
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses : Honours Theses 

1999 

Implementing flexible software techniques in a 4GL environment Implementing flexible software techniques in a 4GL environment 

Stephen O'Connor 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
O'Connor, S. (1999). Implementing flexible software techniques in a 4GL environment. 
https://ro.ecu.edu.au/theses_hons/519 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses_hons/519 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F519&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/519


Edith Cowan University 
 

 

Copyright Warning 
 
 
 
 
 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 
 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 
 

You are reminded of the following: 
 

 Copyright owners are entitled to take legal action against persons 
who infringe their copyright. 

 

 A reproduction of material that is protected by copyright may be a 

copyright infringement. Where the reproduction of such material is 

done without attribution of authorship, with false attribution of 

authorship or the authorship is treated in a derogatory manner, 

this may be a breach of the author’s moral rights contained in Part 

IX of the Copyright Act 1968 (Cth). 

 

 Courts have the power to impose a wide range of civil and criminal 

sanctions for infringement of copyright, infringement of moral 

rights and other offences under the Copyright Act 1968 (Cth). 

Higher penalties may apply, and higher damages may be awarded, 

for offences and infringements involving the conversion of material 

into digital or electronic form.



USE OF THESIS 

The Use of Thesis statement is not included in this version of the thesis. 



IMPLEMENTING FLEXIBLE SOFTWARE 

TECHNIQUES IN A 4GL ENVIRONMENT 

BY 

STEPHEN O'CONNOR BSc (Computer Science) 

A thesis submitted in partial fulfilment of the requirement 

for the award of 

Bachelor of Science Honours (Computer Science) 

Faculty of Communications, Health and Science 

Edith Cowan University 

Date of submission - 9 July 1999 



Abstract 

Today more IT professionals are employed on the maintenance of existing software 

applications than are employed to develop new systems. Why is there such a need for 

this maintenance? Part of the problem is that developers have traditionally seen system 

requirements as fixed from the time they have been 'signed off. In reality requirements 

are dynamic and subject to change as an organisation's environment changes. 

Flexible software techniques recognise that software requirements are subject to future 

changes. Flexibility is seen as an important design goal criterion with "true" or "strong" 

flexibility implying that an application's behaviour can be altered without the need for 

changing program code. 

The purpose of this study is to: 

o Identify flexible software techniques described in the current literature. 

o Identify features present in the Oracle suite of tools that can lead to flexibility. 

o Design and implement a demonstration application that demonstrates both the 

flexible techniques and features identified. 



Declaration 

I certify that this thesis does not, to the best of my knowledge and belief: 

1. incorporate without acknowledgement any material previously submitted for a 

degree or diploma in any institution of higher education; 

11. contain any material previously published or written by another person except 

where due reference is made in the text; or 

m. contain any defamatory material. 

Signed: 

Stephen O'Connor 

II 



Acknowledgements 

I would like to take this opportunity to acknowledge and thank some of the people who 

helped and assisted me in this work. 

Special thanks must go to Ms Jean Hall, my supervisor, for the many hours of support, 

advice and encouragement she gave me during the research and preparation of this 

paper. 

I would also like to thank Mr Roger Edland, a work colleague, who has given me 

valuable technical advice with the Oracle Development tools. 

Finally, thanks to my family for all their support and encouragement during the past two 

years. 

111 



Table of Contents 

Use of Theses ........... .............................................. ......................... ................................... . 
Abstract .............................................................................................................................. . 
Declaration ........... ............................................................................................................. ii 
Acknowledgements .......................................................................................................... iii 
Table of Contents ............................................................................................................. iv 
Table of Figures ............. . ................................................................................................. vi 
Glossary of Oracle Developer 2000 terms ...................................................................... vii 
Chapter 1: Introduction ................................................ ................................................... 1 

1.1. Introduction ...................................................... ................................................... 1 
1.2. Background to the Study ..................................................................................... 1 
1.3. What is Software Maintenance? .......................................................................... 3 
1.4. The Hidden Cost of Software Maintenance . ....................................................... 6 
1.5. What is Flexible Software? ................................................................................. 7 
1.6. Significance of the Study ......................................................... ............................ 8 
1.7. Purpose of the Study ...................... ...................................... .............................. 10 
1.8. Research Questions ........... ............................. ..................... . . . ........................... 11 
1.9. Conclusion ..................................................................................... .................... 12 

Chapter 2: Review of the literature ............................................................................... 13 
2.1. Introduction ........................................................ ............................................... 13 
2.2. General Literature .............................................................................................. 13 

2.2.1. Component based ........................................................................................ 13 
2.2.2. Fragment Based Specification .................................................................... 14 

2.3. Literature on Previous Findings ........................................................................ 14 
2.3.1. Dynamic Search Condition ............ ............................................................. 14 

2.4. Specific studies similar to the Current Study .................................................... 15 
2.4.1. Common Code Tables ................................................................................ 15 

2.5. User Extensibility ............................................................... ............................... 16 
2.5.1. Data-DrivenNavigation Bar ....................................................................... 17 
2.5.2. Dynamic Court Orders .................................................. .... .......................... 18 

2.6. Native Oracle Features that can lead to Flexibility ........................................... 24 
2.6.1. Introduction ..................................................... .............. . . . ........................... 24 
2.6.2. %ROWTYPE ........................................... ................................................... 24 
2.6.3. Dynamic PL/SQL and SQL ........................................................................ 28 
2.6.4. Dynamic Properties ....................................................... .... .......................... 28 
2.6.5. Database Triggers ......................................................... .......... .................... 29 
2.6.6. Dynamic Record Groups .......... ..................................... ............................. 29 
2.6.7. List of Values ................................................. ............................................. 29 
2.6.8. Oracle Roles ................................................................................................ 30 
2.6.9. Variable Cursors ................. ............ .............................. ...... ........................ 30 

2.7. Conclusion ............................................................... .......................................... 31 
Chapter 3: Method .................................................................. ...................................... 32 

3.1. Introduction ............................... ........................................................................ 32 
3.2. Research Questions ...................................... ..................................................... 32 
3.3. Design ..................... ................................................. .......................................... 32 
3.4. Environment .................................... ..................... ....... ...................................... 33 

3.4.1. Oracle ................................................. ....................... .................................. 33 
3 .5. Demonstration Application ............................................... ........ .... .................... 34 

Chapter 4: The Demonstration Application .................................................................. 35 

IV 



4.1. Introduction ... ......................................................... ........................................... 35 
4.2. Demonstration Application .............................. ................................................. 35 

4.2.1. Templates ........................... ........................................... . . . ........................... 37 
4.2.2. Implementation of the Dynamic Button Bar. ..................... , ........................ 38 
4.2.3. Forms Maintenance ................................. .................................................... 41 

4.3. Implementing the Dynamic Condition Search .................................................. 46 
4.4. Implementing Database Triggers ...................................................................... 52 
4.5. Implementing Dynamic SQL ................ .............. ................ .... .......................... 53 

Chapter 5: Results ..................... .................................................................................... 54 
5 .1. Introduction ............ ........................................ ................................................... 54 
5.2. Research Questions 1 and 2 ........................................ ................ ....................... 54 
5.3. Research Questions 3 and 4 ............. ................... ..................................... .......... 55 

5.3.1. Data Driven Button Bar .............................................................................. 55 
5.3.2. Dynamic Screen Layout. ............................................................................. 56 

Chapter 6: Conclusion .................................................................................................. 59 
6.1. Recommendations ... .......................................................... ...... .......................... 59 

BIBLIOGRAPHY ................... ................................. ......................... . . ............................ 60 
Appendix A-Create Objects Scripts .................... ...................... ................................... 64 
Appendix B -Oracle PL/SQL Packages .............................. .......................................... 72 

V 



Table of Figures 

Figure 1 - Approximate costs of software process phases. Schach ( cited in Sallis, Tate 
and MacDonell, 1995, p. 3) ........................................................................................ 2 

Figure 2 - Distribution of maintenance activities (based on a study of 487 software 
development organisations) . ...................................................................................... 5 

Figure 3 - E-R Diagram for Dynamic Button Bar .......................................................... 17 
Figure 4 - Initial display of clauses ................................................................................. 21 
Figure 5 - Order screen after text substitution ................................................................ 22 
Figure 6 - Application E-R Diagram .............................................................................. 36 
Figure 7 - Developer 2000 Object Navigator ................................................................. 37 
Figure 8 - Canvas layout for the Button Bar. .................................................................. 39 
Figure 9- User Created System Parameters Form ......................................................... 40 
Figure 10 - Form Maintenance .................................................................... : .................. 41 
Figure 11 - Item Maintenance Form ............................................................................... 41 
Figure 12 - Form/Item Maintenance Form ..................................................................... 43 
Figure 13 - New Form layout ......................................................................................... 44 
Figure 14 - Customer Maintenance Form ....................................................................... 45 
Figure 15 - Screen for company customers .................................................................... 46 
Figure 16 - Rule Precedence ........................................................................................... 49 
Figure 17 - Rule Maintenance ........................................................................................ 50 
Figure 18 - Order entry screen ........................................................................................ 51 · 
Figure 19 - Demonstration application database trigger ................................................ 52 

Vl 



Glossary of Oracle Developer 2000 terms 

Block: A block is a collection of interface items such as text items, radio groups, 

buttons etc that allow users to view and modify their data. There are two different types 

of blocks: 

Base table blocks - usually correspond to columns in data base tables. Typically 

a collection of items in a block will represent a database table or view. 

Control blocks - usually correspond to where buttons are placed on blocks and 

derived or computed values not based on database columns or tables. 

Commit: Permanently saves to the database all unsaved database transactions resident 

in the buffer/cache. 

Cursor: A cursor is a work area in memory where the current SQL statement is stored. 

For a query, it stores not only the SQL statement but also column headings and the first, 

or current, row that has been retrieved by the SELECT statement. 

Form: A form is a collection of objects that a user interacts with to view and modify 

database tables. It is made up of windows, canvases, text items, buttons etc. Typically 

a form will contain a number of different, but related, blocks. 

Items: An item usually corresponds to a single data element or field. Similar to a 

block, it may relate to a database column or can be used as "containers" for generic 

control information such as summary columns. An item can belong to one and only one 

block. 

vu 



LOV: A list of values (LOV) is a modal pick list and visual presentation of data 

contained in a record group·. From this list users can select a single valid value which is 

normally used to populate an item. 

SQL: Structured Query Language is the standard language for interacting with 

relational database management systems. This standard was approved jointly by the 

American National Standards Institute (ANSI) and the International Standards 

Organisation (ISO) in 1992. This was "a revised and greatly expanded standard of SQL 

under the name International Standard ISO .IEC 907 5: 1992, Database Language SQL" 

(Lulushi, 1999, p. 227). SQL is non-procedural in structure and allows users to specify 

what is to be done as opposed to how to do it, i.e. non-procedural. 

PL/SQL: Procedural Language/Structured Query Language. PL/SQL is the 

procedural language used by Oracle Corporation in its products. It is a subset of ADA 

providing constructs within it similar to those found in many 3GLs. It provides a 

flexible way to extend SQL in manipulating database information. 

Objects: Oracle Corporation's release version 8 supports Object-Relational technology 

with the ability to support object types and collections. They have for some time 

classified most things as objects in the development environment. Objects can be 

buttons, windows, canvases, text items etc. 

Object Groups: An object group is used to package, or aggregate, several logically 

related objects into one group. Object groups can be created in an Oracle 

Developer/2000 Form and can then be copied or sub-classed to other Forms or 

Vlll 



applications. An object group is Oracle's method of facilitating reusable objects. 

Packages: A package is a PL/SQL construct that is used to group logically related 

types, procedures and functions. Packages may be defined in Forms, libraries and 

menus. Packages can be stored on the client application or stored on the server 

database. Packages stored on the application usually interact with Oracle Forms 

functionality such as sizing windows, item navigation and displaying error messages 

amongst other things. Packages on the database are typically used for the retrieval and 

modification of data from user applications. They are less costly to network resources 

as one request can be sent to the package and all further processing can take place at the 

database level. 

Property Classes: Property classes allow developers to define common attributes and 

functionality for objects in one place. An object can inherit all the attributes of its 

property class such as height, width, etc. Changing the definition of a property class 

changes the definitions of all objects that inherit properties from it. 

Record Groups: Record groups are structured sets of data used to pass data between 

the database and application programs most commonly using LOVs. They can be 

thought of as a virtual table. 

Sequence Numbers: Sequence numbers are created by developers and are generally 

used for inserting unique values into primary key fields. Whenever a call is made for a 

new sequence number, the system automatically increments it by a value specified 

when the sequence was created. 

lX 



Triggers: Triggers are blocks of code that are used to add functionality to an 

application. Each trigger contains one or more PL/SQL statements. A trigger can be 

associated with an event, such as when a new record is created. The code within the 

trigger executes each time the event occurs. 

Visual Attributes: Visual attributes are used to set the font name, font size, colour etc 

of objects. Each object has a property sheet where all the changeable attributes for that 

object are recorded. The property sheet is the means to set the visual attribute name for 

a given object. The object will then inherit all the defined properties from that visual 

attribute. 

Windows/Canvas: A window by itself is conceptually an empty frame. This frame 

provides the means to interact with the window including the ability to scroll, move and 

re-size the window. The contents of the window, or what is displayed inside the frame 

. is determined by the canvas-view(s) displayed in the window at run-time. A canvas is 

the structure where objects such as text items, buttons, radio groups etc are laid out. 

Each canvas must be assigned to a specific window. 

X 



1.1. Introduction 

Chapter 1 : Introduction 

This chapter outlines the background to the study, describing software maintenance and 

the reasons why it has become an important software engineering discipline. Flexible 

software is defined showing why it is an important design goal. Finally the research 

questions for this thesis are presented. 

1.2. Background to the Study 

Today many organisations face unprecedented competition where rapid changes to the 

way they do business are the norm if they are to remain competitive. They are 

increasingly turning to the use of Information Technology to gain a competitive edge 

over their competitors (Callon, 1996, p. 106). 

In tum, the costs involved in providing these IT services are under close scrutiny as 

resources become scarcer and more expensive, financial accountability increases and 

the global trend towards economic rationalisation continues (Hall & Ligezinski, 1997c, 

p. 1). 

It is widely accepted that the maintenance of software systems can be "the most costly 

phase of the software life cycle" (Pressman, 1992, p. 667). For the past two decades 

the cost ofthis maintenance has increased steadily. The cost of maintenance in the 

1970's was estimated to be between 35 and 40 percent of the software budget, rising to 



60 percent in the 1980's. Pressman suggested that if current trends in software 

maintenance continued to be followed this cost was expected to rise to 80 percent of an 

organisation's software budget during the 1990's (Pressman, 1992). 

Many practitioners acknowledge the high cost of software maintenance in the software 

engineering community. It is widely accepted that this accounts for anywhere between 

60 to 80 percent of an organisation's IT budget (Sallis, Tate & MacDonell, 1995, p. 2). 

Sallis, et al, qualify this by saying that although much effort is spent on fixing existing 

systems, a fair amount of effort is expended evolving existing systems rather than 

developing new ones. 

lEl Maintenance 

67% 

Ill Integration 

6% D Module Testing 

7% 

D Module Coding 

5% 

DDesign 

7% 

B Specifications 

5% 

Ill Requirements 

3% 

Figure 1 - Approximate costs of software process phases. Schach ( cited in Sallis, 
Tate and MacDonell, 1995, p. 3) 

A study at the University of California found that "for every dollar spent on application 

development, more than 50 cents was spent on maintenance" (Asbrand, June 1997, p. 

1 ). 

2 



Hewlett-Packard reported that 60 to 80 percent of research and development personnel 

were involved in maintenance activities involving their 50 to 60 million lines of code. 

(Brown, Camey & Clements, 1995). 

What is happening regarding software maintenance in Australia today? An example 

from the local W estem Australia industry shows considerable effort is being expended 

on software maintenance. The distribution of IT personnel within the Courts Team, 

Ministry of Justice (MoJ), Western Australia was given as: 

o One third of staff on maintenance tasks. 

o One third of staff on development tasks. 

o One third of staff undertaking a variety of maintenance and development tasks. 

This figure does not include members of the year 2000 team. (C. Blake, Client Manger 

(MoJ), personal communication, June 14, 1999). 

