View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Online @ ECU

Edith Cowan University
Research Online

Theses : Honours Theses

2001

Bluetooth software on Linux, wireless hand-held devices

Teck Khoon Low
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

b‘ Part of the Digital Communications and Networking Commons, and the OS and Networks Commons

Recommended Citation
Low, T. K. (2001). Bluetooth software on Linux, wireless hand-held devices. https://ro.ecu.edu.au/
theses_hons/536

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/536

https://core.ac.uk/display/41536452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/536
https://ro.ecu.edu.au/theses_hons/536

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

BLUETOOTH SOFTWARE

g
ON LINUX, WIRELESS HAND-HELD DEVICES
&

Submitted by:

Low, Teck Khoon || N

Submitted in partial fulfilment
of the Requirements for the Degree of Bachelor of Engineering

{(Communication Systems) with Honours

School of Engineering and Mathematics
Faculty of Communications, Health & Science
Edith Cowan University
Perth, Western Australia

February 04, 2001

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

ABSTRACT

In order to cnable cxisting computers (non-Bluctooth ready) to conncect to a
Bluctooth piconet, a Bluetootl hardware device comprising of the Radio antenna, the
bascband and control circuit is used. The digital portion of this device is also known as
a Host Controller, HC. In the traditional communication lingo, the Bluctooth Hardware
functions, as the Data Communication Equipment (DCE) while the Host is the Data

terminal Equipment (DTE).

This report discusses the theory and implementation of the communication
protocol between the Host and the Host Controller, enabling communication between

the computer and the Bluetooth hardware

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief:

i incorporate without acknowledgement any material previously submitted for a

degree or diploma in any institution of higher education;

ii contain any material previously published or written by another person except

where due reference is made in the text; or

i contain any defamatory material.

Signature:

Date: 30 / 4’{ 200

ACKNOWLEDGEMENTS

Project Supervisor: Dr, Stefan Lachowicz,

Dr. Ma Zhongming

| would like to express my sincere gratitude to my project supervisors, Dr.
Stefan Lachowicz at Edith Cowan University and Dr. Ma Zhongming in Singapore for
their advice and guidance throughout the course of this project. Without which this

project would not have been possible.

I would also like to thank Mr. Charlie Khoo Kai Hock who worked on a project
closely related to my, for sharing with me with the vast amount of literature and ideas

during the project.

My thanks are also due to Mr. Foo Chun Chong who was from Ericsson
Telecommunications, who kindly and promptly clarifted the many doubts I had on the

Bluetooth protocol.

Lastly, I would like to thank my friends and family who had inspired me and

given me unfaitering support throughout my cducation and career.

TABLE OF CONTENTS

LISt OF FIBUTES covtvs st nesrs s s ens bt 7
List of Tablescocuue., T OO TR TS UROSOPU U UT U TEPPTURTUP 8
Project Definition, .ot s st as st ene e en e s ssans e esar oo 9
AT 1ottt 100 s fa e saaerrostsar e e e aR LR s e R e eba e adeh et a s ea e 9
S0Pttt e bbb nre b e b s nen 9
Chapter [Introduction to BlUetoothc.ovvviiiiicvine i 11
Bluetooth HiStory........coimiiiniinin it e, 11
A Brief Overview of the Technologyccevii 12
Compared with other technology......cc.covviiniici s 13
Existing Bluetooth Development.o.oevereeniicinciisies s reeans T4
Bluetooth SpecifiCationScocivvv et et e eesees srnsn e sr e aesrcare e e esanns 15
RAAIG ettt e e et rean 15
Baseband ..o e is
LIMP ettt st en e sre e n e saar e 15

HC Lottt sas esirtintebebearenserasetresensen 15
L2CAP ot nese e et sbe e e e 16
RFCOMM......cccco.. . 16
SDP ettt e e e e e bt e ae b ns 16
Chapter 2 The Host Controller Interface........co.o........ 18
Role of the HCI in an Embedded System................. e 19
HCI Driver..........e.... e 19
HCI Firmware................ .20
Host Controlier Transport Layer.......cocoveiveiriimis e eeeesereresesieseens 20
UART Transport Layer......ccoveevieernnnn, e 20
RS&232 Transport Layer.....ccccoeeveerene .21
USB Transport Layer........ceeuervunne. 21

HCITerminology......ociiiiireniicmeinirecrin e s et seesssevas 21
HCI Command Packet FOrmat.......ccooccoviimnenmemeomnrnnnommon 22

The HCIL Event PAcket ..ovvveeeiciiicierre s rscrieeresns s ienesnersnesesnss s 23
Chapter 3 RS8232 Host Controller Transport Layer.........ccovveviecvinnriccnnenninens 27
Types of HCI Transport Datacocvvviierrviinnae i essssseesonnens 27
The Negotiation Packet. . nnn ettt 28
Packet HEAACT 1vveciiviieiieiniie e isiicscre v vvesisere e st s sbessasrssesnane s 32

SEQ NO. c ittt e tr e st e esa s s s s e s sreeess st an e eranasbarateasgasion 32
UART Settings and ACK Fieldccoooviicrviiiieieiecrecee e e 32
Baud RAtC....i ittt eras et et ene s e 33
TAEIECE TIIMIE .vevvieerreverieriesirercncies e a et raert s ab e et e e onteare g coanesnanene 33
Protocol MOde......coviiiiriiec it e e 34

The Error Message Packet......c.ccovviierveiiirccnnricinene e s 35
Chapter 4 Software DevelOPment.........cocooiireeicimiinnniniiescrnirneer e e car s 37
Programiming on Linux {Problems faced)cooocccovniminininieiricen e 37
The Negotiation ROULINE........ccoiciviee e srsaena e e 38
Protoco] Mode 0X13 Operation.....cweieccreiiirereecnereienreiressisenserssecsses s 40
Cyclic Redundancy Check (CRC) Implementation..........cccoovvreinvviennne, 40
Consistent Overhead Byte Stuffing (COBS)cooviiviiviiicre e 40
EITOT RECOVETY ...ttt citcs ettt s e e s sae et s e eis 4]
Protocol Mode 0x14 Operation.........coocvorinieicenscveernnnereecrsreareennssaaees 41
EITOr RECOVETY .citiiriiiiciiicirne i orisense e s snsvass e st ovt st ae s anres 42
Chapter 5 Conclusion................. e 44
Project Achievements and Contributionsccvvevverieeiviniiise s isnenes s 44
Comments and Recommendations for Future Development........covvveenennn. 44
References.......oeuivcrvennnas veeee. 47
AppendiX......cocrvevrireee. rvrenes 48

LIST OF FIGURES
Figure | Bluctooth SIG working Groupscccooviviiecniarii s 12
Figure 2 Bluetooth protOCols. i cereri s e cae s ccesresssianr e reeere s 17
Figure 3 Host CORIOller SEUP..oovv i s 18
Figure 4 Bluctooth Device Breakdown. ..o e 18
Figure 5 Integrated Bluetooth using the USB Bus.....ovcovicviicnicniciiii s 21
Figure 6 HCI Command Packet format. ...t 23
Figure 7 HCI Event Packet format......ccoevriioiiiiniieree e 24
Figure 8 HCI ACL Data Packet format.........coocoiimincr e esere e, 25
Figure 9 HCI SCO Data Packet format........occoveviiiieciinicinnccocnni e eee oo 26
Figure I0RS232 HCI Transport Packelcoiioniiiiirainiii s s imecrens e 28
Figure 11 Host Controller Interface negotiation process ..o 29
Figurc 12 Negotiation Packet Format ..o 32
Figure 13 UART settings and Acknowledgement fieldcooievveecicriinccciinceciene, 32
Figure 14 Protocol mode error control and recovery field..........oocoonvniiiicennnn, 34
Figure 15 Error Message Packet........occooviiieciiiriniiicic e s 30
Figure 16 Protocol Mode 0x13 Packet Formatccoomviiceiaii i, 40

Figure 17 Possible uses for this Soflware ... 46

LIST OF TABLES
Table 1 Wircless technology COmMParison.......ce i 13
Table 2 HCI ACL Data Packet fields ..., et 26
Table 3 HCIRS232 Packet Header ..o s . 27
Table 4 UART settings and Acknowledgement meaningcoceeeeevnvennnenn IRTRPIOTOTR 33
Table 5 Protocol Mode SCHINES.......cciiiiriiie et rae s ear st ras e canene 35
Table 6 Error Types available. ... s 36

Table 7 LiSt Of PrOZIAMS. ..o oottt ieere ettt rabecr s sasres e sn et rbss s eta ressanesbesrennans 38

PROJECT DEFINITION

Ailm

The aim of this project is to develop and simulate a Bluetooth Host Controller
interface link. The purpose of developing this software s 1o enable non-Bluetooth ready
computers to connect to a Bluctooth network via Bluetooth Hardware (Radio). The

objectives of this project are:

L. To explore one of the emerging wireless standard, Bluetooth.
2, To gain an understanding of the Bluctooth protocol stack,
3. To appreciate development using C programming on the Linux platform.

The software developed in this project would serve as a base on which the
complete Bluetooth high level stack could be built. It could aiso be enhanced to act as a

Bluctooth protocol analyser and tester as discussed in the future development scction.

One of the original aims of this project is to develop a Graphic User Interface,
GUI, for the wireless network protocol. However, after discussion with our project
supervisor, the GUI was dropped from the project, as it does not aid in the study of the

Bluetooth protocol.

Scope

The project comprises of both a rescarch component and an implement

component in the form of a null-modem simulation.

1, The first task is to familiarise with the development of software on the Linux
platform. As the student leamt programming on the DOS plattorm, the different

programming techniques nced to be developed.

2. Explore the various wireless networking standards and to understand the various

strengths and weakness.

