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ABSTRACT 

Sun ivlicrosystcms introduced the JiniTM Tcchnolugy as its vision fJf the fut.un: in 

networking, where services can be registered drnamically and he used easily regardkss of 

their location in the network. This is an investigation of feasibility on such claims made 

by Sun rcgardingjini TM and comparisons with the directly similar Universal Plug and 

Pby from Jv[jcrosoft. The aim is to implement a simple application of the jiniTM 

wchnology in order to demonstrate its capabilities as a contribution to tht.: distributed 

computing research. 
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C:HAI'l'ER ONF. 

Introduction 

Backvround 

The computing industry has recorded rapid advancement over the past 50 yt:ars. 

It started with mainframes and minicomputt.:rs where a single computer allowed sharing 

of applications and data for the whole department. Unfortunately, these computers arc 

bulky and expensive. Then came the workstations and the personal computers (PC) 

giving computing power at lower cost and freedom to individuals but also isolating them 

from each other. This isolation was then overcome by connecting computers via 

networks. A whole new possibility was opened for individuals to make use of resources 

on different locations, as long as those resources are registered on the network. The 

problem is that the network is not for ordina11' users to configure; the bulk of the work 

falls to the system administration to make sure that the res0urces on the network can be 

shared. The popularisation of the \'\!arid \\fide \'X'eb (11/\Y/\Yf) gives further significance to 

the network computing technology. In addition, there is the embedded compurer, which 

i~ a specialised computer system embedded as a part of a larger device, such as those 

within a microwave. The emergence of this technology allows for smart devices and the 

trend of recent years that demands computing portability and connectivity. 

Sun Mcrosystems has been preaching about the idea that the network is the 

computer. The Web is already a model of exactly one single computer operating in the 

world being used by individuals all over the world. Obviously, connectivity and case of 

use are bigger issues than ever for the current network computing. 

Device connectivity, which is the ability for a device to link with another, 

necessitates that the different devices have a common protocol to be able to 

communicate. Between different computer systems, it is the task of the operating 

systems to manage this. Between devices, some of the latest technologies being offered 
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are the Universal Plug and Play from Microsoft, and the J iniTM Technoloh'Y frt m1 Sun 

l'vlicrosystcms. Both claim, not only to allow connectivity between different range uf 

devices, but also between devices and computer systems. 

Significance 

The computing industq' has been talking about how to make devices easy trJ 

connect and usc without the need for the user's intervention [CNF.T, 2000; Intel, 2000; 

Lee, 1998; Shnier, 1996}. Microsoft, with the cooperation of Intel and other hardware 

manufacturer, then invented the Plug and Play (PnP) technology. Instead of the user rc

configuring the computer to recognise a new device every time one is connected, PnP 

allows the computer to detect the new connection automatically. The operating system 

involved usually provides a set of device drivers from various hardware manufacturers 

and some generic ones needed by the computer to communicate with this new device. 

However, it still depends on the user to provide newer version of those device drivers 

when needed. This technology is also Limited to computers, whereas the computing 

industry is moving towards different kinds of devices (entertainment devices, home 

electronic devices, etc.) to be connected and communicating with each other. 

This is where Jini technology enters the picture. Jini manifests n new system 

architecture to allow a 'federation 0f devices', as termed by Sun, to be dynamically 

registered to the network whenever they are available and used by anyone, anywhere on 

the network with ease of administration. The federation of devices, resources, and users 

are called djinn. The devices in a Jini system are more aptly termed as services since 

they could be hardware, software or a combination of both. The Jini technology uses a 

special service called the Lookup Service that acts as a look up directory for the Jini 

system. It requires a bootstrap mechanism called the Discovery and Join protocol to 

access this lookup service. l11at is, when n service or a user first join the djinn, it must 

locate the lookup service (discovery protocol). Once a service finds a lookup service, it 

can register itself Goin protocol) so that other services and the users can access the 
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~crvicc ir has to offer. In the user':- case, it locates the lookup service tCJ find what 

serviccs an: avaibble and to usc the available services. Jini tcchno!rJgy allrJWS all these 1.t 1 

be taken can: of by the particiJ~.Hing devices. Alltlu: user has t.£J d(J is CtHliat:l tht.: hJrJkLtp 

service and choose the servict.: required. In addition, the servic<..:s can provide a proxy 

object to act on its behalf that \Viii be passed on to the us<..:r via the lookup servic<..:. This 

object downloading eliminates the need for platform-specific device drivers, which is one 

of the problems with connecting devices tt.>day. 

As \VC can sec,Jini is the offered solution from Sun that may contribute to the 

networked and distributed computing. Currently, it specifics that, since Jini is JavaTM 

based, it requires a Java Virtual r-.Jachinc QVM) within the devices to be able to 

implement Jini. The choice is obvious because Java is a highly portable language that is 

also one of the important element that revolutionarise the Web. The fact that Java source 

code is compiled into the bytecode format allows this portability. Moreover, this 

bytecode is executed by a Java interpreter and a JVM, which exists for most operating 

systems today. Therefore, the use of Java allows Jini to run on different platforms that 

include J%1. Unfortunately, this may be a limitation to the range of Jini application. 

However, Sun is reported to be considering the usc of a proxy agent for simple devices 

not capable of running a JVM [Middleton, 1999]. 

Although the Jini specification has been out as early as the start of 1999, it is of 

course not the only solution around. Microsoft has already been working for a while on 

an extension of its PoP technology called the Universal Plug and Play (UPnP). It has only 

provided some background documentation at the middle of the same year [Christens son, 

1999; rvlicrosoft, 1999a; Microsoft, 1999b]. Like its predecessor, UPnP aims to provide 

ease of use and connectivity. but this time extended to the network environment. So no 

longer is the system administrator needed to do all the configuring for every new device 

on the network. UPnP allows the device to obtain an Internet Protocol (IP) address 

from a Dynamic Host Configuration Protocol (DHCP) or try to configure its own IP 

address in the absent of a DHCP. The device will then announce itself to the computer 

or server of its availability at that address and listens for a device probes sent by the 
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uscrs. Upon receiving a device request, its description is then sent out to the user in an 

Extmded Markup Langu:tgc (XML) format. 

Again, this UPnP technolO)-,')' willlargdy contribute to the networked computing 

community. Although only :timed for different hardware devices. UPnP is based, unlike 

Jini, on m:tny existing protocols and technology, such as the IP intcrm:t:working and the 

DHCP. 

Purpose 

This research is concerned with two of the new networking technologies 

aYailable as the latest solutions to some of the infamous networking problems. These two 

technologies are the JiniTM Technology from Sun .1\{icrosystems and the Universal Plug 

and Play (UPnP) technology from i\licrosoft. They arc chosen because their products 

offer close similarity in their solutions, thus, placing them in direct competition to each 

other. 

The aim is to investigate what these technologies have to offer to the distributed 

computing scene. Both companies have their own claims regarding these technologies, 

but claims are not necessarily realisable. In addition, prospective developers are int<:restcd 

on how realisable are these technologies before they will take up Jini, UPnP, or both. 
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Rc:-;carch Oucstions 

Th~.C questions that will he answ~.Cred after this research ar~.C hased on the claim~ 

made about Jini by Sun Microsptems, as ft>llows: 

Sun's claim: 

':Jini ft•dmolr{RI' pmmim lo /Je t1 realt/y in the i111mulirJ/e jitlure as archili:cltm: !fJ mabk 

mnmdiom beJu•rt'/1 del'itt•.r till)' time, tl/1)'11'/;m." [Sun, 1999d] . . 

Question one. 

To what extent is the above claim immediately realisable? 