1.3. What is Software Maintenance? 

Sallis, et al, have previously stated that not all software maintenance is spent on fixing 

existing systems. There are other aspects that different practitioners also call 

maintenance. As with many fields of software engineering, there are many definitions 

and many arguments about exactly what constitutes a particular discipline. The 

majority of definitions in the literature and various texts define software maintenance as 

four distinct activities. (Pressman, 1992, Smith & Votta, 1998, Behforooz & Hudson, 

1996) 

3 



These activities are defined as: 

o Corrective Maintenance 

Corrective maintenance is the identification and correction of software errors also 

known as 'bug fixing'. Humphrey (1997, p.159) estimates that the cost of 

correcting software errors increases by about ten times in each stage of the 

development process. He cites the example of IBM who spent about US$250 

million "repairing and re-installing fixes to 13,000 customer-reported defects" at a 

cost of nearly US$20,000 each. 

o Adaptive Maintenance 

Adaptive maintenance modifies existing software so that it conforms to an 

organisation's changing requirements. 

o Perfective Maintenance 

Perfective maintenance adds new capabilities, modifies existing functions and 

makes general enhancements. This accounts for the majority of all effort expended 

on maintenance. 

o Preventive Maintenance 

Preventative maintenance changes software to improve its future maintainability or 

reliability or to provide a better basis for future enhancements. Stacey (1995, p.1) 

states that this type of maintenance which makes software flexible is "still relatively 

rare". 

4 



Preventive maintenance is seen by Kleist ( 1994, p.20) as being difficult because 

organisations cannot control all the factors "that can cause the appreciation or 

depreciation of an information system". 

DOther 

4% 

Figure 2 - Distribution of maintenance activities (based on a study of 487 software 

development organisations) Stacey (1995, p.l). 

Bartol, Martin, Tein and Mathews (1995, p.82) outline an organisations 'mega­

environment' which they describe as external factors to any organisation that the 

organisation cannot control. They go on to say that although organisations cannot 

control them, at least in the short term, they "must be alert for changes in them". 

Bartol, et al, describe the five mega-environment elements as: 

o Technological 

o International 

o Sociocultural 

o Legal-political 

o Economic 

5 



Kleist ( 1994, p.19) argues that business change and technology change are the two most 

significant factors facing IT departments as they "are well beyond the capacity of any 

single organisation to control". 

1.4. The Hidden Cost of Software Maintenance. 

As previously stated, software organisations can spend anywhere from 60 to 80 percent 

of all funds conducting software maintenance tasks. This is the visible cost to an 

organisation, however, according to Stacey ( 1995, p. 1) the hidden costs of maintenance 

can be even greater because: 

o Maintenance-bound organisations result in loss or postponement of development 

opportunities. 

o Customer dissatisfaction when requests cannot be addressed. 

o Reduction in overall software quality as a result of changes that introduce latent 

errors in the maintained software. 

Woolfolk, Ligezinski and Johnson (1996, p. 482) give the example of an American 

factory where new management decided to "flatten" the organisation by removing 

middle management, combining certain departments and splitting others. They state 

that although this was not a simple change, it was not uncommon in an organisation's 

life. Within six to eight weeks most of those personnel affected had begun using the 

new procedures and had altered their communication lines etc. Over a year later the 

factories "computer systems were only 90 percent complete at a cost exceeding a 

quaiter of a million dollars". 

6 



1.5. What is Flexible Software? 

Flexible software can be seen as the middle ground between professional IT staff 

maintained systems and end user development. Typically software systems are 

designed and implemented by IT professionals and at some stage accepted by an 

organisation and go into production. At this point the maintenance begins. This is 

usually performed by the IT staff. On the other hand "end user development proposals 

see end users as developers who take full responsibility for creating their application 

systems" (Mehandjiev & Bottaci, 1998, p.3). End user development has been criticised 

because it produces error prone software where development "methods were largely 

informal" and "fell far short of disciplines long known to be necessary in programming" 

(Panko, 1998, p. 16). 

Flexible software attempts to take the middle ground by having professional IT staff 

design and implement systems in such a way that the end users can maintain them. 

Mehandjiev and Bottaci (1996, p. 432) state that organisations that rapidly adapt to 

changing conditions require flexible software systems as "conventional system 

development methods are too slow". They see flexible software systems as a method to 

alleviate the problems caused by conventional systems where end users, or domain 

experts, can control and modify the behaviour of systems. An alternative name for 

flexible software is "user enhancability". 

Flexible software techniques recognise that the requirement for systems are, by their 

very nature, dynamic and attempts to build flexibility into the design, thus reducing the 

7 



need for maintenance. Pamas (1979, p.136) describes software as flexible "if it is easily 

changed to be used in a variety of situations". 

Woolfolk, Ligezinski and Johnson (1996, p. 486) propose a classification of the degree 

to which software is flexible. They consider the problem of implementing changes in 

requirements i.e. user enhancability or adaptive maintenance. 

o Weak flexibility - if information structure modification is required, e.g. entities or 

tables. 

o Medium flexibility - if only procedural code and data value modifications are 

required. 

o Strong flexibility - if only data values modifications are required. 

'"Strong' or 'true' software flexibility infers that the behaviour of an application can be 

modified without changing program code" (Hall & Ligezinski, 1997a, p.3). 

1.6. Significance of the Study 

Blum (1993a, p.43) categorises requirements as 'closed', 'abstract' or 'open'. Closed 

requirements are well defined and stable. He states that there normally exists a "domain 

notation" that is used to specify these requirements. Examples of closed requirements 

given by Blum are mathematical notations used in engineering applications. 

Requirements are abstract if they have no concrete representation. Blum states that 

abstract requirements such as software security and safety have no "external reality" and 

that they "must be modelled abstractly so that analysts can reason about them". Blum 

8 



(1993a, p.44). Requirements are open if the problem domain is poorly understood 

and/or dynamic. It is this area that flexible software techniques address. Blum states 

that most applications do no fall into one category but can be characterised by all three. 

Many systems today have been designed to implement closed or static requirements. At 

some point there has been a traditional 'sign off and the system developed around these 

requirements which were thought to be complete at that time. Behforooz and Hudson 

(1996, p. 396) argue that "maintainability should be specified and software should 

provide for the highest level of flexibility and ease of maintenance". They go on to 

state that these should be major design goals because: 

o The maintenance of software is extremely expensive. 

o A system can spend up to 65 percent of its operational life in maintenance. 

o The advantages of designing for ease of maintenance far outweigh the costs of 

including maintenance in the first instance as a major design goal. 

As organisations are constantly changing, and changing increasingly rapidly, it is 

difficult to fully understand the requirements of any system before it is built. The 

knowledge of these systems is therefore "imperfect since a significant part of such 

requirements lie in the future" (Woolfolk, Ligezinski & Johnson, 1996, p.482). 

Because the environment changes, the initial assumptions can become invalid. As it 

takes time to identify these changes and implement them in code, the system can 

quickly become inadequate and "lead to systems that are judged unsatisfactory or 

unacceptable by the client and have high maintenance costs" (Hofmann, Pfeifer & 

Vinkhuyzen, 1996, p. 1 ). 

9 



Research into software maintenance has traditionally been a neglected area of the 

system development life cycle especially when compared to the other phases, however 

this is starting to change prompted in part by ever increasing maintenance costs 

(Pressman, 1992). 

Software maintenance is now gaining more attention as a software engineering 

discipline however "the approaches/tools of maintenance are rather weak when 

contrasted to those of development" (Liu & Zedan, 1998, p. 1 ). The main reasons they 

cite are that research into, and the software discipline of development, is mature, while 

maintenance is seen as difficult and expensive. 

1.7. Purpose of the Study 

While there is plenty of well known literature on the development of software systems, 

little seems to have been published on methods for the development of systems where 

one of the design goals is flexibility. The purpose of this research is to understand the 

different techniques described in the existing literature that can lead to the development 

of software systems that exhibit flexibility. 

Software systems that exhibit flexibility are not new and applications have been 

developed for some time in the banking and finance sectors where business rules change 

rapidly. New, or changing, business rules need to be quickly and easily reflected in 

these software systems. Currently, the development of flexible software systems has 

10 



been confined mainly to 3GL environments. Little has been formalised in a 4GL 

environment although some 4GL programmers do use available flexible techniques. 

One of the goals of this research is to investigate features in a 4GL environment that can 

be used to enhance the flexibility of software systems. The Oracle suite of tools was 

used as the preferred 4GL-development environment for the following reasons: 

o It is readily available at Edith Cowan University. 

o It is widely used throughout the world by medium to large sized Organisations. 

o Although the author uses Oracle at his place of employment he had no exposure to 

Oracle 8, the environment used at ECU. 

A sample application was developed using Oracle and the Developer 2000 4GL tools to 

demonstrate some of the techniques that can lead to flexible applications. 

1.8. Research Questions 

This study is guided by and should answer the following questions: 

1. What is flexible software? 

2. What techniques are available that can lead to the development of flexible software 

applications? 

3. What facilities exist in Oracle tools that exhibit flexibility? 

4. Can some of the techniques identified in point 2 be implemented using the facilities 

identified in point 3? 

11 



1.9. Conclusion 

Chapter 1 described the growing problem that the software engineering community 

continues to suffer from. It highlighted the problems where systems are designed 

around closed requirements and suggested that using flexible software techniques is a 

viable method to reduce the maintenance problem. Chapter 2 describes methods from 

the literature, which are aimed at improving the software development process and 

reducing maintenance. 

12 



Chapter 2 :  Review of the literature 

2.1. Introduction 

Chapter 1 introduced the reader to the problem of software maintenance and suggested 

that using flexible software was one method to help alleviate this problem. Chapter 2 

presents techniques sourced from academic and the software industry that could be seen 

as flexible and help reduce software maintenance. Finally native features in the Oracle 

Developer 2000 that can lead to flexibility are described and in most cases examples are 

presented 

2.2. General Literature 

2.2.1. Component based 

Pamas (1979, p. 129) argues that a level of flexibility can be achieved by designing 

software that is easily extended or contracted. His methodology is to identify the 

minimal subsets that might perform a useful service and then search for the set of 

minimal increments to the system. For systems to be easily extended or contracted 

Pamas recommends that: 

o Components within the systems should perform no more than one function. 

o Each component should not assume that a given feature is present in the system. 

o Components should not rely on the output and format of data from another 

component. 

13 



2.2.2. Fragment Based Specification 

Blum (1993b, p. 728) describes a representation scheme for software systems where the 

requirements are not well understood or dynamic. His fragment-based specification is 

used to capture a conceptual model of the system to be developed. Blum outlines a 

development environment called TEDIUM. Concepts known about the application to 

be developed are stored in an Application Database (ADB) as fragments and integrated 

before a program is generated. This type of facility is available today in 4GLs however 

Blum characterises them as inefficient. 

2.3. Literature on Previous Findings 

2.3.1. Dynamic Search Condition 

Woolfolk, Ligezinski and Johnson (1996, p. 3) outline flexible software techniques that 

have been used in banking and finance systems. Their dynamic search condition is used 

to represent the requirements of the business rules associated with sales commissions. 

This involves the use of two files and a search program. The first file contains the 

values of commissions and its determining factors. The second file describes the key 

that is needed to select the appropriate sales commission from the first file. The 

program, which is a callable algorithm, accepts input as arguments and searches the first 

file in the sequence determined by and using the key built by the second file. This 

means that program modifications are not necessary to accommodate new business rules 

because new rows, or rules, can be added dynamically (Woolfolk, Ligezinski & 

Johnson, 1996). 

14 



2.4. Specific studies similar to the Current Study 

2.4.1. Common Code Tables 

One flexible software technique that can easily be implemented in the Oracle Developer 

2000 environment is the use of "common code" tables. Code values that are likely to 

change are not hard coded but rather stored in database tables. When a new code value 

needs to be added, or an existing one needs modification, they can be accessed at run 

time through database queries, dynamic record groups and lists of values as opposed to 

the usual predefined pop-lists (Hall & Ligezinski, 1997c, p. 7). A first level of 

flexibility is achieved through these dynamic codes. A second level of code flexibility 

has been demonstrated in an Edith Cowan University project where " . . .  codes can be 

'fuzzy' e.g. 

Classes of accounts 

types of currencies 

groups of products 

families of medical risk factors" (Hall & Ligezinski, 1997 c, p. 7). 

It is not necessary to specify the content of classes, types, groups and families at 

development time as they can be defined by further code values at run time. The Edith 

Cowan project has implemented second level flexible codes for a system that tracks the 

outcomes of cancer care developed for the Health Department of Western Australia. 

15 



2.5. User Extensibility 

Ensor and Stevenson (1997, p.503) discuss user extensibility. They refer to two types 

of flexibility to categorise applications when requirements are not well understood. 

These are "schema extensibility" and "algorithmic" extensibility. 

Schema extensibility refers to situations when new attributes or entities are required. 

Algorithmic extensibility applies when new business rules are needed to supplement, or 

replace, the current rules. They outline two categories of algorithmic extensibility: 

o Data driven extensibility. 

o procedure or function driven extensibility. 

Ensor and Stevenson (1997, p.504) state that if "a rule, rather than the value of a term 

within a rule, is subject to change, then you may be looking at a requirement for 

extensibility". Ensor and Stevenson suggest that when a rule is likely to change, the 

code used to implement the rule should be stored as a package in a data base table. This 

allows for the addition of new, and modification of existing, rules. 

Procedure and function driven extensibility can be achieved by ensuring that every 

atomic action taken by an application is stored in the data dictionary as procedures or 

functions and used as required. This means that the code is only stored once but maybe 

used, or called, many times, leading to applications that are easier to maintain. The 

down side to this is the overhead of having many small functions or procedures. 

16 



2.5.1. Data-Driven Navigation Bar 

Membrey ( 1999, n.d, p. 1) describes a flexible data-driven dynamic navigation bar. He 

outlines the concept by placing ten buttons on an Oracle Developer 2000 Forms canvas. 

These buttons are based on a property class, which includes a dummy WHEN­

BUTTON_PRESSED trigger. This trigger is used to call a yet to be nominated Form. 

Forms object types are stored in a database table called APP _OBJECT and can include 

windows, forms, text items, buttons etc. A second table called 

APP _OBJECT_NA VI GATE is used to store which particular Form an object button 

should call when clicked. 

App_Object 

App Object Attributes 

Obiect Name 
Obiect Type 
Object Label 

_/ 
App_Object 
Navigate 

App_Object_Navigate Attributes 

Object Name 
Object Type 
Object Target 
Object Hint 
Object Button Number 

Figure 3 - E-R Diagram for Dynamic Button Bar 

Two foreign key relationships exist from app_object_navigate: 

Object_name, object_type 7 app_object.object_name, app_object.object_type 

Object_target 7 app_object.object_label 

When a button is pressed, the dummy trigger 'fires' and dynamically searches the 

database to determine which Form it should call. Whenever a Form is opened it first 

searches the table APP _OBJECT_NA VIGATION and retrieve all the possible buttons 

associated with that Form. It then dynamically displays them one beneath the other. 

17 



2.5.2. Dynamic Court Orders 

The following sections, regarding Court Orders, have been included with the permission 

of Eileen Magyar, Project Manager, Courts, Ministry of Justice, Western Australia. 

Various levels of flexibility have been demonstrated in a Ministry of Justice IT project 

by the author. This involved the design and implementation of court orders for the 

Guardian and Administration Board, part of the higher courts in W estem Australia. 

Traditionally, standard headings, titles and text etc had been hard-coded into reports. 

This necessitated IT resources whenever requirements, such as changes to the 

legislation, were made. 

2.5.2.1. Design 

The different sections of the court orders were grouped into functionally similar types. 

These types were then stored on the database. Headings, address blocks and the 

different paragraphs, known as "Clauses", were assigned to a type and again stored on 

the database. The final design of the database was a three tiered system whereby the 

clause's and information about those clauses were stored in a number of different tables. 

a 7 tables were used to store the clause text and information about them. 

a 3 tables described the orders, with references to the database tables outlined in point 

one. Through these tables, each order "pointed" to the different component clauses 

that were required, at run time, to build the order. 

a 3 tables were used to store the final "built" orders. 

18 



At run time users select the type of order they want to make from a list of values. The 

order is then dynamically built based on the information about that order stored in the 

previously described tables. The clauses within these orders are also dynamically built 

based on a callable algorithm. This algorithm, shown below, was used to build all the 

clauses when the order was first selected. It was also used to substitute variable text 

into individual clauses when users selected them for inclusion on the order. 

