Metadata, citation and similar papers at core.ac.uk

Provided by Research Online @ ECU

Edith Cowan University
Research Online

Theses : Honours Theses

2000

An investigation on sun microsystems Jini technology

Ferdina D. Soeyadi
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

b‘ Part of the OS and Networks Commons

Recommended Citation
Soeyadi, F. D. (2000). An investigation on sun microsystems Jini technology. https://ro.ecu.edu.au/
theses_hons/520

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/520

https://core.ac.uk/display/41536436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/520
https://ro.ecu.edu.au/theses_hons/520

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement.

e A court may impose penalties and award damages in relation to
offences and infringements relating to copyright material. Higher
penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

This copy is the property of Edith Cowan University, However the literary rights
ot the author must also be respected. 1f any passage from this thesis is quoted or cosely
pataphrased in a paper or written work prepared by the user, the source of the passage
must be acknowh:dgcd in the work. If the user desires to publish a paper or written
work containing passages copied or closcly paraphrased from this thesis, which passages
would in total constitute an inftinging copy for the purpose of the Copyright Act, he or

she must first obtain the wricten permission of the author to do so.

et

AN INVESTIGATION ON

SUN MICROSYSTEMS JINI™ TECHNOLOGY

By
Ferdina D. Soeyadi
0964841

Supervisor

Dr. James W. Millar

A Thesis Submitted in Partial Fulfilment of the
Requirements for the Award of

Bachelor of Science with Honours in Computer Science,

At the Faculty of Communication, Science and Health, Edith Cowan University, Mount

Lawley Campus.

Date of submission;

Match 31, 2000

ii

ABSTRACT

Sun Microsystems introduced the Jini™ Technology as its vision of the future in
networking, where services can be registered dynamically and be used easily regardless of
their location in the neework. This is an investigation of feasibility on such claims made
by Sun regarding Jini ™ and comparisons with the directly similar Universal Plug and
Play from Microsoft. The aim is to implement a simple application f)f" the Jinj™
technology in order to demonstrate its capabilitics as a contribution to the distributed

computing research,

-
It
b

DECLARATION
I certity that this thesis does not, to the best of my knowledge and belicf:

i. Incorporate without acknowledgement any material previously
submitted for a degree or diploma in any institution of higher
education;

i, Contain any material previously published or v.vrittcn by another
person except where due reference is made in the text; or

iii. Contain any defamatory material.

Signature :

Date . 4 A?ﬁ\ 2000

ACKNOWLEDGIEMENT

First and foremost, 1 would like to thank God for everything. Thank you most of
all to my supervisot, Dr. James W. Millar for his guidance and support throughout. To
my family and fricnds back home, who could not wait for me to graduate. To hoth of my
parents, especially. My dear departed father, Soeyadi Hadiwinoto, and my mother,
Agustina Ferida, for their hard wotk that put me through school and make this possible.
Last but not least, I would also like to extend my thanks to my best of friends, Robert
Juhaniak, David Sutanto, and Jeshua Yee, for their endless encouragement, for giving me
a lift, and for being my sleepless companion all this time. To everyone else that I forgot

to mention, thank you.

UsE OF THESIS
ABSTRACT
DECLARATION
ACKNOWLEDGEMENT
TABLE O_F C.ONTENTS

CHAPTER ONE

Introduction

Background
Significance
Purpose

Research Questions

Question one.

Question two,

Definitions of Terms

TABLLEE OF CONTLNTS

Networking terminology.

Jini terminology.

UPnP terminology.

CHAPTER TWO

Literature Reviews

Jini™ Concept

Discovery, Join and Lockup

Jini Service

Jini Client

vi

[

v

\f

VI

I

11

i

12

14

Nole on Requirements
Leusing.
Remote events.
Transaction.

Universud Plug and Play Concept

Device di;covcry.

UPnP Service

UPnP Client

Requirements flexibility.
Service lifetime.

Events,

CHAPTER THREE

Materials and Methods

Procedures
Limitations

Equipment

CHAPTER FOUR

Project Results
A Simple Jini™ Implementation

Jini Service
Observation of Basic Service Requirements

Jini Client
Observation of Client requirements

An Experiment with Jini™ Lookup Discovery
Experiment Conclusions
Experiment Limitations

Jini and UPnP side by side

vii

20
20
20
2]
2]

22

24

24
24

24

26

26
2
26
27
29
29
3]
4]
41

42

Language of implementation.
Networking requirements.

Service discovery,

Relaying query beyond the local netwaork.,

DPrevice-to-device cannectivity,
Device driver requirements.

Security Issues

CHAPTER FIVE
Conclusions
Question one.

Question two.

APPENDICES
Appendix A
Jint Packages

Legends

net.jini packages

net.jini packages
net.jini.discovery
netjini.entry
net.jini.Jookup
net.jini.lockup.entry
net.jini.admin
net.jini.space

net.jini.core packages
net.jini.core.discovery
net.jini.core.entry

net,jini.core.lookup

viii

42
42
43
43
44
44

44

46

46

47

47

49

49

49
49
49

50

54
54
55
56
56

57

net.jini.core.event
net.jim.core.lease
netjini.coretransaction

net.jini.core.transaction.werver

LIST OF REFERENCLES

1X

54

59

i}

0!

62

CHAPTLR ONI

Introduction

Background

The computing industry has recorded rapid advancement over the past 50 years.
It starced with mainframes and minicomputers where a single computer allowed sharing
of applications and data for the whole department. Unfortunately, these computers are
bulky and expensive, Then came the workstations and the personal computers (PC)
giving computing power at lower cost and freedom to individuals but also isolating them
from each other. This isolation was then overcome by connecting computers via
networks. A whole new possibility was opened for individuals to make use of resources
on different locations, as long as those resources are registered on the network, The
problem is that the network is not for ordinary users to configure; the bulk of the work
falls to the system administration to make surc that the resources on the network can be
shared. The popularisation of the World Wide Web (WWW) gives further significance to
the network computing technology. In addition, there is the embedded computer, which
is a specialised computer system embedded as a part of a larger device, such as those
within a mictowave. The emetgence of this technology allows for smart devices and the
trend of recent years that demands computing portability and connectivity.

Sun Microsystems has been preaching about the idea that the network /s the
computer. The Web is already 2 model of exactly one single computer operating in the
wotld being used by individuals all over the world. Obviously, connectivity and ease of
use are bigger issues than ever for the current network computing,

Device connectivity, which is the ability for a device to link with another,
necessitates that the different devices have a common protocol to be able to
communicate. Between different computer systems, it is the task of the operating

systems to manage this. Between devices, some of the latest technologies being offered

are the Universal Plug and Play from Microsoft, and the Jini™ "Fechnology from Sun
Microsystems. Both claim, not only to allow connectivity between different range of

devices, burt also between devices and computer systems.

Significance

The computing industry has been talking about how to make devices casy to
connect and use without the need for the user’s intervention [CNET, 2000; Intel, 2000,
Lee, 1998; Shnier, 1996]. Microsoft, with the cooperation of Intel and other hardware
manufacturer, then invented the Plug and Play (PnP) technology. Instead of the user re-
configuring the computer to recognise a new device every time one s connected, PnP
allows the computer to detect the new conncction automatically, The operating system
involved usually provides a set of device drivers from various hardware manufacturers
and some genetric ones needed by the computer to communicate with this new device.
However, it still depends on the user to provide newer version of those device drivers
when needed. This technology is also limited to computers, whereas the computing
industry is moving towards different kinds of devices (entertainment devices, home
electronic devices, ete.) to be connected and communicating with each other.

This is where Jini technology enters the picture. Jini manifests a new system
architecture to allow 2 ‘federation of devices’, as termed by Sun, to be dynamically
registered to the network whenever they are available and used by anyone, anywhese on
the network with ease of administration. The fedcration of devices, resoutces, and users
are called djinn, The devices in a Jini system are mote aptly termed as services since
they could be hardware, software or a combination of both. The Jini technology uses a
special service called the Lookup Service that acts as a look up directory for the Jini
system. It requires a bootstrap mechanism called the Discovery and Join protocol to
access this lookup service, That is, when a service ot a user first join the djinn, it must
locate the lookup service {discovery protocol). Once a service finds a lookup service, it

can tegister itself (join protocol) so that other services and the users can access the

2

service 14 has to offer. In the user's case, it focates the lookup service 1o find what
services are avaiiable and to use the available services. Jint technology allows all these 1o
be taken care of by the participating devices. All the user bas to do is contact the lookup
service and choose the service required. In addition, the services can provide a proxy
object to act on its behalf that will be passed on to the user via the lookup service. This
object downloading eliminates the need for platform-specific device drivers, which is one
of the problems with connecting devices today.

As we can sce, Jini is the offered solution from Sun that may contribute to the
networked and distributed computing. Currently, it specifics that, since Jini is Javat™
based, it requires a Java Virtual Machine (JVM) within the devices to be able o
implement Jini. The choice is obvious because Java is a highly portable language that is
also one of the important element that revolutionarise the Web. The fact that java source
code is compiled into the bytecode format allows this portability. Moreover, this
bytecode is executed by a Java interpreter and a JVM, which exists for most operating
systems today. Thetefore, the use of Java allows Jini to run on different platforms that
include JVM. Unfortunately, this may be a limitation to the range of Jini application.
However, Sun is reported to be considering the use of a proxy agent for simple devices
not capable of running a JVM [Middleton, 1999].

Although the Jini specification has becn out as carly as the start of 1999, it is of
course not the only solution around. Mictosoft has already been working for a while on
an extension of its PnP technology called the Universal Plug and Play (UPnP). It has only
provided some background documentation at the middle of the same year [Christensson,
1999; Microsoft, 1999a; Microsoft, 1999b]. Like its predecessor, UPnP aims to provide
ease of use and connectivity, but this time extended to the network environment. So no
longer is the system administrator needed to do all the configuring for every new device
on the network. UPnP allows the device to obtain an Internet Protoco! (IP) address
from a Dynamic Host Configuration Protocol (DHCP) ot try to configure its own [P
address in the absent of a DHCP. The device wil! then announce itself to the computer

ot server of its availability at that address and listens for a device probes sent by the

users. Upon receiving a deviee request, its description is then sent out to the user in an
Lixtended Markup Language (XML} format.

Again, this UPnP technology will largely contribute to the networked computing
community. Although only aimed for different hardware devices. UPaP is based, unlike
Jini, on many existing protocols and technology, such as the 1P internetworking and the

DHCP.

