .. ,. .. 8

1.2 RATION1\I.E , .•..................................•............................. , J I

1.3 OVERVIEW OF TIIE ltESlJI.TS ACJ IIEVl:D .. I I

2. BACKGROUND INFORMATION ... 11

2.1 Hl:lGIIT F!l!I.D GRIDS FOR l.1\NDSC1\l'ES•.•.......•... 12

3. REVIEW OF THE STATE OF THE ART ... 15

3.1 TERRAIN GENERATION USING FRACTAL MATJI ... 15

3.2 CONTINUOUS LEVEL OF DETAIi. (CLOD) MESI !ES .. 16

3.3 PLANT GENERATION USING FRACTAL MATH ... 17

3.4 LANDSCAPE SIMULATION 19

4. PROBLEM STATEMENT ... 21

4.1 THE PROBLEM BEING ADDRESSED .. .

4. !. I The problem of landscape Size

4.1.2 The problem of Landscape Detail

4.1.2. I Penalties of Terrain Detail

4.1.2.2 The problem of Variance in Non-Geographical Landscape Elements ..

4.2 SIGNIFICANCE or: THE PROBLEM .. .

4.2. / Impact of the Work.

4.2.2 lmpac/ of the Work on the End User

5. METHODOLOGY OF CONTINUOUS TERRAIN GENERATION AND

. 21

········ 22

..23

. 23

. ... 24

. 25

········ 25

. 25

VISUALISATION ... 27

5.1 TERRAIN GENERATION ALGORITl·IM ... , .. 28

5.J .1.1 Storage Considerations 30

5. I .1.2 The Height Field Storage Model.. 3 I

5.1.2 A Terrain Generation Algorithm .. . ······· 32

5.1.2.1 Midpoint Displacement.. 32

5.1.2.2 Midpoint Displacement in Three Dimensions 34

5.2 TERRAIN PAGE MANAGEMENT , .. 37

5.2. I Existing Terrain Page Management Techniques Ji

5.2.2 Suhmap Page Managemellf Algorithm , 38

5.2.2.1 A Simple Approach to Submap Page Munagcmcnt. 38

5.2.2.2 Current Techniques for Implementing Simple Page Mmmgcmcnt 40

5.3 TIIE OFFSET SPIIERICAl. Al'PROACII TO PAGE MANAGEMENT.. 41
J

5.4 ISSUES FOR CIWATINO CONSISTENT LANIJS(.'Al'l:S ... 43

14. I Quasi White Noi.1·e Sy111hesfrjr1r Terrain Seeding. 43

5..1.1. i Plnnet Creating and IJelinahlc Terrnin 44

5.4. 2 S11pp{1•-De111and Ne/works and /Jirly Pa,-:es ·15

5.5 LEVEL OF DETAIi. CONTIUJI. FOR TERRAIN VISlJAI.ISATl<JN ..•.......... 46

5.5. I Owrview o/CLOD Algorithms............................... ,/7

5.5.2 Examination off'vpping Arteji:1c1.1· .. .

5.5.3 No11 Degradive Terrain 1\le.1·h Simplification

5.5.3. l The .. Distance From Cumcra·· Optimisation

5.5.3.2 The ··Rclicf!Jcpcndcnt" Optimisation

5.5.5.3 Results of the Quad-Tree Algorithm

.. ,/7

. 47

.. 41!

48

.. 52

6 METHODOLOGY OF CONTINUOUS PLANT LIFE GENERATION AND

VISUALISATION . .. 53

6.1 CONSTRUCTION OF PLANT MESHES ... 54

6.1. I Quick Exect11ion...... 55

6.2 A TOPOLOGY FOR THE PRODUCTION OF DETAILED AND VARIED PLANT LIVES 55

6.2. / Ramijicarion.

Statistics used in the proposed topology

Statistics used in !he proposed lopology

6.2.3 Fertile Area

Statistics used in the proposed topology

6.2.4 Bifurcalion

Statistics used in !he proposed /apology

6.2.5 Continued Bifurcation

Stalistics used in the proposed topology

6.2.6 Gnarl

Statistics used in the proposed topology

6.2.7 Phyllotaxy

Statistics used in the proposed topology .. .

... 57

...58

58

.. 59

.. 59

.. 60

. 60

... 61

.. 62

.. 63

.. 63

. 63

. 64

6.2.8 Multiple Branch Nodes 64

Stalistics used in the proposed topology 65

6.3 DETAIL IN PLANT LIFE•.•......................................•...................••.•...................•.......•................ 65

6.4 VARIATION OF PLANT LIFE .. 65

6.4. I Inter Species Variation 65

6.4.2 Intra Species Variation .. 65

7 EXAMINATION OF RESULTS ... 67

7.1 EVALUATION OF FUNCTIONALITY .. 67

?.I.I large land'>capeSize .. 67

7.1.1.1 Results .. 68

7.1.2 fligh Lwufrcape Detail ..

7.1.2.l lksults

.fiH

The implementation applies uhout 1.8 lriunglcs per virh1HI square metre in u tcrrnin 111csl1. 'f!1is high

tlensity is su!lieicnt for rc:ilis1ie lermin rcpresentution. The 1errnin protlucetl in the simul111inr1 is shown in

Figure 7.1

7./.3 Variation in !'lam l.iji.!

7.1.3.1 Results

7. / . ./ Visual Realism

7.1 .4.1 Results

7.1.5 /11/f.!racti\·e E11gi11e Speed

7.1.5.1 Results

............. ()9

. 6()

.. .. 70

... 70

. .. 70

70

. 71

7.2 COMPARISON WITII TODAYS TECllNOI.OGY•...........•....................................... 71

7.2. I Measures used/or Comparison

7.2.2 Set up of the Test-Bed.

7 .2.2.1 Soll ware Set up

7.2.3 Rern/ts a/Comparison

7.2.3.1 Evaluation ofThis Work

7.2.3.2 Evaluation of"Trcad Marks

7.2.3.3 Evaluation of·'Draken"

7.2 . ./ Comparison of Results

.. 71

. 73

73

................ 74

"

. 74

.. 75

76

8. CONCLUSIONS .. 79

8.1 CONCLUSIONS .•.. 79

8.2 SUMMARY OF CONTRIBUTIONS .. 79

8.3 FUTURE RESEARCH .. 80

9. REFERENCES .. 81

GLOSSARY ... 86

INDEX .. 87

5

ABSTRACT

Landscape visualisation is the process of recreating a natural environment and displaying it in
an interactive graphical simulation. To do this a terrain is displayed together with
accompanying plant life and other objects.

Present landscape visualisation software is capable in theory of displaying very detailed and
large landscapes. The software is also in theory capable of simulating environments with
thousands if not millions of individually structured plants. In practice though the simulation
of such landscapes requires such a large amount of storage space that it is not achievable on
personal computers. Even sto1ing small landscapes with a moderate amount plant life can be a
major development problem.

The extent of this problem is such that modem simulators almost always exhibit the following
limitations.

• When detailed landscapes are stored to the hard disk, the area of terrain covered is
usually very small.

• When large terrains are stored to the hard disk the detail used is usually low.
• When detailed plants are used in a landscape only twenty or so plants arc created and

used over and over again in the landscape.

This work is an original approach to solving the storage space problem that involves not
storing any landscape data to the hard disk at all. In this solution, instead of the landscape
simulator displaying a landscape that is stored on a hard disk, the landscape simulator
displays a landscape that is randomly generated, The landscape is produced on a need-to
know basis, the only landscape that exists in the simulator is the landscape that the user of the
simulator can see. If the user's position in the landscape alters then the newly visible areas of
landscape are created, and the areas no longer visible are removed from the simulator entirely.
Areas of landscape being visited for a second time are always re-created the same way as they
were originally created.

h

1.INTRODUCTION

"!fa tree falls in the woods and no one is there to hear it, did it make a noise?"
-a Kuans of Zen Buddhism.

This work depicts a new engine for computer games and simulators that involve the
visualisation of landscape. The underlying basis of this engine is that anything outside the
user's visual vicinity need not exist or be stored in the simulation. The engine depicted in this
work is responsible for continuously creating a world for the user to see, replacing the
traditional role of a human "level designer"'. The engine works by maintaining only the areas
of landscape within the user's visual vicinity. When the user travels through a landscape
simulation (using this engine), areas of landscape that enter the user's visual vicinity are
created just before the user can see them. Areas of the landscape that leave the user's visual
vicinity are destroyed and are no longer a part of·u1e simulation. The engine described in this
work maintains a constant environment by always recreating the same landscape each time a
particular part of the environment enters the user's visual vicinity.

The visualisation of landscape involves ti.vo parts, the visualisation of terrain and
geographical information and the visualisation of plants and other non-geographical items.
Landscape visualisation is the process of continuously rendering terrain and non-geographical
infonnation to the screen in a real-time manner. Many games and real-time graphical
simulations are set in outdoor landscapes and thus employ landscape visualisation.

Storage space is the major limiting factor in the visualisation of both terrain and non-terrain
data. Although advancements in computer hardware, combined with recent research in the
field of terrain visualisation, now allow for detailed terrains to be drawn, most users cannot
afford to store the datasets required to take full advantage of the new technology. This work
will remove the need for large amounts of storage space in landscape visualisation software.
Removing the need for large amounts of storage space will allow visualisation of larger and
more detailed landscapes than was previously possible on systems with limited storage
capacity.

• A "level designer" is a person employct! to design the layout of environments in computer games and
simulations.

7

1 . 1 The state of tech nology and h istorical work

Land cape s imu lators currently fol low the basic flow chart i n F i gure 1 . 1 .

A landscape i s created, typically by a h uman designer, and stored as part of the datasets u sed

by a l andscape s imu la tor. There are two datasets in a l andscape s imL1 l ator, one that represents

terra in data and one that hand les non-geograph ical e l ements. When the s imu l at ion is

executed the datasets are l oaded from the storage dev ice, processed in the s imulator and then

displayed to the screen.

During Execution

Figure I . I: Flow chart/or landscape data in a landscape simulator.

The process of terrai n v i sual isat ion typical ly converts the terrai n dataset(s) into a triangu lar

mesh that represents a terrain. The datasets used in terrain visualisation are general ly height

values sampled at regular grid intervals. These datasets can be converted to a triangle mesh by

construct i ng a l attice i n 3 0 space and us ing the values from the datasets to d i splace the

intersections of the lattice. It is difficult to render such a mesh to the screen however because

of the amount of triang le� invo lved. Modern hardware is not capab le of d i splay i n g the

amount of triangles present in a mesh in th i s form, i f the mesh i s to accurately dep ict a deta i

led landscape over a reasonable distance.

Past solutions to the h igh triangle count of terrain meshes i nvolve on l y rendering objects that

are close to the user ' s position and using a fog effect to h ide the m i ss i ng detai l . Another

sol ution is to decrease the reso lut ion of the latt ice u sed for the rendered triangle mesh. This

reduct ion of reso lu t ion resu lts in fewer but larger triangles, so the terra i n becomes visible for

a great distance but is severely lacking in detai l . The l imi tat ions, caused by the l arge amount

of tr iangles used in the visual isation stage of landscape s imulators are the trad it ional

bottleneck in displaying detai led and large terrains.

Current research has solved the display bottleneck for terrain visualisat ion . V iewed near

ground level most of the triangl es in terra in meshes are di tant from the user. After
8

perspective i s nppliccl to the rendered image thcsl! triangles will only occupy a few pixels 011

the screen. Lindstrom ct ul. ([996) u sed this knowledge to create meshes that involved
different triangle sizes, These meshes use smaller triangles near the user's viewpoint where
detail i s important, and larger triangles al areas distant from the u ser, where in reality det,iil
would become blurred. By adapting the mesh to be optimised about the user's viewpoint a
user could explore a terrain rich in detail and large in size. This technique became known in
the industry as continuou s level of detail meshes, abbreviated to CLOD.

Lindstrom' s method was not perfect a s it contained a vi sual di sturbance known as popping.
Popping occurs as the user approaches large triangles in the di stance, The triangles in
Lindstrom's situation are split into multiple triangles and the user can sec the sudden increase
in detail. This meant that details in the terrain would suddenly appear when a user got close
enough. Rottger & Heidrich & Slusal[ek & Seidel (1998) devi sed a gcomorphing algorithm
that removed the effects of popping by detecting sharp changes in the terrain and using more
detail to define these areas when viewed from a di stance.

With the di splay bottleneck in terrain visuali sation solved, the advancement s in computer
hardware allow a modern personal computer to di splay a large detailed landscape with
varying plant life. However this new advance brings about a storage bottleneck in landscape
v i suali sation. Currently most modern personal computers do not have the storage space
necessary to store a large and detailed terrain. Personal computers also lack the storage space
to store large amount s of individual and detailed non-terrain elements such a s plant life.

During the last decade there has been little increase in the size of terrains used in simulations.
The only increase in terrain sizes i s due mainly to the increase in storage space available on
storage devices. Currently a simulation's size i s dependent on the storage limitations of the
computer it runs on. Often the dataset for a detailed landscape of fair size may run into
hundreds of megabytes. For extremely large datasets used in detailed simulations of entire
planet s the storage space i s measured in gigabytes, or greater. Typically solutions to storage
problems involve extrapolation or prediction of extra detail not stored in the dataset.