While there are clauses for this order 
LOOP 

While there are rows for this clause 
LOOP 

SELECT the text and lookup value 
IF the lookup value IS NOT NULL THEN 

-- Determine the substitute value --
IF the lookup value is a string enclosed by #[]#' and the clause has been 

selected THEN 
display a text editor to the screen for user input. 

ELSE 
Insert the string enclosed by #[]#' into the clause as text 

END IF 
IF lookup value = 'CHR(l O)' and the order has just been selected THEN 

-- Carriage return character, force a carriage return into the text -­
ELSE 

Lookup value refers to a screen text item 
Get the value in this field and do a lookup in the substitute table 
IF a match is found THEN 

get the text and insert it into the clause 
ELSE 

insert the value found in the text item into the clause. 
END IF 

END IF 
END LOOP 

END LOOP 
END 

19 



Table 1 below shows how one clause is stored within the database. Clause No, a 

foreign key, references the Clause table which stores what type of clause it is and other 

information such as date created and date retired. A clause is built at run time by 

concatenating its various component parts together. Any clause text that is enclosed by 

the character string of # [  ]# is variable text and will be substituted at run-time by a 

number of yet to be detennined factors. 

Clause Row Clause Text Lookup 
No No Value 
1 I is unable, by 
I 2 #[mental disorder, intellectual handicap or other 24 

mental disability]# 
1 3 to make reasonable judgements in respect of 

matters relating to all or any part of 
1 4 #[His/Her]# 5 

I 5 Estate 

Table 1 - Sample Clause 

20 



Figure 4 below shows how the clause shown in table 1 and some of the other clauses are 

displayed when the order is built and displayed to the screen. 

Figure 4 - Initial display of clauses 

When the order is first built it displays all the standard clauses for that order. The user 

then have the choice of which clauses they want in the court order depending on hearing 

outcomes. They also have the ability to add new, ad hoe clauses if required. The ability 

to change the order in which the clauses appear on the report is provided by a 

sequencing field on the Form. 

Not all variable text can be determined dynamically. In the example shown in Table 1 

the users could select any combination of the variable text enclosed in the #[]# string. 

When the check box next to the clause was selected a text editor containing the text 

string was presented for editing. When the text editor was dismissed the new text was 

21 



inserted into the clause. Figure 5 below shows how the screen may appear after the 

sample clause has been edited. 

Figure 5 - Order screen after text substitution 

Variable text within clause's are determined and substituted at run time based on not 

only the look up value but also a number of other criteria. Examples of which are: 

o Gender of the party to whom the order pertains. 

In the example shown above the clause row number 4 #[His/Her]# will be replaced 

with "His" or "Her" depending on the gender of the person to whom the clause 

refers to. These values are stored on the database and retrieved dynamically. 

o Plurality of text. For example if there is only one applicant for the order then 

"Administrator sees fit" is displayed or if there are more than one applicant 

22 



"Administrators see fit" is displayed. Again the number of applicants is determined 

dynamically at run time. 

Further data entry screens enable certain end-users, known as 'domain experts', to 

modify existing orders and clause's and also to add new ones. 

23 



2.6. Native Oracle Features that can lead to Flexibility 

2.6.1. Introduction 

The Oracle development environment contains many features that can be used for 

flexible application design. Various small prototyping exercises were carried out to 

determine the suitability of certain features for use in the demonstration application. 

These include: 

2.6.2. %ROWTYPE 

The identifier %ROWTYPE declares a record variable that has the same structure as: 

o a row in a table or view or; 

o a row retrieved by a cursor. 

It is used in the variable declaration section of procedures, functions and packages to 

ensure that when the variable is assigned it contains the correct fields and data types of 

the columns being fetched. Consider the following database table ST_FORM and the 

simple PL/SQL procedure block: 

Column Names 

FORM ID 
FORM_NAME 
FORM_TITLE 
FORM_WIDTH 
FORM_HEIGHT 
FORM_START 
FORM_END 

ST_FORM 

24 



DECLARE 
Form_record st_form%ROWTYPE 

BEGIN 
SELECT 
INTO 
FROM 
WHERE 

* 
Form_record 
st_form 
form_name = 'ITEM' ; 

IF Form_record.width > 1000 THEN 
Do_some_thing 

END IF ; 
END ; 

The variable Form_record is declared to have the same structure as a row from the 

database table st_form. When the variable is assigned it can reference the 

FORM_ WIDTH field as VARIABLE NAME.COLUMN i.e. 

Form_Record.form_ width 

When a cursor is used as the prefix for %ROWTYPE then restrictions can be placed 

on the columns that will be returned. In the following example only the fields height 

and width are returned. 

DECLARE 
CURSOR cur_form IS 
SELECT height, width 
FROM st_form; 

Form_record cur_form%ROWTYPE 
BEGIN 

OPEN cur_form 
FETCH cur_form INTO F orm_record 

IF Form_record.width > 1000 THEN 
Do_some_thing ; 

END IF ; 
END ; 

Similarly, %TYPE is used to declare a new variable to be of the same type as a 

previously declared variable, or a column in a table, that exists in the database. 

25 



The real value of using %ROWTYPE and %TYPE is only exploited to the full when 

used on database procedures, packages etc. The problem lies in how client and server 

applications are compiled. Consider the following function from the demonstration 

application: 

FUNCTION get_window_width (p_window_name V ARCHAR2) 
RETURN NUMBER IS 
-- Declaration section -­

CURSOR cur_width IS 
SELECT form_ width 
FROM st_form 
WHERE form_name = p_window_name ; 

lv_width st_form.form_width%TYPE ; 
BEGIN 

0 PEN cur_ width ; 
FETCH cur_width INTO lv_width ; 
CLOSE cur_width ; 

RETURN (lv_width); 

END get_ window_ width ; 

In the declaration section the following variable was declared 

lv_width st_form.form_width%TYPE ; 

This declares the variable lv_width to be the same type as the column form_width in 

the table st_form. If the function Get_ Window_ Width is stored as a database 

procedure and the type of the column form_width is changed (from numeric to 

character) then it will be marked as 'invalid'. The next time the procedure is called it 

will be compiled automatically before it is run. If, on the other hand, the procedure is 

stored on a client side application such as Oracle Forms, the next call to the procedure 

will raise an exception. This is because the Forms source is compiled at a fixed point in 

time and the executable will still try to reference the table using the old data type. This 

demonstrates the added flexibility achieved by stodng as much code as is practicable on 

26 



the database. If the code was stored on the client, changing one column type could 

necessitate the re-compilation of an entire application. 

According to Stacey (1995, p. 1) changes in data formats account for the greatest share 

of software maintenance activities. Stacey sees data structure changes as the main 

problem because the effect is very rarely localised. The knowledge, or use, of a 

particular data structure is often spread over many parts of any system therefore making 

the change costly. 

Feuerstein ( 1996, p. 25) states that one of the most common causes of application 

failure is the "undying belief held by programmers that a particular value will never 

change and so can be hard coded into the program". He goes on to say that 

requirements change on a daily "if not hourly basis". Feuerstein advocates the storage 

of constants in a PL/SQL package specification. If the value of a constant changes then 

the package specification can be updated with change localised to one place. The only 

problem with this method is that all the packages dependant programs must be re­

compiled. 

The problem of database columns changing type was seen by the author in a Ministry of 

Justice project that upgraded the Children and Petty Sessions Case Management 

System. In the old system, charge numbers were stored as characters and on the new, 

converted system, as numbers. If all the variables used to store charge numbers had 

been declared as characters, it would have resulted in a great deal of effort to change 

them by the developers. As %ROWTYPE and %TYPE had been used then the code 

had only to be re-compiled. 

27 



2.6.3. Dynamic PL/SQL and SQL 

One of the limitations of PL/SQL is that it cannot contain Data Definition Language 

(DDL) statements such as creating and dropping tables. The Oracle DBMS_SQL 

package provides the facility to insert these SQL statements into PL/SQL at run time. 

The statements are put into a string, parsed and executed dynamically. 

The DBMS_SQL package offers access to dynamic SQL from within PL/SQL. 

Dynamic SQL statements are not pre-written into programs. They are constructed at 

run time as character strings and then passed to the SQL engine for execution. 

2.6.4. Dynamic Properties 

Properties of object types may be modified and set at run time via the GET and SET 

property functions. Examples of these are: 

o Maximise the MDI window 

Set_ Window_Property(FORMS_MDI_ WINDOW, WINDOW _STATE, MAXIMIZE); 

o Get the width of the window named WIN_MAIN 

Get_ Window_Property (WIN_MAIN', WIDTH) ; 

o Do not allow users to enter new records into the block called st_customer 

Set_Block_Property('st_customer' ,INSERT_ALLOWED,PROPERTY _FALSE); 

o Display the item named nav_itms.item_name 

SET_ITEM_PROPERTY (nav_itms.item_name, VISIBLE, PROPERTY_TRUE) ; 

28 



2.6.5. Database Triggers 

Both triggers and PL/SQL code can be stored in the database on the server, as opposed 

to on the application client. The advantage of this is that code needs only be stored in 

one place. It is then available to any application that has access to that database. 

Changes to triggers or procedures used by applications need only be changed in one 

place. Database triggers attached to tables can be used to enforce business rules at the 

database level ensuring that whoever accesses that table will follow the rules 

consistently. 

2.6.6. Dynamic Record Groups 

Dynamic Record groups can be created and populated by using SQL. They can also be 

created with the existing facilities in Oracle Forms at run time. 

2.6. 7. List of Values 

Lists of Yalues can be used in applications instead of traditional pop lists. As they are 

associated with record groups, this ensures the information they contain is always 

current. Unlike the traditional 'pop-lists' using the function SHOW_LOY (see example 

below) does not necessitate the LOY to be attached to a text item. For example, you 

can use SHOW _LOY to allow end users to invoke a LOY by clicking a button or 

selecting a menu item. The SHOW _LOY function is a BOOLEAN function that returns 

TRUE if the end user makes a selection from the LOY and FALSE if the end user 

cancels the LOY without making a selection. 

29 



The simplest way to call the SHOW _LOV function is to assign the return value of 

SHOW _LOV to a dummy variable, as shown in the following When-Button-Pressed 

trigger. 

DECLARE 
dummy BOOLEAN; 

BEGIN 
dummy := Show_LOV('my_lov',15,10); 

END; 

2.6.8. Oracle Roles 

Security roles control access to menus and application functionality. They can be 

defined and modified dynamically. An Edith Cowan Honours project has extended this 

concept whereby user access can be controlled based on time of day, terminal used or 

other predetermined factors (Layng, 1998). 

2.6.9. Variable Cursors 

Variable cursors can be declared and assigned dynamically at run time. The following 

simple example shows how a variable cursor is associated with different tables at run 

time depending on user input. 

IF : user_ Variable = 1 THEN 
/* Open variable for Department table * / 
OPEN :flexible_Cursor FOR 
SELECT DeptID, DeptName 
FROM Dept; 

ELSE 
/* Open variable for Employee table * / 
OPEN :flexible_Cursor FOR 
SELECT EmpID, EmpName 
FROM EMP; 

END IF; 

30 



2.7. Conclusion 

This chapter described some of the techniques that have been described in the literature 

as methods that can lead to the development of flexible software. Also presented were 

techniques that have been used in live systems and the reasons that they have reduced 

software maintenance. Features and examples from the Oracle Developer 2000 

environment that can be used to develop flexible software techniques were also 

described. Chapter 3 discusses the methodology used to answer the research questions 

presented in chapter 1 and presents the techniques and Oracle Developer 2000 features 

that were used in the development of the demonstration application. 

31 



Chapter 3 :  Method 

3.1 .  Introduction 

This chapter outlines the methodology undertaken to answer the research questions 

proposed in chapter 1 and reproduced below. Chapter 3 also describes the Oracle 

environment used to develop the demonstration application. The final section of the 

chapter outlines the flexible software techniques that were implemented using the native 

Oracle features described in chapter 2. 

3.2. Research Questions 

1. What is flexible software? 

2. What techniques are available that can lead to the development of flexible software 

applications? 

3. What facilities exist in Oracle tools that exhibit flexibility? 

4. Can the techniques identified in point 2 be implemented using the facilities identified 

in point 3? 

3.3. Design 

Research questions 1 and 2 were answered by canvassing a number of sources, which 

included: 

o Papers published in the academic literature. 

o Current literature on the Oracle suite of development tools sourced from industry. 

32 



o Information obtained from various Oracle User Groups and Oracle related Web 

sites. 

o Information from current practitioners who currently user the Oracle suite of tools. 

o Implementing a number of small prototype applications, in the Oracle Developer 

2000 suite of tools, that demonstrated flexibility. 

Resyarch question number 3 was answered reviewing the available features of Oracle 8 

and building a number of small prototypes. 

Research question 4 was answered by designing and implementing a small Oracle 

application that demonstrated flexible software techniques using the Oracle 4GL 

environment. This was by far the most time consuming part of the project. The 

application designed was based on the standard Customer/Order/Product set of database 

tables that is shipped with Oracle for training purposes. The application was never 

intended to meet the full requirements of a customer order system but merely as a 

method to demonstrate various techniques for implementing flexibility. 

3.4. Environment 

3.4.1. Oracle 

Oracle Enterprise Edition version 8 on a Windows NT PC using a local database and 

single Repository was used for the development of the demonstration application. 

Specifically, the demonstration application was built using Forms Developer/2000 (32 

bit) Version 5.0.6.8.0. 

Developer 2000 and specifically Forms Designer were chosen as the preferred 

development environment for the application front end. Developer 2000 was 

33 



considered "the most powerful client/server application development environment for 

Oracle databases" (Lulushi, 1999, p. 80). Developer 2000 and the Oracle server 

database share the same language (PL/SQL) and Developer 2000 was designed 

exclusively to support Oracle database functionality. 

3.5. Demonstration Application 

The demonstration application was developed to determine if the flexible software 

techniques from the literature could be implemented using native Oracle Developer 

features. These techniques and features were discussed in chapter 2. 

The concept of components within the system performing no more than one function, 

outlined by Pamas in chapter 2, was demonstrated by the use of packages. Appendix B 

shows how this idea was implemented. 

User extensibilty, as described by Ensor and Stephenson, was demonstrated in the 

implementation of the dynamic search condition, described by Woolfolk, Ligezinski 

and Johnson in section 2.3.1. This was one of the main features of the demonstration 

application. The dynamic search condition is discussed in greater depth in chapter 4. 

Features of the demonstration application were presented at Edith Cowan University 

during a Honours and Masters degree presentation day held at the Mount Lawley 

Campus on the 16 May 1999. 

The results of the implementing flexible software techniques in a 4GL environment will 

be presented in chapter 5. 

34 



Chapter 4:  The Demonstration Application 

4.1. Introduction 

This chapter outlines the flexible software techniques highlighted in chapter 3 that were 

implemented using the features identified as flexible in the Oracle developer 

environment. 

4.2. Demonstration Application 

The standard Customer/Order/Product database tables that ship with Oracle products 

were used as the starting point for the demonstration application. These tables were 

extended and modified to incorporate the concepts to be demonstrated. The application 

was split into two distinct areas. The first area contained the standard functional 

requirements of the Customer/Order side of the business and its rules. The second part 

was concerned with the maintenance of application objects, such as the displaying of 

Forms and items on those forms. Figure 6 below shows the final design of the 

demonstration application with the tables added to the standard Oracle 

Customer/Order/Product tables shaded. 

35 



Customer · 
Group , 

Customer 

Orders 

Salesman 
· Group 

Order 

Line 

Product 

Current 
Rufo 

l'rec<l®nco 

Figure 6 - Application E-R Diagram 

The Customer/Order/Product tables of the application are composed of relatively 

standard attributes and will not be expanded on. The entities that maintain application 

objects are described in table 1 below. 

Table Name Purpose 

ST_FORM Stores the names and characteristics of Forms that are present 
in the system. Includes the width and height of the Form to be 
displayed at run-time. 

ST_ITEM_TYPE Stores the name of all item types that can appear on any given 
form. These include buttons, text items, LOVs and radio 
groups 

ST_ITEM Stores the names of all possible items that can be included on 
any Form 

ST_FORM_ITEM Stores the items that will appear on a particular Form and how 
various different run-time properties will be set when that 
Form is run. 

