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ABSTRACT 

Landscape visualisation is the process of recreating a natural environment and displaying it in 
an interactive graphical simulation. To do this a terrain is displayed together with 
accompanying plant life and other objects. 

Present landscape visualisation software is capable in theory of displaying very detailed and 
large landscapes. The software is also in theory capable of simulating environments with 
thousands if not millions of individually structured plants. In practice though the simulation 
of such landscapes requires such a large amount of storage space that it is not achievable on 
personal computers. Even sto1ing small landscapes with a moderate amount plant life can be a 
major development problem. 

The extent of this problem is such that modem simulators almost always exhibit the following 
limitations. 

• When detailed landscapes are stored to the hard disk, the area of terrain covered is
usually very small.

• When large terrains are stored to the hard disk the detail used is usually low.
• When detailed plants are used in a landscape only twenty or so plants arc created and

used over and over again in the landscape.

This work is an original approach to solving the storage space problem that involves not 
storing any landscape data to the hard disk at all. In this solution, instead of the landscape 
simulator displaying a landscape that is stored on a hard disk, the landscape simulator 
displays a landscape that is randomly generated, The landscape is produced on a need-to
know basis, the only landscape that exists in the simulator is the landscape that the user of the 
simulator can see. If the user's position in the landscape alters then the newly visible areas of 
landscape are created, and the areas no longer visible are removed from the simulator entirely. 
Areas of landscape being visited for a second time are always re-created the same way as they 
were originally created. 
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1.INTRODUCTION

"!fa tree falls in the woods and no one is there to hear it, did it make a noise?" 
-a Kuans of Zen Buddhism.

This work depicts a new engine for computer games and simulators that involve the 
visualisation of landscape. The underlying basis of this engine is that anything outside the 
user's visual vicinity need not exist or be stored in the simulation. The engine depicted in this 
work is responsible for continuously creating a world for the user to see, replacing the 
traditional role of a human "level designer"'. The engine works by maintaining only the areas 
of landscape within the user's visual vicinity. When the user travels through a landscape 
simulation (using this engine), areas of landscape that enter the user's visual vicinity are 
created just before the user can see them. Areas of the landscape that leave the user's visual 
vicinity are destroyed and are no longer a part of·u1e simulation. The engine described in this 
work maintains a constant environment by always recreating the same landscape each time a 
particular part of the environment enters the user's visual vicinity. 

The visualisation of landscape involves ti.vo parts, the visualisation of terrain and 
geographical information and the visualisation of plants and other non-geographical items. 
Landscape visualisation is the process of continuously rendering terrain and non-geographical 
infonnation to the screen in a real-time manner. Many games and real-time graphical 
simulations are set in outdoor landscapes and thus employ landscape visualisation. 

Storage space is the major limiting factor in the visualisation of both terrain and non-terrain 
data. Although advancements in computer hardware, combined with recent research in the 
field of terrain visualisation, now allow for detailed terrains to be drawn, most users cannot 
afford to store the datasets required to take full advantage of the new technology. This work 
will remove the need for large amounts of storage space in landscape visualisation software. 
Removing the need for large amounts of storage space will allow visualisation of larger and 
more detailed landscapes than was previously possible on systems with limited storage 
capacity. 

• A "level designer" is a person employct! to design the layout of environments in computer games and
simulations.

7 



1 . 1 The state of tech nology and  h istorical work 

Land cape s imu lators currently fol low the basic flow chart i n  F i gure 1 .  1 .  

A landscape i s  created, typically by a h uman designer, and stored as part of the datasets u sed 

by a l andscape s imu la tor. There are two datasets in a l andscape s imL1 l ator, one that represents 

terra in data and one that hand les non-geograph ical e l ements. When the s imu l at ion is 

executed the datasets are l oaded from the storage dev ice, processed in the s imulator and then 

displayed to the screen. 

During Execution 

Figure I .  I: Flow chart/or landscape data in a landscape simulator. 

The process of terrai n  v i sual isat ion typical ly converts the terrai n  dataset(s) into a triangu lar 

mesh that represents a terrain. The datasets used in terrain visualisation are general ly height 

values sampled at regular grid intervals. These datasets can be converted to a triangle mesh by 

construct i ng  a l attice i n  3 0  space and us ing the values from the datasets to d i splace the 

intersections of the lattice. It is difficult to render such a mesh to the screen however because 

of the amount of triang le� invo lved. Modern hardware is not capab le of d i splay i n g the 

amount of triangles present in a mesh in th i s  form, i f  the mesh i s  to accurately dep ict a deta i  

led landscape over a reasonable distance. 

Past solutions to the h igh triangle count of terrain meshes i nvolve on l y  rendering objects that 

are close to the user ' s  position and using a fog effect to h ide the m i ss i  ng detai l .  Another 

sol ution is to decrease the reso lut ion of the latt ice u sed for the rendered triangle mesh. This 

reduct ion of reso lu t ion resu lts in fewer but larger triangles, so the terra i n  becomes visible for 

a great distance but is severely lacking in detai  l .  The l imi tat ions, caused by the l arge amount 

of tr iangles used in the visual isation stage of landscape s imulators are the trad it ional 

bottleneck in displaying detai led and large terrains. 

Current research has solved the display bottleneck for terrain visualisat ion .  V iewed near 

ground level most of the triangl es in terra in  meshes are di tant from the user. After 
8 



perspective i s  nppliccl to the rendered image thcsl! triangles will only occupy a few pixels 011 

the screen. Lindstrom ct ul. ( [ 996) u sed this knowledge to create meshes that involved 
different triangle sizes, These meshes use smaller triangles near the user's viewpoint where 
detail i s  important, and larger triangles al areas distant from the u ser, where in reality det,iil 
would become blurred. By adapting the mesh to be optimised about the user's viewpoint a 
user could explore a terrain rich in detail and large in size. This technique became known in 
the industry as continuou s level of detail meshes, abbreviated to CLOD. 

Lindstrom' s  method was not perfect a s  it contained a vi sual di sturbance known as  popping. 
Popping occurs as the user approaches large triangles in the di stance, The triangles in 
Lindstrom's situation are split into multiple triangles and the user can sec the sudden increase 
in detail. This meant that details in the terrain would suddenly appear when a user got close 
enough. Rottger & Heidrich & Slusal[ek & Seidel ( 1998) devi sed a gcomorphing algorithm 
that removed the effects of popping by detecting sharp changes in the terrain and using more 
detail to define these areas when viewed from a di stance. 

With the di splay bottleneck in terrain visuali sation solved, the advancement s  in computer 
hardware allow a modern personal computer to di splay a large detailed landscape with 
varying plant life. However this new advance brings about a storage bottleneck in landscape 
v i suali sation. Currently most modern personal computers do not have the storage space 
necessary to store a large and detailed terrain. Personal computers also lack the storage space 
to store large amount s of individual and detailed non-terrain elements such a s  plant life. 

During the last decade there has been little increase in the size of terrains used in simulations. 
The only increase in terrain sizes i s  due mainly to the increase in storage space available on 
storage devices. Currently a simulation's size i s  dependent on the storage limitations of the 
computer it runs on. Often the dataset for a detailed landscape of fair size may run into 
hundreds of megabytes. For extremely large datasets used in detailed simulations of entire 
planet s the storage space i s  measured in gigabytes, or greater. Typically solutions to storage 
problems involve extrapolation or prediction of extra detail not stored in the dataset. 

This work addresses the limits imposed on landscape vi sualisation caused by the need to store 
large datasets representing the landscape to be vi sualised. The solution presented here nl\ows 
v i sualisation of a landscape that i s  defined procedurally and does not have a dataset. Figure 
1 .2 shows how the simulation engine presented in this work has no storage step in i t s  
execution. The solution presented in th i s  work makes the as sumption that the landscape to be 
vi suali sed i s  a terrain of fantasy; one that does not exist in real life. The solution i s  a viewing 

') 



system that procedurally generates all the graphics that nrc to he displ:tycd on a nci:d-to-know 
basis. 

\ Created 9 ! simulated ! 9 J oi,playcd l

During Execution 

Figure 1.2: Flow chart/or a Dynamic lmulKape Simulator 

The solution presented i s  only applicable to fictional simulations such a s  flight simulators and 
computer games. Geographic infonnation systems cannot benefit from the solution presented 
since they must visualise terrain that actually exists. This lack of application to real 
landscapes i s  not important however because most geographic information systems have no 
problem dedicating many gigabytes of storage space to a simulation. 

The technique of procedurally modelling natural objects applies both to the generation of 
terrain and non-geographical elements. Fractal math i s  the most popular approach used to 
procedurally model natural structures. 

Barnsley et al. ( 1988) presented a collection of techniques to create fractal terrain for 
land scapes. These techniques are not meant for real-time generation, but are adapted for this 
purpose. 

Lindenmayer (1968) developed a technique to represent and model plant life. This technique 
produced realistic three-dimen sional structures that closely modelled plants and trees. A point 
of note on this technique i s  that the algorithm s  involved can be given different seed value s to 
produce differently structured plants of the same variety. 

This work adapts fractal generation techniques for the purpose of real-time modelling. The 
techniques will be used to procedurally generate a terrain and a population of plants which 
will combine to form a landscape. Furthermore, the landscape wilt be maintained on a necd
to-know basis. This work uses this approach to maintain a large detailed terrain populated 
with unique ancl detailed structures for every tree in the landscape, something almost unheard 
of in real-time landscape simulation s. 

1 1 1  



1.2 Rationale 

When one is considering the impact of removing the storage probfcm it is necessary lo 

analyse the effect that the employment of the suggested techniques wlll have on the game or 

simulation user. In lhc end it is the uscr1s acceptance of this technology thnt will determine ils 

success. 

Because of the storage problem current terrain simulations lack variety fn the graphics 

displayed on screen. Removing the storage problems associated wtth landscape visualisation 

will allow a user to explore a virtual \.vor!d that contains m1prccedentcd amounts of variation, 

with detail consistent to modem expectations. It is hoped that the increased landscape size and 

variation will result in more time being spent exploring the environment before the user gets 

bored, By using threewdimensional p[ant l ife with unique and individual structure the scenery 

throughout the simulation will be constantly varied. The variation and uniqueness of the plant 

life will reduce the rate at which the graphics will become familiar to the user. 

1 .3 Overview of the results achieved 

There is a widespread belief that, in landscape visualisation, morletling of terralo and plant 

life should be carried out prior to the actual visualisation of the landscape. ft is a primary goal 

of this work to show that the concept behind modelling terrains during visualisation ls both 

practical and valuable. 

The implementation provided with this document is probably the first terrain visualisation 

system that util ises rr..:aI�time procedural modelling of both terrain detail and plant life as its 

source of infonnation to be visualised. The integration of modem advancements in terrain 

viewing shows thar this process is suitable for modem applications. 

2. BAC�{GROUND INFORMATION

To fully understand the concept of modelling terrain data during visualisation it is important 

to understand how a landscape simulator stores terrain informatio11. 111is chapter summarises 

the "height field grid" method for representing termin data in n computer. 

I I 



2 . 1  Height F ie ld  G rids for landscapes 

A height fie ld gr id  is a two-d i rnens ionaJ array composed of samp led terrain he ights. 

To con truct a height fie l d  gri d  a terra in is d ivided up into a grid , and at each grid point the 

elevat ion of the terra in  is stored into a correspond ing element of the array. This is shown 

graph ica l ly in F i gure 2 . 1  . 

Dataset. (height fie l ds) Terrain 

6 3 4 5 7 

6 2 3 . 5  4 .5  6 . 5  

0 0 0 . 5  2 

1 . 5 0 . 5  2 4 6 

1 0 - I 3 5 

Figure 2. I :  Height field data 

Representing the data in the height field as a latt ice mesh produces a surface that is su  i tab l e  

for render i  ng. 

Though the height field storage format itself is used often,  the p la i n  vanilla surfaces generated 

by this techn  ique are no longer used today because they produce too many triangles. Past 

s imu lations, l ike the one in F igure 2 .2, wou ld use these surfaces in a manner where the grid 

po i  nts were far apart and the user was not a l lowed to see d istant elements of the surface . 

1 2  
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Figure 2. 2: A 1987 simulation using height.field surfaces. 

In many appl ications it may be useful  to alter the resolution of a terrain mesh. Fortuoately this 
is a simple technique, done by constructing a terrain mesh in such a way that it does not use 
all the data available from its dataset. Terrain meshes are lowered in detail by creating a mesh 
where elevations on the lattice represent an average of more than one elevation in the original 
dataset. The same technique is commonly used to resize a bitmap or picture. Figure 2.3 shows 

the result of reduced resolution in height field meshes. 