Purposc

This research is concerned with two of the new networking technologies
available as the latest solutions to some of the infamous networking problems. These two
technologies are the Jini™ Technology from Sun Microsystems and the Universal Plug
and Play (UPnP) technology from Microsoft. They are chosen because their products
offer close similarity in their solutions, thus, placing them in direct competition to each
other.

The aim is to investigate what these technologies have to offer to the distributed
computing scene. Both companies have their own claims regarding these technologies,
but claims are not necessarily realisable. In addition, prospective developers are interested

on how realisable are these technologies before they will take up Jini, UPnP, or both.

Research Questions

The questions that will be answered after this research are based on the claims

made about Jini by Sun Microsystems, as follows:

Sun’s clain
“lini technalagy promises to he a reality in the inmediate future as architectnre to enable

connections between devices any fime, amywhere.” [Sun, 1999d]

Question one.

To what extent is the above claim immediately realisable?

Sun’s claim:

Pini technology provides simple mechanisms which enable devices to plug together to form an
impromptu community—a community put together withont any planuing, installation, or huyan
intervention.” [Sun, 1999

The aim is to make connection of devices scamless to the users; however, this

causes Jini to be compatable to the UPnP technology by Microsoft.

Question two.
How do the capabilitics, ease of use, and reliability of Jini compare and contrast

with the features of the UPnP technology?

Defininons of Terms

Both Jini and UPnP carry their own terminologry, some of the important ones are

reproduced here trom their corresponcding glossaries,

Networking terminology.

ARP: The Address Resolution Protocol (ARP) is used to translate an [P address
to an Ethernet MAC address [Microsoft, 1999b]

DHCP: The Dynamic Host Configuration Protocol is a mechanism for
providing devices with configuration information needed to access the Internet
[Microsoft, 1999b]

DNS: The Domain Name System is a hierarchical and delegated database for the
Internet host names and their mapping to IP addresses [Microsoft, 1999b]

IP: The Internet Protocol is the foundation protocol of the Internet that defines
how a single message is sent from a source through zero or more routers to its final
destination [Microsoft, 1999b].

UDY: The User Datagram Protocol is an IP-based protocol that provides
support for the unreliable, unordered delivery of messages over IP [Microsoft, 1999b]

XML: Extensible Markup Language is a simplification of the Standard
Generalised Markup Language (SGML), the textual, tag-based markup language intended
for the creation of tags vocabularies that can be applied as the semantic markup to

documents [Microsoft, 1999b].

}Jini terminology.

discovering entity: Cooperating objects on the same host, that wre stasting, or
are in the process of, obtaining references 1o Jini lookup services {Sun, 19991,

discovery protocol: The protocol that rule the acquirement of a reference 10 one
or more instances of the Jini lookup serviee [Sun, 1999(].

djinn: The group of devices, resources, and users joined by the Jini software
infrastructure [Sun, 1999g].

join protocol: The protocol which allows entities to start communicating uscfully
with services in a djinn, through the Jini lookup service [Sun, 1999f].

lookup service: The Jini lookup service provides a central registry of service
itemns, representing services, available within the djinn [Sun, 1999g]. It acts as 2 broker
that allows users to locate and access the setvices in the djinn.

service registrar: A synonym for Jini Lookup service (see lookup service)
[Sun, 1999g].

service: Something that can be used by a person, a program, or another service.
Services will appear programmatically as objects in the Java programming language and

have an interface, which defines the operations that can be requested of that service

[Sun, 1999¢].

UPnP terminology.

AutolIP: The enhancement to DHCP, allowing deviees 10 configure an 11
address for itself from a reserved range that is only used within 2 LAN [Microsoft,
1999b].

Multicast DNS: Rules for making normal DNS requesis using multicast UDP
[Microsoft, 1999b}.

SSDP: The Simple Service Discover Protocol is the UPnP proposal for how teo

pertorm extremely simple discovery [Microsoft, 1999b].

CHAPTLER TWO

Literature Reviews

What constitutes the [ini coneept is not totally an innovation unique to the Jing
technology. Jini is built on existing technologics, such as, the use of Java Remote
Method Invocation (RAI) and JavaSpace.

Java RMI allows applications to use methods of other applications that exist on
different machines. This is done by having a local object on the client side (called a sinb)
that takes care of the communication with the server-side object (called a skeletan) and
handling of the data that are sent and received. The client actually invokes the local
method on the stub, which maps the invocation to the remote method on a different
machine. On the server side, the skeleton receives the request, invokes the requested
method and returns the results to the client-side stub to unpack it for the client.

RMI aliows transfer of code as well as data across the network by serialisation of
the object to be transferred. When an object is serialised, it is converted into a byte
sequence that can be sent over the wire. At its destination, the sequence of bytes is
reconstitute or deserialised to make it into a whole object again. Being able to move
codes around is the feature of RMI that enhances Jini. Although the Java RMI is available
since JDK 1.1, Jini specially utilised the RMI ¢nhancements that are only added in Java
1.2 [Edwards, 1999].

JavaSpace itself is based on Linda, a project from Yale University [Arnold, et al,
1999 p. 258-259; Clark, 1999; Edwards, 1999 p. 638-639; IEEE, 1998]. Linda provides a
shared virtual space for processes in a parallel program so that all processes can exchange
data by reading and writing them in the shared space {SCA, 1997].

JavaSpace extends on Linda by augmenting some of Java characteuistics, For
example, JavaSpace has the strong typing typical of Java and the ability to conduct
searching based on class relationships, implemented interfaces, and known attributes.

Although individual elements in Linda are also typed, as a whole unit they ate not typed

like the objects in JavaSpace. In addition, beeause the entities that are stored in JavaSpace
are objects, they not only contain data, but also their methods. Moreover, unlike Linda,
seversd Javadpace services are allowed to exist in a fini environment, each with their own
separitte object storage area [Fdwards, 1999]. favaSpace suppaorts the use of transaction

1n i,

10

Lini™ Coneept

Using the above technologies, [ini expands and enhances them into a working
maodel that comprise bve key coneepts:
* Discovery and Join

* lLookup

* Remote events

* Transacton

These components fall under three categories in the Jini model; the iufrastructure,
programming model, and the services. The infrastructure, or the core of the technology,
consists of the Discovery and Join protocols, Lookup, and distributed sccurity issues.
The last three are what made up the programming model, which supports and made used
by the infrastructure [Sun, 1999¢]. Jini services are participants of the Jini network,
cnabled by the infrastructure and programming model, which have some resources to
offer to the community. JavaSpaces in Jini are such scrvice whose resources is the

availability of storage space for used by other participants.

Discovery, Join and Lookup

The Lookup is a Jini service that acts like a broker that allows clients and
services to see cach other in a Jini federation network. Hence, without the existence of at
least one lookup service, a Jini nenwork will not function.

The discovery protocol describes the steps that any entity (cither a client or a
service) must initially take when connecting to the Jini network. Upon connecting to the
netwotk, if the entity want to participate in the Jini federation, it must first locate the
lookup service by initiating the discovery process.

Employing either of the three discovery protocols, namely, multicast request,

multicast announcement, and unicast discovery can be used to locate a lookup

11

service.

The mualticast reguest is the ateempt of a participating entity (client or service) in the
diinn network to discover alookup service by multicasting a reqquest to ull available
lookup services in the network to announce itself. The smnllicast annonncenent 1s when u
lookup service broadeasts its availability on the newwork, Lintcast discorery protocol is used
when an entity already knows the address of the fookup service it wants to join and, thus,
it can directly query the lookup service. The unicast discovery is also employed by a
lookup service after a multicast request to directdy answer the entity's discovery request,
Both multicast discovery protocols can be implemented by the use of the
LookupDiscovery class from the net.iini.discovery package, whereas, the unicast
discovery is implemented by the LookupLocatox class from the
net.jini.core.discovery package (sec Appendix A for Jini packages diagram). The
LookupLocator class uses the Uniform Resource Locator (URL) address of the target as
an argument. The standard URL syntax takes the form of
protocol://host:port/data. The protocol used is of course jini, thehostisa
Domain Name System (DNS) name or an IP address. The port is optional and defaults

to 4160.

Jini Service

After a participating service entity locates the lookup service, the newly
connected service will register itself with the lookup service. This is known as the join
protocol. By registering with the lookup service, a service entity must provide the lookup
service with its setvice proxy object and any attributes it has.

The lookup service maintains services registered to it through a set of service
items. Programmatically, this sct represents instances of the ServicelIten class. Each
ServiceItem contains thrce elements, namely, the serviceID — its universal unique
identifier (UUID), the setvice — cither a Remote Method Invocadon (RMI) stub ora
proxy object, and the attributeSets —its set of attributcs.

The ServiceIb ofa service item is initially generated by the lookup service when

12

the service first registers with the lookup. It is represented by the ServiceID class as a
128-bit value, Once obtained, the 11D is reused whenever the service re-registers ieself
with the lookup.

A service object is an RMI seub if it is implemented as a remote object.
Otherwise, it could be other object if the service uses the local proxy [Sun, 1999g]. The
use of RMI technology allows the complete service object and its code to be passed on
the network and downloaded for the client to use.

Jini services can attach attributes to its service proxy to associate extra descriptive
info to the service. Service attributes are Java objects that implement the Entry interface
from net.jini.core.entry package. The Entry interface is a subinterface of
Serializable of java.io package. Because an attribute is a collection of Java objects,
each field is serialised separately and independently, which allows for simpler searching
[Edwards, 1999].

By attaching attributes, clients can search for a particular service based on certain
criteria of the attributes. Attributes are extendable but the provided standards are Name,
Address, Location, Comment, ServicelInfo, ServiceType, and Status attributes,
The values of some attributes, such as the last three mentioned above, can not be
changed by human intervention. That is, only the service can change them
programmatically. For example, a printer that has run out of paper will change its
Status attribute accordingly. Such attributes are said to be service-controlled and
implement the ServiceControlled interface from net.jini.lookup.entry package.
An administrator can change non-service-controlled attributes, such as, the Location
attribute of the printer whenever it is moved, for example,

The set of attributes gives description of the service, such as, its name, owner,
and location. This is represented by the Entry class. Upon registeting itself with the
lookup, a service provides its atttibutes to the lookup. When a user is looking for a
patticular service, giving attributes criteria allows narrowing down to those specific
attributes, This is called service item matching and is implemented using an instance of

the ServiceTemplate class, which has exactly the same elements as the ServiceItem

13

class. Hence, a service item matches a service wemplate if an elements within the template
match to the corresponding elements in the service item.

