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Abstract

The study investigates the process of optimisation, implementation and comparison of

a Shunting Inhibitory Cellular Neural Netwerk (SICNN) for Edge Detection.

Shunting inhibition is lateral inhibition where the inhibition function is nonlinear.
Cellular Neural Networks are locally interconnected nonlinear, parallel networks
which can exist as either discrete time or continuous networks. The name given to
Cellular Neural Networks that use shunting inhibition as their nonlinear cell

interactions are called Shunting Inhibitory Cellular Neural Networks,

This project report examines some existing edge detectors and thresholding
techniques. Then it describes the optimisation of the connection weight matrix for
SICNN with Compiementary Output Processing and SICNN with Division Output
Processing. The parameter values of this optimisation as well as the thresholding

methods studied are used in software implementation of the SICNN,

This-two dimensional SICNN edge detector is then compared to some other common
edge detectors, namely the Sobel and Canny detectors. It was found that the SICNN
with complementary output processing performed as well or better than the two other
detectors. The SICNN wag also very flexible in being able to be easily modified to

deal with Jifferent image conditions.
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Chapter 1

Introduction

1.1 Vision systems

Within the eye light falls on the retina creating images. The retina is a sheet of
neurons including a layer of photoreceptors, neurons specialised to measure light

intensity and generate signals the rest of the nervous system can understand.

At this first processing step each photoreceptor generates a signal that is dependent on
the intensity of light falling on it. Bright light causes the photoreceptor to generate a
greater signal than do dark areas. These signals generated by the photoreceptors are
processed in a number of ways by a variety of interactions among the neurons in the

retina. One of those interactions is Lateral inhibition.

Figure 1.1 illustrates the signal processing that takes place in the retina,

Light intensity

Photoreceptors I I I I I '

GanglionCells @ @ © © ©® ©® @

Output signal  — \/\;

Figure 1.1 — Retinal processing using Lateral inhibition.



Photoreceptors generate a signal depending on the intensity of light falling on it. The
circles arc the ganglion cells, output neurons. The lines show the output from the
photoreceptors going to the ganglion cells with the outpul of the photoreceptors

adjacent also sending a signal which inhibits the excitation of the ganglion cell.

It is this laterally spread inhibition which gives lateral “inhibition networks™ their

name.

The signal of the output neurons is shown at the bottom of the diagram.

Just to the left of the edge the increased light intensity of the photoreceptor to its right

side has an enhanced inhibitory effect. This causes a dip in the output signai.

Just to the right of the edge the increased main photoreceptor output with the smaller
inhibitory effect of the photoreceptor to its left causes an increase in the level of
signal output. Far to the left and far to the right of the edge the output neurons are
excited by the overlying photoreceptors and inhibited by the adjacent photoreceptors.
The network is organised so that equal illumination of exciting and inhibiting
receptors equals out; the output neurons far from the edge will have the same, zero,

signal.

This neural processing means the brain is not seeing exactly what light intensity is at
each point on the retina but is instead sending information about which regions of the
retina have edges, how large the edge is and whether the change in intensity is

increasing or decreasing.

Lateral inhibition is the basis for many optical illusions and these can be used to
demonstrate the phenomena. An example of this is the Hermann grid seen in the

figure below.



Figure 1.2 — The Hermann grid illusion

The intersections of the white lines in the Hermann grid appear darker than the region
far away from the intersection. This is due to there being light coming from 4 sides at
the intersection but only two sides in the regions between the intersections. The extra
sides of light at the intersection inhibit the excitation of the intersection region

causing it to appear darker.

Emst Mach (Mach, 1886a; Mach 1886b) used lateral inhibition to explain the
phenomena of Mach bands. Mach bands are light and dark bands adjacent to a
luminance change. This illusory effect is demonstrated below.
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Figure 1.3 — (a) An image with bands of various intensity light and dark bands can be
seen next adjacent to each transition (b) a plot showing actual luminance vs
perceived brightness; From Pontecorvo (1998)



Dark bands appear on the dark side of the edge and light bands on the light side of the

edge. The perceived brightness differs from the actual luminance due to inhibition.

However, the {irst extensive studies on inhibition were performed by Hanline and
Ratliff on the compound eye of the horseshoe crab (Hartline & Ratliff, 1957; Hartline
& Ratlitf, 1958: Ratliff et al., 1963). The horseshoe crab is not actually a crab but is
mmstead a water insect.  The studies found that the neurons that were in the eyes of
these insects matched the theoretical signal response proposed for lateral inhibition.

The roles of lateral inhibition as outlined by Srinivasan ¢t al. {1982} include;

Redundancy removal to improve the efficiency on the supply of information

through the optic nerve {Barlow, 1981)

¢ Removal of the DC bias in the input - to increase sensitivity (Brodie et al., 1978).

e De-blurring and edge enhancement e.g. the Mach bands phenomena.

¢ Predictive coding to improve efficiency and resolution (Srinivasan et al., 1982)

1.2 Cellular Neural Networks (CNN)

Cellular Neural Networks (CNNs) were introduced by Chua and Yang in 1988, They
are nonlinear, parallel networks which can exist as either discrete time or continuous
networks. The array of cells making up a CNN are locally interconnected and

regularly repeated and they may be multi-layered.

The basic structure of a CNN is a cell. Cells in the array are designated C( 1, j) with
the 1 denoting the row and the j denoting the column, Each cell is connected to the »
cells in its local neighbourhood. The neighbourhood of C(i,j) is called the r-
neighbourhood.



Each cell looks the same and is a nonlincar dynamic subsystem which can be

described by a nonlincar differential equation of the form.

f&" = g[.\',-' (’)]+ z An, (‘t.r' | (f-r.fl’y1|f-‘-:‘f}‘ p.;i) fan 1.1
dt KeN,
+ Z B, (—"‘;|(;-r,;).-fl,-i[;_r_;).‘!)f)"'”_;(’)
ke,
¥, 0= 15 ) Fan 12

The iocal interconnection of the cells gives the CNN its unique nature.

CNN's are ideally suited to being VLSI implementation due to the local nature of their
interconnections. The CNNs regular architecture allows for large arrays to be
designed easily. CNN5 also work with analog interconnections allowing devices to be
constructed using the advantages of analog computing — High speed, low power and

small footprint.

There are many variants of CNNs defined. Generally variants involve changing the
cell activation function, making the grid structure non-regular and varying the cell

template matrices over time.

1.3 Shunting Inhibitory Cellular Neural Networks (SICNN)

To model some neural cells and visuval phenomena linear lateral inhibition is
insufficient. When the membrane conductance is controlled by the synaptic voltage
of neighbouring cells, as it is in a typical neuron, the equation describing the lateral
inhibitory neural network becomes non-linear. The equivalent electrical circuit for a

reuron is shown in Figure 1.4 (Bouzerdoum & Pinter, 1993).



Figure 1.4 — Equivalent electrical model of u neuron; From Bouzerdoum and

Pinter(£993)

Specific types of cellular neural networks have been developed that allow the use of

non-linear lateral inhibition.

Many different types of non-linear processing elements arc available within
electronics. Amplifiers can provide multiplication or division and diodes can provide
exponential functions. Cellular neural networks, which use multiplicative processing,

are called Shunting Inhibitory Cellular Neural Networks (SICNNs),

They have been used by Pinter (1983a; 1983b) to explain selectivity for small objects
of visual units in the ventral nerve of insects. They have also been used to explain
adaptation of the receptive field spatial organisation and the spatial modulation

transfer function,

Non-linear neural networks have also been used in image processing for image
enhancement (Jernigan & Mcclean 1992; Paradis & Jerigan 1994) and for motion

detection.

As artificial vision networks SICNNs are extremely effective as they are more
resistant to multiplicative noise. Multiplicative noise has a standard deviation that is
proportional to received intensity which means that peaks of the multiplicative noise

look like larger edges than do additive noise peaks.



SICNN response is based on relative edge to intensity ratio.  This allows the STCNN
to have cquivalent performance in high and low intensity arcas under multiplicative

noise.

Synthetic aperture radar (SAR) images and other coherent imaging processes (such as
laser and sonar images) are plagued by a special type of noise called speckle noise.
Research has shown that speckle noise is a multiplicative noise process inherent in the
coherent imaging process. Due to the multiplicative noise performance of SICNNs

they would be very eftective as an edge deteetion process for these coherent images.

Shunting Inhibitory Cellular Neural Networks are biologically inspired networks with
great promise as information processors for pattern recognition, vision and image

processing tasks.

1.4 SICNN'’s and Edge detection

As previously explained lateral inhibition within the retinal neurons in a biological

system exists to reduce the flow of information required to be processed at the brain,

Similar functions for lateral inhibition networks are practical for artificial vision

systems.

Images of 640x480 pixels and 8-bit intensity quantisation consume over 2.45 Mbits.
Multiple frames per second and colour images increase the required processing rates
of vision systems greatly, requiring massively parallel processing arrays of high clock

frequencies to be able to process the image data.

SICNNs ability to process data in time and space allows information on edges and
motion to be output. Sending only this information rather than all the visual
information reduces the data rate which in turn reduces processing requirements for
artificial vision systems. Designs using SICNNs built with analog VLSI can provide

real time processing.



Edge detection is the [irst process in many image processing tasks including
segmentation.  The output from a SICNN is ready for further complex processing

operations.

The majority of edge detectors use linear models which provide adequate response o
additive noise but not to multiplicative noise. They require complicated pre-filtering
to lower the level of multiplicative noise which adds an extra siep to image
processing. The SICNNs ability to cope better under multiplicative noise conditions
means they are ideal to use as the initial processing step in segmentation of coherent

imaging systems.