Figure 2. 3: A terrain mesh with progressively lowered resolutions: 

Different sampling resolutions is a simple way of allowing a terrain to be visualised at 
different detail levels .  Importantly, this technique aJlows a variety of users to select a detail 
level appropriate to their hardware, and visualisation needs. 
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Altering sampling resolutions is riot considered Hn effective solution to lurgl! triangle counts 

since it docs not deal with the traclc�of
f
hctwccn the detail of the rm.:sh and the system

performance. This approach only allows usc1s to choosl! how much detail they will trade for 

pcrfonmmr.:c. 
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3. REVIEW OF THE STATE OF THE ART

This work brings together four different areas of research, namely: 
• Terrain generation, using fractal math
• Continuous Level of Detail (CLOD) Meshes
• Plant generation, using fractal math

• Landscape simulation

The combination of techniques in the areas of terrain and plant generation contributes to an 
area of research called landscape simulation, also called environment generation. This work 
optimises the process of terrain generation to allow for landscapes to be created during a 
simulation's execution. 

3.1 Terrain Generation Using Fractal Math 

Techniques for generation of terrain have been developed for a while, although work in this 
area is often aimed at producing particular kinds of landscapes. Algorithms presented by 
Barnsley & Jacquin & Malassent &, Reuter & Sloan (1988) produce accurate 

mountainous environments. Kelly & Malin & Nielson (1 988) devised a method to

incorporate accurate streams and waterways, faithful to the principals of erosion. The general 
techniques presented by Mandelbrot (1977) can be adapted for environments such as 
valleys, plains and seabeds. Figure 3. 1 shows a typical computer rendered landscape 
generated using fractal math. 

I S  



Figure 3. J :  A Fractal Terrain Generated by a Popular Landscape Tool Vista Pro 

More recently techniques known as multi-fractals have been developed to model more 
realistic environments. Multi-fractals create landscapes with different kinds of terrains mixed 
together. Multi-fractals achieve this mixing by applying different existing techniques to 
different parts of a terrain where necessary. Ebert & Musgrave & Peachey & Perlin & Worley 
( 1 998) present valuable information on the use and implementation of multi-fractals. 

Though a detailed terrain is easily generated, it is expensive to store a large area of detailed 
terrain to hard disk. For this reason usage of such terrains is highly restricted in graphical 
simulations. 

3.2 Continuous Level of Detai l  (CLOD) Meshes 

View dependent Level Of Detail (LOD) meshes are of great focus in current real-time 
graphi.cs research. These meshes can have different levels of detail present at different parts of 
the mesh, allowing application designers to choose where the detail will be present. 

A techn ique whereby LOD meshes are continuously reorganised to suit a user's viewpoint was 
pioneered by Lindstrom et al. (1 996), and is currently widely practiced in industry. 
Lindstrom's technique is known as the Continuous Level of Detail Mesh (CLOD) and the 
detail of this mesh can be dynamically changed at different points on the mesh. 

The advantage of CLOD meshes is the reduction in the amount of triangles that need to be 
drawn to the screen due to the fact that larger (thus fewer) triangles are used in areas where 
detail is not visible to the user. The reduction in the amount of triangles accelerates the real-
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time performance of these meshes, and importantly, the scene from the user's viewpoint will 

not have lost any visual quality. 

In Figure 3 .2a a CLOD mesh has been adapted so that the detail is . clustered about a point 

near the centre. A user positioned i n  the centre of the cluster would see consistent image 

quality. This consistent quality occurs because the larger and more distant elements in the grid 

will appear very small . Figure 3 .2b gives an example of how large distant tr iangles achieve 

consistent image qual ity. In this image the darker triangles are actually twice the size of the 

lighter triangles, but because of perspective they appear to be the same size. Rottger & 

Heidr ich & Slusallek & Seidel ( 1 998) and Hoppe (2000) present further work in higWy 

developed CLOD meshes. 

Figure 3. 2a: A CLOD Mesh Figure 3. 2b: A user 's pen,pecttve of a CLOD 

Mesh 

3.3 P lant Generation Using Fractal Math 

The techniques for the generation of trees and plant l ife are well documented. It is not the 

author's intention to increase the functionality of previous algorithms in this field. The 

adaptation of existing plant synthesis research for this work is concerned with speeding up the 

existing algorithms, with the objective of applying them to a real-time system. 

Most of the work available in the area of fractal generated plants was published in the late 

1 980 's .  Due to the time spent in developing fractal plant generation techniques most of the 

techn iques are well established. Foley & Dam & Feiner & Hughes ( 1 990) present a 

grammatical model of plant structure that allows definition of the structure of a plant using 

parallel graph grammar languages. 

The growth models for the plants in this work will be based on the pioneering work presented 

by Reffe & Edelin & Francon & Jaeger & Puech ( 1 988). There are other works that use non-
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fractal techniques for plant generation, however fractal methods are the most common 

approach used for the modelling of plants in computer graphics. In order to create a tree 

structure we employ a recursive definition of a branch: 

Branch = line from point a to point b 

Branch optionally creates n branches with an origin on line between points a and b 

Because there are multiple branches created on each branch this recursive technique is 

considered to be self-similar. It is the self-similar property of the recursive plant generation 

process that makes the process fractal in nature. Figure 3.3 shows the result of applying six 

recursions of this technique. 

1st Stage 2nc1 Stage 

5th Stage 6th Stage 

Figure 3.3: The process of fractal plant life generation 
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Each recursive stage refines the image, but each recursive stage is exponentially more 
t ime/resource consum ing. 

Traditionally fractal plant synthesis is not a process used in real-time simulations. S imu lations 
util ising plant synthesis generally pre-create plants prior to the level or simulation loading. 
Many simulations use plant meshes originally created using fractal techniques that are stored 
on the hard disk ready for use. 

Various researchers have studied the rules of plant topology and created compl icated 

algorithms that produce highly realjstic results. The author directs the interested reader to 
Reffye & Edelin & Francon & Jaeger & Puech ( 1 988, 1 5 1 - 1 58). 

3.4 Landscape Simulation 

Landscape simulation is the process of concurrently simu1ating terrain and non-terrain objects 
such as plants. A landscape simulator is general ly an interactive program that al lows 
movement of a user viewpoint through a landscape. The landscape s imulator inherits the 
storage problems associated with terrain and plant generation. A scene like the one in Figure 
3 .4 demonstrates the detail that can be achieved from the use of fractal techniques. This scene 
stored in polygon form would easily requ ire over a hundred megabytes of storage. 

Figure 3.f "Sunset Valley" by Sam Bowling, 3D Nature, LLC 
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The results of fractal synthesis techniques fl.lr terrain and plant lifo can he vt.:ry detailed and 

lifelike, which has led to extensive use of  fractal tcchniqut.:s in professionally rt.:ndered 

graphics. Comhini11g a synthcsist.:d terrain with population of synthesised plant life creates a 

fractal landscape. To add realism the population or plant life is scattert.:d around the landscape 

in a realistic fashion using the statistics of plant/ species distribution. Further realism is added 

by changing the texture that is used for di fferent areas of ground, cg snow, rocks, grass, sand 

and dirt. Adding sky, fog and sunlight effects completes the scene. 
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4. PROBLEM STATEMENT

The aim of this work is to create a virtual computer environment rich in detail and enormous 
in size, The challenge is to deliver a solution that will not require large amounts of ston1gc 
space and be functional on a personal computer. 

The objectives of the proposed simulator arc that the environment: 
• be so large in size that a user would be unlikely to explore an entire environment.
• be so rich in detail that the human eye would survey the scenes of this world much like it

would a photograph of a real landscape.
• contain a large degree of variation derived from the use of unique plant life.

These objective s  will allow for simulation of entire planets.

The basis of the proposed engine i s  to implerr •. virtual environment where the details 
beyond what the user can see are not maintaineu in memory. If a user travels through this 
environment the computer will use the user's position to decide what the user will sec. If the 
user returns to an area in this world that has already been visited. the computer will produce 
the same landscape that was previously shown to the user. 

4.1 The Problem being addressed 

The problem being addressed concern s  managing and creating landscapes for computer 
simulations and games so as to achieve minimal storage requirements. The reason for 
rethinking the management of simulator environments i s  because current management 
techniques require too much memory to allow home users to have large detailed and varied 
landscapes. The game and simulation industry i s  constantly aiming to use landscapes that arc 
larger, have higher detail and are more varied. Typically there is a trade o!Tbctwccn the 
extent to which these elements are used in a computer-simulated environment, and the storage 
space required by the simulation. The objective of this work i s  to create a landscape simulator 
that removes the memory re strictions affecting the size and detail of terrain and the variation 
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and detai I of plants . As shown in F igure 4 . 1 the major obj ctives of this work are to increase 

the s ize, detai l  and variation present in real-t ime landscape s imu lators. The d i agram also 

shows that storage space is the common l im it ing factor in  al l  of these objectives. A major 

a im of th i s  work is to remove the  trade-off between t he  qua! i tative object i ves (s ize, detai I and 

var iation) and storage space. 

Problem ' 

Objectives 

Variation Detail Size 

Simulator 

Figure 4. 1 :  The impact of storage space 

4. 1 . 1 The problem of Landscape S ize

Increasing the s ize of the terrain in a landscape s imu l a tion increases memory requ i rements . It 

is because of l imited memory resources that common fl ight s imu lators typical ly have a terrai n  

s ize l im ited to the size o f  a cityscape (3  0 - 6 0  km). This terrain s i ze may sti l l  b e  considered 

large, but flight simulators sacrifice a lot of detai l  in the terrain to ach ieve this . ln other 

words, a low-resol ution terrain is used to compensate for the increased memory requ irements 

of the larger area covered . 

r n first person point of view games such as "Quake" ( 1 996),  environment size is l irn ited 

because of both the amount of tr iangles that can be stored and the amount of t ime needed to 
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des ign the leve l .  Typically th is type of game is l im i ted to 1 -5 bu i  ld ings per leve l .  Even i f  i t  

were possib le to store maps of s i gn ificantly larger s ize, i t  is probable that the years i l  , ou ld  

take a human to  design the map wou ld be  proh ib i t ive .  

4. 1 . 2 The prob lem of Landsca pe Deta i l

The prob lems w i th increas ing deta i l  in l andscape s imu  lat ions re late to the amount of storage 

space requ i red to increase the amount  of deta i l  present. This storage problem affects both the 

terra i n  and non-geograph i cal v isua l  isation systems. 

4 . 1 . 2 . 1 Penalt ies of Terrain Detai l 

The reso l ution of a terrain is the number of poi nts used i n  a he i ght field to define an area 

a l so expressed a the deta i l  of the terrain .  The resol  ut ion can be represented in points per 

k i l ometre. F igure 4 . 2  i l l u strates the effect of detai  l be ing increased by alter ing the re o l ution 

of a terra in  . 

a) c) 

Figure ./. 2 · Three terrain meshes each with different resolutions 

The amount of memory used to store a terrain  mesh is exponentia l ly proportional to the 

terra i n ' s reso l ut ion .  Tab le 4.3 shows the i ncreased memory requ i rements incurred by use 

of d ifli rent terra in  detai ls in Figure 4 .2 .  

Table ./. 3: Memory requirement of terrain meshes i n  Figure 4. 2 

Terrain Leve l of Memory required (assuming 1 byte 

detai l height fields) 

A l x  25 byte 

B 2x 8 1  byte 

C 3x  289  bytes 

23 



Figure 4 .4  shows the relat ionsh i p  between incr as in t rra in  detai l  and storage r qu i remcnt . 

• , 5 0 0  k b  -

4 , 0 0 0  k b  

3 , 5 0 0  k b  

3 , 0 0 0  k b  

� 2 5 0 0 � b
·s 

a: 
.. 
:l' 2 , 0 0 0  k b  -

1 . 5 0 0  k b  

1 , 0 0 0 k b 

5 0  0 k b  

D k b  

L a n d s c a p e  S t o r a g e  R e q u i r e m e n t s 

I 

-_J 
6 7 9 , 0 

O e t a I I  m u l t i p l i e r 

Figure -1 . .J: relat ionship between terrain detail and storage space 

It is because of the re lat ionship shown i n  F igu re 4 .2 that h i gh quality terrain s im u  lator 

typ ical ly requ i re 50mb of memory or more to store land capes that are 1 0km wide. 

4. 1  . 2 .2 The problem of ·Variance ln Non-Geographica l  Landscape E lements

There is a large storage problem concerned with non-terra i n  e l ements of an environment . 

Each rock, tree and other such elements in an env i ronmen t requ ire a b itmap or texture. I f  

there are 200 trees i n  a scene i t  i s  not practical to create 200 b itmaps .  I t  i s  because of th i s  

storage l im itation that such items typical ly share a common bitmap. Common ly landscape 

simu la tors might on ly have two or three trees stored in memory and repeat them throughout 

the s imu l ation. This repetition detracts greatly from the real ism of the scene . A primary goa l 

of th i work, graphica l  variation of landscapes, i s  ach ieved by a l  lowing individua l  p lant l ive 

to exi st in a landscape environment. 

