Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1-1-1992

A study of the methodologies currently available for the
maintenance of the knowledge-base in an expert system

Kai Teh
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Software Engineering Commons

Recommended Citation
Teh, K. (1992). A study of the methodologies currently available for the maintenance of the knowledge-
base in an expert system. https://ro.ecu.edu.au/theses/1129

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1129

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses%2F1129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1129

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

A STUDY OF THE METHODOLOGIES
CURRENTLY AVAILABLE FOR THE
MAINTENANCE OF THE KNOWLEDGE-BASE

IN AN EXPERT SYSTEM

BY

KAI TEH B.5¢., Post-grad Dip. in Cor;tpu!ing Science,
A Thesis Submitted in the Partial Fulfilment of the Requirements
for the Award of
Master of Applied Science (Computer Studies)

at the Scheol of Information Technology and Mathermatics,

Edith Cowan Unversity

Name of Superviser : Tim Roberts

Date of Submission : 20-5-92

ABSTRACT

This research studies currently available maintenance methedologies for expert system
knowledge bases and taxonomically classifies them according to the functions they

perform.
The classification falls into two broad catep. aes. These are :

(1) Methodologies for building a more maintainable expert system knowledpe base.
This section covers techniques applicable to the development phases. Software

engineering approaches as well as other approaches are discussed.

{2) Methodologies for maintaining an existing knowledge base. This section is
concemed with the continued matatenance of an existing knowledge base, It is
divided into three subsections. The first subsection discusses tools and techniques
which aid the understanding of a knowledge base. The second looks at tools
which fagilitate the actual medification of the knowledge base, while the last
section examines tools used for the verification or validation of the knowledge

base.

Every main methodology or tool selected for this study is analysed according to the

function it was designed to perform (er its objective); the concept or principles behind

ii

the tool or methodology; and its implementation details, This is followed by a general

comment at the end of the analysis.

Althongh expert systems as a rule contain significant amount of information related to
- the user interface, database interface, integration with conventional software for
numerical calculations, integration with other knowledge bases through black boarding
systems or network interactions, this research is confined to the maintenance of the

knowledge base only and does not address the maintenance of these interfaces.

Also not included in this thesis are Truth Muaintenance Systems. While a Truth
Maintenance System (TMS) automatically updates s knowledge base during execution
time, these update operations are not considered 'maintenance’ in the sense as used in
this thesis. Maintenance in the context of this thesis refers to perfective, adaptive, and
corrective maintenance (see introduction to chapter 4). TMS on the other hand refers to
a collection of techniques for doing belief revision (Martin, [990) . That is, a TMS
maintains & set of beliefs or facts in the knowledge base to ensurg that they remain
consistent during execution time. From this perspective, TMS is not regarded as a

knowledge base maintenance tool for the purpose of this study,

iii

DECLARATION

I certify that this thesis does not incorperte without acknowledgment any material
previously submitted for a degree or & diploma in any instimtion of higher
education; and 1o the best of my knowledge and belief it does not contain any
material previously published or written by ancther person except where due

reference is made in the text.

Signature

Dawe 29.5-92

ACKNOWLEDGMENTS

The author wishes to give special thanks to Mr. Tim Roberts for having provided
some invaluable comments and guidance during the course of writing the thesis,
and the librarian Jenny Renner, whe went 1o considerable length to make sure that
I obtained zll the materials required. My thanks also exterd to Mr. Geoff Sutcliffe

for his kind advice.

CONTENTS

Title

Abstract
Declaration
Acknowledgments
List of Tables
List of Figures

CHAPTER ONE
INTRODUCTION
1.1 BACKGROUND

1.2 NEED FOR THE STUDY

CHAPTER TWO

OBJECTIVES

CHAPTER THREE

BUILDING MAINTAINABLE KNOWLEDGE BASES
3.1 SOFTWARE ENGINEERING APPROACH

3.1.1 RIGOROUS DEFINITION

3.1.1.1 COLOSsUS

3.1.2 MODULARITY

3.1.2.1 INTERFACE SPECIFICATION AFPROACH
3.1.2.2 KNOWLEDGE FLOW MODEL
3,1.2.3 MULTIPLE KNOWLEDGE BASES CONCEPT

Pape

10

17
20
28
33

vi

3.1.3 DATA DICTIONARY CONCEPT 37

3.1.4 NORMALISATION PRINCIPLE 42

3.14,1 KNOWLEDGE ANALYST'S ASSISTANT 43

3,15 STRUCTURED TECHNIQUES 48

3.1.6 OTHER SOFTWARE ENGINEERING TECHNIQUES 55

3.1.6.1 REUSABILITY 53

3.16.2 DOCUMENTATION 56

3163 STANDARDISATION 57

32 OQTHER APPROACHES 58

3.2.1 KNOWLEDGE SPECIFICATION CONCEPT 59

322 KNOWLEDGE IN CONTEXT STRATEGY 63

3.2.3 EXPLICIT HIGH-LEVEL CONTROL STRUCTURE 69

3231 RIME 69

3.24 TOWARDS MORE DECLARATIVE LANGUAGE 73

3241 SYLLOG 73
CHAPTER FOUR

MAINTAINING AN EXISTING KNOWLEDGE BASE "

4.1 UNDERSTANDING THE KNOWLEDGE BASE 79

4.1.1 EXPLAINABLE EXPERT SYSTEM PARADIGM 80

4.1,2 OTHER KNOWLEDGE BASE UNDERSTANDING AIDS 89

4.1.2.1 AUTOMATIC PROGRAM UNDERSTANDING PARADIGM 89
4.1,2.2 KNOWLEDGE BASE SOFTWARE ENGINEERING CONCEPT o0

4.1,2.3 HOMOGENEITY AND PREDICTABILITY 90
41,24 DECLARATIVE LANGUAGE 91
4.1.2,5 PROPOSING SIMPLIFIED RULES 91

4.1.2.6 FORMAL SPECIFICATION FROM EXISTING COMPONENTS 901

vii

4.2 AIDS TO FACILITATE THE PROCESS OF MODIFICATION

42,1 INTELLIGENT ASSISTANT
4.2,1.1 TEIRESIAS

4,22 KNOWLEDGE CLASSIFIERS
4,2.2.1 AN EARLY CLASSIFIER
4.2.2.2 INTERACTIVE CLASSIFIERS

4,23 KNOWLEDGE REFINEMENT TECHNIQUES
423.1 SEEK

4.2.4 OTHER INTERACTIVE MODIFICATION TOOLS
4.24,1 KNOWLEDGE BASE EDITORS
4.24.2 AUTOMATED KNOWLEDGE ACQUISITION TOOLS

4,3 ENSURING CORRECTNESS AFTER MODIFICATION
4.3.1 KNOWLEDGE BASE VERIFICATION TECHNIQUES

4.3.1.1 ONCOCIN RULE CHECKER

4.3.1.2 CHECK

4.3.1.3 OTHER VERIFICATION TECHNIQUES
4.3.1.31 SPACE SEARCHING METHOD
43,132 PREDICATE/TRANSITION NET METHOD
43.1.3.3 ART RULE CHECKER

432 KNOWLEDGE BASE VALIDATION TECHNIQUES

4,3.2,1 TOWARDS VALIDATION STANDARDS
4.3.2.1.1 CORRECTNESS PRINCIPLES AFPROACH
4.3.2.1.2 VALIDATION STANDARDS

4.3.2.2 INTEGRATED V&V TOOL SET APPROACH
43.2.2.1 EXPERT SYSTEM VALIDATION ASSQCIATE
PROJECT

4.3.2.3 OTHER VALIDATION TECHNIQUES
43.23.1 TEST CASES
43.2.3.2 EXPLANATION
4.3.23.3 DESIGN TECHNIQUES THAT AID VALIDATION
43234 CONVENTIONAL SYSTEM TESTING STRATEGY

92

93
93

97
93
99

105
105

111
111
111
113
113
116
122
127
127
128
129
130
133
133
135
138

138

vii

CHAPTER FIVE

CONCLUSION

5.1 SUMMARY
5.1.1 BUILDING MAINTAINABLE KNOWLEDGE BASES
5.1.2 MAINTAINING EXISTING KNOWLEDGE BASES
5.1.2.1 KNOWLEDGE BASE UNDERSTANDING
5.1.2.2 FACILITATING THE MODIFICATION PROCESS
5.1.2.3 ENSURE CORRECTNESS AFTER MODIFICATION
5.2 LAST WORD

5.2.1 PAST AND PRESENT METHODOLOGIES
5.2.2 FUTURE MAINTENANCE DIRECTIONS

APPENDIX

TAXONOMIC CLASSIFICATION CHART

BIBLIOGRAPHY

146

146
147
150

152
153

156

156
157

160

161

ix

LIST OF TABLES

Table 3a Relationship between rute, fact and action
Table 3.b Item has number of parts
Table 4.2 All possible combinstions of condition parameter

values and their corresponding action parameter values

LIST OF FIGURES

Figure 3.4 Modifying an Application Mode!

Figure 3.b A list of rules in the knowledge base

Figure 3.c A conceptual representation of a set of rules in the knowledge base
Figure 4.2 A brief outline of the EES framework
Figure 4b The Refinement Structure

Figure 4.c Finding the most specific subsumer

Figure 4.d Siblings of node Y

Figure 4. Most general subsumees of node Y

Figure 4.f Rules concluding the same action parameters
Figure 4.2 The rule structure of CHECK

Figure 4.h Dependency chart

Page

39
75

119

45
63
66
85
86
101
102
103
118
123
125

CHAPTERI

INTRODUCTION

1.1 BACKGROUND

Often the principal cost of a computer project is the maintenance cost. This is

particularly evident in the case of large computer systems.

Quoting from the U.S. Department of Commence figures of October, 1985, Carrico,
Girard, and Jones (1989, p. 219) claimed that over a software project's life cycle,
maintenance takes np more time, money and resources than any other aspect of the
preject and that "software maintenance accounts for 60 to 70 % of each software dollar

allocated".

In the UK, Lientz and Swanson, in a major survey conducted in the late seventies,
found that some firms were spending up to 70% of their computing efforts on
maintenance (quoted in Bennett, 1991, p. 75). Martin and McClure stated that over $20
billion per year was being spent worldwide on the maintenance of software systems
(Martin and McClure, 1983). In an article published in 1988 Parikh claimed that more
than $30 billion per year was spent on maintenance of software systems, and that most

companies allceate 50% of their DP budpet for maintenance (Parikh, 1988, p. 13},

Maintenance issues have for too long been largely ignored by computer professionals.
Parikh, in a bid to highlight this gross neglect, went so far as to ¢all maintenance a
“taboo subject” (Parikh, 1988, p. 34). He pointed out that in the UL.S. this " pervasive
lack of attention to the subject [of mainienance] persists on a national level" (Parikh,
1988, p. 13). Gunderman lamented the fact that taditionally DP personnel had always
considered maintenance as a second class activity, something for the beginners'
on-the-job training or a low status assignment for the ocutcasts and the fablen
{Gunderman, 1988, p. 55). Liu said that analysts see the maintenance function as an

1

inferior assignment (Liu, 1988, p. 61), and so did several others who bemoan this

situation.

Paradoxically, the situation is one where on the one hand maintenance is the costliest
phase of the systems life cycle, and yet on the other it is relegated to the lowest priority

in that life eycle,

1.2 NEED FOR THE STUDY

From the foregoing discussion, there appears to be a need to highlight this important
but neglected phase of an expert system project.

Maintenance in the context of expert systems is thought fo be even more problematical
and costlier than meintenance in the case of traditional systems. Among those who hold
this view is Prerau. He declared that "in most instanves the largest costs in the life cycle
of a computer program are for program maintenance” and that this is "true to an even
greater degree for an expert system program where the knowledge as well as the code
must be maintained” (Precaw, 1990, p. 287). Hicks said knowledge maintenance is more
dynamic than traditional data processing maintenance. He zlso noted that knowledge
is not common, therefore not easily rensable. Besides, knowledge is ofter not well

documented and must be acguired and tested incrementally (Hicks, 1990, p. 293},

The claim that expert systemn maintenance has been for the most part largely neglected
is evidenced by the fact that until recent fimes expert systzms were to be found mainly
in research laboratories where maintenance issues were not a pricrity. Nau
acknowledged the severity of this negligence by reminding us that "since expert systems
have until recently been largely experimental, we have not had to consider the need for
long-term maintenance ... More attention will have to be paid to these 'real world

details’ if expert systems are to be useful in the long un" (Nau, 1988, p. 73).

Prerau, Gunerson, Reinke, and Adler (1990} point us to the fact that meking expert
systems more maintainable has not been a major concern cither in Al or Software
engineering. Instead most work in this area has been focussed on producing a new
generation of development tools (Preraw et al., 1990, p. 71). This emphasis on software
development to the neglect of maintenance is seen by Parikh as “irying to fly with one
wing" (Parikh, 1988, p. 22),

The legacy from this lack of attention to maintenance issues in the early days has caused
many older expert systems io be rewritten because they have simply become

unmaintainable.

At the Commonwealth Scientific Industria! Research Organisation (CSIRQ), Jansen
reporied that two expert systems, the Garvan thyroid expert system and the SIRATAC
cotton management expert system had to be redeveloped. In his words, ... both have
a common reason for their redevelopment. They have become difficult if not impessible
to maintnin." (Jansen 1988, p. 101). For the same reason XCON's knowledge base,
which over 7 years has grown to 6200 rules, has become so difficult to maintain that
2 new version, XCON-in-RIME is being written as the successor to XCON (Soloway,
Bachant, & Jensen, 1987).

Signs are beginning to appear that this gross negligence of maintenance is gradually
being put right. In recent times, as we witness more and more expert systems being used
in the areas of industry, commerce, computer hardware and software support, aerospace,
transporiation, etc, computer professionals are increasingly coming to grips with the

reality of maintenance issues,

As knowledge bases grow larger and become more complex, there appears to be an
undercurrent of new urgency which is driving researchers in different directions in their
scramble to come up with better maintenance tools, more superior methodologies, or
more innovative ideas, The result of this is evidenced by the myriad of tools and

techniques on the market.

When confronted with such a diversity of ideas and tools it is easy for a maintainer to
be confused about where to begin. An important aim ¢f this study is therefore to provide
a taxonomic classification of these methodologies with respect to their proposed
maintenance paradigms. It is hoped that such a classification will go sorme distance to
help sherten the time developers or maintainers of expert system knowledge bases spend
on searching the literature and will allow them to gain a quick insight into what is

available in the market.

By classifying these tools in terms of the rationale or philosophy behind their creation,
a maintainer is free to concentrate on the tools’ underlying principles rather than on the
specific tools themselves. This is important because while a particular tool may be out

of the reach of the maintainer, the maintenance philosophy or rationale is not.

Many of the tools presented here have been used successfully on only one or two
applications; nevertheless, the concepts behind them may be found to b2 generally
applicable,

CHAPTER 2

OBJECTIVES

The objectives of this thesis are as follows :

1) to analyse currently available maintenance methodologies, and

2) to taxonomically classify them in terms of their proposed maintenance paradigms.
In this research, maintenance is seen as fundamentally involving a process which
consists of the following three steps -

i) Understanding of the knowledge base prior to meking any changes.

ii) Physically modifying the existing knowledge base,

iii) Revalidating the modified knowlc&;ge base to ensure that no emors or

inconsistencies have been introduced.

While a knowledge enpineer will invariably go through the above three steps when
maintaining an existing knowledge base, these three steps are not, however, confined to
the maintenance process alone. For instance, in order to aid in the understanding of a
knowledge base, good documentation, explanation facilities, and well structured and
formatied code are required. This is essentially a design issue rather than a maintenance

issue.

To facilitate the actual process of modifying the knowledge base, modularity of

knowledge, easy-to-update documentation, knowledge structures which minimise the

effect of changes and codes that ar¢ easy to expand and easy to update are required.

This again is a design issue.

To aid in revalidating the modified knowledge base in order to ensure that no
inconsistencies have been introduced, knowledge base structures which facilitate
selective retest and good traceability between specification requirements and code are
desirable. It is obvicus that this too i a design issue and should be considered during
the building of the knowledge base.

In other words, to consider maintenance issues, one has to took beyond just maintenance
- how the knowledge base has been built in the first place is equally as important (if not
mare so).

Hence this thesis is constructed along the following lines :

(1) A discussion of techniques for building more maintainable expert system

knowledge bases.

(2) A discussion of techniques for maintaining existing knowledge bases.

Chepters 3 and 4 take up these two sections respectively.

CHAPTERS3

BUILDING MAINTAINABLE
KNOWLEDGE BASES

This chapter is concerned with tools and techniques applicable to the knowledge base

development phases.

The chapter is divided into two sections; the first section focuses on software

engineering approaches while the second locks at other attempts.

3.1 SOFTWARE ENGINEERING APPROACH

Of the existing paradigms for building a more maintainable knowledge base, a vast
majority to different degrees owe their existence to software engineering principles - that
vast ¢ollection of methodologies and techniques for the development and management

of software.

While software engineering principles are impertant in the construction of maintainable
systems, they are not unanimously embraced by the Al fraternity. There are dissenting
voices which question their relevance to expert system constructions. Among the
dounbters is Jansen. His line of arpument is that since the main development
methodology of expert systems is the knowledgs acquisition phase combined with a
literature search for the correct knowledge representation formalism, there is a question
as to whether seftware engineering techniques have any use in the development of

expert systems (Jansen, 1988, p. 102).

Partridge on the other hand sees some overlap between software engineering and Al
problems. He declared that “Software engineering problems are a subset of Al
problems : the subset of well-defined [AT] problems” (Partridge, 1986, p. 19). Unless we
consider expert systems problems as well-defined problems then clearly expert systems
fall outside this software engineering category according to Partridge's definition. Since
it is doubtfui that one would call expert system problems well-defined, by virtue of his
argument one may conciude that software engineering solutiens are not the best suited

for solving expert system problems,

While such wel! meaning cautionary voices which constantly remind us to rethink our
position are appreciated and their points taken, it is nonetheless undeniable that software
engineering techniques do have a place in the construction of expert systems. This is
evidenced by the many useful tools and strategies outlined in the following pages which

are built around software engineering principles.

The current author feels software engineering to be sufficiently important to devote a
section of Chapter 3 to its discussion. The software engineering principles discussed here
include rigorous definition, medularity concepts, data dictionary usage, norrnalisation

technigues and structured techniques among others.

3.1.1 RIGCROUS DEFINITION

A major pillar of software engineering is the rigorous definition of requirements.
Rigorous definition in this context refers to the complete pre-specification of all logical
user requirements in detail prior to the design and construction of the actual physical
system. Thus the rigorous definition approach would generally cover the use of
structured methodologies, data flow diagram analysis techniques, the traditional life
cycle approach, conceptual modelling techniques, and others. All of these techniques
fundamientally rely on the principles of rigorous definition to build some conceptual or

logical model before proceeding to the construction phase,

In theory the principle of rigorous definition appears sound. If we 'get it right in the ficst
place’ through rigorous specification, then maintenance problems should be greatly

reduced.

Boehm had shown that modifying a system after it has been put into operation can cost
several hundreds of times more than medifying it in the early stages (Boehm, 1981,
p. 40). This underlies the importance of the well-docutnented software engineering
principle of pgetting it right the first time - what is to be done must be rigorousty

specified, how to do it is relatively insignificant.

However, in the case of expert systems this wisdom may not necessarily be true,

Partridge said that since rigorous definitions "specify what the system should do rather

1]

than how it should da it, it is here that we find our first important point of contrast with

Al problems” (Partridge, 1986, p. 31).

Sacerdoti also disagrees with the rigorous definition viewpoint in the context of expert
systems development. He says that "an expert system does not fit well into conventional
software engincering paradigm because a detailed specification or functional definition

cannot be written before coding” (Sacerdoti, 1991, p. 26).

Rolsion argued 1hat a complete understanding of the systern requirements is not possible
and cannot be derived at the start of a project because "iteration is inevitable in any

targe software development project” (Rolston, 1988 , p. 134),

Not all authors, however, hold this view, Keller is a strong advocate of structured
techniques for the develepment of expert systems, He extolled the virtues of rigorous
definition by proclaiming that "structured system development technigues offer a more
appropriate approach to Al system development” (Keller, 1987, p. 2), and dedicated his
book to showing how taditional system development technologies can be applied 1o

expen systems development.

While there are many proponents of rigorous definition for both the building of
conventional as well as expen systems, it should be pointed out that even amidst the
ranks of conventional systems practitioners there nre dissenters to the rigorous definition

concept.

11

Apart from specifying very highly structored systems, rigorous definition does not
appear to be very practicable since it fundamentally assumes that users know e.iactly
what they want. In complex systems it is unlikely that users know precisely what they

want or what is best for them.

Even if users do know what they want, it cannot be assumed that they are able to spell
out their requirements precisely. Too ofien there is an unbridgeable communication gap

between the users and the system developers,

Boar said that these who advocate rigorous specification presuppose "all requirements
can be specified, ... the project team is capable of unambigucus communication ... a
rigorous approach is inherently the correct appreach for all life cycle phases”" (Boar,

1984, p. 20). He arpued that all these assumptions are flawed,

Vitalari considered structured methodologies from a copnitive and psychological
perspective {Vitalari, 1984). He felt that information requirements definition is tao
complex for current structured methodologies to handle. Such methods are only good
for documentation and writing specifications once they have been elicited, but are peor
elicitors of information themselves. Hence rigerous definitions are not pessible using

current methodologies.

Both Boar and Vitalari offered their solutions. Whilke Vitalari’s remedy is to develop a

new generation of structured methodologies, Boar advocates the use of prototyping.

12

In the midst of ll these arguments, some developers, meanwhile, continue to build
expert systems following the rigorous definition doctrine, One such example is the
COLOSSUS system. The following section takes a look at COLOSSUS to ty to
understand why its developers supported rigorous definitions sufficiently to adopt this

in the building of expert systems.

3.1.1.1 NAME OF SYSTEM : COLOSSUS

INTRODUCTION

COLOSSUS (Beinat & Smart, 1989) was developed using the 'conceptual modelling'

methodology. It is an expert system to handle third party insurance claims, jointly built

by G.LO. of New South Wales, Australia, and Software Computations.

DISCUSSION

Beipat and Smart were staunch opponents of the prototyping methedology. They made

this clear in their paper by putting up a strong case against prototyping while proroting

the virtues of the conceptual modelling technique.

13

Among the downsides of the prototyping methedology claimed by Beinat and Smart is
that in prototyping "The interaction is uni-directionat”" (Beinat & Smart, 1989, p. 76).
The domain experts are not actively involved in the development of the conceptual
model. (The conceptual model is the knowledge enginger's picture of the problem and
its theoretical solution, in short the rigorous definition). Thus the experts have no idea
of the cause of any future problems that might occur to the system and will be of little

assistance in their correction,

The appeal of the prototyping methedalogy lies in its "political advantage in eliciting
management support for the project” since by using prototyping, "a visual indication of

progress can be achieved very ¢arly in the project” (Beinat & Smart, 1989, p. 76).

In contrast, ¢conceptual modelling concentrates on the developing of two models :-

i) the strategic model - this is the domain expert's view of the model.

i) the implementation model - this is the knowledge engineer’s view of the model,

Beinat and Sroart said that this dual nature of the conceptual model demands that the
expert and the knowledge engineer work together to formulate and validate the
representation of the problem and its solution. Due to this close involvement with the

project the expert will be in a position to lead maintenance activity at 4 later stage.

This opinion appears to be in contradiction to the widely held view that prototyping

methodology fosters greafer user participation thap traditional methods, Also, in the

14

prototyping methodology the experts can sce their systems materislise into concrete
systems hence no power of imagination is called for, With the cancepwzl modelling
methodology a lot of imagination, on what a future system is goin to Jook like and how

it is going to work, is required.

Beinat and Smart cited three phases in conceptual modelling, These are the learning

‘phase, the modelling phase and the construction phase.

During the first two phases no fangible results can be seen. He admitted that "the
drawback of this methodology is that it is not possible to produce any tangible result

until the third phase, well into the project” (Beinat & Smart, 1989, p. 79},

What he failed to mentlon is the customary shock users may receive when presented
with the systemn for the first time. More ofien than not this does nat coincide with their

imagined system.

Beinat and Smart also conceded that “management must have confidence in the project

team before this methodology is vinble" {Beinat & Smart, 1989, p. 79). He did not,

however, mention if that confidence was in abundant supply.

15

CONCLUSION

The reasens why rigorous definition still attracts a following even among expert systems

developers may be that :

iy _ the expert systems they are developing are highly structured, rather akin to
conventional data processing systems involving jarge databases and

structured procedures,

i) these developers nmy have their roots in conventional systems development,

and are reluctant to abandon pre-held concepts.

In concluding, it must be conceded that the rigorous definition principle is fundamentally

sound, but it should be approached with caution in the development of conventional

systems, and to an even preater degree in expert sysiems development.

16

3.1.2 MODULARITY

INTRODUCTION

Among software engineering practices, the mogular approach is perhaps the most useful
and simple in concept. It iy straightforward and easy to adapt to any system, yet

effective in building muintainable systems.