Sun's claim: 

"jim' teclmology prot-ides sifllple mechanisms Jvbic/; mabie deJJices lo plug !fJgetber to form an 

impromptu CO!Imltmity---a co!JI!Illllli!J• put together Jl!itbout a!!J' planning, instal/a/ion, or Iutman 

intm'elltion." [SLm, 1999e] 

The aim is to make connection of devices seamless to the users; however, this 

causes Jini to be comparable to the UPnP technolo,gy by .Microsoft. 

Question two. 

How do the capabilities, case of use, and reliability of Jini compare and contrast 

with the features of the UPnP technology? 
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Hotb Jini and UPnP CUT\' their nwn terminology, snr11e •Jf the important rmc.;<; are . . 

n::producn\ hne from their corresponding glossarit.:s. 

Networking terminology. 

ARP: The Address Resolution Protocol (ARP) is used to translate an IP address 

ro an Ethernet ~L~C add tess [Microsoft, 1999b] 

DHCP: 111c Dynamic Host Configuration Protocol is a mechanism for 

proYiding de\'ices \\"ith configuration information needed to access the Internet 

[Microsoft, 1999b] 

DNS: The Domain Name System is a hierarchical and delegated database for the 

Internet host names and their mapPing to IP addresses [Microsoft, 1999b] 

IP: The Internet Protocol is the foundation protocol of the Internet that defines 

how a single message is sent from a source through zero or more routers to its final 

destination [Microsoft, 1999b ]. 

UDP: The User Datagram Protocol is an IP-based protocol that provides 

support for the unreliable, unordered delivery of messages over IP [Microsoft, 1999b] 

XML: Extensible Markup Language is a simplification of the Standard 

Generalised Markup Langung:e (SGML), the textual, tag-based markup language intended 

for the creation of tags vocabularies that can be applied as the semantic markup to 

documents [Microsoft, 1999b]. 
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Jini terminology. 

di~cO\'cring entity: Cooperating objecTs on t!n: \:tlllt.: hqsT, that an: starting, t1r 

:ln.: in the pn,cess 1{ tJhtaining rt.:ferences t1>jini ]!HJkup serv!L"co.; jSun, 11JfYJfl. 

disco\'cry protocol: The protocol that rule the acquirement of a refcn:ncc tiJ tHlr.: 

pr more instances of the J ini lookup service [Sun, 1999f]. 

djinn: The groupo:· devices, resources, and users j()incd by tht.: Jini soft\varc 

infrastructure [Sun, 1999g]. 

join protocol: The protocol which allows entities to start communicating usefully 

with services in a djinn, through the Jini lookup service [Sun, 1999f]. 

lookup service: The Jini lookup service provides a central registry of service 

items, representing services, available within the djinn [Sun, 1999g}. It acts as a broker 

that allows users to locate and access the services in the djinn. 

service registrar: A synonym for Jini Lookup service (see lookup service) 

[Sun, 1999g]. 

service: Something that can be used by a person, a program, or another sen•ice. 

Services will appear programmatically as objects in the Java programming language and 

have an interface, which defines the operations that can be requested of that service 

[Sun, 1999c]. 
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UPnP terminology. 

AutoiP: Thc cnhanccm~:nt to DHCP, :dlowing dc.:vic.:~:s lo configure an II' 

;lddrcss for i1sdf from :1 n:scl'\'cd range thai is only usn! \Vithin a I .AN [l\1icrusoft, 

199%]. 

Multicast DNS: Rules for making normal DI\:S rccluc.:sts using multicast CDP 

[Microsoft, 1999b ]. 

SSDP: Thc Simple Service Discover Protocol is tht: UPnP proposal for how to 

perform extremely simple discovery [Microsoft, 1999b ]. 
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CJ-It\I'TEI( 'IW< > 

Literature Reviews 

\\'hat constitutes rhcjini concept is nr11 trJta!ly an inmJVatirm unitjue trJ the jim 

tt:chnology. Jini is built on existing technologies, such as, the use of Java Remote 

Method Invocation (R;-..11) and JavaSpacc. 

JaYa Ri\ll allows applications trJ use methods of other applicatirms that exist rm 

different machines. Thi~ is done by having a local object on the client side (called a Jlub) 

that takes care of the communication \Vith the server-side object (called a skelelon) and 

handling of the data that are sent and received. The dit.:nt actually invokes the local 

method on the stub, which maps the invocation to the remote method on a different 

machine. On the server side, the skeleton receives the request, invokes the requested 

method and returns the results to the clienr-side stub to unpack it for the client. 

'J 

Rl\H allows transfer of code as well as data across the network by scrialisation of 

the object to be transferred. \Vhen an object is scrialiscd, it is converted into a byte 

sequence that can be sent over the wire. At its destination, the sequence of bytes is 

reconstitute or deserialised to make it into a whole object again. Being able to move 

codes around is the feature of IUvfl that enhances Jini. Although the Java Rl\IT is available 

since JDK 1.1, Jini specially utilised the RMI <:nhancements that are only added in Java 

1.2 [Edwards, 1999]. 

JavaSpace itself is based on Linda, a project from Yale University [Arnold, et al., 

1999 p. 258-259; Clark, 1999; Edwards, 1999 p. 638-639; IEEE, 1998]. Linda provides a 

shared virtual space for processes in a parallel program so that all processes can exchange 

data by reading and writing them in the shared space [SCA, 1997]. 

JavaSpace extends on Linda by augmenting some of Java characteristics. Por 

example,JavaSpace has the strong typing typical of Java and the ability to conduct 

searching based on class relationships, implemented interfaces, and known attributes. 

Although individual clements in Linda are also typed, as a whole unit they arc not typed 
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like rhc objects injavaSpace.ln addition, because the entities that arc stored in.JavaSpacc 

an: objt.::cts, they not only contain data, hut also thc.:ir methods. Morenvcr, unlike Linda, 

St:\'cral JavaSpace scrvict.::s are allowed t() exist in a jini environment, each with their uwn 

sepa r~ttt.:: object sh 1ragc area [Edwards, l <J9<Jj. J a vaS pace supp1 ms the use ( J f transacti1 m 

inJini. 
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JilliTM (:tli1Cl'j1t 

l.!sing the above tLThnologie:-;,Jini expand:-. and ~.:nh:Lnn:s thclll intq a wrJrking 

mudd that comprise live key cnno.:pts: 

• 

• 

• 

• 

• 

Disctlvery am!Jtlin 

l.ookup 

Leasing 

Remote events 

Trans:tction 

TI1ese components fall under three categories in the Jini model; the infrastmc/ure, 

progrmmJJing model, and the sm·ires. The infrastructure, or the core of ~he technology, 

consists of the Discovery and Join protocols, Lookup, and distributed security issues. 

The last three are what made up rhe programming model, which supports and made used 

by the infrastructure [Sun, 1999c]. Jini services are participants of the Jini network, 

enabled by the infrastructure and programming model, whkh ha\'e some resources to 

offer to the community. JavaSpaces in Jini are such service whose resources is the 

avaihbility of storage space for used by other participants. 

Discovery~ Join and Lookup 

The Lookup is a Jini service that acts like a broker that allows clients and 

services to sec each other in ajini federation network. Hence, without the existence of at 

least one lookup service, a Jini network will not function. 

The discovery protocol describes the steps that any entity (either a client or a 

service) must initially take when connecting to the Jini net\vork. Upon connecting to the 

network, if the entity want to participate in the Jini federation, it must first locate the 

lookup service by initiating the discovery process. 

Employing either of the three discm·cry protocols, namely, multicast request, 

multicast announcement, and unicast discovery can be; used to locate a lookup 
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sernct'. 