3. [dentify the existing Bluetooth resources available in the market.

10

In project 2, the initial plan was to implement a usage model using the LAN
Access Profile. Duc to the limited time in which to project was conducted (in the
summer semester) and with no Bluetooth hardware device (that implements the

radio and link management), only once portion of the usage model is simulated.

Understand how the computer communicates with the Bluetooth device through

the Host Controller Interface (HCI).

Understanding the detail working of the HCI protocol.

CHAPTER 1
INTRODUCTION TO BLUETOOTH

Bluetooth History

Initially conceived by Ericsson in 1994, as a low power, low cost radio interface
to communicate between mobile phones and their accessorics. At the same time, sevceral
other companies such as Intel, IBM, Toshiba and Nokia Mobile Phones arc also
developing similar technology. These companies founded the Bluetooth Special Interest
Group (SIG) in May 1998 to standardise and drive the development of Bluctooth. The
Bluetooth SIG grew faster than any other wireless consortium, with 2164 members as of

February 2001, (Information from the Official Bluetooth Web Site).

Figure 1 shows the SIG working structure. The Promoter companies (PM)
includes 3Com, Ericsson, IBM, Intel, Lucent, Microsoft, Motorola, Nokia and Toshiba.

These companies lead the effort of the SIG in promoting Bluetooth.

PM Group

TN
/ Work groups: \\\

Architecture Review Board Management Services
-WLAN intarop Legal
-Printing Marketing
-5till Image Regulatory
-Ext SDP BORB/Logo
-Locsl Pos

-uUbI

-Radio2

~PaM

-Car Profil e

-Wake-up

~HID

-Audio/Mdeo

N %

Figure 1 Bluetooth SIG working Groups

A Brief Overview of the Technology

Bluetooth is essentially a cable-replacement technology. The standard is based
on Wireless LAN IEEE 802.11b (Canosa, J Nov 2000), however it differs from the
Wireless LAN standard in that it calls for a small, cheap radio chip that can be plugged
inte computers, printers, mobile phenes, etc. Bluetooth chip 1s designed to replace
cables by taking the information normally carried by the cable, and transmitting it via
the 2.4 GHZ ISM band to a receiver Bluetooth chip. The recciver will then give the
information received to the computer, mobile phone or whatever it is attached to. The
projected low cost of a Bluetooth chtp at around US$5, it’s small size and low power

consumption, indicates that one conld literally place anywhere.

13

Compared with other technology

Muller, N.J., (Scpt 2000), compared Bluetooth to some of the present wireless

standards, The following table is a summary of the features of each technology.

Table 1

Wircless technology comparison

Feature/ Infrared IEEE 802.11b

Function

Connection Infrared, narrow beam (30° angle Spread Spectrum (direct sequence

Type or less) DS, or Frequency Hepping FH)

Spectrum Optical, §50nm 2.4 GHz ISM band

Transmisston 20 dBm 20dBm

Power

Data Rate Up to 16 Mbps using Very fast 1 to 2 Mbps using FH, 11Mbps
Infrared using DS

Range I'm 100m

Supported Two Multiple devices per access point;

Stations Muitiple access point per network

Voice One None, Uses Voice over [P

Channels

Data Short range and narrow angle of Authentication: challenge-

Security the IR provides a simple form of response between access point

security. No other sccurity at the
link level

and client via Wired Equivalent
Policy

Encryption; 40 bit standard

14

Feature / Home RF Bluctooth

Function B
Connectiois Spread Spectrum Frequency Spread Spectrum Frequency

Type Hopping FH Hopping FH

Spectrum 2.4 GHz ISM band 2.4 GHz ISM band

Transmission 20 dBm (}dbm (normal)

Power

20dBm (high power)

Data Rate 1 1o 2 Mbps using FH | Mbps using FIH

Range 100m 10m

Suppeorted Up to 127 devices per network Piconet support | master and 7

Stations slaves. Multiple piconets are
possible in the same arca (i.e.
Scatterncet)

Voice Up to six Up to three

Channels

Data Blowfish encryption algorithm For authentication, a 128-bit key;

Security (over | trillion codes) For Encryption, key size is
configurable between 8 and 128
hits

The requirements for a portable wireless device are reliable, convenience, case
to use and low power consumption. Compared with Infrared. Bluctooth do not require
line of sight operation and has a longer range. Compared with the two other RF
standards, Bluetooth devices consume less power and hence result in a longer battery
life. The relative short distance of 10m is sufficient for most office spaces. In addition,
the Bluetooth SIG is working on increasing the data rate to eventually allow multimedia

suppoit.

Existing Bluetooth Development

During the last two Quarters of the year 2000, scveral companies announced
Bluetooth related products. Of these, there are 101 products qualitied by the SIG (as
listed in the official web site) (The Official Bluetooth web site). These include

integrated circuits, software stacks, developer kits, host controllers, laptops with built in

15

Bluetooth radios, Mobile phone and accessories. Qualified Bluctooth hardware, (radio
and Host Controller} includes devices from Digianswer, Ericsson, Xircomm, Cambridge
Silicon Radio and others, While there are currently 13 qualified Bluetooth protocol
stack, the only two stacks written for Linux, for connecting existing computers (o the
Bluetooth network are both still under development, these are from [BM and Axis

communic:ation.

Bluetooth Specifications

Bluetooth protocol structure comprises of seven defined layers, these are:

Radio

The Radio layer defines the requirements for a Bluctooth transceiver operating

in the 2.4 GHz ISM band.

Bascband

The Basceband layer describes the specification of the Bluetooth Link Controller

(LC) which carries out the baseband protocols and other low-level link routings.

LMP

The Link Manager Protocol (LMP) 1s used by the Link Managers for link set-up

and control.

HCI

The Host Controlier Interface (HCI) provides a command interface to the
Baseband Link Controller and Link Manager, and access to hardware status and control

registers. The HCI will be discussed in more detail in the next section.

16

L2CAP

Logical Link Control and Adaptation Protocol (L2CAP) supports higher level
protocol multiplexing, packet segmentation and re-assembly, and the conveying of

quality of service information.

REFCOMNM

The RFCOMM protocol provides emulatton of serial ports overthe L2CAP
protocol. The protocol is based on the ETSI standard TS 07.10, used for Global System

for Mobhile {GSM) communication devices.,

SDP

The Service Discovery Protocol (SDP) provides a means for applications to
discover which services are provided by or available through a Bluctooth device. It also

allows applications to determine the charactertstics of thosc avattable services.

Except for the Host Controller Interface. the other six protocols will not be
covered, as they were discussed in relative detail in the Project One progress report, In
addition to these scven protocols, Bluetooth also adopt several other protocols to handie

higher layer data and voice as shown in the following figure.

HCI

st
T

_ vCalendar

AT

Commands

sbp

TCS

BEX | | W

RFCOMM

Audio

L2CAP

Basehand

Figure 2

Bluetooth protocols

17

CHAPTER 2
THE HOST CONTROLLER INTERFACE

18

In order to enable existing computers (non-Bluetooth ready) to connect to a

Bluetooth piconet, a Bluetooth hardware device comprising of the Radio antenna, the

baseband and control circuit is used. The digital portion of this device is also known as

a Host Controller, HC. In the traditional communication lingo, the Bluetooth Hardware

functions, as the Data Communication Equipment (DCE) while the Host is the Data

terminal Equipment (DTE). Figure 3 shows relation of the Host and the Bluetooth

hardware.
Bluetooth Host
Personal Computer
(the DTE)
Bluetooth Hardware (the DCE)
Software Host Controller Bluetooth
HCI Driver Radio
Figure 3 Host controller setup
\ ;o M
O _ Blustooth Host Conlrofier N/ £ UNK
4 Hostinterface Y Link Manager)
Extermal ' crU irk hase .
h‘; !f;rOiS g oo s ggz;g:‘biizi Bluetoott Radio
\ l N : /\ ,J
Figure 4 Bluetooth Device Breakdown

Figure 4 show the breakdown of the Bluetooth device by function. The Host

Controller Interface serves as an interface between the (non-Bluetooth) DTE and the

19

Bluetooth Hardware (DCE). Essentially this interface provides a uniform method of
accessing the Bluctooth baseband capabilities. The HCT exists across three sections, in
the Host, Transport Layer, and Host Controller. Each of the sections has a different role

to play in the HCI system.

Role of the HCI in an Embedded System

The HCI layer is not needed if the Bluctooth embedded solution is developed in
the form of a chipset hosting the entire BT stack (that 1s, from Baseband to
Application). This is because the HCI is used for applications having a clear divide (in
terms of the difterent hosts for cach of the parts) between the Host & the HC (Host

Controller) parts of the stack.

However. it is still a good idea to implement HCI support. As it can be used to
support some debug or test port to the chip. This debugging would require HCH to be
implemented inside the chipset to interpret & respond 1o the debug commands from an
external source. It is more convenient to perform testing and debugging of the upper
layers (L2CAP. RFCOMM, SDP and the application) through the HCT than debugging
via RF through the baseband.

The program described in section four can be used as a base w develop such a

testing and debugging program.

HCI Driver

The term Host is used to refer to the HCI-enabled Software Unit. HCI Driver is
located on the Host computer as a software entity. HCI link commands are used by the
Host to communicate with the Host Controller; these commands provide the Host with
the ability to control the link layer connections to other Bluctooth devices, In the reverse
direction, the Host Controller sent HCI events to notify the Host when something
occurs. When the Host discovers that an cvent has occurred it will then parse, the

received event packet to determine which event occurred.