The clements of a service item are persistent across crashes and restarts. Two
other elements of a scrv.icc item that must survive such incidents are the set of groups
the service is a member of and the set of specific lookup service with which it must

registers itself whenever restarted [Sun, 1999f],

Jini Client

A participating client entity can, after locating the lookup service, query the
lookup service for any services that match certain 'Céifcria, for instance, by querying the
attributes or interface that a service: might support. The client accomplishes this by
providing a template of criteria attributes to pass as the query. This template is then
checked for matches by the lookup service against the attributes of the Jini services that
ate registered with the lookup. Wild card is allowed by passing null fields in the template,
On the other hand, non-null fields in the template must match the corresponding service
attributes exactly. This means when serialised, they produced the same bytes [Edwards,
1999]

A match is found if the both the template and the service attributes are of the
same class or subclass. When a match is found, the lookup service will pass on the
service proxy object to the client so that the client can ditectly invoke the methods of the
service. On the other hand, when a match is not found at the time of the query, the client

“has the option to ask the lookup service to notify it when a match occuts. This is done

thtough the remote event notification mechanism, as will be discussed further.

Note on Requirements

To be able to participate in a Jini federation, thete are several requirements that
need to be met. A host must have an IP address, either a statically assigned to them or
dynamically acquired through a DHCP. This a bit restricting for Jini, but UPnP has a

work around for allowing IP address to be assigned temporarily when the DHCP is not

14

available, as will be discussed later, Jini also requires that there must be support for
unicast TCP and multicast UDP, which are used during the diseovery process. Unicast
TCP is also used when utilising the Java RML Furthermore, a mechanism must be
provided that allows for the dynamic downloading of RMI stubs or other cades needed.
The typical mechanism is ann HTTP server.

The reason for the lase requirement is that the RMI, which is used by the Jini
technology, allows for both data and code to be passed around the network. This is the
solution provided by Jini, rather than upgrading device drivers manually, the drivers can
be dynamically provided to its clients. In the case of a software service, it allows the
client to obtain the interface ‘driver” of the service needed to interact with that service
[Venners, 1999). In addition, with RMI, if an entity does not have ali the classes that it
needs it will download it automatically from the host's codebase. In'Jini case, when a
service version is upgraded, the client will automatically download the new stub for its

use,

Leasing,

Again, the idea of leasing is not entirely new to network computing, thus not
unique to Jini. A network participant uses the leasing concept when dynamically
obtaining IP address from a DHCP. The DHCP then guatantees that the IP address will
always be allocated to the requesting participant as long as the lease still holds f[ll.'_)roms,
1997; Wobus, 1998]. The lease for the IP address can be periodically renewed or released
voluntarily.

Jini, on the other hand, expands on this concept of leasing to promote a self-
healing network. The basic idea is the same, but the concept is applied to setvices and
service consumers,

To obtain a lease means to show an interest in accessing and holding some kind
of resource. Thus, whenever a Jini service registers with a lookup, it must negotiate a

lease with the lookup to access the lookup registration. The negotiation for a lease is one

15

way. The service passes lease duration in milliseconds as a request. The lookup service, as
the lease grantor, creates a lease object from the net. jini. lease. Lease interface, It
then returns the proxy of the lease to the client, The returned lease is the agreed lease
_dur:\ti(m decided by the lease grantor, which is not necessarily what the client originally
requested. The cliene, or in this case, the lease ho]dcr, can check the returned lease
duration by calling the getExpiration() method of the lc;_i.sc__o;};jcct.

Like the IP address holder of DHCP client, a Jini client can éon;inua]]y show
interest in holding the registration to a lookup scrvice by pclrichicaily renewing its lease.
It can also release the lease if needed be. This is achieved by calling the renew () and
cancel {) method of the lease object, respectively. The costs of the leasing model are
that a lease holder must actively renew its leases, whereas, the grantor must actively check
for expiration of leases [Edwatds, 1999). Fortunately, fini allows leasing to be handled by
a third party lease manager whose duty is to renew its clients’ leases. In addition, leases
can also be batched together using the LeaseMap interface of the net.jini.lease
package, which extends java.util.Map from Java 1.2. Batched lease can be renewed
and cancelled together, but whether particular lease can be batched or not depends on its
implementation [Edwards, 1999].

The benefits of leasing outweigh the costs since it allows a self-healing network.
That is, failure in the part of the client can be detected by the lookup service at utmost
when the lease expites. Therefore, the shotter the duration of the lease, the faster a
failure can be detected since the lease object that provides the connection between the
lookup and the service is severed. Once the lease expires, the lookup service can reclaim
back any resources used by the service, and forgets about itrelevant data or unwanted
states left behind [Edwards, 1999; Sun, 1999i}. All this requires wotk only on the part of

the lease grantor.

Remote events,

A Jini participant can register for remote event notification. Event notification in

16

Jini is based on Java, 1t differs greatly because Java events are mainly for local events on
the same machine. This caused a lot of restriction, as discussed by Simon Roberts and
Jon Byous [Reberts and B)’()Ll!i., 1999]. Thcy stated that, Java assumces synchronous and
relinble delivery of events when in diseributed systems there is no gﬁzlr:mtuc. In addition,
MOSt Java source events are non—s.crialisablc, thus, preventing the whole event object to
pass as argument over the network [Roberts and Byous, 1999). |

The Jini remote event model provides the solution and allows more simplicity.
Unlike the Java model that requires different listener for diffc.rcnt event type, any Jini
event listener can receive any type of events. All of fini remote cﬁ:nfs are subclasses of
net.jini.core.event.RemoteEvent, which extends Serializable, and all Jini
listeners implements the net.jini.core.eventRemoteEventListener interfﬁcc. This
characteristic allows Jini event listeners to be pipelined — one’s output becomes another’s
input — allowing Jini to cater for speciﬁc application requirements when needed
[Edwards, 1999]. In addition, like any Jini resources, Jini events are leased and thus carry

the benefits of leasing as discussed above.

Transaction.

‘Transaction in computing is indispensable, By using transaction, multiple
operations become one working unit, where all transaction participants can either
succeed or fail together as a unit. The aim is to preserve the consistency of the
operations by preventing partial success or failure.

The Jini specification provides a swo-phased commit protoco! fot distributed
transactions. The two-phased commit protocol guarantees that operations are
consistently resolved by ensuring all transaction participants will eventually know
whether to commit the transaction or abort it {Atnold, et al,, 1999 p. 185-186).
Essentially the two-phased commit involves two stages calied the ‘prepare stage’ and the
‘commit stage’. At the first stage, all participants are made sure that they have finished

computing and saved to a temporary storage, whatever tesults were requested before

17

going to the next stage, 1f all participants successfully completed the fisst stage, then they
can proceed to the commit stage. Ac this stage, all participants copy their results to a
permanent storage and report their success status. |f all participants completed
successfully the commit stage, then the transaction is also successful as a whole, A
transaction manager coordinates all of these necessary steps.

Again, the transaction concept is neither new nor unique to Jini since database
systems have been using transaction as well. Although, unlike a database transaction, Jini
does not define the semantics of the implementations but left it to the individual
participants involved [Edwards, 1999]. In Jini casc, the participants are fini services
whose methods can be grouped as transaction. These services implement the
TransactionParticipant interface of net.jini.core.transaction.server
package. The transaction manager in Jini is a service as well, whose sole duty is to
coordinate transaction. Transaction managers impiemcnt the TransactionManager
interface instead of TransactionParticipant of the same package. A Jini transaction
client is a Jini application which have a need to execute operations as transaction. The
client must first retrieve a reference to a Jini transaction manager through the usual
discovery and lookup process. Then it creates a Transaction object by calling the
TransactionFactory from net. jini.core.transaction. The Transaction object
is managed by the transaction manager and is passed to each participant as part of a
method call.

As a service, Jini transaction managers are leased too, and therefore must be
renewed until completion of the transaction. The lease in transaction only determine
when transaction stops allowing participants to be added before attempting to start the
two-phased commit protocol {Edwards, 1999].

Jini transactions are optional and only used by JavaSpace to coordinate
operations across a common storage space. JavaSpace setvices in Jini implements the
net.jini.space.JavaSpace intetface in their proxies. As usual, these services are
leased. The objects in JavaSpaces ate of type Entry, which is also used as attribute

objects in Jini services, Naturally, the mechanism of seatching for particular objects in

18

JavaSpace is similar to querying service astributes, That s, template Entry object is also
used, but multiple matches can not he returned. Where lookup service query attributes as
a set of entrics, JavaSpace only queries singje entrics.

JavaSpace has two types of storage, transient and persisient. In transient, the
storage is only available as long as the service is running, For the latter, the storage data is

recoverable because it is saved to a permanent storage,

19

Universal Plug and Play Concept

The specification for UPnP has been slow coming compared to Jini.
Nonetheless, similar issues have been addressed and include the following concepts:

* Device discovery

= Service lifetime

= Ewvents

Device discovery.

Similar to Jini, UPnP has some sort of a discovery protocol that allows discovery
of devices on IP networks. The term used is Simple Service Discovery Protocol (SSDP).

With SSDP, the use of a lookup service mechanism such as used by Jini can be
bypassed. However, such lookup mechanism stil] exists in UPnP to implement service
discovery beyond the local area network. The term used is for such mechanism in UPnP
is a directory. In the presence of a directory, it acts like the Jini lookup service,
necessitating scrvices to register with it so that it can act on its behalf, that is, listening,

and answering requests from clients,

LIPnP Service

A service must initially sends a multicast packet to announce its availability on the
network. The packet contains information about the service, specifically, its identifier,
location, and expiration time. Instead of using service ID and attributes as used by Jini,
SSDP uses a single identifier, which is a unique pairing of a unique service name (USN)
Uniform Resource Identifier (URI) and the scrvice type URIL The location is the URL
information of where to contact the service, The expiration time specifies the maximum
time that information about the service is cached on the clients, which could be in any

time units from seconds to years [Microsoft, 1999a; Microsoft, 1999¢].

20

UPnP Client

A ciicnt looks for a service by sending a UDP multicast packet containing the
service identifier of interest [Microsoft, 1999b]. Scrvices can directly listens for and
respond to such request if it has the specified identifier.

The UDP data is sent and reccived in HTTP format with special semantics [John,
1999]. Special message is embedded in the HTML, that is, either ANNOUNCE or OFTIONS
message for announcement and querying, respectively,

The successful result of a query will return the URL of the XML file containing
the service description. UPnP utilised XML to provide descriptive information of
services and the capabilities information of smart objects. The features of 2 smart object
are presented with XML, allowing the device to be manipulated. The use of XML style
sheet (NLS) also allows different views to be presented to the client as required
[Christensson, 1999]. The URL can be resolved to the service’s [P address by the
client and used to connect with the service.