The mu/t,i·d.l'l n•qut•s/ is tht· at tempt ( 11" a participating entity (client 1 11' :-.ervJCe) in t l1e 

djinn network to discovn a lookup service hy multicasting a request to all available 

lookup services in rhe nctwork to announce itself. The llllllfiras/ tJ1111flllllCWit·JI/ is when a 

lookup scrvicc broadcasts its availability on the nctwork. /Jnirasl tlisrm'I'!J' protoc{JI i~ u~ed 

whcn an entity already knows thc address of the lookup service it wants to join and, thus, 

it can directly t]Ltcry the lookup scrvice. The unicast discovery is also employed by a 

lookup service after a multicast request to directly answer the entity's discovery request. 

Both multicast discovery protocols can be implemented by the usc of the 

LookupDi scovery class from the net.~ ini. discovery package, whereas, the unicast 

discovery is implemented by the LookupLocator class from the 

net. j ini . core. discovery package (see AppendL"o: A for Jini packages diagram). The 

LookupLocator class uses the Uniform Resource Locator (URL) address of the target as 

an argument. The standard URL syntax takes the form of 

protocol: //host: port/data. The protocol used is of course j ini, the host is a 

Domain Name System (DNS) name or 111 IP address. The port is optional and defaults 

to 4160. 

fini Seroice 

After a participating service entity locates the lookup service, the ne\vly 

connected service will register itself with the lookup service. This is known as the join 

protocol By registering with the lookup senrice, a service entity must provide the lookup 

service with its service proxy object and any attributes it has. 

The lookup service maintains services registered to it through a set of service 

items. Programmatically, this set represents instances of the Serviceltem class. Each 

Serviceitem contains three clements, namely, the serviceiD- its universal unique 

identifier (UUID), the service- either a Remotc McthoJ Invocation (RMI) stub or a 

proxy object, and the at tributeSets -its set of attributes. 

The ServiceiD of a service item is initially generated by the lookup service when 
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rlu: service first registers with the lookup. It is n.:prescnted by Lhe ServiceiD class as a 

12H-bit value. Once obtained, the ID is reused whenever the service rc-regi:;tcrs itself 

with the lookup. 

t\ service object is an lUvtl stub if it is implemented as a remote object. 

Otherwise, it could be other object if the service uses the local proxy [Sun, 1999g}. The 

usc ofRMl tcchnolO.!:,'Y allows the complete sc:.:rvicc object and its code to be passc:.:d on 

the network and downloaded for the client to usc. 

Jini services can attach attributes to its service proxy to associate extra descriptive 

info to the service. Service attributes are Java objects that implement the Entry interface 

from net. j ini. core. entry package. The Entry interface is a subintcrface of 

Serializable of java. io package. Because an attribute is a collection of Java objects, 

each field is serialised separately and independently, which allows for simpler searching 

[Edwards, 1999], 

By attaching attributes, clients can search for a particular service based on certain 

criteria of the attributes. Attributes are extendable but the provided standards are Name, 

Address, Location, Comment, Serviceinfo, ServiceType, and Status attributes. 

The values of some attributes, such as the last three mentioned above, can not be 

changed by human intervention. That is, only the service can change them 

programmatically. For example, a printer that has run out of paper will change its 

Status attribute accordingly. Such attributes arc said to be service-controlled and 

implement the ServiceControlled interface from net. j ini .lookup. entry package. 

An administrator can change non-service-controlled attributes, such as, the Location 

attribute of the printer whenever it is moved, for example. 

The set of attributes gives description of the service, such as, its name, owner, 

and location. This is represented by the Entry class. Upon registering itself with the 

lookup, a service provides its attributes to the lookup. When a user is looking for a 

particular service, giving attributes criteria allows narrowing down to those specific 

attributes. This is called service item matching and is implemented using an instance of 

the ServiceTemplate class, which has exactly the same clements as the Serviceitem 
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dass. Hence, a service ilr.:m matches a servict.: tcmplate if all clemcnts within the template 

match to the corresponding: elemcnts in the scrvice item. 

The clement~ of il service item arc persistent across crashes and res tans. Two 

other dements of a service item that must survive such incidents arc the set of groups 

the servicc is a mcmbcr of and thc set of specific lookup service with which it must 

registers itself whenever restarted [Sun, 1999fj. 

]i11iCli!!nf 

A participating client entity can, after locating the lookup service, query the 

lookup service for any services that match certain cdteria, for instance, by querying the 

attributes or interface that a service might support. The client accomplishes this by 

providing a template of criteria attributes to pass as the query. This template is then 

checked for matches by the lookup service against the attributes of the Jini services that 

are registered with the lookup. Wild card is allowed by passing null fields in the template. 

On the other hand, non-null fields in the template must match the corresponding service 

attributes exactly. This means when scrialiscd, they produced the same bytes [Edwards, 

1999] 

A match is found if the both the template and the service attributes arc of the 

same class or subclass. When a match is found, the lookup service will pass on the 

service proxy object to the client so that the client can directly invoke the methods of the 

service. On the other hand, when a match is not found at the time of the query, the client 

has the option to ask the lookup service to notify it when a match occurs. This is done 

through the remote event notification mechanism, as will be discussed further. 

Note on Requirements 

To be able to participate in ajini federation, there are several requirements that 

need to be met. A host must have an IP address, either a statically assigned to them or 

dynamically acquired through a DHCP. This a bit restricting forjini, but UPnP has a 

work around for allowing IP address to be assigned temporarily when the DHCP is not 
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available, as will be discusst:d late.:r. Jini also re<.Juirt:s that there mmt be support for 

unicast TCP and multicast UDP, which arc used during the discovery process. Unicast 

TCP is also used when utilising the Java RMI. Furthermore, a mechanism must be 

provided that allows for tht: dynamic downloading of RMI stubs or other codes needed. 

The typical mechanism is an HTTP server. 

The reason for the last requirement is that the RMI, which is used by the Jini 

technology, allows for both data and code to be passed around the network. This is the 

solution provided by Jini, rather than upgrading device drivers manually, the drivers can 

be dynamically prO\·ided to its clients. In the case of a software service, it allows the 

client to obtain the interface 'driver· of the service needed to interact with that sen~ce 

[Venners, 1999]. In addition, with RMI, if an entity does not have ali the classes that it 

needs it will download it automatically from the host's codebase. In"jini case, when a 

service version is upgraded, the client will automatically download the new stub for its 

usc. 

Leasing. 

Again, the idea of leasing is not entirely new to network computing, thus not 

unique to Jini. A network participant uses the leasing concept when dynamically 

obtaining IP address from a DHCP. The DHCP then guarantees that the IP ad9ress will 

always be allocated to the requesting participant as long as the lease still holds lDroms, 

1997; Wobus, 1998]. The lease for the IP address can be periodically renewed or released 

voluntarily. 

Jini, on the other hand, expands on this concept of leasing to promote a self

healing network. The basic idea is the same, b•..~t the concept is applied to services and 

service consumers. 

To obtain a lease means to show an interest in accessing and holding some kind 

of resource. Thus, whenever a Jini service registers with a lookup, it must negotiate a 

lease with the lookup to access the lookup registration. The negotiation for a lease is one 
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war. Thr.: sr.:rvice passr.:s kase duration in milliseconds as a n:qut.:st. The lookup savin:, as 

the lease gmntor, creates a lcasr.: object from the net. j ini. lease. Lease interface. 1! 

then returns thr.: proxy of the lc:ase to the clic.;nt. The returned lease is the agreed kase 

duration decided by the lease grantor, which is not necessarily what the:: client originally 

n:qur.:stcd. The client, or in this case, the kase holder, can check .the returned lease 

duration by ca!Eng the getExpiration () m<:thod of th~.: lease:: object. 