The 'Chunking’ phenomena (Adelson, 1990) suggesis that experts generally solve
prablems by structuring them into clusters or chunks of information. This is evidenced
by chess masters who recall game boards as functional clusters, and electronic engineérs
who recall clusters of circuit diagrams. In each case, they use the functional relationships

which exist among the elements of the problem to structure thern into chunks.

Adelson also noted that mathematicians usvaily transform complex equations into more

medular forms by replacing them with temperary variables.

Since it is a natural phenomenon for humans to solve large problems by decomposing
them into related sub-components, it seems reasonable to propose that modular
representation should not just be viewed as a technique to facilitate maintenance but as

a natural vay to represent rules.

While there can be live dispute as to the effectiveness of modularity, the question of

"how to modularise?’ appears to be o difficult one to answer,

17

Shoutd we modularise according to a system’s functionality or modularise to achieve
structuredness and readability? Should the modules reflect the expert's knowledge or
should they be structured fur the convenience of the su’ucfured tool used? Should we
separate implementation know“edge and domnin knowledge into different modules? In
a system that uses multiple knowledge representation schemes should we modularise
according to the multiple knowledge representation paradigms used? These questions and
their like will no doubt confront system developers who are planning to introduce
software engineering practices into their design. Hence an aim of this section is to find

out what researchers shink should be modularised in what kind of applications.

Then there is the question of "how to implement these medules?’, Shonld we implement
them as multiple modules within a knowledge base, or should we have multiple

knowledge bases?

For example, these are some of the ways taken by researchers in modularising their

systems :-

. - COLOSSUS (Beinat & Smart, 1989) was modularised on the basis of logical
discrete problem solving components, (each component is called a *focus control
block’), Each block contains no more than 500 rules out of a 1otal of some 5000

rules in Colossus.

- COMPASS (Preran, 1990) uses the concept of "multiple knowledge bases’ to

separaie its knowledge base into eighteen distinct knowledge bases.

18

- LOOPS uses the notion of a ruleset which can be "called’ like a subroutine

(Jacob & Froscher, 1990, p. 173)

~ LOAN PROBE comprises 33 knowledge bascs that cemmunicate through &

blackboard system (Ribar, Arcoleo, & Hollo, 1991},
- XCON’s (Soloway et al., 1987) knowledge base is partitioned into "subtasks’,

- Jacob and Froscher talked about the *Interface specification’ concept (Jacob &

Froscher, 1950).

- Payne developed the 'Knowledge Flow Module' concept (Payne, 1991).

The following section looks at several modular approaches which have been chosen for
their diversity of technigues. The concepts they propound may be adapted to the
building of most knowledge bases. These are the *Interface Specification’ approach, the

*Knowledge Flow Module’ approach and the *multiple knowledge bases® concepts of

COMPASS.

The first two approaches may be implemented in a single knowledge base, while the [ast

approach is implemented using multiple knowledge bases.

3.1,2.1 INTERFACE SPECIFICATION APPROACH

INTRODUCTION

The interface specification approach (Jacoly & Froscher, 1990), (Davis, 1990) makes the

knowledge base easier to change by localising the effects of changes within the modules.

The approach may be seen as a general method since it may be used without reliance
on software tools (although it is preferable to have them). It is applicable to a
knowledge base whichever way it is partitioned. This is because the approach’s main
focus is on the information flow between different modules and their clear specification.
A key aim of this approach is to reduce the amount of information that knowledge
engineers have to understand before they can make a change to the module. This is

achieved by :-

) limiting the amount of informution flow among the various modules, hence the

effects of changes within modules are reduced,

ity formally specifying the information flow between modules, hence making the

functions of modules easy to understand.

20

CONCEPT BEHIND THE AFPROACH

A knowledge base may contain two types of knowledge, namely control knowledge and
domain knowledge. Contral knowledge is that used to enable or disable the firing of

rules, while domain knowledgs is that which cairies imformation between rules.

This methad is applied only to the domain kuowiedge, hencwy it requires the separation
of control knowledge from the domain knowledge, In some languages domain
knowledge is expressed in rules while controt knowledge is expressed in a different
notation, s that this segrep wion is already made. Examples of such languages given by

Jacob ¢t al, are KES, and ORBS (Jacob et al,, 1990, p. 175).

This discussion considers a knowledge buse that contains only domain knowledge.
The method may be applied at the time the knowledge base is created or it may be
applied after a prototype has been built. The idea is to divide rules into groups such that
each group contains all the rules relevant to one specific, small area of knowledge. For
example 4 group may coniain rules for checking if an animal is a mammal, while

another group contains rules to 1est if a mammal is a carnivore, ete,

Groups are allowed to contain subgroups, thus forming a hierarchy of groups.

21

Within groups there are rules, Rules are made up of facts. There are two types of facts,
namely local facts, and intergroup facts, Local facts are produced and used within the
group only and de not effect the rest of the system. Tntergroup facts on the other hand
are produced by one group and used by another. In other words intergroup facts provide

the linkages between the groups.

There are two main types of intergroup facts. Those that are produced or modified by
rules in a group, and those that are merely examined by rules in a group. The first type

are referred to as PRODUCED facts, where the latter are the USED facts.

The interface specification method relies heavily on the clear specification of these
intergroup facts, These specifications are merely documentations and do not affect the
overall performance of the system. The specification in effect summarises the workings

of the group that produces it,

To modify a group the knowledge engineers do not have o understand the whole
knowledge base. They merely have to understand the internal workings of that group by
studying these specifications, and more importantly, they must preserve the integrity of

these specifications when making changes.

22

IMPLEMENTATION DETAILS

Starting with a knowledge base that contains only demain knowledge, the following

steps need to be carried out to modularise it.

Step 1 Separate rules into groups

Rules are first scparated into a hierarchy of groups. The basis of this
separation is to look for rules that affect one ancther. Such rules are

likely to be changed at the same time.

This separation may be carried cut manuslly or it mey be automated by
the use of a grouping algorithm. The algorithm explered by the

developers is called a ’clustering algorithm’.

The algorithm considers two rules as related if the same fact bas been
mentioned by bath rules. Rather than making a binary valued check on
whether two rules are related, the clustering algorithm uses & weighting

factor to measure the extent of such relatedness.

For example, consider the following cases :

23

Step 2

case 1
if xthen y

if y then z

case 2
if x then y

ifzthen y

In both cases y is a shared fact, However the rules in case 1 are more
related than the rufes in case 2 because the rules in the former case have

a greater programming dependency.

A detailed working of the clustering algorithm is given in the article by
Jaceb et al, (Jacob, et al, 1990, p. 184}

Within each group pick out local and intergroup facts.

This step can also be antomated since an algorithm can be applied to check if
a given fact is used by rules within 2 single group (local fac) or whether it
spans other groups (intergroup facts).

Intergroup facts whose values are produced or modified by rules in a group will

be flagged by the algorithm as 'PRODUCE' facts, while those whose valugs are
examined by rules in a group are flagged as "USE’ facts.

24

¥or example, consider the following rules of a group * :

Group A

PRODUCE Al
USE Bl
USE B2

Rule 1 :if X then Al.
Rule 2 : if Bl then C.
Rule 3 : if B2 then C.

Rule 4 : if C then A2

Al is flagged as 'PRODUCED” *#* because it is produced {ie set or modified)
by this group {Group A) and it will be used by another group {not shown here).

A2 is also preduced by this group (Group A) but it is not flagged because it is
not used by any other group. A2 is not used by any other group because it is
either a local fact or a top leve] output of the system.

B1 and B2 are declared as "USE' becanse they are produced by other groups
(not shown) and are examined by this group.

*. The above dispuses rules within 2 single group. Ta the cuap of grovps within groups, ather concepds, llke BLOBAL, Ue,
© DXYWN, have 15 be consdeatd, They e not discuoed hete

¥ PRODAICE and USE 1 merely docummeniary and they do not alfect the exceutioa of the program.

25

C is also used by this group but is not declared because it is not produced by
any other group. ‘That is C is a loca! fact.

Step 3 Write external descriptions for intergroup facts

This is arguably the most crucial step of the whole process since upon it rest
the descriptions of the group which knowledge engineers rely on for their
understanding when making changes to that group. However, it is also the only
step that defies automation.

In this step the developers of each group that produces intergroup facts rust
provide deseriptions for such facts. The descriptions should specify what will

remain true of that fact in the future.

The description summarises the internal workings of the group that produces
it. Jacob et al. said that these descriptions should be written as “a higher level
informal statement of the aspects of the output that will not change snd may
be considered externally visible” {Jacob, ¢t al., 1990, p. 176). By this, it is
meant, rather than writing a statement as () "X is tue if A > B, the
description could be written as (i) "X gives the system the best estimate of
whether the patient has flu",

Enfornatien about "A > B" should not be specified because such internal details
may change. Besides, writing a description as statement {i) would essentially

be repeating the entire group of rules as they presently are,

Writing as statement (ii) will present a higher level description of the output
that will not change even when modifications are made to the details of the

internal rules.

To modify such a knowledge base, the knowledge engineers need to pay
particular attention to the intergroup facts since other groups can be affected by

26

a change in this group. They must rely on these descriptions for their
understanding of the group’s internal workings, and at the same {ime ensure

that they preserve the validity of the descriptions after the ¢hange.

COMMENTS

Although this method was proposed for used with production rules, its underlying
concept should be applicable 1o other formalisms as well. The praducticn system has
chosen because the researchers felt that it was the most widely used type of

knowledge representation in expert systems,

While some of the steps described above can be gutomated, theoretically they can

also be done manually if no relevant software tools are available.

Since the statements (eg USE, PRODUCE, elc} nsed in this method are merely
documentary, they do not affect the execution of the system. Hence they may be
applied at any stage in the development of the knowledge base.

However judgement should be used with regard to when to apply them. Applying
them too early in the development stage when the gystem is still unstable may reguit

in more work than benefit.

Although the rescarchers claimed that this is a "new method’ (Jacob et al,, 1990,
p. 1B8), its "group’ concept is rather similar to Pascal's 'procedure’ concept; the
"USE' concept resembles Pascal’s by value' parameter concept and "PRODUCE’

resembles ‘by reference’ paramete..

27

3.1.2.2 KNOWLEDGE FL.OW MODEL

INTRODUCTION

The *knowledge flow madel* approach (Payne, 1991) modularises an expert system by
decomposing it into different application lechniqﬁcs. each application tecknique

reflecting a unique aspect of the application,

The developers of this approach claimed that many expert systems failed because their
creators had misclassified them under one of these stringent categories like diagnosis,
monitering, planning, design, ete. (Each category is referred to by this approach as an
*application technigue'). In fact, most expent systems do not fit neatly into any one
particular application technique. Rather, they often straddle several techniques. By
failing to recognise this fact, expert system developers often run into difficulties when

the system has been expanded beyond the prototyping Stage.

In the Knowledge Flow Model spproach an expert system is concepialised as
embracing several application techniques rather than a single technique. The system is

then modularised according to these perceived categories or application techniques.

CONCEPT

Expert systems are designed to solve different types of application problems. The type
of application problem solved is termed the *application type'. Some examples of
application types include claim processing, process control, component repair, crisis
advice, etc.

28

Each application type may be decomposed or mapped into several application
techniques. An application technique represents a unique aspect of the application, In
ather words, an application technique is a module designed to solve & particular category
of problem such #s diagnosis, planning, monitoring, design, corrective action,

scheduting, prediction, ete.

As an example, an application type, like "process control' may be mapped into two
application techniques namely ‘monitoring’, and ‘diagnosis’. On the other hand on
application type like "claims analysis’ may mapped into *monitering’, "diagnosis’ and

‘comective action'.

The idea is then to identify which application type an expert system belongs to. Once
this is known the application techniques can be identified. Each of these application

techniques is then designed as an independent module,

These modules are then combined into a larger structure called a knowledge flow model
(KFM). The KFM is a structured specification which defines how these modules are
linked together. In other words, the KFM describes the information flow among the

modules.

The KFM may be thought of as a shell into which individual application domains may
be mapped. Different application domains may share the same KFM. For example both
the manufacturing production ling, and insurance claim-processing application types may
be decomposed to the same application techniques, namely mouitoring, diagnosis, and
corrective action. Hence both these different domain applications can be mapped into
the same KFM.

Once the KFM has been described for a parcicular application domain, it can be
implémented by using an expert system shell.

29

IMPLEMENTATION DETAILS

‘The KFM approach involvus two major steps. These are knowledge structuring (which

is concerned with the design of the application) and implementation (which is concerned

with the mapping of the design into the expert system shell used).

Step 1 Knowledge structuring

it}

iii)

iv)

The expert system is assessed to determine its application techniques
{whether diagnosis, scheduling, monitering , etc), The application may be
made up of several of these techniques. As described earlier this may be
done by determining the application type the expert system fits into. If it
is found to fit a standard application type, then its application techniques

are known, otherwise its application techniques have to be worked out.

These application techniques are then designed as independent modules.
These modules are then combined into a KFM. This is done by defining
structured specification deseribing the links {ie the flow of information)
among the modules, The KFM thus described is a coflection of stand

alene modules that can be run independentdy or together.

Since the KFM is only a general structure, the structure of a particular
application domain has still 1o be defined,

This is done by defining the domain objects and their attributes which are

required to jmplement each individual module found in the KFM.

Once the application domain structute is defined the KEM is ready for

implementation.

30

Step 2 Implementation

COMMENTS

ii)

iii)

This step maps the KFM into the chosen expert system’s shell, For
example if the production rule formalism is used, a translation of the
KFM into rules and rule-control siructores to control the firing of rules

will have to be carried out.

Each application technique module is then implemented and tested,

Finally the tested application technique modules are integrated into a
cohesive system. Integration is achieved by the use of instance slots,

Instance slots are locations in the knowledge base which store information
that are common across madules. They can be accessed or updated by the
various modules. Thus these slots may be thought of as the linkages

between the various modules.

An appeal of this method is that it supports the reusability of knowledge. Once 2
KFM for an ;nnlication has been developed, it is possible to reuse it for a different
application domain. When a KFM already exists for o particular application type,
then the structuring of another application type which shares the same KFM will be
much simplified. It ‘will generally be only a matter of substituting one domain abject
for another.

31

In Payne’s article he described how an application type like A mhnufactun'ng
production line eould share the same KFM with a different application type, like an
insuninee ¢laims-processing system. In such n case (where two different application
types share the same KFM}, once a KFEM for the manufacturing preduction line
application exists, defining the structure for the insurance claims-processing
application is only a matier of substituting the conyponents in the factory, such as

sprayers and pumps with policy types in the insurance domain.

Modifying an expert system in the way suggested by this approach appears 1o result
in very large modules. Most of the exarmples given by Payne break the system down
into just two or three application rechnique modules, For exarmple a process controt
application may be decomposed into two application techniques madules, namely

monitoring and diagnosis.

To enhance maintenance it should be expected that the application type modules be
further decemposed inte smaller functtonal units,

32

3.1.2.3 MULTIPLE KNOWLEDGE BASES CONCEPT

INTRODUCTION

Many knowledge base systems have been implemented using the ‘nultiple knowledge
bases' concept. Among them are PROSPECTOR (Jacob, et al., 1990, p. 173), LOAN
PROBE (Ribar et al., 1991), COMPASS (Prerau, 1990), (Prerau, Gunderson, Reinke, &
Alder, 1990).

In this section , the modular approach behind the building of COMPASS (Central Office

Maintenance Printout and Suggestion System) will be examined.

This approach modularises an expert system knowledge base by following the
modularity of the expert’s knowledge, and implements the concept by using multiple
knowledge bases.

COMPASS is n system that helps maintain electronic tclephone exchanges, Tt was
originally developed at GTE Laboratories as a prototype model with little attention paid
to maintenance problems. Later it was re-developed from its original prototype and put
into field use. The modular concept was adopted then to ensure that it was more easily

comprehensible and maintainable by organisations receiving the technology.

CONCEPT BEHIND THIS APPROACH

In order to aid maintainability, the creators of COMPASS proposed to develop the
system by following the modularity of the experi’s knowledge. This is in contrast to
defining modularity in a way that is convenient for software development. That is, the
COMPASS approach structures the knowledge base so that it reflects the structure of
the expert’s knowledge.

33

The developers chimed that the use of such a functional breakdown makes it easier to
split the implementation evenly among developers since such a split can be paturally
done along functional boundaries.

In the rapid prototyping environment in which COMPASS was developed, the functional
breakdown allowed each develaper to work in relative isolation. In order to implement
the system along fimetional boundaries the developers were prompted to ask how a
human expert would perform the expert task manually. The human expert would :

i) receive a group of messages (ie input),
iiy identify, enalyse and make suggestions (ie process them non-interactively), and

iify produce 2 list of recommenred actions (ie cutput),

According to the above functional breakdown, COMPASS was decomposed into five
disjoint phases {input, identification, gnalysis, suggestion, output} plus many sub-phases.
Each of the five main phases could be assigned to a developer.

IMPLEMENTATION DETAILS

It was found necessary to divide COMPASS into eighteen separate knowledpe bases,
seven of which analyse messages and problems; the remaining eleven are not really
knowledge bases in the sense that they do not contain expert knowledge. Rather, they
contain system management tools, such as utilities for the maintenance of the multiple
knowledge buses, configuration management, control of inter-knowledge base data

access, etc.

The seven knowledge bases are what Prerau et al. called the "active’ knowledge bases.

The knpwledge they contain corresponds to steps in the expert’s analysis procedure,

Each knowledge base has its own name space and is rreated as a single entity. That is
they can be saved, loaded or displayed separately. As such, a single developer can be

34

assigned to each knowledge base.

The following are some of the implementation problems faced by multiple knowledge
bases, and the ways COMPASS handles them :

ii}

iii)

iv)

Different developers tend to introduce their own individual styles into the

knowledge bases giving rise to potential maintainability problems.

The solution taken by the COMPASS team is to adopt standard programiming

conventions to maintain uniformity of styles.

To ensure that no undue multi-representational paradigms are used across the
different knowledge bases, developeis were required 1o select only rules or frames

formalisms whenever possible,

Multiple knimwledg: base systems often Face the problem of not having clear
access paths (ie how one knowledge base can access another knowledge base's

data and what restrictiony if any are required).

COMPASS adopts a set of conventions which placed resiriciions on daia access
between knowledge bases. Also, an 'access’ knowledge base is used for the
purpose of providing import and export facilities for inter-knowledge base data

aCCess,

In multiple knowledge base systems the contral flow paths are more complex than

those between routines within a single knowledge base system,

COMPASS uses 4 'control’ knowledge base to provide a centralised branching
point for the systermn’s control flow. This is a top level knowledge base that defines
the control flow. It places constraints on inter-knowledge base control flow but
does not restrict what individval developers can do within a knowledge base.

35

COMMENT

The use of multiple knowledge bases undoubtedly increases the complexity of the

system in terms of inter-knowledge base control and communication.

This is evidenced by the fact that cut of COMPASS’s eighteen knowledge bases,
only seven of them are 'active’ knowledge bases (ie. contain actual expert
knowledpe for analysing messages and problems). The other eleven perform cantrol
and management tasks, as Prerau puts it, they are "knowledge bases anly in

structure - they do not contain actual expert knowledge” (Prerau et al., 1990, p. 73).
In the LOAN PROBE multiple-knowledge base expert system, the complex

communication and sharing of knowledge among the knowledge bases were handled
by a blackbearding system (Ribar, Arcoleo & Hollo, 1521, p. 43).

36

313 DATA DICTIONARY CONCEPT

INTRODUCTION

In order to maintain a knowledge base, it is to be expected that the maintainer must be
familiar with all the areas where the knowledpe resides, as well as the inter-relationship
among these knowledge, Such information is provided by 2 data dictionary.

Other helpful features provided by & data dictionary include ;

- ensy browsing of rules, facts, etc

- automatic documentation and cross referencing of knowledge and other concepts in
the knowledge base

- ability to present knowledge in different ways

The data dictionary concept had been applied differently by different researchers on
knowledpe bases, Jansen and Compton's model {(Jansen & Compton, 1988), (Jansen &
Compton, 1989), (Jansen, 1988), uses one integrated dictionary to encompass both the
knowledge base and data base, This is in contrast to Leung and Nijssen’s work which
uses the dictionary concept to couple expert and database systems, and stand alone
dictionary systems like NEXPERT OBJECT which have interfaces to relational
databases {quoted in Jansen & Compton, 1988, p. 1159).

This section discusses Jansen et ul.’s version of the dictionary. This dictionary was
developed at the CSIRO by Jansen and his team. Essentially what they did was to
augment the use of a data dictionary to include representation for rules, and termed the
tool 'knowledge dictionary®. In other words, the tool was effectively just an adaptation
of conventional data dictionary technalogy to the area of knowledge base system.

37

‘This knowledge dictionary has already been implementsd by the CSIROD team in Prolog,
Hypercard, RDB (DEC's relational database package), and RALLY (a fourth generation

software tool),

CONCEPT BEHIND THE TOOL

The key to this ool is that if the Relational Data Model is used as the underlying
storage representation for knowledge, then the way opened for the use of the full power
of relational caleulus for maniputating it, In short, this means relational operators like
union, difference, select, join, divide, project, ete can be used on the stored knowledge.
The use of the relational operators on the data representation of rules allows for
sophisticated exploring and browsing capabiliies, which in turn facilitates the
maintenance of the knowledge. In additien, inferencing can also be dene using SQL-type

data manipulation instead of resolution.

Maintenance of the knowledge will also be cused by the use of normalisation, Like data,
knowledge can then alse be represented in normalised form, That is, each concept is

fully defined and named once only, and is found in only one place.

Often a single concept may be known by different names to different experts.
Normalisation does not force the experts to settle on a single name, rather each different
name given to that same concept is stored once and different expert’s labels are mapped
into this stored object.

IMPLEMENTATION DETAILS

Jansen et. al. claimed that the too! had been used successfully to implement production
rules and semantic nets representations.

38

The following example illustrates the implementation of production rules. Consider the

following rule to be implemented (ie. converted into relational entities) :

Rule 96

Step 1:

IF A
and B
and NOT C
THEN
ACTION_A

The rule is decomposed into its constituent objects, namely a rule name, a set

of facts, and a set of rule actions.

In the example the rule will be decomposed thus :

rule objsct name 96
fact objects : A
B
C
action object : Action_A

Step 2 : 'The constituent components are then stored in & table as a set of relationships
between the rules and each facts, and between the rule and each rule acticns
(see Table 3.1).
rule object name relationship name fact/action objects
96 presence A
96 presence B
95 absence C
o6 action Action_A

Table 3.2 Relationship berween rule, fact and action

39

Step 3 -

Step 5:

The actual implernentation of the relationship can be :

iy a pointer

ii) set based (as in CODASYL. database)

iii) value based {as in relational data rmodel}

vi) function based (where the membership of a relation is dependent on the

evaluation of some function which returns a true or false condition)

This example shows the function based implementation where the table of
Step 2 is stered in the knowledge dicticnary as Prolog declarations.

elementirule,’ 96").

element{fact,A).

element{fact,B).

element{fact,C).

element{action,Action_A),
element-reiationship{presence,rule, 95' A).
element-reiationship{presence rule, 95' B).
element-relationship(absence rile,' 96" ,C).
element-relationshiptactionrule Action_4),

Having stored them in the desired relational data form, a number of SQL
typed functions such as the following may be developed for their

manipulation.

USAGE : to determine who uses what

SHOW_RULE : displays specified rules.

ADD_RULE : add new rules by specifying existing facts and actions.
RUN : carvies out a forward chaining inferencing procedure.
WHY_NOT : may be used to query why a rule did not fire.

40

The above functions are provided with a translation facility which converts the stored
data and rebuilds them into rules in the familiar IF. THEN form for display to the
expert.

COMMENTS

- As the current system only does forward chaining inferencing, its application appears
rather restricted,

- Efficiency may be an issue since an ingeface is required for the inter-conversion
between relational entities and production rule (or other formalismn) format each time

the user queries or accesses the knowledge base,

- An advantage of storing the rules in such reutra] relational data form is that in this

form it can easily be transformied into other formalisms.

Jansen et. al pointed out that a major problem in knowledge base work is the lack
of integration of knowledge representation formalisms. In an extension to their work,
Jansen et al. showed how the knowledge dictionary could be used as an aid to
integrate some of the standard knowledge representation formalisms.

41

3.1.4 NORMALISATION PRINCIFLE

The benefits of normalisation have been well documented in the literature on
conventional systems. Normalising a database removes from it deletion, amendment and

insertion anomalies.

According to Debenbam and Lindley (1991, p. 344), normalisation of rules ensures thet
a single item of knowledge, whether in part or whole, is represented only once in the
knowledge base.

Nommalisation thus results in all the rules being independent of one another. Hence if
a component of the rule is modified, only one modification is required as there will not
be any overlapping knowledge.

For example, consider the following unnormalised set of rules :-

Rulel P: QR
Rule2 S: R

The above rules are unnormalised because ke component of knowledge 'R’ appears in
more than one place, namely in Rule I and in Rule 2. If R is to be modified, both Rule
1 and Rule 2 will have to be changed.

On the other hand, the following example illustrates the same set of rules, but this time
they have been normalised :-

Rule3 P: Q8.
Ruled S§: R.

It is clear that if R is to be modified, only one rule (ie. Rule 4) needs to be changed,

42

The following section looks at a tool which relies on the normalisation principle, The
tool is called Knowledge Analyst's Assistant (Debenham et al,, 1991). It was developed
at the CSIRC Division of Technology.

