
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-1992

A study of the methodologies currently available for the A study of the methodologies currently available for the

maintenance of the knowledge-base in an expert system maintenance of the knowledge-base in an expert system

Kai Teh
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Teh, K. (1992). A study of the methodologies currently available for the maintenance of the knowledge-
base in an expert system. https://ro.ecu.edu.au/theses/1129

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1129

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1129

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

A STUDY OF THE METHODOLOGIES

CURRENTLY AVAILABLE FOR THE

MAINTENANCE OF THE KNOWLEDGE-BASE

IN AN EXPERT SYSTEM

BY

KAI TEH B.Sc., Post-grad Dip. in Computing Scie11ce.

A Thesis Submitted in the Partial Fulfilment of the Requirements

for the Award of

Master of Applied Science (Computer Studies)

at the School of Information Technology and Mathematics,

Edith Cowan Unversity

Name of Supervisor : Tim Roberts

Date of Submission : 29-S-92

ABSTRACT

This research studies currently available maintenance methodologies for expert system

knowledge bases and tallonomically classifies them according to the functions they

perfonn.

The classification flllls into two broad cnteg, <1e~. These are :

(1) Methodologies for building a more maintainable expert system knowledge base.

This section covers techniques applicable to the development phases. Software

engineering approaches as well as other approaches are discussed.

(2) Methodologies for maintaining an existing knowledge base. This section is

concerned with the continued maintenance of an existing knowledge base. It is

divided into three subsections. The first subsection discusses tools and techniques

which aid the understanding of a knowledge base. The second looks at tools

which facilitate the actual modification of t~.e knowledge base, while the last

section examines tools used for the verification or validation of the knowledge

base.

Every main methodology or tool selected for this study is analysed according to the

function it was designed to perform (or its objective); the concept or principles behind

ii

the tool or methodology: and its implementation details. This is followed by a general

comment at the end of the analysis.

Although expert systems as a rule contain significant amount of infonnation related to

the user interface, database interface, integration with conventional software for

numerical calculations, integration with other knowledge bases through black boarding

systems or network interactions, this research is confined to the maintenance of the

knowledge base only and does not address the maintenance of these interfaces.

Also not included in this thesis are Truth Maintenance Systems. While a Truth

Maintenance System (TMS) automatically updates !i knowledge base during execution

time, these update operations are not considered 'maintenance' in the sense as used in

this thesis. Maintenance in the context of this thesis refers to perfective, adaptive, and

corrective maintenance (see introduction to chapter 4). TMS on the other hand refers to

a collection of techniques for doing belief revision (Martin, 1990) . That is, a TMS

maimains u. set of beliefs or facts in the knowledge base to ensure that they remain

consistent during execution time. From this perspective, TMS is not regarded as a

knowledge base maintenance tool for the purpose of this study.

iii

DECLARATION

I certify that this thesis does not incorpornte without acknowledgment any material

previously submiued for a degree or n diploma in any institution of higher

education; nnd to the best of my knowledge and belief it does not contain any

material previously published or written by another person except where due

reference is made in the text.

Signature

Date 29·5·92

'

ACKNOWLEDGMENTS

The author wishes to give special thanks to Mr. Tim Roberts for having provided

some invaluable comments and guidance during the course of writing the thesis,

and the librarian Jenny Renner, who went to condderab\e length to make sure that

I obtained all the materials required. My thanks also exter.d to Mr. Geoff Sutcliffe

for his kind advice.

I

CONTENTS

Title
Abstract
Declaration
Acknowledgments
List of Tables
List of Figures

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

1.2 NEED FOR TilE STIJDY

CHAPTER TWO

OBJECTIVES

CHAPTER THREE

BUILDING MAINTAINABLE KNOWLEDGE BASES

3,1 SOFTWARE ENGINEERING APPROACH

3.1.1 RIGOROUS DEFINITION
3.1.1.1 COLOSSUS

3.1.2 MODULARITY
3.1.2.1 INTERFACE SPECIFICATION APPROACH
3.1.2.2 KNOWLEDGE FLOW MODEL
3.1.2.3 MULTIPLE KNOWLEDGE BASES CONCEPT

Page

ii ,,
'
'
'

2

5

7

8

10
13

17
20
28
33

,,

3.1.3 DATA DICTIONARY CONCEPT 37

3.1.4 NORMALISATION PRINCIPLE 42
3.1.4.1 KNOWLEDGE ANALYST'S ASSISTANT 43

3.1.5 STRUCfURED TECHNIQUES 48

3.1.6 OTHER SOFTWARE ENGINEERING TECHNIQUES 55
3.1.6.1 REUSABILITY 55
3.1.6.2 DOCUMENTATION 56
3.1.6.3 STANDARDISATION 57

3.2 OTHER APPROACHES 58

3.2.1 KNOWLEDGE SPECIFICATION CONCEPT 59

3.2.2 KNOWLEDGE IN CONTEXT STRATEGY 63

3.2.3 EXPLICIT HIGH-LEVEL CONTROL STRUCTIJRE 69
3.2.3.1 RIME 69

3.2.4 TOWARDS MORE DECLARATIVE LANGUAGE 73
3.2.4. 1 SYLLOG 73

CHAPTER FOUR

MAINTAINING AN EXISTING KNOWLEDGE BASE 78

4.1 UNDERSTANDING THE KNOWLEDGE BASE 79

4.1.1 EXPLAINABLE EXPERT SYSTEM PARADIGM 80

4.1.2 OTHER KNOWLEDGE BASE UNDERSTANDING AIDS 89
4.1.2.1 AUTOMATIC PROGRAM UNDERSTANDING PARADIGM 89
4.1.2.2 KNOWLEDGE BASE SOFTWARE ENGINEERING CONCEPT 90
4.1,2.3 HOMOGENEITY AND PREDICfABILITY 90
4.1,2.4 DECLARATIVE LANGUAGE 91
4.1.2.5 PROPOSING SIMPLIFIED RULES 91
4.1.2.6 FORMAL SPECIFICATION FROM EXISTING COMPONENTS 91

vii

4.2 AIDS TO FACILITATE THE PROCESS OF MODIFICATION

4,2,1 INTELLIGENT ASSISTANT
4.2.1.1 TEIRESJAS

4.2.2 KNOWLEDGE CLASSIFIERS
4.2.2.1 AN EARLY CLASSIFIER
4.2.2.2 INTERACfiVE'CLASSIFIERS

92

93
93

97
98
99

4.2.3 KNOWLEDGE REFINEMENT TECHNIQUES !OS
4.2.3.1 SEEK 105

4.2.4 OTHER INTERACTIVE MODIFICATION TOOLS Ill
4.2.4.1 KNOWLEDGE BASE EDITORS 111
4.2.4.2 AUTOMATED KNOWLEDGE ACQUISITION TOOLS Ill

4.3 ENSURING CORRECfNESS AFI'ER MODIFICATION 113

4.3.1 KNOWLEDGE BASE VERIFICATION TECHNIQUES 115

4.3.1.1 ONCOCIN RULE CHECKER 116
4.3.1.2 CHECK 122
4.3.1.3 OTIIER VERIFICATION TECHNIQUES 127

4.3.1.3.1 SPACE SEARCHING METIIOD 127
4.3.1.3.2 PREDICATEJTRANSITION NET METHOD 128
4.3.1.3.3 ART RULE CHECKER 129

4.3.2 KNOWLEDGE BASE VALIDATION TECHNIQUES 130

4.3.2.1 TOWARDS VALIDATION STANDARDS 133
4.3.2.1.1 CORRECTNESS PRINCIPLES APPROACH 133
4.3.2.1.2 VALIDATION STANDARDS 135

4.3.2.2 INTEGRATED V&V TOOL SET APPROACH 138
4.3.2.2.1 EXPERT SYSTEM VALIDATION ASSOCIATE

PROJECT 138

4.3.2.3 OTIIER VALIDATION TECHNIQUES 144
4.3.2.3.1 TEST CASES 144
4.3.2.3.2 EXPLANATION 144
4.3.2.3.3 DESIGN TECHNIQUES THAT AID VALIDATION 145
4.3.2.3.4 CONVENTIONAL SYSTEM TESTING STRATEGY 145

viii

CHAPTER FIVE

CONCLUSION 146

5.1 SUMMARY 146

5.1.1 BUILDING MAINTAINABLE KNOWLEDGE BASES 147

5,1.2 MAINTAINING EXISTING KNOWLEDGE BASES 150
5.1.2.1 KNOWLEDGE BASE UNDERSTANDING 150
5.1.2.2 FACILITATING THE MODIFICATION PROCESS 152
5.1.2.3 ENSURE CORRECTNESS AFTER MODIFICATION 153

5.2 LAST WORD 156

5.2.1 PAST AND PRESENT METHODOLOGIES 156
5.2.2 FUTURE MAINTENANCE DIRECITONS 157

APPENDIX

TAXONOMIC CLASSIFICATION CHART 160

BIBLIOGRAPHY 161

;,

f

LIST OF TABLES

Table 3.a Relationship between rule, fact and action

Table 3.b Item has number of parts

Table 4.a All possible combinations of condition parameter

values and their corresponding action panuneter values

LIST OF FIGURES

Figure 3.a Modifying an Application Model

Figure 3.b A list of rules in the knowledge base

Page

39

75

119

45

65

Figure 3.c A conceptual representation of a set of rules in the knowledge base 66

Figure 4.a A brief outline of the EES framework

Figure 4.b The Refinement Structure

Figure 4.c Finding the most specific subsumcr

Figure 4.d Siblings of node Y

Figure 4.e Most general subsumees of node Y

Figure 4.f Rules concluding the same action parameters

Figure 4.g The rule structure of CHECK

Figure 4.h Dependency chart

85

86

101

102

103

118

123

125

'

C lfil A II' 71' Ul/111

INTRODUCTION

1.1 BACKGROUND

Often the principal cost of a computer project is the maintenance cost. This is

particularly evident in the case of large computer systems.

Quoting from the U.S. Department of Commerce figures of October, 1985, Carrico,

Girard, and Jones (1989, p. 219) claimed that over a software project's life cycle,

maintenance takes up more time, money and resources than any other aspect of the

project and that "software maintenance accounts for 60 to 70 % of each software dollar

allocated".

In the U.K., Lientz and Swanson, in a major survey conducted in the late seventies,

found that some firms were spending up to 70% of their computing effons 011

maintenance (quoted in Bennett, 1991, p. 75). Martin and McClure stated that over $20

billion per year was being spent worldwide on the maintenance of software systems

(Martin and McClure, 198j). In an article published in 1988 Parikh claimet.I that more

than $30 billion per year was spent on maintenance of software systems, and that most

companies allocate 50% of their DP budget for maimenance (Parikh, 1988, p. 13}.

Maintenance issues have for too long been largely ignored by computer professionals.

Parikh, in a bid to highlight this gross neglect, went so far as to call maintenance a

"taboo subject" (Parikh, 1988, p. 34). He pointed out that in the U.S. this " pervasive

lack of attention to the subject [of maintenance] persists on a national level" (Parikh,

1988, p. 13). Gunderman lamented the fact that traditionally DP personnel had always

considered maintenance as a second class activity, something for the beginners'

on·the-job training or a low status assignment for the outcasts and the fallen

(Gunderman, 1988, p. 55}. Liu said that analysts see the maintenance function as an

inferior assignment (Liu, 1988, p. 61), and so did several others who bemoan this

situation.

Paradoxically, the situation is one where on the one hand maintenance is the costliest

phase of the systems life cycle, and yet 011 the other it is relegated to the lowest priority

in that life cycle,

1.2 NEED FOR THE STUDY

From the foregoing discussion, there appears to be a need to highlight this important

but neglected phase of 1111 expert system project.

Maintenance in the context of expert systems is thought to be even more problematical

and costlier than maintenance in the case of traditional systems. Among those who hold

this view is Prerau. He declared that "in most instances the largest costs in the life cycle

of a computer program are for program maintenance" and that this is "true to an even

greater degree for an expert system program where the knowledge as well as the code

must be maintained" (Prerau, 1990, p. 287). Hicks said knowledge maintenance is more

dynamic than traditional data processing maintenance. He also noted that knowledge

is not common, therefore not easily reusable. Besides, knowledge is often not well

documented and must be acquired and tested incrementally (Hicks, 1990, p. 293).

The claim that expert system maintenance has been for the most part largely neglected

is evidenced by the fact that until recent times expert syst:ms were to be found mainly

in research laboratories where maintenance issues were not a priority. Nau

acknowledged the severity of this negligence by reminding us that "since expert systems

have until recently been largely experimental, we have not had to consider the need for

long-term maintenance ... More attention will have to be paid to tl1ese 'real world

details' if expert systems are to be useful in the long run" (Nau, 1988, p. 73).

2

Prerau, Gunerson, Reinke, and Adler (1990) point us to the fact that making expen

systems more maintainable has not been a major concern either in AI or Software

engineering. Instead most work in this area has been focussed on producing a new

genemtion of development tools (Prerau et al., 1990, p. 71). This emphasis on software

development to the neglect of maintenance is seen by Parikh as "trying to fly with one

wing" (Parikh, 1988, p. 22),

The legacy from this lack of attention to maintenance issues in the early days has caused

many older expert systems :o be rewritten because they have simply become

unmaintainable.

At the Commonwealth Scientific Industrial Research Organisation (CSIRO), Jansen

reponed that two expert systems, the Gmvan thyroid expert system and the SIRATAC

cotton management expen system had to be redeveloped. In his words," ... both have

a common reason for their redevelopment. They have become difficult if not impossible

to maintain." (Jansen 1988, p. 101). For the same reason XCON's knowledge base,

which over 7 years has grown to 6200 rules, has become so difficult to maintain that

a new version, XCON-in-RIME is being written as the successor to XCON (Soloway,

Bachant, & Jensen, 1987).

Signs nre beginning to appear that this gross negligence of maintenance is gradually

being put right. In recent times, as we witness more and more expen systems being used

in the areas of industry, commerce, computer hardware and software suppon, aerospace,

transponation, etc, computer professionals are increasingly coming to grips with the

reality of maintenance issues.

As knowledge bases grow larger and become more complex, there appears to be an

undercurrent of new urgency which is driving researchers in different directions in their

scramble to come up with better maintenance tools, more superior methodologies, or

more innovative ideas. The result of this is evidenced by the myriad of tools and

techniques on the market.

3

When confronted with such a diversity of ideas and tools it is easy for a maintainer to

be confused about where to begin. An important aim of !his study is therefore to provide

a taxonomic cla5sification of these methodologies with respect to their proposed

maintenance paradigms. It is hoped that such a classification will go some distance to

help shorten the time developers or maintainers of expert system knowledge bases spend

on searching the literature and will allow them to gain a quick insight into what is

available in the market.

By classifying these tools in tenns of the rationale or philosophy behind their creation,

a maintainer is free to concentrate on the tools' underlying principles rather than on the

specific tools themselves. This is important because while a particular tool may be out

of the reach of the maintai!ler, the maintenance philosophy or rationale is not.

Many of the tools presented here have been used successfully on only one or two

applications; nevertheless, the concepts behind them may be found to b~ generally

applicable.

4

c Ill& if' 7f IIlii 2

OBJECTIVES

The objectives of this thesis are as fo!lows :

1) to analyse currently available maintenance methodologies, and

2) to taxonomically classify them in tenns of their proposed maintenance paradigms.

In this research, maintenance is seen as fundamentally involving a process which

consists of the fol!owing three steps :·

i) Understanding of the knowledge base prior to making any changes.

ii) Physically modifying the e:dsting knowledge base.

iii) Revalidating the modified knowledge base to ensure that no errors or

inconsistencies have been introduced.

While a knowledge engineer will invariably go through the above three steps when

maintaining an existing knowledge base, these three steps are not, however, confined to

the maintenance process alone. For instance, in order to aid in the understanding of a

knowledge base, good documentation, explanation facilities, and well structured and

formatted code are required. This is essentially a design issue rather than a maintenance

issue.

To facilitate the actual process of modifying the knowledge base, modularity of

knowledge, easy-to-update documentation, knowledge structures which minimise the

s

effect of changes and codes that are easy to expand and easy to update are required.

This again is a design issue.

To aid in revalidating the modified knowledge base in order to ensure that no

inconsistencies have been introduced, knowledge base structures which facilitate

selecti.ve retest and good traceability between specification requirements and code are

desirable. It is obvious that this too is a design issue and should be considered during

the building of the knowledge base.

In other words, to consider maintenance issues, one has to look beyond just maintenance

-how the knowledge base has been built in the first place is equally ns imporlllnt (if not

more so).

Hence this thesis is constructed along the following lines :

(1) A discussion of techniques for building more maintainable expert system

knowledge bases.

(2) A discussion of techniques for maintaining existing knowledge bases.

Chapters 3 and 4 take up these two sections respectively.

6

C /IDA IP 'l' IE !I! 3

BUILDING MAINTAINABLE
KNOWLEDGE BASES

This chapter is concerned with tools and techniques applicable to the knowledge base

development phases.

The chapter is divided into two sections; the first section focuses on software

engineering approaches while the second looks at other attempts.

7

3.1 SOFTWARE ENGINEERING APPROACH

Of the existing paradigms for building a more maintainable knowledge base, a vast

majority to different degrees owe their existence to software engineering principles- that

vast collection of methodologies and techniques for the development and management

of software.

While software engineering principles are important in the construction of maintainable

systems, they are not unanimously embraced by the AI fraternity. There are dissenting

voices which question their relevance to expert system constructions. Among the

doubters is Jansen. His line of argument is that since the main development

methodology of expert systems is the knowledge acquisition phase combined with a

literature search for the correct knowledge representation fonnalism, there is a question

as to whether software engineering techniques hnve any use in tire development of

expert systems (Jansen, 1988, p. 102).

Partridge on the other hand sees some overlap between software engineering and AI

problems. He declared that "Software engineering problems are a subset of AI

problems :the subset of well-defined [AI] problems" (Pnrttidge, 1986, p. 19). Uriloss we

consider expert systems problems as well-defined problems then clearly expert systems

fall outside this software engineering category according to Partridge's definition. Since

it is doubtful that one would call expert system problems well-defined, by virtue of his

argument one lllllY conclude that software engineering solutions are not the best suited

for solving expert system problems.

8

While such well meaning cautionary voices which constantly remind us to rethink our

position are appreciated and their points taken, it is nonetheless undeniable that software

engineering techniques do have n place in the construction of expert systems. This is

evidenced by the ma11y useful tools and strategies outlined in the following pages which

are built around software engineering principles.

The current nuthor feels software engineering to be sufficiently important to devote a

section of Chapter 3 to its discussion. The software engineering principles discussed here

include rigorous definition, modularity concepts, data dictionary usage, normalisation

techniques and structured techniques among others.

9

3.1.1 RIGOROUS DEFINITION

A major pillar of software engineering is the rigorous definition of requirements.

Rigorous definition in this conte~~:t refers to the complete pre-specification of all logical

user requirements in detail prior to the design and construction of the actual physical

system. Thus the rigorous definition approach would generally cover the use of

structured methodologies, data flow diagram analysis techniques, the traditional life

cycle approach. conceptual modelling techniques, and others. All of these techniques

fundamentally rely on the principles of rigorous definition to build some conceptual or

logical model before proceeding to the construction phase.

In theory the principle of rigorous definition appears sound. If we 'get it right in the first

place' through rigorous specification, then maintenance problems should be greatly

reduced.

Boehm had shown that modifying a system after it has been put into operation can cost

several hundreds of times more than modifying it in the early stages (Boehm, 1981.

p. 40). This underlies the importance of the well-documented software engineering

principle of getting it right the first time - what is to be done must be rigorously

specified, how to do it is relatively insignificant.

However, in the case of expert systems this wisdom may not necessarily be true.

Partridge said that since rigorous definitions "specify what the system should do rather

10

than how it should do it, it is here that we find our first important point of contrast with

AI problems" (Partridge, 1986, p. 31).

Sacerdoti also disagrees with the rigorous definition viewpoint in the context of expert

systems development He says that "an expert system does not fit well into conventional

software engineering paradigm because a detailed specification or functional definition

cannot be written before coding" (Sacerdoti, 1991, p. 26).

Rolston argued that a complete understanding of the system requirements is not possible

and cannot be derived at the start of a project because "iteration is inevitable in any

large software development project" (Rolston, 1988, p. 134).

Not all authors, however, hold this view, Keller is a strong advocate of structured

techniques for the development of expert systems. He extolled the virtues of rigorous

definition by proclaiming that "structured system development techniques offer a more

appropriate approach to AI system development" (Keller, 1987, p. 2), and dedicated his

book to showing how traditional system development technologies can be applied to

expert systems development.

While there are many proponents of rigorous definition for both the building of

conventional as well as expert systems, it should be pointed out that even amidst the

ranks of conventional systems practitioners there are dissenters to the rigorous definition

concept.

11

Apart from specifying very highly structured systems, rigorous definition does not

appear to be very practicable since it fundamentally assumes that users know e.t~t!y

what they want In complex systems it is unlikely that users know precisely what they

want or what is best for them.

Even if users do know what they want, it cannot be assumed that they are able to spell

out their requirements precisely. Too often there is an unbridgeable communication gap

between the users and the system developers.

Boar said that those who advocate rigorous specification presuppose "all requirements

can be specified, ... the project team is capable of unambiguous communication ... a

rigorous approach is inherently t!1e correct approach for all life cycle phases" (Boar,

1984, p. 20). He argued that all these assumptions are flawed.

Vitalari considered structured methodologies from a cognitive and psychological

perspective (Vitalari, 1984). He felt that information requirements definition is too

complex for current structured methodologies to handle. Such methods are only good

for documentation and writing specifications once they have been elicited, hut are poor

elicitors of infonnation themselves. Hence rigorous definitions are not possible using

current methodologies.

Both Boar and Vitalari offered their solutions. While Vitalari's remedy is to develop a

new generation of structured methodologies, Boar advocates the use of prototyping.

12

In the midst of llll these arguments, some developers, meanwhile, continue ro build

expert systems fol!owing the rigorous definition doctrine, One such example is the

COLOSSUS system. The following section takes a look at COLOSSUS to try to

understand why its developers supported rigorous definitions sufficiently to adopt this

in the building of expert systems.

3.1.1.1 NAME OF SYSTEM : COLOSSUS

INTRODUCTION

COLOSSUS (Beinat & Smart, 1989) was developed using the 'conceptual modelling'

methodology. It is an expert system to handle third party insurance claims, jointly built

by G.I.O. of New South Wales, Australia, and Software Computations.

DISCUSSION

Beinat and Smart were staunch opponents of the prototyping methodology. They made

this clear in their paper by putting up a strong case against prototyping while promoting

the virtues of the conceptual modelling technique.

13

Among the downsides of the prototyping methodology claimed by Beinat and Smart is

that in prototyping "The interaction is uni-directional" (Beinat & Smart, 1989, p. 76).

The domain experts are not actively involved in the development of the conceptual

model. (The conceptual model is the knowledge engineer's picture of the problem and

its theoretical solution, in short the rigorous definition). Thus the experts have no idea

of the cause of any future problems thnt might occur to the system and wil! be of little

assistance in their correction.

The appeal of the prototyping methodology lies in its "political advantage in eliciting

management support for the project" since by using prototyping, "a visual indication of

progress can be achieved very early in the project" (Beinat & Smart, 1989, p. 76).

In contrast, conceptual modelling concentrates on the developing of two models :-

i) the strategic model- this is the· domain expert's view of the model.

ii) the implementatiOil model- this is the knowledge engineer's view of the model.

Beinat and Smart said that this dual nature of the conceptual model demands that the

expen and the knowledge engineer work together to fonnulate and validate the

representation of the problem and its solution. Due to this close involvement with the

project the expert will be in a position to lead maintenance activity at a later stage.

This opinion appears to be in contradiction to the widely held view that prototyping

methodology fosters greater user participation than traditional methods. Also, in the

14

prototyping methodology the experts can see their systems materialise into concrete

systems hence no power of imagination is called for. With the conceptual modelling

methodology a Jot of imagination, on what a future system is going to look like and how

it is going to work, is required.

Beinat and Smart cited three phases in conceptual modelling. These are the learning

phase, the modelling phase and the construction phase.

During the first two phases no tangible results can be seen. He admitted that "the

drawback of this methodology is that it is not possible to produce any tangible result

until the third phase, well into the project" (Beinat & Smart, 1989, p. 79).

What he failed to mention is the customary shock users may receive when presented

with the system for the first time. More often limn not this does not coincide with their

imagined system.

Beinat and Smart also conceded that "management must have confidence in the project

team before this methodology is viable" (Beinat & Smart, 1989, p. 79). He did not,

however, mention if that confidence was in abundant supply.