There are now s imu lat ions that are using 3 D  meshes for the ir plants and rocks. Th is advance 

amp l i fies the prob lem of storage space s .i n ce we now must store both a mesh and a text u re 

for each tree . 
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4.2 Significance of the Problem 

The vast majority of landscape simulators available to the consumer market dclivl!r ]1.:ss detail 
and smaller environment size than they could. These limits of detail and size are brought 
about by storage space constraints on modern personal computers. The implementation of 
techniques presented in this study will remove the current limitations on the visualisation of 
landscapes imposed by the lack of storage space available. 

4.2.1 Impact of the Work 

The gaming community now stands at the edge of a new revolution in gaming technology, 
because the continuous level of detail engines, currently being developed, offer the possibility 
to display larger amounts of detailed terrain data on the screen. 

Major gaming companies are now developing the CLOD engines that have been published in 
recent academic papers. Until recently most commercial CLOD engines were still under 
development. It is a goal of the gaming community that one day, soon, CLOD engines will 
allow a user to climb to the top of a skyscraper and look out over a city which can be 
explored. A major problem with this possible environment size is, if it were possible to render 
an entire city to screen, how will the map for an  entire city of buildings be stored? Even if it 
was possible to store an entire city of buildings it is unlikely that a level designer would be 
willing to sit down for five years to create such a city. The work presented in this paper is 
designed to be a possible foundation for addressing these problems. 

4.2.2 Impact of the Work on the End User 

"Twenty years from now you will be more disappointed by the things you didn't do than by 
the ones you did do. So throw off the bowlines. Sail away from the safe harbour. Catch the 
trade winds in your sails. Explore. Dream. Discover." 

-Samuel L. Clemens [author of Huckleberry Finn]

The author has taken the view that many computer games currently on the market provide a 
new means of exploration. This exploration occurs as users move through areas in the 
simulated environment for the first time. Computer games offer many of the same 
motivations that drive explorers such as the ability to find new areas of an environment and 
interesting environmental features that are worthwhile finding. There are however some 
motivational qualities missing: 
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• The feeling that an area is so lurgc it could be explored forever.

• The aspect of there nlways being new things lo sec.

• The feeling that you nrc the lirst person ever to sec some part of the planet.

It is hoped that this work will provide a mctho<l for including these missing qualit ies, and 

hence have a quick appeal to users. 
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5. METHODOLOGY OF CONTINUOUS TERRAIN GENERATION

AND VISUALISATION 

In order to create a real-time landscape simulator with dynamic non-stored graphics the 
terrain in the landscape simulator must be spontaneously created and never stored on disk. 
Furthermore the terrain must be created only around where the user is positioned. If we arc to 
maintain a terrain around a user's position, it is common to create the terrain in small blocks 
which join together to fonn the terrain the user secs. These blocks are referred to as terrain 

pages. The advantage of these pages is that areas of terrain can be added or removed from the 
landscape without other parts of the landscape having to be recreated. Controlling the creation 
and removal of terrain pages is known as terrain page management. Terrain page management 
allows terrain local to the user's viewpoint to be maintained and updated \Vhen there is a 
change in the user's position on the landscape. 

Terrain page management is crucial to the performance of the landscape simulator. Section 
5.2 addresses the issue of how to create an efficient, high performance page manager. It is 
also necessary to create the te1oain information for each page. The work presented by 
Magnenat-Thalmann & Thalmann ( 1985) is adapted for this purpose. If the terrain generation 
algorithm is seeded with the pages position on the terrain, it is possible to recreate pages the 
same way each time they are visited, By utilising this technique it is not necessary to 
permanently store terrain infonnation for a terrain page, since the user is assured of seeing the 
same terrain infonnation every time he/she visits the page. 

The last part of this chapter addresses the issue of visualising the terrain generated by the 
terrain page manager. The terrain page management and terrain generation algorithms are 
integrated with an algorithm that creates level of detail meshes. It is via the integration of 
continuous level of detail meshes that continuous terrain generation is shown to be a practical 
and modern approach to terrain visualisation. The details of the CLOD algorithm presented in 
the implementation are presented in section 5.5. 

27 



5.1 Terrain Generation Algorithm 

The goal of the terrain generation algorithm is lo create hcight clcvalion data consistcnl wi1h

what the actual tcrrai11 is expected to look like. The terrain generation a lgorithm should h1.:

able lo generate a piece of terrain given a seed valuc, environment parameters and a lrn;:1t iun. 
Furthermore given the same parameters the terrain gcncrntinn algorithm should give !he same 
resulting terrain each time it is run. Because the terrain gcncration algorithm is capable of 
recreating terrain identically, areas revisited by a user will always appear the same. 

Before a terrain generation algorithm can be built, a suitable terrain representation format 
must be selected. Section 5 . 1 .1 examines available storage formats currently used in 
geographic infonnation systems. and shows why the Height Field Grid is the most suitable 
format for this work. Later in section 5 . 1 . 1 .3, information is presented on the workings and 
maths of the Height Field Grid storage format. 

A terrain generation algorithm must be specially designed to suit the data format used to 
represent the terrain. The primary evaluation criteria of the terrain generation •writhrns arc 
the speed in which it executes and the realism of the terrain that it generates. In .)ection 5.1.2 
the terrain generation algorithm used in the implementation is discussed. 

5.1.1 Terrain Representation formals 

The problem of an appropriate storage format for terrain data is basically concerned with 
choosing a format for the storage of data to represent terrains. The data structure chosen will 
influence such things as memory requirements, processing speeds of the landscape simulation 
and structural limitations. Structural limitations refers to whether non-extruded features. cg. 
caves or over-hangs, can be represented. Thus the data format used will determine both the 
capabilities and efficiency of the landscape simulation. 

The three different data structures used to store the representations of terrain in landscapes 
are: 

• Height Field Grid (Referred to as a Digital Elevation Matrix (DEM) by those in the
geological information systems field)

• Triangular Irregular Network (TIN)
• Digital Contour Line



F igure 5 .  1 shows how data i n  these three formats is stored .  The 'National Imagery and 

Mapping Agency" (2000) present information on these formats, as wel l  as sample  terrain 

datasets . The formats presented here are standard formats adopted by government agencies 

and the geograph ic information i ndustry. Any e l ectronic terrain data purchased from data 

brokers or provided by government services wi l l  general  ly be �tared in one of these formats. 

� • • 
231 235 233 

• • 
235 244 235 

• • 
227 230 228 

• • 
224 228 224 

• 4 
224 218 

• 4 
230 22� 

• 
224 221 

• 
21 9 216 

Height Field Grid or Digital Elevation Matrix 

The height of the landscape i s  sampled at regular 

intervals .  The information is stored i n  a 2 

d imensional array. The ar ray positions correspond 

to posit ions on the landscape and store the height 

of the landscape at the correspondi ng point. 

Triangular Irregu lar Network 

Th i s  format simply stores a l l the tri angles requ  i red 

to define the landscape. 

Digital Contour Line 

Stores contour J j n es and re levant height data . 

Figure 5. / :  Available terrain data storage formats 
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5.1 . 1 . 1  Storage Considerations 

The thrct: formats arc evaluated according to their performance and limitations. Bitters (2000) 
presents information covering this subject in further detail. 

Height Field Grid 

The Digital Elevation Matrix format has the fostcst processing speed of the three possible 
formats. However the memory requirements of this algorithm are comparatively large. 
Because the matrix in this format holds only one value at each field there is no way to store 
non-extruded features such as caves. The algorithms used by a simulator using this format are 
simple to implement, and thus provide a good development time. Typical applications for this 
fonnat include: 

• Geological surveys
• Interpretation of satellite photography
• Computer games
• Flight simulators

Triangular Irregular Network 

The Triangular Irregular Network format can be displayed efficiently, but altering detail in 
this format is expensive and thus it has a relatively slow processing speed. The memory 
requirements of this algorithm are the most manageable of the three types because it provides 
detail appropriate to the relief and jaggedness of the areas represented. This fom1at is the only 
fonnat to have no structural limitations, this means that it can model any geographical feature. 
The algorithms used by a simulator using this format are difficult to implement and are prone 
to bugs in their implementation. Typical applications for this format include: 

• Computer games
• Flight simulators

Digital Contour Line 

The Digital Contour Line format has by far the slowest processing speed and largest memory 
requirements of the three possible formats. The format is also not capable of storing non
extruded features such as caves. Implementation of a simulator using this format is difficult 
and generally this fonnat is avoided. The main advantage of this fomrnt is that existing 
hardcopy contour maps can easily be converted to this fonnat. Typical applications for this 
format include: 
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• Weather systems

• Geological i nformation systems

• Geological arch iv ing 

When exam i n  i ng the avai  lable terra in  repre entat ion fonnats for processing peed memory 

requ i rements and structura l  l im i tat ions, the he ight fie l d gr id representat ion fonnat i s  the most 

suitable for th  i work. The primary reason for choo ing height field storage format is that 

a l gor i thms operat i ng on data i n  t h i s  format run fa ter. As a majo r difficulty i n  imp lement i  ng 

th  i work i s  to get the landscape s imu lator to run i n  real-t ime, the fastest processing speed of 

th i s  a lgor i thm makes it the first choice, regard less of its d i sadvantages .  

5 . 1 . 1 . 2 The Height Fie ld Storage Model 

Sampl i ng the height of a landscape at regu lar i n ter a ls over a rectangu lar grid is the bas is of 

how data for th i  fonnat is created . The storage format for data a height field  grid is shown in 

F igu re 5 .2 .

• • • • 

231 235 233 224 21 8 

• • • • 

244 235 230 226 

• • • • 

227 230 228 224 221 

Figure 5.2: The height field data format 

The data i n  F igure 5 .2 would be stored in a computer ·s memory as the array shown in F i gure 

5 . 3 .  

{ 23 1  235 233 , 224, 2 1 8

23 5 , 244. 23 5 , 238 , 225 ,  

227, 230 , 228, 224 ,22 1 } ;  

(row 1) 

(r01,11 2) 

(row 3) 

Figure 5. 3:  A Height Field Data Array 

G iven that the d istance between the sample i n  a height gr id is known and constant, the 

position of  the elevation data corresponds to its posit ion i n  an array. To translate an e levation 

value in an array to a point in a 3D coord inate 3ystem the formu la in F igure 5 .4 can be u sed . 
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X = i • d 

y - grid [ i ](j J 

z = j .  d 

Where: 
i,j : array indices 
x, y, z : resulting poinl in 3D spm;c 
d : distance at which terrain is sampled 
grid : the height field array 

Figure 5.4: calculatmg 3D coordinates of data m a  height field grid 

Height field data is commonly derived from satellite imagery. Satellite sensors can produce 
images that record the height of terrain at regular intervals. 

5.1.2 A Terrain Generation Algorithm 

Given that we are using the height field representation model for our terrain data, there is a 
terrain generation algorithm that operates directly on data in this format. This terrain 
generation algorithm is called midpoint displacement. 
5.1.2.1 Midpoint Displacement 

A landscape can be considered a fractal surface with nearly infinite surface area. For a 
description of fractal surfaces see Mandelbrot ( 1977). From a distance we can approximate a 
landscape by a line that follows the silhouette of the horizon. As we approach the horizon the 
line has to deviate for boulders and variances in the ground. As we get even closer the line has 
to follow pebbles, then grains of sand and so on. Basically anywhere we think we see a 
straight line, when we look closer we see that it is not actually a straight line. Curved lines 
that seem to have a constant derivative, upon closer examination arc actually composed of 
lots of smaller lines. 

Since, in a landscape, every line is composed of more lines, it is impossible to determine a 
derivative for any of the lines. With no derivative we cannot determine the surface area of the 
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terrain. Figure 5 .5 shows the increasing detail present in a fractal surface, by using 
photographs of a real landscape. 

2 

4 

Figure: 5. 5: Landscape detail 

These photographs in Figure 5 . 5  were taken with a zoom camera. Note the increasing 
complication in the horizon as the camera zooms in on the scene. 

Terrain is generated (simulated) using a midpoint displacement function. The midpoint 

displacement method is best demonstrated in two dimensions: Figure 5 .6  shows the process of 
midpoint displacement. 
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First we take a straight l ine ( I ) , and bisect it into 2 
lines. The bisection is made in the middle of the first 
line. 

2 

-- -----== The point where the two new sub-lines connect is 

displaced, either above or below the midpoint of the 
line. This gives us two lines in the rough shape of a hill 
or valley (2) . 

3 

--� 

We repeat this process to the two new lines, creating 4 
lines (3) .  This time though we use a smaller 
displacement at the midpoints . 

This gives us a recursive algorithm that produces a 
jagged line representing a silhouette of a landscape. 

Figure 5. 6: Midpoint displacement in two dimensions 

4 

5 

Note how the progressively generated l ines in Figure 5 .6 resemble the progress ively 
magnified horizon l ines in the photographs in Figure 5 . 5 .  The above phenomenon or style of 
line is known as fractionaf Brownian motion. If the displacements of the midpoints are 

determined with a random number generator we have a mathematical noise known as brown 
n01se. 

