
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-1993

An investigation of methodologies for software development An investigation of methodologies for software development

prototyping prototyping

Susan M. Jones
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Jones, S. M. (1993). An investigation of methodologies for software development prototyping.
https://ro.ecu.edu.au/theses/1150

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1150

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41536281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1150

Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1993

An investigation of methodologies for software
development prototyping
Susan M. Jones
Edith Cowan University

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1150

Recommended Citation
Jones, S. M. (1993). An investigation of methodologies for software development prototyping. Retrieved from https://ro.ecu.edu.au/
theses/1150

https://ro.ecu.edu.au
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

An Investigation of
Methodologies for Software

Development Prototyping

by

Susan M. Jones

A dissertation to be submitted in partial
fulfilment of the requirements for the

degree of

Master of Applied Science
(Computer Studies)

Department of Computer Science
School of Information Technology and

Mathematics
Edith Cowan University
Perth, Western Australia

Supervisor: Ah Hung

July 1993

Susan M. Jones

Abstract

The computer industry has a poor record of system

development using the traditional life-cycle approach.

The main cause of user dissatisfaction is the

unacceptably large amount of time between

specification and delivery of a system. In addition,

users have limited opportunity to influence how the

system will look when implemented once development

has commenced.

With the advent of 4GLs, system development using a

prototyping approach has become a viable option. This

has reduced the development tlme significantly and,

together with the use of prototyping, has allowed users

to become more involved in the development process.

However, this change in the development process has

meant that often the use of an accepted

methodology/system life cycle has been ignored or

altered. This has resulted in systems where the

definition-of-requirements phase was often fast-tracked

or omitted totally and the system documentation is

insufficient for effective maintenance.

Thus, this approach has not proved to be as successful

as expected. However, the opportunities that

prototyping offers should not be discarded because of

2

the use of inappropriate software development

methodologies, languages or tools.

This study seeks to identify factors that may influence

the success or failure of a prototyping project and to

assess the importance of any development

methodologies being used.

Information was gathered via interviews, questionnaires

and, where deemed necessary, the reviewing of

development procedures used.

Conclusions have been drawn from data gathered from

various organisations in Western Australia that have

used prototyping for a number of projects, thus,

suggesting a refinement of the development process.

Two main areas appeared to affect the success of a

software development project. The first is the lack of

flexibility in the methodology used and

inappropriateness of the development tools and

languages. The second is insufficient requirements

analysis.

The results indicate that a methodology is required that

provides a good framework, but is flexible enough to

handle different types and sizes of project. It should

specifically address prototyping and include guidelines

3

as to how to select the most suitable prototyping

approach for each project. It should contain examples

of different deliverables and various development cycles

appropriate for each type of prototyping. There should

be automated tools available to handle documentation

and code generation where possible.

The development of a methodology with the above

characteristics is required if the advantages of

prototyping are to be maximised in the future.

4

Declaration

I certify that this thesis does not incorpol'ate without

acknowledgment any material previously submitted for

a degree in any institution of higher educ~tion; and

that, to the best of my knowledge and belief, it does

not contain any material previously published or written

by another person except where due acknowledgment

is made.

So t 0 1gna ure.

Date: .• ..1~/r..:J

5

Acknowledgments
I would like to thank all those people who have helped

and encouraged me throughout this project, particularly

my supervisor Ah Hung, colleagues Bob Cross and Ron

Hartley for their advice and encouragement and Bill

Laidman who meticulously checked this document to

ensure its completeness and accuracy. I would also like

to thank Tony Fetherston for his advice on the layout

and structure of the thesis, particularly regarding the

statistics.

Special thanks to Steve and Paul who have tolerated

countless meals of pasta, due to it being quick to

prepare, and endured me working evenings and

weekends whilst writing up my results.

6

TABLE OF CONTENTS

Abstract . 2

Declaration 5

Acknowledgments • . . • . . 6

1 . Introduction • • 11

2. The Problem . . . • • 1 2
2.1 Background to the Study 12
2.2 Significance of the Study 16
2.3 Theoretical Framework 1 8
2.4 Statement of the Problem to

be Investigated 21
2.5 Statement of Research

Questions 22
2.6 Delimitations and limitations

of the Study 23
2. 7 Definition of Terms • 24

3. Review of Relevant Literature • 26
3.1 General Literature 26
3.2 Specific Studies Similar to the

Current Study . . . • 28
3.3 Other Literature of

Significance to this Study 35
3.4 Methodologies that Address

Prototyping • . . 47

4. Research Design 49
4. 1 Design of the Study . • 49
4.2 Research Sample • . 51
4.3 Description of Instruments

Used . 53
4.4 Data Collection • • • 55
4.5 Data Analysis • • . . 63

7

5. Findings
5.1 Analysis of Questionnaire.
5.2 Additional Information from

64
64

Interviews 85
5.3 Discussion of Results 87

6. Conclusions and Implications 101
6.1 Conclusions 101
6.2 Implications 104
6. 3 Conclusion to Thesis 1 06

7. Bibliography 0 • 107

8. Appendices . 112
8.1 Blank Questionnaire 112
8.2 Covering Letter 117
8.3 Spreadsheet of Questionnaire

Responses 1 19

8

List of Tables

Table 1 - Additional criteria - question 9 • 0 • 0 • • • 64

Table 2 - Additional criteria - question 15 65

Table 3 - Additional criteria - question 17 • . 66

Table 4 - Respondent's role in the project 68

Table 5 - Type of project 68

Table 6 - Staff training levels 69

Table 7 - Staff experiel'lce levels • 70

Table 8 - Respondent's view o1' success of project 71

Table 9 - User's view of succe;;s of project 71

Table 10 - Ranked criteria of success 72

Table 11 - Identification phase of critical success
factors . 73

Table 12 -Project completion time 74

Table 13 - Project cost compared to budget 75

Table 14 - Change of estimation methods 75

Table 1 5 - Ranked strengths and weakne,sses of
languages and tools 77

Tclble 16 - Methodology used 78

Table 1 7 - Ranked strengths and weaknesses of
methodology . . • 79

Table 18 - Method of prototyping • . • 80

9

Table 19 - The effect of the methodology on the
outcome of the project • 81

Table 20 - Respondents wishing to know the
results of the study 83

Table 21 - Requirements analysis prior to
prototyping 85

Table 22 - Requirements analysis/project on
time/budget • . . • 96

10

1 . Introduction

To determine a method of software development that

will be consistently successful is the goal of most

software developers. There are so many different

factors affecting the outcome of any project that this

seems an impossible goal.

However, by studying both successful and not so

successful projects and analysing the mix of

methodology, tools, language and project type in the

light of the developers' experience and training, the

critical factors should become more identifiable.

Prototyping has become more viable as new

development environments, tools and languages

become available. Prototyping, by its very nature, will

usually result in a working system, which is an

improvement on previous methods of software

development. However, the speed, efficiency and cost

with which it happens depend upon the above­

mentioned mix of factors.

This study aims to identify those factors which together

provide the right mix for a successful development

project using prototyping.

11

2. The Problem

2.1 Background to the Study
The computer industry has a poor record of system

development using the traditional life-cycle approach.

One survey of software projects (Gladden, 1982) states

that 25% of systems were never delivered and 47%

were delivered but never used. Thus, only 28% of

systems were actually used.

There are various reasons for the lack of success in

system development. One of the main causes of user

dissatisfaction with the systems delivered is the amount

of time between the analysis and design of the system

and the implementation. According to Martin and Carey

(1991) "traditional approaches [to software

development) not only seem to deliver late systems that

do not please the user, but are also costly". In addition,

systems developed this way may be "difficult to learn

and use". The backlog of projects awaiting

development also increases the amount of time the

users have to wait for their system.

Current systems can be extremely complex and require

a large development team. This increases the number

of lines of communication within the project team and

12

the users, making the project more difficult to manage

(Brooks, 1982).

Users who have no previous experience of computer

systems find it extremely difficult to visualise how their

system will look and act, when depicted using

traditional techniques (data flow diagrams, data

dictionary and functional specifications). They rarely

have an accurate picture of their informational needs

(Martin and Carey, 1991). Additionally, by the time of

implementation the users' requirements have almost

always altered. This may be due to external constraints,

but also to the change in the users' perceptions of the

computer's capabilities once they have some experience

of using a computer system.

Users have always wanted to see how their system will

work at an early stage in development in order to better

understand the functionality of a computerised system.

The increase in the use of 4Gls has enabled

prototyping to become a viable method of development

and this allows users to become more involved in the

development process.

As project leader and system designer for a 4GL and

prototyping project, the author felt that a much better

job could have been done had the circumstances and

facilities been di>:ferent and if an appropriate

13

methodology had been available. More recently the

author was a supElrvisor for a CEED project that

required the student to produce a generally acceptable

methodology for use in a prototyping environment. No

formal methodology had been used in the development

of several successful projects using prototyping with a

4GL. The systems were developed by a user

department and the Computing department were

insisting that all future systems be developed using a

formalised methodology. The user department

considered the methodology used by the Computing

department to be inappropriate for prototyping and

decided to develop one that would reflect the stages

and processes that had been refined during the

development of several systems.

It appears from the literature that many different types

of approach are used, ranging from the complete

system life-cycle (Carey, 1990 and Rowen, 1990) to

the ad hoc, no methodology approach.

Some authors present prototyping as a methodology in

itself (Palvia and Nosek, 1990; Wojtkowski and

Wojtkowski, 1988).

The way that prototypes are used varies widely. Some

authors maintain that the prototype should never be

used as the final system as it is only for defining what

14

'

t
!
I
l

!
'

the final system should look like. Others use

· incremental prototypes until the final version is

implemented as the production system.

With such a wide range of approaches to prototyping, it

appeared that a study on the most successful and

effective methods of system development using

prototyping could be very informative and useful.

15

2.2 Significance (If the Study
The poor record of system development using a

traditional approach has been well-documented (Martin,

1985; Brooks, 1982; Gregory and Wojtkowski, 1990).

A system may take two years to develop, by which

time the requirements of the users may well have

changed and, as the users have had no opportunity to

use the system during development, the system may

not meet the users' original expectations.

The increase in the use of 4Gls has enabled

prototyping to become a practical method of

development. This has reduced the dewlopment time

significantly and, together with the use of prototyping,

has allowed users to become more involved in the

development process.

However, this change in the development process has

meant that not only has the time factor been reduced,

but the use of an accepted methodology/system life

cycle has been ignored or altered. This has resulted in

systems where the definition-of-requirements phase

was often fast-tracked or omitted totally and the

system documentation is insufficient for effective

maintenance.

The opportunities that prototyping offers !>hould not be

discarded because of the use of inappropriate software

].6

development methodologies.

This study seeks to identify factors that may

influence the success or failure of a prototyping project.