HCI Firmware

The term Host Controller is used to refer to the HCl-enabled Bluetooth device.
HC1 Firmware is located on the Host Controller, (that is, the actual Bluctooth hardware
device). The HCI firmware implements the HICT Commands for the Bluclooth hardware
by accessing bascband commands, link manager coinmands, hardware status registers,

control registers, and cvent registers.
Host Controller Transport Layer

The HC! Driver and Firmware communicate via the Host Controller Transport
Layer. This layer may comprise of several layers that exist between the HCI driver on
the host system and the HCI firmware in the Bluetooth hardware. These intermediate
layers, the Host Controler Transport Layer, provide the ability to transfer data without
intimate knowledge of the data being transferred. Hence. the Host should receive
asynchronous notifications of HCI events idependent of which Host Controller
Transport Layer is used. Several different Host Controlter Transport protocols can be
used. The three ditferent Host Controller Transport protocols mitially defined for
Bluetooth are the USB, UART and RS232 Transport Laver. These three protocols are
briefly discussed below although this project deals mainly with the RS232 Transpont

Layer.

UART Transport Layer

The objective of the HCE UART Transport Layer is to make it possible to use
the Bluctooth HCI over a serial interface between two UART on the same PCB. The
HCI UART Transport Laycr assumes that the UART communication is free from line
errors. Event and data packets flow through this layer, but the layer does not decode

them.

21

- RS232 Transport Layer

The objective of the HCI RS232 Transport Layer is to make it possible to use
the Bluetooth HCI over one physical RS232 interface between the Bluetooth Host and
the Bluetooth Host Controller. HCI Commands, Events and Data packets flow through
this layer, but the layer does not decode them. The implementation of this protocol is

discussed in further detail in section 3.

USB Transport Layer

The objective of the Universal Serial Bus (USB) Transport Layer is to the use a
USB hardware interface for Bluetooth hardware, There are two ways in which this can
be embodied: as an USB dongle (DCE) in the arrangement similar to figure 3, or
integrated onto the motherboard of a notebook PC as shown in figure 5. A specific class
code is assigned to USB Bluetooth devices. This will allow the proper driver stack to
load, regardiess of which vendor built the device. It also allows HCI commands to be

differentiated from USB commands across the control endpoint

£ [e e o o

LREYT 5 P e
: P55 G
BE Liztk o

i - o P tink
Metise L;Qf?tﬂ}fffﬁr & oo
hanager)

Lyetom
P

R

oy

Figure 5 Integrated Bluetooth using the USB Bus

HCI Terminology

Four types of packets can be transferred between the Host and the host
controller. They are the HCI Command Packet, HCI Event Packet, HCI ACL
{Asynchronous Connectionless link) Data Packet and HCI SCO (Synchronous
Connection Orientated) Data Packet. HCI Command Packets are only sent from the

Host to the Bluetooth Host Controller. HCI Event Packets are only sent from the

22

Bluetooth Host Controller to the Host. HCI ACL/SCO Data Packcts are sent both to and

trom the Bluetooth Host Controller, ACL carries packet data while SCO carries voice,

Betore we proceed to describe the data transfer process, let us first familiarise
with the terminology used to describe the Bluetooth protocol. 'The smallest unit of data
that is transmitted by one device to another is the Bascband Packet. The HCL packet
essentially carries the same quantity of data as the Baseband Packet, but bascband
specific events such as data encryption and baseband crror control are not included. The
only higher-level protocol defined for Bluetooth now s the L2CAP packet. The L2CAP
layer performs Segmentation and Reassembly of Higher Layer Protocol Data Units
(PDU), hence: a single L2CAP packet can be segmented into several HCI data packets

{either ACL or SCO).

The Host Controller Transport Layer provides transparent exchange of HCI-
specific information. These transporting mechanisms provide the ability for the Host to
send HCI commands, ACL data. and SCO data to the Host Controller. These transport
mechanisms also provide the ability for the Host to receive HCI events, ACL data, and

SCO data from the Host Controller.

Since the Host Controlier Transport Layer (explained in the next section)
provides transparent exchange of HCl-specific information, the HCI specification
specifies the format of the commands, events, and data exchange between the Host and

the Host Controller. The following is a brief discussion of the packet formats,

HCI Command Packet Format

The HCI Command Packet is used to send commands to the Host Controller
from the Host. The format of the 1iC] Command Packet is shown in the following

figure followed by the definition of each field.

23

o 4 & 12 4 2 74 25 24
OpCode Parameter Total Parameter 9
OCF [OGF Length -
Parameater 1 - Parameter,
a
[3
&
Farameter b1 Paramster N

Figure 0 HCI Command Packet format

Op _Code: The Opcode parameter specifies the type of command sent. It is
divided into two fields, called the OpCode Group Field (OGF) and OpCode Command
Field (OCF). The OGF occupies the upper 6 bits of the Opcode, while the OCF
occupies the remaining 10 bits. The OGF of 0x3F is reserved for vendor-specific debug
commands. The OGF of 0x3E is reserved for Bluetooth Logo Testing. The organisation
of the Opcodes allows additional information to be inferred without fully decoding the

entire Opcode.

Parameter_Total Eength: This field specifies the lengths of all of the parameters
contained in this packet measured in bytes (that is: total length of parameters, not

number of parameters).

Parameter 0 - N: Each command has a specific number of parameters associated
with it. These parameters and the size of each of the parameters are defined for each

command. Each parameter is an integer number of bytes in size.

The HCI Event Packet

An event is a mechanism that the Host Controller uses to notify the Host when
events occur. This includes for command completion, link layer status changes, etc. The
Host must be able to accept HCI Event Packets with up to 255 bytes of data excluding
the HCI Event Packet header. The format of the HCI Event Packet is shown in

following figure followed by the definition of each field.

24

el 4 B 12 18 29 24 8 k3|
e raramater Total .
Fuert Code Par it ¥ Evert Paramaetar
Leangth
Everdt Parametar 1 Svent Barametar 2 | Bvent Parameter 3
-]
B
Evant Parameter M Event Parametar M

Figure 7 HCI Event Packet format

Event Code: Each event is assigned a 1-Byte event code used to uniquely
identify different types of events. Range: 0x00-0OxFF (The event code OXFF is reserved
for the event code used for vendor-specific debug events. In addition, the event code

OxFE is also reserved for Bluetooth Logo Testing)

Parameter Total Length: Length of all of the parameters contained in this

packet, measured in bytes.

Event Parameter 0 — N: Each event has a specific number of parameters
associated with it. These parameters and the size of each of the parameters are defined

tor each event. Each parameter is an integer number of bytes in size.

HCI Data Packets

HCI Data Packets are used to exchange data between the Host and the Host
Controller. The data packets are defined for both ACL and SCO data types. The format
ot the HCI ACL Data Packet is shown in following Figure and the format of the SCO
Data Packet is shown in Figure 9. The explanation for each of the fields in the data

packets follows the packet diagram.

25

0 4 a8 12 18 20 24 28 31

i1 Be

Uioanfen Ll i
Fluy [Fhw)

{laty Lok | etitih

[l

Figure 8 HCI ACL Data Packet format

Connection Handle: A conncction handle ts a 12-bit identifier, which is used to
uniquely address a data/voice connection from one Bluetooth device to another. The
connection handles can be visualised as identifying a unique data pipe that connects two
Bluetooth devices. The connection handle is maintained for the lifetime of a connection,
including when a device enters Park, Sniff, or Hold mode. The Connection Handle
value has local scope between Host and Host Controlier. There can be muitiple
connection handles for any given pair of Bluctooth devices but only one ACL

connection.

Flags: The Flag Bits consist of the Packet Boundary_Flag and Broadcast Flag,
The Packet Boundary Flag is located in bit 4 and bit 5, and the Broadcast Flag is
located in bit 6 and 7 in the second byte of the HCI ACL Data packet.
Data_Total _Length is the length of data measured in bytes. The following table gives an

explanation of the various flag settings.

26

Table 2

HCI ACL Data Packet fields

Packet Boundary Flag

00 Reserved for future use

01 Continuing fragment packet of Higher Layer Message

10 First packet of Higher Layer Message (i.e. start of an L2ZCAP packet)

11 Reserved for future use

Broadcast Flag -(in packet from Host to Host Controller):

00 No broadcast. Only poi11t~to-p§h1t.

01 Active Broadcast: packet is sent to all active slaves.

10 Piconet Broadcast: packet is sent to all slaves, including slaves in ‘Park’ mode.

11 Reserved for future use.

Cazpinzhion Hotle FREE S Py Tobal Laagh

[Eba

Figure 9 HCI SCO Data Packet format

Connection Handle: Connection handle to be used to for transmitting a SCO

data packet or segment.

The Reserved Bits consist of four bits which are located from bit 4 to bit 7 in the

second byte of the HCI SCO Data packet. They are Reserved for future use

Data Total Length: Length of SCO data measured in bytes

27

CHAPTER 3
RS232 HOST CONTROLLER TRANSPORT LAYER

This section details the development of software to implement the R8232 HCI

Transport for Linux.

Types of HCI Transport Data

There are four kinds of HCI packets that can be sent via the RS232 Transport
Layer as described in the previous scction, HCI driver does not provide the ability to
differentiate the four HCI packet types. Therefore, if the HCI packets are sent via a
common physical interface, a HCI packet indicator has to be added. In addition to those
four HCI packet types, two additional packet types are introduced to support dynamic
negotiation and error reporting. The Error Message Packet is used by the receiver to
report the nature of error to the transmitting side. The Negotiation Packet is used to
negotiate the communication settings and protocols. The table below shows the types of

packet and the corresponding packet header.