3.1.4.1 NAME OF TOOL : KNOWLEDGE ANALYST'S ASSISTANT (KAA)

INTRODUCTION

Debenham et al. identified a major contributing factor to maintenance problems as the
complex relationships that exist between components of a knowledge base. They called
this the "coupling relations’ between knowledge components.

There are two such kinds of relationships :-

i) the same fact has been represented, at least in part, in mere than one place.

{ie unnormalised)

ii) the inherent structural relationship of the representational scheme itself,

KAA is designed to handle the second form of relationship, In other words, before KAA

can be applied, the first problem (ie unnommalised krowledge) must be removed,

Since normalisation removes the first kind of coupling relationship, a normalised
knowledge base is the pre-requisite 10 the application of KAA,

43

OBIJECTIVE OF KAA

To support each maintenance operation by automatically identifying a linked chain
of modifications, In this way the maintainer can be sure that each modification has been

completely effected,

CONCEPT BEHIND THE TOOL

This tool is based on the concept of a clear distinction between what is Data,
Information, ang Knowledge as defined by Debenham (1989).

KAA centres around four models, The datz model, information model and the
knowledge mode! together constilute what is called the three system models. The main

model is the application model.

The application model is a representation of the application in question constructed in
quasi natural language form, Each entity in the application medel must correspond to

just one element in one of the three sysiem models.

The data maode, information made! and knowledge model miay be s2en as rouphly the
equivalent to the domain constants and variables and their constraints, the relationships

between them angd their constraints, and the rules respectively.

The four models must be normalised and their relationships (ie links between them)
must be established.. Being normalised these links are unique. When a maintenance
operation is to be done on the application model, KAA is able to trace through these
links to the system models thus ensuring that every maintenance operation can be

excouted completely by follewing a single linked chain of siatements.

Four types of links are used in KAA, Two of them (FTYPE 1 and TYPE 2 links) will be
discussed here,

TYPE 1 links - these link every statement in the application model to one unique

entry in one of the system models,

TYPE 2 links - these link the three systems models among themselves if they are

related (fe if the knowledge component of cne of the system models

is pert of the definition in another).

IMPLEMENTATION DETAILS

Pre-requisite : The four models as described above are in a normalised form.

Step 1

Application Model

step 1
(start)

in the application model.

in the application model,

step 2

step 3

step 4

When o maintenance operation is required, the analyst starts at a statement

For example, in figure 3.2, suppose the analyst wishes to alter statement A

Systen‘; Models

data model

information model
(not used in this example)

knowledge model

-Figure 3.0 Modifying an Application Model

45

Step 21

Step 3:

Step 4 :

Step 5:

Since one statement in the application model is linked to just one unique
entry in one of the 3 system models (TYPE 1 link), this link is used by
KAA to trace it to that system madel.

In the example, KAA now automatically follows the TYPE 1 link to one of
the system models (in this case entry X in the data model}.

TYPE 2 links are used by KAA 1o tdentify all other components of the three

system models which use that knowledge component in their definitions.

In the example, a TYPE 2 link is now used by KAA to trace through all
system models that contain entry X in their definitions (in this case entry Y

in the knowledge model).

Since all entries in the system model correspond to one and only one entry
in the application model, TYPE 1 links are now used to trace back to afl the
statements in the application model which coriespond to each of these unique

system model enires.
In the example a TYPE 1 link traces entry V back to statement B in the

application model,

Each of the statements identiﬁed in the gpplication model is then altered as
required. The modification of the system models are then handed to the
programmers to be implemented on the knowledge base.

In the example, the analyst will now be presented wath two statements, A aud
B, which m'ay be altered, -

46

COMMENTS :

- This tool presupposes formal specification is possible (the three system models act
as formal specifications white the application model acts as documentation). This,
as we have seen in the carlier argument presented in 3.1.1, may be a flawed
assumption {not just in the case of expert systems but in many convertional systems

as well).

- The tool appears suited only for the class of very well structured systems wiere
knowledge can be easily identified since Debenham requires at the outset a clear-cut
definition of data, information and knowledge. Many experts have to work in areas

where such clear-cut definitions may not be possible.

- Currently KAA is intended for mle based systems only., To use it for other
formalisms, a suitable translation mechanism between the existing analytical

language of KAA and these formalisms will be required,

- Opportunities exist for the application mode! and the three system models to become

inconsistent since they are not maintained automnatically in a single operation.
- Although normalisation offers many benefits to a knowledge base, as shown by

Debenham’s example, its value appears doubtful since unlike facts, the normalisaiion

of rules may remove their heuristic values,

a7

3.1.5 STRUCTURED TECHNIQUES

INTRODUCTION

Conventional structured programming techniques have Jong been gamfully applied o
programs making them easier to understand, maintain and test. Penderson (1989) adapted
such techniques to the creation of more well-structured rule baszs. These techniques
proposed by Penderson were designed for backward chaining njle bases only.

Penderson constantly referred to two terms, “visibility” and "transparency”, in his paper.
Visibility is a term which refers to the ¢ase with which one can see the order in which
statements are obeyed. Transparency refers to how easily one can grasp the meaning of

a statement.

For example, conventional programming languages encourage a programming style
which exhibits high visibility (i.e. it should be easy to see the order in which statements
are obeyed). However conventional languages exhibit low transparency since each
statement contatns little information tn itself, Much of its meaning depends on its

position within the larger set of instructions which make up the routine.

On the other hand, the declarative style of rules it general encourages high transparency.
That is the meaning of a rule is easy to grasp since it is contained within the rule itself,
rather than on its location in the knowledge base. However rules in the knowledge base
have low visibility. That is the order in which they are executed is hard to grasp. The

order in which the rules are fired is implicit in the inference engine used.

Penderson’s techniques seek to enhance the high transparency of rule bases and at the
same time reduce their visibility problems,

48

OBJECTIVE

To apply structured methods, which are analogous to conventional structured
programming techniques, to the creation of backward chaining rule bases in order to
more clearly represent domain knowledge and thus ease maintenance.

CONCEPT BEHIND THE PROPOSED TECHNIQUES

The adoption of structured techniques in conventional programming brings with it the
following beneflts :-

iy high transparency due to self-decumenting codes and modularity (since the
meaning of a module is contained within the madule itself)

i) ease of maintenance since every medule has a single entry and a singk exit point.

iii) ease of understanding and easy detection of errors due to high visibility achieved
through the elimination of "goto’ statements.

iv) portability of codes

Penderson claimed that the above benefits can be cbtained if his three proposed
guidelines are observed during the creation of a knowledge base. The three gunidelines
laid down by Penderson are :

1) keep conclusions (of rules) simple

2) keep procedural contents out of rules

3} minimise the use of ELSE statement

49

IMPLEMENTATION DETAILS USING THE THREE GUIDELINES

1) Keep conclusions simple

Rules must be written such that their conclusion change only a single attribute,
Consider the example of the following set of rules (CF = certainty factor) :-

Rulel IF Season = summer
THEN weather = fine

Rule 2 IF Season = summer
THEN weather = fine CF 90
weather = rainy CF 15

Ruled IF SEason = sutntier
THEN weather = fine CE 90
Jane = wear sunglass CF 75

Rule 1 concludes a single attribute and is clearly unambiguous. Rule 2, despite
having two conclusions, concludes only a single atiribute, namely weather, and is

therefore also straightforward.

Rule 3 on the other hand concludes two attributes. Studying rule 3, one could ask
if Jane's putting on sunglasses is a consequence of the weather being fine, or

whether these two conclusions are independent.

Apart from the ambiguity it canses, the question of how a particular shell interprets
it is also uncertain, For example should a shell with a backward chaining inference
engine process this rule if EITHER of the twe conclusions is the cutrent goal, or
should it process this rule only when BOTH the two conclusions are the current
goal ? These possibilities reduce the portability of the rule base.

50

Apart from the above problems, rules that conclude more than one attribute also
have a high chance of cavsing looping, Consider the following (backward chaining)

rules :

Rule4 IF A>0

THEN GOAL
Rule5 |IF B
THEN X =C+2
A=...
Rule 6 IF D
THEN C= A+l

Assume that !
(i} we have a backward chaining system
(i) conditions B and D are true
(iii} GOAL (of Rule 4) is the current goal
In erder to prove Rule 4, the inference engine will seek the value of A.
Rule 5 is therefore considered since it concludes A, but it concludes X as well, and
in order to conclude X, it needs atwibute C. Hence Rule 6 is considered since it
concludes C, but to conclude C, attribute A is needed.
At this point loopi_ng may start to occur.
From the examples it is seen that rules that conclude maore than one attribute make

debugging of the role base difficult since it is hard to identify which rule was

responsible for a given consultation state.

51

2

Since such rules also give rise to ambiguities in the semantics of the rules {as
ilkustrated in the example relating to Rules 1, 2 and 3}, they are less transparent,
hence extensive documentation is required. This is a misuse of the inherent high

transparency advantage offered by rule bases.

Eliminate procedural content from rules

Procedural contents in rules give rise lo poor transparency since it is not obvious
what a procedure does. One could argue then that rules sheuld contain knowledge

rather than procedures.

Consider the rule :

IF sunny THEN
call goodday-proc

One cannot be certain what goodday-proc does. In other words, the rule has lost its
transparency; this is another way of saying goodday-proc does not state its entire

meaning.

Such calling of cutside programs or subroutines can produce hidden side effects and
should be avoided if structured techniques are to be followed. Penderson suggested
that "you may be addressing n problem that couid be better solved using a
conventional language” if you find that you cannot avoid incleding such procedural
content (Penderson, 1990, p. 49), and called for a rethink on the part of the
knowledge engineer regarding whether "an improper conception of the expert's
knowledge or improper representation of the expert’s problem solving strategy” was
the canse (Penderson, 1990, p. 46).

52

3) Minimise the use of ELSE

The use of ELSE has many disadvantages,

The following example shows two rules (Rule 7 and Rule §) present in a knowledge
base :

Rule7 IF A and B
THEN X=1
ELSE X=2

Rule8 IF A and NOTB
THEN X=3

Assume that ; condition A is True, and

condition B is Fnlse

If Rule § has been placed before Rule 7, then X = 3 would have been cencluded.
However, in the example, Rule 8 has been placed after Rule 7, hence it will not be
tested because ELSE would have come inte effect. Hence ELSE has implicitly
introduced a procedural content into the knowledge base, making it not possible to
add rules anywhere into the knowledge base. This results in the reduction of
transparency offered by declarative rule bases.

Also ELSE makes the meaning of the rule unclear, Consider Rule 7 for example, we
know from it that X = 1 should be concluded if both A and B are true. But we are
unsure when X =2 was concluded. It could have been A was true and B was false,
or A was false and B was true or both were false,

Without the use of ELSE, the inference engine can be allowed o conclude

Y 53

UNKNOWN when no rules applied. This helps to identify gaps in the knowledge
base and allows the possibility of introducing rules that reason about the
UNKNOWN,

COMMENT

In this proposed structured techpique, we find that rules have been ‘doctored’ to
suit the 'structuredness’ of the methodology. They have lost their ’naturalness’
in that they no longer reflect the way experts think, a criterion considered by many
important for s knowledge base to possess {section 3.1.2.3 on 'modularity’, and
section 3.2.2 on *knowledge in context strategy’).

Still one might ask if it is necessary for rules to reflect the way experts think? It
is well known that the way experts report their rensoning is often different from
how they actually reason in the first place. Among those who hold this opinion
are Compton and Jansen (1988, p. 293) who said that experts bave difficulties

reparting on how they reach decisions.
The greatest attraction of Penderson's proposals lies in the fact that the ideas he put

forward are simple and can be readily adopted to any backward chaining kanowledge

bases without the introduction of any major teol or strategy.

54

3.1.6 OTHER SOFTWARE ENGINEERING TECHNIQUES

3.1.6.1 REUSABILTY

Expert system shells are examples of the reusablity concept being applied to expert
systems at the implementation level, However there has not been not much progress in
applying the reusabilty concept at the knowledge level (Buchanan and Smith, 1989,
p. 187}, Buchanan and Smith cited the example that many expert systems use facts about
anatomy and physiclogy, yet ofien each encodes these facts specifically for use in a

unique way.

While Buchanan and Smith did not venture to suggest any reasons for this observation,
Matthews did (Matthews, 1990). He said that theoretically rules should be reusable, but
in practise this is not the case because rule bases tend 1o be 100 application specific. He
attributed this application specificness of rule bases to the lack of programmability of
the control systems of the shells or languages in which the rules were written, This
inflexibility of conirol structures of the shells caused programmers to include their own
conirol mechanisint into rule bases meant to express domain knowledge, thus rendering

them unreusable.

Matthews suggested that host languages or shells should have control systems that allow
developers to "igke full charge of the controf systems”, 2 freedom, he conceded, "still
relatively rare in the context of today's Al shells” (Matibews, 1990, p. 437). It should
be noted that to some degree this frecdom has been met by RIME (discussed in

section 3.2.3) which permits the explicit expression of kigh level control structures.

Another obstacle to knowledge reuse is the dependency of knowledge bases on specific
representation paradigms. For instance a rule-based application cannot reuse the
knowledge found in a knowledge base which employs logic as its representational
paradigm.

55

To some extent Jansen et al.'s work on knowledpe dictionaries can be seen as 2 step in
the direction of promaoting reusability (see comments of 3,1.4). This is because their
knowledge dictionary is stored in the relational data format (ie. a representation
paradigm free format). Hence it is pessible for the knowledge in the dictionary to be
capiured from a rule base, and converted for reuse by a knowledge base of a different
paradigm.

Benn, Schiageter and Wu (1990) described how a component can be added to a KBMS
to atlow an inter-paradigm reuse of application objects. This new component is termed
"the Conceptual Object Manager”. Its purpose is to manage execution medel semantics
in a way that allows applications to reus: persistent information independently of their
individual paradigm commitment.

3.1.6,2 DOCUMENTATION

The usefulness of external documentatien may be quite restricted whether it is for
conventional or expert systems since it can easily become out of date. Besides, external
documentation involves an extra effort. In the opinion of the cument auther,
documentation should be made an integral part of the code so that this duplication of

effort and currency problem can be removed.

In-code documentations should be used to aid understanding of the knowledge base. The
"interface specification’ strategy promoted by Jacobs et al, {discussed in section 3.1.3.2)
suggested that each modute should have a header describing its function, The description
must be & high level cne in order to remain true even though the internal derails of the

module have been changed.
More documentation should not be viewed as being better. Constructing knowledge

bases using modular and structured techniques or use of more declarative languages like

SYLLOG (section 3.2.4) should make documentation less necessary.

36

3.1.6.3 STANDARDISATION

In large systems there are many different proprammers working on different parts of the
same system, This gives rise to many different naming conventions, programming styles,
ete, which in turn may lead to the development of a system which is difficult to

maintain.

A case in point was the COMPASS System (discussed in section 3,1.2.3) which
partitioned its knowledge into ¢ighteen separate knowledge bases. Four programmers
were engaged in the development of the individual knowledge bases, leading to

differences in styles which in turn hampered maintenance (Prerau, 1990).

Prerau handled the problem of nen-uniformity in programming style by adopting a set
of standard naming conventions for system elements, and he imposed the use of standard

representation paradigms like rules and frames wherever possible.

It should be noted that the enforcement of standards is as important as the setting of the
standards themselves, Stonghocker reminded us that "standards are ineffective unless
they are published, understood by all concerned, and enforced”" (Stonehacker, 1988,
p. 292).

5

3.2 OTHER APPROACHES

The current market contains many innovative tools and ideas on how to build mere

maintainable knowledge bases. This section selects four approaches for discussion.

The ’knowledge specification’ approach is selected for the novel way in which it
accornmodates the concept of rigorous definition into the construction of knowledge

bases.

The 'knowledge-in-context’ paradigm is a radical proposal which runs counter to
entrenched sofiware engineering principles. The Ideas it propounds starkly contravene

the long held software engineering principles of structuredness and modularity.

The third appreach looked at is founded on the belief that the root cause of maintenance
preblems lies in the impliciiy of mles and control structures. Essentially what this
approach says is "make the implicit explicit, and the knowledge base will be

maintainable”.

The last approach centends that declarative knowledge is easier to understand and

maintain than procedural knowledge.

58

3.21 KNOWLEDGE SPECIFICATION PARADIGM

INTRODUCTION

It was argued in section 3,1.1 that expert systems defied rigorous specification because
of a number of reasons, among which were the incremental nature of their knowledge,
their inherent unstructuredness, their possibly dynamic domains, and the diffienlty of
extracting knowledge from experts (because much of this knowledge is implicit),

Prototyping was seen as a more gppropriate tool for the construction of the expert
system knowledge base since the prototype can serve as a testing tool allewing the
developer to cycle throuph many iterations until a satisfactory prototype of the
knowledge base is obtained, However this experimental nature of the prototyping
methodology also makes knowledge bases developed from protetypes hard to modify.
This is because prototypes often contain many ad hoc changes, and are relatively
unstructured, poorly planned, and badly documented,

This section looks at an approach described by Slaple, Gardiner, and Han (1990). This
approach may be thought of as a compromise between rigorous definition and
prototyping. The concept expounded by this approach attempis to get the best of both
worlds by using prototyping on the one hand and producing a rigerous specification on
the other.

OBIECTIVE

To produce 2 knowledge specification and use it as a basis for developing the expert

system, and for guiding changes during the maintenance of a knowledge base,

39

CONCEPT

The rationale behind this approach may be summed up thus. It says that a rigorously
defined knowtedpe specification is vital, and must be procured before design and
construction of the system begins. However, current rigorous definition methodologies
cannot define the specification thoroughly. Hence, instead of using prototyping to
construct the system, prototyping should be used 1o obtain the rigorous definition of the

specification, and then that specification used as a basis to construct the system.

In other words this approach employs prototyping as a vehicle to enable developers 1o

understand the problem s that a knowledge specification can be produced.
The resulting knowledge specification has two main uses, first as a basis to construct

the new system, then as a guide for makiug system changes during the maintenance

phase,

IMPLEMENTATION DETAILS

.Tha approach consists of five phases. These are :-

i) Reouirements analysis
System objectivas, scope, constraints, ete are identified at this stage. Test cases and
expected results for system acceptance dre alse collected.

i) Knowledge acquisition

During knowledge acquisition, an initial knowledge spei:iﬁcation is produced.

“This specification contains the kinds of knowledge and reasoning processes required

60

iii)

v

to perform a task. Since it. s not possible to pre-specify every reguirement

accurately, the specification is incomplete at this stage.

Slagle et al. suggested the use of the 'Protacol Analysis’ technique for the
acquisition of knowledge. (Protacols are the verbal responses that have been
generated by a domain expert during a session),

Knowledge specification

Protocols are analysed to identify expert problem solving strategies. The results
are Tepresented using some representation formalism. Slagle et al, used the
*Conceptual Structure’ techniques of Suwa (quoted in Slagle, et al., 1990, p. 32).
A programming languape is then used 10 convert this initial knowledge
specification info 4 prototype.

Verification

Syntactic and some semantic checks are done on the conceptual structures.

Validation

The knowledge specification (ie the prototype) is then validated against the
requirements. This is done by running the protetype against test coses and

comparing the results against the expert's analysis.

The knowledge specification is modified and expended unti] correct answers are
obtained for all known validation cases. At this stage a stable specification would
have been produced.

61

The prototype is now discarded, and the knowledge specification is used as a basis

for implementing the production system.

COMMENTS

- Slagle et al."s proposed method appears to go oaly as far as building the knowledge
specification, The actusl construction of the system seems to be left open so long

as it adhetes to the guidelines laid down in the specification,

- The speeification ns referred to by Slagle et al. is really more thana specification
of requirements; it contins the design blueprints as well. In Slagle et al.'s case,

these are represented as 'conceptual structures’,

~ The strategy proposed by Slagle et al. is really just 2n adaptatien of the familiar
"throwaway prototype’ concept (Guimaraes, 1987), whereby a prototype is
developed and then discarded.

- Slagle et al. justified their method by claiming that "the re-implementing of the
system from a specification is likely to take less time and money than improving
the (original} prototype, and will result in a system that is easier to maintain"
(Slagle et al., 1990, p. 30).

While the latter claim certainly appears plausible, the claim that re-implementing

from scratch takes less time may be debatable.

62

3.2.2 KNOWLEDGE IN CONTEXT STRATEGY

INTRODUCTION

The developers of the knowledge-in-context strategy {(Compton & Jansen, 1990) believe
that experts normally explain their reasoning differently depending on who they are
explaining it to, and the context in which the questions are asked. Their strategy is
fundamentally based on the assumption that experts cannot'repun on their menal
processes accurptely and unequivocally, and are willing to change context at will so as
to remain comect. Hence there is no uccasiﬁn where experis are ever wr;mg. but the

context in which they are right changes.

On the ground of that assumption, it is thus conceivable for the researchers of this
strategy to propose that the ability to change context should be an essential component

of the expert system technology.

A problem with conventional knowledge bases is that they do net reflect the thought
processes of the experts. Whenever new rules are added to such knowledge bases, it is
not unexpected that the new rules may conflict with existing rules. Tools are therefore
required to manipulate these knowledge bases until the inconsistencies disappear.
This has the effect of the rules in the knowledge bases taking on an artificial structure,

thus losing the original thought processes of the experis.

In this sirategy, the justification provided by experts are considered to be cotrect in
context. Therefore, if these justifications are captured as rules in the knowledpe base
in that same context, then they can be used as provided without further manipulation,
In other words knowledge bases should be created without engineering (ie manipulating)
the rules, rather they should be captured in the context in which they are provided by
the experts,

63

OBJECTIVE

To facilitate maintenance knowledge engineering through the development of the
‘context’ strategy.

CONCEPT

An assumption this strategy makes is that maintenance is normally initiated by the
failure of a single case 5o that an expert will be called upen to provide rules to handle
further cases of this type.

This happens when an inaccurate interpretation (or conclusion) is produced by the
system. The expert will then be asked to provide new rules to correct the situation. The
context in which these new rules are provided depends largely on the context of the
wrong interpretation the expert was presented with, That is, the new rule is not a global

rule, but a rule to switch interpretation from the incorrect to correct.

To capture this context, 2 LAST-FIRED(rule-number) condition is included for every
rule in the rule base. The new rule that was added will not be allowed to fire in a case
unless the old rule which produced the wrong interpretation has been fired before it.

Each rule has only one opportunity to fire. Rules have to be tested in strict order, from
the oldest 1o the newest. Maintenance is therefore a chronological process, Each new
rule, whether a correction to the old, or a rule for a previously uninterpreted case, is

always added to the end of the list of rules.

64

IMPLEMENTATION DETAILS

1) Creating the rule base

At the time of creating the initial rule base, no test cases have yet been run,
therefore the notion of whether the rules are correct or incorrect in context does
not exist, the implicit context being that the expert system knew nothing of the test
cases, Hence at this stage of creation, all rules should be allowed to fire. This is
implemented by assigning the 'IF LAST-FIRED(0)' statement to the 'condition’
part of every rule.

The rule base thus created ¢an be viewed as a long list of rules which when run

will be tested from the first rule to the last mle in sequence.

Rule 1 IF LAST-FIRED{D)

and A=1
and B=2

THEN X

Rule 5 IF LAST-FIRED{D)
and C=l
and D=2
THEN Y

.

Rule 100 IF LAST-FIRED(()
and E=1
THEN Z

Rule 101 IF LAST-FIRED (5)
and E=1
THEN W

Figure 3.b A list of rules in the knowledge base

65 |

ii)

For example in figure 3.b, rules 1 to rules 100 are the initially created rules, all of
which are assigned the LAST-FIRED(Q) status,

As the rule base is being tested with cases it needs to be meodified. The
modification is straightferward. It involves only the addition of rules to the end of
this rule list, regardless of whether the new rule is & correction of an old rule or is

a rule for a yet uninterpreted case.

For example in figure 3.5, Rule 5 is found to be incorrect. A new rule, Rule 101,
is added to the end of the list with the condition LAST-FIRED(5) assigned to it.
This means that this rule will take precedence over all the others the moment
Rule 5 had been fired.

Running the knowledge base
The control sequence in running the knowledge base is as follows,
Step 1 Control starts from the oldest rule to the newest down the list looking

for rules which have no pre-five conditions (fe rule with
LAST-FIRED(()).

Rule LAST-FIRED{0) Rule LAST-FIRED(3) Rule LAST-FIRED(200)
no. no. no.
1 -3 XXXXX 22 > xxxxX 7T > xxaxx
2 - XXXXX 200 -> xxxxx fired 99 > xxxxx
3 -» xxxxx fired 201 xxaxxx
4 XXXXX
5 XXXXX
XAKKX

Figure 3.c A conceptual representation of a set of rules in the
knowledge basz

66

Step2 As soon as a rule has been fired, for example rule 3 in figure 3.c} the
only rules which can now be allowed to fire are those which have that
rule as a pre-condition (ie rules with LAST-FIRED(3), nemely rules 22,
200, 201).