UPnD? enables the clients to control services through net browser if the browser
learns how to talk to UPnP services. The service provided the learning process by
uploading the XML file that describes the capabilities of the service. This means that
with UPnP, invoking services can be done without any code being passed around, but
only through the exchange of formatted data. To make it workable it would require that
all devices communicate with common intertaces and protocols, Such service-driven
auto-configuration capability is enabled by UPnP architectural component called the
Rehydrator, whose job is convert between programming interfaces and protocols

[Microsoft, 1999].

Requirements flexibility.
Like Jini, UPnP uses the IP networking standard. In the case of Jini, it requites
that the IP address of participating entities be assigned statically or dynamically using

DHCP. UPnP requires its services to be able to operate in the absence of eithet. This is

21

whete the AutoI P comes into the picture, [tallows a service to automatically configure
an IP address for itself in the absent of a DHCP. This is done because it has a range of
IP addresses set aside that are use when DHCP is not available. It only keeps the current
arbitrarily chosen address only after it uses the Address Resolution Protocol (ARP) to
ensure that the address is not already being taken. Despite obtaining an [” address this
way, it still continually checks for DHCP availability. If a DHCP is available, the [P
address is obtained from the DHCP instead.

Of course, typically we prefer to use a DNS instead of an [P address to refer to a
hostname. Because there is a possibility for a DNS server to be unavailable, UPnP uses
Multicast DNS to allow services to listen for their names being requested and respond
to such requests [Microsoft, 1999b],

Both of the above approaches are used to allow peer device-to-device
connection. The network can still function without the assistance of a personal computer
system [Microsoft, 1999b]. Neither of the above techniques is provided by Jini. Jini
assumes IP address assignment mechanism is available. Further, it requires the existence

of the lookup service to marshal interaction between the client and the service provider.

Service lifetime.

A service provides an expitation time as part of its announcement packet.
Expiration information is analogous to the Jini leasing system, where the service must
refresh the cache of the clients periodically to signal its continuing existence in the
network. The difference is that the client can perform discovery rather than waiting for

cache update [Microsoft, 1999a].

Events.

UPnP uses Generic Event Notification (GENA) over TCP/IP for its event

notification putposes. It adds conventions for establishing relationships between devices,

22

addressing scheme of events delivery, and GIINA leverages HTTP addressing and
encapsulation [Microsoft, 1999¢]. The GENA mechanism is similar to the Java event
delivery mechanism but with different terminologies and underlying technology, For
example, the event listener in GENA is called subscription arbiter, and hence also the
term subscriber for the catity that subscribes to the event notification [Cohen, et al.,
1999]. A subscriber negotiates subscription of event notification with a subscriber arbiter,
which then will relay events of interest from a source to the subscriber.

In GENA all event-related communication is done through HTTP notification
using multicast UDP. To subscribe to an event notification, a subscriber must send an
HTTP SUBSCRIBE message, specifying the target subscriber arbiter, event type, and a
callback information on how to contact the subscriber. Each event subscription has a
timeout value and a unique subscription ID (SID) in the form of a URI, which is passed
along in the HTTP notification header. The timeout value acts like the leasing
mechanism in Jini event, which can be renewed by sending another SUBSCRIBE message
with the particular SID to be renewed. Like Java event mechanism, the subscription
arbiter can also relay events to another arbiter, if necessary, to be passed to multiple

recipients,

23

CHAPTER THREE

Materials and Methods

Procedures

Both Jini and UPnP technology are still relatively new. Especially for UPnP, the
major source of information is the Intetnet. A few books on Jini have been published
and provided a great deal of help. In order to answet the research questions, as much
relevant information as possible were collected and analysed as time constrained permits.

Development of a Jini application will requite skill of the Java language and
thorough understanding of the Jini specification. Proving some of Jini claims can be
accomplished by running and expetimenting with limited implementation of Jini

technology, based on possible scenarios that should work as claimed.

Jini devices require the presence of a JVM. At the time of research, no Jini-
compatible JVM is available for the Windows CE™ operating system that is used by the
PalmPilot, the initial implementation platform of choice. The teason is that the
Embeddedjava is yet to suppott Jini technology.

A Jini device may usc a Jini chip to make it Jini-capable. Again, at the time of
research, this chip is not yet on the market. There is a circulating idea on the Jini-Users
mailing list on creating your own Jini-chip, but this requires hardware knowledge and
mote tme.

Thus, this research taken the step of simulating a hardware service using software
and/or development of software services that demonstrates the claimed capabilities of

Jini.

24

Eqnipmg;m

Liquipment used for this research s listed below.
¢ Networked PCs, running Microsoft Windows 98 operating system,
e A texewditor,
¢ A web server, Microsolft Personal Web Server 4.0,
* Java Development Kit (JDK) version 1,.2.2 (the requirement for Jini technology 1s
DK 1.2 onward).

* Jini development kit version 1.0 (the fatest available is version 1.1 alpha).

25

CHAPTER FOUR

Project Results

Jini Service

A Jini Service must supply an interface as a contract between the client and the
service provider. The interface specifies all of the services that the Jini Service guarantees
to provide to the client. Based on the service specification of the interface, the client can
utilise the provided services without knowledge of the implementation details. As long as
both sides agree on this interface, they can communicate together.

The service implementation is provided to the client by the proxy object. The
service provider, upon performing the join protocol, provides this proxy object to the
lookup service. The proxy abject may carry out all the services implementation for the
client or pass it to the actual service provider when necessar.

Basically, the minimum responsibilitics that a service implementation must
perform upon connecting to a Jini network is as follows:

® Declare that it implements the agreed service interface.

* Find one ot more lookup services of interest to register with.

* Publish its proxy object, providing attributes as needed.

» Manage its leasing with the lookup setvice.

To be able to publish it proxy object, the service must also declare to implement
Serializable. Being scrialisable allows a service to be transported down a network
socket as byte streams, This is a feature of RMI.

Managing leasing is optional for the service because it can be handled by a thitd-
patty service. Therefore, as long as thete is another service in the Jini network that

advertises it will manage other services' leasing for them, then individual services do no

26

need o manage it themselves.

As mentioned previously, an entity in a Jini network may register for event
notification. This is useful because during a unicast discovery process, the service might
not tind a particular lookup service that it wants to juin. Hencee, another requirement that
will prove usetul is for the service to register for discovery event notification, That is, it
can ask to be nodfied if the lookup service that was not running previously came online.
To register for discovery event notification the service must have an instance that
implements a DiscoveryListener and attach it to its own lookup discovery
mechanism, which is an instance of a LookupDiscovery.

When performing lookup discovery, the discovering entity, cither a client or a
service provider, can specify the lookup service's group it is interested in. The
discovering entity must have a permission to attempt discovery of each of the group it
specified as part of its Jookup discovery attempt. This discovery permission is controlled
through a security policy file. Thus, it is necessary for the service to set its security

manager within its implementation.

Observation of Basic Service Requirentents

After reviewing the above requirements, the issues that must be tackled when
implementing a Jini Service can be divided into three categories:

» YWhat to do within the service's main {) method.

® VWhat to do within the service's constructor method.

® What to do when a discovery event occuts.

1. What ts do within the service’s main() method
The least that a main{) method of a service should do is to create an instance of
the service, and then start a thread so that it will not terminate at the end of main{)

execcution.

27

2. What te do withiu the servive's constractnr method

The constructor method is responsible for creating an instance of the
ServiceItem, that is the proxy object of the service. Next, it is important that it sets a
security manager for the proxy. To perform the Jookup discovery it must then ereate an
instance of the LookupDiscovery cluss. Next, the service should create a discovery
event listener that will notify the service whenever a lookup service of interest is found,
The discovery event listener must implement DiscoveryListener and it must then be

attached to the instance of LookupDiscovery created carlier.

3. What to do when a discovery event occurs

There are two types of discovery events that a service will be interested in. The
events are when 2 lookup service is discovered, and when a lookup service needs to be
discarded, As mentioned, the discovery listener must implement the
DiscoveryListener interface. Accordingly, it has two methods that correspond to the
two discovery events, discovered () and discarded() method. The DiscoveryEvent
has a method called getRegistrars() that returns a set of lookup services of tpe

ServiceRegistrar related to the either events,

When a discovered event occurs, the service should then register with each
lookup service by calling the register (} method of the ServiceRegistrar. The least
that a service must provide when registering is its proxy object created previously within
the constructor method. In addition, if it is managing its own leasing, the duration of the
lease should also be provided.

The discarded event allows the service to discard each lookup service from the
set teturns by getRegistrars () that stop responding to it since discatding of a lookup

service does not happen automatically.

28

Jini Client

A Jini Client must find the services it wants to use through the Jookup service,
Therefore, like the Jini Service, the client basically follows a comman frame of work, as
follows:

* Find one or more lookup services of interest,

* Query cach lookup for the service(s) of interest.

» Start using the service(s).

As we can see, being client is obviously simpler than a scrvice provider since it
does not need to register with the lookup and does not need to provide the lookup with
a proxy object. Like a service provider, it must also have permission to be able to attempt

discovery of lookup service's group of interest.
3 P gr

Observation of Client requirements

Again, guided by the framework above, the issues that must be handled are the
same with services:

" What to do within the client's main () method.

* What to do within the client's constructor method.

* What to do when a discovery event occurs,

1. Wihat to do within the client's main{) method
The client's main () method has the same responsibility as the service's main ().

That is, to create an instance of the client and start the thread that runs the service.

2. What to do within the client's constraicior method
Like a Jini Service, a client must set a secutity manager. In addition, it must create
an instance of the LookupDiscovery. Again, it is useful for the client to install a

discovery event listener so that it can react only when a lookup setvice of interest is

29

discovered. Once it has an instance of the listener, it can attach it 1o the
LookupDiscovery instance.

The next thing to do is to find the exace mateh of the service(s) of interest by
querying the Juokup service. The more criteria it provides the narrower the search for the
service beconmwes. The parameters to provide are the service [of interest, the type of the
service, and a set of atteibutes that the service should have. The client must thus create
instances of one ot combination of ServiceID, ServiceType, and Entry for cach
respective parameter, unless null is passed instead. Then, an instance of the

ServiceTemplate must be created to contain those parameters.

3. What to do when a discovery event occnrs

The only discovery event that a client might be intetested in is the discovered
event. When each lookup service of interest is discovered, it can query the lookup by
calling its method lookup(), providing the criteria template. When matching service is
found, the client can then start using the service, Typically, by creating an instance of the
Java class Object, which is the superclass of most Jini classes. Then, this object is typed
cast to the service's interface befnre being able to call the service's methods, as follows,

{ServiceInterface)InstanceCfClassObject.ServiceMethod{).