Table 3
HCI RS232 Packet Header \
HCI packet type HCI packet type indicator
HCI Command Packet 0x01
HC1 ACL Data Packet 0x02
HCI SCO Data Packet 0x03 |
HCI Event Packet 0x04
Error Message Packet* 0x05
Negotiation Packet* 0x06

The HC! packet indicator is followed by an 8-bit sequence number that is
incremented by one cvery time a packet is sent. The scquencernumbers are not
incremented in the case of a retransmission packet that is sent as a part of error
recovery. The retransmitted packet uses the same sequence numbdr as the original

packet. The HCI packet immediately follows the sequence number field. Al four types

i

28

of HCI packets have a length field, which ts used to determine how many bytes ure
expected for the HCI packet. The Error Message Packel and Negotiation Packet are
fixed-length packets, although the negotiation packet can be extended up to seven more
bytes (as shown in part 3.2.6), based on the number in the extension field. The frame of

the basic RS232 Transport Packel is shown below.

LSB MSh

Packet | SEQ HCT Packet
Type No or Error Message/Negotiation Packet payload
(8-bit) (8-hit) J

Figure 10 RS232 HCI Transport Packet

The least significant byte is transmitted first (unsigned Littie Endian format).

The Negotiation Paciset

During the establishment of the RS232 link, the link parameters should be
negotiated between the Host Controller and the Host. The basic negotiation procedure is
showmn in the following pages (for simplicity, error control and recovery is not shown in

the flow chart).

29

Host (Linux Computer) Side Host Controller
Initiatize TTY Inttialize TTY
(scrial port) {serial port)

| .

Listen for
e signal

l

Is input a
Negotiation
packet?

Send negotiation packet Signal

asing initial values and | =

Ack = 000b (increment
sequence no.)

YesL
The initial values are
) Read negotiation

baud rate 9600 bps

parity type no parity
number of data bits 8 “
number of stop bits 1

protocol mode 0x13

Figure 11 Host Controller Interface negotiation process

30

Listen for reply

Reply

l

nck=001b Ack=010b
Set suggested Read new
parameters in negotiation
reply packet parameters
and Ack = 001b

New
parameters
acceptable?

Yes

No

accen

Yes

Suggested
paramelers

table?

No

Set reply packet
parametcrs same as
suggested parameters,
HC Tdetect value and
set Ack = 001tb

Suggest new
parameters in reply
packet, HC
Tdeteet value and
set Ack =010b

Delay for

Tdetect
time

Set reply packet
parametcrs same as
suggested parameters,
Host Tdetect value
and set Ack =001b

Suggest new
parameters in reply
paciet, HC
Tdetect value and
set Ack = 010b

Send negotiation reply
packet (increment
sequence no.)

\

time

LC

Delay for
Tdetect

Figure 11

Host Controller Interface negotiation process (Continued)

31

<

Send negotiation reply
packet (increment
sequence no.}

Is previous
value of Ack
= 0017

Yes

v

Negotiation
successful, change
TTY settings to
suggested parameters

Reply Listen for reply

l

Ack=001b Ack=010b
Negotiation Read new
successful, change renegotiations
TTY secttings to parameters

suggested parameters

Figure 11 Host Controller Interface negotiation process (Continued)

32

LSB MSB
Packet SEQ UART Baud Rate | Tdetect Time | Protocol
Header No. Settings (16 bits) (10 bits}) Mode l

0x06 (8-bit) | and ACK (8 bit) l
(8 bits) (8 bits) - J
Figure 12 Negotiation Packet Format

The negotiation packet parameters are shown in the above figure. The following

is the description of each paramcter.

Packet Header

The negotiation packet header type indicator 1s 0x06 (as shown in table 3)

SEQ No.

The packet sequence number is incremented by one each time a packet is

transmitted, excluding the retransmission packets. The unsigned Little Endian format is

used.

UART Settings and ACK Field

Bit 0-1 Bit 2 Bit 3 Bit 4 Bit 5-7
Reserved Stop bit Parity Enable Parity Type Ack Code
(1 bit) (1 bit) | (bt (3 bits})
Figure 13 UART settings and Acknowledgement field

The foliowing tables explain the meaning of cach of the entry in the above

diagram.

33

Table 4

UART settings and Acknowledgement

Bit valtue Stop Bit Parity Enable Parity Type
0 | stop bit No parity Odd Parity
! 2 stop bits Parity Enable Even Parity

Ack Code Negotiation Acknowledgement

000b Request
001b Accepted
010b Not accepted with new suggested values

Olib-111b Reserved

Baud Rate

In this context, the baud rate actually refers to the connection speed. The integer

N should be entered in the field for the baud rate where;
The actual rate = 27,648,000 / N (where N=0 is invalid)

Therefore, the Maximum possible rate is 27.648Mbps, and the Minimum

possible rate is 421.88bps

Tdetect Time

If RTS/CTS is used for error indication and re-synchronisation, Tdetect is the
maximum time required for the transmitter to detect the CTS state change, plus the time
it takes to flush the transmit buffer. Otherwise, Tdetect represents the local-side
interrupt latency. The unit of time should be specified in 100 microseconds. (In the

software developed, Tdetect is set to 1 millisecond).

34
Protocol Mode
Bit 0 Bit ! Bit 2 Bit 3 Bit4 BBit 5 Bit6 Bit7
CRC | Delimiter RTS/ RTS/ Error Ext0 Extl Ext2
Used Used CTS CTS Recorery
used Maode
——|

Figure 14 Protocol mode crror contro! and recovery field

The first five bits of the Protocol mode ficld describes manner in which error
control should be implemented. The last three bits specify an increase in length in the
negotiation packet length, and is there for future cxpansion purposcs. The following
tables explain the meaning of cach bit. There are only two protocol modes described in
the specification. They are Ox13 (LSB 11001000 MSB), the default, which uses CRC,
Delimtters, and 0x14 (LSB 00101000 MSB), which uses only the RTS/CTS (Request/
Clear to sent) error control lines on the RS232 cable. Both modes use crror recovery.
The Host Controller may choose to support only one protocol mode. However, the Host
(that is, the Linux computer) should be able to support any combination. The detail

operation of each protocol mode is described in section 4.

35

Table 5

Protocol mode sertings

Bit value CRC Used Delimiter Used

0 CRC-CCITT is not attached at the Delimiter, Ox7E, is not used
end of the packet,

| CRC-CCITT ts attached at the Delimiter, Ox7E, is used with COBS

end of the packet. (Default) (Default)
Bit value RTS/CTS Used RTS/CTS Mode
0 RTS/CTS is not used (Default) RTS/CTS is used for Error indication
and resynchrontsation. (Default)
l RTS/CTS is used RTS/CTS is used for hardware flow
control
Bit value Error Recovery Uscd Ext2.Ext] . Ext0
0 Error Recovery is not supported These three bits indicate the number of
. extra bytes attached to the negotiation
l Error Recovery 1s supported. packet. Meant for tuture expansion

(Default)

CRC can be used with cither RTS/CTS or delimiters, as a synchronisetion
mechanism, although the specification only describes a case when it is used with
delimiters. Usage of RTS/CTS reduces the computation time for COBS c¢ncoding, but
requires two extra copper wires which may not be suitable in some applications. More

details will be covered in section four.

Error Recovery retransmits the packet with error and all subsequent packets if
RTS/CTS are used for synchronisation. On the other hand, if the delimiter 0x7E is used
with COBS as a synchronisation mechanism, then the error recovery retransmits only
the packet with error. Even if error recovery is disabled, the crror message packet

should still be sent to the transmitter side when the receiver side detects an error.

The Error Message Packet

The following figure shows the error-message packet format.

36

—
LSB MSB
Packet Type Sequence No Error Type SEQ No with
(x05 Error
(8-hit ficld) (8-bit ficld)
(8-bit ficid) (8-bit field)

=

Figure 15 Error Message Packet

The table below deseribes the type of crrors. The SEQ No with error holds the

sequence number of the packet found with error.

TFable 6

Error Types available

Error code

Type Description

0x00
0x01
0x02
0x03
0x04
0x05
0x08
0x09
0x0A
0x8]1

0x82

Resenved
Overrun Error
Parity Errer
Reserved
Framing Error
0x07 Reserved

CRC Error

Missing SEQ No

0x80 Reserved

Missing Retransmission Packet

0xFF Reserved

37

CHAPTER 4
SOFTWARE DEVELOPMENT

Programming on Linux (Problems faced)

The problems faced during the development of the Host Controller Transpont
layer software lies mainty in the student’s inexperience with the Linux programming
environment. Problems include finding the correct tools to use (the program was
developed using emacs and gee), lcaming how to read, access. and control senal ports.
Fortunately there is a vast amount of Linux programming resources available on the on
the Internet. Particularly uscful documents includes the “The Linux Serizl Programming
HOWTO” (Baumann, 1998), “Serial Programming Guide for POSIX Operating
Systems™ (Sweet 1999) and “Linux Programimer's Guide™ {Goldt. Mcer. Burkett, Welsh
1996). The following describes the operation of the Host and Host Controller emulation
software and the software development process. The program source code 15 attached in
the Appendix. The list of programs and their respective functions are listed in the

following table,

3X

Table 7

List of programs

Program B Function N

myhost Program which emulates the host.

myhe Program which cmulates the he.

Stuff-c Used to perform consistent overhead byte stuffing
Unstuff.c Used to perform consistent overhead byte unstuffing
Set_port.c Used to sctup the serial port

Nego recefve.c Used to receive, process and unpack data
Nego_sent.c Used to sent, process and pack data

Host.c Source file for myhost

Hec Source file for myhc

Cre.c Calculates and test cre

The Negotiation Routine

The negotiation procedure was carried out according to the flowchart in figure
11. The source cede is attached in the Appendix. The programs myhost.c and mvhe.c
emulates the host-side and host-controller side of the RS232 HCI transport. The
functions nego_send.c and nego_receive.c handles the sending and receiving of the data
between the Host and Host Controller calling other sub-functions to handle error control

such as CRC, and delimiters for Protocol Mode 0Ox13.