ST_FORM_REF Stores the names of items that should be displayed on a Form 
given the values stored in a different item. E.g. Different 
items are displayed on the Customer maintenance form based 
on what group they belong to. 

Table 2 - Table functionality 

36 



4.2.1. Templates 

Today developers rarely create Forms from scratch but take an existing Form and 

"delete all base blocks and then customise the Form for the particular application" 

(Catalano, 1999, p. 1). Templates usually include all the reusable components that will 

be common to all Forms. The demonstration application extends this concept by 

placing on the template Form all code and objects that will be used in the application. 

This then becomes more than just a template but rather an Object library. Related 

objects such as windows and canvases are placed in Object Groups and can then be sub­

classed, as opposed to copied, into different application Forms. Changes made to the 

template Form are automatically propagated throughout the entire application. Figure 7 

below shows the design of the template form with various object groups used in the 

application. 

OG_LOV _FORM 
OG_LOV_ITEM 

� OG LOV RECORDS 
�@Mali• 
&Object Group Children 

[ � WHEN-NEW-FORM-INSTANCE 

L� 
KEY-EXEQRY 

I � POST-QUERY 

F
� KEY-ENTQRY 
[] ITEM_MAN 

-[] ITEM_MAN 
OG_ORDER 

OG_PRECEDENCE 
OG_CUSTOMERS 
OG_PARAMETER 

Figure 7 - Developer 2000 Object Navigator 

37 



4.2.2. Implementation of the Dynamic Button Bar 

The dynamic button bar was implemented in the demonstration application and its 

functionality was extended beyond the initial idea reported by Membrey (n.d., p. 1 ). 

Object names and values for object properties were stored in database tables. This 

enabled them to be dynamically changed at run time. To limit the scope of the project, 

only sub-sets of the available object properties were stored. These include the most 

obvious candidates for change, such as the height and width of Windows and whether 

items such as text items should be displayed and enabled for user entry. This 

functionality could easily be extended to cater for a greater variety of object behaviour. 

Whenever a new Form is called and displayed, the WHEN-NEW-FORM-INSTANCE 

trigger fires. This trigger is inherited from the template Form. Each Form has a unique 

name and this is stored in a Form level global variable called: GLOBAL.gv_form. 

This variable is required for navigation between the different Forms. The variable is set 

with the following assignment statement: 

:GLOBAL.gv_form := NAME_IN('SYSTEM.CURRENT_FORM') ; 

The next step is to determine which buttons should be displayed for the called Form and 

then to display them. The buttons are placed on a separate canvas within its own 

window at design time. Figure 8 below shows the initial design time layout for the 

buttons that will be inherited by each Form. A cursor was used to select all the buttons 

from the table ST_FORM_ITEM for the called Form. Each button was then 

dynamically placed on the Form. The order of display for the buttons was from left to 

38 



right across the screen, dynamically, based on the width of the previous button. When 

the maximum number of buttons that can be displayed is reached, a new row of buttons 

is started below the preceding row. The width and height of the window on which the 

buttons are displayed are dynamically changed each time a new button is added. 

Finally, the Form window is displayed if there are one or more buttons displayed. 

Figure 8 - Canvas layout for the Button Bar 

The initial layout has eighteen buttons, three wide and six deep. This is not necessarily 

how they will be displayed at run-time. As this is a rule that can be subject to change it 

has been stored on the database in a parameter table. When the call to set up the buttons 

is executed, the number of buttons to be displayed across the window is determined by 

the following database call: 

39 



lv_mod NUMBER := st_pkg.get_parameter_value ('MAX_ROW _LENGTH') ; 

The database function call get_parameter_value passes in the name of the required 

value as a parameter and the returned value is assigned to the variable lv_mod. 

Similarly other values such as a windows' width and height are determined by database 

function calls. End users can maintain the values of these different, developer created, 

parameters using the form shown in Figure 9 below. 

Figure 9 - User Created System Parameters Form 

When a parameter is changed and saved to the database, the changes come into effect 

the next time a call is made to the relevant function. These changes could easily be 

reflected dynamically but would be too unsettling to end-users if the layout of screens 

changed while they were still using them. 

40 



4.2.3. Forms Maintenance 

Physical details about Forms are stored in the database. Figure 10, from the 

demonstration application, shows the details that were maintained i.e. width, height and 

title of the Form. Also a start and end date is stored so that new Forms can be created 

and old Forms "retired". 

Figure 10 - Form Maintenance 

All the potential items that can be displayed on the application are stored in the 

database. The Form shown in Figure 11 maintains these items. 

Figure 1 1  - Item Maintenance Form 

41 



Item names are prefixed by the name of the block they belong to. Details such as item 

type, start and end dates are recorded. If the item is a button then the name of its icon is 

stored so that it can be associated with the button at run-time. 

The 'Form/Item Maintenance' Form shown in Figure 12 is used to maintain details of 

items that will be dynamically set whenever a Form is displayed. It is the means of 

linking the Forms and Items described above with one another. For each item an 

arbitrary number of different properties are stored. For the purposes of the 

demonstration application some of the most commonly used properties are selected. 

This list is by no means complete and any number of other properties could have been 

included. The properties chosen were: 

o X position 

o Y position 

D Width 

o Height 

o Enabled 

o Visible 

o Label 

An extra field is added for special processing. In the case of an item being a button, on 

the dynamic button bar, the PROMPT field is used to store the name of which Form it 

should call. In the case of a radio group it is used to store the name of the individual 

radio buttons. 

42 



Figure 12 - Form/Item Maintenance Form 

When the window is first displayed a call is made to the template package to display the 

appropriate items. Initially all items on the screen are non-visible. A cursor is used to 

retrieve the names and property values of all items that should be displayed on the 

called Form. A loop then sets the properties of these items depending on the values 

retrieved from the database. 

43 



Figure 13 below shows the result of changing the properties of the Form shown in 

Figure 10 through the screen shown in Figure 12. 

Figure 13 - New Form layout 

A fmiher level of flexibility is achieved through the use of the ST_REF_ITEM table. 

According to Hall and Ligezinski ( 1997b, p. 5) if certain functionality is not available it 

should be shown "dimmed out" rather than not shown at all. In the case of the 

demonstration application certain data entry fields pertain only to certain groups of 

customers. Whenever a user moves to a new record in the customer maintenance screen 

all items on the Form, excluding the customer ID field, are set to non-visible. A look up 

is then made to the database to determine which items should and should not be 

displayed. This is determined by which group a customer belongs to. In the example 

shown in Figure 14 details such as title, date of birth, given names and surname are 

displayed if the selected customer belongs to the PERSONAL customer group. 

44 



If the customer does not belong to the PERSONAL group then individual fields such as 

gender, given names and surname have no relevance and are not displayed. Currently 

there are four customer groups in the system being: 

o PERSONAL 

o COMPANY 

o PARTNERSHIP 

o TRUST 

Figure 14 - Customer Maintenance Form 

Figure 15 below shows the effect of changing from a customer belonging to the 

PERSONAL group to a customer belonging to the COMP ANY group. The fields that 

pertain to a company replace the irrelevant fields that pertain to an individual. 

Similarly, different fields are displayed for other customer groups. 

45 



Figure 15 - Screen for company customers 

4.3. Implementing the Dynamic Condition Search 

The concept of the dynamic condition search, as outlined by Woolfolk, Ligezinski and 

Johnson in section 2.3 .1, was implemented in the demonstration application. The 

contents of File 2 can be seen in Figure 16. The precedence of a given condition over 

another condition is determined by the index. The index and condition ID are the 

compound primary key of the rule precedence table. If this were not the case then the 

table would simply be a table of salesman commissions. 

46 



When a new order line was entered on an order the CALCULATE_COMMISSION 

function was called with the following parameters: 

o Condition 

o Customer Group 

o Customer ID 

o Salesman Group 

o Salesman ID 

o Product Group 

o Product ID 

A "search key" is then built using an SQL cursor to search for the applicable 

commission rate for the input key. This cursor is used to loop through all the rows that 

apply to the salesman condition. On each iteration of the loop the values of the fields 

are examined and if they are equal to one then the value in the search key is replaced 

with the actual value from the calling program. Once the search key is built the rule 

maintenance table is searched using a second SQL cursor. This acts as an inner loop to 

the first cursor. On each iteration of the loop the values in the maintenance table are 

compared with the search key. If an exact match is found then the condition has been 

determined and control returns to the calling program. For a full definition of the 

PL/SQL code used see appendix B. 

47 



Consider the following example. The calculate commission function is called with the 

following parameters. 

D Condition = 'COMM' 

D Customer Group = 2  

D Customer ID = 1000 

D Salesman Group = l 

D Salesman ID = 2000 

D Product Group = 1000 

D Product ID = 3000 

On the first iteration of the loop where the index is 1, the search key is built with the 

actual value of the salesman group of 1 and the rest of the key values as 0. The inner 

loop searches the table rule maintenance and as no exact match is found repeats the 

process for index value 2. On the third iteration the search key will be built with a 

customer ID of 1 OOO, salesman group of l and a product group of 1 OOO. All other fields 

will be set to O according to the record in rule precedence. 

48 



Figure 16 - Rule Precedence 

49 



As can be seen in Figure 1 7 a match is found when condition 5 is reached. The value of 

the commission is retrieved and as a match has occurred this value will be returned to 

the calling program and the function calculate commission exited as a match with the 

highest precedence has been found. 

Figure 17 - Rule Maintenance 

50 



The commission is then calculated in the application Form and the relevant fields 

updated (See Figure 18 below). 

Figure 18 - Order entry screen 

To ensure that a match is always found the last record in the rule precedence is all zeros. 

If this is reached then this will match the first entry in the rule maintenance table. The 

precedence of these rules can be changed to reflect changing business rules. For 

example if the values in index 5 and 6 are swapped then the importance of products in 

product group 1 will have a higher determining factor than products in product group 1 

sold to customers in customer group 1. 

51 



4.4. Implementing Database Triggers 

The database trigger shown in Figure 19 is used to insert system generated sequence 

numbers into new records at the database level. The sequence number is generated by a 

database package call and a unique number is assigned to the primary key of the 

customer table. The function that the trigger calls is used to highlight the flexibility of 

dynamic SQL. This is presented in section 4.4. 

ID · =  st_co:rnrn . Get_Sequence_Nurnber ( ' ST_CUST_SEQ ' ) ; 

Figure 19 - Demonstration application database trigger 

52 



4.5. Implementing Dynamic SQL 

Dynamic SQL is demonstrated in the demonstration application. Whenever a new 

customer is created, the next customer ID is dynamically retrieved and allocated. When 

a new record is committed to the database by the application, the trigger body executes. 

The function Get_Sequence_Number ('ST_CUST_SEQ') ; is called within the trigger 

body shown in Figure 19. This function is stored within a database package. The 

function is generic in that it can be used to retrieve any sequence number. Dynamic 

SQL is the method used to construct and execute SQL statements dynamically. The 

SQL statement to be executed is "built", as a character string, using the input parameter. 

A cursor is opened and the character string parsed to ensure that it conforms to valid 

SQL syntax. A column is then defined to store the result of the SQL statement. Finally 

the statement is executed and a sequence number is returned to the calling program. 

53 



Chapter 5 :  Results 

5.1. Introduction 

Chapter 4 described how flexible software techniques described in the literature were 

implemented in the demonstration application using native Oracle features. This 

chapter addresses the results from implementing the demonstration application. 

5.2. Research Questions 1 and 2 

Research questions 1 and 2 were answered by researching the current literature to find 

what various people in academia and industry defined as flexible software. Many 

different definitions were found but most authors recognised that requirements are not 

fixed in time but are dynamic. A useful definition of flexible software is thought to be 

the following: 

"software flexibility infers that the behaviour of an application can be modified 

without changing program code" (Hall & Ligezinski, 1997b, p.3). 

A number of different techniques that exhibit flexibility were found in the literature. 

While some were academic in nature the majority of techniques were described by IT 

practitioners from the software industry. 

54 



5.3. Research Questions 3 and 4 

Research question 3 and 4 were answered by designing and implementing a 

demonstration application. The techniques that lead to the development of flexible 

software applications highlighted in research question 2 were implemented by the 

Oracle features in research question 3. The techniques were successfully implemented 

using the Oracle development suite of tools. The following lists includes some of the 

native Oracle features that were successfully used in the demonstration application: 

o List of Values (LOY) 

o Dynamic SQL 

o Dynamic Record Groups 

o Dynamic Properties 

o Database Packages 

o Database Triggers 

o Templates 

o Object Groups 

o %ROWTYPE and %TYPE 

A number of issues arose that did not support the use of some techniques that were 

thought to lead to flexibility. These issues are discussed below. 

5.3.1. Data Driven Button Bar 

The data driven button bar was proved to be a practical example of implementing 

flexible and common functionality in the Oracle 4GL environment. Property classes 

enabled this common functionality to be placed in one location and then inherited by 

55 



various different Forms. The advantage of the button bar is that the functionality is 

always visible to the user, as opposed to menus, and the user is only one mouse click 

away from navigation to a different Form. The real issue is that of space the buttons 

take up on the screen. This was partially overcome by making the button bar 'floating' 

whereby the users could move the bar out of the way if required. Another issue was 

that of standardisation. Preece (1993, p. 72) suggests that the best way for users to 

locate a certain piece of information, or functionality, is by using a consistent format for 

all application screens. The dynamic button bar does not conform to this as the same 

button may be placed in different locations on different screens. 

5.3.2. Dynamic Screen Layout 

The dynamic screen concept appeared a good idea in theory however it does have many 

limitations in practice. User customised screen layouts, outlined by Hall and Ligezinski 

( 1997b, p. 5) and implemented in the demonstration application was found to have 

severe limitations in the Oracle Developer 2000 environment. One of the main 

problems was that the 'rules' about how forms and items on those Forms should 

displayed are stored in the database. For small applications with few users this is not a 

critical issue. However for large applications with many users then efficiency and hits 

on the database becomes more of an issue as valuable server resources are being used 

just to implement screen design as opposed to core business functions. 

Ensor and Stephenson (1997, p. 507) state that the data-driven approach to application 

design is not always the best solution for flexibility "as it can lead to something so 

abstract tha:t it either can't be coded by mere mortals . . .  or becomes horribly inefficient". 

56 



They go on to say that applications where fields are sized and placed dynamically on 

screens are "desperately slow and impossible to maintain". 

This maintenance problem was illustrated in the demonstration application. Great care 

had to be taken to ensure that the values stored in the database conformed to Oracle 

Forms logic. Storing the ENABLED and VISIBLE properties of items highlighted an 

example of this. These properties can be set to either TRUE or FALSE. The problem 

with allowing end-users to maintain these values for Form items is that certain 

combinations are not valid. An example of this is setting an items ENABLED property 

to TRUE when its VISIBLE property is set to FALSE. The ENABLED property 

allows users to navigate to that particular item, i .e. place the cursor in it. This raises an 

exception, as it makes no sense to allow navigation to an item that is not visible. The 

demonstration application only used a sample of the available item properties whose 

values were stored on the database. There are other combinations of property values 

that cannot be used in conjunction with each other. 

The only solution to get around the different combinations is to code the rules, which 

defeats the purpose of flexible software. It could be argued that the cost of this extra 

work would be minimal and a 'once off cost once written however these properties can 

change with different releases of Oracle software. In Oracle Forms Version 4.5 the 

display of items is controlled by the property DISPLAYED, however in Oracle Forms 

version 5.0 this has been replaced by the property VISIBLE. This leads to extra 

maintenance in updating the logic behind the properties. 

57 



An even greater problem occurs when an organisation uses different versions of Oracle 

Forms for different applications. The ideal situation is to store the logic in the database 

and allow all different applications to access it. If different versions of Oracle Forms 

are being used by different applications then this will require different versions of the 

code, which in essence is the same. 

58 



Chapter 6 :  Conclusion 

Flexible software techniques have been demonstrated and have proven to be successful 

in a 4GL environment. These techniques, when appropriately used, can assist in 

reducing the cost of software system maintenance. The advantages of using these 

techniques are that they not only reduce maintenance, but increase user satisfaction and 

ownership of their systems. They have the ability to change system behaviour in a 

timely manner which in tum can accurately reflect changing business requirements. 