Ukc the IP address holder of DHCP client, aJini client can continually show 

interest in holding the registration to a lookup service by periodically renewing its lease::. 

It can also release the lease if needed be. This is achieved by calHng the renew () and 

cancel ( ) method of the lease object, respectively. The costs of the leasing model are 

that a lease holder must actively renew its leases, whereas, the grantor must actively check 

for expiration of leases [Edwards, 1999]. Fortunately,Jini allows leasing to be handled by 

a third party lease manager whose duty is to renew its clients' leases. In addition, leases 

can also be hatched together using the LeaseMap interface of the net. j ini. lease 

package, which extends java. util. Map from Java 1.2. Batched lease can be renewed 

and cancelled together, but whether particular lease can be hatched or not depends on its 

implementation [Edwards, 1999}. 

The benefits of leasing outweigh the costs since it allows a self-healing network. 

That is, failure in the part of the client can be detected by the lookup service at uunost 

when the lease expires. Therefore, the shorter the duration of the lease, the faster a 

failure can be detected since the lease object that provides the connection between the 

lookup and the service is severed. Once the lease expires, the lookup service can reclaim 

back any resources used by the service, and forgets about irrelevant data or unwanted 

states left behind [Edwards, 1999; Sun, 1999i]. All this requires work only on the part of 

the lease grantor. 

Remote events. 

A Jini participant can register for remote event notification. Event notification in 
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Jini is based on Java. It differs greatly because Java events arc mainly for local even Is on 

the same machine. This caused a lot of rcstriclion, as discussed by Simon Roberts and 

Jon Byous [Roberts and Bynus, 1999]. They stated I hat, java assumes synchronous and 

reliable ddivcry of events when in distributed systems there is no guarantee. In additi(m, 

most java source e\'ents arc non~scrialisable, thus, preventing the whole event object to 

pass as argument over the network rRoberts and Byous, 1999]. 

The Jini remote event modd provides the solution and allows more simplicity. 

Unlike the Java model that requires different listener for different event type, any Jini 

event listener can receive any type of events. All of Jini remote events are subclasses of 

net. jini. core. event. RemoteEvent, which extends Serializable, and alljini 

listeners implements the net. j ini. core. eventRemoteEventListener interface. This 

characteristic allows Jini event _listeners to be pipelined- one's output becomes another's 

input- allowing Jini to cater for specific application requirements when needed 

[Edwards, 1999]. In addition, like any Jini resources,Jini events are leased and thus carry 

the benefits of leasing as discussed above. 

Transaction. 

Transaction in computing is indispensable. By using transaction, multiple 

operations become one working unit, where all transaction participants can either 

succeed or fail together as a unit. The aim is to preserve the consistency of the 

operations by preventing partial success or failure. 

The Jini specification provides a 1J110-phased commit protocol for distributed 

transactions. The two-phased commit protocol guarantees that operations are 

consistently resolved by ensuring all transaction participants will eventually know 

whether to commit the transaction or abort it [Arnold, et al., 1. 999 p. 185-186]. 

Essentially the two-phased commit involves two stages called the 'jJrepare stage' and the 

'commit stage'. At the first st?.ge, all participants are made sure that they have finished 

computing and saved to a temporary storage, whatever results were requested before 
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going to the next stage. If all participants successfully complctcd thc first stagc, lht.:n they 

can proceed to the commit stage. At this smgt.:, all participants copy their results to a 

pcrmant!nt storagc and rcport their succt:ss status. If all participants complt.:tt.:d 

successfully the commit stage, tht.:n the transaction is also successful as a whrJ!c. A 

transaction manager coordinates all of tbest.: necessary steps. 

Again, the transaction concept is neither new nor unique to Jini since database 

S}'Stems have been using transaction as well. Although, unlike a database transaction,Jini 

does not define the semantics of the implementations but left it to the individual 

participants involved [Edwards, 1999]. In Jini case, the participants arc Jini services 

whose methods can be grouped as transaction. These services implement the 

TransactionPartic.i.pant interface of net, j ini. core. transaction. server 

package. The transaction manager injini is a service as well, whose sole duty is to 

coordinate transaction. Transaction managers implement the TransactionManager 

interface instead of TransactionParticipant of the same package. A Jini transaction 

client is ajini application which have a need to execute operations as transaction. The 

client must first retrieve a reference to aJini transaction manager through the usual 

discovery and lookup process. Then it creates a Transaction object by calling the 

TransactionFactory from net. j ini. core. transaction. The Transaction object 

is managed by the transaction man'iger and is passed to each participant as part of a 

method call. 

As a service, Jini transaction managers are leased too, and therefore must be 

renewed until completion of the transaction. The lease in transaction only determine 

when transaction stops allowing participants to be added before attempting to start the 

two-phased commit protocol [Edwards, 1999]. 

Jini transactions are optional and only used by JavaSpace to coordinate 

operations across a common storage space. JavaSpace services in jini implements the 

net. j ini. space. JavaSpace interface in their proxies. As usual, these services are 

leased. The objects in JavaSpaccs are of type Entry, which is also used as attribute 

objects in Jini services. Naturally, the mechanism of searching for particular objects in 
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j:l\'aSpace is similar to CJUerying service attributes, That is, template gntry ohjecl is also 

used, but multiple matches can not he returned. \'V'hen: lookup servict.: lJUery attributes as 

a set of entries,JavnSpnce only C[Uerit.:s single entries. 

JavaSpace has two rypes of storagc, transient and persistent. In transient, the 

storage is only available as long as the service is running. For the latter, the storage data is 

recoverable because ir is saved to a permanent storage. 
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Universal Plu~· and Play Concept 

The specification for UPnP has been slow coming compared lo Jini. 

Nonetheless, similar issues have been addrcss<.:d and includr.: the following concepts: 

• 

• 

• 

Device discovery 

Service lifetime 

Events 

Device discovery. 

Similar to Jini, UPnP has some sort of a discovery protocol that allows discovery 

of devices on IP networks. The term used is Simple Service Discovery Protocol (SSDP). 

\\:lith SSDP, the use of a lookup service mechanism such as used by Jini can be 

bypassed. However, such lookup mechanism still exists in UPnP to implement service 

discovery beyond the local area network. The term used is for such mechanism in UPnP 

is a directory. In the presence of a directory, it acts like the Jini lookup service, 

necessitating services to register with it so that it can act on its behalf, that is, listening, 

and answering requests from clients. 

UPnP Service 

A service must initially sends a multicast packet to announce its availability on the 

network. The packet contains information about the service, specifically, its identifier, 

location, and expiration time. Instead of using service ID and attributes as used by Jini, 

SSDP uses a single identifier, which is a unique pairing of a unique service name (USN) 

Uniform Resource Identifier (URl) and the service type URI. The location is the URL 

information of where to contact the service. The expiration time specifies the maximum 

time that information about the service is cached on the clients, which could be in any 

time units from seconds to years [Microsoft, 1999a; Microsoft, 1999c]. 
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l./Pr11' Client 

t\ client looks for a servict: by st:nding a UDP multicast packet containing the 

service idcntiti.er of interest [Microsoft, 1999b]. St:rvices can directly listens fur and 

respond to such request if it has the specified identifier. 

Tiw UDP data is sent and received in HTIP format with special semantics Uohn, 

1999]. Special n1essagc is embedded in the HTML, that is, either ,\NNOU!'CE or <J!YriO!'S 

message for announcement and querying, respectively. 

The successful result of a query will return the URL of the XML file containing 

the service description. UPnP utilised XML to provide descriptive information of 

services and the capabilities information of smart objects. The features of a smart object 

are presented with X!v!L, allowing the device to be manipulated. The use ofXML st:ylc 

sheet (XLS) also aUows different views to be presented to the client as required 

[Christensson, 1999]. The URL can be resolved to the service's IP address by the 

client and used to connect with the service. 