This work addresses the limits imposed on landscape vi sualisation caused by the need to store
large datasets representing the landscape to be vi sualised. The solution presented here nl\ows
v i sualisation of a landscape that i s defined procedurally and does not have a dataset. Figure
1 .2 shows how the simulation engine presented in this work has no storage step in i t s
execution. The solution presented in th i s work makes the as sumption that the landscape to be
vi suali sed i s a terrain of fantasy; one that does not exist in real life. The solution i s a viewing

')

system that procedurally generates all the graphics that nrc to he displ:tycd on a nci:d-to-know
basis.

\ Created 9 ! simulated ! 9 J oi,playcd l

During Execution

Figure 1.2: Flow chart/or a Dynamic lmulKape Simulator

The solution presented i s only applicable to fictional simulations such a s flight simulators and
computer games. Geographic infonnation systems cannot benefit from the solution presented
since they must visualise terrain that actually exists. This lack of application to real
landscapes i s not important however because most geographic information systems have no
problem dedicating many gigabytes of storage space to a simulation.

The technique of procedurally modelling natural objects applies both to the generation of
terrain and non-geographical elements. Fractal math i s the most popular approach used to
procedurally model natural structures.

Barnsley et al. (1988) presented a collection of techniques to create fractal terrain for
land scapes. These techniques are not meant for real-time generation, but are adapted for this
purpose.

Lindenmayer (1968) developed a technique to represent and model plant life. This technique
produced realistic three-dimen sional structures that closely modelled plants and trees. A point
of note on this technique i s that the algorithm s involved can be given different seed value s to
produce differently structured plants of the same variety.

This work adapts fractal generation techniques for the purpose of real-time modelling. The
techniques will be used to procedurally generate a terrain and a population of plants which
will combine to form a landscape. Furthermore, the landscape wilt be maintained on a necd
to-know basis. This work uses this approach to maintain a large detailed terrain populated
with unique ancl detailed structures for every tree in the landscape, something almost unheard
of in real-time landscape simulation s.

1 1 1

1.2 Rationale

When one is considering the impact of removing the storage probfcm it is necessary lo

analyse the effect that the employment of the suggested techniques wlll have on the game or

simulation user. In lhc end it is the uscr1s acceptance of this technology thnt will determine ils

success.

Because of the storage problem current terrain simulations lack variety fn the graphics

displayed on screen. Removing the storage problems associated wtth landscape visualisation

will allow a user to explore a virtual \.vor!d that contains m1prccedentcd amounts of variation,

with detail consistent to modem expectations. It is hoped that the increased landscape size and

variation will result in more time being spent exploring the environment before the user gets

bored, By using threewdimensional p[ant l ife with unique and individual structure the scenery

throughout the simulation will be constantly varied. The variation and uniqueness of the plant

life will reduce the rate at which the graphics will become familiar to the user.

1 .3 Overview of the results achieved

There is a widespread belief that, in landscape visualisation, morletling of terralo and plant

life should be carried out prior to the actual visualisation of the landscape. ft is a primary goal

of this work to show that the concept behind modelling terrains during visualisation ls both

practical and valuable.

The implementation provided with this document is probably the first terrain visualisation

system that util ises rr..:aI�time procedural modelling of both terrain detail and plant life as its

source of infonnation to be visualised. The integration of modem advancements in terrain

viewing shows thar this process is suitable for modem applications.

2. BAC�{GROUND INFORMATION

To fully understand the concept of modelling terrain data during visualisation it is important

to understand how a landscape simulator stores terrain informatio11. 111is chapter summarises

the "height field grid" method for representing termin data in n computer.

I I

2 . 1 Height F ie ld G rids for landscapes

A height fie ld gr id is a two-d i rnens ionaJ array composed of samp led terrain he ights.

To con truct a height fie l d gri d a terra in is d ivided up into a grid , and at each grid point the

elevat ion of the terra in is stored into a correspond ing element of the array. This is shown

graph ica l ly in F i gure 2 . 1 .

Dataset. (height fie l ds) Terrain

6 3 4 5 7

6 2 3 . 5 4 .5 6 . 5

0 0 0 . 5 2

1 . 5 0 . 5 2 4 6

1 0 - I 3 5

Figure 2. I : Height field data

Representing the data in the height field as a latt ice mesh produces a surface that is su i tab l e

for render i ng.

Though the height field storage format itself is used often, the p la i n vanilla surfaces generated

by this techn ique are no longer used today because they produce too many triangles. Past

s imu lations, l ike the one in F igure 2 .2, wou ld use these surfaces in a manner where the grid

po i nts were far apart and the user was not a l lowed to see d istant elements of the surface .

1 2

1

Figure 2. 2: A 1987 simulation using height.field surfaces.

In many appl ications it may be useful to alter the resolution of a terrain mesh. Fortuoately this
is a simple technique, done by constructing a terrain mesh in such a way that it does not use
all the data available from its dataset. Terrain meshes are lowered in detail by creating a mesh
where elevations on the lattice represent an average of more than one elevation in the original
dataset. The same technique is commonly used to resize a bitmap or picture. Figure 2.3 shows

the result of reduced resolution in height field meshes.

Figure 2. 3: A terrain mesh with progressively lowered resolutions:

Different sampling resolutions is a simple way of allowing a terrain to be visualised at
different detail levels . Importantly, this technique aJlows a variety of users to select a detail
level appropriate to their hardware, and visualisation needs.

13

Altering sampling resolutions is riot considered Hn effective solution to lurgl! triangle counts

since it docs not deal with the traclc�of
f
hctwccn the detail of the rm.:sh and the system

performance. This approach only allows usc1s to choosl! how much detail they will trade for

pcrfonmmr.:c.

I �

3. REVIEW OF THE STATE OF THE ART

This work brings together four different areas of research, namely:
• Terrain generation, using fractal math
• Continuous Level of Detail (CLOD) Meshes
• Plant generation, using fractal math

• Landscape simulation

The combination of techniques in the areas of terrain and plant generation contributes to an
area of research called landscape simulation, also called environment generation. This work
optimises the process of terrain generation to allow for landscapes to be created during a
simulation's execution.

3.1 Terrain Generation Using Fractal Math

Techniques for generation of terrain have been developed for a while, although work in this
area is often aimed at producing particular kinds of landscapes. Algorithms presented by
Barnsley & Jacquin & Malassent &, Reuter & Sloan (1988) produce accurate

mountainous environments. Kelly & Malin & Nielson (1 988) devised a method to

incorporate accurate streams and waterways, faithful to the principals of erosion. The general
techniques presented by Mandelbrot (1977) can be adapted for environments such as
valleys, plains and seabeds. Figure 3. 1 shows a typical computer rendered landscape
generated using fractal math.

I S

Figure 3. J : A Fractal Terrain Generated by a Popular Landscape Tool Vista Pro

More recently techniques known as multi-fractals have been developed to model more
realistic environments. Multi-fractals create landscapes with different kinds of terrains mixed
together. Multi-fractals achieve this mixing by applying different existing techniques to
different parts of a terrain where necessary. Ebert & Musgrave & Peachey & Perlin & Worley
(1 998) present valuable information on the use and implementation of multi-fractals.

Though a detailed terrain is easily generated, it is expensive to store a large area of detailed
terrain to hard disk. For this reason usage of such terrains is highly restricted in graphical
simulations.

3.2 Continuous Level of Detai l (CLOD) Meshes

View dependent Level Of Detail (LOD) meshes are of great focus in current real-time
graphi.cs research. These meshes can have different levels of detail present at different parts of
the mesh, allowing application designers to choose where the detail will be present.

A techn ique whereby LOD meshes are continuously reorganised to suit a user's viewpoint was
pioneered by Lindstrom et al. (1 996), and is currently widely practiced in industry.
Lindstrom's technique is known as the Continuous Level of Detail Mesh (CLOD) and the
detail of this mesh can be dynamically changed at different points on the mesh.

The advantage of CLOD meshes is the reduction in the amount of triangles that need to be
drawn to the screen due to the fact that larger (thus fewer) triangles are used in areas where
detail is not visible to the user. The reduction in the amount of triangles accelerates the real-

16

time performance of these meshes, and importantly, the scene from the user's viewpoint will

not have lost any visual quality.

In Figure 3 .2a a CLOD mesh has been adapted so that the detail is . clustered about a point

near the centre. A user positioned i n the centre of the cluster would see consistent image

quality. This consistent quality occurs because the larger and more distant elements in the grid

will appear very small . Figure 3 .2b gives an example of how large distant tr iangles achieve

consistent image qual ity. In this image the darker triangles are actually twice the size of the

lighter triangles, but because of perspective they appear to be the same size. Rottger &

Heidr ich & Slusallek & Seidel (1 998) and Hoppe (2000) present further work in higWy

developed CLOD meshes.

Figure 3. 2a: A CLOD Mesh Figure 3. 2b: A user 's pen,pecttve of a CLOD

Mesh

3.3 P lant Generation Using Fractal Math

The techniques for the generation of trees and plant l ife are well documented. It is not the

author's intention to increase the functionality of previous algorithms in this field. The

adaptation of existing plant synthesis research for this work is concerned with speeding up the

existing algorithms, with the objective of applying them to a real-time system.

Most of the work available in the area of fractal generated plants was published in the late

1 980 's . Due to the time spent in developing fractal plant generation techniques most of the

techn iques are well established. Foley & Dam & Feiner & Hughes (1 990) present a

grammatical model of plant structure that allows definition of the structure of a plant using

parallel graph grammar languages.

The growth models for the plants in this work will be based on the pioneering work presented

by Reffe & Edelin & Francon & Jaeger & Puech (1 988). There are other works that use non-

1 7

fractal techniques for plant generation, however fractal methods are the most common

approach used for the modelling of plants in computer graphics. In order to create a tree

structure we employ a recursive definition of a branch:

Branch = line from point a to point b

Branch optionally creates n branches with an origin on line between points a and b

Because there are multiple branches created on each branch this recursive technique is

considered to be self-similar. It is the self-similar property of the recursive plant generation

process that makes the process fractal in nature. Figure 3.3 shows the result of applying six

recursions of this technique.

1st Stage 2nc1 Stage

5th Stage 6th Stage

Figure 3.3: The process of fractal plant life generation

1.8

Each recursive stage refines the image, but each recursive stage is exponentially more
t ime/resource consum ing.

Traditionally fractal plant synthesis is not a process used in real-time simulations. S imu lations
util ising plant synthesis generally pre-create plants prior to the level or simulation loading.
Many simulations use plant meshes originally created using fractal techniques that are stored
on the hard disk ready for use.

Various researchers have studied the rules of plant topology and created compl icated

algorithms that produce highly realjstic results. The author directs the interested reader to
Reffye & Edelin & Francon & Jaeger & Puech (1 988, 1 5 1 - 1 58).

3.4 Landscape Simulation

Landscape simulation is the process of concurrently simu1ating terrain and non-terrain objects
such as plants. A landscape simulator is general ly an interactive program that al lows
movement of a user viewpoint through a landscape. The landscape s imulator inherits the
storage problems associated with terrain and plant generation. A scene like the one in Figure
3 .4 demonstrates the detail that can be achieved from the use of fractal techniques. This scene
stored in polygon form would easily requ ire over a hundred megabytes of storage.

Figure 3.f "Sunset Valley" by Sam Bowling, 3D Nature, LLC

1 9

The results of fractal synthesis techniques fl.lr terrain and plant lifo can he vt.:ry detailed and

lifelike, which has led to extensive use of fractal tcchniqut.:s in professionally rt.:ndered

graphics. Comhini11g a synthcsist.:d terrain with population of synthesised plant life creates a

fractal landscape. To add realism the population or plant life is scattert.:d around the landscape

in a realistic fashion using the statistics of plant/ species distribution. Further realism is added

by changing the texture that is used for di fferent areas of ground, cg snow, rocks, grass, sand

and dirt. Adding sky, fog and sunlight effects completes the scene.

20

4. PROBLEM STATEMENT

The aim of this work is to create a virtual computer environment rich in detail and enormous
in size, The challenge is to deliver a solution that will not require large amounts of ston1gc
space and be functional on a personal computer.

The objectives of the proposed simulator arc that the environment:
• be so large in size that a user would be unlikely to explore an entire environment.
• be so rich in detail that the human eye would survey the scenes of this world much like it

would a photograph of a real landscape.
• contain a large degree of variation derived from the use of unique plant life.

These objective s will allow for simulation of entire planets.

The basis of the proposed engine i s to implerr •. virtual environment where the details
beyond what the user can see are not maintaineu in memory. If a user travels through this
environment the computer will use the user's position to decide what the user will sec. If the
user returns to an area in this world that has already been visited. the computer will produce
the same landscape that was previously shown to the user.

4.1 The Problem being addressed

The problem being addressed concern s managing and creating landscapes for computer
simulations and games so as to achieve minimal storage requirements. The reason for
rethinking the management of simulator environments i s because current management
techniques require too much memory to allow home users to have large detailed and varied
landscapes. The game and simulation industry i s constantly aiming to use landscapes that arc
larger, have higher detail and are more varied. Typically there is a trade o!Tbctwccn the
extent to which these elements are used in a computer-simulated environment, and the storage
space required by the simulation. The objective of this work i s to create a landscape simulator
that removes the memory re strictions affecting the size and detail of terrain and the variation

2 1

and detai I of plants . As shown in F igure 4 . 1 the major obj ctives of this work are to increase

the s ize, detai l and variation present in real-t ime landscape s imu lators. The d i agram also

shows that storage space is the common l im it ing factor in al l of these objectives. A major

a im of th i s work is to remove the trade-off between t he qua! i tative object i ves (s ize, detai I and

var iation) and storage space.

