
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

2010

Analysis avoidance techniques of malicious software Analysis avoidance techniques of malicious software

Murray Brand
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Brand, M. (2010). Analysis avoidance techniques of malicious software. https://ro.ecu.edu.au/theses/138

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/138

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Ftheses%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/138

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Analysis Avoidance Techniques of Malicious Software

Analysis Avoidance Techniques of

Malicious Software

Murray Brand

BEng (Hons) (Electronics and Communications)

MEngSc (Electrical Engineering)

GradCert (Computer Security)

A thesis submitted for the Award of

Doctor of Philosophy

At the Faculty of Computing, Health and Science

Edith Cowan University, Mount Lawley Campus

Principal Supervisor Professor Craig Valli

Associate Supervisor Doctor Andrew Woodward

Submitted 30 November 2010

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Analysis Avoidance Techniques of Malicious Software

 iii

PUBLICATIONS ARISING FROM THIS RESEARCH
Brand, M. (2007). Forensic Analysis Avoidance Techniques of Malware.

Paper presented at the 5th Australian Digital Forensics Conference, Edith

Cowan University, Mount Lawley Campus, Western Australia.

Szewczyk, P., Brand, M. (2008). Malware Detection and Removal: An

Examination of Personal Anti-Virus Software. Paper presented at the 6th

Australian Digital Forensics Conference, Edith Cowan University, Mount

Lawley Campus, Western Australia.

Valli, C., Brand, M. (2008). Malware Analysis Body of Knowledge. Paper

presented at the 6th Australian Digital Forensics Conference, Edith Cowan

University, Mount Lawley Campus, Western Australia.

Brand, M., Valli, C., Woodward, A. (2010). Lessons Learned from an

Investigation into the Analysis Avoidance Techniques of Malicious Software.

Paper presented at the 8th Australian Digital Forensics Conference, Duxton

Hotel, Perth Western Australia.

Brand, M., Valli, C., Woodward, A. (2010). Malware Forensics: Discovery of

the intent of Deception. Paper presented at the 8th Australian Digital

Forensics Conference, Duxton Hotel, Perth Western Australia.

Brand, M., Valli, C., Woodward, A. (2010). Malware Forensics: Discovery of

the intent of Deception. The Journal of Digital Forensics, Security and Law,

5(4), 31-42.

Analysis Avoidance Techniques of Malicious Software

 iv

ABSTRACT
Anti Virus (AV) software generally employs signature matching and

heuristics to detect the presence of malicious software (malware). The

generation of signatures and determination of heuristics is dependent upon

an AV analyst having successfully determined the nature of the malware,

not only for recognition purposes, but also for the determination of infected

files and startup mechanisms that need to be removed as part of the

disinfection process. If a specimen of malware has not been previously

extensively analyzed, it is unlikely to be detected by AV software. In

addition, malware is becoming increasingly profit driven and more likely to

incorporate stealth and deception techniques to avoid detection and analysis

to remain on infected systems for a myriad of nefarious purposes.

Malware extends beyond the commonly thought of virus or worm, to

customized malware that has been developed for specific and targeted

miscreant purposes. Such customized malware is highly unlikely to be

detected by AV software because it will not have been previously analyzed

and a signature will not exist. Analysis in such a case will have to be

conducted by a digital forensics analyst to determine the functionality of the

malware.

Malware can employ a plethora of techniques to hinder the analysis process

conducted by AV and digital forensics analysts. The purpose of this

research has been to answer three research questions directly related to the

employment of these techniques as:

1. What techniques can malware use to avoid being analyzed?

2. How can the use of these techniques be detected?

3. How can the use of these techniques be mitigated?

These questions were effectively answered by validating anti-analysis

techniques, showing how the techniques can be effectively detected and

mitigated as well as by analyzing malware collected from the internet. This

research contributes to the knowledge of malware analysis and digital

forensics by:

Analysis Avoidance Techniques of Malicious Software

 v

• Demonstrating that anti-analysis techniques can be very effective at

hindering analysis by the tools typically used by analysts.

• Showing that the use of anti-analysis techniques can be effectively

detected and mitigated by the use of appropriate analysis techniques,

scripts and plugins.

• Support of claims virus signature based detection by anti-virus

software can be far less than ideal.

• Showing that extensive use of packers and protectors are employed

by network based malware collected from the internet to obstruct

signature based detection and to hinder analysis.

• Support of an alternate paradigm of malware detection that could use

detection of deception and anti-analysis techniques to detect

malicious software instead of using virus signatures and heuristics.

• Identification of a Malware Analysis Body of Knowledge (MABOK) that

incorporates anti-analysis techniques as a core component.

• Identification of deficiencies in analysis tools given the extent of

available anti-analysis techniques.

• Determination of an appropriate analysis methodology tailored for

dealing with anti-analysis techniques.

• Development of a taxonomy of analysis avoidance techniques.

Analysis Avoidance Techniques of Malicious Software

 vi

DECLARATION
I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgement any material previously submitted

for a degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another person

except where due reference is made in the text; or

(iii) contain any defamatory material.

I also grant permission for the Library at Edith Cowan University to make

duplicate copies of my thesis as required.

Signature …………………………………………………………………….

Date …………………………………………………………………………….

Analysis Avoidance Techniques of Malicious Software

 vii

ACKNOWLEDGEMENTS
This thesis would not have been possible without the guidance and

encouragement provided by my Principal Supervisor Professor Craig Valli

and Associate Supervior Doctor Andrew Woodward.

Analysis Avoidance Techniques of Malicious Software

 viii

TABLE OF CONTENTS

PUBLICATIONS ARISING FROM THIS RESEARCH .. III

ABSTRACT ... IV

DECLARATION ... VI

ACKNOWLEDGEMENTS ... VII

LIST OF FIGURES ... XVII

LIST OF TABLES .. XX

CHAPTER 1 INTRODUCTION .. 1

1.1. OVERVIEW .. 1

1.2. A STATEMENT OF THE PROBLEM .. 2

1.3. RESEARCH QUESTIONS ... 6

1.4. SIGNIFICANCE OF RESEARCH .. 6

1.5. STRUCTURE OF THIS THESIS .. 8

CHAPTER 2 LITERATURE REVIEW .. 10

2.1. CHARACTERISATION OF NETWORK BASED MALWARE ... 10

2.1.1. Worms ... 11

2.1.2. Trojans .. 12

2.1.3. Rootkits ... 14

2.1.4. Backdoors ... 14

2.1.5. Bots ... 14

2.1.5.1. Evolution of Bots ... 15

2.1.6. Blended Threats .. 19

2.1.7. Anatomy of a Worm .. 19

2.1.8. Defence Methods ... 20

2.2. PROFILING .. 21

2.2.1. Static Analysis ... 21

2.2.2. Dynamic Analysis .. 22

2.3. OVERVIEW OF COMMON MANUAL ANALYSIS METHODOLOGIES.......................... 25

2.4. OVERVIEW OF ANTI FORENSIC TECHNIQUES .. 27

2.5. ANTI VIRTUAL MACHINE .. 31

2.6. ANTI ONLINE ANALYSIS ENGINES .. 34

2.7. ANTI REVERSING TECHNIQUES ... 35

2.7.1. Eliminating symbolic information ... 36

2.7.2. Code encryption .. 36

2.7.3. Active anti-debugger techniques ... 36

2.7.4. Confusing disassemblers ... 36

2.7.5. Code obfuscation .. 37

Analysis Avoidance Techniques of Malicious Software

 ix

2.7.6. Control flow transformations ... 37

2.7.7. Data transformations.. 37

2.8. ANTI UNPACKING ... 38

2.8.1. Anti Unpacking by Anti Dumping ... 38

2.8.1.1. Size of Image .. 38
2.8.1.2. Erasing the Header .. 39
2.8.1.3. Nanomites .. 39
2.8.1.4. Stolen Bytes.. 39
2.8.1.5. Guard Pages .. 40
2.8.1.6. Imports ... 40
2.8.1.7. Virtual Machines ... 40
2.8.1.8. Anti Unpacking by Anti Debugging ... 41
2.8.1.9. NtGlobalFlag ... 41
2.8.1.10. Heap Flags .. 42
2.8.1.11. The Heap ... 43
2.8.1.12. Special API’s ... 43

2.8.1.12.1. IsDebugger Present ... 43
2.8.1.12.2. Check Remote Debugger Present ... 44
2.8.1.12.3. NtQueryInformationProcess .. 44
2.8.1.12.4. Debug Objects .. 44
2.8.1.12.5. NtQuery Object .. 44
2.8.1.12.6. Thread Hiding .. 45
2.8.1.12.7. Open Process ... 45
2.8.1.12.8. Close Handle .. 45
2.8.1.12.9. Output Debug String .. 45
2.8.1.12.10. Read File .. 46
2.8.1.12.11. Write Process Memory ... 46
2.8.1.12.12. Unhandled Exception Filter ... 46
2.8.1.12.13. Block Input ... 46
2.8.1.12.14. Suspend Thread .. 46
2.8.1.12.15. Guard Pages .. 47
2.8.1.12.16. Alternative Desktop .. 47

2.8.2. Hardware Tricks ... 47

2.8.2.1. Prefetch Queue .. 47
2.8.2.2. Hardware Breakpoints ... 47
2.8.2.3. Instruction Counting .. 48
2.8.2.4. Execution Timing ... 48
2.8.2.5. EIP via Exceptions ... 49

2.8.3. Process Tricks .. 49

2.8.3.1. Header Entry Point .. 49
2.8.3.2. Parent Process ... 50
2.8.3.3. Self Execution .. 50
2.8.3.4. Process Name .. 50
2.8.3.5. Threads .. 50
2.8.3.6. Self Debugging .. 51

Analysis Avoidance Techniques of Malicious Software

 x

2.8.3.7. Disassembly ... 51
2.8.3.8. TLS Callback ... 51
2.8.3.9. Device Names .. 51
2.8.3.10. SoftIce Specific .. 52

2.8.3.10.1. Driver Information ... 52
2.8.3.10.2. Interrupt 1 .. 52

2.8.3.11. OllyDbg Specific .. 53
2.8.3.11.1. Malformed Files ... 53
2.8.3.11.2. Initial ESI Value... 53
2.8.3.11.3. Output Debug String .. 53
2.8.3.11.4. Find Window .. 53
2.8.3.11.5. Guard Pages .. 53

2.8.3.12. Hide Debugger Specific ... 54
2.8.3.13. Immunity Debugger Specific .. 54
2.8.3.14. WinDbg Specific .. 54

2.8.3.14.1. Find Window .. 54
2.8.3.15. Miscellaneous Tools .. 54

2.8.3.15.1. Find Window .. 54

2.8.4. Anti Unpacking by Anti Emulating ... 54

2.8.4.1. Software Interrupts .. 55
2.8.4.1.1. Interrupt 3 .. 55

2.8.4.2. Time Locks ... 55
2.8.4.3. Invalid API Parameters ... 55
2.8.4.4. Get Proc Address ... 55
2.8.4.5. Get Proc Address (Internal) .. 56
2.8.4.6. “Modern” CPU Instructions ... 56
2.8.4.7. Undocumented Instructions ... 56
2.8.4.8. Selector Verification .. 56
2.8.4.9. Memory Layout .. 56
2.8.4.10. File Format Tricks ... 56

2.8.4.10.1. Non Aligned Size of Image ... 57
2.8.4.10.2. Overlapping Instructions ... 57
2.8.4.10.3. Non Standard Number of RVA and Sizes ... 57
2.8.4.10.4. Non Aligned SizeOfRawData ... 57
2.8.4.10.5. Non Aligned PointerToRawData ... 57
2.8.4.10.6. No Section Table .. 58

