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ABSTRACT 

Obesity, especially at mid-life, is a major risk 
factor for atherosclerosis, insulin resistance and 
the metabolic syndrome, which in turn contrib- 
ute to coronary artery disease (CAD), Type 2 
diabetes and Alzheimer’s disease (AD). The rise 
in overweight and obesity in all societies is 
prompting intense research into the causes and 
effects of the condition. Obesity disrupts many 
body systems including glucose and lipid me- 
tabolism, circadian rhythms and liver function. It 
also causes or increases inflammation and oxi- 
dative stress. Within cells, the endoplasmic re- 
ticulum (ER) appears to be particularly suscep- 
tible to such metabolic disruption. Sirtuin 1 (Sirt1) 
and leptin have received attention recently as 
they are central regulatory factors for the body’s 
metabolic pathways which interact at particular 
levels, for example lipid and Abeta metabolism. 
This mini-review discusses recent findings con- 
cerning obesity, lipid metabolism and the role of 
Sirtuin 1 and how all influence the ER. A greater 
understanding of obesity and its effects on me- 
tabolic control systems of the body are required, 
to develop pharmacological, dietary and lifestyle 
changes that will reduce the incidence of CAD, 
Type 2 diabetes and AD.  
 
Keywords: Obesity; Sirtuin 1; Alzheimer’s Disease; 
Cardiovascular Disease; Diabetes 

1. INTRODUCTION 

Obesity is associated with an increased risk for athero- 

sclerosis, contributing to the onset of coronary artery di- 
sease. Obesity is also well-known to be associated with 
Type 2 diabetes, insulin resistance and hyperlipoprotei- 
nemia. In fact, obesity and the metabolic syndrome have 
become major public health issues as they have reached 
epidemic proportions in Western populations [1]. Obesity 
is now recognized as an important risk factor for AD and 
cognitive decline [2-10]. For example, in a study of 8534 
individuals from the Swedish Twin Registry, it was found 
that both overweight and obesity at midlife increase the 
risk of dementia, AD, and vascular dementia [11,12], and 
in an 18 year follow up study of overweight women, a 
higher incidence of dementia (particularly AD) was found 
in these women relative to controls [13]. Obesity and 
overweight, as measured by body mass index and skin 
fold thickness, has been strongly associated with AD and 
dementia, independent of the development of diabetes 
and cardiovascular disorders [6].  

2. OBESITY AND ADIPOSITY 

Obesity is defined as having a body mass (BMI) index 
of >30 (BMI = weight in kg/[height in m]2), whereas 
overweight is defined as having a BMI from 25 to 30. 
Obesity is a medical condition in which excess body fat 
has accumulated to such an extent that it is likely to have 
adverse effects on life expectancy and leads to increased 
health problems. Adiposity is the body fat tissue content, 
and as the degree of adiposity increases, the level of adi- 
posity can be defined as being overweight or obese by 
measures such as the BMI.  

3. MIDLIFE OBESITY 

Being overweight or obese in early life or middle adult 
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life leads to hyperinsulinemia which may lead to diabetes 
later in life. Therefore the timing and the development of 
adiposity is critical to the understanding how it is associ- 
ated with the pathogenesis of AD (Figure 1). 

In a recent longitudinal study of 1149 individuals, mid- 
life obesity was found to be a significant risk factor for 
AD in later life [14]. Abnormally high levels of the Abeta 
peptide are believed to be involved in AD pathogenesis, 
and in our own recent studies, we have found a strong 
positive correlation between body fat and blood plasma 
Abeta levels in cognitively normal individuals aged be-
tween 23 to 65 [15].  