In this thesis we investigate SICNNSs as edge detectors. Edge detection is often the

first and most important stage in many vision systems.

1.5 Project Outline

The objectives of this project are to:-
1. Implement and optimise three SICNN architectures
2. Develop and implement a iwo-dimensional SICNN architecture in Matlab

3. Compare performance of two-dimensional SICNN with conventional edge

detectors.

The three architectures that will be implemented are the standard SICNN and the
standard SICNN with complementary output processing, and SICNN with division

output processing,

The standard SICNN has already been implemented and optimised to some extent in
previous works conducted by Ward and by Pontecorvo (1998). The complementary
output processing architecture was implemented but not optimised and the division

output processitg had not been implemented or optimised.

A two-dimensional SICNN architecture has previously been demonstrated but with

limited capacity for someone not familiar with SICNNs to use. Thresholding for this

8




architecture is an important component and is covered in some detail within this

thesis; see chapter 3 for details.

1.6 Thesis Organisation
This thesis is organised as follows,

Chapter 2 outlines many standard edge detector designs as well as explaining the
theory behind the Sobel and Canny detectors used in the comparison with the SICNN
edge detector. It also describes edge detection using SICNN edge detectors. It
outlines the current designs and the previous work conducted on optimising the

designs by Ward and Pontecorvo (1998).

Chapter 3 discusses the various techniques in post-processing, the edge processing
enhancements and the important topic of thresholding. It explains a number of the

global thresholding methods and some of the local threshoiding methods.

Analysis of the evaluation of the edge detectors is explained in chapter 4. This
chapter outlines the criteria which will be used to optimise the SICNN edge detectors
and compare the Sobel and Canny edge detectors with the SICNN edge detectors in
chapter 7.

Chapter 5 covers the method and the results of the optimisation of the SICNN with

complementary output processing and the SICNN with division output processing.

Chapter 6 describes the software implementation of the SICNN as a Matlab toolbox

using the information about optimised parameters from chapter 5.

Chapter 7 compares the SICNN with complementary output processing with the Sobel
and the Canny edge detectors.

Chapter 8 presents the conclusions of the project and points the way forward 1o areas

of further investigation.



Chapter 2
Edge Detection

Edge detection is onc of the most comnion processes in image processing. It is
common and useful because edges form the outline of an object and therefore can
provide information about area, perimeter and shape. Computer vision is generally
about identification and classification of objects and the information that edge

detection provides is vital to this task.

Edge detection is part of a process called segmentation which is identification of
regions witkin an image. After edge detection further processing can be used to

determine what each region represents.

Edge detection is actually the process of determining the edge pixels, whereas edge
enhancement increases the contrast between the edges and the background so the
edges become more visible. Edge tracing is also used to follow the edges and collect

them into a list.

When talking about the theory of edge detection most traditional methods talk about
the ideal step edge. This is a change in grey level at exactly one point. The greater
the step the easier it is to detect the edge. Without noise the step can be clearly

determined.

Unfortunately in real world situations this ideal step is not realistic. Due to
digitisation, the image is most often sampled with the edge across a number of pixels.
Most edges that happen in nature are not exact. They can be considered to be a ramp

with grey levels moving from one grey level to the other grey level. This may cause

10



the edge to appear over a number of pixels. Exact edges may be captured across a

pixel causing three grey levels to represent one exact edge,

Another issue is noise. Many factors such as light intensity, motion, temperature, dust
and lens effects con make two pixels that would normally be at exactly the same grey
level to have different levels in the image. Noise means that ideal edges are never

encountered in real images.

2.1 Derivative Based Edge detectors

Edges are characterised as areas of rapid change of grey level. Derivative operators
are sensitive to this and can operate as an edge detector. The rate of change of grey

levels is large near an edge and small in other areas.

As images are 2 dimensional level changes in both directions must be considered. For
this reason partial derivatives of the image, with respect to the directions x and y, are

used.

An estimate of edge direction can be determined by using the result of the partial
derivatives of x and y as vectors and computing the vector sum. The operator used is

the gradient operator which is a two dimensional vector.

Az(x,y){-‘»;i,%] Eqn2.1

Due to the gradient function being a continuous function and the native data, being
sampled, we must use something which approximates the derivative. This is the
difference operation. To implement the difference operation we can take the

difference between 2 adjacent pixels. For the horizontal direction;

AgdI(e,y)=1(x,y) - 1(x-1,) Eqn 2.2



For the vertical direction;

Al y)=1(x.y)-H{x,y~1) Egn 23

The problem with this approach is that it gives an approximation for the gradient at

(x-1/2,y-1/2).

To get the result at (X, y) we could use for the horizontal direction;
A J(x,y)=I(x+1,y)-I(x~1Yy) Eqn 2.4

For the vertical direction;

Ayll(x$y)=1(x9y+1)_](x3y"1) Eqn 2.5

This operator gets a gradient at (x, y) but ignores the value of the pixel at (x, y).

To get a composite value for the pixel taking into account both horizontal and vertical

result the magnitude of the edge response is calculated as follows.

2 2
becteon= (2] +(2) B2

12




There is also an edge direction that can be determined.

ol /oy
E, (x,y) = arctan Eqn 2.7
n'll"( y) a [5;/5_‘[]

This approach of separate horizontal and vertical processing and combining is seen
throughout edge detection and helps to reduce computational complexity and assists

in determining edge direction.

2.2 Template Based Edge Detectors

Template based edge detection uses small templates as a model of an edge. The
model can either be an attempt to model the level changes in the edge or an attempt to

approximate a derivative operator, the latter appearing to be the most common.

There are many different template based edge detectors but the one that will be used

for comparison here is the Sobel template.

2.2.1 Sobel

The Sobel edge detector uses convolution masks having the following form.

-1 0 1 -1 -2 -1
S, = -2 0 2 S,= 0 0 0
1 0 1 1 2 !

These templates are really an approximation of the gradient of the pixel at the centre
and are the cquivalent of applying the A, gradient operator to each 2x2 portion of the
3x3 region and then averaging the result. The two components Sy and S, correspond

to the horizontal and vertical component of the edge.

13



Each S and S, mask is convolved with the image [ producing outputs I and 1.

Magnitude of each pixel is calculated using the following formula,

E, =10y’ +1,6) Eqn 2.7

The direction of the edge can also be determined.

E . (x,y) = arctan (Ilt/l_‘.) Eqn2.8

After determining the magnitude the edge map is then thresholded to give distinct
black and white edges.

2.3 Other Edge Detectors

2.3.1 Canny

Canny’s specification of the criteria for an optimum edge detector was that it

possess:-
¢ Quality detection - find al! edges

» Good localisation — the smallest possible distance between found edges and actual

edges
¢ Single response to an edgé

Canny defined these mathematically as a series of equations. The Canny edge
detector creates a convolution filter that is based on the optimisation of these

equations. The filter would smooth the noise and locate the edge.

14



To achieve the first criteria meant that the signal-to-noise ratio (SNR) and the

localisation criteria needed to be maximised simultancously.

|.|‘”|; g(-x)h(x)dx

\/ TN Eqn2.9
g, _["_ 17 (x)

SNR

Localisation is the inverse of the standard deviation of the spatial spread of detected
edges about their true positions (Pontecorvo 98). The greater the localisation the

better the edge detector performance.

[, o

o, \’ [l“ B (x)dx

Localisation = Eqn2.10

The third criterion, the distance between noise generated peaks, is maximised. It has
the form.

Pt | —

o [; K (x)dx
RO

X Eqn2.11

max

Solving the criteria analytically is difficult but an efficient approximation is the first

derivative of the Gaussian function.
G(x)w[z'?] Eqn2.12

From Canny (86) it was found that the best filter form was the first derivative of the

15




Gaussian function,

Gr(_r)=(_i.)c[-s‘£f] Fan .13

In 2 dimensions a Gaussian is given by

[ Ll -*‘z..!]

G(x.y)=ocle" Eqn2.14

G(x,y) has derivatives in both the x and y directions. Taking these derivatives to
make G'(x,y) and then convolving G’ with image I will give an output image that has
enhanced edges.

This two-dimensional convolution while easy to implement is expensive
computationally. This two-dimensional convolution is equivalent to two one-
dimensional Gaussian masks with the differentiation done separately using a
differentiation convolution mask.

The process of the Canny edge detector is

1. Readimagel

2. Create 1D Gaussian mask G with a parameter of the standard deviation

3. Create a 1D mask of the derivative of the Gaussian in the x and y directions G

and G, with the same standard deviation.
4. Convolve image with G along the rows to give Ix and along the columus to give Iy

5. Convolve I with G, to give Iy’ the x component of [ convolved with the Gaussian
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and convolve |y with Gy to give Iy

6. Compute the magnitude of the result at cach pixel using the equation,

];: "“Lix‘ y):J ! :(L );)3 + f_:.(-\‘, }’)2 ECII'I 2.14

This produces an edge image with large pixel values for edges small values for
background. Simple thresholding techniques using global thresholds to show a pixel

as white above threshold T and black below do not give very good results.

Canny thresholding uses thresholds based on the gradient of each pixel. Basically

each of the edpe pixels have a direction associated according to the formula below.

I'(x,
E, (I, .V) = gretan: T'(I-y—) Eqn 2.14
!), (x, ¥)

Edge pixels should have a gradient magnitude greater than the pradient magnitudes on
either side of the edge. The final step with the Canny thesholding is called

nonmaximum suppression, where pixels that are not local maxima are suppressed.

In the most common case, where the direction of the gradient of the pixel doesn’t
point in the horizontal or vertical directions, a linear interpolation of the pradients of

the imaginary pixe! adjacent and on the gridline is calculated.