2.8.5. Anti Unpacking by Anti Intercepting ... 58

2.8.5.1. Write->Exec .. 58
2.8.5.2. Write^Exec ... 58

2.8.6. Miscellaneous ... 58

2.8.6.1. Fake Signatures ... 58

2.9. PROCESS INJECTION TECHNIQUES ... 58

2.10. CODE EXECUTION FROM MEMORY .. 60

2.11. CHECKSUM CHECKS .. 61

2.12. PROCESS CAMOUFLAGE ... 61

Analysis Avoidance Techniques of Malicious Software

 xi

2.13. STRUCTURED EXCEPTION HANDLING .. 61

2.14. IMPORT ADDRESS TABLE ... 62

2.15. ROOTKITS ... 63

2.15.1. System Service Dispatch Table .. 63

2.15.2. IAT Hooking .. 64

2.15.3. Inline Function Hooking .. 64

2.15.4. SSDT Hooking ... 65

2.15.5. Direct Kernel Object Manipulation ... 65

2.16. PACKERS AND PROTECTORS ... 66

2.16.1. ASProtect ... 71

2.16.1.1. Unpacking ASProtect ... 75

2.16.2. The Problem with Packers ... 77

2.17. PLUGINS .. 78

2.18. SCRIPTING LANGUAGES ... 80

2.19. TRACING ... 82

2.20. NEW PARADIGMS FOR MALWARE DETECTION .. 83

2.20.1. Statistical Structures .. 83

2.20.2. Win 32 API Calls .. 83

2.20.3. System Dependence Graphs... 84

2.20.4. Run Time Behaviour Monitoring .. 84

2.20.5. Obfuscation Detection ... 84

2.21. IMPLICATIONS OF THE LITERATURE REVIEW ... 85

CHAPTER 3 RESEARCH METHODS .. 87

3.1. A MODEL OF THE RESEARCH PROCESS ... 87

3.2. RESEARCH PARADIGMS .. 89

3.2.1. Positivism ... 89

3.2.2. Interpretivism ... 90

3.2.3. Critical Research .. 91

3.2.4. Research Paradigm Selected for this Research .. 92

3.3. EMPIRICAL RESEARCH .. 92

3.3.1. Selected Empirical Research Method ... 97

3.4. EXPERIMENTAL STRATEGIES ... 97

3.4.1. True Experiment ... 98

3.4.2. Quasi Experiment ... 99

3.5. CHOICE OF RESEARCH METHOD ... 100

3.6. CONCEPTUAL FRAMEWORK .. 100

3.6.1. Validation of Techniques .. 100

3.6.2. Collection of Network Based Malware ... 100

3.6.3. Analysis of Collected Malware Packers ... 102

3.6.4. Risk Mitigation ... 103

Analysis Avoidance Techniques of Malicious Software

 xii

3.7. RESEARCH DESIGN ... 103

3.7.1. Validate Individual Techniques... 103

3.7.2. Analysis of Collected Malware ... 104

CHAPTER 4 VALIDATION OF ANTI-ANALYSIS TECHNIQUES RESULTS 106

4.1. OVERVIEW .. 106

4.2. METHODOLOGY .. 107

4.2.1. Implement the technique in as simple a program as possible ... 108

4.2.2. Observe if the anti-analysis technique is successful or not ... 108

4.2.3. Implement a detection script or employ a detection technique to try to detect the presence

of the technique. .. 109

4.2.4. Observe if the detection technique is successful or not. .. 110

4.2.5. Implement a mitigation script or technique to try and mitigate the use of the anti-analysis

technique. .. 110

4.2.6. Observe if the mitigation technique is successful or not. .. 110

4.3. KERNEL32 ISDEBUGGERPRESENT() QUASI EXPERIMENT 111

4.3.1. Implementation of anti-analysis technique ... 111

4.3.2. Effectiveness of anti-analysis technique observation .. 112

4.3.3. Implementation of detection of analysis avoidance technique .. 112

4.3.4. Effectiveness of detection of technique observation ... 113

4.3.5. Implementation of mitigation technique .. 113

4.3.6. Effectiveness of mitigation technique observation .. 113

4.4. PEB ISDEBUGGED() QUASI EXPERIMENT .. 114

4.4.1. Implementation of anti-analysis technique ... 114

4.4.2. Effectiveness of anti-analysis technique observation .. 115

4.4.3. Implementation of detection of analysis avoidance technique .. 115

4.4.4. Effectiveness of detection of technique observation ... 116

4.4.5. Implementation of mitigation technique .. 117

4.4.6. Effectiveness of mitigation technique observation .. 117

4.5. PEB NTGLOBALFLAGS() QUASI EXPERIMENT ... 117

4.5.1. Implementation of anti-analysis technique ... 117

4.5.2. Effectiveness of anti-analysis technique observation .. 118

4.5.3. Implementation of detection of analysis avoidance technique .. 118

4.5.4. Effectiveness of detection of technique observation ... 119

4.5.5. Implementation of mitigation technique .. 119

4.5.6. Effectiveness of mitigation technique observation .. 119

4.6. HEAP FLAGS QUASI EXPERIMENT .. 119

4.6.1. Implementation of anti-analysis technique ... 119

4.6.2. Effectiveness of anti-analysis technique observation .. 120

4.6.3. Implementation of detection of analysis avoidance technique .. 121

4.6.4. Effectiveness of detection of technique observation .. 121

4.6.5. Implementation of mitigation technique .. 121

Analysis Avoidance Techniques of Malicious Software

 xiii

4.6.6. Effectiveness of mitigation technique observation .. 122

4.7. NTQUERYINFORMATIONPROCESS() QUASI EXPERIMENT 122

4.7.1. Implementation of anti-analysis technique ... 122

4.7.2. Effectiveness of anti-analysis technique observation ... 124

4.7.3. Implementation of detection of analysis avoidance technique ... 124

4.7.4. Effectiveness of detection of technique observation .. 124

4.7.5. Implementation of mitigation technique ... 124

4.7.6. Effectiveness of mitigation technique observation .. 127

4.8. KERNEL32 CHECKREMOTEDEBUGGERPRESENT() QUASI EXPERIMENT 127

4.8.1. Implementation of anti-analysis technique ... 127

4.8.2. Effectiveness of anti-analysis technique observation ... 129

4.8.3. Implementation of detection of analysis avoidance technique ... 129

4.8.4. Effectiveness of detection of technique observation ... 129

4.8.5. Implementation of mitigation technique ... 129

4.8.6. Effectiveness of mitigation technique observation .. 132

4.9. UNHANDLED EXCEPTION FILTER QUASI EXPERIMENT .. 132

4.9.1. Implementation of anti-analysis technique ... 132

4.9.2. Effectiveness of anti-analysis technique observation ... 134

4.9.3. Implementation of detection of analysis avoidance technique ... 135

4.9.4. Effectiveness of detection of technique observation ... 135

4.9.5. Implementation of mitigation technique ... 135

4.9.6. Effectiveness of mitigation technique observation .. 135

4.10. NTSETINFORMATIONTHREAD() QUASI EXPERIMENT ... 135

4.10.1. Implementation of anti-analysis technique .. 135

4.10.2. Effectiveness of anti-analysis technique observation... 137

4.10.3. Implementation of detection of analysis avoidance technique 137

4.10.4. Effectiveness of detection of technique observation .. 137

4.10.5. Implementation of mitigation technique .. 137

4.10.6. Effectiveness of mitigation technique observation ... 137

4.11. KERNEL32 CLOSEHANDLE() AND NTCLOSE()QUASI EXPERIMENT 137

4.11.1. Implementation of anti-analysis technique .. 137

4.11.2. Effectiveness of anti-analysis technique observation... 138

4.11.3. Implementation of detection of analysis avoidance technique 138

4.11.4. Effectiveness of detection of technique observation .. 139

4.11.5. Implementation of mitigation technique .. 139

4.11.6. Effectiveness of mitigation technique observation ... 139

4.12. USER-MODE TIMERS QUASI EXPERIMENT ... 140

4.12.1. Implementation of anti-analysis technique .. 140

4.12.2. Effectiveness of anti-analysis technique observation... 142

4.12.3. Implementation of detection of analysis avoidance technique 142

4.12.4. Effectiveness of detection of technique observation ... 142

Analysis Avoidance Techniques of Malicious Software

 xiv

4.12.5. Implementation of mitigation technique ... 142

4.12.6. Effectiveness of mitigation technique observation ... 142

4.13. KERNEL32 OUTPUTDEBUGSTRINGA() QUASI EXPERIMENT 142

4.13.1. Implementation of anti-analysis technique ... 142

4.13.2. Effectiveness of anti-analysis technique observation ... 143

4.13.3. Implementation of detection of analysis avoidance technique 143

4.13.4. Effectiveness of detection of technique observation ... 144

4.13.5. Implementation of mitigation technique ... 144

4.13.6. Effectiveness of mitigation technique observation ... 144

4.14. ROGUE INT3 QUASI EXPERIMENT ... 145

4.14.1. Implementation of anti-analysis technique ... 145

4.14.2. Effectiveness of anti-analysis technique observation ... 146

4.14.3. Implementation of detection of analysis avoidance technique 146

4.14.4. Effectiveness of detection of technique observation .. 147

4.14.5. Implementation of mitigation technique ... 147

4.14.6. Effectiveness of mitigation technique observation ... 147

4.15. “ICE” BREAKPOINT QUASI EXPERIMENT .. 147

4.15.1. Implementation of anti-analysis technique ... 147

4.15.2. Effectiveness of anti-analysis technique observation ... 149

4.15.3. Implementation of detection of analysis avoidance technique 149

4.15.4. Effectiveness of detection of technique observation ... 149

4.15.5. Implementation of mitigation technique ... 149

4.15.6. Effectiveness of mitigation technique observation ... 149

4.16. INTERRUPT 2DH QUASI EXPERIMENT .. 149

4.16.1. Implementation of anti-analysis technique ... 149

4.16.2. Effectiveness of anti-analysis technique observation ... 150

4.16.3. Implementation of detection of analysis avoidance technique 150

4.16.4. Effectiveness of detection of technique observation ... 151

4.16.5. Implementation of mitigation technique ... 151

4.16.6. Effectiveness of mitigation technique observation ... 151

4.17. POPF AND THE TRAP FLAG QUASI EXPERIMENT ... 151

4.17.1. Implementation of anti-analysis technique ... 151

4.17.2. Effectiveness of anti-analysis technique observation ... 152

4.17.3. Implementation of detection of analysis avoidance technique 152

4.17.4. Effectiveness of detection of technique observation .. 152

4.17.5. Implementation of mitigation technique ... 153

4.17.6. Effectiveness of mitigation technique observation ... 153

4.18. SUMMARY OF VALIDATION OF TECHNIQUES RESULTS .. 153

CHAPTER 5 ANALYSIS OF COLLECTED MALWARE RESULTS 156

5.1. OVERVIEW .. 156

5.2. VIRUS SIGNATURES .. 156

Analysis Avoidance Techniques of Malicious Software

 xv

5.2.1. Anubis ... 156

5.2.2. Virus Total .. 157

5.3. MALWARE FUNCTIONALITY ... 159

5.4. PACKER ANALYSIS .. 162

5.5. SUMMARY OF COLLECTED MALWARE RESULTS ... 165

CHAPTER 6 DISCUSSION ... 167

6.1. DISCUSSON OF VALIDATION OF ANTI-ANALYSIS TECHNIQUES RESULTS 167

6.2. DISCUSSION OF COLLECTED MALWARE ANALYSIS RESULTS 168

6.3. RESEARCH QUESTION 1 - WHAT TECHNIQUES CAN MALWARE USE TO AVOID

BEING ANALYZED?.. 170

6.4. RESEARCH QUESTION 2 – HOW CAN THE USE OF THESE TECHNIQUES BE

DETECTED? .. 173

6.5. RESEARCH QUESTION 3 – HOW CAN THE USE OF THESE TECHNIQUES BE

MITIGATED? .. 176

6.6. LIMITATIONS OF THE STUDY... 176

6.6.1. Methodology ... 176

6.7. DISCUSSION OF CONTRIBUTION TO KNOWLEDGE .. 177

6.7.1. Confirmation that anti-analysis techniques are very effective ... 177

6.7.2. Anti-analysis techniques can be detected and mitigated .. 177

6.7.3. Confirmation that virus signature detection is less than ideal ... 178

6.7.4. Malware extensively uses Packers and Protectors ... 178

6.7.5. Support for a new paradigm for malware detection ... 179

6.7.6. Identification of analysis tool deficiencies ... 179

6.7.7. Determination of suitable malware analysis methodology ... 180

6.7.8. Development of a taxonomy of analysis avoidance techniques .. 181

6.7.9. Malware Analysis Body of Knowledge ... 181

6.8. FUTURE RESEARCH.. 184

6.8.1. Hypothesis .. 184

6.8.2. Plugin Development ... 184

6.8.3. Collation of Techniques .. 184

6.8.4. Improved Packer Signature Detection.. 185

6.8.5. A New Paradigm for Malware Detection ... 185

6.8.6. A Model for Automating the Spiral Analysis Methodology .. 185

CHAPTER 7 CONCLUSION .. 187

7.1. ANALYSIS AVOIDANCE TECHNIQUES OF MALWARE .. 187

7.2. CONTRIBUTION TO KNOWLEDGE .. 188

7.2.1. Confirmation that anti-analysis techniques are very effective ... 188

7.2.2. Anti-analysis techniques can be detected and mitigated .. 188

7.2.3. Confirmation that virus signature detection is less than ideal ... 188

7.2.4. Malware extensively uses Packers and Protectors ... 189

Analysis Avoidance Techniques of Malicious Software

 xvi

7.2.5. Support for a new paradigm for malware detection ... 189

7.2.6. Identification of a Malware Body of Knowledge .. 189

7.2.7. Identification of analysis tool deficiencies .. 189

7.2.8. Determination of a suitable malware analysis methodology .. 189

7.2.9. Development of a taxonomy of analysis avoidance techniques ... 190

7.3. LINKING OF CONTRIBUTIONS TO KNOWLEDGE .. 190

7.4. LESSONS LEARNED FROM RESEARCH APPROACH AND CONDUCT 191

7.5. RESEARCH IMPLICATIONS ... 191

REFERENCES ... 193

Analysis Avoidance Techniques of Malicious Software

 xvii

LIST OF FIGURES
Figure 1-1 Screen shot from Virus Total showing low detection rate of submitted bot after

examination by thirty one different AV engines. .. 3

Figure 2-1 Example Spam for Instant Messaging (SPIM) message to trick the user into

downloading malware. ... 18

Figure 2-2 Anatomy of BugBear.B showing modular nature of the worm. 20

Figure 2-3 Possible model for deployment of analysis tools for monitoring malware on victim

machine and via external monitoring. .. 23

Figure 2-4 Partial implementation of FindWindowA function to find popular debuggers (Yason,

2007, p. 12) ... 29

Figure 2-5 Partial implementation of code to detect breakpoints (Yason, 2007, p.14) 30

Figure 2-6 VMWare detection pseudo code showing that if VMWare is detected, the machine

could be damaged (Smith & Quist, 2006). .. 31

Figure 2-7 Code snippet used to detect the presence of VMWare (Innes & Valli, 2006) 32

Figure 2-8 Commands that can be used to detect the presence of VMWare (Innes & Valli,

2006) .. 33

Figure 2-9 Heap Flags that can be read and used to detect the presence of a debugger. 43

Figure 2-10 Force Flag fields that can be read and used to detect the presence of a

debugger. .. 43

Figure 2-11 Signature of the CheckRemoteDebuggerPresent function that can be used to

detect the presence of a debugger. ... 44

Figure 2-12 Device names used by popular debugging tools that can be used by malware to

detect their presence. .. 52

Figure 2-13 Code snippet showing SetWindowsHook function to load a malicious DLL. 59

Figure 2-14 Code snippet showing library injection to load a malicious DLL. 59

Figure 2-15 Code snippet using Nebbet shuttle to launch Win32 executable code. 60

Figure 2-16 Altering the IAT of a program so that rootkit code is called instead (hooking). . 64

Figure 2-17 Using DKOM pointer manipulation to hide a process (Schwittay, 2006, p. 80) .. 66

Figure 2-18 Screen shot of Stud_PE showing detection of PE Pack signature 68

Figure 2-19 Screen shot of Stud_PE showing useful information on sections 69

Figure 2-20 Classic entry point signature for recognition purposes. 69

Figure 2-21 Mandiant Red Curtain screen shot showing useful information including entropy

and anomaly count .. 70

Figure 2-22 List of ASProtect Features ... 72

Figure 2-23 Dialog showing range of available options in ASProtect to protect code and

hinder analysis. ... 73

Figure 2-24 ASProtect completion showing the file size has grown markedly with added

protection. ... 74

Figure 2-25 Original Entry Point clearly evident in OllyDbg before protection. 74

Figure 2-26 Imports before protection clearly showing imported functions. 75

Figure 2-27 Packed View of Entry Point in OllyDbg showing obfuscation. 75

Figure 2-28 Themida® dialog showing extensive range of protection options. 78

Analysis Avoidance Techniques of Malicious Software

 xviii

Figure 2-29 IDA Stealth Plugin showing available options to hide the debugger from only a

selection of techniques discussed in the literature review. ... 79

Figure 2-30 Olly Advanced Plugin showing available options to hide the debugger from only a

selection of techniques discussed in the literature review. ... 80

Figure 2-31 Calling IDA Pro on the command line to run a IDAPython script assists

automation of code analysis. ... 82

Figure 3-1 Model of the research process showing the variety of paths that can be

undertaken (Oates, 2007, p. 23). .. 88

Figure 3-2 Model of the nepenthes malware collection system depicting the source

(highlighted) of malware collected for this research. .. 102

Figure 4-1 Simple flowchart to record if technique was successful or not in detecting the

presence of a tool. ... 109

Figure 4-2 Simple flow chart depicting logic of recording the result of script or technique to

detect implementation of anti-analysis technique. .. 110

Figure 4-3 Simple flow chart depicting the logic of recording the result of the mitigation script

or technique. ... 111

Figure 4-4 Listing of implementation of kernel32 IsDebuggerPresent technique. 112

Figure 4-5 IDA Python function detection script used for static analysis. 113

Figure 4-6 Listing of implementation of PEB!IsDebugged technique 114

Figure 4-7 IDC script PatchIsDebuggerPresent.idc to patch IsDebuggerPresent flag in PEB.

 ... 115

Figure 4-8 IDC script to find a pattern at run time. .. 116

Figure 4-9 NTGlobal Flags used to detect if program is running inside a debugger 117

Figure 4-10 Listing of implementation of PEB!NTGlobalFlags technique to detect presence of

debugger. ... 118

Figure 4-11 IDC Script to patch NtGlobalFlags at run time to avoid detection of debugger. 119

Figure 4-12 Heap flags that are set when a process is being debugged. These can be used to

detect the presence of a debugger. .. 120

Figure 4-13 Listing of implementation of HeapFlags detection technique. 120

Figure 4-14 OllyScript to patch Heap Flags .. 122

Figure 4-15 NtQueryInformationProcess call used to retrieve information about the running

process .. 122

Figure 4-16 Implementation of NtQueryInformationProcess technique to detect the presence

of a debugger (ap0x, 2006) .. 124

Figure 4-17 Signature of NtQueryInformationProcess ... 125

Figure 4-18 Listing of NtQueryInformationProcess avoidance technique (Eagle, 2008b) 126

Figure 4-19 Code snippet using NtQueryInformationProcess (Yason, 2007, p.7) 126

Figure 4-20 OllyScript to Patch ProcessInformation (Yason, 2007, p.7) 127

Figure 4-21 Signature of CheckRemoteDebuggerPresent .. 128

Figure 4-22 Listing of CheckRemoteDebuggerPresent technique to find presence of remote

debugger (ap0x, 2006) ... 129

Figure 4-23 Implementation of CheckRemoteDebuggerPresent detection technique (BoB,

2007) ... 130

Analysis Avoidance Techniques of Malicious Software

 xix

Figure 4-24 Resultant patched program after running CheckRemoteDebuggerPresent

detection script. .. 130

Figure 4-25 CheckRemoteDebuggerPresent detection and mitigation IDC Script (Dynamic)

 ... 131

Figure 4-26 Listing of implementation of SetUnhandledExceptionFilter technique. 134

Figure 4-27 NtSetInformationThread signature ... 135

Figure 4-28 Listing of implementation of NtSetInformationThread technique. 136

Figure 4-29 Listing of Kernel32 CloseHandle technique to detect presence of debugger 138

Figure 4-30 Listing of findFunction script adapted from Eagle (2008a, p.271) 139

Figure 4-31 Listing of implementation of RDTSC technique to detect presence of a debugger.

 ... 141

Figure 4-32 Listing of implementation of OutputDebugStringA to detect presence of a

debugger. .. 143

Figure 4-33 Script to patch result of OutputDebugStringA function call to hide presence of

debugger. .. 144

Figure 4-34 Listing of implementation of INT3 technique to detect the presence of a

debugger (ap0x, 2006) .. 146

Figure 4-35 Listing of implementation of Ice Breakpoint technique to detect the presence of a

debugger. .. 148

Figure 4-36 Listing showing use of INT 2DH to raise an exception if the program is not being

debugged. .. 150

Figure 4-37 Listing of implementation POPF and the Trap Flag technique to detect the

presence of a debugger. ... 152

Figure 5-1 Virus Total detection rate plot showing less than ideal detection results. 159

Figure 5-2 Run time Of Allaple specimens where no activity is recorded could indicate

deception. .. 162

Figure 5-3 Graph indicating high measures of entropy of malware exceeding accepted

threshold ... 165

Figure 6-1 Graphical representation of Zelter's analysis methodology showing spiral nature

through phases. .. 175

Figure 6-2 Extended analysis methodology to cater for anti-forensic techniques. Anti-

analysis techniques are mitigated as they are detected. ... 175

Figure 6-3 Malware analysis process incorporating a learning taxonomy that assists in the

development of the MABOK. ... 182

Figure 6-4 Model of the learning domain of the Malware Analysis Body of Knowledge

(MABOK) .. 183

Figure 6-5 Proposed process model to automate the spiral analysis methodology which

recursively and iteratively detects and mitigates static and dynamic anti-analysis techniques

 ... 186

Analysis Avoidance Techniques of Malicious Software

 xx

LIST OF TABLES
Table 2-1 Summary of the propagation methods of worms. .. 12

Table 2-2 Summary of the malicious functionality of trojans. ... 13

Table 2-3 Summary of malware analysis tools showing analysis type, purpose and name of

commonly used tool name. ... 24

Table 2-4 Default Hardware Configurations used to find presence of VMWare (Innes & Valli,

2006) ... 32

Table 3-1 Examples of exploratory research questions .. 95

Table 3-2 Examples of base-rate research questions .. 96

Table 3-3 Examples of relationship research questions ... 96

Table 3-4 Examples of causality research questions ... 97

Table 4-1 Validation of Techniques Results .. 154

Table 5-1 Ikarus Virus Scanner results showing high incidence of Allaple worm in the

collected malware specimens. ... 157

Table 5-2 Virus Total results from a single submission showing disparity in signatures by

different vendors. .. 158

Table 5-3 Submitted malware functionality results ... 160

Table 5-4 Allaple variants detection results ... 160

Table 5-5 Functionality of Allaple variants results ... 161

Table 5-6 Allaple variants showing no activity recorded .. 161

Table 5-7 SigBuster detected packer signature results .. 163

Table 5-8 PEiD signature results indicating disparity in signature matching with those

performed by SigBuster. ... 164

Table 6-1 Validation of techniques results showing validity of technique and the ability to

detect and mitigate the techniques. ... 168

Table 6-2 Taxonomy of anti-analysis techniques .. 171

Analysis Avoidance Techniques of Malicious Software

CHAPTER 1 INTRODUCTION

1.1. OVERVIEW

This thesis analyses techniques malicious software (malware) incorporates

into its code to prevent and/or hinder the malware forensic analyst from

conducting an analysis of the malware. The effectiveness of these

techniques was validated in this research. A variety of procedures were

developed and examined to determine if these anti-analysis techniques

could be detected and mitigated. Malware collected from the internet was

also analyzed to partially corroborate these techniques. This research found

that a plethora of techniques are available to hinder the malware analyst

and all of the techniques that were implemented in the course of this

research were found to be effective at hindering analysis. Equally, detection

and mitigation techniques were uncovered and also found to be effective at

detecting and mitigating the anti-analysis techniques. Malware and forensic

analysts and researchers will be the primary users of this research.

Aycock (2006, pp. 1-12) defines malware as “software whose intent is

malicious, or whose effect is malicious”. Analysis of malicious software is

essential for computer security management and is emerging as an

important field of research. This is because malware is often targeted at

organizations and is increasingly using anti-analysis techniques to prevent

detection and analysis (Masood, 2004).

Anti-Forensics is described by Rogers (2006) as “attempts to negatively

affect the existence, amount, and/or quality of evidence from a crime scene,

or make the examination of evidence difficult or impossible to extract”.

Kessler (2007) extends this definition in a practical sense by saying “anti-

forensics, then, is that set of tools, methods, and processes that hinder

such analysis”. The movement towards the employment of anti-forensic

techniques in malware could be attributed to the substantial illicit financial

gain that can now be achieved from employing malware nefariously

(Larsson, 2007; Newman, 2006; Sukhai, 2004; Team Cymru, 2006).

Analysis Avoidance Techniques of Malicious Software

 2

Commercial Anti-Virus (AV) software is often limited in its ability to detect

and remove malware (Chouchane, Walenstein, & Lakhotia, 2007; Mila Dalla,

Mihai, Somesh, & Saumya, 2008; Xuxian, Xinyuan, & Dongyan, 2007; Yin,

Song, Egele, Kruegel, & Kirda, 2007; Zhang, Reeves, Ning, &

Purushothaman Iyer, 2007; Zhou & Meador Inge, 2008). This is essentially

because AV software relies on an analyst having already analyzed collected

malware, extracted a signature and made computer virus signature files

available to the users of the AV software through very regular updates.

Hence, AV software is highly unlikely to detect new malware that is

unleashed on the internet, corporate intranet or that has been customized

to target specific networks because it has not been previously analyzed and

had a signature extracted (Masood, 2004).