Two situations may now arise :-

a) Nooe of the rules with LAST-FIRED(3) could fire (not shewn in
figure 3.c).
In such an event, control would be passed back to the ke following
the one which was tast fired (in figure 3.c it would be rule 4 which
is next checked).

b) One of the rules with LAST-FIRED(3) fired (shown as rule 200 in
figure 3.c)

Since rule 200 fired, control is now transferred to check only those
rule with LAST-FIRED}{200) {in figure 3.c, it will be rules 7 and 99).

If none of the rules with LAST-FIRED(200) fires, control will return
to check rule 201,

It should be noted that in figure 3.c, there is really only a single list, which runs from

the oldest rule to the newest addition,

COMMENTS

- The control sequence of rule firing described in figure 3.c is really that of a depth
first search.

- It is noted that tiis strategy blatantly violates the principles enshrined in the

67

software engineering meshodology whereby rules are required to be engineered in
various ways fo achieved structuredness or modularity. In this stratepy, rules are
added only to the back of the rule list chronologically, thereby resulting in related
rules being scatiered over the knowledge base. However, there is method in this

seemingly disorganised rule base.

An advantage which siems from the chronological addition. of rules is that a rule
trace can quickly seview the history of corrections and additions to the knowledge
base.

In appearance, this Strategy seems to turn knowledge base maintenance into 2
relatively simple affair - one of merely adding rules 1o the back of a list ! Under
the provisions of this strategy, one cannot find any occasion 1o delete or change
any rules, Since the presumption of this strategy is that there must always be some
truth in what experts say (it is only the context that is questionable}, deletion and
modification does not arise, To some, this assumption that the justification

provided by an expert is highly accurate in context may be quite contentious,

Although the developers of this strategy had tested it by redeveloping an existing
knowledge base for the GARVAN-ES] expert system, and then measured the
knowledge engineering problems and the performance of the resuliing new system
ngainst the existing systern, this test appears to be rather contrived. It would be
more convincing if it had been tested with a knowledge base created from scratch

for a new application,

Despite testing the swategy by rebunilding the GARVAN-ESI knowledge base,
Compton et al. said that they "propose this strategy for the maintenance phase of
dn expert system project” (Compten, et al., 1990, p. 297). In other words, regardless
of how a system had been built, theoretically the strategy can be applied to any
existing knowledge base to some degree with only the relatively minor modification

of including the LAST-FIRED{rule-number) conditions in front of every rule.

68

32,3 EXPLICIT HIGH-LEVEL CONTROL STRUCTURE

The propanents of this strategy believe that the implicitness of a knowledge base control
structure is one of the major canses of maintenance ills, and the panacea is to make this

control structure explicit,

RIME, the euphemism for "R1's Implicit Made Explicit" (Bachant, 1988, p. 205)

suecinctly sums up the crux of the teol which this section examines.

3.2.3.1 NAME OF TOOL : RIME

INTRODUCTION

The researchers at DEC develaped RIME with the goal of facilitating the maintenance
of XCON's (also called R1) knowledge base. This 'language’ (Soloway, et al., 1987)
was used to write XCON-IN-RIME, the successor to XCON. RIME has also been
refetred to as a "methodology® (Bachant, 1988), (Hicks, 1990).

The main problems faced by XCON amre its high volatility (ie. dypamism of iis
knowledge base) and its huge size. Hicks said that it contained 17,500 rules in
September 1988 (Hicks, 1990, p. 293},

XCON was written in OPS5, hence had to rely on the implicit conflict resolution
strategies of OPSS5 for the control of its rule firing. As a result, programmers often had
to resort to 'tricks’ to explicitly change the control of the rule firing sequences. As
different programmers worked on XCON at different times, the implications of these
‘tricks’ which were buried in the codes becams increasingly difficult to comprebend.

RIME seeks to make the control of tule firing and the structuring of the rule base

explicit.

69

OBJECTIVE OF RIME

Te allow for the explicit expression of high [evel control structure, and o provide a
framework which allows codes to be made homogeneous and predictable, hence easy

to modify.

CONCEPT BEHIND RIME

RIME's builders believed that the two main factors which decide the maintainability

or otherwise of a knowledge base are hotnogeneity and predictability.

Homogeneity i5 a term which is nsed to describe 2 knowledge base which uses similar

solutions to achieve similar goals.

Predictability refers to the ease with which a knowledge ¢ogincer can identify or predict
where codes should be changed. In order to make rules predictable, one rule should
only be allowed to serve one function. Also rules that serve related functions should not

be scattered over the knowledge base.

In order to enhance homogeneity and predictability, RIME focuses on two main issues.
These are the control characteristics (which focus on the explicit specification of control)

and the rule based characteristics {which focus on the organisation of the rule base).
(1) Control characteristics

In a typical shell or language, all types of problems share the same implicit control
characteristics of the shell's or the language's control structure. This makes it
impassible for programmers to change the order of the mle firing sequence without
resorting to writing their own routices. This situation can be avoided by using a
language which offers several different control structures. With such a language,
different types of problems can be solved under different control structures.

70

@

The goal for RIME is thus to offer different Lypes of controt for solving different
types of problems. To achieve this RIME introduces the concept of a preblem
solving method (PSM). A PSM is a programmer-defined domain-independent
sequence of steps to solve a class of problems, RIME contains mechanisms and
guidelines to help programmers pre-define their own PSMs, Each PSM thus
explicitly spells out the sequence of rule firing. An example of a PSM is the
*propose-and-apply” method.

By using the same PSM to solve similar types of problems in a domuin,
homogeneity is enhanced since ’similar solutions are used to achieve similar
goals’. To decide which PSM should be used, the rule base characteristics have to
be considered.

Rule-based characteristics

Rules with similar characteristics (te with common properties) are grouped together
and placed into s 'domain specific bucket’. These 'buckets’ are also called
'problem spaces'. As each problem space uses only one PSM, the firing sequence

of rules within a common problem space is known.

Another advantage of grouping similar classes of rules into a common prablem
space is that it ensures that as the koowledpge base grows it will remain

homogeneous.

To enhance prediciability, RIME’s language constructs are directed toward
problems in the domain. This means that the composition of codes in the construct

tend to reflect the composition of the problem.

To ensure that developers use these language constructs in the ways intended, an
enline tool called SEAR provides enforcement by using a template for each rule

tyzc o guide the creation of mules.

71

COMMENTS

- RIME's concept of grouping together similar types of rules under the same problem
space, and assigning each problem space to only one PSM so that a single control
structure is used to solve a similar kind of problem, is a laudable one, for in this
way RIME has laid down strict prescribed methods for programmers to follow

so that homogeneity is achisved.

The setting of such standard prescribed methods, however, cannot be taken to
mean that programmers will observe them. To ensure that programmers follow
these stict language constructs in the desired way, SEAR is used to provide

on-ling enforcement of the coding guidelines.

One might argue that such an overbearing approach may have the effect of
curtailing the creativity and freedom of the programmer.

RIME's approach, however, will work particularly well for large knowledge bases
which are maintained by many different programmers. Rather than having
proprammers writing in their individual styles, such an approach will ensure that
codes are standardised {or homogenised in RIME's tenminolegy) and thus easy to
maintain,

- While RIME recognises the existence of different control structures, it does not
appear that it recopnises the existence of different kinds of knowledge. For
example, it makes no aitempt to Separate domain specific knowledge from problem
solving knowledge, or knowledge about why one rule should be prefetred over
another, knowledge about how an expert system can be efficiently executed, etc.
Since RIME does not have any mechanism to explicitly capture these different
kinds of knowledge, they remain implicit in the knowledge base,

72

3.2.4 TOWARDS A MORE DECLARATIVE LANGUAGE

Among the many puradigms conceived by researchers in their quest for better ways to
facilitate the maintenance of a knowledge base is the "declarative language’ concepl.
This concept rests on the belief that declarative knowledge is easier to maintain than
procedural knowledge. Kowalski et al. said that such a concept seeks "to exploit in
various ways o separation between declarative and procedural knowledpge” (Walker,
Kowalski, Lenat, Scloway, & Stonebraker, 1988, p. 64).

The concept is implemented by building procedural knowledge into the system, and then

using this procedural knowledge 1o suppor the various declarative knowledge bases.

This section discysses an example of a shell based on this concept,

3.24.1 NAME OF SHELL LANGUAGE : SYLLOG

INTRODUCTION

SYLLOG (Walker, 1987) is a shell language written in Proleg. It was designed
particularly for use by non-programmers. Its motivation was the desire to allow users
to build their own knowledge bases and © muintain them without any knowledge of
programming.

OBJECTIVE

To allow knowledge providers to code knowledge in a largely declarative form free from

any contro] &nd procedural concems.

73

CONCEFT
SYLLQG is based on the concept of Syllogism, the familiar

AlXareY
ZisX

therefore Z is Y

The idea is to be able to represent knowledge in very simple English-like sentences. To
create a knowledge base in SYLLOG one is limited to syllogisms (simple declarative
sentences) only. The actual language used may be un English like language, or any other

language, whether natueal or artificial,

SYLLOG knows little of the language concemed, unlike natural language understanding

programs,

To build a SYLLOG knowledge tnse, knowledge in the form of facts and rule are
acquired as a set of syllogisms and Kbles.

A syllopism (ie 4 sentence in SYLLOG) may contain one or inore words starting with
eg_, plus at least one other word not starting with eg_. Words Starting with eg_ are

variable names.

A table contains a group of related facts, The table resernbles that of a relational
database table, except that it is headed by a sentence in SYLLOG.

In ihe example (see table 3.b), the table stores the fact that

"an item has a number of parts ". That is, bexA has 4 cardX’s,
boxB has 3 cardY's, etc,

T4

eg_item has eg_number of eg_parts

boxA 4 cardX

boxB 3 cardY
cardX 7 chipW

Table 3.b Item has number of parts

A rule that says "IF an item has X parts,
and each part has Y subparts
and X*YisZ
THEN the item has Z subparts”

is represented in SYLLOG as :
eg_ftem has eg X eg_parts

eg_parts has eg Y eg subparts
eg X*egY=eg 7

eg_iteor has eg_Z eg_subparts

Once this knowledge is entered into the knowledge base, SYLLOG permits various
kinds of queries, including 'what-if* type questions. SYLLOG also provides different
forms of explanations (those that are obtained from instances of the rules that have

been used to establish the answer, or those that are derived from deductions).

5

IMPLEMENTATION DETAILS

SYLLOG is implemented by seven sub-companents which collectively make up the
SYLLOG shell. These are :

1) A screen manager - for menu selection, and other function selections.
ii) A tanguage file - for tailoring the system messages into English or other languages.
iiiy A loader - for preparing and checking a knowledge base.

SYLLOG provides three ways of checking incoming knowledge.

a) Subject independent checking of individual rules - 2 syntax check.

b} Subject independent checking of the knowledge base - a limited form of
consistency check, in particular a check that the rules do not con.ain a recursion
through a nepgation.

¢) Subject dependent checking of the knowledge base - this check ensures that the
subject dependent or domain knowledge does not conflict with the real world.
The experts supply constraints for the allowable situations in the knowledge

base.

iv) An update component - to facilitate the process of maintenance or making

changes to the knowledge base.
v) ‘An inference engine - although SYLLOG is written in PROLOG, it has its own

inference engine rather than making use of that of PROLOG, Iis infererce engine
consists of both a backward chaining and a forward chaining compongnt,

76

vi) An interface - to link to a database management system.

vii) An explanation generator - which provides automatic explanations for checking
the knowledge on which answers are bused, Rather than producing an execution
trace which lists cut all the steps the system has taken in reaching a conclusicn, it
recognises that there are a number of explanations as to why a conclusion follows
from a knowledge base, and a very large number of explanations as to why it does
not. It manages this by presenting a single explanation, then provides a way of

asking for the next explanation should it be required.

COMMENTS

- As SYLLOG"s inference engine is written in PROLOG, its execution speed is, at
best, limited by PROLOG’s speed. In fact, concerns over its operational efficiency
have led its developers to admit that they have to Jook for "some ways to increase
its speed” {Walker, 1987, p. 252).

- Since SYLLOG does not have natural language processing capabilities, the user
does not have freedom of expression, but must always nse the same sentence 10 say
the same thing. Ta overcome this restriction, Walker suggested that the user should
provide more "syllogisms to say that different sentences have the same meaning"
(Walker, 1987, p. 236). This extraneous knowledge, however, may cloud the real

knowledge by introducing added complications te the knowledge base.

Ei

CHAPTER 4

MAINTAINING AN EXISTING
KNOWLEDGE BASE

Most authors classify maintenance into three main types. These are perfective
maintenance (1o make codes more easily nnderstood, increase efficiency, etc); corrective
maintenance {to correct errors); and adaptive maintenance (to adapt software to new
operating environments) (Martin & McCiure, 1983), (Parikh, 1988), (Gorla, 1991) and
others,

Irrespective of the type of maintenance, the process of maintaining a knowledge base

essentially involves three fundamental steps. These ore :-

i) understanding of the knowledge base BEFORE medification may be carried out,
ii) performing the actual modification itself, and
iii) ensuring the correctness of the knowledge base AFTER modification.

This chapter is organised into three main sections to reflect the above three steps. Tools

and aids targeted at minimising the difficulties found by the maintainer at each step are

explored and discussed in these sections.

78

4.1 UNDERSTANDING THE KNOWLEDGE BASE

Before a knowledge base can be modified, the maininer has to understand what the
knowledge base does, why it is doing it, and how it does it. ‘This understanding process

is usually carried out by studying implementation level details.

A survey by Feldstad and Hamleu {quoted in Parikh and Zvegintzov, 1983, p. 2)
showed that maintainers spent about haif their time siudying code. When correcting
errors, over 60% of their time was spent reading code, They also revealed that this time
was mainly spent trying to undersiand the intent and style of implementation of the
original programmer(s). While Fjeldstad and Hamleu's study relaies to conventional
program understanding, it nevertheless indicates the magnitude of code understanding

problems.

The ease of knowledge base understanding depends in part on how familiar the
maintainers are with the shell or language in which the knowledge base was written;
whether they were the original designers of that knowledge base; and their levels of skil}
and experience.

This section looks at aids which seek to enhance that level of understanding regardless

of the maintainer’s original background. Tt censiders aids specifically designed to aid
knowledge base understanding.

79

4.1.1 EXPLAINABLE EXPERT SYSTEM
PARADIGM

INTRODUCTION

A typical expert system knowledge base is made up of facts and rules which are
explicitly stated. But implicitly cnptured into these rules are many other different types
of knowledge. These are the heuristics for achieving goals (ie the general problem
solving principles), implementation and efficiency concerns, readability concerns and in
some cases the style of the system builder, Many of these general problem solving
principles and much of the rationale behind the rules and methods are "lost” since they
are not represented explicitly,

The failure to explicitly represent these different forms of knowledge which are required
for the design of the system means that the expert system cannot provide explanation
in terms of these sets of knowledge. Hence explanation is rigid and fimited to merely
a mechanical trace of the operation of the system. This makes understanding of the

knowledge base difficult, and makes maintenance a daunting task.

The builders of EES (Neches, Swartout, Moore, 1988), (Swartout, Paris, Moore, 1991),
(Lowry and Duran, 1989) believed that the difficulty of maintenance and understanding
both stem from the same fundamental problein of not being able to capture these

diffzrent types of knowledge explicitly.

By approaching this fundamental problem through the separation of knowledge into
different types (ie quula:ising ity and explicitly capturing the sysiem’s developiment
history, two main advantages are achieved :

i} maintenance is made easier since knowledge is modularised.

if) better explanation can be provided since o record of the development process is

80

available, Better explanation in tucn facilitates understanding of the expert system
knowledge base.
OBJECTIVES OF EES
To facilitate understanding of the knowledge base by providing for more flexible and
responsive explanation, and to make the task of maintenance easier through the
separation and explicit capturing of different types of knowledge.
CONCEPT BEHIND EES
The EES paradigm is based on two fundamental principles :-
- The explicit representution of different forms of domain knowledge
- The formal recording of the system development process

(1} The explicit representation of different forms of domain knowledge

The EES knowledge base is sepasated inte many modules. Each module explicity
represents & differsu type of knowledge.

These modules include :
i) ‘The Domain Mode! - this contains the domain knowledge.
iiy The General Problem Solving (GPS) Principles - this component captures

explicitly the set of general principls or heuristics from which the system

was derived.

81

i}

iv)

v)

vi)

viiy

The GPS Principles are represented as "Plans’. A Plan contains a "Capability
Description’ and a 'Method',

The Capability Description (also known as "Goal’) describes what the Plan is
useful for. In other words it defines the Plan's Goal. For instance, a Plan's

Goal may state *for disgnosing faulty parts’.

The Method is a sequence of steps to achieve the Capability Description, In

other words, it is an implementation of that Plan's Goal.

Tradeoff knowledge - knowledge which indicates what berefits can be gained
and what losses suffered as a result of selecting & particular GPS Principle to

achieve a goal;

Preferences - knowledge used for ranking GPS Principles based on the
tradeoffs;

Terminclogies - this module contains the definitions of all the terms used in

the system. They are shared ross GPS Principles;

Integration knowledge - When EES generates the expert system code, certain
sets of rules (or procedures) being generated might conflict with others. This
module contzins knowledge for resolving such conflicts among the various

knowledge sources.

Optimisation knov/ledge - contains cost optimising factors which indicate

how the derived expert systern can be efficiently executed.

The above medules collectively make up the knowledge base. Since the knowledge

base is modular, maintenance is made casier. The vse of a classifier (see 4.2.1) for

the construction of the knowledge base further eases the task of maintenance. In
the earlier version of EES (Neches, et al,, 1988), the KL-ONE classifier was used

82

@

ta build the knowledge base, The LOOM classifier was used in the later version
(Swartout, et al. 1901),

The formal recording of the system development process

The various components of the knowledge base listed above are nsed by EES to
generate an executhble expert system and a ‘Development History'. The
Development History is a historical record of the development process. It captures
the rationale behind each specific action taken in the design of the system and
hence is useful for providing explanations about why a given aspect of the system
was designed or implemented in a given way. It i5 from the Develapment History

that EES derives its explanatory power,

The generation of the expert system code and the Develapment History is done by
a mechanism called the "Progam Writer',

The Program Writer refers to the goals found in the domain model, refines them
into subgoals, and carries on the refining precess until the primitive levels are

reached.

As it does this refinement, the Program Writer records the steps it went through,
preducing a 'Refinement Strueture’. Since the Refinement Structure is really a
historical record showing how the expert system was generated tap down from the
high level goals to the implementation levels, it is also referred to as the
Development History. This Refinement Structure may be a lattice or 4 tree-type

strugture,

83

IMPLEMENTATION DETAILS

The steps involved in generating an executable expert system and the Developrment

History are :

Step 1: ‘The Program Writer starts at the highest level goal.

Step 2: It searchies the GPS Principles' Pluns for a match of a Plan’s Capability

Descriptien with the goal.

Step 3: If a match is found, the Program Writer uses that corresponding "method’ to
implement that goal. A "specialisation’ process may be required.

For example :-

- a poal muy say 'diagnose faulty XYZ-chip’

- a search of the GPS Principles Plans finds the Capability Description

*diagnose faulty component’
- ‘gomponent’ is replaced with "XYZ-chip’ wherever it appears in the

Plan*s Method.

‘This specialisation provess is recorded by the Program Writer so that EES can
explain the relation between the specialisation and the GPS Principle from

which it stems.

84

MAINTAINER (uses & classifier or other knowledge acquisition tool

to create/modify the knowledge base)

4

classifier

W

knowledge base

domain knowledge domain principle

others . . .

v

Program Write (us.s the knowledge base to genemic
an executable expert system and

l a Development History)

v \; /

Expert evelopmen > —»| Execution
System History Interpreter Trace

!

e
Y

Explanation Generator (at run time the Explanation Generator accesses

the various components to provide explanations

$ for the user)

USER
Figure 4.a : A brief outline of the EES framework

85

Stepd: X no match is found, the Program Writer uses a process called
"Reformulation into cases’ to reformulate the goal. Thers are several ways of
reformulation, but penerally it involves the breaking down of goals inte

subgoals.

The reformulation process is recorded by the Program Writer so that EES can

explain how it was derived.

Step 5 : With each subgoal so generated, the Progtam Writer returns to re-do Step 2

until all subgoals have been implemented (ie. the leaf nodes have oeen

reached).
o Highest level goal
7\
o o
a/ \o \0 Reformulate into subpoals until
4 "
o o0 leaf nodes are reached.

Figure 4.b : The Refinement Stuetare

The leaf nodes are the actual implementation, Each leaf node contains an

implementation code.

The ‘interors’ of the leaf node sre the goals and decisions made on the way to

generating that leaf (or implementation).

Once the leaf nodes (ie. executable codes) are reached, the Program Writer uses
Tradeoff knowledge, Prefcrences, and Integration knowledge to construct the 'Control
Components’,

86

h o

During execution time, the Control Components select which codes to use based on the

Tradeoffs and Preferences.

The Program Writer further uses the Optimisation knowledge to improve execution
efficiency. This is achieved by re-organising procedures to reflect concerns for reducing

costs (both computational and domain specific).

The final result of the generation is a runnable expert system and a Development

History.

‘Two main types of reasonings “ve produced by the Propram Writer. These are the
*Implementation’ reasonings (which are of interest 1o the maintainers) and the 'Demain
Level® reasonings (of interest to the users), These different kinds of reasonings are
explicitly marked in the design record so that EES can identify them when providing

explanations for different users.

Durting tun time an Interpreter accesses the Development History and maintains an

execution trace of the run,

The user interacts with an Explanation Generator. The Explanation Generator has the
ability to access the Interpreter, Execution Trace, knowledge base, and the Development

History in order to produce the relevant explanations.

The Explanation Generator ¢an detect certain structurss in the Development History
which allows it to determine which goals are generated as a result of implementation
concerns and which are problem solving goals and uses them accordingly to explain or

answer users’ or maintainers’ queries.

Other heuristics allow the Explanation Generator to decide which level of detail is
appropriate when defining terminologies to the users. When comparing concepts, it can
deiect similarities in the structures of different concepts and combing them into a
generalised deseription.

87

COMMENTS

- 'This roncept of explicitly distinguishing different types of knowledge and the formal
recording of the system development process is not new, As noted by Neches, et al,,
it was used in the Xplain systiem. The difference is that while "Xplain recognises
two forms of domain knowledge (factual vs problem solving methods } and one
kind of Development knowledge ..." (Neches, et al., 1988, p. 283}, EES recognises

many moe.

- The EES Program Writer concept appears 1o resemble the conventional program
compiler concept whereby 2 program has to be recompiled each time any change is
made 10 it. By the same token each time a modification or an error correction is
done on the knowledge base, the whole expert system has to be re-generated by the
Program Writer. This obviously is not a very efficient technique if there are many

minor changes to be made en a regular basis.

- EES illustrates an ¢xample of a system that can 'understand’ its own behaviour, As
Lowry et al. said "The EES framework is a first step towards a self-aware,
self-healing software" (Lowry and Durun, 1988, p. 295). This should augur well for
a selfmodifying system of the future since arguably self-understanding is a
pre-requisite step towards self-modification,

88

4,1.2 OTHER KNOWLEDGE BASE UNDERSTANDING AIDS

Apart from the provision of good explanation facilities, techniques for making a
knowledge base easy to understand are very much dependant on its construction.

Software engineering techniques such as modularity, structured principles,
documentation, user manuals, inline comments, use of indentations, cross-reference
listings, data dictionaries, standardisation, et¢ contribute to the ease of knowledge base
understanding, ‘

This section will outline some other methods which might be used to aid the process of
understanding a knowledge base or making a knowledge base easy to understand,

4.1.2.1 AUTOMATIC PROGRAM UNDERSTANDING (APU) PARADIGM

Such a toel is invdluable to ¢« programmer since (as mentioned in section 4.1),
understanding of she code before modification can take wp more than 60% of a

maintainer's time.

The APU paradigm is based on the reverse engineering principle (Lowry, et al., 1989},
a pringiple which applies compiler technology in reverse to derive a [ow level
specification from the cede. Such a principle may be seen as the inverse of the
Automatic Program Synthesis (APS) concept. In the APS concept the idea is to generate
codes from specifications while APU starts from the code and generates the

specification.

The philosophy behind APU is to pre-store all possible implementation instances,
all programming techniques and strategies, data types, data structures, and problem
solving algorithms which may be used in the coding of some arbitrary programs. Once
this has been done, understanding now becomes a matter of retrieving the stored pattems
to match the given input pnttems.'

8o

The obstacle to APU is that (apart from very limited applications) in practice, it is not
possible to pre-store all such computational instances since there are an infinite number
of them, Even if it were possible to pre-store them, the process of matching input
patterns to the pre-stored patterns will be combinatorially explosive. Hence it would
appear that such a concept may still be quite a long way from being useful as a
knowledge base understanding aid.

4.1.2.2 KNOWLEDGE BASE SOFTWARE ENGINEERING (KBSE) CONCEPT

One of the aims of KBSE is to have maintenance done by performing medifications on
the specifications and then rederiving the codes, rather than directly modifying the code
(Lowry and Duran, 1989, p. 245).

REFINE (Lowry &t al., 1989, p. 251) is a commercially available tool in which programs
are specified declaratively at the level of sets and logic, Knowledge-based compilers are

then used to transform them to lower level constructs,

While the KBSE concept appears to be cumently directed at enhancing the development
and maintenance of conventional systems, it will be interesting to se¢ if this technolopy
can be applied to the maintenance of knowledge bases themselves.