15

CONCLUSION

The reasons why rigorous definition still attrncts a following even among expert systems

developers may be that :

i) the expert systems they are developing are highly structured, rather akin to

conventional data processing systems involving large databases and

structured procedures,

ii) these developers mny have their roots in conventional systems development,

and are reluctant to abandon pre-held concepts.

In concluding, it must be conceded that the rigorous definition principle is fundamentally

sound, but it should be approached with caution in the development of conventional

systems, and to an even greater degree in expert systems development.

16

3.1.2 MODULARITY

INTRODUCTION

Among software engineering practices, the modular approach is perhaps the most useful

and simple in concept. It is straightforward nnd ensy to adapt to any system, yet

effective in building maintainable systems.

TI1e 'Chunking' phenomena (Adelson, 1990) suggests that Cllperts generally solve

problems by structuring them into clusters or chunks of information. This is evidenced

by chess masters who recall game boards as functional clusters, and electronic engineers

who recall clusters of circuit diagrams. In each case, they use the functional relationships

which exist among the elements of the problem to structure them into chunks.

Adelson also noted that mathematicians usually transfonn complex equations into more

modular forms by replacing them with temporary variables.

Since it is a natural phenomenon for humans to solve large problems by decomposing

them into related sub·components, it seems reasonable to propose that modular

representation should not just be viewed as a technique to facilitate maintenance but as

a natural 1'-'ay to represent rules.

While there can be li •. m dispute as to the effectiveness of modularity, the question of

'how to modularise?' appears to be a difficult one to answer.

17

Should we modularise according to a system's functionality or modularise to achieve

structuredness ll!ld relldability? Should the modules reflect the expert's knowledge or

should they be structured fur the convenience of the structured tool used? Should we

seplll'l!te implemenu11ion knov.:edge and domain knowledge into different modules? In

a system that uses multiple knowledge representation schemes should we modularise

according to the muilipleknowledgerepresentation paradigms used?These questions and

their like will no doubt confront system developers who are planning to introduce

software engineering practices into their design. Hence an aim of this section is to find

out what researchers lhink should be modularised in what kiud of applications.

Then there is the question of 'how to implement these modules?'. Should we implement

them as multiple modules within a knowledge base, or should we have multiple

knowledge base:;?

For example, these are some of the ways taken by researchers in modularising their

systems :-

-COLOSSUS (Beinat & Smart, 1989) was modularised on the basis of logical

discrete problem solving components, (each component is called a 'focus control

block'), Each block contains no more than 500 rules out of a total of some 5000

rules in Colossus.

-COMPASS (Prernu, 1990) uses the concept of 'multiple knowledge bases' to

separa1e its knowledge base into eighteen distinct knowledge bases.

18

• LOOPS uses the notion of a ruleset which can be 'called' like a subroutine

(Jacob & Froscher, 1990, p. l?3)

• LOAN PROBE comprises 33 knowledge b~.!s that communicate through a

blackboard system (Ribar, Arco!eo, & Hollo, 1991),

· XCON's (Soloway eta\., 1987) knowledge base is partitioned into 'subtasks',

·Jacob and Froscher talked about the 'Interface specification' concept (Jacob &

Froscher, 1990).

·Payne developed the 'Knowledge Aow Module' concept (Payne, 1991).

The following section looks at several modular approaches which have been chosen for

their diversity of techniq;tes. Tite concepts they propound may be adapted to the

building of most knowledge bases. These are the 'Interface Specification' approach, the

'Knowledge Aow Module' approach and the 'multiple knowledge bases' concepts of

COMPASS.

The first two approaches may be implemented in a single knowledge base, while the last

approach is implemented using multiple knowledge bases.

19

3.1.2.1 INTERFACE SPECIFICATION APPROACH

INTRODUCTION

The interface specification approach (Jacob & Froscher, 1990), (Davis, 1990) makes the

knowledge base easier to change by Jocalising the effects of changes within the modules.

The approach may be seen as a general method since it may be used without reliance

on software tools (although it is preferable to have them). It is applicable to a

knowledge base whichever way it is panitioned. This is because the approach's main

focus is on the infonnation flow between different modules and their clear specification.

A key aim of this approach is to reduce the amount of information that knowledge

engineers have to understand before they can make a change to the module. This is

achieved by :·

i) limiting tlte amount of informution flow among the various modules, hence the

effects of changes within modules are reduced,

ii) formally specifying the infonnation flow between modules, hence making the

functions of modules easy to understand.

20

CONCEPT BEHIND THE APPROACH

A knowledge base may contain two types of knowledge, namely control knowledge and

domain knowledge. Control knowledge is that used to enai"'le or disable the frring of

rules, while domain knowledge is that whicb currk• infonnation between rules.

This method is applied only to the domain kuowledge, henc11 it requires the separation

of control knowledge from the domain knr.wledge. In some languages domain

knowledge is expressed in rules while controi knowledge is expressed in a different

notation, so that this segrer 1tion is already made. Examples of such languages given by

Jacob et al. are KES, and ORBS (Jacob et al., 1990, p. 175).

This discussion considers a knowledge base that contains only domain knowledge.

The method may be applied at the time the knowledge base is created or it may be

applied after a prototype has been built. The idea is to divide rules into groups such that

each group contains all the rules relevant to one specific, small area of knowledge. For

example a group may contain rules for checking if an animal is a mammal, while

another group contains rules to test if a mammal is a carnivore, etc.

Groups are allowed to contain subgroups, thus fonniug a hierarchy of groups.

21

Within gi'Oups there are rules. Rules are made up of facts. There are two types of facts,

namely local facts, and intergroup facts. Local facts are produced and used within the

group only and do not effect the rest of the system. Intergroup facts on the other band

are produced by one group and used by another. In other words intergroup facts provide

the linkages between the groups.

There are two main types of intergroup facts. Those that are produced or modified by

rules in a group, and those that are merely e~~:amined by rules in a group. The first type

are referred to as PRODUCED facts, where the latter are the USED facts.

The interfPce specification method relies heavily on the clear specification of these

intergroup facts. These specifications are merely documentations and do not affect the

overall perfom1ance of the system. The specification in effect sununarises the workings

of the group that produces it.

To modify a group the knowledge engineers do not have to understand the whole

knowledge base. They merely have to understand the internal workings of that group by

studying these specifications, and more importantly, they must preserve the integrity of

these specifications when making changes.

22

IMPLEMENTATION DETAILS

Starting wilh a knowledge base that contains only domain knowledge, the following

steps need to be carried out to modularise it.

Step 1 Separate rules into groups

Rules are first separated into a hierarchy of groups. The basis of this

separation is to look for rules that affect one another. Such rules are

likely to be changed at the same time.

This separation may be canied out manually or it may be automated by

the use of a grouping algorithm. The algorithm explored by the

developers is called a 'clustering algorithm'.

The algorithm considers two rules as related if the same fact has been

mentioned by both rules. Ratlter than making a binary valued check on

whether two rules are related, the clustering algorithm uses a weighting

factor to ruensure the extent of such relatedness.

For example, consider the following cases :

23

case I

if x then y

ify then z

case 2

if x then y

ifz then y

In both cases y is a shared fact. However the rules in case I are more

related than the rules in case 2 because the rules in the fonner case have

a greater programming dependency.

A detailed working of the clustering algorithm is given in the article by

Jacob eta\. (Jacob, et al. 1990, p. 184).

Step 2 Within each group pick out local and intergroup facts.

This step can also be automated since an algorithm can be applied to check if

a given fact is used by rules within a single group (local fact) or whether it

spans other groups (intergroup facts).

Intergroup facts whose values are produced or modified by rules inn group will

be flagged by the algorithm as 'PRODUCE' facts, while those whose values are

examined by rules in n group are flagged as 'USE' facts.

24

For example, consider the following rules of a group "' :

Group A

PRODUCE At
USE Bl
USEB2

Rule 1 :if X then At.

Rule 2: if BI then C.

Rule 3 : if B2 then C.

Rule 4 : if C then A2.

At is flagged as 'PRODUCED'"'' because it is produced (ie set or modified)

by this group (Group A) and it will be used by another group (not shown here).

A2 is also produced by this group (Group A) but it is not flagged because it is

not used by any other group. A2 is not used by any other group because it is

either a local fact or a top level output of the system.

Bt and B2 are declared as 'USE' because they are produced by other groups

(not shown) and are eKamined by this group.

"' Tho above di><UU<> rul" wlU.In o o!o;lo s-l'· il1 111< <DO of IJ'I'II'I .. 11111n """~"> o<bu «>O<Cf'IO. lit< OI.OBAL, u ...
D(IIIIN, hov<IO l>o <OIUI&rel Thtf It< 110! di><ws«l he«.

25

C is also used by this group but is not declared because it is not produced by

any other group. That is C is a local fact.

Step 3 Write externlli descriptions for intergroup facts

This is arguably the most crucilli step of the whole process since upon it rest

the descriptions of the group which knowledge engineers rely on for their

understanding when making changes to that group. However, it is also the only

step that defies automation.

In this step the developers of each group that produces intergroup facts must

provide descriptions for such facts. The descriptions should specify what will

remain U1le of that fact in the future.

The description summarises the internal workings of the group that produces

it. Jacob et al. said that these descriptions should be written as "a higher level

informal statement of the aspects of the output that will not change and may

be considered externally visible" (Jacob, et al., 1990, p. 176). By this, it is

meant, rather than writing a statement as (i) "X is U1le if A > B", the

description could be written as (ii) "X gives the system the best estimate of

whether the patient has flu''.

Information about "A> B" should not be specified because such internal details

may change. Besides, writing a description as statement {i) would es3entially

be repeating the entire group of rules as they presently are,

Writing as statement (ii) will present a higher level description of the output

that will not change even when modifications are made to the details of the

internal rules.

To modify such a knowledge base, the knowledge engineers need to pay

particular attention to the intergroup facts since other groups can be affected by

26

a change in this group. They must rely on these descriptions for their

understanding of the group's internal workings, and at the same time en3ure

that they preserve the validity of the descriptions after the change.

COMMENTS

Although this method was proposed for used with production rules, its underlying

concept should be applicable to other fonnalisms as well. The production system has

chosen because the researchers felt that it was the most widely used type of

knowledge representation in expert systems.

While some of the steps described above cnn be automated, theoretically they can

also be done manually if no relevant software tools are available.

Since the statements (eg USE, PRODUCE, etc) used in this method are merely

documentary, they do not affect the execution of the system. Hence they may be

applied at any stage in the development of the knowledge base.

However judgement should be used with regard to when to apply them. Applying

them too early in the development stage when the system is still unstable may result

in more work than benefit.

Although the researchers claimed that this is a 'new method' (Jacob et al., 1990,

p. 188), its 'group' concept is rather similar to Pascal's 'procedure' concept; the

'USE' concept resembles Pascal's 'by value' parameter concept and 'PRODUCE'

resembles 'by reference' paramete,·.

27

3.!.2.2 KNOWLEDGE FLOW MODEL

INTRODUCTION

The 'knowledge flow model' approach (Payne, 1991) modularises an expert system by

decomposing it into different application techniques, each application technique

reflecting a unique aspect of the application.

The developers of this approach claimed that many e)[pert systems failed because their

creators had misclassified them under one of these stringent categories like diagnosis,

monitoring, planning, design, etc. (Each category is referred to by this approach as an

'application technique'). In fact, most expen systems do not fit neatly into any one

particular application technique. Rather, they often straddle several techniques. By

failing to recognise this fact, expert system developem often run into difficulties when

the system has been expanded beyond the prototyping stage.

In the Knowledge Flow Model approach an expert system is conceptualised as

embracing several application techniques rather than a single technique. The system is

then modulari:>ed according to these perceived categorles or application techniques.

CONCEPT

Expert systems are designed to solve different types of application problems. The type

of application problem solved is tenned the 'application type'. Some examples of

application types include claim processing, process control, component repair, crisis

advice, etc.

28

Each application type may be decomposed or mapped into several application

techniques. An application technique represents a unique aspect of the application, In

other words, an application technique is a module designed to solve a particular category

of problem such as diagnosis, planning, monitoring, design, corrective action,

scheduling, prediction, etc.

As an example, an application type, like 'process control' may be mapped into two

application techniques namely 'monitoring', and 'diagnosis'. On the other hand an

application type !ike 'claims analysis' may mapped into 'monitoring', 'diagnosis' and

'corrective action'.

The idea is then to identify which application type an expen system belongs to. Once

this is known the application techniques can be identified. Each of these application

techniques is then designed as an independent module,

These modules are then combined into a larger stiUcture called a knowledge flow model

(KFM). The KFM is a stiUctured specification which defines how these modules are

linked together. In other words, the KFM describes the infonnation flow among the

modules.

The KFM may be thought of as a shell into which individual application domains may

be mapped. Different application domains may share the same KFM. For example both

the manufacturing production line, and insurance claim-processing application types may

be decomposed to the same application techniques, namely monitoring, diagnosis, and

corrective action. Hence OOth these different domain applications can be mapped into

the same KFM.

Once the KFM has been described for a particular application domain, it can be

implemented by using an expen system shell.

29

IMPLEMENTATION DETAILS

The KFM approach involvts two major steps. These are knowledge structuring (which

is concerned with the design of the application) and implementation (which is concerned

with the mapping of the design into the expert system shell used).

Step I Knowledge structuring

i) The eKpert system is assessed to detennine its application techniques

(whether diagnosis, scheduling, monitoring, etc), The application may be

made up of several of these techniques. As described earlier this may be

done by detennining the application type the eKpert system fits into. If it

is found to fit a standard application type, then its application techniques

are known, otherwise its application techniques have to be worked out

ii) These application techniques are then designed as independent modules.

iii) These modules are then combined into a KFM. This is done by defining

a structured specification describing the links (ie the flow of information)

among the modules. The KFM thus described is a collection of stand

alone modules that can be run independently or together.

iv) Since the KFM is only a general structure, the structure of a particular

application domain has still to be defined.

This is done by defining the domain objects and their attributes which are

required to implement each individual module found in the KFM.

Once the application domain structure is defined the KFM is ready for

implementation.

30

Step 2 Implementation

i) This step maps the KFM into the chosen e)[pert system's shell, For

eKample if the production rule formalism is used, a translation of the

KFM into rules and rule-control structures to control the ftring of rules

will have to be carried out.

ii) Each application technique module is then implemented and tested.

iii) Finally the tested application technique modules are integrated into a

cohesive system. Integration is achieved by the use of instance slots.

COMMENTS

Instance slots are locations in the knowledge base which store information

that are common across modules. They can be accessed or updated by the

vruious modules. Thus these slots may be thought of as the linkages

between the various modules.

An appeal of this method is that it suppons the reusability of knowledge. Once a

KFM for an •'!'!'lication has been developed, it is possible to reuse it for a different

application domain. When a KFM alrend.y eKists for a particular application type,

then the structuring of another application type which shares the same KFM will be

much simplified. It will generally be only a matter of substituting one domain object

for another.

31

In Payne's article he described how an application ty~ like a manufacturing

production line could share the same KFM with a different application type, like an

insurance claims-processing system. In such a case (where two different application

types share the same KFM), once a KFM for the manufacturing production line

application exists, defining the structure for the insurance claims-processing

application is only a matter of substituting the components in the factory, such as

sprayers and pumps with policy types in the insurance domain.

Modifying an expert system in the way suggested by this approach appears to result

in very large modules. Most of the examples given by Payne break the system down

into just two or three application technique modules. For example a process control

npplicalion may be decomposed intn two application techniques modules, namely

monitoring and diagnosis.

To enhance maintenance it should be expected that the application type modules be

further decomposed into smaller functional units.

32

3.1.2.3 MULTIPLE KNOWLEDGE BASES CONCEPT

INTRODUCTION

Many knowledge base systems have been implemented using the 'multiple knowledge

bases' concept. Among them are PROSPECTOR (Jacob, et al., 1990, p. 173), LOAN

PROBE (Ribar et al., 1991), COMPASS (Prerau, 1990), (Prerau, Gunderson, Reinke, &

Alder, 1990).

In this section, the modular approach behind the building of COMPASS (Central Office

Maintenance Printout and Suggestion System) will be examined.

This approach modularises an expert system knowledge base by following the

modularity of the expert's knowledge, and implements the concept by using multiple

knowledge bases.

COMPASS is a system that helps maintain electronic telephone exchanges. It was

originally developed at GTE Laboratories as a prototype model with little attention paid

to maintenance problems. Later it was re-developed from its original prototype and put

into field use. The modular concept was adopted then to ensure that it was more easily

comprehensible ami maintainable by organisations receiving the technology.

CONCEPT BEHIND THIS APPROACH

In order to aid maintainability, the creators of COMPASS proposed to develop the

system by following the modularity of the expert's knowledge. This is in contrast to

defining modularity in a way that is convenient for software development. That is, the

COMPASS approach structures the knowledge base so that it reflects the structure of

the expert's knowledge.

33

The developers claimed that the use of such a functional breakdown makes it easier to

split the implementation evenly among developers since such a split can be naturally

done along functional boundaries.

In the rapid prototyping environment in which COMPASS was developed, the functional

breakdown allowed each developer to work in relative isolation. In order to implement

the system along fPnctional boundaries the developers were prompted to ask how a

human e;~~:pert would perfonn the expert task manuaUy. The human expert would:

i) receive a group of messages (ie input),

ii) identify, analyse and make suggestions (ie process them non-interactively), and

iii) produce a list of recommenrled actions (ie output).

According to the above functional breakdown, COMPASS was decomposed into five

disjoint phases (input, identification, analysis, suggestion, output} plus many sub-phases.

Each of the five main phases could be assigned to a developer.

IMPLEMENTATION DETAILS

It was found necessary to divide COMPASS into eighteen separate knowledge bases,

seven of which analyse messages and problems; the remaining eleven are not really

knowledge bases in the sense that they do not contain e;~~:pert knowledge. Rather, they

contain system management tools, such as utilities for the maintenance of the multiple

knowledge b~ses, configuration management, control of inter-knowledge base data

access, etc.

The seven knowledge bases are what Prerau et al. called the 'active' knowledge bases.

The knowledge they contain corresponds to steps in the expert's analysis procedure.

Each knowledge base has its own name space and is treated as a single entity. That is

they can be saved, loaded or displayed separately. As such, a single developer can be

34

assigned to each knowledge base.

The following are some of the implementation problems faced by multiple knowledge

bases, and the ways COMPASS handles them :

i) Different developers tend to introduce their own individual styles into the

knowledge bases giving rise to potential maintainability problems.

The solution taken by the COMPASS team is to adopt standard programming

conventions to maintain unifonnity of styles.

ii) To ensure that no undue multi-representational paradigms ore used across tl1e

different knowledge bases, developers were required to select only rules or frames

fonnalisms whenever possible.

iii) Multiple kn11wledg 1 base systems often face the problem of not having clear

access paths (!e how ,,ne knowledge base can access another knowledge base's

data and what restrictionr if any are required).

COMPASS adopts a set of conventions which placed restrictions on data access

between knowledge bases. Also, an 'access' knowledge base is used for the

purpose of providing import and export facilities for inter-knowledge base data

access.

iv) In multiple knowledge base systems the control flow paths are more complex than

those between routines within a single knowledge base system.

COMPASS uses a 'control' knowledge base to provide a centralised branching

point for the system's control flow. This is a top level knowledge base that defines

the control flow. It places constraints on inter-knowledge base control flow but

does not restrict what individual developers can do within a knowledge base.

35

COMMENT

The ufe of multiple knowledge bascs uodoubtedly increases the complexity of the

system in tenns of inter-knowledge base control and communication.

This is evidenced by the fact that out of COMPASS's eighteen knowledge bases,

only seven of them are 'active' knowledge bascs (ie. contnio actual expert

knowledge for analysing messages and problems). The other eleven perform control

and management tasks, as Prerau puts it, they are "knowledge bases only in

sttucture - they do not comain actual expen knowledge" (Prerau et al., 1990, p. 73).

In the LOAN PROBE multiple-knowledge base expen system, the complex

communication and shariog of knowledge among the knowledge bases were handled

by a blackboarding system (Ribar, Arcoleo & Hollo, 1991, p. 43).

36

3.1.3 DATA DICTIONARY CONCEPT

INTRODUCITON

In order to maintain a knowledge base, it is to be expected that the maintainer must be

familiar with all the areas where the knowledge resides, as well as the inter-relationship

among these knowledge, Such information is provided by a data dictionary.

Other helpful features provided by a data dictionary include :

easy browsing of rules, facts, etc

automatic documentation and cross referencing of knowledge and other concepts in

the knowledge base

ability to present knowledge in different ways

The data dictionary concept had been applied differently by different researchers on

knowledge bases, Jansen and Compton's model (Jansen & Compton, 1988), (Jansen &

Compton, 1989), (Jansen, 1988), uses one integrated dictionary to encompass both the

knowledge base and data base. This is in contrast to Leung and Nijssen's work which

uses the dictionary concept to couple expen and database systems, and stand alone

dictionary systems like NEXPERT OBJECf which have interfaces to relational

databases (quoted in Jansen & Compton, 1988, p. 1159).

This section discusses Jansen et al.'s version of the dictionary. This dictionary was

developed at the CSIRO by Jansen and his team. Essentially what they did was to

augment the use of a data dictionary to include representation for rules, and tenned the

tool 'knowledge dictionary'. In other words, the tool was effectively just an adaptation

of conventional data dictionary technology to the area of knowledge base system.

37

This knowledge dictionary has already been implemen~:d by the CSIRO team in Prolog,

Hypercard, ROB (DEC's relational database package), and RALLY (a fourth generation

software tool).

CONCEPT BEHIND THE TOOL

The key to this tool is that if the Relational Data Model is used as the underlying

stornge representation for knowledge, then the way opened for the use of the full power

of relational calculus for manipulating it. In short, this means relational operators like

union, difference, select, join, divide, project, etc can be used on the stored knowledge.

The use of the relational operators on the data representation of rules allows for

sophisticated exploring and browsing capabilities, which in turn facilitates the

maintenance of the knowledge. In addition, inferencing can also be done using SQL-type

data manipulation instead of resolution.

Maintenance of the knowledge will also be eased by the use of normalisation. Like data,

knowledge can then also be represented in normalised form. That is, each concept is

fully defined and named once only, and is found in only one place.

Often a single concept may be known by different names to different experts.

Normalisation does not force the eKperts to settle on a single name, rather each different

name given to that same concept is stored once and different expert's labels are mapped

into this stored object.

IMPLEMENTATION DETAILS

Jansen et. al. claimed that the tool had been used successfully to implement production

rules and semantic nets representations.

38

The following example illustrates the implementation of production rules. Consider the

following rule to be implemented (ie. converted into relational entities) :

Rule 96 IF A
and B

and NOT C
THEN

ACTION_A

Step 1 : The rule is decomposed into its constituent objects, namely a rule name, a set

of facts, and a set of rule actions.

In the example the rule will be decomposed thus :

rule object name
fact objects

action object

96
A
B
c
Action_A

Step 2 : The constituent components are then stored in a table as a set of relationships

betw~en the rules and each facts, and between the rule and each rule actions

(see Table 3.a).

rule object name relationship name fact/action objects

96 presence A
96 presence B
96 absence c
96 action Actlon_A

Table 3.a Relationship between rule, fact and action

39

Step 3 · The actual implementation of the relationship can be :

i) a pointer

ii) set based (as in CODASYL database)

iii) value based (as in relational data model)

vi) function based (where the membership of a relation is dependent on the

evaluation of some function which returns a lnle or false co11dition)

This exlUllple shows the function based implementation where the table of

Step 2 is stored in the knowledge dictionary as Prolog declaratio11s.

e/emellf(ru/e,'96').
e/emellf(fact,A).
e/emellt(fact,B).
e/eme11t(fact,C).
element(action,Actiou_ A).
e/ement-re/atiolls!Jip(presence,rule,' 96' .A).
element-re/atiolls/Jip(presence,rulc, '96' ,B).
element-re/atiotJship(absence,ru/e, '96' ,C).
element-relatiotJS!Jip(action,ru/e ,Actio11_ A).

Step 5 : Having stored them in the desired relational data form, a number of SQL

typed functions such as the followi11g may be developed for their

manipulation.

USAGE

SHOW_RULE

ADD_RULE

RUN

WHY_NOT

: to detennioe who uses what

: displays specified rules.

: add new rules by specifying e1tisting facts and actions.

: carries out a forward chaining inferencing procedure.

: may be used to query why a rule did not fire.

40

The above functions are provided with a translation facility which converts the stored

data and rebuilds them into rules in the familiar IF .. THEN form for display to the

eKpert.

COMMENTS

As the current system only does forward chaining inferencing, its application appears

rather restricted.