4. DIET AND RISK OF ALZHEIMER’S 
DISEASE 

Epidemiological studies have shown that people of si- 
milar ethnic origins yet living in different environments 
can have significantly different risks of dementia [16,17]. 
Nigerians living in Africa have a much lower incidence 
of AD when compared with African Americans living in 
the US [16]. Similar results were obtained with Japanese 
people living in Japan when compared with Japanese 
Americans living in the US [17]. These differences were 
believed to be mostly due to dietary differences. Diet and 
dietary fat intake are now considered particularly impor- 
tant when comparing the lifestyles of populations scree- 
ned for AD [18]. In support of obesity and caloric intake 
influencing AD risk, for example, one study has found 
that the more saturated fat consumed in a meal the grea- 
ter the risk for developing AD and senile dementia [19]. 
In other studies of humans and other animals, it has been 
found that feeding diets high in saturated fats results in 
learning and memory impairments. High caloric intake  

of saturated fat has also been associated with greater ce- 
rebral Abeta amyloid deposition [19]. In contrast diets 
containing chronically high levels of polyunsaturated fat- 
ty acids result in better learning when compared with di- 
ets containing saturated fat [20].  

Cholesteryl esters can be hydrolysed in lysosomes 
following which fatty acids become available for oxida- 
tive metabolism, in particular to carbon dioxide [21]. As 
a result, the metabolism of dietary lipids can be assessed 
using a stable isotope breath test [21] and using such a 
test, the clearance and metabolism of cholesterol-rich 
dietary lipoproteins in obese individuals has been found 
to be markedly lower than normal, indicating that the 
ingested fat was poorly cleared and metabolised from the 
blood plasma. Obese individuals have high triglyceride 
levels and low HDL levels with an increase in small LDL 
particles [22,23]. In animal models of AD, strong corre- 
lations between high fat/high cholesterol diets and in- 
creases in brain Abeta levels and HDL cholesterol levels 
and lower LDL cholesterol levels have been shown. For 
example, increased cerebral Abeta deposition as well as 
increased memory impairment has been shown in AD 
model transgenic mice fed high fat diets, and although 
exercise [24] and environmental enrichment [25] have 
been shown to reverse these effects to some extent, when 
translating to clinical situations, one major recommenda- 
tion would always be to reduce saturated fat intake. Lon- 
gitudinal studies have shown that people with an overall 
lower calorie intake also have a reduced incidence of AD 
later in life [13].  

In obese individuals, there are several abnormalities in 
free fatty acid (FFA) metabolism [26,27]. There is an in- 
crease in FFA release from adipose tissue to the blood 
plasma which impairs the uptake of glucose by muscle  

 

 

Figure 1. Obesity as a mechanism for induction of Alzheimer’s disease. 
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[26,27]. Furthermore, the rate of lipolysis is accelerated 
in visceral adipose tissue and the increase in circulating 
FFA results in dyslipidemia, hyperinsulinemia and hy- 
perglycemia [28]. 

Essential fatty acids such as cis-linolenic acid (LA) and 
alpha-linolenic acid are essential for humans, and the me- 
tabolism of these fatty acids is altered in obesity and other 
diseases [29,30]. In AD individuals the composition of 
phospholipid fatty acids is also altered [31] with increases 
in saturated fatty acids (14:0, 16:0, 18:0) and decreases 
in polyunsaturated fatty acids being found [31]. These 
alterations in phospholipid fatty acid composition may be 
associated with the high saturated fatty acid intake at mid- 
life in AD individuals [32].  

5. LEPTIN AND OBESITY 

Leptin is a 16-kDa hormone that plays a key role in re- 
gulating energy intake and energy expenditure. It acts on 
the hypothalamus to influence appetite and metabolism. 
Leptin regulates lipid homeostasis and has also been 
shown, in vitro and in vivo, to have important effects on 
Abeta levels via apolipoprotein E-dependent pathways 
[33]. It is secreted by adipose tissue and levels are usu- 
ally directly proportional to the levels of body fat. There- 
fore, obese individuals have elevated leptin levels that is 
related to their increased adipose tissue mass [33]. It ap- 
pears that obese people are resistant to the effects of lep- 
tin, in much the same way that people with type 2 diabe- 
tes are resistant to the effects of insulin [34].  