4.1.2.3 HOMOGENEITY AND PREDICTABILITY

To achieve homogeneity 4 knowledge base builder must use the same solution 1o solve
the same type of problems, This ensures standardisation of code which in turn makes
for easier understanding of the inowledge base,

Predictability demands that each rule in the knowledge base should serve only one
function, and related rules should not be scastered across the knowledge base,

o0

Knowledge bases which exhibit these two chamcteristics enbance understanding, RIME
{see 3.2.3) is a languapge which promotes both these characteristics in the building of
knowledge bases.

4,1.2.4 DECLARATIVE LANGUAGE

Making a language more declarative may make its code easier for the maintainer to
understand. Separation of declarative knowledge from procedural knowledge is the
principle behind SYLLOG (refer section 3.5.2).

4.1.2.5 PROPOSING SIMPLIFIED RULES

One of the component tools of the EVA system is the Rule Proposer (Landauer, 1950).
Its function is to propose new rules from an existing set of rules, The Rule Proposer
does this by analysing a given set of rules and then uges induction to form new rules.
These proposed new rules represent a simplification over the old ones, thus facilitating

understanding.

4.12.6 PRODUCING FORMAL SPECIFICATION FROM EXISTING
SYSTEM COMPONENTS

The *behaviour verifier’ of EVA analyses the behaviour and inferactions among system

components and then reports on the collective behaviour of these components

(Landauer,1990).

If formal Sbeciﬁcations of alt the sub-systems and their interactions exist, the behaviour
verifier can be used to help produce a formal specification of the total system behaviour.

91

4.2 AIDS TO FACILITATE THE PROCESS OF
MODIFICATION

This section looks at interactive aids which facilitate the process of knowledge base

mainfenance. These interactive aids come in many different forms.

For instance, tools like TEIRESIAS (Davis, 1984) and Knowledge Analyst’s Assistant
(Debeham, et al., 1991) atiempt to ke the place of knowledge engineers by
automatically providing interactive advice and guidance to the experts during the
modification of knowledge bases. When a modification or an addition is made, such
tools check the modification with the existing knowledge base, then suggest further

pussible actions the expert might wish to take or might have overlooked.

Taols like interactive classifiers, on the other hand, use the subsumption principle to
automatically determine where o newly described concept should be placed in the
knowledge base and then verify their decisions with the users.

Knowledge refinement tools, like SEEK (Politakis, 1985) or SEEK2 {Ginsberg, 1988),
allow the users to interactively experiment with changes by testing these changes against

stored test cases, before permanzntly incorporating them into the knowledpe bases.
The above to)ls are in contrast to those that are used to check the knowledge base as

a separate step after changes have been made. Such tools will not be considered in this

section but are discussed in section 4.3,

o2

4.2,1 INTELLIGENT ASSISTANT CONCEPT

Among the earliest attempts st intelligent tools to inferactively assist an expert to
maintain an existing knowledge base was TEIRESIAS (Davis, 1984), (Davis, 1988).

This section ¢xamines TEIRESIAS, which is one of the most quoted systems. It has
been cited by many authors for illustrating diffeicat concepts. It was seen as 2
knowledge refinement tool by Black {1986) who said that the goa} of TEIRESIAS was
to enable a domain expert to refine a knowledge base without the aid of a knowledge
engincer (Black, 1986, p. 36). Perkins, Laffrey, Pecora, and Nguyen (1989) saw
TEIRESIAS as a knowledge base debugger, claiming that TETRESIAS was 'a first
attempt to autormnate the knowledge base debugging process’ (Perkins et al., 1989,
p. 354). TEIRESIAS is considered by others as a knowledue acquisition tool which
helps to automate the knowledge engineering process. Irani, Matts, Hunter, Slagle, Knin
and Long (1950, p, 275) described TEIRESIAS as a knowledge editor, Davis (1985} said
that one of the main goals for the creation of TEIRESIAS "has been the development
of an intelligent agsistant" (Davis, 1985, p. 172).

In this research TEIRESIAS is seen as an intelligent assistant to the expert, It is a useful
maintenance tool which provides an expert with inieractive guidance to facilitate the
pracess of adding, deleting, or altering rules in a knowledge base.

4.2.1,1 NAME OF TOOL : TEIRESIAS
INTRODUCTION

TEIRESIAS is a program written in Interlisp at the Stanford University Computer
Seience department in the early eighies. The program was named after the blind seer
in *Oedipus the king’ because its author likened the program to the blind prophet who
has a fon_'n of ‘h:igher order’ knowledpe (Da\ris,. 1988, page, 243).

93

OBJECTIVE QF TEIRESIAS

To peovide interactive guidance and advice to help a domain expert add, alter or delete
tules from an existing knowledge base.

CONCEPT BEHIND THE TOOL

TEIRESIAS assumes that a knowledge base already exists and uses it to build ’rule
models’. A rule model is a generalization of a class of rules. When a change is made
10 a rile or a new rule is added, TEIRESIAS verifies it with the rule model and reports
to the maintainer any incompleteness or inconsistencies it detzcts and suggests possible

remedies.,

The concept of rule models used by TEIRESIAS is an example of meta-level
knowledge application. Meta-knowledge enables TEIRESIAS to model its own
knowledge. The rule models represented as meta-knowledge, are assembled by
TEIRESIAS on the basis of the knowledge base contents. TEIRESIAS checks the
knowledpe base for rules which heve common characteristics and uses these
regutarities to construct the rule models. The rule models are not static, but are
assembled by TEIRESIAS as a result of its imeraction with the expert.

Duoring the modification process TEIRESIAS does not simply accept any additions or
amendments of rulgs and add them to the knowledge base. Instead the rule modeis are
used to evaluate the new knowledge. In so doing TEIRESIAS demenstrates the process
of learning by examining what it already knows with what it is being taught.

IMPLEMENTATION DETAILS

A typical session ;.vith TEIRESIAS would involve the following sieps :-

94

i
{
i
1

Step 1:

Step 2 :

Step 3¢

The domain expert indicates to TEIRESIAS that an incamect conclusion has
been detected from the knowledge base.

TEIRESIAS contains heuristics to help it select the best approach to track
down the problem, and ask the expert for puidance to help it do so. This
guestion and answer session would proceed until the problematic rules have
been identified.

Once the incorrect rules are found the expert may modify them by changing
them or by adding new ones. The expert enters this new knowledge in the

form of a restricted natural language.

TEIRESIAS's task at this stage is 1o make sure it bas ‘understood’ the expert
correcily, It does this by matching the text entered by the expert against its
own internal rule madels and selecting one which characterises the text best.
Since the rule models contain chiaracteristics that the rules have in common,
TEIRESIAS understands that these are the characteristics that the text entered
by the expert should have, It then confirms its understanding of the new rules
with the expert.

I£ it has been confirmed to be the case, TEIRESIAS would then generate the
codes for the new rules, otherwise, the expert would use TEIRESIAS's
built-in rule editor to modify the rufes in a bid to help TEIRESIAS interpret
them correctly.

Once the expert indicates to TEIRESIAS that he or she is satisfied with
TEIRESIAS’s interpretation, TEIRESIAS uses the rule model again, this tima
to see how well the new rule fits into the model, This is referred to by Davis
as making a "second guess” (Davis, 1988, p. 256). TEIRESIAS does this by
trying to find a complete match between the new rule and the rule madel.

95

If there i5 an incomplete match TEIRESIAS points out to the expert what the
differences are, For instance if the expert had modified a rule to do process
A, TEIRESIAS may respond with "most tules that do process A also do
process B - shall I add process B to your rule as well 7"

While the first vse of the rule mode! {in step 2) was concemed with
interpreting text and determining what the expert actually said, this second use

of the rule models is to see what the expert plausibly should bave said.

Step 4 1 When beth the expert and TEIRESIAS are satisfied, bookkeeping tasks are
performed. That is, TEIRESIAS books the new rules into the knowledge base
and tags them with information 1o aid roaintenance (eg. name of author, date

of change, eic).

COMMENTS

- While the generality of TEIREZIAS allows it to be applied to almost any domain,
a criticism which may b levelled at i1 is that TEIRESIAS works enly en knowledge
bases built in the MYCIN architecture.

- TEIRESIAS does not make any formal assessment of the rules ot the time they are
initially entered. Before TEIRESIAS can be used a knowledge base must already

exist.

- 'TEIRESIAS appears to be o foundation from which many other concepts have
stemmed. It embodies concepts of knowledge refinement, machine leamning,
automatic debugging, knowledge editing, an example of meta-knowledge application,

an intelligent assistant, ste.

06

4.2,.2 KNOWLEDGE CLASSIFIERS

A major problem faced by a maintainer as a knowledge base grows in size and
complexity is the increasing danger of introducing inconsistencies and errors every time

an addiiion or modification is made.

This section looks at a tool which uses the contents of an existing knowledge base and
knowledge about its representation to help the maintainer introduce new objects. Such

u tool is referred to as a classification tool or classification system.

A classification system * is basically made up of : -

{a) & knowledge representation language -

Typically this may be a frame-based, rule-based, or other representation based
language. It is used for implementing the knowledge base.

(b a classifier -

This is an algorithm for identifying the taxonemic locatien of a new concept and
adding it to that location in the structure.

A classifier considers the objects in a knowledge base as nodes of an ordered

structure, linked together by a subsumption or an inheritance relation. When a

* Many authons appear (o wse thy toom “clusifies” or to oguage® looacly aod by with the classificalion sysiom baell,

Brachmun & clarifylng what "KL-ONE' Ls s13d "ocensionally the name has been wsed 1o refer (ojust the: |angwage” (Brachman and Schmolee,
1039, p. 207

97

node (rule) is added, the classifier determines its appropriate position in the
ordering and verifies this decision with the maintainer before placing it in that

location,

The main idea behind a classifier is that given two concept definitions, it is
possible to determine if one subsumes the other (provided both have precise

definitions).

Often, however, it is not possible to give precise definitions to every concept.

A classifier has to deal with this problem.

4.2,2,1 AN EARLY CLASSIFIER

The way the KL-ONE * classifier handles this problem is by recognising two main types

of concepts. The first type are those which do not have precise definitions.

These are called the Primitive Concepts (PC). The other type is the Defined Concepts.
These are concepts that can be defined in terms of the PC. In other words, PCs are the

basic concepts from which all concepts are built.

In 2 KL-ONE taxonomy, the most basic PC is the Root Concept. The Raot Concept is
the first concept o be defined, usnally called *"THING'. THENG subsumes everything
and is the enly concept that does not have a super-concept (ie the subsuming concept

or the parent).

¥ The KL-DONE et sificatlon aysteimn which irat sppeassl in 1977, consbits of 4 representailon language which is "hased on the structured

Endreritance: netw orka™ {Erchoiun, cf 4L, 1985, p. 208% Iu chuclller b based on iwhsumnpiion Inheriaoce,

o8

Apart from THING every concept must have at least one super-cencept plus a local
internal structuse. The local internal structure defings the local restriction or properties
or attributes. If 2 concept does not have a local restriction and has only one parent
(super-concept) then it is the same as the parent itself, Hence to be well-defined a

concept with no local restriction must have more than one super-concept.

When a classifier is used directly by the maintainers to add a new concept the
maintainers need to know the descriptive terms in use in the existing knowledge base
in order to create a concept that can be accurately classified, If an error is made in the
classification, the maintainers must repeatedly modify the classification until they are
satisfied. This process is much more efficient if it is done interactively. An interactive
classifier establishes a verification interaction with the user to ensure that a new node

is subsumed correctly.

4.2.2,2 INTERACTIVE CLASSIFIERS

This section looks at a simple interactive classifier called KuBIC (Knowledge Base
Interactive Classifier). KuBIC's interactive classification algorithm is implemented in

Prolog. It uses a simple representation language based on the tree structure,

NAME OF INTERACTIVE CLASSIFIER : KuBIC

OBJECTIVE

KuBiC is designed for the main purpose of exploring the underlying ideas of intcractive
classification.

9o

CONCEPT

KuBIC's interactive classification is hased on the subsumption relation. The use of

subsumption relations economises descriptions and localizes distinguishing information,

Economy of description is achieved through the inheritance of attributes znd attribute

values by 2 node’s children (ie. its subsumees).

Localizing distinguishing infermation means that when a new node Y has been
determined to be subsumed by an existing node X, then only X’s children (ie Y's
siblings) need to be considered in order ta find a more specific subsumer of Y. In other
words, the classifier may localise its questions by using anly the information stored in

X's children to determine this node.

IMPLEMENTATION DETAILS

There are three main steps involved in the classification of a newly introduced concept

{or node). These are :

1, getting the initia] description;

2. finding the most specific subsumer;
3. finding the most general subsumees,

Step 1: Getting the initial description

The user specifies the initial descriptior of a new node 1o be introduced 10 the
knowledge base by the following steps :-

100

Swep2:

If a subsumer is known (rarely the case), the user may pame the subsurmer
directly, then proceed to Swep 2, otherwise, the interactive classifier will
determine the subsumer by asking the user for attributes and uttribute values

abeut that node.

With this attribute information the interactive classifier proceeds to determine
the most specific subsumer for this new nade.

Finding the most specific subsumer

The interactive classifier scarches top down for the most specific subsumer
starting at the root of the iree using an appropriate search strategy.

For example, if the new node Y, has been determined to be subsumed by
node X, and X1, X2, X3 are X's subsumees in the knowledge base (see figure

4.c), then only X1, X2, or X3 are possible candidates for a more specific

subsumer of Y.

/[\ (J

Figure 4.c Finding the most spegific subsumer

The information stored in X1, X2, and X3 allows the interactive classifier to
select questions which will determine which node is the more specific

subsumer of Y.

101

Step 3:

This process goes on until the MOST specific subsumer of Y is found. For
example, in this case, if none of X1, X2, or X3 subsumes Y, then X itself is
the most specific subsumer of Y, and Y will be placed under X, alongside X1,
X2 and X3.

Finding the most gen=ral subsumees

In ocder to define Y's location fuliy we now need to determine Y's most

general subsumees.

This task is now relatively simple because the search is confined to Y's
siblings only.

For example, if it was found in Step 2 that X was ¥’s most specific

subsumer shen X1, X2 and X3 are the siblings of Y (see figure 4.d)

X
/ANN

X1 X2 X3 Y
Figure 4.d Siblings of node ¥

The interactive classifier now checks information obtained from X1, X2 and
X3 in tum to see if Y. subsumes any of them. For instance if Y subsumes X1
and X3 then X1 and X3 becomes the most general subsumees of Y (see
Figure 4.e)

In this way the new node Y has found its taxenomic location in the hierarchy,

102

Figure e Most peneral subsumees of node Y

Naote that the above example describes a tree classification, In a lattice classification, the

process would be more complex,

COMMENTS

- To automatically determine if a new nede is subsumed by ancther, precise definition
of both nedes’ atiributes and atribute values are necessary, otherwise the classifier
has to check these values with the user.

Sinece there are no precise definitions for Primitive Concepts, the classifier needs 10
check every Primitive Concept in the knowledge base with the user. This hinders
the functioning of the classifier since in non-trivial knowledge bases the number of
Primitive Concepts are large. KL-ONE suffers from this problem, as does the above

interactive classifer.

To overcome the problem, more expressive reprsentation languages are required,
An example of a classifier that handles this problem is KLASSIC (Finin, 1988).

103

Current hybrid classification systems typically contain both a frame and a rule
Tanguage. The drawback of this combination is the sysiem's inability to reason with

both kinds of representation in a uniform manner,

The KREME and the LOOM classification tools {MacGregor and Berstein, 1991}
move away from this combination ta support instead a description language and a
rule langunge and use a common ‘descriptive classifier® for deriving inferences
between these two representations.

104

4.2.3 KNOWLEDGE REFINEMENT TECHNIQUES

Knowledge refinement techniques are examined in this paper becanse they may be used
to facilitate the process of knowledge base modification on an interactive basis,
However, such techniques are not suitable for making major changes to the knowledge
base. They are meant to be used on knowledge bases which are already relatively
accurate, and where only smafl changes to improve petrformance are required. The
knowledge base to be modified is considered to be a first approximation of the final
version, It is refined by adding, deleting or modifying its contents incrementally until

the expert is satisfied that it can perform 'correctly’.

Traditionally, knowledge refinement techniques use learning by induction over a library
of test cases. Examples of these include ID3, INDUCE (quoted in Wilkins, 1989,
p. 247), and SEEK (Politakis, 1985). Leaming by apprenticeship has also been used in

knowledge refinement by a tool called ODYSSEUS (Wilkins, 1989),

This section examines SEEK, a knowledpe refinement tool which is capable of

interactively guiding a maintainer or developer during a refinement process.

4.2,3.1 NAME OF TOOL : SEEK

INTRODUCTION
SEEK (Politakis, 1985), {Ginsberg, }988}, is an acronym for System for Empirical

Experimentation with Expert Knowledge. It was first developed at Rutgers University
for use in the A/RHEUM system (a system for diagnosing rheumatic diseases),

105

OBJECTIVE OF SEEK

To inteprate the process of knowledge refinement and validation of the knowledge base
into 4 single framework.

CONCEFT BEHIND SEEK

SEEK requires thu presence of two sets of knowledge :

iy amodel of an expent-derived knowledge base;

ii) a stored set of test cases. This database of stored cases is called the Case
Knowledge (Ginsberg, 1988, p. 2). The Case Knowledps must be elicited from the
expert, It is a set of problem scenatios for which the expert's conclusions are

known,

The actual refinement process is driven by a comparison of these stored conclusions
with those derived from the knowledge base. Whenever an incorrect result is detecied,
SEEK offers suggestions to guide the expert ta revise and refine the knowledge base in

order to make it reproduce the correct result.

By medifying the contents of the knowledge base in crder to correct its functioning, the
refinement process may be seen as performing a validation on the knowledge base.

105

IMPLEMENTATION DETAILS

Step 1

Step 2

Step 3 :

)

A modetl of the knowledge base must be built by using a specialised text

editor. The mode) is represented in a (abular form,

Case experiences (which forms the Case Knowledge) are collected in the
form of questionnaires. They are then entered into o database forming a
library of test cases whose conclusions are known. These conclusions are the

*correct’ final diagnosis assigned to the test cases.

The refinement process, This process involves three steps ;

i)y obtaining the knowledge base performance summary,;

iy analysing the rules; and

iii) revising the rules.
Obiaining the knowledge base performance summary.
This step produces a performance summary for the knowledge base aover all
stored cases. The performance summary shows the number of cases in which
the conclusions produced by the knowledge base matched with the stored

conclusions.

The result is displayed in the form of 4 table from which mis-diagnosed cases
may be identified and analysis caried out.

107

ii} Analysing the rules.

SEEK provides interactive assistance during the analysis of the rules.

Analysis may be done in two ways :

8)

b)

Analysis of the model over a single case.

This mode of analysis is used for providing the kiowledge engineer with an
explanation of the resulis produced by the knowledge hase for the particular

case under test,

If the conclusion obtained from the knowledge base matches the comect
solution, SEEK displays the rules used to achieve the solution, otherwise,
SEEK attempts to locate the partially satisfied rule for the expert's
conclusion that is closest 1o being satisfied and advises the knowledge
engineer on what sort of refinements 1o make. Refinements may take the

form of either genemlising the rule or specialising it.

Rather than testing the whole knowledge base, the knowledge engineer is
also given the option of testing the performance of selgcted subsets of rules
within the knowledge base over that single case.

Analysis of the model over multiple cases.

‘This mode is used for the plobal analysis of the knowledge base (ic. testing
the knowledge base over a multiple or an all-case basis).

As with the previous mode, the knowledge engineer has the option of testing
¢ither the whole knowledge base or selected sections of the knowledge base.
Testing selected sections allows the knowledge enginecr to focus attention

108

on a subset of rules to be analysed.

Typically, the knowledge engineer would begin by selecting a subset of
rules to be analysed. This is normally the set of rules with mis-diagnosed

€ases.

SEEK performs the analysis and automnatically generates advice on how to

refine the rules, This advice comes in the form of a report which :-

- ranks the rules which are potentinl candidates for peneralisation and those

which are potential candidates for specialisation;

- proposes experiments for carrying out specific generalisation or
specialisation of the rules. As the number of possibilities that could be
tried in order o correct the misdiagnosed cases is enormous, SEEK
contains heuvristics which allow it to narrow down the experiments to try.
For example, SEEK selects only the rules that agree with the expert
conclusions which are closest to being satisfied in a misdiagnosed case.

Based on this repott the knowledge engineer now proceeds to the next

step, that is the revision of the rules.

iii) revising the rules

The revision of the rules is carried out by woying SEEK's supgested
experiments. These experiments conditionally incotporate the change into the

knowledge base and test it against the case library.

SEEK, howevyer, does not commit the knowledge engineer to make the change
permanent. The knowledge engineer has the option of either accepting the
change or refecting it.

. 109

COMMENTS
- Knowledge refinement techniques suffer from the following shortcomings :

i) only minimal changes are feasible since refinement techniques work under the

assurnption that the knowledge base is penerally correct;
iiy & comprehensive set of cases may be hard to collect, if not impossible;

iti) in a multi-paradigm knowledge base many different data structures are allowed.
This added complexity will make it unsuitable for knowledge refinement
techniques, Kulikowski (1989, p. 171-172) claimed that "the resulting
non-homogeneity blocks the application of consistent knowledge refinement

heuristics.”
- Further to the shortcomings of relinement tools in general, SEEK in pasticular, is a
tool of restricted scope of applicability since :
i) itonly works on rules written in a restricted tabular format (Politakis, 1983, p. 3%

ii} even basic refinements, which ideally should be automated, need to be done
interactively, making the use of SEEK a time-consuming and tedious process.

- The above shortcomings of SEEK have been corrected by SEEK2 (Ginsberg, 1988)
which works with a more general class of knowledge base formats and can perform

basic refinements automatically.
In addition SEEK?2 alse provides a meta-tanguage which ¢an be used for specifying

domain-independent and domain-specific meta-knowledge about the refinement
process.

110

4,24 OTHER INTERACTIVE MODIFICATION TOOLS

Knowledge base editors, debuggers, and knowledge acquisition tools are among some
of the systems which allow nsers to elicit domain knowledge from experts, sccess the

knowledge and manipulate or change it on an interactive basis,

4.2.4.1 KNOWLEDGE BASE EDITORS

To some degree a knowledge base ¢ditor fulfils the rele of being an imteraciive

maintenance aid to a knowledge engineer,

Features of a knowledge base editor include entry, browsing, viewing, accessing and
editing facilities, The browsing facility is useful for exploring existing knowledge base
before making changes.

Finin {1988) said that Schoen and Smith have described a 'display-orientated’
knowledge base editor for representation langunge, STROBE, and Lipkis and Stallard
are developing an editor for the KL-ONE representational language (Finin, 1988,
p. 275).

Terveen, Wroblewski and Tighe (1991) tatked sbout the HITS knowledge base editor,
an editor which provides inteliigent assistance through a process called "collaborative
manipulation’ of objects in a shared workspace (an area for joint user-system problem

solving),

4242 AUTOMATED KNOWLEDGE ACQUISITION TOOLS

~Mascus '(_1988) said that antomated knowledge acquisition tools are "tools that can elicit

11

relevant domain knowledge from experts, maintain that knowladge in a form that makes

it accessible for analysis, review or modification . . . " (Marcus, 1988, p. 1).

Examples of such tools are MORE (Kahn, 1988), an auntomated knowledge acquisition
system that helps refine an existing knowledge base; MOLE (Eshelman, 1988}, a
knowledge ncquisition tool for generating expert Systems that perform heuristic
classification; and SALT (Marcus, 1988}, an automated knowledge acquisition tool that
addresses synthesis (as opposed to analysis) problems.

112

4.3 ENSURING CORRECTNESS AFTER
MODIFICATION

The previous section has been concerned with interactively maintaining the correciness
of the knowledge base as it is being modified. TEIRESIAS was seen as a tool which
imteractively checked knowledge base consistency during a medification session, while
interactive classifiers place newly described knowledge into their cotrect location using
subsumption, and knowledge refinement teols like SEEK interactively validate the

knowledge base against a set of test cases.

This section looks at a different approach, one in which a knowledge base is modified,

then is checked for correctness as a scparate step,

As in most skilled professions, o maintainer’s skill does not lie in the ability to modify
a piece of code, but in the ability to ensure that nothing goes wrong afier the change.
This skill can be aided by appropriate tools. This section will discuss the various
verification and validation tools and techniques which help towards ensuring that nothing

£oes wrong as a result of making a modification.

Generally there are two levels of testing - verification and validation. However, there
appears to be no agreement among authors on the use of the terms verification and
validation. O'Leary, Goul, Moffit, and Radwran (1990) said that "Unfortunately, the
term validatlon is inconsistently used .." and that “Baleci and Sargent found that a
standard definition does not exist...” (O'Leary ¢t al., 1990, p, 51).

In this thesis “verification” refer to checking that the knowledge base matches with the

specification, Verification checks demonstrate consistency, completeness and correctness

of the knowledge base. That is, verification is concerned with structural correctness,

113

"Validation" on the other hand is concerned with determining the correctness of the
knowledge base with respect to the user requirements. In other words the knowledge

base is "functionally’ correct and acting in accord with the user’s intentions.