The Figure 2.1 shows the case where the gradient of the central pixel does not point

directly at an adjacent pixel.
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Figure 2.1. Nonmaximum suppression (a) Pixels with gradient directions not
horizemtal or vertical {b) FHorizomal and Vertical vector components of gradient.

Pixel A has a gradient that points between pixel B and C.

The vector components of the gradient of A are A, and Ay and B and C follow the
same naming convention. The point P ( Py, Py) to be calculated is the point at the

intersection of a line drawn along the gradient direction of A and the gridline BC.
The gradient magnitude at point P(Py, Py) is estimated as

G={P,-C,Norm(C)+(B, - P,Norm(B) ~ Eqn2.15

This is the case for vertical gridlines, the case for horizontal gridlines the Py value is

replaced with the Px value and the C pixel is the pixel that is to the left of the B pixel.
G = (P, - C,)Norm(C)+(B, - .)Norm(B) ~ Eqn2.16

This process is completed for every pixel in the canny output image and then the

magnitude of the central pixel must be greater than both its neighbours’. If the

magnitude is not greater, then its value is set to zero.
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At this point the image still has grey levels. To remove these Canny sugpests

Hysteresis thresholding. Hysteresis thresholding is explained in Chapter 3.

2.4 Edge detection using SICNM

A feedforward shunting inhibitory cellular neural network is described by the

following ordinary differential equation

Iv .

Where [; is the input, o; is the decay factor and w; is the connection weight matrix. In

steady state the output is given by

I
X, =—-t Eqn 2.18
’ a,.+ijIJ.

This equation can be implemented using a convolution and a division operation.

The three architectures being compared are the standard SICNN, the SICNN with
Complementary output processing (COP) and the SICNN with Division output
processing (DOP)

The standard SICNN uses a single pass of a positive-X-Zero window. X-Zero
windows are simply a way of describing the number of zeros in an asymmetric
template matrix. Positive means that X zeros occur before M positive values and

negative means that M positive values occur before X zeros.

All output processing is designed to increase the prominence of an edge peak from its
standard prominence after a standard SICNN. There are a number of approaches to
output processing using SICNNs, The two recugnised as achieving the best response
are Complementary Qutput Processing (COP) and Division Output Processing (DOP).

These output processing methods are discussed in the output processing chapter 3.
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2.5 Overview of previous work

This project work follows on from the Ph.D. thesis “Edge detection and Eghancement

using Shunting Inhibitory Cellular Neural Networks® by Carmine Pontecorvo.

This thesis studied SICNN edpe detectors as compared with other standard cdge

detectors.,

Pontecorvo’s  study introduces a number of post-processing  (echnigues  that
significantly improve the quality of the output of SICNNs, most notably the

complementary output processing technique that is used in this thesis.

It also derives mathematically the output of the SICNNs including the shape of the
edge response. Readers interested in a thorough coverage of these aspects of SICNN

are referred to Pontecorvo (1998),

Some areas that affect the SICNN performance were briefly examinced. For example,
the decay factor, a, that maximises the peak response to noise ratio (PNR) was found

to be directly proportional to the mean intensity.

The symmetric and asymmetric weight distributions were examined and it was found

that the asymmetric window yields a better performance.

The optimum performance from the distribution of connection weights was found to
come when the sum of the connection weights is one. A basic study of the connection
weights was completed. This determined that the greater the B value of the Kaiscr
distribution used to gencrate the connection weights matrix the thicker the cdge

response. This led to decrease performance of the edge detector.

A quantitative analysis of connection weights, decay factor and window size was part
of the thesis report ‘SICNN Optimisation for Edge Detection and Image

Enhancement’ by James Ward.

Ward’s thesis used the HR (hit rate) and PdvFA(probability of detection Vs false
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alarm) tests, both described in chapter 5 of this thesis, to evaluate an optimum [3 valuce

for the SYCNN edge detector. The optimum 3 value was found to be 1.4,

The symmetry of the connection weights was examined again and the conclusion was

that the asymmetric window was optimum.

The number of zeros in the odd asymmelric window was examined with the best
performance of the edge detector found to be when the matrix was odd length and the

number of zeros, X, cquals.

X:K—O.S Eqn2.19

Where Y is the connection weights matrix length.

The optimum length of connection weights was found to be 11.

Attempts at determining a way to remove the mean intensity (l,) from the SICNN
output was unsuccessful. The optimum decay rate from the one-dimensional SICNN

tests was found to be 1.6 times the mean intensity .
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Chapter 3

Post Processing

There are a number of different options {or post processing the SICNN output.

There is post processing to enhance the output SICNN levels and these include
Complementary Output Processing (COP) and Division Output Processing (DOP).
These attempt to increase the peak edge response of the SICNN edge detector.

Qutput processing is also conducted to convert the output image to a black and white
binary image with O representing background pixels and 1 representing edge pixels.

This output processing is called thresholding.

3.1 Complementary output processing

This technique was originally developed in the during trial and error period of project
experimentation (Pontecorvo, 1998). Then it was called Negative Edge Noise
Reduction (NENR) technique due to its ability to increase edge peaks and suppress

noise.

Complementary output processing perform:z 2 SICNNs, one with positive X-zero
window and the other with negative X-zero window, and then complements one with
the other. This has the effect of reducing the peaks due to noise in the output and

therefore increasing the peak edge response.
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3.2 Division output processing

Division outpul processing is a scheme that was devised by Dr. Abdesselam
Bouzerdoum as a post-processing scheme that could increase outpul peak edge
response. It uses division as its operation which produces output which is centred

about 1. Subtraction of one from this output moves the centre to being about (.

Division output processing again performs 2 SICNNs as COP does and then divides
the output of one by the output of the other. This can have the cffect of increasing the

peak edge response leading to increased chance of edge detection.

3.3 Thresholding

Thesholding or grey-level segementation is the conversion between a grey-level
image and a bilevel (monochrome) image. This bilevel image should contain all of
the essential information concerning the number, position and shape of objects in an
image while containing a lot less other information. Reducing the complexity of the

data simplifies many recognition and classification procedures.

There are a number of different methods of thresholding but all of them make use of
some method to determine a range of grey levels that constitute an edge. The level of
each individual pixel is then compared to the threshold and a determination is made

on whether it is a black or white pixel.

Thresholding can be done on a global or a local level. Global level thresholds
determines a threshold across the entire image whereas local thresholds generally

determine thresholds for each individual pixel.

The more advanced thresholding algorithms use some form of recursion to repeatedly

- revise the threshold until the output to some error function is minimised.
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3.4 Global Thresholds

Globa! thresholds use one threshold across an entire image. They tend to be simpler
to implement and quicker to process the image data. The problems are in images with
high contrast changes or Gaussian shading. In these images edges in low intensity

areas tend to be missed and too many edges are picked up in high -alensity areas.

For many images global thresholding gives a good processing/performance balance.

3.4.1 Histogram percentage

The Histogram percentage algorithm creates a histogram of the grey levels within a
processed image. A percentage of pixels that are edges within the image must be

selected,

The algorithm then uses this percentage to calculate the number of pixels that should

be selected.

M=Total_number_of pixels_in_image*Percentage Eqn 3.1

The threshold is determined by counting down through the grey levels on the
histogram until the M™ pixel is reached. This grey level is used as the threshold with
the pixels of grey levels equal to or above being an edge and the rest being

background.

A modified version of this algorithm is used within the edge.m matlab code for
thresholding the edges after processing. The modification allows for the detection of
weak edges and strong edges and includes the weak edges in the final output where

they meet with the strong edges.

The major flaw in this thresholding mechanism is the arbitrary selection of a

percentage of edge pixels in an image. The resulting edge map may include pixels
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that are not signilicant due 10 this.

3.4.2 Histogram Two Peaks

The two peaks alporithm came from the observation that there are generally two
peaks in a histogram. The threshold is determined from the low point between the

two peaks.

Finding the first peak is simple by just looking for the bin with the largest value.
Most times the sccond largest peak will be the bin inside the largest so some method

of valuing peaks that arc away from the {irst peak would be good.

One method used commonly is to multiply the histogram values by the square of the
distance from the initial peak. This gives a preference to peaks distant from the initial

peak.

Thus if the largest peak is j the second largest peak k is

k = max({(k — j)}h(k)) Eqn3.2

Working down from the second peak using the values from the originai histogram
allows the evaluation of the low point between the peaks. This grey level is used to
threshold.

3.4.3 Histogram Hysteresis

A high threshold is selected Ty, and a low threshold is also selected T). Any pixels
with a magnitude above Ty are automatically edges and any pixels whose magnitude
is greater than T; and which are also connected to the high threshold edge pixels are

marked as edges also.

This threshold scheme has been implemented as an option within the SICNN toolbox.



1 is the thresholding scheme used by edge.m.

Other methods are available which provide local thresholding according to gaussian
distributions but these are computationally complex and it is arguable whether they

give any better output,

Global thresholding is difficult for any image where contrast in the image is limited.

In these cases local thresholding is effective.

3.5 Local Thresholds

Local thresholding techniques are generally considered to give better results than
global ones, Local thresholds generally work by generating a threshold for each pixel

based on some function of the pixels in the local neighbourhood.

Unfortunately the local thresholds that have been tried in this project have not given a
significantly better output as they tend to react in a more extreme way to noise in
areas of low intensity. This is not desired as this tends to create edges in the

background rather than outlining objects, as is the intention of edge detection.

Added to this problem is that SICNN edge detectors respond to relative changes in
intensity level meaning that small edges in low intesity areas react at a similar level to
larger changes in high intensity areas. This means a jump from 1 to 2 grey level will

output the same as a jump from 20 to 40 grey level.