The main problem with flexible software techniques is they can lead to systems where 

response times are compromised in favour of flexibility. 

6.1 . Recommendations 

It is strongly recommended that software developers of 4GL applications be aware of 

techniques that can lead to flexibility. Developers should be encouraged to use and 

enhance these techniques where they prove to be cost effective. Developers can learn 

about flexible software techniques by reading the latest trade journals, attend relevant 

user groups and keep up to date with the latest trends and techniques. 

59 



BIBLIOGRAPHY 

Asbrand, D. (1997). Outsource your maintenance migraines. Datamation, 43 (6), 24-

28. 

Behforooz, A., & Hudson, F, J. (1996). Software Engineering Fundamentals. Oxford 

University Press: Oxford, UK. 

Blum, B.I. (1993a). On the Engineering of Open Software Systems. International 

Symposium on Engineered Software Systems. (pp. 43-57). Malvern. 

Blum, B.I. (1993b). Representing Open Requirements with a Fragment-Based 

Specification. IEEE Transactions on Systems, Man, and Cybernetics. 23 (3), 724-

736. 

Brown, A.W., Camey, D.J., & Clements, P.C. (1995). A case study in Assessing the 

Maintainability of Large, Software Intensive Systems. International Symposium 

and Workshop on Systems Engineering of Software Based Systems. 

Tucson. 

Callon, J.D. (1996). Competitive advantage through Information technology. 

McGraw-Hill Companies: Sydney. 

Ensor, D., & Stevenson, I. (1997). Oracle design. O'Reilly Associates: USA. 

60 



Feuerstein, S. (1996). Advanced Oracle PL/SOL. O'Reilly Associates: USA. 

Hall, M. J. J., & Ligezinski, P. (1997a). Developing flexible software with Oracle 

tools. In Proceedings of Oracle Openworld 1997 Conference - Step Into the 

Future Today. Melbourne, Vic: ANZORA. 

Hall, M.J.J., & Ligezinski.P. (1997b). Designing flexible software to accommodate 

dynamic user requirements: An alternative solution to a continuing IS problem. 

In Proceedings of World Conference on Systemics, Cybernetics and Informatics 

ISAS '97 Vol. 1. Caracas, Venezuela. 

Hall, M.J.J., & Ligezinski.P. (1997c). Developing flexible software with Oracle tools. 

In Proceedings of Oracle Openworld 1997 Conference - Step Into the Future 

Today. Melbourne, Vic: ANZORA. 

Hofmann, H.F., Pfeifer, R., & Vinkhuyzen, E. (1993). Situated Software Design. 

Proceedings of the Fifth International Conference on Software Engineering and 

Knowledge Engineering. San Francisco: USA. 

Humphrey, W. (1997). Introduction to the Personal Software Process. Addison­

W esley: Reading, USA. 

Kleist, D. (1994). Outsourcing Software Maintenance. The American Programmer, 7 

(3), 18-23. 

61 



Layng, M. (1998). Software Flexibility in a Web Environment. Unpublished Honours 

dissertation, Edith Cowan University, Perth, Western Australia. 

Liu, X., Yang, H., & Zedan, H. (1998). Improving Maintenance Through 

Development Experiences. Unpublished paper presented at the Fifth Workshop on 

Empirical Studies of Software Maintenance. 

Lulushi, A. (1999). Oracle: Developer/2000 Forms. The Practitioner's Guide. 

Prentice Hall PTR: New Jersey, USA. 

Mehandjiev, N., & Bottaci, L. (1998). The Place of User Enhanceability in User­

Oriented Software Development. Journal of End User Computing. 10 (2) 4-14. 

Mehandjiev, N., & Bottaci, L. (1996). User Enhanceability for Organisational 

Information Systems through Visual Programming. Advanced Information 

Systems Engineering: 8th International Conference, CAiSE'96 (pp. 432-456). 

Springer-Verlag, 1996. 

Membrey, B. (n.d). A data-driven dynamic navigation bar for Forms 4.5. [On-line]. 

Available http://www.revealnet.com/plsql-pipeline/archives.htm [1999, March 1]. 

Panko, R.R., (1998). What we know about Spreadsheet errors. Journal of End User 

Computing 10 (2) 15-21. 

Parnas, D.L. (1979). Designing Software for Ease of Extension and 

62 



Contraction.,_ IEEE Transactions on Software Engineering. SE-5, (2) 128-137. 

Pressman, R.S. (1992). Software Engineering a Practitioners Approach. (3rd ed.). 

McGraw Hill. 

Sallis, P., Tate, G., & MacDonell, S. (1995). Software Engineering: Practice, 

Management, Improvement. Addison-Wesley Publishing Company: Sydney, 

Australia. 

Smith, R.D., & Votta, L.G. (1998). Where Does Time Go in Adaptive and Corrective 

Maintenance? Paper presented at the Fifth Workshop on Empirical Studies of 

Software Maintenance. Oxford, Keble College. 

Woolfolk, W.W., Ligezinski, P., & Johnson, B. (1996). The Problem of the 

Dynamic Organisations and the Static System: Principles and Techniques for 

Achieving Flexibility. Proceedings of the 29th Annual Hawaii International 

Conference on Systems Science (pp. 482-491 ). 

63 



Appendix A - Create Objects Scripts 

DROP TABLE ST_CUSTOMER CASCADE CONSTRAINTS ; 

CREATE TABLE ST_CUSTOMER ( 
CUST_ID NUMBER( 4) NOT NULL, 
CUST_GIVEN_NAMES V ARCHAR2( 40), 
CUST_SURNAME V ARCHAR2( 40), 
CUST_TITLE VARCHAR2(6), 
CUST_ADDRESS_l V ARCHAR2( 40), 
CUST_ADDRESS_2 V ARCHAR2( 40), 
CUST_ADDRESS_3 V ARCHAR2( 40), 
CUST_SUBURB V ARCHAR2(20), 
CUST_POSTCODE V ARCHAR2( l 0), 
CUST_STATE VARCHAR2(4), 
CUST_COUNTRY V ARCHAR2(20), 
CUST_PHONE NUMBER(l4), 
CUST_FAX NUMBER(l4), 
CUST_CR_RATING VARCHAR2(10), 
CUST_GRP_ID NUMBER(4), 
CUST_SEX VARCHAR2( 1), 
CUST_DOB DATE, 
ACCT_OUTST ANDING NUMBER( l 0,2), 
ACCT_DATE_OPEN DATE, 
ACCT_DATE_CLOSE DATE, 
ACCT_COMP ANY _NAME V ARCHAR2( l 00), 
ACCT_COMPANY_NAME_SHORT VARCHAR2(20), 
ACCT_P ARTNERSHIP _NAME V ARCHAR2(100), 
ACCT_PARTNERSHIP _NAME_SHORT V ARCHAR2(20), 
ACCT_NUMBER_OF_PARTNERS NUMBER( l ), 
ACCT_TRUST_NAME VARCHAR2(100), 
ACCT_TRUST_NAME_SHORT V ARCHAR2(20), 
ACCT_TRUST_NUMBER NUMBER( 10), 
ACCT_ACN_NUMBER V ARCHAR2(30), 
ACCT_REGISTERED VARCHAR2( 1), 

CONSTRAINT CUST_PK PRIMARY KEY ( CUST_ID ) 
USING INDEX PCTFREE 10  STORAGE(INITIAL 10240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
T ABLESP ACE USER_DAT A PCTUSED 40 PCTFREE l 0 
STORAGE (INITIAL l 0240 NEXT l 0240 PCTINCREASE 50 ) 
PARALLEL (DEGREE l INSTANCES 1 )  NOCACHE; 

ALTER TABLE ST_CUSTOMER ADD CONSTRAINT 
SYS_C009 l 65 CHECK ( cust_sex in (M', 'F', U', N\A) ); 

ALTER TABLE ST_CUSTOMER ADD CONSTRAINT 
SYS_C009 1 66 CHECK (acct_registered IN (Y', N) ); 

DROP TABLE ST_CUSTOMER_GRP CASCADE CONSTRAINTS ; 

CREATE TABLE ST_CUSTOMER_GRP ( 
CUST_GRP_ID NUMBER(4) NOT NULL, 
CUST_GRP _NAME V ARCHAR2(20), 

CONSTRAINT CUST_GRP _PK PRIMARY KEY ( CUST_GRP _ID ) 
USING INDEX PCTFREE 10  
STORAGE (INITIAL 1 0240 NEXT 10240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 

64 



T ABLESP ACE USER_DAT A PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 10240 PCTINCREASE 5 0  ) 
PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

DROP TABLE ST_FORM CASCADE CONSTRAINTS 

CREATE TABLE ST_FORM ( 
FORM_ID NUMBER( 4) NOT NULL, 
FORM_NAME VARCHAR2(1 00) NOT NULL, 
FORM_TITLE VARCHAR2( 1 00) NOT NULL, 
FORM_ WIDTH NUMBER( 4) NOT NULL, 
FORM_HEIGHT NUMBER( 4) NOT NULL, 
FORM_START DATE DEFAULT SYSDATE, 
FORM_END DATE, 

CONSTRAINT WIN_ID_PK PRIMARY KEY ( FORM_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
T ABLESP ACE USER_DAT A PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

DROP TABLE ST_FORM_ITEM CASCADE CONSTRAINTS ; 

CREATE TABLE ST_FORM_ITEM ( 
FORM_ITEM_ID NUMBER( 4) NOT NULL, 
FORM_ID NUMBER( 4), 
ITEM_ID NUMBER( 4), 
X_POS NUMBER( 4), 
Y_POS NUMBER(4), 
LABEL V ARCHAR2(50), 
FM_CALL V ARCHAR2(50), 
WIDTH NUMBER(3), 
HEIGHT NUMBER(3), 
PROMPT V ARCHAR2(50), 
ENABLED VARCHAR2(1 ), 
VISIBLE V ARCHAR2( 1 ), 
LOV V ARCHAR2(50), 
START_DATE DATE, 
END_DATE DATE, 

CONSTRAINT WINIT_ID_PK PRIMARY KEY ( FORM_ITEM_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 6384 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

ALTER TABLE ST_FORM_ITEM ADD CONSTRAINT 
SYS_C009220 CHECK ( enabled IN (Y', N) ); 

ALTER TABLE ST_FORM_ITEM ADD CONSTRAINT 
SYS_C00922 1 CHECK (visible IN (Y', N) ); 

DROP TABLE ST_ITEM CASCADE CONSTRAINTS ; 

CREATE TABLE ST_ITEM ( 
ITEM_ID NUMBER( 4) NOT NULL, 

65 



ITEM_NAME V ARCHAR2( 100), 
ITTY_ID NUMBER(4) NOT NULL, 
ITEM_ICON V ARCHAR2( 1 00), 
START_DATE DATE, 
END_DATE DATE, 

CONSTRAINT ST_ITEM_ID_PK PRIMARY KEY ( ITEM_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
T ABLESPACE USER_DAT A PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

DROP TABLE ST_ITEM_TYPE CASCADE CONSTRAINTS ; 

CREATE TABLE ST_ITEM_TYPE ( 
ITTY_ID NUMBER(4) NOT NULL, 
ITTY _TYPE V ARCHAR2( 4), 
ITTY_DESCRIPTION V ARCHAR2(50), 

CONSTRAINT ST_ITTY_ID_PK PRIMARY KEY ( ITTY_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

DROP TABLE ST_ORDER CASCADE CONSTRAINTS ; 

CREATE TABLE ST_ORDER ( 
ORD_ID NUMBER( 4) NOT NULL, 
ORD_DATE DATE, 
CUST_ID NUMBER(6) NOT NULL, 
SALESMAN_ID NUMBER(6) NOT NULL, 
SHIP_DATE DATE, 

CONSTRAINT ORDl_PK PRIMARY KEY ( ORD_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 10240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1) NOCACHE; 

DROP TABLE ST_ORDER_LINE CASCADE CONSTRAINTS ; 

CREATE TABLE ST_ORDER_LINE ( 
ORD_LINE_ID NUMBER(4) NOT NULL, 
ORD_ID NUMBER(4) NOT NULL, 
PROD_ID NUMBER(4) NOT NULL, 
ACTUAL_PRICE NUMBER(8,2), 
QUANTITY NUMBER(8), 
ITEM_TOT AL NUMBER(8,2), 
COMMISSION NUMBER(8,2), 

CONSTRAINT ORD_LINE_PK PRIMARY KEY ( ORD_LINE_ID, ORD_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 

TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

66 



DROP TABLE ST_PRODUCT CASCADE CONSTRAINTS ; 

CREATE TABLE ST_PRODUCT ( 
PROD_ID NUMBER(4) NOT NULL, 
PROD_NAME VARCHAR2(40), 
PROD_PRICE NUMBER(I O), 
PROD_GRP _ID NUMBER( 4), 

CONSTRAINT PROD_PK PRIMARY KEY ( PROD_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 

TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 5 0  ) 
PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

DROP TABLE ST_PRODUCT_GRP CASCADE CONSTRAINTS ; 

CREATE TABLE ST_PRODUCT_GRP ( 
PROD_GRP_ID NUMBER(4) NOT NULL, 
PROD_GRP _NAME V ARCHAR2(20), 

CONSTRAINT PROD_GRP _PK PRIMARY KEY ( PROD_GRP _ID ) 
USING INDEX PCTFREE 10  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 

T ABLESP ACE USER_DAT A PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 10240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1) NOCACHE; 

DROP TABLE ST_REF _ITEM CASCADE CONSTRAINTS ; 

CREATE TABLE ST_REF_ITEM ( 
REF _ID NUMBER( 4) NOT NULL, 
FROM_ITEM_ID NUMBER( 4), 
TO_ITEM_ID NUMBER( 4), 
REF _ITEM_ VAL NUMBER( 4), 

CONSTRAINT REF _ID_PK PRIMARY KEY ( REF _ID ) 
USING INDEX PCTFREE 10  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
T ABLESP ACE USER_DAT A PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1) NOCACHE; 

DROP TABLE ST_RULE CASCADE CONSTRAINTS ; 

CREATE TABLE ST_RULE ( 
RULE_ORDER NUMBER( 4), 
PROD_GRP_ID NUMBER(4) NOT NULL, 
PROD_ID NUMBER( 4) NOT NULL, 
CUST_GRP _ID NUMBER( 4) NOT NULL, 
CUST_ID NUMBER(4) NOT NULL, 
SALESMAN_GRP_ID NUMBER(4) NOT NULL, 
SALESMAN_ID NUMBER( 4) NOT NULL, 
COND_ID V ARCHAR2(20) NOT NULL, 
CONDITION NUMBER(8,2), 
DESCRIPTION V ARCHAR2( 1 00), 

CONSTRAINT RULE_PK PRIMARY KEY ( COND_ID, CUST_GRP _ID, CUST_ID, 
SALESMAN_GRP_ID, SALESMAN_ID, PROD_GRP_ID,,PROD_ID ) 

USING INDEX PCTFREE 1 0  

67 



STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 

PARALLEL (DEGREE 1 INSTANCES 1) NOCACHE; 

DROP TABLE ST_RULE_PRECEDENCE CASCADE CONSTRAINTS ; 

CREATE TABLE ST_RULE_PRECEDENCE ( 
COND_ID V ARCHAR2(20) NOT NULL, 
RULE_INDEX NUMBER(I O) NOT NULL, 
PROD_GRP_ID NUMBER(l), 
PROD_ID NUMBER(!), 
CUST_GRP_ID NUMBER( !), 
CUST_ID NUMBER( !), 
SALESMAN_GRP _ID NUMBER(!), 
SALESMAN_ID NUMBER( I), 
DESCRIPTION V ARCHAR2(1 00), 

CONSTRAINT ST_RULE_PRE_PK PRIMARY KEY ( COND_ID, RULE_INDEX ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  

STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES I )  NOCACHE; 

ALTER TABLE ST_RULE_PRECEDENCE ADD CONSTRAINT 
SYS_C009 198 CHECK (prod_grp_id BETWEEN O AND l ); 

ALTER TABLE ST_RULE_PRECEDENCE ADD CONSTRAINT 
SYS_C009 1 99 CHECK (prod_id BETWEEN O AND l ); 

ALTER TABLE ST_RULE_PRECEDENCE ADD CONSTRAINT 
SYS_C009200 CHECK ( cust_grp_id BETWEEN O AND 1 ); 