6. INSULIN AND OBESITY 

Insulin modulates cognition and other aspects of nor- 
mal brain function. The insulin resistance syndrome is 
characterized by chronic high levels of insulin, reduced 
insulin activity and reduced brain insulin levels. Insulin 
resistance together with obesity can lead to increases in 
cardiovascular risk factors such as dyslipidemia, hyper- 
tension and Type 2 diabetes [35]. Insulin resistance is 
also associated with age-related memory impairment and 
an increased risk of Alzheimer’s disease. High insulin le- 
vels are known to increase the levels of Abeta and inflam- 
matory changes that are linked to age and obesity [35,36]. 
For example, AD-model mouse studies have shown that 
inducing type 2 diabetes caused an increase in Abeta pro- 
duction and Abeta neuropathology, impaired insulin re- 
ceptor signal transduction, and a significant potentiation 
of cognitive deterioration compared to non-diabetic con- 
trol AD mice [37]. It has been suggested that the higher 
levels of brain Abeta in such mice may be due to result 
from the high insulin completely consuming insulin-de- 
grading enzyme (IDE) activity–IDE can degrade both in- 
sulin and Abeta but has a preference for insulin thus re- 
sulting in elevated Abeta [38]. Preventing or correcting 

insulin abnormalities may reduce the risk of age related 
memory impairment and AD. 

High fat diets are known to interfere with glucose tol- 
erance and insulin sensitivity and yet such detrimental 
effects depend greatly on the type of fat consumed [39- 
41]: saturated and trans-fatty acids increase insulin resis- 
tance whereas mono- and polyunsaturated fats decrease 
resistance and protect against the disease.  

7. SIRTUIN 1 

The sirtuin proteins, also known as silent information 
regulators, are class III histone deacetylases (HDAC). 
Sirtuin 2 was the first to be identified: it was found to be 
a mediator of replicative lifespan in budding yeast. It was 
then shown to modulate longevity in worms and flies. 
These protective actions are believed to result from the 
beneficial regulation of stress management and energy 
homeostasis [42-56]. Sirtuins are now known to regulate 
several cell functions by deacetylating both histone and 
non-histone targets. 

The mammalian homologue, Sirtuin 1 (Sirt1), seems to 
have evolved complex systemic roles in cardiac function, 
DNA repair and genomic stability. Sirt1 has been shown 
to play a central role in metabolic homeostasis. It is in- 
volved in gluconeogenesis in the liver, fat mobilisation 
from white adipose tissue, cholesterol metabolism, insu- 
lin secretion from the pancreas and energy metabolism in 
general [57]. For example, Sirt1 deacetylates and activa- 
tes the transcriptional co-activator PGC1-alpha and the 
transcription factor FoxO1 in the liver, to promote glu- 
coneogenesis. In adipose tissue, Sirt1 triggers fat mobili- 
sation by inhibiting peroxisome proliferator-activated re- 
ceptor gamma (PPAR-gamma), and in the pancreas, Sirt1 
repression of the uncoupling protein 2 (UCP2) increases 
insulin secretion [58]. Sirt1 also influences mitochondrial 
biogenesis, inflammation (cytokine release) and amyloi- 
dosis [42-56].  

Calorie restriction has been shown to extend life span. 
In fact, it has been shown to extend the median and ma- 
ximum life span of numerous organisms including yeast, 
flies, worms, fish, and rodents and mammals. It is now 
believed that this may be mediated partly due to the in- 
crease in Sirt1 activity which is induced by calorie re- 
striction. For example, increased Sirt1 activity mediates 
mitochondrial biogenesis, which in turn may reduce the 
production of reactive oxygen species, a possible cause 
of aging and AD pathogenesis [59]. The involvement of 
Sirt1 in insulin regulation as well as cholesterol, fatty acid 
and glucose homeostasis has been linked to obesity, dia- 
betes and cardiovascular disease. As these diseases are 
all thought to increase risk of AD, this provides further 
reason to believe that activating Sirt1 by calorie restric- 
tion may reduce the risk of AD (Figure 2) [60].    
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Figure 2. Anti-aging protein Sirtuin 1 controls peripheral cholesterol & lipid homeo- 
stasis and brain amyloid beta metabolism; ER = endoplasmic reticulum, UPR = un- 
folded protein response, VLDL = very low density lipoprotein, HDL = high density 
lipoprotein, PPAR = peroxisome proliferators-activated receptor. 

