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ABSTRACT 

The ability of natural wetlands to act as effective nutrient sinks and to absorb new nutrient 

loadings is well documented. Constructed wetland systems (CWSs) aimed at optimising these 

nutrient removal mechanisms have been used for the removal of nutrients and pollutants from a 

variety of waters and wastewaters over the past thirty years. Over the past decade, the use of 

CWSs has extended to the removal of nutrients from urbail. stonnwater, as a more ecologically 

sensible management option to the traditional method of discharging stonnwater into natural 

wetlands. 

Storrnwater CWSs on the Swan Coastal Plain are designed to remove phosphorus. Phosphorus 

is a commonly limiting nutrient affecting plant growth and the soils of the Coastal Plain have 

traditionally been heavily supplemented with phosphorus for urban and agricultural purposes. 

Despite the aims of these systems, stormwater CWSs on the Swan Coastal Plain have indicated 

poor phosphorus removal, typically 60-70% lower than their designed target. In contrast, 

natural wetlands on the Swan Coastal Plain have indicated significantly higher phosphorus 

removal. 

Conceptual models of phosphorus removal for CWSs suggest that phosphorus is predominantly 

removed by the biofilm component, suggested to account for more than half the cumulative 

phosphorus removal in the long-tenn. One hypothesis proposed to account for poor 

phosphorus removal in CWSs on the Swan Coastal Plain has been a lack of an active biofilm 

component. Biofilms cover every surface of aquatic systems in a thin film, and consist of an 

organic matrix of algae, fungi and bacteria embedded in polysaccharides. 

This study compared the biofilms of two CWSs with four physico-chemically distinct natural 

wetlands on the Swan Coastal Plain in order to justifY or reject the proposed hypothesis. The 

study consisted of two distinctly separate experimental components. The first of these 

components aimed at quantifying the composition and biomass of biofilms, by investigating 
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biofilm biomass in terms of organic, inorganic and percentage organic biomass, as well as 

biofilm composition in tcnns of the algal, fungal and bacterial component percentage cover. 

The second component aimed at determining the rate at which biofilm can remove phosphorus 

from the water column by a series of controlled nutrient depletion 'batch-culture' experiments. 

The results indicated that biofilms in natural wetlands on the Swan Coastal Plain were highly 

variable in terms of both biomass and composition. The two CWSs sampled indicated 

comparable biofilm biomass and composition, with the measured parameters generally falling 

within the ranges observed between the natural wetlands. The composition of biofilms 

appeared to be a reflection of the Photosynthetically active radiation (PAR) intensity at the 

sediment, with the biofilms in wetlands observed having high colour (low PAR intensity) being 

fungal/bacterial dominated, and biofilms in wetlands observed having low colour (high PAR 

intensity) being algal dominated. The biofilm composition of both CWSs was fungal/bacterial 

dominated because of high colour. 

The phosphorus removal rate by biofilm appeared to be concentration dependant, with 

negligible phosphorus removal at low concentrations. However, at high concentrations, the 

phosphorus removal rates established were significantly higher than those previously 

published, confirming that biofilms have the potential for significant phosphorus removal from 

CWSs. 

This research demonstrated that biofilms have the ability to remove significant quantities of 

phosphorus at reasonably high rates. Poor phosphorus removal of stormwater CWSs on the 

Swan Coastal Plain likely result from biofilm compositions poor at phosphorus removal, 

resulting from CWS design that fails to optimise both biofilm biomass and biofilm 

composition. The research results indicated that the engineering of algal-dominated biofilm 

composition by manipulating CWS design, as well as increasing the surface area for biofilm 

growth, may significantly increase phosphorus removal. 
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Introduction 

CHAPTER I: INTRODUCTION 

Stormwater constructed wetland systems (CWSs) for the removal of phosphorus from urban 

stormwater have become favourable management options for minimising phosphorus input 

into natural wetlands. Natural wetlands have been well documented as effective nutrient sinks, 

with stormwater CWSs functioning by optimising these nutrient removal mechanisms. 

However, stormwater CWSs on the Swan Coastal Plain have indicated poor phosphorus 

removal efficiencies. In contrast, natural wetlands on the Swan Coastal Plain have indicated 

high phosphorus removal. 

Biofilms are organic matrices of algal, fungal and bacterial components embedded in 

polysaccharides that can cover every surface within a wetland as a thin film. Conceptual 

models of phosphorus removal in stormwater CWSs suggest that phosphorus removal by 

biofilms may account for more than half the cumulative phosphorus removal from a CWS. 

One hypothesis that has been suggested to explain poor phosphorus removal from CWSs on 

the Swan Coastal Plain is that the CWSs lack a sufficient and active biofilm component. 

This thesis aimed at determining the role of storm water CWS biofilms on the Swan Coastal 

Plain in terms of the production of biofilm biomass, and at determining the biofilm 

composition. The phosphorus removal rate by biofilms was also detennined. These biofilm 

parameters were measured against biofilm biomass and composition from a range of natural 

wetlands, in order to determine whether the biofilms in CWSs were comparable to the biofilms 

found within natural systems. 
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1.1 CONSTRUCTED WETLAND SYSTEMS 

1.1.1 Background 

Constructed wetland systems (CWSs) for nutrient removal were originally developed in the 

1970's for the treatment of domestic wastewater (sewage) as an alternative to chemical 

treatment plants (Jones, 1995; Hamilton et a/., 1993). Within the past three decades, the use of 

CWSs has been extended to include the treatment of industrial effluent (Hamilton eta/., 1993; 

Reddy & D'Angelo, 1997), the removal of pesticides and toxic chemicals (Edgehill, 1992; 

Alvord and Kadlec, 1996; Edgehill, 1996; Segar and Kalia, 1999), the treatment of aquaculture 

waste (Abeysinghe eta/., 1994), as mitigation for the loss of natural wetlands (Hamilton eta/., 

1993; Water and Rivers Commission, 1997), and more recently for the treatment of urban 

stormwater (Waters and Rivers Commission, 1997). 

The ability of natural wetlands to provide effective nutrient sinks for organic and inorganic 

pollutants and to absorb new nutrient loadings has been well documented (Hammer & Bastain, 

1989, cited in Buchberger & Shaw, 1995; Kadlec, 1997; Lantzke, et. a/., 1999). Constructed 

wetland systems operate by optimising the nutrient removal characteristics of natural wetlands, 

thereby aiming to achieve higher removal rates than in natural wetlands. 

1.1.2 Stormwater CWSs 

The use of CWSs for nutrient removal of urban stonnwater is a relatively new concept. Urban 

stonnwater has traditionally been discharged into natural wetland ecosystems, resulting in 

changed nutrient loading, water quality and wetland hydrological regimes (Lane et al., 1992; 

Braid and Lavery, 1996; Welker, 1995, cited in Water and Rivers Commission, 1998). This 

traditional system of storrnwater management is often inconsistent with longMterrn conservation 

goals of urban wetland ecosystems. CWSs offer ecologically responsible, potentially low-cost, 
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and low-maintenance options for minimising urban stonnwatcr nutrient flows into natural 

wetland systems (Hamilton et a/., 1993; Kadlec, 1997; Lantzkc, et a! .. 1999). 

CWSs remove the ongomg costs of staffing and maintenance associated with chemical 

treatment plants, and are therefore seen as a potentially low-cost and maintenance-free nutrient 

removal process (Reddy & D'Angelo, 1997). CWS use is also likely to increase due to such 

favourable economics (Buchberger and Shaw, 1995). 

The treatment of stormwater presents a significantly different challenge than wastewater 

treatment since stonnwater has significantly lower nutrient levels and .inherent high variability 

in inflow (Somes and Wong, 1997; Wong a"d Geiger, 1997). However, stonnwater CWSs are 

thought likely to be successful given the ability of natural wetlands to act as nutrient sinks. 

However, nutrient removal levels from stonnwater CWSs around the world have indicated 

high variability with phosphorus removal ranging from a 47% export to a 86% reduction 

(Braid and Lavery, 1996; Water and Rivers Commission, 1997). 

Stonnwater CWSs also have associated secondary benefits including aesthe~ic and recreation 

values for local communities, habitat creation (e.g. bird habitat) and education/research 

opportunities (Bowmer, 1993; Hamilton et a/., 1993; Reaves and Croteau-Hartman, 1994; 

Balla, 1994; Persson et al .. 1999). 

1.2 STORMWATER CWSs IN WESTERN AUSTRALIA 

The designs of CWSs on the Swan Coastal Plain, Western Australia, aim at reducing 

phosphorus, both particulate phosphorus and filterable reactive phosphorus (FRP). Filterable 

reactive phosphorus includes suspended colloidally bound phosphorus and dissolved 

phosphorus, with the latter readily bio-available and easily assimilated by wetland biota. 

Excessive inputs of phosphorus into natural systems may shift the biota composition structure 
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by promoting plant growth towards undesirable algal species. This can result in flow-on 

effects such as reduced concentrations of dissolved oxygen and decreased water clarity, with 

potentially significant, detrimental long-term effects on the biological communities and 

ecosystem functioning (Lee et a/., 1978). It is because of the bioavailability of FRP that makes 

it the phosphorus form of major concern for treatment in stonnwater CWSs on the Swan 

Coastal Plain. 

MagnifYing this problem is that the soils of the Swan Coastal Plain are typically deficient in 

phosphorus (Chambers, 1984), a result of a low phosphorus retention capacity (Water and 

Rivers Commission, 1997). Consequently, the soils of the Swan Coastal Plain have 

traditionally been heavily supplemented (and continually re-supplemented) with fast-release 

high-phosphate fertilisers for both agricultural and domestic purposes (Chambers, 1984). The 

low phosphorus retention capacity results in the phosphorus supplements washing into 

adjoining waterways and groundwater, either by direct runoff or via stormwater drainage 

systems. 

Limited monitoring of stormwater CWSs on the Swan Coastal Plain has prevented rigorous 

assessment of their effectiveness (Water and Rivers Commission, 1997). However, CWSs that 

have been well monitored have had low FRP removal efficiencies. Bartram Road Buffer Lakes 

(situated 40kms south of Perth) was developed with the primary objective of reducing influent 

stormwater phosphorus concentrations hy 30% (Water and Rivers Commission, 1997). 

Phosphorus removal ranging from an 18% export to a 25% reduction ofFRP, and a 47% export 

to a 3% reduction in total phosphorus (TP) was recorded between 1992 and 1995 (W A W A, 

1994; Braid and Lavery, 1996). Russell Street CWS (situated IOkm northeast of Perth) had 

similar phosphorus retention characteristics (Braid and Lavery, 1996), falling well short of its 

50% phosphorus reduction target (Water and Rivers Commission, 1997). Hammond Road 

CWS (situated 40kms south of Perth) had FRP removal of5.3% in 1998, and I 1.6% in 1999 

(Lund eta/. 1999, 2000). 
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In contrast, some natural wetlands on the Swan Coastal Plain have indicated high phosphorus 

removal. The Spectacles wetland (situated 55km south of Perth) averaged TP and FRP 

removal from influent water at 76% and 88% respectively between 1994 and 1995 (Water and 

Rivers Commission, 1997). Wetlands such as The Spectacles confinn the notion that wetlands 

can act as effective nutrient sinks. Additionally, they indicate that TP and FRP removal rates 

higher than the removal targets of the CWSs arc possible. 

The poor perfonnance of CWSs on the Swan Coastal Plain has been attributed to non­

compliance with design specifications, particularly with significantly lower hydraulic residence 

time (HRT) (Braid and Lavery, 1996; Waters and Rivers Commission, 1997). Reed (1995, 

cited in Persson et a/., 1999) lists insufficient provision for water storage (ie. low HRT) and 

hydrodynamic control as the main factors leading to poor perfonnance. CWSs that fail to meet 

their nutrient removal objectives have the potential to become long-term liabilities to the 

community (Persson et a/., 1999). Additionally, these systems may truly not be low-cost, 

requiring long-term careful management and fine-tuning by experienced practitioners 

(Bowmer, 1993). 

1.3 CWS DESIGN AND CONCEPTUAL MODELS 

CWSs are typically assessed by a comparison of influent and effluent water quality. This 

process calculates the overall effectiveness of the system, but reveals little about the internal 

nutrient removal processes (Hamilton et a/., 1993; Flood and Ashbolt, 1994). While the 

nutrient removal potential of CWSs is well documented, the lack of koowledge on FRP 

removal mechanisms has hampered their wider use (Lantzkc et a/., 1999). Understanding of 

the internal wetland mechanisms has typically relied on CWS conceptual models of 

phosphorus removal. 
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Conceptual models of phosphorus removal were developed as a baseline tool for CWS design, 

in order to outline the major internal removal mechanisms that affect CWS perfonnance. The 

DLWC (1998) conceptual model generalises the levels of phosphorus removal of soils, 

vegetation and sediment microbial communities over time in relation to cumulative phosphorus 

removal (Figure I). Similar stom1water CWSs conceptual models have been developed by 

Kadlec (1997), White and Wiese (1997, cited in JDA Consultant Hydrologists, 1997), 

Moustafa (1997) and Lantzke, eta/. (1999), with a similar number of models developed for 

wastewater CWSs (see Buchberger and Shaw, 1995). 