Efficiency may be an issue since an interface is required for the inter-conversion

between relational entities and production rule (or other formalism) format each time

the user queries or accesses the knowledge base,

An advantage of storing the rules in such neutral relational data form is that in this

form it can easily be transformed into other formalisms.

Jansen et. a1 pointed out that a major problem in knowledge base work is the lack

of integration of knowledge representation formalisms. In an extension to their work,

Jansen et al. showed how the knowledge dictionary could be used as an aid to

integrate some of the standlll'd knowledge representation formalisms.

41

3.1.4 NORMALISATION PRINCIPLE

The benefits of nonnalisation have been well documented in the literature on

conventional systems. Normalising a database removes from it deletion, amendment and

insenion anomalies.

According to Debenham and Lindley (1991, p. 344), normalisation of rules ensures that

a single item of knowledge, whether in part or whole, is represented only once in the

knowledge base.

Normalisation thus results in all the rules being independeut of one another. Hence if

a component of the rule is modified, only one modification is required as there will not

be any overlapping knowledge.

For example, consider the following unnormalised set of rules :·

Rule l
Rule 2

P:· Q, R.
S :· R.

The above rules are unnormalised because the component of knowledge 'R' appears in

more than one place, namely in Rule l and in Rule 2. If R is to be modified, both Rule

1 and Rule 2 will have to be changed.

On the other hand, the following e~~:ample illustrates the same set of rules, but this time

they have been nonnalised :-

Rule 3
Rule 4

p :- Q, s.
S :- R.

It is clear that if R is to be modified, only one rule (ie. Rule 4) needs to be changed.

42

The following section looks at a tool which relies on the normalisation principle, The

tool is called Knowledge Analyst's Assistant (Debenham et al .. 1991). It was developed

at the CSIRO Division of Technology.

3.1.4.1 NAME OF TOOL KNOWLEDGE ANALYST'S ASSISTANT (KAA)

INTRODUCTION

Debenham et al. identified a major contributing factor to maintenance problems as the

complex relationships that exist between components of a knowledge base. They called

this the 'coupling relations' between knowledge components.

There are two such kinds of relationships :-

i) the same fact has been represented, at least in part, in more than one place.

{ie unnormalised)

ii) the inherent structural relationship of ~Je representational scheme itself.

KAA is designed to handle the second fonn of relationship. In other words, before KAA

can be applied, the first problem (ie unnormalised knowledge) must be removed.

Since normalisation removes the first kind of coupling relationship, a normalised

knowledge base is the pre·requisite to the application of KAA.

43

OBJECTIVE OF KAA

To support each maintenance operation by automatically identifying a linked chain

of modifications. In this way the maintainer can be sure that each modification has been

completely effected.

CONCEPT BEHIND THE TOOL

This tool is bliSed on the concept of a clear distinction between what is Data,

Infonnation, and Knowledge as defined by Debenham (1989).

KAA centres around four models. The data model, information model and the

knowledge model together constitute what is called the three system models. The main

model is the application model.

The application model is a representation of the application in question constructed in

quasi natural language form. Each entity in the application model must correspond to

just one element in one of the three system models.

The data model, information model and knowledge model may be seen as roughly the

equivalent to the domain constants and variables and their constraints, the relationships

between them and their constraints, and the rules respectively.

The four models must be normalised and their relationships (ie links between them)

must be established. Being nonna\ised these links are unique. When a maintenance

operation is to be done on the application model, KAA is able to trace through these

links to the system models thus ensuring that every maintenance operation can be

executed completely by following a single linked chain of statements.

Four types of links are used in KAA. Two of them (TYPE I and TYPE 2links) will be

discussed here.

44

TYPE 1 links - these link every statement in the application model to one unique

entry in one of the system models.

TYPE 2 links - these link the three systems models among themselves if they are

related (ie if the knowledge component of one of the system models

is part of the definition in another).

IMPLEMENTATION DETAILS

Pre-requisite The four models as described above are in a normalised form.

Step I : When a maintenance operation is required, the analyst starts at a statement

in the application model.

For example, in figure 3.a, suppose the analyst wishes to alter statement A

in the application model.

Application Model System Models

step I
(start)

Q "''' Q
G .. ,,, D
hlo

Figure 3.a Modifying an Application Model

data model

information model
(11ot used i11 this example)

knowledge model

45

'

Step 2 : Since one statement in the application model is linked to just one unique

entry in one of the 3 system models (TYPE I link), this link is used by

KAA to truce it to that system model.

In the example, KAA now automatichlly follows the TYPE I link to one of

the system models (in thi~ case entry X in the data model),

Step 3 : TYPE 2 links are used by KAA to identify aU other components of the three

system models which use that knowledge component in their definitions.

In the example, a TYPE 2 link is now used by KAA to trace through ltll

system models that comain entry X in their definitions (in this case entry Y

in the knowled,qe model).

Step 4 : Since all entries in the system model correspond to one and only one entry

in the application model, TYPE I links are now used to trace back to all the

statements in the application model which conespond to each of these unique

system model entries.

In the example a TYPE I link tr'Jces entry v back to statement B in the

application model.

Step 5 : Each of the statements identified in the application model is then altered as

required. The modification of the system models are then handed to the

prognunmers to be implemented on the knowlrUge base.

In the example, the analyst will now be presented Wlllt two statements, A nud

8, which may be altered,

46

COMMENTS:

This tool presupposes formal specification is possible (the three system models act

as formal specifications while the application model acts as documentation). This,

as we have seen in the earlier argument presented in 3.1.1, may be a flawed

assumption (not just in the case of e)[pert systems but in many conventional systems

as well).

The too\ appears suited only for the class of very well structured systems wi1ere

knowledge can be easily identified since De benham requires at the outset a clear-cut

definition of data, information and knowledge. Many experts have to work in areas

where such clear-cut definitions may not be possible.

Currently KAA is intended for rule based systems only, To use it for other

formalisms, a suitable translation mechanism between the e)[isting analytical

languag<: of KAA and these fonnalisms will be required.

Opportunities e)[ist for the application model and the three system models to become

inconsistent since they are not maintained automatically in a single operation.

Although normalisation offers many benefits to a knowledge base, as shown by

Oebenham's e)[ample, its value appears doubtful since unlike facts, the normalisation

of mles may remove their heuristic values.

47

3.1.5 STRUCTURED TECHNIQUES

INTRODUCTION

Conventional structured programming techniques have long been gainfully applied to

programs making them easier to understand, maintain and test. Penderson (1989) adapted

such techniques to the creation of more well-structured rule bases. These techniques

proposed by Fenderson \lere designed for backward chaining mle bases only.

Fenderson constantly referred to two tenus, "visibility" and "transparency", in his paper.

Visibility is a tenn which refers to the ease with which one can see the order in which

statements are obeyed. Transparency refers to how easily one can grasp the meaning of

a statement.

For example, conventional programming languages encourage a programming style

which exhibits high visibility (i.e. it should be easy to see the order in which statements

are obeyed). However conventional languages exhibit low transparency since each

statement contains liule information in itself. Much of its meaning depends on its

position within the larger set of instructions which make up the routine.

Oo the other hand, the declarative style of rules in general encournges high transparency.

That is the meaning of a rule is easy to grasp since it is contained within the rule itself.

rather thon on its location in the knowledge base. However rules in the knowledge base

have low visibility. That is the order in which they are executed is hard to grasp. The

order in which the rules are fired is implicit in the inference engine used.

Penderson's techniques seek to enhance the high transparency of rule bases and at the

same time reduce their visibility problems.

48

OBJEcriVE

To apply structured methods, which are analogous to conventional structured

programming techniques, to the creation of backward chaining rule bases in order to

more clearly represent domain knowledge and thus ease maintenance.

CONCEPT BEHIND THE PROPOSED TECHNIQUES

The adoption of structured techniques in conventional programming brings with it the

following benefits :-

i) high transparency due to self-documenting codes and modularity (since the

meaning of a module is contained within the module itself)

ii) ease of maintenance since every module has a single entry and a single exit point.

iii) ease of understanding and easy detection of errors due to high visibility achieved

through the elimination of 'goto' statements.

iv) portability of codes

Penderson claimed that the above benefits can be obtained if his three proposed

guidelines are observed during the creation of a knowledge base. The three guidelines

laid down by Penderson are :

1) keep conclusions (of rules) simple

2) keep procedural contents out of rules

3) minimise the use of ELSE statement

49

IMPLEMENTATION DETAILS USING THE TIIREE GUIDELINES

1) Keep conclusions simple

Rules must be written such that their conclusion change only a single attribute,

Consider the example of the following set of rules (CF"' cenainty factor) :~

Rule I IF season "' summer
THEN weather "' fine

Rule 2 IF season "' summer
THEN weather "' fine CF 90

weather "' rainy CF 15

Rule 3 IF season "' summer
THEN weather= fine CF90

Jane "' wear sunglass CF 75

Rule I concludes a single attribute and is clearly unambiguous. Rule 2, despite

having two conclusions, concludes only a single attribute, namely weather, and is

therefore also straightforward.

Rule 3 on the other hand concludes two attributes. Studying rule 3, one could ask

if Jane's putting on sunglasses is a consequence of the weather being fine, or

whether these twc. conclusions are independent.

A pan from the ambiguity it causes, the question of how a particular shell interprets

it is also uncenain, For example should a shell with a backward chaining inference

engine process this rule if EITHER of the two conclusions is the current goal, or

should it process this rule only when BOTH the two conclusions are the cunent

goal ? These possibilities reduce the portability of the rule base.

so

Apart from the above problems, rules that conclude more than one attribute also

have a high chance of causing looping. Consider the following (backward chaining)

rules:

Rule 4 IF A>O
THEN GOAL

Rule 5 IF B
THEN X= C+2

A=

Rule 6 IF D
THEN C::: A+l

Assume that :

(i) we have a backward chaining system

(ii) conditions B and D are true

(iii) GOAL (of Rule 4) is the current goal

In order to prove Rule 4, the inference engine will seek the value of A.

Rule 5 is therefore considered since it concludes A, but it concludes X as well, and

in order to conclude X, it needs attribute C. Hence Rule 6 is considered since it

concludes C, but to conclude C , attribute A is needed.

At this point looping max start to occur.

From the examples it is seen that rules that conclude more than one attribute make

debugging of the mle base difficult since it is hard to identify which rule was

responsible for a given consultation state.

51

Since such rules lllso give rise to ambiguities in the semantics of the rules (as

illustrated in the example relating to Rules 1, 2 and 3), they are Jess transparent,

hence extensive documentation is required. This is a misuse of the inherent high

transparency advantage offered by rule bases.

2) Eliminate procedural content from rules

Procedural contents in rules give rise to poor transparency since it is not obvious

what a procedure does. One could argue then that rules should contain knowledge

rather than procedures.

Consider the rule :

IF sunny THEN

call goodday-proc

One cannot be certain what goodday-proc does. In other words, the rule has lost its

transparency; this is another way of saying goodday-proc does not state its entire

meaning.

Such calling of outside programs or snbroulines can produce hidden side effects and

should be avoided if structured techniqnes are to be followed. Penderson suggested

that "you may be addressing a problem that could be better solved using a

conventional language" if you find that you cannot avoid including such procedural

content (Fenderson, 1990, p. 49), and called for a rethink on the part of the

knowledge engineer regarding whether "an improper conception of the expert's

knowledge or improper representation of the expert's problem solving strategy" was

the cause (Fenderson, 1990, p. 46).

52

3) Minimise the use of ELSE

The use of ELSE has many disadvantages,

The following example shows two rules (Rule 7 and Rule 8) present in a knowledge

base:

Rule 7 IF A
THEN
ELSE

and B
X= 1
X=2

Rule 8 IF A and NOT B
THEN X=3

Assume that : condition A is True, and

condition B is Fnlse

If Rule 8 has been placed before Rule 7, then X= 3 would have been concluded.

However, in the example, Rule 8 has been placed after Rule 7, hence it will not be

tested because ELSE would have come into effect. Hence ELSE has implicitly

introduced a procedural content into the knowledge base, making it not possible to

add rules anywhere into the knowledge base. This results in the reduction of

transparency offered by declarative rule bases.

Also ELSE makes the meaning of the rule unclear. Consider Rule 7 for example, we

know from it that X = 1 should be concluded if both A and B are true. But we are

unsure when X = 2 was concluded. It could have been A was true and B was false,

or A was false and 8 was true or both were false.

Without the use of ELSE, the inference engine can be nllowed to conclude

53

UNKNOWN when no rules applied. This helps to identify gaps in the knowledge

base and allows the possibility of introducing rules that reason about the

UNKNOWN.

COMMENT

In this proposed structured technique, we find that roles have been 'doctored' to

suit the 'structuredness' of the methodology. They have lost their 'naturalness'

in that they no longer reflect the way eKperts think, a criterion considered by many

important for a knowledge base to possess (section 3.1.2.3 on 'modularity', and

section 3.2.2 on 'knowledge in context strategy').

Still one might ask if it is necessary for rules to reflect the way experts think? It

is well known that the way experts report their reasoning is often different from

how they actually reason in the first place. Among those who hold this opinion

are Compton and Jansen (1988, p. 293) who said that experts have difficulties

reporting on how they reach decisions.

The greatest attraction of Fenderson's proposals lies in the fact that the ideas he put

forw!lfd are simple and can be readily adopted to any backward chaining knowledge

bases without the introduction of any major tool or strategy.

54

3.1.6 OTHER SOFTWARE ENGINEERING TECHNIQUES

3.1.6.1 REUSABILTY

Expert system shells ure examples of the reusab!ity concept lx:ing applied to expert

systems at the implemenunion level. However there has not been not much progress in

llpplying the reusnbilty concept at the knowledge level (Buchanan and Smith, 1989,

p. 187). Buchanan and Smith cited the ex.ample that many expert systems use facts about

anatomy and physiology, yet often each encode~ these facts specifically for use in a

unique way.

While Buchanan and Smith did not venture to suggest any reasons for this observation,

Matthews did (Matthews, 1990). He said that theoretically rules should be reusable, but

in practise this is not the case because rule bases tend to be too application specific. He

attributed this application specificness of rule bases to the lack of programmability of

the control systems of the shells or languages in which the rules were written. This

inflexibility of control structures of the shells caused programmers to include their own

control mechanism into rule bases meant to express domain knowledge, thus rendering

them unreusable.

Matthews suggested that host languages or shells should have control systems that allow

developers to "take full charge of the control systems", a freedom. he conceded, "still

relatively rare in the context of today's AI shells" (Mallhews, 1990, p. 437). It should

be noted that to some degree this freedom lias been met by ntME (discussed in

section 3.2.3) which permits the explicit expression of high level control structures.

Another obstacle to knowledge reuse is the dependency of knowledge bases on specific

representation paradigms. For instance a rule-based application cannot reuse the

knowledge found in a knowledge base wliicli employs logic as its representational

paradigm.

55

To some extent Jansen et al. 's work on knowledge dictionaries can be seen as? step in

the direction of promoting reusability (see comments of 3.1.4). This is becao.~se lheir

knowledge dictionary is stored in the relational data format (ie. a representation

paradigm free format). Hence it is possible for the knowledge in the dictionary to be

captured from a rule base, and converted for reuse by a knowledge base of a different

paradigm.

Benn, Schiageter and Wu (1990) described how a component can be added to a KBMS

to allow an inter-paradigm reuse of application objects. This new component is termed

"the Conceptual Object Manager". Its purpose is to manage execution model semantics

in a way lhat allows applications to reu.J persistent infonnation independently of their

individual paradigm commitment.

3.1.6.2 DOCUMENTATION

The usefulness of eKternal documentation may be quite restricted whelher it is for

conventional or eKpert systems since it can easily become out of date. Besides, external

documentation involves an eKtrn effort. In the opinion of the current author,

documentation should be made an integral part of the code so that this duplication of

effon and currency problem can be removed.

In-code documentations should be used to aid understanding oft he knowledge base. The

'interface specification' strategy promoted by Jacobs et al. (discussed in section 3.1.3.2)

suggested that each module should have a header describing its function. The description

must be a high level one in order to remain true even though the internal details of the

module have been changed.

More documentation should not be viewed as being better. Constructing knowledge

bases using modular and structured techniques or use of more declarative languages like

SYLLOG (section 3.2.4) should mnke documentation less necessary.

56

3.1.6.3 STANDARDISATION

In large systems there are many different programmers working on different pans of the

same system, This gives rise to many different naming conventions, programming styles,

etc, which in tum may lend to the development of a system which is difficult to

maintain.

A case in point was the COMPASS System (discussed in section 3.1.2.3) which

panitioned its knowledge into eighteen separate knowledge bases. Four programmers

were engaged in the development of the individual knowledge bases, leading to

differences in styles which in turn hampered maintenance (Prerau, 1990).

Prerau handled the problem of non-unifonnity in programming style by adopting a set

of standard naming conventions for system elements, and he imposed the use of standard

representation paradigms like rules and frames wherever possible.

It should be noted that the enforcement of standards is as important as the setting of the

standards themselves. Stonehocker reminded us that "standards are ineffective unless

they are published, understood by al! concerned, and enforced" (Stonehocker, 1988,

p. 292).

57

3.2 OTHER APPROACHES

The current market contains many innovative tools and ideas on how to build more

maintainable knowledge bases. This section selects four approaches for discussion.

The 'knowledge specification' approuch is selected for the novel way in which it

accommodates the concept of rigorous definition into the construction of knowledge

bases.

The 'knowledge-in-context' paradigm is a radical proposal which runs counter to

entrenched software engineering principles. The ideas it propounds starkly contravene

the long held software engineering principles of structuredoess and modularity.

The third approach looked at is founded on the belief that the root cause of maintenance

problems lies in the implicity of rules and control structures. Essentially what this

approach says is "make the implicit explicit, and the knowledge base will be

maintainable".

The last approach contends that declarative knowledge is easier to understand and

maintain than procedural knowledge.

58

3.2.1 KNOWLEDGE SPECIFICATION PARADIGM

INTRODUCTION

It was argued in section 3.1.1 that expert systems defied rigorous specification because

of a number of reasons, among which were the incremental nature of their knowledge,

their inherent unstructuredness, their possibly dynamic domains, and the difficulty of

extracting knowledge from experts (because much of this knowledge is implicit).

Prototyping was seen as a more appropriate tool for the construction of the expert

system knowledge base since the prototype can serve as a testing tool allowing the

developer to cycle through many iterations until a satisfactory prototype of the

knowledge base is obtained. However this experimental nature of the prototyping

methodology also makes knowledge bases developed from prototypes hard to modify.

This is because prototypes often contain many ad hoc changes, and are relatively

unstructured, poorly planned, and badly documemed.

This section looks at an approach described by Slagle, Gardiner, and Han (1990). This

approach may be thought of as a compromise between rigorous definition and

prototyping. The concept expounded by this approach attempts to get the best of both

worlds by using prototyping on the one hand and producing a rigorous specification on

the other.

OBJECTIVE

To produce a knowledge specification and use it as a basis for developing the expert

system, and for guiding changes during the maintenance of a knowledge base.

59

CONCEPT

The rationale behind this approach may be summed up thus. It says that a rigorously

defined knowledge specification is vital, and must be procured before design and

construction of the system begins. However, current rigorous definition methodologies

cannot define the specification thoroughly. Hence, instead of using prototyping to

construct the system, prototyping should be used to obtain the rigorous definition nf the

specification, and then that specification used as a basis to construct the system.

In other words this approach employs prototyping as a vehicle to enable developers to

understand the problem so that a knowledge specification can be produced.

The resulting knowledge specification has two main uses, first as a basis to construct

the new system, then as a guide for makitLg system changes during the maintenance

pha~e.

IMPLEMENTATION DETAILS

The approach consists of five phases. These are :-

i) R~uirements analysis

System objectiY'!S, scope, constraints, etc are identified at this stage. Test cases and

expected results for system acceptance are also collected.

ii) Knowledge acquisition

During knowledge acquisition, an initial knowledge specification is produced.

This specification contains the kinds of knowledge and reasoning processes required

60

to perform a task. Since it is not possible to pre-specify every requiremrnt

accurately, the specification is incomplete at this stage.

Slagle et a!. suggested the use of the 'Protocol Analysis' technique for the

acquisition of knowledge. (Prototols are the verbaJ responses that have been

generated by a domnia expert during a session),

iii) Knowledge specification

Protocols are analysed to identify expert problem solving strategies. The results

are represented using some representation formalism. Slagle et al. used the

'Conceptual Structure' techniques of Suwa (quoted in Slagle, et al., 1990, p. 32).

A programming language is then used to convert this initial knowledge

specification into a prototype.

iv) Verification

Syntactic and some semantic checks are done on the conceptual structures.

v) Validation

The knowledge specification (ie the prototype) is then validated against the

requirements. This is done by running the prototype against test cases and

comparing the results against the expert's analysis.

The knowledge specification is modified and expended until correct answers are

obtained for all known validation cases. At this stage a stable specification would

have been produced.

61

The prototype is now discarded, and the knowledge specification is used as a basis

for implementing the production system.

COMMENTS

Slagle et al. 's proposed method appears to go only as far as building the knowledge

specification. The actulll construction of the system seems to be left open so long

as it adheres to the guidelines laid down in the specification.

The specification as referred to by Slagle et Ill. is really more than a specification

of requirements; it contllins the design blueprints as well. In Slagle et al. 's case,

these are represented as 'conceptual structures'.

The strategy proposed by Slagle eta!. is really just an adaptation of the fwniliar

'throwaway prototype' concept (Guimaraes, 1987), whereby a prototype is

developed and then discarded.

Slagle eta\. justified their method by claiming that "the re-imP.lementipjl of_ the ~

system from a specification is likely to take less time ard money than improving

the (original) prototype, and will result in a system that is easier to maintain"

(Slagle eta\., 1990, p. 30).

While the latter claim certainly appears plausible, the claim that re-implememing

from scratch takes less time may be debatable.

62

3.2.2 KNOWLEDGE IN CONTEXT STRATEGY

INTRODUCTION

The developers of the knowledge-in-context strategy (Compton & Jansen, 1990) believe

that experts normally explain their reasoning differently depending on who they are

explaining it to, IUld the context in which the questions are asked. Their strategy is

fundamentally based on the assumption that e;~~perts cannot report on their mental

processes accurately and unequivocally, and are willing to change context at will so as

to remain correct Hence there is no occasion where e"perts are ever wrong, but the

context in which they are right changes.

On the ground of that assumption, it is thus conceivable for the researchers of this

strategy to propose that the ability to change context should be an essential component

of the expert system technology.

A problem with conventional knowledge bases is that they do not reflect the thought

processes of the e11perts. Whenever new rules are added to such knowledge bases, it is

not une11pected that the new rules may conflict with existing rules. Tools are therefore

required to manipulate these knowledge bases until the inconsistencies disappear.

This has the effect of the rules in the knowledge bases taking on tm artificial structure,

thus losing the original thought processes of the e11perts.

In this strategy, the justification provided by e11perts are considered to be correct in

conteiiL Therefore, if these justifications are captured as rules in the knowledge base

in that same conte11t, then they can be used as provided without further manipulation.

In other words knowledge bases should be created without engineering (ie manipulating)

the rules, rather they should be captured in the context in which they are provided by

the experts.

63

OBJECTIVE

To facilitate maintenance knowledge engineering through the development of the

'conteKt' strategy.

CONCEPT

An assumption this strategy makes is that maintenance is nonnally initiated by the

failure of a single case so that an eKpert will be called upon to provide rules to handle

further cases of this type.

This happens when an inaccurate interpretation (or conclusion) is produced by the

system. The eKpert will then be asked to provide new rules to correct the situation. The

context in which these new rules are provided depends largely on the context of the

wrong interpretation the expen was presented witit. That is, the new rule is not a global

rule, but a rule to switch interpretation from the incorrect to correcL

To capture this conte~tt, a LAST·FIRED(rule·number) condition is included for every

rule in the rule base. The new rule that was added will not be allowed to ftre in a case

unless the old rule which produced the wrong interpretation has been fired before it.

Each rule has only one opportunity to fire. Rules have to be tested in strict order, from

the oldest to the newest. Maintenance is therefore a chronological process. Each new

rule, whether a correction to the old, or a rule for a previously uninterpreted case, is

always added to the end of the list of rules.

64

IMPLEMENTATION DETAILS

i) Creating the rule base

At the time of creating the initial rule base, no test cases have yet been run,

therefore the notion of whether the rules are correct or incorrect in context does

not exist, the implicit context being that the expert system knew nothing of the test

cases. Hence at this stage of creation, all rules should be allowed to fire. This is

implemented by assigning the 'IF LAST-FIRED(O)' statement to the 'condition'

part of every rule.

