
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2001

Bluetooth software on Linux, wireless hand-held devices Bluetooth software on Linux, wireless hand-held devices

Teck Khoon Low
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Digital Communications and Networking Commons, and the OS and Networks Commons

Recommended Citation Recommended Citation
Low, T. K. (2001). Bluetooth software on Linux, wireless hand-held devices. https://ro.ecu.edu.au/
theses_hons/536

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/536

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41536452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/536
https://ro.ecu.edu.au/theses_hons/536

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

BLUETOOTH SOFTWARE

' ON LINUX, WIRELESS HAND-HELD DEVICES
;.

Submitted by:

Low, Teck Khoon

Submitted in partial fulfilment

of the Requirements for the Degree of Bachelor of Engineering

(Communication Systems) with Honours

School of Engineering and Mathematics

Faculty of Communications, Health & Science

Edith Cowan University

Perth, Western Australia

February 04, 200 I

"

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

2

ABSTRACT

In order to enable existing computers (non-Bluctooth ready) to connect to a

Bluctooth piconct, a Bluctooll' hardware device comprising of the Radio antenna, the

baseband and control circuit is ust.:d. The digital portion of this device is also known as

a Host Controller, HC. In the traditional communication lingo, the Bluctooth Hardware

functions, as the Data Communication Equipment (DCE) while the Host is the Data

tcnninal Equipment (DTE).

This report discusses the theory and implementation of the communication

protocol between the Host and the Host Controller, enabling communication between

the computer and the Bluetooth hardware

3

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief:

incorporate without acknowledgement any material previously submitted for a

degree or diploma in any institution of higher education;

ii contain any material previously published or written by another person except

where due reference is made in the text; or

iii contain any defamatory material.

Signature: _________________ _

Date: 3o / L/-{ Joo I
---~-~-------

4

ACKNOWLEDGEMENTS

Project Supervisor: Dr. Stefan Lachowicz.

Dr. Mu Zhongming

I would like to express my sincere gratitude to my project ~upcrv1sors, Dr.

Stefan Lachowicz at Edith Cowan University and Dr. Ma Zhongming in Singapore for

their advice and guidance throughout the course of this project. Without which this

projf'ct would not have been possible.

I would also like to thank Mr. Charlie Khoo Kai Hock who worked on a project

closely related to my, for sharing with me with the vast amount of literature and ideas

during the project.

My thanks are also due to Mr. Foo Chun Chong who was from Ericsson

Telecommunications, who kindly and promptly clarified the many doubts I had on the

Bluetooth protocol.

Lastly, I would like to thank my friends and family who had inspired me and

given me unfaltering support throughout my education and career.

5

TABLE OF CONTENTS

List of Figures ... 7

List of Tables .. 8

Proj eel Dcfini tion 9

Aiin ... 9

Scope ... 9

Chapter I Introduction to Bluetooth .. 11

Bluetooth History .. 11

A Brief Overview of the Technology ... 12

Compared with other technology .. 13

Existing Bluetooth Development .. 14

Bluetooth Specifications ... 15

Radio ... 15

Baseband ... 15

LMP .. 15

HCI. .. 15

L2CAP .. 16

RFCOMM ... 16

SDP ... 16

Chapter 2 The Host Controller Interface ... 18

Role of the HCI in on Embedded System ... I 9

HCI Driver .. 19

HCI Finnware ... 20

Host Controller Transport Layer ... 20

UART Transport Loyer. .. 20

RS232 Transport Layer ... 21

USB Transport Loyer .. 21

6

HCI Tenninology .. 21

HCI Command Packet Fomrnt.. .. 22

The HCI Event Packet .. 23

Chapter 3 RS232 Host Controller Transport Layer ... 27

Types ofHCI Transport Data ... 27

The Negotiation Packet ... 28

Packet Header ... 32

SEQ No ... 32

UART Settings and ACK Field .. 32

Baud Rate .. 33

Tdetect Time ... 33

Protocol Mode ... 34

The Error Message Packet .. 35

Chapter4 Software Development .. 37

Programming on Linux. (Problems faced) .. 37

The Negotiation Routine ... 38

Protocol Mode Ox! 3 Operation ... 40

Cyclic Redundancy Check (CRC) Implementation 40

Consistent Overhead Byte Stuffing (COBS)40

Error Rccovery .. 41

Protocol Mode Ox 14 Operation ... 41

Error Recovery .. 42

Chapter 5 Conclusion ... 44

Project Achievements and Contributions ... 44

Comments and Recommendations for Future Developmc.nt 44

References ... 4 7

Appendix ... 48

7

LIST OF FIGURES

Figure I Bluctooth SIG workingGroups .. 12

Figure 2 Bluctooth protocols ... 17

Figure 3 Host controller setup ... 18

Figure 4 Bluctooth Device Breakdown ... 18

Figure 5 Integrated Bluctooth using the USB Bus .. 21

Figure 6 HCI Command Packet fonnat.. ... 23

Fi!,'llre 7 HCI Event Packet fonnat.. ... 24

Figure 8 HCI ACL Data Packet fonnat.. ... 25

Figure 9 HCI SCO Data Packet fonnat.. ... 26

Figure IORS232 HCI Transport Packet ... 28

Figure l 1 Host Controller Interface negotiation pro!,;ess .. 29

Fit,iurc 12 Negotiation Packet Fomiat ... 32

Figure 13 UART settings and Acknowledgement field .. 32

Figure 14 Protocol mode error control and recovery field .. 34

Figure 15 Error Message Packet ... 36

Figure I 6 Protocol Mode Ox I 3 Packet Fomiat ... 40

Figure 17 Possible uses for this Software ... 46

8

LIST OF TABLES

Table 1 Wireless technology comparison .. 13

Table 2 HCI ACL Data Packet fields .. 26

Table 3 HCI RS232 Packet Header ... 27

Table 4 UART settings and Acknowledgement meaning ... 33

Table 5 Protocol mode settings .. 35

Table 6 Error Types available .. 36

Table 7 List of programs .. 38

9

PROJECT DEFINITION

Aim

The aim of this project is to develop and simulate a Bluctooth Host Controller

lntcrfacc !ink. The purpose of developing :his soflwarc is to enable non-l3Juctooth ready

computers to connect to a Bluctooth network via Bluctooth Hardware (Radio). The
'

objectives of this project arc:

I. To explore one of the emerging wireless standard, Bluctoolh.

2. To gain an understanding of the Bluctooth protocol stack.

3. To appreciate development using C programming on the Linux platform.

The software developed in this project would serve as a base on which the

complete Bluetooth high level stack could be built. It could also be enhanced to act as a

Bluctooth protocol analyser and tester as discussed in the future development section.

One of the original aims of this project is to develop a Graphic User Interface,

GUI, for the wireless network protocol. However, after discussion with our project

supervisor, the GUI was dropped from the project, as it does not aid in the study of the

Bluetooth protocol.

Scope

The project compnscs of both a research component and an implement

component in the form of a null-modem simulation.

I. The first task is to familiarise with the development of software on the Linux

platfonn. As the student learnt programming on the DOS platform, the different

programming techniques need to be developed.

2. Explore the various wireless networking standards and to understand the various

strengths and weakness.

3. Identify the existing Bluetooth resources available in the market.

10

4. In project 2, the initial plan was to implement a usage model using the LAN

Access Profile. Due to the limited time in which to project was conducted (in t'1c

summer semester) and with no Bluctooth hardware device (that implements the

radio and link management), only one portion of the usage model is simulated.

5. Understand how the computer communicates with the Bluctooth device through

the Host Controller Interface (HCI).

6. Understanding the detail working of the HCI protocol.

CHAPTER I

INTRODUCTION TO BLUETOOTH

Bluetooth History

11

Initially conceived by Ericsson in 1994, as a low power, low cost radio interface

to communicate between mobile phones and their accessories. At the same time, several

other companies such as Intel, IBM, Toshiba and Nokia Mobile Phones arc also

developing similar technology. These companies founded the Bluetooth Special Interest

Group (SIG) in May 1998 to standardise and drive the development of Bluctooth. The

Bluetooth SIG grew faster than any other wireless consortium, with 2164 members as of

February 2001. (Infonnation from the Official Bluetooth Web Site).

Figure I shows the SIG working structure. The Promoter compames (PM)

includes 3Com, Ericsson, IBM, Intel, Lucent, Microsoft, Motorola, Nokia and Toshiba.

These companies lead the effort of the SIG in promoting Bluetooth.

PM Group

(Worl< groups\

Figure 1

heh it ecture Re view Bo ard
-W l..OJ'-1 in t'e rop
-Printing
-Still Image
-Et<t SDP
-Local Pos

-UDI
-Radio2
-P~
-Car Profll e
-W.ake-up
-HID
-A.J d io/0,,,., d eo

Management Services
Legal
Marketing
Re gu I ator y

B~B/Logo

I

_/

Blu<'.tooth SIG working Groups

A Brief Overview of the Technology

12

Bluetooth is essentially a cable-replacement technology. The standard is based

on Wireless LAN IEEE 802.11 b (Canosa, J Nov 2000), however it differs from the

Wireless LAN standard in that it calls for a small, cheap radio chip that can be plugged

into computers, printers, mobile phones, etc. Bluetooth chip is designed to replace

cables by taking the infonnation nonnally carried by the cubic, and transmitting it via

the 2.4 GHZ ISM band to a receiver Bluetooth chip. The receiver will then gi\'e the

infonnation received to the computer, mobile phone or whatever it is attached to. The

projected low cost of a Bluetooth chip at around US$5, it's small size and low power

consumption, indicates that one co1!!d literally place an'j\vhcre.

