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Abstract 

The study investigates the process or optimisation, implementation and comparison of 

a Shunting Inhibitory Cellular Neural Network (SICNNJ for Edge Detection. 

Shunting inhibition is lateral inhibition where the inhibition function is nonlinear. 

Cellular Neural Networks are locally interconnected nonlinear, parallel networks 

which can exist as either discrete time or continuous networks. The name given to 

Cellular Neural Networks that use shunting inhibition as their nonlinear cell 

interactions are called Shunting Inhibitory Cellular Neural Networks. 

This project report examines some existing edge detectors and thresholding 

kchniques. Then it describes the optimisation of the connection weight matrix for 

SICNN with Compiernentary Output Processing and SICNN with Division Output 

Processing. The parameter values of this optimisation as well as the thresholding 

methods studied are used in software implementation of the SlCNN. 

This~two dimensional SICNN edge detector is then compared to some other common 

edge detectors, namely the Sobel and Canny detectors. It was found that the SICNN 

with complementary output processing performed as well or better than the two other 

detectors. The SICNN was also very flexible in being able to be easily modified to 

deal with ::iifferent image conditions. 

.. 
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Chapter 1 

Introduction 

1. 1 Vision systems 

Within the eye light falls on the retina creating images. The retina is a sheet of 

neurons including a layer of photoreceptors, neurons specialised to measure light 

intensity and generate signals the rest of the nervous system can understand. 

At this first processing step each photoreceptor generates a signal that is dependent on 

the intensity of light falling on it. Bright light causes the photoreceptor to generate a 

greater signal than do dark areas. These signals generated by the photoreceptors are 

processed in a number of ways by a variety of interactions among the neurons in the 

retina. One of those interactions is Lateral inhibition. 

Figure I. I illustrates the signal processing that takes place in the retina 

Light intensity 

Photoreceptors 

Ganglion Cells 

O"'P"' sigaal ~ 
Figure 1.1 - Retinal processing using Lateral inhibition. 
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Photorcccptors generate a signal dcpc11<ling on the intensity of light falling on it. The 

circles arc the ganglion cells, output neurons. The lines show the output from the 

photoreccptors going to the ganglion cells with the output of the photorcccptors 

adjacent also sending a signal which inhibits the excitation of the ganglion cell. 

It is this laterally spread inhibition which gives lateral "inhibition networks" their 

name. 

The signal of the output neurons is shown at the bottom of the diagram. 

Just to the left of the edge the increased light intensity of the photoreceptor to its right 

side has an enhanced inhibitory effect. This causes a dip in the output signai. 

Just to the right of the edge the increased main photoreceptor output with the smaller 

inhibitory effect of the photoreceptor to its left causes an increase in the level of 

signal output. Far to the left and far to the right of the edge the output neurons are 

excited by the overlying photoreceptors and inhibited by the adjacent photoreceptors. 

The network is organised so that equal illumination of exciting and inhibiting 

receptors equals out; the output neurons far from the edge will have the same, zero, 

signal. 

This neural processing means the brain ;s not seeing exactly what light intensity is at 

each point on the retina but is instead sending information about which regions of the 

retina have edges, how large the edge is and whether the change in intensity is 

increasing or decreasing. 

Lateral inhibition is the basis for many optical illusions and these can be used to 

demonstrate the phenomena. An example of this is the Hermann grid seen in the 

figure below. 
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••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• Figure 1.2 - The Hermann grid illusion 

The intersections of the white lines in the Hermann grid appear darker than the region 

far away from the intersection. This is due to there being light coming from 4 sides at 

the intersection but only two sides in the regions between the intersections. The extra 

sides of light at the intersection inhibit the excitation of the intersection region 

causing it to appear darker. 

Ernst Mach (Mach, 1886a; Mach 1886b) used lateral inhibition to explain the 

phenomena of Mach bands. Mach bands are light and dark bands adjacent to a 

luminance change. This illusory effect is demonstrated below. 

(a) 

Perceived 
Brightness-...,, .. 

I \ . ' 
,·\. 
'' ' ' 

, --· 
,, '. ' ', 

'. : Luminance 

' ' '' ,, 

,, 

(b) 

Figure 1.3 - (a) An image with bands of various intensity light and dark bands can be 
seen next adjacent to each transition (b) a plot showing actual luminance vs 
perceived brightness; From Pontecorvo (1998) 
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Dark bands appear on the dark side of the edge and light hands on the light side of the 

edge. The perceived brightness differs from the actual luminance due to inhibition. 

However. the first extensive studies on inhibition were performed by Hartline and 

Ratliff on the compound eye or the horseshoe crab (Hartline & Ratliff. 1957; Hartline 

& Ratlitl: 1958: Ratliff ct al.. 1963). The horseshoe crab is not actually a crab hut is 

instead a water insi:ct. The studies found that the m:urons that were in the eyes of 

these insects m,.1tchcd the theoretical signal response proposeJ for lateral inhibition. 

The roles of lateral inhibition as outlined by Srinivasan ct al. (1982) include; 

• Redundancy removal to improve the efficiency on the supply of information 

through the optic nerve (Barlow, 1981) 

• Removal of the DC bias in the input - to increase sensitivity (Brodie et al., 1978). 

• De-blurring and edge enhancement e.g. the Mach bands phenomena. 

• Predictive coding to improve efficiency and resolution (Srinivasan et al., 1982) 

1.2 Cellular Neural Networks (CNN) 

Cellular Neural Networks (CNNs) were introduced by Chua and Yang in 1988. They 

are nonlinear, parallel networks which can exist as either discrete time or continuous 

networks. The array of cells making up a CNN are locally interconnected and 

regularly repeated and they may be multi-layered. 

The basic structure of a CNN. is a cell. Cells in the array are designated C( i, j) with 

the i denoting the row and the j denoting the column. Each cell is connected to the r 

cells in its local neighbourhood. The neighbourhood of C(ij) is called the r­

neighbourhood. 
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Eadi cell looks the same and is a nonlinear dynamic subsystem which can be 

dcscrihcd by a nonlinear differential equation of the form. 

d,,·, = 1{,,(1)]+ I;A,,, (r,l1,-uJ,Y,li,.,.,1•P;') 
(, h,\', 

Eqn I.I 

+ I s . .(,,l,,-,,1,1,l,,-,..1·";')+ 11 ,(1) 
kE.\' / 

y,(1 l= t(, ,I 1,_, ,iJ Eqn 1.2 

The local interconnection of the cells gives the CNN its unique nature. 

CNNs are ideally suited to being VLSI implementation due to the local nature of their 

interconnections. The CNNs regular architecture allows for large arrays to be 

designed easily. CNNs also work with analog interconnections allowing devices to be 

constructed using the advantages of analog computing - High speed, low power and 

small footprint. 

There are many variants of CNNs defined. Generally variants involve changing the 

cell activation function, making the grid structure non-regular and varying the cell 

template matrices over time. 

1.3 Shunting Inhibitory Cellular Neural Networks (SICNN) 

To model some neural cells and visual phenomena linear lateral inhibition is 

insufficient. When the membrane conductance is controlled by the synaptic voltage 

of neighbouring cells, as it is in a typical neuron, the equation describing the lateral 

inhibitory neural network becomes non-linear. The equivalent electrical circuit for a 

neuron is shown in Figure 1.4 (Bouzerdoum & Pinter, 1993). 
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Figure 1.4 ~ Equivalent electrical model of J neuron: From Bouzcrdoum and 

Pinter( 1993) 

Specific types of cellular neural networks have been developed that allow the use of 

non-linear lateral inhibition. 

Many different types of non-linear processing elements arc available within 

electronics. Amplifiers can provide multiplication or division and diodes can provide 

exponential functions. Cellular neural networks, which use multiplicative processing, 

are called Shunting Inhibitory Cellular Neural Networks (SICNNs). 

They have been used by Pinter (1983a; 1983b) to explain selectivity for small objects 

of visual units in the ventral nerve of insects. They have also been used to explain 

adaptation of the receptive field spatial organisation and the spatial modulation 

transfer function. 

Non-linear neural networks have also been used in image processing for image 

enhancement (Jernigan & Mcclean 1992; Paradis & Jerigan 1994) and for motion 

detection. 

As artificial vision networks SICNNs are extremely effective as they are more 

resistant to multiplicative noise. Multiplicative noise has a standard deviation that is 

proportional to received intensity which means that peaks of the multiplicative noise 

look like larger edges than do additive noise peaks. 
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SICNN response is hased on relative: edge tu intensity ratio. This allows the SI( 'NN 

to have equivalent performance in high and low intensity areas under multiplic<llivc 

llOISC. 

Synthetic aperture radar (SAR) images and other coherent imaging processes (such us 

laser and sonar images) arc plagued by a special typi: of' noise called speckh: noise. 

Research has shown that speckle noise is a multiplicative noise process inhcn:nt in thi.: 

cohert.!nt imaging process. Dul! to the multiplicative noise pcrformailce of SICNNs 

they would be \'cry effective as an edge detection proct·ss for these coherent images. 

Shunting Inhibitory Cellular Neural Networks are biologically inspired networks with 

great promise as infommtion pror.essors for pattern recognition, vision and image 

processing tasks. 

1.4 S/CNN's and Edge detection 

As previously explained lateral inhibition within the retinal neurons in a biological 

system exists to reduce the flow of information required to be processed at the brain. 

Similar functions for lateral inhibition networks arc practical for artificial vision 

systems. 

Images of 640x480 pixels and 8-bit intensity quantisation consume over 2.45 Mbits. 

Multiple frames per second and colour images increase the required processing rates 

of vision systems greatly, requiring massively parallel processing arrays of high clock 

frequencies to be able to process the image data. 

SICNNs ability to process data in time and space allows information on edges and 

motion to be output. Sending only this information rather than all the visual 

infonnation reduces the data rate which in tum reduces processing requirements for 

artificial vision systems. Designs using SICNNs built with analog VLSI can provide 

real time processing. 
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Edgt: dt.!lcction is the first process in many image processing tasks including 

scgmt:ntution. The output from a SICNN is ready for furthcr complex processing 

operations. 

The majority of edge detectors use linear models which provide adcquatc response to 

additive noise but not to muhiplicative noise. They require complicated pre-filtering 

to lower tht: level of multiplicative noise which adds an extra step to image 

processing. The SICNNs ability to cope better under multiplicative noise conditions 

means they are idl!al to use as the initial processing step in segmentation of coherent 

imaging systems. 

In this thesis \Ve investigate SICNNs as edge detectors. Edge d~tection is often the 

first and most important stage in many vision systems. 

1.5 Project Outline 

The objectives of this project are to:-

1. Implement and optimise three SICNN architectures 

2. Develop and implement a two-dimensional SI CNN architecture in Matlab 

3. Compare performance of two-dimensional SICNN with conventional edge 

detectors. 

The three architectures that will be implemented are the standard SICNN and the 

standard SICNN with complementary output processing, and SICNN with division 

output processing. 