 
The concept that diet can regulate adipocyte plasma 

leptin (16 kda protein) as well as Sirt1 levels is supported 
by reports that high fat diets can lead to leptin resistance 
and low Sirt1 levels in rats and humans [57,61-64]. Brain 
Sirt1 expression is increased by caloric restriction and fas- 
ting has been shown to increase brain Sirt1 protein con- 
tent specifically in the hypothalamus. It also appears that 
the effect of Sirt1 on energy balance is mediated through 
central melanocortin signalling [58]. 

Recent studies suggest a functional relevance of SIRT1 
in normal brain physiology, neurogenesis and neurologi- 
cal function [42-56]. In one important study for example, 
Sirt1 was found to downregulate micro-RNA known as 
miR-134. MiR-134 has been shown to down-regulate 
cAMP response binding protein (CREB) and brain-deri- 
ved neurotrophic factor (BDNF), thus reducing synaptic 
plasticity. Sirt1 can prevent this miR-134-induced down- 
regulation, thereby promoting synaptic plasticity [53]. 
Since 2005, miRNAs have been linked to complex meta- 
bolic processes in mammals, and changes to miRNAs can 
occur in many metabolic abnormalities and disease con- 
ditions. For example obesity, hyperlipidemia (elevated 
levels of blood lipids), and insulin resistance have been 
shown to be associated with aberrant expression of mul- 
tiple essential miRNAs in pancreatic islets of Langerhans 
and peripheral tissues, including adipose tissue. Further- 
more, in obese patients and experimental models of obe- 
sity such as 3T3-L1 preadipocytes and adipocytes from 
leptin deficient mice (ob/ob: mouse model of insulin re- 
sistance and obesity) and diet-induced obese mice, mi- 
RNAs normally induced during adipogenesis are down- 
regulated. In particular, miR-143, miR-103 and miR-107, 
known to regulate adipocyte differentiation, are down-re- 
gulated in the ob/ob mice, possibly through an inflamma- 
tory pathway [65]. 

8. SIRTUIN 1 AND THE AMYLOID  
PRECURSOR PROTEIN (APP) OF 
ALZHEIMER’S DISEASE 

The maintenance of Sirt1 expression by calorie restric- 
tion has the effect of regulating lipid metabolism and 
energy expenditure, which in turn helps regulate the pro- 
duction of many other proteins [54,55,57,66]. In obesity 
however, Sirt1 levels are reduced and increased plasma 
Abeta, leptin and body fat have all been shown to corre- 
late with increased adipose tissue size (AT). It has also 
been shown that Abeta precursor protein (APP) produc- 
tion is upregulated in adipocytes, and that plasma Abeta 
levels correlate with these increased levels of APP [67]. 
The increased plasma Abeta is proposed to be due to obe- 
sity influencing peripheral Abeta clearance, as obesity- 
in-duced Sirt1 dysregulation is strongly associated with 
liver steatosis and decreased Aβ clearance by the liver 
[15,33,57,66-69]. Under conditions of calorie restriction 
on the other hand, Aβ content in the brain is attenuated, 
and this effect can be reproduced in mouse neurons in 
vitro by manipulating cellular SIRT1 expression/activity, 
ultimately promoting the nonamyloidogenic α-secretase 
processing of the APP, which precludes the generation of 
Abeta [70]. In particular, the over-expression of SIRT1 in 
the hippocampus has been shown to provide protection 
against neurodegeneration in a mouse model of Alzhei- 
mer’s disease [71], and the over-expression of SIRT1 in 
the brains of AD-model transgenic mice has been shown 
to reduce brain Abeta production and amyloid deposition 
in these mice, due to the induction of the α-secretase en- 
zyme ADAM-10 [72]. In the arcuate nucleus of the hy-
pothalamus, there are two types of neurons that play vital 
roles in regulating feeding and energy expenditure: the 
anorexigenic proopiomelanocortin (POMC) neurons and 
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the orexigenic agouti-related peptide (AgRP) neurons. 
Sirt1 is expressed in both sets of neurons [51,73].  