Problem '

Objectives

Variation Detail Size

Simulator

Figure 4. 1 : The impact of storage space

4. 1 . 1 The problem of Landscape S ize

Increasing the s ize of the terrain in a landscape s imu l a tion increases memory requ i rements . It

is because of l imited memory resources that common fl ight s imu lators typical ly have a terrai n

s ize l im ited to the size o f a cityscape (3 0 - 6 0 km). This terrain s i ze may sti l l b e considered

large, but flight simulators sacrifice a lot of detai l in the terrain to ach ieve this . ln other

words, a low-resol ution terrain is used to compensate for the increased memory requ irements

of the larger area covered .

r n first person point of view games such as "Quake" (1 996), environment size is l irn ited

because of both the amount of tr iangles that can be stored and the amount of t ime needed to
22

des ign the leve l . Typically th is type of game is l im i ted to 1 -5 bu i ld ings per leve l . Even i f i t

were possib le to store maps of s i gn ificantly larger s ize, i t is probable that the years i l , ou ld

take a human to design the map wou ld be proh ib i t ive .

4. 1 . 2 The prob lem of Landsca pe Deta i l

The prob lems w i th increas ing deta i l in l andscape s imu lat ions re late to the amount of storage

space requ i red to increase the amount of deta i l present. This storage problem affects both the

terra i n and non-geograph i cal v isua l isation systems.

4 . 1 . 2 . 1 Penalt ies of Terrain Detai l

The reso l ution of a terrain is the number of poi nts used i n a he i ght field to define an area

a l so expressed a the deta i l of the terrain . The resol ut ion can be represented in points per

k i l ometre. F igure 4 . 2 i l l u strates the effect of detai l be ing increased by alter ing the re o l ution

of a terra in .

a) c)

Figure ./. 2 · Three terrain meshes each with different resolutions

The amount of memory used to store a terrain mesh is exponentia l ly proportional to the

terra i n ' s reso l ut ion . Tab le 4.3 shows the i ncreased memory requ i rements incurred by use

of d ifli rent terra in detai ls in Figure 4 .2 .

Table ./. 3: Memory requirement of terrain meshes i n Figure 4. 2

Terrain Leve l of Memory required (assuming 1 byte

detai l height fields)

A l x 25 byte

B 2x 8 1 byte

C 3x 289 bytes

23

Figure 4 .4 shows the relat ionsh i p between incr as in t rra in detai l and storage r qu i remcnt .

• , 5 0 0 k b -

4 , 0 0 0 k b

3 , 5 0 0 k b

3 , 0 0 0 k b

� 2 5 0 0 � b
·s

a:
..
:l' 2 , 0 0 0 k b -

1 . 5 0 0 k b

1 , 0 0 0 k b

5 0 0 k b

D k b

L a n d s c a p e S t o r a g e R e q u i r e m e n t s

I

-_J
6 7 9 , 0

O e t a I I m u l t i p l i e r

Figure -1 . .J: relat ionship between terrain detail and storage space

It is because of the re lat ionship shown i n F igu re 4 .2 that h i gh quality terrain s im u lator

typ ical ly requ i re 50mb of memory or more to store land capes that are 1 0km wide.

4. 1 . 2 .2 The problem of ·Variance ln Non-Geographica l Landscape E lements

There is a large storage problem concerned with non-terra i n e l ements of an environment .

Each rock, tree and other such elements in an env i ronmen t requ ire a b itmap or texture. I f

there are 200 trees i n a scene i t i s not practical to create 200 b itmaps . I t i s because of th i s

storage l im itation that such items typical ly share a common bitmap. Common ly landscape

simu la tors might on ly have two or three trees stored in memory and repeat them throughout

the s imu l ation. This repetition detracts greatly from the real ism of the scene . A primary goa l

of th i work, graphica l variation of landscapes, i s ach ieved by a l lowing individua l p lant l ive

to exi st in a landscape environment.

There are now s imu lat ions that are using 3 D meshes for the ir plants and rocks. Th is advance

amp l i fies the prob lem of storage space s .i n ce we now must store both a mesh and a text u re

for each tree .

24

4.2 Significance of the Problem

The vast majority of landscape simulators available to the consumer market dclivl!r]1.:ss detail
and smaller environment size than they could. These limits of detail and size are brought
about by storage space constraints on modern personal computers. The implementation of
techniques presented in this study will remove the current limitations on the visualisation of
landscapes imposed by the lack of storage space available.

4.2.1 Impact of the Work

The gaming community now stands at the edge of a new revolution in gaming technology,
because the continuous level of detail engines, currently being developed, offer the possibility
to display larger amounts of detailed terrain data on the screen.

Major gaming companies are now developing the CLOD engines that have been published in
recent academic papers. Until recently most commercial CLOD engines were still under
development. It is a goal of the gaming community that one day, soon, CLOD engines will
allow a user to climb to the top of a skyscraper and look out over a city which can be
explored. A major problem with this possible environment size is, if it were possible to render
an entire city to screen, how will the map for an entire city of buildings be stored? Even if it
was possible to store an entire city of buildings it is unlikely that a level designer would be
willing to sit down for five years to create such a city. The work presented in this paper is
designed to be a possible foundation for addressing these problems.

4.2.2 Impact of the Work on the End User

"Twenty years from now you will be more disappointed by the things you didn't do than by
the ones you did do. So throw off the bowlines. Sail away from the safe harbour. Catch the
trade winds in your sails. Explore. Dream. Discover."

-Samuel L. Clemens [author of Huckleberry Finn]

The author has taken the view that many computer games currently on the market provide a
new means of exploration. This exploration occurs as users move through areas in the
simulated environment for the first time. Computer games offer many of the same
motivations that drive explorers such as the ability to find new areas of an environment and
interesting environmental features that are worthwhile finding. There are however some
motivational qualities missing:

, _,

• The feeling that an area is so lurgc it could be explored forever.

• The aspect of there nlways being new things lo sec.

• The feeling that you nrc the lirst person ever to sec some part of the planet.

It is hoped that this work will provide a mctho<l for including these missing qualit ies, and

hence have a quick appeal to users.

26

5. METHODOLOGY OF CONTINUOUS TERRAIN GENERATION

AND VISUALISATION

In order to create a real-time landscape simulator with dynamic non-stored graphics the
terrain in the landscape simulator must be spontaneously created and never stored on disk.
Furthermore the terrain must be created only around where the user is positioned. If we arc to
maintain a terrain around a user's position, it is common to create the terrain in small blocks
which join together to fonn the terrain the user secs. These blocks are referred to as terrain

pages. The advantage of these pages is that areas of terrain can be added or removed from the
landscape without other parts of the landscape having to be recreated. Controlling the creation
and removal of terrain pages is known as terrain page management. Terrain page management
allows terrain local to the user's viewpoint to be maintained and updated \Vhen there is a
change in the user's position on the landscape.

Terrain page management is crucial to the performance of the landscape simulator. Section
5.2 addresses the issue of how to create an efficient, high performance page manager. It is
also necessary to create the te1oain information for each page. The work presented by
Magnenat-Thalmann & Thalmann (1985) is adapted for this purpose. If the terrain generation
algorithm is seeded with the pages position on the terrain, it is possible to recreate pages the
same way each time they are visited, By utilising this technique it is not necessary to
permanently store terrain infonnation for a terrain page, since the user is assured of seeing the
same terrain infonnation every time he/she visits the page.

The last part of this chapter addresses the issue of visualising the terrain generated by the
terrain page manager. The terrain page management and terrain generation algorithms are
integrated with an algorithm that creates level of detail meshes. It is via the integration of
continuous level of detail meshes that continuous terrain generation is shown to be a practical
and modern approach to terrain visualisation. The details of the CLOD algorithm presented in
the implementation are presented in section 5.5.

27

5.1 Terrain Generation Algorithm

The goal of the terrain generation algorithm is lo create hcight clcvalion data consistcnl wi1h

what the actual tcrrai11 is expected to look like. The terrain generation a lgorithm should h1.:

able lo generate a piece of terrain given a seed valuc, environment parameters and a lrn;:1t iun.
Furthermore given the same parameters the terrain gcncrntinn algorithm should give !he same
resulting terrain each time it is run. Because the terrain gcncration algorithm is capable of
recreating terrain identically, areas revisited by a user will always appear the same.

Before a terrain generation algorithm can be built, a suitable terrain representation format
must be selected. Section 5 . 1 .1 examines available storage formats currently used in
geographic infonnation systems. and shows why the Height Field Grid is the most suitable
format for this work. Later in section 5 . 1 . 1 .3, information is presented on the workings and
maths of the Height Field Grid storage format.

A terrain generation algorithm must be specially designed to suit the data format used to
represent the terrain. The primary evaluation criteria of the terrain generation •writhrns arc
the speed in which it executes and the realism of the terrain that it generates. In .)ection 5.1.2
the terrain generation algorithm used in the implementation is discussed.

5.1.1 Terrain Representation formals

The problem of an appropriate storage format for terrain data is basically concerned with
choosing a format for the storage of data to represent terrains. The data structure chosen will
influence such things as memory requirements, processing speeds of the landscape simulation
and structural limitations. Structural limitations refers to whether non-extruded features. cg.
caves or over-hangs, can be represented. Thus the data format used will determine both the
capabilities and efficiency of the landscape simulation.

The three different data structures used to store the representations of terrain in landscapes
are:

• Height Field Grid (Referred to as a Digital Elevation Matrix (DEM) by those in the
geological information systems field)

• Triangular Irregular Network (TIN)
• Digital Contour Line

F igure 5 . 1 shows how data i n these three formats is stored . The 'National Imagery and

Mapping Agency" (2000) present information on these formats, as wel l as sample terrain

datasets . The formats presented here are standard formats adopted by government agencies

and the geograph ic information i ndustry. Any e l ectronic terrain data purchased from data

brokers or provided by government services wi l l general ly be �tared in one of these formats.

� • •
231 235 233

• •
235 244 235

• •
227 230 228

• •
224 228 224

• 4
224 218

• 4
230 22�

•
224 221

•
21 9 216

Height Field Grid or Digital Elevation Matrix

The height of the landscape i s sampled at regular

intervals . The information is stored i n a 2

d imensional array. The ar ray positions correspond

to posit ions on the landscape and store the height

of the landscape at the correspondi ng point.

Triangular Irregu lar Network

Th i s format simply stores a l l the tri angles requ i red

to define the landscape.

Digital Contour Line

Stores contour J j n es and re levant height data .

Figure 5. / : Available terrain data storage formats

29

5.1 . 1 . 1 Storage Considerations

The thrct: formats arc evaluated according to their performance and limitations. Bitters (2000)
presents information covering this subject in further detail.

Height Field Grid

The Digital Elevation Matrix format has the fostcst processing speed of the three possible
formats. However the memory requirements of this algorithm are comparatively large.
Because the matrix in this format holds only one value at each field there is no way to store
non-extruded features such as caves. The algorithms used by a simulator using this format are
simple to implement, and thus provide a good development time. Typical applications for this
fonnat include:

• Geological surveys
• Interpretation of satellite photography
• Computer games
• Flight simulators

Triangular Irregular Network

The Triangular Irregular Network format can be displayed efficiently, but altering detail in
this format is expensive and thus it has a relatively slow processing speed. The memory
requirements of this algorithm are the most manageable of the three types because it provides
detail appropriate to the relief and jaggedness of the areas represented. This fom1at is the only
fonnat to have no structural limitations, this means that it can model any geographical feature.
The algorithms used by a simulator using this format are difficult to implement and are prone
to bugs in their implementation. Typical applications for this format include:

• Computer games
• Flight simulators

Digital Contour Line

The Digital Contour Line format has by far the slowest processing speed and largest memory
requirements of the three possible formats. The format is also not capable of storing non
extruded features such as caves. Implementation of a simulator using this format is difficult
and generally this fonnat is avoided. The main advantage of this fomrnt is that existing
hardcopy contour maps can easily be converted to this fonnat. Typical applications for this
format include:

JII

• Weather systems

• Geological i nformation systems

• Geological arch iv ing

When exam i n i ng the avai lable terra in repre entat ion fonnats for processing peed memory

requ i rements and structura l l im i tat ions, the he ight fie l d gr id representat ion fonnat i s the most

suitable for th i work. The primary reason for choo ing height field storage format is that

a l gor i thms operat i ng on data i n t h i s format run fa ter. As a majo r difficulty i n imp lement i ng

th i work i s to get the landscape s imu lator to run i n real-t ime, the fastest processing speed of

th i s a lgor i thm makes it the first choice, regard less of its d i sadvantages .

5 . 1 . 1 . 2 The Height Fie ld Storage Model

Sampl i ng the height of a landscape at regu lar i n ter a ls over a rectangu lar grid is the bas is of

how data for th i fonnat is created . The storage format for data a height field grid is shown in

F igu re 5 .2 .

• • • •

231 235 233 224 21 8

• • • •

244 235 230 226

• • • •

227 230 228 224 221

Figure 5.2: The height field data format

The data i n F igure 5 .2 would be stored in a computer ·s memory as the array shown in F i gure

5 . 3 .