3.5 1 Moving Average

The moving average thresholding technique uses a moving average to determine a
threshold. Qutput with levels above twice the moving average can be included in the

output image.
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3.5.2 Relaxation

The relaxtaion method of thresholding works by recursively including pixels in cither
the set of white or black pixels. A comparison is then made which looks at the pixels
adjacent to the current pixel and if the pixel is found to be completely surrounded by

pixles of a different colour the pixel is moved from one set to the other set.

This continues recurisvely until none of the pixels change over one recursion,

indicating they are all correctly identified.

This method tends to produce larger areas of full colour
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Chapter 4

Evaluation of Edge Detector

There are many different methods of evaluation of an edge detector. Currently the
performance of the SICNN edge detector has been determined using the Hit-rate (HR})
and the Probability of Detection versus False Alarm (PDvFA). Thesc by their nature
rate any crrors as the same even though there may be localisation differences. They
also don’t take into account the thresholding thatr is required ior any rcal edge
detection algorithm. A more appropriate Figure of Ment (FOM) would include these

issues

4.1 Edge models

Ideal edges have already been discussed but we have determined that these edges
rarely occur due to:-

1. Objects not having a shape outline

2. Edges not occurring at the margins of a pixel

3. Noise

This means that to achieve realistic results for edge detection comparisons we must

use realistic edges. Figure 5.1 demonstrates the problems with sampling.
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Figure 4.1 — The results of edge sanipling (a) pixels align with edge (b) pixels do
not align with edge; From (Parker ,1997, p5)

In part a) the image edge occurs right in the margins of a pixel causing an ideal edge.
If we move the camera even a tiny bit to either side the edge falls midway in a pixel.
This creates a pixel that has a grey level that is somewhere between the grey levels of
the pixels on either side of the edge pixel. The actual grey level of the resultant pixel

can be determined from the following equation.

(vn a, + vhah) Eqn 4.1
a, +a,,

Where v, and v, are the grey levels of the white and black levels, and a and a, are
the areas of the white and black parts of the edge pixel

In effect we have 2 “halt” steps which correspond to exactly one edge within the

image.

Noise is also an issue when it comes to determining the quality of an edpe detector.




Noise cannot be predicted accurately because of its randony niature and cannot even be
measured accurately, so it is impossible to determine the contribution of the noise
from the actual pixel data. Noisc can, however, be characterised statistically by ity

eftects on an image and has a mean and a standard deviation,
There are two types of noise specific to image analysis.

Signal independent noise is the noise that is added when an image is transmitted
electronically from onc spot to another. If A is the original image, N is the noise and

B is the final image then
B=A+N Eqn4.2
This is also termed additive noise.

A and N are unrelated to each other and although N could have any statistical

properties it is assumed to be normally distributed about a mean of zero with a

standar. deviation o,

The second type of noise for images is called signal dependent noise. This is noise
where the level of the noise at each point in an image is a function of the grey level at
that point. The grain seen in some photographs is an example of this type of noise.

B=A+f(A) Eqn 4.3

A specific type of signal dependent noise is where the noise has a standard deviation

proportional to the grey level. This is called multiplicative noise.

All of these factors lead to a series of derived tests that can be used to determine the

quality of an edge detection algorithm
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4.2 Edge Strength-to-Noise Ratio

Noise is added to an ideal edge according to an Edge Strength Noise Ratio (ESNR)
value. The ESNR equation is

2
ESNR =20 log,o[ I, ) Eqn 4.4
o

Where
¢ = contrast value
I, = mean intensity

o = standard deviation of noise
Tests are run on ideal images with ESNR from 0-30dB.

At ESNR = 0, 6=2cl, or the size of the step edge, at ESNR=20 ¢=1/10*2cI, one tenth
of the size of the step edge. As the ESNR increases the edge becomes more defined.

Figure 4.2 illustrates this.
ESNR =0 ESNR =20
: y i
First Row  «
Top

»n © L] B 1M D 0 10 W 2D o W @ ™ 10 10 140 e &  xW

(@ (b
Figure 4.2 — Edges under (a) ESNR = 0 dB and (b) ESNR = 20 dB
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4.3 Criteria

The evaluation tests use the SICNN edge deteetor to enhance the image and then they

perform some form of thresholding to determine the edge pixels.

The general method of comparison of the performance of the various architectures

being compared is via the lollowing two measures.
= [Hit Rate (HR) test

= Probability of Detection vs False Alarm (PDvVFA)

4.3.1 Hit rate

As the test image only has one edge in each row the edge in the output is selected by

finding the pixel with the maximum magnitude.

The hit rate test detects how often an edge detector correctly determines the pixel

within an image that is an edge.

The position of each of the detected edges is compared to the position of the actual

edge. If the positions match then a count is incremented.

After checking the detected edges in each row of the image the resulting count is

normalised using the total rows in the image.

The result of this test is a percentage giving an indication of how often an edge would

be detected in an image corrupted by a similar ESNR level.

The hit rate test is conducted over an increasing level of ESNR to show the rate of

increase in hits as edge strength gets bigger.

4.3.2 Probability of Detection vs False Alarm

The Probability of Detection vs False Alarm (PDvFA) gives an understanding of the
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level of edge peaks in an output SICNN processed image.

For a set ESNR the image is processed using SICNN. The output is progressively
thresholded at rising threshokld levels. At cach thresholding level a count is done on
the number of correctly detected edge pixels vs the number of falsely detected edge

pixels.

The values for probability of detection are calculated as follows

PD = Z (Eﬁ”m‘-’ (l’ }.) = Eurm:d (i'! j)) Eqn 45
z Em‘!lm."

The values for false alarm are calculated as follows

Fd = Z(Efﬂmltf (i’ j) # Em.'.'uﬂ.‘ (‘5 j)) Eqn 4.6
Z E Jound

The ideal values that would exist for the perfect edpe detector would have a PD

equalling | and FA equalling 0.

The PDvFA gives an indication of the level of elevation of an edge peak from the
noise floor. High peaks at edges enable the edge detectors to operate under higher

levels of noise.

This test is also a measure of the noise suppression of an edge detector. When the
noise is suppressed the number of peaks from the noise floor decreases and the floor

becomes less jagged.

Neither of these criteria measures two other important factors in evaluation of edge
detectors, localisation to actual edges of incorrectly detected edge pixels and

resolution of output image.
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Localisation is how close a detected edge is from the actual edge, False edges can be
detected anywhere on an image and a localisation figure of merit attempts to raie
higher the edge detectors which, when they do incorrectly detect an edge, it is in the

local area of an actual edge.

4.4.3 Pratt

One possibility is the Figure of Merit (IFOM) defined by Pratt (1978). The aims of
this figure of merit was to penalise the detector according to the square of the distance
from the detected edge pixel to the actual edge pixel.  The Pratt FOM has the

foliowing form:

!y
> 11+ ad (i)

FOM =2
max({,,/,)

Eqn 4.7

L4 is the number of edge pixels found by the edge detector.

I is the number of edge pixels in the image.

d(i) is the distance between the i" pixel of the actual edge and the one found by the
edge detector.

o is used for scaling and is kept constant {or a set of trials.

There are recognised problems with evaluation based on the Pratt FOM. such as lack
of local edge coherence and no penalties for clustering of false alarms or missed
edges. For optimisation using simple edge images. however. it is adequate. The Pratt
FOM is implemented in the optimisation of COP and DOP chapter and is used to

compare with the output of the HR test.
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Chapter5
Optimisation of COP and DOP

This chapter outlines the methods that will be used to optimise the parameters for the

complementary output processing and division output processing methods.

We have decided to use a slightlty modified process based on the optimising

rrocedures outlined by in previous studies (Ward, 1999, Pontecorvo 1998). '

5.1 Method

The methods that will be used to optimise the parameters for SICNNs with
complementary output processing and division output processing will be similar to the
tests performed in the previous studies conducted on optiraisation (Ward, 1999;

Pontecorvo 1998).

The parameter to be optimised is the Kaiserf value for the connection weight matrix

C. A summary study of the optimum value of the decay factor will also be conducted.

A decision was made to use the B based Kaiser window selection of optimum
connection weights. Although this limits the allowable weights in the connection
matrix and is likely to not determine the actual “best” weight matrix it simplifies the
process. It will allow a quick selection of the optimum out of a range of B values
which allows the project to continue on to comparison of the merits of SICNN edge
detectors as against other standard edge detectors. It is recommended though that a

more appropriate method of finding the optimum connection weights be based on
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some genetic algorithm.  This method would avoid bias in selection of particular

weighting functions that will be assumed to have the best set of weights.

Unfortunately this method is complex requiring work on determining the evaluation
function, the fitness function and how the genetic information about connection
weights can be passed between generations of weight indexes. This study is outside
the scope of this project as it would entail a full study of penetic algorithms and time

requirements do not allow for this.

The method used by the previous studies for optimisation of connection weights was

to initially use the HR test then confirm the results using the PDVFA test.

The Hit Rate test used a visual approach to narrow the region of B values likely to

give the best edge output. The PDvFA test then confirmed this region.

More extensive tests were then undertaken using the HR test to narrow the region of B

values again so that the value was determined to be between two integer values.

A final test that calculated the total area under the HR curve was then run to arrive at

an optimum value.

The problem with this testing is that it doesn’t take into account localisation of the
determined edge peaks to the actual edges. The HR test only determines the
maximum vaiue and this also doesn’t take into account the suitability of the schemes

for thresholdihg.