13

Compared with other technology

Muller, N.J., (Sept 2000), compared Bluetooth to some of the present wireless

standnrds. The fo \lowing tab I c is a summary of the fcaturr.:s of cad1 technology.

Table I

\Virelcss technology comp11riso11

Feature/
Function

Connection
Type

Spectrum

Transmission
Power

Data Rate

Range

Supported
Stations

Voice
Channels

Data
Security

Infrared

Infrared, narrow beam (30° angle
or less)

Optical, 850nm

20 dBm

Up to 16 Mbps using Very fast
Infrared

Im

Two

One

Short range and narrow angle of
the IR provides a simple fonn of
security. No other security at the
link level

IEEE 802.1 lb

Spread Spectrum (direct sequence
OS, or Frequency Hopping HI)

2.4 GHz ISM band

20dBm

1 to 2 Mbps using FH, I I Mbps
using OS

100m

Multiple devices per access point;
Multiple access point per network

None. Uses Voice over IP

Authentication: cha! I cnge­
response between access point
and client via Wired Equivalent
Policy

Encryption: 40 bit standard

Feature/
Function

Conncctioii
Type

Spectrum

Transmission
Power

Data Rate

Range

Supported
Stations

Voice
Channels

Data
Security

Home RF

Spread Spectrum Frequency
Hopping HI

2.4 GHz ISM band

20dBm

I to 2 Mbps using FH

100111

Up to 127 devices per network

Up to six

Blowfish encryption algorithm
(over I trillion codes)

Bluctooth

Spread Spcctrum Fn.:qucncy
I-lopping F 11

2.4 Gllz ISM hand

Odbm (normal)

20d8m (high power)

I Mbps using FH

!Om

Piconct support I master and 7
slaves. Multiple pic.:oncts arc
possible in thc same area (i.e.
S ca II crnet)

Up to three

For authentication, a I 28~hit key;
For Encryption, h:cy size is
contigurahlc hetwcen 8 and 128
hits

14

The requirements for a portable wireless dc\-ice arc reliable, con \·cni t:ncc, case

to use and low power consumption. Compared with Infrared, 13luctooth do not require

line of sight operation and has a longer rnnge. Compared with the two other RF

standards, Bluetooth devices consume less power and hence result in a longer battery

life. The relative short distance of I Om is sufficient for most office spaces. In addition,

the Bluetooth SIG is working on increasing the data rate to eventually allow multimedia

support.

Existing Bluetooth Development

During the last two Quarters of the year 2000, scvcniJ compani~s announccJ

B luetooth related products. Of these, th ere are I O I products qua\ i Ii ed by th c SIG (as

listed in the official web site) (The Official Bluctooth web site). These include

integrated circuits, software stacks, developer kits, host controllers, laptops with built in

15

Bluctooth rndios, Mobile phone and accessories. Qualified I31uctooth hardware, (radio

and Host Controller) includes dcviccs from Digianswcr, Ericsson, Xircomm, Camhridgc

Silicon Radio and others. While there arc currently 13 qualified Bluctooth prot01.:ol

stack, the only two stacks written for Linux, for connecting existing computers lo the

Bluctooth network arc both still under dcvdopmcnt, these arc from IBM and Axis

communication.

Bluetooth Specifications

Bluetooth protocol structure comprises of seven defined layers, these arc:

Radio

The Radio layer defines the requirements for a Bluctooth transceiver operating

in the 2.4 GHz ISM band.

Baseband

The Baseband layer describes the specification of the Btuctooth Link Controller

(LC) which carries out the baseband protocols and other lm,·-kn:l link routines.

LMP

The Link Manager Protocol (LMP) is used by the link Managers for link set-up

and control.

HCI

The Host Controller Interface (HCI) provides a command interface to the

Baseband Link Controller and Link Manager, and access to hardware status and control

registers. The HCI will be discussed in more detail in the next section.

L2CAP

Logical Link Control und Adaptation Protocol (L2CAP) supports higher level

protocol multiplexing, packet segmentation and re-assembly, and the conveying of

quality of:.crvicc infon11alion.

RFCOM~I

16

The RFC'OMM protocol provides emulation of serial ports over the L2CAP

protocol. The protocol is based on the ETSI standard TS 07.10, used for Global System

for Mobile (GSM) communication devices.

SOP

The Ser:icc Discovery Protocol (SOP) provides a means for applications to

discover which services are provided by or available through a Bluctooth device. It also

allows applications to determine the characteristics of those availahlc services.

E.xccpt for the Host Controller lntcrfocc. the other six protocols will not he

covered, as they were discussed in relative detail in the Projcd One progress rcpoI1. In

addition to these seven protocols, Bluctooth also adopt sc,·cral other protocols to handle

higher layer duta and voice as shown in 1he following figure.

17

SOP TCS

Au<lio

RFCOMM

L2CAP

HCI illlllllllllllllllllllllmlllllllllllillllllllllllllllllllllllllllllllmll-lllllllllllllalllllllllllHIIIBIIIIIIIIIIIIIBIIBIIIIIIIIIIIIIIIIII

LMP

Baseband

Figure 2 Bluetooth protocols

18

CHAPTER2

THE HOST CONTROLLER INTEru"ACE

In order to enable existing computers (non-Bluetooth ready) to connect to a

Bluetooth piconet, a Bluetooth hardware device comprising of the Radio antenna, the

baseband and control circuit is used. The digital portion of this device is also known as

a Host Controller, HC. In the traditional communication lingo, the Bluetooth Hardware

functions, as the Data Communication Equipment (DCE) while the Host is the Data

terminal Equipment (DTE). Figure 3 shows relation of the Host and the Bluetooth

hardware.

Bluetooth Host

Personal Computer
(the DTE)

Figure 3

Software
HCI Driver

Host controller setup

Bluetooth Hardware (the DCE)

Host Controller

\

Bluetooth
Radio

Bluefwlll Radio

Figure 4 Bluetooth Device Breakdown

Figure 4 show the breakdown of the Bluetooth device by function. The Host

Controller Interface serves as an interface between the (non-Bluetooth) DTE and the

I 'J

Bluctoolh 1-lardwarc (DCE). Essentially this interface provides a unifonn method of

accessing the Bluctooth baseband capabilities. The !IC! exists across three sections, in

the I-lost, Transport Layer. ;:ind llosl Controller. E.u.:h of the scctions has u diffCrcnt role

to play in the I-IC'I system.

Role of the IICI in an Embedded System

The HC'I layer is not nccdcd if the Bluctooth cm bedded solution is dc,·clopcd in

the limn of a chipsct hosting the cntirc BT stack (that is, from Baseband lo

Application). This is hccausc the HCI i~ used for applil:ations having a clear di\'idc (in

tem1s of the different hosts for each of the parts) between the Host & the llC (Host

Controller) parts of the st.:ick.

Howc\·cr. it is still a good idea to implement HCI support. As it can be used to

support some debug or test port to the chip. This debugging \\'(1utd require IICI to he

implemented inside the chipsct to interpret & rcs,pond to the debug commands from an

external source. It is more convenient to perfonn testing and debugging of the upper

layers (L2CAP. RFC0tv1M, SOP and the applicati(ln) thniugh the HCI than debugging

via RF through the baseband.

The program described in section four can he used as a base to develop such a

testing and debugging program.

HCI DriYer

The tem1 Host is used to refer lo the I-ICI-cnahlcd Software Unit. I-IC! Driver is

located on the Host computer as u software entity. 1-ICI link rnmmands arc used by the

Host to communicate with the 1-!osl Controller: these commands provide the llost with

the ability to control the link layer connections to other Bluctooth de\·ices. In the rc\·erse

direction, the Host Controller sent HCI events to notify the Host when something

occurs. When the Host discovers that an event has occurred it will then parse, the

received event packet to dctcm1inc which event occurred.

20

HCI Firmware

The tcm1 Host Controller is used to refer to the HCJ-cnablcd Bluctooth device.

HCI Fimnvarc is located on the llost Controller, (that is, the actual BJuctooth hardw<.1rc

device). The HCI finnwarc implements the flCI Commands for the Bluctooth hardware

by accessing baseband commands. link manager commands, hardware status registers,

control registers. and event registers.

Host Controller Transport Layer

The HCI Dri\'cr and Fim1warc communicate via the !lost Controller Transport

Layer. This layer may comprise of scvcml layers tlrnt exist between the HCI driver on

the host system and the HCI tinnwarc in the Bluctooth hardware. These intcnncdiatc

layers. the I-lost Controller Trnnsport Layer. pro\·idc the ability to transfer data without

intimate knowk<lge of the data hcing transferred. Hence. the Host should receive

asynchronous notifications of HCI events independent of which Host Controller

Transport layer is used. Se\'Cral different J-fost Controller Transport protocols can be

used. The three different Host Controller Transport protocols initially <lcfincd for

Bluctooth arc the USB. UART and RS232 Trnnsport Layer. These three protocols arc

briefly discussed below although this project deals mainly with the RS2.l2 Transport

Layer.