30

An Experiment with Jini™ Lookup Discovery

To watch the discovery process in action, two Jini example programs arc used.
These are called the DiscoreryFxample and the Browser, from the hook Core fini by W. [Ceith
Edwards [Edwards, 1999] and the Jini development kit provided by Sun Microsystems,
respectively.

The possible discovery scenarios are as follows:

® To discover an already running lookup service.

* To discover a newly available lookup service on the same host machine,

* To discover another newly available lookup service on a different host

machine.

These scenarios are the very basic that the discovery protocol should be able to
handle. Any Jini participants will not be able to work without first discovering a lookup
service. Therefore, the least that the participant must be able to do is discover an existing
lookup service anywhere in the local network. The aim is to test dynamic discovery of
lookup services, that is, a Jini device should be able to be plugged in and detects online

lookup services upon commencement of discovery process.

31

1. Discovering an existing lookup service

The screenshot below shows a service duting a discovery process. The first
window on the top left is the RMI daemon running after the web server is up and before
a lookup service can be run. The second one in the middle is the lookup setvice itself,
provided by the example that came with the Jini development kit from Sun. The last
window at the bottom is the Jini service example, whose purpose is to continually

attempt to discover available lookup services on the network until a key is pressed.

Machine MName: 13-231-81
IP Address ¢ 139.236.35.97

C:\Jini>C:\jdk1.2.2\bin\RMID.EXE

Machine Name: 13-231-81
IP Address : 139.230.35.97

C \Jlnl):java —Djava.security.pelicy=C:\JiniNjinil ONEXAMPLENLOOKUPN\POLICY.all =j
i G2\ inii @\1ib“\REGGIE.JAR http://139.230.35.97/reggie-dl.jar C:\JiniNjin
11 B\EXGHPLE\LOOKUP\POL!CY all G:\Temp\reggie_ logB public

Machine Name: 13-231-81
IP Address : 139.230.35.97

CiNJinid>

{Shateut s ot
Remova. Machlna Nane: 13-231-01
IP Address : 139.238.35.97
o
g}l JINI JI] C:\Jini\corejiniNchapterfdjava —cp C:\diniNjinil B\l1b\jin1-cma Jar;CaN\Jini\jin

il _B\1ib\jini-ext.jar;Ci\JiniNjinil_@\libssun-util.jar;c:\jinilclient -Djava.sec
Lu ity.policy=C:\Jini\jinii_ O\EXAMPLENLOOKUP\POLICY.all corejini.chapter6.Discove

M yExanple
Hit return to terminate discovery.
Discovered:
URL jind

Jini:r/13-231-81/

JINI JI] ID: 26d2611c-2F89-40a5-9164-efBefcFe7635 [INT JINI]IN

o (./,.\3 (- Groups: PUBI (./j
\herds ;172:72:
JINT JINT JII [INT' JINT JIN

ot - -

)

Mstanfl] @ BX LA Q) »]] Ennp139.230.3.] 3 Exploring - C:vini] Whjave | W8Finished - star |[EEJAVA kS

Figure 1— The first lookup service is already running and consequently
discovered by the discovering service entity.

32

A closet look at the last window shows the URL of the lookup setvice (in this case, the
machine’s riame), the lockup setvice’s unique service 1D, and the groups it belongs to (in

this case, the public group).

Machine Name:.13-231-61
IP Address = 1392.230.35.97

C:SJinisecorejiniNchapter6>java —cp C:NJiniNjinil BON\1lib\jini—core.jar;C: \Jini\jin
il _B\libN\jini-ext.jar;CainJdininjinil _OM\1ib\sun—-util. jars;c:\Njinisclient -Djava.sec
arity.policy=C:\Jini\jinil_O6:\EXAMPLENLOOKUPNPOLICY.all corejini.chapter6.Discove
ryExamnple

Hjt-return to terminate discovery.

Jini=rr13-231-01/
abd2611c~2f09-40a5-9164—ef8efcfe?635
Groups: PUBLIC

Figure 3 — Existing lookup service is discovered instantly by this Jini
service.

For the above first experiment, the first lookup service was already running
before the discovery protocol commences. What would happen if a new lookup service
went online? Since the example service above registers for discovery event notification, it

should be able to discover new lookups too.

33

2. Discovering a newly online lookup service on the same host machine
The second scenario of the experiment is tested by running another lookup
service on the same host while the service example (the DiscoveryExanmple) is still on its

discovery mode, as shown below.

Machine: Mame: 13-231-01
IP fddress : 139.230.35.97

C:xJini>C:i\jdki.2.2\bin\RMID.EXE

Machine Name 13-231-81)1n11 _B\ERAMPLENLOOKUPNPOLICY .all —j|
ddes 139.236.35.97 1 gS 93{!69‘919"!‘11 JJar CiNJininjin
Jagasseourity. policy=Cintinisjinil ENEXRNPLE\LOOKUPAPOLIGY a1l —gf 09 publie
ar C: \J1n1\31n11 _B\1ib\REGGIE.JAR http://139.238.35.97%/reggie—-dl.jar C:\JiniN\jin
i1 B\EXAMPLENLOOXUP\POLIGY.all CG:\Temp\reggie_ 10g2 public

Machine Name: 13-231-61
IP Address : 139.238.35.97

C:NJinid>

Machine Name: 13-231-81
IP Address : 139.230.35.97

iniNchapter6>java —cp Co\Jlnl\Jlnll 8\11h\31n1—cma Jar;C:\JiniNjin
~ext.jar;Ci\dini\jinil_B\Llib\sun-util.jarsc:\jinizclient -Djava.sec
CindiniNjinil G\EXAMPLENLOOKUPNPOLICY.all corejini.chaptert.Discovel

Hit return to terminate discovery.
Discovered:

URL: Jini:/713-231-01/

a6d2611c—2f09-48a5-9164-efBefcfe7635 [I NT JI NT JI NI

: PUBLIG
diniz//13-231-81:1156/

30651585-dd98-49e a-a2c5-9d4cIaodaaba L/j
s: PUBLIC gw%
[INI JINI]IN
#Asan| @EM Y > $hpinas23. | Yexpleing- ... | Wjava | B8 Finished - st...[[EEIAvA g Finished - st...|

ES

Figute 4 — The second lookup service is run and consequently
discovered too by the discovering service entity.

34

The newly online lookup service has been successfully discovered by the example
service. Note the URL of the lookup service. The first lookup setvice uses the default
port number of 8080, which need not be specified. Every other lookup services that are
on the same host will be automatically given an arbitrary free }Sott number. At this

instance, it is the port number 1156.

Machine Name: 13-231-41
IP Address : 139.238.35.97

C:NJiniNcorejinischapterb>java —cp C:N\JiniNjinil .\llb\Jlnl—CDPE Jar;C:\JiniNjin
il_@ON1libN\jini-ext.jJar:;C:nJiniNjinil B\lib\sun-util. jar;ec: \Jlnl\cllent -Djava.sec
urity.policy=C:\JiniNjinil | B\EXRHPLE\LOOKUP\POLICY all corejini.chapteré.Discove
ryExample

Hit return to terminate discovery.

Jini:=r/r13-231-61~/
abd2611c-2fA9-48a5-9164-efBefefe?635
PUBLIC

Jiniz/r/13-231-081:1156/
3e85158b~-dd?8-4%ea—a2c5—-%d4c3aedaaba
Groups: PUBLIC

Figure 5 — The second lookup service is run on the same host and
consequently assigned non-default port number.

At this point, another discovering entity from different service example program
is started. This is to make sure that in the third scenario, the result is not based solely on

the ability of the DiscoveryExample trom Core Jini book to discover lookup setvices.

35

The second discovering entity program chosen is the one that comes with the Jini
development kit from Sun. This program (the Browser) does the same thing as the

DiscoveryEsxcample, which is to discover online lookup services on the network.

File Registrar Options Services Attributes

———))

.|Groups: <all» -JAVA mER JI N

12 registrars, none selected
- f RN

Hac}une Name: 13-231-81 o
1P Addiress '3 139.238.35.97

C:\JinidC:\jdkl .2 _2\bin\java.exe —cp C:\Jini\jinil B\1ib\jini- Examples Jar -Djau J

a.security.pelicy=C:\Jini\jinil { B\EKRNPLE\BHOWSER\POLIC\' —D_]ava rni.server.codeh
ase=http://139.230.35.97:8088/jini-exanples-dl. jar com.sun.jini.example. brouses.

l@-w V‘) me 7=\ LRBrouser ’ (.’
L odierdiard ardt
e JINI]INI JINT
“
TIN JINI JI]HT Tray

Auto i1) e

{Shartcitto o i
EMoY2:: Mau:lune Nare 5-13-231-81 - g
Addres .

S
B
J +139.238.35.97

" J J
INI I] s\Jini iniNchapter6djava -cp C: \Jlﬂl\Jll’lll .\llh\(jl ~cove.jar;C: Bdlnl\:j:n
M yExanple - -t -
Hit return to terminate discovery.
Discovered:

i ibNjini-ext.jar;Ca\diniNjinil_O\1lib\s Jarse: \]lnl\cl:lent -DJ ‘ d
lll ity.policy=C=\Jdini\jinil | G\EXQHFLE\LOOKUP\POLICY all corejini.chapterb.Discove) N
URL: Jiniz/ r13-231-91/

J _]I NI JI] 1D= 26d2611:-2109-48a5~9164-cF Befcfe7635 JINT JI NI JI N

G nupg : PUB

Jini://13-231-01:1156/

URL: M
Gu;ups- gﬁgiisﬂb ‘dd98-49¢a-a2c5-9d4dcIaedaaSa gw%
[INT JINT]IN
)
ST 2:

#Asan| @B AN » Eupya. | NExploin. | Bjave | BFinishe... | lJava | @Finishe... |[BBIAvA Elookup |

Figure 6 — The second discovering entity discovers two lookup setvices
too.

36

A closer look shows that the Browser too discovers the same information about

the lookup serviees as the Disarerylixample,

File [RAQISTar] Options Services Attributes

P iR

Group O 13-231-01:1456
2189 - 43.231.01

Figure 7 — Both the first lookup service on the default port and the
second on port number 1156 is discovered by the second discovering entity.

The conclusion so far is that services commencing the discovery protocol will
find any lookup services already running and newly run on the same host machine.
The last scenario is to test whether a newly run Jookup service on another

machine can also be dynamically discovered.