These definitions are in accordance with those given by Lowry et al, in the "Handbook
on Artificial Intellipence’ which states that verification mathernatically proves software's
correctness with respect to a formal specification while validation checks whether the
system satisfies the needs for which it was developed (Lowry et al., 1989, p. 248-249),

Lowry et al. further asserted that validation failure is the result of shortcomings ot errors
in the specification owing to miscommunication or poor understanding of initial needs
while verification failure is the result of errors in the software resulting in its fajlure to

meet specification,

This section is divided into two parts, The first part looks at verification techniques

while the second deals with validation techniques.

114

4.3.1 KNOWLEDGE BASE VERIFICATION TECHNIQUES

This section is concerned with demenstrating the structural comreetness of a knowledge
base. What is meant by *verifying for structured correctness’ depends very much on the

knowledge representation formalism used.

Fopez, Meseguer, and Plaza (1990) said that "if we consider production rules, the
following properties would be part of the structural verification :-

- redundant rules
- .suhsumed rules
- circutar rule chains
« unfireable rules,

- non-regchable poals, ... "

{Lopez et al., 1990, p, 39).

Most work on verification appears to have been done in the area of rule-based systems
only, This paper examines some of them.

ONCOCIN will be looked at for historical reasons as it is one of the earliest attempts

at knowledge base verification. This is followed by CHECK, a verification system which

is an extension 1o OQNCOCIN. Moere current methodologies are then commented upon.

115

4.31.1 ONCOCIN RULE CHECKER

INTRODUCTION
The ONCOCIN Rule Checker {Suwa, Scott, and Shortliffe, 1984) is a rule-based
verification progrom written for the ONCOCIN system, an expert system for oncology

protocol management.

Although specifically designed for the ONCOCIN rule base, its developers claimed that
the rule checker is general and adaptable to other rule bases (Suwa et al., 1984),

OBRJECTIVE OF THE ONCOCIN RULE CHECKER

To check a rule base for conflicts, redundancies, subsurmptions and omissions.

CONCEPT BEHIND THE TOOL

A rule in ONCOCIN is considered to be made up of

) a CONDITION part which consists of one er more condition parameters

iiy an ACTION part which has a single action parameter

" The ba:;‘,ic idea behind the ONCOCIN Rule Checker is that if a rule base is partitioned
into disjoint sets such that each set is made up of q_nly those rules which conclude ._a

valpe for the same action parameter, then it is possible to check these resulting disjoint

rule sets independently for conflicts, redundancies, subsumptions and omissions.

116

IMPLEMENTATION DETAILS

Step 1: The sule base is checked for rules which have a commen &ction * parameter

in the action part of the rules.

Step 2 : These rules (which may be scattered throughout the knowledge base) are
greuped to form disjoint rule-sets,

As an example, consider a case where three rules in a given knowledge base
have all been found to conclude the same action parameter, Fruit (see
figure 4.1)

The rule checker groups them together to form a disjoint rule-set,

Step 3 : For each disjoint rule set thus formed, the ONCOCIN Rule Checker does the

following :-

{n) identifies all parameters and parameter values used in the
condition panis of these rules, and determine the total number

of possible combinations of these condition parameter values.

¥ selecting rufes with w conunon sclion parameer, the ONCOCEN Rule Checker aiso considers the *contedl’ Jn
which the vidles apply, The ‘context’ iy [deiilied by havlng an cxtra slol wided to tha rule, hence one additional
check is y. For almplicity of {ljustration *comtext’ i Ignored in this discwslen.

17

Rale number Rule

34 if Color = red and Size = tennis ball
then Fruit = apple

107 if Coler = red and Size = marble
then Fruit = grape

187 if Color = green and Size = tennis ball
then Fruit = apple

Figure 4 Rules concluding the same action paranieters

In the example :

the number of condition parameters = 2 (je. Color, Size)

the number of parameter values = 2 for Color (ie. red, green)

= 2 for Size (ie. tennis ball, marble}

the possible combinations (of condition parameter values) =2 x 2
=4

118

(b) The rule checker then creates a table consisting of all possible

combinations of condition parameter values and their corresponding

action parameter values, and examines the table to detect confiicts,
redundancies, subsumptions and missing rules.

(c) It then produces a report which shows this table with comments or
emor messages (like ‘redundant’, ‘conflict’, ‘subsumption’ or

*missing”) listed alongside entries in the table (see table 4.a).

RULE CONDITION PARAMETERS ACTION REMARKS
NUMBER PARAMETER
Color Size
red f{green [tennis |marble
ball
34 Y Y apple
107 Y Y grape
187 Y Y apple
Y Y MISSING

Table 4.a All p{:ssible combinations of condition parameter vajues and their

cortesponding action parameter values.

119

Missing rules :
The above table illustrates how the rule checker detects a missing rule. The
table shows the four possible condition parameter value combinations, There

was 0o rule in the set which matches the last combination of Color = green
and Size = marble. Hence the rule checker considers this rule as "MISSING',

Subsumption :_

If there is another rule in the knowledge base which says -

if Color = green then Fruit = apple

then this rule will get an eniry into the table. The remark 'SUBSUMPTION’
will appear alongside it as well as alongside Rule 187.

Conflict ;

If there-is a rule that says -

if Color = red and Size = marble then Fruit = strawberry

then this rule will get-an entry - in the table with the remarks "CONFLICT’
appearing beside it as well as beside Rule 107.

" Redundapcy ¢

 If there i a rule that sdys :-

120

if Size = marble and Color = red then Fruit = prape,

then the remark 'REDUNDANT" will appear beside this role and also Rule 107
in the table,

COMMENTS

- Although claimed by its developers to be genern! and therefore adaptable to other
rule-based systems, the ONCOCIN Rule Checker applies {o rules which have a
restricted syntax only. For instance, the action part of the rule can only conclnde one
parameter value, It also has no facilities to check for deadend ifs, unreachable

conclusions and circular rules.

- The verified results are not always accurate. A reported missing rule may not be a
real missing rule. This is because the ONCOCIN Rule Checker assumes there should
be a rule for each possible combination of values of condition parametets, but some
combinations rnay be meaningless. This false alarm serves as a distraction to a
maintatner.

Tsang, Wan, Lim, and Hioe (1988, p. 575) said that the developers of ONCOCIN

"plan to apply semantic knowledge for eliminating these meaningless combinations”,

121

4.3,1.2 NAME OF TOOL : CHECK

INTRODUCTION

CHECK (Perkins, Laffey, Pecora and Nguyen, 1989} i5 & rule-based verification (ool
designed for use with the Lockheed expert sysiem shell, It is an extension of the
ONCOCIN Rule Checker,

In addition 1o performing ONCOCIN Rule Checker's conflict, redundancy, subsumption,
and missing rule checks, it also checks for unnecessary ifs, deadend ifs, deadend goals,
unreachable conditions, unreferenced parameter values, illegal parameter values and
circular rules.

It further differs from the ONCOCIN Rute Checker in that it is applied to the entire rule
base rather than just subsets of rules,

OBJECTIVE

Ta statically verify a rule base for inconsistencies and incomplefeness.

CONCEPT BEHIND CHECK
A rule in CHECK is broken down in the fo]lowir_jg manner (refer figure 4.8) -
The rule is considered to be made up of an 'IF part’ and a * THEN part”.

A part is made up of one or more ‘clauses’,
A goal is equivalent to a "THEN part".

122

RULE GOAL
/ \ F AN
IF PART THEN PART CLAUSE ...
/ \ / \
CLAUSE ... CLAUSE

Figure 4.¢ The nile siuewre of CHECK

CHECK starts from the most basic relationship and works upwards, It first establishes
the relations among all the ¢lauses in the rule base. Using this interclanse-relationship
it then deduces relationships ameng parts, and from them deduces relationships among

rules.

From these three types of relationships thus obtained, it is possible to deduce how
clauses in the rules (and goals) affect the other clauses to give rise to inconsistencies

and incompleteness.

IMPLEMENTATION DETAILS
Step 1: Determine how ¢lauses are related with one another.

This is achieved by comparing the clauses of every rule against the clauses

of every other rtule. From the comparison 2 two-dimensional
~ interclause-relationship table is drawn up showing the relations of every clause
~ to every. other clauses. These selations may be 'SAME’, 'DIFFERENT’,

"CONFLICT' , 'SUBSET’ or.;SUPERSEtI". '

123

Step 2 :

Step 3:

Step 4 :

Determine how parts are related to one another.

This is achieved by locking at the interclause relationship table for the clauses
that made up ¢ach part and from them deduce the overnll parts relationships.
Again these relationships may be *SAME', 'DIFFERENT’, *CONFLICT',
*SUBSET' or "SUPERSET".

Determine subsumptions, redundant rules, and unnecessary clauses.

This is achieved by comparing the parts refationships of each rule against the
paris relationship of every other rule in the konowledge base. The possible
relationships yielded from this comparison are 'SAME' {(meaning
redundant)’; "DIFFERENT’; CONFLICT"; 'SUBSET" and "SUPERSET” (both
of which indicate subsumption} ; or "UNNECESSARY CLAUSES"

Determine gaps in the knowledge base. Gaps are 'unreacheble conclusions’,

*deadend ifs', 'dendend goals’,

Unreachable conclusions - if 4 conclusion is not a goat and is not found in any
IF part of a rule in the knowledge base then it cannet be reached. Hence to
look for unreachable conclusions, look for THEN clauses {in the
interclause-relationship table) which have DIFFERENT selations for all IF
clauses and goals (note that DIFFERENT indicates there is no match),

Deadend ifs or goals - a goal or IF condition is deadend if a conclusion (je.
the THEN part of a rule) which matches it cannot be found, in addition, that
goal or IF condition. is not askable {ie. there is no routine to ask the user for
its valug), -

124

Hence deadend ifs or goals are detected by the fact that they have the
'DIFFERENT" relaticnship for all conclusions in the interclause-refationship
table, and the attributes they refer to are not askable,

THEN

Rue | L | 2 | 3

1 "
IF 2 *
3 s

Figure 4.h : Dependency chart (Refer Rules 1,2,3 of page 126)

* indicates dependency : that is one or more IF conditions matches one or mare
coticlusions of a rule. (eg. an IF clause of Rule | is cancluded by Rule 2, ie. the
‘THEN PART of Rule 2 is dependant on the IF PART of Rule I; similarly an IF
clause of Rule 2 is concluded by Rule 3}

** indicates circular tule set becanse & condition of Rule 3 (ie. A) is matched by a

conclusion of Rule 2 and a condition of Rule 2 (je. E) matches a conclusion of
Rule 3.

125

Step 5 : Determine circular rule chains

Circular rule chains are determined by examining a 'dependency chart' (see
figure 4.h). The dependency chart shows how a rule is dependent on another.

It is generated from the interclause-relationship table,
Example :

Rule l1IFAand B THENC
Rule 2IF D and E THEN A
Rule 3 IF Fand A THEN E

COMMENTS

- An advantage of such static rule checkers like CHECK and ONCOCIN is that they
systematically and exhaustively check every possible combination of rules in the rule
base.

- The implementation overhead of CHECK, however, appears too high. Since CHECK
compares every rule in the rule base with every other rule, it requires N{N-1)
comparisens. Thus the number of checks performed is of the order N ? (where N is

the number of rules in the know]edge base).

- Although Cenainty Factors afe atlowed in the LES shell, CHECK does niot Jook at
them when checking the rule base,

126

4.3,1.3 OTHER VERIFICATION TECHNIQUES

Although there are numerous other verification techniques using a varied mixture of
concepis, almost all assume that the knowledge is stored in & rule-based format. Little
work could be found in the literature which addresses the verification of knowledge
bases in otber than rule-based forms.

This section briefly outlines a few of these rile base verification techniques.

4.3.1.3.1 SPACE SEARCHING METHOD

Another technique for checking the consistency and correctness of a rule base is the
Space Searching method of Tsang, Wan, Lim and Hioe (1988). This method was
designed to fill the shorticomings of the ONCOCIN and CHECK rule checkers.

The main eriticism of the ONCOCIN and CHECK mle checkers is that they detect only
superficial inconsistencies; that is, inconsistencies which arise from a direct or
superficial comparison of two rules. Inconsistencies that arise after a sequence of
inference steps are overlocked.

In addition to this shortcoming, the ONCOCIN rule checker also over-reacts by sounding

false *missing rule' alanms on practically meaningless rule combinations,

Tsang ct al, (1988, p. 575) pointed out that in spite of this "over-vigilant behaviour”, the

OMNCOCIN rule checker "overlocks on some nccasions”, Since the ONCOCIN mle
- checker forms rules into rulesets and checks them independently, inconsistencies that

arise when rules of different sets are chained together in the inference process are not
. detected.

127

The Space Search method detects inconsistencics which arise due to the interactions of
rules during the inference process. It also removes some of the false warnings on

improbable sitvations by excluding them from the search space.

However Tsang et al.'s method dees not remove all false alarms as they admitted "a
complete removal of these false warnings generatly requires semantics knowledge of the
problem domain " (Tsang et al., 1988, p, 577). This method does not include any plan
for the application of such semantic knowledge.

4.3.1.32 PREDICATE/TRANSITION NET METHOD

The Predicate/Transition Net Method (Zhang & Nguyen, 1989) allows for the inclusion
of consistency and completeness checks as pari of the knowledge acquisition process,
hence verification can be done in an incremental fashion as the knowledge base is being
developed,

The technique is based on the use of a Predicate/Transition (Pr/T) net model

representation and a syntactic pattemn recognition method,

A program called "Verifier' is used to implement this technique. This program starts off
by transforming the knowledge base to be verified to the Pi/T model. The various
inconsistency and incompleteness types or pasterns are then defined with respect to the
Pt/T madsl, A scanner is then used to search the PifT model (ie. the transformed
knowledge base) for a match on these patterns. These marches are then highlighted as

potential errors for the expert’s confimmation,

The method is not applicable te all rule bases. The sule base must be represented in first
order predicate logic bafore the transformation can be done, Apart from this problem the
developers also admit some other shortcomings of the method; for example, an inability
to handle incomplete cases,

128

4,3.1.3.3 ART RULE CHECKER {ARC)

ARC is 2 rule checker used to verify the consistency of expert system knowledge bases
which utilise the Autemated Reasoning Tool (ART) framework (Nguyen, 1988). ARC
is basically an extension of the techniques used in CHECK (described in 4,3.1.2), The
additional checks handled by ARC include checking for compound conditions, subsumed
rule chains, redundant rule chaing and conflicting rule chains, In addition, ARC uses a
RETE-like* algorithm which is more efficient than CHECK's exhaustive checking of
gvery possible combinations of rules in the knowledge base,

¥ A RETE algorithu {see Lackson, (936, p. 178) makes use of pattern maichlng reechanismi to selech il from the rule-base.

129

4,3.2 KNOWLEDGE BASE VALIDATION TECHNIQUES

To inspire confidence in the use of the knowledge hase, verification tests must be
followed by validation tests.

Unlike uaditional systems, expert systems face two main problems with regard to
validation,

) In anexpert system there is often no absolute measure of correctness since the rules
themselves are for the most part anly judgemental. In many cases there is no single
best answer and there may be no agreement as to what is an acceptable answer,
Without an extemal criterion for correctness (in the form of an explicit requirement
specification) it is not clear what it means for a knowledge base to be comect’.
Hence, unlike a conventional system where corecingss can be tested with a
pre~determined set of results whenever changes are made to the system, in an expert
system no such test is usually available.

i) In addition to the absence of an absolute "correctness’ test, it is also impracticable
(if not impossible) to fully test an expert system knowledge base. In a waditional
program there are a finite number of paths which the program can take, and those
paths are known in advance, hence test data can be prepared to 1est every known
path in order to fully test the program*. The number of possible path combinations
found in a non-trivial knowledge base would be combinatorially explosive, making
such a test intractable.

"ludly tea!’ Empliea teating +1) known paths. This Is different from claitming ihat the program Ls ested completely - & pheooniena thal b targely
tiatrabiable. Efetzc] contended that testlng b "not-only practically but also earelically impossible” 1o prove & program’s eorrecines s {Hatxet,
1988, p. 21). ’

130

EVALUATION

In the light of the above difficulties, it appears that validation as applied to an expert
system knowledge base is reduced merely to ‘evaluation’. This view is shared by
McGraw and Harbison-Briggs (1989, p. 311) who acknowledged that the difficulty
associated with validation "leads directly to the notion of evaluation rather than strict
validation".

In evaluation we start with a "valid' syster and the evaluation process returns a rating.
Much the same occurs here since we can only test for empirical adequacy, not abselute

correciness.

The basic concept behind validation is to collect a set of test cases with known
conclusions from the expert. (This is the rough equivalent of a traditional user
requirements specification). This “test cases' set is a set of scenarios in which the expert
can perform ’comectly’, and is itself reatly only a subset of all the possible cases. In
other words, it is not possible to collect a full and complete 'user reguirement

specifications’ for a nen-trivial expert system knowledge base,

The performance of the knowledge base on similar test cages is then compared with the
pre-determined conclusions of the set of test cases in order to determine what percentage

of cases the knowledge base can perform “correctly”.

V¥ & V RESEARCH

Reducing validation to evaluation is clearly unacceptable. However, there appears to be
no easy answer to this dilemma. Green and Keyes (1990) observed that due to the
difficulties of applying verification and validation (or V&V) to expert systems,
organisations refrain from requiring V&V in their expert system procurement.

131

This gives rise to what Green and Keyes (1990, p. 445) called the ‘vicions circle’
whereby "V&YV is not done because nobody requires it, Nobody requires it because
nobody knows how it's done, Nobody knows how because nobody has done it".

Clearly more research is urgently needed in the search for better and more formal V&Y
techniques in order to inspire preater confidence in the use of expent systems

commercially.

Up unti] 1985 “there was almost no activity concerned with the testing of expert
systems" (Miller, 1990, p. 249). Although the situation has changed markedly in recent
years with the appearance in the market of numerous V&V approaches, the basic

problems outlined above remain.

Since we cannot test for absolute cormreciness, could we establish a minimal level of
V&YV testing standands that is acceptable universally ? Can such a set of minimal festing
standards be found 7 Section 4.3.2,1 discusses two appeoaches which address this issue
to some ¢xtent, They are the 'correctness principles' approach which attempis to lay
down a set of acceptability principles for rule bases, and the ‘validation standards’
approach which aims at providing a basis for standardising the validation of a

knowledpe base system.

On a different note, some major projects, like EVA for instance, which was started in
1986, ane continuing the efforts to research and develop V&V techniques for knowledge
bases with the goal of building an integrated set of generic tools to perform V&V on
any knowledge base application developed in any shell, This project is discussed in
4322,

Other V&V techniques are also outlined in the following section,

132

4.3.2.1 TOWARDS VALIDATION STANDARDS

This section outlines two papers which advance the idea of 1aking a standard approach
towards knowledge base validation. This is in line with the objectives discussed in
section 4.3.2 where it was argued that in order to win user confidence in the application
of expert systems, research shoutd be directed at developing some acceptable minimal
validation standards. The two approaches are in contrast to those which focus on the

development of isolated validation technigues.

The first of these approaches, the 'Cormectness Principle Approach’, defines a set of
acceptability principles for a rule base. Each of these principles is accompanied by a set

of validation criteria. These criteria can be tested for by the use of analysis alporithms,

The second approach defines standards for classifying a knowledge base system. The
position in the classification determines the degree and type of validation required for
that knowledge base system,

4.3.2.1.1 CORRECTNES:; PRUNCIPLES APPROACH

This principled approach to V&V (Landaver, 1990}, developed at the Aerospace
Corporation in the United States, defines a set of 'correctness’ principles for the V&Y
of a rule-based system.

These principles extend 10 more than just the rule base; they include the checking of -

~ connectivity between the rules and the inference engine, and other interfaces as well (for

example, user interface, data interface),

133

Five such principles are identified in this approach. These are consistency, completeness,
irredundancy, connectivity, and distribution. These principles go beyond addressing the
normal correctness problems like consistency, completeness and redundancy of the rules
in the knowledge base, as they include connectivity problems, (these are problems
concemed with the completeness and imedundancy of the inference engine), and
distribution problems (concerned with the ‘esthetic’ quality of the rules or the
awkwardness of mle combinations). Esthetic aspects are considered because awkward -

rule combinations ¢an conceal potential errers.

In order to check for the principles, validation criteria are needed. Criterin are the
pre-defined standards which the quality of the knowledge base can be measured against
{in other words, criteria are goals 1o be tested). For each principle, a set of criteria has
to be determined, These criteria can then be tested by means of mathematical or

computational algorithms.

Landaver advocated the use of mathematical algorithms (as opposed to algorithms based
on a linguistic approach) for the testing of the criteria because "mathematical conditions
can be checked effectively” (Landauer, 1950, p. 292). To test for these criteria the rule
base must be viéwed as 4 formal mathematical object (ie the rule-base has to be
specified in accordance with strict conventions and vocabulary of formal logic). Only
in this fonm can algorithms which make vse of mathematical and graphical techniques
be developed for analysing this mathematical structure.

Landauer’s paper describes in detail several mathematical and graphical algorithms that
could be used to test the rule base for some of the validation criteria. Some of the
algonthms described are sulta'ble for ana]ysmg the static structre of the rule base while

others are mcant for analysing its dyna:mc behaviour.

Static analysis involves examining rules as separate symbolic expressions without
" considering how they interact with other rules or procedures in the inference engine.
Dynamic analysis on the other hand, involves the checking of rule interactions during

. infcreﬁpe, hence the algoﬁ_thm definitions in the inference engine need to be analysed

134

tar procedural consistency and completeness as well.
Analysis algorithms are most effective if meta-knowledge has been used to define the

rule base during its construction. Meta-knowledge makes testing easier since it may

replace large groups of rules during testing.

COMMENTS
- The correctness principles are suit_nhle for use on rule bases only.
- The form of the rule base considered in this approach is not the most general. For

the rule base to be acceptable for the application of these principles, it has to be
specified in a form that meets a set of strict mathematical requirements.

4.3.2.1.2 VALIDATION STANDARDS

The intent of this approach (Hamison and Ratcliffe, 1991) is to provide a basis for
standardising the validation of expert or knowledge-based systems. It classifies a
knowledge base according to 4 set of conceptual standards which could define a minimal
validation effort.

This approach is centred around two types of standards :

135

1) Standerds for classifying a knowledge base

Standards are needed 1o classify a knowledge base 5o that the extent to which it can
be validated and the kinds of validation techniques to ixe applied can be determined.

The classification standard proposed by this approach is based on the degree to
which the knowledge base cxplic_itly describe the causal relationship between its

camponents (ie how explicit is the covsal structure described).

A mle base, for example, is at the bottom end of this classification contimuum
because causality s implicit in a collection of rules. In contrast a system that
explicitly describes structures and functions for each component as well as causal
relations between the components would occupy the opposite end of this

classification scale.

The degree to which 2 knowledge base system ¢an be validated and the kinds of
validation techniques that are applicable depend on the position the knowledge base
system occupies in this classification continuum. In other words, the classification
attempts to define a "minimum" set of validation effort for a given knowledge base

system,

2) Standards for the decomposition of validation tasks,

While (1) determines the degree and the kind of validation sequired, this section is
concemed with how the task of validation itself can be accomplished.

To facilitate the task of knowledge base system validation the problkemi-solving
behaviour of the system has to be decomposed into smaller and more manageable
u_:fl_its. These units, known as generic tasks, provide the standard for the
decomposition of a knowledge base system,

136

A generic task is a conceptual unit which contains a sequence of conceptually
distinct processes with a definable outcome (eg. assemble, plan, identify). These
outcomes categorise the generic tasks. For example a generic task may fall into any
one of the general categories of "constructive’, ‘interpretive’ and so on. Associated
with the general categories are the validation criteria, The validation criteria are the
testable goals which allow these units to be validated.

Thus to validate the behaviour of a knowledge base system, the system may be
viewed as the application of a sequence of generic tasks, Validation can then proceed
from the individual generic task modules to the complete system in an incremental

fashion.
The paper illustrates the application of the appreach with two systems which represent
models at opposite ends of the classification scale.
The first system, VEG, was implemented as a rule based system with implicit causal

relations, while the second, FIRAS, contained explicit descriptions of causality in terms

of the underlying structure and functional relationships in the system.

COMMENTS

- the mode! works enly under the assumption that a standardised hybrid shell {eg.
KEE) is used to provide the inference engine for the knowledge base.

- Ohjccté in the knowledge base must be represented in a restricted frame-like structure
' representation.

137

4.3.2.2 INTEGRATED V&V TOOL SET APPROACH

INTRODUCTION

Several major projects which have the aim of achieving an integrated environment in
which the different aspects of V&Y, refinement, and evaluation can be analysed and
solved are currently under development.

Twao such projects are the Expert System Validation Associate (EVA) project, (Chang,
Combs, and Stachowitz, 1950}, (Landauer, 1990} which is discessed in this section, and
the Buropean Esprit Il project , VALID (Lopez, Meseguer, and Plaza, 1990) which has
the rather similar aim of developing an enviranment which is generic in order to be
applicable to different knowledge base systems,

4.3,2,2.1 THE EXPERT SYSTEM VALIDATION ASSOCIATE PRQJECT

The EVA project, under development at the Lockheed Artificia) Intelligence Center
since 1986, covers a very comprehensive range of V&V techniques and issues. It has
the long range goal of developing an integrated set of generic tools fo validate any

knowledge base system written in any expert system shell.