UART Transport Layer

The objective of the HCJ UART Transport Layer is to make it possible to use

the Bluctooth HCI over a serial interface hctwccn two UART on the same PCB. The

HCI UART Transport layer assumes that the UART communication is free from line

errors. Event and data packets tlow through this lnycr. hut the layer docs not decode

them.

I

I

21

· RS232 Transport Layer

The objective of the HCI RS232 Transport Layer is to make it possible to use

the Bluetooth HCI over one physical RS232 interfaGe between the Bluetooth Host and

the Bluetooth Host Controller. HCI Commands, Events and Data packets flow through

this layer, but the layer does not decode them. The implementation of this protocol is

discussed in further detail in section 3.

USB Transport Layer

The objective of the Universal Serial Bus (USB) Transport Layer is to the use a

USB hardware interface for Bluetooth hardware. There are two ways in which this can

be embodied: as an USB dongle (DCB) in the arrangement similar to figure 3, or

integrated onto the motherboard of a notebook PC as shown in figure 5. A specific class

code is assigned to USB Bluetooth devices. This will allow the proper driver stack to

load, regardless of which vendor built the device. It also allows HCI commands to be

differentiated from USB commands across the control endpoint

Figure 5

CPU Corf.!
('Link

MiiiO~\;Jf;H')

I
. . . I
.. ·, .. I
it, I

,._.. 'i ~,~~"'--!:., .. use ~sy~t~11 __..,.
JS ,f uf" ., Canbrollar &J,3

·.;:,... ... "'t"" ..
I
I
I
I
I

Integrated Bluetooth using the USB Bus

HCI Terminology

Four types of packets can be transferred between the Host and the host

controller. They are the HCI Command Packet, HCI Event Packet, HCI ACL

(Asynchronous Connectionless link) Data Packet and HCI SCO (Synchronous

Connection Orientated) Data Packet. HCI Command Packets are only sent from the

Host to the Bluetooth Host Controller. HCI Event Packets are only sent from the

22

Bluctooth Host Controller to the Host. HCI ACUSCO Data Packets arc sent both to and

from the Bluetooth Host Controller. ACL carries packet data while SCO carries voice.

Before we proceed to describe the data transfer process, let us first familiarise

with the tcnninology used to describe the B]uctooth protocol. The smatlcst unit of data

that is transmitted by one device to another is the Dascband Packet. The If('! pucker

essentially rnrrics the same quantity of data as the Baseband Packet, but baseband

specific events sud1 as data encryption and baseband error control arc not incluc..lc<l. The

only higher-level protocol defined for Bluctooth now is the L2CAP packet. The L2CAP

layer pcrfonns Segmentation and Reassembly of Higher Layer Protocol Data Units

(POU), hence; a single L2CAP packet can be segmented into several HCI data packets

(either ACL or SCO).

The Host Controlk~r Transport Layer provides transparent exchange of HCl­

specific infomrntion. These transporting mechanisms provide the ability for the Host to

send HCI commands. AC'L data. and SCO data to the Host Controller. These transport

mechanisms also pro\'idc the ability for the Host to receive HCI events, ACL data, and

SCO data from the Host Controller.

Since the Host Controller Transport Layer (explained in the next section)

provides transparent exchange of HCl-specific infomiation. the HCI specification

specifies the fonnat of the commands, events, and data exchange between the Host and

the Host Controller. The following is a brief discussion of the packet fonnats.

HCI Command Packet Format

The HCI Command Packet is used to send commands to the Host Controller

from the Host. The fonnat of the UC! Command Packet is shown in the following

figure followed by the definition of each field.

Figure 6

8 12

OoCode
OCF I OGF

Parameter 1

Parameter N-1 I

16

• • •

20 24

Parameter Total I Pararneter O
Length,

· Parameter ...

Parameter N

HCI Command Packet format

23

Op_ Code: The Opcode parameter specifies the type of command sent. It is

divided into two fields, called the OpCode Group Field (OGF) and OpCode Command

Field (OCF). The OGF occupies the upper 6 bits of the Opcode, while the OCF

occupies the remaining 10 bits. The OGF of Ox3F is reserved for vendor-specific debug

commands. The OGF of Ox3E is reserved for Bluetooth Logo Testing. The organisation

of the Opcodes allows additional information to be inferred without fully decoding the

entire Opcode.

Parameter_ Total_ Length: This field specifies the lengths of all of the parameters

contained in this _yacket measured in bytes (that is: total length of parameters, not

number of parameters).

Parameter O - N: Each command has a specific number of parameters associated

with it. These parameters and the size of each of the parameters are defined for each

command. Each parameter is an integer number of bytes in size.

The HCI Event Packet

An event is a mechanism that the Host Controller uses to notify the Host when

events occur. This includes for command completion, link layer status changes, etc. The

Host must be able to accept HCI Event Packets with up to 255 bytes of data excluding

the HCI Event Packet header. The format of the HCI Event Packet is shown in

following figure followed by the definition of each field.

0

Figure 7

4

EvtmtCade

12

Parameter Total
Loogt.h

HCI Event Packet format

1&

•
•
•

24

24

31

Event Code: Each event is assigned a 1-Byte event code used to uniquely

identify different types of events. Range: OxOO-OxFF (The event code OxFF is reserved

for the event code used for vendor-specific debug events. In addition, the event code

OxFE is also reserved for Bluetooth Logo Testing)

Parameter Total Length: Length of all of the parameters contained m this - -

packet, measured in bytes ..

Event Parameter O - N: Each event has a specific number of parameters

associated with it. These parameters and the size of each of the parameters are defined

for each event. Ea~h parameter is an integer number of bytes in size.

HCI Data Packets

HCI Data Packets are used to exchange data between the Host and the Host

Controller. The data packets are defined for both ACL and SCO data types. The format

of the HCI ACL Data Packet is shown in following Figure and the format of the SCO

Data Packet is shown in Figure 9. The explanation for each of the fields in the data

packets follows the packet diagram.

25

0 4 8 12 16 20 24 28 31

I I'll I fJC I
lldi1 l>,111

(l,,t,,

Figure 8 HCI ACL Data Packet format

Connection Handle: A connection handle is a 12-bi t idcnti tier, which is used to

uniquely address a data/voice connection from one Bluetooth device to another. The

connection handles can be visualised as identifying a unique data pipe that connects two

Bluetooth devic.:es. The connection handle is maintained for the Ii fctime of a connection,

including when a device enters Park, Sniff, or Hold mode. The Connection Handle

value has local scope between Host and Host Controller. There can be multiple

connection handles for any given pair of Bluctooth devices but only one ACL

connection.

Flags: The Flag Bits consist of the Packet_Boundary _Flag and Broadcast_Flag.

The Packet_Boundary_Flag is located in bit 4 and bit 5, and the Broadcast_Flag is

located in bit 6 and 7 in the second byte of the HCI ACL Data packet.

Data_Total_Len,gth is the length of data measured in bytes. The following table gives an

cxpl anation of the various flag settings.

Table 2

HCI ACL Data Packet fields

Packet_ Boundary _Flag

00 Reserved for future use

01 Continuing fragment packet of Higher Layer Message

10 First packet of Higher Layer Message (i.e. start of an L2CAP packet)

11 Reserved for future use

Broadcast_Flag -(in packet from Host to Host Controller):

00 No broadcast. Only point-to-point.

01 Active Broadcast: packet is sent to all active slaves.

10 Piconet Broadcast: packet is sent to all slaves, including slaves in 'Park' mode.

11 Reserved for future use.

4 12 20 24 28

Figure 9 HCI SCO Data Packet format

26

Connection_Handle: Connection handle to be used to for transmitting a SCO

data packet or segment.

The Reserved Bits consist of four bits which are located from bit 4 to bit 7 in the

second byte of the HCI SCO Data packet. They are Reserved for future use

Data_ Total_ Length: Length of SCO data measured in bytes

27

CHAPTER 3

RS232 HOST CONTROLLER TRANSPORT LAYER

Thi.s scction details the development of sotlware to implement the RS232 HCI

Transport for Linux.

Types of HCI Transport Data

There are four kinds of HCI packets that can be sent via the RS232 Transport

Layer as described in the previous section. HCI driver does not provide the ability to

differentiate the four HCI packet types. TI1erefore, if the HCI p,ackcts are sent via a

common physical interface, a HCI packet indicator has to be added. In addition to those

four HCI packet types, two additional packet types arc introduced to support dynamic

negotiation and error reporting. The Error Message Packet is used by the receiver to

report the nature of error to the transmitting side. The Negotiation Packet is used to

negotiate the communication settings and protocols. The table below shows the types of

packet and the corresponding packet header.

Table 3

HCI RS232 Packet Header

HCI packet type

HCI Command Packet

HCI ACL Data Packet

HCI SCO Data Packet

HCI Event Packet

Error Message Packet*

Negotiation Packet*

HCI packet type indicator

OxOI

Ox02

Ox03

Ox04

Ox05

Ox06

The HCI packet indicator is followed by an 8-bit scquen7e number that is

incremented by one every time a packet is sent. The sequence numbers arc not

incremented in the case of a retransmission packet thut is sent as a part of error

recovery. The retransmitted packet uses the sumc sequence numbdr as the original
I

packet. The HCI packet immediately follows the sequence number field. All four types

2H

of HCI packets have a length field, which is used to determine how many hytes arc

expected for the HCI packet. The Error Message Packet and Negotiation Packet arc

fixed-length pai.:kcts, although the negotiation par.:kct can he extended up to seven more

bytes (as shown in part J.2.6), based on the number in the extension field. The frame of

the basic RS2J2 Transport Packet is shown below.