The standard SICNN has already been implemented and optimised to some extent in 

previous works conducted by Ward and by Pontecorvo (1998). The complementary 

output processing architecture was implemented but not optimised and the division 

output processing had not been implemented or optimised. 

A two•dimensional SICNN architecture has previously been demonstrated but with 

limited capacity for someone not familiar with SICNNs to use. Thresholding for this 
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architecture is an important component nnd is covered in some detail within this 

thesis; sec chapter 3 for details. 

1. 6 Thesis Organisation 

This thesis is organised as follows. 

Chapter 2 outlinl!s many standard edge detector designs as well as explaining the 

theory behind the Sobel and Canny detectors used in the comparison with the SICNN 

edge detector. It also describes edge detection using SICNN t·Jge detectors. It 

outlines the current designs and the previous work conducted on optimising the 

designs by Ward and Pontecorvo ( I 998). 

Chapter 3 discusses the various techniques in post-processing, the edge processing 

enhancements and the important topic of thresholding. It explains a number of the 

global thresholding methods and some of the local thresholding methods. 

Analysis of the evaluation of the edge detectors is explained in chapter 4. This 

chapter outlines the criteria which will be used to optimise the SICNN edge detectors 

and compare the Sobel and Canny edge detectors with the SICNN edge detectors in 

chapter 7. 

Chapter 5 covers the method and the results of the optimisation of the SI CNN with 

complementary output processing and the SI CNN with division output processing. 

Chapter 6 describes the software implementation of the SICNN as a Matlab toolbox 

using the information about optimised parameters from chapter 5. 

Chapter 7 compares the SI CNN with complementary output processing with the Sobel 

and the Canny edge detectors. 

Chapter 8 presents the conclusions of the project and points the way forward to areas 

of further investigation. 
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Chapter 2 

Edge Detection 

Edge detection is one of the most common processes in image processing. It is 

common and useful because edges form the outline of an object and therefore can 

provide infomrntion about area, perimeter and shape. Computer vision is generally 

about identification and classification of objects and the information that edge 

detection provides is vital to this task. 

Edge detection is part of a process called segmentation which is identification of 

regions witl':.in an image. After edge detection further processing can be used to 

determine what each region represents. 

Edge detection is actually the process of determining the edge pixels, whereas edge 

enhancement increases the contrast between the edges and the background so the 

edges become more visible. Edge tracing is also used to follow the edges and collect 

them into a list. 

When talking about the theory of edge detection most traditional methods talk about 

the ideal step edge. This is a change in grey level at exactly one point. The greater 

the step the easier it is to detect the edge. Without noise the step can be clearly 

determined. 

Unfortunately in real world situations this ideal step is not realistic. Due to 

digitisation, the image is most often sampled with the edge across a number of pixels. 

Most edges that happen in nature are not exact. They can be considered to be a ramp 

with grey levels moving from one grey level to the other grey level. This may cause 

10 



the edge to appear over a number uf pixels. Exact edges may he captured across a 

pixel causing three grey levels to represent one exact edge. 

Another issue is noise. Many factors such as light intensity. motion, temperature, dust 

and lens effects can make two pixels that would normally be at exactly the same grey 

level to have diffenmt levels in the image. Noise means that ideal edges arc never 

encountered in real images. 

2.1 Derivative Based Edge detectors 

Edges are characterised as areas of rapid change of grey level. Derivative operators 

are sensitive to this and can operate as an edge detector. The rate of change of grey 

levels is large near an edge and small in other areas. 

As images are 2 dimensional level changes in both directions must be considered. For 

this reason partial derivatives of the image, with respect to the directions x and y, arc 

used. 

An estimate of edge direction can be detennined by using the result of the partial 

derivatives ofx and y as vectors and computing the vector sum. The operator used is 

the gradient operator which is a two dimensional vector. 

(01 al) Al(x,y) = ax. by Eqn 2.1 

Due to the gradient function being a continuous function and the native data, being 

sampled, we must use something which approximates the derivative. This is the 

difference operation. To implement the difference operation we can take the 

difference between 2 adjacent pixels. For the horizontal direction; 

ll.xif(x,y) = l(x,y)-J(x -1,y) Eqn 2.2 
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For the vertical direction: 

Ll.11 l(x,y) = l(x.y)- l(x,y-1) Eqn 2.3 

The problem with this approach is that it gives an approximation for the gradient at 

(x-1 /2. y- l /2). 

To get the result at (x, y) we could use for the horizontal direction; 

Ax/(x,y) = I(x + 1,y)- I(x -1,y) Eqn 2.4 

For the vertical direction; 

Ay1 l(x,y) = l(x,y + 1)- l(x,y-1) Eqn 2.5 

This operator gets a gradient at (x, y) but ignores the value of the pixel at (x, y). 

To get a composite value for the pixel taking into account both horizontal and vertical 

result the magnitude of the edge response is calculated as follows. 

( 01 )
1 

(
01 )

2 
Emug(x,y):.:: ox + by 

Eqn 2.6 
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There is also fol edge direction that can be determined. 

(
8///j ) E.,,, (x. y) = arctan 
81 
;! Eqn 2.7 

This approach of separate horizontal and vertical processing and combining is seen 

throughout edge detection and helps to reduce computational complexity and assists 

in determining edge direction. 

2.2 Template Based Edge Detectors 

Template based edge detection uses small templates as a model of an edge. The 

model can either be an attempt to model the level changes in the edge or an attempt to 

approximate a derivative operator, the latter appearing to be the most common. 

There are many different template based edge detectors but the one that will be used 

for comparison here is the Sobel template. 

2.2.1 Sobel 

The Sobel edge detector uses convolution masks having the following form. 

s ., 
- 1 

2 

0 

0 

0 

1 

2 

1 

-
SY = 

1 - 2 -
0 0 

1 2 

1 
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These templates are really an approximation of the gradient of the pixel at the centre 

and are the equivalent of applying the ,11 gradient operator to each 2x2 portion of the 

3x3 region and then averaging the result. The two components Sx and Sy correspond 

to the horizontal and vertical component of the edge. 
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Em:h S_~ and S\ mask is convolved with the imagc I producing outputs Ix and ly. 

Magni tudc of each pi xc I is calculated using the fo I lowing formula. 

Eqn 2.7 

The direction of the edge can also be determined. 

E ,1;, ( x, y) == arctan (I_, / I J Eqn 2.8 

After determining the magnitude the edge map is then thresholded to give distinct 

black and white edges. 

2.3 Other Edge Detectors 

2.3.1 Canny 

Canny's specification of the criteria for an optimum edge detector was that it 

possess:-

• Quality detection - find all edges 

• Good localisation - the smallest possible distance between found edges and actual 

edges 

• Single response to an edge 

Canny defined these mathematically as a series of equations. The Canny edge 

detector creates a convolution filter that is based on the optimisation of these 

equations. The filter would smooth the noise and locate the edge. 
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To achieve the first criteria meant that thl.! signal-lo-noise ralio (SNR) an<l lhc 

localisation criteria needed to be maximised simultaneously. 

SNR 
I 

Jr 1 fw g(-x)h(x)dx 
= Eqn 2.9 

~ )I' a,,J_w h 2 (x) 

Localisation is the inverse of the standard deviation of the spatial spread of detected 

edges about their true positions (Pontccorvo 98). The greater the localisation the 

better the edge detector performance. 

I I:;. g1 (-x)h' (x)dxl 
Localisation = ...........---;:=====" 

tr 
a" !w h' 2 (x)d""C 

Eqn 2.10 

The third criterion, the distance between noise generated peaks, is maximised. It has 

the form. 

I l [.,, h'(x)dx ] 2 

Xma.x = 21t ----
[.,, h"(x)dx 

Eqn 2.11 

Solving the criteria analytically is difficult but an efficient approximation is the first 

derivative of the Gaussian function. 

Eqn 2.12 

From Canny (86) it was found that the best filter fonn was the first derivative of the 
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Gaussian function. 

G'( ) ( X ) (- ~~i J X == --, e 
er 

Eqn 2.13 

In 2 dimensions a Gaussian is given by 

( - (•i. 7 _ri)) 
G ( , ,,, l 

x.y)==a·e · Eqn 2.14 

G(x,y) has derivatives in both the x and y directions. Taking these derivatives to 

make G'(x,y) and then convolving G' with image I will give an output image that has 

enhanced edges. 

This two-dimensional convolution while easy to implement is expensive 

computationally. This two-dimensional convolution is equivalent to t\\10 one­

dimensional Gaussian masks with the differentiation done separately using a 

differentiation convolution mask. 

The process of the Canny edge detector is 

1. Read image I 

2. Create 1 D Gaussian mask G with a parameter of the standard deviation 

3, Create a 1 D mask of the derivative of the Gaussian in the x and y directions G x 

and G y with the same standard deviation. 

4. Convolve image with G along the rows to give Ix and along the columns to give Ir 

5. Convolve Ix with G x to give Ix' the x component of I convolved with the Gaussian 
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and convolve ly with G y to give ly' 

6. Compute the magnitude of the result at each pixel using the equation. 

Eqn 2.14 

This produces an edge image with large pixel values for edges small values for 

backgrollld Simple thresholding tt:chniques using global thresholds to show a pixel 

as white above threshold T and black below do not give very good results. 

Canny thresholding uses thresholds based on the gradient of each pixel. Basically 

each of the edge pixels have a direction associated according to the formula below. 

( ) (
/'.(x,y)J 

E,1;r x,y =arctan ~· --
1:.(x,y) 

Eqn 2.14 

Edge pixels should have a gradient magnitude greater than the gradient magnitudes on 

either side of the edge. The final step with the Canny thesholding is called 

nonmaximum suppression, where pixels that are not local maxima are suppressed. 

In the most common case, where the direction of the gradient of the pixel doesn't 

point in the horizontal or vertical directions, a linear interpolation of the gradients of 

the imaginary pixel adjacent and on the gridline is calculated. 

The Figure 2.1 shows the case where the gradient of the central pixel does not point 

directly at an adjacent pixel. 
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Figure 2.1. Nonmaximurn suppression (a) Pixels with gradient directions no! 
horizontal or vcrt ical (b) Horizontal and V crt ical vector components of gradient. 

Pixel A has a gradient that points between pixel Band C. 

The vector components of the gradient of A are A x and A y and B and C follow the 

same naming convention. The point P ( Px, Py) to be calculated is the point at the 

intersection of a line drawn along the gradient direction of A and the gridline BC. 

The gradient magnitude at point P(Px, Py) is estimated as 

G = (P,. -C.1• )Norm{c) + (s_ •. -P_1• )Norm( B) Eqn 2.15 

This is the case for vertical gridlines, the case for horizontal gridlines lhe Py value is 

replaced with the Px value and the C pixel is the pixel that is to the left of the B pixel. 

G = (Ps -CJNorm(C)+(B.t -PJNorm(B) Eqn 2.16 

This process is completed for every pixel in the canny output image and then the 

magnitude of the central pixel must be greater than both its neighbours'. .If the 

magnitude is not greater, then its value is set to zero. 
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At this point the image still has gri.;y levels. To rcnrnvt.: these Canny suggests 

flysleresis thresholding. Hysteresis thresholding is explained in Chapter 3. 