Both sides are initially sct to 9600 bps baud rate using the function ses_port and
C function teseratrr. The program starts when the host-side emulator, myhost, sends a
negotiation packet using nego_send.c to the host-controller-side with the Acknowledge
code (bits 21, 22, 23) set to 000b. The contents of this packet are the proposed
parameters for the link, including the preferred baud rate, crror control schemes (UART
field) and the link latency (Tdetect field). If protocol mode 0x13 is used. a CRC

sequence is attached to the end of the data and the data passes through the StuffData

39

function to remove any occurrence of the value 0x7E. 0x7E is then appended to the
front and end of the packet to act as delimiters. On the receiver side, the nego receive.c
function polls the serial port until it receives the delimiter Ox7E {for Protocol Mode
0x13) which indicates a received packet, The nego receive calls the UnStffData
function to restore the data to its proper format. It then does a check using the cre
functions and sends an Error packet with error type 0x08 back to the sender tf the CRC
fatls. For a packet without crror, the nego receive will read the suggested tink
parameters proposed by the Host, If it can accept the parameters, it sends a negotiation
packet using nego _senr back to the host, with the host-controller’s maximum latency
(Tdetect) and the Acknowledgement code set to 001b. If it cannot accept the
parameters, the Acknowledgement code is sct to 010b instcad and the Host-controller

sent its required link parameter to the host using nego_scnt.

Back at the Host end, nego_receive is started to read the serial port for a reply
from the Host-Controller. On receiving a packet from the Host-Controller indicated by
the Ox7E delimiter, the program UnStuffDara the packet and checks the CRC for errors,
sending an error packet back to the Host-Controller is an error is detected. If the
received Acknowledgement code is 001b (that ts, the Host's suggested parameters are
accepted), the Host sends another negotiation packet stmilar to its first one but with the

Acknowledgement code set to 001b.

If the Host-Controller had asked for re-negotiation (by setting the Ack code to
010b), the Host processes the new paramecters. If the Host accepts the re-negotiated
parameters, the Host sends another negotiation packet similar to its first onc but with the
Acknowledgement code set to 001b to the Host-Controller. If the Host cannot accept the
renegotiated parameters, the Hosts sends another re-negotiation packet with new
parameters to the Host-Controller with the Acknowledgement code is set to 010b using
nego_sent. The re-negotiation process 15 repeated until both sides are satisfied with the

link settings or one side runs out of negotiation parameters,

After both sides are satisfied with the link parameters, they reset the serial ports

to the negotiated scttings using the function set_port.

Although the program does not show it, the negotiation process can be initiated

again to re-ncgotiate new values or to update the Tdetect time. When the negotiation is

40

initiated again, the link should use the present link settings instead of the inttial default

settings.
Protocol Mode 0x 13 Operation
LSB MSB
Ox7E | Packet SEQ Payload. ... CRC Ox7E
BOF Type No EOF
{16 bits)
(8 bits) | (8 bits) | (8 bits) (X bits)

Figure 16 Protocol Mode 0x13 Packet Format

The above figure shows the format of a frame using Protocol Mode 0x13. This
mode requires the use only three wircs on the RS232 port (TxD, RxD and signal
ground). It also frees the CTS/RTS so that they can be used for hardware flow control.
This protocol mode uses cyclic redundancy checks and delimiter 0Ox7E 1o indicate the
beginning and end of a frame. To prevent data bytes “0x7E™ from being mistaken as the
framing delimiter, as byte stuffing technigue known as COBS is used to remove 0x7E
from thc data. The following describes the implementation of the error control

procedures.

Cyclic Redundancy Check (CRC) Implementation

The CRC used is the 16-bit CCITT format with the Generator Polynomial = x'°
+x'2 4x> +1. The CRC generation involves long division of the data (appended with 16
zeros) with the Generator polynomial (Halsall, 1996 p.134-137). The CRC code is the
remainder from the division. At the receiver side, the data is passed through the long
division process again. If the process yields 0x00 as the remainder. the code is deemed

error free. The code segment for implementing CRC ¢rc.c is attached in the Appendix.

Consistent Overhead Byte Stuffing (COBS)

COBS (Consistent Overhead Byte Stuffing) is a byte stuffing technique that is
similar to HDLC-like framing. Compared with other older Byte Stuffing techniques,
COBS yields significantly less overhead (>0.5%) regardless of the data pattemn

41

(Cheshire, Baker, April 1999). It uses two steps to escape the delimiter, 0x7E. The first
step is climinating zeros and then replacing all 0x7E with 0x00 between the beginning
and ending delimiters. The COBS code (Carlson, J., Cheshire, S. and Baker, M. Nov
1997) is attached in the Appendix.

Error Recovery

When the receiving end detects any error, it sends the crror mefsagc packet with
an eror type back to the transmitting side. This error message packet contains a
Sequence Number with Error ficld (SEQ No with Error) indicating in which packet the
error was detected, The Sequence Number field that is on every packclt is an 8-bit ficld
that is incremented by one each time any type of packet is transmitted, except for the
retransmission packets. The retransmitted packets should contain the original sequence

number in the SEQ Number field.

The transmitting side should retransmit only the HCI packets that had an error,
This is indicated by the SEQ No with Error field. It is the responsibility of the receiving
end to reorder the packets in the right order. If the transmitting side does not have the
packet with the correct sequence number in the retransmission holding buffer, it sends
the error message packet with the missing sequence number for the retransmission
packet, so that the receiving end can detect missing pachets. This crror message packet
has Error Type equal to 0x81 and SEQ Number with the Error field. The missing packet

is indicated at the receiver side and will be handled by the higher layers.

Protocol Mode 0x14 Operation

Although protocol mode 0x13 has been defined as the default protocol, some
Bluetooth hardware actually uses mode 0x14 as thc only mode of operation. This mode
requires less processing by both the Host and CPU core in the Host Controller as the

COBS code need not be calculated,

This mode does not use hardware flow control, which is protocol mode (LSB
00X1X000 MSB) and is used by the HCI UART interface. Hence, ‘hardware flow
control must be first disabled (that is, ...c_cflags &= ~CRTSCTYS).

42

The RTS/CTS lines are connected in NULL modem fashion (that is, the RTS of
the Host to the CTS of the Host Controller and vice-versa). Packets can only be sent tf
the transmitter's CTS line is asserted (10V). Hence, the receiver controls the

transmission by asserting and de-asserting the RTS line,

Untortunately, at the time of writing, this mode of operation s net operating as

anticipated. The source code is attached in the Appendix.

Error Recovery

When using protocol mode 0x14, the HCI packet is sent only when the
transmitter’s CTS bit is 1. If the CTS bit changes to 0 during the HCI packet transter or
after the last byte is transmitted, this indicates that there was some error on the receiver
side. The receiving end will deassert RTS as soon as it detects any error, and send an
error packet with an error type back to the transmission side. This error packet contains
a Sequence Number with Error field that indicates the packet in which error was

detected,

When the transmitting end detects CTS bit changing from 1 to 0 at any time, the
transmitting end should hold the transmission and wait unti} the error packet is received
before resuming the transmission. When the receiving end 1s ready to receive the new
data, it should assert RTS after the minimum Tdetect time. Here, Tdetect time is the
maximum time required for the transmitter side to detect the state change on CTS bit,
plus the time it takes to flush the transmit buftfer. The Tdetect value of each side should
be informed to the other side during the negotiation phase. The local Tdetect value and
the remote side Tdetect value together, along with the baud rate, can also be used to
estimate the queue length required for the retransmission holding buffer. For an
assumed baud rate of 115200 (the maximum for many older computers), the holding
buffer size = 115200 x (total Tdetect) bits. Before the receiving side asserts RTS line
again, it should flush the RX buffer.

The transmission side should retransmit all of the HCI packets from the packet
that had an error, which is indicated by SEQ No with Error field. Betore it retransmits,
it should flush the transmit buffer that may hold the leftover data from the aborted
previous packet. As it retransmits the packets from the transmission holding bufter, it

should start transmitting the packet with the Sequence Number that matches the SEQ

No with Eror. If the transmitting side does not have the packet with the correct
sequence numiber in the retransmission holding buffer, the transmitter should send an
error message packet with error type Ox81. and 1t should skip to the packet with the
sequence number that s available in the butter. The missing packets are indicated at the

receiver side and will be handled by the higher layers.

44

CHAPTER 5
CONCLUSION

Project Achievements and Contributions

This project has atlowed me to familiarise with the various wireless networking
protocols and the concept of a personal arca network (PAN). Bluctooth strength lies in
the low power operation and low cost. Lately, it has rapidly gain momentum as the de-
facto standard for the ad-hoc personal area network. This 1s a surprising achievement for

a standard that was initially concetved to replace cables.

As there were no existing books or guides for Bluetooth at that time the project
initially started, we had to read the core specifications and profile specifications. In the
process, we gained a rather in depth understanding of the Bluetooth protocol as a whole.
However, the short time and limitation in manpower does not allow for a more

extensive exploration and implementation of the Bluetooth protocol.

Finally, I gain the hands-on knowledge of programming on the Linux platform
which was something that [had always wanted to learn but never got around to do.
Programming tools learned and used during the course of the project was mainly the
GNU C compiler, debugger and emacs editor. The project has initially set out to
develop a GUI for the Bluetooth protocol and in the process, thus [have also learned
some techniques for GUI development on Linux using the Gimp toolkit (GTK+) and
Glade.

Comments and Recommendations for Future Development

Due to the limitation in time, the software still has areas of functionality not in

place. These include:

1. Implementing Error Control using CTS/RTS lines (Protocol Mode 0x14). This is

not functioning properly as at the time of writing this report.

2. The software need to be tested for Real Time performance when used for

synchronous connection, (SCO i.e. voice) data.

!x.)