LSB MSB

Figure IO RS232 HCI Transport Packet

The least significant byte is transmitted first (unsigned Little Endian format).

The Negotiation Paci~et

During the establishment of the RS2J2 link, the link parameters should be

negotiated between the Host Controller and the Host. The basic negotiation procedure is

show11 in the following pages (for simplicity, error control and recovery is not shown in

the flow chart).

Host (Linux Computer) Side

Start

lnitializc TrY
(scri a I port)

Send negotiation packet
using initial \'alucs and
Ack = OOOb (increment

sequence no.)

A

The initial values are

Signal

Parameter Initiating value

baud rate

parity type

9600 bps

no parity

number of data bits 8

number of stop bits

protocol mode Ox 13

Host Controller

Start

Initialize TfY
(serial port)

Listen for
signal

Is input a
Negotiation

oacket?

Yes

Read negotiation
packet parameters

B

Figure 11 Host Controller Interface negotiation process

29

No

f

A

Listen for rc5Rcply

Arc the
parameters

Ack?

B

Suggested
parameters
acccntablc?

Yes

JO

No

ck=OO!b

Set suggested
parameters in
reply packet

and Ack= 001 b

Ack=OIOb

Read new
negotiation
parameters

Set reply packet
parameters same as

suggested parameters,
HC Tdctcet value and

set Ack= OO!b

Suggest new
parameters in reply

packet, HC
Tdctect value and

set Ack= 010b

New
parameters
acceotable?

Yes

Set reply packet
parameters same as

suggested parameters,
Host Tdetect value
and set Ack = 00 I b

No

Suggest new
parameters in reply

packet. HC
Tdetect value and

set Ack= OIOb

Delay for
Tdetcct

time

C

Delay for
Tdctcct

time

Send negotiation reply
packet (increment

sequence no.)

D

Figure 11 Host Controller Interface negotiation process (Continued)

I

Send negotiation reply
pack ct (i ncrcm en t

seq ucrn:c no.)

No

A

,,

Is previous
value of Ack

= 001?

Yes

Negotiation
successful, change

ITY settings to
suggested parameters

End

Reply

Ack 001 b

D

Listen for reply

Arc the
parameters

Ack?

Negotiation
successful, change

TIY settings to
suggested parameters

Read new
renegotiations

parameters

B

End

Figure 11 Host Controller Interface negotiation process (Continued)

31

LSB

Packet SEQ UART

Header No. Settings

Ox06 (8-bit) und ACK

(8 bits) (8 bits)

Figure 12 Negotiation Packet Format

Baud Rate Tdctc

(16 hits) (I 6

32

MSB

ct Time P~ot~Jc<~li
hits) Mode

(8 bit) l
-~- --------· ----- ···---- _J

The negotiation packet parameters arc shown in the above figure. The following

is the description of each parameter.

Packet Header

The negotiation packet header type indicator is Ox06 (as shown in table 3)

SEQ No.

The packet sequence number is incremented by one each time a packet is

transmitted, excluding the retransmission packets. The unsigned Little Endian format is

used.

UART Settings and ACK Field

Bit 0-1 Bit 2 Bit 3 Bit 4 Bit 5-7

Reserved Stop bit Parity Enable Parity Type Ack Code

(I bit) (1 bit) (I bit) (3 bits)

Figure 13 UART settings and Acknowledgement field

The following tables explain the meaning of each of the entry irt the above

diagram.

Table 4

UART settings and Acknowledgement

Bit value

()

Ack Code

OOOb

OO!b

OJOb

011 b-111 b

Baud Rate

Stop Bit

I stop bit

2 stop bits

Parity Enable

No parity

Parity Enable

Negotiation Acknowledgement

Request

Accepted

Parity Type

Odd Parity

Even Parity

Not accepted with new suggested values

Reserved

33

In this context, the baud rate actually refers to the connection speed. The integer

N should be entered in thL' field for the baud rate where:

The actual rate= ~7,648,000 / N (where N=O is invalid)

Therefore, the Maximum possible rate is 27.648Mbps, and the Minimum

possible rate is 42 l .88bps

T detect Time

If RTS/CTS is used for error indication and re-synchronisation, Tdctcct is the

maximum time required for the transmitter to detect the CTS state change, plus the time

it truces to flush the transmit buffer. Otherwise, Tdctect represents the local-side

interrupt latency. The unit of time should be specified in I 00 microseconds. (In the

software developed, Tdetect is set to 1 millisecond).

14

Protocol l\1odc

Bit 0 Bit! Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

C'RC' Deli mi lcr RTS/ RTS/ Error ExtO Exll Ext2
liscd Used (TS CTS Reco··cry

used Mode

Figure 1-1 Protocol mode error control and recovery field

The first five bits of the Protocol mode fidd describes manner in which error

control should be implemented. The last three bits specify an increase in length in the

negotiation packet length, and is there for future expansion purposes. The following

tables explain the meaning of each bit. There arc only two protocol modes described in

the specification. They arc Oxl3 (LSB I 1001000 MSB), the default, which uses CRC,

Delimiters, and Ox 14 (LSB 00101000 MSB), which uses only the RTS/CTS (Request/

Clear to sent) error control lines on the RS232 cable. Both modes w;c error recovery.

The Host Controller may choose to support only one protocol mode. However, the Host

(that is, the Linux computer) should be able to support any combination. The detail

operation of each protocol mode is described in section 4.

I

Table 5

Protocol mode settings

Bit value C'RC Used Delimiter Used
------·---~.-·---------

0

Bit value

0

CRC-C'C!Tf is not attached at the
end of the packet.

CRC-CCTIT is altachcd at the
end of t\1e packet. (Default)

RTSICTS Used

RTS/CTS is not used (Default)

RTS/CTS is used

Delimiter, Ox7E, is not used

Delimiter, Ox7E, i~ used with COBS
(Default)

RTS/CTS rvfodc

RTS/CTS is used for Error indication
and resynchronisation. (Default)

RTS/CTS is used for hardware flow
control

Bit value Error Recovery Used Ext2.Ext 1.ExtO

35

0 Error Recovery is not supported These three bits indicate the number of

Error Recovery is ~upported.
(Default)

extra bytes attached lo the negotiation
packet. Meant for future expansion

CRC can be used with either RTS/CTS or delimiters. as a synchronisi!.tion

mechanism, although the specification only describes a case when it is used with

delimiters. Usage of RTS/CTS reduces the computation time for COBS encoding, but

requires two extra copper wires which may not be suitable in some applications. t\fore

details will be covered in section four.

Error Recovery retransmits the packet with error and all subsequent packets if

RTS/CTS are used for synchronisation. On the other hand, if the delimiter Ox7E is used

with COBS as a synchronisation mechanism, then the error recovery retransmits only

the packet with error. Even if error recovery is disabled, the error message packet

should still be sent to the transmitter side when the receiver side detects an error.

The Error Message Packet

The following figure shows the error-message packet fonnat.

LSB

Figure 15

Packet Type
Ox05

(8-bit field)

Error l\1essage Packet

36

(8-bit field)

The table below dcs..:ribes the type of errors. The SEQ No with error holds the

sequence number of the packet found with error.

Table 6

Error Types available

Error code Type Description

OxOO Reserved

OxOI Overrun Error

Ox02 Parity Error

Ox03 Reserved

Ox04 Framing Error

Ox05 Ox07 Reserved

Ox08 CRC Error

Ox09 Missing SEQ No

OxOA Ox80 Reserved

Ox81 Missing Retransmission Packet

Ox82 OxFF Reserved

CIIAPTER4

SOFTWARE DEVELOPMENT

Programming on Linux (Problems faced)

37

The problems faced during the Jcvclopmcnt of the I lost Controller Transrort

layer sotlwarc lies mainly in the student's inexperience with the Linux programming

environment. Problems include finding the correct tools to use (the program was

developed using emacs and gee\ learning how to read, .icccss. and control serial ports.

Fortunately there is a vast amount of Linux programming resources availahlc on the on

the Internet. Particularly useful documents includes the "The Linux Serial Programming

HOWTO" (Baumann, 1998), "Serial Programming Guide for POSIX Opcrnting

Systems" (Sweet 1999) and "Linux Progro.mmcr's Guide" (Goldt. Meer. Burkett, Wc]<;h

1996). The following describes the operation of the Host and Host Controller emulation

software and the software development process. The program source code is attached in

the Appendix. The list of programs and their respective functions arc listed in the

following table.

38

Table 7

List of programs

Program Function

mylwst rrogram which emulates the host.

mi·hc Program which emulates the he.

Sr,!flc Used to perfom1 consistent overhead byte stuffing

Unst1!ff.c Used to pcrfi.mn consistent overhead byte unstuffing

SetJJOrl.c Used to setup the serial port

Nego _ rccefrc.c Used to receive, process and unpack data

Ncgo _ sent.c Used to sent, process and pack data

f-lost.c Source file for my/lost

Hc.c Source file for myhc

Crc.c Calculates and test ere

The Negotiation Routine

The negotiation procedure was carried out according to the flowchart in figure

11. The source code is attached in :he Appendix. The programs mylwst.c and myhc.c

emulates the host-side and host-controller side of the RS232 HCI transport. The

functions nego _scnd.c and nego _Jcceii·e.c handles the sending and receiving of the data

between the Host and Host Controller calling other sub-functions to handle error control

such as CRC, and delimiters for Protocol Mode Oxl.3.