Alterations in circadian rhythms have been demon- 
strated in both obesity and AD, and alterations in Sirt1 
expression and leptin levels have been associated with 
this disruption to the daily light/dark cycle. Obese indi- 
viduals are highly susceptible to circadian desynchrony, 
especially if on a high fat and cholesterol diet which dis- 
rupts normal tissue Sirt1 regulation of cholesterol ho- 
meostasis [69,74-76]. PPARgamma, also known for its 
extensive roles in glucose and lipid metabolism is now 
emerging as a critical factor in the regulation of circadian 
networks and it exhibits a circadian expression pattern 
that is magnified by consumption of a high-fat diet [77]. 
PPARgamma has been implicated in the pathology of 
several diseases including obesity, diabetes, atheroscle- 
rosis, and cancer, and PPARgamma agonists have been 
used successfully in the treatment of dyslipidemia and 
hyperglycemia. In support of Sirt1’s role in circadian 
rhythms, a recent epidemiological study of Sirt1 and cir- 
cadian locomotor output cycles kaput (CLOCK) genetics 
found that subjects carrying minor alleles at SIRT1 and 
CLOCK loci displayed a higher resistance to weight loss 
compared with homozygotes for both major alleles, sug- 
gesting links between the circadian clock and Sirt1 func- 
tion [73]. 

Other genetic studies are uncovering strong links be- 
tween obesity and SIRT1 gene polymorphisms. For ex- 
ample, in a Japanese study, the A allele of SIRT1 poly- 
morphism rs7895833, G allele of rs7069102, and T allele 
of rs2273773 were found to pose a high risk for obesity 
in men. Furthermore, the A allele of rs7895833 in women, 
and the G allele of rs7069102 and C allele of rs2273773 
in men, were found to carry a high risk for hypertension 
[78]. In later studies by the same group, SIRT1 poly- 
morphisms, rs7069102 and rs2273773, were found to be 
associated with abnormal cholesterol metabolism and 
coronary artery calcification, respectively, especially in 
males [79]. Another recent study of French caucasian 
adults found a strong association between high BMI and 
the SIRT1 SNPs rs3395786 and rs11599176, whereas 4 
SNPs studied in BMI-discordant siblings of Swedisn fa- 
milies were found to be associated with lower BMI [80]. 
In another study of the SIRT1 gene, a common SNP in a 
novel p53-binding sequence in the human SIRT1 promo- 
ter was found to affect nutrient-sensitive SIRT1 expres- 
sion, and thus could have a significant impact on SIRT1- 
mediated changes in human metabolism and physiology 
that are induced by calorie restriction [81]. In contrast, a 
German study genotyped 1573 long-lived individuals 
(centenarians and nonagenarians) and matched younger 
controls, looking at five SIRT1 single nucleotide poly- 
these polymorphisms on longevity [82]. Such genetic stu- 
dies are providing a greater understanding of metabolic 

differences between people and why some individuals 
may be more susceptible than others to obesity and re- 
lated metabolic disturbances.  