@ 

© 

TIME 

A Short term removal (Phosphorus absorption and plant uptake) 

·a· * Constant removal (Sedimentation) 

.C Long term removal (Biofilm development, peat accretion and filtration) 

D Cumulative Phosphorus removal {A+B+C) 

• The le11el of 1u1pended sedrment remo11al willlli!ry depending on inflow ~ource. (ie. 5\ormw~\N, 
1ewerage effluent) and design of 'Net land (presence or absence of sedimentation pond). 

Figure 1.1 Conceptual model of phosphorus removal mechanisms in stormwater CWSs over 
time. Phosphorus removal levels and time scales are not indicated because levels will vary 
between CWSs as a result of individual environmental and design characteristics (DL WC, 
1998), 
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Process (A) is the short-tenn removal of phosphorus by macrophyte (vegetation) uptake and 

absorption to the sediments. Early CWS research and development focussed on phosphorus 

uptake by macrophytes (Hamilton et a/., 1993), with the importance of both native and 

introduced vegetation in CWS design well documented in the literature (e.g. Lantzkc et a/., 

1993; Hamilton eta/., 1993; Bowmer, 1993; Tanner, 1995; Brix, 1997). However, as this 

more recent model suggests, phosphorus uptake by macrophytes increases rapidly in the 

establishment phase of the wetland, but rapidly declines and remains low when the 

macrophytes reach maximum biomass. Similarly, the nutrient adsorption sites of the sediments 

become saturated with time, reducing the role of sediments as a major nutrient sink. Beyond 

this point, phosphorus removal by both these mechanisms remains low. The harvesting of the 

above-water macrophyte biomass may promote additional macrophyte growth, thereby 

increasing phosphorus removal, but only in the short-tenn (Tanner, 1996; Brix, 1997; 

Lantzke, eta/., 1999). Ifthe wetland vegetation is not harvested, the phosphorus bound in the 

macrophyte biomass may be returned back to the system by decompositional processes (Brix, 

1997). 

Process (B) is the removal of particulate bound phosphorus by sedimentation. Particulate 

phosphorus suspended by high-velocity stonnwater flows fall to the sediment under the 

influence of gravity when the water velocity is reduced. The phosphorus removal rate by 

sedimentation rem.ains essentially constant over the life of a wetland. The amount of 

phosphorus removed by sedimentation will vary according to the proportion of particulate 

phosphorus compared to the total phosphorus input. One of the major problems with 

conceptual models for CWSs on the Swan Coastal Plain is that a large proportion of total 

phosphorus in stonnwater runoff is in dissolved or fine colloidal fonns that do not settle out by 

sedimentation (Douglas, 1993, cited in Water and Rivers Commission, 1997). As a result of 

this, the anticipated role of sedimentation in phosphorus removal on the Swan Coastal Plain is 

diminished. 

Long-tenn phosphorus removal is achieved by function (C), the removal of phosphorus by 

biofihn development, peat aco.retion and filtration. The phosphorus removal rate of this 
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component ts low in establishment, but increases with time to become the dominant 

phosphorus removal mechanism within a CWS. The conceptual model suggests that this 

component may account for more than half the cumulative phosphorus removal (D) from a 

CWS in the long-tem1. The diminished role of sedimentation on the Swan Coastal Plain 

further heightens the significance of these other long·tenn removal mechanisms. 

It has been hypothesised that poor phosphorus removal in CWSs on the Swan Coastal Plain 

results from the absence of a significant and active biofilm component. The establishment of a 

viable biofilm component has been an elusive goal for CWSs designers (Duncan & Groffman, 

1994), with constructed wetlands frequently having relatively low microbial activity compared 

to natural wetlands (Lindau & Hossner, 1981, Craft eta/., 1988, Langis eta/., 1991; cited in 

Duncan & Groffinan, 1994). The absence of sufficient biofilm biomass would significantly 

constrain nutrient removal from these systems. The manipulation of constructed wetland 

design to promote biofilm growth and optimise biofilm activity may increase the level of FRP 

removed from these systems. 

1.4 BIOFILMS IN CWSs 

Biofilms (also known as periphyton) are a heterogeneous organic matrix consisting of algae, 

fungi and bacteria supported by polysaccharides that can absorb nutrients and colloids (Wetzel 

eta/., 1997; Lawrence and Breen, 1998; DLWC, 1998). Biofilms cover every surface in 

natural aquatic systems as a thin film (Lock, 1993, cited in Freeman eta/., 1995). Biofilms 

remove FRP by incorporating the nutrient into tissue biomass as non-reactive phosphorus 

(Lantzke eta/., 1999). Phosphorus bound within the biofilms eventually become bound within 

the sediment, as the biofi1ms become incorporated into the sediment through biofi1m turnover. 

Biofilm turnover occurs when the existing layer is out-competed for resources by new biofilm 

formed above, with the existing layer becoming senescent and bound to the sediment. 

Complete biofilm turnover has been estimated at around ten times per year (Kadlec, 1997). 
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However, the factors governing the growth and activity of biofilms are not yet understood 

(Bryers and Characklis, 1990, cited in Flood and Ash bolt, 1994). 

CWS biofilm research has largely been conducted within wastewater CWSs (e.g Edgehill, 

1992; Baskaran eta/., 1993; Hamilton eta/., 1993; Flood and Ashbolt, 1994; Lindrea eta/., 

1994; Scott et a/., 1994; Pollard eta/., 1995; Alvord and Kadlec, 1996; Beyenal and Tanyloc, 

1996; Edgehill, 1996; Silyn-Roberts and Lewis, 1997; Polprasert et a/., 1998; Rusten et a/., 

1998; Pastorelli eta/., 1999), primarily because of their higher use and greater capital input for 

research and development. In contrast, very little biofi1m research has been conducted in 

stormwater CWSs. The research on wastewater CWS biofilms has predominantly focussed on 

gross nutrient or chemical removal by biofilms or biofi1m characterisation by cover, biomass or 

composition. 

Biofilm research has also been conducted in the eastern coast of Australia in rivers and 

billabongs. Robertson et a/. (1997) investigated the effect of manipulating introduced carp 

density on billabong biofilm biomass and macrophyte decomposition. Bums and Ryder (in 

press) have reviewed the potential for riverine biofilms as biological indicators of the 

effectiveness of management and of disturbance of riverine systems. 

In stormwater CWSs, Duncan and Groffman (1994) have compared the microbial parameters 

from soil cores between stonnwater CWSs and natural wetlands in Massachusetts and Rhode 

Island, USA. It was concluded that the constructed wetlands had similar microbial biomass 

and, in nearly all cases, the measured microbial parameters of the CWSs fell within the ranges 

observed in the natural wetlands. This notion was challenged by Reaves and Croteau-Hartman 

(1994), who stated that stormwater CWS biofilm composition can be expected to be different 

from natural wetland biofilms. These differences in biofilm composition would result from 

chemical differences of the influent water, with biofilm composition shifted to species best 

suited to such water chemistry. However, Reaves and Croteau-Hartman concluded that despite 

differences in biofilm composition, CWSs would still function similarly to natural wetlands. 
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Duncan and Groffman concluded that it is possible to create CWSs with a nutrient removal 

capacity equal to or greater than that of natural wetlands. 

Mitsch eta/. (1995) assessed phosphorus retention in a nooded riparian marsh CWS receiving 

stonnwater in Illinois, USA. Mitsch et a/. concluded that the biofilm and overlying water 

column accounted for FRP uptake of 4-6mgm'2wk'1• This uptake rate was lower than 

phosphorus removal rates by both macrophytes and sedimentation, which contrasts the 

conceptual model of the DLWC (1998). Cronk and Mitsch (1994) quantified biofilm biomass 

on natural (macrophyte) and artificial (glass) substrates in the same Illinois CWS. The study 

concluded that biofilms were significant users of phosphorus, contributing 1-65% of the total 

water column productivity at 1 to 3rngm-2wk·1 of FRP removal. Artificial substrata 

accumulated less dry weight and organic weight than natural macrophyte stems, with the 

natural substrata showing significantly different accumulation between species. Cronk and 

Mitsch concluded that increasing biofilm growth would lead to increased phosphorus removal 

from the water column. 

Burns and Ryder (in press) and Lantzke eta/. (1999) state that knowledge of nutrient uptake 

kinetics of Australian biofilms is poor. Despite the significance ofbiofilms suggested in many 

CWS conceptual models, little research exists to quantify the FRP uptake rate by biofilm 

within these systems. Because of the lack of nutrient kinetics data, the role of biofilm within 

Australian CWSs remains at the conceptual stage. 

Biofilm biomass and composition variability within wetlands has not been quantified for 

wastewater CWSs, stormwater CWSs or natural wetlands within Australia. However, given 

that open and vegetated habitats have distinct physico-chemical attributes, biofihns may be 

highly variable between habitat types. These data deficiencies may lead to inferences that 

biofilms are uniformly distributed within a wetland, despite clear internal wetland differences. 

These data deficiencies would likely be reflected in stormwater CWS design, with design 

failing to optimise habitat types with greatest biofilm biomass. 
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1.5 AIMS OF RESEARCH 

An evaluation of stom1water CWSs in Perth by the Water and Rivers Commission (1997) 

suggested that further research should be prioritised on determining which sediment and water 

quality parameters affect FRP removal. This is because CWSs on the Swan Coastal Plain 

currently operate without sufficient knowledge of the internal mechanisms affecting their 

overall performance. The role of the biofilm mechanism in phosphorus removal in both 

stonnwater CWSs and natural wetlands remains unquantified, confim1ing significant 

information gaps as to why CWSs on the Swan Coastal Plain fail to remove FRP. Knowledge 

of the biofilm FRP uptake kinetics remains at the conceptual stage, despite the perceived 

significance of biofilms in conceptual models of phosphorus removal in CWSs. This is of 

particular concern given that CWSs on the Swan Coastal Plain are failing to meet phosphorus 

reduction targets, while natural wetlands have been shown to exceed these removal levels. 

CWSs on the Swan Coastal Plain may fail either as a result of poor biofilm composition, in that 

the algal, fungal and bacterial composition is different, or that insufficient biofilm biomass 

exists to remove FRP. Both of these factors, either independently or together, may result in 

low FRP removal. Additionally, compositional analysis may indicate whether CWSs are 

capable of producing similar biological communities to natural wetlands. Understanding the 

FRP uptake rate ofbiofilms may provide an insight into the FRP removal capacity ofbiofilms 

in stormwater CWSs. Additionally, the engineering of biofilm characteristics that optimise 

FRP removal may be gained through understanding the relationships between wetland design 

characteristics and biofilm biomass and composition from both stormwater CWSs and natural 

wetlands. The understanding of the above factors may also give a detailed indication as to why 

stormwater CWSs on the Swan Coastal Plain fail to remove FRP. 

This research had three specific aims based on the information gaps affecting stormwater 

CWSs on the Swan Coastal Plain, to; 

• Compare the biofilm biomass of stormwater CWSs and natural wetlands of the Swan 

Coastal Plain. 
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• Compare the biofilm composition of stonnwater CWSs and natural wetlands, and 

• Experimentally detem1ine the FRP uptake potential of biofilm, in order to detennine the 

potential contribution by biofilm to FRP removal. 

To achieve the first two aims, field sampling was undertaken to collect biofilms from both 

open water and vegetated habitats in four natural wetlands and two stonnwater CWSs over a 

fourteen-week sampling period. Samples collected were analysed by composition in tenns of 

algal, fungal and bacterial cover, and for biomass composition in tenns of its organic and 

inorganic components. 

The third aim of detennining the potential for biofilm contribution to FRP removal was 

achieved by a nutrient depletion 'batch-culture' experiment at different FRP concentrations. 

This experiment provided potential biofilm FRP removal rates in order to assess the potential 

both for biofilm to remove FRP, and for comparison of these values to the expected removal 

rates suggested by CWS conceptual models. 
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CHAPTER2:METHODS 

This chapter is divided into three distinct sections. The first section covers the wetland 

selection process and details of the wetlands selected. The second section covers the 

methodology of the field research programme used to determine biofilm biomass and 

composition in the natural wetlands and CWSs selected. The final section covers the 

methodology of the laboratory experiments used to determine the FRP uptake capacity of 

biofilm. 

2.1 WETLAND SELECTION 

2.1.1 Natural Wetland Selection 

The selection of natural wetlands was based on the assumption that variability in biofilms, if 

variability existed, would likely be reflected by different physico-chemical characteristics. 