45

The code still nceds some debugging (in case of memory overruns).

Allow full duplex communications between the host and the host controller

emulators. Presently, they are set up in hali-duplex mode.
Other areas for improvement include.
Adding auto detection of baud rate for the RS232 link.

Allow using another protocol mode other than 0x13 in case the receiver operates

only on mode 0x14.
Implementation of HCI commands for controlling of Bluetooth Hardware.

Implementation of HCI Events handling for acting as a Bluetooth Host

Controller Emulator.
The last two improvements allows 2 the possible uses for the software:

A completed Bluetooth stack can be developed bottom up from the riyhost Host
transport emulation program. Higher layers such as L2CAP, RFCOMM, SDP
and the user application can directly access the Bluetooth network through the

Host transport without detail knowledge of the actual physical connections.

The software can act as a Bluctooth protocol analyser and tester for an
embedded Bluetooth chip as illustrated in figure 17 next page. A copy of the
Host or Host emulation program, is stored on the testing computer, and
communicates with the Bluetooth chip under test. Using this technique, it is
more convenient to perform testing and debugging of the upper layers (L2CAP,
RFCOMM, SDP and the application) than debugging via RF through the
baseband. The lower layers {espccially Baseband and Radio) can also be tested

and analysed for performance using this software method.

46

T\

Applications

HCI

D\

PC running HCI
analyzer software

LMP

Radio

Blue Device on

chip

Figure 17 Possible uses for this Software

47

REFERENCES
The Official Bluetooth web site, [on-line]. Available WWW http://www Bluctooth.com

RS232 HCI Transport layer: An addendum to the HCI document. [on-line]. Available
WWW: www bluctooth.com/link/spece/bluctooth h3.pdf

Cheshire, S and Baker, M (April 1999) *Consistent Overhead Byte Stuffing”,
IEEE/ACM Transactions On Networking, Vol. 7, No. 2, April 1999

Carlson, J., Cheshire, S. and Baker, M. (Nov 1997). PPP Consistent Overhead Byte
Stutfing (COBS), [on-line]. Available WWW;
www.globecom.net/ictf/draft/drafi-ietf-pppext-cobs-00.html

Goldt, S., Meer, S., Burkett, S., Welsh, M. (March 1996). Linux Programmer's Guide.
[on-line]. Available WWW: http://www.ibiblio.org/pub/Linux/docs/linux-doc-
project/programmers- guide/

Canosa, J (Nov 2000, Network Protocols for the Home. {on-line]. Available WWW:
http://www.embedded.com/internet/001 1/001 lia2.htm

Baumann, P. H., (Jan 1998). The Linux Sernial Programming HOWTO. [on-line].
Available WWW: http://www.linuxdoc.org/HOWTO/Serial-Programming-
HOWTO.html

Hallsall, F. (1996). Data Communications, Computer Networks and Open Systems.
Harlow, Essex: Addison Wesley Longman Limited

Specification of the Bluetooth System-Core v1.0B. (2000) [on-line}. Available WWW:
http://www .bluetooth.com/developer/specification/core 16 b.pdf

Specification of the Bluetooth System-Profiles v1.0B. (2000). [on-line]. Available
WWW: hitp://www.bluetooth.com/developer/specification/profile_10_b.pdf

Palowireless Bluetooth Resource Centre. [on-line]. Available WWW:
http://www.palowireless.com/bluetooth/

Muller N.J. {Sept 2000). Bluetooth Demystified. McGraw-Hill Telecom

Sweet, M.,(1999). Serial Programming Guide for POSIX Operating Systems. [on-line].
Available WWW: http://www.easysw.com/~mike/serial/serial.html

Wall, K., Watson, M., Whitis, M, (1999). Linux Programming Unleashed. Indianapolis;
Sams

IBM BlueDrekar. [on-line]. Available WWW:
http://www.alphaworks.ibm.com/tech/bluedrckar

The Bluetooth on Linux homepage. Available WWW:
http://developer.axis.com/software/bluetooth/

APPENDIX

/*ii host .o %/
#include "project.h"

/* Define Negotiation mode paramenters *+/

gdefine TTYUSED "/dev/ttysSl"
#define BUFLIMIT 255 /+ 2°B +/

/i*il&ttitiitiitti*tt&iiiniinittiititl*i‘i*lt*tiii*iitiiill*iliiiti/

Jrrradd Tnitjial values for negotiation AR SRS R RS R AR RN EES RSN
/*ﬁiiiiiﬁtttttiiitttiltlliiiiil&tii*tit**ti*itiiitliiltif**iitl/
#idefine SUGGESTBAUD 115200

#define DEFAULT_UART 0x00

#define DEFAULT_TDETECT 10

/i***it*ii*ilt*ii*ttttilt‘itl&tlii*i*tt*iiiliiltit***tit*l*ili*ti/

/*itiii* Start of Host Emulation Program Abkhhkd Ak b h ko d ke kb b
/t**t****itiiii**ii*lti***i*iiii*iii*lttti*liiiil**ﬁiiti*iiiitt/

maini)
int £d, res, suggest_baud, suggest_tdetect, end neg = 0, newbaud;
struct termios oldtio, newtio;

unsigned char stop hit, parity, parity_type, ack_code,
use_crc, use delimit, use_rts cts, rts_cts_type,
use_error_recovery;

/* Initialise port */

fd = open(TTYUSED, O RDWR | O_NOCTTY); /* optional | O NDELAY */
if (fd <0) {perror(TTYUSED); exit(-1); }

tegetattr (fd, &oldtio}; /* save current port settings */

newtio = set port {DEFAULTBAUD); /* more settings to be added later
*/

teflush(fd, TCIFLUSH);
tcsetattr {fd,TCSANQW, &newkio) ;
/**% initialise transmission buffer r+*+/

negotiation_send(fd, DEFAULT_UART, SUGGESTBAUD, DEFAULT TDETECT,
PROTOCOL_MODE(O:O:IfOfoOJf NEG_PKT_HDR, 0, 0];

while (end_neg==0)
end_neg = negotiation_receive(fd, HOST); /* start listening */
/**********i*ii*************i*********t*******i****i*********i*/

Jrewdhkxk Start of actual link *#*wkrxddakakbahbahrr bbb b bhrdrrt /
/************i******i*************i*******t*i*******itt*****ii*/
newbaud = end neg;
printf ("new baud %d", newbaud};
newtio = set port(newbaud); /* set baud rate to new settings */
teflush{fd, TCIFLUSH) ;
tesetattr (fd, TCSANOW, &newt io) ;

/* Clean up, reset port and close fd */
tosetattr(fd, TCSANOW, &oldtio) ;
close(fd);

}

48

49

/**n* File hC,C *tititiii*tittﬁlt*iil*i/

ffinclude "project.h"
#define TTYUSED "/dev/ttyso"

/* Define Negotiation mede paramenters */

/**i*iilii*ﬁ*iit*il’inti**il‘iiiiﬁﬁitl—i*iiiitii*ti*iliitliitiiilt*/

Jresrixd grary of Host Controller Emulation Program é*sssssdsnsssris/
/*****il‘itiil—i*iiiii&iliitlillitilil-li***li*ﬂii*iliitﬁt*iiiii*itil’i&/

main(}
int f£d, end _neg=0, newbaud;
struct termios oldtio, newtio;

fd = open{TTYUSED, O RDWR | O _NOCTTY}; /* | O_NDELAY dont wait for
host*/

if (fd <0) {perror{TTYUSED); exit{-1); }

tcgetattr{fd, &oldtio}; /* save current port settings */

newtio = set_ port (DEFAULTBAUD); /* more settings to be added later
*/

tcflush{fd, TCIFLUSH);
tcsetattr (£d, TCSANOW, &newtio) ;
while(end_neg == 0){
end_neg = negotiation_receive(fd, HC}); /* start listening */
}

/ii***t**i*i****ti****iii*i**l—**it**t***i**i**ﬁt*i***tl’**ﬁtiii*/

Jrrrkrunn Start of actual link **rtkhkhrdekunbhdakkbahr ok rduhdd /
/***l‘*tii—**i‘***i**i***it*tt*ii**it*i**‘l******i*tii**i—i*****i*it/
newbaud = end neg;

printf{"new baud %d", newbaud);

newtio = set_port(newbaud}; /* set baud rate to new settings */
teflush(fd, TCIFLUSH) ;

tesetatbr (£d, TCSANOW, &newt 10) ;

/* Clean up, reset port and clecse fd */
tcsetattr (£d4, TCSANOW, &oldtio) ;

close(fd};

50

/*ii* Flle set—‘port.c tﬁ**tit*iittiittiiiﬁiii/

#include "project.h"

struct termios set port {int baud)

{

struct termios newtio;

/i
t/
/i

L]

We will try with protocol mode 0x14 first i.e. no CRC, delimiters

DEFAULTBAUD: Set bps rate to 9600
~CRTSCTS : disable output hardware flow control

Cs8 : Bnl {8bit,no parity, 1 stop bit)
CLOCAL : local connection, no modem contol
CREAD : enable receiving characters */

bzero{&newtioc, sizeof (newtiol);
newtio.c cflag &= ~CRTSCTS;

newtio.c cflag
newtic.c_iflag

it

baud | €S8 | CLOCAL | CREAD;
IGNPAR;

newtio.c _oflag = 0;

/*

set input mode (non-cancnical, no echo} */

newtio.c_1lflag = 0;

newtio.c cc[VTIME]

0; /* inter-character timer unused */

newtio.c_cc [VMIN] = 1; /* blocking read until 8 chars received

*/

return newtio;

}

51

/**** File crYe.o itiit*tiiii*tii**itiiil/

#include "common. h®

/**i*t**i’*iii*tt*i*titi*i**iii*ﬁl‘ttii—i**l-tttittitittti*titﬁttittt/

/**¥+*Calculates the 16-bit CCITT checksum with polynomial ##seésinsf

JEvwr " 164+x"124x"5+1 (i.e. 0x1021) for the indicated buffer #*+#ssse/
/**i*****i*ii*******i***tti*il*i*i****ilii*tﬁﬁt*ﬁlltill*liiiiﬁﬁiii/

#define CCITT_CRC_GEN 0x1021

unsigned short crec{unsigned char *buf, int length)
{
register unsigned short CRC = 0;
unsigned short databyte;
unsigned char 1i;
while (length--} {
databyte = *buf++ << 8;
for (i=8; i-0; i--) {
if {{databyte * CRC) & 0x8000)

CRC = (CRC << 1) © CCITT_CRC_GEN;
else
CRC <<= 1;

databyte <<= 1;

}
}

return {(CRC);

/*iii File stuff.c tiitttlttiitititiititti/

#include "cobs.h”

* StuffbData stuffs "length" bytes of data from the huffer "ptrr"”,
* writing the output to "dst", and returning as the result the
* address of the next free bhyte in the cutput buffer.