{ 23 1 235 233 , 224, 2 1 8

23 5 , 244. 23 5 , 238 , 225 ,

227, 230 , 228, 224 ,22 1 } ;

(row 1)

(r01,11 2)

(row 3)

Figure 5. 3: A Height Field Data Array

G iven that the d istance between the sample i n a height gr id is known and constant, the

position of the elevation data corresponds to its posit ion i n an array. To translate an e levation

value in an array to a point in a 3D coord inate 3ystem the formu la in F igure 5 .4 can be u sed .

3 1

X = i • d

y - grid [i](j J

z = j . d

Where:
i,j : array indices
x, y, z : resulting poinl in 3D spm;c
d : distance at which terrain is sampled
grid : the height field array

Figure 5.4: calculatmg 3D coordinates of data m a height field grid

Height field data is commonly derived from satellite imagery. Satellite sensors can produce
images that record the height of terrain at regular intervals.

5.1.2 A Terrain Generation Algorithm

Given that we are using the height field representation model for our terrain data, there is a
terrain generation algorithm that operates directly on data in this format. This terrain
generation algorithm is called midpoint displacement.
5.1.2.1 Midpoint Displacement

A landscape can be considered a fractal surface with nearly infinite surface area. For a
description of fractal surfaces see Mandelbrot (1977). From a distance we can approximate a
landscape by a line that follows the silhouette of the horizon. As we approach the horizon the
line has to deviate for boulders and variances in the ground. As we get even closer the line has
to follow pebbles, then grains of sand and so on. Basically anywhere we think we see a
straight line, when we look closer we see that it is not actually a straight line. Curved lines
that seem to have a constant derivative, upon closer examination arc actually composed of
lots of smaller lines.

Since, in a landscape, every line is composed of more lines, it is impossible to determine a
derivative for any of the lines. With no derivative we cannot determine the surface area of the

32

1

3

terrain. Figure 5 .5 shows the increasing detail present in a fractal surface, by using
photographs of a real landscape.

2

4

Figure: 5. 5: Landscape detail

These photographs in Figure 5 . 5 were taken with a zoom camera. Note the increasing
complication in the horizon as the camera zooms in on the scene.

Terrain is generated (simulated) using a midpoint displacement function. The midpoint

displacement method is best demonstrated in two dimensions: Figure 5 .6 shows the process of
midpoint displacement.

33

First we take a straight l ine (I) , and bisect it into 2
lines. The bisection is made in the middle of the first
line.

2

-- -----== The point where the two new sub-lines connect is

displaced, either above or below the midpoint of the
line. This gives us two lines in the rough shape of a hill
or valley (2) .

3

--�

We repeat this process to the two new lines, creating 4
lines (3) . This time though we use a smaller
displacement at the midpoints .

This gives us a recursive algorithm that produces a
jagged line representing a silhouette of a landscape.

Figure 5. 6: Midpoint displacement in two dimensions

4

5

Note how the progressively generated l ines in Figure 5 .6 resemble the progress ively
magnified horizon l ines in the photographs in Figure 5 . 5 . The above phenomenon or style of
line is known as fractionaf Brownian motion. If the displacements of the midpoints are

determined with a random number generator we have a mathematical noise known as brown
n01se.

5 . 1 .2 .2 Midpoint Displacement in Three Dimensions

To adapt the Brownian motion techn ique (in 5 . 1 .2. 1) to three dimensions we follow the
workings of Barnsley et al. (1988) . Trus work can be applied directly to a height field grid.

We start the process by generating 4 random points at the corners of the height field grid, this
provides the data with which we begin our process. This is shown in Figure 5 .7 .

34

• •

..� . ----... _
........ __

• •

Figure 5. 7: Midpoint Displacement, Initial state

First step: Define a height for the point at the centre of the 4 points of data that we have

already created, and calculate the height by taking the average height of the four points

(above left, above right, below left and below right) around the new point. This is shown in

Figure 5 .8. To complete this step the new middle point is displaced by a random quantity,

making the point either higher or lower than the average of the points around it.

• •

•

•

Figure 5. 8: Midpoint Displacement, step I

Second step : Define a height for the points above, below, left and right of the midpoint in step
1 . The height of any one these points is determined by averaging the height of the existing
points above, below, left and right of the point. This average height is then displaced with a
positive or negative random quantity. The result is a new grid of defined points (with
Brownian motion), twice the resolution of the previous grid, see Figure 5 .9 .

35

5.2 Terrain Page Management.

The midpoint displacement algorithm can be used to tcrraform a page of data in a page
management scheme. The objective of page management is to divide a landscape into
multiple blocks or pages which tile together to form a visible landscape. By creating
individual landscapes for each page, each time the page is created we have the basis for on
demand creation of landscapes. The use of pages also increases the speed of landscape
creation by reducing the amount of overall recursion present in the creation of a terra in. These
pages are created individually using correspondin!! boundary values and tiled together to form
a terrain. The use of terrain pages prevents the midpoint displacement algorithm from having
to generate the entire map at once, thus allowing for efficient generation of only the terrain
that is needed.

5.2.1 Existing Terrain Page Management Techniques.

A major challenge to the terrain generation algorithm is the maintenance of terrain around the
user's viewpoint. This algorithm is intended to only generate the terrain that is around the
user's viewpoint and visible to the user. To achieve continuous generation a page
management algorithm is constructed. The algorithm presented in section 5.3 is an approach
devised by the author especially for this work. For information concerning existing page
management algorithms see Eberly (200 I).

In the field of page management:
• A page is defined as a height field grid.
• A map is defined as a collection of tessellating pages.
• A submap is a collection of adjoining pages usually representing the user's visual

vicinity.

An entire map (a planets worth) of pages is typically too large to be stored in memory. To
work around this limitation this work maintains a collection of pages called a submap. This
submap is defined with the user's point of view being in the centre of the submap. The
submap is responsible for storing all terrain data visible to the user at the current point in
time. The CLOD algorithm employed to visualise the terrain needs to operate directly on this
submap. The paging algorithm employed for creating and removing of pages in the submap
must be highly efficient since it is concerned with frequently paging large amounts of
memory. For further discussion on page management i.:onccpts sec Mauro (2000).

J7

5.2.2 Submap Page Management Algorithm

It 1s the user's movements that trigger page creation and delet ion. With this in mind

examination of the page management algorithm wil l focus on how the algorithm responds to

the user's movements.

The submap works by maintaining the user ' s position in the middle of the map. As the user

moves a distance equivalent to one page the submap is adjusted around the user's position.

Two events occur to make this possible:

• New pages are created as the user comes within viewing distance of them.

• Pages in the submap are removed as the user moves away from them and they

can not be seen any more.

5 .2 . 2 . 1 A S imp le Approach to Submap Page Management.

Figure 5 . 1 1 is an example of a simple approach to page management. This example will be

used to explain the simple approach to page management:

1 2 3

4 5 6

7 8 9
Figure 5. 1 1 : A basic 3 by 3 sub map.

In the submap, shown in Figure 5 . 1 1 , the user is s ituated on page 5 . Jf the user in this submap

was to move one page right, the following steps must be taken to ensure the user remains in

the centre of the submap:

• pages 1 ,4,7 are discarded.

• pages 2,5,8 are moved to pages l ,4,7

• pages 3 ,6 ,9 are moved to pages 2,5, 8

• pages 3,6,9 are created from new map data.

38

The visual results of this operation as applied to map data for the planet Earth are shown in

F igure 5 . 12 .

Before move : After movement 1 page right

Figure 5. 12: Simple page management

In the previous example the user's position has remained in the middle of the submap. Since

the user in this example always remains in the same position on the submap, it is the position

of the submap on the overall map that changes to allow for user movement across the map.

The altering position of the submap is shown in Figure 5 . 1 3 .

Position A Position B

Figure 5. 13: Submap Movement in Simple page management

39

5.2.2.2 Current Techniques for Implementing Simple Page Management

The output submap from the page management routine is what will be visible lo the uscr. The
submap will be used as a source of data for the CLOD algorithm. Unfortunately th1.: CLOD
engine interferes greatly with implementation of the page management algorithm.

Currently there arc two algorithms for terrain page management. Unfortunately neither of
these two page management techniques arc suitable for this work.

The first algorithm for terrain page management involves
• Implementing a two dimensional array of pointers to pages.
• Creating terrain pages with memory allocation.
• Removing pages by releasing memory.
• Using pointer swapping to shift pages in a submap.

The second algorithm for terrain page management involves:
• Maintaining a submap as a grid of height points.
• Defining a page as a sub�portion of the submap grid.
• Using memory movement routines to relocate memory within the submap in order to

shift pages.
• Overwriting memory that is redundant when new pages are created.

On inspection it can be seen that the first type of page management is more efficient because
the use of pointers in this technique provides for a highly efficient mechanism to swap pages.
The problem with this page management technique is not the efficiency of the technique itself
but the fact that the terrain generation algorithm and the CLOD viewing algorithm have
problems working with multiple separated pages. Both these algorithms have to constantly
figure out on which page the data they are working on exists. Since both the algorithms aLcess
a lot of data it becomes highly inefficient to resolve a page memory address before each
access.

The second technique of page management produces a single block of memory that is easily
accessed by the terrain generation and CLOD viewing algorithm. The problem with this
technique is that page swapping is very expensive, due mainly to having to move large
portions of memory. In fact, for very large blocks of memory typically used in terrain
simulation, the total time of page swapping in this algorithm can be measured in seconds.

411

This effectively results in the simulation stopping for a few seconds every time page

swapping is performed.

Overal l the first algorithm, though it is expensive, is least costly iQ terms of computational

efficiency. S ince the most efficient form of page management commonly used is possibly not

suitable for this work, the author has devised a new approach to terrain page management.

This approach is quicker but is also a lot more complicated. The author has termed this

technique the offset spherical approach. The main advantage of this approach is that a page in

the submap never needs to be moved to a different position in the submap, rather the submap

moves around the page.

5.3 The Offset Spherical Approach to Page Management

This offset spherical approach is a new method developed by the author for page

management. The approach took several months to impleme nt and refine and is a highly

original and efficient data structure. With this method the user moves across the submap and

does not stay centred in the submap. When the user reaches the edge of the submap the view

wraps round to the other side of the map. Figure 5 . 1 4 shows an example for a user moving

two pages right. In this example the square with a cross is the page which the user is over and

the circled pages are pages newly loaded into the submap.

User at initial position After movement 1 page right. After moving another page

right.

Figure 5. 14: The offset spherical page management technique

The offset spherical approach to page management is fundamentally different to existing page

management techniques. In this technique a user no longer remains in the middle of the

submap. A user travelling in a straight line will move though different pages i n the submap .

When a user encounters the edge of the submap they will reappear on the other side of the

41

submap, this is shown in the last two steps in Figure 5 . 1 4 . The next fundamental difference

between the offset spherical approach to page management an d existing page management

techniques concerns how the terrain is stored in the pages. Figure 5 . 1 5 shows a close up of the

third map in Figure 5 .3 . I and it also shows how the map is interpreted as terrain .

a) Submap b) Rendered terrain

Figlll'e 5. 15: Rendering the o.ff.iet .1p/Jerical page mc11iagemenl submap

In Figure 5 . 1 5 the user ' s posit ion on the sub map is indicated by the cross. The cross always

remai ns c lose to the centre of the niap disp layed on screen, but its position on the submap i s

arb itrary. Pages 3 , 6 and 9 exist on the right of the submap stored i n th e simulator but are

i nterpreted as existing on the l eft of the visual landscape. By using the submap i n th is way the

user's view from page 4 actually wraps around the submap .

The reason the offset spheri cal approach to page management is superior to o ther traditional

methods is because fewer pages are processed when the submap is updated. In Figure 5 . 1 4

when a user moves one page right three new pages overwiite three old pages. In trad itional

page management techniques the same process involves creating three new pages and moving

six existing pages .

The terrai n generation routines and CLOD viewing routines can be easi ly modified to wrap

arou11d the new submap type. The page swapping in this offset spherical page management

technique is high ly efficient since no pages have to be moved. It is the efficient page

management and simp le in tegration w ith the other components of a terrain simulation that

make th is approach to terrain managemen t h igh l y desi rable .

42

5.4 Issues for Creating Consistent Landscapes

This section explains firstly how quasi white noise (sec, Knuth (1 997)) is used to create
terrain pages identically each time they arc revisited. Then a technique for the very rough
approximation ofa pre�defined terrain is discussed. Lastly, a technique is discussed to allow
the edge ofa terrain submap to line up with pages that arc outside the submap

5.4.1 Quasi White Noise Synthesis for Terrain Seeding.

It is necessary for terrain pages to be created identically each time they are created if the user
is going to see the same landscape each time he/she revisits an area of a landscape. The
midpoint displacement algorithm, in section 5. 1 .2.2, began with four random variables, one in
each comer of the page. These four variables seed the landscape for our map. If we use the
same seeds for each page every time they are generated, our pages will look the same each
time we visit them.

We could store a bump-map (as greyscale bitmap), so that each pixel corresponds to a corner
point on the page. The result of this is that the landscape is an enhanced version of the bump
map. This technique is effective, but it doesn't work for large terrains, such as the Earth. If
each page represents l 00 metres and the diameter of the Earth is 40,2 1 2 km the resulting
bump map is 400,000 by 200,000 pixels. This example will require about 80Gb of storage.
Since storing even one planet's data on a conventional hard disk is not practical, we need to
fall back to non-storage techniques.