2.4 Edge detection using SICNN 

A frcdforward shunting inhibitory cellular neural network is described by the 

following ordinary differential equation 

Eqn 2.17 

Where Ii is the input, ai is the decay factor and Wj is the connection weight matrix. In 

steady state the output is given by 

I 
X - I , - "\"" 

a;+~w/1 

Eqn 2.18 

This equation can be implemented using a convolution and a division operation. 

The three architectures being compared are the standard S ICNN, the SI CNN with 

Complementary output processing (COP) and the SICNN with Division output 

processing (DOP) 

The standard SICNN uses a single pass of a positive-X-Zero window. X-Zero 

windows are simply a way of describing the number of zeros in an asymmetric 

template matrix. Positive means that X zeros occur before M positive values and 

negative means that M positive values occur before X zeros. 

All output processing is designed to increase the prominence of an edge peak from its 

standard prominence after a standard SICNN. T11ere are a number of approaches to 

output processing using SICNNs. The two recugnised as achieving the best response 

are Complementary Output Processing (COP) and Division Output Processing (DOP). 

These output processing methods are discussed in the output processing chapter 3. 
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2.5 Overview of previous work 

This project work follows on from the Ph.D. thesis "Edge detection and Enhancement 

using Shunting Inhibitory Cellular Neural Networks' by Carmine Pontccorvo. 

This thesis studied SICNN edge detectors as compared with other standard edge 

dctL'Ctors. 

Pontccorvo's study introduces a number of post-processing techniques that 

significantly improve the quality of the output of SICNNs, most notably the 

complementary output processing technique that is used in this thesis. 

It also derives mathematically the output of the SICNNs including the shape of the 

edge response. Readers interested in a thorough coverage of these aspects of SICNN 

are referred to Pontecorvo (1998). 

Some areas that affect the SI CNN performance were briefly examined. For example, 

the decay factor, a, that maximises the peak response to noise ratio (PNR) was found 

to be directly proportional to the mean intensity. 

The symmetric and asymmetric weight distributions were examined and it was found 

that the asymmetric window yields a better performance. 

The optimum performance from the distribution of connection weights was found to 

come when the sum of the connection weights is one. A basic study of the connection 

weights was completed. This determined that the greater the p value of the Kaiser 

distribution used to generate the connection weights matrix the thicker the edge 

response. This led to decrease performance of the edge detector. 

A quantitative analysis of connection weights, decay factor and window size was part 

of the thesis report 'SICNN Optimisation for Edge Detection and Image 

Enhancement' by James Ward. 

Ward"s thesis used the HR (hit rate) and PdvFA(probability of detection Vs false 
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alarm) tests, both dcsc ri bcd in c haptcr 5 or this thcsi s, to c val uatc an optimum fl val uc 

llw the SICNN cdgi.: detector. The optimum ~ value was found to be 1.4. 

The symmetry of the conm:ction weights was examined again and the conclusion was 

that tht.: asymml!tric window was optimum. 

The number of zi.:ros in the odd asymmetric window was examined with the best 

perlimnancc of the edge dcti.:ctor found to be when the matrix was odd length and the 

n um bcr of zeros, X. cq ua Is. 

X = y -0.5 
2 

\\'here Y is the connection weights matrix length. 

Eqn 2.19 

The optimum length of connection weights was found to be 11. 

Attempts at determining a way to remove the mean intensity (10 ) from the SICNN 

output was unsuccessful. The optimum decay rate from the one.dimensional SICNN 

tests was found to be 1.6 times the mean intensity lo, 
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Chapter 3 

Post Processing 

There are a number of different options for post processing the SICNN output. 

There is post processing to enhance the output SICNN levels and these include 

Complementary Output Processing (COP) and Division Output Processing (DOP). 

These attempt to increase the peak edge response of the SI CNN edge detector. 

Output processing is also conducted to convert the output image to a black and white 

binary image with O representing background pixels and I representing edge pixels. 

This output processing is called thresholding. 

3. 1 Complementary output processing 

This technique was originally developed in the during trial and error period of project 

experimentation (Ponte:corvo, 1998). Then it was called Negative Edge Noise 

Reduction (NENR) technique due to its ability to increase edge peaks and suppress 

noise. 

Complementary output processing perfom1.: 2 SICNNs, one with positive X-zero 

window and the other with negative X-zero window, and then complements one with 

the other. This has the effect of reducing the peaks due to noise in the output and 

therefore increasing the peak edge response. 
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3.2 Division output processing 

Division output processing is a scheme that was devised by Dr. Abdcssclam 

Bouzcrdoum as a post-processing scheme that could increase output pcak edge 

response. It uses division as its operation which produces output which is centred 

about I. Subtraction of one from this output moves the centre to being about 0. 

Division output processing again performs 2 SICNNs as COP docs and then divides 

the output of one by the output of the other. This can have the effect of increasing the 

peak edge response leading to increased chance of edge detection. 

3.3 Thresholding 

Thesholding or grey-level segementation is the convers10n between a grey-level 

image :md a bilevel (monochrome) image. This bilevel image should contain all of 

the essential information concerning the number, position and shape of objects in an 

image while con!aining a lot less other information. Reducing the complexity of the 

data simplifies many recognition and classification procedures. 

There are a number of different methods of thresholding but all of them make use of 

some method to determine a range of grey levels that constitute an edge. The level of 

each individual pixel fo then compared to the threshold and a detennination is made 

on whether it is a black or white pixel. 

Thresholding can be done on a global or a local level. Global level thresholds 

determines a threshold across the entire image whereas local thresholds generally 

determine thresholds for each individual pixel. 

The more advanced thresholding algorithms use some form of recursion to repeatedly 

revise the threshold until the output to some error function is minimised. 
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3.4 Global Thresholds 

Global thresholds use one threshold across an entire image. They tend to be simpler 

to implement and quicker to process the image data. The problems urc in imugcs with 

high contrast changes or Gaussian shading. In these images edges in low intensity 

areas tend to be missed and too many edges arc picked up in higl: ·1tcnsity areas. 

For many images global thresholding gives a good processing/performance balance. 

3.4.1 Histogram percentage 

The Histogram percentage algorithm creates a histogram of the grey levels within a 

processed image. A percentage of pixels that are edges within the image must be 

sdected. 

The algorithm then uses this percentage to calculate the number of pixels that should 

be selected. 

M=Total_ number_ of _pixels _in _image*Percentage Eqn 3.1 

The threshold is determined by counting down through the grey levels on the 

histogram until the M1h pixel is reached. This grey level is used as the threshold with 

the pixels of grey levels equal to or above being an edge and the rest being 

background. 

A modified version of this algorithm is used within the edge.rn matlab code for 

thresholding the edges after processing. The modification allows for the detection of 

weak edges ru1d strong edges and includes the weak edges in the final output where 

they meet with the strong edges. 

The major flaw in this thresholding mechanism is the arbitrary selection of a 

percentage of edge pixels in an image. The resulting rdge map may include pixels 
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that arc not significant due to this. 

3.4.2 Histogram Two Peaks 

The two peaks algorithm came from the observation that there arc generally two 

pcaks in a histogram. The threshold is dctermint:d from thi: low point between the 

two pcaks. 

Finding thc first pi:ak is simple by just looking for the bin with the largest value. 

Most times the second largest peak will be the bin inside the largest so some method 

of valuing peaks that arc aw<\y from the first peak would be good. 

One method used commonly is to multiply the histogram values by the square of the 

distance from the initial peak. This gives a preference to peaks distant from the initial 

peak. 

Thus if the largest peak isj the second largest peak k is 

k = max((k- J}h(k)) Eqn 3.2 

Working down from the second peak using the values from the original histogram 

allows the evaluation of the low point between the peaks. This grey level is used to 

threshold. 

3.4.3 Histogram Hysteresis 

A high threshold is selected Th and a low threshold is also selected T1• Any pixels 

with a magnitude above Th are automatically edges and any pixels whose magnitude 

is greater than T1 and which are also connected to the high threshold edge pixels are 

marked as edges also. 

This threshold scheme has been implemented as an option within the SICNN toolbox. 
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It is the thresholding scheme used by cdgc.m. 

Other methods arc available which provide local thresholding according to gaussian 

distributions but these ,.ire computationally complex and it is arguable whether they 

give any better output. 

Global thresholding is difficult for any image where contrast in the image is limited. 

In these cases local thresholding is effective. 

3.5 Local Thresholds 

Local thresholding techniques arc generally considered to give better results than 

global ones. Local thresholds generally work by generating a threshold for each pixel 

based on some function of the pixels in the local neighbourhood. 

Unfortunately the local thresholds that have been tried in this project have not given a 

significantly better output as they tend to react in a more extreme way to noise in 

areas of low intensity. This is not desired as this tends to create edges in the 

background rather than outlining objects, as is the intention of edge detection. 

Added to this problem is that SICNN edge detectors respond to relative changes in 

intensity level meaning that small edges in low intesity areas react at a similar level to 

larger changes in high intensity areas. This means a jump from 1 to 2 grey level will 

output the same as a jump from 20 to 40 grey level. 

3.5 1 Moving Average 

The moving average thresholding technique uses a moving average to determine a 

threshold. Output with levels above twice the moving average can be included in the 

output image. 
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3.5.2 Relaxation 

The n:laxtaion mt:lhod of lhrcsholding works by recursively including pixels in cilhcr 

the set of white or black pixels. A comparison is then made which looks at the pixels 

adjacent to the cum:nt pixel and if the pixel is found to he completely surroumJcd by 

pixies of a different colour the pixel is moved from one set to the other set. 

This continues rccurisvcly until none of the pixels change over one recursion, 

indicating they arc all correctly identified. 

This method tends to produce larger areas of full colour 
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Chapter 4 

Evaluation of Edge Detector 

There are many different methods of evaluation of an edge detector. Currently the 

performance of the SICNN edge detector has been determined using the Hit-rate (HR) 

and the Probability of Detection versus False Alarm (PDvF A). These by their nature 

rate any errors as the same even though there may be localisation differences. They 

also don't take into account the thresholding that is required for any real edge 

detection algorithm. A more appropriate Figure of Merit (FOM) would include these 

issues 

4. 1 Edge models 

Ideal edges have already been discussed but we have detem1ined that these edges 

rarely occur due to:-

1. Objects not having a shape outline 

2. Edges not occurring at the margins of a pixel 

3. Noise 

This means that to achieve realistic results for edge detection comparisons we must 

use realistic edges. Figure 5.1 demonstrates the problems with sampling. 
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Figure 4.1 - The results of edge sampling (a) pixels align with edge (b) pixels do 
not align with edge; From (Parker ,1997, p5) 

In part a) the image edge occurs right in the margins of a pixel causing an ideal edge. 

If we move the camera even a tiny bit to either side the edge falls midway in a pixel. 