].7

2.3 Theoretical Framework

2.3.1 Identification of variables impacting on the

research questions and their inter-relationships

There are a number of factors that will affect the

outcome of the research questions. The type of

information that will need to be gathered during the

fact-finding process will be:

• The method of prototyping used.

• The methodology used.

• The strengths and weaknesses of the methodology

and the development tools used.

• The development language and/or tools used.

• The suitability of the development language for the

adopted methodology.

• Was a thorough requirements analysis carried out

prior to the commencement of prototyping?

• The type, size and complexity of each project.

18

• The training and experience levels of the developers

and the users involved.

• The level of user involvement in each project.

• Was the development successful? If not, why not?

• What criteria were used to judge the level of

success?

• Was the system delivered on time and within budget?

• What refinements were made to the development

process used?

• What improvements could be ma,.je to the

methodology used?

2.3.2 Identification of theoretical and philosophical

assumptions underpinning the study

Certain assumptions have had to be made concerning

the data gathered:

• The information supplied is true and has not been

doctored for political motives. This could happen if

management do not wish any project failures to be

widely known. This can be avoided by reassuring

19

participants that the published data and results will

not associate organisations with particular data.

• It must be assumed that each project was correctly

costed and scheduled. It may be beneficial to

discover what methods of estimation were used ..

• Although the author will try not to view the data or

results with any bias, it should be noted that the

author has spent many years in a system

development role in industry and thus is not

approaching the study in a purely theoretical manner.

20

2.4 Statement of the Problem to be

Investigated

This study sets out to determine the significance of the

system development methodology used, by reviewing

the development process and resulting systems that

have been developed when using a prototyping

approach. The outcome of this study should be of

benefit to future system developers by providing them

with a better approach to prototyping.

Because three significant methods of prototyping exist,

different solutions may be found to be appropriate for

each method.

21

2.5 Statement of Research Questions
Are the current life-cycle methodologies appropriate for

system development using a prototyping approach 7

How does system development using prototyping differ

from traditional system development?

Does the system development life-cycle need to be

modified or is a totally new approach required?

22

2.6 Delimitations and Limitations of the

Study

The study will rely on the willingness of organisations

to allow their experiences to be included in the study.

There is a need for honesty from contributors to ensure

the integrity of the resulting conclusions. Therefore, all

participants must be guaranteed anonymity and this

should also help to preclude any political motives.

There has not been a large number of software

development projects undertaken in WA using a

prototyping approach.

23

2. 7 Definition of Terms
Within tihe computing industry there is a variety of

terms used to describe different functions and

processes. This is reflected in the literature. For the

sake of clarity the terms used in this study are defined

below:

Prototyping

iterative (or evolutionary) -

the final iteration becomes the production

system;

piloting (or rapid) -

used to determine feasibility and test

alternative solutions;

modelling (or throw-away) -

to determine user requirements and/or screen

and report requirements and processes to be

performed on the data; the final model is

discarded and rewritten, generally using a

different method or language.

4GL - there is no precise definition of the term 'fourth

generation language', although James Martin

(Martin 1982) is credited as being the first to

use it. Now it is generally used to describe a

complete environment of development tools,

language, database and screen painter. The

language not usually being a third-generation

24

language, but more likely some sort of

'specification language' {Grindley 1987).

25

j
!
!
,:
-\

.;
' ' i

I
i
j

I .;
_j

3. Review of Relevant Literature

3.1 General Literature
Pue to the speed of change in the current technology

and software development methods, the literature

search has concentrated on articles and books

published since 1987. Some literature prior to this date

has been included when it is deemed to be of particular

significance.

There is a number of reasonably recent papers and a

few books dealing with software development using

Prototyping. Surveys carried out have generally been

more concerned with the type and size of project, its

suitability for prototyping and its degree of success,

rather than with the type of methodology used to

achieve this. However, a small number of articles has

been identified that describe surveys of prototyping

methodologies.

There are two main trends in prototyping

methodologies: the first is that prototyping is used in

conjunction with an established methodology, the

second is that prototyping is the methodology.

The books and articles found fall into a number of

categories:

26

1
J

I
'
1

- guidelines on hc>w to use prototyping

- how to use prototyping within the structured system

design cycle

- one specific project and the methodology and tools

used

- prototyping as a methodology for requirements

analysis

- descriptions of software development tools and 4Gls

suitable for prototyping

- surveys and descriptions of different methodologies

(not specific to prototYping).

27

3.2 Specific Studies Similar to the

Current Study
Doke (1990) uses his survey to attempt to answer the

following questions:

- which specific prototyping methodologies exist?

- to what extent are they being used?

- how important are they to system development

projects?

He identifies four distinct classes of prototyping

methodology (Illustrative, Simulated, Functional and

Evolutionary), three of which produce disposable

systems and one where the prototype evolves into the

final system. The prototyping methods vary from the

simple building of sample screens and reports, to the

"iterative heuristic development process, in which the

user guides system design by reviewing and interacting

with models of the proposed system and making

suggestions for its modification and improvement".

This continues until the users consider the system

acceptable.

He surveys relatively large organisations, finding that

those with fewer software development staff were less

likely to prototype. His research raised additional

important questions:

- When should the various methodologies be used?

28

- What is the impact of the methodologies on the

traditional life cycle 7

- Is it appropriate to employ multiple methodologies

concurrently?

- As tools such as 4Gls become more popular and

operationally efficient, what is the expected impact

on the prototyping methodologies 7

It is hoped that the current study will not only answer

the research questions stated in section 2.5, but will

also go some way towards answering these questions

that Doke has raised. The research questions for both

this study and Doke's study are very similar, but the

current study aims to gather information on aspects of

the development process other than the methodology in

order to gauge the importance of the methodology in

the outcome of the project.

A second study that is similar (Necco, Tsai and Gordon,

1989) considers prototyping to be of significant benefit

during the requirements analysis phase. However, the

results cause the researchers to note that "the

prototyping approach is not a substitute for the

Systems Development life Cycle approach". The

survey shows that prototyping is used to develop all

different types of information system, although some

organisations use prototyping for only certain types of

system. In their conclusions Necco 11t al. state that the

29

prototyping approach is being used by some

organisations to develop systems that are unsuited to

this type of development. Users were more likely to be

satisfied and the resultant systems required less

maintenance. However, it was concluded that

developers should be more selective in the projects that

they choose to prototype; they should use it in

conjunction with existing methods as appropriate to the

project; and that a "formal strategy for its use should be

prepared".

A third study found to be similar was conducted by

Martin and Carey (1991). They define prototyping as

"the process of quickly building a model of the final

software system which is used primarily as a

communication tool to assess and meet the information

needs of the user". They describe the problems

inherent in software development using traditional

methods and propose that "the goals of prototyping are

development of information systems that are

functionally correct, delivered quickly, less expensive

and easy to learn and use". They identify two types of

prototyping: iterative and throwaway.

A mail survey was conducted and the results discussed

in this paper. The paper examines the use of

prototyping for transaction-processing systems and

their conversion from prototype to operational system.

30

Generally prototyping has been used for small decision­

support systems, rather than large, stable, transaction­

processing systems. Martin and Carey suggest that a

sensible approach would be to use prototyping to

develop the system and then tune the system until an

acceptable level of performance is reached.

They identified two key research questions as follows:

"Are Transaction Processing Systems being developed

by prototyping methodologies?

What strategies exist for conversion of prototype

models to operational Transaction Processing

Systems?"

Deciding whether to develop a throwaway or an

iterative model is the other major aim of the paper.

They assert that "one of the primary goals of

prototyping is user communication". This is of

particular importance during the analysis phase and

thus, there is no reason to continue with the prototype

after this stage. However, few developers are willing to

discard a working model without sufficient justification.

This is in spite of the differing requirements of a

prototype and an operational system. The ideal

development language would be a 4GL which is quick

and easy to use, but may not have all the necessary

functionality of a 3GL, may be less likely to be as self­

documenting as a 3GL and may not be as suitabiG to

31

top-down structures required by operational systems.

Other differing requirements concern documentation,

computer architecture, access control and development

of procedures. To convert a prototype to an operational

system all these matters have to be considered. To

ease this conversion Martin and Carey suggest the

following approach should be taken: the prototype

should be programmed in the language designated for

the operational system; the model should be fully

documented as it is built; the development should use

the same hardware as the operational system; the

prototype should be considered iterative, even though it

may be thrown away eventually.

A survey was conducted with the intention of

supporting or refuting these ideas. In spite of a very

low response rate of only 7.1% Martin and Carey

considered the results worthy of analysis. Only 56% of

the respondents were prototyping and only 15% of

those actually threw away the prototype completely.

42.5% used the prototype as the operational system

and 42.5% discarded the prototype for design

purposes, but used it for such things as

"demonstration, reuse of code, training and system

documentation". 70% programmed the prototype in

the same language as the operational system, of which

55% used a 3GL and 15% used a 4GL. The other 30%

prototyped using a 4G L and then built the operational

32

.-----~----~---------·-----------------------------·------------------~·--

'

' --)

i
l
'

system in a 3GL. The most common prototyping

language was COBOL, as this was the most used

language for the operational systems. Another

interesting observation was that the development times

for building transaction-processing systems was very

similar to the development times for decision-support

systems. Martin and Carey considered these results to

be atypical of what is generally believed about

prototyping and thus, felt that academics and

computing professionals should be made aware of

them.

Pal via and Nosek (1990) conducted a survey in order to

evaluate two types of methodology: the System

Development Life Cycle methodologies and the

Prototyping methodologies, based on actual projects in

business and industry. Their objectives were to assess

the methodologies on their appropriateness at each

phase of development, for different system types, for

structured and unstructured problems and to determine

the "perceived value of the attributes associated with

the methodologies". The analysis of the data collected

produced the rather surprising result that "more

practitioners found prototyping useful for design than

analysis (64.3% versus 50%). Less surprising was that

the system development life cycle approach was found

to be more suitable for structured problems, whilst

prototyping is more suitable for unstructured problems.

["
I
i
I
l
i·
'

Prototyping was found to be a little less costly, easier

to use, much easier to learn, better for communicating

with the user and with other computing professionals,

produced a more flexible design and made early

identification of problems easier. However, project

control was not as good, the systems were slightly less

maintainable producing higher ongoing costs and the

overall quality of the documentation was not quite as

good as for the system life cycle methodologies.

34

3.3 Other Literature of Significance to

this Study
There is a number of papers and books that expound

prototyping as a methodology, rather than an approach

to be used with a traditional system development

methodology. These are of interest as they give the

steps that are followed when using this approach.

There is literature that describes the use of prototyping

within a traditional life cycle and some that discusses

other issues relevant to prototyping.