To account for the localisation effect of the peaks another test will also be undertaken

to give a peak value based on a localisation figure of merit, the Pratt figure of merit,
A comparison of the results of these two methods of connection weight optimisation

will determine the relative merits of the HR test and complete the optimisation of the

parameters,
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5.2 Results

5.2.1 Complementary Output Processing Results

The COP Hit-rate test was run with {§ values ranging from 0-25 at intervals of one.
Figure 5.1 shows the hit rate test results for 0, 5, 10, 15, 20 and 25 3 values under

noise ranging {rom 0-20 dB ESNR.

COPtermie f221

Figure 5.1 — Hit rate test for COP SICNN B =0, 5, 10, 18, 20, 25

Clearly the tendency as the B value increased the resulted in worse HR test figures. A
plot of the sum of the HR results from 0-20 dB actoss 3 from 0-25 is shown in Figure

5.2. This graph demonstrates this even more dramatically.
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Figure 5.2 ~Area under HR curve for COP SICNN [ value 0-25
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The optitmum B value for this COP SICNN would be somewhere in the range -2,

A second MR test was done using P values from 0-2 at 0.1 intervals, A plot of the

sums of the HR from 0-20dB for § from (-2 appears in Figure 5.3.
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Figure 3.3 — Area under HR curve for COP SICNN J value 0-2

This test shows the improvement in the output of the HR test as the B value

approaches zero. This seems to indicate an optimum Bvalue of 0.

The conclusion to be drawn from this is that the optimum B value for the connection
weights is f = 0. This conclusion is different from the result of the previous thesis

which concluded that the optimum [ value was 1.4.

Next confirmation of this result using the Pratt FOM was conducted. Figure 5.4 (a)
shows the result of the ESNR 0-20 dB summed Pratt test over the range 0-25 B using
the interval 1. Figure 5.4 (b) shows the result of the ESNR 0-20 dB summed Pratt test

over the range 0-2 B using the interval 0.1
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Figure 5.4 — COP (a) Summed Pratt test §-25 P (b) Summed Pratt test 0-2 B

This Pratt test confirms the results of the HR test in that the optimised B value for the
COP SICNN is 0. It should be noted that the Pratt test is usually employed to test
edge detectors with a threshold. The threshold use for this test was the same one used
for the HR test which simply selects the maximum value along each processed row.

Including a thresholding method in the test may achieve different results.

There are a number of differences between the two thesis runs that could account for

the difference in the previous studies results and this current study.

First the sample size used in the previous thesis was 200x40, while the results for this
thesis conie from an image matrix of 1000x200. Having a greater sampie size allows
more accurate statistical information to be determined enabling more certainty in

output results.

Second, for low ESNR wvalues the SICNN output at the edge is almost
indistinguishable from the output of the SICNN in the background. This means that
the greater the size of the background the higher the chance that one of the

- background pixels will be selected as the edge pixel rather than the actual edge.

This is reflected in the change in the HR results at low noise between the previous
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thesis results and this thesis.

Third, in James Wards thesis the HR for the COP SICNN edge detectors at 0dI3
ESNR was at 0.1 (Sce Figure 5.3, James Wards thesis). The output at 0dB ESNR of
the COP SICNN in this thesis was less than 0.025. This is due to the increased

sample size.

5.2.2 Division output processing

A mathematical simplification of the output of the Division Output Processing

method can be achieved and this can be used to reduce the computational complexity.

5.2.2.1 Simplification of DOP

The output from the DOP method is
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This effectively means that using DOP we remove the stability problems inherent in
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using a weight index that has positive and negative components,

The new connection weights index can be modified to optimise DOP with the C;,

acting as a contrast inhibition matrix.

A reasonable view would be that the Cnew matrix be designed so that in arcas of

similar intensity across all pixels Cnew evaluates to zero.

An eftective Cnew that follows these design criteria would be,

-1 =1 -1 =1 1 1 1 1]

5.2.2.2 Optimisation of DOP

The DOP SICNN HR test was conducted by modifying the Cnew connection weights
matrix. The P value was used to construct a set of Kaiser weights and then the first

half of the matrix was converted to negative. The matrix length used was 10.

The contrast inhibition matrix was normalised to one and the weights were all the

same. This made the contrast inhibition matrix 10 0.1 values.

Figure 5.5 shows the DOP HR test for p of 0, 5, 10, 15, 20 and 25 over ESNR in a
range from 0-20dB.
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Figure 5.5 — Hit rate test for DOP SICNN f =0, 5, 10, 15, 20, 25
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[t is obvious in this graph that the performance of the detector declines as the 3 value
increases above 10, This indicates the optimum connection weights fvalue is below

10.

Looking at Figure 5.6, which shows the summed HR arca [rom 0-20d1B, the optimum

B value is in the range of 0 10 3.
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Figure 5.6 —Area under HR curve for DOP SICNN J value 0-25

Figure 5.7 shows the same summed area test run on intervals of 0.1 over the range 1

to 3. The optimum P value of the DOP SICNN from this graph is 1.7.
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Figure 5.7 — Area under HR curve for DOP SICNN f value 0-2
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Confirmation of this result using the Pratt FOM tests was then conducted.  Figure 5.8

(a) shows the result of the ESNR 0-20 dB summed Pratt test over the range (0-25 8

using the interval 1, Figure 5.8 (b)shows the result of the ESNR 0-20 dB summed

Pratt test over the range 1-3 [} using the interval 0.1
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Figure 5.8 — DOP (a} Summed Pratt test 0-25 p (b) Summed Pratt test 0-2 B

The Pratt FOM tests result in exactly the same optimum f§ value of 1.7 confirming the

result from the HR test.

Due to the simplification of the Division Output processing SICNN it now requires

only 2 convolutions and a division operation. This is considerably less processing

than the complementary output processing SICNN which requires 2 convolutions, 2

divisions and a matrix subtraction to give similar levels of edge detection.

A plot of the resuits of the HR test for the optimum DOP and optimum COP SICNN

appears in Figure 5.9.
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Figure 3.9 - HR Comparison of optimum COP and DOP SICNNs

The figure shows that the DOP SICNN significantly outperforms the COP SICNN
having much higher performance in the ESNR region from 4 to 12.

This increased simplicity along with a better performance of the DOP SICNN means
that it is the best method currently available for output processing SICNN edge

detection.

5.2.3 Decay Factor

Analysis of tests in the previous thesis conducted on the output of the SICNN as mean
intensity was varied showed peaks that were dependent on mean intensity .. Either
side of this peak a sharp decline in output hit rate occurred but as the decay factor got

higher the Hit Rate output stabilised. The graph from the thesis is in Figure 5.10.
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Figure 5.10 ~ SICNN output performance as Decay factor o is varied
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A decay rate can be chosen which will enable the SICNN to operate in this region,
This is not the optimum decay rate but instead gives good performance over a large
range of mean intensitics and contrasts conditions which are likely to exist in real

world images.

In order to be operating in this region of operation the decay rate should be

approximately twice the mean intensity over the cntire image.

Tests conducted on real images where the decay factor was varied based upon the
average intensity of the region about each pixel throughout an image crcated edge
peaks in background areas that werc not part of any objects. This is another reason to

have a set decay factor value for an entire image.

5.3 Conclusion

This chapter analysed the HR results for complementary output processing and the
results showed that the highest HR occurred when the connection weights matrix was

constructed using a Kaiser B value of 0.

An optimised Kaiser B value for the creation of the connection weights matrix for the

division output processing SICNN was also investigated and the result was a f§ value

of 1.7.

Interestingly the Pratt test used to confirm the optimum values had exactly the same
result as both of the HR tests. This confirms the value of the HR test in optimising

the parameters of the connection weights.

The decay rate was selected based on the previous studies of the HR output of a
SICNN in different mean intensity and contrast conditions and attempts to always

operate the SICNN edge detector in the not optimum but nore stable region of the
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graph. This resulted in a decay rate of 2 times the mean intensity over the entire

image.

The resulis of this optimisation will be implemented in the software implementation
of the SICNN toolbox, which is presented in the next chapter, and the optimised
values will improve the overall performance of the 2 dimensional SICNN cdge

detector.
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Chapter 6
Software Impiementation of
SICNN

The initial aim of this project was to produce a single SICNN command that could be

used for further investigation of the performance of two-dimensional SICNNS.

To do this it is important to allow for a highly customisable command that will allow

the user to alter:-

1. The connection weights
2. The decay factor

3. Output processing style

4, Thresholding style.

6.1 Command I/Q structure

The intention is to provide a command that can be used as a function and can also be
used by itself in much the same way as the edge command within the image

processing toolbox.

The connection weights may be supplied as one or two-dimensional matrices. The
connection weights should not include any negative weights as the stability of the
SICNN is not assured. If connection weights are not supplied a connection weight
matrix, which has been optimised for the particular type of output processing, will be

created and used.
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The form of the output from the SICNN2d function will be dependent on the structure
that it is being passed to. The SICNN2d can pass (he output image, or the output
image and the connection weight matrix, or in addition it can output the decay lactor

used.

The edge command is structured so that il an output matrix is not defined then a new

figure will be created which will display the thresholded edpe image.

6.2 Options

The decay factor can be selected and should be a positive value to cnsure SICNN
stability. Should the decay factor not be supplied then one is selected bascd on the

optimum decay factor studies.

The output processing style will specify °* for no output processing, ‘COP’ for
complementary output processing or ‘DOP” for division output processing, Should
the output processing style be omitted then the default selection will be no output
processing.

Thresholding will automatically be perforined using the following options:-

e ‘2p’ indicates the two peaks histogram method,

» ‘none’ indicates no thresholding,

¢ ‘edge’ indicates use of the hysteresis histogram thresholding standard used by the

edge.m command in the image toolbox..

s ‘MA’ indicates moving average thresholding.
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6.3 Standard Matlab Toolbox structure

Creating & toolbox in Matlab allows exceution of the toolboxes commands from

within any working directory.