9. OBESITY, THE ENDOPLASMIC  
RETICULUM AND ALZHEIMER’S  
DISEASE 

Common medical conditions that can occur in middle 
age, such as diabetes, visceral obesity, and atherosclerosis 
cause considerable stress to the body. Obesity and athero- 
sclerosis are regarded as states of chronic low-grade in- 
flammation. At the cellular level, inflammatory mediators 
and lipid accumulation can evoke chronic stress, in parti- 
cular affecting the endoplasmic reticulum (ER). It has re- 
cently been shown that the ER responds to metabolic 
stress through a well-coordinated molecular response. 
This involves the transcriptional activation of a variety of 
genes, the attenuation of protein synthesis, the degrada- 
tion of ER-localised misfolded proteins, and sometimes 
the onset of apoptosis [83]. Disturbances in liver metabo- 
lism are known to be key components in the develop- 
ment of fatty liver, insulin resistance, and atherosclerosis. 
It has been shown that SIRT1 helps to regulate lipid ho- 
meostasis by positively regulating peroxisome prolifera- 
tors-activated receptor alpha (PPARalpha), a nuclear re- 
ceptor that mediates the adaptive response to fasting and 
starvation. This was demonstrated in liver-specific SIRT1 
knockout mice, which when challenged with a high fat 
diet, developed hepatic steatosis, hepatic inflammation, 
and endoplasmic reticulum stress [46]. In these mice, 
PPARalpha signalling was shown to be impaired and fatty 
acid beta-oxidation was decreased. In other studies, the 
overexpression of SIRT1 in the liver of diet-induced in- 
sulin-resistant low-density lipoprotein receptor-deficient 
mice and of genetically obese ob/ob mice attenuates he- 
patic steatosis and ameliorates systemic insulin resistance. 
These beneficial effects were associated with decreased 
mammalian target of rapamycin complex 1 (mTORC1) 
activity, inhibited unfolded protein response (UPR) and 
enhanced insulin receptor signaling in the liver, leading 
to decreased hepatic gluconeogenesis and improved glu- 
cose tolerance. These studies suggest that SIRT1 acts as a 
negative regulator of UPR signalling in Type II diabetes, 
and supports the concept that SIRT1 can attenuate hepa- 
tic steatosis, reduce insulin resistance, and restore glucose 
homeostasis, largely through the inhibition of mTORC1 
and ER stress [84]. In other recent studies of Sirt1 and 
diabetes, SIRT1 in HepG2 cells has been shown to regu- 
late ER stress by increasing expression of oxygen-related 
protein 150 (ORP150), an inducible ER protein thought 
to be a molecular chaperone involved in Ca2+ metabolism, 
again supporting the concept that SIRT1 can ameliorate 
insulin resistance via the regulation of ER stress [85]. 
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10. CONCLUSIONS 

The potential influence of associations between obe- 
sity and Alzheimer’s disease pathogenesis has been of 
great interest in recent research. High caloric intake and 
the consumption of a diet rich in saturated fat have both 
been associated with obesity, Type II diabetes, cardiovas- 
cular disease and Alzheimer’s disease. Sirt1 appears to 
play a central role in many metabolic changes that have 
been implicated in many of these conditions, as well as 
in AD pathogenesis. Recent studies of Sirt1 and ER func- 
tion suggest Sirt1 provides considerable protection against 
metabolic stress via ER regulation.  

Several studies have suggested that in early to mid- 
adult life, exercise and dietary interventions [86,87] such 
as calorie restriction may prevent obesity as well as re- 
duce or prevent amyloid deposition in the brain, due to 
the resultant chronic activation of Sirt1 in tissues such as 
the brain and the liver. When considering diet, omega −3 
fatty acids are important for brain development, and fish 
consumption has been associated with decreased cogni- 
tive deficits and a reduced risk for AD [88,89]. A diet 
low in saturated fats and cholesterol, yet rich in fruit, ve- 
getables, and omega −3 fatty acids may provide essential 
micronutrients and antioxidants. Pharmaceutical treat- 
ments and/or other therapies centered around Sirt1 regu-
lation might provide promising therapies in the treatment 
of metabolic diseases including obesity. Studies have al- 
ready provided support for this theory—for example, the 
activation of Sirt1 by the polyphenol resveratrol and se- 
veral synthetic pharmacologic activators has been shown 
to protect against high-fat diet induced obesity and other 
metabolic derangements. This is supported by studies 
which have found that transgenic mice over-expressing 
SIRT1 are leaner than controls, have a higher metabolism, 
and have lower serum levels of cholesterol, insulin, and 
glucose. Thus, calorie restriction, regular exercise, and/or 
drug treatment in obesity or other disease state may ma- 
intain or restore normal SIRT1 gene function. The evi- 
dence suggests that this would ultimately stabilise lipid 
metabolism and cause significant weight loss, reduce obe- 
sity and related disorders, as well as reduce or delay the 
development of Alzheimer’s disease. 
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