3.3.1 Prototyping as a methodology

A discussion paper (An Accelerated Methodology,

1990) outlines the advantages of prototyping and lists

guidelines of when prototyping should be used and

when it should not be used, as proposed by Milton

Jenkins (1990). Jenkins states that a methodology for

prototyping is essential and that it is unreasonable to

use the same development methods for all projects.

Although he recognises that there are three different

types of prototyping, his view is that prototyping should

also produce an operational system, not just a model.

His assertion that prototyping produces systems in 5 to

10 percent of the time and at 10 to 15 percent of the

cost of traditionally developed systems is not supported

35

by any data or references to studies, although the

author of the article states that Jenkins has 190 +
prototyping case studies from 40 different

organisations. These claims are not reflected in the

Necco et al. (1989) survey where about two-thirds of

respondents reported that their systems were developed

in less time and only about half reported that the

system development was less expensive.

One requirement that Jenkins considers critical to the

success of the project is to use real data, not test data,

when prototyping. He also emphasises that large

systems should be broken down into "manageable

chunks", otherwise they are not suitable for

prototyping.

Jenkins lists factors that influence the use of systems

and discusses the risk issues that arise when

prototyping. He also outlines the type of costs and

benefits involved. One of the costs listed is

reorganisation due to prototyping "flattening the

organisation and eliminating the need for middle

management in IS". This observation has not been

encountered in other literature.

The advantages of prototyping are also discussed by

Owen (Owen, 1989), but he maintains that software

develo~1ment should be completely "disconnected" from

36

"traditional !and failed) development methodologies".

Owen lists the advantages that he considers

prototyping provides: shortened development cycle,

earlier implementation, simpler project management,

lower development costs, improved user developer

communications, improved quality assurance, lower

enhancement and maintenance costs, concentration of

business functions and improved user satisfaction. The

first four advantages he attributes to the shorter project

cycle. However, he claims that the de,/elopment cycle

will be shortened by 6 to 1 2 months. This seems to be

a difficult claim to make without qualification, as this

would be dependent on the size of the system to be

developed. It would appear unreasonable to expect a

very small system development to be reduced by as

much as six months. Improved quality assurance will

be dl; 1 to the use of "advanced development tools"

which will "produce much of the actual code". This is

not supported by the current study or by other surveys

in the lit orature, as not all developers are using the

latest in advanced development environments. An

industry survey concerning the conversion of prototypes

to operational systems (Martin and Carey, 1989), found

that prototyping in a third generation language was

common. Owen next lists the perceived disadvantages:

these include machine inefficiency, different skills

required, lack of error trapping capability and inadequate

functionality of the system.

37

Owen states that prototyping delivers the system in

segments and that this is one of its valuable

characteristics, whereas Jenkins (1990) states that the

system must be split into segments in order for the

prototyping process to be successful. Finally, a major

advantage of prototyping is the much improved

communication between user and developer, which

helps their understanding of one another's problems, as

seen by Jenkins, Owen, Martin and Carey .

Prototyping as a methodology is described by

Wojtkowski and Wojtkowski (1988) as being used for

the "system requirements determination". They

acknowledge the view of practitioners of prototyping

that it should not replace adequate analysis and design.

However, they attribute failure in prototyping to

insufficiently trained users with unrealistic expectations,

prototyping inappropriate projects, using the wrong type

of prototyping, not having the "proper technical

environment" and ineffective project management.

They propose solutions to these problems which include

the "development and documentation of a prototype life

cycle" that is appropriate for a particular system.

They expand these concepts (1990) to include such

topics as: responsibilities of the prototyping

participants, different life cycle models, selecting

projects suitable for prototyping, prototyping tools and

38

management issues. They discuss possible "pitfalls" of

prototyping and also give some success stories.

3.3.2 Prototyping within a life cycle methodology

Carey (1990) explores the different types and uses of

prototyping. He observes that prototyping has been

used as a methodology, whereas he thin~s that it

should be used within a system development

methodology. He describes the advantages and

disadvantages of using prototyping and suggests a

methodology into which prototyping can be

incorporated. The factors affecting which types of

systems are suitable for prototyping and what type of

prototyping should be used are discussed. The

importance of the human factors in a system are

stressed and guidelines given as to what these factors

are and how they should be considered during the

system design phase. Two case studies are provided,

one a successful prototyping project and one a failure.

Carey is illustrating that success depends on the

suitability of the system for prototyping and selection of

the right tools. For example, a system where

performance is important may have response times that

are unacceptable if a 4GL is used to develop the

operational version. A better approach would be to

develop a model with the 4GL and then rebuild the final

version using a 3GL.

39

A computer aided prototyping methodology which uses

modified data flow diagrams and a Prototyping System

Description Language outlines the advantages of this

approach to system development (Krista and Rozman,

1989). The strategy of this approach to prototyping is

based on "the recognition and understanding of the

requirements of the system • and the "gradual

evaluation of the system which is defined by a model

prototype". They stress that decomposition of the

problem into workable modules using a top-down

problem-oriented approach is a key factor for increased

productivity. They treat prototyping as a process of

modelling different aspects of a system. This

methodology includes detailed analysis using data flow

diagrams and uses the model as a documentation and

communication tool for verifying the requirements.

Rowen (1 990) also believes that prototyping should be

used within the framework of a formal life-cycle

methodology. The importance of user involvement is

stressed. The model that is built is used to promote

user discussion and thus to clarify the system

requirements, which Rowen suggests are incomplete,

inconsistent and ambiguous when first received. He

states that the prototyping approach is attempting to

"expand the requirements and explore many alternatives

before narrowing and freezing the necessary

components". The difference between prototyping and

40

' I

' ' i
>

l

l

traditional development is the means of developing the

system, not the end result, which should always be a

working system that satisfies the user requirements.

Both the 'throw-it-away' and 'incremental' methods of

prototyping meet the life cycle's need for early user

feedback, whilst maintaining a controlled development

structure. He provides a generalised table of contents

for a requirements document to aid developers in

eliciting the correct type of information from users.

The requirements documentation should evolve over the

life cycle.

Using a traditional development methodology this would

not be viable, because changes in requirements are

difficult to incorporate once the system design is

complete. However, when there is an ongoing

prototype of the system, changes can be incorporated

relatively easily if a good 4GL environment is being

used.

3.3.3 Using prototyping

Tate (1990) describes the different types of prototypes,

the economics of prototyping, some examples of their

practical application and briefly looks at the life-cycle

issues. lie gives the primary reasons for prototyping as

"to buy knowledge and thus, reduce uncertainty" and

to improve the chance of the development being

successful. He discusses the economics of prototyping

41

from two viewpoints, one being the risk factors and

consequences associated with the project failing and

the second being the possibility of improved

productivity. He also uses an approach by Davis,

Bersoff and Comer (1988) to define pmducti\ ity as

"functionality delivered per unit cost". Tate considers

this approach to be more conventional than risk

management, but qualifies this by adding that both are

valuable and should be used. He continues by

discussing different methods of prototyping. Docker

(1989) is quoted by Tate as claiming that "requirements

that are not rigorously specified cannot be validated"

and adds that Davis {1988) proposes that a formal

technique for specifying requirements should be used

"when you cannot afford to have the requirement

misunderstood".

Tate lists some prototyping problems, including

boundary definition, the question of whether to use the

evolved prototype as the operational version and

system performance. When fast response times are

essential, as in real-time systems, iterative prototyping

may result in poor response times.

Tate describes various life cycles proposed by a number

of other authors and suggests that these should all be

considered as they are complementary to one another,

rather than mutually exclusive. He concludes with a

42

brief discussion of the future of prototyping.

Lea and Chung (1990) go further and propose an

approach using structured analysis that results in an

executable prototype. They use a standard set of

deliverables from the analysis phase of development,

i.e. a set of data flow diagrams, a set of mini-specs

and a data dictionary. They describe reasons why an

executable system cannot be built directly from these

deliverables and explain how they have overcome this

in their method. They have devised a specification

mechanism which has two classes: transactions and

objects. This is outlined with examples and followed by

the prototyping procedure that they have defined for

use with this specification method. The interpreter for

the specification language, which was written in C and

Prolog, consists of a specification preprocessor and a

running environment. This method of development

does not take into account the user interface, such as

screen or report design, but is interested in verifying the

functional requirements of the user.

Martin (1988) outlines his Prototyping Software

Development Cycle and maintains that the requirements

specification drives the prototyping phase. The main

object of the prototyping is to clarify the requirements,

but Martin is rather ambiguous as to whether the final

prototype is implemented or used as a model for

43

building an operational system.

3.3.4 Other issues relevant to prototyping

Budde and Ziillighoven (1 990) look at the way

prototyping has developed, identifying trends and

commenting on research and development that shows

promise for the future in this area. They describe the

different forms of prototyping and construct definitions

for these. They examine the trends that have

developed with the emergence of 4GLs and application

system generators (such as dBaselll), logic

programming languages (such as Pro log), hypertext

systems and object-oriented design. A discussion

concerning the current popularity of object-oriented

modelling for prototyping is also given.

Connell and Shafer (1989) stress that good project

management is essential to avoid the prototype being

caught in an endless loop of "demonstration and

revision". They cover many aspects of structured rapid

prototyping, including managing the process,

incorporating formal specification methodologies,

selection of prototyping method, suitable applications

and case studies.

They suggest that few modifications need to be made

to the traditional life cycle milestones, but that they will

not occur at the same time as they would in a

44

traditional life cycle development. They include an

extra phase for preliminary requirements analysis prior

to commencing the prototype. The final requirements

specification to be completed once the user has

approved the functionality of the working prototype.

There are other phases that are similar to the traditional

life cycle, but their names have been modified to suit

the prototyping process. The changes required to the

deliverables are discussed and each of the proposed life

cycle deliverables is described. There are less

deliverables than would be normal for a traditional life

cycle development, but the same information is

generally still available in a different form. They stress

the need to emphasise the Requirements Analysis phase

and that this is unlikely to be reduced in time, but will

actually be longer than in traditional development. This

is due to the need to produce a preliminary

requirements analysis in order to commence building the

prototype, then to build the prototype and whilst

developing and modifying the prototype to produce a

detailed requirements analysis. However, having

improved the requirements analysis function, the rest of

the development should be much faster to develop,

debug and test.

They continue by describing how to build, tune,

implement and maintain a rapid prototype system.

They address the issues of management, causes of

45

failure, future trends and some additional topics

concerning data mode!ling, normalisation, information

centres and tools. Case studies of different types of

prototyping projects are given and advice on how to

make prototyping work for your organisation.

There are several articles covering the review,

evaluation and selection techniques for system

development methodologies. Modha, Gwinnett and

Bruce (1990) review a number of different methodology

selection techniques in an attempt to determine the

selection criteria that should be used. Although

prototyping is not covered specifically, the issues

discussed in this paper would be of interest when

considering a methodology for prototyping. Fitzgerald,

Stokes and Wood (1985) provide a framework for

evaluating methodologies. The methodologies are not

being assessed for prototyping but the framework and

guidelines proposed would help a developer select a

methodology.