This creates a pixel that has a grey level that is somewhere between the grey levels of 

the pixels on either side of the edge pixel. The actual grey level of the resultant pixel 

can be determined from the following equation. 

(v ... a ... +v,,a,,) 
V= 

aw +a,, 
Eqn4.1 

Where v w and v b are the grey levels of the white and black levels, and aw and ab are 

the areas of the white and black parts of the edge pixel 

In effect we have 2 "half' steps which correspond to exactly one edge within the 

image. 

Noise is also an issue when it comes to detennining the quality of an edge detector. 
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Noise cannot be predicted accurntcly bccausc of its rundom nature and c:11wot even he 

measured accurately, so it is impossibltJ to determine the contrihution of thl! noise 

from the actual pixel data. Noise can, howcvcr, hL· drnractcrised statistically by its 

etlCcts on an image and has a mean and a stauJard dcviation. 

There arc two types of nuise specific to image analysis. 

Signal independent noise is the noise that is added when an image is transmitted 

electronically from one spot to another. If A is the original image, N is the noise a:id 

B is the final image then 

B=A+N Eqn 4.2 

This is also termed additive noise. 

A and N are unrelated to each other and although N could have any statistical 

properties it is assumed to be normally distributed about a mean of zero with a 

standari.. .ieviation er. 

The second type of noise for images is called signal dependent noise. This is noise 

where the level of the noise at each point in an image is a function of the grey level at 

that point. The grain seen in some photographs is an example of this type of noise. 

B=A+f(A) Eqn 4.3 

A specific type of signal dependent noise is where the noise has a standard deviation 

proportional to the grey level. This is called multiplicative noise. 

All of these factors lead to a series of derived tests that can be used to determine the 

quality of an edge detection algorithm 
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4.2 Edge Strength-to-Noise Ratio 

Noise is added to an ideal edge according to an Edge Strength Noise Ratio (ESNR) 

value. The ESNR equation is 

( 2cI0 ) ESNR = 20 log 10 -;;-

Where 

c = contrast value 

Io = mean intensity 

cr = standard deviation of noise 

Eqn 4.4 

Tests are run on ideal images with ESNR from 0-30dB. 

At ESNR = 0, cr=2cl0 or the size of the step edge, at ESNR=20 cr=l/10*2cl0 one tenth 

of the size of the step edge. As the ESNR increases the edge becomes more defined. 

Figure 4.2 illustrates this. 

ESNR=O ESNR=20 

" " ,, 

First Row 

3J 40\,, BO 1(1 100 120 UO 18) UO 'ZIO 

Top 

• • • • ~ m ~ • • -

(a) (b) 

Figure 4.2 - Edges under (a) ESNR = 0 dB and (b) ESNR = 20 dB 
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4.3 Criteria 

The evaluation tests use the Sf CNN edge dct:.:~tor to enhance the image and then they 

perform some form of thresholding to determine the edge pixels. 

The general method of comparison of the performance of the various architectures 

being compared is via the following two measures. 

• Hit Rate lHR) test 

• Probability of Detection vs False Alarm (PDvF A) 

4.3.1 Hit rate 

As the test image only has one edge in each row the edge in the output is selected by 

finding the pixel with the maximum magnitude. 

The hit rate test detects how often an edge detector correctly determines the pixel 

within an image that is an edge. 

The position of each of the detected edges is compared to the position of the actual 

edge. If the positions match then a count is incremented. 

After checking the detected edges in each row of the image the resulting count is 

normalised using the total rows in the image. 

The result of this test is a percentage giving an indication of how often an edge would 

be detected in an image corrupted by a similar ESNR level. 

The hit rate test is conducted over an increasing level of ESNR to show the rate of 

increase in hits as edge strength gets bigger. 

4.3.2 Probability of Detection vs False Alarm 

The Probability of Detection vs False Alarm (PDvF A) gives an understanding of the 
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lt:vcl ot\:dge peaks in an output SICNN processed inrngc. 

For a set ESNR the image is processed using SICNN. The output is progressively 

thresholded at rising threshold levels. At each thresholding level a count is done on 

the numbl:r of correctly detected edge pixels vs tht: number of falsely detected cdgc 

pixels. 

The values for probability of detection arc calculated as follows 

PD= L (E Juuml (i,j) = E,,u,,.,J (i, j}) 

L£.,r11m/ 

Eqn 4.5 

The values for false alarm are calculated as follows 

Eqn 4.6 

The ideal values that would exist for the perfect edge detector would have a PD 

equalling 1 and FA equalling 0. 

The PDvFA gives an indication of the level of elevation of an edge peak from the 

noise floor. High peaks at edges enable the edge detectors to operate under higher 

levels of noise. 

This test is also a measure of the noise suppression of an edge detector. When the 

noise is suppressed the number of peaks from the noise floor decreases and the floor 

becomes less jagged. 

Neither of these criteria measures two other important factors in evaluation of edge 

detectors, localisation to actual edges of incorrectly detected edge pixels and 

resolution of output image. 
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Loc .. i!is,llion is how dose a deh.:cted edge is from the actual edge. False edges can he 

detcctL'd anywhere on an image aud a localis,llion Ii gun.: of merit attempts to rate 

higher the edge detectors which, when they do incorrectly detect an edge, it is in the 

local urea or an actual cdge. 

4.4.3 Pratt 

One possibility is the Figure of rvtcrit ( FOM) defined hy Pratt ( I 978 ). The aims of 

this figure of mcrit was hl penalisc the deter.:tor according to the syuarc of the distance 

from the detected edge pixcl to the actual edge pixel. The Prutt FOM has the 

following fom1: 

I' rv1 +ad(i) 2 

FOM = _;~_i ___ _ Eqn 4.7 
maxU.P I 1 ) 

IA is the number of edge pixels found by the edge detector. 

Ii is the number of edge pixels in the image. 

d(i) is the distance between the i111 pixel of the actual edge and the one found by the 

edge detector. 

a is used for scaling and is kept constant for a set of trials. 

There are recognised problems with evaluation based on the Pratt FOM. such as lack 

oflocal edge coherence and no penalties for clustering of false alarms or missed 

edges. For optimisation using simple edge images. however. it is adequate. The Pratt 

FOM is implemented in the optimisation of COP and DOP chapter and is used to 

compare with the output of the HR test. 
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Chapter 5 

Optimisation of COP and DOP 

SICNNs 

This chapter outlines the methods that will be used to optimise the parameters for the 

complementary output processing and division output processi~g methods. 

We have decided to use a slightly modified process based on the nptimising 

r,rocedurcs outlined by in previous studies (Ward, 1999; Pontecorvo 1998). 

5.1 Method 

The methods that will be used to optimise the parameters for SICNNs with 

complementary output processing and division output processing will be similar to the 

tests perfonned in the previous studies conducted on optimisation (Ward, 1999; 

Ponlecorvo 1998). 

The parameter to be optimised is the Kaiserp value for the connection weight matrix 

C. A summary study of the optimum value of the decay factor will also be conducted. 

A decision was made to use the ~ based Kaiser windO\v selection of optimum 

connection weights. Although this limits the allowable weights in the connection 

matrix and is likely to not determine the actual '"best" weight matrix it simplifies the 

process. It will allow a quick selection of the optimum out of a range of~ values 

which allows the project to continue on to comparison of the merits of SICNN edge 

detectors as against other standard edge detectors. It is recommended though that a 

more appropriate method of finding the optimum connection weights be based on 
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some g1.mctic algorithm. This method would avoid bias in selection of' particular 

weighting functions that will be assumed to have the best set of wdghts. 

Unfortunately this method is complex requiring work on determining the evaluation 

function, the fitness function and how the genetic information about connection 

weights can he passed between generations of weight indexes. This study is outside 

the scope of this project as it woulci entail a foll study of genetic algorithms and time 

requirements do not allow for this. 

The method used by the previous studies for optimisation of connection weights was 

to initially use the HR test then confirm the results using the PDvF A test. 

The Hit Rate test used a visual approach to narrow the region of P values likely to 

give the best edge output. The PDvF A test then confinned this region. 

More extensive tests were then undertaken using the HR test to narrow the region of p 
values again so that the value was detennined to be between two integer values. 

A final test that calculated the total area under the HR curve was then run to arrive at 

an optimum value. 

The problem with this testing is that it doesn't take into account localisation of the 

determined edge peaks to the actual edges. The HR test only detennines the 

maximum value and this also doesn't take into account the suitability of the schemes 

for thresholding. 

To account for the localisation effect of the peaks another test will also be undertaken 

to give a peak value based on a localisation figure of merit, the Pratt figure of merit. 

A comparison of the results of these two methods of connection weight optimisation 

will determine the relative metits of the HR test and complete the optimisation of the 

parameters. 
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5.2 Results 

5.2.1 Complementary Output Processing Results 

The COP Hit-rate test was run with jl values ranging from 0-25 at intervals of one. 

Figure 5.1 shows the hit rate test results for 0, 5, 10, 15, 20 and 25 0 values under 

noise ranging from 0-20 dB ESNR. 
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Figure 5.1 - Hit rate test for COP SI CNN p =O, 5, I 0, 15, 20, 25 

Clearly the tendency as the p value increase:! the resulted in worse I-IR test figures. A 

plot of the sum of the HR results from 0-20 dB across 13 from 0-25 is shown in Figure 

5.2. This graph demonstrates this even more dramatically. 
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Figure 5.2-Area under HR curve for COP SI CNN p value 0-25 
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The oplimum p value for lhis COP SICNN would be somewhere in lhe range 0-2. 

A second HR test was done using p values from 0-2 at 0.1 intervals. A plot of the 

sums of the HR from 0-20dl3 for p from 0-2 appears in Figure 5.3. 
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Figure 5.3 -Area under HR curve for COP SICNN p value 0-2 

This test shows the improvement in the output of the HR test as the J3 value 

approaches zero. This seems to indicate an optimum pvalue of 0. 

The conclusion to be drawn from this is that the optimum p value for the connection 

weights is p = 0. This conclusion is different from the result of the previous thesis 

which concluded that the optimum J3 value was 1.4. 

Next confirmation of this result using the Pratt FOM was conducted. Figure 5.4 (a) 

shows the result of the ESNR 0-20 dB summed Pratt test over the range 0-25 P using 

the interval 1. Figure 5 .4 (b) shows the result of' the ESNR 0-20 dB summed Pratt test 

over the range 0-2 J3 using the interval 0.1 
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Figure 5.4 - COP (a) Summed Pratt test 0-25 p (b) Summed Pratt test 0-2 P 

This Pratt test confirms the results of the HR test in that the optimised P value for the 

COP SICNN is 0. It should be noted that the Pratt test is usually employed to test 

edge detectors with a threshold. The threshold use for this test was the same one used 

for the HR test which simply selects the maximum value along each processed row. 

Including a thresholding method in the test may achieve different results. 

There are a number of differences between the two thesis runs that could account for 

the difference in the previous studies results and this current study. 

First the sample size used in the previous thesis was 200x40, while the results for this 

thesis come from an image matrix of 1000x200. Having a greater sample size allows 

more accurate statistical information to be detennined enabling more certainty in 

output results. 