5 . 1 .2 .2 Midpoint Displacement in Three Dimensions 

To adapt the Brownian motion techn ique (in 5 . 1 .2. 1 )  to three dimensions we follow the 
workings of Barnsley et al. ( 1988) . Trus work can be applied directly to a height field grid. 

We start the process by generating 4 random points at the corners of the height field grid, this 
provides the data with which we begin our process. This is shown in Figure 5 .7 .  
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..� . ----... _ 
........ __ 

• • 

Figure 5. 7: Midpoint Displacement, Initial state 

First step: Define a height for the point at the centre of the 4 points of data that we have 

already created, and calculate the height by taking the average height of the four points 

(above left, above right, below left and below right) around the new point. This is shown in 

Figure 5 .8. To complete this step the new middle point is displaced by a random quantity, 

making the point either higher or lower than the average of the points around it. 

• • 

• 

• 

Figure 5. 8: Midpoint Displacement, step I 

Second step : Define a height for the points above, below, left and right of the midpoint in step 
1 .  The height of any one these points is determined by averaging the height of the existing 
points above, below, left and right of the point. This average height is then displaced with a 
positive or negative random quantity. The result is a new grid of defined points (with 
Brownian motion), twice the resolution of the previous grid, see Figure 5 .9 .  
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5.2 Terrain Page Management. 

The midpoint displacement algorithm can be used to tcrraform a page of data in a page 
management scheme. The objective of page management is to divide a landscape into 
multiple blocks or pages which tile together to form a visible landscape. By creating 
individual landscapes for each page, each time the page is created we have the basis for on 
demand creation of landscapes. The use of pages also increases the speed of landscape 
creation by reducing the amount of overall recursion present in the creation of a terra in. These 
pages are created individually using correspondin!! boundary values and tiled together to form 
a terrain. The use of terrain pages prevents the midpoint displacement algorithm from having 
to generate the entire map at once, thus allowing for efficient generation of only the terrain 
that is needed. 

5.2.1 Existing Terrain Page Management Techniques. 

A major challenge to the terrain generation algorithm is the maintenance of terrain around the 
user's viewpoint. This algorithm is intended to only generate the terrain that is around the 
user's viewpoint and visible to the user. To achieve continuous generation a page 
management algorithm is constructed. The algorithm presented in section 5.3 is an approach 
devised by the author especially for this work. For information concerning existing page 
management algorithms see Eberly (200 I). 

In the field of page management: 
• A page is defined as a height field grid.
• A map is defined as a collection of tessellating pages.
• A submap is a collection of adjoining pages usually representing the user's visual

vicinity.

An entire map (a planets worth) of pages is typically too large to be stored in memory. To 
work around this limitation this work maintains a collection of pages called a submap. This 
submap is defined with the user's point of view being in the centre of the submap. The 
submap is responsible for storing all terrain data visible to the user at the current point in 
time. The CLOD algorithm employed to visualise the terrain needs to operate directly on this 
submap. The paging algorithm employed for creating and removing of pages in the submap 
must be highly efficient since it is concerned with frequently paging large amounts of 
memory. For further discussion on page management i.:onccpts sec Mauro (2000). 
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5.2.2 Submap Page Management Algorithm 

It 1s the user's movements that trigger page creation and delet ion. With this in mind 

examination of the page management algorithm wil l  focus on how the algorithm responds to 

the user's movements. 

The submap works by maintaining the user ' s  position in the middle of the map. As the user 

moves a distance equivalent to one page the submap is adjusted around the user's position. 

Two events occur to make this possible: 

• New pages are created as the user comes within viewing distance of them.

• Pages in the submap are removed as the user moves away from them and they 

can not be seen any more. 

5 .2 . 2 . 1  A S imp le Approach to Submap Page Management. 

Figure 5 . 1 1  is an example of a simple approach to page management. This example will be 

used to explain the simple approach to page management: 

1 2 3 

4 5 6

7 8 9 
Figure 5. 1 1 : A basic 3 by 3 sub map. 

In the submap, shown in Figure 5 .  1 1 ,  the user is s ituated on page 5 . Jf  the user in this submap 

was to move one page right, the following steps must be taken to ensure the user remains in 

the centre of the submap: 

• pages 1 ,4,7 are discarded.

• pages 2,5,8 are moved to pages l ,4,7

• pages 3 ,6 ,9 are moved to pages 2,5, 8

• pages 3,6,9 are created from new map data. 
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The visual results of this operation as applied to map data for the planet Earth are shown in 

F igure 5 . 12 .  

Before move : After movement 1 page right 

Figure 5. 12: Simple page management 

In the previous example the user's position has remained in the middle of the submap. Since 

the user in this example always remains in the same position on the submap, it is the position 

of the submap on the overall map that changes to allow for user movement across the map. 

The altering position of the submap is shown in Figure 5 . 1 3 .  

Position A Position B 

Figure 5. 13: Submap Movement in Simple page management 
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5.2.2.2 Current Techniques for Implementing Simple Page Management 

The output submap from the page management routine is what will be visible lo the uscr. The 
submap will be used as a source of data for the CLOD algorithm. Unfortunately th1.: CLOD 
engine interferes greatly with implementation of the page management algorithm. 

Currently there arc two algorithms for terrain page management. Unfortunately neither of 
these two page management techniques arc suitable for this work. 

The first algorithm for terrain page management involves 
• Implementing a two dimensional array of pointers to pages.
• Creating terrain pages with memory allocation.
• Removing pages by releasing memory.
• Using pointer swapping to shift pages in a submap.

The second algorithm for terrain page management involves: 
• Maintaining a submap as a grid of height points.
• Defining a page as a sub�portion of the submap grid.
• Using memory movement routines to relocate memory within the submap in order to

shift pages.
• Overwriting memory that is redundant when new pages are created.

On inspection it can be seen that the first type of page management is more efficient because 
the use of pointers in this technique provides for a highly efficient mechanism to swap pages. 
The problem with this page management technique is not the efficiency of the technique itself 
but the fact that the terrain generation algorithm and the CLOD viewing algorithm have 
problems working with multiple separated pages. Both these algorithms have to constantly 
figure out on which page the data they are working on exists. Since both the algorithms aLcess 
a lot of data it becomes highly inefficient to resolve a page memory address before each 
access. 

The second technique of page management produces a single block of memory that is easily 
accessed by the terrain generation and CLOD viewing algorithm. The problem with this 
technique is that page swapping is very expensive, due mainly to having to move large 
portions of memory. In fact, for very large blocks of memory typically used in terrain 
simulation, the total time of page swapping in this algorithm can be measured in seconds. 
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This effectively results in the simulation stopping for a few seconds every time page 

swapping is performed. 

Overal l  the first algorithm, though it is expensive, is least costly iQ terms of computational 

efficiency. S ince the most efficient form of page management commonly used is possibly not 

suitable for this work, the author has devised a new approach to terrain page management. 

This approach is quicker but is also a lot more complicated. The author has termed this 

technique the offset spherical approach. The main advantage of this approach is that a page in 

the submap never needs to be moved to a different position in the submap, rather the submap 

moves around the page. 

5.3 The Offset Spherical Approach to Page Management 

This offset spherical approach is  a new method developed by the author for page 

management. The approach took several months to impleme nt and refine and is a highly 

original and efficient data structure. With this method the user moves across the submap and 

does not stay centred in the submap. When the user reaches the edge of the submap the view 

wraps round to the other side of the map. Figure 5 . 1 4  shows an example for a user moving 

two pages right. In this example the square with a cross is the page which the user is over and 

the circled pages are pages newly loaded into the submap. 

User at initial position After movement 1 page right. After moving another page 

right. 

Figure 5. 14: The offset spherical page management technique 

The offset spherical approach to page management is fundamentally different to existing page 

management techniques. In this technique a user no longer remains in the middle of the 

submap. A user travelling in a straight line will move though different pages i n  the submap . 

When a user encounters the edge of the submap they will reappear on the other side of the 
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submap, this is shown in the last two steps in Figure 5 . 1 4 .  The next fundamental difference 

between the offset spherical approach to page management an d existing page management 

techniques concerns how the terrain is  stored in the pages. Figure 5 .  1 5  shows a close up of the 

third map in Figure 5 .3 . I  and it also shows how the map is interpreted as terrain .  

a) Submap b) Rendered terrain

Figlll'e 5. 15: Rendering the o.ff.iet .1p/Jerical page mc11iagemenl submap 

In Figure 5 .  1 5  the user ' s  posit ion on the sub map is indicated by the cross. The cross always 

remai ns c lose to the centre of the niap disp layed on screen, but its position on the submap i s  

arb itrary. Pages 3 ,  6 and 9 exist on the right  of the submap stored i n  th e simulator but are 

i nterpreted as existing on the l eft of the visual landscape. By using the submap i n  th is way the 

user's view from page 4 actually wraps around the submap . 

The reason the offset spheri cal approach to page management is superior to o ther traditional  

methods is because fewer pages are processed when the submap is updated. In Figure 5 . 1 4  

when a user moves one page right three new pages overwiite three old pages. In trad itional 

page management techniques the same process involves creating three new pages and moving 

six existing pages . 

The terrai n  generation routines and CLOD viewing routines can be easi ly modified to wrap 

arou11d the new submap type. The page swapping in this offset spherical page management 

technique is  high ly  efficient since no pages have to be moved. It is the efficient page 

management and simp le  in  tegration w ith the other components of a terrain simulation that 

make th is approach to terrain managemen t h igh l y  desi rable . 
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5.4 Issues for Creating Consistent Landscapes 

This section explains firstly how quasi white noise (sec, Knuth ( 1 997)) is used to create 
terrain pages identically each time they arc revisited. Then a technique for the very rough 
approximation ofa pre�defined terrain is discussed. Lastly, a technique is discussed to allow 
the edge ofa terrain submap to line up with pages that arc outside the submap 

5.4.1 Quasi White Noise Synthesis for Terrain Seeding. 

It is necessary for terrain pages to be created identically each time they are created if the user 
is going to see the same landscape each time he/she revisits an area of a landscape. The 
midpoint displacement algorithm, in section 5. 1 .2.2, began with four random variables, one in 
each comer of the page. These four variables seed the landscape for our map. If we use the 
same seeds for each page every time they are generated, our pages will look the same each 
time we visit them. 

We could store a bump-map (as greyscale bitmap), so that each pixel corresponds to a corner 
point on the page. The result of this is that the landscape is an enhanced version of the bump 
map. This technique is effective, but it doesn't work for large terrains, such as the Earth. If 
each page represents l 00 metres and the diameter of the Earth is 40,2 1 2  km the resulting 
bump map is 400,000 by 200,000 pixels. This example will require about 80Gb of storage. 
Since storing even one planet's data on a conventional hard disk is not practical, we need to 
fall back to non-storage techniques. 

We can use procedural white noise as a non-stored source of seed heights for our terrain 
pages. White noise is the noise observed on a television set receiving a static signal, see Kuo 
( 1996) for more details. To simulate white noise we define a random number generator that 
takes an X and a Y coordinate and returns a normally distributed value. 

lfwe wish pages to appear the same each time they are visited by the user we must create a 
quasi-random result in our white noise. A quasi-random result means that the function 
supplying random noise will always return the same result if given the same x. y inputs. For 
more information on quasi-random number generators see Ward ( 199 1)  and Knuth ( 1 997). 
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Here is  a simple sample  function, deri ed from Ward ( l 99 1 )  that provides quasi wh ite noise. 

constant  maxY : =  2 5 5

real whi  teNoi  se2d  ( i  ntege r x ,  i n tege  r y) 

begi  n 

i ntege  r n : =  x + (y* maxY) 

n : =  ( n <<13  ) A n ; 

noi  s e  : =  real  ( (n *  (n  * n * 1 5 7 3 1+7892 2 1) +1376312 589)  ) / 

14748  3 648 . 0  

end 

Figure 5 .  l 6 shows the resu ltant noise generated by the quasi white noise function: 

Figure 5. 1 6: Whire noise generated by a quasi white noise algorithm 

5 .4 .  1 . 1 P lanet Creat ing and Defi nable Terrain 

In the same way that wh ite noise can be u ed to create seed alues for terrain pages, a smal  l 

bi tm ap can be altered for th is purpose. Rev i s it ing the Earth example i n  5 .4 .  1 we required a 

400,000 by 200,000 pixel bump-map. I f, in th i s  example we tart with a 400 by 200 p ixel 

height-map and have one p ixe l repre ent l m i l l i on pages i n stead of one page we have an 

acceptable image s ize. By averagi ng the appropriate pixel from our bump-map w i th the 

output from our 2D quasi white noise function we have a definab le p lanet l ayout. This 

a l teration is usefu l for game designers wi h i ng to design the layout of their own p lanets .  



5.4.2 Supply-Demand Networks and Dirty Pages 

There remains a problem with lhc oflSct spherical page management algorithm discussed so 
far. This problem occurs when two pages arc constructed next to each other and thus need to 
share a common boundary with no scams. This common boundary presents a problem with 
the paging algorithm as presented so for, because pages on the edge of the submap must be 
able to tessellate with pages that don't yet exist. To solve this problem this implementation 
constructs a consumption·demand network. This network has two rules: 

• If two pages arc constructed next to each other, the right most page is responsible
for adapting itself to suit the boundary of the left most page.