Both sides are initially set to 9600 bps baud rate using the function set__port and

C function tcseraur. The program starts when the host-side emulator, mylwst, sends a

negotiation packet using nego_send.c to the host-controllcr-sicle with the Acknowledge

code (bits 2 I , 22, 2 3) set to OOOb. The contcn ts of th is pack ct arc th c proposed

parameters for the link1 including the preferred baud rate, error control schemes (UART

fieJ d) and the Ii nk latency (T detect field). If protoco I mode Ox 13 is used. a C' RC'

sequence is attached to the end of the data and the data passes through the Sfl!flData

39

function to remove any occurrence of the value Ox7E. Ox7E is then appended to the

front and end of the packet to act as delimiters. On the receiver side, the ne,:o __ reccive.c

function polls the serial port until it receives the delimiter Ox7E (for Protocol Mode

OxlJ) which indicates a received p.ackct. The ne1,;o __ rec£'il'(' calls the U11Stujjl)a1a

function to restore the data to its proper format. It then docs a chcl:k using the ere

functions and sends an Error packd with error type Ox08 back to the sender if the CRC'

fails. For a packet without error, the ncgo rccefre will read the suggested link

parameters proposed by the Host. If it can accept the parameters, it sends a negotiation

packet using ,,cgo_sent back to the host, with the host-controller's maximum latency

(Tdetcct) and the Acknowledgement code set to OOJb. If it cannot accept !he

parameters, the Acknowledgement code is set to O I Ob instead and the Host-controller

sent its required link parameter to the host usingnego_scnt.

Back at the Host end, nego _receh'e is started to read the serial port for a reply

from the Host-Controller. On receiving a packet from the Host-Controller indicated by

the Ox7E delimiter, the program UnS11dfData the packet and checks the CRC for errors.

sending an error packet back to the Host-Controller is an error is detected. If the

received Acknowledgement coJc is OO!b (that is, the Host's suggested parameters arc

accepted), the Host sends another negotiation packet similar to its first one but with the

Acknowledgement code set to OOlb.

If the Host-Controller had asked for re-negotiation (by setting the Ack code to

O!Ob), the Host processes the new parameters. If the Host acci.:pts the re-negotiated

parameters, the Host sends another negotiation packet similar to its first one but with the

Acknowledgement code set to OOlb to the Host-Controller. If the Host cannot accept the

renegotiated parameters, the Hosts sends another re-negotiation packet with new

parameters to the Host-Controller with the Acknowledgement code is set to OIOb using

nego_sent. The re-negotiation process is repeated until both sides arc satisfied with the

link settings or one side runs out of negotiation parameters.

After both sides are satisfied with the link parameters, they reset the serial ports

to the negotiated settings using the function set JJOrt.

Although the program does not show it, the negotiation process can be initiated

again to re-negotiate new values or to update the Tdetcct time. When the negotiation is

40

initiated again, the link should use the present link settings instead of the initial default

settings.

Protocol Mode Ox 13 Operation

LSB

Ox7E Packet SEQ Payload CRC Ox7E
BOF Type No EOF

(16 bits)
(8 bits) (8 bits) (8 bits) (8 bits)

Figure 16 Protocol Mode Ox 13 Packet Format

The above li,gure sho\vs the fonnat of a frame using Protocol Mode Ox 13. This

mode requires the use only three wires on the RS232 port (TxD, RxD and signal

ground). It also frees the CTS/RTS so that they can be used for hardware flow control.

This protocol mode uses cyclic redundancy checks and delimiter Ox7E to indicate the

beginning and end of a frame. To prevent data bytes "Ox 7E" from being mistaken as the

framing delimiter, as b)-1e stuffing technique known as COBS is used to remo\·c Ox7E

from the data. The following describes the implementation of the error control

procedures.

Cyclic Redundancy Check (CRC) Implementation

The CRC used is the 16-bit CCITT format with the Generator Polynomial "" x 16

+x 12 +x5 +I. The CRC generation involves long division of the data (appended with 16

zeros) with the Generator polynomial (Halsall, 1996 p.134-13 7). The C'RC code is the

remainder from the division. At the receiver side, the data is passed through the long

division process again. If the process yields OxOO as the remainder. the code is deemed

error free. The code se&went for implementing CRC crc.c is attached in the Appendix.

Consistent Overhead Byte Stuffing (COBS)

COBS (Consistent Overhead Byte Stufling) is a byte stutling technique that is

similar to HDLC-like fra.11ing. Compared with other aide, Byte Stuffing techniques.

COBS yields significantly less overhead (>0.5%) regardless of the data patten1

41

(Cheshire, Baker, April 1999). It uses two steps to escape the delimiter, Ox7E. The first

step is eliminating zeros ancl then replacing all Ox7E with OxOO between the beginning

and ending delimiters. The COBS co<lc (Carlson, J., Cheshire, S. and Baker, M. Nov

1997) is attached in the Appendix.

Error Recovery

When the receiving end detects any error, it sends the error mcragc packet with

an error type back to the transmitting side. This error message phckct contains a

Sequence Number with Error field (SEQ No with Error) indicating in which packet the

error was detected. The Sequence Number field that is on every packJ is an 8-bit field

that is incremented by one each time any type of packet is transmitted, except for the

retransmission packets. The retransmitted packets should contain the original sequence

number in the SEQ Number field.

The transmitting side should retransmit only the HCI packets that had an error.

This is indicated by the SEQ No with Error field. It is the responsibility of the receiving

end to reorder the packets in the right order. If the transmitting side does not have the

packet with the correct sequence number in the retransmission holding buffer, it .'>ends

the error message packet with the missing sequence number for the retransmission

packet, so that the receiving end can detect missing pa(.:k.ets. This error message packet

has Error Type equal to Ox8 I and SEQ Number with the Error field. The missing packet

is indicated at the receiver side and will be handled by the higher layers.

Protocol Mode Ox14 Operation

Although protocol mode Ox 13 has been defined as the default protocol, some

Bluetooth hardware actually uses mode Oxl4 as the only mode of operation. This mode

requires less processing by both the Host and CPU core in the Host Controller as the

COBS code need not be calculated.

This mode does not use hardware flow control, which is protocol mode (LSB

OOXIXOOO MSB) and is used by the HCI UART interface. Hence, hardware flow

control must be first disabled (that is, ... c_cjlags &~ -CRTSCTS).

42

The RTS/CTS lines arc connected in NULL modcm fashion (that is, the RTS of

the Host to the CTS of the Host Controller and vice-versa). Packets can only he sent if

the transmitter's CTS line is asserted (I OV). Hence, the receiver controls the

tram,mission by asserting and de-asserting the RTS line.

Unfortunately, at the time of writing, this mode of operation is nut operating as

anticipated. The snurcc code is attached in the Appendix.

Error Rc,.:ovcry

When using protocol mode Ox I 4. the HCI packet is sent only when the

transmitter's CTS bit is I. If the CTS bit changes to O <luring the HCI packet transfer or

after the last byte is transmitted. this indicates that there was some error on the receiver

side. The receiving end will dcasscrt RTS as soon as it detects any error, and send an

error packet with an error type back to the transmission side. This error packet contains

a Sequence Number with Error field that indic~tes the packet in which error \Vas

detected.

When the transmitting end detects CTS bit changing from I to Oat any time. the

transmitting end should hold the transmission and wait until the error packet is recci\"cd

before resuming the transmission. When the receiving end is ready to n:ccivc the new

data, it should assert RTS after the minimum Tdctect time. Herc. Tdctcct time is the

maximum time required for the transmitter side to detect the stute i.:hangc on CTS bit,

plus the time it takes to flush th-.: transmit buffer. The Tdctcct value of each side should

be informed to the other side during the negotiation phase. The local Tdctect value and

the remote side Tdetect value together, along with the baud rate, can also be used to

estimate the queue length required for the retransmission holding buffer. For an

assumed baud rate of 115:WO (the maximum for many older computers), the holding

buffer size = 115200 x (total Tdetect) bits. Before the receiving side asserts RTS line

again, it should flush the RX buffer.

The transmission side should retransmit all of the HCI packets from the packet

that had an error, which is indicated by SEQ No with Error field. Before it retransmits,

it should flush the transmit buffer that may hold the lctlover data from the aborted

previous packet. As it retransmits the packets from the transmission holding buffer, it

should start transmitting the packet with the Sequence Number that matches the SEQ

43

No with Error. If the transmitting side docs 1101 have the packct with thc cnm:d

sequence nurnhcr in the retransmission holding buffer. the transmitter should send an

error message packet with crwr typc (hH I. and 11 should skip to the packc.:t wJth the

sc..-qucncc numhcr that 1s av:ulahlc in thi: buffer. Th\.' missing packcts ar\.' indicated at the

rt-cei\'\.'f side and will he handkJ hy the higher layers.