Other literature concerning prototyping tools (West,

1986) and 4Gls (Crinnion, 1989), (lehman and

Wetherbe, 1989) and (Gryczan and Kautz, 1990)

although not directly relevant to this study would be of

interest to anyone considering using a prototyping

approach to system development.

46

3.4 Methodologies that Address

Prototyping

One methodology that was cited in the questionnaires is

designed speciflcally for prototyping. It contains

guidelines for iterative, piloting and modelling

approaches. The differences between the required

phases for a traditional approach and a prototyping

approach are outlined. The methodology provides

fourth generation development tools and a relational

database management system. In spite of this

methodology being designed for prototyping the

respondent who used it qualified it with the phrase

"sort of", which implies that it did not provide all that

was required.

Another respondent used a CASE tool that was

effectively a methodology and an application generator

in one package. This was found to be excellent for

prototyping and had been used for several projects in

addition to the one described in the questionnaire.

Recently a student was required to produce a generally

acceptable methodology for a client, that would reflect

the stages and processes that had been refined during

the development of several successful projects using a

4GL and a prototyping approach.

47

All of these methodologies followed some of the phases

of the system life cycle, but did not have the detailed

analysis and design phases. A requirements analysis

was included but this was not as detailed as it needs to

be for a traditional approach. However, this does not

preclude a very detailed requirements analysis being

done if it is warranted because of the complexity of the

system or other constraints.

48

4. Research Design

4. 1 Design of the Study
In order to undertake this research the following steps

were taken:

4. 1. 1 As many organisations as possible, in Western

Australia, that have used a prototyping approach for

software development were identified.

These were preferably organisations where several

projects have been developed, so that the developers

have had the opportunity to refine the process and

establish standards and guidelines within their

organisation.

4. 1 . 2 The initial contact with each organisation w~s by

telephone or personal contact, to enquire as to their

suitability, interest and willingness to participate in the

study. If they had experience relevant to the study and

were interested in participating, they were asked to

provide information about relevant development

practices.

4. 1 .3 Questionnaires were sent out to the most appropriate

persons for distribution to the specific developers and

users of prototyping.

49

4. 1.4 The information gained from the initial contact and the

questionnaires was evaluated as to whether follow-up

interviews were necessary with any particular

participant.

4. 1. 5 Once it was apparent that r>o more questionnaires were

going to be returned the data collected were analysed.

4. 1. 6 The data were collated in order to look for patterns or

an indication of factors that affect the success or failure

of a prototypi ng project.

4. 1. 7 These factors were considered in relation to any

software development methodology that was used with

a view to answering the research questions.

50

4.2 Research Sample
The research population used was taken mainly from

computing departments and computing companies in

Western Australia. However, it also includes some user

departments that have developed more than one project

using the prototyping approach. This covered large and

small projects from both the public and the private

sector.

As there is no user group specifically aimed at

prototyping in WA, access to contacts was by personal

recommendation or by direct telephone contact with

MIS management. The personal recommendations

came mainly from the author's existing industry

contacts, plus those suggested by other academics who

have an interest in the field of prototyping and 4Gls.

Four telephone calls were made to companies who did

not use prototyping at all. Four more used prototyping

for small parts of systems, but not sufficient to be

included in this study. Two others had tried

prototyping for one project, but had so far not used it

again and, therefore, would be unable to comment on

how they had altered their methods of development in

the light of previous experiences with prototyping.

In total 38 companies were approached, of which 28

had used a prototyping approach sufficiently to be

51

included in the study. 28 quo:lstionnaires were sent out

of which 19 were returned. Thus, 73.7% of companies

were prototyping, whereas in Doke's survey (1990) it

was 61% and in the Neece et al. (1989) survey it was

only 38% prototyping. This would seem reasonable

considering the increase in availability of better

development environments over the past few years.

The return rate was 67%, as compared with Doke's

19%. The difference here was probably due to the

initial number of questionnaires sent out by Doke being

much larger; he did not talk to each participant prior to

sending out the questionnaire and he did not follow up

non-returned questionnaires; all of which occurred for

this study.

52

4.3 Description of Instruments Used

4.3.1 The collection of data has been mainly by way of

questionnaires, but in some cases, follow-up interviews

were conducted also.

Follow-up interviews took place where deemed

appropriate, with questions depencient upon the

information gathered from the initial contact, the

questionnaire and the type of project development

taking place. Interviews were carried out for 12 of the

projects, but as some respondents submitted more than

one questionnaire this involved only 9 people.

In one case, comprehensive discussions took place with

a member of a particular company. Unfortunately, this

person had left the company by the time the

questionnaires were sent out and they were not

returned by the remaining employees. However, as this

company had used prototyping extensively a description

of the original discussions will be included in section

5.3.

4.3.2 Construction of Questionnaire

The questionnaire was pretested for three different

prototyping projects. Minor changes were made to

wording to remove ambiguity and to offer respondents

53

l

I
I

more space to enter their own comments.

A personalised, covering letter was sent out with each

questionnaire explaining the purpose of the study and

the type of projects that should be included (Appendix

8.2) and reply-paid envelopes were enclosed with the

questionnaires. The confidentiality of the data was

stated, but respondents were asked to include their

name and address if they wished for a copy of the

results of the study.

The questionnaire was designed to lead the respondent

through the questions in a logical sequence with the

simplest questions at the beginning.

Questions 1 - 6, 10 - 12, 14, 1 6, 18 and 20 required

non-judgemental or quantitative answers that should

have been easy for the respondent to complete.

Questions 7 and 8 required a 'yes' or 'no' answer and

were open-ended only if the answer was 'no'. Question

13 also required a 'yes' or 'no' answer, but was open­

ended only if the answer was 'yes'.

Questions 9, 1 5 and 17 gave a selection of options to

rank, but were open-ended allowing the respondents to

add any options that they felt were necessary.

Questions 19 and 21 were open-ended, requiring

judgements to be made and opinions stated.

54

Question 1 asked for the role of the respondent in the

project. By offering three options (Project manager,

Project Leader and Other) the type of person who

should be capable of knowing the answers to all the

questions is implied.

Each question was as concise, clear and unbiased as

possible and each addressed one topic only. A copy of

the questionnaire is given in Appendix 8.1.

4.4 Data Collection

4.4. 1 Collection Method

The main method of obtaining data was from

questionnaires and interviews.

The questionnaires were based on the variables

impacting the research questions, as described in

section 2.3.1. A copy of the questionnaire can be

found in appendix 8. 1 .

Subsequent interviews were based on the initial

Information gathered and were designed to clarify any

ambiguities or to provide further detail.

The information elicited by the open-ended questions is

55

discussed in section 5.3. Few of the questions

produced data that displayed obvious quantifiable

patterns. However, some common traits are observable

and these are described in section 5.3 and any

implications discussed in section 6.2.

Several of the questions requested that the respondents

should add their own criteria to the questionnaire and all

these additional criteria will be listed and commented on

for each question.

Criteria that were never referenced are also listed and

their lack of relevance to the respondents discussed.

They need to be discussed specifically as the author

had considered them relevant and it is important to

determine why the respondents did not rate them as

such.

The relationships between different criteria/factors and

the resulting outcome will be looked at for each

questionnaire and any obvious trends documented.

4.4.2 The Questionnaire

The questionnaire consisted of 21 questions. The

relevance of each question to the study is described

below.

What was your role in this project?

56

The perspective of the respondent may differ between

the project manager, the project leader, a developer and

a user.

Type of Project?

Some types of project are far more complex than

others. For example, a very large stock control project

may be much simpler than a small payroll system. This

could have a bearing on the time factors affecting the

development. Projects that can be broken down into

manageable sections are more suited to prototyping

(Jenkins, 1990).

Size and complexity of project:

What was the elapsed time of the project

development?

Approximately how many person-months did

the project take?

On average, how many staff worked on this

project at one time?

One of the aims of using a prototyping approach is to

develop systems fast (Martin, 1988). The ideal team

size for prototyping should be small in order to keep the

number of communication lines as few as possible

(Brooks, 1982).

What were the training levels of the staff involved?

Lack of training in the products and methods used can

57

have a significant impact on the development process,

(Carey, 1990). [The author has experience in using a

<,...JL environment where training in the 4GL was given

to the programmers, but not to the analysts.]

What were the experience levels of the staff involved?

Experience in software development is of particular

importance when prototyping, as a certain amount of

fast-tracking is often involved and without sufficient

background, this may be used at inappropriate times

and phases of development (Carey, 1990).

What was the level of user involvement? (In days per

week).

The involvement of the user(s) is considered to be of

prime importance to the success of the project (Necco

et al, 1989). The higher the level of involvement, the

more likely the project is to succeed. This is mainly due

to two factors: firstly, the quality of the user's

knowledge leads to a more accurate and useful system;

secondly, users feel that they have more 'ownership' of

the system, because of the amount of input they have

made to its design.

Do you consider the project was a success? If not,

why not?

The developers' assessment of the success of the

project should affect their attitude to future

58

development using prototyping. Their reasons for

viewing the project as less than successful could be

very relevant to other projects and other developers.

Do you think the user would consider the project was a

success? If not, why not?

The users' assessment of the success of the project

may be based on totally different criteria to that of the

developers.

What criteria were used to judge the level of success?

Respondents were asked to rate the criteria given, plus

their own criteria, in order of importance.

At what point in the system development process did

you identify the critical success factors?

If the critical success factors were not identified at the

start of the project, the development process may have

followed a course that was not as focussed as it should

have been. Boehm (1987) considers it 100 times more

expensive to fix a problem after delivery of the system,

than it is to fix it during the requirements analysis or

early design phases. Thus, if the critical success

factors have not been identified early in the project

development there is a greater risk of the system not

meeting the user requirements.

Was the system delivered on time? Indicate how much

59

ft differed from the schedule.

There are many factors affecting the time schedule.

The methods used to estimate the schedule and the

experience of the estimator, being the most important.

Was the system delivered within budget? Indicate how

much it differed from the budget.

As the budget is often dependent on the time schedule,

any problems with the methods used to estimate that

schedule will also affect the budget. However, in some

cases the budget is fixed before any estimation is made,

as no more money is available. Due to these factors it

"Nould be useful to know what constraints there were

on the project, but unfortunately this is an area that

companies may be loathe to discuss with outsiders.

Have you changed, or do you intend to change, the

way you estimate time and cost of a project? If yes, in

what way?