* The size of the output buffer must he laryge enough to accommedate

* the encoded data, which in the worst cagne may expand by almost
* 0.5%. The exact amount of safety margin required can be

* calculated using ({length+1) /206, rounded *up* to the next whole
* number of bytes. E.g. for a 1K packet, the output buffer needs tc
+ be 1K + 5 bytes to be certain of accommodating worst-case packets.

unsigned char *StuffData({const unsigned char *ptr, unsigned int
length, unsigned char *dst, unsigned char **code ptr_ptr)

{

ptr + length;
*code_ptr ptr;
DiffzZero;

const unsigned char *end
unsigned char *code_ptr
unsigned char code

n

/* Recover state from last call, if applicable */
if (code_ptr} code = Rx{*code_ptr};
else code_ptr = dst++;

while {ptr < end)

{

unsigned char ¢ = #*ptr++; /* Read the next character #*/

if (c == 0) /* If it's a zero, do one of these operations */
if {isRunZerci(code} && code < RunZeroMax! code++;
else if {(code == Diff2Zero) code = RunZero;

else if (code <= MaxConvertible) code += Convert2P;
else FinishBlocki{cede);

}

else /* else, non-zers; do one of these operations */

{

if (isDiff2Zero{code)) FinishBlock(code - ConvertZP);

else if (code == RunZeio) FinishBlock (Diff2Zero) ;
else if {isRunZero{code}) FinishBlock (code-1};
*dst++ = Tx{c);

if {++code == Diff) FinishBlock{code) ;

}
}
*code_ptr ptr = code_ptr;
FinishBlock{code) ;
return{dst-1);

}

53

Jread File unstuff.c ttitttiiitiitﬁiitlitttl/

#include "cobs.h"

* UnStuffData decodes "srclength" bytes of data fiom the buffer

* vptr®, writing che output to "dst". If the decoded data does not
¢ fic within "dstlength" bytes or any other error occurs, then

* UnStuffData returns NULL.

unsigned char *UnScuffbata (const unsigned char *ptr,
unsigned int srclength, unsigned char *dst, unsigned int dstlength]
{
const unsigned char *‘end ptr + srclength;
const unsigned char +*limit = dst + dstlength;
while (ptr < end)

{

int z, € = Rx{*ptr++};

if {c == Error || ¢ == Resume || c == Reserved) return{NULL};
else if (c == Diff) { z = 0; c--; }
else if (isRunzZerolic)) { z = ¢ & OxF; ¢ = 0; }
else if (isDiff2Zeroc(c)) { z = 2; c &= 0x1F; }
else { z = 1; c--; }

while (--¢ »= 0 &é& dst <« limit) *dst++ Rx(*ptr++);
while (--z »>= 0 && dst < limit) #*dst++ = 0;
}

if (dst < limit) return{dst-1j};

else return(NULL) ;

}

54

/ititiii nego receive.c hhdhhkbhadbhndaf

#include "project.h"

/tl‘**ili*itittlnlli!iil&iti*iiii*ttlliliililiitl‘ili*l’iiliii/

Jre*%uad Dara Reception Handling Alogorithm ¢sssrssnbabpsssf
/*tii-iiiittdtiiitiiiitiiitilliiliililtﬂtii***Qi!ll‘ltiiltii/

int negotiation receive(int fd, unsigned char role)
{

int res, suygest tdetect, suggest baud, length;

static unsiqgned char vrec ceq no = 1;

unsigned char suggest uvart, ostop bit, parity, parity type, ack_code,
use_crc, uge delimit, use rts cts, rtg cts type, USe_error recovery,
ext_byte, suggest protocol, ack=2, error type, seq with error;

unsigned char head, readdata, 1, buf{MAR¥XLENGTH], cobs{MAXLENGTH],
*ptr;

STOP = FRLSE;
while (STOP==FALSE} { /* loop for input */
read{fd, &head, 1};

if (head==0x7e) {
readdata = 1;
1=0;
while(readdata ==1} {
read{fd, &head, 1) ;
if(head != 0x7e) {
cobs([i]l =head;
i++;}
else |

readdata=0;

}

}

leagth = i

/****itt* Prints out received data *i***tt*iii**tii/
printf ("Received data ") ;

for{i=0;i<length;i++) printf("%x,", buf(il]};
print£{"\n");

UnStuffData{&cobs (0], length, &buf[0], 10);
printf {"Decoded data ");

for{i=0;i<10;i++) printf{"%x,", buf[i]);
printf{"\n"};

if (buf[0]==NEG_PKT HDR) {

STOP=TRUE;
/*** Handles Negotiation packet *#¥/
if(buf[1] != rec_seq no) {

printf{("Error! packet out of sequence\n");

/* code to call error */

negotiation send(fd, 0, 0, ©, 0, ERR PKT_HDR, MISS SEQ ERROR,
rec_seq no) ;

}

if (crc(buf, BUFSIZE)) {

printf ("Error! CRC error\n"};

/* code to call error */

negotiation_send(fd, o, 0, 0, 0, ERR_PKT_ HDR, CRC_ERROR,
rec_seq noj;

}

else {

55

rec_seq no++;

/*+* read in values #*#%/
use crc = (buf (7] & 0x01) ? TRUE : FALSE;
use delimit = {(buf[7] & 0x02) ? TRUE : FALSE;

use rts cts = (buf([7] & 0x04) ? TRUE : FALSE;

rts cts type = {(buf(7] & 0x08} ? TRUE : FALSE;

use error recovery = {(bufl[7) & 0x10) ? TRUE : FALSE;
stop bit = (buf(2] & 0xG4} ? 2 : 1;
parity = {buf (2] & 0x08} ? TRUE : FALSE;
parity type = (buf[2] & 0x10) ? EVEN : ODD;

ack code = ((buf(2] & O0xEQ) »> 5);

ext_byte = (buf[7] & CxE0Q} =»> §;

if {(ext byte) {

printf {vextended bytes %d \n", ext byte);)}
/**+ futher code added in the future ***/
/**+ for extended negotiaticn parameters **x/

/**+ assuming all parameters are acceptable *#*/
printf (*ack_code %x\n", ack_code);

if {ack _code == 0) ({
if {role==HC) {
ack = 1;}

/* accept */
else printf("error HC cannot request!\n");
}
else if{ack_code == 1) ({
if (role==HC) return suggest_baud;
else ack = 1; /* accept */

}

else if{ack code == 2} {
/* recheck code for compatability +*/
ack = 1;

}

/* accept */
else {printf{"Reserved ack code\n"); exit(-1};}

suggest_uart = SET UART(0, stop bit-1, parity, parity_type,
ack) ;
suggest_baud = 27648000/ (buf [3]+(buf [4] <<8));
suggest tdetect = buf [5]+{buf[6] <<B)};
suggest_protocol = PROTOCOL_MODE (use crc, use_delimit,
use_rts_cts, rts_cts_type, use_error _recovery, ext_byte);

sleep(suggest tdetect/1000); /* wait after Tdetect time */

negotiation_send(rd, suggest_uart, suggest_baud,
suggest_tdetect, suggest_protoccl, NEG_PKT_HDR, 0, 0);

/* checks can be included here to simulate rejected connection */

}

[/ else printf ("Not HCI negotiation packet\n");

if {buf [0]==ERR_PKT HDR} {
/*** Handles Error Packet #*%/

50

iffbuf (1] != rec_seq no) {

printf{("Errcr! packet out of sequence\n");

negotiation send{fd, ©, 0, 0, 0, ERR_PKT HDR, MISS_SEQ ERROR,
rec_seq nhoj;

}

else |
error type = buf[2];
ifterror_type == MISS_RTX PKT_ERROR) {

/*** Missing retransmission packet **#/
/*** Do nothing, let higher layer settle *##/
printf{"Retransmission packet not available.\n");

}

else
seq with error = buf{3];
negotiation_ send(fd, 0, o, 0, 0, RETRANSMIT, o,
seq_with error);
rec_seq no++;

}
}
if (buf [0]==CMD_PKT HDR} {
STOP=TRUE:
/*** Handles Command Packet *#*¥%/
J¥** implemented in the future **#*/
}
if (buf[0)==ACL PKT HDR) {
STOP=TRUE;
/*** Handles ACL Data Packet ##**/
J*¥** implemented in the fubure ***/

if (buf([0]==5SCO_PKT_HDR} {
STOP=TRUE;
/*** Handles SCO Data Packet ***/
/*** implemented in the future *+x/
}
if {buf[0]==EVN_PKT HDR} {
STOP=TRUE;
/*+%* Handles Events Packetbt *#+*/
/*** implemented in the future **+/