Second, for low ESNR values the SICNN output at the edge is almust 

indistinguishable from the output of the SI CNN in the background. This means that 

the greater the size of the background the higher the chance that one of the 

background pixels will be selected as the edge pixel rather than the actual edge. 

This is reflected in the change in the HR results at low noise between the previous 
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thesis results anJ this thesis. 

Third. in James Wards thesis the HR for the COP SICNN edge detectors at Odil 

ESNR was at 0.1 (Sec Figure 5.3, James Wards thesis). The output at Odil ESNR of 

the COP SICNN in this thesis was less than 0.025. This is due to the incrcust.:d 

sample size. 

5.2.2 Division output processing 

A mathematical simplification of the output of the Division Output Processing 

method can be achieved and this can be used to reduce the computational complexity. 

5.2.2.1 Simplification of DOP 

The output from the DOP method is 

E 
E.,u, =-1· -1 

E, 
E =E,.-E, 

um £ 

' 
The individual SICNN outputs are 

I 
E1 =---­

, a+C,. •I 

I 
ER=---­

a+CR •I 

E = l(a+C,, •I)-I(a+C,. •I) (a+C,, •I) 

"" (a+C,. •l)(a+C11 •I) I 

E =(C,,-C,.)•I 
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E = C,,ew •I 
UUI a+c,. •I 

This effectively means that using DOP we remove the stability problems inherent in 
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using a weight index th:.tt has positive and neg:itivr,; compom:nts. 

The new connection weights index can he modified to optimise DOP with the Ci. 

acting as a contrast inhibition matrix. 

A reasonable view would be that the Cnew matrix be designed so that in areas of 

similar intensity .icross all pixels Cnew evaluates to zero. 

An effective Cnew that follows these design criteria would be. 

[-I -I -1 -I I ] 

5.2.2.2 Optimisation of DOP 

The DOP SICNN HR test was conducted by modifying the Cnew connection weights 

matrix. The P value was used to construct a set of Kaiser weights and then the first 

half of the matrix was converted to negative. The matrix 1 ength used was I O. 

The contrast inhibition matrix was normalised to one and the weights were all the 

same. This made the contrast inhibition matrix 10 0.1 values. 

Figure 5.5 shows the DOP HR test for p of 0, 5, 10, 15, 20 and 25 over ESNR in a 

range from 0-20dB. 
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Figure 5 .5 - Hit rate test for DOP SICNN p =O, 5, I 0, 15, 20, 25 
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It is obvious in this graph that the performance of lhL· <lctcctor declines as the Ii value 

increases above l 0. This indicates the optimum connection weigh ls [\value is bdow 

10. 

Looking at Figure 5.6, which shows the summed HR area from 0-20d8, the optimum 

P value is in the range of Oto 3. 
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Figure 5.6 -Area under HR curve for DOP SICNN P value 0-25 

Figure 5.7 shows the same summed area test run on intervals of 0.1 over the range 1 

to 3. The optimum p value of the DOP SICNN from this graph is 1.7. 
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Figure 5.7 -Area under HR curve for DOP SICNN p. value 0-2 
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Contirm,1tion of this result using the Pratt FOM tests was then condm.:teJ. Figure 5. 8 

la) shows the result of the ESNR 0-20 dB summed Pratt test over the range 0-25 ri 
using the interval I. Figure 5.8 (h)shows the result of the ESNR 0-20 dl3 summed 

Pratt test over the range 1-3 jl using the lntcrv,11 0.1 
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Figure 5.8 - DOP (a) Summed Pratt test 0-25 p (b) Summed Pratt test 0-2 p 

The Pratt FOM tests result in exactly the same optimum J3 value of 1. 7 confirming the 

result from the HR test. 

Due to the simplification of the Division Output processing SICNN it now requires 

only 2 convolutions and a division operation. This is considerably less processing 

than the complementary output processing SICNN which requires 2 convolutions, 2 

divisions and a matrix subtraction to give similar levels of edge detection. 

A plot of the results of the HR test for the optimum DOP and optimum COP SI CNN 

appears in Figure 5.9. 
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Figure 5.9 - HR Comp:i.rison of optimum COP and DOP SJCNNs 

The figure shows that the DOP SICNN significantly outperforms the COP SICNN 

having much higher performance in the ESNR region from 4 to 12. 

This increased simplicity along with a better performance of the DOP SI CNN means 

that it is the best method currently available for output processing SICNN edge 

detection. 

5.2.3 Decay Factor 

Analysis of tests in the previous thesis conducted on the output of the SICNN as mean 

intensity was varied showed peaks that were dependent on mean intensity In. Either 

side of this peak a sharp decline in output hit rate occurred but as the decay factor got 

higher the Hit Rate output stabilised. The graph from the thesis is in Figure 5.10. 
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Figure 5.10 - SI CNN output performance as Decay factor a is varied 
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A decay rate can be chosen which will enable lhl! SICNN to operate in this n:gion. 

This is not the optimum decay rate but instead givt.:s good pcrformarm: over a large 

range of mean intensities and contrnsts conditions which un: likely to exist in real 

world images. 

In order to be operating in this region of operation the decay rate should be 

approximately twice the mean intensity over the entire image. 

Tests conducted on real images where the decay factor was varied based upon the 

average intensity of the region about each pixel throughout an image created edge 

peaks in background areas that were not part of any objects. This is another reason to 

have a set decay factor value for an entire image. 

5.3 Conclusion 

This chapter analysed the HR results for complementary output processing and the 

results showed that the highest HR occurred when the connection weights matrix was 

constructed using a Kaiser P value of 0. 

An optimised Kaiser J3 value for the creation of the connection weights matrix for the 

division output processing SICNN was also investigated and the result was a p value 

of 1.7. 

Interestingly the Pratt test used to confirm the optimum values had exactly the same 

result as both of the HR tests. This confirms the value of the HR test in optimising 

the parameters of the connection weights. 

The decay rate was selected based on the previous studies of the HR output of a 

SICNN in different mean intensity and contrast conditions and attempts to always 

operate the SICNN edge detector in the not optimum but more stable region of the 
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graph. Thi.s re.suited in a decay rate of 2 times the mean inwnsity over the entire 

image. 

The rcsulL<; ol' this optimis,1tio11 will be implemented in the software implementation 

of the SlCNN toolbox, which is presented in the next chapter, and the optimised 

values will improve the overall perfonnancc of the 2 dimensional SJCNN edge 

detector. 
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Chapter 6 

Software Implementation of 

SICNN 

The initial aim of this project was to produce a single SICNN command that could be 

used for further investigation of the performance of two-dimensional SICNNs. 

To do this it is important to allow for a highly customisable command that will allow 

the user to alter:-

1. The connection weights 

2. The decay factor 

3. Output processing style 

4. Thresholding style. 

6. 1 Command l/0 structure 

The intention is to provide a command that can be used as a function and can also be 

used by itself in much the same way as the edge command within the image 

processing toolbox. 

The connection weights may be supplied as one or two-dimensional matrices. The 

connection weights should not include any negative weights as the stability of the 

SICNN is not assured. If connection weights are not supplied a connection weight 

matrix, which has been optimised for the particular type of output processing, will be 

created and used. 
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The form of the output from the SICNN1<l function will he <lcpcndcnt on the structure 

thnt it is being passed to. The SICNN2d can p;;1ss the output image, or the output 

image and th1.,• connccti()Jl wcight matrix, or in addition it can output the decay factor 

used. 

The edge command is structured so that i ran output matrix is not dcfo1cd then a new 

ligure will be created which will display the thresholded edge image. 

6.2 Options 

The decay factor can be selected and should be a positive value to ensure SICNN 

stability. Should the decay factor not be supplied then one is selected based on the 

optimum decay factor studies. 

The output processing style will specify " for no output processing, 'COP' for 

complementary output processing or 'DOP' for division output processing. Should 

the output processing style be omitted then the default selection \Vill be no output 

processing. 

Thresholding will automatically be pcrfrmned using the following options:-

• '2p' indicates the two peaks histogram method, 

• 'none' indicates no thresholding, 

• 'edge' indicates use of the hysteresis histogram thresholding standard used by the 

edge.m command in the image.toolbox .. 

• 'MA' indicates moving average thresholding. 
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6.3 Standard Matlab Toolbox structure 

Creating a toolbox in Matlab nllows cxi.:culion of the toolboxes commam.ls from 

within any working directory. 

All of the .m tiles that arc part ofa toolbox arc contained within the same directory. 

1l1is din:ctory can OC anywhere although convention has it generally placed below the 

toolbox directory which is a directory immediately beneath the Matlab installation 

directory. 

The directory that has been created must be included in the MATLABPATH variable. 

This variable is initially created from a list of directories contained in the 

toolbox/local/pathdef.m file. To add toolbox directories the line 

"'/MATLABRJ l/toolbox/toolbox_dir_name:', ... "must be added to the end of the 

Path Defined Here section. The MATLABRl 1 directory name should be replaced by 

the Matlab installation directory name. 

The next time Matlab loads the new path will be in the MA TLABPA TH variable. 

This variable is used for two purposes; as a search path and a help file creation path. 

When a function is typed at the Matlab command line the Matlab program follows the 

following process. 

l . Checks for variable name in memory 

2. Checks for function in memory 

3. Checks for Matlab built in function 

4. Checks current directory for filename. 

5. Checks for toolbox function through the MATLABPATH 
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Any program 111 a local directory has prcccdcncc over Mi\.TL/\BP/\TH dircclory 

l'tmctions. 

The path for MATLABP/\TH is also used in compiling the help window information. 

Each directory in the Mi\.TLABPATH that contains .m functions should have a 

contcnts.m file. 

The contents.m file has general information about the files contained within the 

directory. The initial Help screen that is displayed on the help window looks at the 

eontents.m file in each directory in the MATLABPATH, extracts the first comment 

line, and compiles a path with "directory name - first line of contents.m file". 

Double-clicking on the directmy line displays the entire contents.m file. 

The contents.m file can contain references to the individual .m files. To reference a 

.m file the name of the file should be at the beginning of the line, after the% comment 

symbol, and should be followed by a horizontal dash (-). After the dash a brief 

description can be written. 

When these individual .m file lines are double-clicked the Matlab help system finds 

the file with the same name and checks that the name is repeated with;n the name.m 

file and as the first word, in capitals, of the first comment line of the .m file. 

The entire comment section below this is then displayed as the help text. 

It is useful when creating Matlab .m files to have knowledge of how Matlab processes 

the files. Script files are processed with Matlab loading a line at a time each time the 

script is run. Functions load the entire .m file into memory and then run the program 

from there. This makes functions execute considerably faster than script files. 

Bearing this in mind it is good practice to create functions within toolboxes as this 

speeds processing noticeably for more complex tasks. 
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6.4 Conclusion 

The result of the software implementation is the toolbox thut is outlined in Appendix 

C. This toolbox includes implementations of different thresholding mcthoc.ls which 

can be used to test the effectiveness of each of the thresholding styles. 