All of the .m files that are part of a toolbox are contained within the same directory.
This directory can bx anywhere although convention has it generally placed below the
toolbox dircetory which is a dircctory immediately bencath the Matlab installation

directory,

The directory that has been created must be included in the MATLABPATH variable,
This variable is initially created from a list of directories contained in tbe
toolbox/local/pathdefm  file. To add 1toolbox directorics the line
“’/MATLABRI1 l/toolbox/toolbox_dir_name:’,...”must be added to the end of the
Path Defined Here section. The MATLABRI1 directory name should be replaced by

the Matlab installation directory nane.
The next time Matlab loads the new path will be in the MATLABPATH variable.
This variable is used for two purposes; as a search path and a help file creation path,

When a function is typed at the Matlab command line the Matlab program follows the

following process.

1. Checks for variable name in memory
2. Checks for function in memory

.3. Checks for Matlab built in function

4. Checks ?:un‘ent directory for filename.

5. Checks for toolbox function through the MATLABPATH
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Any program in a local directory has precedence over MATLABPATH dircctory

functions.

The path for MATLABPATH is also used in compiling the help window information.

Each directory in the MATLABPATH that contains .m functions should have a

contents.m file,

The contents.m file has general information about the files contained within the
directory. The initial Help screen that is displayed on the help window looks at the
contents.m file in each directory in the MATLABPATH, cxtracts the first comment

line, and compiles a path with “directory name — first line of contents.m file”.

Double-clicking on the directory line displays the entire contents.m file.

The contents.m file can contain references to the individual .m files. To reference a
.m file the name of the file should be at the beginning of the line, after the % comment
symbol, and should be followed by a horizontal dash (-). After the dash a brief

description can be written.

When these individual .m file lines are double-clicked the Matlab help system finds
the file with the same name and checks that the namc is repeated with.n the name.m

file and as the first word, in capitals, of the first comment line of the .m file.

The entire comment section below this is then displayed as the help text.

It is useful when creating Matlab .m files to have knowledge of how Matlab processes
the files. Script files are processed with Matlab loading a line at a time each time the
script is run. Functions load the entire .m file into memory and then run the program
from there. This makes functions execute considerably faster than script files.
Bearing this in mind it is good practice to create functions within toolboxes as this

speeds processing noticeably {or more complex tasks.
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6.4 Conclusion

The result of the software implementation is the toolbox that is outlined in Appendix
C. This toolbox includes implementations of different thresholding methods which

can be used to test the effectivencss of cach of the thresholding styles.

The toolbox approach provides a sclf contained set of functions that can be used by
people with only basic understanding of Matlab to explore the SICNN edge detectors

and perhaps compare them with other types of thresholding styles or edge detector

types.
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Chapter 7
Comparison of 2D SICNN with
Other Edge detectors

7.1 Methods of comparison

Evaluation of the output of edge detection algorithms with real images is difficuit.
Edge detectors can operate on images which have widely varying contrasts and
background noise. Each edge detector has parameters which can be altered to

optimise the edge detector for particular conditions.

The Canny detector allows the selection of different o (standard deviation) values. It

also allows for different high and low hysteresis thresholds.

The Sobel template edge detector can use larger matrices for greater noise

suppression,

The SICNN edge detector can use different connection weights, connection weight

lengths and decay factors to alter the performance and resolution.

For comparison the Canny and Sobel edge detectors will be used as implemented in
Matlab. This means that to process images the edge.m Matlab function will only be-
passed the image and the detector type requiring the edge.m file to determine

threshold levels.

The SICNN will use the COP method of output processing and use a positive 6-Zero
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window of length 11 as the connection weight matrix. The [} value used to create the
window was 0. The reason the COP SICNN was used is that this component of the
research was completed before the optimised performance of the simplified DOP

SICNN was discovered.
The edge detectors will be evaluated using two methods.

The first method is objective and based on the Pratt figure of merit mentioned

previously in chapter 4.

Image 1 will be applied to each of the edge detectors and then the output of the edge
detector will be compared with the actual edge map to give a Pratt FOM. The edge

detectors will be ranked according to this.

The second method will be subjective. A series of images will be passed through
each detector. The output will then be shown to ten people who will be asked to rank

the images according to the following question;
“Which edge image most accurately represents the objects in the actual image?”

This question has been chosen to avoid the selection process being just arbitrary, as it
would be il the question “Which edge image is better?” was asked. As the process of
edge detection is mostly used as the first step in segmentation and then object
identification it makes sense to evaluate the edge detector performance with this goal

in mind.
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7.2 Objective comparison results

The objective test used the following image:

" " " i i A " i N
20 40 60 &0 100 120 140 160 1%, 200

Figure 7.1 — Test image used in Pratt FOM testing — image |

This image was designed to have a couple of different step sizes. The black region is
at intensity 1, the grey region is at intensity 3 and the white area is at intensity 7. The

edges are at angles to allow the 2D edge detectors to be tested.

Different levels of noise, with ESNR based on an edge size of 2, were then added to
the image and then the image was processed by the Sobel, Canny and COP SICNN
edge detectors. Hysteresis Histogram Thresholding was set at 0.95 of the image
pixels as background for the Canny and SICNN edge detectors. The output images

are presented in Appendix A.

The output Pratt FOM values under different levels of noise are in Table 7.1

ESNR Sobel Canny COP SICNN
0 0.275 0.154 0.028
5 0.459 0.290 0.276
10 0.800 0.881 0.721
15 0.949 0.961 0.935
20 0.948 0.957 0.956

Table 7.1 — Pratt Figure of Merit results
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The SICNN fares well at higher ESNR levels performing better than the Sobel edge
detector and very close o the Canny detector. At low ESNR the SICNN is by fur the

worst, detecting edges poorly.

The thresholding method affected the results for both the Canny and the SICNN COP
edge detector. The hysteresis histogram threshold, which requires a certain number of
edge pixels to be selected for the output edge image, combined with the Pratt FOM
penalising incorrect edges based on the square of the distance to the actual edge, mean

that the pixels that were found in the noise greatly reduced the Pratt results.

At high ESNR the Canny edge detector scems to reduce in Pratt FOM output.  This
could be due to the post-processing morphological thinning operations built into the
Canny edge.m implementation. Overall both the SICNN and Canny edge detector
seem to peak at around the same value of 0.96 whereas the Sobel peaks at around
0.95.

This demonstrates the importance of having an appropriate thresholding scheme when

operating under noisy conditions,

7.3 Subjective Comparison

The subjective test was conducted using the 11 images in appendix A. The processed

images and the raw results of the survey also appear in appendix A.

Points were given to each of the images, 3 for being selected as best, 2 for being
selected as second best and 1 for being selected last. Some statistics on the results are
shown in Table 7.2.

Statistic Sobel Canny COP SICNN
Total 179 232 249
Average 1.627 2.109 2.264
Selected Best 18 43 49
Selected Worst 59 3i 20

Table 7.2 — Summary statistics for subjective assessment,
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The test shows a clear distinction between the COP SICNN and the Canny and Sobel

edge detectors.

The Sobel edge detector rated worst in every statistic, being selected as the worst
detector in over half of the 110 possible selections. The output from the Sobel edge
detector tended to miss important edges that could be used to determine an object’s
identity. The areas where the Sobel edge detector did well involved images with high
contrast very few objects and with low levels of background intensity changes as
demonstrated in image 2, Appendix B. The larger numbers of pixels required in the
output images of the SICNN and Canny detectors meant that the actual edges in the
image were thick or there was superfluous background information that obscured the

object.

Figure 7.2 shows the number of times each edge detector was selected as best for each

image.

Subjective Image Assessment

:

3@ SICNN
|| & Canny
- O Sobel

I

12 345 87 8810 11

Image Number

No. times selected as best
O =~ NWbLOO~N ® ©

Figure 7.2 — Subjective image assessment: Images selected as best

LS

For 5 of the 11 images each edge detector was selected as best by at least one person.

This shows the volatility of subjective assessment.

In total the SICNN was selected most times as best in images 3, 4, 7, 9, 10 and 11.

Canny was selected as best for 1, 5, 6, 8 and Sobel was selected best for 2 and 5.
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The average score for the image results are in Table 7.3,

Image Number | 2 3 N p Pl R ST T

SICNN 2021|2825 (1914 [2771.6 242727

~1 | W

Canny 28|17 2 [ L7120 123 0192220 (2222

Sobel L2212 18| 2 (234221501

Fable 7.3 - Average subjective score tor cach image.

A major problem with the SICNN edge detector mentioned by the subjects was the
thick lines around objects, The subjects mentioned that the thick lines made the
objects less clearly identifiable. The thick lines were not present in the Canny cdge
detector as the non maximum suppression and the morphological thinning stage
which is included in the implementation ensure that edge lines arc only one pixel

wide,

Further tests showed that by reducing the length of the connection weights matrix the
width of lines was immediately reduced. Figure 7.3 shows the Lenna image that has
been processed by the SICNN edge detector under three different length weights
matrixes. The larger the matrix the thicker the lines but the greater the noise

suppression.

Figure 7.3 — The image Lenna processed by SICNN with connection weight
matrix length (a) 3 (b) 7 (¢} 1 1.
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In addition the hysteresis threshold was reduced to seleet only 5% of image pixels as

edge pixels and this further improved the clarity of the edges.

It scems that both of these parameters can be used to signilicantly modify the outpn
of the SICNN edge detector and should the detector be implemented as a plug-in for

Photoshop these are the particular paramelers that should be maodifiable,

The moditication of the threshold limits for the hysteresis thresholds is necessary to
reduce the edges detected in some images and increase the number of edge pixels in

other images with many objects.