• If two pages are constructed above each other, the bottom most page is
responsible for adapting itself to suit the boundary of the top most page.

The result is a collection of pages suited to tessellate with each other, with the exception of 
the top most row and the left most column. These two rows are created without being adapted 
to the pages around them. They are not visually correct but supply correct boundaries for 
other pages. Those pages that are not suitable for display are known as dirty pages. Any edge 
of a page that adapts itself to suit the boundary of another page is known as the demand edge, 
the other edges used for other pages to adapt themselves to are known a s  supply edges. When 
linked up, these pages create a supply-demand network as shown in Figure 5.17. 
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Figure 5. 1 7: A supply demand network 

5.5 Level of Deta i l  Control for Terrain Visual isation 

The terrain that exists in the submap needs to be optimised for real-time viewing by reducing 

the amount of triangles present, without degrading image quality . A major advance in 

geographic visualisation systems in the Jast few years is the Continuous Level of Detail mesb 

(CLOD). These meshes are constructed prior to visualisation and provide an optimal real-time 

rendering of terrain information on modern hardware. To show that the work presented by 

this implementation is viable for modern visualisation expectations a method for constructing 

CLOD meshes is integrated into this work. 
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5.5.1 Overview of CLOD Algorithms 

There arc currently two major CLOD algorithms 11:.;cd for terrain meshes. The first algorithm 
is the View Dependent Progressive Mesh (VDPM). The other more commonly used algorithm 
is the adaptive quad-tree refinement tcchniqlll!, 

The VDPM algorithm is concerned with data in a Triangular Irregular Network (TIN). Hoppe 
(2000) presents an excellent discussion on this technique. However the Adaptive quad-tree 
refinement algorithm is directly applicable to height field data, making it more suitable for 
this work. The CLOD algorithm that this work has incorporated was originally presented by 
Rottger & Heidrich & Slusallck & Seidel ( 1 998). 

The goal of a CLOD algorithm is to simplify the landscape mesh in appropriate places so as 
to reduce the number of triangles used while maintaining the quality of the scene as much as 
possible. The major task of any CLOD algorithm is to select which areas of a terrain are 
going to be optimised and how much optimisation is going to be applied to those parts of the 
terrain. 

5.5.2 Examination of Popping Artefacts 

CLOD engines that perfonn the operations discussed so far are typically plagued by the 
problem of"popping", that is, a terrain artefact that was previously invisible suddenly appears 
as the user approaches it. The "popping" problem is caused by a terrain clement being over
simplified. When detail is increased the CLOD algorithm properly generates the 
oversimplified element. This artefact is most evident in CLOD engines that use only view 
distance optimisations. 

The main solution to the "popping" problem is the use of geomorphs. Geomorphs essentially 
allow morphing of a problematic terrain element into a scene. Hoppe (2000) discuses the 
theory and usage of geomorphs. 

5.5.3 Non Degradive Terrain Mesh Simplification 

There are two approaches used to identify areas in a terrain mesh that can be simplified: 
• Distance from camera optimisation
• Relief/ hill top areas optimisation
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5.5 .3 .  1 The "D istance From Camera" Optimisation . 

Terrain aspects at a certain distance from the camera are not visible, simply because the on 
screen size of these aspects is less than a pixel. Obviously triangles close to the user's position 
must be rendered in as much detail as possible in order to look good. The detail reduction is 
focused on terrain aspects distant from the user, so that the missing detail takes less than a 
pixel when rendered to the screen. 

5 .5 .3 .2  The "Rel ief Dependent" Optimisation. 

Relief dependent optimisation focuses on the fact that smooth areas of land can be drawn 

with fewer triangles than bumpy areas of land. The coarseness of the land is known as the 

"relief'. Figure 5 .  1 8  shows in two dimensions how more lines are required for greater 

roughness. 

( a ) 4 L i n e s ( b )  1 8  L i n e s

Figure 5. 18 Lines used to model terrain in two dimensions 

Also of note to this optimisation are hilltops. It is possible that hilltops (crests) may, 
depending on a user's point of view, be silhouetted against the sky. This situation makes the 
outl ine of the polygons very noticeable. Therefore we may dedicate more triangles to the 
creation of hilltops in order to reduce this effect. 

5.5.5 The Quad-Tree Algorithm 

The algorithm used by this work to reduce detail (the CLOD algorithm) is known as adaptive 
quad-tree refinement. This recursive algorithm utilises a data structure that stores a square 

that is optiona11y made up of four other squares which in tum are optionally made up of four 
other squares . An example of the quad-tree structure is shown in Figure 5 .  19 :  
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Figure 5. 19: A simple quad-tree structure 

This allows for squares to be positioned in greater or lower density at different parts of the 
structure. For example, squares can be positioned around a user's position. The comers and 
centre of each square correspond to a value in the height field grid. It is with this mechanism 
that smaller squares in the quad-tree represent areas of greater detail. 

Figure 5 .20 shows an example of increasing detail around the user's point of view . 

. 

I..,_ 

I'- User's Point Of view 

Figure 5. 20: A quad-tree structure adapted to a user 's position 

The comers and centres of each of the final (leaf node) squares in the structure correspond to 
a point on the terrain, which is rendered to the screen using triangle fans, as shown in Figure 
5 .2 1  . 
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Figure 5. 21 :  A CLOD mes·h created by triangle.fans 

The level of detai l mesh shown in Figure 5.2 1 is now complete. TI1e problem wi th th is model 

is  that the corners of the triangles do not line up , which al lows for a problem common to th is 

algo1i thm known as tearing. Figure 5 .22 sho�s where th e tearing prob lem can occur in a 

q uad-tree structure. 

P o s s i b l e  T e a r i n g

Figure 5.22: Tearing points in a CLOD mesh 

The tearing prob lem can occur on the two points indicated. To highlight how the tearing 

problem occurs we examine how the right most point wi l l  be effected. 

• Fi rst we define l ine "A" as the line along triangle 3 adjoining triangles 1 and 2 .

• If the elevation of the 1ight most indicated po int is such that does not l ie along line "A", 

then there will be a gap in the mesh. 
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This gap, when viewed by the user, is known as a tear. To remove the occurrence of tearing 

we have two options: 
• Make sure possible tearing points are forced to l i e on the appropriate l ines.
• Subdivjde the squares into more triangles, so suspect points will lie upon triangle 

junctions. 

The first option presented above results in fewer triangles, and less detail but requires 
minimal computational overhead. However the OpenGL specification and many hardware 
boards do not guarantee that triangles joining along a line of another triangle wi l 1  accurately 

render without tearing, no matter how accurately the points are lined up. This implementation 
problem makes the second option more des irable. Wright ( 1  999) suggests the use of a mesh 
of triangles that join points on the square using as few triangles as possible. This technique 

however involves using structures other than triangle fans. 

Rottger & Heidrich & Slusallek & Seidel ( 1 998) present an algorithm that primari ly uti l i ses 

triangle fans. This algorithm was taken into consideration and an adapted for use in the 
implementation of this work. The CLOD algorithm that is used in the implementation of this 
work is optimised for quickest mesh construction. However the a lgorithm used here also has 
a sJight rendering expense due to more triangles. 

Figure 5 .23 is an example of how the algorithm implemented in this work constructs a mesh 

so as to avoid the tearing problem . 

Figure 5. 2 3: A well formed CLOD mesh created by triangle fans 
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The s imp l  triangle fan a lgorithm i s  used to jo in  al l po ints. The s impleness of th i a l gor i thm 

reduces mesh generation time, a l though render i ng t ime i s  more expensive .  Th is nove l 

approach to a CLOD algorithm i s  intended to reflect the increased speed of rendering 

hardware as compared to CPU speed 

5 . 5 . 5 . 3  Resu lts of the Quad-Tree Algori thm 

Figure 5 .24 shows two images that were generated by the CLOD algorithm described i n  th is  

work . The left image shows the position of the quad-tree squares. It i s  important to note that 

every quare i a lways touch  i ng a square either of the ame s ize, tw ice its own size or ha lf i ts 

own ize .  The right image demon trate deta i l  reduct ion accompl  i hed by the CLOD 

algorithm  . This image is also an example  of a leve l of detai  l terrain visible in real-t ime. 

Figure 5. 24: Me hes generated by the Quad-Tree ba ed CLOD algorithm 
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6 METHODOLOGY OF CONTINUOUS PLANT LIFE 

GENERATION AND VISUALISATION. 

In the field of landscape simulation plant life is classified as belonging to a collection of 
objects called non-terrain elements. The term non-terrain clements refers to all elements of a 
landscape that are not geographical, cg rocks, roads, plants. The implementation in this work 
is limited to the placement of plant life non-terrain data. For information concerning storage 
and usage of more complicated non-terrain clements, such as roads, housing and political 
boundaries, the author directs interested readers to the very complete works of Ohler ( 1 994 ). 

The placement and creation of plant life is tied to the page management algorithm discussed 
in the last chapter. The implementation that is provided with this work uses random point 
generation to place plant life in the terrain, The author directs readers wishing to place plant 
life in a more scientifically correct manner to Mandelbrot (1977). 

Meshes that model plant life can be generated using fractal techniques. In keeping with the 
level of detail concept discussed in previous chapters, the plant life generation algorithms 
presented in the implementation can be drawn at different complexity levels depending on 
how close the user is to the mesh. 

This chapter is dedicated to the construction of plant meshes, and how the plant generation 
algorithms meet the qualitative objectives of: 

• Quick execution
• Production of results faithful to the visual appearance of plant life

The primary objectives of plant life generation will also be examined, namely: 
• The production of a wide variety of species
• The production of visible variation in different plants of the same species
• The production of detailed plant meshes
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6.1 Construction of Plant Meshes 

The ba s i s  for the implemented tree/plant generation routines follow closely the pioneering 
work of Lindenmayer ( 1 968). The algorithms presented in this work arc focused on 
replicating what plant structures looks like, that i s, plant life appearance, rather than 
modelling biologically correct plant structure. This difference i s  subtle, but i s  used to 
accelerate the modelling of plants, because it i s  easier in some cases to utilise the rules of 
plant appearance, rather than the rules of plant growth. 

Because of the focus on plant life appearance, a view of plant topology will be defined for use 
in this work. It is stressed that these views are biologically based but are not necessarily true 
to the correct biological topology of plants. This proposed topology i s  derived from personal 
re search into visual aspects of plant topology combined with existing research on biological 
topology. The adaptation of the biological topology of plant life for plant life generation is 
well presented by Reffye & Edelin & Francon & Jaeger & Puech ( 1 988, 1 5 1 - 1 58) which is a 
primary source of biological information utili sed in this work. 

The general structure of any plant follows a recursive model. This model fonns the basis for 
most common plant topology. And the basis of the model i s  shown in Figure 6 . 1 .  

3rd Order axis 
,_-----

� 2"" order axis 

I st order axis 

Figure 6. /: The basic rec111�sive model of plant .ftruct11re 
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Any tree or plant generally follows these rules. 
• A branch is a length of wood containing nodes
• Nodes arc spaced at similar intervals along a branch
• A node may spawn one or more branches of equal or higher order,
• A node may spawn a [car

6.1.1 Quick Execution 

It is an essential aspect of this work that the plant generation algorithm is built for real-time 
generation. Most works on plant generation advise against doing this. A combination of 
increased processing power and highly optimised code is hoped to achieve the unprecedented 
goal of real-time plant generation. 

Most of the optimisation in this work is based on a simple observation of plant life - plants 
have more leaves than branche_s. A plant with only ten branches is likely to have a hundred or 
more leaves. This results in the recursive algorithms used to generate plants spending most of 
their time creating leaves. It is-because of the exponentially proportional time spent creating 
leaf nodes that the leaf creation functions are made as simple as possible, thus minimising 
CPU time used. Conversely the branch algorithms are the ones least called and contribute 
most to the shape and appearance of the plant and are thus allocated more relative CPU time. 

Plant aspects such as rough bark surfaces and the use of textures arc not visible from a 
distance. The plant life can be created with these aspects missing when the plant life is far 
enough away from the user for these aspects to not be noticeable anyway. 

6.2 A Topology for the Production of Detailed and Varied Plant 

Lives 

To produce results faithful to the visual appearance of plant life, data used to formulate 
individual plant models is derived partly from personal "in the field" research, and from on
line botanical databases. The in the field research was conducted over several months 
focusing mainly on plant life native to Western Australia. The main on-line database used 
was "Plants Database" (2000). This database provided mainly information relevant to plant 
life native to America and Europe. 



Centrnl to any plant life topology is branch order. The ordcr ofa branch dctcrmincs the 
behaviour of the branch. The highest order brnchcs arc leaves. The lowest order branch is the 
trunk of the tree. This is shown in Figure 6.2. 