ALTER TABLE ST_RULE_PRECEDENCE ADD CONSTRAINT 
SYS_C00920 1 CHECK ( cust_id BETWEEN O AND 1 ); 

ALTER TABLE ST_RULE_PRECEDENCE ADD CONSTRAINT 
SYS_C009202 CHECK (salesman_grp_id BETWEEN O AND 1 ); 

ALTER TABLE ST_RULE_PRECEDENCE ADD CONSTRAINT 
SYS_C009203 CHECK (salesman_id BETWEEN O AND I ); 

CREATE UNIQUE INDEX ST_RULE_UK ON 
ST_RULE_PRECEDENCE(PROD_GRP _ID, PROD_ID, CUST_GRP _ID, CUST_ID, 
SALESMAN_GRP _ID, SALESMAN_ID) 

TABLESPACE USER_DATA PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) ;  

DROP TABLE ST_SALESMAN CASCADE CONSTRAINTS ; 

CREATE TABLE ST_SALESMAN ( 
SALESMAN_ID 
SALESMAN_GIVEN_NAMES 

SALESMAN_SURNAME 

NUMBER( 4) NOT NULL, 
V ARCHAR2( 40), 
V ARCHAR2( 40), 

68 



SALESMAN_TITLE V ARCHAR2(6), 
SALESMAN_ADDRESS_l V ARCHAR2( 40), 
SALESMAN_ADDRESS_2 VARCHAR2(40), 
SALESMAN_ADDRESS_3 V ARCHAR2( 40), 
SALESMAN_SUBURB V ARCHAR2(20), 
SALESMAN_POSTCODE VARCHAR2(10), 
SALESMAN_STATE V ARCHAR2( 4), 
SALESMAN_COUNTRY V ARCHAR2(20), 
SALESMAN_PHONE NUMBER( 14), 

SALESMAN_F AX NUMBER( 14), 
SALESMAN_CR_RATING VARCHAR2(1 0), 
SALESMAN_GRP _ID NUMBER( 4), 

CONSTRAINT SALESMAN_PK PRIMARY KEY ( SALESMAN_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 
TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 

PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

DROP TABLE ST_SALESMAN_GRP CASCADE CONSTRAINTS ; 

CREATE TABLE ST_SALESMAN_GRP ( 
SALESMAN_GRP_ID NUMBER(4) NOT NULL, 
SALESMAN_GRP _NAME V ARCHAR2(20), 

CONSTRAINT SALESMAN_GRP _PK PRIMARY KEY ( SALESMAN_GRP _ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 50 ) 

TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 5 0  ) 
PARALLEL (DEGREE 1 INSTANCES 1) NOCACHE; 

DROP TABLE ST_SEQ CASCADE CONSTRAINTS 

CREATE TABLE ST_SEQ ( 
SEQ_NAME VARCHAR2(40) NOT NULL, 
SEQ_CURR_ VALUE NUMBER(8) NOT NULL, 
SEQ_MIN_ VALUE NUMBER(8) NOT NULL, 
SEQ_MAX_ VALUE NUMBER(8) NOT NULL) 
T ABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  

STORAGE(INITIAL 10240 NEXT 1 0240 PCTINCREASE 5 0  ) 
PARALLEL (DEGREE 1 INSTANCES 1 )  NOCACHE; 

DROP TABLE ST_SYSTEM_PARAMETERS CASCADE CONSTRAINTS ; 

CREATE TABLE ST_SYSTEM_PARAMETERS ( 
PAR_ID NUMBER(4) NOT NULL, 
P AR_NAME V ARCHAR2( 1 00), 
PAR_VALUE NUMBER(4), 
START_DATE DATE, 
END_DATE DATE, 

CONSTRAINT ST__FAR_PK PRIMARY KEY ( PAR_ID ) 
USING INDEX PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 1 0240 PCTINCREASE 5 0  ) 
TABLESPACE USER_DATA) 
TABLESPACE USER_DATA PCTUSED 40 PCTFREE 1 0  
STORAGE(INITIAL 1 0240 NEXT 10240 PCTINCREASE 50 ) 
PARALLEL (DEGREE 1 INSTANCES 1) NOCACHE; 

69 



DROP TABLE TEM CASCADE CONSTRAINTS ; 

ALTER TABLE ST_CUSTOMER ADD CONSTRAINT CUST_FK 
FOREIGN KEY (CUST_GRP _ID) 
REFERENCES ST_CUSTOMER_GRP (CUST_GRP _ID) ; 

ALTER TABLE ST_FORM_ITEM ADD CONSTRAINT WINIT_ WIN_FK 
FOREIGN KEY (FORM_ID) 
REFERENCES ST_FORM (FORM_ID) ; 

ALTER TABLE ST_FORM_ITEM ADD CONSTRAINT WINIT_ITM_FK 
FOREIGN KEY (ITEM_ID) 

REFERENCES ST_ITEM (ITEM_ID) ; 

ALTER TABLE ST_ITEM ADD CONSTRAINT ST_ID_FK 
FOREIGN KEY (ITTY_ID) 
REFERENCES ST_ITEM_TYPE (ITTY_ID) ; 

ALTER TABLE ST_ORDER ADD CONSTRAINT ORD_CUST_FK 
FOREIGN KEY (CUST_ID) 
REFERENCES ST_CUSTOMER (CUST_ID) ; 

ALTER TABLE ST_ORDER ADD CONSTRAINT ORD_SALESMAN_FK 
FOREIGN KEY (SALESMAN_ID) 
REFERENCES ST_SALESMAN (SALESMAN_ID) ; 

ALTER TABLE ST_ORDER_LINE ADD CONSTRAINT ORD_LINE_ORD_FK 
FOREIGN KEY (ORD_ID) 
REFERENCES ST_ORDER (ORD_ID) ; 

ALTER TABLE ST_ORDER_LINE ADD CONSTRAINT ORD_LINE_PROD_FK 
FOREIGN KEY (PROD_ID) 
REFERENCES ST_PRODUCT (PROD_ID) ; 

ALTER TABLE ST_PRODUCT ADD CONSTRAINT PROD_FK 
FOREIGN KEY (PROD_GRP _ID) 
REFERENCES ST_PRODUCT_GRP (PROD_GRP _ID) ; 

ALTER TABLE ST_REF_ITEM ADD CONSTRAINT REF_TO_ITEM_FK 
FOREIGN KEY (TO_ITEM_ID) 
REFERENCES ST_FORM_ITEM (FORM_ITEM_ID) ; 

ALTER TABLE ST_REF _ITEM ADD CONSTRAINT REF _FROM_ITEM_FK 
FOREIGN KEY (FROM_ITEM_ID) 
REFERENCES ST_FORM_ITEM (FORM_ITEM_ID) ; 

ALTER TABLE ST_RULE ADD CONSTRAINT CUST_GRP_ID_FK 
FOREIGN KEY (CUST_GRP_ID) 
REFERENCES ST_CUSTOMER_GRP (CUST_GRP _ID) ; 

ALTER TABLE ST_RULE ADD CONSTRAINT CUST_ID_FK 
FOREIGN KEY (CUST_ID) 
REFERENCES ST_CUSTOMER (CUST_ID) ; 

ALTER TABLE ST_RULE ADD CONSTRAINT SALESMAN_GRP_ID_FK 
FOREIGN KEY (SALESMAN_GRP _ID) 
REFERENCES ST_SALESMAN_GRP (SALESMAN_GRP _ID) ; 

ALTER TABLE ST_RULE ADD CONSTRAINT SALESMAN_ID_FK 
FOREIGN KEY (SALESMAN_ID) 

70 



REFERENCES ST_SALESMAN (SALESMAN_ID) ; 

ALTER TABLE ST_RULE ADD CONSTRAINT PROD_GRP_ID_FK 
FOREIGN KEY (PROD_GRP _ID) 

REFERENCES ST_PRODUCT_GRP (PROD_GRP _ID) ; 

ALTER TABLE ST_RULE ADD CONSTRAINT PROD_ID_FK 
FOREIGN KEY (PROD_ID) 
REFERENCES ST_PRODUCT (PROD_ID) ; 

ALTER TABLE ST_SALESMAN ADD CONSTRAINT SALESMAN_FK 
FOREIGN KEY (SALESMAN_GRP _ID) 
REFERENCES ST_SALESMAN_GRP (SALESMAN_GRP _ID) ; 

71 



Appendix B - Oracle PL/SQL Packages 

PACK.AGE Item_Man IS 
PROCEDURE Show_Buttons ; 
PROCEDURE Set_Up_Items (p_val IN NUMBER 

, p_item IN V ARCHAR2) 
PROCEDURE Size_ Window ; 
PROCEDURE Call_New_Form (p_form IN V ARCHAR2) ; 
PROCEDURE Update_Properties (p_blk_name IN V ARCHAR2) ; 
PROCEDURE Set_Up_Dummy (p_blk_name IN V ARCHAR2) 
PROCEDURE New_Block (p_query_blk IN V ARCHAR2 

, p_query IN V ARCHAR2) ; 
PROCEDURE Hide_All_Items (p_blk_name IN V ARCHAR2) ; 
FUNCTION Calc_Commission (p_prod_grp_id IN NUMBER 

, p_prod_id IN NUMBER 
, p_cust_grp_id IN NUMBER 
, p_cust_id IN NUMBER 
, p_sales_grp_id IN NUMBER 
, p_sales_id IN NUMBER 
, p_cond_id IN NUMBER) RETURN NUMBER ; 

END; 

PACKAGE BODY Item_Man IS 
CURSOR itms (item_type IN V ARCHAR2) IS 
SELECT i.item_name 

, i . item_icon 
FROM st_form_item fi 

, st_form f 
, st_item i 
, st_item_type it 

WHERE f.form_name = :GLOBAL.gv_form 
AND f.form_id = fi.form_id 
AND fi.item_id = i . item_id 
AND i.itty_id = it.itty_id 
AND it.itty_type = item_type 
AND i.end_date IS NULL 
ORDER BY i .item_id ; 
gv_alert NUMBER ; 

PROCEDURE Show_buttons IS 
/**************************************************************************** 
*** 
* Procedure to select the buttons that should appear on the button bar when * 
* a form is first opened. Dynamically places the buttons on the form * 
***************************************************************************** 
**/ 
-- Procedure Show_Buttons is used to --
-- Set up the navigation buttons --
lv_button_count NUMBER := 1 ;  
lv_x_pos NUMBER := st_pkg.get_parameter_value ('BUTTON_START_X) ; 
lv_y_pos NUMBER := st_pkg.get_parameter_value ('BUTTON_START_Y) ; 
lv_right_margin NUMBER := st_pkg.get_parameter_value ('BUTTON_RIGHT_MARGIN) 

72 



lv_bottom_margin NUMBER st_pkg.get_parameter_value 
(BUTTON_BOTTOM_MARGIN) ; 
lv_mod NUMBER := st_pkg.get_parameter_value (MAX_ROW_LENGTH) ; 
lv_form_height NUMBER := 0 ; 
lv_fonn_width NUMBER := 0 ;  
lv_inc_width BOOLEAN := TRUE ; 
lv_last_height NUMBER := 0 ; 
lv_last_width NUMBER := 0 ;  
lv_count NUMBER := 0 ; 

BEGIN 
FOR nav_itms IN itms (B) LOOP 

-- For each item in the cursor, display it and set the icon -­
GO_ITEM (nav_itms.item_name) ; 
IF lv_button_count = 1 THEN 
lv_form_width 

WIDTH) ; 
lv_form_width + GET_ITEM_PROPERTY (nav_itms.item_name, 

END IF ;  

SET_ITEM_PROPERTY (nav_itms.item_name, X_POS, lv_x_pos) ; 
SET_ITEM_PROPERTY (nav_itms.item_name, Y_POS, lv_y_pos) ; 
SET_ITEMJROPERTY (nav_itms.item_name, VISIBLE, PROPERTY_TRUE) ; 
SET_ITEM_PROPERTY (nav_itms.item_name, ENABLED, PROPERTY_TRUE) ; 
SET_ITEM_PROPERTY (nav_itms.item_name, ICON_NAME, nav_itms.item_icon) ; 

-- Update the x and y coordinates for the next item 

IF lv_inc_width = TRUE THEN 
lv_count := lv_count + 1 ; 

END IF ; 
IF MOD(lv_button_count, lv_mod) = 0 THEN -- Time to move to the next row 
lv_x_pos := st_pkg.get_parameter_value (BUTTON_START_X) ; 
lv_y_pos := lv_y_pos + GET_ITEM_PROPERTY (nav_itms.item_name, HEIGHT) ; 
lv_form_height := lv_form_height + GET_ITEM_PROPERTY (nav_itms.item_name, 

HEIGHT) ; 
lv_inc_width := FALSE ; 

ELSE 
lv_x_pos := lv_x_pos + GET_ITEM_PROPERTY (nav_itms.item_name, WIDTH) ; 

END IF ; 
IF lv_inc_width = TRUE THEN 
lv_form_width lv_form_width + GET_ITEM_PROPERTY (nav_itms.item_name, 

WIDTH) ; 
END IF ;  
lv_button_count := lv_button_count + 1 ; -- Increment the counter -­
lv_last_height := GET_ITEM_PROPERTY (nav_itms.item_name, HEIGHT) ; 
lv_last_width := GET_ITEM_PROPERTY (nav_itms.item_name, WIDTH) ; 

END LOOP ; 
IF MOD(lv_button_count - 1 ,  lv_mod) != 0 THEN 

lv_form_height := lv_form_height + lv_last_height ; 
END IF ; 
-- Set up the height and width of the form based on the number of 
-- displayed buttons. 
IF st_pkg.get_button_count (:GLOBAL.gv_form) = 1 THEN 

lv_form_width := lv_form_width / 2 ; 
ELSIF lv_count < lv_mod THEN 
lv_form_width := lv_form_width - lv_last_width ; 

73 



END IF ;  
SET_WINDOW_PROPERTY (WIN_BUTTON', WINDOW_SIZE, lv_form_width + 

lv_right_margin, lv_form_height + lv_bottom_margin) ; 
SET_CANV AS_PROPERTY ('CNV _BUTTON', CANV AS_SIZE, lv_form_width + 

lv_right_margin, lv_form_height + lv_bottom_margin) ; 

END Show_Buttons ; 
/************************************************************************/ 
PROCEDURE Set_Up_Items (p_val IN NUMBER 

, p_item IN V ARCHAR2) IS 
/************************************************************************* 
* Procedure to set up the items and display them to the form * 
*************************************************************************/ 
lv_item_ht VARCHAR2( 1 00); 
CURSOR cur_itm IS 
SELECT i.item_name 

, it.itty_type 
, fi.fm_call 

FROM st_item i 
, st_form_item fi 
, st_ref_item ri 
, st_item_type it 

WHERE i.item_id = fi.item_id 
AND fi.form_item_id = ri.to_item_id 
AND i .itty_id = it.itty_id 
AND ri.ref_id IN (SELECT ri2.ref_id 

FROM st_ref_item ri2 

BEGIN 

, st_form_item fi2 
, st_item i2 

WHERE ri2.ref_item_val = p_val 
AND ri2.from_item_id = fi2.form_item_id 
AND fi2.item_id = i2.item_id 
AND i2.item_name = p_item) ; 

Hide_All_Items ( :SYSTEM.trigger_block) ; 
FOR c_itm IN cur_itm LOOP 
IF c_itm.itty_type IN ( T', L' ) THEN 

SET_ITEM_PROPERTY (c_itm.item_name, VISIBLE, PROPERTY_TRUE) ; 
SET_ITEM_PROPERTY (c_itm.item_name, ENABLED, PROPERTY_TRUE) ; 

ELSE 
SET_RADIO_BUTTON_PROPERTY (c_itm.item_name, c_itm.fm_call, VISIBLE, 

PROPERTY_TRUE) ; 
SET_RADIO_BUTTON_PROPERTY ( c_itm.item_name, c_itm. fm_call, ENABLED, 

PROPERTY_TRUE) ; 
END IF ; 

END LOOP ; 
END Set_Up_Items ; 
/**************************************************************************/ 

PROCEDURE Hide_All_Items (p_blk_name IN V ARCHAR2) IS 
!************************************************************************** 
* Procedure to hide all the items on a form prior to the selected ones being displayed * 

**************************************************************************/ 
lv_prev_item V ARCHAR2( 1 00) ; 

74 



lv_last_item VARCHAR2( 100) := GET_BLOCK_PROPERTY(p_blk_name, LAST_ITEM) ; 
lv_next_item VARCHAR2( 100) ; 

BEGIN 
GO_ITEM (GET_BLOCK_PROPERTY(p_blk_name, FIRST_ITEM)); 
LOOP 

lv_next_item := GET_ITEM_PROPERTY (:SYSTEM.current_item, NEXTITEM) ; 
SET_ITEM_PROPERTY (lv_next_item, VISIBLE, PROPERTY_TRUE) ; 
SET_ITEM_PROPERTY (lv_next_item, ENABLED, PROPERTY_TRUE) ; 
GO_ITEM (lv_next_item) ; 
EXIT WHEN :SYSTEM.current_item = lv_last_item ; 

END LOOP ; 
GO_ITEM (GET_BLOCK_PROPERTY(p_blk_name, FIRST_ITEM)); 
GO_ITEM (GET_ITEM_PROPERTY (:SYSTEM.current_item, NEXTITEM));  
lv_prev_item := : SYSTEM.current_item ; 
LOOP 
GO_ITEM (GET_ITEM_PROPERTY (:SYSTEM.current_item, NEXTITEM)) ; 
SET_ITEM_PROPERTY (lv_prev_item, VISIBLE, PROPERTY_F ALSE) ; 
SET_ITEM_PROPERTY (lv_prev_item, ENABLED, PROPERTY_FALSE) ; 
lv_prev_item := : SYSTEM.current_item ; 
EXIT WHEN :SYSTEM.current_item = lv_last_item ; 

END LOOP ; 
GO_ITEM (GET_BLOCK_PROPERTY(p_blk_name, FIRST_ITEM)); 
SET_ITEM_PROPERTY (lv_last_item, VISIBLE, PROPERTY_FALSE) ; 
SET_ITEM_PROPERTY (lv_last_item, ENABLED, PROPERTY__FALSE) ; 

END Hide_All_Items ; 
/**************************************************************************! 