Unless the time and budget estimates have been

particularly accurate, it is hoped that the methods used

to produce them will be refined, in the light of each

prototyping experience. In the author's experience

estimates of time and cost are not always made in the

most optimal manner. Time estimates are not always

formulated as there are external deadlines existing over

which the developers have no control. There may be a

limited amount of money available or, if the project was

60

put out to tender, the prospective developers may have

underestimated the cost in order to win the tender.

What development languages and/or tools were used?

A good methodology may not br.ng about a successful

project if the language and/or tools used are poorly

supported or inappropriate for the task required of

them.

What did you feel were the strengths and weaknesses

of the development languages and tools used?

Respondents were asked to rate the strengths and

weaknesses listed, plus those that they add to the list,

in order of importance.

What methodology was used?

A selection of the most widely used methodologies is

given for respondents to choose from, whilst allowing

them to add the methodology they used, if it is not

listed.

What did you feel were the strengths and weaknesses

of the methodology used?

Respondents were asked to rate the strengths and

weaknesses given, plus those that they add to the list,

in order of importance.

What method of prototyping was used?

61

There are three options given: Iterative, Piloting and

Modelling, with a description of what each of these

entails.

What refinements were made to the development

process used?

This is a most important question as it should show

what the developers felt needed to be improved or

changed in the development process, when using a

prototyping approach.

How much did the methodology used affect the

success of the project?

Although this is a very subjective viewpoint, it is

important to know how much confidence the developer

had in the methodology used.

What improvements could be made to the methodology

used?

In determining what makes a succes~ful methodology

for prototyping, the responses to this question should

be most helpful.

62

4. 5 Data Analysis
As far as is practicable the data gathered have been

organised in a tabular form to make analysis easier.

However, not all the data suits this approach and

in such case the description is textual.

The final analysis attempts to take into consideration all

the variables that affect the success of a project, prior

to any conclusions or recommendations being made.

63

5. Findings

5.1 Analysis of Questionnaire.

5.1. 1 Additional options to open-ended questions.

A number of questions asked the respondents to add

their own options to the answers if necessary. These

additional options have been categorised by the author,

based on her understanding of their meanings, in the

following tables:

Question 9 -What criteria were used to judge the level

of success?

Table 1

Additional criteria · guestion 9

No. of

Additional criteria responses

requirements satisfied 1

provision of accurate information 1

access to historical data 1

saved time, relative to previous system 1

speed of reporting 1

decommission of old platform 1

64

Question 15 - What did you feel were the strengths and

weaknesses of the development languages and tools

used?

Table 2

Additional criteria - question 1 5

No. of

Additional criteria responses

productive environment 1

easy to develop 1

provides right sort of functions 1

Time Series Database 1

corporate standard 1

capable of handling large databases 1

quickly

allowed rapid development 1

good end-user appearance 1

requires other mainframe software 1

knowledge

excessive resource requirements 1

poor response times/performance 2

high operating costs/cost of products 2

lack of use (community) 1

65

Question 17 - What did you feel were the strengths and

weaknesses of the methodology used?

Table 3

Additional criteria guestion 17 -
No. of

Additional criteria responses

fit for the purpose 1

designed to maximise time available in 1

hands-on mode

developed informal methodology as 1

went along

examples of deliverables 1

involved regular user input 1

allowed use of prototyping 1

promoted poor project management 2

no capacity planning done 1

not seen as "formal" approach 1

laborious/long-winded 1

difficult to maintain without a case tool 1

lacking in depth 2

required correct (management and 2

technical) resource

66

5. 1.2 Several of the options added are very similar to those

that very given in the questionnaire. This implies that

the respondent felt that the slight difference in definition

was important enough to state implicitly. These issues

are discussed further in section 5.3.

These additional options are not included in the tables in

section 5.1.3.

5.1.3 Options that were never referenced.

,\·
' ,,

'

Only in question 1 7 were there options not referenced

directly.

Question 17 - What did you feel were the strengths and

weaknesses of the methodology used?

- difficult to use

- too restrictive in its framework

Neither of these options were actually referenced in the

completed questionnaires. However, three of the

options added were:

- laborious/long-winded

- difficult to maintain without a CASE tool

- lacking in depth.

The first two imply that the methodology probably is

difficult to use, the third could imply that it is too

restrictive.

67

5.1.4 Summary of responses.

Question 1 - What was your role in the project?

Table 4

Respondent's role in the project

Role Number %

Project Manager 7 36.8

Project Leader 3 15.8

Analyst/programmer/developer 3 15.8

All the above 3 15.8

Client Project Manager 1 5.2

Management 1 5.2

"Fix,~r" 1 5.2

Question 2 - Type of project.

Table 5

T¥pe of project

Type of project Number %

DSS I MIS 12 63.1

Financial I Accounting 3 15.8

Other 4 21.1

68

Question 3 - Size and complexity of project.

What was the elapsed time of the project development?

The range was 2 to 36 months, with a mean of 11.3

months.

Approximately how many person-months did the project

take?

The range was 1.5 to 390 person-months, with a

mean of 67 person-months.

On average how many staff worked on this project at

one time?

The range was 1 to 15, with a mean of 3.7 staff.

Where the respondent gave a range, such as 5 to 6

staff, the lower figure was used in the calculation of

the mean.

Question 4 - What were the training levels of the staff

involved?

Table 6

Staff training levels

Training levels 0-20 21- 41- 61- 81-

of staff (%) 40 60 80 100

High 9.37 6.25 0 6.25 15.6

Medium 6.25 9.37 12.5 0 12.5

Low 6.25 6.25 6.25 3.13 0

651

'q

' :I ,,
]I

" I'
'I ,,

i! The r'espondents were asked to give the percentage of

staff who had high, medium and low levels of training.

Question 5 - What were the experience levels of the

staff involved?

Table 7

Staff experience levelli.

Experience 0-20 21- 41- 61- 81-

levels of 40 60 80 100

staff (%)

High 6.45 6.45 6.45 9.67 25.8

Medium 6.45 0 12.9 3.22 6.45

Low 9.67 3.22 3.22 0 0

The respondents were asked to give the percentage of

staff who had high, medium and low levels of

experiance.

Question 6 - What was the level of user involvement?

The range was from less than 1 day per week to 5 days

per week, with the rpode being 1 day per week.

70

Question 7 - Do you consider the project was a

success? If not, why not?

Table 8

Respondent's view of success of project

Response Number %

Yes I overall yes 14 73.7

Eventually 1 . 5.2

Partially 1 5.2

No/ Not satisfied/ Questionable 3 15.8

Question 8 - Do you think the user would consider the

project a success?

Table 9

User's view of success of project

I Response I Number 1%
Yes I overall yes 16 84.2

Eventually 1 5.3

In parts 1 5.3

No 1 5.3

I

71

Question 9 - What criteria were used to judge the level

of success?

Five criteria were supplied and the respondents were

asked to add any of their own to the list and to rank all

those that were applicable, in order of importance. Six

other criteria were added, but these tended to be quite

specific to particular projects. The four most commonly

cited success criteria are shown in Table 1 0.

Table 10

Ranked criteria of success

Rank

Criteria
1 2 3 4 5+

User satisfaction 8 2 3 3 3

Improved management info. 5 6 3 2 0

Improved planning 1 3 4 2 3

Management goals 4 2 2 4 2

72

Question 10- At what point in the system development

did you identify the critical success factors?

Table 11

Identification phase of critical success factors

System development phase Number %

Project Initiation 9 47.4

Feasibility Study 1 5.3

Analysis and Design stage 5 26.3

System Testing 1 5.3

Implementation 1 5.3

Other I not applicable 2 10.5

73

Question 11 - Was the system delivered on time?

Indicate how much it differed from the schedule.

Table 12

Project completion time

Project completion time Number %

Early 0 0

On time 7 36.8

25% late 5 26.3

> 25% & < 500% late 4 21

500% +late 2 10.5

Not applicable 1 5.3

74

" .• Question 12- Was the system delivered within budget?

Indicate how much it differed from the budget.

Table 13

Project cost compared to budget

Project cost Numt>er %

Under budget 1 5.3

On budget 7 36.8

25% over 3 15.8

>25% & <500% over 3 15.8

500% +over 2 10.5

Not applicable 3 15.8

Question 13 - Have you changed, or do you intend to

change, the way you estimate time and cost of a

project? If yes, in what way?

Table 14

Change of estimation metl:!!l.dli

Change estimation method? Number %

Yes 11 57.9

No 8 42.1

75

Question 14- What development languages and/or

tools were used?

Ada, AME (a 4GL environment), Artemis, C, CICS,

COBOL, Code locator, dBXL, 082, Excel, GENIFER,

Gupta SOL Windows, Hyperchannel, lnterbase, JCL,

Natural, Oracle RDBMS, Oracle development tools

(SOL *FORMS,SOLMENU, SQLPLUS,

SOL *REPORTWRITER), PILOT command centre,

Powerhouse, Quicksilver, Rally, RPG, SAS, SOL,

SYNON2, TODAY, Toolset, Turbo Pascal (abandoned).

76

Question 15 - What did you feel were the strengths and

weaknesses of the development languages and tools

used?

Table 15

Ranked strengths and weaknesses of languages and

tools

Rank

Strengths/weaknesses
1 2 3 4 5+

Easy to use 5 5 2 0 0

Good interfacing capabilities 3 2 2 2 2

Provided most required 4 4 3 1 2

functions

Widely used 2 1 2 0 3

Good technical support 0 0 2 5 1

Difficult to use 1 2 1 0 0

Poor interfacing capabilities 0 2 0 0 1

Lack of functionality 0 0 0 1 0

Poor technical support 3 0 1 2 0

77

,·

' ,II

Question 16 - What methodology was used?

Table 16

Methodologv used

Methodology

Internally written methodology

Internally written methodology

I Prototyping

Evolutionary

None/no formal methodology

APT

Powerdesign

PRISM

SYNON2

Number

9

1

1

4

1

1

1

1

%

47.4

5.3

5.3

21

5.3

5.3

5.3

5.3

78

Question 17 - What did you feel were the strengths and

weaknesses of the methodology used?

Table 17

Ranked strengths and weaknesses of methodology

Rank

Strengths/weaknesses
1 2 3 4 5+

Easy to use 3 6 4 0 0

Provided a good framework for 7 0 0 2 0

development

Specifically addressed 2 3 6 0 0

prototyping

No guidelines for prototyping 1 1 0 1 0

79

Question 18 - What method of prototyping was used?

(Iterative, Piloting, Modelling)

Table 18

Method of 12rotot¥12ing -

Method of prototyping Number %

Iterative 13 68.4

Piloting 2 10.5

Modelling 1 5.3

Piloting & Iterative 1 5.3

Piloting & Modelling 1 5.3

All three 1 5.3

Question 19 - What refinements were made to the

development process used?

Respondents gave refinements that they intended to

make, as well as those that they had already made. No

distinction will be drawn between the two groups.