This assumption is validated by the knowledge that species have specific tolerance limits to 

certain physical and chemical conditions, and thus environments with different environmental 

conditions have specific species compositions reflective of those environments. Davis et a/. 

(1993) collected physico-chemical data from 41 wetlands on the Swan Coastal Plain during 

January and November 1989 and November 1990. The data were analysed by agglomerative 

hierarchical UPGMA (unweighted pair group arithmetic averaging) classification to cluster 

wetland samples from all periods into groups based on physico-chemical similarity (Figure 

2.1). The classification identified wetland samples that were most similar (clustered vertically) 

and least similar (separated vertically) by physico-chemical characteristics, irrespective of the 
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wetland or sample time. Four major groups were identified for further investigation from this 

classification. 

Wetlands that had most of the individual sampling periods within a single physico-chemical 

grouping were identified as being consistently representative of each of the four groups. For 

example, Lake Balannup was sampled during November 1989 and November 1990 only and 

both sampling periods for the wetland occurred within Group I. Therefore, Lake Balannup 

was selected as a representative of that physico-chemical group. 

Where any of the four physico-chemical groups had two or more wetlands that were 

representative ofthe group, wetland selection between the groups was refined by the additional 

selection criteria of: 

• Vegetation: Wetlands with a well-vegetated perimeter and/or inner vegetation were 

selected over wetlands in which the vegetation was severely degraded or no vegetation 

remained. 

• Permanence: A range of permanent, semi-permanent and seasonal wetlands was desirable. 

• Location: A range of wetlands that cover northern and southern wetlands (where suitable) 

to cater for differences in soil and sediments. 

The wetlands selected for the research programme are indicated in Toole 2.1. The physico­

chemical grouping, the number of sampling occasions and the number of sampling periods that 

fell within each grouping are also shown. 
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Figure 2.1 Agglomerative hierarchical UPGMA (unweighted pair group arithmetic 
averaging) classification of the 41 wetlands on 3 sampling occasions from Davis et al. 
(1993). The physico-chemical groupings (Groups 1 to 4) are shown to the right. The 
sampling periods of each of the selected wetlands are marked with an asterisk to the 
left. 
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G[QYR :1 Group 2 G[QUR 3 Group~ 

Wetland Selected 
Lake Lake Lake Lake Mount 

Balannup Thomsons Goo/lela/ Brown 

No. Sampling Periods 2 3 3 3 

(N89, N90) (J89, N89, N90) (J89, N89, N90) (J89, N89, N90) 

No. Sampling Periods 2 3 3 2 

within Group {N89, N90) (J89, N89, N90) (J89, N89, N90) (N89, N90) 

Table 2.1 Wetlands selected for the research programme based on the four physico-chemical groupings 
identified from data from Davis et al. (1993}. The number of sampling periods indicate the number of times 
the wetlands was sampled by Davis et a/. (1993}. The number of sampling periods v'.'itbin the group 
indicates the number of sampling periods that fell wilhin the physico-chemical grouping. J89 = January 
1989 sampling, N89 = No\·ember 1989 sampling, N90 =November 1990 sampling. 

2.1.2 Constructed Wetland Selection 

Two CWSs were selected for the research programme, Hammond Road Experimental 

Wetlands (Hammond Road CWS) and Bartram Road Buffer Lakes (Bartram Road CWS). 

Hammond Road CWS and Bartram Road CWS were both designed to remove phosphorus 

from urban stonnwater. Both CWSs receive highly stained influent stonnwater from a drain 

leading into Lake Thomsons, enabling physico-chemical comparability between the two 

CWSs, as well as comparability with Lake Thomsons, which was previously selected as one of 

the natural wetland for the research programme. Both CWSs selected had a known operation 

age, as well as known design characteristics and a documented nutrient removal history. Both 

CWSs selected also enabled the ability to assess whether differences in biofilm composition 

and/or biomass developed with the increasing age of the system, while still maintaining 

physico-chemical comparability between the systems. 

2.1.3 Wetland Descriptions 

A sitemap of the study region, and maps and photographs of each of the six selected wetlands 

are given in Figures 2.2 to 2.8 and Plates 2.1 to 2.6. Descriptions of each of the wetlands are 

also given, adapted from Davis eta/. (1993). 
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1. Lake Goollelal 

2. Lake Balannup 

3. Lake Thomsons 

4. Lake Mt. Brown 

5. Bartram Road CWS 
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Figure 2.2 Sitemap of the Study Region. Lake Goollelal, Lake Balannup, Lake 
Thomsons, Lake Mount Brown, Bartram Road CWS and Hammond Road CWS are 
shown in relation to other natural wetlands on the Swan Coastal Plain, Western 
Australia. (Sitemap adapted from Davis et al, (1993). 

17 

Methods 



2.1.3.1 Hammond Road CWS 

The Hammond Road CWS consists of three 
separate experimental wetland cells each 15m x 

5m x 1.5m (length x width x maximwn depth~ 
vegetated with Schoenoplectus validus in 5m 
sections at both cell ends. The wetland design was 
based upon a CWS proposed for the Ellenbrook 
catchment outlined by IDA Consultant 
Hydrologists (1997). The ce1ls are concrete lined 
to prevent interaction with the groundwater, 
enabling water levels to be manually controlled 
and preventing groundwater from interfering with 
the known influent nutrient levels. The heavily 
stained influent water comes from a drain that 
leads into Lake Thomsons. The system 
commenced operation in March 1998 and has had 
continual monitoring since that time (Lund et. al., 
1990). 

Methods 

} Sm Vegetation 
(StioiiHlJ*tllrrulilu) 

} Sm Open Water 

} 
Sm Vegetation 
(S<Al><""'*tOu .. ~M~o.r) 

Figure 2.3 Hammond Road CWS design. 
Ga·een and blue coloua·ed areas indicate 
vegetated and open watea· habitats 
respectively. The ceU dimensions aa·e also 
shown. 

Plate 2.1 Hammond Road CWS (November 1999) showing poa·tions of CeU 2 (front) and CeU 3 (back). 
Vegetation of Sc/wenoplectus validus can cleal'ly be seen. Each cell is divided by a conca·ete walkway 
(centre) by which each experimental ceU can be accessed. 
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2.1.3.2 Bartram Road CWS 

Bartram Road CWS (Bartram Road Buffer Lakes) 
was established in 1993 by tl1e Water Corporation 
(Water Authority of Western Australia, 1993) and 
is a modified natural wetland (Braid & Lavery, 
1996). The heavily stained influent water comes 
from a drain that leads into Lake Thomsons. The 
water level fluctuates seasonally with the 
groundwater level, with the lakebed drying 
completely during smmner. The lake system 
consists of five varying sized lakes with well­
vegetated perimeters of native and introduced 
species (introduced species predominantly Typha 
sp. ). Influent passes through vegetated sections as 
it flows between each of tl1e lakes. 

Methods 

Figure 2.4 Ba•·tram Road CWS design. 
Shown are the five buffe•· lakes (Numbered 1 
to 5) and the d.-ain that leads into Buffe•· Lake 
1. (Map adapted f•·om W A W A, 1993) 

Plate 2.2 B31'n·am Road CWS buffer lake No. 2 (November 1999). The perimete•· of the CWS is well 
vegetated with some inner vegetation also visible. 
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2.1.3.3 Lake Goollelal 

Total Area: 60.7 ha 

Open Water: 44.9 ha 

Management Status: CALM Reserve 

Lake Goollelal is a pennanent and moderately 
stained nutrient enriched wetland within Y ellagonga 
Regional Park. The Park contains a number of 
Perth 's northern wetlands. Lake Goollelal was the 
deepest of all wetlands selected with a maximum 
depth of 1.4m. The perimeter is vegetated with a 
mixture of native and introduced species (introduced 
species predominantly Typha sp. ). Only 16% of the 
fringing native vegetation remains as a result of 
surrounding urban and horticultural development. 
Inner parts of the lake are well vegetated with native 
rushes. 

Methods 

Figut·e 2.5 Sitemap of Lake GooUelal. 
The wetland is pat·t of Yellagonga 
Regional Pat·k, with residential 
development ft·inging aU sides. (Map 
adapted from DOLA, 1994) 

Plate 2.3 Lake GooUelal (Novembet· 1999). Native vegetation stands within the wetlands are cleal'ly 
visible. The pel'imetet· vegetation (foregt·ound) consists pt·edominantly of Typlta sp. Residential 
development of the suburb of .Kingsley can be seen in the backgt·ound. 
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2.1.3.4 Lake Thomsons 

Total Area: 253.7 ha 

Open Water: 151.0 ha 

Management Status: CALM A-Class Reserve 

Lake Thomsons is a shallow and nutrient enriched 
wetland. Lake Thomsons is semi-permanent, in that it 
only occasionally dries completely in summer. The 
wetland is moderately coloured with 96% of perimeter 
vegetation remammg, consisting of native and 
introduced species (introduced species predominantly 
Typha sp.). Nutrient enrichment comes from the 
surrounding horticulture and residential areas. The 
benthos is dominated by a submerged aquatic grass 
species that covers the sediment layer throughout. 

Methods 

Figua·e 2.6 Sitemap of Lake Thomsons. 
Most of the area sunounding Lake 
Thomsons is weD vegetated. Howevea·, 
several m·ban access a·oads pass neat· 
the lake edge. (Map adapted from 
DOLA, 1994) 

Plate 2.4 Lake Thomsons (Novembea· 1999). The perimetea· is highly vegetated with no visible 
a·esidential development. Dw·ing sum mea· the open water aa·eas dt-y and become inhabited by tel'l'eStl'ial 
plants. 

.· 
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2.1.3.5 Lake Balannup 

Total Area: 20.0 ha 

Open Water: 8.0 ha 

Management Status: CALM Reserve 

Lake Balannup is a shallow seasonal wetland with 
83% of perimeter vegetation remaining. The water 
is heavily stained and nutrient enriched. The 
surrounding land use is industrial, residential and 
semi-rural land. Ranford Road crosses through tl1e 
centre of Lake Balannup to divide the wetland into 
two sections. Lemna sp. carpeted the surface of the 
open water habitat during the sampling period. 

Methods 

Figm·e 2. 7 Sitemap of Lake Balannup. 
Ranford Road divides Lake Balannup into 
two sections. The smalle•· section was not 
sampled. (Ma p adapted f1·om DOLA, 1994) 

Plate 2.5 Lake Balannup (November 1999). The internal wetland vegetation is Melaleuca sp. and flooded 
gum in a closed canopy. Most open wate•· sections (as shown) were blanketed by Lem11a sp. dm·ing 
sampling. 
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2.1.3.6 Lake Mount Brown 

Total Area: 15.9 ha 

Open Water: 5.3 ha 

Management Status: 

CALM/City of Cockbum Reserve 

Lake Mount Brown is a saline, shallow and seasonal 
wetland with moderately stained water. The 
perimeter vegetation of Lake Mount Brown is 
relatively undisttrrbed with 1 00% perimeter 
vegetation cover remammg. A few motor vehicle 
bodies and household rubbish could be found within 
the wetland and surrounding reserve area. A major 
transport route passes approximately 15m from the 
waters edge of one side of the wetland. 

Methods 

FigUI·e 2.8 Sitemap of Lake Mount Brown. 
(Map adapted from DOLA, 1994) 

Plate 2.6 Lake Mount Brown (November 1999). All perimetet· vegetation a·emains, with a mixture of msh 
species and saltwatea· Me/aleuca sp. 
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Methods 

2.2 DETERMINING BIOFILM BIOMASS AND COMPOSITION 

2.2.1 Experimental Design 

The six wetlands were sampled four times over a fourteen-week period to encompass temporal 

variability ofbiofilms that may have existed in any of the selected wetlands over the period of 

the research project (Table 2.2). Samples were collected on large biofilm collection plates 

(LBCPs) for biomass and small biofilm collection plates (SBCPs) for microscopic viewing of 

biofilm composition (see Section 2.2.3.1). The LBCPs and SBCPs were placed in the field for 

a period of 14 days, as per APHA (1995). 

Sampling Period Placement Date Retrieval Date 

1 September 29, 1999• October 13, 1999• 

2 October 27, 1999 November 10, 1999 

3 November 24, 1999 December a, 1999 

4 December 22, 1999** January 5, 2000** 

Table 2.2 Placement and retrieval dates for each sampling period. * Lake Balannup not 
sampled due to access restrictions. ** Lake Balannup and Lake Thomsons were not sampled as 
the wetlands were dry. 