The rule base thus created can be viewed as a long list of rules which when run

will be tested from the first rule to the last rule in sequence.

Rule I IF LAST-FIRED(O)
and A= 1
andB=2

THEN X

Rule 5 IF LAST-FIRED(O)
and C =1
and D= 2

THEN Y

Rule 100 IF LAST·FIRED(O)
and E=l

THEN Z

Rule 101 IF LAST-FIRED (5)
andE=l

THEN W

Figure 3.b A list of rules in the knowledge base

65

For example in figure 3.b, rules 1 to rules 100 are the initially created rules, all of

which are assigned the LAST-FIRED(O) status.

As the rule base is being tested with cases it needs to be modified. The

modification is straightforward. It involves only the addition of rules to the end of

this rule list, regardless of whether the new rule is a correction of an old rule or is

a rule for a yet uninterpreted case.

For example in figure 3.b, RuleS is found to be incorrect. A new rule, Rule 101,

is added to the end of the list with the condition LAST-FIRED(S) assigned to it.

This means that this rule will take precedence over all the others the moment

Rule 5 had been fired.

ii) Running the knowledge base

Rule

"'·
I
2
3
4
5

The control sequence in running the knowledge base is as follows,

Step I Control starts from the oldest rule to the newest down the list looking

for rules which have no pre-fire conditions (ie rule with

LAST-FIRED(O)).

LAST-FIRED(O) Rule LAST-FJRED(3) Rule LAST-FIRED(200)

"'· "'·
-> xxxxx 22 ·> xxxxx 7 ·> xxxxx
-> xxxxx 200 -> xxxxx fired 99 ·> XXX XX

-> xxxxx fired 201 xxxxx
xxxxx
xxxxx

xxxxx

Figure 3.c A conceptual representation of a set of rules in the
knowledge base

66

Step 2 As soon as a rule has been frred, (for exllmple rule 3 in figure 3.c) the

only rules which can now be allowed to fue are those which have that

rule as a pre-condition (ie rules with LAST-FIRED(3), niUilely rules 22,

200, 201).

Two situations may now arise :-

a) None of the rules with LAST-FIRED(3) could fire (not shown in

figure 3.c).

In such an event, control would be passed back to the rule following

the one which was last fired (in figure 3.c it would be rule 4 which

is next checked).

b) One of the rules with LAST-FIRED(3) fired (shown as rule 200 in

figure 3.c).

Since rule 200 fired, control is now transferred to check only those

rule with LAST-FIRED(200) (in figure 3.c, it will be rules 7 and 99).

If none of the rules with LAST-FIRED(200) fires, control will return

to check rule 201.

It should be noted that in figure 3.c, there is really only a single Jist, which runs from

the oldest rule to the newest addition.

COMMENTS

The control sequence of rule firing described in figure 3.c is really that of a depth

first search.

It is noted that this strategy blatantly violates the principles enshrined in the

67

software engineering methodology whereby rules are required tn be engineered in

various ways to achieved structuredncss or modularity. In this strategy, rules are

added only to the back of the rule list chronologically, thereby resulting in related

rules being scattered over the knowledge base. However, there is method in this

seemingly disorganised rule base.

An advantage which stems from the chronological additior. of rules is that a rule

trace can quickly review the history of corrections and additions to the knowledge

base.

In appearance, this strategy seems to turn knowledge base maintenance into a

relatively simple affair. one of merely adding rules to the back of a list! Under

the provisions of this strategy, one cannot find any occasion to delete or change

any rules, Since the presumption of this strategy is that there must always be some

truth in what experts say (it is only the context tltat is questionable), deletion and

modification does not arise. To some, this assumption that the justification

provided by an expert is highly accurate in context may be quite contentious.

Although the developers of this strategy had tested it by redeveloping an existing

knowledge base for the GARVAN-ESI expert system, and then measured the

knowledge engineering problems and the performance of the resulting new system

against the existing system, this test appears to be rather contrived. It would be

more convincing if it had been tested with a knowledge base created from scratch

for a new application,

Despite testing the strategy by rebuilding the GARV AN-ESI knowledge ba~e.

Compton et al said that they "propose this strategy for the maintenance phase of

an expert system project" (Compton, eta\., 1990, p. 297). In other words, regardless

of bow a system had been built, theoretically the strategy can be applied to any

existing knowledge base to some degree with only the relatively minor modification

of including the LAST-FIRED(rule-number) conditions in front of every rule.

68

3.2.3 EXPLICIT HIGH-LEVEL CONTROL STRUCTURE

The proponents of this strategy believe that the implicitness of a knowledge base control

structure is one of the major causes of maintenance ills, and the panacea is to make this

control structure e~~:plicit.

RIME, the euphemism for "Rl 's Implicit Made Explicit" (Bnchant, 1988, p. 205)

succinctly sums up the cmx of the tool which this section examines.

3.2.3.1 NAME OF TOOt~ : RIME

INTRODUCTION

The researchers at DEC developed RIME with the goal of facilitating the maintenance

of XCON's (also called Rl) knowledge base. This 'language' (Soloway, et al., 1987)

was used to write XCON-IN-RIME, the successor to XCON. RIME has also been

referred to as a 'methodology' (Bachant, 1988), (Hicks, 1990).

The main problem; faced by XCON nre its high volatility (ie. dynamism of its

knowledge base) and its huge size. Hicks said that it contained 17,500 rules in

September 1988 (Hicks, 1990, p. 293).

XCON was written in OPSS, hence had to rely on the implicit conflict resolution

strategies of OPSS for the control of its rule firing. As a result, programmers often had

to resort to 'tricks' to explicitly change the control of the rule firing sequences. As

different programmers worked on XCON at different times, the implications of these

'tricks' which were buried in the codes becwne increasingly difficult to comprehend.

RIME seeks to mnke the control of rule firing and the structuring of the rule base

explicit

69

OBJECTIVE OF RIME

To allow for the explicit expression of high level control structure, and to provide a

framework which allows codes to be made homogeneous and predictable, hence easy

to modify.

CONCEPT BEHIND RIME

RIME's builders believed that the two main factors which decide the maintainability

or otherwise of a knowledge base are homogeneity and predictability.

Homogeneity is a tenn which is used to describe a knowledge base which uses similar

solutions to achieve similar goals.

Predictability refers to the ease with which a knowledge ~;:nginf;er can identify or predict

where codes should be changed. In order to make rules predictable, one rule should

only be allowed to serve one function. Also rules that serve related functions should not

be scattered over the knowledge base.

In order to enhance homogeneity and predictability, RIME focuses on two main issues.

These are the control characteristics (which focus on the explicit specification of control)

and the rule based characteristics (which focus on the organisation of the rule base).

(l) Control characteristics

In a typical shell or language, all types of problems share the same implicit control

characteristics of the shell's or the language's control structure. This makes it

impossible for programmers to change the order of the rule firing sequence without

resorting to writing their own routines. This situation can be avoided by using a

language which offers several different control structures. With such a language,

different types of problems can be solved under different control structures.

70

The goal for RIME is thus to offer diffe~11t types of control for solving different

types of problems. To achieve this RIME introduces the concept of n problem

solving method (PSM). A PSM is a programmer-defined domain-independent

sequence of steps to solve a class of problems. RIME contains mechanisms and

guidelines to help programmers pre-define their own PSMs. Each PSM thus

explicitly spells out the sequence of rule firing. An example of a PSM is the

'propose-and-apply' method.

By using the same PSM to solve similar types of problems in a domain,

homogeneity is enhanced since 'similar solutions are used to achieve similar

goals'. To decide which PSM should be used, the rule base characteristics have to

be considered.

(2) Rule-based characteristics

Rules with similar characteristics (ie with common properties) are grouped together

and placed into a 'domain specific bucket'. These 'buckets' are also called

'problem spaces'. As each problem space uses only one PSM, the firing sequence

of rules within a common problem space is knowo.

Another advantage of grouping similar classes of rules into a common problem

space is that it ensures that as the knowledge base grows it will remain

homogeneous.

To enhance predictability, RIME's language construct$ are directed toward

problems in the domain. This means that the composition of codes in the construct

tend to reflect the composition of the problem.

To ensure that developers use these language constructs in the ways intended, an

online tool called SEAR provides enforcement by using a template for each rule

t}"'r<: Lo guide the creation of rules.

71

COMMENTS

RIME's concept of grouping together similar types of rules under the same problem

space, and assigning each problem space to only one PSM so that a single control

structure is used to solve a similar kind of problem, is a laudable one, for in this

way RIME has laid down strict prescribed methods for programmers to follow

so that homogeneity is achieved.

The setting of such standard prescribed methods, however, cannot be taken to

mean that programmers will observe them. To ensure that programmers follow

these strict language constructs in the desired way, SEAR is used to provide

on-line enforcement of the coding guidelines.

One might argue that such an overbearing approach may have the effect of

curtailing the creativity and freedom of the programmer.

RIME's approach, however, will work particularly well for large knowledge bases

which are maintained by many different programmers. Rather than having

programmers writing in their individual style,;, such an approach will ensure that

codes are standardised (or homogenised in RIME's tenninology) and thus easy to

maintain.

While RIME recognises the existence of different control structures, it does not

appear that it recognises the existence of different kinds of knowledge. For

example, it makes no auempt to separate domain sptcific knowledge from problem

solving knowledge, or knowledge about why one rule should be preferred over

another, knowledge about how an expert system can be efficiently executed, etc.

Since RIME does not have any mechanism to explicitly capture these different

kinds of knowledge, they remain implicit in the knowledge base.

72

3.2.4 TOWARDS A MORE DECLARATIVE LANGUAGE

Among the many paradigms conceived by rescan::hers in their quest for better ways to

facilitate the maintenance of a knowledge base is the 'declarative language' concept.

This concept rests on the belief that declarative knowledge is easier to maintain than

procedural knowledge. Kowalski et nl. said that such a concept seeks "to exploit in

various ways a separation between declarative and procedural knowledge" (Walker,

Kowalski, Lenat, Soloway, & Stonebraker, 1988, p. 64).

The concept is implemented by building procedural knowledge into the system, and then

using this procedural knowledge to support the various declarative knowledge bases.

This section discusses an ex:unple of a shell based on this concept.

3.2.4.1 NAME OF SHELL LANGUAGE : SYLLOG

INTRODUCTION

SYLLOG lWalker, 1987) is a shell language written in Prolog. It was designed

particularly for use by non-programmers. Its motivation was the desire to allow users

to build their own knowledge bases and to maintain them without any knowledge of

programming.

OBJEcriVE

To allow knowledge providers to code knowledge in a largely declamtive fonn free from

any control and procedural concerns.

73

CONCEPT

SYLLOG is based on the concept of Syllogism, the familiar

AIIXareY

ZisX

therefore Z is Y

The idea is to be able to trpresent knowledge in very simple English-like sentences. To

create a knowledge base in SYLLOG one is limitt:P to syllogisms (simple declarative

sentences) only. The actual language used may be an English like language, or any other

language, whether natural or artificial.

SYLLOO knows little of the language concerned, unlike natural language understanding

progrnms.

To bufld a SYLLOG knowledge buse, knowledge in the form of facts and rule are

acquired as u set of syllogisms and tables.

A syllogism (ie a sentence in SYLLOG) may contain one or mvre words starting with

eg_, plus at least one other word not starting with eg_. Words starting with eg_ are

variable names.

A table contains a group ::of related facts. The table resembles that of a relational

database table, eKcept that it is headed by a sentence in SYLLOG.

In the CKample (see table 3.b), the table stores the fact that

"an item has a number of parts". That is, boxA has 4 cardX's,

boxB has 3 cardY's, etc.

74

eg_item has eg_number of eg_parts

bo<A

boxB

"'""

4

3

1

orudX

<rudY

chipW

Table 3.b Item has number of parts

A rule that says "IF an item has X parts,

and each part has Y subparts

and X*YisZ

THEN the item has Z subparts"

is represented in SYLLOG as:

eg_item has eg_X eg_yarls

egyarts has eg_Y eg_subparts

eg_X"' eg_Y = eg_Z

eg_ilem has eg_ Z eg_subpa1-rs

Once this knowledge is entered into the knowledge base, SYLLOG pennits various

kinds of queries, including 'what-if' type questions. SYLLOG also provides different

fonns of explanations (those that are obtained from instances of the rules that have

been used to establish the answer, or those that are derived from deductions).

15

IMPLEMENTATION DETAILS

SYLLOG is implemented by seven sub-components which collectively make up the

SYLLOG shell. These are :

i) A screen manager· for menu selection, and other function selections.

ii) A language file- for 111ilorlng the system messages into English or other languages.

iii) A loader- for prepwing and checking a knowledge base.

SYLLOG provides three ways of checking incomin[J knowledge.

a) Subject independent checking of individual rules - a syntax check

b) Subject independent checking of the knowledge base - a limited form of

consistency check, in particular a check that the rules do not con ..a in a recursion

through a negation.

c) Subject dependent checking of the knowledge base- this check ensures that tlte

subject dependent or domain knowledge does not conflict with the real world.

The experts supply constraints for the allowable situations in the knowledge

base.

iv) An update component - to facilitate the process of maintenance or making

changes to the knowledge base.

v) An inference engine - although SYLLOG is written in PROLOG, it has its own

inference engine ratlter than making use of that of PROLOG. Its inferer.ce engine

consists of both a backward chaining and a forward chaining component.

76

vi) An interface - to link to a database management system.

vii) An eKplnnation generator- which provides automatic eKplanations for checking

the knowledge on which ans\Wrs are based. Rather than producing no eKecution

trace which lists out all the steps tl>e system has taken in reaching a conclusion, it

recognises that there lli'e a number of eKplnnations as to why a conclusion follows

from a knowledge base, and a very large number of explanations as to why it does

not. It manages this by presenting a single explanation, then provides a way of

asking for the next explanation should it be required.

COMMENTS

As SYLLOG's inference engine is written in PROLOG, its execution speed is, at

best, limited by PROLOG's speed. In fact, concerns over its operational efficiency

have led its developers to admit that they have to look for "some ways to increase

its speed" (Walker, 1987, p. 252).

Since SYLLOG does not have natural language processing capabilities, the user

does not have freedom of expression, but must always use the same sentence to say

the same thing. To overcome this restriction, Walker suggested that the user should

provide more "syllogisms to say tlmt different sentences have the same meaning"

(Walker, 1987, p. 236). This eKtraneous knowledge, however, may cloud the real

knowledge by introducing added complications to the knowledge base.

77

C IIIII! If' 11' IIlii 4

MAINTAINING AN EXISTING

KNOWLEDGE BASE

Most authors classify maintenance into three main types. These are perfective

maintenance (to make codes more easily understood, increase efficiency, etc); corrective

maintenance (to correct errors); and adaptive maintenance (to adapt software to new

operating environments) (Martin & McClure, 1983), (Parikh, 1988), (Gorin, 1991) and

others.

Irrespective of the type of maintenance, the process of maintaining a knowledge base

essentially involves three fundamental steps. These are :-

i) understanding of the knowledge base BEFORE modification may be carried out,

ii) performing the actual modification itself, and

iii) ensuring the correctness of the knowledge base AFTER modification.

This chapter is organised into three main sections to reflect the above three stP.ps. Tools

and aids targeted at minimising the difficulties found by the maintainer at ehch step are

explored and discussed in these sections.

78

4.1 UNDERSTANDING THE KNOWLEDGE BASE

Before a knowledge base can be modified, the maintainer has to understand what th~

knowledge base does, why it is doing it, and how it does it. This understanding process

is usually carried out by studying implementation level details.

A survey by Fjeldstad and Hamleu (quoted in Parikh and Zvegintzov, 1983, p. 2)

showed that maintainers spent about half their time studying code. When correcting

errors, over 60% of their time was spent reading code. They also revealed that this time

was mainly spent trying to understand the intent and style of implementation of the

original programmer(s). While Fjeldstad and Ham!eu's study relates to conventional

program understanding, it nevertheless indicates the magnitude of code understanding

problems.

The ease of knowledge base understanding depends in part on how familiar the

maintainers are with the shell or language in which the knowledge base was written;

whether they were the original designers of that knowledge base; and their levels of skill

and experience.

This section looks at aids which seek to enhance that level of understanding regardless

of the maintainer's original background. It considers aids specifically designed to aid

knowledge base understanding.

79

4.1.1 EXPLAINABLE EXPERT SYSTEM

PARADIGM

INfRODUCTION

A typical expert system knowledge base is made up of facts and rules which are

explicitly stated. But implicitly captured into these rules are many other different types

of knowledge. These are the heuristics for achieving goals (ie the general problem

solving principles), implementation and efficiency concerns, readability concerns and in

some cases the style of the system builder. Many of these general problem solving

principles and much of the rotionnle behind the rules and methods are 'lost' since they

are not represented explicitly,

The failure to explicitly represent these different fonns of knowledge which are required

for the design of the system means that the expert system cannot provide explanation

in tenns of these sets of knowledge. Hence explanation is rigid and limited to merely

a mechanical trace of the operation of the system. This makes understanding of the

knowledge base difficult, and makes maintenance a daunting task.

The builders of EES (Neches, Swartout, Moore, 1988), (Swartout, Paris, Moore, 1991),

(Lowry and Duran, 1989) believed that the difficulty of maintenance and understanding

both stem from the same fundamtntnl problem of not being able to capture these

different types of knowledge explicitly.

By approaching this fundamental problem through the separation of knowledge into

different types (ie modularising it) and explicitly capturing the system's development

history, two main advantages are achieved :

i) maintenance is made easier since knowledge is modularised.

ii) better explanation can be provided since a record of the development process is

80

available, Better explanation in turn facilitates understanding of the expen system

knowledge base.

OBJECfiVES OF EES

To facilitate understanding of the knowledge base by providing for more flexible and

responsive explanation, and to make the task of maintenance easier through the

separation and explicit capturing of different types of knowledge.

CONCEPT BEHIND EES

The EES paradigm is based on two fundamental principles :-

The explicit representation of different forms of domain knowledge

The formal recording of the system development process

(I) The explicit representation of different forms of domain knowledge

The EES knowledge base is separuted into many modules. Each module explicitly

represents u :liff,.r:;;,~ type of knowledge.

These modules include :

i) The Domain Model - this contains the domain knowledge.

ii) The General Problem Solving (GPS) Principles - this component captures

explicitly the set of general principles or heuristics from which the system

was derived.

81

The GPS Principles are represented as 'Plans'. A Plan contains a 'Capability

Description' und a 'Method'.

The Capability Description (also known as 'Goal') describes what the Plan is

useful for. In other words it defines the Plan's Goal. For instance, a Plun's

Goal may state 'for diagnosing faulty parts'.

The Method is a sequence of steps to achieve the Capability Description. In

other words, it is an implementation of that Plan's GoaL

iii) Tradeoff knowledge- knowledge which indicates what benefits can be gained

and what losses suffered as a result of selecting a particular GPS Principle to

achieve a goal;

iv) Preferences - knowledge used for ranking GPS Principles based on the

tradeoffs;

v) Tenninologies - this module contains the definitions of all the tenns used in

the system. They are shared 2 :ross GPS Principles;

vi) Integration knowledge- When EES generates the e~tpert system code, certain

sets of rules (or procedures) being generated might conflict with otlters. This

module contains knowledge for resolving such conflicts among the various

knowledge sources.

vii) Optimisation knoY 1ledge - contains cost optimising factors which indicate

how the derived expert system can be efficiently executed.

The above modules collectively make up the knowledge base. Since the knowledge

base is modular, maintenance is made easier. The use of a classifier (see 4.2.1) for

the construction of the knowledge base further eases the task of maintenance. In

the earlier version of EES (Neches, eta!., 1988), the KL-ONE classifier was used

82

to build the knowledge base, The LOOM classifier was used in the later version

(Swartout, eta!. 1991).

(2) The formal recording of the system development proces~

The various components of the knowledge base listed above are used by EES to

generate an executable expert system and a 'Development History', The

Development History is a historical record of the development process. It captares

the rationale behind each specific action taken in the design of tl1e system and

hence is useful for providing e)[planations about why a given aspect of the system

was designed or implemented in a given way.lt is from the Development History

that EES derives its explanatory power.

The generation of the expert system code and the Development History is done by

a mechanism called the 'Program Writer'.

The Program Writer refers to the goals found in the domain model, refines them

into subgoals, and carries on the refining process until the primitive levels are

reached.

As it does this refinement, the Program Writer records the steps it went through,

producing a 'Refinement Structure'. Since the Refinement Structure is reaHy a

historical record showing how the e)[pert system was generated top down from tile

high level goals to the implemenrotion levels, it is also referred to as the

Development History. This Refinement Structure may be a lattice or a tree-type

structure.

83

IMPLEMENTATION DETAILS

Th: steps involved in generating an executable expert system and the Development

History are :

Step 1 : The Program Writer stllrts at the highest level goal.

Step 2: It searches the GPS Principles' Plans for a match of a Plan's Capability

Description with the goal.

Step 3: If a match is found, the Program Writer uses that corresponding 'method' to

implement that goal. A 'specialisation' process may be required.

For example :-

- a goal may say 'diagnose faulty XYZ.chip'

a search of the GPS Principles Plans finds the Capability Description

'diagnose faulty component'

'component' is replaced wi1h 'XYZ.chip' wherever it appears in the

Plan's Method.

This specialisation process is recorded by the Program Writer so that EES can

explain the relation between the specialisation and the GPS Principle from

which it stems.

84

,--

MAINTAINER (uses a classifier or other knowledge acquisition tool
to create/modify the knowledge base)

classifier

"
knowledge base

domain knowledge domain principle

others ...

t
Program Write (u~ .. s the knowledge base to generntc

an executable expert system and

j I a Development History)

l_ 1- I

[i;· Pevelopmen ;> ---~ Execution

~ History Interpreter

I I
Trace

J
' . ;;> Explanauon Generator ' at run llme the Explanation Generator accesses

the various components to provide explanations
for the user)

1
USER

Figure 4.a : A brief outline of the EES framework

85

Step 4 : If no match is found, the Pro~m Writer uses a process called

'Reformulation into cases' to reformulate the goal. There are several ways of

reformulation, but generally it involves the breaking down of goals into

subgoals.

The reformclalion process is recorded by the Program Writer so that EES can

explain how it was derived.

Step 5 : With each subgoal so gener.tted, the Progtam Writer remrns to re-do Step 2

until all subgoals have been implemented (ie. tlte leaf nodes have been

reached).

o Highest level goal
I\

' ' I\ \
o o o Reformulate into subgoals until

I 1\
o o o leaf nodes are reached.

Figure 4.b: The Refinement Structure

The leaf nodes are the actual implementation. Each leaf node conmins an

implementation code.

The 'interiors' of the leaf node are the goals and decisions made on Lite way to

generating tlmt leaf (or implementation).

Once the leaf nodes (ie. e)[ecutable codes) are reached, the Program Writer usts

Tradeoff knowledge, Preferences, and Integration knowledge to construct the 'Control

Compooems'.

86

During execution time, the Control Components select which codes to use based on the

Tradeoffs and Preferences.

The Program Writer further uses the Optimisation knowledge to improve execution

efficiency. This is achieved by re-organising procedures to reflect concerns for reducing

costs (both computational and domain specific).

The final result of the generation is a runnable expert system and a Development

History.

Two main types of reasonings ":e produced by the Program Writer. These are the

'Implementation' reasonings (whidt are of interest to the maintainers) and the 'Domain

Level' reasonings (of interest to the users). These different kinds of reasonings are

explicitly marked in the design record so that EES can identify them when providing

explanations for different users.

During run time an Interpreter accesses the Development History and maintains an

execution trace of the run.

The uset' interacts with an Explanation Generator. The Explanation Genemtor has the

ability to nccess the Interpreter, Execution Trace, knowledge base, and the Development

History in order to produce the relevant explanations.

The Explanation Generator can detect cert.1in structures in the Development History

which allows it to determine which goals are generated as a result of implementation

concerns and which are problem solving goals and uses them accordingly to explain or

answer users' or maintainers' queries.

Other heuristics a11ow the Explanation Grnerntor to decide which level of detail is

appropriate when defining terminologies to the users. When comparing concepts, it can

detect similarities in the structures of different concepts and combine them into a

generalised description.

87

COMMENTS

This <''lncept of explicitly distinguishing different types of knowledge and the fonnal

recording of the system development process is not new. As noted by Neches, eta!.,

it was used in the Xplain system. The difference is that while "Xplain recognises

two fonns of domain knowledge (factual vs problem solving methods) and one

kind of Development knowledge ... " (Neches, et al., 1988, p. 283), EES recognises

many more.