CHAPTERS

CONCLUSION

Project Achievements and Contributions

44

This project has allowed me to familiarise with the various wireless networking

protocols and the concept of a personal area network (PAN). Bluctooth strength lies in

the low pO\vcr operation and low cost. Lately, it has rapidly gain momentum as the de­

facto standard for the ad-hoc personal area network. This is a surprising w.:hicvcmcnt for

a standard that was initially conceived to replace cubics.

As there were no existing books or guides for Bluctooth at that time the project

initially started, we had to read the core specifications and profile specifications. In the

process, we gained a rather in depth understanding of the Bluctooth protocol as a whole.

However, the short time and limitation in manpower docs not allow for a more

extensive exploration and implementation of the Bluetooth protocol.

Finally, I gain the hands-on knowledge of programming on the Linux platfonn

which was something that I had always wanted to learn but never got around to do.

Programming tools learned and used during the course of the project was mainly the

GNU C compiler, debugger and emacs editor. The project has initially set out to

develop a GUI for the Bluetooth protocol and in the process, thus I have also learned

some techniques for GUI development on Linux using the Gimp toolkit (GTK +) and

Glade.

Comments and Recommendations for Future Development

Due to the limitation in time, the software still has areas of functionality not in

place. These include:

1. Implementing Error Control using CTS/RTS lines (Protocol Mode Ox 14). This is

not functioning properly as at the time of writing this report.

2. The software need to be tested for Real Time perfomiance when used for

synchronous connection, (SCO i.e. voice) data.

45

3. The code still needs some debugging (in ca,;;c of memory overruns).

4. Allow full duplex communications between the host and the host controller

emulators. Presently, they arc set up in half-duplex mode.

Other areas for improvement include.

l. Adding auto detection of baud rate for the RS232 link.

2. Allow using another protocol mode other than Ox 13 in case the receiver operates

only on mode Ox 14.

3. Implementation of HCI commands for controlling of Bluctooth Hardware.

4. Implementation of HCI Events handling for acting as a Bluetooth Host

Controller Emulator.

The last two improvements allows 2 the possible uses for the software:

I. A completed Bluetooth stack can be developed bottom up from the r.,yhost Host

transport emulation program. Higher layers such as L2CAP, RFCOMM, SOP

and the user application can directly access the Bluetooth network through the

Host transport without detail knowledge of the actual physical connections.

2. The software can act as a Bluctooth protocol analyser and tester for an

embedded Bluetooth chip as illustrated in figure 17 ne.xt page. A copy of the

Host or Host emulation program, is stored on the testing computer, and

communicates with the Bluetooth chip under test. Using this technique, it is

more convenient to perfonn testing and debugging of the upper layers (L2CAP,

RFCOMM, SOP and the application) than debugging via RF through the

baseband. The lower layers (especially Baseband and Radio) can also be tested

and analysed for performance using this software method.

PC runningHCI
analyzer software

......................................
...... ____ _

(>
Applications

HCI

LMP \~'.:;,,~·

.____R_a_d_io_~ ______ ---···---··-------------Blue ~~;ce on

Figure 17 Possible uses for this Software

46

47

REFERENCES

The Otlicial Bluetooth web site, [on-line]. Available WWW http://www.Bluetooth.com

RS232 I-IC! Transport layer: An addendum to thc f-lCI document. [on-line]. Available
WWW: W\\'W. bl uctooth.com/1 i nk/spct:lbl uctooth __ h3 .pdf

Cheshire, Sand Baker, M (Ar,ril 1999) "Consistent Overhead Byte Stu fling",
IEEE/ACM Transat:tions On Ndworking, Vol. 7, No. 2, April 1999

Carlson, J., Che.shin:, S. and Baker, M. (Nov 1997). PPP Consistent Overhead Byte
Stutling (COBS), [on-line]. A vailahlc WWW:
www .globccom .nct/1 ct ti'<lra ll/drafl-ict f-pppcxt-cobs-00 .html

Goldt, S., Meer, S., Burkett, S., Welsh, M. (March 1996). Linux Programmers Guide.
[on-lineJ. Available WWW: http://www.ibiblio.org/pub/Linux/docs/linux-doc­
projccUprogrammcrs-guidc/

Ca.i1osa, J (Nov 2000, Network Protocols for the Home. [on-line]. Available WWW:
http://www.embedded.eom/intemet/001110011 ia2.htm

Baumann, P.H., (Jan 1998). The Linux Serial Programming HOWTO. [on-line].
Available WWW: http://www.Iinuxdoc.org/H O WTO/Scrial-Programm i ng­
H O WTO.html

Hallsall, F. (1996). Data Communications, Computer Networks and Open Systems.
Harlow, Essex: Addison Wesley Longman Limited

Specification of the Bluetooth System-Core vi.OB. (2000) [on-line]. Available WWW:
http://www.bluetooth.com/dcvelopcr/spccification/corc _ l O _ b.pdf

Specification of the Bluetooth System-Profiles vi .118. (2000). /on-lineJ. Available
WWW: http://www.bluctooth.com/dcvcloperlspeci fication/profile _ 1 O _ b.pdf

Palowireless Bluetooth Resource Centre. [on-line]. Available WWW:
http://www.palowireless.com/bluctooth/

Muller N.J. (Sept 2000). Bluetooth Demystified. McGraw-Hill Telecom

Sweet, M.,(1999). Serial Programming Guide for POSJX Operating Systems. [on-line].
Available WWW: http://www.easysw.com/-mike/serial/serial.html

Wall, K., Watson, M., Whitis, M, (I 999). Linux Programming Unleashed. Indianapolis:
Sams

IBM BlueDrekar. [on-line]. Available WWW:
http://www.alphaworks.ibm.com/tech/bluedrekar

The Bluetooth on Linux homepage. Available WWW:
http:// developer.axis. com/so ftware/b I uetoo th/

/*** host.c •••/
#include "project.h"

APPENDIX

/• Define Negotiation mode paramenters "/

t;define TTYUSED "/dev/ttySl"
#define BUFLIMIT 255 /• 2~8 •/

!··!
/•••••• Initial value:J for negotiation ••••••••••• 1,1,.•••••*'••••••/
/•••···!
#define SUGGESTBAUD 115200
#define DEFAULT UART OxOO
#define DEFAULT TDETECT 10

!•···! /••••••• Start of Host Emulation Program•••••••••••••••••••••••••/

!•···! main()
{

int fd, res, suggest_baud, suggest tdetect, end_neg = o, newbaud;
struct termios oldtio, newtio;

unsigned char stop_bit, parity, parity_type, ack_code,
use_crc, use delimit, use rts cts, rts_cts_type,

use_error recovery;

•/

/* Initialise port*/
fd = open(TTYUSED, O_RDWR I O_NOCTTY);
if (fd <0) {perror{TTYUSEDJ; exit(-1);
tcgetattr(fd,&oldtio); /* save current

/* optional I o NDELAY •/
)
port settings•/

newtio = set_port(DEFAULTBAUD); /* more settings to be added later

tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCSANOW,&newtiol
/*** initialise transmission buffer***/

negotiation_send(fd, DEFAULT_UART, SUGGESTBAUO, DEFAULT_TDETECT,
PROTOCOL_MODE(0,0,1,0,0,0) NEG PKT_HDR, 0, O);

while{end_neg==O)
end_neg = negotiation_receive(fd, HOST); /* start listening*/

!**/
/******** Start of actual link********************************/
!**/
newbaud = end_neg;
printf ("new baud %d", newbaud) ;
newtio = set_port(newbaud); /* set baud rate to new settings*/
tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCSANOW,&newtio);

/*Cleanup, reset port and close fd */
tcsetattr(fd,TCSANOW,&oldtio);
close(fd);

)

48

49

/•••• File hc,c •••••••••••••••••••••••/

#include "project.h"

#define TTYUSED "/dev/ttySO"

/* Define Negotiation mode paramenters •/

!••• • ••••••••••• *. * •• * •••••••• * •••••••••••• *. *** * •• * •• **/
/••••••• Start of Host Controller Emulation Program ••••••••••******/
/••···!

main()
(

int fd, end_neg=O, newbaud;
struct tennios oldtio, newtio;

fd = open(TTYUSED, O_RDWR j O_NOCTTY);
host'°/

/• O_NDELAY dent wait for

if (fd <0) {perror(TTYUSEDJ; exit{-l);
tcgetattr{fd,&oldtio); /• save current port settings*/

newtio
•/

set_port(DEFAULTBAUD) /* more settings to be added later

}

tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCSAN'OW,&newtio)
while(end_neg == O) {

end_neg = negotiation_receive(fd, HC)
}

/* start listening*/

/**/
/******** Start of actual link********************************/
/***'******************!
newbaud = end_neg;
printf { "new baud 'td", newbaud);
newtio = set_port(newbaud); /* set baud rate to new settings */
tcflush(fd, TCIFLUSH);
tcsetattr(fd,TCSANOW,&newtio);
/*Cleanup, reset port and close fd */
tcsetattr(fd,TCSANOW,&oldtio)
close(fd);

50

/**** File set_port.c ***********************/

#include "project.h"

struct termios set port (int baud)
(~

struct termio.:1 newtio;
/• We will try with protocol mode Oxl4 first i.e. no CRC, delimiters