In each wetland, open water and vegetated habitats were sampled (Figure 2.9). Three 

randomly located samples were collected from both open water and vegetated habitats in each 

wetland. Hammond Road CWSs was the only exception to this, with samples located 

randomly within each habitat type in each of the three experimental wetland cells. The 

samples were retrieved after 14 days and returned to the laboratory for biomass and 

composition analysis. Biomass analysis involved calculating the organic biomass, inorganic 

biomass and percentage organic biomass of the biofilms. Compositional analysis involved 

calculating the algal, fungal and bacterial components of the biofilms by percentage cover and 

analysis of the chlorophyll a biomass. Chlorophyll a biomass, a measure of algal biomass, was 
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Methods 

sampled as a single sample only, in order to compliment the algal percentage cover data. A 

single Chlorophyll a sample was taken from biofilms from each habitat for each wetland on 

each sampling occasion. The analytical techniques arc outlined in Section 2.2.3. 

6 Wetlands 

Constructed Constructed Natural Natural Natural Natural 

~ 
~ ~ 
~ 
~ ~ 
~ 
~ ~ 
~ 
~ ~ 
~ 
~ ~ 
~ 
~ ~ 

~on& { 0 v 0 v 0 v 0 v 0 v 0 v 
Vegetated O v 0 v 0 v 0 v 0 v 0 v 

Habitats O v 0 v 0 v 0 v 0 v 0 v 

-----Biomass Composition 
- Organic Biomass (g/m') -%Algae 
- Inorganic Biomass (g/m2) -%Fungi 
- % Organic Biomass -% Bactena 

- Chlorophyll 'a' (g/m2) 

Figure 2.9 Experimental Design for each of the four sampling periods. Biomass and 
composition data was collected from each habitat of the six wetlands selected 

2.2.2 Statistical Design, Analysis and Transformations 

The sampling design permitted a 2-factor Analysis of Variance (ANOVA) with the fixed 

factors of 'wetland' and 'habitat'. It was hypothesised a priori that time was not a significant 

factor. Multivariate analysis was conducted to detennine whether there was temporal 
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variability in biofilm biomass and biofilm composition. A similarity of samples was first 

produced using the Bray-Curtis similarity measure by the 'Cluster' module in the PRIMER 

(Plymouth Routines in Multivariate Ecological Research) statistical software package 

(Plymouth Marine Laboratory, 1994). The Bray-Curtis similarity measure was performed on 

transfom1ed biomass data (organic and inorganic biomass transfonned to a Qw]QQ scale) and 

un-transfonned percentage cover data (algal, fungal and bacterial percentage cover) from all 

wetlands. 

Ordination by multi-dimensional scaling (MDS) based on the Bray-Curtis similarity measure 

was conducted and plotted with the aid of the Deltagraph'" graphics package (SPSS Inc., 

1997). Missing values in the data set were deleted in order to conduct the MDS. The MDS 

provided a 2-dimensional visual representation of how similar samples were to each other, with 

samples split by wetland, habitat and time. Samples that were most similar clustered together, 

while samples that were least similar were further apart. 

The lack of temporal clustering between and within wetlands in the MDS indicated that no 

temporal variability in biofilms existed. As a result of this, data from the different sampling 

periods for each wetland were pooled within habitats, so that the number of habitat replicates 

increased from 3 replicates to 12 replicates (3 replicates x 4 sampling periods). A 2-factor 

Analysis of Variance (ANOVA) was conducted using the SPSS VlO.O statistical package 

(SPSS Inc., 1999) to determine whether significant differences existed between wetlands 

and/or between habitats. Tukey-HSD Post-hoc testing was conducted simultaneously in order 

to determine where significant differences occurred between wetlands. Both ANOV A and 

Tukey-HSD required normally distributed data. Data in ratio and percentage form were 

transformed using the arcsine transfOrmation to convert the data from a binomial distribution to 

a normal distribution (Zar, 1996). All data (including arcsine transformed data) were tested for 

normality by Levene's Test of Equality of Error Variances. Data not conforming to a normal 

distribution were transformed by using Square Root and Log-1 0 transformations as per Zar 

(1996). 
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2.2.3 General Analytical Techniques 

2.2.3.1 Wetland Collection ofBiofilm 

Biofilms from each wetland were collected on glass plates over a 14 day period, as per APHA 

(1995) Section 10300 B. Two types of glass plate structures were used. 

Large biofilm collection plates (LBCPs) were used for the collection of biofilm biomass, 

chlorophyll a biomass and for FRP uptake kinetic experiments. This large surface area of glass 

was required to provide sufficient biofilm biomass for sampling. Each LBCPs consisted of two 

large panes 200mm x lOOmm x 2mm (length x width x thickness) fastened to either side of a 

lOOOmm x 900mm circular PVC divider by rubber bands (Plate 2.7a). The divider had holes in 

the bottom to allow for water drainage. Where the divider was in contact with the glass, one 

third of the diameter of the divider was secured to each pane with silicon. After securing with 

silicon, the plates were oven-dried for two hours at 50°C to ensure that the silicon cured. 

Silicon releases acetic acid during the curing process, and so the plates were then bathed in 

deionised water for a minimum of three hours to remove acetic acid, any glass fragments and 

PVC dust. New glass panes were used for each round of sampling. The PVC dividers were 

reused for successional sampling periods, after cleaning. 

Small biofilm collection plate; (SBCPs) were used for the collection of biofilm for 

compositional analysis. Each SBCP consisted of three standard glass microscope slides 75mm 

x 25mm x lmm (length x width x thickness) placed in an open microscope slide rack fastened 

with a cable tie (Plate 2. 7b ). Slides were arranged with maximum distance between each slide 

to allow water circulation between the slides. Microscope slides were used to enable 

microscopic viewing of the biofilm structure. 
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Both types of plates were designed so that the glass panes were positioned vertically in the 

water column to minimise any sedimentation on the glass that could smother the biofilm matrix 

(APHA, 1995). The plates were gently lowered through the water column in each wetland to 

be rested on the surface of the sediment. White fishing floats were fastened to each sampling 

unit (consisting of one LBCP and one SBCP) to allow for the relocation of samples in the field. 

a) b) 

Plate 2.7 The LBCP and SBCP designs. The glass panes were positioned vertically to 
minimise potential sedimentation problems. Both structures were gently lowered to 
rest on the surface of the sediment 

2.2.3.2 Analysis ofBiomass 

2.2.3.2.1 Biofilm Biomass 

Biofilm dry weight, organic biomass and inorganic biomass was conducted as per 

APHA (1995) Section 10300 C. Biofilm was removed from both external sides of 

each LBCP using a razor blade and transferred to a clean 1 Oml centrifuge tube. 

Samples were frozen at 0°C until they could be processed. For processing, 

samples were transferred to pre-fired, pre-weighed crucibles, dried at 105°C and 
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weighed to record the dry weight. Samples were then ignited at 550°C for two 

hours. \\'ater-of-hydration was reinstated before the samples were weighed to 

detenninc the inorganic biomass. The organic biomass was calculated as the 

difference between dry weight and the inorganic biomass. The percentage organic 

composition was calculated as the organic biomass percentage of the total dry 

weight. 

2.2.3.2.2 Chlorophyll a Biomass 

Chlorophyll a was calculated as per Speziale et a/. (1984). Biofilm samples were 

obtained by scraping the two outside surfaces of one LBCP into a clean 1 Oml 

centrifuge tubo. Chlorophyll a was extracted using I Om! N,N­

Dimethylformamide (DMF). Samples were refrigerated for 24 hours and then 

centrifuged at 3000rpm for 3 minutes before removing the extractant. The optical 

density of the extract was measured at OD665 and OD'/50, acidified with 0.2ml of 

O.IM HCI and measured at 00665 and OD750 ninety seconds after acidification. 

Four-centimeter path-length glass cuvettes were used during analysis to increase 

the accuracy of the optical density measurements (APHA, 1995). Chlorophyll a 

was calculated as: 

Chi a (j.lgm"2
) = 

]J.7 X 2.43 X (665b -665a) X V 

Ax I 

Where: 665a = absorbance at OD665 after acidification 

665b = absorbance at OD665 before acidification 

V = total volume (ml) of solvent used for extraction 

A= surface area ofbiofilm (m2
) 

I= path-length of the cuvette 
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2.2.3.3 Analysis ofCompositiotJ 

2.2.3.3.1 Slide Preparation 
The SBCPs were dismantled in the laboratory and the slides removed from each 

slide rack. The slides were labeled with wetland, habitat and location details. 

Two slides from each SBCP were fixed with 5% glutaraldehyde in a phosphate 

buffer and then stained with 0.1% acridine orange as per APHA (1995) Section 

9216 B. The remaining slide was prepared by fixing in 5% fonnalin as per APHA 

( 1995) Section 10300 B (3). Cover slips were pennanently fixed to all slides by 

clear nail varnish to protect the biofilm structure. 

2.2.3.3.2 Algal and Fnngal Percentage Cover 

Algal and Fungal percentage cover was detennined using the point intercept 

method as per APHA (1995) Section I 0200 F, under oil using xI 000 

magnification. A I Ox! 0 grid Whipple disk was placed in the ocular lens and used 

as the reference. The area covered by the grid was measured at 25J.1m2 using a 

stage micrometer. 

One microscope slide from each SBCP was selected at random and the percentage 

cover of algae and fungi from three fields of view recorded. The mean cover for 

algae and fungi from the three fields of view was recorded as the percentage 

cover. Percentage cover was expressed as both absolute percentage cover and as a 

relative cover of each taxonomic type to the total biofilm cover. 

2.2.3.3.3 Bacterial Percentage Cover 

Bacterial percentage composition could not be calculated by the intercept method, 

as the bacterial cells were significantly smaller than the viewing grid cells. Using 

the intercept method would therefore have resulted in a gross overestimation or 

underestimation ofthe true bacteria percentage cover. 
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Instead, the number of individual bacterial cells were counted from the grid area 

of photographs taken of each field of view used in the algal and fungal percentage 

cover analysis. The percentage cover of bacterial cells in the grid was expressed 

as a percentage of the number of bacterial cells that would be required to fill the 

entire grid. The mean bacteria percentage cover from the three fields of view was 

recorded as the bacterial percentage cover. Percentage cover was expressed as 

both absolute percentage cover and as a relative cover of each taxonomic type to 

the total biofilm cover 

2.3 DETERMINING BIOFILM FRP UPTAKE 

2.3.1 Experimental Design 

The uptake of FRP by biofilm was detennined by a nutrient depletion batch-culture 

experiment. In nutrient depletion batch-culture experiments the uptake ofFRP is calculated as 

the Joss of FRP from the surrounding solution. The biofilm uptake of FRP was detennined by 

measuring the depletion of FRP from solution at five concentrations: <SO).lgL·', SO).lgL·', 

I OO).lgL·', 200).lgL·' and 400).lgL"1
, with five replicates at each concentration (Figure 2.10). 

The concentrations chosen were selected to encompass the FRP concentrations found in 

wetlands on the Swan Coastal Plain (Davis et a/., 1993), with the highest concentration 

indicative of a highly enriched wetland. Water samples were taken at 0, 5, I 0, 20, 35, 55, 85 

and 120 minutes as detennined by a pilot study of biofilm FRP uptake (Appendix B). The 

pilot study was conducted by measuring FRP uptake by biofilm in one tank with an FRP 

concentration of I OO).lgL·'. The rate of FRP uptake at each concentration was calculated as the 

mean slope of regression for each individual tank. The uptake rate for each concentration was 

normalised to the mean biofilm organic biomass at each concentration. 
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2.3.2 Criteria for Determining Significant Uptake 

The degree of accuracy in the measurement of the FRP concentration was ±31J.gL-1
. Therefore, 

a change in FRP concentration greater than or equal to 3~LgL-1 over the sampling period was set 

as the criteria to determine if a measurable uptake had occurred. Changes less than ±31J.gL-1 

were determined to be within the range of analytical error. 

3 I 3 1 3 I 1 
~ I ~ I ~ I ~ I ~ 5 Replicates 

for each 3 3 ' I 3 ~ 
concentration ij ij ij ij ij 

~ I ! ! I ij ij 

<50ug/L 50ug/L 100ug/L 200ug/L 400ug/L 

Figure 2.10 Biofilm FRP Uptake Kinetic Experimental Design. 

2.3.3 FRP Uptake Tank Design 

FRP uptake experiments were performed in glass chromatography tanks (Plate 2.8). Each tank 

held 4 LBCP panes separated in pairs by plastic dividers . The plates were held to the dividers 

by elastic bands. A water pump circulated the medium evenly around the plates to prevent 

boundary layer formation. Dye tests confirmed that the tanks were fully mixed within 5 

seconds (Appendix E). 
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The FRP concentrations were obtained by adding the appropriate volumes of working solution 

and topped with filtered wetland water to a total solution volume of 2000mL. The wetland 

water was obtained from Loch McNess South (in Yanchep National Park) because of 

consistently low FRP concentrations at - 2J..lgL"1 (Sommer and Horwitz, 1999). The wetland 

water was filtered through 0.45J..1.m GFC filter paper to remove particulate matter. The tanks at 

the <50J..1.gL"1 concentration did not contain the working solution, and therefore the FRP 

concentration in each tank were the same as the filtered wetland water. 