The EES Program Writer concept appears to resemble the conventional program

compiler I;'Oncept whereby a program has to be recompiled each time any change is

made to it. By the same token each time a modification or an error correction is

done on t11e knowledge base, the whole expen system has to be re-generated by the

Program Writer. This obviously is not a very efficient technique if there are many

minor changes to be made on a regular basis.

EES illustrates an example of a system that can 'understand' its own behaviour. As

Lowry et a!. said "The EES framework is a first step towards a self-aware,

self-healing software" (Lowry and Duntn, 1988, p. 295). This should augur well for

a self-modifying system of the future since arguably self-understanding is a

pre-requisite step towards self·modifi~:ation.

88

4.1.2 OTHER KNOWLEDGE BASE UNDERSTANDING AIDS

Apart from the provision of good explanation facilities, techniques for making a

knowledge base easy to understand are very much dependant on ils construction.

Software engineering techniques such as modularity, structured principles,

documentation, user manuals, inline comments, use of indentations, cross-reference

listings, data dictionaries, standnrdisation, etc conuibute to the ease of knowledge base

understanding,

This section will outline some other methods which might be used to aid the process of

understanding a knowledge base or making a knowledge base easy to understand.

4.1.2.1 AUTOMATIC PROGRAM UNDERSTANDING (APU) PARADIGM

Such a tool is invaluable to d programmer since (as mentioned in section 4.1),

understanding of the code before modification can take up more than 60% of a

maintainer's time.

The APU pilTadigm is based on the reverse engineering principle (Lowry, et al., 1989),

a principle which applies compiler technology in reverse to derive a low level

specification from the code. Such a principle may be seen as the inverse of the

Automatic Program Synthesis (APS) concepL In the APS concept the idea is to generate

codes from specifications while APU starts from the code and generates tlte

specification.

The philosophy behind APU is to pre-store all possible implementation instances,

all programming techniques and strategies, data types, data structures, and problem

solving algorithms which may be used in the coding of some arbitrary programs. Once

this has been done, understanding now becomes a matter of retrieving the stored patterns

to match the given input patterns.

89

The obstacle to APU is that (apart from very limited applications) in practice, it is not

possible to pre-store all such computational instnnces since there are an infinite number

of them, Even if it were possible to pre-store them, the process of matching input

patterns to the pre-stored patterns will be combinatorially explosive. Hence it would

appear that such a concept may still be quite a long way from being useful as a

knowledge base understanding aid.

4.1.2.2 KNOWLEDGE BASE SOFTWARE ENGINEERING (KBSE) CONCEPT

One of the aims of KBSE is to have maintenance done by performing modifications on

the specifications and then rederiving the codes, rather than directly modifying the code

(Lowry and Duran, 1989, p. 245).

REFINE (Lowry eta!., 1989, p. 251) is a commercially available tool in which programs

are specified declaratively at the level of sets and logic. Knowledge-based compilers are

then used to transform them to lower level constructs.

While the KBSE concept appears to be currently directed at enhancing the development

and maintenance of conventional systems, it will be interesting to see if this technology

can be applied to the maintenance of knowledge bases themselves.

4,1.2,3 HOMOGENEITY AND PREDICfABILITY

To achieve homogeneity a knowledge base builder must use the same solution to solve:

the same type of problems. This ensures standardisation of code which in turn makes

for easier understanding of th<. ;.nowledge base.

Predictability demands that each rule in the knowledge base should serve only one

function, and related rules should not be scattered across the knowledge base.

90

Knowledge bases which exhibit these two characteristics enhance understanding. RIME

(see 3.2.3) is a language which promotes both these characteristics in the building of

knowledge bases.

4.1.2.4 DECLARATIVE LANGUAGE

Making a language more declarative may make its code easier for the maintainer to

understand. Separation of declarative knowledge from procedural knowledge is the

principle behind SYLLOG (refer section 3.5.2),

4.1.2.5 PROPOSING SIMPLIFIED RULES

One of the component tools of the EVA system is the Rule Proposer (Landauer, 1990).

Its function is to propose new rules from an existing set of rules. The Rule Proposer

does this by analysing a given set of rules and then uses induction to form new rules.

These proposed new rules represent a simplification over the old ones, thus facilitating

understanding.

~.l.l.ti PRODUCING FORMAL SPECIFICATION FROM EXISTING

SYSTEM COMPONENTS

The 'behaviour verifier' of EVA analyses the behaviour and interactions among system

components and then repons on the collective behaviour of these components

(Landauer,1990).

If formal specifications of all the sub· systems and their interactions exist, the lxhaviour

verifier can be used to help produce a fonnal specification of the total system behaviour.

91

4.2 AIDS TO FACILITATE THE PROCESS OF

MODIFICATION

This section looks at interactive aids which facilitate the process of knowledge base

maintenance. These interactive aids come in many different fonns.

For instance, tools like TEIRESIAS (Davis, 1984) and Knowledge Analyst's Assistant

(Debeham, et al., 1991) anempt to take the place of knowledge engineers by

automatically providing intemctive advice and guidance to the experts during the

modificat'to~ of knowledge bases. When a modification or an addition is made, such

tools chr .. ;k the modification with the existing knowledge base, then suggest further

possible actions the expen might wish to take or might have overlooked.

Tools lil:.e interactive classifiers, on the other hand, use the subsumption principle to

automatically determine where a newly described concept should be placed in the

knowledge base and then verify their decisions with the users.

Knowledge refinement tools, like SEEK (Politakis, 1985) or SEEK2 (Ginsberg, 1988),

allow the users to interactively experiment with changes by testing these changes against

stored test cases, before pennanently incorporating them into the knowledge bases.

The above to Jls are in contrast to those that are used to check the knowledge base as

a separate step after changes have been made. Such tools will not be considered in this

section but are discussed in section 4.3.

92

4.2.1 INTELLIGENT ASSISTANT CONCEPT

Among the earliest attempts at intelligent tools to interactively assist an expert to

maintain an existing knowledge base was TEIRESIAS (Davis, 1984), (Davis, 1988).

This section examines TElRESIAS, which is one of the most quoted systems. It has

been cited by many authors for illustrating diffe1.:;at concepts. It was seen as a

knowledge refinement tool by Black (1986) who said that the goal of TEIRESIAS was

to enable a domain expen to refine a knowledge base without the aid of a kno•.vledge

engineer (Black, 1986, p. 36). Perkins, Lafft·ey, Pecora, and Nguyen (1989) saw

TEIRESIAS as a knowledge base debugger, claiming that TEIRESIAS was 'a first

attempt to automate the knowledge base debugging process' (Perkins et al., 1989,

p. 354). TEJRESIAS is considered by others as a knowledge acquisition tool which

helps to automate the knowledge engineering process. Irani, Matts, Hunter, Slagle, Kain

and Long (1990, p. 275) described TEIRESIAS as a knowledge editor. Davis (1985) said

that one of the main goals for the creation of TEJRESJAS ''bas been the development

of an inteUigent assistant" (Davis, 1985, p. 172).

In this research TEIRESIAS is seen as an intelligent assistant 10 the expert. It is a useful

maintenance tool which provides an expert with interactive guidance to facilitate the

process of adding, deleting, or altering rules in a knowledge base.

4.2.1.1 NAME OF TOOL : TEffiESIAS

INTRODUCTION

TEIRESIAS is a program written in Interlisp at the Stanford University Computer

Science department in the early eighties. The program was nwned after the blind seer

in 'Oedipus the king' because its author likened the program to the blind prophet who

bas a form of 'higher nrder' knowledge (Davis, 1988, page, 243).

93

OBJECfiVE OF TEIRESIAS

To provide interactive guidance and advice to llelp a domain ex pen add, alter or delete

rules from an eKisting knowledge base.

CONCEPT BEHIND THE TOOL

TEIRESIAS assumes tllat a knowledge base already exists and uses it to build 'rule

models'. A rule model is a generalization of a class of rules. When a change is made

to a rule or a new rule is added, TEIRESIAS verifies it with tile rule model and reports

to the maintainer any incompleteness or inconsistencies it detects and suggests possible

remedies.

Tile concept of rule models used by TEIRESIAS is an example of meta-level

knowledge application. Meta-knowledge enables TEIRESIAS to model its own

knowledge. The rule models represented as meta-knowledge, are assembled by

TEIRESIAS on the basis of the knowledge base contents. TEIRESIAS checks the

knowledge base for rules wllicll llnve common characteristics and uses these

regularities to construct the rule models. The rule models are not static, but are

assembled by TEIRESIAS as a result of its interaction with the experL

During the modification process TEIRESIAS does not simply accept any additions or

amendments of rules and add them to the knowledge base. Instead tile rule models are

used to evaluate the new knowledge. In so doing TEIRESIAS demonstrates the process

of learning by examining what it already knows with what it is being taught.

IMPLEMENTATION DETAILS

A typical session witll TEIRESIAS would involve the following steps :-

94

Step I : The domain e11.pert indicates to TEIRESIAS that an incorrect conclusion has

been detected from the knowledge base.

TEIP.ESIAS contains heuristics to help it select the best approach to track

down the problem, and ask the expert for guidance to help it do so. This

question and answer session would proceed until the problematic rules have

been identified.

Step 2 : Once the incorrect rules are found the e11.pert may modify them by chllnging

them or by adding new ones. The e11.pert enters this new knowledge in the

form of a restricted natural language.

TEIRESIAS's task at this stage is to make sure it has 'understood' th.e expert

correctly. It does this by matching the text entered by th.e expert against its

own internal rule models and selecting one which characterises the text best.

Since the rule models contain characteristics that the rules have in common,

TEIRESIAS understands that th.ese are the characteristics that th.e text entered

by the expert should have. It then confirms its understllnding of the new rules

with the expert.

If it has been con finned to be the case, TEIRESIAS would then generate the

codes for the new rules, otherwise, the expert would use TEIRESIAS's

built-in rule editor to modify the rules in a bid to help TEIRESIAS interpret

them correctly.

Step 3 : Once the expert indicates to TEIRESIAS that lie or she is satisfied with

TEIRESIAS's interpretation, TEIRESIAS uses the rule model again, this time

to see how well the new rule fits into the model. This is referred to by Davis

as making a "second guess" (Davis, 1988, p. 256). TEIRESIAS does this by

trying to find a complete match between th.e new rule and the rule model.

95

If there is nn incomplete match TEIRESIAS points out to the expert what the

differences nre. For instance if the expert had modified a rule to do process

A, TEIRESIAS may respond with "most rules that do process A also do

process B • shnlll add process B to your rule as well ? "

While the first use of the rule model (in step 2) was concerned with

interpreting text and determining what the expert actually said, this second use

of the rule models is to see what the expert plausibly should have said.

Step 4 : When both the expert and TEIRESIAS nre satisfied, bookkeeping msks are

performed. That is, TElRESIAS books the new rules into the knowledge base

and tags them with information to aid maintenance (eg. name of author, date

of change, etc).

COMMENTS

While the generlliity of TE!RESIAS allows it to be applied to almost any domain,

a criticism which may IY; levelled at it is that TEIRESIAS works only on knowledge

bases built in the MYCIN architecture.

TEIRESIAS does not make any formal assessment of the rules at the time they are

initially entered. Before TEIRESIAS can be used a knowledge base must already

exist.

TEIRESIAS appears to be a foundation from which many other concepts have

stemmed. It embodies concepts of knowledge refinement, machine learning,

automatic debugging, knowledge editing, an example of meta-knowledge application,

an intelligent assistant, etc.

96

4.2.2 KNOWLEDGE CLASSIFIERS

A major problem faced by a maintainer as a knowledge base grows in size and

comple!dty is the increasing danger of introducing incorJsistencies and errors every time

an addi:!on or modification is made.

This section looks at a tool which uses the contents of an existing knowledge base and

knowledge about its representation to help the maintainer introduce new objects. Such

a tool is referred to as a classification tool or classification system.

A classification system "' b basically made up of : -

(a) a knowledge representation language -

Typically this may be a frame-based, rule-based, or other representation based

language. It is used for implementing the knowledge base.

(b) a classifier-

This is an algorithm for identifying the taxonomic location of a new concept ami

adding it to that location in the structure.

A classifier considers the objects in a knowledge base as nodes of an ordered

structure, linked cogether by a subsumption or an inheritance relation. When n

* Maoy allllw!to •ppeu lo "'' lho '"'" '<lmlll<t' or lllo '1'"&"'1'' looo<ly "~ lnlor<lwli"blf 01111> 111< <t>.lllr~"'"''l"'"" ll><lf.

Sr>ffilnoo Ill d.Of)"ln.! w"'' 'KL-Q1'1!i' ~ ·~~ 'O<eulorlolly tllo "'"""" ""'" ltiOd 10 m<r lo)<~>l lh< 1"'1"'!•' (5raclimln anil Scl!mol<e,

l939,p.lll1),

97

node (rule) is added, the classifier detennines its appropriate position in the

ordering and verifies this decision with the maintainer before placing it in that

location,

The main idea behind a classifier is that given two concept definitions, it is

possible to detennine if one subsumes the other (provided both have precise

definitions).

Often, however, it is not possible to give precise definitions to every concept.

A classifier has to deal with this problem.

4.2.2.1 AN EARLY CLASSIFIER

The way the KL-ONE *classifier handles this problem is by recognising two main types

of concepts. The first type are those which do not have precise definitions.

These are called the Primitive Concepts (PC). The other type is the Defined Concepts.

These are concepts that can be defined in tenns of the PC. In other words, PCs are the

basic concepts from which all concepts are built.

In a KL-ONE taxonomy, the most basic PC is the Root Concept. The Root Concept is

the first concept to be defined, usually called '1HING'. THING subsumes everything

and is the only concept that does not have a super-concept (ie the subsuming concept

or the parent) .

• Tho J(L.ONE<~~Iro<"lon'f>"'n wb~h ""' 'l'f'<'redln 1977, cONk" oro """""'"~"' l>oS"'I' w~~h II d oo U~ llnle d

Wler~<uoce --·,arw:~un.., e~•t.. lm,p.l03i.l"<t'"'""" u- ,.,.,...,.,, ... ,,..-~,..,..

98

Apart from THING every concept must have at least one super-concept plus a local

internal structure. The local internal structure defines the local restriction or properties

or attributes. If a concept does not have a local restriction and has only one parent

(super-concept) then it is the same as the parent itself. Hence to be well-defined a

concept with no local restriction must have more than one super-concept.

When a classifier is used directly by the maintainers to add a new concept the

maintainers need to know the descriptive tenns in use in the existing knowledge base

in order to create a concept that can be accurately classified. If an error is made in the

classification, the maintainers must repeatedly modify the classification until they are

satisfied. This process is much more efficient if it is done interactively. An interactive

classifier establishes a verification interaction with the user to ensure that a new node

is subsumed correctly.

4.2.2.21NTERACTIVE CLASSIFIERS

This section looks at a simple interactive classifier called KuBIC (Knowledge Base

Interactive Classifier). KuBIC's interactive classification algorithm is implemented in

Prolog. It uses a simple representation language based on the tree structure.

NAME OF INTERACTIVE CLASSIFIER : KuBIC

OBJECTIVE

KuBIC is designed for the main purpose of exploring the underlying ideas of interactive

classification.

99

CONCEPT

KuBIC's interactive classification is based on the subsumption relation. The use of

subsumption relations economises descriptions and localizes distinguishiug information.

Economy of description is achieved through the inheritance of attributes and attribute

values by a node's children (ie. its subsumees).

Localizing distinguishing information means that when a new node Y has been

determined to be subsumed by an el'>isting node X, then only X's children (ie Y's

siblings) need to be considered in order to find a more specific suhsumer of Y. In other

words, the classifier may localise its questions by using only the information stored in

X's children to determine this node.

IMPLEMENTATION DETAILS

There are three main steps involved in the classification of a newly introduced concept

(or node). These nre :

l, getting the initial description;

2. finding the most specific subsumer:

3. finding the most general subsumees.

Step 1 : Getting the inil.ial description

The user specifies the initial description of n new node to be introduced to the

knowledge base by the following steps :-

100

If a subsumer is known (rarely the case), the user may name the subsumer

directly, then proceed to Step 2, otherwise, the interactive classifier will

detennlne the subsumer by asking the user for attributes and llttributc vnlues

about that node.

With this attribute infonnation the interactive classifier proceeds to detennine

the most specific subsumer for this new node.

Step 2 : Finding tlte most specific subsumer

The interactive classifier searches top down for the most specific subsumer

starting m the root of the tree using an appropriate search strategy.

For example, if the new node Y, bas been dctcnnined to be subsumed by

node X, and XI, X2, X3 are X's subsumees in the knowledge base (see figure

4.c), tlten only XI, X2, or X3 are possible candidates for a more specific

subsumer of Y.

X y

I l"-
xi X2 X3

Figure 4.c Finding the most specific subsumer

The infonnation stored in XI, X2, and X3 allows the interactive classifier to

select questions which will detennine which node is the more specific

subsumer of Y.

101

This process goes on until the MOST spe.cific subsumer of Y is found. For

example, in this case, if none of XI, X2, or X3 subsumes Y, then X itself is

the most specific subsumer ofY, andY will be placed under X, alongside XI,

X2 and X3.

Step 3 : Finding the most gen-:ral ~ubsumees

In order to define Y's location fully we now need to determine Y's most

general subsumees.

This task is now relatively simple because the search is confined to Y's

siblings only.

For example, if it was found in Step 2 that X was Y's most specific

subsumer then XI, X2 and X3 are th-: siblings of Y (see figure 4.d)

X

I I\"'-
xl X2 X3 Y

Figure 4.d Siblings of node Y

The interactive classifier now checks information obtained from XI, X2 and

X3 in tum to see if Y subsumes My of them. For instance if Y subsumes XI

and X3 then XI and X3 becomes thr most general subsumees of Y (see

Figure 4.e)

In this way the new node Y has found its taxonomic location in the hierarchy.

102

X

I \
X2 Y

I \
Xl X3

Figure 4,e Most gen~rnl subsumees of node Y

Note that the above example describes a tree classification. In a lattice classification, the

process would be more complex.

COMMENTS

To automatically determine if a new node is subsumed by another, precise definition

of both nodes' attributes and ntuibute values are necessary, otherwise the classifier

has to check these values with the user.

Since there are no precise definitions for Primitive Concepts, the classifier needs to

check every Primitive Concept in the knowledge base with the user. This hinders

the functioning of lhe classifier since in non-trivial knowledge bases the number of

Primitive Concepts are large. KL-ONE suffers from this problem, as does the abcwe

interactive classifer.

To overcome the problem, more expressive representation languages are required.

An example of a classifier thnt handles this problem is KLASSIC (Finin, 1988).

103

Current hybrid classification systems typically contain both a frame and a rule

language. The drawback of this combination is the system's inability to reason with

both kinds of representation in a uniform manner.

The KREME nnd the LOOM classification tools (MacGregor and Berstein, 1991)

move away from this combination to support instead a description language and a

rule language and use a common 'descriptive classifier' for deriving inferences

between these two representations.

104

4.2.3 KNOWLEDGE REFINEMENT TECHNIQUES

Knowledge refinement techniques are examined in this paper because they may be used

to facilitate the process of knowledge base modification on an interactive basis,

However, such techniques are not suimb\e for making major changes to the knowledge

base. They are meant to be used on knowledge bases which are already relatively

accurnte. and where only small changes to improve performance are required. The

knowledge base to be modified is considered to be a first approximation of the final

version. It is refined by adding, deleting or modifying its contents incrementally until

the expert is satisfied that it can perform 'corr«:tly'.

Traditionally, knowledge refinement techniques use learning by induction over a library

of test cases. Examples of these include 103, INDUCE (quoted in Wilkins, 1989,

p. 247), and SEEK (Politakis, 1985). Learning by apprenticeship has also been userl in

knowledge refinement by a tool called ODYSSEUS (Wilkins, 1989).

This section examines SEEK, a knowledge refinement tool which is capable of

interactively guiding a maintainer or developer during a refinement process.

4.2.3.1 NAME OF TOOL : SEEK

INTRODUCTION

SEEK (Polilakis, 1985), (Ginsberg, 1988), is an acronym for System for Empirical

Experimentation with Expert Knowledge. It was first developed at Rutgers University

for use in the AI/RHEUM system (a system for diagnosing rheumatic diseases).

105

OBJECTIVE OF SEEK

To integrate the process of knowledge refinement and validation of the knowledge base

into a single framework.

CONCEPT BEHIND SEEK

SEEK requires th·~ presence of two sets of knowledge :

i) a model of an eKpert-derived knowledge base;

ii) a stored set of test cases. This database of stored cases is called the Case

Knowledge (Ginsberg, 1988, p. 2), The Case Knowledge must be elicited from the

e}l:pert. It is a set of problem scenarios for which the eKpert's conclusions are

known,

The actual refinement process is driven by a comparison of these stored conclusions

with those derived from the knowledge base. Whenever an incorrect result is detected,

SEEK offers suggestions to guide the eKpert to revise nnd refine the knowledge base in

order to make it reproduce the correct result.

By modifying the contents of the knowledge base in order to correct its functioning, the

refinement process may be seen as perfonning a validation on the knowledge base.

106

IMPLEMENTATION DETAILS

Step 1 : A model of the knowledge base must be built by using a specialised text

editor. The model is represented in a tabular fonn.

Step 2 : Case experiences (which forms the Case Knowledge) are collected in the

form of questionnaires. They are then entered into a database forming a

library of test cases whose conclusions are known. These conclusions are the

'correct' final diagnosis assigned to the test cases.

Step 3 : The refinement process. This process involves three steps :

i) obtaining the knowledge base performance summary;

ii) analysing the rules; and

iii) revising the rules.

i) Obtaining the knowledge base performance summary.

This step produces a performance summary for the knowledge base over all

stored cases. The performance sununary shows the number of cases in which

the conclusions produced by the knowledge base matched with the stored

conclusions.

The result is displayed in the form of a table from wltich mis-diagnosed cases

may be identified and analysis carried out

107

ii) Analysing the rules.

SEEK provides interactive assistance during the analysis of the rules.

Analysis may be done in two ways :

a) Analysis of the model over a single case.

This mode of analysis is used for providing the lu;ow!edge engineer with an

explanation of the results produced by the knowledge base for the particular

case under test.

If the conclusion obtained from the knowledge base matches the correct

solution, SEEK displays the rules used to achieve the solution, otherwise,

SEEK attempts to locate the partially satisfied rule for the expert's

conclusion that is closest to being satisfied and advises the knowledge

engineer on what sort of refinements to make. Refinements may take the

fonn of either genernlising the rule or specialising it.

Rather than testing the whole knowledge base, the knowledge engineer is

also given the option of testing the performance of selected subsets of rules

within the knowledge base over that single case.

b) Analysis of the model over multiple cases.

'This mode is used for the global analysis of the knowledge base (ie. testing

the knowledge base over a multiple or an all-case basis).

As with the previous mode, the knowledge engineer has the option of testing

either the whole knowledge base or selected sections of the knowledge base.

Testing selected sections allows the knowledge engineer to focus attention

108

on a subset of rules to be analysed.

Typically, the knowledge engineer would begin by selecting a subset of

rules to be analysed. This is normally the set of rules with mis-diagnosed

cases.

SEEK performs the analysis and automatically generates advice on how to

refine the rules. This advice comes in the form of a report which :-

• ranks the rules which are potential candidates for generalisation and those

which are potential candidates for specialisation;

- proposes experiments for carrying out specific generalisation or

specialisation of the rules. As the number of possibilities that could be

tried in order to correct the misdiagnosed cases is enormous, SEEK

conlllins heuristics which al!ow it to narrow down the experiments to try.

For example, SEEK selects only the rules that agree with the expert

conclusions which are closest to being satisfied in a misdiagnosed case.

Based on this report the knowledge engineer now proceeds to the next

step, that is the revision of the rules.

iii) revising the rules

The revision of the rules is carried out by trying SEEK's suggested

experiments. These experiments conditionally incorporate the change into the

knowledge base and test it against the case library.

SEEK, however, does not commit the knowledge engineer to make the change

permanent. The knowledge engineer has the option of either accepting the

change or rejecting it.

109

COMMENTS

• Knowledge refinement techniques suffer from the following shortcomings :

i) only minimal changes are feasible since refinement techniques work under the

assumption that the knowledge base is generally correct;

ii) a comprehensive set of cases may be bard to collect, if not impossible;

iii) in a multi-paradigm knowledge base many different data structures are allowed.

This added complexity will make it unsuitable for knowledge refinement

techniques. Kulikowski (1989, p. 171-172) claimed that "the resulting

non-homogeneity blocks the application of consistent knowledge refinement

heuristics."