}
}
}
STOP = FALSE; /* reset stop */
/* the following was usged for debugging */
/* printf{"Buffer has \n %x \n %x \n %x \n %x \n %x \n %x \n %x
\n ¥x \n", buf[0], bufll], bufl2], buf[3), bufl4], buf[s5], bufl(s],
buf(71); */

if{(ack==1) && (rcle == HOST}) return suggest_ baud;
else return 0;

}

57

/****t* nego sant.o **t**i*/
#include "project.h"

void negotiation_send{int fd, unsigned c¢har sguggest uart, int
suggest bhaud, int suggest tdetect, unsigned char suggest protocel,
unsigned char pkt_type, unsigned char err type, unsigned char

seq_with_error)
{

static unsigned char sequence no = 0; /* limit of 278=255 packets in
huffer*/

unsigned char i, neg byte[BUFSIZE], c¢obs[MAXLENGTH), *stuff=NULL,
Yop;

int fes, length;

unsigned char tx_buf (256] ;

if (pkt_ type==NEG PKT_HDR) {
/*** Pack and sent Negotiation Packet #*#*#*/
neg_byte (0] = NEG_PKT HDR;
sequence _No++;
neg_byte([l] = sequence no;

neg bytel[2] = suggest uart; /*resv,stop,parity,type, Ack*/
neg_bytel[3] = (BAUD_TO_N({suggest baud) & 0xff);
neg_byte[4] = ((BAUD_TO_N{suggest_baud) =>»> 8) & Oxff);
neg_byte[5] = =uggest tdetect; /* Tdetect value LSB */
neg _byte[6] = (suggest_ tdetect »> 8); /* Tdetect value MSB */
neg_byte[7] = suggest_protocol; /*CRC, delimiter ... ext */
length = 8;

}

1f (pkt _type == ERR_PFT HDR) {

neg_byte[0] = ERR_PKT HDR;
sequence no++;
neg byte([l] = seguence_no;

neg bytel2] = err_type;
neg_bytel[3] = seq with_error;
length = 4;

}
if {pkt_type==RETRANSMIT) {
seq buf = &tx_buf(0];
seq_buf += ({seg_with error - 1)*8);
neg_byte([0] = *seqg buf;
seq_buf++;
switch (neg_bytel[0]) {
case ERR_PKT HDR:

length = 4;
break;

case NEG_PKT_HDR:
length = 8;
break;

default:

printf ("HCI higher layer packet, read the packet length\n");
/*** for future development **#/
break;

}

for({i=1; i<length; i++} {
neg byte[i] = *seq buf;
seqg_buf++;

}

/*** Calculate and append CRC *w*/

fcs = crocineg_byte, length);
neg byte(length]=((fcs >> 8) & O0xff);
length++;
neg_byte{length)=(fcs & Oxff);
length++;
if (pkt_type {= RETRANSMIT) {

/*%* gtore in Tx buffer +*-/
seq_buf = &tx_buf[0];
seq buf += (({sequence_no - 1)*8);

for{i=1; i<length; i++) {
*seq_buf = neg_byteli];
seq_buf++;
}
}

/*** BOF delimiter **+/

cobs (0] =0x7e;

/*** COBS coding ***/

op = Stuffiliata(neg byte, length, &cobs{l],
J¥*% EOF delimiter **+/

*op = 0x7e;

length = ++op - &cobs{0];

printf ("sent data:"};

for(i=0; i != 10; i++) {
printf (", $x",neg_bytelil);

printf ("\n");

printf ("coded data:");

for(i=0; i 1= length; i++) {
print£{",%x",cocbs[i]);

printf("\n"};

write(fd, cobs, length);

&stuff);

58

59

frwtwwir Hegder file for stuff.c and unstuff.c *usrerwrsss/
#include "common.h"

/kit*****i*ti—**tt*********\k**i****l‘*ﬁ******l't**t**k**i***i**ii***t**/

/*%* Consistent Qverhead Byte Stuffing and Unstuffing Algorithm #*#*+/
/***% Carlson J, et al 1997 i*i***it***i***t*t/
Jrrd ek k ko hhkhh bk kb ke Rk hhdhh ke hk kA Wk kkh ko ko hh ke h ok ko f

//typedef unsigned char u_char; /* 8 bit quantity */
typedef enum

{

Unused = 0x00, /* Unused (framing character placeholder)

*

/ DiffZero = 0x01, /* Range 0x01 - O0xCE;:

*

/ DiffZercMax = OxCF, /* n-1 explicit characters plus a zero

*

/ Diff = 0xDO, /* 207 explicit characters, no added zero
*

/ Resume = 0xD1, /* Unused (regume preempted packet)

*

/ Reserved = 0xb2, /* Unused (reserved for future use)
*

/ Runzero = 0xD3, /* Range 0xD3 - 0xDF:

*

/ RunZeroMax = 0xDF, /* 3-15 zeroes

+*

/ Diff2Zero = 0xEQ, /* Range OxE0 - OxFE:
*

/ Diff2ZeroMax = OxFE, /* 0-30 explicit characters plus 2 zeroes
*

/ Erreor = OxFF /* Unused (PPP LCP renegotiation)
*/

} stuffingCode;

/* These macros examine just the top 3/4 bits of the code byte */
#define 1isDiff2Zero(X) {{(X) & O0xE0) == (Diff2Zero & OxEO0})
#define isRunZero(X) ({((X} & 0xF0) == (RunZero & OxFO}))

/* Convert from single-zero code to corresponding double-zero code
*/
#define ConvertZP (Diff2Zero - DiffZero)

/* Highest single-zerc code with a corresponding double-zero code
*/
#define MaxConvertible (1 ? Diff2ZeroMax - ConvertzZP : 0}

/* Convert to/from 0x7E-free data for sending over PPP link */

static unsigned char Tx(unsigned char x) { returni(x == Ox7E ? 0 : X);
static unsigned char Rx(unsigned char x)} { return(x == 0 ? O0x7E : x};

)

fidefine FinishBlock(X) (*code ptr = Tx({X), code_ptr = dst++, code =
DiffZero)

o0

/ti*kt common.h #***kes/ _
J¥*¥*x% common librarieg #**x%sxwx/
#include <termios.h>

ginclude <stdio.hs>

#include <unistd.h>

#include <feontl.h»

#include <sys/signal.hs>

/**t**i project.h ***ii*tt*t/
/**i***ti****i**ti*t***t****i***tit***ii*ﬁ****i**lti****ttki*k****it/

Jrrwwrsr Hoader files for Communication Emulation kx#isxxskkkwkswsss/f
/****i’****i***i****l‘*****i’**l-i'*i****iﬁ***ﬁ*********i******t****ﬁ*ii*/

#include "common.h"
#include <sys/ioctl.hs
fidefine POSIX SCURCE 1 /* POSIX compliant source */

#define FALSE 0
fidefine TRUE 1
#define ODD 0
#define EVEN 1
#define HOST 0
#define HC 1

/*******************************i****t****************t*i*******t***/
J/x**e*kx* Packet types: Ak kkhkhkhohhkkkhdkhhdhkhkhdkrhh bbbk bk kb hkhhkhdk /
/**t***it*********i**t*iit/
#define RETRANSMIT 0xQ0 /*+** not part of the specs **%/

#define CMD PKT HDR 0xC1

f#define ACL PKT HDR 0x02

#define $CO_PKT_HDR 0x03

#define EVN PKT_HDR 0x04

#define ERR_PKT HDR 0x05

#define NEG_PKT_HDR 0x06

/**********************\Ir************************i—i—*****i***i***it***/

Jredddwak initial negotliation sSettings *kkwtkkawdkdrdrkhkarbhbdahbbdhrd/
/****************************i**i********i*********i*i*ii***t*****t*/’
#define DEFAULTEBAUD B9600
#define BAUD_TO N(x) (27648000/ (x))
#define PROTOCOL_MODE(a,b,c,d,e,f) ({{{f)&7)<<5) + ((({e)}&l}<<q} +
(((d)&l)<<3) \

+ ({{c)&l)<<2} + (((b)&al)e<l) +
((a)&l))
#define SET UART({a,b,c,d,e) ({{(e)&7)<<5) + ({(A)&1)<<4) +
({{c)&l)<<3) \

+ ({{b)al)<<2) + (la)&3})

#idefine BUFSIZE 10
#define MAXLENGTH 16 /* max length of negotiation in bytesg */

FE R R T R L
JrERRRA® Brror LYPES *hkrkhkkkdkd ki kbbb khhdkhhkhkhhnk ko k kot nk hdkhkhd /
Jrohhkr bk Rk ok ke xkhkkdkhh ko dhhkk ko kk ko ko kN Lk ko ko rhkhkkkhhkkdk ke /

#define OVER_RUN_ERRCR 0x039
#define PARITY ERROR 0x09
#define FRAME_ERROR 0x09
#define CRC_ERROR 0x09

#define MISS SEQ ERROR 0x09
#define MISS_RTX_ PKT ERROR 0x09

01

volatile int STOP;
unsigned char *seg_buf; /* tx buffer for error recovery */

struct termios set_port {(int baud);

void negotiation_send({int fd, unsigned c¢har suggest_uart, int
suggest_baud, int suggest_ tdetect, wunsigned char suggest_protocel,
unsigned char pkt_type, unsigned char err_type, unsigned char

seq_with_error};
int negotiation_receive{int fd, unsigned char role);
unsigned short cre(unsigned c¢har *buf, int lenj);

unsigned char *StuffData(const unsigned char *ptr, unsigned int
length, wunsigned char *dst, unsigned char **code ptr_ptr);

unsigned char #+UnStuffData{const unsigned char *ptr, unsigned int
srclength, unsigned char *dst, unsigned int dstlength);

	Bluetooth software on Linux, wireless hand-held devices
	Recommended Citation