Figure 6 .  2: Branch order 

Each species of plant life has a pre�detennined maximum branch order. This makes a 
configurable branch order very important in producing different species of plants. The 
implementation provided allows specification of different growth/appearance attributes 
(parameters) for each branch order. This facilitates creation of complicated plant forms. 

There are many parameters used in the generation of plant life. There is a performance trade 
off in the generation algorithm between the amount of parameters present and execution 
speed. In order to satisfy the requirements of execution speed and botanical realism the 
following parameters have been identified as being suitable for inclusion in the plant 
generation algorithm. 

• Ramification
• Length Reduction
• Fertile Area
• Bifurcation
• Continued Bifurcation
• Gnarl
• Phyllotaxy
• Multiple Branch nodes



The above parameter level is complicated enough to model a large variety of plant species. It 

is unlikely that users would benefit greatly from an increased set of parameters to control 
plant life generation. 

These parameters wil l  now be discussed with reference to how they create realistic plant l ife 

representations and how they meet the objectives of detail and variation in plant l ife. 

6.2.1 Ramification 

The definition of basic plant topology states that branches can have sub-branches that are of 
higher or equal order. Ramification is defined as a branch being given a higher order than its 
parent; ie the sub branch is of a different order to its parent. 

There are three types of ramification : 

• Rhythmic
• Continuous

• Diffuse 

These ramification types are shown in the Figure 6.3 . 

Rhythmic Contiltuous Diffuse 

Figure 6. 3: Branch order ramification 

Definition of terms: 

Continuous ramification 

Rhythmic ramification 

- each branch is of a higher order than its parent.

- some of the sub branches belonging to a parent are of
equal order and the rest are of higher order. There will
be a repeating pattern or rhythm to which branches are of

lower order.
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Diffuse rmnilication w There is random function that determines whether any 
particular sub branch i s  of equal or lower order 

Statistics used in the proposed topology 

Ramification type: 
Specifics continuous, rhythmic or diffuse ramification. This allows for the production 
of a variety of plant species. 

Lowering of order: 
The probability of a child branch being of an order one less than its parent. Child 
branches that are not of an order one less than its parent will have the same order as  
i t s  parent. This allows for the production of a variety of plant species. All branches 
created are tested against this probability. This means that individual plants of the 
same species will have different orders at different  branches, allowing for variation in 
plants of the same species. 

Node survival rate: 
The probability of a node on a branch spawning a child branch. This allows for the 
production of a variety of plant species. All branches created are tested against this 
probability. This means that individual plants of the same species will have different 
amounts of branches, allowing for variation in plants of the same species. 

6.2.2 Length Reduction 

Length reduction refers to the phenomenon by which new subwbranches deriving from a 
parent branch are generally smaller than their parent. This phenomenon i s  caused by the sub 
branches being younger than their parents and not having a s  much time to grow. Sub
branches being smaller than their parent is not always the case, alteration s  to this rule are 
commonly observed when there has been damage to a plant. Length reduction i s  a "rule of 
thumb" useful when modelling plants. 

Statistics used in the proposed topology 

Length reduction: 
The average ratio between the length of a parent branch and the length of a child 
branch relative to the di stance between child's base and the parent's base. This allows 
for the production of a variety of plant species. 
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Variation: 
The amount of variation allowed on the average length reduction of branches from

the same species. This allows for variation in plants of the same species. 

6.2.3 Fertile Area 

A sub branch produced by a parent branch is usually produced at the top of the parent branch. 
As the branch grows the first sub-branch created remains towards the base of the branch, ie. 
the closer a branch is to the base of its parent the older it is. 

Most forms of plant life have branches with infertile regions that contain no sub branches. 
This phenomenon for the purposes of this work is categorised into two forms: 

Constant Fertile Area 
In some cases the fertile area ofa plant is designed to only occupy a small part of the 
branch. Typically the fertile part of this type of branch has a different texture to the 
rest of the branch. 

Percentage Fertile Area 
The other type of fertile area most commonly observed is a percentage fertile area. 
This results in a certain percentage of the branch being fertile. The larger the branch 
the more the fertile area, but in the same proportion as in smaller branches. 

Statistics used in the proposed topology 

Fertile Area Type: 
Specifies a "constant fertile area" or a "percentage fertile area". This allows for the 
production of a variety of plant species. 

Fertile Area: 
In the case of constant fertile area, specifies a distance from the end of the branch that 
is fertile. In the case of percentage fertile area, specifics the percentage of the branch 
that is fertile (form the end of th� branch). This allows for the production of a variety 
of plant species 

Variation: 
The amount of variation allowed in the fertile area fonn branches in the same species. 
This allows for variation in plants of the same species. 
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6.2.4 Bifurcation 

Bifurcation was first examined for its mathematica] basis by Leonardo Da Vinci in his 
notebooks (Da Vinci, 1 5 1 0). B ifurcation is the phenomenon where a branch splits into two, 
the frangipani in Figure 6.4 is an exce11ent example of this phenomenon. 

Figure 6.4: A Frangipani 

Bifurcated branches are all of the same order. The branches formed from bifurcation are not 
sub-branches (from a biological perspective) and can be considered as being the same branch. 
Bifurcation is similar to identical human twins in that two branches are formed instead of one. 

In F igure 6.4 you will notice that the right most branch has the same length as the sum of the 
branch that bifurcated Jeft from its base and any one of its children. 
This visual aspect occurs because at any division both new branches are just a continuation of 
the original branch. Thus they have both existed for the same length of time and have 
received the same nutrient line (growth). Da Vinci noted in his notes that "all the branches of 
a tree at every stage of its height when put together are equal in thickness to the trunk" (Da 
Vinci, 1 5 1 0) .  

Statistics used in -the proposed topology 
Chance of Bifurcation: 

The probability of a branch bifurcating. This allows for the production of a variety of 
plant species. All branches are tested against this probability, this means that 
individual plants of the same species will have different bifurcations at different 
branches, allowing for variation in plants of the same species 
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Balance: 
The average dominance of one branch (growth and angle closer to parent) over the 
other branch produced in the bifurcation. This allows for the production of a variety 

of plant species 

Variation of balance: 

The variation in the balance for plant life of the same species. This allows for 
variation in plants of the same species. 

Variation of bifurcation angle: 
The variation possible in the angle of bifurcation. Allows deviation of the angle from 

what is determined by the balance statistic. This allows for variation in plants of the 

same species. 

6.2.5 Continued Bifurcation 

Often branches on a plant wil l  appear to divide into 3 or more parts, see Figure 6. 5 . 

Figure 6.5: A Ficus Bay displaying continued bifurcation 

On closer inspection we see that what appeared to be a three way split is often a bifurcation of 
one branch followed by a bifurcation on one of the other branches, see Figure 6 .  1 6 . Many 

plants will develop a secondary bifurcation one node after the original bifurcation, similar to 

how human triplets are made. 
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Figure 6. 16: A Ficus Bay displaying continued bifurcation ( detailed view) 

Often the secondary bifurcation is at 90° to the original bifurcation, as shown in Figure 6. 16 .  
This multiple division is termed continued bifurcation and i s  not limited to the production of 3 
branches but could result in 4,5,6, 7,8 or more subdivisions. A useful statistical note is that 
higher numbers of branch subdivisions become increasingly less probable. 

Statistics used in the proposed topology 
Chance of continued bifurcation: 

The probability of continued branch bjfurcation. This allows for the production of a 
variety of plant species. All bifurcations are tested against thls probability, this means 
that individual plants of the same species will have different continued bifurcations at 
different branches, allowing for variation in plants of the same species. 

Chance of 90degree to last bifurcation : 
The probability of continued branch bifurcation being at ninety degrees to the 
previous bifurcation. Continued bifurcation not at ninety degrees follow normal plant 
phyllotaxy. This allows for the production of a variety of plant species. All continued 
bifurcations are tested against this probability, this means that individual plants of the 
same species will have ninety degree continued bifurcations at different places, 
aJJowing for variation in plants of the same species. 
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6.2.6 Gnarl 

Gnnrl is the twist of II branch, often either because of traumatic conditions or because of a 
plant's design, a branch will not grow in a strnight direction. Note: alien a gnarled brnnch 
might produce a protruded knot refereed to as a "gnarl", this protruded feature should not to 
be confused with the phenomenon being discussed in this section. 

For the purposes of this work gnarls will be considered in two parts: the chance of the branch 
changing direction and the probable degree to which the new direction can change. It has also 
been noted that sometimes the generation of a large branch from one node will cause a gnarl 
in the parent branch. 

Statistics used in the proposed topology 
Gnarl Probability 

The probability of a branch changing direction at any node. This allows for the 
production ofa variety of plant species. This also greatly increases the detail present 
in plant meshes. All branches are tested against this probability, this means that 
individual plants of the same species will have different gnarl characteristics, 
allowing for variation in plants of the same species. 

Gnarl Angle 
The average angle at which a branch changes direction when gnarl occurs. This 
allows for the production of a variety of plant species 

Gnarl Angle Variance 
The amount of variation allowed in the gnarl angle in branches in the same species. 
This allows for variation in plants of the same species. 

6.2. 7 Phyllotaxy 

Phyllotaxy is the position of the buds that create leaves with respect to each other. 
Phyllotaxy has two common forms: spiralled and distic. The area of phyllotaxy is complex so 
this work models only spiralled phyllotaxy since it is sufficient for most purposes. 

There is considered to be an angle or twist between each node on a branch. The value of this 
twist is the basic way in which phyllotaxy is modelled in this work, along with some statistics 
determining the variance from this twist. Figure 6.17 shows examples of phyllotaxy with a 
twist of 0° and90°. 
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0° twist 

Figure 6. 17: faamples of phyflota,y. 

Statistics used in the proposed topology 

Phyllotaxy 

90° twist 

The angle at which a branch twists at any node. This al lows for the production of a 

variety of plant species. 

Chance Distortion: 

The chance of there being a change in phyllotaxy for one node. All nodes are tested 

against this probability, this means that individual plants of the same species will 

have d ifferent phyllotaxy characteristics, allowing for variation in plants of the same 

species. 

Gnarl Angle Variance 

The maximum amount of variation allowed in a distortion of phyllotax.y at one node. 

This allows for variation in plants of the same species. 

6.2.8 Multiple Branch Nodes 

It is possible for one node to create more than one sub branch. 

Typically there are one, two or four sub branches per node. This can vary though. for ex.ample 

clover has 3 leaves at its nodes. Figure 6 . 18  shows examples of multiple branch nodes. 



a) 

Figure 6.18: 

b) 

a: Branch with one ,l'llh-hranc:h per node 

h: Branch wilh two .rnh-branches per node 

Statistics used in the proposed topology 

Branches Per Node 
The number of branches that will spawn from any node. This allows for the 
production of a variety of plant species. 

6.3 Detail in Plant Life 

The goal of producing detailed plant life is achieved by two means. Firstly, the three
dimensional meshes produced by the plant generation algorithm are complex in their shape. 
This complexity creates detail in the plant meshes. Secondly, using detailed texture maps for 
bark and leaves completes the detail requirements for realistic plant life. 

6.4 Variation of Plant Life 

6.4.1 Inter Species Variation 

The goal of producing a wide variety of species is achieved by two means. Firstly the 
paramaterability of the plant generation algorithms allows for the generation of many 
different categories of plant shapes. Secondly, using different texture maps on the generated 
meshes completes the visual depiction of different plant species. 

6.4.2 Intra Species Variation 

The variation of different plants of the same species is achieved by the random placement of 
branches that follow the rules for the species. Plant meshes can be structured differently but 
still be in adherence with the statistics of their plant species. This results in plants that appear 
very different but are still noticeably from the same species. 
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Figure 6. 19  is an example thal shows three difforcnt plants created in the implementation tlrnl 
all appear to be the same species but exhibit variation. 

Figure 6. 19 Variation in plant of the same species 
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7 EXAMINATION OF RESULTS 

The examination of results achieved in this work will be taken in two parts: 
• Evaluation of fonctionality
• Comparison with today's technology

The evaluation of functionality is intended to describe how this work meets its objectives, The 
comparison with current technology is designed to indicate the potential usefulness of this 
work. 

7.1 Evaluation of Functionality 

This section measures aspects of the implementation in order to show its capabilities, The 
aspects measured are a combination of the direct functional goals of this work and the general 
objectives of any terrain simulator. The primary functional objectives of this work are that the 
simulator demonstrates: 

• A large landscape size
• High landscape detail
• Variation in plant life

The simulator should also achieve the following goals that are common to all landscape 
simulators: 

• Visual realism
• Interactive engine speed

The implementation will be discussed with relation to how it meets these five objectives. 

7.1.1 Large Landscape Size 

Landscape size is measured in kilometres squared. For the purposes of this evaluation 
landscapes with Okm2 - 25km2 are considered to have a small landscape size. Simulators with 
25km2 

- I 00km2 are considered medium in size. Anything greater than I 00km2 can be 
considered large in size. 
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7. 1 . 1 . 1  Results

The terrain available in the simulator covers approximately 4,294,967,296 kmi, This i s  
adequate for simulation of planets similar in size to this earth. Based on this result the 
simulator is deemed to satisfy the objective of large landscape size. 