Further to the shortcomings of refinement t.uols in general, SEEK in particular, is a

tool of restricted scope of applicability since :

i) it only works on rules written in a restricted tabular fonnat (Politakis, 1985, p. 3);

ii) even basic refinements, which ideally shnuld be automated, need to be done

interactively, making the use of SEEK a time-consuming and tedious process.

The above shortcomings of SEEK have been corrected by SEEK2 (Ginsberg, 1988)

which works with a more general class of knowledge base fonnats and can perfonn

basic refinements automatically.

In addition SEEK2 also provides a meta-language which can be used for specifying

domain-independent and domain-specific mew-knowledge about the refinement

process.

110

4.2.4 OTHER INTERACTIVE MODIFICATION TOOLS

Knowledge base editors, debuggers, and knowledge acquisition tools are among some

of the systems which allow users to elicit domain knowledge from experts, access the

knowledge and manipulate or change it on an interactive basis.

4.2,4.1 KNOWLEDGE BASE EDITORS

To some degree a knowledge base editor fulfils the role of being an interactive

maintenance aid to a knowledge engineer.

Features of a knowledge base editor include entry, browsing, viewing. accessing and

editing facilities. The browsing facility is useful for e)[p\oring existing knowledge base

before making changes.

Finin (1988) said that Schoen and Smith have described a 'display-orientated'

knowledge base editor for representation language, STROBE, and Lipkis and Stallard

are developing an editor for the KL-ONE representational language (Finin, 1988,

p. 275).

Terveen, Wroblewski and Tighe (1991) talked about the HITS knowledge base editor,

an editor which provides intelligent assistance through a process called 'collaborative

manipulation' of objects in a shared workspace (an area for joint user-system problem

solving),

4.2.4.2 AUTOMATED KNOWLEDGE ACQUISITION TOOLS

Marcus (1988) said that automated knowledge acquisition tools are "tools that can elicit

Ill

relevant domain knowledge from eKpens, maintain that knowledge in a fonn that makes

it accessible for analysis, review or modification .•. "(Marcus, 1988, p. 1).

Examples of such tools are MORE (Kahn, 1988), an automated knowledge acquisition

system that helps refine an eKisting knowledge base; MOLE (Eshelman, 1988), a

knowledge acquisition tool for generating e~tpert systems that perfonn heuristic

classification: and SALT (Murcus, 1988), an automated knowledge acquisition tool that

addresses synthesis (as opposed to analysis) problems.

ll2

4.3 ENSURING CORRECTNESS AFTER

MODIFICATION

The previous section has been concerned with interactively maintaining the correctness

of the knowledge base as it is being modified. TEIRESIAS was seen as a tool which

interactively checked knowledge base consistency during a modification session, while

interactive classifiers place newly described knowledge into their correct location using

subsumption, and knowledge refinement tools like SEEK interactively validate the

knowledge base against a set of test cases.

This section looks at a different approach, one in which a knowledge base is modified,

then is checked for conectness as a separate step.

As in most skilled professions, a maintainer's skill does not lie in the ability to modify

a piece of code, but in the ability to ensure that nothing goes wrong after tre change.

This skill can be aided by appropriate tools. This section will discuss the various

verification and validation tools and tectmiques which help towiU'ds ensuring that nothing

goes wrong as a result of making a modification.

Generally there are two levels of testing - verification and validation. However, there

appears to be no agreement among authors on the use of the terms verification and

validation. O'Leary, Goul, Moffi~ and Radwran (1990) said that "Unfonunately, the

term validation is inconsistently used ... " and that "Balci and Sargent found that a

standard definition does not exist ... " (O'Leary eta\., 1990, p, 51).

In this thesis "verification" refer to checking that the knowledge base matches with the

specification. Verification checks demOnstrate consistency, comp Jeteness and correctness

of the knowledge base. That is, verification is concerned with structural correctness.

113

"Validation" on the other hand is concerned with detennining the correcU\ess of the

knowledge base with respect to the user requirements. In other words the knowledge

base is 'functionally' correct and acting in accord with the user's intentions.

These definitions are in accordance with those given by Lowry et al. in the 'Handbook

on Artificial Intelligence' which st&tes that verification mathematically proves software's

correctness with respect to a fonnal specification while validation checks whether the

system satisfies the needs for which it was developed (Lowry et al., 1989, p. 248-249).

Lowry et al. further asserted that validation failure is the result of shortcomings or errors

in the specification owing to miscommunication or poor understanding of initial needs

while verification failure is the result of errors in the software resulting in its failure to

meet specification.

This section is divided into two parts. The first pan looks at verification techniques

while the second deals with validation techniques.

114

4.3.1 KNOWLEDGE BASE VERIFICATION TECHNIQUES

This section is concerned with demonstrating the structural correctness of a knowledge

base. What is meant by 'verifying for structured correcmess' depends very much on the

knowledge representation fonnalism used.

Lopez, Meseguer, and Plnza (1990) said that "if we consider production rules, the

followinB properties would be part of the structural verification :-

• redundant rules

- subsumed rules

- circular rule chains

- unrrreab\e rules,

-non-reachable goals, ... "

(Lopez et al., 1990, p. 59).

Most work on verification appears to have been done in the area of rule-based systems

only. This paper examines some of them.

ONCOCIN will be looked at for historical reasons as it is one of the earliest attempts

at knowledge base verification. This is followed by CHECK, a verification system which

Is an extension to ONCOCIN. More current methodologies are then commented upon.

115

4.3.1.1 ONCOCIN RULE CHECKER

INTRODUCTION

The ONCOCIN Rule Checker (Suwa, Scott, and Sll.ortliffe, 1984) is a rule-b9Sed

verification progrnm written for the ONCOCIN system, an expert system for oncology

protocol man9gement.

Although specifically designed for the ONCOCIN rule base, its developers claimed that

tile rule checker is general and adaptable to other rule bases (Sown et al., 1984).

OBJECfiVE OF THE ONCOCIN RULE CHECKER

To check a rule base for conflicts, redundancies, subsumptions and omissions.

CONCEPT BEHIND THE TOOL

A rule in ONCOClN is considered to be made up of :

i) a CONDmON part which consists of one or more condition parameters

ii) an AGnON part which has a single action plll'nmeter

The basic ideu behind the ONCOCIN Rule Checker is that if n rule base is partitioned

into disjoint sets such that each set is made up of only those rules which conclude a

value for the same action parameter, then it is possible to check these resulting disjoint

rule sets inde,.11endently for conflicts, redundancies, subsumptions and omissions.

116

IMPLEMENTATION DETAILS

Step 1 : The rule base is checked for rules which have a common action "' pa.rnmeter

in the action part of the rules.

Step 2 : These rules (which may be scattered throughout the knowledge base) are

grouped to form disjoint rule-sets.

As an example, consider a case where three rules in a given knowledge base

have all been found to conclude the same action parameter, Fruit (see

figure 4.f)

The rule checker groups them together to form a disjoint rule-set,

Step 3 : For each disjoint rule set thus formed, the ONCOCIN Rule Checker does the

following:-

(a) identifies all parameters and parameter values used in the

condition parts of these rules, and determine the total number

of possible combinations of these condition parameter values.

* In ,.IOC1lng n>lu '"lh O<<HM>On ao:lioo !""IOd<r, lbo ONCOC~'I Rulo Cbcckor &bo """'""' lho '""'~"' In

"l!l<b lbo PJiu ""''''Tho '''"'"'"' lo l<lmlill<ll by bo•l•l on"""' 1101 _, lo lbo !Uie,l!eo<e""" >ild~lonal

<ll«k '"ocaW)'.I'ot o!mpt~Uy orm"'"'""" '"""'"' '' l!rn>mlln lh~ ji>ruloioo.

111

R11le number

34

Rule

if Color= red and Size = tennis ball

then Fruit = apple

I 07 if Color = red and Size = marble

then Fruit = grape

187 if Color= green and Size= tennis ball

then Fruit= apple

Figure 4.f Rules concluding the same action paran.eters

In the example :

the number of condition parameters = 2 (ie. Color, Size)

the number of parameter values = 2 for Color (ie. red, green)

= 2 for Size (ie. tennis ball, marble)

the possible combinations (of condition parameter values) = 2 x 2

·4

liB

(b) The rule checker then creates a table consisting of all possible

combinations of condition parameter values and their corresponding

action parameter values, and examines the table to detect conflicts,

redundancies, subsumptions and missing rules.

(c) It then produces a report which shows this table with comments or

error messages (like 'redundant', 'conflict', 'subsumption' or

'missing') listed alongsfde entries in the table (see table 4.a).

RULE CONDmON PARAMETERS ACflON REMARKS

NUMBER PARAMETER

Color Size

red ""'" tennis marble

"""
34 y y apple

107 y y ""''
187 y y apple

y y MISSING

Table 4.a All possible combinations of condition parameter values and their

corresponding action parameter values.

119

Missing rules :

The above table illustrates how the rule checker detects a missing rule. The

table shows the four possible condition parameter value combinations. There

was no rule in the set which matches the last combination of Color = green

and Size =marble. Hence the rule checker considers this rule as 'MISSING',

Subsummion :

If there is another rule in the knowledge base which says :-

if Color= green then Fruit= apple

then this rule will get an entry into the table. The remark 'SUBSUMPTION'

will appear alongside it as we11 as alongside Rule 187.

Conflict :

If there is a rule that says :-

if Color= red and Size =marble then Fruit = strawberry

then this rule will get an entry in the table with the remarks 'CONFLICf'

appearing beside it ns well as beside Rule 107.

Redundancy :

If there Is a rule that says :-

120

if Size "' marble ami Color "'red then Fruit = grape,

then the remark 'REDUNDANT' will appear beside this rule and also Rule 107

in the table.

COMMENTS

Although claimed by its developers to be general and therefore adaptable to other

rule-based systems, the ONCOCJN Rule Checker applies to rules which have a

restricted synw only. For instance, the action pan of the rule can only conclude one

parameter value. It also has no facilities to check for deadend ifs, unreachable

conclusions and circular rules.

The verified results are not always accurate. A reported missing rule may not be a

real missing rule. This is because the ONCOCJN Rule Checker assumes there should

be a rule for each possible combination of values of condition parameters, but some

combinations may be meaningless. This false alann serves as a distraction to a

maintainer.

Tsang, Wan, Lim, and Hioe (1988, p. 575) said that the developers of ONCOCIN

"plan to apply semantic knowledge for eliminating these meaningless combinations".

121

4.3.1.2 NAME OF TOOL : CHECK

INTRODUCTION

CHECK (Perkins, Laffey, Pecora and Nguyen, 1989) is a rule-based verification tool

designed for use with the Lockheed expert system shell. It is an extension of the

ONCOCIN Rule Checker.

In addition to performing ONCOCIN Rt•le Checker's conflict, redundancy, subsumption,

and missing rule checks, it also checks for unnecessary ifs, deadend ifs, dendend goals,

unreachable conditions, unreferenced parameter values, illegal parameter values and

circular rules.

It further differs from the ONCOCIN Rule Checker in that it is applied to the entire rule

base rather than just subsets of rules.

OBJECf!VE

To statically verify a rule base for inconsistencies and incompleteness.

CONCEPT BEHIND CHECK

A rule in CHECK is broken down in the following manner (refer figure 4.g) :-

The rule is considered to be made up of an 'IF part' and n 'THEN part'.

A part is made up of one or more 'clauses',

A goal is equivalent ton 'THEN part'.

122

RULE

\

THEN PART

\

IF PART

I \
CLAUSE CLAUSE

GOAL

I \
CLAUSE

Figure 4.g The rule ~trucrure of CHECK

CHECK starts from the most basic relationship and works upwards. It first establishes

the relations among all the clauses in the rule base. Using this interclause-relntionship

it then deduces relationships among parts, and from them deduces relationships among

rules.

From these three types of relationships thus obtained, it is possible to deduce how

clauses in the rules (and goals) affect the other clauses to give rise to inconsistencies

and incompleteness.

IMPLEMENTATION DETAILS

Step 1 : Detennine how clauses are related with one another.

This is achieved by comparing the clauses of every rule against the clauses

of every other rule. From the comparison a two-dimensional

interc!ause-relationship table is drawn up showing the relations of every clause

to every other clauses. These relations may be 'SAME', 'DIFFERENT',

'CONFLICf' , 'SUBSET' or 'SUPERSET',

123

Step 2: Detennine how parts are related to one another.

This is achieved by looking at the interdause relationship table for the clauses

that made up each part and from them deduce the overnli parts relationships.

Again these relationships may be 'SAME', 'DIFFERENT', 'CONFLICf',

'SUBSET' or 'SUPERSET'.

Step 3 : Detennlne subsumptions, redundant rules, and unnecessary clauses.

This is. achieved by comparing the parts relationships of each rule against the

parts relationship of every other rule in the knowledge base. The possible

relationships yielded from this comparison are 'SAME' {meaning

redundant)'; 'DIFFERENT'; CONFL!Cf'; 'SUBSET' and 'SUPERSET' (both

of which indicate subsumption); or 'UNNECESSARY CLAUSES'.

Step 4 : Detemtine gaps in the knowledge base. Gaps are 'unreachable conclusions',

'deadend ifs', 'deadend goals'.

Unreachable conclusions- if a conclusion is not a goal and is not found in illlY

IF part of a rule in the knowledge base then it cannot be reached. Hence to

look for unreachable conclusions, look for TIIEN clauses (in the

interclause-relationship table) which have DIFFERENT relations for all IF

clauses and goals (note that DIFFERENT indicates there is no match).

Deadend ifs or goals - a goal or IF condition is deadend if a conclusion (ie.

the TIIEN part of a rule) which matches it cannot be found, in addition, that

goal or IF condition is not nskable (ie. there is no routine to ask the user for

its value).

124

IF

Hence deadend ifs or goals are detected by the fact that they have the

'DIFFERENT' relationship for all conclusions in the interclause-relationship

table, and the attributes they refer to are not askable,

THEN

Rule 1 2 3

1 •

2 •

3 ..
Figure 4.h: Dependency chart (Refer Rules 1,2,3 of page 126)

"' indicates dependency : that is one or more IF conditions matches one or more

conclusions of a rule. (eg. an IF clause of Rule I is concluded by Rule 2, ie. the

THEN PART of Rule 2 is dependant on the IF PART of Rule l; similarly an IF

clause of Rule 2 is concluded by Rule 3)

*"' indicates circular rule set because a condition of Rule 3 (ie. A) is matched by a

conclusion of Rule 2 and a condition of Rule 2 (ie. E) matches a conclusion of

Rule 3.

125

Step 5 : Detennine circular rule chains

Circular rule chains are determined by examining a 'dependency chart' (see

figure 4.b). The dependency chart shows how a rule is dependent on another.

It is generated from the interclause-relationsbip table.

Example:

Rule 1 IF A and B THEN C

Rule 2 IF D and E THEN A

Rule 3 IF F and A TIIEN E

COMMENTS

An advantage of such static rule checkers like CHECK and ONCOCIN is that they

systematically and exhaustively check every possible combination of rules in the rule

"'~·

The implementation overhead of CHECK, however, appears too bigh. Since CHECK

compares every rule in the rule base with every other rule, it requires N(N·l)

comparisons. Thus the number of checks performed is of the order N 2 (where N is

the number of rules in the knowledge base).

Although Cenainty Factors are allowed in the LES shell, CHECK does not look at

them when checking the rule base.

126

4.3.1.3 OTHER VERIFICATION TECHNIQUES

Although there are numerous other verification techniques using a varied mixture of

concepts, almost all assume that the knowledge is stored in a rule-based fo!Tilat. Little

work could be found in the literature which addresses the verification of knowledge

bases in other than rule-based folllls.

This section briefly outlines a few of these rule base verification techniques.

4.3.1.3.1 SPACE SEARCHING METHOD

Another technique for checking the consistency and correctness of a rule base is the

Space Searching method of Tsang, Wan, Lim and Hioe (1988). This method was

designed to fill the shoncomings of the ONCOCIN and CHECK rule checkers.

The main criticism of the ONCOCIN and CHECK mle checkers is that they detect only

superficial inconsistencies; that is, inconsistencies which arise from a direct or

superficial comparison of two rules. Inconsistencies that arise after a sequence of

inference steps are overlooked.

Io addition to this shoncoming, the ONCOCIN rule checker also over-reacts by sounding

false 'missing rule' alarms on practically meaningless rule combinations.

Tsang et al. (1988, p. 575) pointed out that in spite of this "over-vigilant behaviour", the

ONCOCIN rule checker "overlooks on some ()ccnsions". Since the ONCOCIN rule

checker fonns rules into rulesets and checks thelll independently, inconsistencies that

arise when rules of different sets are chained together in the inference process are oot

detected.

127

The Space Search method detects inconsistencies which arise due to the interactions of

rules during the inference process. It also removes some of the false warnings on

improbable situations by e~~:cluding them from the search space.

However Tsang et al. 's method does not remove all false alarms as they admitted "a

complete removal of these false warnings generally requires semantics knowledge of the

problem domain " (Tsang et al., 1988, p, 577). This method does not include any plan

fur the application of such semantic knowledge.

4.3.1.3.2 PREDICATEffRANSITION NET METHOD

The Predicate{frnnsition Net Method (Zhang & Nguyen, 1989) allows for the inclusion

of consistency and completeness checks as part of the knowledge acquisition process,

hence verification can be done in an incremental fashion as the knowledge base is being

developed.

The technique is based on the use of a Predicate/Transition (Pr{l') net model

representation lUld a syntactic pattern recognition method.

A program called 'Verifier' is used to implement this technique. This program starts off

by transforming the knowledge base to be verified to the Pr!f model. The various

inconsistency and incompleteness types or patterns are then defined with respect to the

Prtr modeL A scanner is then used to search the Prff model (ie. the tnmsfonned

knowledge base) for a match on these patterns. These matches are then highlighted as

potential errors for the e~~:pert's confirmation.

The method is not applicable to all rule bases. The rule base must be represented in first

order predicate logic before the transformation can be done. Apart from this problem the

developers also admit some other shortcomings of the method; for example, an inability

to handle incomplete cases.

128

4.3.1.3.3 ART RULE CHECKER (ARC)

ARC is a rule checker used to verify the consistency of ex. pen system knowledge bases

which utilise the Automated Reasoning Tool (ART) framework (Nguyen, 1988). ARC

is basically an ex.tension of the techniques used in CHECK (described in 4.3.1.2), The

additional checks handled by ARC include checking for compound conditions, subsumed

rule chains, redundiUit rule chains and conflicting rule chains, In addition, ARC uses a

RETE-like* algorithm which is more efficient than CHECK's exhaustive checking of

every possible combinations of rules in the knowledge base,

* A RIITI! olpti""" ("' IO<bon, (980. p. 111!) "'~ ,., alp.ol«m m•~~lnl n>«honl>rno 1o ,.lo:l oule> rroro "" rul<·bl>~

129

4.3.2 KNOWLEDGE BASE VALIDATION TECHNIQUES

To inspire confidence in the use of the knowledge base, verification tests must be

followed by validation tests.

Unlike uaditional systems, expert systems face two main problems with regard to

validation,

i) In lUl ex.pen system there is often no absolute measure of correctness since the rules

themselves are for the most pan only judgemental. In many case~ there is no single

best answer and there may be no agreement as to what is an acceptable answer.

Without an external criterion for correctness (in the form of an explicit requirement

specification) it is not clear what it means for a knowledge base to be 'correct'.

Hence, unlike a conventional system where correctness can be tested with a

pre-determined set of results whenever changes are made to the system, in an expert

system no such test is usually available.

ii) In addition to the absence of an absolute 'correctness' test, it is also impracticable

(if not impossible) to fully test an expert system knowledge base. In a traditional

program there are a finite number of paths which the program can take, and those

paths are known in ndvance, hence test data can be prepared to test every known

path in order to fully test the program*. The number of possible rath combinations

found in a non-trivial knowledge base would be combinatorially explosive. making

such a test intractable.

>I< "r.ll7 1<>1' U.pll« l<><illl ~I I:Do"'lpoiN. Th~ b dlff.,..l lnwnohiOI,., lh>lll"propm b l<>l<d oomrk<•l7. ,,.,..,..,..,, lhol b lltj<l)

,....,ow,l~ !l<tt<!oDOI<n<ic4U..I "''ilq b "nolonb rn<l~lll)bollbolbeottli<lll) ~lblo"lopro"'l""lf>OI"I<""""""''U!""ol.

1988, p.ll).

130

EVALUATION

In the light of the above difficulties, it appears that validation as applied to an expen

system knowledge base is reduced merely to 'evaluation'. This view is shared by

McGraw and Harbison-Briggs (1989, p. 311) who acknowledged that the difficulty

associated with validation "leads directly to the notion of evaluation rather than strict

validation".

In evaluation we stan with a 'valid' system and the evaluatian process returns a rating.

Much the same occurs here since we can only test for empirical adequacy, not absolute

correctness.

The basic concept behind validation is to collect a set of test cases with known

conclusions from the expert. (This is the rough equivalent of a traditional user

requirements specification). This 'test cases' set is a set of scenarios in which the ex pen

can perform 'correctly', and is itself rea!ly only a subset of all the possible cases. In

other words, it is not possible to collect a full and complete 'user requirement

specifications' for a non-trivial expen system knowledge base.

The performance of the knowledge base on similar test cases is then compared with the

pre-detennined conclusions of the set of test cases in order to determine what percentage

of cases the knowledge base can perfonn 'correctly'.

V & V RESEARCH

Reducing validation to evaluation is clearly unacceptable. However, there appears to be

no easy answer to this dilemma. Green and Keyes (1990) obsetved that due to the

difficulties of applying verification and validation (or V&V) to expert systems,

organisations refrain from requiring V&V in their expen system procurement

131

This gives rise to what Green rutd Keyes (1990, p. 445) called the 'vicious circle'

whereby "V&V is not done because nobody requires it. Nobody requires it because

nobody knows bow it's done. Nobody knows how because nobody has done it".

Clearly more research is urgently needed in the search for better rutd more formal V&V

techniques in order to inspire greater confidence in the use of expert systems

commercially.

Up until 1985 "there was almost no activity concerned with the testing of expert

systems" (Miller, 1990, p. 249). Although the situation bas changed markedly in recent

years with the appearance in the market of numerous V&V approaches, the basic

problems outlined above remnin.

Since we cannot test for absolute correctness, could we establish a minimal level of

V&V testing standards that is acceptable universally? Crut such a set of minimal testing

standards be found 1 Section 4.3.2.1 discusses two approaches which address this issue

to some extent. They are the 'com:ctness principles' approach which attempts to lay

down a set of acceptability principles for rule bases, and the 'validation standards'

appro~r.b which aims at providing a basis for standardising the validation 0f a

knowledge base system.

On a different note, some major projects, like EVA for instance, which was started in

1986, are continuing the efforts to research and develop V&V techniques for knowledge

bases with the gonl of building an integrated set of generic tools to perfonn V&V on

any knowledge base application developed in any shell. This project is discussed in

4.3.2.2.

Other V&V techniques are also outlined in the following section.

132

4.3.2.1 TOWARDS VALIDATION STANDARDS

This section outlines two papers which advance the idea of taking a standard approach

towards knowledge base validation. This is in line with the objectives discussed in

section 4.3.2 where it was argued that in order to win user confidence in the application

of expert systems, research should be directed at developing some acceptable minimal

validation standlltds. The two approaches are in contrast to those which focus on the

development of isolated validation techniques.

The first of these approaches, the 'Correctness Principle Approach', defines a set of

acceptability principl~s for a rule base. Each of tltese principles is accompanied by a set

of validation criteria. These criteria can be tested for by the use of analysis algorithms,

The second approach defines standards for classifying a knowledge base system. The

position in the classification determines tlte degree and type of validation required for

that knowledge base system.

4.3.2.1.1 CORRECTNES:I PR~:o!CIPLES APPROACH

This principled approach to V&V (Landauer, 1990), developed at the Aerospace

Corporation in the United States, defines a set of 'correctness' principles for the V&V

of a rule-based system.

These principles extend to more than just the rule base; they include the checking of

connectivity between the rules and the inference engine, and other interfaces as well (for

example, user interface, data interface).

133

Five such principles are identified in this approach. These are consistency, completeness,

irredundancy, connectivity, and distribution. These principles go beyond addressing the

normal correcrness problems like consistency, completeness and redundancy of lhe rules

in the knowledge base, as they include connectivity problems, (these are problems

concerned with the completeness and hredundancy of the inference engine), and

distribution problems (concerned with the 'esthetic' quality of the rules or the

awkwardness of role combinations). Esthetic aspects are considered because awkward

rule combinations can conceal potential errors.

In order to check for the principles, validation criteria are needed. Criteria are the

pre·defmed standards which the quality of the knowledge base can be measured against

(in other words, criteria are goals to be tested). For each principle, a set of criteria has

to be determined. These criteria can then be tested by means of mathematical or

computational algorithms.