1.2. A STATEMENT OF THE PROBLEM

There is a positive feedback loop between malware developers and malware

researchers. As soon as a strategy is developed by one side, the other side

implements a counter measure. Security professionals in the field need to

know how to determine if they are the target of an attack, what the

functionality of malware infections is and how to eradicate infections from

their systems. This is especially true if a signature does not exist and the

forensic analyst is required to analyse the instance of malware. The analysis

process can be assisted if the analyst has up to date methodologies and skill

sets at their disposal.

Virus Total provides a web-based, free and independent service that uses

multiple anti-virus engines to analyze suspicious files that have been

uploaded to their site. Virus Total (2007), on their website, state that

“Currently, there is not any solution that offers a 100% effectiveness rate

for detecting viruses and malware”. In support of this statement, Figure 1-1

shows the results that were captured from submitting a potentially harmful

web robot (bot) that was collected from the ECU Nepenthes sensor

network, to the Virus Total service.

Analysis Avoidance Techniques of Malicious Software

 3

Figure 1-1 Screen shot from Virus Total showing low detection rate

of submitted bot after examination by thirty one different AV

engines.

Out of the thirty-one antivirus programs that had the bot submitted to them,

only six detected the bot, whilst one detected that there was a low threat

present. This is not a particularly unusual result, evidenced from this

research and supported by other researchers (Bilar, 2005; Masood, 2004;

Mohandas, n.d.; Skoudis & Zeltser, 2004; Szewczyk & Brand, 2008;

Wysopal, 2009). An analysis of the Win32.Qucan.a worm, by Mohandas

(n.d., p. 20), found that only 50% of the antivirus detection engines were

able to detect the worm that he submitted. This finding is well supported by

the researchers with indication that the situation is deteriorating. Masood

(2004) claims that the percentage of malware that avoids automated

detection is growing every day and “manages to wreak havoc on networks”.

Skoudis and Zeltser (2004, p. 108) emphasize that with new and fast

spreading malware, most computer users would not be able to download a

virus definition fast enough to stop them. Rubenking (2007) says that a

solution needs to be found where malware can be recognized and cleaned

Analysis Avoidance Techniques of Malicious Software

 4

up whilst not interfering with legitimate programs or interfere with the

normal operation of the computer.

Part of the problem is that AV software relies on detecting signatures of

malware that has already been analyzed by AV researchers and that the

user has already downloaded the latest AV signatures to protect their

computers. If newly released and unanalyzed malware is loaded onto a

computer, it is highly unlikely that the malware will be detected because a

signature will not exist. This undoubtedly can be classified as an incident.

“An incident can be thought of as a violation or imminent threat of violation

of computer security policies, acceptable use policies, or standard security

practices” (NIST, 2004, pp. 2-1). An appropriate strategy and priority must

be assigned for the incident. NIST (2004, pp. 3-17) lists a number of

criteria for the determination of a suitable strategy, which include

consideration of:

• Potential damage to, and theft of resources.

• Need for evidence preservation.

This information is important if the incident is reportable to the appropriate

authorities and to assist in risk mitigation. However, the difficulty of

obtaining this information must be taken into account. Malware uses a

variety of techniques to avoid analysis. This is because there is an

increasing profit motive for malware authors whose intention is to keep

their malware undetected on computers (Dunham, 2006; Holt, 2007;

Schiller et al., 2007; Sukhai, 2004; Team Cymru, 2006).

A significant body of knowledge is required to obtain this information from

manual analysis, to either develop an AV signature or to determine the

functionality of the malware (Valli & Brand, 2008). A short, non-exhaustive,

requisite skills list for Windows-based malware analysis indicated by Valli &

Brand could include:

• Assembly language programming.

• Program debugging skills.

• Static analysis techniques.

• Dynamic analysis techniques.

Analysis Avoidance Techniques of Malicious Software

 5

• Windows Applications Programming Interface (API) programming.

• Windows Operating System.

• Computer networking skills.

• Malware techniques.

• Reverse engineering skills.

Automated and semi-automated tools exist to assist in this analysis, but

malware can detect these tools and alter its behaviour to hide its presence

and/or modify its behaviour to not show its true intentions. This is

exemplified by the research of Lau and Svajcer (2008). These researchers

found that families of malware will adapt its behaviour if it detects it is

running in a virtual machine by stopping execution or will run an alternate

payload to deceive the forensic analyst. This is because forensic analysis of

malware is often performed from within virtual machines. The advantage of

using virtual machines for analysis is that they can be reverted to a known

state very quickly. This is especially useful for analyzing malware that

employs deception. If a deceptive path is executed that adds no value to

the analysis but corrupts the host that is running the malware, the host can

be reverted back to a known state and analysis continued down an alternate

path of execution.

There is evidence that malware writers are targeting specific organizations

such as banks. Larsson (2007) claims to have interviewed the creator of the

Haxdoor Trojan, which was purportedly used to steal eight million Swedish

Kronor from the Nordea bank. The significant issue raised in the article is

that the creator of the virus is offering to create and sell customized

versions of his malware so that users can steal money from accounts from

the bank of their choice. He also offers support to achieve this, such as

provision of servers for saving the stolen account information, in a non-

traceable way. This sort of supported, targeted attack is not unprecedented.

Dunham (2006, p. 11) reports that, in May 2005, an Israeli programmer

was arrested for customizing and selling a Trojan horse, called Hotworld,

to steal proprietary data from specified targets. At least eighty companies

were implicated, including private investigation firms. This is significant

because it is highly unlikely that such customized malware will be detected

Analysis Avoidance Techniques of Malicious Software

 6

by AV software and in addition, that companies are prepared to pay for

stolen information.

1.3. RESEARCH QUESTIONS

The objective of this research has been to find answers to the following

research questions:

1. What techniques can malware use to avoid being analyzed?

2. How can the use of these techniques be detected?

3. How can the use of these techniques be mitigated?

Research question one seeks to find out what techniques malware can use

to hinder the forensic analyst from fully analyzing it. The objective of the

malware is to prevent full discovery of its malicious intent by using

deception and obfuscation.

Research question two seeks to determine how the use of these techniques

by malware can be detected by an analyst. This information is of value to

the forensic analyst so that an appropriate strategy or methodology can be

employed to counter the use of the technique. This information could also

be of value to the forensic analyst to find evidence of intent to deceive or

hide malicious intent.

Research question three seeks to ascertain how the use of these techniques

can be mitigated so that analysis can proceed beyond the engagement of

the analysis avoidance technique in the code so that discovery of the true

intent of the malicious program can be determined.

1.4. SIGNIFICANCE OF RESEARCH

This research contributes to the body of knowledge for malware forensic

analysis with particular emphasis given to the advancement of the analysis

of the anti-analysis capability of malware.

The conduct of this research shows that there is a very large variety of anti-

analysis techniques malware can incorporate to hinder analysis and avoid

Analysis Avoidance Techniques of Malicious Software

 7

detection. This was determined primarily from a search of the literature and

from validating the techniques in small, standalone programs and observing

the effect on common analysis tools such as debuggers using quasi-

experimentation. A taxonomy of anti-analysis techniques was developed

during the course of this research that amalgamates the classification of

techniques from key papers.

The detection of anti-analysis techniques feature far less in the literature

than does the discussion of the incorporation of anti-analysis techniques.

Detection of anti-analysis techniques in code would not only assist the

analyst in investigation of malicious intent and the attempt at deception, it

also appears that detection of anti-analysis techniques may be a very good

indicator that the code has a malicious intent. This research supports other

researcher’s claims that existing AV software, that uses signatures and

heuristics, is less than ideal at detecting malware, especially malware that

has not been analyzed before. Analysis of network based malware collected

from the internet for the purposes of this research is shown to nearly all

contain a measure of anti-analysis techniques. Hence this research

supports a new paradigm for AV software to rely less on signature detection

and to be focused more on the detection of anti-analysis techniques as a

good indicator that program under investigation is malicious.

Plugins exist for popular debuggers to hide its presence from discovery by

malware that can incorporate anti-analysis techniques. These plugins focus

primarily on hiding the presence of the debugger and ordinarily do not log

or notify the analyst of the presence of anti-analysis techniques in the code

that is being analyzed. This is a significant omission if malicious intent is

being investigated, because it will simply not be logged. This research

shows that the coverage of mitigation techniques of plugins is much less

than the number of anti-analysis techniques that are available. This is

significant because a false sense of security from using the plugins may lead

to the analyst not conducting a thorough analysis of the malware and being

the subject of deception. This suggests a deficiency in existing tools.

Analysis Avoidance Techniques of Malicious Software

 8

A variety of scripting languages and Application Programming Interfaces

(API) exist to extend popular debuggers. This research shows how they can

be incorporated to successfully detect and mitigate the use of anti-analysis

techniques. Given the claim by this research that existing plugins have

severe limitations due to their lack of coverage of anti-analysis techniques

and lack of logging functionality, scripting of debuggers is an essential skill

required for analyzing malicious software. In addition, this research shows

that the extent of knowledge required to analyze malware is extensive. A

proposed Malware Analysis Body of Knowledge was initiated by the conduct

of this research where the treatment of anti-analysis techniques is a key

and vital component.

This research examines some of the more well known methodologies for

analyzing malware. A suitable methodology that detects the presence of

anti-forensic techniques during the analysis process and then mitigates the

technique has been identified through the conduct of this research.

This research could also prove to be of benefit to software engineering

where requirements dictate that the Intellectual Property (IP) of the

software has to be protected from reverse engineering. An understanding of

the anti-analysis techniques discussed in this thesis that can be used to

hinder the reverse engineering of code could assist in validating such a

requirement through Test and Evaluation (T&E).

1.5. STRUCTURE OF THIS THESIS

Chapter 1 of this thesis presents an overview of this thesis, a statement of

the problem, the research questions this thesis addresses and highlights the

significance of this research for the digital forensic investigator. Malware

invariably incorporates anti-forensic techniques and AV software cannot be

relied upon to detect the presence of malicious code. This necessitates the

development of an appropriate methodology to reveal the true intent of

malware.

Chapter 2 provides a review of the literature. It establishes the foundation

for this research by defining key terminology, models, classifications, anti-

Analysis Avoidance Techniques of Malicious Software

 9

forensic techniques, previous studies and models to reveal and support lines

of enquiry not discussed in the literature.

Chapter 3 justifies the selection of the most appropriate research method,

the conceptual framework and research design to address the research

questions. The selected research method to address the research questions

is positivist, empirical and quasi-experimental. Two lines of experimentation

were identified. The first was to implement a number of anti-forensic

techniques in small, standalone programs to determine their effectiveness

against the software tools likely to be employed by a digital forensic analyst.

The second line was to analyze network based malware using anti-virus

software.

Chapter 4 presents the results from conducting experiments with anti-

forensic techniques. All of the techniques were found to be effective, and

that the use of these techniques can be detected and mitigated.

Chapter 5 presents the results of having analyzed network based malware.

The results support claims that anti-virus software is much less than ideal at

detecting malicious software.

Chapter 6 provides discussion of the results and why the results are

significant to the digital forensic analyst. Claims of contribution to

knowledge are discussed together with an appropriate methodology that

can be employed by analysts when anti-forensic techniques are encountered

during their investigations and highlights the limitations of existing tools

and anti-virus software. Further lines onf investigation are also identified.

Chapter 7 concludes the thesis by linking the claims of contribution to

knowledge to the implications of this research.

Analysis Avoidance Techniques of Malicious Software

 10

CHAPTER 2 LITERATURE REVIEW

Code that protects itself from being analyzed is a significant hindrance, not

only to automated malware detection tools such as AV software, but also to

the manual analysis performed by malware analysts. The purpose of this

literature review is to examine the literature related to:

• Characterization of network based malware

• Existing malware analysis methodologies.

• Anti forensic techniques used by malware to avoid analysis.

• Malware detection techniques.

• Packers and protectors.

• New paradigms for malware detection.

These lines of enquiry trace directly to the research questions.

2.1. CHARACTERISATION OF NETWORK BASED MALWARE

Malware presents itself as a significant threat to computer users. Various

attack vectors exist as well as the number of malicious payloads that they

can contain. Network based malware, such as worms, propogate

autonomously via networks and do not propogate in the same fashion as

viruses do. Network based malware was collected for the basis of this

research, as discussed in the Conceptual Framework section of this thesis,

subsection 3.6.2. For this reason, viruses are not included directly in the

following discussion. Hence, this subsection introduces worms and how

they propogate. It also discusses the various payloads of worms that can

include, but not limited to, Trojans, Rootkits, Backdoors and Bots. It is

important to note that the payload of worms, such as Bots, have evolved to

incorporate anti-forensic techniques. The anatomy of a worm is presented

to provide a greater insight into how they function, and how their payloads

have evolved to include multiple threats and have become more stealthy to

avoid detection. Current detection methods are also discussed.

Analysis Avoidance Techniques of Malicious Software

 11

2.1.1. Worms

Network worms can propagate to victim computers using a variety of

methods. A summarized description of the propagation categories listed by

Kaspersky Labs (2007b) is presented in Table 2-1.

Analysis Avoidance Techniques of Malicious Software

 12

Table 2-1 Summary of the propagation methods of worms.

Worm Propagation Method

Email Worms The worm could be an attachment to an email, and the

worm is activated when the attachment is opened, or the

email contains a link to an infected site. These worms

spread though:

• Windows Mail API (MAPI) functions

• Microsoft Outlook Services

• Directly to SMTP servers using code in the worm.

Instant

Messaging

(ICQ and

MSN) Worms

Propagate using instant messaging applications to send

links to entries in the contact list to infected sites.

Internet

Worms

Spread by:

• Copying to network resources

• Exploitation of Operating System vulnerabilities

• Penetration of services such as FTP and Web

servers.

• Take advantage of malware already installed to

install the worm

IRC Worms Utilizes contacts from the infected user to use Internet

Relay Chat (IRC) channels to send links to infected

websites or send infected files.

File-sharing

Networks or

P2P Worms

Uses the P2P network to download and execute infected

files.

2.1.2. Trojans

A summarized description of the categories listed by Kaspersky Labs

(2007a) is listed in Table 2-2.

Analysis Avoidance Techniques of Malicious Software

 13

Table 2-2 Summary of the malicious functionality of trojans.

Trojan Functionality

PSW Trojan Steal passwords and confidential information and send this

information to a remote computer.

Trojan

Clickers

Redirect infected machines to web sites to :

• Increment the hit count of a site for the purposes

advertising.

• For organizing a Denial of Service (DoS) attack.

• To redirect the victim to an infected site where the

victims machine will be attacked by other malware.

Trojan

Downloaders

Downloads and installs malware on the victim machine and

most likely registers it to auto run without the consent or

knowledge of the user.

Trojan

Droppers

Consist of multiple payload components to install other

malware onto the victim machine so that the installation of

the additional components is hidden from the user, and

perhaps to trick anti virus software which may not analyse

the other components.

Trojan

Proxies

Uses the infected machine to give the attacker anonymous

access to the intenet. These machines can also be used by

an attacker for mass mailing of spam.

Trojan Spies Spy on user activity through the use of spy programs such

as key loggers and forward the collected information to the

attacker. Can be used to steal banking details and financial

information for the purposes of fraud.

Trojan

Notifiers

Notify the attacker that the machine has been infected via

email, ICQ, or IRC.

Analysis Avoidance Techniques of Malicious Software

 14

2.1.3. Rootkits

Rootkits are used by an attacker to evade detection by replacing system

files. Hoglund and Butler (2005, p. 4) say “a rootkit is a set of programs

and code that allow permanent or consistent, undetectable presence on a

computer”.

2.1.4. Backdoors

Contain a remote administration capability so that infected machines can be

controlled remotely via a network connection, and may not be visible in the

list of currently active programs (VirusList.com, 2009). Activities may

include all the functionality listed above and may also

• Send and/or receive files

• Launch and/or delete files

2.1.5. Bots

The original intention of a robot (bot) was to perform some useful action on

an IRC channel whilst the operator or user were engaged in some other task

(Schiller et al., 2007, p.7). Bots are capable of taking action on a client

machine without a hacker having to have logged onto the infected machine.

A collection of Bots is known as a botnet. The botnet is typically under the

command of a botherder who can dictate the actions of the botnet through

a bot server. The botnet can be divided into divisions which can each be

performing different actions, or if the communication channel to one

division is lost, the other divisions can continue the mission. Bot clients are

modular and adaptive and can be updated with new software, or

commanded to perform a malicious action such as a DDoS against a target.

The attacker may be distanced from the infected machine by many layers

within the hierarchy. The attacker can send commands to an IRC channel

through an obfuscating proxy and through multiple hops (Schiller et al.,

2007, p.30).

A bot typically consists of a module to exploit a vulnerability to gain access

to a target, another module to stop AV software and firewalls, a module to

Analysis Avoidance Techniques of Malicious Software

 15

scan for other vulnerable systems, a module to exploit the system it is

installed on, such as collecting passwords or keylogging and a module that

communicates with a Command and Control Center (C&C). Not only is it

important to remove the bot from an infected system, it is important to

work out how the bot got onto the system in the first place so the

vulnerability can be rectified.

Schiller et al. (2007, p. 24) describes botnet technology as the “next killer

Web application” because organized crime have used it as a force multiplier

to attack the non-computer literate, including the young and the elderly to

derive money. Their discussion continues to say that these criminal

organizations have grown large enough to become a “threat to major

corporations and even nations”.

The evolution of botnets is important to understand. It shows how they

have become more modularized and stealthy as time has progressed.

Stealth is a critical component of anti-analysis techniques. The following sub

sections discuss this evolution.

2.1.5.1. Evolution of Bots

PrettyPark (Anonymous, 1999) was the first bot client that made use of

the IRC bot for the purpose of remote control over the internet, and

emerged in June 1999 (Canavan, 2005, p. 6). It allowed the attacker to

retrieve information from the compromised system and had a basic

mechanism for updating itself by downloading and executing new files from

IRC. Features of PrettyPark are still evident in IRC bots seen today.

Features discussed by Canavan (2005, p. 6) include:

• The capability to determine system information such as the version of

the operating system as well as the user and computer name.

• The ability to retrieve email addresses and login names to

applications such as ICQ.

• The ability to retrieve network settings, user names and passwords.

• The capability of being able to download updates to increase its

functionality.

Analysis Avoidance Techniques of Malicious Software

 16

Global Threat (GT) bots began to appear in late 2000 and made use of a

Windows shareware IRC client called mIRC (Mardam-Bey, 1995) that include

scripting capabilities that allowed hackers to put together their own scripts

to connect to remote servers and await commands. GT bots also made use

of tools such as HideWindow (Anonymous, n.d.-f) to conceal its presence on

infected machines and used PsExec (Microsoft, 2008c) to spread itself over

the local network. They also used FireDaemon (FireDaemon Technologies

Ltd, 2009) to install and run as a service and IrOffer (iroffer.org, n.d.) to

perform as a fileserver. These bots were launched as a service by altering

the system startup files (Canavan, 2005, p.7). GT bot also had the

capability to conduct a DDoS attack by flooding. It could spread itself also

by using social engineering ploys including sending an email that claimed to

be from a security vendor and if the user clicked on an embedded link they

downloaded the bot client from a malicious website. GT bots were not

modular, they were all contained within a single package (Schiller et al.,

2007, p. 9).