They are all listed below:

Use software tools that are more flexible and

thus, more suited to a prototyping approach.

A more flexible development process was used,

involving the developer and the user in the

prototype process, where each prompted

80

discussion and further system development.

Some tidying up of the process - deleting the

test environment.

Needed to handle implementation for a large,

multiple site organisation.

Introduced staff impact documents.

Question 20 - How much did the methodology used

affect the success of the project?

Table 19

The effect of the methodology on the outcome of the

project

Effect of methodology Number %

Not at all 0 0

Small amount 4 21

Reasonably important 1 5.3

Highly significant 10 53

Totally responsible 3 15.8

Other 1 5.3

81

Question 21 - What improvements could be made to the

methodology used?

All comments made by the respondents are listed

below:

A more structured traditional methodology

might have been more suited to the inflexible

tools and mainframe processing.

The methodology used was more

comprehensive than the project required. A

method of "short-cutting" would be desirable.

Incorporate capacity planning.

Improve project management.

Use the associated case tool to automate the

laborious documentation process and to

generate code.

Formalise what was actually done as the basis

of a methodology suitable for the development

of DSS. (Assess whether this meth.'Jdology

would be suitable for developing transaction

[processing[systems.)

Address prototyping.

Provide a better structure.

More documentation.

Formal reviews.

Quality assurance checks.

More examples. More about training and

implementation.

Guidelines as to which type of prototyping

82

should be used for different projects. (The

respondent suggested that iterative prototyping

should not be used for "mission critical

applications".)

Only one person should manage all aspects of

the prototyping phase.

Need an improved coding language with

functions that match the prototyping tool

better.

Need to have a much better understanding of

the scope and requirements of the required

system before prototyping starts.

If a methodology had been used it might have

shown up the weaknesses in the original plan.

5. 1 . 5 A section was included at the end of the questionnaire

for the respondents to give their name and address if

they wished for a copy of the results.

Table 20

Respondents wishing to know the results of the study
-

Respondent wishes to know Number %

results YES/NO

Yes 13 68

No 6 32

83

The fact that 68% of the respondents wished to know

the results of this study, indicates that they are

interested in knowing how other prototyping projects

are handled, and thus, what improvements could be

made to their own methods. This is a fairly high

percentage in comparison with Doke's survey (1990)

where only 32% of respondents supplied name and

address. This could be due to an increased interest in

prototyping having occurred in the intervening three

years.

84

5.2 Additional Information from

Interviews

The question of whether a detailed requirements

analysis was carried out prior to the prototyping

commencing was not asked implicitly in the

questionnaire. When this information was not present,

respondents were contacted about this and any other

information that was unclear from their questionnaire.

Table 21

Requirements analysis prior to prototyping

Requirements analysis first? Number %

Detailed 9 47.4

High-level/functional 2 10.5

Insufficient 2 10.5

None 3 15.8

Not known 3 15.8

One respondent commented that they had been 'burnt'

a couple of times in the past, because of the lack of a

thorough requirements analysis.

Early on in the research for this study, a project

manager was interviewed from a company who had

used prototyping for the development of 6 projects.

85

Unfortunately, he had left the company by the time the

questionnaires were sent out and no other staff member

completed one. Thus, the following information could

not be included in any of the tables of data, but due to

the experience of the developers it is of relevance to

this study.

The 4GL development environment used was 'TODAY',

which worked well. All of the projects developed using

prototyping were successful, with the exception of one

project for which no requirements analysis was done

prior to commencement of prototyping. For all other

projects a thorough, detailed requirements analysis had

been done. As they had successfully developed other

projects for one particular client, who therefore was

considered to be an experienced user with prototyping,

they decided to prototype in order to define the

requirements. [Owen (1989) states that prototyping is

"viewed primarily as a means for obtaining requirements

from the users".] As the TODAY environment enabled

changes to be made fast and easily to the prototype,

daily modifications were made, but the client was never

satisfied and the requirements never finalised. It was

several months and many software changes later before

they realised that the client was not able to define the

requirements.

86

5.3 Discussion of Results
The questionnaires were analysed in an attempt to

determine trends of identifiable patterns of 1actors that

\lither help or hinder the development process.

The diversity of the projects and their development

methods made it difficult to draw meaningful

conclusions from the data collected. In order to verify

any trends in the data, the answers to the open-ended

questions needed to be analysed and assessed with the

other data.

52.6% of the questionnaires were completed by either

the Project Manager or Project Leader. 15.8% were

completed by an Analyst/Programmer/developer.

15.8% of the respondents were fulfilling all of these

roles. In addition, one client MIS manager, one

'management view' person and one "fixer" type person

completed questionnaires.

The type of project varied widely. Decision support

systems and management information systems were

represented more than any other type of system. Only

three of the 19 projects were transaction-processing

systems (Martin and Carey, 1991).

The training levels of the staff tended to be higher f.or

one person projects than for larger projects. The larger

87

projects included people with lower levels of training.

There were far more highly experienced people on all

the projects, relative to highly trained people. The

respondents felt that general experience in system

development was important when undertaking a project

using prototyping, whereas specialised training can

always be obtained during the project if necessary.

User involvement fell mainly into two categories: either

full-time on the project, or one day a week on the

project. Five of the projects had user participation of

less than one day a week, but these were all for one

person projects, four of which came in close to time

and budget. User involvement and feedback are

considered (Carey, 1989; Rowen, 1990; Tate, 1 990)

to be essential to the success of the project.

73.7% of respondents felt that the project was

successful; if not immediately, eventually (a further

5.2 %). This is not surprising considering that 68.4% of

projects used an iterative approach; thus, they

continued to refine the system until it was acceptable.

Within this type of development environment it would

be unusual to completely abandon the project, unless it

was found to be totally infeasible. One respondent

stated that they felt the project was not a success

because the prototyped system was installed as the

final version. His objections to this are due to the fact

88

that the prototyped system has been continually

modified and redesigned, the resultant system, he

considers, is a "band-aided version". Neece et al.

(1989) cite "users who wanted to use the prototype as

a production system" as the "second most reported

proLiem" and they encourage their readers to

thoroughly consider the disadvantages of doing so.

When systems f'equire fast response times, as in real­

time systems, using the resultant prototype of an

iterative approach may be unsuitable. In this case a

modelling approach should be used where the

operational system is built in an efficient development

language, using the prototype as the requirements

specification (Tate, 1 990). Another project was already

a "failure" before the respondent took it over with the

intention of "fixing it up".

84.7% of respondents felt that the user would consider

the project a success. Some supported this with

statements from the users. Performance was the only

type of problem mentioned. It is interesting that this is

a higher proportion than of the respondents themselves,

as often the users had not known of the problems that

had occurred during development.

When asked what criteria were used to judge the level

of success, in spite of user satisfaction !:Joing selected

most commonly, more than half of the respondents did

89

not put it first. This raises issues on the nature of

project success that need to be researched further.

Six criteria were added by the respondents, one of

which was "requirements satisfied". To differentiate

between this and "user satisfaction" {which was a

supplied option), implies that although the requirements

of the project have been met technically, the user might

not be satisfied with the project.

For 47.4% of projects, the critical success factors were

identified at the Project Initiation stage. This was true

for projects that ran on time as well as for those that

ran very late and over budget. However, all the

projects where the critical success factors were not

identified until the Analysis and Design stage, or later,

ran very late and over budget.

Of the projects that were completed late, only one of

them came in more over budget than over time, in

terms of percentages. All the respondents whose

projects came in on time and budget do not intend

changing their methods of estimation. All those that

came in late and over budget have already, or will in the

future, change their estimation methods. One project

came in late but on budget and the developers do not

intend changing their methods of estimation.

90

The products used were not all advanced development

tools as might be expected (Owen, 1989). Instead the

products range from CICS COBOL and JCL, spreadsheet

and database products, through to various 4GL

environments, such as Oracle and Today. This was

similar to the experience of Martin and Carey (1989)

who found that prototyping in a 3GL was quite

common.

The strengths and weaknesses of the development

language and tools had thirteen criteria added by the

respondents. Two of the thirteen criteria added were

very similar to those offered. One of them, "easy to

develop" appears to be emphasising the ease of

developing systems, as opposed to the 'ease of use' of

the product. The other criteria added was "provides

right sort of functions," as opposed to the option that

was offered which was "provided most required

functions". The respondent seems to be stressing the

appropriateness of the type of functions to the task,

rather than just the provision of most of the functions

needed. Necco et al. (1989) cited the lack of

appropriate tools as a significant problem. This was not

found to be a general problem in this study, probably

because there has been a great increase in the number

and sophistication of the available tools and

development environments since 1989.

91

52.7% of the projects used a methodology written

within their own organisation. Or'v four different types

of commercial methodologies were used.

The strengths and weaknesses of the methodology had

thirteen criteria added by the respondents. Five of the

additional thirteen criteria can be compared to four of

the options offered. Both "fit for the purpose" and

"examples of deliverables" could both be considered to

be part of 'a good framework for development'.

However, as the respondents have SPfiCifically added

these options, it implies, in the first instance, that

although the methodology is adequate, it does not

necessarily provide a good framework and, in the

second instance, the inclusion of examples of

deliverables has improved the useability of the

methodology. Glasson (1989) uses deliverables "to

define a system of being in a particular state of

evolution". By providing extensive examples of

deliverables, the developer is able to use those that are

appropriate for the system being developed, allowing

the system development process more flexibility than is

normally possible.

In order to draw any conclusions from the data, it is

necessary to know the respondents' definition of

prototyping. There are three main views of prototyping:

iterative (or evolutionary) - the final iteration becomes

92

the production system; piloting (or rapid) - used to

determine feasibility and test alternative solutions;

modelling (or throwaway) - to determine user

requirements, screen and report requirements and

processes to be performed on the data; the final model

is discarded and rewritten, generally using a different

method or language.

One respondent stated that they had used all three

types of prototyping for different parts of the project,

but other than that only four ~rojects had used piloting,

one project used modelling and all the others used an

iterative approach. The percentage of respondents

using the iterative approach was 68.4%, plus 5.3%

who used both an iterative and a piloting approach.

This gives a total of 73.7% who used an iterative

approach, which is very similar to the results found by

Doke in his survey (1989), where 71% used an iterative

(Doke calls this evolutionary) approach.

The refinements made to the development process were

almost all intended to improve the flexibility of the

products and the methodology used. Respondents felt

that prototyping was a flexible approach and therefore

needed equally flexible tools. These refinements

included greater involvement of the user in the proc-o:~ss,

which prompted discussion and further system

development.

93

For all the projects that were completed on time, the

methodology was said to be either "highly significant"

or "totally responsible" for the successful outcome of

the project. Of those that were completed late, most

said that the methodology had only a small amount of

impact.