UPnP enables the clients to control servic<::s through net browser if the browser 

learns how to talk to UPnP services. The service provided the learning process by 

uploading the XML file that describes the capabilities of the service. This means that 

with UPnP, invoking services can be done without any code being passed around, but 

only through the exchange of formatted data. To make it workable it would require that 

all devices communicate with common interfaces and protocols. Such service-driven 

auto-configuration capability is enabled by UPnP architectural component called the 

Rehydrator, whose job is convert between programming interfaces and protocols 

[Microsoft, 1999c]. 

Requirements flexibility. 

Like Jini, UPnP uses the IP networking standard. In the case of Jini, it requires 

that the IP address of participating entities be assigned statically or dynamically using 

DHCP. UPnP requires its services to be able to operate in the absence of either. This is 
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when: the AutoiP comes into the picture. It allows a s<:rvin: to autOJn;ttically conlh,,urc 

an lP address for itself in th<: absent of a DHCP. This is don<: because it has a rang<: of 

lP addresses set aside that are usc when DHCP is not availabk. It only keeps the current 

arbitrarily chosen address only after it uses the Address Resolution Protocol (ARP) to 

ensure that the address is not already being taken. Despite obtaining an I P address this 

way, it still continually checks for DHCP availability. If a DHCP is available, the IP 

address is obtained from the DHCP instead. 

Of course, typically we prefer to usc a DNS instead of an IP address to refer to a 

hostname. Because there is a possibility for a DNS server to be unavailable, UPnP uses 

Multicast DNS to allow services to listen for their names being requested and respond 

to such requests [Microsoft, 1999b ]. 

Both of the above approaches are used to allow peer device-to-device 

connection. The network can still function without the assistance of a personal computer 

system [Microsoft, 1999b]. Neither of the above techniques is provided by Jini. Jini 

assumes IP address assignment mechanism is available. Further, it requires the existence 

of the lookup service to marshal interaction between the client and the service provider. 

Service lifetime. 

A service provides an expiration time as part of its announcement packet. 

Expiration information is analogous to the Jini leasing system, where the service must 

refresh the cache of the clients periodically to signal its continuing existence in the 

network. The difference is that the client can perform discovery rather than waiting for 

cache update [Microsoft, 1999a]. 

Events. 

UPnP uses Generic Event Notification (GENA) over TCP /IP for its event 

notification purposes. It adds conventions for establishing relationships between devices, 
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:u\drcssing scheme of t:vents ddivery, and GF.NA h.:v<.:rages HlTP addressing and 

encapsulation [iVIicrosoCt, l999c]. The GENA mechanism is similar to the Java event 

delivery mechanism but with different terminologies and underlying technolob'Y· ror 

example, the event listener in GENA is called subscription arbiter, and hence also the 

term subscriber for the entity that subscribes to the event notification lCohen, et al., 

1999]. A subscriber negotiates subscription of event notification with a subscriber arbiter, 

which then will relay events of interest from a source to the subscriber. 

In GENA all event-related communication is done through HTIP notification 

using multicast UDP. To subscribe to an event notification, a subscriber must send an 

HTIP SUBSCRIBE message, !'pecifying the target subscriber arbiter, event type, and a 

callback information on how to contact the subscriber. Each event subscription has a 

timeout value and a unique subscription ID (SID) in the form of a URI, which is passed 

along in the HTTP notification header. The timeout value acts like the leasing 

mechanism in Jini event, which can be renewed by sending another SUBSCRIBE message 

with the particular SID to be renewed. Like Java event mechanism, the subscription 

arbiter can also relay events to another arbiter, if necessary, to be passed to multiple 

recipients. 
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CHAPTER THREE 

Materials and Methods 

Procedures 

Both Jini and UPnP technolot,')' arc still relatively new. Especially for UPnP, the 

major source of information is the Internet. A few books on Jini have been published 

and pro,·idcd a great deal ofhdp. In order to answer the research questions, as much 

rele\·ant information as possible were collected and analysed as time constrained permits. 

Development of a Jini application will require skill of the Java language and 

thorough understanding of the Jini specification. Proving some of Jini claims can be 

accomplished by running and experimenting with limited implementation of Jini 

technology, based on possible scenarios that should work as claimed. 

Limitations 

Jini devices require the presence of a JVM. At the time of research, no Jini

compatible JVM is available for the Windows CE™ operating system that is used by the 

Palm Pilot, the initial implementation platform of choice. The reason is that the 

Embeddedjava is yet to supportJini technology. 

A Jini device may usc a Jini chip to make it Jini-capable. Again, at the time of 

research, this chip is not yet on the market. There is a circulating idea on the Jini-Users 

mailing list on creating your own Jini-chip, but this requires hardware knowledge and 

more time. 

Thus, this research taken the step of simulating a hardware service using software 

and/ or development of software services that demonstrates the claimed capabilities of 

Jini. 
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E(\uipmcnt used for this research is listed below. 

• Networked PCs, running i\Hcrosoft Windows 'JH operating system. 

• A text editor. 

• A web ser\'cr, i\licmsoft Personal \'Vcb Server 4.(J, 

• Java Development Kit UDK) version 1.2.2 (the requiremcnt for Jini tcchnr>l(Jj..,")' is 

JDK 1.2 onward). 

• Jini development kit version 1.0 (the latest available is version 1.1 alpha). 
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CHAIYf'liJl F< lUI\ 

Project Results 

:\Simp it.· JinjTM lmplcmentati(Jil 

Jini Service 

:\ Jini Service must supply an interface as a contract bt:tv.tccn the client and the 

service provider. The interface specifies all of the services that the Jini Service guarantees 

to provide to the client. Based on the service specification of the interface, the client can 

utilise the pro\'ided services without knowledge of the implementation details. As long as 

both sides agree on this interface, they can communicate together. 

The scrYice implementation is provided to the client by the proxy object. The 

service provider, upon performing the join protocol, provides this proxy object to the 

lookup service. The proxy object may carry out all the services implementation for the 

client or pass it to the actual service provider when necessar". 

Ba::;ically, the minimum responsibilities that a service implementation must 

perform upon connecting to ajini nct\vork is as follows: 

• 

• 

• 

• 

Declare that it implements the agreed service interface . 

Find one or more lookup services of interest to register with . 

Publish its proxy object, providing attributes as needed . 

Manage its leasing with the lookup service . 

To be able to publish it proxy object, the service must also declare to implement 

Serializable. Being serialisable allows a service to be transported down a network 

socket as byte streams. This is a feature of RMI. 

Managing leasing is optional for the service because it can be handled by a third

party service. Therefore, as long as there is another service in the Jini network that 

advertises it will manage other services1 leasing for them, then individual services do no 
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need to manage it themsc.:lves. 

As mentioned pn:viousl)', :m ~ntity in aJini network may n:gist.er fen event 

notiticarion. This is usdLtl ht:ctuse dLJring a unicasl discovery pmcess, the service might 

not find a particular lookup servin: that it wants to join. H~nce, anfJther rt:Liuiremenl that. 

will prow useful is for the service to register for discovery event notification. That is, it 

can ask to be notified if the lookup service that was not running previously came online. 

To register for discovery event notification the servicl! must have an instance that 

implements a DiscoveryListener and attach it to its own lookup discovery 

mechanism, \vhich is an instance of a LookupDiscovery. 

\\·'hen performing lookup discovery, the discovering entity, either a client or a 

sen·ice prm·idcr, can specify the lookup service's group it is interested in. The 

discovering entity must have a permission to attempt discovery of each of the group it 

specitled as part of its lookup discovery attempt. This discovery permission is controlled 

through a security policy file. Thus, it is necessary for the service to set its security 

manager within its implementation. 