Glass Tank 

/ 

Plate 2.8 FRP Uptake Tank Design. Side and end views of the uptake tanks are 
shown to show the water pump and the division between plates that helped water 
circulation around and between the plates. 
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2.3.4 Wetland Collection of Biofilm 

The biofilm used for the FRP uptake experiments was collected from the open water zone of 

the Hammond Road CWSs as it was known that it would contain water during January of 

1999, which was when the FRP uptake experiments were scheduled. Biofilm was obtained 

from the open water habitat only, so that if significant differences in biofilm composition 

between the two habitat types were identified, the biofilm composition for the FRP uptake 

experiments would be consistent. Samples were collected on plates deployed for a 6-week 

period, so as to ensure that a mature biofilm standing crop (containing live and senescent 

biofilm components) had developed. 

2.3.5 Controlled Factors in Uptake Experiments 

Light and nutrient concentrations were controlled so as to simulate light conditions in the 

Hammond Road CWS and to ensure that nutrients, other thon phosphorus, were not limiting. 

Photosynthetically active radiation (PAR) intensity was provided at 3.4~molm'2sec 1 . For 

operator safety reasons, this was as close as practicable to the 0.2jlmolm.2sec· 1 PAR intensity 

measured in Hammond Road CWS. 

Bold's Basal Medium (BBM) (Bischoff and Bold, 1963, cited in Bold and Wynne, 1978) was 

added as a nutrient supplement to ensure that the biofilm was not limited by any other nutrient. 

The appropriate volumes of each of the se"en BBM component solutions were added to each 

tank prior to the plates being inserted. Sodium chloride was excluded from the medium to 

prevent the tanks from becoming brackish. Phosphorus was also excluded from the BBM 

component solutions, as this was the experimental nutrient. 

34 



Methods 

2.3.6 General Analytical Tcchniq ucs 

2.3.6.1 Glassware Preparation 

All glassware and plastics used for FRP analysis were cleaned in I 0% HCI for at least 3 hours, 

and then rinsed thoroughly with deionised water. Glassware and plastics were oven dried at 

50"c. 

2.3.6.2 Analysis ofFRP Uptake 

2.3.6.2.1 FRP Stock and Working Solution 

Dipotassium hydrogen-orthophosphate (K2HP04) and Potassium dihydrogen­

orthophosphate (KH2PO,) were used for making the FRP stock solution as per 

Biscchoffand Bold (1963, cited in Bold and Wynne, 1978), Polprasert eta/. (1998) 

and Pastorelli eta/. (1999). The relative proportions of each orthophosphate type 

were based on Biscchoff and Bold (1963, cited in Bold and Wynne, 1978). 4.6007g 

of K,HP04 and I 0. 7352g ofKH,PO, were dissolved in I litre of deionised water to 

make a IOgL·' FRP stock solution. A working solution was formed by a 100-fold 

dilution of the stock solution. 

2.3.6.2.2 Measuring Biofilm FRP Uptake 

Ten millilitre water samples were taken from each tank using a syringe at regular 

intervals. Eight millilitres of the sample was filtered through a 0.45~m GFC filter 

paper into a clean centrifuge tube. 

The FRP concentration of the filtered samples were determined by the Ascorbic 

Acid Method as per APHA (1995) Section 4500-P E. Ammonium molybdate and 
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potassium antimonyl tartrate react in an acid medium with FRP to rorm a 

phosphomolybdic acid that is reduced to an intensely coloured molybdenum blue by 

ascorbic acid. The FRP concentration was measured as the spcctrophotomic optical 

density at 880nm and compared to a FRP standard curve. Higher FRP 

concentrations arc recorded with increasing intensity or the molybdenum blue. 

Four~centimeter path-length cuvettes were used to increase the accuracy at which 

the FRP concentration could be determined from I OJ.1gL"1 to within 3J.1gL"1 (APHA, 

1995). 

2.3.6.2.3 Analysis ofBiofilm Biomass. 

Biofilm biomass from plates used in the biofilm FRP uptake experiments were 

determined as outlined in Section 2.2.3.2.1. 

2.3.6.3 Additional FRP Uptake Tests 

Two additional FRP uptake experiments were performed to test the effects of PAR and BBM 

on the biofilm FRP uptake rate. It was hypothesised that the PAR intensity or BBM may have 

influenced the results obtained from the FRP uptake experiment. 

Firstly, FRP uptake was determined at a higher PAR intensity and an FRP concentration of 

200J.1gL"1 with 5 replicate samples. The PAR intensity was provided at I 0.3J.1molm·2sec·'. In 

comparison to ~he full uptake experiment, all sample extraction time remained the same except 

for an additional extraction at 180 minutes. The FRP uptake was measured as stated in Section 

2.3.6.2.2. The biofilm from each tank was removed and analysed for organic biomass as per 

Section 2.2.3.2.1. The LBCPs used had been in the Hammond Road CWS for a period of 4 

weeks. 

Secondly, the effects of the BBM solutions on biofilm FRP uptake were tested. Limited time 

and a lack of biofilm plates in Hammond Road CWS did not allow for experimental 
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replication. The BBM uptake experiment was conducted using two uptake tanks at an FRP 

concentration of 250J.1gL' 1• Only one tank contained the BBM component solutions. The 

experiment was conduct~d over a 42-hour period with samples extracted at 0 hours and 42 

hours. The FRP concentration was measured as stated in Section 2.3.6.2.2. The PAR intensity 

was provided at 10.3~molm·'sec· 1 • The plates used had been in the Hammond Road CWS for 

a period of 4.3 weeks. 
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CHAPTER3:RESULTS 

3.1 MDS ANALYSIS OF TEMPORAL VARIABILITY 

The MDS results indicated that there was no temporal variation in biofilms over the research 

period. Temporal variation would have been indicated by the MDS through the clustering of 

wetlands and/or the clustering of sampling periods. The absence of definitive clustering of the 

sampling periods between wetlands indicated an absence of temporal variability (Figure 3.1 ). 

Additionally, there was an absence of clustering of the sampling periods within wetlands 

(Figure 3.2). 

The MDS of all sampling periods from all wetlands confirmed high biofilm variability between 

wetlands. Despite a large proportion of sampling periods clustering from most wetlands 

(indicated by the oval), a large proportion of the sampling periods from all wetlands were 

dispersed outside of the cluster. This indicated that a large proportion of biolilms had high 

similarity and clustered together, but with an almost equal degree of high biofilm variability 

amongst the whole sample group that were dispersed. 

Within the main cluster, Bartram Road CWS (Figure 3.2b), Lake Mt Brown (Figure 3.2c) and 

Lake Goollelal (Figure 3.2d) featured prominently, with a large proportion of the wetland 

samples in the main cluster. Bartram Road CWS and Lake Mt Brown also indicated the 

tightest clustering of all wetlands, indicating low biofilm internal variability between each 

wetland and habitat. Within the main cluster, there was no evidence of patterning on the basis 

of sampling time. 
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Results 

High biofilm variability was evident in Hammond Road CWS (Figure 3.2a), Lake Goollclal 

(Figure 3.2d), Lake Thomsons (Figure 3.2e) and Lake Balannup (Figure 3.21). The high spread 

of samples in the MDS indicated high variability within each wetland. No patterning based on 

sampling time was evident in any of the wetlands. Lake Goollelal indicated h\gh variability of 

sampling periods 3 and 4, with relatively low variability of sampling periods 1 and 2, which 

feature predominantly in the main cluster. Despite this, there was still no clustering visible 

based on sampling time within Lake Goollelal. 

The MDS, through a lack of clustering of the sampling periods and wetlands, indicated that the 

time of sampling during the research period was not a significant factor. As a result of this, 

further analysis of the data pooled all sampling periods for each wetland. 
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Figure 3.1 MDS ordination for all wetlands and sampling periods. No clustering was evident based 
on time. The input data for the MDS were Algae, Fungi and Bacteria untransformed percentage 
cover (absolute) and Organic and Inorganic Biomass transformed data. 

Key: Hanunond Road CWS = H, Bartram Road CWS = B, Lake Goollclal = G, Lake Mt Brown= M, 
Lake Thomsons = T, Lake Balannup =A, Open Habitat= 0, Vegetated Habitat= V. The number at 
the end represents the sampling period. 
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Figure 3.2 MDS ordination results for each wetland. The results are taken from the Figure 3.1, with 
each wetland separated to show the clustering pattern of sampling periods in each wetland. Lake 
Mt Brown and Bartram Road CWS indicated weak clustering of all sampling periods, but no 
clustering of the sampling periods based on time. 
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Results 

3.2 BIOMASS AND COMPOSITION ANALYSIS 

Statistically significant differences in biolilms, both in biomass and composition, were 

identified between wetlands and between wetland habitat types. This confinncd high hiolilm 

variability ofbiofilms on the Swan Coastal Plain. 

3.2.1 Biomass 

Lake Mt Brown separated from most wetlands in having the highest organic and inorganic 

biomass of all wetlands in both habitat types. The highest mean organic biofilm biomass for 

any wetland habitat was in the Lake Mt Brown vegetated habitat at 0.114gm·2, with all other 

wetland habitats having less than 0.05gm·2 (Figure 3.3). The organic biomass was significantly 

different between wetlands (0.000, Sdf, p<O.OS), with post-hoc testing confirming that Lake 

Mt. Brown was significantly different from all other wetlands . Lake Mt Brown also had the 

highest inorganic hi ,,.ss for both open and vegetated habitats (Figure 3.4). Other statistically 

significant differences in organic biomass indicated by post-hoc testing were identified 

between Hammond Road CWS and Bartram Road CWS (0.003, Sdf, p<0.05), and between 

Hammond Road CWS and Lake Goollelal (0.009, Sdf, p<O.OS). 

Vegetated habitats had significantly higher organic biomass in all wetlands except for Lake 

Balannup, which had the lowest organic biomass of all vegetated habitats (0.031, ldf, p<0.05). 

The vegetated habitat of Lake Balannup also had lower inorganic biomass. 

The mean inorganic biomass ofbiofilm was significantly different between wetlands (0.001, 

5df, p<O.OOS), but not between habitat types (0.096, ldf, p>0.05). Lake Mt. Brown had the 

highest mean inorganic biomass, followed by Hammond Road CWS and Bartram Road CWS. 

Post-hoc testing revealed once again that Lake Mt. Brown was different from the others, being 

significantly different from all wetlands except for Bartram Road CWS (0.198, Sdf, p>O.OS), 

while Bartram Road CWS was not significantly different from any other wetland (Sdf, p>.OOS). 
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Despite clear differences of organic and inorganic biomass between wetlands and between 

habitnt types, the biofilm organic proportions were not significantly different between wetlands 

(0.057, Sdf, p>O.OS) or between habitat types (0.096, Jdf, p>O.OS). This means that irrelevant 

of the wetland or habitat type, the organic percentage of biofilm would not be statistically 

different. 

The organic and inorganic biomass of both habitat types for the Bartram Road CWS fell within 

the ranges found in the natural wetlands. Hammond Road CWS had the lowest organic 

biomass of all open habitats, and also the lowest organic biomass overall. The inorganic 

biomass of Hammond Road CWS fell within the ranges observed between the natural 

wetlands. The Hammond Road CWS vegetated habitat had the second highest inorganic 

biomass. However, it should also be noted that the standard error of this result is large. 

Biofilm grazing by gastropods was observed on ten sampling plates during sampling period 2 

and on sixteen sampling plates during sampling period 3, but was not quantified. However, it 

was estimated that up to 25% of the surface area may have been subject to grazing on some 

plates. Some gastropods were seen on the plates when the plates were removed from both 

Lake Balannup and Lake Mt Brown. 
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Figure 3.3 Mean Organic Biomass for all 6 wetlands in open and vegetated habitats. Significant 
differences existed both between wetlands (0.000, Sdf, p<O.OS) and between wetland habitats (0.031, 
I df, p<O.OS), with vegetated habitats having significantly highe•· o•·ganic biomass. Lake Mt. Brown 
had the highest organic biomass. (Bars indicate ±SE, n=l2) • 
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Figm·e 3.4 Mean Inorganic Biomass fo•· all 6 wetlands in open and vegetated habitats. Significant 
diffe•·ences in inorganic biomass were identified between wetlands (0.001, Sdf, p<O.OS), with Lake Mt 
Brown having the highest ino•·ganic biomass. There was no significant diffe•·ence of inorganic 
biomass between habitat types (0.421, 1df, p>.OS). (Bars indicate ±SE, n=12). 
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3.2.2 Relative Percenta2e Cover 

Significant differences in the biofilm mean relative percentage cover were identified between 

wetlands (Figure 3.5). Algae dominated both Lake Mount Brown and Lake Thomsons 

biofilms in both habitats, with values around 50%. The relative percentage algal cover was 

significantly different between wetlands (0.000, 5df, p<0.05), but not between habitat types 

(0.466, ldf, p>0.005), indicating that the proportion of algae within a wetland would not differ 

between habitat types. Post-hoc testing confirmed that Lake Mt. Brown was significantly 

different from all wetlands (5df, p<0.05) except for Lake Thomsons (0.988, 5df, p>0.005). 