Landauer advocated the use of mathematical algorithms (as opposed to algorithms based

on a linguistic approach) for the testing of the criteria because "mathematical conditions

can be checked effectively" (Landauer, 1990, p. 292). To test for these criteria the mle

base must be viewed as a formal mathematical object (ie the rule·base has to be

specified in accordance wilh strict conventions and vocabulwy of formal logic). Only

in this form can algorithms which make use of mathematical and graphical techniques

be developed for analysing this mathematical structure.

Landauer's paper describes in detail several mathematical and graphical algorithms that

could be used to test the rule base for some of the validation criteria. Some of the

algorithms described are suitable for analysing lhe static structure of the rule base while

others are meant for analysing its dynamic behaviour.

Static analysis involves examining rules as separate symbolic expressions without

considering how they interact with other rules or procedures in the inference engine.

Dynamic analysis on the other hand, involves the checking of rule interactions during

infereiice, hence the algorithm definitions in the inference engine need to be analysed
'

134

for procedural consistency and completeness as well.

Analysis algorithms are most effe~:tive if meta-knowledge has been used to defme the

rule base during its construction. Meta-knowledge makes testing easier since it may

replace large groups of rules during testing.

COMMENTS

- The correctness principles are suitable for use on rule bases only.

The fonn of the rule base considered in this approach is not the most general. For

the rule base to be acceptable for the application of these principles, it has to be

specified in a fonn that meets a set of strict mathematical requiremen\s.

4.3.2.1.2 VALIDATION STANDARDS

The intent of this approach (Harrison and Ratcliffe, 1991) is to provide a basis for

standardising the validation of expert or knowledge-based systems. It classifies a

knowledge base according to a set of conceptual standards which could define a minimal

validation effort.

This approach is centred around two types of standards :

135

1) StandW"dS for classifying a knowledge base

Standards are needed to classify a knowledge base >o that the e11:tent to which it can

be validated and the kinds of validation techniques to be applied can be detennined.

The classification standard proposed by this appronch is based on the degree to

which the knowledge base explicitly describe the causal relationship between its

components (ie how explicit is the causal structure described).

A rule base, for example, is at the bottom end of this classification continuum

because causality is implicit in a collection of rules. In contrast a system that

explicitly describes structures and functions for each component as well as causal

relations between the components would occupy the opposite end of this

classification scale.

The degree to which a knowledge base system can be validated and the kinds of

validation techniques that are applicable depend on the position the knowledge base

system occupies in this classification continuum. In other words, the classification

attempts to define n "minimum" set of validation effort for a given knowledge base

system.

2) Standards for the decomposition of validation tasks.

While (1) determines the degree and the kind of validation required, this section is

concerned with how the task of validation itself can be accomplished.

To facilitate the task of knowledge base system valido.tion the problem-solving

behaviour of the system bas to be decomposed into smaller and more manageable

units. These units, known as generic tasks, provide the standard for the

decomposition of a knowledge base system.

136

A generic task is a conceptual unit which contains a sequence of conceptually

distinct processes with a definable outcome (eg. assemble, plan, identify). These

outcomes categorise the generic tasks. For example a generic task may fall into any

one of the general categories of 'constructive', 'interpretive' and so on. Associated

with the general categories are the validation criteria. The validation criteria are the

testable goals which allow these units to be validated.

Thus to validate the behaviour of a knowledge base system, the system may be

viewed as the application or a sequence of generic tasks. Validation can then proceed

from the individual generic task modules to the complete system in an incremental

fashion.

The paper illusttates the application of the approach with two systems which represent

models at opposite ends of the classification scale.

The first system, YEO, was implemented as a rule based system with implicit causal

relations, while the second, FIRAS, contained explicit descriptions of causality in terms

of the underlying structure and functional relationships in the system.

COMMENTS

the model works only under the assumption that a standnrdised hybrid shell (eg.

KEE) is used to provide the inference engine for the knowledge base.

Objects in the knowledge base must be represented in a restricted frame-like structure

representation.

137

4.3.2.2 INTEGRATED V&V TOOL SET APPROACH

INTRODUCTION

Several major proje.:ts which have the aim of achieving an integrated environment in

which the different aspects of V&V, refinement, and evaluation can be analysed and

solved are currently under development.

Two such projeets are the E,.;pert System Validation Associate (EVA) project, (Chang,

Combs, nod Stnchowitz, 1990), (Landauer, 1990) which is discussed in this section, and

the European Esprit II project , VALID (Lopez, Meseguer, and Plaza, 1990) which has

the rather similar aim of developing an environment which is generic in order to be

applicable to different knowledge base systems.

4.3.2.2.1 THE EXPERT SYSTEM VALIDATION ASSOCIATE PROJECT

The EVA project, under development at the Lockheed Artificial Intelligence Center

since 1986, covers a very comprehensive range of V&V techniques and issues. It bas

the long range goal of developing an integrated set of generic tools to validate any

knowledge base system written in any expert system shell.

EVA is made up of many different tools which allow it to perform different verification

and validation checks. The ability of these tools to be used on any knowledge base

system written in any shell is made possible by EVA's unifying architecture which uses

a single user interface and a single meta knowledge base for all its tools.

The basic unifying factor behind EVA is its metal!lllguage which is common to all its

tools. The knowledge engineers use this metalanguage to specify their own validation

criteria. These criteria are stored ns meta knowledge. The V&V tools may then use the

138

information in the meta knowledge to validate the applk'.ltion knowledge bases.

For any new shell to use EVA a translator is required, The translator is used to translate

the application knowledge and meta knowledge in the shell to the EVA database format.

The following discussion outlines some of EVA's components under the headings of

verification tools and validation tools,

EVA'S VERIFICATION TOOLS

i) Structural checker

This tool checks for deadend rules, unreachable conclusions, redundancies and

circular rules,

ii) Logic checker

This tool is used for checking inconsistencies in the knowledge base. Such

inconsistencies occur when contradictory conclusions can be deduced from the

knowledge base.

iii) Semantic checker

This is used for checking for facts which violate the semantic constraints. Such

constraints have been defined by the knowledge engineer and stored as meta·

knowledge.

139

iv) Omission checker

This tool checks if there nre missing rules or facts in a knowledge base.

v) Model based verifier

This verifier makes use of a 'domain model' to check the content of a knowledge

base.

The domain model of an application domain is a database which contains general

knowledge derived from tel'tbooks, government regulations, or other publications

relevant to the domain. It is generally created without concern for specific expert

systems.

When a particular knowledge base has been specified the domain model may be

used to verify its contents.

EVA'S VALIDATION TOOLS

i) Test case generator

Test cases nre required for evaluating a knowledge base's behaviour, reliability,

sensitivity, etc.

Selecting such test cases is not only tedious, but is also error prone and biased. The

test case generator overcomes these shortcomings by generating such test cases

automatically.

140

ii) Uncertainty checker

Rules, slots or units may be related to one another, thus their certainty factors must

also be related in some consistent way. The purpose of the uncertainty checker is

to check whether such related certainty factors are compatible and consistent

iii) Rule Satisfiability check,~r

This tool requires the existence of a formal specification expressed in predicate

form.

It uses this predicate specification to detect rules which cannot be satisfied by the

specifications, or rules which produce facts which violate the specifications. In

addition it also identifies data which are satisfied by the specifications but are not

covered by the eKisting rules.

iv) Control checker

The control checker is used for validating the inference engine.

It requires the presence of an eKp!icit set of meta rules which specify the order

constraints of the rules. Using the meta rules it is able to validate the rule firing

order of the inference engine by comparing the explicit order constraints contained

in the meta rules with the implicit order constraint of the rule base.

v) Behaviour verifier

This tool pre-supposes the existence of formal specifications of aU the subsystems

of the knowledge base system. It uses the component behaviour and intemctions

141

of the subsystems to prove that the collective behaviour of the overall system is

correct

It also produces a formal specification of the total system from the specifications

of the component parts.

vi) Rule proposer

This tool uses an existing set of rules or a set of test cases to propose a new set of

rules (it does this by induction). The new rules IU'C simplifications and can be used

as an aid to help the knowledge engineer make corrections to a rule base.

vii) Rule refiner

Unlike the SEEK knowledge base refiner which unifies validation and rule

refinements in the same framework, EVA's refiner is strictly a rule refiner. The

refinement process either generalises or makes a rule more specific.

The EVA rule refiP.er relies on a set of stored test cases. The test cases set contains

instantiations of the rules (ie facts).

The rule refiner automatically chooses specific instantiations from the test cases set

and applies them to a rule, then interactively seeks the advice of the expert in

performing the refinements.

142

COMMENTS

Although EVA already contains an impressive range ofV&V tools and new tools are

continually being designed and implemented each year (Chang et al., 1990), it does

not seem to address the problem on how to decide what constitutes an acceptable and

reliable method for evaluating the results of tests of an expert system, or what should

be considered as a satisfactory level of test.

Such decisions are still being left to the discretion of the individual domain expert.

Leaving such decisions to the human expen is fraught with many dangers. As Green

and Keyes pointed out "the human expen may be prejudiced or parochial" or "the

expen may not be independent when independent evaluation is needed" (Green &

Keyes, 1990, p. 445), or worse there may be no expert available.

143

4.3.2.3 OTHER VALIDATION TECHNIQUES

4.3.2.3.1 TEST CASES

Test cases are useful for validating a knowledge base's functionality. Such a validation

is accomplished by empirically testing the correctness of the conclusions derived from

the knowledge base. Such a test, however, only partially meets the users' intentions

because it is not possible to test exhaustively, and test results depend on how well the

choice of test cases has been selected.

An adv&ntage of the use of test cases is that it makes possible the automation of the

validation process since test cases may be pre-stored in databases. An example of

validation using test cases was seen in the SEEK system (section 4.2.3.1).

In the SEEK system, test cases have to be collected manually from the experts.

Vignollet and Ayel (1991) developed a method for automatically building sets of test

samples for knowledge bases. Such a generator has already been implemented for zero

order propositional logic. In their paper, (Vignollet & Aye!, 1991) they discussed the

implementation of tllis method using first order logic.

4.3.2.3.2 EXPLANATION

Apart from validating the system's derived conclusions, the system's reasoning also

needs to be validated. That !s, the rel!llons for arriving at certain conclusions have to be

justified.

Explanations are used for validating the system's reasoning. The1 ore what Hoppe called

"the inspectable justification of the system behaviour" (Hor~;;, 1990, p. 163).

144

Tsal and Zualkeman (1990, p. 133) said that explanations "can be considered analogous

to inspection and walk through in conventional software testing".

Since inspection is not a fonnal technique, we might conclude from the above that

explanation is a useful validation technique, albeit an informal one.

4.3.2.3.3 DESIGN TECHNIQUES THAT AID VALIDATION

How a knowledge base has been built affects not only how easily it can be maintained,

but also how easily it can be validated. As Landauer (1990, p. 297) pointed out "it is

more important to have principles to support prospective V&V (building expert systems

properly in the first place) than retrospective V&V".

One way to support this concept is through the use of meta-knowledge in place of

domain problem solving methods and control structures wherever possible.

Meta-knowledge makes such implicit controls and problem solving methods explicit

hence easier to understand nod validate.

4.3,2,3,4 MAKING USE OF CONVENTIONAL SYSTEM TESTING STRATEGY

Tsai and Zualkeman (1990) proposed a unified framework for testing expert systems.

The framework may be used to evaluate the npp\icability and effectiveness of a testing

method in the conteKt of an expert system.

Since many conventional testing methods exist, it makes sense to look at whether these

methods can be adapted to knowledge base testing. Tsai and Zualkeman's framework

permits the evaluation of conventional testing methods by indicating which are

candidates for migration to the expert system environment.

145

OPJIIFIJ.'!Eik. s
CONCLUSION

5.1 SUMMARY

The thesis has outlined two general sets of methodologies and tools. The first set

comprises methodologi.,'S which have been designed for the construction of more

maintainable knowledge bases, while the second set comprises methodologies which

facilitate the process of maintaining knowledge bases (a chart of this taxonomic

classification appears in the APPENDIX).

The taxonomic chan classifies maintenance tools and techniques under the headings

"methodologies for building maintainable knowledge bases" and "methodologies for

maintaining existing knowledge bases". Certain methods may appear at more than one

places in the hierarchy. For instance, 'structured techniques' is classified under

'methodologies for building mainwinable knowledge bases' and also under

'methodologies which aid the process of knowledge base understnoding before

modification'.

In order to facilitate quick referencing, each entry in the classification carries a

parenthesised section number which corresponds to the section in the thesis in which it

was described.

146

5.1.1 BUILDING MAINTAINABLE KNOWLEDGE BASES

Knowledge engineers contemplating building expert system knowledge bases will find

the section on Software Engineering techniques (se:tion 3.1) generally applicable as an

aid for constructing more muintainable knowledge bases. The structured techniques tips

given by Fenderson (section 3.1.5) are simple in concept and can easily be adapted to

most knowledge bases. These techniques can be used alongside the modular concept

techniques (section 3.1.2) to reinforce the structuredness of the knowledge base.

With regard to the question of how best to modu\arise a knowledge base, the Knowledge

Flow Model technique (section 3.1.2.2) provides a simple option, namely, partition the

knowledge base according to the 'application techniques' which make up that

application. The COMPASS solution (section 3.1.2.3) on the other hand, suggests that

the knowledge base should be partitioned by following the natural modularity of the

expert's knowledge.

Whichever way one may have chosen to partition the knowledge base, the Interface

Specification technique (section 3.1.2.1) could still be applied to enhance the

'structuredness' of the knowledge base. Interface Specification is a rather general

method applicable to a wide range of knowledge bases. Its main emphasis is on limiting

the amount of information flow between the modules (hence reducing the effects of

changes within the modules) and formally specifying the infonnation flow between

modules (hence making the function of modules easy to understnnd).

The modular concept may be implemented in one of two ways. One may implement the

various modules within a single knowledge base, or alternatively, each module may be

implemented as a separate knowledge base. The COMPASS system (section 3.1.2.3)

uses this "multiple knowledge bases" concept to implement the various knowledge

modules. However, one has to be sure that the shell supports such an implementation

before embarking on it.

147

The ability of a system to provide automatic cross-referencing and documentation of

knowledge, easy browsing and multiple views of knowledge undoubtedly aids the

maintenance process. Such features are provided by a conventional data dictionary.

Jansen and Compton (1988) adapted the data dictionary concept to the building of

knowledge bases. They used the relational data model IL'l the underlying storage

representation for the knowledge to gain the full advantage of relational calculus for the

manipulation of the knowledge,

It appears that a further benefit may be derived from the storing of knowledge in this

neutral relational dam model. A problem with the integration of knowledge bases is their

lack of compatibility when these knowledge bases are represented in different

formalisms. The storing of knowledge in this neutrnl intermediate relational data form

would facilitate their uansformation from one form to another.

A well known software engineering message is that 'if a single fact is found in only a

single location, then the job of maintaining it is significantly reduced'. This is the

rationale behind the principle of normalisation. A tool which is based on the principle

of normalisation is the Knowledge Analyst's Assistant (KAA) (section 3. 1.5). The tool

interactively guides a user during the modification of the knowledge base. A prerequisite

to the use of this tool is that the knowledge base must be normalised. This might

alternatively be viewed as a disadvantage of this tool since normalisation of a knowledge

base may be perceived to be 'unnatural'. Unlike the normalisation of facts, the

normalisation of rules may remove their heuristic values.

While the concept of reusability is sound (because reusable modules not only save work

but are also easier to maintain, since their functions are known), in practice, reusability

does not find wide application in knowledge base constructions. The reasons on why this

is the case were briefly discussed in section 3.1.6.1.

148

OTHER APPROACHES

Apart from software engineering, there is a host of other innovative tools and ideas on

how to build a more maintainable knowledge base. Due to space and time limitations,

only four different approaches were selected for discussion.

In section 3.1.1a case was strongly put up against the software engineering concept of

rigorous definition on the grounds that it is not possible to pre-define an application

before its construction. Section 3.2.1 discussed a method (due to Slagle et al.) which

gainfully accommodates the concept of rigorous definition into the construction of

knowledge bases. This technique should therefore be of interest to knowledge engineers

who find it difficult to brenk away from their entrenched rigorous definition view.

For intrepid knowledge engineers who wish to make a total departure from software

engineering principles, the 'knowledge-in-context' strategy (section 3.2.2) may be

recommended as an alternative and novel way of building knowledge bases that are easy

to maintain. The knowledge base built using this method directly reflects the thought

processes of a human ei'tpert However such a knowledge base may be rather difficult

to read or comprehend since it casts aside all software engineering principles of

structuredness and modularity.

The third and fourth approaches are based on the use of tools and hence are not as

generally applicable as the techniques described above. The fanner (ie third approach)

is based on the belief that eKplicit structures are easier to maintain than implicit ones.

RIME (Soloway et al., 1988) is a language based on this concept. The latter argues that

knowledge bases built using declarative languages are easier to understand and therefore

to maintain than those that are built using procedural languages.

149

5.1.2 MAINTAINING EXISTING KNOWLEDGE BASES

This section mainly discussed tools (as opposed to general techniques) which are aimed

at easing the actual process of maintaining the knowledge base.

The process of maintenance is viewed by the current author as being made up of three

stages. The first stage is concerned with the understanding of the knowledge base before

modifications can be made. The second stage is the actual modification itself, while the

third is the validation of the knowledge base to ensure it remains correct and consistent

after the modification.

The various tools and methodologies were discussed in the context of these three stages.

5.1.2.1 KNOWLEDGE BASE UNDERSTANDING

To aid understanding good explanation is required. To provide good explanation a

system should 'understand' itself. The Explainable Expen System (section 4.1.1) concept

takes a first step at creating an expert system that can understand itself. Such a system

can explain not just what it is doing, but also why it is doing it.

Apart from good explanation, another aid to knowledge base understanding is the

readability of the knowledge base. This can be best achieved through the building of

desirable features like structuredness, modularity, coupled with good documentation, and

the adherence to the principles of standardisation during the building of the knowledge

base.

150

In line with the discussion on techniques for building an understandable knowledge base,

the current author felt that two conventional tethniques may be worth consideration. The

first is the 'automatic program understanding' tool (se<:tion 4.1.2.1) which was designed

primarily for the deciphering of conventional programs. The se.:ond technique is based

in the Knowledge Base Softwnre Engineering (KBSE) concept (section 4.1.2.2). Since

code is the obstacle to understanding an obvious solution would be to elimioate it. This

is precisely what the KBSE concept sets out to do. The KBSE strategy enhances

understanding by removing the code at the user level altogether. Rather than modifying

the code, this strategy calls for modifications to be done on the spe.:iflcation. The code

is then rederived from the specification.

Other aids to understanding include the use of explicit control structures to promote the

homogeneity and predictability of the knowledge bases and also the use of more

declarative languages.

151

5.1.2.2 FACILITATING THE ACTUAL MODIFICATION PROCESS

To ease the actual modification process, interactive tools which can intelligently guide

or advise a maintainer are required. TEIRESIAS (section 4.2.1.1) or KAA (section

3.1.4.1) attempt to take the role or a knowledge engineer by providing guidance and

advice to the expen during the modification process.

An interactive classifier aids modification by automatically detennining where a newly

described concept should be placed in the knowledge base, then verifying its decision

with the user,

Interactive refinement tools, like SEEK (section 4.2.3.1), allow the users to interactively

experiment with changes by testing these changes against stored test cases before

incorporating them pennanently into the knowledge base. Refinement tools, however,

as the name suggests, are only useful when the knowledge base is already generally

correct, and only refinement (ie fine tuning) is required. They cannot be used for making

major changes, like structuml changes for instance. This 'minimal change' assumption

is what Lopez et al. referred to as an instance of the 'parsimony criterion'- a situation

whereby if different actions are possible to achieve the same result, it is wiser to choose

the most simple change (Lopez et a],, 1990, p, 65).

Other intemctive modification tools mentioned in the thesis included knowledge base

editors and knowledge acquisition tools.

!52

5.1.2.3 ENSURING CORRECTNESS OF THE KNOWLEDGE BASE AFTER

MODIFICATION

For the sake of completeness this section (which is dedicated to V&V tools) is included.

Strictly V&V tools cannot be thought of as maintenance tools. They are, nevenheless,

essential for ensuring the correctness of the knowledge base after modification has been

carried out.

Some tools, like the interactive tools discussed above (TEIRESIAS, KAA, Interactive

Classifiers and SEEK) combine modification and vaiidation into the same framework.

In each case the newly entered knowledge is checked against the existing knowledge

base in some way and then verified with the user before tlmt knowledge is permanently

added,

Section 4.3looked at a different approach, one in which the ~mowledge base is modified

as a distinct step (lhis could be done through the use of an unintelligent knowledge base

editor or a knowledge acquisition tool). This is then followed by validation as another

separate step to ensure that the knowledge base is correct.

Since generally two types of checking need to be carried out, namely verification and

validation, this section discusses two sets of tools, verification tools (section 4.3.1) and

validation tools (section 4.3.2).

Verification checks relate to checks which prove the knowledge base is structurally

correct with respect to a formal specification, while vnlidation checks are concerned with

checking whether the knowledge base satisfies the need for which it was created.

153

(a) VERIFICATION TOOLS AND TECHNIQUES

The ONCOCIN Rule Checker (Suwa et al., 1984) was discussed since it was the basis

upon which several other checkers (eg. CHECK (Perkins et al., 1989), ARC (Nguyen,

1988), SPACE SEARCH method (Tsang et al., 1988)) were modelled.

ONCOCIN (section 4.3.1.1) checks a rule base for conflicts, redundancies, subsumptions

and omissions. CHECK (section 4.3.1.2) expands on ONCOCIN to include checking for

unnecessary ifs, deadend ifs, dendend goals, unreachable conditions, unreferenced

parameter values, illegal parameter values and cir\'ular rules. ARC is a further extension

of CHECK to include checks for compo .. od conditions, subsumed rule chains, redundant

rule chains and conflicting rule chains. The SPACE SEARCH method (section 4.3.1.3.1)

is an attempt to overcome ONCOCIN and CHECKs' deficiencies of only detecting

superficial inconsistencies. It also removes some of the false warnings of inconsistencies

produced by ONCOCJN.

Another method mentioned in this section was the Predicate!Transition Net Method

(section 4.3.1.3.2). This method allows for the inclusion of consistency and

completeness checks as pan of the knowledge acquisition process and thus verification

can be carried out in an incremental fashion as the knowledge base is being developed.

The main shortcoming of the above tools is that they all perfonn only static checks on

the knowledge base. In other words. the control structure (ie. the inference engine) is

not tested. Though it is important that one include dynamic tests (to test tlte inference

engine) in the testing of a knowledge base, such tests are not discussed here because this

thesis is concerned with the maintenance of the knowledge base rather than its control

structure.

!54

(b) VALIDATION TOOLS AND TECHNIQUES

Validation tests are necessary in order to inspire confidence in the use of the knowledge

base. Normally validation tests follow verification tests.

He, wever, current validation tests and techniques are rather inadequate because as argued

in section 4.3.2, the very issue of what constitutes a 'valid knowledge base' itself is

unclear. This prompts the CUITent author to raise the question that 'if there is no such

a thing as a fully valid knowledge base, can there be a sufficiently valid knowledge

base ?', In other words, is it possible to establish an acceptable minimal level of V&V

testing £tandards ? In trying to answer this question the thesis looked at two approaches

which seem to make an attempt to address this problem to some degree. These are the

'correctness principles' approach (section 4.3.2.1.1) which attempts to lay down a set

of acceptability principles for rule bases, and the 'validation standards' approach (section

4.3.2.1.2) which seeks to provide a basis for standardising the validation of a

knowledge base system.

Other projects like EVA (section 4.3.2.2.1) and VALID (Lopez et al .. 1990) take a

different path. These two projects are mainly aimed at developing an integrated

environment in which the different aspects of V&V, refinement, and evaluation can be

analysed and solved. They seek to develop a set of generic tools which are applicable

to any knowledge base systems developed in any shells.

Although they contain an impressive array of tools, they do not seem to address the

problem of what constitute an acceptable level of tests. This decision is still left to the

discretion of the individual domain expert.

155

5.2 LAST WORD

In bringing this thesis to a close, the following section begins by reflecting on past and

current methodologies. This is followed by a contemplation on future directions.

5.2.1 PAST AND CURRENT METHODOLOGIES

When confronted with a new situation, it is human nature to look back at what we

already know and to try to use old knowledge to solve new problems. It is therefore not

surprising that re:rearchers tended to fall back on structured techniques, modularity, data

dictionary, DBMS (and now KBMS), various verification and validation techniques etc

in facing these new problems encountered in tKpen system knowledge base

maintenance. These techniques have to various degrees been touched upon in previous

chapters.