37

3. Discovering a newly oﬂ/z'ﬂé lookup service on a different host machine

When another lookup setvice is tun, this time on a different host machine, it
turns out that it was not discovered by the DiscoveryExcample on the first host machine. A
second instance of the DiscoveryEsxcample is then run on the second machine and it
successfully discovered all three lookup setrvices currently running on the network, that
is, on the first and second machines.

The figure below shows the snapshot of the second machine after running the
third lookup service and the DiscoveryExample that detects all three lookups.

=)

My Computer

§ | Machine Name: 13-231-82
Recycle Bin IP Addvess = 139.238.35.68

Allassigments

C:SJinidG:njdkl.2.25\bin\BMID.ERE

g Machine Name: 13-231-82
IP Address @ 139.238.35.60

Shaortout to
Remova... C \J1n1);java —-Djava.security.policy=C:\Jini\jinil { MPLENLOOKUPNPOLICY .all —j|

C:\Jini\jinil @\1ib\REGGIE.JAR http://139.238.3 reggie—dl. jar CiNdini\jin|
@ 11 < ONEXAMPLENLOOKUPNPOLIGY call-G:\Temp\reggie . logl c
= $

Publish

24

B —1

Network 1 g. " ; 1%;23%635 69
Meighbathood

1\c)|aptexﬁ);jaua —-cp Cf \J1n1\,]1n11 B\llh i~core.jar;CiNdini\jin]
t.jar;CaN\JiniNjinil_O\lib\sun—util.j anl\cllent -Djava.sec
N\Jini\jinii G\EXAMPLE\LOOKUP\POLICY. all corejini.chaptert.Discove;

H).': return to terminate discovery.

Jini://13-231-81:1156/
3e85150b-dd98—4%ea—a2¢5-2d4c3aedaaba
= PUBLIC

Jini://13-231-082/
d8878bhe-8202-43c5-ae87-c9aabe541319
PUBLIC

Jini:/r13-231-8
H a6d2611c-2f89-40a5-9164-efBefcfe?635
Groups: PUBLIC

HStart] A A »i| 3 Exploting - C:\Jini java Finished - statLockup JAVA
i) A e i A

Figure 8 — The third lookup service is run on a different host machine
and is only discovered by another instance of a discovering entity on that
second machine.

veR

The snapshot of the first machine is the same as the previous desktop snapshot,

so there is no reason to reproduce it here.

38

The DiscoveryEscample’s output on the second machine shows that it discovered
the first two lookup services (both on machine 13-231-01") and the third lookup setvice

(on machine 13-231-02’) in an arbitrary order.

Machine Name: 13-231-02 :
IP Addvess. @ 132.238.35.60°

C:sJdiniNcorejinischapterbdjava —cp C:iNJiniNjinil _B\lib\jini—core.jar;C:\Jininjin
il O\NLIib\Jini-ext.jar;C:sJinizjinil BN1ibN\sun—util. jar;e:\jinisclient -Djava.sec
urity.policy=C: \Jinisjinil BO\EZAMPLESNLOOKUPNPOLICY.all corejini.chapterb .Discove
ryExample
Hit return to termninate discovery.
Discovered:

URL: Jiniz/s13-231-61:1156/

1D: Je85158bh—-dd98-4%ea—a2c5-9d4c3aedaaba

Groups: PUBLIC
Discovered:

URL: Jiniz/r13-231-82/

ID: d8878bbe-8202-43¢c5—ae8?—c%aahec541319

Groups:= PUBLIC
Discovered:

URL: Jini=z/r13-231-81/

| § 14 abd2611c—-2fA9-40a5-9164-ef8efcfe?635

Groups: PUBLIC

Figure 9 — The example service running on the second machine
discovered all three already running lookup services on the network.

Note that the DiscoveryExcample will detect all three lookup services when restarted
regardless of the host machines.

Since the DiscoveryExample program from the Core Jini book can not restart the
discovery process unless the program itself is restarted, it is up to the Browser from Sun to

do so.

39

Only after restarting the discovery process that the Browser is then able to detect

all three lookup services, also known as registrars,

File Reglstrar Options Services Attributes
Graups: public
3 registrars, none selected|

Figute 10 — After restarting the discovery process, all three lookup
services on the network are detected accordingly.

The details of the lookup services are as shown on this next screen shot,

| [Repistrar Options Senvices Attributes
Grouf O 13.231-01:1156
0 13-231-01

O 43-231-02

Figure 11 - Details of all three lookup services on the network.

40

Experiment Conclusions

This experiment shows that any well-configured Jini participants (hoth services
and clients) will at lease suceessfully discover all existing lookup scrvices within a network
and new ones only within the same host.

Unless a cliene can not find a service it is looking for within the lookup scrvices it
has already discovered, it does not need to detect new ones. Lven if the need arise,
restarting the discovery process may be done periodically within the implementation of
the client as necessary.

W. Keith Edwards concurs with this view when discussing the need for lease

renewal as a requirement for ‘well-behaved’ services. He stated that:

“If the lookup service was discovered through unicast discovery... then the
service should try periodically to reconnect. ...since these lookup services are likely to
be on a different network, they will not be discovered automatically via the

serendipitous forms of discovery.” [Edwards, 1999, p. 278]

Note that in this experiment, although within the same network, multicast
discovery only worked when the discovery process was restarted.
In conclusion, when Jini plays the role of the new plug-and-play device, it will run

successfully with the above set up.

Experiment Limitations

Limitation of this experiment includes the fact that the flaws maybe on the part
of the discoveting setvice examples used. Undetected flaws in the software and/or

network setup may also contribute to failures or misleading tesults.

41

Jint and UPnP side by side

Language of implementation.

UPnP udlised XML to provide descriptive information of services but apart from
that it is language-neutral [Microsoft, 1999d]. The advantage of using XML is the ability
to provide difterent views for clients using the XML style language X1.S. Morcover,
XML could become the next standard of markup language after HTMIL.

Jini technology is based on Java 1.2 technology otherwisc also called fava 2'. In
addition, it depends on the use of RMI and JavaSpaces. Although, this is not too much
of a restriction since other programming languages can be used instead of or with Java
[Sun, 199%h p. 5]. Specifically, by delegating the Java-specific functionality to a third party
application if needed. This includes eliminating the need for a device to have its own Java
virtual machine.

Both technologies use base languages that are considered highly portable, The
difference is that XML might be relatively casier to learn than Java because of its close

relation with the popular HTML,

Networking requirements.

The networking requirement for both technologies is the use of IP networking
standard. Jini requires that the IP addresses of participating entitics be assigned cither
statically or dynamically with DHCP. This teliance on DHCP is the gap that can be filled
with the auto-configuration mechanisms provided by UPnP.

Although UPnP sdill primarily uses DHCP, in the absence of such IP-assigning
authority, services can use the AutolP to acquitc IP addresses. With AutolP, the 1P
addresses assigned are from a reserved range that is only be used in a local network

[Cole, 1999]. The AutolP also checks for the availability of a DHCP periodically to let it

!'The Java 2 name applics to Java 1.2 product, as announced by Sun on December 1998[Sun,

1999b).

42

take over in assigning proper 1P addresses.

Service discovery.

UPnP has SSDP as its own discovery protocol. For scarching purposes, unlike
Jini which use service attributes as eriteria, SSDP uses a single Uniform Resource
ldentficr (URIL), which specifies the profile of the service. The XML deseription used by
the service is not even examined until discovery [John, 1999].

The client sends UDP multicast packet with the service identifier to find a
service, If a directory exists it can act as a broker. Nevertheless, all services can directly
listen for requests but only those with identifier that corresponds to the one specified in
the request can respond. Microsoft maintains that the simple query mechanism is
preferable than a full blown name-value pair searching such as provided by Jini attributes
and interface support searching [Microsoft, 1999a].

The use of a lookup service mechanism as such used by Jini allows UPnP to
implement service discovery beyond the local area network. Like the Jini lookup service,
a UPnP directory acts like the broker between clients and services. Thus, a service has to
register with the UPnP directory so that the directory can listen and answer requests

made by clients.

Relaying query beyond the local network.

Jini does not specify how to the lookup service can relay a query to a
neighbouring neework if a sought setvice is unavailable locally. A solution would be to
have the lookup service registered to other lookups outside the local network that are
members of the same groups. The lookup can the register all services of the other
lookups with itself to allow greater possibility of query match. W. K. Edwartds provides a
sample solution which is to have a dedicated service that does just that [Iidwards, 1999 p.
330-338}. He calls this service a lookup service tunnel’. Such service actively finds all
services registered in one lookup and registers them with another lookup.

Where Jini leaves it to the developer to provide the solution of relaying query,

43

UPaP provides its own. As mentioned above, UPn! uses the SSIDP o query other
dircctories beyond the local area network. This includes service query for wide arca

network and the Internet,

Device-to-device connectivity.

Jini and UPnP support peer device-to-device connection. In UPnP, the network
can still function without the assistance of a personal computer system [Microsoft, 1999).

Jini, on the other hand, assumes that an 1P address assignment mechanism is
available. Jini also requires that a lookup service is available to marshal interaction

between a client and a service provider.

Device driver requirements.

Jini does not eliminate the nced for device driver altogether. Instead, it allows for
dynamic downloading of the driver using RMI. Rekesh John [John, 1999} argues that this
is not as simple as it sounds. Manufacturers must first agree on a standard for the
methods in RMI interfaces with the device.

UPnP specified that the client can interact with a device through a net browser
after the device-driven auto-configuration [Microsoft, 1999¢]. But unless both client and
device uses a standardised protocol then a device driver is still needed as noted by R.
John [John, 1999] and Alec Saundets from Microsoft, who was quoted by John Charles
{Chatles, 1999.

Security Issues
The most critical issue in distributed computing is on security. Unfortunately, the
UPnP has not provided sufficient details for a comparable presentation. Although, it
does declate that since auto-configuration process only concerns with the exchange of
formatted data, there is less chance of a breach through hostile code [Mictosoft, 1999¢}.
On the other hand, security in Jini technology is based on Java 2 and RMI. Java 2
has a more fine-grained security approach with its security manager compared to its

previous version. The execution of a code that is loaded into a machine is constrained by

44

its security policy. It an object attempts to do something that is not defined in its the
security policy, a security exception will be thrown. A class can also he signed or
unsigned. Signed classes uses the security policy defined in their certificate whereas,
unsigned ones use the general sceurity policy.

An article by Charles Crichton, ¢t al. |Crichton, et al., 1999}, identifics further the
security loopholes in fini. Lt said that the Java security manager is not adequate in a Jini
environment. For example, when a user can not find a matching service within the local
network, he might decide to look for the service through a lookup service on an external
network, He then would inadvertently allow access to untrusted code through the
network firewall. The result would be disastrous since untrusted code with local network
access can scan local ports and send this information through the firewall. The solution
for this is, of course, not to allow untrusted code access to the network at all.