Alternatively one of the other thresholding methods, including the effective loeal

thresholds available in the SICNN toolbox, may give better image output.

7.4 Conclusion

Overall the comparison of the SICNN edge detector against Canny and Sobel edge

detectors has found the SICNN edge detector performance is comparable.

The Canny edge detector shone in the Pratt FOM with the SICNN matching the
output of the Canny at high ESNR.

When it came to the subjective assessment the SICNN edge detector performed
exceptionally, being better than the Canny or the Sobel detection. The ability to
modify the threshold parameters and connection weight length provided the flexibility

for the SICNN edge detector to perform in a variety of conditions.

Clearly when the performance of the SICNN edge detector is married with its small
computational cost it becomes very attractive as the first stage in the segmentation

process.

The ability to implement the SICNN edge detector in analog VLSI fairly simply

ensures this edge detection method has a future in artificial vision systems.
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Chapter 8

Conclusions

8.1 Summary of Results

This project has examined the issues in edge detection and specifically the SICNN

edge detector and its performance in comparison to other edge detectors.

Studies of edge detectors confimmed that most of the best performing and most
advanced edge detectors involve many stages and significant levels of processing
overhead. Simple solutions, such as template operators do not perform particularly

well on most images.

Thresholding methods were analysed and this is an arca that still needs more rescarch.
SICNN edge detectors produce images which have edge peaks which are significantly
above the background level. Standard histogram style thresholds, which are designed
to detect edges as high intensity peaks. give large thick lines when dealing with
SICNN outputs due to their requirement to set a percentage of pixels as edges. Other
local thresholds, which tend to use local averages. do not perform very accurately
tending to find the cdges on cach side of a processed image. This leaves edges

outlined on both sides but the actual edge is suppressed.

Some study of the output histogram of the SICNN edge detectors, which takes into
account the knowledge that the relative changes in output levels give similar sized

peaks, would allow a more accurate thresholding mechanism to be developed.

Optimisation of the parameters of the SICNN Complementary Output Processing and

39



SICNN Division Output Processing cdge detectors found that the results of the
previous studies on COP optimisation disagreed with the results of this study. Some
reasons for this are discussed in chapter 5. The [§ value for the optimised COP

SICNN was 0 and the [3 value for the optimised DOP SICNN was found to be 1.7.

A comparison of the COP and DOP performance shows that DOP outperforms COP
in both quality of edge detection and low processing overhead. The future of SICNN

edge deteetion seems to point towards the DOD as the oulput processing method.

The final stage in the project was the comparison ol the SICNN edge detector with
COP to the Sobel and Cuanny edpe detectors. The objective results of this comparison
again outlined the inadequate performance of the histogram hysteresis threshold
method under low ESNR conditions. At high ESNR levels the SICNN detector
performed on par with the Canny detector and both performed better than the Sobel

detector.

In the subjective test the SICNN was a clear winner, The Canny detector performed
poorly when there was high levels of noise on an image while the Sobel often missed
edges. It was noted that the performance of the SICNN edge detector is particularly
variable as the length of the weight matrix and the level of the threshold is varied.
This can be a good thing as it allows easy customisation of the edge deteclor to

different images.

One of the biggest effects of the SICNN edge detector was the ability of it to suppress
areas of similar intensity. This means that rather than having small noisy peaks in the
background the areas are almost completely flat. Real edge peaks are of high enough
levels that the thresholding scheme would not select any peaks that did eccur in the

background areas.

The performance of the SICNN edge detectors is very good under many different
conditions, The ability of the SICNN to be implemented easily in VLSI, duc to its

CNN structure, means that they have a {uture as on chip vision pre-processors,
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The development of SICNNs has been based on biological studies ol real vision
systems. It seems certain that future artificial vision systems will have, as part of their
structure, a place for carly levels of visual processing. SICNN implementation on

chip will perform this funetion nicely.

8.2 Areas of Further investigation

There arc still many arcas that could be investigated in SICNN,

An obvious area would be the implementation of a genctic algorithm 1o investigate
connection weights for the various types of SICNN with output processing. There are
a number of Matlab toolboxes that exist in public domain which provide algorithms
for mutation between gencrations and provide guides in writing sclection algorithms
and defining the genetic charactcristics of the connection weight matrix. A useful

toolbox for this is the GAOT toolbox; a URL is provided for this in the references,

A useful tool for the study of the parameters available within the SICNNs with output
processing would be to implement the SICNNs as a plug-in for Adohe Photoshop or
Paintshop Pro. Plug-ins can provide an interactive dialog box which would enable
easy modification of the parameters whilc being able to view the output immediately.
A plug-in software development kit exists and is free from the Adobe WWW site. A

URL is provided for this in tbe references.

Tests comparing the DOP SICNN with other edge detectors would also be intercsting
with the new optimum DOP SICNN showing promise as being more elfective than
the optiinum COP SICNN. This could look more closely at different methods for

evaluating two-dimensional edge detector performance.

The analysis of colour images using SICNN is also an arca that would be interesting.
Possibilities for improving the performance in areas of low contrast may be possible
by examining the separate colours. As combining the colours to make a grey scale
intensity image suppresses the individual colour so too it could suppress edges that
would be visible in the separate colour images. Scme form of combination, similar to

the hysteresis thresholding, which separates the image into low intensity edges and
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high intensity edpes and then adds the fow inlensity edges where they connect to the
high intensity edges would be a practical consideration, The edges would be detected
in each colour image and in the combined grey scale image.  Fach edge image could
use & high threshold and then the colour images could be combined with the grey

scale to improve the performance of the edpe detector,
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Appendix A
Objective Images - Chapter 7

Image Canny Sobel SICNN

ESNR =0

ESNR =5

ESNR=10 .
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Appendix B

Images and raw results — Chapter 7

Image 1

Canny Sobel SICNN

Image 2

Canny Sobel SICNN
Image 3

Sobel SICNN
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Image 4

Canny
Image 6

Canny Sobel SICNN
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Image 8

Canny Sobel SICNN
Image 9
Canny Sobel SICNN
Image 10

Canny Sobel
Image 11

Canny Sobel SICNN
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The follewing table contains the raw scores for the subjective image test.

Subjects

10

10

10

10

10

10

10

10

10

10

10

o)

LA

[}

1

2
3

2

1

3

2
1

3

2

1

3

3

1

2

3

1

2

2

3

2

1

3

2
3

1

1

2
3

1

2
3

Image1

Sobel

Canny
SICNN

liimage2

Sobel
Canny
SICNN

Image3

Sobel

Canny
SICNN

Image4

Sobel

Canny
SICNN

image5

Sobel

Canny
SICNN

Image6

Sobel
Canny
SICNN

Sobel

hnage?

Canny
SICNN

Images

Sobe!

Canry,

SICNN

Sobel

Image?d

Canny
SICNN

Image10

Sobhel

Canny
SICNN

Image11

Sobel

Canny
SICNN
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Appendix C
SICNN toolbox structure

There are many tiles contained in the SICNN toolbox structure. Following are a number of

files that are included to do many of the functions required.

C.1 Contents.m

% SICHN Toolbox.
% This 1s written to demonstrate the shunting inhibitory cellular neural network
edge datectors.

o

]

$Processing:

% SICHNNZd - this implements the two-dimensional sicnn edge detector.
% sicnnl - one dimensional edge detector.

$ 5icnnCOP - complementary cutput processing with SICHNH.

% sicnnDCP ~ division cutput processing with SICHN.

%

3Thresholding:

% rawthrosh - raw thresheld cn a throsheld level.

% movavthresh - moving average threshold,

%3 twopeakthresh - 2 peaks threshold.

t hyshistthresh - hysteresis hisvogram cthreshold (as in edge.m).
%

% Grant Walker, 3 Hovember 2000,

% Copyright (c) 2040 hy G. Walker.

% All rights reservea.

C.2 Hyshistthresh.m

function Egut=hyshistthresh(I,percentpixels};
3hyshistthresh - hysteresis histogram method

as used in edge.m
Eout = hyshistthresh{I,peccentpizels)
INPUT:

I = input image.

percentpixels = percentage cof image which is edge pixels,

CUTPUT:
Eout = output edge image.

Adapted from edge.m Grant Walker, 3 November 2000.
Copyright (¢} 2000 by G. Walker.
All rights reserved.

P o0 o OF 40 o OF O of of of of b

Ip,ql=size(l]:

PercentQfPixel sNotEdges=percentpixels;

ThresholdRatie=0.7;

[counts, x]=imhist{I, 64);

highThresh = min{find{cumsum{counts) > PercentO[PixelsNotEdges*p*q)) / 64;
lowThresh = ThresholdRatio*highThresh;

71



rhreah = [ lowThresh highThresh]:

Eweadak = T »lowthresly;
Bstrong- 1 >highThrosh;

[rstrong, cstrongl=find{Estrong};
@ = bwsolect(Bweak, cstrong, rstrong, 8)
Foub=e;

C.3 Movavthresh.m

function Ecut-=movavthreshi(l})
imovavthresh - moving average threshold
%

[~

Eout = movavthresh({I}

3 INPOT:

5 I = input image.

3

5 QUTPUT:

13 Zout = output edge lmage.

%

% Grant Walker, 3 November Z000.

) Copyright {cr 2000 by G. Walker.