The refinements made to the development process were

mainly to increase flexibility, whereas the suggested

improvements to the methodology are very much in

favour of more formalisation, better structure, more

documentation, formal reviews, quality assurance

checks, incorporate capacity planning, more examples

and more guidelines. Automated case tools should be

used for documentation and code generation. Project

management needs some improvement and that should

happen if a methodology was available that

incorporated the improvements suggested. One

respondent stated that weaknesses in the project plan

might have shown up if a methodology had been used!

The need to have a better understanding of the scope

and requirements was listed as an improvement to the

methodology. When no mention was made as to the

requirements analysis carried out this was discussed

during follow-up interviews. The information gathered

during these interviews indicated that the timing and

amount of detail involved in the requirements analysis

94

was of significance to the success of the project. This

view is reflected in the literature. Necco et al. (1989)

found that inadequate requirements analysis was a

major problem when prototyping. They felt that "in the

prototyping approach, the focus is on the physical

design, not the logical design." This can lead to the

wrong problem being solved. Thus, their assertion that

"prototyping shm.: · he used to support adequate

systems analysis, not r.Jplace it."

Jenkins (1980) describes prototyping as an

"accelerated methodology" that should be an

"alternative" to the requirements definition phase of the

standard development life cycle. His methodology

requires that the user's basic needs are identified, but

that the purpose of the initial prototype is to define the

detailed requirements of the system.

Carey (1990) states the "the methodology should

include thorough requirements definition and design

stages before any prototyping is attempted".

In order to judge more clearly the effect on the project,

the timing and detail of the requirements analysis has

been tabulated according to how late of over budget the

project was.

95

Table 22

Beguirements analllsis/groiect on time/bu!!9m.

Requirements =time < 200% >=

analysis I or = over 200%

amount over budget over

time or budget
% % %

Detailed 5 27.7 2 11 .1 2 11 . 1

High-level 1 5.5 0 0 0 0

Insufficient 0 0 0 0 2 11 . 1

None 1 5.5 0 0 2 11.1

Not known 2 11 .1 1 5.5 0 0

There were four projects that came in late or over

budget, where a detailed requirements analysis had

been carried out. Each of these projects has been

examined to determine what caused the overrun.

Although a detailed requirements analysis was done for

the first of these projects, the complexity of those

requirements was not fully investigated. This caused

the time and budget estimates to be unrealistic.

The second overdue project was 25% over time and

25% over budget, which would have been considered

acceptable in the past, using traditional system

96

development methods. The respondent felt that the use

of Function Point Analysis would have improved the

estimation techniques. The other factor that could have

affected the project was that the methodology was

"laborious and long-winded" and "difficult to maintain

without a case tool". This particular methodology has

an associated case tool to automate the documentation

and generate code. The respondent stated that this

would be used in the future.

The third overdue project was subject to a number of

adverse factors. The project was scheduled and

budgeted before sufficient information was gathered

concerning the complexity of the requirements. The

time and budget were underestimated in order to win

the tender for this project. A new product was used for

the development, for which there were no experienced

practitioners in Australia. The staff, although

experienced in system development, were not

sufficiently trained in this new product.

The last of these overdue projects was 200% overdue

and 25% over budget. Although a requirements

analysis was done, it took place five years before the

system was developed. The baseline functional

specification was at a fairly high-level and the

appropriateness of this document was not ratified prior

to the commencement of development.

97

Having analysed all the data collected it is necessary to

consider what bearing it has on the research questions

(section 2.5, page 22).

Are the current life-cycle methodologies apprcp~iate for

system development using a prototyping approach?

The comments elicited by the open-ended questions

indicate that the current life-cycle system development

methodologies are not sufficiently flexible when using a

prototyping approach. Only 21.2% of respondents

used commercial methodologies, the others used no

methodology, used prototyping as the methodology, or

used an internally-written methodology. This implies

that the commercially available methodologies do not

suit the needs of most developers. The strengths and

weaknesses of the methodology that respondents rated

as being most important during development were that

it was easy to use, provided a good framework and

specifically addressed prototyping. Where the

methodology provided no guidelinP.s for prototyping this

was considered to have a negative effect on the

development.

How does system development using prototyping differ

from traditional system development?

The prototyping development process aims to clarify

requirements as early as possible during development

and to produce a final product faster than would be

98

possible using a traditional approach. Prototyping

development has much greater involvement of the user

than is normal in traditional development. There was

wide use of 4GL development environments that

enabled rapid development using screen builders, code

generators and other tools that helped to produce a

system prototype quickly. However, there are sriil

prototyping projects being developed using tools and

languages that are inappropriate for developing systems

fast.

Does the system development life ·cycle need to be

modified or is a totally new approach required?

The system development life-cycle is still relevant but

needs more flexibility to allow iterations to take place

for individual and groups of phases. It should be

possible to omit or modify phases that are inappropriate

to a particular project. Examples of different life cycles

and deliverables that are suitable for specific types of

project should be included.

Having addressed the research questions for this study

it is worth looking at the questions that emerged from

Doke's study to see if any of these can be answered.

When should the various methodologies be used?

The iterative approach was used in 71 . 7% of

prototyping projects and was considered to be

successful. Piloting was used to test new tools and to

99

ascertain the feasibility of particular functions.

Modelling was used when performance was critical to

the success of the system, as in real-time systems, and

where the prototype development environment did not

provide the required level of performance.

What is the impact of the methodologies on the

traditional life cycle?

This question is answered by all three of the research

questions for this study.

Is it appropriate to employ multiple methodologies

concurrently?

A few of the respondents used all three types of

prototyping when developing large projects. For

prototyping to be successful it is necessary to be able

to decompose the system into modules for

development, this then allows the developer to select

the approach most appropriate for each module.

As tools such as 4Gls become more popular and

operationally efficient, what is the expected impact

on the prototyping methodologies?

The only result relevant to this question is the increase

in prototyping identified in this study as compared with

earlier studies, due to the increased availability and

functionality of the latest tools and development

environments.

100

6. Conclusions and Implications

6.1 Conclusions

6.1. 1 Conclusions to be drawn based on the

findingt.

There were two main areas indicated that had an effect

on the success of a software development project. The

first is the lack of flexibility in the methodologies used

and to a lesser extent the inappropriateness of the

development tools and languages. The second is

insufficient requirements analysis. There is much

literature that promotes prototyping as a methodology

that can be used to define requirements and to develop

the system. However, in practice it appears that

prototyping, particularly when used iteratively, should

be clarifying requirements, not defining them.

6.1 .2 Alternative explanations for the findings

There are other factors that have affected the success

of a project. The experience of the staff in system

development, particularly when using a prototyping

approach, will have a significant bearing on the project.

The size of the project is very important. A small

project will often involve less developers and thus there

are less lines of communication. It is faster to build the

initial prototype which helps both the user and the

101

developer to visualise where they are headed.

The development environment, tools and languages

used can have a significant impact on the project.

Attempting to prototype using CICS COBOL and JCL

may not provide an optimal environment for rapid

development.

The type of project is significant as some systems are

inherently complex and careful consideration should be

given as to whether a prototyping approach is suitable.

The most suitable projects are those that are small or

easily decomposed into modules.

6. 1.3 Limitations of the study

The sample population was not particularly large.

However, the results can still be generalised to other

projects as there was a wide range of types of system

which were representative of the general population.

Other factors need to be taken into consideration such

as the experience of the developers and the complexity

of the project (6.1.2).

Additional information, such as the specific

development stages and deliverables at each stage,

would have made it easier to draw conclusions from the

data. However, this would have made the completion

102

of the questionnaire significantly more onerous and

could have deterred participants from responding.

103

6.2 Implications

6.2.1 Implications for professional practice

A methodology is required that provides a good

framework, but is flexible enough to handle different

types and sizes of project. It should specifically address

prototyping and should include guidelines as to how to

select the most suitable prototyping approach for each

project.

It should contain exarr.ples of different deliverables and

various development cycles appropriate for each type of

prototyping. It should include guidelines for training

and implementation.

There should be automated tools available to handle

documentation and code generation where possible.

6.2.2 Implications for further research studies

The next logical step in this research would be to

discover more about the individual methodologies used

and identify the parts that were useful for each project.

From the information obtained an outline methodology

could be built which would allow for different types of

development. After discussions with experienced

prototypers this could be expanded to include more

104

1

l
I
I

detail, until there is a sufficiently dsveloped framework

for it to be tested on a new development project.

Eventually, a complete methodology could be developed

that could be adapted for any type of development

strategy.

105

;

I

I
i

6.3 Conclusion to Thesis
Prototyping is becoming more popular for software

development, but few developers are completely

satisfied with the methodologies and tools available.

There is a definite lack of case studies, examples and

guidelines relating to prototyping: how to assess the

suitability of a project for prototyping and which

method of prototyping to use. A flexible methodology

which would provide a good framework and supportive

tools is required if the advantages of prototyping are to

be maximised in the future.

106

7. Bibliography
An Accelerated Methodology. (1990). System

Development, 10 (12), 5-7.

Boehm, B.W. (1987, September). Industrial Software

Metrics top 10 list. IE££ Software, pp. 84-85.

Brooks, F.P. (1982). The Mythical Man-Month.

Reading, MA: Addison-Wesley.

Budde, R. & ZOIIighoven, H. (1990, May). Prototyping

Revisited. Paper presented at the IEEE

International Conference on Computer Systems

and Software Engineering, Tel-Aviv, Israel.

Carey, J.M. (1990). Prototyping: alternative systems

development methodology. Information and

Software Technology, 32 (2), 119-26.

Connell, J.L. & Shafer, LB. (1989). Structured Rapid

Prototyping. An Evolutionary Approach to

Software Development. New Jersey: Prentice­

Hall Inc.

Crinnion, J. (1989). The systems implications of

Fourth Generation languages. Journal of

Information Technology, 4 (2), 71-80.

107

Doke E. Reed. (1990). An industry survey of emerging

Prototyping Methodologies. Information and

Management, 18 (4), 169-76.

Fitzgerald, G., Stokes, N. & Wood, J.R.G. (1985).

Feature analysis of contemporary information

systems methodologies. The Computer

Journal, 28 (3), 223-29.

Gladden, G.R. (1982). Stop the life Cycle I want to

get off. ACM Sigsoft Software Engineering

Notes, 7 (2).

Glasson, B.C. (1989). Model of System Evolution.

Information and Software Technology, 31 (7),

351-6.

Grindley, K. (1987). Fourth Generation Languages,

A Survey of Best Practice. IDPM Publications.

Gryczan, G. & Kautz, K. (1990, May). A Comparative

Case Study of Prototyping Tools - Experiences

and Conclusions. Paper presented at the IEEE

International Conference on Computer Systems

and Software Engineering, Tel-Aviv, Israel.