The toolbox approach provides a self contained set of functions that can he used by 

people with only basic understanding of Matlab to explore the SJ CNN edge detectors 

and perhaps compare them with other types of thresholding styles or edge detector 

types. 
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Chapter 7 

Comparison of 2D SICNN with 

Other Edge detectors 

7. 1 Methods of comparison 

Evaluation of the output of edge detection algorithms with real images is difficult. 

Edge detectors can operate on images which have widely varying contrasts and 

background noise. Each edge detector has parameters which can be altered to 

optimise the edge detector for particular conditions. 

The Canny detector allows the selection of different cr (standard deviation) values. It 

also allows for different high and low hysteresis thresholds. 

The Sobel template edge detector can use larger matrices for greater noise 

suppression. 

The SICNN edge detector can use different connection weights, connection weight 

lengths and decay factors to alter the performance and resolution. 

For comparison the Canny and Sobel edge detectors will be used as implemented in 

Matlab. This means that to process images the edge.m Matlab function will only be 

passed the image and the detector type requiring the edge.m file to determine 

threshold levels. 

The SICNN will use the COP method of output processing and use a positive 6-Zero 
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window of h.:ngth 11 as the connection weight matrix. The r, value uscJ to crcatl! tht.: 

window was 0. Thi.: n.:ason the COP SICNN was usi.:d is that this component of the 

research was comph:tcd bcfrnc the optimised performance of the simplified DOP 

SICNN w,1s discovered. 

The edge detectors will be cvr1lumcd using two methods. 

The first method is objective and based on the Pratt figure of merit mentioned 

previously in chapter 4. 

Image I will be applied to each of the edge detectors and then the output of the edge 

detector will be compared with the actual edge map to give a Pratt FOM. The edge 

detectors will be ranked according to this. 

The second method will be subjective. A scri~s of images will be passed through 

each detector. The output will then be shown to ten people who will be asked to rank 

the images according to the following question; 

"Which edge image most accurately represents the objecls in the actual image?" 

This question has been chosen to avoid the selection process being just arbitrary, as it 

would be if the question "Which edge image is better?" was asked. As the process of 

edge detection is mostly used as the first step in segmentation and then object 

identification it makes sense to evaluate the edge detector performance with this goal 

in mind. 
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7.2 Objective comparison results 

The objective test used the following image: 

Figure 7.1 - Test image used in Pratt FOM testing - image 1 

This image was designed to have a couple of different step sizes. The black region is 

at intensity 1, the grey region is at intensity 3 and the white area is at intensity 7. The 

edges are at angles to allow the 2D edge detectors to be tested. 

Different levels of noise, with ESNR based on an edge size of 2, were then added to 

the image and then the image was processed by the Sobel, Canny and COP SICNN 

edge detectors. Hysteresis Histogram Thresholding was set at 0.95 of the image 

pixels as background for the Canny and SICNN edge detectors. The output images 

are presented in Appendix A. 

The output Pratt FOM values under different levels of noise are in Table 7.1 

ESNR Sobel Canny COP SICNN 

0 0.275 0.154 0.028 

5 0.459 0.290 0.276 

10 0.800 0.881 0.721 

15 0.949 0.961 0.955 

20 0.948 0.957 0.956 
Table 7.l - Pratt Figure of Merit results 
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The SICNN fores well at highi.:r l'.SNR li.:vc\s pi.:rfr,rming hi.:tter than the Sohi.:I i.:dgi.: 

detector and Vl!ry close to the Canny dl!tector. At low ESNR the SICNN is hy for the 

worst, detecting edges poorly. 

The thresholding method affected the results for both the Canny and the SICNN COP 

edge detector. The hysteresis histogram threshold, which requires a certain number of 

edge pixels to be selected for the output edge image, combined with the Pratt FOM 

penalising incorrect edgcs based on the square of the distance to the actual edge, mean 

that the pixels that were found in the noise greatly reduced the Pratt results. 

At high ESNR the Canny edge detector seems to reduce in Pratt FOM output. This 

could be due to the post-processing morphological thinning operations built into the 

Canny edge.m implementation. Overall both the SICNN and Canny edge detector 

seem to peak at around the same value of 0.96 whereas the Sobel peaks at around 

0.95. 

This demonstrates the importance of having an appropriate thresholding scheme when 

operating under noisy conditions. 

7.3 Subjective Comparison 

The subjective test was conducted using the 11 images in appendix A The processed 

images and the raw results of the survey also appear in appendix A. 

Points were given to each of the images, 3 for being selected as best, 2 for being 

selected as second best and I for being selected last. Some statistics on the results are 

shown in Table 7.2. 

Statistic Sobel Canny COP SICNN 

Total 179 232 249 

Average 1.627 2.109 2.264 

Selected Best 18 43 49 

Selected Worst 59 31 20 
Table 7 .2 - Summary statistics for subjective assessment. 
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The test shows a clear distinction between the COP SICNN and the Canny and Sobel 

edge detectors. 

The Sobel edge detector rated worst in every statistic, being selected as the worst 

detector in over half of the 110 possible selections. The output from the Sobel edge 

detector tended to miss important edges that could be used to determine an object's 

identity. The areas where the Sobel edge detector did well involved images with high 

contrast very few objects and with low levels of background intensity changes as 

demonstrated in image 2, Appendix B. The larger numbers of pixels required in the 

output images of the SI CNN and Canny detectors meant that the actual edges in the 

image were thick or there was superfluous background information that obscured the 

object. 

Figure 7.2 shows the number of times each edge detector was selected as best for each 

:unage. 
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Figure 7.2 - Subjective image assessment: Images selected as best 

For 5 of the 11 images each edge detector was selected as best by at least one person. 

This shows the volatility of subjective assessment. 

In total the SICNN was selected most times as best in images 3, 4, 7, 9, 10 and 11. 

Canny was selected as best for 1, 5, 6, 8 and Sobel was selected best for 2 and 5. 
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The average score for the image results arc in Table 7.J. 

- ~~-r---- .. ···~---.· &,·---~-·~-· -------·" - - ··-··· ------~-- .. 

Image Numhcr I 2 3 4 5 6 7 8 9 10 I I -
SICNN 2.1 2.1 2.8 ., -

_.) 1.9 1.4 2.7 1.6 2.4 1.7 2.7 
~ 

Canny 2.8 I. 7 2 1. 7 2.1 2.J J.<) 2.2 2.1 2.2 2.2 

Sobel 1.1 
., ., 1.2 1.8 2 2.3 1.4 2.2 1.5 1.1 I. I -·-·~- ~·-~-- ~-- ~------ nT•-·-·-••• ... . --- .. ~ , ·---~----· ... .. - ... -·- -~ ·- -·----·-- ···----·- -------~ 

Tahlc 7.3 -- A wragc subjci.:tivc si.:orc for cad1 imagl'. 

A major problem with the SICNN edge detector mentioned by the subjects was the 

thick lines around objects. The subjects mentioned that the thick lines made the 

objects less clearly identifiable. The thick lines were not present in the Canny edge 

detector as the non maximum suppression and the morphological thinning stage 

which is included in the implementation ensure that edge lines arc only one pixel 

wide. 

Further tests showed that by reducing the length of the connection weights matrix the 

width of lines was immediately reduced. Figure 7.3 shows the Lenna image that has 

been processed by the SICNN edge detector under three different length weights 

matrixes. The larger the matrix the thicker the lines but the greater the noise 

suppression. 

Figure 7.3 - The image Lenna processed by SICNN with connection weight 
matrix length (n) 3 (b) 7 (c) 11. 
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In mldition the hysti.:n:sis thn::shold was reduced to select only YX1 of image pixels as 

t.!dgc pixels and this furthcr improved thc clarity ofthc edges. 

It sct.:ms that both of tht.:st.: paramders can hc used to signilicantly modify the 011tp1H 

oftht.: SICNN cdgt.: detector and should tht: detector be implemented us a plug-·in lor 

Photoshop these an: the particular parameters that should be inodiliablc. 

The modification of the threshold limits for the hysteresis thresholds is necessary to 

reduce the edges detected in some images and increase the number of edge pixels in 

other images with many objects. 

Alternatively one of the other thresholding methods, including the effective local 

thresholds available in the SICNN toolbox, may give better image output. 

7.4 Conclusion 

Overall the comparison of the SICNN edge detector against Canny and Sobel edge 

detectors has found the SI CNN edge detector perfonnance is comparable. 

The Canny edge detector shone in the Pratt FOM with the SICNN matching the 

output of the Canny at high ESNR. 

When it came to the subjective assessment the SICNN edge detector perfom1ed 

exceptionally, being better than the Canny or the Sobel detection. The ability to 

modify the threshold parameters and connection weight length provided the flexibility 

for the SICNN edge detector to perform in a variety of conditions. 

Clearly when the performance of the SICNN edge detector is married with its small 

computational cost it becomes very attractive as the first stage in the segmentation 

process. 

The ability to implement the SICNN edge detector in analog VLSI fairly simply 

ensures this edge detection method has a future in artificial vision systems. 
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Chapter 8 

Coll1lch..nsions 

8.1 Summary of Results 

This project has examined the issues in edge detection and specifically the SICNN 

edge detector and its performance in comparison to other edge detectors. 

Studies of edge detectors confim1ed that most of the best performing and most 

advanced edge detectors involve many stages and significant levels of processing 

overhead. Simple solutions, such as template operators do not perform particularly 

well on most images. 

Thresholding methods were analysed and this is an area that still needs more research. 

SICNN edge detectors produce images which have edge pe2.ks which are significantly 

above the background level. Standard histogram style thresholds, which arc designed 

to detect edges as high intensity peaks. give large thick lines \vhcn t.k:aling with 

SICNN outputs due to their requirement to set a percentage of pixels as edges. Other 

local thresholds, which tend to use local averages. do not perform very accurately 

tending to find the edges on each side of a processed image. This leaves edges 

outlined on both sides but the actual edge is suppressed. 

Some study of the output histogram of the SI CNN edge detectors, which takes into 

account the knowledge that the relative changes in output levels give similar sized 

peaks, would allow a more accurate thresholding mechanism to be developed. 

Optimisation of the parameters of the SI CNN Complementary Output Processing and 
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SICNN Di\•ision Oulput Processing edge detectors found that the results nl' the 

pn:vious studies on COP optimisation disagreed with the results of this stucJy. Some 

reasons for this an: discussed in chapter 5. The fl V<.1luc for the optimised COP 

SICNN was O and the ll value for the optimised DOP SICNN wns found to be I. 7. 

A comparison of tht: COP and DOP performance shows that DOI' outperforms COP 

in both quality of edge detection and low processing overhead. The futun: of SICNN 

edge detection seems to point towards the DOP as the output processing method. 

The final stage in the project was the comparison or the SJ CNN edge detector with 

COP to the Sobd and Canny edge detectors. The objective results of this comparison 

again outlined the inadequate performance of the histogram hysteresis threshold 

method under low ESNR conditions. At high ESNR levels the SICNN detector 

performed on par with the Canny detector and both performed better than the Sobel 

detector. 