We can use procedural white noise as a non-stored source of seed heights for our terrain
pages. White noise is the noise observed on a television set receiving a static signal, see Kuo
(1996) for more details. To simulate white noise we define a random number generator that
takes an X and a Y coordinate and returns a normally distributed value.

lfwe wish pages to appear the same each time they are visited by the user we must create a
quasi-random result in our white noise. A quasi-random result means that the function
supplying random noise will always return the same result if given the same x. y inputs. For
more information on quasi-random number generators see Ward (199 1) and Knuth (1 997).

43

Here is a simple sample function, deri ed from Ward (l 99 1) that provides quasi wh ite noise.

constant maxY : = 2 5 5

real whi teNoi se2d (i ntege r x , i n tege r y)

begi n

i ntege r n : = x + (y* maxY)

n : = (n <<13) A n ;

noi s e : = real ((n * (n * n * 1 5 7 3 1+7892 2 1) +1376312 589)) /

14748 3 648 . 0

end

Figure 5 . l 6 shows the resu ltant noise generated by the quasi white noise function:

Figure 5. 1 6: Whire noise generated by a quasi white noise algorithm

5 .4 . 1 . 1 P lanet Creat ing and Defi nable Terrain

In the same way that wh ite noise can be u ed to create seed alues for terrain pages, a smal l

bi tm ap can be altered for th is purpose. Rev i s it ing the Earth example i n 5 .4 . 1 we required a

400,000 by 200,000 pixel bump-map. I f, in th i s example we tart with a 400 by 200 p ixel

height-map and have one p ixe l repre ent l m i l l i on pages i n stead of one page we have an

acceptable image s ize. By averagi ng the appropriate pixel from our bump-map w i th the

output from our 2D quasi white noise function we have a definab le p lanet l ayout. This

a l teration is usefu l for game designers wi h i ng to design the layout of their own p lanets .

5.4.2 Supply-Demand Networks and Dirty Pages

There remains a problem with lhc oflSct spherical page management algorithm discussed so
far. This problem occurs when two pages arc constructed next to each other and thus need to
share a common boundary with no scams. This common boundary presents a problem with
the paging algorithm as presented so for, because pages on the edge of the submap must be
able to tessellate with pages that don't yet exist. To solve this problem this implementation
constructs a consumption·demand network. This network has two rules:

• If two pages arc constructed next to each other, the right most page is responsible
for adapting itself to suit the boundary of the left most page.

• If two pages are constructed above each other, the bottom most page is
responsible for adapting itself to suit the boundary of the top most page.

The result is a collection of pages suited to tessellate with each other, with the exception of
the top most row and the left most column. These two rows are created without being adapted
to the pages around them. They are not visually correct but supply correct boundaries for
other pages. Those pages that are not suitable for display are known as dirty pages. Any edge
of a page that adapts itself to suit the boundary of another page is known as the demand edge,
the other edges used for other pages to adapt themselves to are known a s supply edges. When
linked up, these pages create a supply-demand network as shown in Figure 5.17.

45

d , , d , , d , • d , '

d d d
- .. -

C
...

C
- C

C C C C

d , • d , , d , , d, ,

d d d
.. - -

..
C C C C

C C ' C C

d , , d , , d , , d n

d d d
.... -

.... C
...

C
...

C

C C C C

d , , d , , d , , d• ,

d
d

d
- -
...

C C C C

C C C C

,, H H ,,

...
...

...

..

....
Key:
c = supply
d = demand

(Dirty pages in red)

Figure 5. 1 7: A supply demand network

5.5 Level of Deta i l Control for Terrain Visual isation

The terrain that exists in the submap needs to be optimised for real-time viewing by reducing

the amount of triangles present, without degrading image quality . A major advance in

geographic visualisation systems in the Jast few years is the Continuous Level of Detail mesb

(CLOD). These meshes are constructed prior to visualisation and provide an optimal real-time

rendering of terrain information on modern hardware. To show that the work presented by

this implementation is viable for modern visualisation expectations a method for constructing

CLOD meshes is integrated into this work.

46

5.5.1 Overview of CLOD Algorithms

There arc currently two major CLOD algorithms 11:.;cd for terrain meshes. The first algorithm
is the View Dependent Progressive Mesh (VDPM). The other more commonly used algorithm
is the adaptive quad-tree refinement tcchniqlll!,

The VDPM algorithm is concerned with data in a Triangular Irregular Network (TIN). Hoppe
(2000) presents an excellent discussion on this technique. However the Adaptive quad-tree
refinement algorithm is directly applicable to height field data, making it more suitable for
this work. The CLOD algorithm that this work has incorporated was originally presented by
Rottger & Heidrich & Slusallck & Seidel (1 998).

The goal of a CLOD algorithm is to simplify the landscape mesh in appropriate places so as
to reduce the number of triangles used while maintaining the quality of the scene as much as
possible. The major task of any CLOD algorithm is to select which areas of a terrain are
going to be optimised and how much optimisation is going to be applied to those parts of the
terrain.

5.5.2 Examination of Popping Artefacts

CLOD engines that perfonn the operations discussed so far are typically plagued by the
problem of"popping", that is, a terrain artefact that was previously invisible suddenly appears
as the user approaches it. The "popping" problem is caused by a terrain clement being over
simplified. When detail is increased the CLOD algorithm properly generates the
oversimplified element. This artefact is most evident in CLOD engines that use only view
distance optimisations.

The main solution to the "popping" problem is the use of geomorphs. Geomorphs essentially
allow morphing of a problematic terrain element into a scene. Hoppe (2000) discuses the
theory and usage of geomorphs.

5.5.3 Non Degradive Terrain Mesh Simplification

There are two approaches used to identify areas in a terrain mesh that can be simplified:
• Distance from camera optimisation
• Relief/ hill top areas optimisation

47

5.5 .3 . 1 The "D istance From Camera" Optimisation .

Terrain aspects at a certain distance from the camera are not visible, simply because the on
screen size of these aspects is less than a pixel. Obviously triangles close to the user's position
must be rendered in as much detail as possible in order to look good. The detail reduction is
focused on terrain aspects distant from the user, so that the missing detail takes less than a
pixel when rendered to the screen.

5 .5 .3 .2 The "Rel ief Dependent" Optimisation.

Relief dependent optimisation focuses on the fact that smooth areas of land can be drawn

with fewer triangles than bumpy areas of land. The coarseness of the land is known as the

"relief'. Figure 5 . 1 8 shows in two dimensions how more lines are required for greater

roughness.

(a) 4 L i n e s (b) 1 8 L i n e s

Figure 5. 18 Lines used to model terrain in two dimensions

Also of note to this optimisation are hilltops. It is possible that hilltops (crests) may,
depending on a user's point of view, be silhouetted against the sky. This situation makes the
outl ine of the polygons very noticeable. Therefore we may dedicate more triangles to the
creation of hilltops in order to reduce this effect.

5.5.5 The Quad-Tree Algorithm

The algorithm used by this work to reduce detail (the CLOD algorithm) is known as adaptive
quad-tree refinement. This recursive algorithm utilises a data structure that stores a square

that is optiona11y made up of four other squares which in tum are optionally made up of four
other squares . An example of the quad-tree structure is shown in Figure 5 . 19 :

48

Figure 5. 19: A simple quad-tree structure

This allows for squares to be positioned in greater or lower density at different parts of the
structure. For example, squares can be positioned around a user's position. The comers and
centre of each square correspond to a value in the height field grid. It is with this mechanism
that smaller squares in the quad-tree represent areas of greater detail.

Figure 5 .20 shows an example of increasing detail around the user's point of view .

.

I..,_

I'- User's Point Of view

Figure 5. 20: A quad-tree structure adapted to a user 's position

The comers and centres of each of the final (leaf node) squares in the structure correspond to
a point on the terrain, which is rendered to the screen using triangle fans, as shown in Figure
5 .2 1 .

49

Figure 5. 21 : A CLOD mes·h created by triangle.fans

The level of detai l mesh shown in Figure 5.2 1 is now complete. TI1e problem wi th th is model

is that the corners of the triangles do not line up , which al lows for a problem common to th is

algo1i thm known as tearing. Figure 5 .22 sho�s where th e tearing prob lem can occur in a

q uad-tree structure.

P o s s i b l e T e a r i n g

Figure 5.22: Tearing points in a CLOD mesh

The tearing prob lem can occur on the two points indicated. To highlight how the tearing

problem occurs we examine how the right most point wi l l be effected.

• Fi rst we define l ine "A" as the line along triangle 3 adjoining triangles 1 and 2 .

• If the elevation of the 1ight most indicated po int is such that does not l ie along line "A",

then there will be a gap in the mesh.

so

This gap, when viewed by the user, is known as a tear. To remove the occurrence of tearing

we have two options:
• Make sure possible tearing points are forced to l i e on the appropriate l ines.
• Subdivjde the squares into more triangles, so suspect points will lie upon triangle

junctions.

The first option presented above results in fewer triangles, and less detail but requires
minimal computational overhead. However the OpenGL specification and many hardware
boards do not guarantee that triangles joining along a line of another triangle wi l 1 accurately

render without tearing, no matter how accurately the points are lined up. This implementation
problem makes the second option more des irable. Wright (1 999) suggests the use of a mesh
of triangles that join points on the square using as few triangles as possible. This technique

however involves using structures other than triangle fans.

Rottger & Heidrich & Slusallek & Seidel (1 998) present an algorithm that primari ly uti l i ses

triangle fans. This algorithm was taken into consideration and an adapted for use in the
implementation of this work. The CLOD algorithm that is used in the implementation of this
work is optimised for quickest mesh construction. However the a lgorithm used here also has
a sJight rendering expense due to more triangles.

Figure 5 .23 is an example of how the algorithm implemented in this work constructs a mesh

so as to avoid the tearing problem .

Figure 5. 2 3: A well formed CLOD mesh created by triangle fans

51

The s imp l triangle fan a lgorithm i s used to jo in al l po ints. The s impleness of th i a l gor i thm

reduces mesh generation time, a l though render i ng t ime i s more expensive . Th is nove l

approach to a CLOD algorithm i s intended to reflect the increased speed of rendering

hardware as compared to CPU speed

5 . 5 . 5 . 3 Resu lts of the Quad-Tree Algori thm

Figure 5 .24 shows two images that were generated by the CLOD algorithm described i n th is

work . The left image shows the position of the quad-tree squares. It i s important to note that

every quare i a lways touch i ng a square either of the ame s ize, tw ice its own size or ha lf i ts

own ize . The right image demon trate deta i l reduct ion accompl i hed by the CLOD

algorithm . This image is also an example of a leve l of detai l terrain visible in real-t ime.

Figure 5. 24: Me hes generated by the Quad-Tree ba ed CLOD algorithm

52

6 METHODOLOGY OF CONTINUOUS PLANT LIFE

GENERATION AND VISUALISATION.

In the field of landscape simulation plant life is classified as belonging to a collection of
objects called non-terrain elements. The term non-terrain clements refers to all elements of a
landscape that are not geographical, cg rocks, roads, plants. The implementation in this work
is limited to the placement of plant life non-terrain data. For information concerning storage
and usage of more complicated non-terrain clements, such as roads, housing and political
boundaries, the author directs interested readers to the very complete works of Ohler (1 994).

The placement and creation of plant life is tied to the page management algorithm discussed
in the last chapter. The implementation that is provided with this work uses random point
generation to place plant life in the terrain, The author directs readers wishing to place plant
life in a more scientifically correct manner to Mandelbrot (1977).

Meshes that model plant life can be generated using fractal techniques. In keeping with the
level of detail concept discussed in previous chapters, the plant life generation algorithms
presented in the implementation can be drawn at different complexity levels depending on
how close the user is to the mesh.

This chapter is dedicated to the construction of plant meshes, and how the plant generation
algorithms meet the qualitative objectives of:

• Quick execution
• Production of results faithful to the visual appearance of plant life

The primary objectives of plant life generation will also be examined, namely:
• The production of a wide variety of species
• The production of visible variation in different plants of the same species
• The production of detailed plant meshes

53

6.1 Construction of Plant Meshes

The ba s i s for the implemented tree/plant generation routines follow closely the pioneering
work of Lindenmayer (1 968). The algorithms presented in this work arc focused on
replicating what plant structures looks like, that i s, plant life appearance, rather than
modelling biologically correct plant structure. This difference i s subtle, but i s used to
accelerate the modelling of plants, because it i s easier in some cases to utilise the rules of
plant appearance, rather than the rules of plant growth.

Because of the focus on plant life appearance, a view of plant topology will be defined for use
in this work. It is stressed that these views are biologically based but are not necessarily true
to the correct biological topology of plants. This proposed topology i s derived from personal
re search into visual aspects of plant topology combined with existing research on biological
topology. The adaptation of the biological topology of plant life for plant life generation is
well presented by Reffye & Edelin & Francon & Jaeger & Puech (1 988, 1 5 1 - 1 58) which is a
primary source of biological information utili sed in this work.

The general structure of any plant follows a recursive model. This model fonns the basis for
most common plant topology. And the basis of the model i s shown in Figure 6 . 1 .