Observation of Basic Seroice Requirements 

After reviewing the above requirements, the issues that must be tackled when 

implementing a J ini Service can be divided into three categories: 

• 

• 

• 

What to do within the service's main () method . 

What to do within the service's constructor method . 

What to do when a discovery event occurs . 

1. What to do /l.litbintbe seroice's mainO method 

The least that a main {) method of a service should do is to create an instance of 

the .service, and then start a thread so that it will not terminate at the end of main {) 

execution. 
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) Jr'hat to do with/11 thr sm•in-'s trmstmdoriiJt'llmtl 

The constructor method is n:sponsihlc for creating an instance of d1c 

Serviceitem, that is the proxy object oft he scrvio.:. Next, it is irnprmant that it sci~ a 

security manager for the proxy. To perform the lookup discovery it must then create an 

instance of the LookupDiscovery class. Nt:xt, the !'it:rvict: shnuld create a discovt.:ry 

event listener that will notif}' the service whenever a lookup service of interest is found. 

The discon:ry event listener must implc.:ment DiscoveryListener and it must then he 

attached to the instance ofLookupDiscovery created earlier. 

3. IF"hallo do u4JeJJ a discot•eo• ei'enl ocmrs 

There are two types of discovery events that a service will be interested in. The 

events arc when a lookup service is discovered, and when a lookup service needs to be 

discarded. As mentioned, the discovery listener must implement the 

DiscoveryListener interface. Accordingly, it has two methods that correspond to the 

two discovery events, discovered () and discarded () method. The DiscoveryEvent 

has a method called getRegistrars () that returns a set of lookup services of type 

ServiceRegistrar related to the either events. 

When a discovered event occurs, the service should then register with each 

lookup service by calling the register () method of the ServiceRegistrar. The least 

that a service must provide when registering is its proxy object created previously \Vi thin 

the constructor method. In addition, if it is managing its own leasing, the duration of the 

lease should also be provided. 

The discarded event allows the service to discard each lookup service from the 

set returns by getRegistrars () that stop responding to it since discarding of a lookup 

service does not happen automatically. 
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Jini Client 

A .Jini Client must find tht.: !'t.:rvicl!S it wants to ust.: through thl! lookup Sl!rvicl!. 

Therefore, like tlw Jini Service, the client basically follows a commrm framl! cJf work, a:-; 

follows: 

• 
• 

• 

Find one or more lookup Sl!rviccs of in wrest. 

Query each lookup for the service(s) of interest. 

Start using the scrvicc(s) . 

As we can see, being client is obviously simpler than a service provider since it 

does not need to register \Vith the lookup and docs not need to provide the lookup with 

a proxy object. Like a service provider, it must also have permission to be able to attempt 

disco\'el)' of lookup service's group of interest. 

Observation of Client requirements 

Again, guided by the framework above, the issues that must be handled are the 

same with services: 

I \'\!hat to do \Vi thin the client's main () method. 

1 What to do within the client's constructor method. 

• What to do when a discovery event occurs. 

1. What to do within !he client's !})ainO metbod 

The client's main () method has the same responsibility as the service's main ( l. 

That is, to create an instance of the client and start the thread that runs the service. 

2. What to do within the client's constmctor tJJethod 

Like a Jini Service, a client must set a security manager. In addition, it must create 

an instance of the LookupDiscovery. Again, it is useful for the client to install a 

discovery event listener so that it can react only when a lookup service of interest is 
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discovered. Once it h·,\$ <Ill instance elf the Ji::.tcrH.:r, it can ·.u1~tch i1 1cJ tire 

LookupDiscovery instance. 

The ncxt thing to do is to find the exact match of the sl!rvicc(s) of intl!rl!s! by 

'Iucrying the luokup scrvicc. Thc mort! criteria it provides the narrower tht! scarch for the 

service becomes. The paramctt:rs to provitk art! the service ID of intl!rest, the:: typc of thc 

service, and a set of attributcs that the service should have. The client must thus crl!atl! 

instances of one or combination of ServiceiD, ServiceType, and Entry for each 

respective parameter, unless null is passed instead. Then, an instance of the 

ServiceTemplate must be created to contain those parameters. 

3. !Fhallo do when a discot'el)' event ocmrs 

The only discovery event that a client might be interested in is the discovered 

event. \Vhen each lookup service of interest is discovered, it can query the lookup by 

calling its method lookup () , providing the criteria template. \'«hen matching service is 

found, the client can then start using rhe service. Typically, by creating an instance of the 

Java dass Object, which is the superclass of most Jini classes. Then, this object is typed 

cast to the service's interface befnrc being able to call the service's methods, as follows, 

{Serviceinterface)InstanceOfClassObject.ServiceMethod(). 
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An Experiment with JinFM Lookup Discovery 

To watch the: di:-;cm•c:ry procc.::-;s in action, two jini cxampk program:-; arc used. 

These: arc: called the Di.rto/'t'D'E.vmNple and !he Hroll'Jl'r, from the book Core jini by W. Kt.!ith 

Edwards [Edwards, 1999] and the Jini dc.!vdopm<.:nt kit provided by Sun Microsyst<.:ms, 

respectively. 

l11c: possible discovery scenarios arc as follows: 

• 

• 

• 

To discover an a1rcady running lookup service . 

To discover a newly available lookup service on the same host machim: . 

To discm·er another ne\vly available lookup service on a different host 

machine. 

These scenarios are the very basic that the discovery protocol should be able to 

handle. Any Jini participants will not be able to \Vork without first discovering a lookup 

service. Therefore, the least that the participant must be able to do is discover an e:cisting 

lookup service anywhere in the local network. The aim is to test dynamic discovery of 

lookup services, that is, aJini device should be able to be plugged in and detects online 

lookup services upon commencement of discovery process. 
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1. Discovering an existing lookup seroice 

The screenshot below shows a service during a discovery process. The first 

window on the top left is the RMI daemon running after the web server is up and before 

a lookup service can be run. The second one in the middle is the lookup service itself, 

provided by the example that came with the Jini development kit from Sun. The last 

window at the bottom is the Jini service example, whose purpose is to continually 

attempt to discover available lookup services on the network until a key is pressed. 

Figure 1 - The first lookup service is already running and consequently 
discovered by the discovering service entity. 
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A closer look at the last window shows the URL of the lookup service (in this case, the 

machine's name), the lookup service's unique service ID, and the groups it belongs to (in 

this case, the public group). 

Figure 3- Existing lookup service is discovered instantly by this Jini 
service. 

For the above first experiment, the first lookup service was already running 

before the discovery protocol commences. What would happen if a new lookup service 

went online? Since the example service above registers for discovery event notification, it 

should be able to discover new lookups too. 
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2. Discovering a mwfy on!im lookup service on the same host machim 

The second scenario of the experiment is tested by running another lookup 

service on the same host while the service example (the DiscoveryExamp!e) is still on its 

discovery mode, as shown below. 

Figure 4 - The second lookup service is run and consequently 
discovered too by the discovering service entity. 
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The newly online lookup service has been successfully discovered by the example 

service. Note the URL of the lookup service. The first lookup service uses the default 

port number of 8080, which need not be specified. Every other lookup services that are 

on the same host will be automatically given an arbitrary free port number. At this 

instance, it is the port number 1156. 

Figure 5 -The second lookup service is run on the same host and 
consequently assigned non-default port number. 