SDBot (sd, 2002) appeared in 2002 and added the feature of a remote

control backdoor (Schiller et al., 2007). The source code was made

available by the author, as well as a Web page and contact information

through email and ICQ. This made it easy for hackers to modify and

maintain. Variants of SDBot can exploit the backdoors of other malware

such as SubSeven (Sub7Crew, n.d.), Mydoom (Anonymous, n.d.-k),

Bagle (Anonymous, n.d.-b), Kuang (Anonymous, n.d.-h) and many others.

When these backdoors are found SDBot downloads itself onto the client and

infects it.

Agobot (Gembe, 2002) made use of modular design and appeared in 2002.

It uses IRC for C&C, but is spread using P2P file sharing applications

(Schiller et al., 2007, p. 11). It has three modules which retrieves the next

module once the primary task of the module has completed. The sequence

of events is as follows:

1. Delivers the IRC bot client and installs a remote access back door.

2. Attacks and shuts down AV processes.

Analysis Avoidance Techniques of Malicious Software

 17

3. Prevents the user from accessing Web sites including AV vendor sites.

Capabilities of Agobot discussed by (Schiller et al., 2007) include:

• Able to scan other computers for vulnerabilities.

• Capable of being able to launch DDoS attacks.

• Ability to scan for CD keys for games and software.

• Can terminate AV software and security monitoring processes.

• Can modify the host file so that updates will not be downloaded from

AV software sites.

• Can install a rootkit to hide itself.

• Incorporates anti reverse engineering techniques to make analysis

difficult.

Related bots include Phatbot (Gembe, 2002) which uses public key

cryptography for communication with the C&C over P2P, Polybot

(Anonymous, 2004), XtremBot (Anonymous, n.d.-d) and Forbot

(Anonymous, n.d.-e). It is also worth noting that this is when the family

lines of bots began to blur and variants appeared which took the best

components of other bots and incorporated those features. It became

harder to determine from which family a particular bot had evolved from

(Canavan, 2005, p. 14). There are reports that AV vendors are becoming

less concerned about identifying the particular bot because of the number of

variants which have different capabilities (Schiller et al., 2007, p. 12).

Instead they are looking at the malicious components of the bot as the

source of identification.

Spybot (Anonymous, 2003) is a derivative of SDBot and appeared in 2003

as open source. It adds Spyware capabilities and collects email addresses,

lists of visited web sites and logs of activities. Variants can also capture

screen shots of the screen, send spam, install a rootkit, control webcams,

kill security processes and other malicious acts. It spreads via file sharing

applications, exploitation of known vulnerabilities and backdoors left by

other malware.

Analysis Avoidance Techniques of Malicious Software

 18

RBot (Anonymous, n.d.-l) appeared in 2003 and is a backdoor Trojan which

uses IRC to communicate with the C&C. It introduced the use of packers

and protectors to compress and/or protect the malware. It can scan for

shares on networks with Windows machines and attempts enumerate users

and attempts to guess weak passwords.

Polybot is derived from the source code of Agobot and appeared in March

2004. It uses polymorphism to change its appearance of the packed and or

protected binary for each infection by using a different key each time.

The MyTob (Diabl0, 2005) bot appeared in February 2005 and is a hybrid

that uses its own SMTP engine for sending mass e-email to addresses in the

Address Book of the infected computer and has capabilities similar to

Spybot.

(Schiller et al., 2007, p. 15) lists a number of new features appearing as

components for bots. These are summarised as follows:

GpCoder (Anonymous, 2005) – Encrypts a user’s files and then offers to

sell the user a decoder.

Serv-U – An FTP server that enables botherders to store stolen software,

games, movies and illegal material on the botnets under their control. The

data is stored in hidden directories, and the FTP server appears as Windows

Explorer in Task Manager.

SPIM – Spam for Instant Messaging. Can be used for phishing attacks

which provide links to Web sites that download malicious code to victim

machines. An example SPIM message presented by Schiller et.al. (2007, p.

16) is reproduced in Figure 2-1.

ATTENTION...Windows.has.found.55.Critical.System.Errors...
To fix the errors please do the following:..
1 Download Registry Update from: www.regfixit.com.
2 Install Registry Update
3 Run Registry Update.
4 Reboot your computer
FAILURE TO ACT NOW MAY LEAD TO SYSTEM FAILURE!

Figure 2-1 Example Spam for Instant Messaging (SPIM) message to

trick the user into downloading malware.

Analysis Avoidance Techniques of Malicious Software

 19

2.1.6. Blended Threats

It is very important to realize that modern malware combines numerous

attack vectors and malicious payloads, such that simple classification of

malware to an individual type or family is becoming more difficult. Such a

combination of threats in an individual instantiation of a malware specimen

is known as a blended threat. Virus Bulletin (2008) describes a blended

threat as “a sophisticated attack using multiple malware types and vectors

to carry out penetration and control of a system”. An example of a blended

threat discussed by Virus Bulletin could be initiated be the receipt of a

spammed email that contains a link to a hijacked web site that uses

iframes running malicious javascript. The malicious javascript exploits

vulnerabilities in the browser of the user which can then execute code on

the users computer to disable security software and download additional

malware. Functionality of the downloaded malware could be to run a spam

e-mail server or to launch attacks against new victims.

2.1.7. Anatomy of a Worm

Skoudis and Zeltser (2004) describe the anatomy of a worm with an

analogy to a rocket with the following components:

Warhead – Contains exploit(s) to take advantage of vulnerabilities in

software to penetrate a target.

Propagation Engine – Mechanism(s) to propagate itself to other

vulnerable machines.

Target Selection Algorithm – An algorithm to select or search for

vulnerable machines.

Scanning Engine – An algorithm and code that searches for machines that

run software that is known to be exploitable, using the code available in the

warhead.

Payload – Contains the individual malicious packages that are installed on

the target machine such as a keylogger, web server, backdoor, firewall and

AV disabler and so on.

Analysis Avoidance Techniques of Malicious Software

 20

Figure 2-2 is adapted from Skoudis et al. (2004). and depicts the

components of the BugBear.B worm.

Firewall/AV
Disabler

Polymorphic
File Infector Key Logger

GUI Based
Backdoor

Web
Server Bank Detector

Payload: Virus and Backdoor

Scanning Engine:
No scanning as E-
mail and Share info

available

Target Selection
Algorithm:

Harvested E-mail
addresses and File

Shares

Email

File Sharing

Combined Warhead and
Propagation Engines

Target Selection
Algorithm:

Harvested E-mail
Addresses and

File Shares

Figure 2-2 Anatomy of BugBear.B showing modular nature of the

worm.

The representation of the BugBear.B worm emphasizes the modular nature

of modern malware. Different components and sub components can be

plugged in or out depending upon the requirements and intention of the

attacker. Trend Micro Incorporated, a major AV software vendor,

recognizes that blended threats are increasingly being seen on the internet

and predicts that malware will increasingly use tricks to avoid detection

(Trend Micro Incorporated, 2007).

2.1.8. Defence Methods

Defence methods against malware are typically based on some combination

of the following methods (Farwell, 2004):

Signatures - recognition of signatures of known and previously analyzed

malware.

Heuristics – flagging of anything outside the normal operating parameters

of the system.

Integrity – detection of changes to the integrity of known files.

The typical computer user runs a signature based virus checker that should

download new signature files every day to help protect them from

compromise. However, this is far from a complete solution as it relies on the

signature of the malware being present in the updated signature file. If the

malware that is attacking a computer system is new to the internet, or

Analysis Avoidance Techniques of Malicious Software

 21

custom written to attack identified targets, it is highly likely that the

updated signature file will not protect the target (Masood, 2004).

Before a signature is extracted and uploaded to the client machines and

added to the virus signature database, the malware must be analyzed by a

malware analyst to determine what the functionality of the malware is, what

changes it will make to system files and how it will change the normal

behaviour of the machine. The extent of infection must be determined to

ensure that infected files are removed or repaired. If the malware has

detected it is being analyzed and has not shown its true intent by not

unpacking and installing all of the files it was going to install, then the full

extent of the infection will not be determined to the detriment of the end

user who requires protection. The first step in this analysis process is

referred to as profiling.

2.2. PROFILING

Initial examination of collected malware is called profiling (Aquilina, Casey,

& Malin, 2008, p. 286). Profiling of malware is conducted from a high level

of perspective to determine the purpose and functionality of the malware.

This assists in making an informed decision on how to proceed with a more

detailed analysis. There are two general types of file profiling that can be

conducted, namely static analysis and dynamic analysis.

2.2.1. Static Analysis

Static analysis extracts information about the binary code without actually

running the code. It can include examination of disassembly listings,

extraction of strings, obtaining a virus signature, determination of the

target architecture and compiler used, as well as many other characteristics

Static analysis of disassembly listings of binary code can be technically

difficult. A disassembly of binary code is a textual file that represents the

assembly language code of a program. A program is a series of instructions

and data that a computer executes to perform some series of functions. The

series of instructions and structures of data can be analysed without

Analysis Avoidance Techniques of Malicious Software

 22

executing the program. This gives the analyst the ability to explore various

possible paths of execution that can take place when a program runs. These

different paths of execution are referred to as control flow graphs and

consist of nodes and edges, where nodes consist of basic blocks of code and

edges interconnect the nodes as potential control flow paths. Control flow

can be dictated by constructs including conditional blocks, switch blocks and

loops. Dataflow analysis examines the way data is moved and changed

throughout the execution of a program (Chess & West, 2007).

2.2.2. Dynamic Analysis

Dynamic analysis extracts information about the code by observing what it

does whilst it is running. This can include network communications, file and

registry access and modification, interaction with services and other

behavioral activities. Dynamic analysis gives consideration to the services to

provide or emulate for the network based malware to interact with so that

its dynamic behaviour can be observed. The malware that arrives on the

system may simply be the first stage in a process that attempts to

download the real payload in a second stage. This is known as a dropper.

Arnold, Chess, Morar, Segal, & Swimmer (2000) recommend that the

following services may need to be provided through emulation, or via a real

service, to give the network based malware the opportunity to behave in

the environment it would expect on a real network.

HTTP – Malware may try to transfer files from HTTP, through javascript, or

some other scripting language. Typically this is port 80.

FTP – Malware may try to transfer files. Typically this is port 21.

IRC – Bots, in the past, typically used IRC for communications. P2P is

becoming more popular for communications. Typically, IRC uses ports in the

ranges of 6660-6669, but malware can use any unused port.

DNS – Malware may seek to look up an address in DNS. Typically this is

port 53.

Drive sharing – Malware may look for shared drives. Typically this could

include ports 135, 137 and 445.

Email – Malware may look for mail services, typically on port 25.

Packet routing – Malware may try to route packets through various

network devices.

Analysis Avoidance Techniques of Malicious Software

 23

Skoudis (2004, p. 595) outlines a model where analysis tools are distributed

on a local victim machine and on an external machine, to capture behavioral

aspects of the malware on the local machine and its interaction with

external services over a network. External services as outlined by Arnold et

al. (2000) can be setup on the external monitoring segment. A possible

model for malware monitoring is shown in Figure 2-3. It shows that the

malware is installed on a local machine together with local file, registry and

process monitoring tools, debugger and local network monitoring. Externally

provided tools include a port scanner and vulnerability scanner to see if the

malware has opened up ports, or exposes a particular vulnerability that may

only be visible from an external computer. This is because malware can hide

the presence of open ports on the victim machine and they can only be

seen externally. A sniffer is a useful addition to the external network to

detect the types of network communications that are initiated by the

malware, including attempts to resolve names from a DNS server, attempts

to establish connections to an IRC server, scans for computers that are

sharing drives, or mail servers.

Figure 2-3 Possible model for deployment of analysis tools for

monitoring malware on victim machine and via external monitoring.

Analysis Avoidance Techniques of Malicious Software

 24

A summarized list of the analysis tools recommended by Skoudis (2004,

p.568) as well as their purpose and analysis type, is shown in Table 2-3.

Table 2-3 Summary of malware analysis tools showing analysis type,

purpose and name of commonly used tool name.

Analysis Type Purpose Tools

Static analysis

Use as many antivirus detection

engines as possible to assist

classification.

VirusTotal (Virus Total,

2008)

Static analysis Search the body of the malware

for strings.

Strings (Microsoft, 2008c)

Dynamic analysis File integrity check to record

baseline configuration.

Winalysis (Winalysis.com,

2008)

Dynamic analysis File monitoring. Find which tools

are opening, reading and writing

files.

Filemon (Microsoft, 2008c)

Dynamic analysis Process monitoring. Determine

resources that are being used

such as DLL’s and registry keys.

Process explorer

(Microsoft, 2008c)

Dynamic analysis Network monitoring. Uncover

which ports are open, collect

network traffic and find

vulnerabilities.

Fport (Foundstone, 2008),

tcpview (Microsoft, 2008c),

nessus (Tenable Network

Security, 2008), nmap

(Insecure.org, 2008),

wireshark (Combs, 2008),

and snort (Sourcefire,

2008).

Dynamic analysis

Registry monitoring. Monitor

registry activities as they occur.

Regmon (Microsoft, 2008c)

Code analysis Disassembly, debugging IDA Pro (Hex-Rays, 2008) ,

OllyDbg (Yuschuk, 2008) .

Analysis Avoidance Techniques of Malicious Software

 25

2.3. OVERVIEW OF COMMON MANUAL ANALYSIS
METHODOLOGIES

A manual, step by step, analysis process suggested by Skoudis (2004,

p.573) for analysis of malware that incorporates static and dynamic analysis

techniques has been reproduced in the following list:

• Load specimen onto victim machine.

• Run antivirus program.

• Research antivirus results and filenames.

• Conduct strings analysis.

• Look for scripts.

• Conduct binary analysis.

• Disassemble code.

• Reverse compile code.

• Monitor files changes.

• Monitor files integrity.

• Monitor process integrity.

• Monitor local network activity.

• Scan for open ports remotely.

• Scan for vulnerabilities remotely.

• Sniff network activity.

• Check promiscuous mode remotely.

• Monitor registry activity.

• Run code with debugger.

The methodology of Skoudis (2004) is fairly linear in nature, after one step

is completed, the next step is entered. It does not explicitly seek to mitigate

the use of anti forensic techniques the malware may be using to hide its

presence, alter the program flow, or detect the presence of analysis tools.

A generalized approach to profiling listed by Aquilina, Casey and Malin

(2008, p.286) is listed and summarized as follows as a series of steps that

may be conducted in a particular order:

Analysis Avoidance Techniques of Malicious Software

 26

Detail – Document the system details from which the suspect file was

obtained.

Hash – Determine the cryptographic hash of the suspect file.

Compare – Conduct a similarity test against known samples.

Classify – Identify the target platform, high level language of the specimen

and the compiler used.

Scan – Identify the language used to author the code as well as the

compiler used, the type of file and target architecture.

Examine – Use executable file analysis tools to try to determine if the

suspect file has malicious intent.

Extract and Analyze – Extract strings, file metadata and symbolic

information.

Reveal – Identify armoring techniques that will protect the suspect file from

examination.

Correlate – Determine if the file is statically or dynamically linked.

Research – Determine if the file has already been analyzed by conducting

online research.

This list explicitly has a step to reveal armoring techniques that malware

can use to hinder analysis which is not listed by Skoudis. The work by

Skoudis (2004) precedes the list by Aquilina et al. (2008) by approximately

four years and may indicate that the use of anti-analysis techniques

employed by malware has become more prevalent during this time and that

these techniques have to be mitigated before analysis can proceed.

A significant work by Zeltser (2007) is very much, a comprehensive, manual

analysis treatise. It is in the form of a training course conducted by the

SANS organization and is appropriately titled “Reverse-Engineering

Malware: Tools and Techniques – Hands On”. Zeltser begins by setting up a

safe, laboratory environment, using freely available software tools. The

general methodology presented by Zeltser (2007, pp. 1-12) is listed as

follows:

1. Run the malware in an isolated laboratory

2. Monitor the interactions between the system and the network from a

behavioral sense.

Analysis Avoidance Techniques of Malicious Software

 27

3. Understand the program’s code

4. Repeat the process until enough information is gathered.

What becomes evident throughout Letzer’s (2007) notes and the practical

exercises, is the iterative and recursive nature of this methodology. This is

in contrast to the linear methodology of Skoudis (2004). Starting points, or

clues, are extracted from the malware from static and dynamic analysis and

these are used to focus on the aspects of the code that have malicious

functionality. This approach is often referred to as “hit listing” in reversing

and analysis literature because it is often infeasible to fully analyze a

malware specimen from the perspective of time that can be expended to

this endeavor. In fact, it is to the malware writers’ advantage to make the

code as difficult and time consuming to analyse as possible. The analyst

may not be able to spend as much time analyzing the code as they would

like. This could lead to missing the opportunity to analyse important and

relevant sections of code.

As this information is extracted, the investigative environment is adapted,

such as adding entries to the hosts file, addition of an IRC client or server,

mail server or whatever else the malware expects to connect to. Then the

behavioral analysis can begin again, with the new information, to delve

deeper into the malware to reveal its intentions and how it works. The

iterative and recursive nature also lends itself to dealing with anti-analysis

techniques as they arise and could be a superior methodology to adopt to

detect and mitigate anti-analysis techniques, especially in the case where

detection of the use of anti forensic techniques is an objective.

2.4. OVERVIEW OF ANTI FORENSIC TECHNIQUES

“Digital forensics includes preserving, collecting, confirming, identifying,

analyzing, recording and presenting crime scene information” (Kleiman,

2007, p. 9). Malware is increasingly being used to commit cyber crime

(Trend Micro Incorporated, 2007) and digital forensics are applied by

investigators to achieve this objective. However, techniques to thwart the

digital forensic analyst are employed by maware developers.

Analysis Avoidance Techniques of Malicious Software

 28

Today as computer intruders become more cognizant of digital
forensic techniques, malicious code is increasingly designed to
obstruct meaningful analysis. By employing techniques that
thwart reverse engineering, encode and conceal network traffic,
and minimize the traces left on file system, malicious code
developers are making both discovery and forensic analysis more
difficult. This trend started with kernel loadable rootkits on UNIX
and has evolved into similar concealment methods on Windows
systems. Today, various forms of malware are proliferating,
automatically spreading (worm behaviour), providing remote
control access (Trojan horse/backdoor behaviour), and sometimes
concealing their activities on the compromised host (rootkit
behaviour). Furthermore, malware has evolved to undermine
security measures, disabling AntiVirus tools and bypassing
firewalls by connecting within the network to external command
and control servers. (Aquilina et al., 2008, p. xxxv)

An important consideration in the analysis of malware is that anti forensic

techniques are increasingly being employed by developers of malware to

avoid detection and analysis of their code (Brand, 2007; Falliere, 2006,

2007; Ferrie, 2008; Grugq, n.d.; Harbour, 2007; Smith & Quist, 2006). It

was reported in an online article that a speaker at the Australian IT Security

in Government Conference claimed that 65% of new malware “uses some

type of stealth or anti-forensic technology in an attempt to remain

undetected before, during and after an attack” (Kotadia, 2006).