EVA is made up of many different tools which allow it to perform different verification
and validation checks. The ability of these tools to be used on any knowledge base
system written in any shell is made possible by EVA's unifying architecture which uses
4 single vser interface and & single meta knowledge base for afl its tools.

The basic unifying factor behind EV A is its metalanguage which is commen to all its
tools. The knowledgg engineers use this metalanguage 1o specify their own validation
eriteria. These criteria are stored as meta knowledpe, The V&V tools may then use the

138

information in the meta knowledge to validate the application knowledge bases.

For any new shell to use EVA a translator is required. The translater is used to translate
the application knowledge and meta knowledge in the shell to the EVA database format.

The following discussion outlines some of EVA's components under the headings of
verification toels and validation tools,

EVA'S VERIFICATION TOOLS

i) Structural checker
This tool checks for deadend rules, unreachable conclusions, redundancies and
circular rules,

iiy Logic checker
This tool is used for checking inconsistencies in the knowledge base. Such
inconsistencies accur when contradictory conclusions can be deduced from the
knowledge base.

iii} Semantic checker
This is used for checking for facts which violate the semantic constraints. Such

constreints have been defined by the knowledge engineer and stored as meta-
knowledge.

139

iv) Omission checker

‘This tool checks if there are missing rules or facts in a knowledge base,

v} Model based verifier
‘This verifier makes use of a *domain model® to cheek the content of a knowledge
base.
The domain model of an application domain is a database which contains genesal
knowledge derived from textbooks, government fegulations, or other publications
relevant to the domain, It is generally created without concern for specific expert
systemns,
When a particular knowledge base has been specified the domain model may be
used to verify its contents,

EVA’s VALIDATION TOOLS

iy Test case generator

Test cases are required for evaluating a knowledge base's behaviour, reliability,
sensitivity, ete.

Selecting suc_h test cases is not only tedious, but is also error prone and biased. The
test case generator overcomes these shortcomings by generating such test cases
automatically.

140

ii)

iif}

Uncertainty checker

Rules, slats or units may be related to one another, thus their certainty factors must
also be related in sorme consistent way. The purpose of the uncestainty checker is
to check whether such related certainty factors are compatible and consistent.

Rule Satisfiability checker

This tool requires the existence of a formal specification expressed in predicate

form,

Tt uses this predicate specification to detect rules which cannot be satisfied by the
specifications, or rules which preduce facts which violate the specifications, In
addition it also identifies data which are satisfied by the specifications but are not
covered by the existing rules.

iv) Control checker

v)

The control checker is used for validating the inference engine.

It requires the presence of an explicit set of meta rules which specify the order
constraints of the rules. Using the meta rules it is able to validate the rule firing
order of the inference engine by comparing the explicit order constraints contained

in the meta rules with the implicit order constraint of the rule base,

Behaviour verifier

This tool pre-supposes the existence of formal specifications of all the subsystems
of 't_hc lmov&ledge base systemt. It uses the component behaviour and interactions

141

vi)

vii}

of the subsystems to prove that the collective behaviour of the overall system is

correct,

1t also produces a formal specification of the total system from the specifications

of the component parts.

Rule proposer

This ool uses an existing set of rules or a set of test cases to propose a new set of

rules (it does this by induction). The new rules are simplifications and can be used

as an aid to help the knowledge engincer make cortections to a rute bage.

Rule refiner

Unlike the SEEK knowledge base refiner which unifies validation and rule
refinements in the same framework, EVA’s refiner is strictly a rule refiner. The

refinement process either generalises or makes a rile more specific.

The EVA rule refiner relies on a set of stored test cases. The test cases set contains

instantiations of the rules (ie facts).
The rule refiner automatically chooses specific instantiations from the test cases set

and applies them to a rule, then interactively seeks the advice of the expert in

performing the refinements.

142

COMMENTS

= Although EVA already contains an impressive range of V&V tools and new tools are
continually being designed and implemented each year (Chang et al,, 1950), it does
not seem to address the preblem on how to decide what constitutes an acceptable and
reliable methed for evaluating the results of tests of an expert system, or what should

be considered as a satisfactory level of test.

Such decisions are still being lefi to the discretion of the individual domain expent.
Leaviﬁg such decisions to the human expert is fraught with many dangers. As Green
and Keyes pointed out “the human expert may be prejudiced or parochial” or “the
expert may not be independent when independent evaluation is needed" (Green &
Keyes, 1990, p. 445), or worse there may be no expert available.

143

4.3.2.3 OTHER VALIDATION TECHNIQUES

4.3.2.3.1 TEST CASES

Test cases are useful for validating a knowledge base’s functionality. Such a validation
is accomplished by empirically testing the comectness of the conclusions derived from
the knowledge base. Such a test, however, only partially meets the users’ intentions
becnuse it is not possible to test exhaustively, and test results depend on how well the
choice of test cases has been selected.

An advantage of the use of test cases is that it makes possible the automation of the
validation process since test cases may be pre-stored in databasss. An example of

validation using test cases was seen in the SEEK system (section 4.2.3.1).

In the SEEK system, test cases have to be collected manually from the experts.
Vignollet and Ayel (1991) developed a method for automatically building sets of test
samples for knowledge bases. Such a generator has already been implemented fer zero
order propositional logic. In their paper, (Vignollet & Ayel, 1991} they discussed the
implementation of this method using first order logic.

4,3.2.32 EXPLANATION
Apart from validating the system’s derived conelusions, the system's reasoning also
needs to be validated. That is, the reasons for arriving at certain conclusions have to be

justified,

Explanations are used for validating the system’s reasoning. They ace what Hoppe called
“the inspectable justification of the system behavieus" (Heppz, 1990, p. 163).

144

Tsal and Zuatkemnan (1990, p. 133) said that explanations "can be considered analogous
to inspection and walk through in conventional software testing”.

Since inspection is not a formal technique, we might conelude from the above that

explanation is a useful vafidation technique, albeit an informal one.

4.3.2.3.3 DESIGN TECHNIQUES THAT AID VALIDATION

How a knowledge base has been built affects not only how easily it can be maintained,
but also how easily it can be validaied. As Landauer (1990, p, 257) pointed out "it is
more jmportant to have principles to support prospective V&V (building expert systems
properly in the first place) than retrospective Y&V™.

One way to support this concept is through the use of meta-knowledge in place of
domain problem solving methods and control swuctures wherever possible.
Meta-knowledge makes such implicit controls and problem solving methods explicit

hence easier to understand and validate.

4.3,2,3,4 MAKING USE OF CONVENTIONAL SYSTEM TESTING STRATEGY

Tsat and Zualkernan (1990) proposed a unified framework for testing expert systems.
The framework may be used to evaluate the applicability and effectiveness of a testing
method in the context of an expert system,

Singe many conventional testing methods exist, it makes sense to look at whether these
methods can be adapted to knowledge base testing. Tsai and Zualkernan's framework
permits the evaluation of conventional testing methods by indicating which are

candidates for migration to the expert system environment,

145

CHAPTER §
CONCLUSION

5.1 SUMMARY

The thesis has outlined two general sets of methodologies and tools. The first set
comprises methodologivs which have been designed for the construction of more
maintainable knowledge bases, while the second set comprises methodologies which
facilitate the process of maintaining knowledge bases (a chart of this taxonomic
classification appears in the APPENDIX).

The taxonomic chart classifies maintenance tools and techniques under the headings
"methedologies for building maintainable knowledge bases” and "methodologies for
maintaining existing knowledge bases”. Certain methods méy appear at more than one
places in the hierarchy. For instance, 'structured techniques' is classified under
"methodoiogics for building maintainable knowledge bases” and also under
"methodologies which aid the process of knowledge base understanding before
modification’,

In order to facilitate quick referencing, each entry in the classification caries a

parenthesised section number which corresponds to the section in the thesis in which it
was described.

148

5.1.1 BUILDING MAINTAINABLE KNOWLEDGE BASES

Knowledge engineers contemplating building expert system knowledge bases will find
the section on Software Engineering techniques (section 3.'1) generally applicable as an
aid for constricting more maintainable knowledge bases, The structured techniques tips
given by Penderson (section 3.1.5) are simple in concept and can easily be adapted to
most knowledge bases. These tachn{ques can be vsed alongside the modular concept
techniques {section 3.1.2) to reinforce the structuredness of the knowledge base.

With regard 1o the question of how best to modularise a knowledge base, the Knowledge
Flow Model technique (section 3.1.2.2) provides a simple option, namely, partition the
knowledge base according o the ‘application techniques’ which make up ihat
application. ‘The COMPASS solution (section 3.1.2.3) on the other hand, suggests that
the knowledge base should be partitioned by following the natural modularity of the
expert’s knowledge.

Whichever way one may bave chosen to partition the knowledge base, the Interface
Specification technique (section 3.1.2.1) could still be applied to enhance the
'structuredness’ of the knowledge base. Inferface Specification is a rather general
methed applicable to a wide tange of knowledge bases. Its main emphasis is on limiting
the amount of information flow between the modules (hence reducing the effects of
changes within the modules} and fermally specifying the information flow between

modules (hence making the function of modules easy to understand).

The modular concept may be implemented in one of two ways. One may implement the
various modules within & single knowledge base, or altefnntively. each module may be
implemented as a separate kaowledge base. The COMPASS system (section 3.1.2.3) .
uses this "multiple knowledge bases” concept to implement the various knowledge
modules. However, one has to be sure that the shell supports such an implementation
bel'qfe embarking on it

147 -

The ability of a system to provide automatic cross-referencing and documentation of
knowledge, easy browsing and multiple views of knowledge undoubtedly aids the
maintenance process, Such features are provided by a conventicnat data dictionary,
Jansen and Compton (1988) adapted the data dictionary concept to the building of
knowledge bases. They used the relational data model as the underlying storage
representation for the knowledge to gain the full advantage of relational caleulus for the

manipulation of the knowledge,

Tt appears that a further benefit may be derived from the storing of knowledge in this
neutral relational datn model. A problem with the integration of knowledge bases is their
lack of compatibility when these knowledpe bases are represented in different
formalisms. The storing of knowledge in this neutral intenmediate relational data form

would facilitate their ransformation from one form 10 another.

A well known software engineering message is that 'if a single fact is found in only a
single location, then the job of mainiaining it is significanty reduced’. This is the
rationale behind the principle of normalisation. A too) which is based on the principle
of normalisation is the Knowledge Analyst's Assistant (KAA) (section 3.1.5). The 100l
interactively guides a user during the modification of the knowledge base. A pretequisite
to the use of this tool is that the knowledge base must be normalised. This might
alternatively be viewed as a disadvantage of this 100l since normalisation of a knowledge
base may be perceived to be ‘unnaural’. Unlike the normalisation of facts, the

normalisation of rules may remove their heuristic valugs,

While the concept of reusability is sound (because reusable modules not ooly save work
but are alse easier to maintain, since their functions are known), in practice, tevsability
does not find wide application in knowledge base constructions. The reasons on why this

is the case were briefly discussed in sectien 3.1.6.1.

148

OTHER APPROACHES

Apart from software engineeting, there is a host of other innovative tools and ideas on
how to build a mote maintainable knowledge base. Due to space and time limitations,

only four different approaches were selected for discussion,

In section 3.1.1 a case was strongly put up against the software enginecring concept of
rigorous definition ¢n the grounds that it is not possible to pre-define an application
before its construction, Section 3,2,1 discussed a method (due to Slagle et al.) which
gainfully accommodates the concept of rigorous definition into the construction of
knowledge bases. This technique should therefore be of interest to knowledge engineers

who [ind it difficult to brenk away from their entrenched rigorous definition view.

For intrepid knowledge enginesrs who wish to make a total departure from software
engineering principles, the 'knowledge-in-context’ strategy (section 3.2.2) may be
recommended as an altemative and novel way of building knowledge bases that are easy
to maiotain. The knowledge base built using this method directly reflects the thought
processes of a human expert. However such a knowledge base may be rather difficult
to read or comprehend since it casts aside all sofrware engineering principles of

structuredness and medularity,

The third and fourth approaches are based on the use of tools and hence are not as
penerally applicable as the techniques described above. The former {ie third approach)
is based on the belief that explicit structures are easier to maintain than implicit ones.
RIME (Soloway ¢t al., 1988) is a lanpuage based on this concept. The latter argues that
knowledge bases built using declarative languages are easier to understand and therefore
to maintain than those that are built using procedural languages.

149

5.1.2 MAINTAINING EXISTING KNOWLEDGE BASES

This section mainly discussed tools (as apposed to general techniques) which are aimed

at easing the actual process of maintaining the knowledge base.

The process of n'iainlcnat_)ce is viewed by the current author as being made wp of three
stages, The first stage is concerned with the understanding of the knowledge base before
modifications can be made. The second stage is the actual modificadon itself, while the
third is the validation of the knowledge base to ensure it remains corvect and consistent

after the modification.

The various tools and mctlmdologies'were discussed in the context of these three stages.

5121 KNOWLEDGE BASE UNDERSTANDING

To aid understanding pood explanation is required. To provide good explanation a
system should "understand” itself. The Explainable Expert System (section 4.1.1) concept
takes a first step at creating an expert system that can understand itself. Such a system

can expliain not just what it is doing, but also why it is doing it.

Apart from good explanation, ancther aid to knowledge base understanding is the
readabilify of the knowledge base, This can be best achieved through the building of
desirable features like structuredness, 'modularity, coupled with gond décumentation. and
the edherence to the principles of standardisation during the building of the knowledge

base.

. 150

In line with the discussion on techniques for building an understandable knowledge base,
the current author felt that two conventional techniques may be worth consideration. The
first is the *automatic program understanding® teol (section 4.1.2.1) which was designed
primarily for the deciphering of conventional programs. The second technique is based
in the Knowledge Base Software Engineering (KBSE) concept (section 4.1.2.2). Since
code is the obstacle to understanding an obvious solution would be to eliminate it. This
is precisely what the KBSE concept sets out to do. The KBSE strategy enhances
undérstanding by removing the code at the user level altogether, Rather than modifying
the code, this strategy calls for modifications to be done on the specification, The code

is then rederived from the specification,
Other aids 1o understanding include the use of explicit control structures to promote the

homogeneity and predictability of the knowledge bases and also the use of more
declarative languages.

151

5.1.2.2 FACILITATING THE ACTUAL MODIFICATION PROCESS

To ease the actual modification process, interactive tools which can intelligently guide
or advise n maintainer are required. TEIRESIAS (section 4.2.1.1) or KAA (section
3.1.4,1) atternpt to take the role of & knowledge engineer by providing guidance and

advice to the expert during the modification process.

An interactive classifier aids modification by automatically determining where a newly
described concept should be placed in the knowledge base, then verifying its decision

with the user,

Interactive refinement tools, like SEEK {section 4.2.3.1), allow the users to interactively
experiment with changes by testing these changes against stored test cases before
incorporating them permanently into the knowledge base. Refinement tools, however,
as the name suggests, are only useful when the knowledge base is already penerally
correct, and only reficement (ie fine tuning) is required. They cannot be used for making
major changes, like structural changes for instance. This "minimal change’ assumption
is what Lopez et al. referred to as an instance of the *passimany criterion’ - a situation
whereby if different actions are possible to achieve the same result, it is wiser to choose

the most simple change {Lopez et al,, 1990, p. 65).

Other interactive madification tools mentioned in the thesis included knowledge base

editors and knowledge acquisition tools.

152

5.12.3 ENSURING CORRECTNESS OF THE KNOWLEDGE BASE AFTER
MODIFICATION

For the sake of completeness this section (which is dedicated to V&YV tools) is included,
Strictly V&V tools cannot be thought of as maintenance tools. They are, nevertheless,
essentind for ensuring the correctness of the knowledge base after modification has been
carried out.

Some tools, like the interactive tools discussed above (TEIRESIAS, KAA, Interactive
Classifiers and SEEK} combine modification and validation into the same framework.
In each case the newly entered knowledge is checked against the existing knowledge
base in some way and then verified with the user before that knowledge is permanently
added,

Section 4.3 looked at a different approach, one in which the knowledge base is modified
as a distinct step {this could be done through the use of an unintelligent knowledge base
editor or a knowledge acquisition tool). This is then followed by vatidation as another

separate step (o ensure that the knowledge base is comect.

Since generally two types of checking need to be carried out, namely verification and
validation, this section discusses two sets of 1oals, verification tools (section 4.3.1) and

validation tools {(section 4.3.2).
Verification checks relate to checks which prove the knowledge base is structurally

correct with respect 1o a formal specification, while validation checks are concemed with

checking whether the knowledge base satisfies the need for which it was created.

153

(a) VERIFICATION TOOLS AND TECHNIQUES

‘The ONCOCIN Rule Checker (Suwa et at., 1984) was discussed since it was the basis
upon which several other checkers (eg. CHECK (Perkins et al., 1989 }, ARC (Nguyen,
1988), SPACE SEARCH method (Tsang et al., 1988}) were modelled.

ONCOCIN (section 4.3.1.1) checks a rule base for conflicts, redundancies, subsumptions
and omissions. CHECK (section 4.3.1.2) expands on ONCOCIN to include checking for
unnecessary ifs, deadend ifs, dendend goals, unreachable conditions, unreferenced
parameter values, iltegal parameter values and circular rules. ARC is a further extension
of CHECK to include checks for compound conditions, subsumed rule chains, redundant
mule chains and conflicting rule chains. The SPACE SEARCH method (section 4.3.1.3.1)
is an attempt to overcome ONCOCIN and CHECKs' deficiencies of only detecting
superficial inconsistencies, It also removes some of the false warnings of inconsistencies
produced by ONCOCIN.

Another method mentioned in this section was the Predicate/Transition Net Method
(section 4.3,1.3.2). This method allows for the inclusion of consistency and
completeness checks as pant of the knowledge acquisition process and thus verification

can be carried out in an incremental fashion as the knowledge base is being developed.

The main shortcoming of the above tools is that they all perform only static checks on
the knowledge base. In other words, the control structure (ie. the inference engine) is
not tested. Though it is important that one include dynamic tests {to test the inference
engineg) in the testing of a knowledge base, such tests are not discussed here because this
thesis is concerned with the maintenance of the knowledge base rather than its control

siructure,

154

(b} VALIDATION TOOQLS AND TECHNIQUES

Validation tests are necessary in order to inspire confidence in the use of the knowledge

base. Normally validation tests follow verification tests,

Hewever, current validation tests and techniques are rather inadequate because as argned
in section 4.3.2, the very issue of what constitutes a 'valid knowledge base® itself is
unclear. This prempts the corrent auther 1o raise the question that ‘if there is no such
a thing as a fully valid knowledge base, can there be a sufficiently valid knowledge
base 7*, In other words, is it possible to establish an accepiable minimal level of V&Y
testing standards ? In trying to answer this question the thesis locked as two approaches
which seem to make an atternpt to address this problem to some degree. These are the
*correctness principles’ approach (section 4.3.2.1.1) which attempts to lay down a set
of acceptability principles for rule bases, and the *validation standards’ approach (secticn
4.3.2,1.2) which seeks to provide a basis for standardising the validation of a
knowledge base system.

Other projects like EVA (section 4.3.2.2.1) and VALID (Lopez et al., 1990) take a
different path. These two projects are mainly aimed at developing an inteprated
environment in which the different aspects of V&V, refinement, and evaluation ¢an be
analysed and solved. They seek to develop a set of generic tools which are applicable

1o any knowledge base systems developed in any shells,
Although they contain an impressive array of tools, they do not seem to address the

preblem of what constitute an acceptable level of tests. This decision is still left to the

discretion of the individual domain expert,

155

5.2 LAST WORD

In bringing this thesis to a close, the following section begins by reflecting on past and
current methodologies. This is followed by a contemplation on future directions.

5.2.1 PAST AND CURRENT METHODOLOGIES

When confronted with a new situation, it is human nature to look back at what we
already know and to try to use old knowledpe to solve new problems. It is therefore not
surprising that researchers tended fo fall back on structured techniques, modularity, data
dictionary, DBMS {and now KBMS), various vesification and validation techniques etc
in facing these new problems encountered in expert system Kknowledge base
maintenance. These techniques have to various degrees been touched upon in previons
chapters.

Not all researchers, however, are falling back on conventional software enginecring
techniques in their search for better maintenance methodologics or tools. As was seen
in previous chapters, other maintenance concepts are continually being proposed by

researchers.

This emphasis on methodologies and tools appears rather disterbing in the view of
researchers who lie on the far end of the maintenance spectrum. The human factors
researchers thought it appropriate that maintainers should be reminded that there exists
another si_de to the maintenance coin - the human side of the maintenance equation, In
this clozing chapter a thought should be given to the two principles put forward by
Owerton, a human factors researcher :-

- Studying maintenance means studying maintainers,

156

- Maintainability is not a quality of & system alone, but of a system and those who
maintain it" {Overton, 1983, p. 53).

5.2.2 FUTURE MAINTENANCE DIRECTIONS

Having explored some past and current maintenance technologies, it seems in order to
question what shape future maintenance technology will take. The current author sees

two possible directions that such technology could take.

The first is the use of @ "meta-gxpert system” to maintain other expert systems. Since
the maintenance of a knowledge base (wacking down of errors, making amendments
without upsetting existing rules etc) involves expertise, one might be tempted to ask if
a 'knowledge base maintenance expert system' could be built to majntain an expern
system knowledge base. Such a system could be used to diagnose the source of errors,
correct them and retest the system. It might contain procedures to fix bugs, make
changes, modify the knowledge base to include pew enbancements or change

requirements, then conduct retests of the system.

The second possible direction is the development of salf-modifying expert systems.
Before an expert system can be self-modifying it must be self-understanding, a
capability (as we saw in section 4.1.1) that is increasingly being realised. The cument

author contends that it should also possess self-validating capability.

‘Cumrently many tools and methedologies for the development and maintenance of expert
system knowledge bases are borrowed from conventional systems. Suck methodologies
contain a distinct phase whereby an expert system knowledge base has to be judged
valid before it is passed on o the users to be put into operation. By transferring such
‘a concept directly fmm. conventional methods, expen systenis are being treated in the
same way as conventional systems. '

157

In the validation of conventional systems the user’s intent is often clear and can be
specified, hence such a distinct validation and transfer over phase may be justified.
However, human experts are not judged that way. If expert systems are to emulate the
human experts then the question of "how do experts maintain and validate their own
knowledge 7' should be asked,

As experts improve they continually correct their own past misjudgment. Should not
then validation be mude a contintous routing 7 Hence, unlike conventional systems,
expert systems miust necessarily incorporate Jearning. Without the ability to learn the

purported expert system is not very different from a conventional program.

To some extent TEIRESIAS might be thought of as a program which demonstrates such
leaming capabilities. 't is able to validate what it is taught with what it already knows
before adding on the new knowledge permanently into its knowledge base.

The CYC project {Lenat & Guha, 1990} provides some guide to answering the question
of which direction maintenance technology will head. Lenat and Guba said that "CYC
will learn by discovery” and that such learning will be achieved through discussion and
education rather than through the “practice of brain surgery upon Cyc’s KB" (Lenat &
Guha, 1990, p. 357). One would expect that validation will then be just a matter of the
educators evaluating CYC {or even CYC evaluating itself since CYC's learning can go
on proactively while the machine is idling (Lenat & Guha, 1990, p. 357)) on how
sigrificant or reasonable the discoveries it had made were, and correction would just be
a ma:er of re-learning, In this sense validution would be a continuous process, rather

akin to the way human experts correct their own emors and misjudgzments.

It may appenr far-fetched that o self-Jearning, self-maintaining (ie. re-leamning) system
could emerge out of the CYC project; but if this does occur then there may no longer
be any need for maintenance technologies.