PROCEDURE Size_ Window IS 
/*************************************************************************** 
* Procedure to size a window when the form is first called * 
***************************************************************************! 
lv_width NUMBER(4) := st_pkg.get_window_width(:GLOBAL.gv_form) ; 
lv_height NUMBER(4):= st_pkg.get_window_height(:GLOBAL.gv_form) ; 
lv_title V ARCHAR2( 1 00) := st_pkg.get_window_title (:GLOBAL.gv_form) ; 

BEGIN 
Set_Window_Property (WIN_MAIN', TITLE, lv_title) ; 
Set_Window_Property (WIN_MAIN', WINDOW_SIZE, lv_width , lv_height ); 
Set_Canvas_Property ('CNV _MAIN', CANVAS_SIZE, lv_width , lv_height ); 
:flex_dummy.form_title := lv_title ; 

END size_ window ; 
/**************************************************************************! 

PROCEDURE Update_Properties (p_blk_name IN V ARCHAR2) IS 
!************************************************************************** 
* Procedure to update the properties of objects based on the values retrieved * 
* from the database * 
**************************************************************************! 

lv_invalid_item EXCEPTION ; 
CURSOR itms IS 
SELECT i.item_name 

, fi.x_pos 
, fi.y_pos 
, fi.label 
, fi.width 
, fi.height 

75 



, fi.enabled 
, fi.visible 
, fi.lov 
, fi.form_item_id 
, it.itty_type 
, fi.fm_call 

FROM st_item i 
, st_form f 
, st_form_item fi 
, st_item_type it 

WHERE fi.form_id = f.form_id 
AND f.form_name = :GLOBAL.gv_form 
AND fi.item_id = i.item_id 
AND i .itty_id = it.itty_id 
AND SUBSTR(i.item_name, 1 ,  INSTR(i.item_name, '. ') - 1 )  = p_blk_name ; 
it_id Item ; 

BEGIN 
FOR cur_itms IN itms LOOP 

BEGIN 
-- Check to see if the item exists on the Form. If not raise an exception 
it_id := Find_Item( cur_itms.item_name ) ;  
IF Id_Null(it_id) THEN 

RAISE lv_invalid_item ; 
END IF ; 

IF cur_itms.x_pos IS NOT NULL THEN 
IF cur_itms.itty_type IN ( T', L' ) THEN 

SET_ITEM_PROPERTY (cur_itms.item_name, X_POS, cur_itms.x_pos) ; 
ELSE 

SET_RADIO_BUTTON_PROPERTY (cur_itms.item_name, cur_itms.fm_call, X_POS, 
cur_itms.x_pos) ; 

END IF ; 
END IF ; 

IF cur_itms.y_pos IS NOT NULL THEN 
IF cur_itms.itty_type IN ( T', L ' )  THEN 

SET_ITEM_PROPERTY (cur_itms.item_name, Y_POS, cur_itms.y_pos) ; 
ELSE 

SET_RADIO_BUTTON_PROPERTY (cur_itms.item_name, cur_itms.fm_call, Y_POS, 
cur_itms.y_pos) ; 

END IF ;  
END IF ;  

IF cur_itms.width IS NOT NULL THEN 
IF cur_itms.itty_type IN ( T', L ' )  THEN 

SET_ITEM_PROPERTY (cur_itms.item_name, WIDTH, cur_itms.width) ; 
ELSE 

SET_RADIO_BUTTON_PROPERTY (cur_itms.item_name, cur_itms.fm_call, WIDTH, 
cur_itms.width) ; 

END IF ;  
END IF ;  

IF cur_itms.height IS NOT NULL THEN 
IF cur_itms.itty_type IN ( T', L' ) THEN 

76 



SET_ITEM_PROPERTY ( cur_itms.item_name, HEIGHT, cur_itms.height) ; 
ELSE 

SET_RADIO_BUTTON_PROPERTY (cur_itms.item_name, cur_itms.fm_call, HEIGHT, 
cur_itms.height) ; 

END IF ; 
END IF ; 

IF cur_itms.visible = Y' THEN 
IF cur_itms.itty_type IN ( T', L' ) THEN 

SET_ITEM_PROPERTY (cur_itms.item_name, VISIBLE, PROPERTY_TRUE) ; 
ELSE 
SET_RADIO_BUTTON_PROPERTY ( cur_itms.item_name, cur_itms.fm_call, VISIBLE, 

PROPERTY_TRUE} ; 
END IF ;  

ELSE 
IF cur_itms.itty_type IN ( T', L ' )  THEN 

SET_ITEM_PROPERTY (cur_itms.item_name, VISIBLE, PROPERTY_FALSE) ; 
ELSE 

SET_RADIO_BUTTON_PROPERTY ( cur_itms.item_name, cur_itms.fm_call, VISIBLE, 
PROPERTY_FALSE) ; 

END IF ;  
END IF ; 

IF cur_itms.enabled = Y' THEN 
IF cur_itms.itty_type IN ( T', L ' )  THEN 
SET_ITEM_PROPERTY (cur_itms.item_name, ENABLED, PROPERTY_TRUE) ; 

ELSE 
SET_RADIO_BUTTON_PROPERTY ( cur_itms.item_name, cur_itms.fm_call, 

ENABLED, PROPERTY_TRUE) ; 
END IF ;  

ELSE 
IF cur_itms.itty_type IN ( T', L' ) THEN 

SET_ITEM_PROPERTY (cur_itms.item_name, ENABLED, PROPERTY_FALSE) ; 
ELSE 
SET_RADIO_BUTTON_PROPERTY ( cur_itms.item_name, cur_itms.fm_call, 

ENABLED, PROPERTY_FALSE) ; 
END IF ; 

END IF ;  

IF cur_itms.label IS NOT NULL THEN 
IF cur_itms.itty_type IN ( T', L ' )  THEN 

SET_ITEM_PROPERTY (cur_itms.item_name, PROMPT_TEXT, cur_itms.label) ; 
ELSE 

SET_RADIO_BUTTON_PROPERTY (cur_itms.item_name, cur_itms.fm_call, LABEL, 
cur_itms.fm_call) ; 

END IF ;  
END IF ; 

EXCEPTION 
WHEN lv_invalid_item THEN 
Set_Alert_Property('al_error ', ALERT_MESSAGE_TEXT, cur_itms.item_name ) ;  
gv_alert := SHOW _ALERT ('al_error) ; 

WHEN OTHERS THEN 
RAISE FORM_TRIGGER_F AIL URE ; 

END ; 

77 



END LOOP ; 
ND Update_Properties ; 
/************************************************************************/ 

PROCEDURE Set_Up_Dummy (p_blk_name IN V ARCHAR2) IS 
/************************************************************************* 
* Procedure to navigate to an item that will not be updated and therfore not * 
* cause an error when the properties of others are being updated * 
*************************************************************************/ 
blk_id BLOCK ; 

BEGIN 
blk_id := Find_Block( p_blk_name ) ; 
IF NOT Id_Null(blk_id) THEN 
Item_Man. UpdateJroperties (p_blk_name) ; 
ltem_Man. Update_Properties (DUMMY _DETAIL') ; 

END IF ; 
END Set_Up_Dummy ; 
/**************************************************************************/ 

PROCEDURE New_Block (p_query_blk IN V ARCHAR2 
, p_query IN V ARCHAR2) IS 

/********************************************************** 
* Procedure that is called every navigation to a new block takes place. * 
* Determines wether to execute a query or not * 
**********************************************************/ 
BEGIN 
IF :GLOBAL.gv_resize = TRUE' THEN 

IF p_query = Y'  THEN 
EXECUTE_QUERY ; 

ELSIF p_query = N' THEN 
:GLOBAL.gv_resize := FALSE' ;  

END IF ;  
SET_ITEM_PROPERTY ('flex_dummy.dummy_button', VISIBLE, PROPERTY_TRUE) ; 
GO_ITEM ('flex_dummy.dummy_button') ; 
Item_Man. Update_Properties (p_query_blk) ; 
Go_Block (p_query_blk) ; 
SET_ITEM_PROPERTY ('flex_dummy.dununy_button ', VISIBLE, PROPERTY_F ALSE) ; 

END IF ; 
END New_Block ; 
/*************************************************************************/ 

FUNCTION Calc_Commission (p_prod_grp_id IN NUMBER 
, p_prod_id IN NUMBER 
, p_cust_grp_id IN NUMBER 
, p_cust_id IN NUMBER 
, p_sales_grp_id IN NUMBER 
, p_sales_id IN NUMBER 
, p_cond_id IN NUMBER) RETURN NUMBER IS 

!************************************************************************* 
* Procedure to determine the commission to be given to a salesman * 
*************************************************************************/ 
BEGIN 
: st_order_line.commission := st_comm.calculate_commission 

(p_prod_grp_id 
, p_prod_id 

78 



, p_cust_grp_id 
, p_cust_id 
, p_sales_grp_id 
, p_sales_id 
, p_cond_id) ; 

END Calc_Commission ; 
END ; 

79 



CREATE OR REPLACE PACKAGE st_pkg IS 
FUNCTION get_window_height (p_window_name V ARCHAR2) RETURN NUMBER; 
FUNCTION get_window_width (p_window_name V ARCHAR2) RETURN NUMBER; 
FUNCTION get_window_title (p_title V ARCHAR2) RETURN V ARCHAR2; 
PROCEDURE get_button_coords (p_min_width IN OUT NUMBER 

, p_max_width IN OUT NUMBER 
, p_min_height IN OUT NUMBER 
, p_max_height IN OUT NUMBER 
, p_form_name IN V ARCHAR2); 

FUNCTION get_parameter_value (p_param IN V ARCHAR2) RETURN NUMBER; 
FUNCTION get_button_count (p_form_name IN V ARCHAR2) RETURN NUMBER ; 
PROCEDURE Get_Item_Property (p_cur_item IN V ARCHAR2 

, p_form_name IN V ARCHAR2 
, p_x_pos IN OUT NUMBER 
, p_y_pos IN OUT NUMBER 
, p_label IN OUT V ARCHAR2 
, p_width IN OUT NUMBER 
, p_height IN OUT NUMBER 
, p_enabled IN OUT V ARCHAR2 
, p_visible IN OUT V ARCHAR2 
, p_lov IN OUT V ARCHAR2 
, p_id IN OUT NUMBER) ; 

FUNCTION get_item_type (p_item_id IN NUMBER) RETURN V ARCHAR2 ; 
FUNCTION Get_Customer_Grp (p_grp_id IN NUMBER) RETURN V ARCHAR2; 
FUNCTION Get_Cust_Name (p_id IN NUMBER) RETURN V ARCHAR2 ; 
FUNCTION Get_Sales_Name (p_id IN NUMBER) RETURN V ARCHAR2 ; 
FUNCTION Get_Product_Name (p_id IN NUMBER) RETURN V ARCHAR2; 

END st_pkg; 
I 
CREATE OR REPLACE PACKAGE st_pkg IS 
FUNCTION get_window_height (p_window_name IN st_form.form_name%TYPE) RETURN 

NUMBER; 
FUNCTION get_window_width (p_window_name IN st_form.form_name%TYPE) RETURN 

NUMBER; 
FUNCTION get_window_title (p_title IN st_form.form_name%TYPE) RETURN 

VARCHAR2; 
PROCEDURE get_button_coords (p_min_width IN OUT st_form_item.x_pos%TYPE 

, p_max_width IN OUT st_form_item.x_pos%TYPE 
, p_min_height IN OUT st_form_item.y_pos%TYPE 
, p_max_height IN OUT st_form_item.y_pos%TYPE 
, p_form_name IN st_form.form_name% TYPE); 

FUNCTION get_parameter_ value (p_param IN st_system_parameters.par_name% TYPE) 
RETURN NUMBER; 

FUNCTION get_button_count (p_form_name IN st_form.form_name% TYPE) RETURN 
NUMBER ; 

PROCEDURE Get_Item_Property (p_cur_item IN V ARCHAR2 
, p_form_name IN V ARCHAR2 
, p_x_pos IN OUT NUMBER 
, p_y_pos IN OUT NUMBER 
, p_label IN OUT V ARCHAR2 
, p_width IN OUT NUMBER 
, p_height IN OUT NUMBER 
, p_enabled IN OUT V ARCHAR2 
, p_visible IN OUT V ARCHAR2 
, p_lov IN OUT V ARCHAR2 

80 



, p_id IN OUT NUMBER) ; 
FUNCTION get_item_type (p_item_id IN st_item.item_id% TYPE) RETURN V ARCHAR2 ; 
FUNCTION Get_Customer_Grp (p__grp_id IN st_customer__grp.cust__grp_id%TYPE) RETURN 

VARCHAR2; 
FUNCTION Get_Cust_Name (p_id IN st_customer.cust_id%TYPE) RETURN V ARCHAR2 ; 
FUNCTION Get_Sales_Name (p_id IN st_salesman.salesman_id% TYPE) RETURN 

VARCHAR2 ; 
FUNCTION Get_Product_Name (p_id IN st_product.prod_id%TYPE) RETURN V ARCHAR2; 
END st_pkg; 
I 
CREATE OR REPLACE PACKAGE BODY st_pkg IS 

FUNCTION get_window_width (p_window_name st_form.form_name%TYPE) RETURN 
NUMBER IS 
/************************************************************************* 
* Function to get the width of the current window * 
*************************************************************************/ 

CURSOR cur_width IS 
SELECT form_width 
FROM st_form 
WHERE form_name = p_window_name ; 

lv_width st_form.form_width%TYPE ; 
BEGIN 

OPEN cur_width ; 
FETCH cur_width INTO lv_width ; 
CLOSE cur_width ; 

RETURN (lv_width); 

END get_window_width ; 
/*************************************************************************/ 

FUNCTION get_window_height (p_window_name st_form.form_name%TYPE) RETURN 
NUMBER IS 

/************************************************************************* 
* Function to get the height of the current window * 
*************************************************************************/ 

lv_height st_form.form_height%TYPE ; 
BEGIN 

SELECT form_height 
INTO lv_height 
FROM st_form 
WHERE form_name = p_window_name ; 

RETURN (lv_height); 
END get_window_height ; 

/*************************************************************************/ 

FUNCTION get_window_title (p_title IN st_form.form_name% TYPE) RETURN 
VARCHAR2 IS 

/************************************************************************* 
* Function to get the title of the current window * 

81 



*************************************************************************/ 

lv_title st_form.form_title%TYPE; 
BEGIN 

SELECT form_title 
INTO lv_title 
FROM st_form 
WHERE form_name = p_title ; 

RETURN (lv_title) ; 
END get_window_title ; 

/*************************************************************************/ 

PROCEDURE get_button_coords (p_min_width IN OUT st_form_item.x_pos%TYPE 
, p_max_width IN OUT st_form_item.x_pos%TYPE 
, p_min_height IN OUT st_form_item.y_pos%TYPE 
, p_max_height IN OUT st_form_item.y_pos%TYPE 
, p_form_name IN st_form.form_name% TYPE) IS 

/************************************************************************* 
* Procedure to get the size of buttons on the screen * 
*************************************************************************/ 

CURSOR win_cord IS 
SELECT min(fi .x_pos) 

, max(fi.x_pos) 
, min(fi.y_pos) 
, max(fi.y_pos) 

FROM st_form_item fi 
, st_form f 
, st_item i 

WHERE fi.item_id = i . item_id 
AND fi.form_id = f.form_id 
AND f.form_name = p_form_name 
AND i. item_name LIKE NAV _BUTTONS.BUTTON_%' ;  

BEGIN 
OPEN win_cord ; 
FETCH win_cord INTO p_min_ width 

, p_max_width 
, p_min_height 
, p_max_height ; 

CLOSE win_cord ; 

END get_button_coords ; 
/*************************************************************************/ 

FUNCTION get_parameter_value (p_param IN st_system_parameters.par_name%TYPE) 
RETURN NUMBER IS 

/************************************************************************* 
* Function to return a user defined parameter * 
*************************************************************************! 

lv_param st_system_parameters.par_value%TYPE ; 
BEGIN 

SELECT par_ value 
INTO lv_param 

82 



FROM st_system_parameters 
WHERE par_name = p_param ; 

RETURN (lv_param) ; 
END get_parameter_ value ; 

!*************************************************************************! 