Malware employs anti forensic techniques to prevent the forensic analysis of

its behaviour and its underlying code. This is achieved by detecting the use

of popular analysis tools and debuggers. Once detected, the malware can

modify its behaviour so that it does not perform its malicious action from a

dynamic analysis point of view. From a static analysis point of view, it can

use numerous techniques to make the static analysis difficult and hide its

true nature.

An example presented by Yason (2007, p. 12) has been adapted and

modified by the researcher in Figure 2-4 with comments. It uses the

FindWindow() function from the user32 Dynamic Link Library (DLL) to

identify if the popular debuggers, WinDbg (Microsoft, 2008b) or OllyDbg are

running. If malware detects the presence of a debugger, it can amend its

Analysis Avoidance Techniques of Malicious Software

 29

behaviour so that it does not perform malicious activities, remove itself

from the system, or, with appropriate privileges, damage the system.

; set up the call to FindWindow to find OllyDbg
push NULL
push .szWindowClassOllyDbg
call [FindWindowA]

; check the result of the call
test eax,eax

; if the result is non zero, the debugger was found,
; so jump to the section of code to display a message box
; note that this is not in this snippet of code
jnz .debugger_found

; set up the call to FindWindow to find WinDbg
push NULL
push .szWindowClassWinDbg
call [FindWindowA]

; check the result of the call
test eax,eax

; if the result is non zero, the debugger was found,
; so jump to the section of code to display a message box
; note that this is not in this snippet of code
jnz .debugger_found

; data
.szWindowClassOllyDbg db “OLLYDBG”, 0
.szWindowClassWinDbg db “WinDbgFrameClass”, 0
Figure 2-4 Partial implementation of FindWindowA function to find

popular debuggers (Yason, 2007, p. 12)

Another example by Yason (2007, p. 14), reproduced in Figure 2-5 checks

for the presence of breakpoints by scanning for the byte 0xCC (which

represents a breakpoint) in a region of protected code as defined by the

region:

Protected_Code_End – Protected_Code_Start

The protected code could be within a region of packed code that is

unpacked by a runtime packer. A packer compresses and/or encrypts an

executable program (which may or may not be malware) and creates a new

executable binary file. The packed program includes a runtime unpacking

stub which unpacks the original program into its original state and transfers

control to the original program. Packers may use software protection

Analysis Avoidance Techniques of Malicious Software

 30

mechanisms such as anti debugging, anti virtual machine, exception

handling and control flow handling to hinder analysis (Sun, Ebringer, &

Boztas, 2008).

cld
mov edi,Protected_Code_Start
mov ecx,Protected_Code_End – Protected_Code_Start
mov al,0xCC
repne scasb
jz .breakpoint_found
Figure 2-5 Partial implementation of code to detect breakpoints

(Yason, 2007, p.14)

Most of the literature that discusses anti-analysis techniques only provides

code snippets to accompany explanatory text. These snippets can be

incorporated into working code for validation purposes to assess the

effectiveness of the technique. Work on validation of a subset of these

techniques has been conducted by the researcher and the results are

documented in Chapter 4 of this thesis. A very general, overarching

taxonomy of anti-analysis techniques, revealed through a search of the

literature (Aquilina et al., 2008; Brand, 2007; Grugq, n.d.; Skoudis &

Zeltser, 2004; Zeltser, 2007), includes the following:

• Anti virtual machine

• Anti online analysis engines

• Anti unpacking

• Process injection techniques

• Code execution from memory

• Checksum checks

• Process camouflage

• Structured exception handling

• Import Address Table

• Rootkits

• Packers and Protectors

These techniques are discussed in the following sections.

Analysis Avoidance Techniques of Malicious Software

 31

2.5. ANTI VIRTUAL MACHINE

Analysis of malware is recommended by Zeltser (2007, pp. 1-20) to be

performed on Virtual Machines such as VMWare (VMware, 2008) or Virtual

PC (Microsoft, 2007). This allows multiple virtual machines to be run on the

one physical machine, all of which can be networked and can each be

running a different operating system. These virtual machines can also be

backed up and restored very quickly and easily. This makes an ideal

environment for the analysis of malware where a known state or checkpoint

can be returned to, and the analysis restarted if required.

However, malware can use techniques to determine if it is running in a

virtual machine as demonstrated by the logic of the following pseudo code

reproduced from a presentation by Smith and Quist (2006) as Figure 2-6.

IF detect_vmware

 THEN do nothing, destroy self, destroy system

ELSE

 Continue with malware payload

Figure 2-6 VMWare detection pseudo code showing that if VMWare

is detected, the machine could be damaged (Smith & Quist, 2006).

Eagle (n.d.) reports that VMware uses a registry key for the installation

location of Vmware as:

HKLM\Software\VMware, Inc.\VMware Tools\InstallPath

Malware can look for the presence of this key to indicate that it could be

running in a virtual machine. Another technique Eagle points out, is to use

the Windows Management Instrumentation (WMI) to iterate though the

network interfaces to see if any of the MAC addresses used belongs to

VMware. Eagle suggests the following to mitigate this technique:

• Uninstall VMware tools.

• Change the MAC address of the virtual adapter in the guest OS.

Analysis Avoidance Techniques of Malicious Software

 32

Innes and Valli (2006) point out that VMWare, in its default configuration, is

very easy to detect through a listing of the hardware and its reported type.

The types listed by Innes et al. are reproduced in Table 2-4.

Table 2-4 Default Hardware Configurations used to find presence of

VMWare (Innes & Valli, 2006)

Hardware Reported Type

Video Card VMWare Inc [VMWare SVGA II

Network Interface Card Advanced Micro Devices [AMD] 79c970 [PCnet 32

LANCE] (rev 10)

Hard Disk VMWare Virtual IDE Hard Drive

CD Drive NECVMWar VMWare IDE CDR10

SCSI Controller VMWare SCSI Controller

Innes et al. (2006) also lists the three MAC addresses assigned to the

virtual network cards as one of the following three values and this can be

detected by running either ipconfig /all or by running the command arp

–a and scanning the result.

00-05-69-xx-xx-xx

00-0C-29-xx-xx-xx

00-50-56-xx-xx-xx

Innes et al. (2006) also point out that VMWare developers left a backdoor

open for the configuration of the virtual machine during runtime with the

following lines of assembly code that have been reproduced from their

paper as follows in Figure 2-7.

mov eax, VMWARE_MAGIC ; 0x564D5868
mov ebx, b ; <parameter of command>
mov ecx, c ; <number of command>
mov edx, VMWARE_PORT ; 0x5658
in eax, dx

Figure 2-7 Code snippet used to detect the presence of VMWare

(Innes & Valli, 2006)

Analysis Avoidance Techniques of Malicious Software

 33

A sample of the commands listed by Innes et al. are reproduced in Figure

2-8.

04h Get current mouse cursor position.
05h Set current mouse cursor position
06h Get data length in host's clipboard.
07h Read data from host’s clipboard
08h Set data length to send to host's clipboard.
09h Send data to host’s clipboard
0Ah Get VMware version
0Bh Get device information
Figure 2-8 Commands that can be used to detect the presence of

VMWare (Innes & Valli, 2006)

Innes et al. (2006) point out that a VMWare machine could be detected if

running this code was successful and a result was returned from the

function call. Smith et.al. (2006) provide additional techniques to detect

Vmware and Virtual PC.

Porras, Saidi & Yegneswaran (2007, p.7) note that recent versions of Storm

appear to have stopped checking to see if it is running inside a virtual

machine and is instead focusing on hiding themselves from monitoring

software. The significance of this comment is that the developers of Storm

have evolved their malware beyond detecting the presence of a virtual

environment. Possibly, this could be because of the trend for organizations

to use virtualization to host their servers. If the simple approach of the

malware is to not install itself on a virtual machine, an opportunity may be

lost to it if it tries to install itself on a virtual machine that is not an analysis

environment, but a real, business orientated, virtual machine. By loading

their own drivers (sys files), they can be notified when a program or driver

in an undesired list is launched. This takes the malware to a lower layer,

underneath the radar, beneath where the virtual machine runs. This is done

via a call to the Windows API function PsSetLoadImageNotifyRoutine().

The list of executables disabled by Storm is quite extensive and listed in the

Appendix of the paper by Porras et. al. (2007). The list includes spyware

detection programs, virus scanners and anti spyware programs. This is a

problem because it provides a vector to detect and mitigate the tools of a

forensic analyst as well.

Analysis Avoidance Techniques of Malicious Software

 34

2.6. ANTI ONLINE ANALYSIS ENGINES

Anubis (International Secure Systems Lab, Vienna University of Technology,

Eurecom France, & UC Santa Barbara, 2008) is an online malware

behavioral analysis service. Online analysis engines automate the dynamic

analysis process as discussed above. Malware can be uploaded to the site,

and a report is generated that includes extensive information on:

General information such as the MD5 hash and file size

• Load time DLLs

• Run time DLLs

• Packer signature

• Virus signature

• Registry activities

• File activities

• Process activities

This information provides a high level over view of the actions malware can

conduct on a system and assists in determination of any possible threats. A

post by Xc (2007) to a forum, reported that all of the analyzed files on

Anubis were being executed from the directory C:\InsideTM. This makes it

easy for the malware to check if it is being run from this directory. An

Anubis detection routine was written by OG (2007).

Sandboxie (Sandboxie, 2008) is an application where suspicious programs

can be run in an environment that uses a transient storage area, known as

a sand box, so that data is not written to the hard drive. This allows the

analyst to observe what an unknown program is going to do. However,

Sandboxie can be defeated by “a DLL (SbieDLL.dll) being injected into the

process run under SandBoxie” (Thrasher, 2007). Anti sandbox code was

written by OG (2007).

Norman Sandbox (Norman, 2008) also provides an online service to analyze

malware, but this also can be detected. Krack (2006) notes that the

Analysis Avoidance Techniques of Malicious Software

 35

presence of the sandbox can be detected by “reading it’s memory, and

comparing it to that of a standard computer”. Then, upon detection of the

sandbox, the malware can halt its execution, resulting in nothing being

logged and detected.

A sample program was written by Stargazer (2006) that can detect the

Norman Sandbox. This is a problem because analysts can submit suspicious

files to online analysis engines such as Norman Sandbox. If the suspicious

file detects that it is running on such an engine, it can alter its behaviour so

that it appears to be benign and the report generated from the online

engine does not reflect its real potential. The analyst could then allow the

suspicious file to run on real systems, unaware of its real, malicious purpose.

Analysts need to be aware of the limitations of their tools and the

limitations of virtual environments, online analysis engines and sandboxes

as outlined in the discussion above in this section. This, in general,

highlights a weakness in dynamic analysis techniques where the analyst

may not be aware that malware has detected the environment it is in, and

is using deception to mask its true capability. In contrast to detailed static

analysis of code, dynamic analysis is faster and much easier to perform, but

is arguably, easier to deceive. The following section addresses the

techniques malware can use to hinder static analysis techniques.

2.7. ANTI REVERSING TECHNIQUES

Eilam (2005, pp. 327-356) devotes a chapter in his book, on anti-reversing

techniques. Eilam’s discussion of techniques is ordered into the following

headings, and discussed in the following sections:

• Eliminating symbolic information

• Code encryption

• Active anti-debugger techniques

• Confusing disassemblers

• Code obfuscation

• Control flow transformations

• Data flow transformations

Analysis Avoidance Techniques of Malicious Software

 36

2.7.1. Eliminating symbolic information

Release builds that use C or C++ typically remove all symbolic information,

but byte code languages such as Java and C# contain information that is

useful to the analyst. This is because byte code languages utilize names

instead of addresses for cross referencing. These meaningful names can be

replaced by meaningless strings by byte code obfuscators. DLL imports can

also use ordinals instead of names (Eilam, 2005, pp. 328-330). Ordinals are

simply numbers and may appear far less meaningful than a function that is

appropriately named according to its purpose. This can make it harder for

the analyst because a list of the names of function calls can make it easier

to assess the overall functionality of the malware. This could include

identifying calls to modify the registry, startup programs or communicate

over the internet to other computers.

2.7.2. Code encryption

Eilam (2005, p. 330) explains that this technique is commonly used to

prevent static analysis and is performed after the program is compiled. It

contains a decryption section in the code and the program is decrypted at

run time. This means that the analyst will most likely have to run the

program to let it decrypt itself. This gives the malware control and the

opportunity to use deception to hide its true intent from the analyst.

2.7.3. Active anti-debugger techniques

Eilam (2005, pp. 331-336, p.331-336) discusses a few active techniques

that are better described in other papers (Ferrie, 2008; Falliere, 2007;

Yason, 2007). However, one technique worth discussion is the use of code

checksums. This technique calculates a checksum for particular functions

and then checks at runtime if the function has been modified by code

patching, or by the setting of software breakpoints. This helps the malware

determine if it is being analyzed if the code has been patched or a software

breakpoint set in the region of code of interest.

2.7.4. Confusing disassemblers

Two methods used by disassemblers are linear sweep and recursive

traversal. Linear sweep is used by the disassemblers/debuggers SoftIce

(Compuware, 2008) and WinDbg (Microsoft, 2008b), which conducts a

Analysis Avoidance Techniques of Malicious Software

 37

disassembly in a sequential manner. Recursive traversal (used by OllyDbg

and IDA Pro) follows the flow of each branch and is the more reliable

technique and tolerant to anti-disassembly tricks. Linear sweeps can be

easily confused with junk bytes, but the recursive sweep technique can also

be fooled with opaque predicates (Eilam, 2005, pp. 336-344). Opaque

predicates are simply code that appears to make a decision that could alter

program flow, but in reality, only one branch of execution is possible to

follow.

2.7.5. Code obfuscation

Eilam (2005, p. 344) says “code obfuscation involves transforming the code

in such a way that makes it significantly less human-readable, while still

retaining its functionality”. Transformation characteristics include potency,

which is the level of complexity added to the code and can be measured by

complexity metrics including the depth of nesting in a particular sequence

and the number of predicates the code contains. Another characteristic is

that the transformation must be resilient. A highly resilient transformation is

hard to undo. Deobfuscators can conduct data-flow analysis to reverse the

transformation. There is also a cost characteristic of the obfuscation

transformation in terms of increased size of the resultant code and slower

execution time (Eilam, 2005, pp. 344-345, p.344-345).

2.7.6. Control flow transformations

Control flow transformations are another way of reducing human readability

of code by altering the order and flow of a program (Eilam, 2005, p. 346).

Control flow transformations are categorized as computation

transformations, aggregation transformations and ordering transformations

(Collberg, Thomborson, & Low, 1998)

2.7.7. Data transformations

Eilam (2005, pp. 355-356) explains that data transformations obfuscate the

data of a program rather than the structure of the code by encoding some,

or all, of a program’s variables and/or by restructuring the arrays of the

program.

Analysis Avoidance Techniques of Malicious Software

 38

2.8. ANTI UNPACKING

The 2nd International Caro Workshop was held in the Netherlands in May

2008 that focused on the problems and technical aspects of packers,

decryptors and obfuscators as the major theme of the conference. Ferrie,

(2008) a Senior AV Researcher at Microsoft, presented a paper at the

conference that (at the time of writing this thesis) extensively lists what he

refers to as the most common anti-unpacking tricks, together with some

countermeasures. Ferrie’s taxonomy for these techniques is as follows:

• Anti unpacking by anti dumping

• Anti unpacking by anti debugging

• Anti unpacking by anti emulating

• Anti unpacking by anti intercepting

• Miscellaneous

The techniques Ferrie discusses in his paper are summarized in the

following sections under the same headings as the taxonomy listed above.

It should be noted that these techniques need not only be used during the

unpacking process. They can be used within the body of the malware itself.

2.8.1. Anti Unpacking by Anti Dumping

Packed malware can be run until the OEP is reached, which generally means

that the original code is now unpacked in memory. The analyst can then

dump the code from memory and then analyze it. These tricks are used to

prevent an accurate facsimile of the code being dumped (Ferrie, 2008, p. 1).

2.8.1.1. Size of Image

The SizeOfImage value in the Process Environment Block (PEB) can be

changed so that process access is impeded, as well as stopping a debugger

from attaching to the process. Ferrie (2008, p. 1) says that it breaks

popular dumping tools such as LordPE (yoda, 2005a) in default mode, and

continues by saying that this technique can be defeated by ignoring the

SizeOfImage value in the PEB and call the VirtualQuery() function instead.

This returns the number of sequential pages whose attributes are the same,

and these pages can be enumerated. The first page begins with the

Analysis Avoidance Techniques of Malicious Software

 39

ImageBase page and sequential pages should return the MEM_IMAGE type. A

page that did not come from the file is indicated by a page that is not of the

MEM_IMAGE type.

2.8.1.2. Erasing the Header

Ferrie (2008, p. 1) reports that some dumpers such as ProcDump (G-RoM,

Lorian, & Stone, 1999) rely on the section table in the PE header, and that

altering or erasing the table can defeat such dumping tools. Ferrie (2008, p.

2) advises using the VirtualQuery() function to recover the image size

and to determine the permissions of the pages, but that it is not possible to

recover the section table once it has been erased.

2.8.1.3. Nanomites

As a more advanced form of anti-dumping, this technique replaces branch

instructions with software breakpoints (INT 3), called nanomites. This

technique was introduced by the packing tool Armadillo (Silicon Realms,

2008), now mostly known as SoftwarePassport. Tables in the unpacking

code record details of the nanomite. Ferrie (2008, p. 2) relates that a

process that is protected by nanomites uses self-debugging. This technique

uses a copy of the process as a debugger which can then intercept the

exceptions generated by the debuggee when the nanomite is reached.

When this occurs and if the exception address is in an address table, the

type information is retrieved from a type table. The branch is taken if the

type matches the CPU flags and the destination address is retrieved from a

destination table. Execution resumes from that address. If a match is not

made, a size table is used to retrieve the size of the branch so that the

instruction can be skipped.

2.8.1.4. Stolen Bytes

ASProtect (ASPack Software, 2008) introduced this technique. These are

instructions taken from the original program and relocated into dynamically

allocated memory. The original programs instructions are replaced with junk

code except for a jump to the start of the relocated code (Ferrie, 2008, p.

2).