•/

•/

/* DEFAULTBAUD: Set bps rate to 9600
• -CRTSCTS ·. disable output hardware flow control
• CS8 Sn! {Bbit,no parity, 1 stop bit)
* CLOCAL
"CREAD

local connection, no modem contol
enable receiving characters • /

bzero(&newtio, sizeof (newtio));
newtio. C - Cf lag &= -CRTSCTS;
newtio c cflag = baud I CS8 I CLOCAL I CREAD;
newtio.c_iflag = IGNPAR;
newtio.c_oflag = O;
/* set input mode {non-canonical, no echo) */
newtio.c_lflag = O;
newtio.c cc[VTIME]
newtio.c_cc(VMINJ

return newtio;

= 0;
1;

/•
/•

inter-character timer
blocking read until 8

unused*/
chars received

51

/**** File crc.c •••••••••••••••••••••••/

ffinclude "comrnon.h"

/******************************W*********************************/
/•••••calculates the 16-bit CCITT checksum with polynomial •••••••••/
/**** x"l6+x"12+x"S+l (i.e. Oxl021J for the indicated buffer u,;

/••···!
ffdefine CCITT_CRC_GEN Ox1021

unsigned short crc(unsigned char .. buf, int length)

I
register unsigned short CRC = O;
unsigned short databyte;
unsigned char i;

while (length--)

}

databyte = •buf++ << 8;
for (i=B; i>O; i--) {

}

if ((databyte" CRC) & Ox8000J
CRC = (CRC << 1) CCITT CRC_GEN;

else
CRC <<= l;

databyte <<= l;

return (CRC)

52

ffinclude "cobs.h"

/•
• StuffData sr_uffs "length" bytes of data from the buffer "pt"r".
• writing the output to "dst", and returning as the result the
• address of the next free byte in the output buffe1·.
• The size of the outrut buffer must be large enough to accommodate
" the enc.oded data, which 10 1~he worst ca::;e may expand by almost
* 0.5\. The exact amount of !Jafety margin rE.-qu1red can be
* calculated using (length+l) /206, rounded •up• to t.he next whole
• number· of bytes. E.g. for a lK packet, the output buffer needs to
* be lK t 5 bytes to be certain of accommodat1ng worst-case packets.
•/

unsigned char •stuffData(const unsigned char •ptr, unsigned int
length, unsigned char •dst, unsigned char ••code_ptr_ptr)
{

canst unsigned char *end
unsigned char *code_ptr
unsigned char code

ptr + length;
= *code_ptr_ptr;
= Diffzero;

I* Recover state from last call, if applicable*/
if (code_ptr) code= Rx(*code_ptr);
else code_ptr = dst++;

while (ptr < end)
{
unsigned char
if (c == O)

c = *ptr++; /* Read the next character * /
/* If it's a zero, do one of these operations */

{
if (isRunzero(code) && code< RunzeroMax} code++;
else if (code== Diff2Zero) code= RunZero;
else if (code<= MaxConvertible) code+= ConvertZP;
else FinishBlock(code);
)

else /* elsP., non-zero; do one of these operations*/
{

if (isDiff2Zero(code)) Fini,.ihBlock(code - ConvertZP);
else if (code ::c= RunZe1·0) FinishB1ock(Diff2Zero);
else if (isRunZero(code)) FinishBlock(code-1);
*dst++ = Tx(c);
if (++code== Diffl
)

)
*code__ptr_ptr = code__ptr;
FinishBlock(code);
return(dst-1);
)

FinishBlock(code);

51

#include "cobs.h"

/•
UnStuffData decodes "srclength" bytes of data flom the buffer

* "ptr", writing the output to "dst". If the decoded data doer:; not
fit within "dstlength" bytes or any other error occurs, th~:n
UnStuffData returns NULL.

•/
char •ptr,

unsigned
unsignes.'. char •unStuffData (canst unsigned

int srclenglh, unsigned char •dst, unsigned int dstlength)

I
canst unsigned char •end : ptr + srclength;
canst unsigned char *limit = dst + dstlength;
while (ptr < end)

int Z, C R.x(*ptr+-'-);

if le -- Error 11 e -- Resume 11 e -- Reserved) return (NULL) ;
else if le -- Diff) I z a 0; c- - ;
else if (isRunZero(c)) { z a e & OxF; e a 0;
else if (isDiff2Zero(c)) I z a 2; C &a OxlF;
else I z a l; C - - ;

while (--c >= O && dst < limit) *dst++ Rx(•ptr++);
while (--z >= O && dst < limit) •dst++ O;
}

if (dst < limit) return{dst-1);
else return(NULL);
}

}
}
}
}

/••••••• nego receive.c ••••••••••••••/

lhnclude "project. h"

1·······················•••******"*••••••··················1
/••••••• Data Reception Handling Alogorithm "*****'********/

!•···*•••••/
int negotiation 1·ece1ve(int fd, unsigned char role)

I
int re.s, suygest tdetect, .<Jt19ge.sl b,:iud, length;
static unsigned chc1r t·ec c::e:,q no = 1;

54

unsigned cha1· suggest uarl, :itop bit, parity, pctr1ty type, ack code,
use __ ct-c, u:::;e delimit, use l't:J cU;, i-U_; cts __ type, ur;e error recovery,
ext byte, suggest piotocol, ad:co~, f~rror_type, ;;eq_with_error;

unsigned cl1c1r !wad, readdata, 1, buf!MA.XLENGTJ-1], cob.sfM!.J.LEJJGTH],

*ptr;

STOP= F'ALSE;
while (STOP==FALSE)

read{fd, &head, 1);

if(head==0x7e)
readdata = 1;
i=O;
while(readdata ==l}
read{fd,&head,l)
if(head != Ox7e)
cobs[i)=head;
i++;}
else {

readdata=O;

le.ugth = i;

/• loop for input •/

/•******* Prints out received data****************/
print£ ("Received data ");
for(i=O;i.::length;i++) printf{"%x,", buf[i));
print f (" \n") ;

UnStuffData(&cobs{OJ length, &buf[O), 10)
printf { "Decoded data "l;
for(i=O;i<lO;i++) printf{"%x,", buf[i));
printf{"\n");

if {buf[O)==NEG_PKT HDR)
STOP=TRUE;
/*** Handles Negotiation packet ***/
if(buf[l] != rec_seq__no) {
printf ("Error! packet out of sequence\n")
/* code to call error*/
negotiation_send(fd, 0, 0, 0, 0, ERR PKT_HDR, MISS SEQ_ERROR,

rec_seq_no)
)

if(crc(buf, BUFSIZE))
print£ ("Error! CRC error\n");
/* code to call error*/
negotiation_send(fd, 0, O,

rec_seq_no)
)

else {

O, 0' ERR_PKT_HDR, CRC_ERROR,

rec seq noH;

/*** read in values•••/
use_crc = (buf[7J & OxOl) ? TRUE: FALSE;
use _delimit = {buf [7] & OxD2) ? TRUE : FALSE;
use rt:1 cts = (buff?] & Ox04) ? TRUE : FALSE;

rta, _ct::i type = (buf [7] & OxOB} ? TRUE ; FALSE;
use error recovery = (buf [7) & OxlO) ? TRUE : FALSE;

stop __ bit = (bu£ [2] & Ox04) ? 2 : l;
parity = (buf [2) & Ox08} ? TRUE : FALSE;

parity_type = (buf[2] & OxlO) ? EVEN: ODD;
ack_code = ({buf [2] & OxEO) :;;,;, 5);

ext byte= (buf[7J & GxEO) ~> 5;
i E {ext_ byte) {
print£ { "extended bytes %d \n", ext_byte);}

/*** futhe1· code added in the future ***/
/*** for extended negotiation parameters ***/

/*** assuming all parameters are acceptable***/
printf ("ack code %-x\n", ack code);
if (ack .::ode == O) {

if (role=-=HC) {
ack = 1;}

/*accept*/
else printf ("error HC cannot request! \n");

else if(ack_code == 1)
if (role==HC) return suggest_baud;

else ack = 1; /*accept*/

else if(ack_code -- 2)
/* recheck code for compatability */
ack = 1;

/*accept*/
else {printf("Reserved ack code\n"); exit(-1);}

55

suggest_uart = SET_UART(O, stop_bit-1, parity, parity_type,
ack);

suggest_baud = 27648000/{buf[3]+(buf[4]<<8))
suggest_tdetect = buf[S]+{buf[6]<<8);
suggest_protocol = PROTOCOL_MODE(use ere, use_delimit,

use_rts_cts, rts_cts_type, use_error_recovery, ext_byte);

sleep(suggest tdetect/1000); /* wait after Tdetect time*/

negotiation_send{rd,
suggest_tdetect, suggest_protocol,

suggest_uart,
NEG PKT_HDR, 0,

suggest_baud,
O) i

/* checks can be included here to simulate rejected connection*/

// else printf("Not HCI negotiation packet\n");

}
if {buf[O]==ERR_PKT_HDR}

/*** Handles Error Packet***/

56

sequence\n");
if (buf [l] ! = rec_seq_no) {
printf ("Error! packet out of
negotiation_send(fd, 0, o, 0, 0, ERR PKT_HDR, MISS_SEQ_ERROR,

rec seq no);
..) -

else {
error type = buf [2);
if(er~or __ type == MISS_RTX_PKT_ERROR) {

/••~ Missing retransmission packet ***/
/*** Do nothing, let higher layer settle•••/
printf("Retransmission packet not available. \n");

else
{
seq_with_error = buf[3];

negotiation_send(fd,
seq_with_error);