In the subjective test the SICNN was a clear winner. The Canny detector performed 

poorly when there was high levels of noise on an image while the Sobel often missed 

edges. It was noted that the performance of the SJ CNN edge detector is particularly 

variable as the length of the weight matrix and the level of the threshold is varied. 

This can be a good thing as it allows easy customisation of the edge detector to 

different images. 

One of the biggest effects of the SI CNN edge detector was the ability of it to suppress 

areas of similar intemity. This means that rather than having small noisy peaks in the 

background the areas arc almost completely flat. Real edge peaks arc of high enough 

levels that the thresholding scheme would not select any peaks that did occur in the 

background areas. 

The perfonnance of the SICNN edge detectors is very good under many different 

conditions. Th~ ability of the SI CNN to be implemented easily in VLSI, due to its 

CNN structure, means that they have a future as on chip vision pre-processors. 
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The devdopmcnt of SICNNs has been basl!d on biological studil!s or rl!al vision 

systems. It seems certain tlwt li1tun.! artificial vision systems will Jmvl!, m; part of their 

structure, a place for early levels of visual processing. SICNN irnpll!mentation on 

chip will perform this function nicely. 

8.2 Areas of Further investigation 

There arc still many areas that could be investigated in SICNNs. 

An obvious area would be the implementation of a genetic algorithm to investigate 

connection weights for the various types of SI CNN with output processing. There arc 

a number of Matlab toolboxes that exist in public domain which provide algorithms 

for mutation between generations and provide guides in writing selection algorithms 

and defining the genetic characteristics of the connection weight matrix. A useful 

toolbox for this is the GAOT toolbox; a URL is provided for this in the references. 

A useful tool for the study of the parameters available within the SICNNs \Vith output 

processing would be to implement the SICNNs as a plug"in for Adobe Photoshop or 

Paintshop Pro. Plug-ins can provide an interactive dialog box which would enable 

easy modification of the parameters while being able to view the output immediately. 

A plug-in software development kit exists and is free from the Adobe WWV•/ site. A 

URL is provided for this in the references. 

Tests comparing the DOP SI CNN with other edge detectors would also be interesting 

with the new optimum DOP SICNN showing promise as being more effective than 

the optimum COP SICNN. This could look more closely at different methods for 

evaluating two-dimensional edge detector performance. 

The analysis of colour images using SI CNN is also an area that would be interesting. 

Possibilities for improving the performance in areas of low contrast may be possible 

by examining the separate colours. As combining the colours to make a grey scnlc 

intensity image suppresses the individual colour so too it could suppress edges that 

would be visible in the separate colour images. Sc.me form of combination. similar to 

the hysteresis thresholding, which separates the image into low intensity edges and 
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high intensity cdgi:s and then adds the low intensity edges when..: thi:y connt·d to the 

high intensity cdgi:s would he :1 practical consideration. The edges would he delectt:d 

in each colour image and in the combined gn.:y .scale image. Each c<lge image could 

use a high threshold an<l then thi: colour images could he combined with the grey 

scale to improve the perfrmnance of the edge detector. 
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Appendix A 

Objective Images - Chapter 7 

Image Canny Sobel SICNN 

ESNR = 0 . 

ESNR = 5 

ESNR = 10 

ESNR = 15 

ESNR = 20 
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Appendix B 

Images and raw results - Chapter 7 

Image I 

Canny Sobel SICNN 

Image 2 

Canny Sobel SICNN 

Image 3 

Canny Sobel SICNN 
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Image 4 

Canny Sobel SICNN 

Image 5 

Canny Sobel SICNN 
Image 6 

Canny Sobel SICNN 

Image 7 

Canny Sobel SICNN 
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Image 8 

Canny Sobel SICNN 

Image 9 

Canny Sobel SICNN 

Image JO 

Canny Sobel SICNN 

Image 11 

Canny Sobel SICNN 
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I 
The following table contains the raw st:orcs for the suh_jt:t:tivc imagt: tt:sl. 

Subjects 
lmage1 1 2 3 4 5 6 7 8 9 10 

Sobel 1 1 1 1 1 1 1 2 1 1 
--·->--------·-~--

Canny 2 3 3 3 3 3 3 3 2 3 
-

SICNN 3 2 2 2 2 2 2 1 3 2 
lmage2 1 2 3 4 5 6 7 8 9 10 

Sobel 2 3 2 '/ 1 3 3 3 1 3 
- -· ·-~·--

Canny 1 1 3 3 3 1 1 1 2 1 
SICNN 3 2 

·~ 
1 2 2 2 2 2 3 2 

lmage3 1 2 3 4 5 6 7 8 9 10 
Sobel 2 1 1 1 1 1 1 2 1 1 

Canny 1 2 2 3 3 2 2 1 2 2 
-

SICNN 3 3 3 2 2 3 3 3 3 3 
lmage4 1 2 3 4 5 6 7 8 9 10 

Sobel 2 3 2 1 1 2 2 2 1 2 
,-..--........ 

Canny 1 1 3 3 3 1 1 1 2 1 
SICNN 3 2 1 2 2 3 3 3 3 3 

Images 1 2 
., 

4 5 6 7 8 9 10 ... 
Sobel 3 3 2 2 1 1 3 1 1 3 

Canny 1 2 1 3 3 2 2 3 3 1 
SICNN 2 1 3 1 2 3 1 2 2 2 

lmage6 1 2 3 4 5 6 7 8 9 10 
Sobel 3 2 3 2 2 1 2 3 2 3 

Canny 1 3 2 3 3 2 3 1 3 2 
SICNN 2 1 1 1 1 3 1 2 1 1 

lmage7 1 2 3 4 5 6 7 8 9 10 
Sobel 2 2 1 1 1 2 1 1 2 1 

Canny ·1 1 3 3 3 1 2 2 1 2 
SICNN 3 3 2 2 2 3 3 3 3 3 

Images 1 2 3 4 5 6 7 8 9 10 
S0be1 2 3 2 2 3 1 1 3 3 2 

Canr1, 1 2 3 3 1 3 3 1 2 3 
SICNN 3 1 1 1 2 2 2 2 1 1 

lma~e9 1 2 3 4 5 6 7 8 9 10 
Sobel 2 1 2 2 1 1 2 2 1 1 

Canny 3 3 1 1 3 2 3 1 2 2 
SICNN 1 2 3 3 2 3 1 3 3 3 

lmage10 1 2 3 4 5 6 7 8 9 10 
Sobel 1 1 1 1 1 1 1 1 1 2 

Canny 2 2 3 2 3 2 3 2 2 1 
SICNN 3 3 2 3 2 3 2 3 3 3 

)mage11 1 2 3 4 5 6 7 8 9 10 
Sobel 1 1 1 1 1 1 1 2 1 1 

Canny 2 3 3 2 3 2 2 1 2 2 
SICNN 3 2 2 3 2 3 3 3 3 3 
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Appendix C 

SICNN toolbox structure 

Then: arc nrnny tiles contained in the SICNN toolbox structure. Following arc a number of 

files that arc included to do many ofthi: functions required. 

C.1 Contents.m 

% SICNN Toolbox, 
'I; This is written to demonstrate the shunting inhibitory cellular neural network 
Ii edge deto2ctors. 
; 
%Processing: 
% SICNN2d - thi.<1 implements the two-dimensional sicnn edge detector. 
'5 sicnnl - one dimensioned edge det<:>ctor. 
% sicnnCOP complementa.ry output processing with SICNN. 
% sicnnDOP - division output processing with SICNN. 
; 
",Thresholdiny: 
i rawthn,sh - raw threcahold on a th~(•.c;hold level. 
'I, movavthresh - moving ,1vcr,v1e threshold. 
'l, twopeakth~·esh 2 pcc1ks threslwld. 
·t hysh~sttlu-esh hysteresis hic:togram threshold (as in edge.ml. 

' % Grant \'/alkC'r, 3 November 2000. 
i Copyright (c) 2ocn by G. W.:ilker, 
% All rights reservea, 

C.2 Hyshistthresh.m 

function Eout=hyshistthresh(I,percentpixels); 
%hyshistthresh - hysteresis histogram method 
% as used in edge.m 

• % Eout hyshistthresh(I,pei::centpixelsl 
% INPUT: 
'ii I "" input image. 
% percentpixels = percentage of image which is edge pixels. 

' % OUTPUT: 
% Eout = output edge image. 

' % Adapted from edge.m Grant Walker, 3 November 2000. 
% Copyright (cl 2000 by G. Walker. 
% All rights reserved. 

[p,q]=size(IJ; 
PercentOf Pixel .sNotEdges=percentpixels; 
ThresholdRatio=0.7; 
[counts,x]=imhist(I, 64); 
highThresh = min(find(cumsum(counts) > PercentOfPixelsNotEdges*p*q)) / 64; 
lowThresh = 'l'hresholdRatio*highThrec1h; 
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tht-l'~'h I low1'hre:•h hiqhThn::;h]; 

1-:we,lk 1 ·,1.,,1,Thre:11~; 
~:str,,11<1 l'-hic1h'l'hr,•,1h; 

[rstronq, c,tronq]=f~m!(E!:ltronq); 
e .,_ bw!<t,lnct(Ewc,1k, C!llrong, rstrong, 8); 

Eout=e; 

C.3 Movavthresh.m 

funct i.on E0ln~m-.:ivc11·thresh (I) 

imovaYthresh - m~winy averaqe threshold 
·:. 
'1, Eout = mov,,vthresh(I) 
'l, INPUT: 
; I = input image, 

' ~ OUTPUT: 
t Eout = output edge image. 
i 
'!; Grant Walker, 3 No·Jernber 2000, 
·1 Copyright {c, 2000 by G. Walker. 
i All rights reserved. 
[NR NC]=si::e(I); 
%used to create initial average 
s=B; 
surn-=O; 
for i=l:NR 

end 

if rern(i,2)1odd row 
for j=l:NC 

sum~surn-surn/s+I(i,j); 
av,,,sum/s; 

end 

if I(i,j)>2•av 
Eout(i,j)=255; 

else 
Eout(i,j)"'O; 

end 

else 

end 

for j=NC:-1:1 
sum=sum-surn/s+I(i,j); 
av=sum/s; 

end 

if I(i,j)>2~av 
Eout(i,j)=255; 

else 
Eout(i,j),,,O; 

end 

C.4 Rawthresh.m 

function Eout=rawthresh(I,v) 
% rawthresh - raw threshold using value v 

' 
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,. 
'! 

' '! 

' 

Eou t -~ 
INPll'l': 

l 
V 

!, OUTPUT: 

t;1wt.hr:uo;h(f,v) 

i 111•uL i m;iqe. 
thr,•:;h()ld v,1lwi. 

' ' ' ' 

Eoul out p11t ,_,dgt' ini<1ge. 

Grant Walk+>r, 
Copyri,Jhl le) 

3 MovPmb,cr 2000. 
2000 by G. \fo lker. 

\ All rights re~ervcd. 