Analysis Avoidance Techniques of Malicious Software

 40

2.8.1.5. Guard Pages

The purpose of Guard Pages is to act as an alarm if they are accessed, by

raising an EXCEPTION_GUARD_PAGE (0x80000001) exception. Then the

exception can be intercepted and then checked to see if the page is within a

particular range such as the process image space. Ferrie (2008, p. 2)

reports that the packing tool called Shrinker (Blinkinc, 2003) uses this

technique to perform on-demand compression. It uses this technique to

reduce the committed memory requirements because pages that are not

required do not need to be loaded into physical memory. It does this by

hooking the ntdll KiUserExceptionDispatcher() function and looking for

the EXCEPTION_GUARD_PAGE exception.

Armadillo uses a variation of this technique to perform on-demand

decryption but requires the use of self-debugging. It loads the entire

program into memory at once, in contrast to the way Shrinker loads pages

only as required. The debugger intercepts the exceptions raised by the

debuggee and if the exception is within the process image space, the

individual page that is being accessed is decrypted and execution resumes.

Ferrie (2008, p. 3) suggests a way of mitigating Armadillo’s

implementation by touching all the pages in the image which should make

Armadillo decrypt all pages which can then be dumped from memory.

2.8.1.6. Imports

Because the list of imported functions of a binary give a good idea of the

overall functionality of a program, most packers alter the Import Table after

the imports have been resolved by erasing it and replacing it with a

different access mechanism. This could be a private buffer that holds real

function addresses that is not dumped by default (Ferrie, 2008, p. 3).

2.8.1.7. Virtual Machines

The executable code is never visible if a virtual machine is used to unpack

the code. This technique is used by packers such as themida (Oreans

Technologies, 2008), neoGuard (Seculab, 2008) and VMProtect (VMProtect,

2008). Seculab’s Russian web page extols the virtues of neoGuard to

include a very high level of protection against disassembling and debugging

Analysis Avoidance Techniques of Malicious Software

 41

and that a custom disassembler and compiler would have to be written by

the analyst to analyse the code that has been protected using neoGuard

(Seculab, 2008).

A simple technique to analyse packed malware is to let it unpack itself into

memory, halt execution and then dump the code from memory and analyse

it. Rolles (2007) reports that new protectors are applying transformations to

the original code so that dumping and analyzing code is much more difficult.

Rolles says this is done by “converting portions of the code into proprietary

byte-code formats which are executed by an embedded interpreter (so-

called virtualization, virtual machines) and copying portions of the code

elsewhere in the process' address space (so-called stolen bytes, stolen

functions)”. This means that packers that use virtual machines run their

unpacking routines from within a VM. The advantage to malware authors is

that it negates the usefulness of existing, static analysis tools. Static

analysis is broken because each different VM has a different instruction

encoding format (and this can be polymorphic). Patching the VM program

requires a familiarity with the instruction set that must be gained through

analysis of the VM parser (Rolles, 2007).

2.8.1.8. Anti Unpacking by Anti Debugging

These techniques focus on preventing or hindering analysis when the

malware is being run inside a debugger, or if a debugger tries to attach to a

running process.

2.8.1.9. NtGlobalFlag

The NtGlobalFlag is a field in the PEB at offset 0x68 that is zero by default,

but has a value stored in it when the process is running in a debugger. The

value is comprised of a set of flags as follows:

FLG_HEAP_ENABLE_TAIL_CHECK(0x10)

FLG_HEAP_ENABLE_FREE_CHECK(0x10)

FLG_HEAP_VALIDATE_PARAMETERS(0x40)

Ferrie (2008, p. 3) emphasizes that other flags can be set in this value and

it is a mistake to simply compare the value of this field with 0x70 to check

Analysis Avoidance Techniques of Malicious Software

 42

for the presence of a debugger. Although these three flags are usually set

for a debugger, they are not set for a debugger that attaches to a running

process. Ferrie also points out three more exceptions. Additional flags can

be set for all processes with the value of GlobalFlag by the registry key:

HKLM\System\CurrentControlSet\Control\SessionManager

The next exception is that all flags can be controlled on a per-process basis

by the value of GlobalFlag by the registry key:

HKLM\Software\Microsoft\WindowsNT\CurrentVersion\Image File
Execution Options\<filename>

Where <filename> is replaced by the name of the file being executed.

The third exception is all of the flags can be controlled by the Load

Configuration Structure on a per-process basis and was introduced to

support Safe Exception Handling in Windows XP. It also contains two fields

called GlobalFlagsClear and GlobalFlagsSet and can be used to set or

clear any flags in the NtGlobalFlag field in the PEB.

2.8.1.10. Heap Flags

The default heap of the process can give away the presence of a debugger.

The pointer to the base of the heap can be determined by using the

kernel32 DLL GetProcessHeap() function, or alternatively by directly

accessing the PEB. The handle to the process heap is at offset 0x18 in the

PEB from which there are two fields of interest, Flags at offset 0x0c which

shows the settings for the current heap block and ForceFlags at offset

0x10c which shows the settings for how the heap will be manipulated. Ferrie

(2008) says the presence of a debugger could be indicated by these values

set in the Flag field as shown in Figure 2-9.

Analysis Avoidance Techniques of Malicious Software

 43

HEAP_GROWABLE(0x02)
HEAP_TAIL_CHECKING_ENABLED(0x20)
HEAP_FREE_CHECKING_ENABLED(0x40)
HEAP_SKIP_VALIDATION_CHECKS(0x10000000)
HEAP_VALIDATE_PARAMETERS_ENABLED(0x40000000)
Figure 2-9 Heap Flags that can be read and used to detect the

presence of a debugger.

Ferrie (2008, p. 4) says that the presence of a debugger could be indicated

by the setting of these flags in the ForceFlags field.

HEAP_TAIL_CHECKING_ENABLED(0x20)
HEAP_FREE_CHECKING_ENABLED(0x40)
HEAP_VALIDATE_PARAMETERS_ENABLED(0x40000000)
Figure 2-10 Force Flag fields that can be read and used to detect the

presence of a debugger.

2.8.1.11. The Heap

Ferrie (2008, p. 5) reports that some artifacts can still be detected after the

heap flags have been cleared, and that packers such as Themida® (Oreans

Technologies, 2008) look for these. The following flag can cause the

sequence 0xABABABAB to appear twice at the end of the allocated block.

HEAP_TAIL_CHECKING_ENABLED

Whilst the flag HEAP_FREE_CHECKING_ENABLED can cause the whole, or part

sequence of 0xFEEEFEEE to appear if bytes are required to fill the slack

space between blocks.

2.8.1.12. Special API’s

Various API’s can be used to detect the presence of a debugger. These are

presented in the following subsections.

2.8.1.12.1. IsDebugger Present

A call to the kernel32 DLL IsDebuggerPresent() function returns TRUE if a

debugger is found. Because it simply returns the value of the

Analysis Avoidance Techniques of Malicious Software

 44

BeingDebugged field of the PEB, the kernel32 call can be bypassed by

directly looking at the PEB. This method can be defeated by setting the flag

to FALSE (Yason, 2007).

2.8.1.12.2. Check Remote Debugger Present

This call has two parameters, a process handle, and a pointer to a BOOLEAN

variable that will be set to TRUE if it is found that a debugger is attached to

the process (Yason, 2007). The signature of this call is as follows:

BOOL CheckRemoteDebuggerPresent (
 HANDLE hProcess,
 PBOOL pbDebuggerPresent
)
Figure 2-11 Signature of the CheckRemoteDebuggerPresent

function that can be used to detect the presence of a debugger.

2.8.1.12.3. NtQueryInformationProcess

The call chain for CheckRemoteDebuggerPresent is via ntdll

NtQueryInformationProcess() which queries the DebugPort field of the

EPROCESS kernel structure (Yason, 2007).

2.8.1.12.4. Debug Objects

Ferrie (2008, p. 6) explains that Windows XP introduced the idea of a

“debug object” that is created when a debugging session commences. A

handle is associated with this object and the ProcessDebugObjectHandle

class can be used to query the value of the handle.

2.8.1.12.5. NtQuery Object

The number of debug objects can be obtained by using ntdll

NtQueryObject() function call. This call returns a structure called

OBJECT_ALL_INFORMATION which contains a field called

NumberOfObjectsTypes which is a count of total object types. A mitigation

strategy is to set a breakpoint when NtQueryObject returns and then patch

the NumberOfObjectsTypes field to 0 (Ferrie, 2008, p. 7).

Analysis Avoidance Techniques of Malicious Software

 45

2.8.1.12.6. Thread Hiding

The SetInformationThread() call can be used to hide a thread using an

information class called HideThreadFromDebugger. The thread will continue

to run when the function is called, but a debugger will no longer receive any

events related to that thread (Ferrie, 2008, p. 7).

2.8.1.12.7. Open Process

When a process is loaded into a debugger, the SePrivilege privilege in the

access token is enabled. It is not enabled when not loaded into a debugger.

“Some packers indirectly use SeDebugPrivilege to identify if the process is

being debugged by attempting to open the CSRSS.EXE process” (Yason,

2007, p. 9). CSRSS.EXE (Client Server Runtime Server Subsystem) manages

most of the graphical commands of Windows. The idea behind this is that

the security descriptor of the CSRSS.EXE process only allows SYSTEM to

access this process. A process that has the SeDebugPrivilege can access

any process regardless of the security descriptor. Yason (2007, p. 10) says

that this privilege is only granted to members of the Administrators group

by default.

Packers may try to obtain the PID of CSRSS.EXE via process enumeration. A

possible solution to this technique is to set a breakpoint where ntdll

NtOpenProcess() returns and to set the value of EAX to 0xC0000022

(STATUS_ACCESS_DENIED) when the breakpoint is reached if the PID that is

passed is that of CSRSS.EXE (Yason, 2007, p. 10)

2.8.1.12.8. Close Handle

The presence of a debugger can be detected by making use of the ZwClose

system call. CloseHandle indirectly makes use of this call. Calling ZwClose

with an invalid handle will generate a STATUS_INVALID_HANDLE exception.

Falliere (2007, p. 6) says that “the only proper way to bypass the

CloseHandle anti-debug is to either modify the syscall data from ring 0,

before it is called, or set up a kernel hook.”

2.8.1.12.9. Output Debug String

Analysis Avoidance Techniques of Malicious Software

 46

Falliere (2007, p. 7) says that if OutputDebugStringA is called with a valid

ASCII string under the control of a debugger, the return value will the

address of the string passed as a parameter. When not run in a debugger,

the return value should be 1.

2.8.1.12.10. Read File

By reading file content into the code stream, the kernel32 ReadFile()

function can be used as technique for self modification. It can also be used

to remove the software breakpoints that a debugger may have placed. This

technique can be defeated by using hardware breakpoints instead of

software breakpoints (Ferrie, 2008, pp. 8-9).

2.8.1.12.11. Write Process Memory

The WriteProcessMemory() function of the kernel32 DLL can be used in a

similar way to the ReadFile() function but requires that the data that is to

be written is already in process memory space. Ferrie (2008, p. 9) says that

the use of this technique can be defeated using hardware breakpoints.

2.8.1.12.12. Unhandled Exception Filter

Windows has a chained Structured Exception Handler (SEH) mechanism to

pass exceptions to handlers instead of crashing the program if possible.

Malware can take advantage of SEH to gain control of the malware to detect

it is being debugged. The malware throws an exception deliberately, and if

its own SEH does not handle the exception, it can deduce that it is being

debugged (Yason, 2007, p. 25).

2.8.1.12.13. Block Input

Packers can use the user32 DLL BlockInput() function to prevent the

analyst from using input devices such as the keyboard and mouse whilst the

unpacking routine is being executed, and makes the system appear

unresponsive during this time (Yason, 2007, p. 23).

2.8.1.12.14. Suspend Thread

User mode debuggers can be disabled by the use of the kernel32

SuspendThread() function. Ferrie (2008, p. 9) reports that Yoda’s

Analysis Avoidance Techniques of Malicious Software

 47

Protector (yoda, 2005b) uses this technique which enumerates the

process and then suspends the main thread of the parent process if it does

not match Explorer.exe (Microsoft, 2008a) which is the parent process.

2.8.1.12.15. Guard Pages

This technique registers an exception handler, a page is dynamically

allocated to it that is executable and writeable and the opcode RET is written

to it. The page protection is changed to PAGE_GUARD and then an attempt is

made to execute the RET instruction which will result in an

EXCEPTION_GUARD_PAGE exception being raised. A debugger may intercept

the exception and hence give away its presence. PC Guard (Sofpro, 2008)

uses this technique (Ferrie, 2008, p. 10).

2.8.1.12.16. Alternative Desktop

An alternative desktop can be hidden by a technique described by Ferrie

(2008, p. 10) and is used by the protector with its own VM,

HyperUnpackMe2 (Anonymous, n.d.-g).

2.8.2. Hardware Tricks

Various hardware related tricks can be utilized to determine if the process is

being debugged. These techniques are presented in the following

subsections.

2.8.2.1. Prefetch Queue

Prior to the Pentium and later CPU’s, a variety of tricks were possible by

exploiting some ways the prefetch queue for the CPU was mishandled by

allowing the overwriting of the next instruction to execute after an

exception occurred. Ferrie (2008, p. 10) says that the REP MOVS and REP

STOS instructions can still be used to exploit this mishandling. These two

instructions are cached by the CPU and will execute them even if the same

instructions in memory have been overwritten.

2.8.2.2. Hardware Breakpoints

There are 8 debug registers (DR0 – DR7) that are used to set hardware

breakpoints. Malware can detect that it is being debugged by setting them

Analysis Avoidance Techniques of Malicious Software

 48

to particular values and checking them later, or by simply resetting them.

Ferrie (2008, p. 11) says that the packer called Telock (TGM, 2004)

employs this technique to detect the use of a debugger as does ASProtect.

Debug registers cannot be set directly in user mode, but other ways Falliere

(2007, p. 11) lists include:

• Throwing an exception and then modifying the thread context

because it contains the contents of the CPU registers, and then

resuming normal execution with the modified context.

• Using the NtGetContextThread and NtSetContextThread system

calls through the kernel32 DLL functions GetThreadContext and

SetThreadContext.

2.8.2.3. Instruction Counting

This technique registers an exception handler and then sets some hardware

breakpoints. When the addresses of the breakpoints are hit, an

EXCEPTION_SINGLE_STEP exception is raised and passed to the exception

handler which is then able to adjust the instruction pointer to point to a new

instruction from which execution can resume. The kernel32

GetThreadContext() function can be used to access the context structure

of the thread. Some debuggers do not correctly handle hardware

breakpoints not set by the debugger itself and this may result to

instructions not being counted properly (Ferrie, 2008, p. 11).

2.8.2.4. Execution Timing

Packers and debug detection routines take advantage of the fact that code

running in a debugger is going to take longer to execute than when not

running in a debugger. The routines measure the time elapsed and

compares the time differential with a normal run time value. If it took

longer to run than expected, then it is probably running in a debugger. The

RDTSC (Read Time Stamp Counter) instruction can be used before and after

a routine to determine how much time elapsed.

The kernel32 DLL has a function called GetTickCount that returns with the

number of milliseconds elapsed since the system was started. A

Analysis Avoidance Techniques of Malicious Software

 49

SharedUserData data structure is always located at address 0x7FFE0000

and contains the fields TickCountLow and TickCountMultiplier.

A simple solution would be to identify where the timing checks are being

performed in the code, and then set a breakpoint before the first time delta

measurement and then perform a run instead of a step until the breakpoint

is hit (Yason, 2007, p. 8). Alternatively the return result from a call to

GetTickCount and modify the return value. Yason says that Olly Advanced

(MaRKuS, 2006) installs a kernel mode driver that performs the following:

Sets the Time Stamp Disable bit (TSD) in the CR4 control register which will

trigger a General Protection (GP) exception if the RDTSC instruction is

executed in a privilege level other than 0.

The Interrupt Descriptor Table (IDT) is setup so that the GP exception is

hooked and the execution of the RDTSC is filtered.

2.8.2.5. EIP via Exceptions

Ferrie (2008, p. 12) says that it is a very common trick of unpackers such

as PECompact (Bitsum Technologies, 2008) to use exceptions to alter the

EIP and also to gain a measure of obfuscation if the trigger of the exception

is not obvious.

2.8.3. Process Tricks

A number of process related techniques are available to determine if the

process is being debugged and to hinder the analysis process. These

techniques are discussed in the following subsections.

2.8.3.1. Header Entry Point

Since the PE header is read only by default, some unpackers, including MEW

(Northfox, 2004), set the entry point of the program in it. This effectively

blocks the debugger from setting a break point at the entry point, unless

the kernel32 VIrtualProtectEx() function is called first (Ferrie, 2008, p.

13).

Analysis Avoidance Techniques of Malicious Software

 50

2.8.3.2. Parent Process

A process often has explorer.exe as its parent process, and a parent other

than explorer.exe may have been spawned by a debugger. Yason (2007, p.

10) says that this can be determined by the following process.

1. Get the current process PID via the TEB (TEB.ClientID) or by calling

GetCurrentProcessId().

2. Use Process32First/Next() and get explorer.exe’s PID from

PROCESSENTRY32.szExeFile and get the PID of the parent process of the

current process from PROCESSENTRY32.th32ParentProcessID.

3. The target may be being debugged if the PID of the parent process is not

the same as the PID of explorer.exe.

A false positive may result if the process was launched using the command

prompt or if the default shell is different. Yason says that this can be

mitigated by setting Process32Next() to always fail when using Olly

Advanced. Ferrie (2008, p. 13) reports that Yoda’s Protector is among

the packers that use this technique.

2.8.3.3. Self Execution

A process can escape the control of a debugger by executing a copy of itself

by utilizing a mutex. The initiating process creates the mutex and then

executes a copy of the process which will not be debugged, even if the first

process was being debugged and will know that it is a copy since the mutex

will be found to already exist (Ferrie, 2008, p. 15).

2.8.3.4. Process Name

Some packers look for process names that match the names of debugging

or malware analysis tools using the kernel32

CreateToolhelp32Snapshot() function (Ferrie, 2008, p. 16).

2.8.3.5. Threads

Some packers such as PE-Crypt32 (random, killa, & acpizer, 1999) use

threads to check for the presence of a debugger, or to check the integrity of

the main code (Ferrie, 2008, p. 16).

Analysis Avoidance Techniques of Malicious Software

 51

2.8.3.6. Self Debugging

Ferrie (2008, pp. 16-17) says that this technique used by Armadillo and

other packers, runs a copy of a process and attaches to the copy as a

debugger. This makes the process un-debuggable because only one

debugger can attach to a process at any one point in time. This technique

can be defeated by using kernel mode code to zero the EPROCESS-

>DebugPort field to allow another debugger to attach to the process. A DLL

can also be injected into the process space by using the kernel32

OpenProcess() function. On Windows XP and later, the kernel32

DebugActiveProcessStop() function can be utilized to detach the debugger.

2.8.3.7. Disassembly

Breakpoints set within the first few instructions of an API can be bypassed if

the packer uses API interception and copies the first few instructions of the

function into a private buffer, and executes the instructions from there. The

packer places a jump at the end of the last copied instruction so that

execution of the original code resumes just after the point the last copied

instruction was made. This also gives the packer the opportunity to search

for breakpoints that have been set in the code which is an indication that

the program is being debugged (Ferrie, 2008, p. 17).