3rd Order axis
,_-----

� 2"" order axis

I st order axis

Figure 6. /: The basic rec111�sive model of plant .ftruct11re

54

Any tree or plant generally follows these rules.
• A branch is a length of wood containing nodes
• Nodes arc spaced at similar intervals along a branch
• A node may spawn one or more branches of equal or higher order,
• A node may spawn a [car

6.1.1 Quick Execution

It is an essential aspect of this work that the plant generation algorithm is built for real-time
generation. Most works on plant generation advise against doing this. A combination of
increased processing power and highly optimised code is hoped to achieve the unprecedented
goal of real-time plant generation.

Most of the optimisation in this work is based on a simple observation of plant life - plants
have more leaves than branche_s. A plant with only ten branches is likely to have a hundred or
more leaves. This results in the recursive algorithms used to generate plants spending most of
their time creating leaves. It is-because of the exponentially proportional time spent creating
leaf nodes that the leaf creation functions are made as simple as possible, thus minimising
CPU time used. Conversely the branch algorithms are the ones least called and contribute
most to the shape and appearance of the plant and are thus allocated more relative CPU time.

Plant aspects such as rough bark surfaces and the use of textures arc not visible from a
distance. The plant life can be created with these aspects missing when the plant life is far
enough away from the user for these aspects to not be noticeable anyway.

6.2 A Topology for the Production of Detailed and Varied Plant

Lives

To produce results faithful to the visual appearance of plant life, data used to formulate
individual plant models is derived partly from personal "in the field" research, and from on
line botanical databases. The in the field research was conducted over several months
focusing mainly on plant life native to Western Australia. The main on-line database used
was "Plants Database" (2000). This database provided mainly information relevant to plant
life native to America and Europe.

Centrnl to any plant life topology is branch order. The ordcr ofa branch dctcrmincs the
behaviour of the branch. The highest order brnchcs arc leaves. The lowest order branch is the
trunk of the tree. This is shown in Figure 6.2.

Figure 6 . 2: Branch order

Each species of plant life has a pre�detennined maximum branch order. This makes a
configurable branch order very important in producing different species of plants. The
implementation provided allows specification of different growth/appearance attributes
(parameters) for each branch order. This facilitates creation of complicated plant forms.

There are many parameters used in the generation of plant life. There is a performance trade
off in the generation algorithm between the amount of parameters present and execution
speed. In order to satisfy the requirements of execution speed and botanical realism the
following parameters have been identified as being suitable for inclusion in the plant
generation algorithm.

• Ramification
• Length Reduction
• Fertile Area
• Bifurcation
• Continued Bifurcation
• Gnarl
• Phyllotaxy
• Multiple Branch nodes

The above parameter level is complicated enough to model a large variety of plant species. It

is unlikely that users would benefit greatly from an increased set of parameters to control
plant life generation.

These parameters wil l now be discussed with reference to how they create realistic plant l ife

representations and how they meet the objectives of detail and variation in plant l ife.

6.2.1 Ramification

The definition of basic plant topology states that branches can have sub-branches that are of
higher or equal order. Ramification is defined as a branch being given a higher order than its
parent; ie the sub branch is of a different order to its parent.

There are three types of ramification :

• Rhythmic
• Continuous

• Diffuse

These ramification types are shown in the Figure 6.3 .

Rhythmic Contiltuous Diffuse

Figure 6. 3: Branch order ramification

Definition of terms:

Continuous ramification

Rhythmic ramification

- each branch is of a higher order than its parent.

- some of the sub branches belonging to a parent are of
equal order and the rest are of higher order. There will
be a repeating pattern or rhythm to which branches are of

lower order.

57

Diffuse rmnilication w There is random function that determines whether any
particular sub branch i s of equal or lower order

Statistics used in the proposed topology

Ramification type:
Specifics continuous, rhythmic or diffuse ramification. This allows for the production
of a variety of plant species.

Lowering of order:
The probability of a child branch being of an order one less than its parent. Child
branches that are not of an order one less than its parent will have the same order as
i t s parent. This allows for the production of a variety of plant species. All branches
created are tested against this probability. This means that individual plants of the
same species will have different orders at different branches, allowing for variation in
plants of the same species.

Node survival rate:
The probability of a node on a branch spawning a child branch. This allows for the
production of a variety of plant species. All branches created are tested against this
probability. This means that individual plants of the same species will have different
amounts of branches, allowing for variation in plants of the same species.

6.2.2 Length Reduction

Length reduction refers to the phenomenon by which new subwbranches deriving from a
parent branch are generally smaller than their parent. This phenomenon i s caused by the sub
branches being younger than their parents and not having a s much time to grow. Sub
branches being smaller than their parent is not always the case, alteration s to this rule are
commonly observed when there has been damage to a plant. Length reduction i s a "rule of
thumb" useful when modelling plants.

Statistics used in the proposed topology

Length reduction:
The average ratio between the length of a parent branch and the length of a child
branch relative to the di stance between child's base and the parent's base. This allows
for the production of a variety of plant species.

ss

Variation:
The amount of variation allowed on the average length reduction of branches from

the same species. This allows for variation in plants of the same species.

6.2.3 Fertile Area

A sub branch produced by a parent branch is usually produced at the top of the parent branch.
As the branch grows the first sub-branch created remains towards the base of the branch, ie.
the closer a branch is to the base of its parent the older it is.

Most forms of plant life have branches with infertile regions that contain no sub branches.
This phenomenon for the purposes of this work is categorised into two forms:

Constant Fertile Area
In some cases the fertile area ofa plant is designed to only occupy a small part of the
branch. Typically the fertile part of this type of branch has a different texture to the
rest of the branch.

Percentage Fertile Area
The other type of fertile area most commonly observed is a percentage fertile area.
This results in a certain percentage of the branch being fertile. The larger the branch
the more the fertile area, but in the same proportion as in smaller branches.

Statistics used in the proposed topology

Fertile Area Type:
Specifies a "constant fertile area" or a "percentage fertile area". This allows for the
production of a variety of plant species.

Fertile Area:
In the case of constant fertile area, specifies a distance from the end of the branch that
is fertile. In the case of percentage fertile area, specifics the percentage of the branch
that is fertile (form the end of th� branch). This allows for the production of a variety
of plant species

Variation:
The amount of variation allowed in the fertile area fonn branches in the same species.
This allows for variation in plants of the same species.

59

6.2.4 Bifurcation

Bifurcation was first examined for its mathematica] basis by Leonardo Da Vinci in his
notebooks (Da Vinci, 1 5 1 0). B ifurcation is the phenomenon where a branch splits into two,
the frangipani in Figure 6.4 is an exce11ent example of this phenomenon.

Figure 6.4: A Frangipani

Bifurcated branches are all of the same order. The branches formed from bifurcation are not
sub-branches (from a biological perspective) and can be considered as being the same branch.
Bifurcation is similar to identical human twins in that two branches are formed instead of one.

In F igure 6.4 you will notice that the right most branch has the same length as the sum of the
branch that bifurcated Jeft from its base and any one of its children.
This visual aspect occurs because at any division both new branches are just a continuation of
the original branch. Thus they have both existed for the same length of time and have
received the same nutrient line (growth). Da Vinci noted in his notes that "all the branches of
a tree at every stage of its height when put together are equal in thickness to the trunk" (Da
Vinci, 1 5 1 0) .

Statistics used in -the proposed topology
Chance of Bifurcation:

The probability of a branch bifurcating. This allows for the production of a variety of
plant species. All branches are tested against this probability, this means that
individual plants of the same species will have different bifurcations at different
branches, allowing for variation in plants of the same species

60

Balance:
The average dominance of one branch (growth and angle closer to parent) over the
other branch produced in the bifurcation. This allows for the production of a variety

of plant species

Variation of balance:

The variation in the balance for plant life of the same species. This allows for
variation in plants of the same species.

Variation of bifurcation angle:
The variation possible in the angle of bifurcation. Allows deviation of the angle from

what is determined by the balance statistic. This allows for variation in plants of the

same species.

6.2.5 Continued Bifurcation

Often branches on a plant wil l appear to divide into 3 or more parts, see Figure 6. 5 .

Figure 6.5: A Ficus Bay displaying continued bifurcation

On closer inspection we see that what appeared to be a three way split is often a bifurcation of
one branch followed by a bifurcation on one of the other branches, see Figure 6 . 1 6 . Many

plants will develop a secondary bifurcation one node after the original bifurcation, similar to

how human triplets are made.

61

Figure 6. 16: A Ficus Bay displaying continued bifurcation (detailed view)

Often the secondary bifurcation is at 90° to the original bifurcation, as shown in Figure 6. 16 .
This multiple division is termed continued bifurcation and i s not limited to the production of 3
branches but could result in 4,5,6, 7,8 or more subdivisions. A useful statistical note is that
higher numbers of branch subdivisions become increasingly less probable.

Statistics used in the proposed topology
Chance of continued bifurcation:

The probability of continued branch bjfurcation. This allows for the production of a
variety of plant species. All bifurcations are tested against thls probability, this means
that individual plants of the same species will have different continued bifurcations at
different branches, allowing for variation in plants of the same species.

Chance of 90degree to last bifurcation :
The probability of continued branch bifurcation being at ninety degrees to the
previous bifurcation. Continued bifurcation not at ninety degrees follow normal plant
phyllotaxy. This allows for the production of a variety of plant species. All continued
bifurcations are tested against this probability, this means that individual plants of the
same species will have ninety degree continued bifurcations at different places,
aJJowing for variation in plants of the same species.

62

6.2.6 Gnarl

Gnnrl is the twist of II branch, often either because of traumatic conditions or because of a
plant's design, a branch will not grow in a strnight direction. Note: alien a gnarled brnnch
might produce a protruded knot refereed to as a "gnarl", this protruded feature should not to
be confused with the phenomenon being discussed in this section.

For the purposes of this work gnarls will be considered in two parts: the chance of the branch
changing direction and the probable degree to which the new direction can change. It has also
been noted that sometimes the generation of a large branch from one node will cause a gnarl
in the parent branch.

Statistics used in the proposed topology
Gnarl Probability

The probability of a branch changing direction at any node. This allows for the
production ofa variety of plant species. This also greatly increases the detail present
in plant meshes. All branches are tested against this probability, this means that
individual plants of the same species will have different gnarl characteristics,
allowing for variation in plants of the same species.

Gnarl Angle
The average angle at which a branch changes direction when gnarl occurs. This
allows for the production of a variety of plant species

Gnarl Angle Variance
The amount of variation allowed in the gnarl angle in branches in the same species.
This allows for variation in plants of the same species.

6.2. 7 Phyllotaxy

Phyllotaxy is the position of the buds that create leaves with respect to each other.
Phyllotaxy has two common forms: spiralled and distic. The area of phyllotaxy is complex so
this work models only spiralled phyllotaxy since it is sufficient for most purposes.

There is considered to be an angle or twist between each node on a branch. The value of this
twist is the basic way in which phyllotaxy is modelled in this work, along with some statistics
determining the variance from this twist. Figure 6.17 shows examples of phyllotaxy with a
twist of 0° and90°.

(,3

0° twist

Figure 6. 17: faamples of phyflota,y.

Statistics used in the proposed topology

Phyllotaxy

90° twist

The angle at which a branch twists at any node. This al lows for the production of a

variety of plant species.

Chance Distortion:

The chance of there being a change in phyllotaxy for one node. All nodes are tested

against this probability, this means that individual plants of the same species will

have d ifferent phyllotaxy characteristics, allowing for variation in plants of the same

species.

Gnarl Angle Variance

The maximum amount of variation allowed in a distortion of phyllotax.y at one node.

This allows for variation in plants of the same species.

6.2.8 Multiple Branch Nodes

It is possible for one node to create more than one sub branch.

Typically there are one, two or four sub branches per node. This can vary though. for ex.ample

clover has 3 leaves at its nodes. Figure 6 . 18 shows examples of multiple branch nodes.

a)

Figure 6.18:

b)

a: Branch with one ,l'llh-hranc:h per node

h: Branch wilh two .rnh-branches per node

Statistics used in the proposed topology

Branches Per Node
The number of branches that will spawn from any node. This allows for the
production of a variety of plant species.

6.3 Detail in Plant Life

The goal of producing detailed plant life is achieved by two means. Firstly, the three
dimensional meshes produced by the plant generation algorithm are complex in their shape.
This complexity creates detail in the plant meshes. Secondly, using detailed texture maps for
bark and leaves completes the detail requirements for realistic plant life.

6.4 Variation of Plant Life

6.4.1 Inter Species Variation

The goal of producing a wide variety of species is achieved by two means. Firstly the
paramaterability of the plant generation algorithms allows for the generation of many
different categories of plant shapes. Secondly, using different texture maps on the generated
meshes completes the visual depiction of different plant species.

6.4.2 Intra Species Variation

The variation of different plants of the same species is achieved by the random placement of
branches that follow the rules for the species. Plant meshes can be structured differently but
still be in adherence with the statistics of their plant species. This results in plants that appear
very different but are still noticeably from the same species.

65

Figure 6. 19 is an example thal shows three difforcnt plants created in the implementation tlrnl
all appear to be the same species but exhibit variation.

Figure 6. 19 Variation in plant of the same species

66

7 EXAMINATION OF RESULTS

The examination of results achieved in this work will be taken in two parts:
• Evaluation of fonctionality
• Comparison with today's technology

The evaluation of functionality is intended to describe how this work meets its objectives, The
comparison with current technology is designed to indicate the potential usefulness of this
work.