At this point, another discovering entity from different service example program 

is started. This is to make sure that in the third scenario, the result is not based solely on 

the ability of the DiscoveryExatJJple from Core Jini book to discover lookup services. 
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The second discovering entity program chosen is the one that comes with the Jini 

development kit from Sun. This program (the Browser) does the same thing as the 

DiscoveryExample, which is to discover online lookup services on the network. 

Figure 6 - The second discovering entity discovers two lookup services 
too. 
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A closer look shows that the HnnNrr too discovers the samc information abmn 

the lookup scrviccs as the /)i.rmt•en•l :.\-aJJ;jJ/1'. 

~Lookup · , ,·.· · ·. '" · . · ' . . · · "!!IE! 
Services Attributes 

0 13.231-01 

Figure 7 - Both the first lookup service on the default port and the 
second on port number 1156 is discovered by the second discovering entity. 

The conclusion so far is that services commencing the discovery protocol will 

find any lookup services already running and newly run on the same host machine. 

The last scenario is to test whether a newly run lookup service on another 

machine can also be dynamically discovered. 
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3. Discoven'ng a ne1vfy online lookup service on a different host machine 

When another lookup service is run, this time on a different host machine, it 

turns out that it was not discovered by the DiscoveryExample on the first host machine. A 

second instance of the DiscoveryExample is then run on the second machine and it 

successfully discovered all three lookup services currently running on the network, that 

is, on the first and second machines. 

The figure below shows the snapshot of the second machine after running the 

third lookup service and the DiscoveryExample that detects all three lookups. 

Figure 8- The third lookup service is run on a different host machine 
and is only discovered by another instance of a discovering entity on that 

second machine. 

The snapshot of the first machine is the same as the previous desktop snapshot, 

so there is no reason to reproduce it here. 
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The DiscoveryExample's output on the second machine shows that it discovered 

the first two lookup services (both on machine '13-231-01 ') and the third lookup service 

(on machine '13-231-02') in an arbitrary order. 

Figure 9 - The example service running on the second machine 
discovered all three already running lookup services on the network. 

Note that the DiscoveryExample will detect all three lookup services when restarted 

regardless of the host maohines. 

Since the DiscoveryExample program from the Core Jini book can not restart the 

discovery process unless the program itself is restarted, it is up to the Brmvser from Sun to 

do so. 

39 



( )nly after restarting the di!'icovery proccs!'i I hal 1hc Brow.~er is then able to deice! 

all three lookup services, alsu known as registrars. 

mslookup- - ' - : ' "' . . ' '' .' 1!!11!113 
File Registrar Options Senlicos Attributes 

Groups: public 
3 registrars, none selected! 

Figure 10- Mter restarting the discovery process, all three lookup 
services on the network arc detected accordingly. 

The details of the lookup services are as shown on this next screen shot. 

!;;Lookup - · . ,: 1!!11!113 
File ;~f ·.: Options Services Attributes 

Grou 
3 reg 

0 13-231-01:1156 

0 13-231-01 

0 13-231-02 

Figure 11- Details of all three lookup services on the network. 
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Expcrilll!'llf Condusim1s 

This experiment shows that any well-configured J ini participants (hoth services 

and clients) will at least successfully discover all existing lookup services within a network 

and new ones only within the same host. 

Unless a client can not find a service it is looking for within the lookup services it 

has already discovt:red, it docs not need to detect new ones. Even if the need arise, 

restarting the discovery process may be done periodically within the implementation of 

the client as necessary. 

\\l. Keith Edwards -concurs with this view \vhcn discussing the need for lease 

renewal as a requirement for 'well-behaved' services. He stated that: 

"If the lookup service was discovered through unicast discovery ... then the 

service should try periodically to reconnect . .. . since these lookup services are likely to 

be on a different network, they will not be discovered automatically via the 

sermdipitous forms of discovery." [Edwards, 1999, p. 278] 

Note that in this experiment, although within the same nctvmrk, multicast 

discovery only worked when the discovery process was restarted. 

In conclusion, when Jini plays the role of the new plug-and-play device, it will run 

successfully with the above set up. 

Experiment Limitations 

Limitation of this experiment includes the fact that the flaws maybe on the part 

of the discovering service examples used. Undetected tlaws in the software and/ or 

network setup ril>lY also contribute to failures or misleading results. 
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J ini and ll Pn P side h)' sidl' 

Language of implementation. 

UPnP utilised XJ\lL to pwvidc descriptiv<: information of scrvic<:s hut apart from 

that it is language-neutral [jvlicrosoft, 1999dl. The advantage of using XMI. is th<: ability 

to provide different views for clients using the XJ\H.. style language XLS. Moreover, 

Xl\IL could become the next standard of markup ianguagc after HTMT... 

J ini technology is based on Java 1.2 technology othcrwis<: also called Java 21
• In 

addition, it depends on the usc of Rl"\fl and JavaSpaccs. Although, this is not too much 

of a restriction since other programming languages can be used instead of or with Java 

[Sun, 1999h p. 5]. Specifically, by delegating the Java-specific functionality to a third party 

application if needed. This includes eliminating the need for a device to have its own Java 

\rirtual machine. 

Both technologies use base languages that arc considered highly portable. The 

difference is that XML might be relatively easier to learn than Java because of irs close 

relation with the popular HTML. 

Networking requirements. 

The networking requirement for both technologies is the use of IP networking 

standard. Jini requires that the IP addresses of participating entities be assigned either 

statically or dynamically with DHCP. This reliance on DHCP is the gap that can be filled 

with the auto-configuration mechanisms provided by UPnP. 

Although UPnP still primarily uses DHCP, in the absence of such IP-assigning 

authority, services can use the AutoiP to acquire IP addresses. With AutolP, the IP 

addresses assigned are from a reserved range that is only be used in a local network 

(Cole, 1999]. The AutoiP also checks for the availability of a DHCP periodically to let it 

1 Tbe Java 2 name applies to Java 1.2 product, as announced by Sun on December 1998[Sun, 

1999bJ. 
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take over in :1ssigning proper IP adtln.:sses. 

Service discovery. 

UPnP has SSDP as its own discnvc:ry protocol. For searching purpf>Ses, unlike 

Jini \\'hich usc sen·icc: attributes as criteria, SSDP usc:s a single Uniform Resource 

ldentiticr (URI), which specifies the profile of the service. The XML description used by 

the scn·ice is not even examined until discovery Uohn, 1999]. 

TI1e client sends UDP multicast packet with the service identifier to find a 

sctTice. If a directory exists it can act as a broker. Nevertheless, all sen•ices can directly 

listen for requests but only those with identifier that corresponds to the one specified in 

the request can respond. Nlicrosoft maintains that the simple query mechanism is 

preferable than a full blown name-value pair searching such as provided by Jini attributes 

:lnd interface support searching [J\Iicrosoft, 1999a]. 

The usc of a lookup service mechanism as such used by Jini allows UPnP to 

implement service discovery beyond the local area network. Like the Jini lookup service, 

a UPnP directory acts like the broker between clients and services. Thus, a service has to 

register with the UPnP directory so that the directory can listen and answer requests 

made by clients. 

Relaying query beyond the local network. 

Jini does not specify how to the lookup service can relay a query to a 

neighbouring network if a sought service is unavailable locally. A solution would be to 

have the lookup service registered to other lookups outside the local network that arc 

members of the same groups. The lookup can the register all services of the other 

lookups with itself to allow greater possibility of query match. W. K. Edwards provides a 

sample solution which is to have a dedicated service that docs just that [Edwards, 1999 p. 

330-338]. He calls this service a 'lookup service tunnel'. Such scn•ice actively finds all 

services registered in one lookup and registers them with another lookup. 