FUNCTION get_button_count (p_form_name IN st_form.form_name% TYPE) RETURN 
NUMBER IS 

/************************************************************************* 
* Function to count the number of buttons that are displayed for a form * 
*************************************************************************/ 

lv_count NUMBER ; 
CURSOR itms (item_type IN st_form.form_name% TYPE) IS 
SELECT COUNT( l )  
FROM st_form_item fi 

, st_form f 
, st_item i 
, st_item_type it 

WHERE f.form_name = p_form_name 
AND f.form_id = fi. form_id 
AND fi.item_id = i.item_id 
AND i.itty_id = it.itty_id 
AND it.itty_type = item_type ; 
BEGIN 

OPEN itms (B) ; 
FETCH itms INTO lv_count ; 
CLOSE itms ; 
RETURN (lv_count) ; 

END get_button_count ; 
/*************************************************************************/ 

PROCEDURE Get_Item_Property (p_cur_item IN V ARCHAR2 
, p_form_name IN V ARCHAR2 
, p_x_pos IN OUT NUMBER 
, p_y_pos IN OUT NUMBER 
, p_label IN OUT V ARCHAR2 
, p_width IN OUT NUMBER 
, p_height IN OUT NUMBER 
, p_enabled IN OUT V ARCHAR2 
, p_ visible IN OUT V ARCHAR2 
, p_lov IN OUT V ARCHAR2 
, p_id IN OUT NUMBER) IS 

/************************************************************************* 
* Procedure to retrieve all the item properties for items on a form * 
*************************************************************************/ 

CURSOR itms IS 
SELECT fi.x_pos 

, fi.y_pos 
, fi.label 
, fi.width 
, fi.height 
, fi.enabled 

83 



, fi.visible 
, fi.lov 
, fi.form_item_id 

FROM st_item i 
, stJorm f 
, st_form_item fi 

WHERE fi.form_id = f.form_id 
AND f.form_name = p_form_name 
AND fi.item_id = i .item_id 
AND i.item_name = p_cur_item ; 
BEGIN 
OPEN itms ; 
FETCH itms INTO p_x_pos 

, p_y_pos 
, p_label 
, p_width 
, p_height 
, p_enabled 
, p_visible 
, p_lov 
' p_id ; 

CLOSE itms ; 
END ; 

/*************************************************************************/ 

FUNCTION get_item_type (p_item_id IN st_item.item_id% TYPE) RETURN V ARCHAR2 
IS 

/************************************************************************* 
* Function to return the type of an item * 
*************************************************************************/ 

lv_item_type st_item_type.itty_description%TYPE ; 
BEGIN 

SELECT it.itty_description 
INTO lv_item_type 
FROM st_item_type it 

, st_item i 
WHERE i .item_id = p_item_id 
AND i.itty_id it.itty_id ; 

RETURN (lv_item_type) ; 
END get_item_type ; 

/*************************************************************************/ 

FUNCTION Get_Customer_Grp (p_grp_id IN st_customer_grp.cust_grp_id%TYPE) 
RETURN V ARCHAR2 IS 

/************************************************************************* 
* Function to get the current group of the input customer * 
*************************************************************************/ 

lv_cust_name st_customer_grp.cust_grp_name%TYPE ; 
BEGIN 
SELECT cust_grp_name 
INTO lv_cust_name 
FROM st_customer_grp 

84 



WHERE cust_grp_id = p_grp_id ; 

RETURN lv_cust_name ; 
END Get_Customer_Grp ; 

/*************************************************************************/ 

FUNCTION Get_Cust_Name (p_id IN st_customer.cust_id%TYPE) RETURN V ARCHAR2 
IS 

/************************************************************************* 
* Function to get the customers name * 
*************************************************************************/ 

lv_name VARCHAR2( 100) ; 
BEGIN 

SELECT cust_sumamel l '  11cust_given_names 
INTO lv_name 
FROM st_customer 
WHERE cust_id = p_id ; 

RETURN lv_name ; 
END Get_Cust_Name ; 

/*************************************************************************/ 

FUNCTION Get_Sales_Name (p_id IN st_salesman.salesman_id%TYPE) RETURN 
VARCHAR2 IS 

/************************************************************************* 
* Function to get the salesman name * 
*************************************************************************/ 

lv_name VARCHAR2( 1 00) ; 
BEGIN 
SELECT salesman_sumamel l '  1 1salesman_given_names 
INTO lv_name 
FROM st_salesman 
WHERE salesman_id = p_id ; 

RETURN lv_name ; 
END Get_Sales_Name ; 

/*************************************************************************/ 

FUNCTION Get_Product_Name (p_id IN st_product.prod_id%TYPE) RETURN 
VARCHAR2 IS 

/************************************************************************* 
* Function to get the product group * 
*************************************************************************/ 

lv_name V ARCHAR2( 1 00) ; 
BEGIN 

SELECT prod_name 
INTO lv_name 
FROM st_product 
WHERE prod_id = p_id ; 

RETURN lv_name ; 
END Get_Product_Name ; 

85 



END st_pkg ; 
I 

86 



CREATE OR REPLACE PACKAGE st_comm IS 
FUNCTION Calculate_Commission (p_prod_grp_id IN NUMBER 

, p_prod_id IN NUMBER 
, p_cust_grp_id IN NUMBER 
, p_cust_id IN NUMBER 
, p_sales_grp_id IN NUMBER 
, p_sales_id IN NUMBER 
, p_cond_id IN NUMBER) RETURN NUMBER ; 

FUNCTION Display_ Valid_LOV (p_lov IN st_item.item_name%TYPE 
, p_form IN st_form.form_name% TYPE) RETURN V ARCHAR2 ; 

FUNCTION Get_Form_Size (p_value IN st_system_parameters.par_name%TYPE) RETURN 
NUMBER ; 

FUNCTION Get_Cust_Grp (p_cust_id IN st_customer.cust_id%TYPE) RETURN NUMBER ; 
FUNCTION Get_Sales_Grp (p_sales_id IN st_salesman.salesman_id%TYPE) RETURN 

NUMBER ; 
FUNCTION Get_Prod_Grp (p_prod__id IN st_product.prod_id%TYPE) RETURN NUMBER ; 

FUNCTION Get_Sequence_Number (p_seq_name IN V ARCHAR2) RETURN NUMBER ; 

END st_comm; 
I 
CREATE OR REPLACE PACKAGE BODY st_comm IS 
!*************************************************************************/ 

FUNCTION Calculate_Commission (p_prod_grp_id IN NUMBER 
, p_prod_id IN NUMBER 
, p_cust_grp_id IN NUMBER 
, p_cust_id IN NUMBER 
, p_sales_grp_id IN NUMBER 
, p_sales_id IN NUMBER 
, p_cond_id IN NUMBER) RETURN NUMBER IS 

/************************************************************************* 
* Function to calculate the amount of commission owing * 
*************************************************************************/ 

CURSOR chk_cond IS 
SELECT count( l )  
FROM st_rule_precedence 
WHERE cond_id = p_cond_id ; 

CURSOR cur_rule IS 
SELECT * 
FROM st_rule 
ORDER by rule_order ; 

CURSOR cur_rule_precedence IS 
SELECT * 
FROM st_rule_precedence 
ORDER BY rule_index ; 

lv_prod_grp_id NUMBER 
lv_prod_id NUMBER 
lv_cust_grp_id NUMBER 
lv_cust_id NUMBER 
lv_sales_grp_id NUMBER 
lv_sales_id NUMBER 

:= O ;  

:= O ; 

:= O ; 
:= O ; 

:= O ; 
:= O ; 

87 



lv_exit 
lv_cond 

BEGIN 

VARCHAR2( 1 0) := FALSE' ;  
NUMBER := O ;  

FOR st_rule_precedence IN cur_rule_precedence LOOP 

IF st_rule_precedence.prod_grp_id = 1 THEN 
lv_prod_grp_id := p_prod_grp_id ; 

ELSE 
lv_prod_grp_id := O; 

END IF ;  

IF st_rule_precedence.prod_id = 1 THEN 
lv_prod_id := p_prod_id ; 

ELSE 
lv_prod_id := O; 

END IF ;  

IF st_rule_precedence.cust_grp_id = 1 THEN 
lv_cust_grp_id := p_cust_grp_id ; 

ELSE 
lv_cust_grp_id := O; 

END IF ; 

IF st_rule_precedence.cust_id = 1 THEN 
lv_cust_id := p_cust_id ; 

ELSE 
lv_cust_id := O; 

END IF ; 

IF st_rule_precedence.salesman_grp_id = 1 THEN 
lv_sales_grp_id := p_sales_grp_id ; 

ELSE 
lv_sales_grp_id := O; 

END IF ;  

IF st_rule_precedence.salesman_id = 1 THEN 
lv_sales_id := p_sales_id ; 

ELSE 
lv_sales_id := O; 

END IF ;  

FOR st_rule IN cur_rule LOOP 
IF (lv_prod_grp_id = st_rule.prod_grp_id) AND 

(lv_prod_id = st_rule.prod_id) AND 
(lv_cust_grp_id = st_rule.cust_grp_id) AND 
(lv_cust_id = st_rule.cust_id) AND 
(lv_sales_grp_id = st_rule.salesman_grp_id) AND 
(lv_sales_id = st_rule.salesman_id) AND 
(p_cond_id = st_rule.cond_id) THEN 
lv_cond := st_rule.condition ; 
lv_exit := TRUE' ; 
EXIT ; 

END IF ;  
END LOOP ; 

88 



EXIT WHEN lv_exit = TRUE' ; 
END LOOP ; 
RETURN (lv_cond); 

END Calculate_Commission ; 
/*************************************************************************/ 

FUNCTION Display_ Valid_LOV (p_lov IN st_item.item_name%TYPE 
, p_form IN st_form.form_name% TYPE) RETURN V ARCHAR2 IS 

/************************************************************************* 
* Function to determine is a LOV should be displayed * 
*************************************************************************/ 

CURSOR cur_lov IS 
SELECT COUNT( 1 )  
FROM st_form f 

, st_form_item fi 
, st_item i 

WHERE f.form_name = p_form 
AND f.form_id = fi.form_id 
AND fi.item_id = i . item_id 
AND i. item_name = p_lov ; 
lv_count NUMBER := 0 ; 

BEGIN 
OPEN cur_lov ; 
FETCH cur_lov INTO lv_count ; 
CLOSE cur_lov ; 
IF lv_count > 0 THEN 
RETURN (TRUE) ; 

ELSE 
RETURN (FALSE) ; 

END IF ;  
END Display_ Valid_LOV ; 

/*************************************************************************/ 

FUNCTION Get_Form_Size (p_value IN st_system_parameters.par_name%TYPE) RETURN 
NUMBER IS 

/************************************************************************* 
* Function to get the size of a form * 
******************************* ******************************************/ 

CURSOR cur_attribute IS 
SELECT par_value 
FROM st_system_parameters 
WHERE par_name = p_ value ; 
lv_value st_system_parameters.par_value%TYPE := 0 ;  

BEGIN 
OPEN cur_attribute ; 
FETCH cur_attribute 
INTO lv_value ; 
CLOSE cur_attribute ; 

RETURN (lv_value) ; 
END Get_Form_Size ; 

/*************************************************************************! 

89 



FUNCTION Get_Cust_Grp (p_cust_id IN st_customer.cust_id%TYPE) RETURN NUMBER 
IS 

!************************************************************************* 
* Function to get the customers group * 
*************************************************************************/ 

CURSOR cust_grp IS 
SELECT cust_grp_id 
FROM st_customer 
WHERE cust_id = p_cust_id ; 
lv_cust_id st_customer.cust_grp_id%TYPE ; 

BEGIN 
OPEN cust_grp ; 
FETCH cust_grp INTO lv_cust_id ; 
CLOSE cust_grp ; 

RETURN lv_cust_id ; 
END Get_Cust_Grp ; 

/*************************************************************************/ 

FUNCTION Get_Sales_Grp (p_sales_id IN st_salesman.salesman_id%TYPE) RETURN 
NUMBER IS 

!************************************************************************* 
* Function to get the salesmans group * 
*************************************************************************/ 

CURSOR sales_grp IS 
SELECT salesman_grp_id 
FROM st_salesman 
WHERE salesman_id = p_sales_id ; 
lv_sales_id st_salesman.salesman_grp_id%TYPE ; 

BEGIN 
OPEN sales_grp ; 
FETCH sales_grp INTO lv_sales_id ; 
CLOSE sales_grp ; 

RETURN lv_sales_id ; 
END Get_Sales_Grp ; 

/*************************************************************************! 

FUNCTION Get_Prod_Grp (p_prod_id IN st_product.prod_id%TYPE) RETURN NUMBER 
IS 

!************************************************************************* 
* Function to get the product group * 
*************************************************************************/ 

CURSOR prod_grp IS 
SELECT prod_grp_id 
FROM st_product 
WHERE prod_id = p_prod_id ; 
lv_prod_id st_product.prod_grp_id%TYPE ; 

BEGIN 
OPEN prod_grp ; 
FETCH prod_grp INTO lv_prod_id ; 
CLOSE prod_grp ; 

90 



RETURN lv_prod_id ; 
END Get_Prod_Grp ; 

/*************************************************************************/ 

!************************************************************************* 
* Function to get the the next sequence number * 
*************************************************************************! 

FUNCTION Get_Sequence_Number (p_seq_name IN V ARCHAR2) RETURN NUMBER IS 
lv_string V ARCHAR2(200) ; 
lv_cursor_handle INTEGER ; 
lv_sequence NUMBER ; 

BEGIN 
lv_string := 'SELECT 1ip_seq_namell '.NEXTVAL FROM DUAL' ; 
lv_cursor_handle := DBMS_SQL.OPEN_CURSOR ; 
DBMS_SQL.PARSE (lv_cursor_handle, lv_string, 1 ) ; 
DBMS_SQL.DEFINE_COLUMN (lv_cursor_handle, 1 ,  lv_sequence) ; 
IF DBMS_SQL.FETCH_ROWS (lv_cursor_handle) != 0 THEN 
RETURN (lv_sequence) ; 

END IF ;  

DBMS_SQL.CLOSE_CURSOR (lv_cursor_handle) ; 
END Get_Sequence_Number ; 

END st_comm ; 
I 

91 


	Implementing flexible software techniques in a 4GL environment
	Recommended Citation

	tmp.1537849352.pdf.skO6B