7.1 Evaluation of Functionality

This section measures aspects of the implementation in order to show its capabilities, The
aspects measured are a combination of the direct functional goals of this work and the general
objectives of any terrain simulator. The primary functional objectives of this work are that the
simulator demonstrates:

• A large landscape size
• High landscape detail
• Variation in plant life

The simulator should also achieve the following goals that are common to all landscape
simulators:

• Visual realism
• Interactive engine speed

The implementation will be discussed with relation to how it meets these five objectives.

7.1.1 Large Landscape Size

Landscape size is measured in kilometres squared. For the purposes of this evaluation
landscapes with Okm2 - 25km2 are considered to have a small landscape size. Simulators with
25km2

- I 00km2 are considered medium in size. Anything greater than I 00km2 can be
considered large in size.

(,7

7. 1 . 1 . 1 Results

The terrain available in the simulator covers approximately 4,294,967,296 kmi, This i s
adequate for simulation of planets similar in size to this earth. Based on this result the
simulator is deemed to satisfy the objective of large landscape size.

7.1.2 High Landscape Detail

Landscape detail i s composed of the detail available in the terrain and the detail used to model
plant life. Terrain detail is concerned with the overall amount of polygons u sed to render the
terrain. The more polygons used the more detailed the terrain will be. Terrain detail i s
measured as triangles per metre squared, this i s measured from the most detailed part of a
CLOD mesh. For the purposes of this evaluation the use of one or more triangles per square
metre can be considered a s developing a highly detailed mesh. The use of between one
triangle per square to 0.3 triangles per square metre gives a medium resolution mesh and
anything less than 0.3 triangles per square metre can be con sidered a low resolution mesh.

Biological detail i s hard to measure, since there i s little data to analyse other than the
appearance of the plant life on the screen. For the purposes of this wurk the visual appearance
of the plant will be measured by recording the smallest features visible when the plant i s
displayed close to the user's position. For the purposes of this evaluation plant life will be
evaluated as follows:
• If individual leaves in the plant are not discernible the plant i s con sidered to be low

re solution.
• If individual leaves in the plant are discernible the plant i s con sidered to be medium

re solution.
• ff details on individual leaves in the plant are discernible the plant i s con sidered to be

high resolution.

7 . 1 .2. 1 Resu l ts

The imp lementati on appl ies about 1 . 8 tri ang les per v irtua l square metre i n a terra i n

mesh . This h igh density is sufficien t fo r rea l i st i c terrain representat ion . The terrai n

produced in the s imu la tion is s hown i n Fig ure 7 . 1 .

Figure 7. 1 : Detailed lerratn scene.fj,'Oln implemented simulator.

This work al lows indiv idual leaf aspects to be displayed when a tree is close to the user 's
position . Therefore the plant life is considered to be high resolution .

As a high amount of v isual detail has been achieved this approach is suitable for automatic
generation of highly detailed landscapes.

7. 1 .3 Variation in Plant Life

Vari atio n in pl a nt l i fe is directly measured by tbe amotmt of individual plants avai lable in the

simulation . For the purpose of this simulation less than ten plants is cons idered to be low

variation . Ten to thi rty forms of plan t l i fe is considered to be a medium amount of variation .

More than thirty forms of plant life is considered to be a l arge variation in plant l ife.

69

7.1.3.1 Results

This work allows the landing of one hundred possible plant species. Each pl:1111 species cm1 be
represented by approximately 1 6,000 possible individual plant meshes, This allows for
1 ,600,000 possible plants in the simulation. This is considered in this evaluation to be a large
amount of plant life variation.

7.1.4 Visual Realism

Visual realism is a measurement of how well the landscape in the simulation models a real
life landscape. This is almost impossible to put into meaningfu l units of measurement so the
work is assessed by the effectiveness of the features provided to achieve visual realism.

For the purposes of this evaluation a landscape simulator is considered to have low visual
realism ifa user has difficulties recognising what is being displayed on the screen. A
moderate degree of visual realism is achieved when the user instinctively knows what it is
that is being displayed on the screen. It is not common for real-time simulators to display a
level of realism that makes the simulator difficult to distinguish from a photograph or movie.
In the event that this was achieved it would be considered a high degree of visual realism,

7.1.4.1 Results

A major visual realism feature present in the implementation provided here is a generic tree
specification language. This language, implemented as a file format, enables specification of
plant life topology as described in chapter 6. Another visual realism feature provided is the
mid point terrain generation algorithm used to create realistic terrain.

With the presence of these features and the results they produce, this implementation
produces images that are readily recognisable as landscape images. Thus the moderate degree
of visual realism expected in landscape simulators was achieved.

7.1.5 Interactive Engine Speed

Engine speed is measured by the number of frames that are rendered by the engine per
second. A simulator needs to achieve 25 frames per second to create the illusion ofa moving
image. However, for ease of use with immediate response it should be capable of rendering
3 0 frames per second.

711

7.1 .5.1 Results

The implementation of this thesis was tcskd on a modern personal computer and fbund to
have an average frame rate of 45 fps.

The personal computer used for this test was constructed as follows:
• 800Mhz thundcrbird CPU
• Geforcc 2 GTS video processor

• 5 l 2mb system ram
• 32mb video memory

7.2 Comparison with Todays Technology

For the purposes of comparing this work with other works in the field two commercial
programs were selected. The two programs and the implementation provided in this thesis
where run on the same test machine and the results were compared.

"Tread Marks" (McNally & McNally, 2000) is the first software chosen for comparison. This

tank simulator is recent and features a typical landscape quality present in todays hardware.

"Draken" (Denman & Patmore & Ebling, 1 999) is the second simulator chosen for
comparison. This simulator has large environment sizes and tries to maintain reasonable detail
levels. This software is often n_oted for the quality of its graphics. "Drakan excels graphically'·
Smith (2000).

7 .2.1 Measures used for Comparison

To accurately compare these three pieces of software it is necessary to formalise what aspects
of the software will be measured. Furthermore to compare these software titles accurately,
units of measurement must be established.

7 1

The aspects ofsofiware tested measure the size, detail, varintion, execution speed and visual
rcnlism of the vnrious sollwarc titles, The following aspects oflhc sofiwarc will be comparc<l
in this study:

• Execution speed
• Viewable distance
• Polygon density
• Map size
• Plant life detail
• Plant life variation

Execution speed is a measurement of how many frames arc drawn per second on average
during a program's execution. This aspect will be measured in frames per second (FPS).

Viewable distance is a measurement of the virtual distance in front of the user where the
object clipping takes place, Any object beyond the clipping distance will not be visible in the
simulation. This aspect will be measured in metres

Polygon density is a measurement of how many polygons are used per square metre to
represent an unsimplified area of terrain. This aspect will be measured in polygons per metre
squared.

Map size is a measurement of the size ofa simulators virtual environment that is explorable
by the user. This aspect will be measured in km2

•

Plant life detail is measured as either being low, medium or high. The measurement given is
detennined as follows:

• If individual leaves in the plant are not discernible the plant is considered to be low
resolution.

• If individual leaves in the plant are discernible the plant is considered to be medium
resolution.

• If details on individual]caves in the plant are discernible the plant is considered to be
high resolution.

Plant Life Variation is a measurement of how many individual plants are possible in the
simulation. This aspect is a whole number derived by multiplying the number of species
present by the number of variations possible for each species.

72

7.2.2 Set up of the Test-Bed

For accuracy of the performance measurements all software titles were run on the same

computer. Figure 7.2 is taken to be a view of the integral components of a graphics system.

Figure 7.2: Integral Components of a graphics system

The specifications of the test systems integral components are as follows:

CPU

System Memory

System Bus

Video Bus

V idea Processor

- 800Mhz AMO thunderbird

- 512Mb 133Mhz

- 133Mhz

- AGP 4x (Fast Write Enabled)

- Geforce 2 GTS 220Mhz

Video Memory - 32mb 364Mhz DOR

Video Controller - Asus based VC

Monitor - Philips 109p (800x600 at 120Hz)

7.2.2.1 Software Set up

In setting up the tests necessary to compare the software, the configuration of the software

titles is a key factor in forming a reasonable comparison of the titles.

All software was configured to run at maximum detail levels. However in no case was full

screen antialiasing enabled because the performance penalty would be too large and introduce

too much unnecessary bias into the results. All software was set up to use 32 bits per pixel

and an 800x600 screen mode.

73

"

7.2.3 Results of Comparison

7.2.3.1 Evaluation of This Work

Execution Speed

This implementation achieves an average frame rate of30 frames per second. This is
adequate for the purposes ofrcal·timc simulation and will improve when the
simulator is run on faster hardware.

Viewable Distance

The viewable distance in this simulator is 300 metres. This is a semi restricted visual
distance in a landscape simulator.

Polygon Density

This work uses approximately 1 .8 triangles per metre squared when rendering a
terrain mesh.

Map Size

The size of the overall explorable landscape in the implementation is about 65
thousand by 65 thousand kilometres, or 4,200,000,000 km2

•

Plant Life Detail

The work presented here provides for highly detailed plant meshes. If desired the
details of individual leaves are visible in the simulator.

Plant Life Variation

This simulation can handle I 00 species of plants. Each species can be viewed as
about 16,000 individual meshes. This allows for 1 ,600,000 possible plants in the
simulation. Extending the limit of I 00 plants is a trivial task for developers wishing to
use more species.

7.2.3.2 Evaluation of "Tread Marks"

Execution Speed

Tread Marks achieves an average frame rate of 45 frames per second. This is
adequate for the purposes of real-time simulation.

Viewable Distance

The viewable distance in Tread Marks is I 000 metres. This is a vcry large visual
distance in a landscape simulator.

Polygon Density

Tread Mnrks uses approximately 2 triangles per metre squared when rendering a
terrain mesh. This i s an extremely high resolution allowing for very detailed terrain to
be displayed.

Map Size

The size of the over all explorable landscape in Tread Marks i s about lkm2. This i s a
very small landscape, which in this simulator tcsscl I ates so a s the landscape is seen to
repeat during travel.

Plant Life Detail

This sothvare provides for moderately detailed plant structures. It i s possible for a
user to distinguish individual leaves on a plant.

Plant Life Variation

Thi s simulator contains only seven possible trees. All plant life present i s always
going to be one of these trees.

7.2.3.3 Evaluation of "Draken"

Execution Speed

Draken achieves an average frame rate of 60 frames per second. This i s m ore than
adequate for the purposes of real-time simulation.

Viewable Distance

The viewable d i stance Draken i s 300 meter s. This i s a semi restricted vi sual distance
in a landscape simulator.

Polygon Density

This software uses approximately 0.5 triangles per metre squared when rendering a
terrain mesh. This i s not sufficient to form highly detailed terrain. Because of this
jagged areas of the terrain often appear unrealistic.

Map Size

Draken has a larger map size than most simulators using its level of detail. The map
size available in this s imulator i s l 000km2• This is achieved by using 1 0 sets of maps
that are approximately I 0km by 1 0km. This software uses I 24mb of data to store this
information.

Plant Lire Detail
Draken provides for plant structures with low detail. The user sees a tree that is more
cartoon like in appearance than realistic.

75

Plant Life Variation

This simulator contains 25 possible plants. This allows for jungle scene to not appear
highly repetitive, but the user does become familiar with what every plant looks like.

7 .2.4 Comparison of Results

The results show that the solution implemented in this work does not achieve the same frame
rate as the competing software. With all the extra overheads used in this implementation th is
was expected. However the results clearly show a large increase in environment size and the
amount of avai lable plant life.

Figure 7.3 shows the different attributes of the compared terrain simulators . On these statistics
the simulators are competitive in their results.

Execution Speed

70 ...-------------------�

60 t----------------,,-,,---=,,---------j

50 +----------------------1

40 +----------r

30 -i-----...----.------1

10 �

a �
This Work Tread Marks Draken

Viewable Distance

1200 ..--------------------�

1000 -i-------------,--...... ..-------------1

!lOO +--------_,

flJO +-----------"

400 +-----------"

200 -

o -
This Work Tread Marks
l l ") V VVII I'\. t n::z:a..i 1 v a N:11

Draken
u, a= I

-

2.5

2

1 .5 ---

-

0.5 --

0 -
This Work

,_

This Work

Figure 7. 3: Comparison of results

Polygon Density

- -

Tread Marks

Plant Life Detail

Tread Marks

I
Draken

Drak.en

76

j

-

F igure 7.4 shows where this work excels over the other works in terms of map size. Note this
graph is scaled logarithmically. This was necessary because the results given by this work

show a mil L ion fold increase in map size. Without a logarithmic graph the other works resu lts
wou ld not be displayable.

Map Size

1 0,000,000,000 , -----------------------,

1 ,000.CXXllOOO +---'I

1 00,000,000 +---•

10.000,CXX> +-----4

1 ,000,000 +----I

100JXX) +---'I

1 0,000

1 ,000 -

1 00 -

1 0 - ,_

1 +----'---...__---r-----------.------''---------l
This Work Tread Marks Draken

Figure 7. 4: Comparison of results

F igure 7 .5 shows the plant life variation resu lts of this work. As expected this work has
incorporated noticeably more individual plant lives than the other works. Note this graph is
sca led logarithmically. This was necessary because the resu lts recorded for this work show a
one hundred thousand fold increase in the amount of individual plant life available.