Lake Thomsons was similar to Lake Goollelal and Lake Balannup (0.133, 5df, p>0.05; 0.096, 

5df, p>0.05), but significantly different from both Hammond Road CWS (0.034, 5df, p<0.05) 

and Bartram Road CWS (0.025, 5df, p<0.05). 

The relative fungal cover was significantly different between habitat types (0.015, ldf, 

p<0.05), but not between wetlands (0.064, 5df, p>O.OS). Vegetated habitats, irrespective of the 

wetland, had more fungi cover than the open habitats. Fungi dominated in vegetated habitats 

of Hammond Road CWS, Bartram Road CWS, Lake Balannup and Lake Goollelal. 

In contrast, the open habitats in Hammond Road CWS, Bartram Road CWS, Lake Balannup 

and Lake Goollelal were bacterially dominated. The open habitats of Bartram Road CWS and 

Lake Balannup had over 40% cover, and the open habitats of Hammond Road CWS and Lake 

Goollelal biofilms were bacterial dominated with over 50% cover. The relative cover of 

bacteria was significantly different between habit•' types (0.001, ldf, p<O.OS) and between 

wetlands (0.030, Sdf, p<O.OS). Post-hoc testing confirmed that there was a significant 

difference in relative bacterial cover between Lake Goollelal (41% cover) and Lake Mt. Brown 

(21% cover) (0.040, Sdf, p<0.05), with no differences between all other wetlands (5df, 

p>0.05). 
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Despite comparable water quality between Lake Thomsons, Hammond Road CWS and 

Bartram Road CWS, the relative biofilm composition was very different. Both CWSs were 

fungal/bacterial dominated whereas Lake Thomsons was algal-dominated in both habitat types. 
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Figure 3.5 Mean Relative Percentage Cover of Algae, Fungi and Bacteria for all Wetlands 
Habitats. Algae dominate Lake Mt. Brown and Lake Thomsons biofilms. Open habitat 
biofilms of Hammond Road CWS, Bartram Road CWS, Lake Balannup and Lake Goollelal 
are bacterial dominated, while the vegetated habitats are fungal dominated. Standard 
errors were not shown for clarity. These errors can be seen in Figures 3.6 to 3.8. 
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3.2.3. Absolute Percentage Cover 

As indicated by the relative percentage cover, Lake Mt. Brown and Lake Thomsons had higher 

absolute percentage cover of algae compared to the other wetlands (Figure 3.6). This 

difference between wetlands was significant (0.000, 5df, p<0.05), with post-hoc testing 

eonfimting that Lake Mt. Brown was significantly different from all wetlands (5df, p<0.05) 

except for Lake Thomsons (0.509, 5df, p>0.05), which was not significantly different from any 

other wetland (5df, p>0.05). 

Both the absolute fungal and bacterial cover were significantly different between habitats 

(0.001, ldf, p<0.05; 0.027, ldf, p<0.05), but not different between wetlands (0.219, 5df, 

p>0.05; 0.059, 5df, p>0.05). The fungal and bacterial cover (Figure 3.7 and Figure 3.8 

respectively) were higher in vegetated habitats in all wetlands except for Hammond Road 

CWS, in which the bacterial cover was lower in the vegetated habitat. All wetlands had similar 

overall percentage cover of either component. 

The chlorophyll a results, an indication of algal biomass, showed patterns for most wetlands 

similar to the absolute algal percentage cover data. Vegetated habitats of Lake Mt Brown 

again had the highest chlorophyll a biomass, with Hammond Road CWS, Bartram Road CWS 

and Lake Balannup having similarly low chlorophyll 'a' biomass (Figure 3.9). Despite this 

similarity, the chlorophyll a biomass was significantly higher in the vegetated habitats (0.034, 

ldf, p<0.05), whereas the absolute percentage algal cover was significantly different between 

wetlands but not between habitat types. An additional anomaly in the comparison between 

algal percentage cover and the chlorophyll a biomass results occurred in Lake Thomsons, 

where the chlorophyll a results suggested a much lower algal biomass than indicated by the 

absolute percentage cover. 
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F igm·e 3.6 Algae Mean Pe•·centage Cover (absolute). Results indicated significant differences 
between wetlands (0.000, Sdf, p<O.OS). Lake Mt Brown and Lake Thomsons had greater algal cove•· 
than the othe•· wetlands. Note change in scale (Bai'S indicate ±SE, n=12). 
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Figure 3.7 Fungi Mean Percentage Cover (absolute). Vegetated habitats had significantly highe•· 
fungal cover than open habitats in all wetlands (0.001, ldf, p<O.OS). Note change in scale (BaJ'S 
indicate ±SE, n=12). 
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Figtll'e 3.8 Bactet·ia Mean Pet·centage Covet• (absolute). Vegetated habitats had significantly 
highet• bacte.-iaJ cover than open habitats ovet·all (0.027, l df, p<O.OS), except for in Hammond Road 
CWS. Note change in scale (Ban indicate ±SE, n=l2). 
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Figure 3.9 Mean Chlot·ophyU a Biomass. Vegetated habitats had significantly highet· chlorophyll 'a' 
biomass than open habitats (0.034, ldf, p<O.OS). (Bars indicate ±SE, n=4). 
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3.2.4 Biomass and Composition ANOVA Summaries 

Summaries of the signilicant differences in biomass and composition from A NOVA arc shown 

below with the significance levels (P-valucs) (Table 3.1). The rcsulls confirm high variability 

in biofilms on the Swan Coastal Plain, in terms of both biomass and composition, and between 

wetlands and wetland habitat types. 

Botween Wetlands Between Habitats 

Variable d.f. Mean F-Value P-Value d.f. Mean F-Value P-Value 

Square Square 

Percentage Organic NS NS 
Biomass (g/m2

) 

Organic Biomass (g/m2
) 5 .113 11.201 .000 * .04811 4.784 .031 * 

Inorganic Biomass (g/m2
) 5 .06063 4.450 .001 * NS 

Algae % Composition 5 .255 7.202 .000 * NS 
(absolute) 

Fungi % Composition NS 1 .07653 11.706 .001 * 
(absolute) 

Bacteria % Composition NS .006935 5.075 .027 * 
(absolute) 

Chlorophyll 'a' (g/m2
) NS .899 4.986 .034 * 

Algae % Composition 5 .727 6.652 .000 * NS 
(relative) 

Fungi % Composition NS .566 .6130 .015 * 
(relative) 

Bacteria % Composition 5 .200 2.600 .030 * 1 .901 11.702 .001 * 
(relative) 

* =Statistically Significant NS = Not Significant 

Table 3.1 2-Way ANOVA Significance for all factors with the P-values indicated. Wetland and Habitat 
interactions are not shown as no significant interaction terms occurred. 
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3.3 FRP UPTAKE KINETICS 

Only two of the five batch-culture systems showed FRP changes that met the significance 

criterion. The 400ftgL-1 system showed a net FRP uptake, while the I OOf!gL- 1 system yielded a 

net FRP export (Figure 3.10). The changes in the remaining three systems failed to meet the 

uptake significance criterion. 

FRP uptake at the highest concentration (400flgL- 1) was 14.56f1ghr'1, equivalent to !.67f1gmg· 

1hr'1 when normalised to the mean tank biomass for the system (Table 3.2). FRP export 

recorded in the 100f1gL'1 system was 6.66f1ghr'1, equivalent to 0.20f1gmg'1hr"1 when 

normalised to the mean tank biomass for the system. 

Based on the FRP uptake results, it can be inferred that the maximum potential for a wetland to 

uptake FRP at 400flgL'1 is equal to or greater than !.67f1grng'1hr'1 
_ If this uptake rate is used to 

estimate the potential for a wetland to remove FRP, normalised to wetland biofilm biomass, 

Lake Mt. Brown vegetated habitat would have the highest potential FRP uptake rate at 

189.2f1gm·'hr"1 (Table 3.3). Lake Mt. Brown would also have the highest potential wetland 

uptake rate of all open habitats at 6!.6f1gm'2hr"1
• The Lake Goollelal vegetated habitat would 

have the second highest potential FRP uptake rate at 68.8f1gm-2hr"1
, and Hammond Road CWS 

open habitat the lowest at 16.6flgm-'hr'1 
_ 

Additionally, because vegetated habitats were found to have higher organic biomass, FRP 

uptake rates normalised to biomass would be higher in vegetated habitats than in open habitats, 

with the exclusion of Lake Balannup (Figure 3.11). Vegetated habitats would have greater 

surface area because of the additional surface area for biofilm growth provided by macrophyte 

stems, thereby heightening the FRP uptake within a vegetated habitat for a given area. 
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The two tln1her FRP uptake experiments indicated that similar FRP uptake rates were found 

under high PAR intensity (Appendix C), and that tanks not containing BBM were potentially 

nutrient limited (Appendix D). 
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Figure 3.10 FRP Uptake Kinetics of Biofilm at 5 concentrations. The regression shown is 
the mean regression of all tanks in the given concentrati011. Two concentrations recorded 
uptakes that met the significance criteria. The remaining three concentrations did not meet 
the criteria (marked by NS). The 400J.lgL·1 concentration had an FRP uptake, while the 
100f.lgL"1 concentration had a net FRP export. (n=S, *n=4). 
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FRP Concentration Mean Tank Uptake 
Rate (f.1ghr.1

) 

400)Jgl" 1 14.56 

200~1gr 1 NS 

10011gL·1 -6.66 

50J.igL·1 NS 

<501lgL·1 NS 

Moan Organic 
Biomass (mg) 

8.7 

17.6 

33.8 

7.8 

12.5 

FRP Uptake Rate per mg Organic 
Biomass per hour. 

(f.lgmg·1hr.1) 

1.67 

NS 

.().20 

NS 

NS 

Results 

Table 3.2 Mean FRP Uptake normalised to Concentration Biomass. The highest concentration 
had the highest FRP uptake rate normalised to biomass. 

Wetland and Habitat Mean Organic Biomass Wetland Habitat Uptake 

(mgm'2) Rate (1Jgm'2hr'1) 

Hammond Road CWS Open 10.1 16.6 

Vegetated 17.9 29.9 

Bartram Road CWS Open 28.4 47.5 

Vegetated 31.3 52.4 

Lake Balannup Open 19.4 32.5 

Vegetated 10.8 18.1 

Lake Goollelal Open 20.1 33.6 

Vegetated 41.1 68.8 

Lake Thomsons Open 15.3 25.6 

Vegetated 19.4 32.5 

Lake Mt. Brown Open 36.8 61.6 

Vegetated 113.1 189.2 

Table 3.3 Potential Maximum Uptake Rates of FRP for all wetland habitats. The potential 
uptake rates were calculated using the highest uptake rate from Figure 3.2. Lake Mt. Brown had 
the highest FRP uptake rates of both open and vegetated habitats because of high organic 
biomass. 

53 



Discussion 

CHAPTER 4: DISCUSSION 

4.1 BIOFILM BIOMASS 

Significant differences in biofilm organic and inorganic biomass existed between wetlands, 

with the biofilm organic biomass also significantly different between habitat types. The 

organic and inorganic biomass of Bartram Road CWS fell within the ranges observed for the 

natural wetlands. The organic biomass of Hammond Road CWS was lower than the ranges 

between the natural wetlands. The results for Bartram Road CWS were similar to results 

recorded by Duncan and Groffman (1994), who found that microbial biomass from soil cores 

taken from stormwater CWSs and natural wetlands fell within the ranges observed in natural 

wetlands. High variability of both organic and inorganic biofilm biomass between natural 

wetlands indicate that a comparison of CWS biofilm biomass to a single natural wetland would 

not be appropriate. Higher organic biomass in Bartram Road CWS compared to Hammond 

Road CWS may indicate that biofilm biomass increases with the age of the system , as also 

indicated by CWS conceptual models of phosphorus removal. 

Significantly higher biofilm biomass in the vegetated habitats indicates that maximising the 

area of vegetated habitat would maximise biofilm biomass, and therefore increase FRP 

removal. Furthermore, the macrophyte stems of vegetated habitats provide additional surface 

area for biofilm growth in a given area. However, maximising the area of vegetated habitat 

should be balanced with the need for open habitats, and the functions and benefits that these 

habitats perform, such as aesthetics. The only exception to this trend of higher organic 

biomass in the vegetated habitat was in Lake Balannup, in which the open habitat had higher 

organic biofilm biomass. One likely reason for this could be attributed to the Lenma spp. 
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covering the open water habitat, resulting in the open water habitat having characteristics of 

vegetated habitats. 