2.8.3.8. TLS Callback

This technique is used to change the original entry point of a program to a

different entry point so that an initial check can made to see if a debugger

or other analysis tools are being run. It changes the PE loader so that the

entry point of the program is referenced in Thread Local Storage (TLS),

which is the 10th directory entry in the optional PE header (Falliere, 2007).

TLS callbacks can be identified by examining the Data Directory of the PE

header using a tool such as pedump (Pietrek, n.d.) because it will show if a

TLS directory is in the executable (Yason, 2007, p. 28).

2.8.3.9. Device Names

Packers can use a device driver technique to detect debuggers such as

OllyDbg and IDA Pro as well as monitors running at the system level such

as the SysInternals tools Regmon and Filemon. This technique uses

Analysis Avoidance Techniques of Malicious Software

 52

kernel32 CreateFile against well known names. Yason (2007, p. 13) says

that some versions of SoftICE append numbers to the device name which

will cause this check to fail. However, a brute force approach can be used to

find the name by appending numbers to the search routine in a loop.

Ferrie (2008) provides examples of some device names used by popular

analysis tools that are reproduced in Figure 2-12.

SoftIce
 \\.\SICE
 \\.\SIWVID
 \\.\NTICE
Regmon
 \\.\REGVXG
 \\.\REGSYS

FileMon
 \\.\FILEVXG
 \\.\FILEM
Figure 2-12 Device names used by popular debugging tools that can

be used by malware to detect their presence.

2.8.3.10. SoftIce Specific

SoftIce was a popular ring 3 and ring 0 debugger for the Windows platform.

2.8.3.10.1. Driver Information

SoftIce device drivers can be enumerated using the ntdll

NtQuerySystemInformation() function. The version information of each file

can then be determined using the VerQueryValue() function as well as

strings that can be matched including SoftIce (Ferrie, 2008, p. 18).

2.8.3.10.2. Interrupt 1

Ferrie (2008, p. 18) explains that the int 1 instruction cannot be set from

ring 3 and will raise an EXCEPTION_ACCESS_VIOLATION exception (General

Protection Fault) if this interrupt is called directly. However, SoftIce hooks

this interrupt and adjusts the Descriptor Privilege Level (DPL) to 3 from its

normal DPL of 0 to enable SoftIce to single step user mode code. When

the int 1 occurs, SoftIce does not check the cause was a software

interrupt or the trap flag and it always calls the handler for interrupt 1

Analysis Avoidance Techniques of Malicious Software

 53

and an EXCEPTION_SINGLE_STEP exception is raised when an

EXCEPTION_ACCESS_VIOLATION exception should have been raised resulting

in the detection of the presence of SoftIce.

2.8.3.11. OllyDbg Specific

OllyDbg is a very popular ring 3 debugger. The techniques in the following

subsections examine ways of detecting its presence.

2.8.3.11.1. Malformed Files

Ferrie (2008, p. 19) says that OllyDbg “will refuse to open a file whose data

directories do not end exactly at the end of the Optional Header”. OllyDbg

tries to allocate the amount of memory that the Export Directory Size,

Base Relocation Directory Size, Export Address Table Entries and

PE->SizeOfCode fields say, no matter how large the values are which can

cause the system swap file to grow so large that it affects the performance

of the system.

2.8.3.11.2. Initial ESI Value

Some packers try to detect OllyDbg by examining the initial value of the

ESI register. Ferrie (2008, p. 19) reports that this value is 0xFFFFFFFF on

Windows XP, but 0 in Windows 2000, and is just a coincidence.

2.8.3.11.3. Output Debug String

Falliere (2007, p. 7) reports if OutputDebugStringA is called with a valid

ASCII string under the control of a debugger, the return value will the

address of the string passed as a parameter. When not run in a debugger,

the return value should be 1. Yason (2007, p. 26) says that this technique is

specific to OllyDbg because it is vulnerable to a format string bug.

2.8.3.11.4. Find Window

The user32 function FindWindow() and FindWindowEx() can be used to

find out if known applications are being run including OllyDbg (Yason, 2007,

p. 22).

2.8.3.11.5. Guard Pages

Analysis Avoidance Techniques of Malicious Software

 54

An attempt to execute instructions in a guarded page should result in an

exception, but OllyDbg executes them (Ferrie, 2008, p. 19).

2.8.3.12. Hide Debugger Specific

OllyDbg has an enormous variety of plugins including ones to counter

detection techniques. One of these is HideDebugger (Shub-Nigurrath, 2006)

which hooked the kernel32 OpenProcess() function by setting a far jump

to a new handler. The detection of this jump provides a good indication of

the presence of the plugin (Ferrie, 2008, p. 19).

2.8.3.13. Immunity Debugger Specific

Ferrie (2008, p. 20) points out that the Immunity Debugger (Immunity,

2008) is a customization of OllyDbg with a Python command-line interface

and is vulnerable to all the same detection and vulnerabilities as OllyDbg.

2.8.3.14. WinDbg Specific

WinDbg is a Microsoft distributed, ring 3 and ring 0 debugger. The following

techniques are WinDbg specific.

2.8.3.14.1. Find Window

Ferrie (2008, p. 20) says that the user32 FindWindow() function can be

used to detect WinDbg by using the class name WinDbgFrameClass.

2.8.3.15. Miscellaneous Tools

The following sub section discusses various miscellaneous tools.

2.8.3.15.1. Find Window

Less common tools that malware searches for includes the window name

string of Import REConstructor v1.6 FINAL © 2001-2003 MackT/uCF or

class name of TESTDBG, kk1, Eew57 or Shadow (Ferrie, 2008, p. 20).

2.8.4. Anti Unpacking by Anti Emulating

This section discusses some of the techniques used to detect emulators and

virtual machines.

Analysis Avoidance Techniques of Malicious Software

 55

2.8.4.1. Software Interrupts

2.8.4.1.1. Interrupt 3

An emulator can be detected if it does not behave the same way as

Windows. The EIP has already been advanced to the next instruction when

an EXCEPTION_BREAKPOINT occurs and Windows tries to set the EIP back to

where it should be, but Windows assumes that the exception is caused by

the short form of int 3 (CC). However, the EIP will point to the wrong

place if the long form of int 3 (CD 03) caused the exception (Ferrie, 2008,

p. 20).

2.8.4.2. Time Locks

Anti-emulation code can exploit the characteristic of emulators to limit the

amount of time and/or the number of instructions that will be executed

before exiting with no detection. The anti-emulation code can use a dummy

loop to force the emulator to give up (Ferrie, 2008, p. 20).

2.8.4.3. Invalid API Parameters

For the purpose of simplicity, some emulators do not provide error checking

for the return results of API calls. Some anti-emulator code can exploit this

vulnerability to detect the presence of an emulator including that of the

Tibs packer (Ferrie, 2008, p. 20). The Tibs (Anonymous, n.d.-m) packer

is often used to pack the storm worm and has anti-emulation capability

(Websense, 2008).

2.8.4.4. Get Proc Address

The address of a function exported by a DLL is obtained by using the

kernel32 function GetProcAddress(), however, not all functions are

provided by the virtual environment such as the kernel32 function

GetTapeParameters(). Because some packers try to exploit this, some

anti-malware emulators return a value for GetProcAddress() without due

consideration to the parameters that were passed to it. The anti-emulator

code can call a function with invalid parameters fully expecting not to

receive a return value, and an emulator can be detected if a valid result is

returned (Ferrie, 2008, p. 21).

Analysis Avoidance Techniques of Malicious Software

 56

2.8.4.5. Get Proc Address (Internal)

Ferrie (2008, p. 21) says that “some anti-malware emulators export special

APIs, which can be used to communicate with the host environment”.

2.8.4.6. “Modern” CPU Instructions

Ferrie (2008, p. 21) advises that for the purposes of simplicity, some anti-

malware emulators do not implement the entire CPU instruction set and

leave out less common instructions such as CMPXCH8B and entire instruction

classes such as Floating Point Unit (FPU), Multimedia Extensions (MMX) and

Streaming Single Instruction Multiple Data Extensions (SSE). This can be

used by the packer to detect the presence of the emulator, or the emulator

may fail to determine what the malware is doing.

2.8.4.7. Undocumented Instructions

Am emulator may fail to detect the intention of the malware if a packer can

use undocumented instructions that are not supported by the emulator

(Ferrie, 2008, p. 22).

2.8.4.8. Selector Verification

Ferrie (2008, p. 22) says that packers such as MSLRH (Anonymous, n.d.-i)

can use the kernel32 GetVersion() function to get the operating system

version which can then be compared with the descriptor table layout. On a

Windows NT-based system the CS selector should be 0x1B for ring 3 code,

whilst on Windows 9x-based platforms the CS selector can exceed 0xFF

(Ferrie, 2008, p. 22).

2.8.4.9. Memory Layout

Anti-malware emulators may not include the in-memory structures that a

real system will have such as the RTL_USER_PROCESS_PARAMETERS which

should appear at memory location 0x20000 (Ferrie, 2008, p. 22).

2.8.4.10. File Format Tricks

This section discusses a number of PE Header file format tricks used by

malware that do not conform to the way the emulator expects to file to

appear.

Analysis Avoidance Techniques of Malicious Software

 57

2.8.4.10.1. Non Aligned Size of Image

The PE->SizeOfImage field is stated in the file format documentation to be

a multiple of the value in the PE->SectionAlignment field but is not a

requirement and Windows can round up the value if required. Malware can

take advantage of this to ensure that it will not run within a VM and hence

hinder analysis (Ferrie, 2008, p. 22)

.

2.8.4.10.2. Overlapping Instructions

Structures in the PE Header file can be made to overlap such as the MZ-

>lfanew field so that the PE header appears inside the MZ header. The PE-

>SizeOfOptionalHeader field can be set so that it appears as if a section

table is in the DataDirectory array. The Import Address Table and the

Import Lookup Table virtual address values can “produce an import table

which has fields inside the PE header” (Ferrie, 2008, p. 22).

2.8.4.10.3. Non Standard Number of RVA and Sizes

The location of the section table should be determined by using the PE-

>SizeOfOptionalHeader field. Ferrie (2008, p. 22) says a common mistake

made by both SoftIce and OllyDbg is to “assume that the value in the PE-

>NumberOfRvaAndSizes field is set to the value that exactly fills the

Optional Header, and that the section table follows immediately”.

2.8.4.10.4. Non Aligned SizeOfRawData

By recognizing that Windows automatically rounds up the SizeOfRawData

field in the section table, a section table can be created whose entry point

appears in pure virtual memory but there will not have physical data to

execute because of the rounding (Ferrie, 2008, p. 23).

2.8.4.10.5. Non Aligned PointerToRawData

A section can be created where the entry point appears to point to data

anywhere other than what should be executed because the

Analysis Avoidance Techniques of Malicious Software

 58

PointerToRawData field in the section table is subject to rounding down by

Windows (Ferrie, 2008, p. 23).

2.8.4.10.6. No Section Table

If the value of the PE->SectionAlignment field is reduced to less than 4kb,

the PE header is marked as both executable and writeable and the contents

of the section table become optional. This means the entire section table

can be zeroed out. The file is then mapped as if it were only one section

where the size is that of the value set in the PE->SizeOfImage field (Ferrie,

2008, p. 23).

2.8.5. Anti Unpacking by Anti Intercepting

2.8.5.1. Write->Exec

Some unpacking tools try to determine when the unpacker has completed

the unpacking process and transferred control to the host. It can do this by

intercepting the execution of newly written pages by first writing and then

executing a dummy instruction. This can cause the interceptor to exit early

(Ferrie, 2008, p. 23).

2.8.5.2. Write^Exec

Ferrie (2008, p. 23) says that some unpacking tools can change the page

attributes of memory from writeable-executable to writeable or executable

but not both.

2.8.6. Miscellaneous

2.8.6.1. Fake Signatures

Packers such as RLPack Professional (Reversing Labs, 2008) provide a

false signature so that packer signature matching tools such as PEiD (Jibz,

Qwerton, Snaker, & XineohP, 2006) incorrectly identify the packer (Ferrie,

2008, p. 24).

2.9. PROCESS INJECTION TECHNIQUES

Harbour (2007, p. 21) explains that process injection is used to inject code

into another running process. The target process executes the malicious

Analysis Avoidance Techniques of Malicious Software

 59

code. In so doing, it acts to conceal the source of the malicious behaviour.

It can be used to bypass process specific security mechanisms and host

base firewalls. The Windows Hooks mechanism can be used to achieve this

by letting the process run specific code when a particular message is

received. The Win32 API call SetWindowsHookEx() allows the target process

to load a specified DLL into the memory space of the executable and select

a function as a hook to handle a particular event. When the event is

received, the target process executes the malicious code. An example

provided in the paper by Harbour (2007, p. 25) is reproduced as follows in

Figure 2-13

HANDLE hLib, hProc, hHook;
hLib = LoadLibrary(“evil.dll”);
hProc = GetProcAddress(hLib, “EvilFunction”);
hHook = SetWindowsHookEx(WH_CALLWNDPROC, hProc, hLib, 0);
Figure 2-13 Code snippet showing SetWindowsHook function to load

a malicious DLL.

Another method is to use library injection. A new thread is created in the

process which is used to load the malicious library. “When the library is

loaded by the new thread, the DllMain() function is called, executing your

malicious code in the target process” (Harbour, 2007, p. 29). An example

provided by Harbour (2007, p. 30) is reproduced as follows in Figure 2-14.

char libPath[] = “evil.dll”;
char * remoteLib;
HMODULE hKern32 = GetModuleHandle(“Kernel32”);
void *loadLib = GetProcAddress(hKern32, “LoadLibraryA”);
remoteLib = VirtualAllocEx(hProc, NULL, sizeof (liPath),

MEM_COMMIT, PAGE_READWRITE);
CreateRemoteThread(hProc, NULL, 0, loadLib, remoteLib, 0,

NULL));
Figure 2-14 Code snippet showing library injection to load a

malicious DLL.

Yet another method pointed out by Harbour (2007) is to use Direct Injection.

This is where the memory space of the process is populated with the

malicious code, which could be a function or an entire DLL, which he says is

much harder to do. API's required include VirtualAllocEx(),

Analysis Avoidance Techniques of Malicious Software

 60

WriteProcessMemory() and CreateRemoteThread() which is used to create

a new thread in the process.

2.10. CODE EXECUTION FROM MEMORY

If the code is executed directly from memory and never resides on the hard

drive, it may not be detected during a forensic acquisition. The “memory

buffer to be executed will most likely be populated directly by a network

transfer” (Harbour, 2007, p. 35). Source code contained in a variable can

be executed by something similar to exec() or eval().

Harbour (2007, p. 42) discusses a technique known as the Nebbett Shuttle

to launch Win32 executables from a memory buffer and provides an

example that is reproduced of what an implementation could look like.

Essentially the technique launches a process in a suspended state and then

overwrites the allocated memory space with a new executable.

CreateProcess(..., “cmd”, ..., CREATE_SUSPEND, ...);
ZwUnmapViewOfSection(...);
VirtualAllocEx(..., ImageBase, SizeOfImage, ...)
WriteProcessMemory(..., headers, ...);
for (i=0; i< NumberOfSections; i++) {
 WriteProcessMemory(..., section, ...);
}
Resumethread();
Figure 2-15 Code snippet using Nebbet shuttle to launch Win32

executable code.

A specified process cmd is loaded into memory, but is suspended at the

entry point. All memory that is allocated to the process is released. Area is

allocated to put the new executable image in the memory space of the

original process. The PE headers are written to the start of the memory

region. Each section of the new executable is written to its new virtual

address. The new, malicious process is still named as cmd in the task list,

and since the process inherits privileges from the original code, if the

original code was allowed to communicate through a host based firewall, the

replacement code will be allowed to as well.

Analysis Avoidance Techniques of Malicious Software

 61

2.11. CHECKSUM CHECKS

Malware can use checksums to try to determine if the code has been

changed. This could have been done by the malware analyst to change the

flow of the malware, or to have patched out anti forensic implementations

in the code (W. Yan, Zhang, & Ansari, 2008).

2.12. PROCESS CAMOUFLAGE

“A cleverly named process is often enough to fly beneath the radar and

avoid immediate detection” (Harbour, 2007, p. 32). There can often be

several copies of svchost.exe and spoolsv.exe running in memory, and

additional processes with the same name may go unnoticed. Other name

variations could include svcshost.exe, spoolsvc.exe, spoolsvr.exe,

scardsv.exe and lsasss.exe.

2.13. STRUCTURED EXCEPTION HANDLING

Structured Exception Handlers (SEH) can be used to detect the presence of

a debugger. All Win32 applications have an Operating System (OS) supplied

SEH, and the exception handling mechanism is thread based. The exception

handling mechanism in Linux is process based, and the exception handler is

set up with a signal() system call. The global handler in ntdll.dll

catches the exception and determines where control is given to. The SEH is

a function pointer, and it is possible to overwrite the pointer to a SEH chain

(exception-handler list), where if one handler chooses not to handle the

exception, then the next handler can do it. The final handler is a default

handler for the process which must handle it (Koziol et al., 2004, p. 116).

The exception handler list is stored in the Thread Information Block (TIB)

data structure, which can be found at FS:[0]. A single process can have

multiple threads, and each thread has a TIB, but all threads see the same

memory, and all share the same address space (Eilam, 2005, p. 106).

Packers such as AsProtect use this mechanism to gain control, and to see

if it is running inside a debugger. AsProtect creates multiple exceptions

and a trick to unpacking AsProtect is to count the number of exceptions.

OllyDbg can be configured to either pass exceptions to the process to

Analysis Avoidance Techniques of Malicious Software

 62

handle, or to handle within the debugger. If the debugger is set to handle

the exceptions, it will give the user the choice to handle the exception, or to

pass back to the process. Using this iterative process, the number of

exceptions can be counted until the process freely runs. This gives the

analyst the opportunity to break on the OEP. If the count of exceptions is n,

then the next time it is run, only pass n-1 exceptions to the process. At this

point, the memory map can be viewed, and the code section can be seen

where the OEP is in. A break point can be set on the code section (set

memory break point on access). Then, when the jump to the OEP is

conducted, the breakpoint on the entire section will be triggered on the OEP

and the process can dumped (Anthracene, 2006).

2.14. IMPORT ADDRESS TABLE

Much of the functionality in a program is derived from calls to functions

arranged in libraries called Dynamic Link Libraries (DLL), and the

information necessary to call DLL functions is stored in the Import Address

Table (IAT) of a binary. Programs typically use the DLL’s supplied by

Microsoft to interact with the OS to perform common tasks. Because these

tasks are so common, multiple programs can share the same DLL’s that are

loaded, and reduce unnecessary duplication. The PE header of a program is

read when it is loaded by the dynamic linker, and the addresses of the DLL

functions (function pointers) the program requires are filled in, in the IAT

(Eilam, 2005, p. 487).