77

10,000,000

1 ,000,000

100,000

10,000

1 ,000

100

10

1

Rant Life Variation

'

l
This Wol1<. Tread l'v1arks [)ak.en

Figure 7. 5: Comparison of results

78

8. CONCLUSIONS

8.1 Conclusions

The problem discussed in section four concerning storage space limitations in landscapes
simulators has been solved. The techniques of procedurally generating all landscape elements
during a program execution may be slower than alternative techniques but offer an effective
solution for providing larger and more sophisticated landscapes than is currently possible
using non-generative techniqP.es.

As has been shown CPU technology is currently able to run simulations of the fonn presented
in this work. It has also been established that conventional landscape simulators utilising
modern storage devices cannot achieve the same levels of size, detail and variation presented
here. It is these two facts that validate the techniques presented here as being viable for
modern landscape simulators.

8.2 Summary of Contributions

1. Developed a pioneering approach to remove the size and detail limitations imposed on
the terrain present in landscape simulators,

A unique way of handling complex graphical detail and large environment size in
graphical simulations was explored. This field has more potential than can be shown in this
one work alone.

2. Developed a pioneering approach to remove the detail and variation limitations
imposed on the plant life present in landscape simulators.

This allows for a more realistic simulation of a natural environment.

3. Found a practical use for real-time generation of plant nnd terrain meshes.

8.3 Future Research

The author advises readers wishing to continue the work prcscntl!d in this paper of two
possible research directions:
• The integration of techniques to model roads, road layout, city planning and generation of

architectural structures.
• The integration of procedurally generated textures. This research direction would allow

every patch of ground to look unique and all trees will seem to have their own bark.

The first research direction would allow cities to be explored in the same way the land�,;ape

in this simulation was explored. The second research direction would allow for every patch of
ground to look unique and for all trees to have their 0\'..11 bark.

Sil

9. REFERENCES

Abelson, H .• & diScssa, A. /\. (1 98 1). Turtle Geomelly 11,e Computer as u Medium for

Erplori11g Mathematics. London: MIT Press.

Barnsley, M. F., Devaney, R. L., Mandelbrot, fl B., Pcitgcn, H. o., �:,t1p�·. D., & Voss, R. f.

(1988). The Science of Fractal Images, New York: Springer-Verlag.

Barnsley, M. F., Jacquin. A., Malassent, F., Reuter, L., & Sloan, A. D. (1 988). Hamcssin

Chaos for Image Synthesis. Siggraph, 22(4), 1 3 1 - 1 40.

Barrett, A. N., & Mackay, A. L. (1 987). Spatial Structure and the Microcomputer.

Houndmills: Macmillan Education Ltd.

Berg, M. d., Kreveld, M. v., Ovennars, M., & Schwarzkopf, 0. (1 997). Computational

Geometry Algorilhms and Applications. Berlin: Springer-Verlag.

Bitters, B. (2000). Terrian Data. Available:

h ttp://b bq .nc gi a. ucs b. ed u/ education/ curricula/ cctp/u 11 its/ u 11it06/06. ht rn I .

Bourke, P. (I 997). Frequency Synthesis of Landscapes, [on-line]. A vailablc:

http://www.swin.edu.au/astronomy/pbourkefreqland/ [1 997.

Bourke, P. (1998). 2 Dimensional FFT, [on-line]. Available:

http://www.swin .ed u .au/ astronom y/pbourke/ ana 1 ys i s/ff2d/.

Bracewell, R. N. (1 986). The Fourier Transform and its Applications (2 ed.). New York:

McGraw-Hil l Inc.

Brinkmann, R. (1999). The Art and Science of Digital Compositing. San Diego: Academic

Press.

Brunes, T. (1 967). 111e Secrets of Ancient Geomet,y (Vol. 2). Copenhagen: International

Science Publishers.

� ,

Carnmck, J .. Carmuck, t\., Romero, J., & l lall, T. (1 996). ()uakc (Version I) [cmnputcr
software]: id so!lwarc.

Da Vinci, L. (1 5 1 0)., [,unpublished notesj.

Denman, S., Patmore, A., & Ebling, T. (1 999). Drakan, Order ofthc Flame (Version I)
[computer software 1: Surreal Software

Eberly, D, H. (200 1). JD Game Engine Design. San Diego: Academic Press.

Ebert, D, S., Musgrave, F. K., Peachey, D., Perlin, K., & Worley, S. (1 998). Texturing and

Modeling, A procedural approach. San Diego: Academic Press.

Foley, J. D., Dam, A. v., Feiner, S. K., & Hughes, J. (1 990). Computer Graphics principles

and practice (2nd ed.). Massachusetts: Addison-Wesley.

Foser, R. (1996). OpenGL Programming/or Windows 95 and Windows NT. Massachusetts:
Addison-Wesley Developers Press.

Gleick, J. (1 987). Chaos making a new science. New York: Viking Penguin.

Heam, D., & Baker, M. p. (1994). Complller Graphics (2 ed.). New Jersey: Prentice Hall.
Inc.

Hill, F. S. (200 1). Computer Graphics using Open Gl {sic] (second ed.). London: Prentice
Hall.

Hoppe, H. (2000). Smooth View-Dependent leve/-qf-Delail Comro/ and it's application to

Terrain Rendering, [on-line]. Microsoft Research. Available:
http://www. research.mi croso ft.com/-hoppe/.

Kelly, A. D., Malin, M. C., & Nielson, G. M. (\ 988). Terrain Simulation Using a Model of
Stream Erosion. Siggraph, 22(4), 263-268.

Kenneth, J, I., Grant, C. W., Max, N. L., & Hatfield, L. (1 988). Computer Graphics: Image

Synthesis. Washington: Computer Society Press.
R2

Knuth, D. E. (1 997). Se111i1111merical Algorithms (3rd ed. Vol. 2). Massachu setts: Addison
Wcs\cy.

Kuo, H.-H. (1996). White Noise Distrihlllion 11,emy. l3oca Ralon: CRC Press.

Lindcnmuycr, A. (1 968). Mathematical Models for Cellular Interactions in Development.
Journal oj71,eoretical Biology., I & 2.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N., & Turner, G. (1 996). Rcal
time, continues level of detail rendering of height fields. In Computer Graphics.
Proceedings o/Siggraph '96, I 09-1 1 8.

Magnenat-Tha\mann, N., & Thalmann, D. (1985). Computer Generated Images, The stale of

the art. Paper presented at the Graphics Interface, New York.

Mandelbrot, B. B. (1977). The Fractal Geomeo:v of Nature (Rev ed. ed.). New York: W.H.
Freeman and Company.

Martz, P. (2000). Generating Random Fractal Terrain, [on-line]. Gamcprogrammcr.com.
Available: wysiwyg://22/http://www.gameprogrammcr.com/fractal.btml.

Mauro, J., & McDougall, R. (2000). Solaris Internals : Core Keme/ Architecl/lre. New
Jersey: Prentice Hall.

McNally, S., & McNally, J. (2000). "Tread Marks" (Version 1 .0 . 1) [computer software]:
Longbow Digital Arts.

Moller, T., & Haines, E. (1 999). Real�Time Rendering. Massachusetts: A K Peters.

N IMA. (2000). National Imagery and Mapping Agency, [on-line]. Available:
http://www.nima.mil/ [2000.

Ohler, T. B. G. (1994). On the l11fergration of Non-Geometric A.1pects into Access Structures

for Geographic Information Systems. Unpublishi:d dissertion, Swiss Federal Institute
of technology.

Perlin, K. (1 985). An Image Synthesizer. Proceedings <?(SIGGRAPH rs5, 287-295. SJ

rla11ts Datahase(2000),, lData Base]. Natural Resources Conservation Service, Available:
http://plants.usda.gov/,

Press, W, H .• Flannery, B, P., Teukolsky, S, /\,, & Vettcrling, W. L (1 986). Numerical

Recipes rhe art ofScientijic Cm11p11tii1g. Cambridge: Cambridge University i'rcss.

Prusinkiewicz, P .• Lindcnmayer, A., & Hanan, J. (1988). Developmental Models of
Herbaceous Plants for Computer Imagery Purposes. Siggraph, 22(4), 14 1 -150.

Reffo, P. d., Edelin, C., Francon, J,, Jaeger, M., & Pucch, C. (1 988). Plant Models Faithful to
Botanical Structure and Development. Siggraph, 22(4), 1 5 1 - 1 58.

Root, M., & Boer, J. (1999). DireclXComplere. New York: McGraw-Hill.

Rottger, S., Heidrich, W., Slusallek, P., & Seidel, H.-P. (1 998). Real-Time Generation of
Continuous Levels of Detail for Height Fields.

Savchenko, S. (2000). JD Graphics Programming Games and Beyond. Indianapolis: Sams
Publishing.

Smith, R. (2000, August). "Draka11: Order of the Flame" [Review of the computer software
Drakan, Order of the Flame]. PC Gamer California: Imagine Media

Ulrich, T, (2000), Continuous LOO Terrain Meshing Using Adaptive Quadtrees.
Gamasutra(228),

Ward, G. (1 99 [). A recursive Implementation of the Perlin Noise Fu11ctio11.

GraphicGems(Vol. 2) , 396-40 1 . New York: Ap Professional

Watkins, C. D., & Sharp, L. (1 992), Programming in 3 Dimensions. San Mateo: M&T
Publishing, Inc,

Watt, A. (2000). 3D Computer Graphics (3 ed.), Essex: Addison-Wesley.

W:1t1, A., & Watt, M. (1992), Advanced Animation and Rendering Teclmiq11es, New York:
Addison-Wesley.

Wernecke, J. (I g94). 11w lnvenlor Mentor /1ro?,mm111i11g O!�;ecl-Oriented 3/J graphics with
Open Inventor (2nd ed.). Massachusetts: J\ddison-Wcslcy.

Williams, R. (1979). The Ueometrica/ Fo1111datio11 of Nlllura/ Structure, A source hook r!f
design. New York: Dover Publications, INC.

Woo, M., Neider, J., Davis, T., & Shreiner, D. (2000). OpenGL Progrummin>{ Guide (Third
ed.). Mas sachusetts: Addison-Wesley.

Wright, R. S., Jr., & Sweet, M. (1999). OpenGL Super Bible (2nd ed.). Indianapolis: Waite
Group Press.

Artefact

Bifurcate, Bifurcation

Billboard

CLOD (mesh)

Level Designer

LOD (mesh)

Mesh

Popping

Quad-Tree

Tearing

Terraform

Terrain Mesh

Topology

Triangle Count

Triangle Fan

GLOSSARY

Undt:sirablc effect unintcnlionally present in a computer rendered

scene.

To split in two, as in a lake becoming two lakes, typically involving a

"Y' _junction.

A flat textured rectangle used to create the illusion of a 30 object.

A mesh that can have its detail changed at any part its surface.

A per�on who design's an environment for a computer game

A mesh constructed with different levels of detail in different parts of

the mesh.

A col!cction of joined triangles that represent an object in three

dimensions.

A sudden noticeable object that appears as a scene's detail increases.

Regarded as an undesirable artefact.

A data structure that recursively subdivides a 2 dimensional area into

quadrants.

An artefact produced when three triangles join in a "T" Junction.

To shape a terrain. Specifically to alter a terrain/environment to

resemble the earths natural terrain/environment.

A mesh used to define a terrain, typically with no overlapping segments

The concept behind the organisation of a structure, this word has no

plural form recognised in the English language.

The number of triangles used to define a mesh or scene

A series of triangles sharing common edges and one common comer.

Sci

Artefaots

Tearing, 50

Artefacts

Popping, 47

Bifurcation, 60

Continued, 61

Brownian motion, 34, 35

CLOD, 15, 16, 46

A

B

C

Continues Level of Detail Meshes, 15, 16

Definable Terrain, 44

Dirty Pages, 45

D

Distance From Camera, 48

Fertile Area, 59

fractal surface, 32, 36

F

G

Gaussian distribution, 36

geomorphs, 47

Gnarl, 63

height field, 47

Height Field, 3 I

H

Height Field Grid, 28, 30

INDEX

L

Length Reduction, 58

Level of Detail Control, 46

LOD, 16, 40, 46, 47

M

midpoint displacement, 32

Midpoint displacement, 34

Midpoint displacement in three dimensions, 34

Multi-Fractals, 16

Multiple Branch nodes, 64

Noise

Brownian, 34

White, 44

Non-Terrain Landscape Elements, 24

normal distribution, 36

0

Offset Spherical Approach to Page Management, 41

OpenGL, 51

p

Page Management, 3 8

Page Management Techniques, 40

Phyllotaxy, 63

Plant Life, 53

Generation, 53

Topology, 54

Plant Synthesis, 17

Plant Topology

Ramification

Diffuse, 57

Rhythmic, 57

Plant Topology

Ramification, 57

87

Popping, 47

Quad Tree

Squares, 52

Quadtree, 47

QuadTree, 48

Q

Quasi White Noise, 43

quasi-random number generators, 43

Ramification

Continues, 57

Diffuse, 58

Rhythmic, 57

Relief, 48

R

s

Supply-Demand Networks, 45

T

Tearing, 50

Terrain Generation, 15, 32

Terrain page management, 37

tessellating pages, 4 5

transformation function, 36

Triangle Fans, 51

Triangular Irregular Network, 28, 47

V

View Dependent Progressive Mesh, 47

white noise, 44

White Noise, 43

w

88

	Storage free terrain simulation
	Recommended Citation

	Storage free terrain simulation