7.1.2 High Landscape Detail 

Landscape detail i s  composed of the detail available in the terrain and the detail used to model 
plant life. Terrain detail is concerned with the overall amount of polygons u sed to render the 
terrain. The more polygons used the more detailed the terrain will be. Terrain detail i s  
measured as triangles per metre squared, this i s  measured from the most detailed part of a 
CLOD mesh. For the purposes of this evaluation the use of one or more triangles per square 
metre can be considered a s  developing a highly detailed mesh. The use of between one 
triangle per square to 0.3 triangles per square metre gives a medium resolution mesh and 
anything less than 0.3 triangles per square metre can be con sidered a low resolution mesh. 

Biological detail i s  hard to measure, since there i s  little data to analyse other than the 
appearance of the plant life on the screen. For the purposes of this wurk the visual appearance 
of the plant will be measured by recording the smallest features visible when the plant i s  
displayed close to the user's position. For the purposes of this evaluation plant life will be 
evaluated as follows: 
• If  individual leaves in the plant are not discernible the plant i s  con sidered to be low

re solution.
• If  individual leaves in the plant are discernible the plant i s  con sidered to be medium

re solution.
• ff details on individual leaves in the plant are discernible the plant i s  con sidered to be

high resolution.



7 . 1  .2. 1 Resu l ts 

The imp lementati on appl ies about 1 . 8 tri ang les per v irtua l  square metre i n  a terra i n  

mesh .  This h igh  density is sufficien t fo r rea l i st i c  terrain representat ion .  The terrai n 

produced in the s imu la tion is s hown i n  Fig ure 7 . 1  . 

Figure 7. 1 :  Detailed lerratn scene.fj,'Oln implemented simulator.

This work al lows indiv idual leaf aspects to be displayed when a tree is close to the user 's 
position . Therefore the plant life is considered to be high resolution . 

As a high amount of v isual detail has been achieved this approach is suitable for automatic 
generation of highly detailed landscapes. 

7. 1 .3 Variation in Plant Life

Vari atio n  in pl a nt l i fe is  directly measured by tbe amotmt of individual plants avai lable in the 

simulation . For the purpose of this simulation less than ten plants is cons idered to be low 

variation .  Ten to thi rty forms of plan t l i fe  is considered to be a medium amount of variation . 

More than thirty forms of plant life is considered to be a l arge variation in plant l ife. 
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7.1.3.1 Results 

This work allows the landing of one hundred possible plant species. Each pl:1111 species cm1 be 
represented by approximately 1 6,000 possible individual plant meshes, This allows for 
1 ,600,000 possible plants in the simulation. This is considered in this evaluation to be a large 
amount of plant life variation. 

7.1.4 Visual Realism 

Visual realism is a measurement of how well the landscape in the simulation models a real 
life landscape. This is almost impossible to put into meaningfu l  units of measurement so the 
work is assessed by the effectiveness of the features provided to achieve visual realism. 

For the purposes of this evaluation a landscape simulator is considered to have low visual 
realism ifa user has difficulties recognising what is being displayed on the screen. A 
moderate degree of visual realism is achieved when the user instinctively knows what it is 
that is being displayed on the screen. It is not common for real-time simulators to display a 
level of realism that makes the simulator difficult to distinguish from a photograph or movie. 
In the event that this was achieved it would be considered a high degree of visual realism, 

7.1.4.1 Results 

A major visual realism feature present in the implementation provided here is a generic tree 
specification language. This language, implemented as a file format, enables specification of 
plant life topology as described in chapter 6. Another visual realism feature provided is the 
mid point terrain generation algorithm used to create realistic terrain. 

With the presence of these features and the results they produce, this implementation 
produces images that are readily recognisable as landscape images. Thus the moderate degree 
of visual realism expected in landscape simulators was achieved. 

7.1.5 Interactive Engine Speed 

Engine speed is measured by the number of frames that are rendered by the engine per 
second. A simulator needs to achieve 25 frames per second to create the illusion ofa moving 
image. However, for ease of use with immediate response it should be capable of rendering 
3 0 frames per second. 
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7.1 .5.1 Results 

The implementation of this thesis was tcskd on a modern personal computer and fbund to 
have an average frame rate of 45 fps. 

The personal computer used for this test was constructed as follows: 
• 800Mhz thundcrbird CPU
• Geforcc 2 GTS video processor

• 5 l 2mb system ram
• 32mb video memory

7.2 Comparison with Todays Technology 

For the purposes of comparing this work with other works in the field two commercial 
programs were selected. The two programs and the implementation provided in this thesis 
where run on the same test machine and the results were compared. 

"Tread Marks" (McNally & McNally, 2000) is the first software chosen for comparison. This 

tank simulator is recent and features a typical landscape quality present in todays hardware. 

"Draken" (Denman & Patmore & Ebling, 1 999) is the second simulator chosen for 
comparison. This simulator has large environment sizes and tries to maintain reasonable detail 
levels. This software is often n_oted for the quality of its graphics. "Drakan excels graphically'· 
Smith (2000). 

7 .2.1 Measures used for Comparison 

To accurately compare these three pieces of software it is necessary to formalise what aspects 
of the software will be measured. Furthermore to compare these software titles accurately, 
units of measurement must be established. 
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The aspects ofsofiware tested measure the size, detail, varintion, execution speed and visual 
rcnlism of the vnrious sollwarc titles, The following aspects oflhc sofiwarc will be comparc<l 
in this study:

• Execution speed 
• Viewable distance
• Polygon density
• Map size
• Plant life detail
• Plant life variation

Execution speed is a measurement of how many frames arc drawn per second on average 
during a program's execution. This aspect will be measured in frames per second (FPS). 

Viewable distance is a measurement of the virtual distance in front of the user where the 
object clipping takes place, Any object beyond the clipping distance will not be visible in the 
simulation. This aspect will be measured in metres 

Polygon density is a measurement of how many polygons are used per square metre to 
represent an unsimplified area of terrain. This aspect will be measured in polygons per metre 
squared. 

Map size is a measurement of the size ofa simulators virtual environment that is explorable 
by the user. This aspect will be measured in km2

•

Plant life detail is measured as either being low, medium or high. The measurement given is 
detennined as follows: 

• If individual leaves in the plant are not discernible the plant is considered to be low
resolution.

• If individual leaves in the plant are discernible the plant is considered to be medium
resolution.

• If details on individual ]caves in the plant are discernible the plant is considered to be
high resolution.

Plant Life Variation is a measurement of how many individual plants are possible in the 
simulation. This aspect is a whole number derived by multiplying the number of species 
present by the number of variations possible for each species. 
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7.2.2 Set up of the Test-Bed 

For accuracy of the performance measurements all software titles were run on the same 

computer. Figure 7.2 is taken to be a view of the integral components of a graphics system. 

Figure 7.2: Integral Components of a graphics system 

The specifications of the test systems integral components are as follows: 

CPU 

System Memory 

System Bus 

Video Bus 

V idea Processor 

- 800Mhz AMO thunderbird 

- 512Mb 133Mhz 

- 133Mhz 

- AGP 4x (Fast Write Enabled) 

- Geforce 2 GTS 220Mhz 

Video Memory - 32mb 364Mhz DOR 

Video Controller - Asus based VC 

Monitor - Philips 109p (800x600 at 120Hz) 

7.2.2.1 Software Set up 

In setting up the tests necessary to compare the software, the configuration of the software 

titles is a key factor in forming a reasonable comparison of the titles. 

All software was configured to run at maximum detail levels. However in no case was full 

screen antialiasing enabled because the performance penalty would be too large and introduce 

too much unnecessary bias into the results. All software was set up to use 32 bits per pixel 

and an 800x600 screen mode. 

73 

" 



7.2.3 Results of Comparison 

7.2.3.1 Evaluation of This Work 

Execution Speed 

This implementation achieves an average frame rate of30 frames per second. This is 
adequate for the purposes ofrcal·timc simulation and will improve when the 
simulator is run on faster hardware. 

Viewable Distance 

The viewable distance in this simulator is 300 metres. This is a semi restricted visual 
distance in a landscape simulator. 

Polygon Density 

This work uses approximately 1 .8 triangles per metre squared when rendering a 
terrain mesh. 

Map Size 

The size of the overall explorable landscape in the implementation is about 65 
thousand by 65 thousand kilometres, or 4,200,000,000 km2

• 

Plant Life Detail 

The work presented here provides for highly detailed plant meshes. If desired the 
details of individual leaves are visible in the simulator. 

Plant Life Variation 

This simulation can handle I 00 species of plants. Each species can be viewed as 
about 16,000 individual meshes. This allows for 1 ,600,000 possible plants in the 
simulation. Extending the limit of I 00 plants is a trivial task for developers wishing to 
use more species. 

7.2.3.2 Evaluation of "Tread Marks" 

Execution Speed 

Tread Marks achieves an average frame rate of 45 frames per second. This is 
adequate for the purposes of real-time simulation. 

Viewable Distance 

The viewable distance in Tread Marks is I 000 metres. This is a vcry large visual 
distance in a landscape simulator. 



Polygon Density 

Tread Mnrks uses approximately 2 triangles per metre squared when rendering a 
terrain mesh. This i s  an extremely high resolution allowing for very detailed terrain to 
be displayed. 

Map Size 

The size of the over all explorable landscape in Tread Marks i s  about lkm2. This i s  a 
very small landscape, which in this simulator tcsscl I ates so a s  the landscape is seen to 
repeat during travel. 

Plant Life Detail 

This sothvare provides for moderately detailed plant structures. It i s  possible for a 
user to distinguish individual leaves on a plant. 

Plant Life Variation 

Thi s simulator contains only seven possible trees. All plant life present i s  always 
going to be one of these trees. 

7.2.3.3 Evaluation of "Draken" 

Execution Speed 

Draken achieves an average frame rate of 60 frames per second. This i s  m ore than 
adequate for the purposes of real-time simulation. 

Viewable Distance 

The viewable d i stance Draken i s  300 meter s. This i s  a semi restricted vi sual distance 
in a landscape simulator. 

Polygon Density 

This software uses approximately 0.5 triangles per metre squared when rendering a 
terrain mesh. This i s  not sufficient to form highly detailed terrain. Because of this 
jagged areas of the terrain often appear unrealistic. 

Map Size 

Draken has a larger map size than most simulators using its level of detail. The map 
size available in this s imulator i s  l 000km2• This is achieved by using 1 0  sets of maps 
that are approximately I 0km by 1 0km. This software uses I 24mb of data to store this 
information. 

Plant Lire Detail 
Draken provides for plant structures with low detail. The user sees a tree that is more 
cartoon like in appearance than realistic. 
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Plant Life Variation 

This simulator contains 25 possible plants. This allows for jungle scene to not appear 
highly repetitive, but the user does become familiar with what every plant looks like. 

7 .2.4 Comparison of Results 

The results show that the solution implemented in this work does not achieve the same frame 
rate as the competing software. With all the extra overheads used in this implementation th is 
was expected. However the results clearly show a large increase in environment size and the 
amount of avai lable plant life. 

Figure 7.3 shows the different attributes of the compared terrain simulators .  On these statistics 
the simulators are competitive in their results. 
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F igure 7.4 shows where this work excels over the other works in terms of map size. Note this 
graph is scaled logarithmically. This was necessary because the results given by this work 

show a mil L ion fold increase in map size. Without a logarithmic graph the other works resu lts 
wou ld not be displayable. 
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Figure 7. 4: Comparison of results

F igure 7 .5  shows the plant life variation resu lts of this work. As expected this work has 
incorporated noticeably more individual plant lives than the other works. Note this graph is 
sca led logarithmically. This was necessary because the resu lts recorded for this work show a 
one hundred thousand fold increase in the amount of individual plant life available. 
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8. CONCLUSIONS

8.1 Conclusions 

The problem discussed in section four concerning storage space limitations in landscapes 
simulators has been solved. The techniques of procedurally generating all landscape elements 
during a program execution may be slower than alternative techniques but offer an effective 
solution for providing larger and more sophisticated landscapes than is currently possible 
using non-generative techniqP.es. 

As has been shown CPU technology is currently able to run simulations of the fonn presented 
in this work. It has also been established that conventional landscape simulators utilising 
modern storage devices cannot achieve the same levels of size, detail and variation presented 
here. It is these two facts that validate the techniques presented here as being viable for 
modern landscape simulators. 

8.2 Summary of Contributions 

1. Developed a pioneering approach to remove the size and detail limitations imposed on
the terrain present in landscape simulators,

A unique way of handling complex graphical detail and large environment size in 
graphical simulations was explored. This field has more potential than can be shown in this 
one work alone. 

2. Developed a pioneering approach to remove the detail and variation limitations
imposed on the plant life present in landscape simulators.

This allows for a more realistic simulation of a natural environment. 