EOll'c = (I '· v); 
Eout=I2 .. 255; 

C.5 Sicnn1.m 

function I = sicnnl {X, C, a, s); 
% 
'tsicnnl 
% 
% 

- Implements Shunting 
[I, L) = sicnn(X, N, 

% INPUT: 
% X Input Image. 

Inhibitory Cellular Neural Networks. 
s, n) finds 2 outputs images I and L. 

% N Number of Iterations. 
% 
% OUTPUT: 
% 
% 
% 

I 
L 

First output Image. 
Second output Image. 

i Abdesselam Bouzerdoum, 28 December 1993. 
% Copyright (c) 1993 by A. Bouzerdoun. 
% All rights reserved. 
% 
% modified 9 .September 1999 
% modified 29 S~pternber 2000 - Grant Walker 
% 1. included Io in the decay factor of sicnn mathematics. 
% 2. modified to work with any sized C matrix 

if nar.gin "'"' 1 
a = 1; 
C = [O O O O boxcar.(3) ']; 
s = 0; 

elseif nargin == 2 
a = 1; 
s = 0; 

elseif nargin 3 
s "" 0; 

else 
end 

C = C/sum(C) i 

%append columns for horizontal sicnn 
n • fix((size(C,2)-1)/2); 
for i = l:2*n 

[p,g]= size(X); 
X = [X(:,ll, X, X(:,q)); 

end 

%append rows for vertical sicnn 
m = fix ( (size (C, 1)-1) /2); 
for i = l:2*m 
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[p,q]-~ :;L:e(XJ; 
X" [X(l,:); X; X(p,:JI; 

end 

tsmoot.hinq c1 lqor.i tlun 
ifs-se() 

[x,yJ. mesh<Jrid(-11:n,-11:n); 
g "' ,c,;,:p ( - ( x . " 2 1 y . A 2 ) / ( 2 ' cl A 2 I ) ; 
gO'-' ~IJ:"\(Slltn((J)I; 

X"" co11·:?(:<:,,J, 'samlJ')/qO; 
end 

'; c re,1 te mPan 111.i tr i :-: 11 o I !- or f.t~.:ica y ra 1·i, 
'1 [p, qi =•size (C); 
iMf.c [ ( 1/ (p•q)) •ones (p, q) I; 
\Io=conv2{X,MF, 'same'); 

[P, Q] = size IX); 
I= X./(a + conv2(X,C, 'same')); 

% I= X./(a*Io + conv2(X,C,'same')); 
I = I (: ,2•n+l:Q-2•n); 
I"' I(2*rn+l:P-2*m,:); 
% I= I(2*m+l:P-2*m,2*n+l:Q-2*n); 

C.6 Sicnn2d.m 

function 
%SICNN2d 
't 

[eout]=sicnn2d(I 1 Method,Threshold,C 1 alpha) 
tool 

% 
% 

This program takes in the image and processes it accordin~ to one of three 
outputprocessing methods. A thresholding stage in included. 

% 
I Eout • sicnn2d(I,Method,Threshold,C,alphal finds output images rout. 
% or 
% sicnn2d(I,Method,Threshold,C,alpha) which display~ ima0e using 
imsbow(Iout) 
% INPUT: 

I - Input Image. % 
% 
% 
% 

Method - 's ' standard s icnn, 'cop' complemen tc:i ry output processing, 
'dop' division output processing. 

Threshold - 'ma' moving average, '2p' two peaks, 'edge' hysteresis 
histogram 
% (as used in edge.m), 

C - Connection weight matrix. 
alpha - decay rate. 

% 
% 
% 
% OUTPUT: 
% 
% 

Eout - Edge output image 

'none' no thresholding. 

% Defaults: 
intesity) 

Method= 'dop', Threshold = 'none', C=optimum, alpha=2*(average 

% 
i 
% 
% 
\i 
% 
% 
% 
% 

Each of the thresholds is also available to access individually 
ma= rnovavthre,~.m 
2p = twopeakthresh.m 
edge= hyshistthresh.m 

Grant Walker, 3 November 2000. 
Copyright (cl 2000 by G. Walker. 
All rights reserved. 
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<'l I or (11<1rqd1k ( L, t), n,tuJ i.n)); 

11K0 th,>tb=l ':i', 'cop', ',top' f; 
th res ho I dB~· { ' ?.p' , 'iwne ' , 'edge' , 'ma ' ) ; 

if isrgb(I), 
error( 'RGB images not s11pported, cull RG!32GRAY'); 

end 

if i:ia(I, 'uint:8') litic1(I,'uintl6'), 
1 'im2dc~ul>h' ( l l ; 

end 
'1-get c1rguements 
i E nargin == l, 

Metho-i= mc·thc.Jlb ( 3); 
Threshold = t:hreshclds { 2); 
C={ I; 
alpha=2 •mean {mean {I) l ; 

elseif narJin == 2, 
Threshold= thresholds{2); 
C=[]; 
alpha=2•mean (r.iean (I)); 

elseif na~·gin ..,= 3, 
C=[ l; 
alpha=2·rnoan(mean(I)); 

elseiI nargin "= ~' 
alpha'-'2 •mean (mec1n (I)); 

else 
end 

%c~eck method valid 
str=lower(Methodl; 
J=strmat:ch(str,methods); 
if isempty(J), 

error ( [' Invalid SICNN method: 'Method J); 
end 

%check threshold valid 
st r"'lo1-1er {Threshold) ; 
J=strmatch(str,thresholds); 
if isempty (JJ, 

error( ( 'Invalid SICNN threshold: 'Threshold ) ) ; 
end 

switch Method 
case 's' 

if isempty (Cl 
C=[OOOOlll]; 

end 
out=sicnnl(I,C,aLpha); 
outmax=max(out( .)); 
if outmax>O 

out=out/outmax; inormalise 
end 

case 'cop' 
if isempty (C) 

C=[O O O O 1 1 1); 
end 
out=sicnnCOP{I,C,alpha); 

case 'dop' 
C""kaiser(B,1.7); 
C"'-rot90( [-l*C(l:4); C(5:8)]) 1 

out=sicnnDOP(I,C,alpha); 
otherwise 
end 
switch Threshold 
case 'edge' 
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()Ill -0 by[;I\ i :;I l hn1,_;)l ( <J\lL, 0. 'J) ; 

C,-1'3t1 °11\d' 

Ulll m,,v,1v1 l1u_,,;l1(ouL); 

C,l>oP ','p' 
(1Ul lW,'fH'.ikLlln,:;h(uUL) i 

c-:iso 'no11(1' 

otherwise 
end 

if nargout~=O, 
im5how (oul); 

else 
eout,,out; 

end 

C. 7 Sicnncop.m 

function Eout'-':>icnnCOP (I, C, alpha) 
%sicnnCOP - Pwcesses image using SICNN with complementary output proc"!ssing 
% Eout=sicnnCOP(I,C,alpha) 
% 
% INPUT: 
% 
% 

' ' 

I input image. 
C connec~ion weights m~trix 
alpha= decay rate 

% OUTPUT: 
% Eout ~ output edge image, 
% 

% Grant Wc1ll:er, 3 November 2000, 
% Copyright (cl 2000 by G. Walker. 
% All rights reserved. 
C C/sum(C); 

Cl=C; 
C2=fliplr (CJ; 
C3=rot90 (CJ; 
C4=rot90 (C, -1); 

%Sicnn processing 
Ixr sicnnl(I,Cl,alpha); 
Ixl sicnnl(I,C2,alpha); 
Iyr sicnnl(I,CJ,alpha); 
Iyl sicnnl(I,C'1,alpha); 

%cop 
Ix=Ixr-Ixl; 
Iy=Iyr-Iyl; 

mag=sqrt(Ix.*Ix+Iy,*Iy); 

magmax=max(mag(:}); 
if magmax>O 

mag=mag/magmax; %normalise 
end 

Eout...,mag; 
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C.8 Sicnndop.m 

[unction !<:,our !ii, J111ll0!1(f, C, .ilphi1l; 
'i1;i,:n1111\)I' - !'1,w<'o.,;,-:; i111,uir• u:;inq :;1cm1 wJth rlivi:1i011 011tput pruc;,::i~1iri<J 
·~ F,,Ji!\ .,;·1,·1111J10!'(l,!",c1J1>h,1) 

' '1 INf'U'l': 
'! I 
i C 

' ' 
ulpha 

i OUTPUT: 

input i!11<1ge. 
connect \.on weiqllts matrix 

' ' 
Eoul - oulfJt1t ,,dq(! \in,.190,. 

't Grant W,1lker, J November 2000. 
·i copydght (cl ;:ooo by G. Walker. 

(Nl,N)=si.:e(C); 

Cl"[ (1/N) *ones (l,N) J 

Il=I; 

%append columns for horizontal sicnn 
n"' fix({size(C,2)-1)/2); 
for i = l:2*n 

[p,q]"' size(I1); 
Il = [Il(:,1), Il, Il(:,q)]; 

end 

[P,Q] = size(Il); 
Ix conv2JI1,C, 'same') ,/(alpha + c:onv2(I1,Cl, 'same')); 
Ix= Ix(:,2*n+l:Q-2"n); 

%append columns for vertical sicnn 
for i = 1:2*n 

[p,q]= size(I); 
I= [I(l,:); I) I(p,:JJ; 

end 

C=rot90 (CJ; 
Cl=rot90 (Cl); 
[P,QJ = size(I); 
Iy conv2(I,C,'same')./(alpha + conv2(I,Cl,'same')); 
Iy = Iy {2*n+l: P-2•n, : ) ; 

mag=sqrt (Ix.* Ix+ Iy, * Iy) ; 
magmax=max (mag (:) J; 
if magmax>O 

mag=mag/magmax; %normalise 
end 

Eout=mag; 

C.9 TwoPeakThresh.m 

function Eout=twopeak thresh (I) 
%twopeakthr:esh - 2peaks thresholding method 

' 't Eout "' twopeakthresh (I) 
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'/, INl'UT ! 
·l l input imuqe, 

' ·~ OUTPUT: 
E,1111. rn11pu1 PdLJ<' irn_iq,•. 

' '/, Gi·ant W.ilkcr, .l NoVf•m\,,_ir ;moo. 
i Copyrlqht (cl ;>OOO by G. Wiilkcir, 
i All rights 10servcrt. 

[countc;,x)-0 lmllisl(l, ti•ll; 
[v,fi.rstpr•;1k] m.:ix1,,,,unl.s); 
f,,r i_.-.;\:[.i1·st1w.ik 

COUllLco{i)--·ll; 
end 
fe,r i=firstp,•ak+l :G-i 

cvun to, ( i I -0 c-ount.s ( i) • ( i-fir stpcak) ; 
end 

[ v, secondpeak J =max {counts) ; 
i=secondpec1k; 

I= {I> (x(i)/64)•max(I(:))}; 
Eout=I; 

78 


	SICNN optimisation, two dimensional implementation and comparison
	Recommended Citation