158

APPENDIX

Methodologies for
Building Maintainable
Knowledge Bases

MAINTENANCE METHODOLOGIES

{Chapter 3)

Software Engineering Miscellaneous

Approach Approaches

3.1 (3.2)
Rigorous Modular Data Normalisation Structured Reusability * Knowledge Knowledge Explicit
Definition Concept Dictionary (3.1.4) Techniques Documentation * Specification In-Context High-Level
(3.1.1) (3.1.2) (3.1.3) (3.1.5) Standaradisation * Concept Strategy Control Structure

(3.1.6) (3.2.1) (3.2.2) (3.2.3)

Interface rnowledge Multiple
Specification Flow Model Knolwedge Base
(3.1.2.1) (3.1.2.2) (3.1.2.3)
NOTE

* NOT DISCUSSED IN DETAILL

Declarative
Language
(3.2.4)

Methodologies for Maintaining
Existing Knowledge Bases

(Chapter 4)

(BEFORE MODIFICATION)

Knowledge Base
Understanding Aids
4.1)

Explainable
Expert System
Paradigm
4.1.1)

Structured
Techniques
(3.1.5)

Use of
High-Order
Language
(3.2.3)

Use of
Declarative
Language
(3.2.4)

l

General Automatic
Software Program
Engineering Understanding
Principles * Principles *
(3.1.6) 4.1.2.1)

KBSE
Concept *
(4.1.2.2)

Rule
Proposer *
(4.1.2.5)

Formal
Specification
Proposer *
(4.1.2.6)

(MODIFICATION PROCESS)

Tools for Making
Interactive Changes

(4.2)
I i
Intelligent Knowledge Interactive Knowledge Base Automated
Assistant Classifiers Refinement Editors * Knowledge
(TEIRESIAS) (4.2.2 Tools (4.24.1) Acquisition
4.2.1) (SEEK) Tools *
4.23) 7 (4.2.4.2)
KL-ONE * KuBIC
(4.2.2.1) (4.2.2.2)

A TAXONOMY OF KNOWLEDGE BASE MAINTENANCE METHODOLOGIES

(AFTER M ODIFICATION)
VTooIs for Eosuring

Knowledge Base
Remains Correct (4.3)

|

VERIFICATION TOOLS

4.3.1)
ONCOCIN CHECK Space Predicate
Rule Checker (4.3.1.2) Search Transition
(4.3.1.1) Method * Net Method *
(4.3.1.3.1) 4.3.1.3.2)

Art
Rule Checker *
(4.3.1.3.3)

VALIDATION TOOLS
(4.3.2)

Towards Validation

Standards
(4.3.2.1)

Correctness Principles
Approach
(4.3.2.1.1)

|

Validation
Standards
Approach
(4.3.2.1.2)

Integrated V&YV Tool Set Other
Appraoch (EVA) Appraoches
(4.3.2.2) (4.3.2.3)
Use of Explanation * Design ‘Unified
Test Cases * (4.3.2.3.2) Techniques * Framework *
(4.3.2.3.1) (4.3.2.3.3) (4.3.2.34)

BIBLIOGRAPHY

Adelson, B., (1950), Constructs and Phenomena Comman to the Semantically-Rich Domains.

In P. G. Racth. (Ed). Expert Sysi¢ms : A Software Methodology fer Modern
Applicationg, (pp 193-204). Los Alamitos, CA : IEEE Compuwer Society Press.

Arthur, L), (1987). Software Evolution : The Software Mainienance Challenge. New York :
John Wiley and Sons, Inc.

Ayel, M., (1988). Protocols for Consistency Checking in Expert System Knowledge Bases.

In Kedratoff,, Y. (Ed}. ECAI 88 : Proceedings of the 8th European Conference on
Arificial Intelligence. (pp 220-225). London : Pitman Publishing.

Bachant, I, (1988} RIME : Preliminary Work Towards a Knowledge Acquisition Tool. In

Marcus (Ed). Automating Knowledge Acquisition For Expert Systems. (pp 201-224).
Massachusetis : Kluwer Academic Publishers.

Beinat, P. and Smart, R., {1989). Colossus : Expert Assessor of Third Party Claims. In

Proceedings of the Fifth Australian Conference on Applications of Expert Systemns.
(pp 70-85). Sydney University of Technology.

Benn, W., Schiageter, G. and Wu, X., {1990). Reuse of Persistent Information Between
Different Paradigms - A Knowledge Based Approach. In Proceedings : SPIE -

Intemnatinal Society of Opt, Eng. (USA)Y, Application_of Anificail Intellipence VIII
{Volume 1293} (pp 404-414). Orlando, Florida.

Bennett, K.H., (1991). Automated Support of Software Maintenance. In Infarmation and
Software Technology, Yol 33, No. 1. Durham, UK ; Butterworth-Heiremann Ltd.

Black, W. I, (1986). Intelligent Knowledpe Based Systems_; An Introduction. Berkshire,
England : Van Nostrand Reinhold (UK) Co, Ltd.

Boar, H. b,, (1984), Application Prototyping : A Requirements Definition Strategy for the 80s,
. MNew York ; John Wiley & Sons, Inc.

161

Bowerman, R. G., and Glover, D. E., (1988}, Putting Expert Systems into Practice. New
York : Van Nostrand Reinhold Company Ine,

Brachman, R. J. & Schmolze, J. G., (1989). An Overview of the KL-ONE Knowledge
Representation Systemt. In J. Mylopolous & M, Brodie (Eds). Readings in Artificial
Intelligence and_Databases. (pp. 207 - 229). San Mateo, Califomia : Morgan
Kaufmann Publishers, Inc,

Buchann, B. G., and Smith, R. G., (1989). Fundamentals of Expert Systems. In A. Barr, P.
R, Cohen and E. A. Feipenbaum (Eds). The Hand* ek of Acificial Intelligence
(Volume IV). (pp 149-192). Reading, Massachusetts : Addison-Wesley Publishing
Company, Inc.

Carrice, M.A., Girard, E.J., and Jones, LP., {1989). Building Knowledme Systems :

Developing and Managing Rule-Based Applications. New York : Intertext
Publications,

Ceri, §8., Gottlob, G. and Tanca, L., {1990), Surveys in_Computer Science : Lopic
Programming and Databases. Berlin: Springer-Verlag.

Chandrasekaran, B, and Swartout, W., (1991). Explanaiions in Knowledge Systems : The
Role of Explicit Representation of Design knowledge. In JEEE Expert, Volume &,
Number 3, Junz 1991, Los Alamites, C.A. : IEEE Computer Society.

Chang, C. L., Combs, J, B., and Stachowitz, (1990}, A Report on the Expert Systems
Validation Associate {FVA). In Expett Systems With Applications (UK), Volume [
Number 3, 1990, {pp 217-230). UK. : Pergamen Press.

Compten, P., and Jansen, M., (1990}, Knowledge in Context : A Strategy for Expert System
Maintenance. In C. I. Barter and M, J. Brooks (Eds), Al *B8 2nd Awstralian Joint

Artiftcial Intelligence Conference, Adelaide, 1988 Proceedings. (pp 292-305). Bertin ¢
Springer-Verlag,

Davis, J. 8., (1990). Effect of Modularity on Maintainability of Rule-Based Systems. In

International Journal Man-Machine Studies (UK), Volume 32, Number 4. April, 1990,
(pp 439-447). Academic Press Limited.

162

Davis, R,, {1984). Interactive Transfer of Expertise. In Buchanan, B. G, & Shertliife, E. H.,

(Eds), Rule-based Expert Systems ; The Mycin Experiments of the Stanford Heuristics
Propramming Project. {pp 171-205). Reading, Massachusetis : Addison-Wesley.

Davis, R., (1988). Interactive Transfer of Expentise : Acquisition of New Inference Rules. In
A, Gupta & B. E. Prasad (Eds), Principles of Expert Sysiems. {pp 243-261). New
York: IEEE Press.

Debenbam, J. K,, (1989), Knowledge Svstems Design. Sydney : Prentice Hail,

Deberham, J. K,, and Lindley, C. A,, (1991}, The Knowledge Analyst's Assistant : A Tool
for Knowledge Systems Design. In C.P. Tsang (Ed). AL *90: Proceedings of the dih

Australia Joint Conference on Artificial Intellipence. (pp 343-354). Singapore : World
Scientific Publishing Co, Pre. Ltd.

Eshelman, L., (1988}, MOLE : A Knowledge Acquisition Tocl fot Cover-and-Differentiate

Systems, In 5. Marcus (Ed). Autornating Knowledge Acauisition for Expert Systems,
{pp 37-80). Boston : Kiuwer Academic Publiskers.

Finin, T. W., (1988). Interactive Classification : A Technique for Acguiring and Maintaining
Knowledge Bases (Proceedings of the IEEE, October 1986). In A. Gupta & B. E,
Prasad (Eds). Principles of Expert Systems. (pp 275-281). New York; IEEE Press.

Ginsberg, A, (1938}, Automatic Refinement of Expert System Knowledge Bases. London ;
Pitman Publishing.

Gorla, N., {1991}, Techniques for Application Software Maintenance, In Information and
Software Technology. Volumne 33, Number 1. Jan-Feb 1991, (pp 65-73). Butierworth
Heinemann Lid.

Green, C.JR., and Keyes, M.M.,, (1990). Verification and Validation of Expert Systems. In

Raeth, P.G, (Ed), Expert Systems : A Software Methodolony for Modern Applications,
(pp 444-449), Los Alamitos, California : IEEE Computer Society Press.

Guimaraes, T., (1987). Prototyping : Orchestrating for Success. In Datamation, Dec 1, 1987,
(pp 101-106). New York : Cahners Publishing Associates.

163

Gunderman, R. E., (1988). A Glimpse into Program Maintenance, In G. Parikh (Ed},

Technigues of Program and Systern Maintenance, Second Edition. (pp 55-59).
Wellesley, Massachusetts : Q.E.D. Information Sciences, Inc.

Harrison, P. R., and Ratcliffe, P. A., (1991). Towards Standards for the Validation of expert
Systems. In Expert Systems With Applications, Volume 2, Number 4, 1991,
(pp 251-258). USA : Pergamon Press.

Hetzel, W., {1984). The Complete Guide to Software Testing, Wellesley, Massachusetts
Q.E.D. Information Sciences.

Hicks, R. C., (1990). A Composite Methodology for Low Maintenance Expert Systems
Development. In Proceedings of the Twenty-Third Annual Hawaii Intetnational
Conference on System Scignces, Volume 3, (pp 292-302). Los Alamitoes, CA : [EEE
Computer Seciety Press.

Hoppe, T., (1990). Validation of User Intention. In Current Trends in Knowledse Acqguisition.
(pp 162-172). Amsterdam : 10S.

Irani, E, A., Matis, I. P,, Hunter, D, W,, Slagle J, R., Kuin, R, Y., and Long, J. M., {(1990).
Automated Assistance for Maintenance of Medical Expert Systems : the POSCH Al
Project. In Proceedings of the Third Anouat IEEE Symposium on Computer Based
Medical Systems. (pp 275-281). Los Alamitos, CA : IEEE Computing Society Press.

Jackson, P., 1986, Intreduction to Expert Systemns, Wokingham, England : Addison-Wesley
Publishing Company.

Jacob, R, J. K,, and Froscher, J. N., (1990). A Software Engineering methodelogy for

Rule-Based Systems. In JEEE Transactions on_Knowledge and Data Engineering.
Yolume 2, Number 2, June 1990. (pp 173-189).

Jansen, B., (1988). A Data Dictionary Approach to the Software Engincering of Rule Based
Expert Systems. In 1.8. Gero and R.Stanton (Eds), Antificial Intelligence Developments
and Applications. (pp 101-117). Amsterdarm; Elsevier Science Publisbers B.V.
(North-Holland),

164

Jansen, B. and Compton, P., (1988). The Knowledge Dictionary ; A Relational Toel for
Maintenance of Expert Systems. In ICOT (Institute for New Generation Computer
Technology) (Ed). Fifth Generation Computer Systems 1988 ; Proceedings of the

Intemational Conference on Fifth Generation Computer Systems, 1988, Volume 3.
(pp 1159-1167). New York : Springer-Vetlag.

Jansen, B. and Compton, P., {1989). The Knowledge Dictionary : Storing Different
Knowledge Representations. In Proceedings of the Fifth Australian Conference on

Applicatins of Expert Systems. (pp 143-162). Sydney : University of Sydney.

Kahn, G., (1988), MORE : From Qbserving Knowledge Engineers to Automating Knowledge

Acquisition, In 5, Marcus (Ed). Automating Knowledge Acquisition for Expert
Systems. {pp 7-35). Boston : Kluwer Academic Publishers.

Keller, R., {1987). Expert System Technalogy : Development & Application. New Jersey ¢
Prentice-Hall, Inc.

Kulikowski, C. A., (1989). Knowledge Base Design and Construction : From Prototyping to
Refinement, In G. Guida and C. Tasso (Eds). Topics in Expert System Design :
Methedologizs_and Tools. (pp 145-178). Amsterdam : Elsevier Science Publishers
5. V.

Landauver, C., (1990). Correctness Principles for Rule-Based Expert Systems. In Expert
Systems With Applications (UK), Volume 1, Number 3. (pp 291-316). UK : Pergamon
Iress.

Lenat, D., and Guha, R,, (1990). Building Larpe Knowledge-Based Systems : Representation
and Reference in the CYC Profect. Reading, Massachussetis : Addison-Wesley.

Liv, C. C, (1988). A Lock at Software Maintenance, In G. Parikh (Ed). Technigues of

Propram_and System Maintenance, Second Edition. (pp 61-71). Wellesley,
Massachusetts : QED Information Sciences, Inc.

Liu, N. K. & Dillon, T. (1988). Detection of Consistency and Completeness in Expert
Systems using Numerical Petri Nets. In 1.5, Gero & R. Stanton (Eds). Artificial

Intelligence Developments and Applications. (pp 119-134). Amsterdam : Elsevier
Science Publishers B.V. (North-Holland).

165

Lopez, B., Meseguer, P. and Plaza, E., (1990). Knowledge based Systems validation : A State

of the Art. In AL Communications (Netherlands), Volume 3, Number 2, June 1990.
(pp 58-72). Netherlands.

Lowry, M. and Duran, R., (1989). Knowledge-Based Software Engincering. In A. Barr, P, R.
Cohen and E. A. Feigenbaum {Eds)., The Handbook of Artificial Intellipence
{Volume IV). (pp 241-322), Reading, Massachusetts : Addison-Wesley Publishing
Company, Inc.

MacGregor, R., and Burstein, M, H,, (1591). Using a Description Classifier to Enhance
Knowledge Representation, In 1EEE_EXPERT. Volume 6, Number 3, June 1991,
(pp 41-46). Los Alamitos, CA : IEEE Computer Society Press.

Marcot, B., (1990). Testing Your Knowledge Base. In P. G. Raeth, (Ed), Expert Systems :
A_Software Methodolopy for Modern Applications. (pp 438-443), Los Alamitos,
California : IEEE Computer Society Press.

Marcus, 5., (1988). Inroduction. In &, Marcus (Ed). Automating Knowledge Acquisition for
Expert Systems. (pp 1-6). Boston: Kluwer Academic Publishers.

Marcus, ., (1988). SALT : A Knowledge-Acquisition Tool for Propose-and-Revice Systems.
In 5. Marcus (Ed). Autormnating Knowledgs Acquisition for Expert Systems.
(pp 81-123). Boston: Kluwer Academic Publishers.

Martin, J. and MeClure, C., (1983), Software Maintenance : The Problem and its Solutions,
New Jersey : Prentice-Hall Inc,

Martin, LP., (1950). The Truth, the Whole Truth, and Nothing but the Truth : An Index
Bibliography to the Literature of Truth Maintenance Systems. In Al Magazine, Special
Issue, 1990, (pp 7-25)). CA : American Association for Artificial Intelligence.

Matthews, M.H., (1990). Maintenance and Language Choice. In Raeth, P.G. (Ed), Expert
Systems : A Software Methodology for Modem Applications. (pp 430-437). Las
Alamitos, California : IEEE Computer Socigty Press.

Mays, E., Lanka, 8., Dionne, B., and Weida, R., (1990). A Persistant Store for Large Shared

Knowledge Bases. In Proceedings : The Sixth Conference on Amtificail Intellipence
Applications, { Volume T), (pp 169-175). Los Alamitos, California : TEEE Cemputer
Society Press.

166

McGraw, K., ard Harbison-Briggs, K., (1989). Knowledge Acquisition : Principles and
Guidelines. New Jersey : Prentice-Hall Inc.

Miller, L. A., (1950). Dynamic Testing of Knowledge Bases Using the Heuristic Testing
Approach, In Expert Systems With Applications, Volume 1, Number 3, 1990
{pp 249-269). USA : Pergamon Press.

Nau, D. S., (1988). Expert Computer Systems. In A. Gupta & B. E. Pmsad (Eds), Principles
of Expert Systems. (pp 53-74). New York: IEEE Press.

Neches, R., Swartout, W. R. and Moore, J., {1988). Enhanced Maintenance and Explanation
of Expert Systems through Explicit Models of their Development {(IEEE Workshop on
Principles of Knowledge-based Systems, December 1984), In A. Gupta & B. E. Prasad
(Eds). Piinciples of Expert Systems. {pp 283-293). New York: IEEE Press.

Ngvyen, T. A., (1988). Verifying Consistency of Production Systems (Proceedings of the
IEEE Third Couference an Arificial Intelligence applications, February 1987). In A,
Gupta & B. E. Prasad (Eds). Principles of Expert Systems. (pp 254-298). New York:
IEEE Press.

O'Leary, D. E., (1590). Verification and Validation of Expert Systemis. In Proceedings : The

Sixth Conference on Artificial Intelligence Applications (Volume ID). (pp 40-41). Los
Alamitos, CA ; IEEE Computer Society Press.

O'Leary, T. J., Goul, M., Moffiit, K. E.,, and Radwan, A. E., (1990). Validating Expert

Systems. In JEEE Expert (H/SA), Volume 5. Number 3, June 1950. {pp 51-58). Los
Alamitos, CA : IEEE Computer Society Press.

Overton, R. K., {1983). Research Toward Ways of Improving Software Mainienance :
RICASM Final Repor. In G. Parikls and N, Zvegintzov (Eds). Tutorial on Software
Maintenance, {pp 47-53). Silver Spring, USA : IEEE Computer Scciety Press.

Parikh, G. (3582}, Sex and Software Maintenance : The Taboo Topics. In G. Parikh (Ed).

Techniques of Program and System Mainteriance, Second Edition. {pp 33-38}
Wellesley, Massachusetts : Q.E.D. Information Sciences, Inc.

Parikh, G. (1988). Software Maintenance : Penny Wise, Program Foolish. In G. Parikh (Ed).

Techniques of Program and System Maintenance, Second Edition. (pp 13-19).
Wellesley, Massachusetts ; Q.E.D, Information Sciences, Inc.

167

Parikh, G. (1988), The World of Software Maintenance. In G. Parikh (Ed), Technigues of

Program and System Maintenance, Second Edition. (pp 22-25). Wellesley,
Massachusetts : Q.E.D. Information Sciences, Inc.

Parsaye, K., and Chignell, M., {1988). Expert Systemns for Experts. New York : John Wiley
and Scns, Inc,

Partridge, D., (1986). Anificial Intellipence : Applications in the Future of Software
Engineering, West Sussex : Ellis Horwood Limited.

Payne, E. C., (1991). A Moduler Knowledge-Flow Model. In Al Expert. Volume 6,
Number 5. May, 1991, {pp 36-41). San Francisco ; Miller Freeman Publications.

Penderson, K., {1989). Well-Swuctured Knowledge Bases. In Al Expert, Volume 4,
Number 4, April 1989. (pp 44-35). San Francisco : Miller Freeman Publizations.

Perkins, W.A., Laffey, T.J,, Pecora, D., and Nguyen, T.A. (1989). Knowledge Base
Verification, In Guida, G. and Tasso, C. (Eds). Topics in Expent System Design :
Methodologies and Tools. {pp 353-376). Amsterdam : Elsevier Science Publishers
5. V.

Politakis, P. G., {1985). Empirical Analysis for Expert Systems. Massachuseits : Pitman
Publishing, Inc.

Politakis, P.G., and Weiss, 5.M., (1988). Using Empirical Analysis to Refine Expert System
Knowledge Bases. In A. Gupta and B. E, Prasad (Eds). Principles of Expert Systems.
(pp 262-274). New York: IEEE Press.

Preran, D.8., (1990). Developing and Managing Expert Systems_: Proven Techniques for
Business and Industry. Reading, Massachusetts : Addison-Wesley Publishing

Company.

Prerau, . 5., Gunderson, A. 5., Reinke, R, E, and Alder, M. R., (1990). Maintainability
Techniques in Developing Large Expert Systems. In IEEE EXPERT, Volume 5,
Number 3, June 1990, (pp 71-79), Los Alamitos, CA : IEEE Computer Society Press.

168

Ribar, G., Arcoleo, F. and Hallo, D., (1991}, Loan Probe ; Testing a Big Expert System. In

Al Expert, Volume 6, Number 5, May 1991. (pp 43-49). San Franctsco ; Miller
Freeman Publicaticns.

Rolston, D, W, (1988). Principles of Artificial Intelligence and Expert Systems Development.
New York : McGraw-Hill Inc,

Sacerdoti, E. D., {L991}. Managing System. In AI Expert, Volpme 6, Number 3, May 1991,
{pp 46-33), San Frangisco : Miller Freeman Publications.

Slagle, J. R., Gardiner, D. A. and Han K., (1990). Knowledge Specification of an Expert
System. In JEEE EXPERT, Volume 5. Number 4, August 1990. (pp 29-37). Los
Alamitos, CA : TEEE Computer Society Press.

Sotoway, E. Bachant, J, and Jensen, K, (1987). Assessing the Maintainability of
XCON-in-RIME: Coping with the Problems of a Very Large Rule-base. In

Proceedings AAAI-B7 : Sixth National Conference on Artificial Iutelligence.
{pp 824-820). California: Morgan Kaufrann Publishers, Inc.

Stonebraker, M. & Hearst, M. {1989). Future Trends in Expert Data Ba.e Systems. In
Kerschberg, L. (Ed). Expert Daiabase Systerms : Preceedings from the Second
International Conference. (pp 3-20). California: The Benjamin Cummings Publishing
Cornpany, Inc.

Stonehocker, N. M., {1988). Managing the Monster - Taking a Stand for Standards. In G.

Parikh (Ed). Techniques of Propram and Systemn Maintenance, Second Edition.
(pp 292-293). Wellesley, Massachusetts : QED Information Sciences, Inc.

Suwa, M., Scott, A.C., Shorliffe, E.H., (1984), In Buchanan, B. G, & Shortliffe, E. H., {Eds),

Rule-based Expert Systems : the Mycin Experiments of the Stanford Hewristics
Programming Project, (159-170). Reading, Massachusetts : Addison-Wesley.

Swartout, W. and Paris, C,, (1991). Explanations in Knowledge Systemns : Design for
Explainable Expert Systems. In IEEE Expert, Volume 6 Number 3, June 1991,
(pp 58-64). Los Alamitos : IEEE Computer Society Press,

169

Terveen, L, G., Wroblewski, D. A., and Tighe, S. N., (1891}, Intelligent Assistance Through
Collaborative Manipulation, (pp 9-14). In J. Mylopoulos and R. Reiter, (Eds), 12th
International Joint Conference on Artificial Intellipence, Volume 1, Darling Harbour,

Sydney, Australin, Aupust 1991, Sydney : Morgan Kaufmann, Inc.

Tsai, W, T., and Zualkernan, 1. A., {1990). Towards a Unified framework for testing Expert

Systems, In SEKE '90 Proceedings : Software Engineering and Knowledge

Engineering, 2nd International Conference, IL. , USA June 1990. {pp 127-134). IL.,
USA : Skokie.

Tsang, W. W., (1988). A Space Senrching Method for Checking the Consistency and
Completeness of a Rulebase. In Proceedings : International computer Science

Conference '88. Artificial Imelligence Theory_snd _Applications, Hong Kong.
(pp 575-579}. Hong Kong : IEEE Computer Saciety Press.

Vignollet, L., and Ayel, M., (1991). A Model for Testing Knowledge Bases. In (pp 104-109).
In SEKE '90 Proceedings : Software Engineering and Knowledse Engineering, 2nd

International Conference, I1.. , USA, June 1990, {pp 104-109). IL.., USA : Skokie.

Vitalari, N, P,, (1984). A Critical Accessment of Structured Analysis Msthods : A
Psychological Perspective. In T, M., A. Bemelmans (Ed). Information Systems

Development for Organisational Effectiveness. {(pp 421-431). Amsterdam : Elsevier
Science Publishers B. V.

Walker, A., (1987). Expert Systems in Prolog. In Walker, A., (Ed}, McCord, M., Sowa, J. F.

& Wilson, W. G., A Logical Approach to Expert Systems and Nawral Language

Processing : Knowledge systems and Prolog. (pp 219-290). Massachusetis:
Addison-Wesley Publishing Company, Inc.

Walker, A., Kowalski, B., Lenat, D., Soloway, E, snd Stonebraker, M,, (1988). In
Kerschberg, L. (Ed). Expert Database Systems : Proceedings from the Second
International Conference. (pp 63-69). California: The Benjarnin Cummings Publishing
Company, Inc,

Wilkins, D. C. (1989). Knowledge Bas: Refinement Using Apprenticeship Learning

Techniques. In K. Morik (Ed), Knowledge Representation and Orpanization in
Machine Learning. (pp 247-257). Berlin : Spriger-Verlag.

170

Wood, T. W., and Frankowski, E. N., (1990), Verification of Rule-Based Expert Systems, In

Expert Systems With Applications, Volure [, Number 3, 1990. (pp 317-322). USA :
Pergamon Press.

Woods, W, A., (1990). Important Issues in Knowledge Representation. In Raeth, P.G. {(Ed},

Expert Systems : A Software Methodology for Modem Applications. (pp 180-192).
Los Alamitos, California : IEEE Computet Society Press.

Zhang, D., and Nguyen, D, (1989). A Technique for Knowledge Base Verification. In [EEE
International Workshop on Tools for Adificial Intelligence Architectures, Languapes
and Alporithms. (pp 399-406). Los Alamitos, CA, : IEEE Cemputer Society Press.

171

	A study of the methodologies currently available for the maintenance of the knowledge-base in an expert system
	Recommended Citation

	A study of the methodologies currently available for the maintenance of the knowledge-base in an expert system