% All rights reserved,
[NR NCl=s5ize(I):
tused to create initial average
s=8;
sum=_g;
for i=1:NR
if rem{i,2}%odd row
for j=1:NC
sum=sum-sum/s+I(i,3):
av=sum/s;
if I{i,ji»2%av
Eout (i, 3}=255;
else
Eout {i,j}=0;
end
end
else
for j=NC:-1:1
sum=sum-sum/s+I {(i,3);
av=s5um/s;
if I{i,j)»2*av
Eout {i,i}=255;
else
Eout {i,)=0;
end
end
end
end

C.4 Rawthresh.m

function Eout=rawthresh(I,v)
% rawthresh - raw threshold using value
%
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% Eoul = rawthresh({f,v}

% IMPUT:

% 1 < oinput Image,

% v = threshold value,

3

Y QUTPUT:

% Eoul = cutput edge image,
3

3 Grant Walker, 31 Hovembaer 2000,
3 Copyright (o} 2000 by 6. Walker,
% All rights reserved.

Eout = (I =~ w};

Ecut=12*255;

C.5 Sicnn1.m

function I = sicnnl{X, C, a, s);

%

$sicnnl - Implements Shunting Inhibitory Callular Meural HWetworks.

finds 2 outputs images I and L.

28 December 1993,

1. included Io in the decay factor of sicnn mathematics.

% i1, L] = sicnn{X, N, s, n)

%

$ INPOT:

% X - Input Image.

% N - Number of Iterations.

%

% OUTPUT:

% I - Pilrst output Image.

3 L - Second output Image.

%

ki Abdesselam Bouzerdoum,

% Copyright {(c) 1593 by A. Bouzerdoun.
% All rights reserved.

3

% modified 9 September 1995

% modified 29 September 2000 - Grant Walker
%

%

if nargin ==

a = 1;
C=[000 0 borcar({3})'}];
5 = 0;

elseif nargin == 2
a =1;
s = 0y

elseif nargin == 3
5 = 0;

else

end

C = C/sumiC);

%append columns for horizontal sicnn

n= fix{{sizelC,2)-1}/2);
for 1 = 1:2*n

[p,gl= size(X);

X = [X{:,1, X, K(:.q]]:
end

%append rows for vertical sicnn
m= fix{(size{C,1)-1}/2);
for 1 = 1:2*m

2. modified to work with any sized C matrix



lpsal= siza{X);
o= [ XL,y X Xip, o)
end

tsmoothing algorithm
If 8 ~= 0
[%,y] = meshgrid{-n:n,-nin};
g = expl{—{xX. 21y, 20/ {28520 ):
gQ= sum{sumig));
Xo= conv{X,q, 'same’) /q0;
end

fcreate mean matrixilo) Yor decay rare
H(p,gl=size(C};

IMF=[ {1/ (p*q)}rones(p,q)l;
tIo=conv?2 {X,MF, 'same');

[P,Q) = sizel(X):
I =X./(a + convZ({X,C,"'same'));
% I = X./{a*Io + conv2i(X,C,'same'};;
I =1I(:,2'n+1:0-2+n);
I = I(2*m+l:P-2%m, :};
% I = I{z*m+l:iP=-2*m,2*n+l:Q-2*n);

C.6 Sicnn2d.m

function [egut]=sicnn2d(I,Method, Threshold,C,alpha)
$3ICHNZ2d tool

%

% This program takes in the image and processes it according to one of three
% outputprocessing methods. A threshelding stage in included.

%

% Eout = sicnn2d({I,Method, Threshold,C,alpha) finds cutput images JIout.
k] or

% sicnn2di{I,Method, Threshold, C,alpha} which displays imace using
imshow({Iout)

% INPUT:

% I - Input Image.

% Method - 's' standard sicnn, 'cop' complementary ocutput processing,
% ‘dop' division cutput processing.

% Threshold - 'ma' moving average, '2p' two peaks, 'edge' hysteresis
histogram

% {as used in edge.m), 'none' no thresholding.

% C -~ Connection weight matrix.

% alpha - decay rate.

3

% QUTPUT:

% Eout - Edge output image

%

% Defaults: Method = 'dop', Threshold = 'none', C=optimum, alpha=2* (average
intesity)

%

% Each of the thresholds is alse available te access individually

% ma = movavthrech.m

% 2p = twopeakthresh.m

% edge = hyshistthresh.m

%

% Grant Walker, 3 HNovember 2000,

% Copyright {(c) 2000 by G. Walker,.

% All rights reserved.
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orror (nargcehk (L, o, nargin} ) ;

methods=( s, 'cop', "dop'};
thresholds={'2p', 'none', 'edge?, 'ma'};

if isrgb(1},
error{'RGB images not supported, call RGR2GRAY');
end

if isa(71, 'uintB')lisa(I, 'uintls’),
-im2double (1)

end
$get arguements
if nargin == 1,
HMethod= methods{3}:
Threshald = threshclds{2};
C={1:
alpha=2*mean{mean{I}};
elseif narjin == 2,
Threshold = thresholds{2};
C=[1;
alpha=2*mean(nean(I}};
elseif nargin == 3,
C=[1:
alpha=2*mean(mean{l}};
elseif nargin == 4,
alpha~2*mean{mean{l}):
alse
end

%check method valid
str=]lower {(Method) ;
J=strmatchistr,methods) ;
if isempry{J},
error{['Invalid SICHN method: 'Method }};
end

%check threshold vaiid
str=lower {Threshold);
J=strmatch{str, thresholds);
if isempty(J),
error(['Invalid SICHM threshold: 'Thresheld ]):
end

switch Method
case 's'
if isempty(C)
c=[000O0111);
end
out=siennl (I,C,aipha);
cutmax=max {out(:));
if ocutmax>0
cut=¢ut/outmax; %normalise
end
case 'cop'
if isempty{C)
C=[0000111);
end
out=s3lcnnCOP({I,C,alpha);
case 'dop'
C=kaliser{8,1.7};
C=rot90(([~1*C({l:4); C(5:8)]):
out=sicnnbDOP({I,C,alpha);
otherwise
end
switch Thrashold
case 'edge’
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oul=hyshistthresh {oul, 0.9);
casa "ma'

Ul s st eresh {out )
casa Iyt

aut- twopeakLhroesh (oul) ;

case 'nona!
otherwlise
end

if nargout==(,
imshow {out) ;
clse
eout=out;
end

C.7 Sicnncop.m

function Eout=sicnnCOE(I,C, alpha}
t51icnnCOP - Precesses image using 5ICHN with complementary output processing
% Eout=sicnnCOP(I,C,alpha)

INPUT:
I

It

inpur image.
C = connection weights matrix
alpha = decay rate

Eout = output edge image,

%

2

%

%

k3

%

% OUTPUT:
3

%

% Grant Walker, 3 November 2000,

% Copyright (c} 2000 by G. Walker.
% All rights reserved.

C = C/sum{C};

Cl=C;

C2=fliplr(C);

Cl=rot90(C);

Cd=rot80{C, -1}

$5icnn processing

Ixr = sicnnl{I,Cl,alpha);
Ixl = sicnnl{I,C2,alpha);
Iyr = sicnni{I1,C3,alpha);
Iyl = sicnnl(I,C4,alpha}:

tcop
Ix=Ixr-Ix1;
Iy=Iyr-Iyl;:

mag=sgrt (Ix.*Ix+Iy.*Iy);
magmax=max (mag{:}j;
if magmax>0

mag=mag/magmax; 3%normalise

end

Eout—-mag;



C.8 Sicnndop.m

funcrion Lout - sicnnbopr(l, €, alphal;
Lsionn DOl - Processes bnage wsineg STCHN wich divigion oontput proooesaing
3 Faout s tenulxo b (80, alpha)

'k

i INPUT:

% 1 = input  image,

% C = ¢onncckion woights matriy
% alpha = decay rate

1

% OUTPUT:

3 Eout = oultput oadige image.

3

b Grant Walker, 3 Novanoher 2000,

% Copyright ({cy 2000 by G, Walker.

% All rights reserved.

(Nl,N)=size(C);
Cl=[{1/N)*ones(1,W) ]
I1=I;

%append columns for horizontal sicnn
n = fix{{size(C,21-1)/2};
for i = 1l:2*n
Ip,qgl= size{Il};
1} = [r1¢:,1}), I1, XYl{(:,a}l;
end

[C,Q] = size(Il};
Ix = conv2{Il,C,'same')./{alpha + conv2(I1l,Cl, "same')!;
Ix = Ix{:,2*n+1:Q-2*nj);

$append columns for vertical sicnn
fori= 1:2*n

[pral= size(I);

I = [I{1,:); I3 I{p,:lls
end

C=rot90 (C};

Cl=rot90{Cl};

[P,Q] = size(I);

Iy = conv2{I,C,"'same"’)./{alpha + conv2({I,Cl, 'same'}};
Iy = Iy{2*n+l:P-2*n, 1)}

mag=sqrt (IX. *Ix+Iy,*Iy}:
magmax=max (mag {:)};
if magmax>0

mag=mag/magmax; *normalise
end

Eout=mag;

C.9 TwoPeakThresh.m

function Eout=twopeakthresh{T)
$twopeakthresh - Zpeaks thresholding method
%

%€ Eout = twopeakthresh{l}



o INPUT:

4 1 = input image,

%

s UTPUY:

& Bont, - onlput odga image,

k3
4 Grant Walker, 3 Novenbwer 2000.
% Copyright (o) 2000 by G. Walker.
% All rights rescroverd.
[counts, x]-=imhisc(l, o4);
[v,firstpeak] “max(counts);
tor i=lifivst peak

counca (i) =u;
end
for i=firstpaaktlind

counts (1) =counus i) *{i-firstpeak);

end

(v,secondpeak]=max{countsj;
i=secondpeak;

I ={I > (x{i}/0d)*max{I(:))}:
Eout=I;
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