Where Jini leaves it to the developer to provide the solution of relaying lJUC't')', 
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UPnP provitks its own. As mentioned above, UPnl' uses the SSDP liJ tJLH::ry other 

directories beyond the local an:a network. This includes service tJUery for wide area 

network and the lntcrm:t. 

Device·to·device connectivity. 

Jini and UPnP support pl!er dcvice~to-dcvice connection. In UPnP, the network 

can still function without the assistance of a personal computer system !Microsoft, 1999]. 

Jini, on the other hand, assumes that an lP address assignment mechanism is 

available. Jini also requires that a lookup service is available to marshal interaction 

between a client and a service provider. 

Device driver requirements. 

Jini does not eliminate the need for device driver altogether. Instead, it allows for 

dynamic downloading of the driver using RMI. Rekcsh John Qohn, 1999] argues that this 

is not as simple as it sounds. Manufacturers must first agree on a standard for the 

methods in RlVH interfaces with the device. 

UPnP specified that the client can interact with a device through a net brO\vser 

after the device~driven auto~configuration [Microsoft, 1999c]. But unless both client and 

device uses a standardised protocol then a device driver is still needed as noted by R. 

John Qohn, 1999] and Alec Saunders from Microsoft, who was quoted by John Charles 

[Charles, 1999]. 

Security Issues 

The most critical issue in distributed computing is on security. Unfortunately, the 

UPnP has not provided sufficient details for a comparable presentation. Although, it 

does declare that since auto~configuration process only concerns with the exchange of 

formatted data, there is less chance of a breach through hostile code rrvticrosoft, 1999c]. 

On the other hand, security in Jini technology is based on Java 2 and RMI. Java 2 

has a more finc~grained security approach with its security manager compared to its 

previous version. The execution of a code that is loaded into a machine is constrained by 
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its security policy. If an object aw.:mpts lO do S\llnething that is J1(Jt dc:!inc.:d in its the 

security policy, a security exception will he thrown. A class can also he signed or 

unsigned. Signed dasscli usc:-; the security policy defined in their certificate wh<:rtcas, 

un:-;igned ones usc the general security policy. 

An article by Charles Crichton, ct al. !Crichton, N al., 19991, identifies further the 

security loopholes in Jini. lt :-;aid that the Java security manager i:-; not adctjuat<: in a jini 

environment. f-or example, when a user can not find a matching service within the local 

network, he might decide to look for the service through a lookup service on an external 

network. He then would inadvertently allow access to untrusted code through the 

network firewall. The result would be disastrous since untrusted code with local network 

access can scan local ports and send this information through the firewall. The solution 

for this is, of course, not to allow untrusted code access to the network at all. 

RMI allows for passing code across the network. This is done through the 

serialisation mechanism, which converts an object into a byte stream that can be passed 

down the socket of a network. \\'hen deserialised at the target location, the object is 

converted back to its original form. Meanwhile, in a serialised form, the java object's 

security restriction to private, package protected, or protected fields no longer e:cists 

[Sun, 1999a]. Anyone who has access to the stream can read, alter, and reconstitute the 

object without the Java security. This security loophole can not be dealt with the security 

manager because it is part of the runtime environment and therefore is dependent on the 

Java virtual machine. Because serialisation is to facilitate code mobility around different 

machines, it can not be tied down to such dependency. Other security breaches that can 

occur on object serialisation arc also discussed by Charles Crichton, et al. [Crichton, et 

al., 1999]. 

45 



C:Ht\l'TER FIYI'. 

Conclusions 

The innovation of Jini is found in the way that cxisting concepts and 

technologies were composed together. 

Some of Jini strengths and weaknesses can be attributed bccaus<.: of its close 

relation to Java. In particular is Jini reliance on Java security system, portability, and 

object mobility with R1H. Further more,Jini performance will also depends on java, 

\Vhose performance has been questioned by some developers. Sun i\licrosystcms is also 

yet to release embedded version of Java that supports Jini. Since Jini rclit:s some of its 

core features on Java, any delay in the Java development means delay in Jini development 

as well. 

Fortunately,Jini is relatively easier to understand and implement compared to 

UPnP. Its specification was released sooner which gives Jini a leverage in creating a pool 

of developer community. Therefore,Jini has already been under \'arious implementation 

stages at this time by researchers and vendors alike [Flowwworks, 1999; Mirror\'Vorlds, 

2000]. The Jini community is already actively working on standardisation issues on Jini. 

This includes the interface standardisation of all common Jini services but to cover all 

possible services and get everyone to agree on a standard will take time. 

All new technology needs time and supports to gain acceptance before it can 

become officially adopted as standards. Like Java, many of the industry experts believe 

that Jini will probably takes around three to five years before it truly becomes ubi(JUitous 

[Plummer, 1999a; Plummer, 1999b; Plummer, 1999cl. Nevertheless, because of 

Microsoft dominance in the industry, anyone with the Windows operating system will 

eventually live with UPnP. If the UPnP concept of invoking services through XML 

succeed, then the undeniable presence of worldwide Internet community will further 

leverage UPnP position. However, to have both technologies working and competing 

side by side is not an impossible scenario. The ChaiServer tcchnolot,-.y from Hewlett-
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Packard claimed to be able to hridgc between UPnP andjini enabled deviccsiBrCJdy, 

I 999; Gage, I t)IJ9J. Such bridging Lcchnoloh'Y will let the competitiCJn between Jini and 

UPnP continue. 

And so in conclusion, the research <Juestions can be seen tfJ he answered a~ the 

followings detailed. 

Sun's claim: 

"Jini tedmoloJ!.)' promises to be t1 rmli()' ill the i11mmhflte j11111re tiS architecturr: to enable 

IW/1/ertion.r behl'ml dmi:e.r a!!} time, ti!!J'W!Jere." [Sun, 1999d] 

Question one. 

To what extent is the above claim immediately realisable? 

Apart from the knownjini applications implemented by developers mentioned 

above, Jini services implementation has been slow, isolated and of a smaller scale than 

hoped. Aoption process is still slow and many in the industry is still \vaiting on how 

UPnP will be implemented because of the J\licrosoft influence. In reality, Jini technology 

is not realisable as immediate as it claims. 

Sun's claim: 

"jini teclmology provides simple mecbanisms wbicb t'!Jttble dm'ces to plug togetbrr to form an 

impromptu cotJ1!!11111i(J'-a co!mmmity put together witbo11t a!!J' plt~lming, imttJIIah'on, or bm11an 

intervmnon." [Sun, 1999e] 

The aim is to make connection of devices seamless to the users; however, this 

causes Jini to be comparable to the UPnP technolom• by Microsoft. 

Question two. 

How Jo the capabilities, case of usc, and reliability of Jini compare and contrast 

with t:he features of the UPnP technology? 
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The capahilitit's tlfJini :lrt' very paralld !tJ that rJf (jJlnP as tli..,cus~t:d under tllc 

comparison st'ction. Both aim 10 nt't\\'ork various kinds of devict:..,, inc..:luding houschrJid 

applianct's th:lt :lrt' t':!Sf to St't up and maintain. The diftCrcncc is how each implt.:ments 

dteir st 1lutit m. J ini is I :wa-ccntric, whercas, U Pn P is nc Jt tied 11' a particular pn Jgranuning 

language but uses stambrdisr.:d ddiven· mcchanisms, such as XML and HTIP. 
' ' . 

Rt.:liability-\\'ist' they also dcpcnds on their underlying technologies. ja\'a sr.:curity 

mechanism, despite its weaknesscs, seems more assuring for now because UPnP security 

issues arc yet to be publicised. 

Ease of use, in term of implementation, Jini is more readily accessible at the 

moment because its de\·clopment kit was published earlier and also because of irs open 

source-type licensing. 
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AI'I'ENDICI·:S 
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