10<~

Jenkins, A.M. (1990, September). Background, Usage

and Future of Prototyping. ShowCASE V,

sponsored by the Center for the Study of Data

Processing, Washington University, St.Louis,

MO.

Krista, R. & Rozman, I. (1989). A computer aided

prototyping methodology. ACM Sigsoft

Software Engineering Notes, 14 (6), 68-72.

Lea, R-J & Chung, C-G. (1990). Rapid prototyping

from structured analysis: executable

specification approach. Information and

Software Technology, 32 (9), 589-97.

Lehman, J.A. & Wetherbe, J.C. (1989, summer).

A survey of 4GL users and applications.

Journal of Information Systems Management,

pp. 44-52.

Martin, C.F. (1988). User-Centred Requirements

Analysis. New Jersey: Prentice Hall.

Martin, J. (1982). Applications Development ~.lithout

Programmers. New Jersey: Prentice Hall.

Martin, J. (1985). Fourth-Generation Languages

volume I Principles. New Jersey: Prentice Hall.

109

Martin, M.P. & Carey, J.M. !1991). Converting

prototypes to operational systems: evidence

from preliminary industrial survey. Information

and Software Technology, 33 (5), 351-6.

Modha, J., Gwinnett, A. & Bruce, M. (1990).

A review of Information System Development

Methodology (ISDM) Selection Techniques.

Omega, 18, 473-90.

Necco, C.R., Tsai, N. & Gordon, C.L. (1989).

Prototyping: use in the development of

computer-based information systems. Journal

of Computer Information Systems, 30 (1), 62-

6.

Owen, D.E. (1989). Prototyping: Essence of pragmatic

IS development. Information Strategy: The

Executive's Journal, 5 (2), 21-5.

Palvia, P. & Nosek, J.T. (1990). An empirical

evaluation of system development

methodologies. Information Resources

Management Journal, 3 (3), 23-32.

l.l.O

Rowen, R.B. (1990). Software project management

under incomplete and ambiguous

specifications. IEEE Transactions on

Engineering Management, 37 (1), 10-21.

Tate, G. (1990). Prototyping: helping to build the right

software. Information and Software

Technology, 32 (4), 237-43.

West, M.G. (1986). Proto typing. Stare of the art

report. (Chapter title - A taxonomy of

prototyping-tools and methods for decision

support and transaction systems).

Maidenhead: Pergamon lnfotech.

Wojtkowski, W.Gregory & Wojtkowski, Wita (1988).

Prototyping and its place in Information

Systems Development. ISECON '88 Seventh

Annual Information Systems Education

Conference - proceedings of the conference

sessions. Park Ridge, II. USA: Data Processing

Management Association.

Wojtkowski, W.Gregory & Wojtkowski, Wita (1990).

Applications Software Programming with

Fourth-Generation Languages. Boston: Boyd

and Fraser Publishing Company.

111

8. Appendices

8.1 Blank Questionnaire

112

QUESTIONNAIRE

1 What was your role in this project?
Project Manager Project Leader Other ...

~ Type of project. eg. payroll, HRM,
DSS, inventory, etc.

3 Size and complexity of project:

What was the elapsed time of the
PfC.:JSCt development?

~--- ------------------~-------------------
Approximately how many person-

-~!~s did _th=.protect t~~-~7 ______ '------------------ --- ----
On average, how many staff
worked on this project at one
time?

4 What were the training levels of the
staff involved? %high %medium %low

~ What were the experience levels of
the staff involved? %high %medium %low

~
-

What was the level of user
involvement? [In days per week.] 5 4 3 2 1 less than 1

LJ Do you consider the project was a
success?
If not, why not?

LJ Do you think the user would consider
the project was a success?
If not, why not?

113

s What criteria were used to judge the Management goals User satisfac."on
level of success 7

Improved management information

List others as required.
Improved planning

I [Rank them in order of importance,
11 is of highest importance).] Improved communication

10 At what point in the system Project Feasibility Analysis and System Implementation
development did you identify the Other
critical success factors? initiation study design stage testing

....................
11 Was the system delivered on time?

Indicate how much it differed from EARLY 75% 50% 25% ON TIME 25% 50% 75% 100% + LATE
the schedule.

If 100%+ state amount %

I 12 Was the system delivered within
budget? lnd;cate how much it UNDER 75% 50% 25% ON TIME 25% 50% 75% 100% + OVER
differed from t~e budget.

If 100%+ state amount %

13 Have you changed, or do you intend
to change, the way you estimate
time and cost of a project?
If yes, in what way?

[J What development languages and/or
tools were used?

114

ll What did you feel were the strengths Easy to use Difficult to use
and weaknesses of the development

Good interfacing capabilities Poor interfacing capabilities languages and tools used?

[List others as necessary.] Provided most required functions Lack of functionality

Widely used Poor technical support I
{Rank them in order of importance,
(1 is of highest importance).] Good technical support I

[Delete those that ara not applicable.]

I If you are using more than one
tool/langt!age, please include any
additional information on a separate
sheet and attach it to the
questionnaire.

I What methodology was used? Internally written methodology SSADM

[List others as necessary.] PRISM PRIDE

APT

SDM ?7

17 ~at did you feel were the strengths Easy to use Difficult to use
waaknesses of the methodology

d? Provided a good framework for Too restrictive in its framework
development

[List others as necess?.ty.] Specifically addressed prototyping No guidelines for prototyping

[Rani< them in order of importance,
(1 is of highest importance).]

[Delete those that are not applicable.]

115

18

I

[j
20

' 21

22

23

24

25

116

What method of prototyping was
used?

What refinements were made to the
development process used?

How much did tne methodology used
affect the success of the projecl?

What improvements could be made
to the methodology used 7

Complete the following information if
you wish to receive a copy of the
collated results.

Name and
Job Title

Name and address of organisation

Telephone number
Fax number

Project name

Iterative Piloting Modelling

ITo determine user raqulocmcnts,
screen and report rcquir<:mcntn,

processes to be pcrform:d on tho

!The final Iteration becomes the IUsed to determine feasibility
data. The final model Is discmdcd

and rewritten, OBncrolly using e
production system.] and test alternative solutions.] different mothod or languago.]

Not at Small Reasonably Highly Totally responsible for
all amount important significant the project outcome

8.2 Covering Letter

117

I
I
I
I
i
·' i

Dear participant,

Edith Cowan University
Department of Computer Science
2, Bradford Street
Mount Lawley
WA 6050

date

As we discussed on the telephone, I am enclosing n copies of
my questionnaire.

I am collecting data for my Masters thesis, "An Investigation of
Methodologies for Software Development Prototyping".

The purpose of the study is to determine how the methodology
used in a prototyping development impacts on the success or
failure of a proiect.

It is necessary to know as much as possible about the
development environment in order to ascertain which elements
of the methodology affect the outcome of the project and which
are due to other factors, such as the tools and languages used.

I would be grateful if you could complete the questionnaire as
accurately as possible.

If you wish to have a copy of the collated results, please
complete the section at the end of the questionnaire, with your
name and address.

All the information gathered will be strictly confidential.

Thankyou very much for giving up some of your time for this
activity, it is much appreciated.

Yours sincerely,

Sue Jones

118

8.3 Spreadsheet of Questionnaire Responses

119

~ i

111ill

,1

l ll 1

'!I

1=!
,:1

~I

:t
~

M . ,,
j

~ !

'

ru '
'~ iill I;

I' l[LI ~

!I Ii
lllli

:!f.:l"l
tlil!ISI

_§j
II I

11
]

ii '
]

•• i :.:::
1 1 • • 1: · .. J 11111111111111111111111111111111 llll H

 ~ I
ru ' ' '

'l

ru!I

111 Ill ISi ,i

l
l

fl :ii 1

illll

ii 111 !

·!:1,1 I l!I

:1g1 I I l~l~i'" 1
~jli!.l'"I

I"';

,1
"'i"!j~

I

:l"l"I I I l!I

•1!1'1 I l•l•I~ I 1,1,1,1

•1,1•rm
1•1 1 1 1,1,

,1,1•

"'l;l s: .,

glsJ I 1iis121
1~1

:;iii1:111sJsl

'!!1•1 I l•l•l•I I 1,1,1,1 ,.

11 11 i; ~ ' ii ,J;I

~ ~

11 1J 1J

~

"' _;J !llj
H

jil ' i . ll

,I Iii Ill l,1111
ll lli
-
~

ii I!
u !JI If
l
l
 1J

!lllu,1 l, ;: ~ ! jl.!,

ii l ~

.,lnl

ru

-:j'.'j1ir,,j"'I

J ii ~ I ii ! !

1 'I

!111
.lill 11

·1 liljlJ
t~ lut111

] I~ I! Ii ll

!I

11111,'
:i

•I
l

•
-, llllLu1
11 j/ ~I' ll !!

•

1 I~ 1 1111111111-I I I I-I I I I I l 1l l 1I I I I I-I-I-I I I I I I I l·l l 1I I~ 1·11 1111-I-I-I I-I I I I I I I I-I I I I I I I I I I Ill I I I I l-11111111111111111 11 l 1I I~ I·

!I

111
l

!I

1 ,1

j

1
11

!I

~

~

}I
n1n1;.;1

!:?I I Iii

al Ill l~I
11

i!T
.T

T
~

[il"'
;,1 111•1

!l u

~

!
:!l:il"';

1J

ll I .I l
'

s
I

.;
1-; ~ $

111,: ,1~11
ii

jj~1 uJ~11i
!I Ill Iii

'!I lj[[j[[j[

'
· 11i1 1r
r

~
~

gl Jil I.ti
"'i 1,1 l'l'l..,1-=

0
0 ., -

' . . li,·
j

::
j

j
~

t
]
l

.!j
~

1

1
1

1
i
h

~!~:ii,

;
!

!
-

•.J.
1·

,.

1~.
!1. i ! 1nl 1M1:l1i~ti1~1~

'; ; .
,,! ~Jt. ~~!1.ruit

;
i;

!
1

!I

·11j
l .. ·.I;.
-; ll ''.

"
' '
-; i 1 1: j !I • i

'l'l-:lr,,I

l i
• i

j· l
;

; !
d

.
li

..
1

~
1

.
1

g

J
:-

1

•
}

i
h i£hl

Jiii. 1i
;

i-1
!•.l :, ljll

j

~ . " ,, ,,
. ·r•

1!£1'.z,·
2

J-<
1

-
1

0,11,'

-
'"

"
t

.1
.

1
'

i
-
J

i
·

1 1.i!,lll i,1,111,•
'II -i ']

ffl ' '
-

1111, l

1:1111
i l • -
i

~ l
111

!

	An investigation of methodologies for software development prototyping
	Recommended Citation

	Edith Cowan University
	Research Online
	1993

	An investigation of methodologies for software development prototyping
	Susan M. Jones
	Recommended Citation