)
)

rec seq_no++;
) -

if (buf[OJ==CMD_PKT_HDR) {
STOP=TRUE;

0, 0,

/••• Handles Command Packet ***/
/*** implemented in the future***/

)
if (buf [OJ ="'ACL_PKT_HDR) {

STOP=TRUE;

)

/*** Handles ACL Data Packet***/
/*** implemented in the future***/

if (buf(O]==SCO_PKT_HDR) {
STOP=TRUE;

)

/*** Handles sco Data Packet***/
/*** implemented in the future ***./

if {buf[OJ==EVN_PKT_HDR) {
S10P=TRUE;

)

)

/*** Handles Events Packet ***/
/*** implemented in the future***/

STOP= FALSE; /* reset stop*/
/* the following was used fo".' debugging * /

0, 0, RETRANSMIT, 0,

/* printf ("Buffer has \n %x \n %x \n %x \n %x \n %x \n %x \n %x
\n %x \n", buf [OJ, buf [l), buf [2), buf [3J, buf [4], buf [SJ, buf [6],
buf[7J);*/

if((ack==ll && (role== HOST)) return suggest_baud;
else return O;

)

/****** nego_sent.c *******/
#include "project.h"

57

void negotiation send(int fd, unsigned char suggest_uart, int
suggest_baud, int suggest_tdetect, unsigned char suggest_protocol,
unsigned char pkt type, unsigned char err_type, unsigned char
seq_with error)
(-

static unsigned char sequence_no = O; /* limit of 2,,.8=255 packets in
buffer*/

unsigned char i, neg_byte[BUFSIZE], cobs[MAXLENGTH), *stuff=NULL,
*op;

int fcs, length;
unsigned char tx buf{256];

if(pkt_type==NEG_PKT_HDR) {
/*** Pack and sent Negotiation Packet***/
neg_byte[O) = NEG_PKT_HDR;
sequence_no++;
neg_byte (l]
neg_byte[2) =
neg_byte[3] =
neg_byte(4]
neg_byte[S]
neg_byte[6J =
neg_byte[7]
length= 8;

sequence_no;
suggest_uart; /*resv, stop, parity, type, Ack*/
(BAUD_TO_N(suggest_baud) & Oxff);
((BAUD_TO_N(suggest_baud) >> 8) & Oxff);
suggest_tdetect; /* Tdetect value LSB */
(suggest_tdetect >> Bl; /* Tdetect value MSB */
suggest_protocol; /*CRC, delimiter ... ext */

1.f (pkt type == ERR_PFT_HDR) {
neg_byte[O] = ERR_PKT_HDR;
sequence_no++;

}

neg_byte(l]
neg_byte[2]
neg_byte[3J =
length= 4;

sequence_no;
err_ type;
seq_ with_error;

if(pkt_type==RETRANSMIT)
seq_buf = &tx_buf[O];

}

seq_but += ((seq_with_error - 1)*8);
neg_byte[OJ = *seq_buf;
seq_buf++;

switch {neg_byte [O]) {
case ERR PKT HDR:
length= 4;
break;
case NEG PKT HOR:
length = 8;
break;
default:
printf("HCI higher layer packet, read the packet length\n");

/*** for future development***/
break;
}
for(i=l; i<length; i++}
neg_byte[i] = *seq__buf;
seq_buf++;
}

/*** Calculate and append CRC ***/

fcs = crc(neg_byte, length);
neg_byte(lengthJ=((fcs >> 8) & oxff};
length++;
neg_byte {length)= (fcs & Oxff);
length++;
if(pkt type != RETRANSMIT) {

/*** store in Tx buffer •• '·/
seq_buf = &tx_buf [OJ;
seq_buf += ((sequence_no 1) *8);

for{i=l; i<length; i++l
*Scq_buf = neg_byte[i];

seq_buf++;
}

/*** BOF delimiter***/
cobs(O]=Ox7e;
/*** COBS coding***/
op= StuffLJata(neg_byte, length, &cobs[l], &stuff);
/*** EOF delimiter***/
*Op = Ox7e;
length= ++op - &cobs(OJ;

printf ("sent data:" l ;
for(i=O; i != 10; i++)

printf (", %x", neg_byte [i] J ;

printf (" \n" l ;

printf ("coded data: ") ;
for(i~o; i != length; i++)

print£ (", %x", cobs [i]) ;

print£ (11 \n");

write(fd, cobs, length);

58

/••••••• Header file for stuff.c and unstuff.c ***********/
#include "common.h"

59

!•··••/ /••• Consistent Overhead Byte Stuffing and Unatuffing Algorithm***/
/••• Carlson J, et al 1997 ******************/
/**/

//typedef unsigned char u_char;
typedef enum

/• 8 bit quantity*/

{
Unused = OxOO,

Di ff Zero OxOl,
•/

•/

•/

•/

•/

•/

•/

•/

•/

•/

DiffZeroMax = OxCF,

Diff = OxDO,

Resume = OxDl,

Reserved = OxD2,

Runzero OxD3,

RunzeroMax = OxDF,

Diff2Zero = OxEO I

Diff2ZeroMax = OxFE,

Error
•/

} Stuffingcode;

= OxFF

/* Unused (framing character placeholder)

/* Range OxOl - OxCE:

/* n-1 explicit characters plus a zero

/* 207 explicit characters, no added zero

/* Unused (resume preempted packet)

/* Unused (reserved for future use)

/* Range OxD3 - OxDF:

/* 3-15 zeroes

/* Range OxEO - OxFE:

/* 0-30 explicit characters plus 2 zeroes

/* Unused (PPP LCP renegotiation)

/* These macros examine just the top 3/4 bits of the code byte*/
#define isDiff2Zero(X) (((X) & OXEO) -- (Diff2Zero & OxEO))
#define isRunZero (X) (((X) & OxFO) -- (Runzero & OxFO))

/* Convert from single-zero code to corresponding double-zero code
•/
#define ConvertZP (Diff2Zero - DiffZero)

/* Highest single-zero code with a corresponding double-zero code
•/
#define MaxConvertible (1 ? Diff2ZeroMax - ConvertZP : O)

/* Convert to/from Ox7E-free data for sending over PPP link*/
static unsigned char Tx(unsigned char x) { return(x -- Ox7E? O x);
}
static unsigned char Rx(unsigned char x) { return(x -- O ? Ox7E x);
)

#define FinishBlock(X) (*code_ptr = Tx(X), code_ptr = dst++, code =
DiffZero)

60

/••••• common.h •••••••/
/***** common libraries••••••••/
#include <termios.h>
#include <stdio.h>
#include <tmistd.h>
#include <fcntl .h>
#include <sys/signal.h>

/****** project.h ••••••••••/

/••···! /******* Header files for Communication Emulation******************/

!···!
#include "common.h"

#include <sys/ioctl.h>

#define POSIX SOURCE 1 /* POSIX compliant source•/

#define FALSE 0
#define TRUE 1
#define ODD 0
#define EVEN 1
#define HOST 0
#define HC 1
/***/
/******* Packet types: ***/
/***/
#define RETRANSMIT OxOO /*** not part of the specs***/
#define CMD PKT HDR OxOl
#define ACL PKT HDR Ox02 - -
#define Seo PKT HDR Ox03
#define EVN PKT HDR Ox04
#define ERR PKT HDR OxOS
#define NEG PKT HDR Ox06

/***/
/******* initial negotiation settings******************************/
/***/
#define DEFAULTBAUD B9600
#define BAUD_TO_N(x) (27648000/ (x))
#define PROTOCOL_MODE(a,b,c,d,e,f) ({((f)&7)«5) +
(((d) &l) <<3) \

+ (((c)&l)«2) +
((a) &1))
#define SET UART(a,b,c,d,e) ((((e)&7}«5) +
(((cl &ll «3) \

+ (((b) &1) «2) + I (al &3) I

#define BUFSIZE 10

(((e)&1)«4)

(((b) &:i.) «1)

(((d) &1)«4)

#define MAXLENGTH 16 /* max length of negotiation in bytes*/

/**********~**/
/******* Error types***/
/***/
#define OVER RUN ERROR Ox09
#define PARITY ERROR OX09
#define FRAME_ERROR Ox09
#define CRC ERROR Ox09
#define MISS_SEQ_ERROR Ox09
#define MISS RTX PKT ERROR Ox09

+

+

+

volatilP int STOP;

unsigned char *seq_buf; /* tx buffer for error recovery 1r/

struct termios set_port (int baud);

61

void negotiation_send(int fd, unsigned char suggest_uart, int
suggest_baud, int suggest_tdetect, unsigned char Guggest_protocol,
unsigned char pkt type, unsigned char err_tYPe, unsigned char
seq__with_error);

int negotiation rece1ve{1nt fd, unsigned char role);

unsigned sho,:t ere (unsigned char *buf, int len) ;

unsigm.•d char *StuffData (canst unsigned char *ptr, unsigned int
length, 11nsigned char *dst, uni;..:.gned char **code_ptr_ptr);

unsigned
srclength,

char *UnStuffData(const unsigned char *ptr,
unsigned char *dst, unsigned int dstlength);

unsigned int

	Bluetooth software on Linux, wireless hand-held devices
	Recommended Citation