RMI allows for passing code across the network. This is done through the
serialisation mechanism, which converts an object into a byte stream that can be passed
down the socket of a network. When deserialised at the target location, the object is
converted back to its original form. Meanwhile, in a serialised form, the Java object’s
security restriction to private, package protected, or protected fields no longer exists
[Sun, 1999a]. Anyone who has access to the stream can read, alter, and reconstitute the
object without the Java security. This security loophole can not be dealt with the security
manager because it is part of the runtime environment and therefore is dependent on the
Java virtual machine. Because setialisation is to facilitate code mobility around different
machines, it can not be tied down to such dependency. Other security breaches that can
occut on object serialisation ate also discussed by Chatles Crichton, et al. {Crichton, et

al., 1999].

45

CHAPTLER 111V

Conclusions

The innovation of Jini is found in the way that existing concepts and
techoologies were composed together,

Some of Jini strengths and weaknesses can be attributed because of its close
relation to Java. In patticular is Jini reliance on java security system, portability, and
object mobility with RMI. Further more, Jini performance will also depends on Java,
whose performance has been questioned by some developers. Sun Microsystems is also
yet o releasc embedded version of Java that supports Jini. Since Jini relics some of its
core features on Java, any delay in the java development means delay in }ini development
as well.

Fortunately, Jini is relatively easier to understand and implement compared to
UPaP. Its specification was released soonet which gives Jini a leverage in creating a pool
of developer community. Therefore, Jini has already been under various implementation
stages at this time by researchers and vendors alike [Flowwworks, 1999; MirrorWorlds,
2000]. The Jini community is already actively working on standardisation issues on Jini.
This includes the interface standardisation of all common Jini services but to cover all
possible services and get everyone to agree on a standard will take time.

All new technology needs time and supports to gain acceptance before it can
become officially adopted as standards. Like java, many of the industry experts believe
that Jini will probably takes around three to five years before it truly becomes ubiquitous
[Plummer, 1999a; Plummer, 1999b; Plummer, 1999¢]. Nevertheless, because of
Microsoft dominance in the industry, anyone with the Windows operating system will
eventually live with UPnP. If the UPnP concept of invoking services through XML
succeed, then the undeniable presence of worldwide Internet community will further
leverage UPnP position. However, to have both technologies working and competing

side by side is not an impossible scenario. The ChaiScrver technology from Hewlett-

46

Packard claimed to be able o bridpe between UPnP and fini cnabled devices|Brody,
1999; Gage, 1999]. Such bridging technology will let the competition between Jini and
UPnP continue.

And so in conclusion, the research questions can be scen to be answered as the

followings detailed.

Sun’s claim:
Jini technology promiises to be a reality in the immediate future as archilectire to enable

conniections between devices any time, anywhere.” [Sun, 1999d]

Question one,

To what extent is the above claim immediately realisable?

Apart from the known Jini applications implemented by developers mentioned
above, Jini services implementation has been slow, isolated and of a smaller scale than
hoped. Aoption process is still slow and many in the industry is still waiting on how
UPnP will be implemented because of the Microsoft influence. In reality, Jini technology

is not realisable as immediate as it claims.

Sun’s claim:

?Jini technology provides simple mechanisnrs which enable devices to plug together to form an
impromptu community—a commnnity put together without any planning, iustallation, or human
inservention.” [Sun, 1999e]

The aim is to make connection of devices scamless to the users; however, this

causes Jini to be comparable to the UPnP technology by Microsoft.

Question two,

How do the capabilities, case of use, and reliability of Jini compare and contrast

with the features of the UPnP technology?

47

The capabilities of Jing are very parallel to thar of UPnl? as discussed under the
comparison section. Both aim o network various kinds of deviees, ineluding houschnld
apphances that are easy 1o set up and maintain. The difterence is how cach implements
their solution. Jini is Java-centrie, whereas, UPnP is not tied to a particular programming
language but uses standardised delivery mechanisms, such as XML and HTTP.

Rehtability-wise they also depends on their underlying technologies. Java seeurity
mechanism, despite its weaknesses, seems more assuting for now because UPnP security
issues are yet to be publicised.

Ease of use, in term of implementation, Jini is more readily accessible at the
moment because its development kit was published eatlier and also because of its open

source-type licensing.

43

APPENDICLS

Appendix A
Legends
Package
Class

Interface
O

> Inheritance
Dependency
————>
Realisation

|:| Jini package
]

Java package

49

net.jini packages

L

net

i {from Logical View)
| ;

1 | r

A

i
]
'
i

ke

jini 2
{from net)

\—* . -

t
!

+ DiscoveryAdmin |

s discowery

+ Constanis
+ BDiscoveryEvent
+ IncomingMulticastAnnouncement
+ IncomingMulticastRequest
+ IncomingUnicasiRequest
+ IncomingUnicastResponse
+ LookupDiscovery
+ QutgoingMulticas tAnnouncement
: + QuigoingMulticasiRequest
| + CutgoingUnicasiRequest
+ QutgoingUnicastResponse
+ DiscoveryPermission
+ Discowentistener

entry
+ AbstractEntry =

admin
+ Destroy Admin

+ StoragelocationAdmin

"

\—_‘
space
+ IntermalSpaceException
+ JavaSpace

50

net.jini.discovery

lang
(from java)

o
—

1

java

(from Logical View)

P
- 71
util
(from java)

]

(from java)

security
(from java)

O

EventlListene
r
(from util)

net - jini - discovery
{from Logical View) <— (romnet) |«<— — (fromjini)
EventObject .
(@ — rom ity |<——————— DiscoveryEvent
Serializable J
trromio) [—————— Constants
IncomingMulticastAnnouncement
IncomingMulticastRequest
IncomingUnicastRequest
Object IncomingUnicastResponse
(from lang) <‘
A A LookupDiscovery
OutgoingMulticastAnnouncement
OutgoingMulticastRequest
OutgoingUnicastRequest
OutgoingUnicastResponse
Permission DiscoveryPermission
(from security)

b

Guard

\
\\Q/

Serializable

{from io}

51

O
Discoverylis
tener

net.jini.entry

1

java

(from Logical View) |< -—

(from java)

]

1

net

N

(from Logical View)

net.jini.lookup

jini entry
(fromnet) |< — (from jini)
A R
|]
core entry
(from jini) |« — (from core)

net

(from Logical View) j«= —— —

jini
(from net)

O

DiscowveryAd
min

52

< ——

Object

(from lang)

\

AbstractEntry

]

lookup
(from jini)

*_O
Entry

(from entry)

net.jini.lookup.entry

]

java

(from Logical View)

1o lang
(from java) (from java) core entry
(fromjini) k= — (from core)
net jini lookup entry
{from Logical View) |« - - - (fromnet) <~ — — (fromjini) |~ —! (from lookup)
) entry
(from jini)
SenviceContr
olled
Address Comment Location Name Senvcelnfo SeniceType Status
V.Y
C AbstractEntry g
N (from entry) <*J -
Ent M e]
mry AddressBean) O
{from entry) -
EntryBean Serializable
CommentBean O (fOo)
EntryBean Serializable
L :
ocationBean O " OO)
EntryBean Serializable
NameBean) M
Y7 v N\ {fr_Jo}
v EntryBean Serializable
Object <] | SenvicelnfoBean ™ M
(from lang) N (fR_/io)
A EntryBean Serializable
StatusBean C) " Qo)
————e EntryBean Serializable
StatusType (_/, (from o)
Serializable
EntryBeans (from i0)

53

net.jini.admin

O

JavaSpace

net jini © admin
{from Logical View) |<=—| (from net) < (from jini)
DestroyAdmi Storageloca
n tionAdmin
net.jini.space
java lang
(from Logical View) <*— —| (from java)
net jini space
(from Logical View) <<~ —| (fromnet) [< — (from jini)
Object | ., | Throwable] Exception g RuntimeException g
(from lang) &}' (from lang) (from lang) (from lang)

IntemalSpaceException

54

net.jini.core packages

net
(from Logical View)

/\
i
jini
{from net)
P
_________ . P
core o
(from jini)
NI

+ SenicelD
+ Seniceltem
+ ServiceMatches
+ SeniceTemplate
+ SenviceEvent
+ SeniceRegistrar
+ SeniceRegistration

discovery
+ LookupLocator

event
+ RemoteEvent
+ EventRegistration
+ UnkownEwentException
+ RemoteEventListener

entry

|+ UnusableEntryException
+ Entry

]

N lease
+ LeaseException
+ LeaseDeniedException
+ LeaseMapException
+ UnkownLeaseException
+ Lease
+ LeaseMap

\
AN

]

transaction

+ Transaction
+ NestableTransaction
+ TransactionException
+ CannotCommitException
+ CannotAbortException
+ CannotJoinException
+ CannotNestException
+ TimeoutExpiredException
+ UnknownTranscationException
+ TransactionFactory

net.jini.core.discovery

—

e lang
. . (from java)
(from Logical View) |« — + Object
net jini core
(from Logical View) <7 (from net) < (fromjini) |-

1+ Lookuplocator

O

Object
(from lang)
discovery
(from core) Lookuplocator

O

SeniceRegis ServiceRegis
trar tration
net.jini.core.entry
java
(from Logical View)
—‘ T -
lang - - io
(from java) (from java)
net jini core B ’elﬁtﬁry """""
(from Logical View) = — -4 (from net) (= — — (ffomjini) | — _| (from core)
O<F—0O
Serializable Entry
(from io)
Object 1 Throwable g Exception |_ g UnusableEntryException
(from lang) (from lang) (from lang) | ™

56

net.jini.core.lookup

—

(from Logical View)

7 /]\ SR
] 7 RN
lang util io
(from java) {from java) (from java)
event
(from core)
net jini core Z
(from Logical View) < — —i. - (from net) <<~ — —{ = (from jini)
< lookup
(from core)
C EventObject RemoteEvent SeniceEvent
(from util) <F (from event) <]_
Serializable
(from io)
SenicelD
O
Serializable
v N (from io)
Object Senviceltem :)
(from lang) <]—

SeniceTemplate

SeniceMatches

Serializable

(from io}

O

Serializable

(from io}

.