Despite comparability of biofilm biomass between CWSs and natural wetlands, biofilm 

biomass in all the Swan Coastal Plain wetlands sampled was low. Cronk and Mitsch (1994) 

calculated organic biomass at between l-5gm-1 over a 2-weck period on glass slides in a 

stomnvatcr CWS in Illinois. Robertson cl a/. (1997) calculated biofilm dry biomass at 3-60gm· 

\vk-1 from untreated pine blocks placed 20cm above the sediment in billabongs on the 

Murrumbidgee River, New South Wales. In wetlands on the Swan Coastal Plain the organic 

biomass was significantly lower at 0.01-0.llgm·' for a 2-week period. The values obtained by 

Cronk and Mitsch (1994) and Robertson eta/. (1997) are significantly higher, suggesting that 

the biofilm biomass in both stonnwater CWSs and natural wetlands on the Swan Coastal Plain 

are low. There is no clear indication as to why biofilm biomass is lower in stonnwater CWSs 

and natural wetlands on the Swan Coastal Plain. 

Similarly, Baskaran eta/. (1993) calculated the standing crop of biofi!m at 0.5-4.6gm"2 in a 

Melbourne wastewater CWS. Although wastewater CWS biofilms would likely be 

significantly different compositionally because of the different nature of the influent, these data 

indicate that the biofilm biomass in stonnwater CWSs on the Swan Coastal Plain is also lower 

than wastewater CWSs in eastern Australia. 

Conceptual models of phosphorus removal for Australian stormwater CWSs (e.g. White and 

Wiese, 1997, cited in IDA Consultant Hydrologists, 1997; DLWC, 1998; Lantzke et a/., 

1999) were developed in the eastern states of Australia, where the systems have higher 

biofilm biomass. These results suggest that biofilm in phosphorus removal in stonnwater 

CWSs on the Swan Coastal Plain may be less significant than the conceptual models anticipate 

because of lower biomass. 

The organic proportion of biofilm biomass was not significantly different between wetlands or 

between habitat types, ranging between 40-60%. This indicates that the inorganic and organic 

components have an equally important part in the biofilm structure. Rough estimates of 
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organic biomass could therefore be calculated based on the biofilm dry weight alone. In 

contrast, Sheldon and Walker (1997) found hiofilm organic percentage biomass ranging from 

16-26% in Cooper Creek (South Australia) and at 18% in the lower River Murray (South 

Australia) using natural substrates. The organic proportion of biofilms in wetlands on the 

Swan Coastal Plain may therefore be higher than in the southeastern states of Australia. 

However, it should be noted that the differences in the organic proportion may be related to the 

substrate type. 

Lake Mt Brown was significantly higher in organic and inorganic biofilm biomass than most 

other wetlands. High salinity was the most distinguishing feature of Lake Mt Brown which 

separated it from the other wetlands. Higher organic and Inorganic biomass in Lake Mt Brown 

should not suggest, however, that CWS design should aim to produce saline stonnwater 

systems. Increasing biofilm biomass would be better achieved by other mechanisms such as 

the increasing the surface area for biofilm growth. 

4.2 BIOFILM COMPOSITION 

Composition characteristics appeared principally a reflection of the PAR intensity at the 

sediment layer, with biofilm composition moving from algal dominated to bacterial/fungal 

dominated with decreasing PAR intensity. Dissolved humic substances (gilvin) originating 

from the breakdown of plant material cause brown staining of wetland waters on the Swan 

Coastal Plain (Davis eta/., 1993). This staining is often referred to as colour, with increased 

loads of humic substances resulting in increased colour. Algae dominated the biofilms of Lake 

Thomsons and Lake Mt. Brown, which were observed to have comparatively low colour and 

shallow water, resulting in higher PAR intensity at the sediment. Bacteria and fungi dominated 

the biofilms of Hammond Road CWS, Bartram Road CWS, and Lake Balannup, which were 

all observed to have high colour and increased depth resulting in reduced PAR intensity at the 
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sediment. Within the wetlands observed to be highly coloured, bacteria dominated the open 

habitats and fungi dominated the vegetated habitats. 

The colour of Lake Goollelal was observed to be between the highly and lightly coloured 

wetlands. The vegetated habitat of Lake Goollelal recorded higher algal cover in the vegetated 

habitat. In contrast, the open habitat composition of Lake GooiJelal had similar bacterial 

domination to the open habitats of the highly coloured wetlands. The increased algal cover in 

the vegetated habitat was likely a result of reduced depth in the vegetated habitat, thereby 

increasing PAR at the sediment layer. Hammond Road CWS also indicated similar heightened 

algal composition in the vegetated habitats. 

That PAR intensity as a major factor determining biofilm composition is further supported by 

the relative biofilm compositions ofLake Thomsons, Hammond Road CWS and Bartram Road 

CWS. Hammond Road CWS and Bartram Road CWS receive influent stonnwater from a 

drain leading into Lake Thomsons, and thus are comparable in tenns of most physico-chemical 

properties. However, the relative composition was significantly different. Lake Thomsons, a 

shallow and lightly coloured wetland, had biofilms that were algal dominated. In contrast, both 

CWSs were highly coloured and both had biofilms that were fungal/bacterial dominated. This 

suggests that differences in biofilm composition may not be primarily related to physico­

chemical attributes. This inferred relationship between high colour and low algal dominance, 

or alternatively low colour and high algal dominance, suggests that PAR intensity at the 

sediment layer may be the primary factor determining biofilm composition. 

These results are supported by previous biofilm studies that state high PAR intensity tend to 

result in algal dominated biofilms (Lock et a/., 1984), and that biofilms become bacterial 

dominated at low PAR intensities (Blenkinsopp and Lock, 1994). Mosisch eta/. (1999) also 

reported similar increased algal composition (measured by chlorophyll a) with increasing PAR 

intensity. It appears that similar patterns of biofilm composition occurred in the wetlands 

studied, with water colour and depth affecting the PAR intensity at the sediment layer. 
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Lawrence and Breen ( 1998) state that dissolved nutrients (such as FRP) are primarily taken up 

by epiphytic and benthic algae. If true, then engineering of CWS PAR intensity through the 

application of this 'PAR-Composition pattcm' may allow the promotion of an algal dominated 

biofilm composition. thus optimising FRP removal. 

The mean biofilm cover (absolute) did not exceed 25% for any wetland habitat, with cover 

generally at 10-12%. Silyn-Roberts and Lewis (1997) calculated similar results with biofilm 

coverage on glass substrates not exceeding 22% after 6 weeks in the field in a wastewater 

CWS. Similar cover with differences in the sampling time indicate that the biofilm 

colonisation rate may be higher in storrnwater CWSs on the Swan Coastal Plain. However, 

these differences may simply be due to CWS design and influent characteristics. 

The results for chlorophyll a did not exceed 16~gm·2 , with similar patterns to algal cover. 

Chlorophyll a recorded by Sheldon and Walker (1997) ranged between 0.5-9mgm"2 in Cooper 

Creek and around 100mgm·2 in the River Murray in eastem Australia, with the higher 

chlorophyll a attributable to higher total biofilm biomass. The algal percentage cover was 

significantly different between wetlands, but not between habitat types, whereas chlorophyll a 

was significantly different between habitat types, but not between wetlands. These 

discrepancies raise an interesting debate on the use of chlorophyll a as the standard measure for 

estimating standing and fixed algal biomass. Direct counting is the most accurate measure 

because it does not discriminate between algal species, whereas analysis of chlorophyll a may 

indicate higher algal biomass for species that have higher chlorophyll a content within their 

cells. The clearest discrepancy of this kind can be noted in Lake Thomsons, where analysis of 

chlorophyll a biomass indicated algal biomass significantly lower than must wetlands, whereas 

direct counting methods indicated that the algal content is the second highest of all wetlands 

sampled. 
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4.2.1 Limitations on Biofilm Composition Results 

The comparison of lightly coloured versus darkly coloured wetlands were based on 

comparative observations made of the water clarity during the research period. The PAR 

intensity at the sediment layer was not measured, and this therefore represents a limitation to 

interpreting the composition results relating to the 'PAR-Composition pattern'. The 

compositional analysis of biofilms for all sampling periods from all wetlands were conducted 

after most of the wetlands had become dry, and therefore measuring PAR intensities were r.ot 

feasible when it was realised that this may have been the determining factor. 

4.3 BIOFILM FRP UPTAKE KINETICS 

The maximum potential FRP uptake by biofiim was equal to or greater than 1.67~gmg.1hr 1 • 

The maximum potential FRP uptake normalised to the mean biomass of each wetland habitat 

resulted in potential wetland FRP removal rates ranging between 16.6-189.2~gm'2hr' 1 • The 

highest potential uptake rate, recorded for Lake Mt Brown, was uncharacteristically higher 

than for the other wetlands, a result of the high biofiim biomass resulting from the wetland's 

physico-chemical differences previously outlined. The second highest uptake rate was 

significantly lower at 61.6~gm2' 1 hr· 1 • Extrapolation of the potential wetland FRP removal rates 

results in potential uptake rates ranging from 2.8-31.8mgm·2wk·1
• 

Mitsch eta/. (1995) estimated the combined water column and biofiim FRP uptake at 4-6mgm· 
2wk-1 from a stonnwater CWS on freshwater riparian marshes in Illinois (United States). 

Cronk and Mitsch (1994) estimated biofiim FRP uptake slightly lower at l-3mgm·2wk·1 for the 

same system. FRP uptake rates from both Mitsch eta/. (1995) and Cronk and Mitsch (1994) 

are similar to the lowest positive uptake rates found in this study, but considerably lower than 

for the higher uptake rates. The results indicate that despite having lower biofilm organic 

biomass, the potential biofiim FRP uptake capacity in both CWSs and natural wetlands on the 

59 



Discussion 

Swan Coastal Plain arc higher. However, in relation to CWS conceptual model mechanisms, 

Mitsch cl a/. ( 1995) concluded that most influent phosphorus was retained through 

sedimentation and by macrophytes, with a lesser amount removed by biofilms. In contrast to 

this, higher biofilm FRP uptake and the diminished role of sedimentation (see p.7) for CWSs 

on the Swan Coastal Plain indicate that long-tenm phosphorus removal by biofilm may be 

highly significant. 

Despite the emphasis g1ven to the maxmlUm potential FRP uptake rate, it also must be 

considered that FRP uptake by biofilm appears to be negligible at low concentrations. Three of 

the batch·culture systems indicated no FRP removal. It must therefore be concluded that FRP 

uptake at low concentrations may be negligible, given that the rate of uptake is concentration 

dependent (Kadlec, 1997). The biofilm FRP export recorded by one of the batch-culture 

systems would not occur over long time periods within a wetland due to the limited quantity of 

f-i.•osphorus bound within the biofilms. The export recorded was possibly a result of diffusion 

ofF:K._l fg·,rn ihe biofilm when placed in a lower FRP concentration. 

4.3.1 Limitations of FRP Ulltake Results 

Conversion of the highest normalised uptake rate to the mean wetland biofilm biomass of each 

habitat type enabled estimates of the potential maximum biofilm FRP removal capacity of each 

system. However, this conversion assumes biofilm compositional uniformity between 

wetlands and between habitat types. The results should be used with more caution for Lake Mt 

Brown and Lake Thomsons, which have biofilm composition d'ssimilar to the open water 

zones of the Hammond Road CWS from which the biofilm for FRP uptake experiments was 

obtained. Alternatively, if algae were the dominan1> removal mechanisrn ·within the biofilm, 

FRP removal would likely be higher for these wetlands than the results indicate. 

The biofilms used for the FRP uptake experiments may have been phosphorus-saturated within 

the wetland prior to the commencement of the FRP uptake experiments. If this were true, the 
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potential FRP uptake rates may be higher for all wetlands than the results indicate. It was for 

this reason that the maximum potential FRP uptake rates for each wetland arc stated as being 

equal to or greater than the values obtained. 

4.4 FAILURE OF STORMWATER CWSs ON THE SWAN COASTAL PLAIN 

The FRP uptake potential of biofilm was comparable or higher than previous published 

literature has suggested; indicating that high FRP uptake within Swan Coastal Plain stormwater 

CWSs was possible. Additionally, because of the diminished role of sedimentation, the role of 

phosphoms removal by biofilm is heightened. 

The biofilm biomass of the CWSs were generally comparable to the natural wetlands in terms 

of biofilm b!omass, but with increased biomass possible. The biofilm organic biomass was 

higher in the ol,ier CWS, indicating that biofilm development may take longer than previously 

anticipated. Additionally, CWSs on the Swan Coastal Plain have not aimed to optimise the 

surface area for biofilm development. The addition of surface area for biofilm development 

will likely increase FRP removal. 