Not a!\ researchers, however, are falling back on conventional software engineering

techniques in their search for better maintenance methodologies or tools. As was seen

in previous chapters, other maintenance concepts are continua!ly being propose(! by

researchers.

This emphasis on methodologies and tools appears rather disturbing in the view of

researchers who lie on the far end of the maintenance spectrum. The human factors

researchers thought it appropriate that maintainers should be reminded that there exists

another side to the maintenance coin • the human side of the maintenance equation. In

this clc:ing chapter a thought should be given to the two principles put forward by

Overton, a human factors resean::her :-

Studying maintenance means studying maintainers,

!56

Maintainability is not a quality of a system alone, but of a system and those who

maintain it" (Overton, 1983, p. 53).

5.2.2 FUTURE MAINTENANCE DIRECTIONS

Having explored some past and current maintenance technologies, it seems in order to

question what shape future maintenance technology will take. The current author sees

two possible directions that such technology could take.

The first is the use of a "meta·expert system" to maintain other expert systems. Since

the maintenance of a knowledge base (tracking down of errors, making amendments

without upsetting existing rules etc) involves expertise, one might be tempted to ask if

a 'knowledge base maintenance expert system' could be built to maintain an expert

system knowledge base. Such a system could be used to diagnose the source of errors,

correct them and retest the system. It might contain procedures to fix bugs, make

changes, modify the knowledge base to include new enhancements or change

requirements, then conduct retests of the system.

The second possible direction is the development of self-modifying expert systems.

Before an expert system can be self·modifying it must be self-understanding, a

capability (as we saw in section 4.1.1) that is increasingly being realised. The current

author contends that it should also possess self-validatiog capability.

Currently many tools and methodologies for the development and maintenance of expert

system knowledge bases nre borrowed from conventional systems. Such methodologies

contain n distinct phase whereby an expert system knowledge base has to be judged

valid before it is passed on to the users to be put into operation. By transferring such

a concept directly from conventional methods, expert systems are being treated in the

same way as conventional systems.

157

In the validation of conventional systems the user's intent is often clear and can be

specified, hence such a distinct validation and transfer over phase may be justified.

However, human experts nre not judged that way. If expert systems are to emulate the

human experts then the question of 'how do experts maintain and validate their own

knowledge ?' should be asked,

As experts improve they continually correct their own past misjudgment. Should not

then validation be made a continuous routine ? Hence, unlike conventional systems,

expert systems niust necessarily incorporate learning. Without the ability to learn the

purported expert system io not very different from a conventional program.

To some extent TEIRESIAS might be thought of as a program which demonstrates such

learning capabilities. :t is able to validate what it is taught with what it already knows

before adding on the new knowledge pe'11lanently into its knowledge base.

The CYC project (Lenat & Guha, 1990) provides some guide to answering the question

of which direction maintemmce technology will head. Lenat and Guha said that "CYC

will learn by discovery" and that such learning will be achieved through discussion and

education rather than through the "practice of brain surgery upon Cyc's KB" (Lenat &

Guha, 1990, p. 357). One would expect that validation will t!1en be just a matter of the

educators evaluating CYC (or even CYC evaluating itself since CYC's learning can go

on proactively while the machine is idling (Lena! & Golia, 1990, p. 357)) on how

sigr,ificant or reasonable the discoveries it had made were, and correction would just be

a mr.aer of re-learning. In this sense validation would be a continuous process, rather

akin to the way humnr, exp;:rts correct their own errors and misjudgments.

It may appear far-fetched that a self-learning, self-maintaining (ie. re-learning) system

could emerge out of the CYC project; but if this doer. occur then there may no longer

be any need for maintenance technologies.

158

APPENDIX

BIBLIOGRAPHY

Arthur, L.J., (1987). Software Evolution :The Software Maintenance Challenge. New York :
John Wiley and Sons, Inc.

Ayel, M., (1988). Protocols for Consistency Checking in Expert System Knowledge Bases.
In Kodratoff., Y. (Ed). ECAI 88 :Proceedings of the 8th European Conference on
Artificial Intelligence. (pp 220-225). London : Pitman Publishing.

Bachant, J., (1988). RIME : Preliminary Work Towards a Knowledge Acquisition Tool. In
Marcus (Ed). Automating Knowledge Acquisition For EKpert Systems. (pp 201-224).
Massachusetts : Kluwcr Academic Publishers.

Beinat, P. and Smart, R., (1989). Colossus : Expert Assessor of Third Party Claims. In
Proceeding~ of the Fifth Australian Conference on Applications of Expert Systems.
(pp 70-85). Sydney University of Technology.

Beon, W., Schiageter, G. and Wu, X., (1990). Reuse of Persistent Information Between
Different Paradigms - A Knowledge Based Approach. In Proceedings : SPIE -
Intematina\ Society of Opt. Eng. CUSA>. Application of Artificail Intelligence VIII
<Volume 1293). (pp 404-414). Orlando, Florida.

Bennett, K.H., (1991). Automated Support of Software Maintenance. In Information and
Software Technology,. Vol 33. No. I. Durham, UK: Butterworth-Heinemann Ltd.

Black, W. J., (1986). Intelligent Knowledge Based Systems : An Introduction. Berkshire,
England : Van Nostrand Reinhold (UK) Co. Ltd.

Boar, H. b., (1984), Application Prototyping: A Requirements Definition Strategy for the 80s.
New York: John Wiley & Sons, Inc.

161

Bowennan, R. G., and Glover, D. E., (1988). Putting Exoert Systems into Practice. New
York: Van Nostrand Reinhold Company Inc.

Brachman, R. J. & Schmolze, J. G., (1989). An Overview of the KL-ONE Knowledge
Representation System. In J. Mylopolous & M. Brodie (Eds). Readings in Artificial
Intelligence and Databases. (pp. 207 - 229). San Mateo, California : Morgan
Kaufmann Publishers, Inc.

Buchamn, B. G., and Smith, R. G., (1989). Fundamentals of Expert Systems. In A. Barr, P.
R. Cohen and E. A. Feigenbaum (Eds). The Hand• Jok of Artificial Intelligence
CVolume IV). (pp 149-192). Reading, Massachusetts : Addison-Wesley Publishing
Company, Inc.

Carrico, M.A., Girard, E.J., and Jones, J.P., (1989). Building Knowledge Systems :
Developing and Managing Rule-Based Applications. New York : Jntertext
Publications,

Ceri, S., Gottlob, G. and Tanca, L., (1990). Surveys in Computer Science Logic
Programming and Databases. Berlin: Springer-Verlag.

Chandrasekaran, B. and Swartout, W., (1991). Explanations in Knowledge Systems : The
Role of Explicit Representation of Design knowledge. In IEEE Expert, Volume 6,
Number 3. June 1991. Los Alamitos, C.A.: IEEE Computer Society.

Chang, C. L., Combs, J, B., and Stachowil2:, (1990). A Report on the Expert Systems
Validation Associate (['VA). In Expert Systems With Applications (UK), Volume l,
Number 3. 1990. (pp 217-230). U.K. :Pergamon Press.

Compton, P., and Jansen, M., (1990). Knowledge in Context: A Strategy for Expert System
Maintenance. In C. J. Barter and M. J. Brooks (Eds), AI '88 2nd Australian Joint
Artificial Intelligence Conference, Adelaide. 1988 Proceedings. (pp 292-305). Berlin:
Springer-Verlag.

Davis, J. S., (1990). Effect of Modularity on Maintainability of Rule-Based Systems. In
International Journal Man-Machine Studies CUKl. Volume 32, Number 4, April, 1990.
(pp 439-447). Academic Press Limited.

162

Davis, R., (1984). Interactive Transfer of Expertise. In Buchanan, B. G. & Shortliife, E. H.,
(Eels), Rule-based Expert Systems: The Mycin Experiments of the Stanford Hturistics
Progrannning Project. {pp 171-205). Reading, Massachusetts: Addison-Wesley.

Davis, R., (1988). Interactive Transfer of Expertise : Acquisition of New Inference Rules. In
A. Gupta & B. E. Prasad (Eds), Principles of Expert Systems. (pp 243-261). New
York: IEEE Press.

Debenham, J. K., (1989). Knowledge Systems Design. Sydney : Prentice Hall,

Debenham, J. K., and Lindley, C. A., (1991). The Knowledge Analyst's Assistant: A Tool
for Knowledge Systems Design. In C.P. Tsang (Ed). AI '90: Proceedings of the 4th
Australia Joint Conference on Artificial Intelligence. (pp 343-354). Singapore :World
Scientific Publishing Co. Pte. Ltd.

Eshelman, L., (1988), MOLE: A Knowledge Acquisition Tool fot Cover-and-Differentiate
Systems, In S. Marcus (Ed). Automating Knowledge Acquisition for Expert Systems.
(pp 37-80). Boston : Kluwer Academic Publishers.

Finin, T. W., (1988). Interactive Oassification: A Technique fm Acq'Jiring and Maintaining
Knowledge Bases (Proceedings of the IEEE, October 1986). In A. Gupta & B. E.
Prasad (Eds). Principles of Expert Systems. (pp 275-281). New York: IEEE Press.

Ginsberg, A. (1988). Automatic Refinement of Expert System Knowledge Bases. London :
Pitman Publishing.

Gorla, N., (1991). Techniques for Application Software Maintenance. In Infonnation and
Software Technology. Volume 33. Number I. Jan-Feb 1991. (pp 65-73). Butterworth
Heinemann Ltd.

{pp Los

Gtlin'laraes, T., (1987). Prototyping: Orchestrating for Success. In Datamation, Dec I, 1987.
(pp 101-106). New York: Cahners Publishing Associates.

163

Gunderman, R. E., (1988). A Glimpse into Program Maintenance. In G. Parikh (Ed),
Techniques of Program and System Maintenance, Second Edition. (pp 55-59).
Wellesley, Massachusetts: Q.E.D. Information Sciences, Inc.

Harrison, P. R., and Ratcliffe, P. A., (1991). Towruds Standards for the Validation of ex.pert
Systems. In Expert Systems With Applications. Volume 2. Number 4, 1991.
(pp 251-258). USA: Pergamon Press.

Hettel, W., (1984). The Complete Guide to Software Testing. Wellesley, Massachusetts :
Q.E.D. Information Sciences.

Hicks, R. C., (1990). A Composite
Development. In

Hoppe, T., (1990). Validation of User Intention. In Current Trends in Knowledge Acquisition.
(pp 161-172). Amsterdam: lOS.

Irani, E. A., Matts, J.P., Hunter, D. W., Slagle J. R., Kain, R. Y., and Long, J. M .. (1990).
Automated Assistance for Maintenance of Medical Ellpert Systems : the POSCH AI
Project. In Proceedings of the Third Annual IEEE Svmposium on Computer Based
Medical Systems. (pp 275-281). Los Alamitos, CA: IEEE Computing Society Press.

Jackson, P., 1986, Introduction to Expert Systems, Wokingham, England: Addison-Wesley
Publishing Company.

Jacob, R. J. K., and Froschcr, J. N., (1990). A Software Engineering methodology for
Rule-Based Systems. In IEEE Transactions on Knowledge and Data Engineering.
Volume 2. Number 2. June 1990. (pp 173-189).

Jansen, B., (1988). A Data Dictionary Approach to the Software Engineering of Rule Based
Expert Systems. In J.S. Gero and R.Stanton (Eds). Artificial Intelligence Developments
and Applications. (pp 101-117). Amstenlam: Elsevier Science Publishers B.V.
(North-Holland).

164

Jansen, B. and Compton, P., (1989). The Knowledge Dictionary : Storing Different
Knowledge Representations. In Proceedings of the Fifth Australian Conference on
APPlicatins of Expert Systems. (pp 143-162). Sydney: University of Sydney.

Kahn, G .. (1988). MORE: From Observing Knowledge Engineers to Automating Knowledge
Acquisition. In S. Marcus (Ed). Automating Knowledge Acquisition for Expert
Systems. (pp 7-35). Boston: Kluwer Academic Publishers.

Keller, R., (1987). Expert System Technology: Development & Application. New Jersey :
Prentice-Han, Inc.

Kulikowski, C. A., (1989). Knowledge Base Design and Construction :From Prototyping to
Refinement. In G. Guida and C. Tasso (Eds). Topics in Expert System Design :
Methodologies and Tools. (pp 145-178). Amsterdam : Elsevier Science Publishers
s. v.

Landauer, C., (1990). Correctness Principles for Rule-Based Expert Systems. In Expert
Systems With Applications (UK). Volume t. Number 3. (pp 291-316). UK :Pergamon
Press.

Lena!, D., and Guha, R .. (1990). Building Large Knowledge-Based Systems: Representation
and Reference in the CYC Project. Reading, Massachussetts : Addison-Wesley.

Liu, N. K. & Di11on, T. (1988). Detection of Consistency and Completeness in Expert
Systems using Numerical Petri Nets. In J.S. Gero & R. Stanton (Eds). Artificial
Intelligence Development~ and Applications. (pp l19-I34). Amsterdam: Elsevier
Science Publishers B.V. (North-Holland).

165

Lopez, B., Meseguer, P. and Plaza, E., (1990). Knowledge based Systems validation: A State
of the Art. In AI Communications !Netherlands), Volume 3, Number 2. June 1990.
(pp 58-72). Netherlands.

Lowry, M. and Duron, R., (1989). Knowledge-Based Software Engineering. In A. Barr, P. R.
Cohen and E. A. Feigenba1.1m (Eds). The Handbook of Artificial Intelligence
(Volume M. (pp 241-322). Reading, Massachusetts : Addison-W..:sley Publishing
Company, Inc.

MacGregor, R., nnd Burstein, M. H.,
Knowledge Representation. In
(pp 41-46). Los Alamitos, CA :

a Description Classifier to Enhance
I

Marcus, s .. (1988). Introduction. In ::;, Marcus (Ed). Automating Knowledge Ar'luisition for
Expert Systems. (pp 1-6). Boston: Kluwer Academic Publishers.

Marcus, S., (1988). SALT: A Knowledge-Acquisition Tool for Propose-and-Revice Systems.
In S. Marcus (Ed). Automating Knowledge Acqui~ition for Expert Systems.
(pp 81-123). Boston: Kluwer Academic Publishers.

Martin, J. and McClure, C., (1983), Software Maintenance: The Prohlem and its Solution~.
New Jersey : Prentice-Hall Inc.

Martin, J.P .. (1990). The Truth, the Whole Truth, and Nothing but the Truth : An Index
Bibliography to the Literature of Truth Maintenance Systems. In AI Magazine. Special
Issue, 1990. (pp 7-25)), CA: American Association for Artificial Intelligence.

Matthews, M.H., (1990). Maintenance nnd Language Choice. In Raeth, P.G. (Ed), Expert
Systems : A Software Methodology for Modern Applications. (pp 430-437). Los
Alamitos, California : IEEE Computer Society Press.

Mays, E., Lanka, S., Dionne, B., and Weida, R., (1990). A Persistant Store for Large Shared
Knowledge Bases. In Proceedings : The Sixth Conference on Artificail Intelligence
Applications. (Volume D. (pp 169-175). Los Alamitos, California: IEEE Computer
Society Press.

166

McGraw, K., ar.d Harbison-Briggs, K., (1989). Knowledge Acquisition Principles and
Guidelines. New Jersey : Prentice-Hall Inc.

MiU11r, L. A., (1990). Dynamic Testing of Knowledge Bases Using the Heuristic Testing
Approach. In Expert Systems With Applications. Volume I. Number 3. 1990.
(pp 249-269). USA : Pergamon Press.

Nau, D, 5., {1988). Expert Computer Systems. In A. Gupta & B. E. Pmsad (Eds). Principles
of Expert Systems. (pp 53-74). New York: IEEE Press.

Neches, R., Swrutout, W. R. and Moore, J., (1988). Enhanced Maintenance and Explanation
of Expert Systems through Explicit Models of their Development (IEEE Workshop on
Principles of Knowledge-based Systems, December 1984).1n A. Gupta & B. E. Prasad
(Eds). r.inciples of Expert Systems. (pp 283-293). Ne\'t York: IEEE Press.

Ngt•yen, T. A., {1988). Verifying Consistency of Production Systems (Proceedings of the
IEEE Third Couference on Artificial intelligence applications, February 1987). In A.
Gupta & B. E. Prasad (Eds). Principles of Expert Systems. (pp 294-298). New York:
IEEE Press.

O'Leary, D. E., (1990). Verification and Validation of Elipert Systems. In ProceeQings: The
Sixth Conference on Artificial Intelligence Applications (Volume II), (pp 40-41). Los
Alamitos, CA : IEEE Computer Society Press.

O'Leary, T. J., Gou\, M .. Moffitt, K. E., and Radwan, A. E., (1990). Validating Expert
Systems. In IEEE Expert (USA), Volume 5. Number 3, June 1990. {pp 51-58). Los
Alamitos, r:A : IEEE Computer Society Press.

Overton, R. K., (1983). Research Toward Ways of Improving Software Maintenance :
RICASM Final Report. In G. Parikh nnd N. Zvegintzov (Eds). Tutorial on Software
Maintenancs~ {pp 47-53). Silver Spring, USA : IEEE Computer Society Press.

Parikh, G. (l!:Eg), Sex and Software Maintenance : The Taboo Topics. In G. Parikh (Ed).
Technique§ of Program and $ystem Maintenance. Second Edition. (pp 33-38).
Wellesley, Massachusetts: Q.E.D. Infonnation Sciences, Inc.

Parikh, G. (1988). Software Maintenance: Penny Wise, Proy,ram Foolish. In G. Parikh (Ed).
Techniques of Program and System Mair.tenance. Second Edition. (pp 13-19).
Wellesley, Massachusetts: Q.E.D. Infonnation Sciences, Inc.

167

Parikh, G. (1988). The World of Software Maintenance. In G. Parikh (Ed), Tecltniques of
Promm and System Maintenance. Second Edition. (pp 22-25). Wellesley,
Massachusetts : Q.E.D. Infonnation Sciences, Inc.

Parsaye, K., and Cltignell, M., (1988). Expert Systems for Experts. New York: John Wiley
and Sons, Inc.

Partridge, D., (1986). Artificial Intelligence : Applications in the Future of Software
Engineering. West Sussex : Ellis Horwood Limited.

Payne, E. C., (1991). A Modular Knowledge-Flow Model. In AI Expert. Volume 6.
Number 5. May. 1991. (pp 36-41). San Francisco: Miller Freeman Publications.

Fenderson, K., (1989). We!l-Structured Knowledge Bases. In AI Expert. Volume 4.
Number 4. April 1989. (pp 44-55). San Francisco: Miller Freeman Publications.

Perkins, W.A., Laffey, T.J., Pecora, D., and Nguyen, T.A. (1989). Knowledge Base
Verification. In Guida, G. and Tasso, C. (Eds). Topics in Expert System Design :
Methodologies and Tools. (pp 353-376). Amsterdam : Elsevier Science Publishers
S. V.

Politakis, P. G., (1985). Empirical Analysis for E~:pert Systems. Massachusetts : Pitman
Publishing, Inc.

Politakis, P.G., and Weiss, S.M., (1988). Using Empirical Analysis to Refine Expert System
Knowledge Bases. In A. Gupta and B. E. Prasad (Eds). Principles of E~:pert Systems.
(pp 262-274). New York: IEEE Press.

Prerau, D.S., (1990). Developing and Managing Expert Systems : Proven Technique.~ f,J;'

Business and Industry. Reading, Massachusetts : Addison-Wesley Publishing
Company.

Prerau, D. S., Gunderson, A. S., Reinke, R. E., and Alder, M. R., (1990). Maintainability
Techniqurs in Developing Large E~:pert Systems. In IEEE EXPERT. Volume 5.
Number J. June 1900. (pp 71-79). Los Alamitos, CA : IEEE Computer Society Press.

168

Ribar, G., Arcoleo, F. and Hollo, D., (1991). Loan Probe: Testing a Big Expert System. In
AI Expert. Volume 6, Number 5, May 1991. (pp 43-49). San Francisco : Miller
Freeman Publications.

Rolston, D.W., (1988). Principles of Artificial Intelligence and Expert Systems Development.
New York: McGraw-Hill Inc.

Sacerdoti, E. D., (1991). Managing System. In AI Expert, Volume 6, Number 5. May 1991.
(pp 46-33). San Francisco : Miller Freeman Publications.

Slagle, J. R., Gardiner, D. A. and Han K., (1990). Knowledge Specification of an Expert
System. In IEEE EXPERT. Volume 5. Number 4. August 1990. (pp 29-37). Los
Alamitos, CA : IEEE Computer Society Press.

Assessing the Maintainability of
of a Very Rule-base. In

Stonebraker, M. & Hearst, M. (1989). Future Trends in Expert Data Ba.e Systems. In
Kerschberg, L. (Ed). Expert Database Systems : Proceedings from the Second
International Conference. (pp 3-20). California: The Benjamin Cummings Publishing
Company, Inc.

Stonehocker, N. M., (1988). Managing the Monster- Taking a Stand for Standards. In G.
Parikh (Ed). Techniques of Pro~ram and System Maintenance. Second Edition.
(pp 292-293). Wellesley, Massachusetts : QED Infonnation Sciences, Inc.

Suwa, M., Scott, A.C., Shortliffe, E.H., (1984). In Buchanan, B. G. & Shortliffe, E. H., (Eds).
Rule-based Expert Systems : the Mycin Experiments of the Stanford Heuristics
Prommming Project. (159-170). Reading, Massachusetts: Addison-Wesley.

Swartout, W. and Paris, C., (1991). Explanations in Knowledge Systems : Design for
Explainable Expert Systems. In IEEE Expert, Volume 6. Number 3, June 1991.
(pp 58-64). Los Alamitos : IEEE Computer Society Press.

169

Terveen, L. G., Wroblewski, D. A., and Tighe, S. N., (1991), Intelligent Assistance Through
Collaborative Manipulation. (pp 9-14). In J. Mylopoulos and R. Reiter, (Eds), 12th
International Joint Conference on Anifidal Intelligence. Volume 1. Darling Harbour.
Sydney, Australia. August 1991. Sydney: Morgan Kaufmann, Inc.

Tsai, W, T., and Zua!keman.l A., (1990). Towards a Unified framework for testing Expen
Systems. In SEKE '90 Proceedings : Software Engineering and Knowledge
Engineering. 2nd International Conference. IL., USA. June 1990. (pp 127-134). IL.,
USA : Skokie.

Method for ,,,
"''

Vignollet, L., and Aye!, M .• (1991). A Model for Testing Knowledge Bases. In (pp 104-109).
In SEKE '90 Proceedings : Software Engineering and Knowledge Engineering, 2nd
International Conference, IL., USA. June 1990. (pp 104-109). 1L., USA: Skokie.

Vitalari, N, P,, (1984). A Critical Accessment of Structured Analysis Methods : A
Psychological Perspective. In T. M, A. Bemelmans (Ed). Information Systems
Development for Organisational Effectiveness. (pp 421-431). Amsterdam: Elsevier
Science Publishers B. V.

Walker, A., (1987), Expen Systems in Prolog. In Walker, A., (Ed), McCord, M., Sowa, J. F.
& Wilson, W. G., A Logical Approach to E~pert Systems and Natural Language
Processing: Knowledge systems and Prolog. (pp 219-290). Massachusetts:
Addison-Wesley Publishing Company, Inc.

Walker, A., Kowalski, B, Lenat, D., Soloway, E., and Stonebraker, M, (1988). In
Kerschberg, L. (Ed). Expert Database Systems : Proceedings from the Second
International Conference. (pp 63-69). California: The Benjamin Cummings Publishing
Company, Inc.

Wilkins, D. C., (1989). Knowledge Bas(: R<:finement Using Apprenticeship Learning
Techniques. In K. Marik (Ed), Knowleilge Representation and Organization in
Machine Learning. (pp 247-257). Berlin: Spriger-Verlag.

170

WooO, T. W., ami Frankowski, E. N., (1990). Verification of Rule-Based Expert Systems. In
Expert Systems With Applications. Volume I. Number 3. 1990. (pp 317-322). USA:
Pergamon Press.

Woods, W. A., (1990). Important Issues in Knowledge Representation. In Raeth, P.O. (Ed),
Expert Systems: A Software Methodology for Modem Applications. (pp 180-192).
Los Alamitos, California : IEEE Computer Society Press.

Zhang, D., and

171

	A study of the methodologies currently available for the maintenance of the knowledge-base in an expert system
	Recommended Citation

	A study of the methodologies currently available for the maintenance of the knowledge-base in an expert system