3. Found a practical use for real-time generation of plant nnd terrain meshes.



8.3 Future Research 

The author advises readers wishing to continue the work prcscntl!d in this paper of two 
possible research directions: 
• The integration of techniques to model roads, road layout, city planning and generation of

architectural structures.
• The integration of  procedurally generated textures. This research direction would allow

every patch of  ground to look unique and all trees will seem to have their own bark.

The first research direction would allow cities to be explored in the same way the land�,;ape 

in this simulation was explored. The second research direction would allow for every patch of  
ground to look unique and for all trees to have their 0\'..11 bark. 

Sil 



9. REFERENCES

Abelson, H .• & diScssa, A. /\. ( 1 98 1  ). Turtle Geomelly 11,e Computer as u Medium for 

Erplori11g Mathematics. London: MIT Press. 

Barnsley, M. F., Devaney, R. L., Mandelbrot, fl B., Pcitgcn, H. o., �:,t1p�·. D., & Voss, R. f. 

( 1988). The Science of Fractal Images, New York: Springer-Verlag. 

Barnsley, M. F., Jacquin. A., Malassent, F., Reuter, L., & Sloan, A. D. ( 1 988). Hamcssin 

Chaos for Image Synthesis. Siggraph, 22( 4), 1 3 1 - 1 40. 

Barrett, A. N., & Mackay, A. L. ( 1 987). Spatial Structure and the Microcomputer. 

Houndmills: Macmillan Education Ltd. 

Berg, M. d., Kreveld, M. v., Ovennars, M., & Schwarzkopf, 0. ( 1 997). Computational 

Geometry Algorilhms and Applications. Berlin: Springer-Verlag. 

Bitters, B. (2000). Terrian Data. Available: 

h ttp://b bq .nc gi a. ucs b. ed u/ education/ curricula/ cctp/u 11 its/ u 11it06/06. ht rn I . 

Bourke, P. ( I 997). Frequency Synthesis of Landscapes, [on-line]. A vailablc: 

http://www.swin.edu.au/astronomy/pbourkefreqland/ [ 1 997. 

Bourke, P. ( 1998). 2 Dimensional FFT, [on-line]. Available: 

http://www.swin .ed u .au/ astronom y/pbourke/ ana 1 ys i s/ff2d/. 

Bracewell, R. N. ( 1 986). The Fourier Transform and its Applications ( 2 ed.). New York: 

McGraw-Hil l  Inc. 

Brinkmann, R. ( 1999). The Art and Science of Digital Compositing. San Diego: Academic 

Press. 

Brunes, T. ( 1 967). 111e Secrets of Ancient Geomet,y ( Vol. 2). Copenhagen: International 

Science Publishers. 

� ,  



Carnmck, J .. Carmuck, t\., Romero, J., & l lall, T. ( 1 996). ()uakc (Version I )  [cmnputcr 
software]: id so!lwarc. 

Da Vinci, L. ( 1 5 1 0)., [,unpublished notesj. 

Denman, S., Patmore, A., & Ebling, T. ( 1 999). Drakan, Order ofthc Flame (Version I )  
[computer software 1: Surreal Software 

Eberly, D, H. (200 1). JD Game Engine Design. San Diego: Academic Press. 

Ebert, D, S., Musgrave, F. K., Peachey, D., Perlin, K., & Worley, S. ( 1 998). Texturing and 

Modeling, A procedural approach. San Diego: Academic Press. 

Foley, J. D., Dam, A. v., Feiner, S. K., & Hughes, J. ( 1 990). Computer Graphics principles 

and practice ( 2nd ed.). Massachusetts: Addison-Wesley. 

Foser, R. (1996). OpenGL Programming/or Windows 95 and Windows NT. Massachusetts: 
Addison-Wesley Developers Press. 

Gleick, J. ( 1 987). Chaos making a new science. New York: Viking Penguin. 

Heam, D., & Baker, M. p. ( 1994). Complller Graphics ( 2 ed.). New Jersey: Prentice Hall. 
Inc. 

Hill, F. S. (200 1). Computer Graphics using Open Gl {sic] ( second ed.). London: Prentice 
Hall. 

Hoppe, H. (2000). Smooth View-Dependent leve/-qf-Delail Comro/ and it's application to

Terrain Rendering, [on-line]. Microsoft Research. Available: 
http://www. research.mi croso ft.com/-hoppe/. 

Kelly, A. D., Malin, M. C., & Nielson, G. M. ( \  988). Terrain Simulation Using a Model of 
Stream Erosion. Siggraph, 22(4), 263-268. 

Kenneth, J, I., Grant, C. W., Max, N. L., & Hatfield, L. ( 1 988). Computer Graphics: Image 

Synthesis. Washington: Computer Society Press. 
R2 



Knuth, D. E. ( 1 997). Se111i1111merical Algorithms ( 3rd ed. Vol. 2). Massachu setts: Addison
Wcs\cy. 

Kuo, H.-H. ( 1996). White Noise Distrihlllion 11,emy. l3oca Ralon: CRC Press. 

Lindcnmuycr, A. ( 1 968). Mathematical Models for Cellular Interactions in Development. 
Journal oj71,eoretical Biology., I & 2. 

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N., & Turner, G. ( 1 996). Rcal
time, continues level of detail rendering of height fields. In Computer Graphics. 
Proceedings o/Siggraph '96, I 09-1 1 8. 

Magnenat-Tha\mann, N., & Thalmann, D. ( 1985). Computer Generated Images, The stale of 

the art. Paper presented at the Graphics Interface, New York. 

Mandelbrot, B. B. (1977). The Fractal Geomeo:v of Nature ( Rev ed. ed.). New York: W.H. 
Freeman and Company. 

Martz, P. (2000). Generating Random Fractal Terrain, [on-line]. Gamcprogrammcr.com. 
Available: wysiwyg://22/http://www.gameprogrammcr.com/fractal.btml. 

Mauro, J., & McDougall, R. (2000). Solaris Internals : Core Keme/ Architecl/lre. New 
Jersey: Prentice Hall. 

McNally, S., & McNally, J. (2000). "Tread Marks" (Version 1 .0 . 1 )  [computer software]: 
Longbow Digital Arts. 

Moller, T., & Haines, E. ( 1 999). Real�Time Rendering. Massachusetts: A K  Peters. 

N IMA. (2000). National Imagery and Mapping Agency, [on-line]. Available: 
http://www.nima.mil/ [2000. 

Ohler, T. B. G. ( 1994). On the l11fergration of Non-Geometric A.1pects into Access Structures 

for Geographic Information Systems. Unpublishi:d dissertion, Swiss Federal Institute 
of technology. 

Perlin, K. ( 1 985). An Image Synthesizer. Proceedings <?(SIGGRAPH rs5, 287-295. SJ



rla11ts Datahase(2000),, lData Base]. Natural Resources Conservation Service, Available: 
http://plants.usda.gov/, 

Press, W, H .• Flannery, B, P., Teukolsky, S, /\,, & Vettcrling, W. L ( 1 986). Numerical 

Recipes rhe art ofScientijic Cm11p11tii1g. Cambridge: Cambridge University i'rcss. 

Prusinkiewicz, P .• Lindcnmayer, A., & Hanan, J. ( 1988). Developmental Models of 
Herbaceous Plants for Computer Imagery Purposes. Siggraph, 22(4 ), 14 1 -150. 

Reffo, P. d., Edelin, C., Francon, J,, Jaeger, M., & Pucch, C. ( 1 988). Plant Models Faithful to 
Botanical Structure and Development. Siggraph, 22(4), 1 5 1 - 1 58. 

Root, M., & Boer, J. ( 1999). DireclXComplere. New York: McGraw-Hill. 

Rottger, S., Heidrich, W., Slusallek, P., & Seidel, H.-P. ( 1 998). Real-Time Generation of 
Continuous Levels of Detail for Height Fields. 

Savchenko, S. (2000). JD Graphics Programming Games and Beyond. Indianapolis: Sams 
Publishing. 

Smith, R. (2000, August). "Draka11: Order of the Flame" [Review of the computer software 
Drakan, Order of the Flame]. PC Gamer California: Imagine Media 

Ulrich, T, (2000), Continuous LOO Terrain Meshing Using Adaptive Quadtrees. 
Gamasutra(228), 

Ward, G. ( 1 99 [). A recursive Implementation of the Perlin Noise Fu11ctio11. 

GraphicGems(Vol. 2) , 396-40 1 .  New York: Ap Professional 

Watkins, C. D., & Sharp, L. ( 1 992), Programming in 3 Dimensions. San Mateo: M&T 
Publishing, Inc, 

Watt, A. (2000). 3D Computer Graphics ( 3 ed.), Essex: Addison-Wesley. 

W:1t1, A., & Watt, M. ( 1992), Advanced Animation and Rendering Teclmiq11es, New York: 
Addison-Wesley. 



Wernecke, J. ( I g94). 11w lnvenlor Mentor /1ro?,mm111i11g O!�;ecl-Oriented 3/J graphics with 
Open Inventor ( 2nd ed.). Massachusetts: J\ddison-Wcslcy. 

Williams, R. ( 1979). The Ueometrica/ Fo1111datio11 of Nlllura/ Structure, A source hook r!f 
design. New York: Dover Publications, INC. 

Woo, M., Neider, J., Davis, T., & Shreiner, D. (2000). OpenGL Progrummin>{ Guide ( Third 
ed.). Mas sachusetts: Addison-Wesley. 

Wright, R. S., Jr., & Sweet, M. (1999). OpenGL Super Bible ( 2nd ed.). Indianapolis: Waite 
Group Press. 



Artefact 

Bifurcate, Bifurcation 

Billboard 

CLOD (mesh) 

Level Designer 

LOD (mesh) 

Mesh 

Popping 

Quad-Tree 

Tearing 

Terraform 

Terrain Mesh 

Topology 

Triangle Count 

Triangle Fan 

GLOSSARY 

Undt:sirablc effect unintcnlionally present in a computer rendered 

scene. 

To split in two, as in a lake becoming two lakes, typically involving a 

"Y' _junction. 

A flat textured rectangle used to create the illusion of a 30 object. 

A mesh that can have its detail changed at any part its surface. 

A per�on who design's an environment for a computer game 

A mesh constructed with different levels of detail in different parts of 

the mesh. 

A col!cction of joined triangles that represent an object in three 

dimensions. 

A sudden noticeable object that appears as a scene's detail increases. 

Regarded as an undesirable artefact. 

A data structure that recursively subdivides a 2 dimensional area into 

quadrants. 

An artefact produced when three triangles join in a "T" Junction. 

To shape a terrain. Specifically to alter a terrain/environment to 

resemble the earths natural terrain/environment. 

A mesh used to define a terrain, typically with no overlapping segments 

The concept behind the organisation of a structure, this word has no 

plural form recognised in the English language. 

The number of triangles used to define a mesh or scene 

A series of triangles sharing common edges and one common comer. 

Sci 



Artefaots 

Tearing, 50 

Artefacts 

Popping, 47 

Bifurcation, 60 

Continued, 61 

Brownian motion, 34, 35 

CLOD, 15, 16, 46 

A 

B 

C 

Continues Level of Detail Meshes, 15, 16 

Definable Terrain, 44 

Dirty Pages, 45 

D 

Distance From Camera, 48 

Fertile Area, 59 

fractal surface, 32, 36 

F 

G 

Gaussian distribution, 36 

geomorphs, 47 

Gnarl, 63 

height field, 47 

Height Field, 3 I 

H 

Height Field Grid, 28, 30 

INDEX 

L 

Length Reduction, 58 

Level of Detail Control, 46 

LOD, 16, 40, 46, 47 

M 

midpoint displacement, 32 

Midpoint displacement, 34 

Midpoint displacement in three dimensions, 34 

Multi-Fractals, 16 

Multiple Branch nodes, 64 

Noise 

Brownian, 34 

White, 44 

Non-Terrain Landscape Elements, 24 

normal distribution, 36 

0 

Offset Spherical Approach to Page Management, 41 

OpenGL, 51 

p 

Page Management, 3 8 

Page Management Techniques, 40 

Phyllotaxy, 63 

Plant Life, 53 

Generation, 53 

Topology, 54 

Plant Synthesis, 17 

Plant Topology 

Ramification 

Diffuse, 57 

Rhythmic, 57 

Plant Topology 

Ramification, 57 
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Popping, 47 

Quad Tree 

Squares, 52 

Quadtree, 47 

QuadTree, 48 

Q 

Quasi White Noise, 43 

quasi-random number generators, 43 

Ramification 

Continues, 57 

Diffuse, 58 

Rhythmic, 57 

Relief, 48 

R 

s 

Supply-Demand Networks, 45 

T 

Tearing, 50 

Terrain Generation, 15, 32 

Terrain page management, 37 

tessellating pages, 4 5 

transformation function, 36 

Triangle Fans, 51 

Triangular Irregular Network, 28, 47 

V 

View Dependent Progressive Mesh, 47 

white noise, 44 

White Noise, 43 

w 
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