Serializable

57

(from io)

net.jini.core.evernt

|

(from Logical View)

java

lang
(from java)

util
(from java)

net jini core
(from Logical View) << — —| (fromnet) & — — (fromjini) |« -
C EventObject] RemoteEvent
(from util)
Serializable -
Object g EventRegistration C
(from lang)
Serializable
(from io)
“ }
) Throwable T Exception 1
((from lang) < (from lang)
Serializable
(from io)
O(' ~ <<extend>> ~
AN o/ N/
EventListene RemoteEven Remote
r tListener .
(from rmi)
(from util)
<<extend>>
O —O O
Remote RemoteEven EventListene
. fListener r
(from rmi)
(from util}

[

io
(from java)

]

event
(from core)

I

UnkownEventException

58

net.jini.core.lease

]

(from

lang

java)

i

e
net
(from Logical View) <~

|

java

{from Logical View)

RS
| ~ - N —'
util io
(from java) (from java)
jini] core |
(fromnet) - <= — — (fromjini) | — —

I ——

lease
(from core)

O<F+—0

LeaseDeniedException

Lease Map LeaseMap
(from util)
Object Throwable | Exception LeaseException | - LeaseMapException
(from lang) Q—* (from lang) \/J“ (from lang) \\J’*—

59

UnkownLeaseException

net.jini.core.

transaction

—

java
(from Logical View)

T e
s -
lang
(from java)
net jini
(from Logical View) <= — — - (from net)
TransactionFactory
X!7
Object g Throwable Exception |__-
(from lang) (from lang) <]* (from lang) \}’

<___

N

io
(from java)

]

core
(from jini)

TransactionException

C

(from

Serializable

o)

Created

(from Transaction)

-——>0

N

Created

(from NestableTransaction)

O

Serializable

(from io)

Transaction

e ®

NestableTra
nsaction

T_

60

transaction
(from core)

CannotAbortException

CannotCommitException

CannotNestException

UnknownTranscationException

net.jini.core.transaction.server

]

lang
(from java)

.

net
(from Logical View) (<=

]

java
(from Logical View)

{from net) |« —

(from jini) |j<— -

core

transaction

(from core) <= — (from transaction)

<<Interface>>

Transaction
(from transaction)

A\
L

SenerTransaction

N

C) NestableServerTransaction

NestableTrans
action
(from transaction)

<<extend>>

Trancection
Manager

NestableTra
nsactionMan

<<extend>>

— N
e S =g

(from rmi)

Transaction
Constants

Object

(from lang)

Transaction
Manager

e

Serializable

{from io)

<<extend>>

<<extend>

Transaction
Participant

61

Throwable
(from lang)
!

Exception
(from lang)

TransactionException

(from transaction)

7

CrashCountException

LIST OF REFERENCES

Arold, Ken, O'Suliivan, Bryan, Sé]wiﬂcr, Robert W,, Waldo, Jim and Wollrath, Ann &
Friendly, Lisa. (1999). The Jini™ Specificagion: The [in/™ Technnlygy Sertes, Palo Aho, CA:
Addison-Wesley, Inc.

Brody, Steven. (1999). Anything to Bverything: [inf battles Microsofl and others for instan!
uetwarking market, Available at WY hup//www.sunworld.com/swol-03-1999 /swol-(13-
jinihtml, SunWorld.

Chatles, John, “Ubiquitous Computing Uncorked,” IEEL Software, vol. 16, pp. 97-99,
1999.

Christensson, Bengt. (1999). WinHEC 99 White Paper: Universal Plug and Play Connects
Smart Devices. Available at World Wide Web:

hutp:/ /vww.axis.com/products/documentation / UPnP.doc. Axis Communications, Inc.

Clark, David, “Service with a (smart) smile: networks Jini-style,” IIEEE [ntelligent Systems,
vol. 14, pp. 81-83, 1999,

CNET. (2000) CNET Glosqar\' Ping and Pfgl Av a1lablc at WWAY:
: . ; lugandplay.html. CNET, Inc.

Cohen, Josh, Aggarwal, Sonu and Goland, Yaron Y. (1999). C;eneral Event Notification
Architecture Base: Client to Arbiter. Available at WWY: hup: ; i
drafts/draft-cohen-gena-client-00.rxt. Microsoft Corp.

Cole, Bernard. (1999). Microsoft pushes Universal Plug and Play at WinHEC. Available
at WYYV: http://24.1.208.115/1394informer/990414B.htm. 1394 Informer.

Cnchton Chatles, Da\ncs Jlm and Woodcocl\v Jim. (1999). When to trust mobile
: Proceedings of the Technology
of Obgect-Onented Languages and Svsrems Santa Barbara, California: IEEE.

Droms, Ralph. (1997). Dynamic Host Configuration Protocol. Available at WWW:
http:/ /www.dhep.org /rfc2131 humi. Network Working Group.

Edwards, W. Keith. (1999). Core Jini, Upper Saddle River, NJ: Prentice Hall PTR.

Flowwworks. (1999), EVOLVE: Version Object Manager. Available at WWAY:
http://flowwworks.com/evolve/. Flowwworks Workflow Systems.

Gage, Deborah. (1999). HP Takes Microsoft Closer to Jini. Available at WA/WY:
http:/ /www.zdnet.com/sr/stortes/infopack/0,,2239858,00.hitml. 2D, Inc.

IEEE, “Sun's JavaSpaces and 1BM's TSpaces,” IEEE Tnternet Compnting, vol. 2, 1998,

Intel. (2000). Inte]l Architecture Tabs: Plig and Play. Available at WW\V:
http://developer.intel.com/ial/plugplay/index. hun. Intel Corp.

62

John, Rekesh. (1999). UPP, Jini and Salutation - A look at some popular conrdination
frameworks for future networked devices, Available at \WWW:

htp:/ Swwwecswleom Awhiteppr/tweh Zupnp himl. Calitornia Software Labs, Inc,

Lee, Yann-Hang, (1998). CIDA 4102: Computer Architectures Phug and Play, Available at
WA hup:/ /www hsi-lab.cise.ufledu/pe_arch/mise/pop.hieml. CISTE Dept., University of
Florida.

Microsoft. (1999). Simple Service Discovery Protocol /1.0: Operating withont an Arbiter,
Available ac WAWW: hutpe/ /wwwjetborg/inteenet-deafis /drafi-cai-gsdp-v1-03.txt, Microsoft,
Corp.

\Ilcroaoft (1999b) Universal Pluy and Play: Backgronnd. Available at Word Wide Weh:
. 'palPbkgnd.hum. Microsoft, Corp.

Microsoft. (1999¢). Universal Plug and Play Device Architecture Reference Specification:
ersion 0.99. Available at WA hup: //www.microsoft.com/hwdev /UPnP/. Microsoft,

Corp.

Microsoft. (1999d). Universal Plug and Play to Make Network Configuration Easy and

Convenient for Avcmgc { :onsumcr Ay allablc at WAL,

lay.htm. Microsoft, Corp.

Middleton, Guy. (1999). Sun's Jini Appears Tn Be At Your Service. Available at World
Wide Web: htp: i 1W1999020150008. CMP Net.

networkweck.com/a

MirrorWorlds. (2000). Learn about LifeStore: Lifestream™ + Jin/™ = [ifeSiore™,
Available at WWW: http:/ /www.mirrorworlds.com/javacpe/nisthiml. Mirror Worlds
Technologics, Inc.

Plummer, Daryl. (1999a). Internet & Intranct Development: Everything AND the

Kitchen Sink; GartnerGronp Sympasinze/ I'Txps 99. Brisbane, Australia: GartnerGroup.

Plummer, Daryl. (1999b). The Java Scenario: Reality Sets In: GartnerGroup
Sympasitm] [Txpg 99. Brisbane, Australia: GartnerGroup.

Plummer, Daryl. {1999c). Web Projects in the Java Age: GartnerGronp .
99. Brisbane, Australia: GartnerGroup.

Robetts, Simon and Byous, Jon. (1999). Distributed Events in Jini™ Technology.
Available at WWW:

http. //developer.java.sun.com/developer/technical Articles /ConsumerProducts
xhtml. Sun Microsystems, Inc.

SCA. (1997). Linda Ovesview: The Linda Model. Available at W
http:/ /www.sca.com/LINDA _overview.html. Scientific Computing Associates, Inc.

Shnier, Mitchell. (1996). Dictionary of PC Hardware and Data Communications Terms:
Plug and Pigy. Available at WWW:

http:/ /www.ora.com/reference/dictionary/terms/P/Plug_and Play.hom. O'Reilly &

Associates, Inc,

Sun. (1999a). Frequently Asked Questions: RMI and Olyject Serialigation. Available at

63

WA hup:/ /avason.cony/ produets/jdk /1.2 /docs /guide /imi/ fag.hunl. Sun Microsystems,
Inc.

Sun. (1999h). Java™ 2 Nanve: 1 uofe on the "Jard™ 2" Nage. Available at World Wide
Web: hup://wwwjavasun.com/products/idk/1.2/java2 himl. Sun Microsystems, Inc.

Sun. (1999¢). lini™ Architecture Specification. Available ac World Wide Web:
http://wawsun.com/jini/specs fjini-spec.pdf. Sun Microsystems, Inc.

Sun. (1999d). Jini' Connection Technology. Available at World Wide Wel:
hrrpe//eww sun.com/ini/. Sun Microsystems, Inc.

Sun. (1999¢). Jini™ Connection Technology: Fxeentive Qverview Revision 1.0, Available at
World Wide Web: hup://www.sun.com/jini/overview/#998999. Sun Microsystems, Inc.

Sun. (1999¢). lini™ Discovery and Join Specification 1.0. Available at World Wide Web:
http://www.sun.com/jini/specs /boot.pdf. Sun Microsystems, Inc.

Sun. (1999g). Jini™ Lookup Service Specification 1.0). Available at World Wide Web:
http:/ /www.sun.com/jini/specs/lookup.pdf. Sun Microsystems, Inc.

Sun. (1999h). Jini™ Technology Overview: FAQs. Available at WAYW:

http://www.sun.com/jini/fags/jini faqvd.pdf. Sun Microsystems, Inc.

Sun. (1999i). Leasing and Automatic Cleanup: Jini™ Technology "Under the Hood".
Available at WAWY: hitp:/ /java.sun.com:8081/features /1999/01/cleanup.huml, Sun
Microsystems, Inc.

Venners, Bill. (1999). Frequendy Asked Questions for Jini-Users Mailing List. Available
at World Wide Web: http://www.artima.com/jini/fag.hitm. Bill Venners.

Wobus, John. (1998). DHCP FAQ. Available at WWW http:/ /www.dhep-
handbook.com/dhcep _fag.html.

64

	An investigation on sun microsystems Jini technology
	Recommended Citation

	An Investigation on Sun Microsystems Jini Technology