Despite similar biomass to the natural wetlands sampled, the composition of both CWSs was 

similar only to the highly coloured natural wetlands. It is possible that poor FRP removal 

.,erfonnance in the CWSs were reflective of a biofilm composition that was poor in FRP 

i"!' ">loval. Increasing the PAR intensity, either by reducing depth or by removing the water 

colour, may increase FRP remov~:d from these systems by shifting the biofilm to an algal 

dominated composition. Future research on CWS biofilms on the Swan Coastal Plain should 

aim to further investigate the effect of increasing PAR intensity on biofilm composition and 

FRP removal. 
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4.5 MAXIMISING BIOFILM BY CWS DESIGN AND MANAGEMENT 

Maximising the surface area for biofilm growth and increasing PAR intensity have been 

identified as the two major controllable factors that may increase FRP removal by biofilm in 

stoml\vater CWSs. The manip:!lation of both of these factors should be done in tandem for 

optimal FRP removal. 

Maximising biofilm biomass would be best achieved by maximising the area of vegetated 

habitat, given that vegetated habitats have significantly higher biofilm biomass. However, this 

management option should be balanced with recognising the nutrient removal functions and 

associated secondary benefits that open habitats perfonm. Additionally, the density of the 

vegetation should be monitored in order not to increase shading above densities at which the 

algal proportion would be reduced. Wastewater CWSs increase the surface area for biofilm 

growth by the addition of the substratum such polyethylene or plastic spheres (Jones, 1995; 

Rusten eta/., 1998; Pastorelli eta/., 1999), PVC plates (Baskaran eta/., 1993), active carbon 

particles (Beyenal and Tanyolac, 1996) or by using a gravel substrata (Mann and Bavor, 1993; 

Polprasert et a/., 1998). Similar surface area maximising processes could be adopted by 

stormwater CWSs on the Swan Coastal Plain in order to increase FRP removal. This process 

may or may not be suitable for stormwater CWSs, given that such options may not be 

compatible with associated secondary benefits such as recreation and habitat creation. 

However, the biofilm biomass in Swan Coastal Plain wetlands appears low and options such as 

this may be considered necessary. Access restrictions to both humans and wildlife would be 

required to counter such compatibility problems. A combination of the addition of substrata 

and an increased area of vegetated habitat will likely increase FRP removal. 

Increasing PAR intensity to the sediment layer could be achieved either by the removal of 

colour and turbidity, the manipulation of wetland depth, or a combination of the two. Removal 

of colour would likely require chemical treatment to precipitate the humic substances or the 

iron that cause the colour. Decreasing wetland depth would likely be the most convenient 

mechanism for increasing PAR intensity at the sediment. Decreasing wetland depth would 
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likely increase the algal dominance in biofilms, potentially increasing FRP removal. 

Minimising wetland depth would also have the advantage of increasing the surface area to 

volume ratio, thereby increasing the biofilm biomass relative to the water volume. Of the CWS 

literature reviewed (both stormwater and wastewater), wetland depths ranged from 26cm 

(Pollard et a/., 1995) to 1. 7m (Ruston et a/., 1998), with most systems having depths at O.Sm. 

Both Hammond Road CWS and Bartram Road CWS have a maximum depth at 1-l.Sm, as well 

as high colour. Decreasing wetland depth would reduce hydraulic residence time, which is the 

time which water is held within a system. Manipulating wetland depth would need to be 

balanced with the need for maintaining high HRT, or alternatively the hydraulic residence time 

could be maintained by increasing the area of the system. 

4.6 CONCLUSIONS 

The specific aims ofthis research project were to: 

• Compare the biofilm biomass of stormwater CWSs with natural wetlands of the Swan 

Coastal Plain. 

• Compare the biofilm composition of stormwater CWSs with natural wetlands, and 

• Determine the FRP uptake potential of biofilm, in order to determine the potential 

contribution by biofilm to FRP removal. 

Both biofilm biomass and biofilm composition were found to be highly variable between 

wetlands and between habitat types in the natural wetlands sampled on the Swan Coastal Plain. 

Both biofilm biomass and biofilm composition of the stormwater CWSs sampled generally fell 

within the ranges observed within the natural wetlands, with the exception of the organic 

biomass of the open habitat of Hammond Road CWS, which fell below the natural wetland 

ranges. Significantly higher biofilm biomass in the vegetated habitats indicated that the 

maximising of biofilm biomass would be best achieved by maximising the area of vegetated 
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habitat. However, this should be balanced with the need for open habitats and the phosphorus 

removal functions that these habitats perform. 

Biofilm composition appeared to be a product of PAR intensity at the sediment layer, with 

water colour and water depth reducing PAR intensity. The biofilm composition of both 

storm water CWSs were fungal/bacterial dominated in both habitat types, similarly to the highly 

coloured natural wetlands sampled. In contrast, the natural wetlands observed having low 

colour, combined with low water depth, had biofilms that were algal dominated. Low 

phosphorus removal efficiency of the CWSs may result from a biofilm composition that is poor 

in FRP removal. Engineering of algal dominated biofilms by the manipulation of CWS design 

to increase the PAR intensity may increase FRP removal. 

The FRP uptake rate appeared to be concentration limited, with low FRP systems failing to 

indicate significant FRP removal during laboratory testing. 

concentrations (-400figL'1), significant FRP removal occurred. 

In contrast, at high FRP 

The FRP uptake potential of 

biofilm normalised to biofilm organic biomass was found to be comparable or higher than 

previous published literature had suggested, despite significantly lower biofilm organic 

biomass in both natural wetlands and stormwater CWSs. 
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APPENDIX A 

Unprocessed data for all wetlands in all sampling periods. 

A (.) indicates that no sample was retrieved. Note that Lake Balannup was not sampled in 
Sampling Period I due to accessibility, and both Lake Thomsons and Lake Balannup were not 
sampled in Sampling Period 4 as both wetlands were dry. 

Wetland Habitat Sampling Algae% Fungi% Bacteria Chlorophyll 'a' Organic Inorganic Percentage of 
Period Cover Cover %Cover Biomass Biomass Biomass Organic 

(g/m2) (g/m2) (glm2} Biomass 
Composition 

Hammond CWS Open 1 0.7 0.0 1.7 16.5 0.0042 0.0045 48.57 

Hammond CWS Open 1 0.0 0.0 1.9 0.0063 0.0017 78.13 

Hammond CWS Open 1 0.0855 0.2260 27.45 

Hammond CWS Open 2 0.0 0.0 0.6 2.8 0.0040 0.0007 84.21 

Hammond CWS Open 2 1.0 1.7 0.3 0.0045 0.0013 78.26 

Hammond CWS Open 2 0.0 3.7 0.7 0.0047 0.0038 55.88 

Hammond CWS Open 3 3.0 2.7 1.2 6.4 0.0013 0.0060 65.22 

Hammond CWS Open 3 0.0 1.0 1.9 0.0005 0.0047 9.52 

Hammond CWS Open 3 0.0 1.0 0.5 0.0035 0.0070 33.33 

Hammond CWS Open 4 1.7 1.7 0.7 2.5 0.0038 0.0058 39.47 

Hammond CWS Open 4 0.0 2.0 3.1 0.0030 0.0018 63.16 

Hammond CWS Open 4 0.0 0.7 0.7 0.0000 0.0010 0.00 

Hammond CWS Vegetated 1 8.7 0.0 0.8 5.3 0.0053 0.0062 45.65 

Hammond CWS Vegetated 1 1.3 1.7 0.5 0.0033 0.0000 100.00 

Hammond CWS Vegetated 1 0.0060 0.0000 100.00 

Hammond CWS Vegetated 2 1.0 5.0 1.0 3.6 0.0128 0.0060 68.00 

Hammond CWS Vegetated 2 3.0 2.0 0.2 0.0068 0.0023 75.00 

Hammond CWS Vegetated 2 3.0 7.0 0.7 0.0042 0.0002 94.44 

Hammond CWS Vegetated 3 2.7 2.3 2.8 16.9 0.0055 0.0098 36.07 

Hammond CWS Vegetated 3 0.0 1.7 0.6 0.0030 0.0047 38.71 

Hammond CWS Vegetated 3 0.0002 0.0052 4.55 

Hammond CWS Vegetated 4 1.3 1.0 0.6 2.3 0.0170 0.0170 50.00 

Hammond CWS Vegetated 4 0.0 3.3 0.6 0.1448 0,7508 16.16 

Hammond cws Vegetated 4 4.0 3.0 0.1 0.0055 0.0045 55.00 

Bartram CWS Open 1 0.0 0.3 0.5 2.1 0.0068 0.0015 81.82 

Bartram CWS Open 1 0.0050 0.0015 76.92 

Bartram cws Open 1 0.0057 0.0008 88.46 

BartramCWS Open 2 0.0 0.7 0.1 4.4 0.0132 0.0090 59.55 

Bartram CWS Open 2 1.0 1.3 1.0 0.0488 0.0625 43.82 

Bartram CWS Open 2 0.3 1.0 0.6 0.0125 0.0085 59.52 

Bartram CWS Open 3 2.0 3.7 0.7 20.3 0.0148 0.0140 51.30 

Bartram CWS Open 3 2.0 8.3 2.6 0.0523 0.0440 54.29 

Bartram CWS Open 3 1.3 1.3 1.4 0.0397 0.0363 52.30 

Bartram CWS Open 4 1.7 1.7 1.9 13.9 0.0510 0.0430 54.26 

Bartram CWS Open 4 0.3 1.3 1.2 0.0608 0.0623 49.39 

Bartram CWS Open 4 0.7 0.7 C.t! 0.0298 0.0295 50.21 

Bartram CWS Vegetated 1 3.0 4.0 1.6 16.2 0.0127 0.0060 68.00 
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L. Balannup Vegetated 2 3.3 2.3 3.2 19.9 0.0035 0.0000 100.00 

L. Balannup Vegetated 2 0.0 6.0 0.9 0.0060 0.0007 88.89 

L. Balannup Vegetated 2 0.0 8.0 1.1 0,0157 0.0058 73.26 

L. Balannup Vegetated 3 2.7 3.3 2.7 11.7 0.0180 0.0145 55.38 

L. Balannup Vegetated 3 
L. Balannup Vegetated 3 

L. Balannup Vegetated 4 

L. Balannup Vegetated 4 

L. Balannup Vegetated 4 
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Biofilm FR,P Uptake Kinetic Experiments: Pilot Study 
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APPENDIX B 

Pilot Study for Biolilm FRP Uptake Kinetic Experiments 

The pilot study was conducted with one uptake tank at I OOugL·' and PAR intensity provided at 
10.3umoln,-'sec·'. Plates had been deployed in Hammond Road CWS for 6 weeks. 

The pilot study was used to detennine sample extraction times and the total experiment time. 
Th greatest uptake occurred within the first 30 minutes. The Pre-test indicated that a 2-hour 
period with samples taken at 0, 5, I 0, 20, 35, 55, 85 and 120 minutes would be appropriate for 
the biofilm FRP uptake kinetic experiments. 
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APPENDIXC 

High PAR Uptake Kinetic Test Results 

FRP uptake was detem1ined at 200ugL-1 with 5 replicate samples with PAR intensity provided 
at 10.3urnolnf2sec·1

• An additional sample extraction was taken at 180minutes, with all other 
sample extraction timings remaining the same as the main FRP uptake experiment. The plates 
used had been in Hammond Road CWS for a period of 4 weeks. Analysis of the biomass from 
each tank was then conducted. 

The uptake rate appeared similar to experienced in the main FRP uptake experiment. When 
the uptake was normalised to weight, the uptake rate was confinned as being similar. This 
indicated that the FRP uptake rate of the biofilm collected in the main FRP uptake experiments 
was not limited by light. 
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Mean Tank Uptake Rate, Mean Organic Biomass and Mean Uptake Rate to Biomass for the High 
Light Orthophosphate Uptake Kinetic Experiment. 
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APPENDIXD 

BBM Uptake Kinetic Experiments 

The effects of BBM on FRP uptake was tested with limited time and a lack ofbiofilm plates in 
Hammond Road CWS. As a result of this, no replication was possible for the experiment. The 
experiment was conducted using two FRP uptake tanks at 250ugL'1, one containing BBM and 
the other minus BBM, over a 42-hour period with the PAR intensity provided at 10.3umolm· 
2sec·1 

• Samples were extracted at Ohrs and 42hrs. The system containing BBM had a loss of 
FRP greater than the system in which BBM was absent. It was therefore assumed that the 
lower rate of FRP removal in the system without BBM was due to the biofilm being nutrient 
limited. The experiment indicated that there was no indication that the BBM interfered with 
the FRP uptake by biofilm during the other FRP uptake experiments. 
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APPENDIX E 

Dye Circulation Test. 

The uptake cell prior to the addition of the blue dye is shown by (A). Blue dye was pipetted 
from behind the water pump from above (B). As shown, the dye is circulated from the pump 
along the base of the cell, before being circulated between the plate pairs and along the top of 
the water until the dye has completely circulated (C). The sequence covers a time of within 0 
and 5 seconds. 

A) 

B) 

C) 
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