Typically however, the Import Address Table (IAT) will be obfuscated by the

packer or protector. Craig (2006) explains that at compile time, the IAT

contains NULL memory pointers for each function, but when the executable

is loaded at run time, Windows overwrites the NULLs with the correct

memory location for each function. This is because the address of the DLL in

memory will be different on any particular machine.

“The IAT is resolved with a LoadLibrary loop, just before a jump to the

original entry point” (Falliere, 2006, p. 1). The import name table is

typically messed up, but can be rebuilt using tools such as ImpRec (MackT,

Analysis Avoidance Techniques of Malicious Software

 63

2008). Most packers used by malware do their best to mess up the IAT so

that the analyst cannot easily determine the DLL functions called. Typically,

only three DLL functions will be visible for programs that have been packed

at load time. The malware packer may have generally messed up the IAT by

encrypting it, altered its size, or mangled it some other way. It is important

to understand how the IAT should look, because the analyst may have to

repair it.

2.15. ROOTKITS

Windows uses four privilege levels, known as rings, to determine the access

level for access control. Access control determines how hardware can be

accessed, what instructions a process may use, what files may be modified

and which areas of memory can be accessed or changed. Ring 0 is the most

privileged level and Ring 3 has the least amount of privilege. Most

applications users run, are run in Ring 3 and these applications cannot

access hardware directly and have limited access to memory. Ring 3 is

often referred to as “user land”. Ring 0 applications run with full system

privileges and can perform IO and memory management, run device drivers,

execute privileged instructions, access all memory space, access all

hardware and access all components of the kernel. This is often referred to

as “kernel land”.

A special mechanism exists so that a user land program can access kernel

land in a controlled fashion so that device drivers (*.sys file) can be

installed. Root kits exploit this mechanism so that they can install their own

device driver into kernel land, giving their program full privileges at Ring 0

and hence control the environment in which other software runs. In this

way, it can avoid detection (Hoglund & Butler, 2005).

2.15.1. System Service Dispatch Table

System calls are used by user land programs to initiate a function in kernel

land which works by interrupting the execution of the user land program

and transfers control of execution to the kernel which is then responsible for

processed the request. System calls are identified by a system call number,

which is placed into the EAX register and are processed by a kernel routine

Analysis Avoidance Techniques of Malicious Software

 64

called KiSystemService. After processing the request, the user land

program resumes execution. KiSystemService looks up the system call

number that is in EAX in a table known as the System Service Dispatch

Table (SSDT). The SSDT contains the memory addresses of all of the

system calls and is an ideal target for malicious code to get control of to

control the execution of the kernel by rerouting calls to legitimate functions

to functions the rootkit wants to call instead. This technique is referred to as

Hooking and is used by legitimate software as well.

2.15.2. IAT Hooking

The Import Address Table (IAT) is a structure that contains library function

(DLL) names and addresses in memory that a loaded program requires to

execute. Rootkits can alter the IAT of a program so that its own function will

be called instead of the legitimate function by overwriting the address of the

IAT function with the address of its own function loaded into memory space,

as illustrated in Figure 2-16. The sold line shows the normal sequence of

calls. The dashed line from the IAT to the Rootkit code shows the hooking

from the IAT to the Rootkit code.

Figure 2-16 Altering the IAT of a program so that rootkit code is

called instead (hooking).

2.15.3. Inline Function Hooking

Instead of over writing the address of the DLL in the IAT, the function code

can be directly modified in memory and this is known as an inline function

Analysis Avoidance Techniques of Malicious Software

 65

hook. This is achieved by over writing the first few instructions of the

hooked function with instructions that will jump to the rootkit code. After

the rootkit code has completed, it may return the flow of execution to the

code that was originally intended to be called.

2.15.4. SSDT Hooking

Hooking the flow of execution can also occur in the kernel by using the

SSDT in a fashion similar to IAT hooking. The original functions address can

be replaced by the rootkit function. Functions that return results of open

ports or list running processes, can be subverted and allow the presence of

the rootkit to remain undetected.

2.15.5. Direct Kernel Object Manipulation

Tools exist for detecting the hooks installed by rootkits, such as Root Kit

Revealer (Microsoft, 2008c) and a more advanced method to hide

processes is to alter the kernel memory data structures that are used for

keeping track of the state of the operating system itself. This is known as

Direct Kernel Object Manipulation (DKOM) and is hard to detect because

“directly modifying the raw main memory contents with a Ring 0 rootkit

cannot be controlled by any built-in security mechanism in Windows”

(Schwittay, 2006, p. 80). These undocumented data structures contain lists

of running processes, threads scheduled for execution and other data. A

disadvantage of using DKOM is that it may make the system unstable or

even crash. It is especially easy to crash because the actual structure is

undocumented and minor operating system changes could change the way

the operating system defines and uses the structures. Processes can be

hidden by manipulating the in memory data structures that use forward and

backward pointers to keep track of processes by reorganizing the pointers

of these doubly linked lists. “Because the scheduling of processes does not

depend on a process being present in that list, this technique hides the

process successfully (e.g. From the Task Manager), but the process is still

executed unnoticed” (Schwittay, 2006, p. 80). Figure 2-17, adapted from

Schwittay, shows the normal linking between data structures in the top half

of the diagram. The lower half of the diagram shows how the middle

process is hidden by manipulating the pointers.

Analysis Avoidance Techniques of Malicious Software

 66

Figure 2-17 Using DKOM pointer manipulation to hide a process

(Schwittay, 2006, p. 80)

2.16. PACKERS AND PROTECTORS

Packers make static analysis of the binary difficult because the actual code

instructions and data is not able to be read until the code has been

unpacked. It is very similar to compression. Unpackers exist for many

packers in the form of scripts, plugins, programs and in the form of advice

on how to unpack manually with the use of a debugger. The unpacked code

can then be analyzed with a debugger such as IDA Pro, or Ollydbg. If

malware to be analyzed has been packed by an unknown packer, it can

often be loaded into memory, and then process dumped and examined

using tools such as the Ollydbg plugin, LordPE (yoda, 2005a), or any

other memory dumping tool. It should be noted that the code may use

techniques to determine if a debugger is being used and respond by

protecting itself using some combination of the anti forensic techniques that

have been discussed earlier in this literature review. The analyst needs to

be in a position to statically analyse the executable as soon as it has

Analysis Avoidance Techniques of Malicious Software

 67

unpacked itself, by starting analysis at the Original Entry Point (OEP),

otherwise code can be written over and evidence overlooked. A multitude of

packers are available and there are methods for unpacking them. The

general steps outlined by Craig (2006) for unpacking are:

1. Locate the OEP.

2. Dump the executable image.

3. Change the Entry Point of the dumped image.

4. Calculate the Entry Point Relative Virtual Address (RVA).

Where RVA EP = OEP – Base Image

5. Fix the Import Address Table (IAT).

6. Reinsert the fixed IAT into the dumped executable.

7. Execute the binary (break at EP), and the binary will populate the IAT

with the correct values.

Packer signatures can be detected by tools such as Stud_PE (CG SoftLabs,

2008). Figure 2-18 displays the signature view of a malware specimen, and

shows that the packer used is PE Pack 1.0 (ANAKiN, 2005). Note that

Stud_PE in this case is using the PEiD packer signature database. The PEiD

database contains over four hundred signatures, but is starting to become

dated.

Analysis Avoidance Techniques of Malicious Software

 68

Figure 2-18 Screen shot of Stud_PE showing detection of PE Pack

signature

Figure 2-19 displays a view of the sections contained in a malware sample

using Stud_PE. “Sections contain executable code, data, debugging

information, resources and additional metadata used by the program”

(Harbour, 2007, p. 13).

Analysis Avoidance Techniques of Malicious Software

 69

Figure 2-19 Screen shot of Stud_PE showing useful information on

sections

Another way of recognizing a packed file is that the first section could have

a physical size of 0 bytes. This section will be filled with data that will be

unpacked from another section (Falliere, 2006, p. 1). Once unpacked, the

classic entry point can be recognized as follows in Figure 2-20.

PUSH EBP
MOV EBP, ESP
Figure 2-20 Classic entry point signature for recognition purposes.

Harbour (2007, p. 72) points out that a custom packer will likely defeat low

level reversers, and that a binary packed by a custom packer is unlikely to

be identified at all. The Executable Toolkit, exetk (Anonymous, n.d.-c) is a

custom packer that is available with source code. Harbour (2007, p. 72)

says that tools such as PeiD are easily fooled and recommends using

Mandiant Red Curtain (MRC) (Mandiant, 2007) for detecting packed

binaries. MRC examines and scores executable files based on a set of

criteria including entropy (randomness), detection of packers, compiler and

packer signatures to develop a threat score on how suspicious the file is.

This score can then be used to determine if a file should be further

examined. A screen shot of MRC is shown in Figure 2-21. Useful columns

Analysis Avoidance Techniques of Malicious Software

 70

include the threat score, the Entry Point Signature (Packer Signature), the

entropy of the entire program, the entropy of the code and a count of the

anomalies found.

Figure 2-21 Mandiant Red Curtain screen shot showing useful

information including entropy and anomaly count

Lyda and Hamrock (2007) explain that entropy is a method for measuring

uncertainty in a series of bytes, and although a file compressed with a

software compressor may have a high entropy level, the data is structured

and is not random. In contrast, measuring the entropy of packed malware

measures the lack of structure in the packed malware. The packer typically

modifies the original programs standard sections (.text, .data, .rsrc) and

compresses these sections into one or two new sections. Lyda et al.

performed a series of controlled experiments to compute the entropy of

21,567 Windows based malware samples collected between January 2000

and December 2005 and found that entropy measurement was very

effective at identifying packed malware. This approach is supported as

effective at detecting packed malware by other researchers such as

Ebringer and Sun (2008).

Analysis Avoidance Techniques of Malicious Software

 71

2.16.1. ASProtect

ASProtect is a popular, commercial packer and protector that is used to

obfuscate demo programs and shareware. Protectors differ from packers by

incorporating encryption features. It is also used by malware authors to

deter and hinder AV software and malware analysts from analyzing their

code. It inserts anti debugging code into the binaries it is packing/protecting

and can insert registration schemes and time limits. Run time tracing can be

made complicated by exploiting Microsoft Windows Structured Exception

Handling (SEH) scheme. It can also use techniques to hinder the dumping

of memory. Dumping of memory can be useful for the malware analyst by

letting obfuscated programs unpack themselves as they run, catching and

halting the program at the moment the unpacking stops, and then dumping

the unpacked program in memory. This allows the code to then be analyzed.

ASProtect can make this dumping process less useful by deleting a section

of code as soon as it has finished executing. This technique is known as

“stolen bytes”. These bytes must be restored if the dumped program is to

be run again. The extensive range of features that ASProtect can

incorporate is listed in the screen shot of Figure 2-22. Figure 2-23 displays

the dialog that allows the selection of features that can be incorporated into

the code and shows this this is as simple as selecting check boxes. Figure

2-24 shows a screen shot of the dialog box displayed at the end of the

packing and protection implementation routine. It shows that the original,

6k byte file has grown to 305k bytes with the addition of CRC check

protection, anti debugging and IAT protection.

The view of the OEP in OllyDbg is shown in the screen shot of Figure 2-25

before ASProtect is applied to the program. The code and function calls can

be easily read and followed. The original IAT is shown in the screen shot of

Figure 2-26 and the imports can be easily read as well, before the

application of ASProtect. In contrast, Figure 2-27 shows the screen shot of

OllyDbg after the application of ASProtect and that the file has grown from

6 KB to 305 KB with the addition of protection such as CRC code checking

and anti debugging. The obfuscation introduced by the protector is clearly

evident and demonstrates that the code has to be unpacked and

unprotected before analysis can begin.

Analysis Avoidance Techniques of Malicious Software

 72

Figure 2-22 List of ASProtect Features

Analysis Avoidance Techniques of Malicious Software

 73

Figure 2-23 Dialog showing range of available options in ASProtect

to protect code and hinder analysis.

Analysis Avoidance Techniques of Malicious Software

 74

Figure 2-24 ASProtect completion showing the file size has grown

markedly with added protection.

Figure 2-25 Original Entry Point clearly evident in OllyDbg before

protection.

Analysis Avoidance Techniques of Malicious Software

 75

Figure 2-26 Imports before protection clearly showing imported

functions.

Figure 2-27 Packed View of Entry Point in OllyDbg showing

obfuscation.

2.16.1.1. Unpacking ASProtect

Anthracene (2006) provides an overview on how to deal with some of the

features of ASProtect and is only a single demonstration of a plethora of

informal papers and demonstrations that are available on reverse

engineering sites that cater mostly for software crackers. Software crackers

Analysis Avoidance Techniques of Malicious Software

 76

use reverse engineering techniques to defeat protection mechanisms of

legitimate software to avoid licensing, or to extract information on how

software works beneath the hood. Anthracene’s treatise is quite extensive

and very typical of the step by step advice that is often required to unpack

packed software to arrive at the OEP and to repair the IAT so that detailed

analysis can be conducted. Essentially, the technique discussed by

Anthracene is summarized in the following sequence:

1. Confirm the signature of the packer used, using PEiD.

2. Open the file in OllyDbg.

3. Set the options in OllyDbg to pass all exceptions to the program

being debugged. This is because it uses exception handling tricks to

try to determine if it is being debugged.

4. Set OllyDbg to remove analysis from module. This is because code

and data are intertwined.

5. The entry point is characterized by a PUSH and a RETN. This is

equivalent to a JMP. Jump to the address.

6. Set a hardware breakpoint on access to the DWORD pointed to by the

ESP register. Then hit run.

7. The break could be on a JMP EAX instruction. This could be the jump

to the OEP. Step over this instruction, and this could be the OEP. This

will be characterized by a typical stack frame setup.

8. Dump the file using the OllyDump plugin.

9. Start ImpRec, attach to the process being debugged and fill in the

OEP.

10.Click on IAT autosearch, click Ok and then click on Get Imports.

11.Repair the Imports (which is a detailed activity in itself).

Although presented above as a simple list of summarized instructions, the

details in Anthracene’s discussion covers more than 23 pages. This

exemplifies the work required to manually unpack, but only hints at what

could be considered a much more difficult exercise if more anti-analysis

features are added to the protector.

Analysis Avoidance Techniques of Malicious Software

 77

2.16.2. The Problem with Packers

Packing is becoming a dominant problem for AV software because of the

number and sophistication of the packers that are now available (Sun et al.,

2008, p. 2). Even though scripts and plugins are available for unpacking,

they only work when simple packers are used, and fail when sophisticated

packers have been used. Such tools often use heuristics to search for the

OEP whilst the unpacker is allowed to run. Sun et al. propose a method of

unpacking by creating an execution trace of the instruction pointer EIP, and

creating a histogram of the addresses of the executed instructions and

ordering them by the last time an address is executed. This is based on

their observation that:

a. OEP bytes are invariably only executed once, even in a packed

program.

b. Generally, the packer will unpack the original program to a region of

memory which has not been executed previously.

The results documented in the paper by Sun et al. appear to be very good

but only fairly simple packers were examined, including UPX (Oberhumer,

Molnár, & Reiser, 2008), Morphine (Anonymous, n.d.-j), MEW and FSG

(Bart & Xtreeme, 2005) as well as a multi packer example which packed

the file with UPX 2.03 and then Morphine 2.7. Future work identified in

the paper includes optimizing the tracer to resist anti-analysis techniques.

Figure 2-28 is a screenshot of the protection options dialog that users of

Themida® can use to protect their code. An extensive list of options are

available that provide coverage of some of the most significant anti-analysis

techniques discussed in this literature review.

Analysis Avoidance Techniques of Malicious Software

 78

Figure 2-28 Themida® dialog showing extensive range of protection

options.

2.17. PLUGINS

Plugins exist for most of the popular tools used for reverse engineering and

are typically DLL’s that are simply installed to a known directory pre

determined by the debugger, which then makes the plugin available via a

menu. A variety of plugins are available from the internet, particularly

reverse engineering and cracking sites. It is highly conceivable that these

plugins contain malicious software themselves and it is advisable to treat

them with caution and to analyse the source code for the plugin if it is

possible, especially if forensic evidence has been collected using the plugin.

The functionality of plugins can be replicated using scripting languages that

accompany the most popular disassemblers and debuggers such as IDA Pro.

IDA Stealth (Newger, 2008) is a free plugin for IDA Pro (Hex-Rays, 2008),

a commercial disassembler and debugger. The dialog box for IDA Stealth

is displayed in Figure 2-29. It lists a limited subset of the techniques

Analysis Avoidance Techniques of Malicious Software

 79

discussed by (Ferrie, 2008), who in turn says the 52 techniques discussed

in his paper are only the most widely used techniques. The plugin functions

are divided into the following sections:

• Stealth Techniques

• Disable Flags

• Protect Debugger

• Global Enable

The particular technique to be used is simply enabled by selecting the

appropriate checkbox.

Figure 2-29 IDA Stealth Plugin showing available options to hide the

debugger from only a selection of techniques discussed in the

literature review.

OllyAdvanced (TH-DJM, 2006) is a plugin for OllyDbg (Yuschuk, 2008) a

free disassembler and debugger. Olly Advanced is similar to the IDA

Stealth plugin as depicted in Figure 2-30.

Analysis Avoidance Techniques of Malicious Software

 80

Figure 2-30 Olly Advanced Plugin showing available options to hide

the debugger from only a selection of techniques discussed in the

literature review.

Plugins are useful for manual analysis but typically do not tell the operator

that the technique that has been selected has been located or mitigated,

their main function is to hide the debugger. It is also evident too, that the

extensive list of anti-forensic techniques discussed in the sections above,

are not fully reflected in the number of options in the plugins. This leaves a

gap between what is available and what could be required by the analyst.

This gap can be addressed by the use of scripting languages.

2.18. SCRIPTING LANGUAGES

Disassemblers and Debuggers such as IDA Pro and OllyDbg are supported

by scripting languages as well as Application Programming Interfaces (API)

for the development of plugins. “Potential uses for scripts are infinite and

Analysis Avoidance Techniques of Malicious Software

 81

can range from simple one-liners to full-blown programs that automate

common tasks or perform complex analysis functions” (Eagle, 2008a, p.

249). IDA Pro’s native scripting language is called IDC and appears very C

like in appearance and is used to query the database that IDA Pro stores

the file being analyzed in. IDA Python (Erdélyi, 2008) is a Python plugin for

IDA Pro that allows the analyst to access the functions of IDC and the full

power of Python. Similar plugins for other popular scripting languages such

as Perl and Ruby are also available for IDA Pro.

Scripting languages for OllyDbg (also in the form of plugins) include

OllyScript (SHaG, 2006) which is very similar in appearance to assembly

language. Other plugins include OllyPerl (Stewart, 2006) and OllyPython

(Vilhonen, 2007) that leverage from Perl and Python respectively. The

Immunity Debugger (Immunity, 2008) is an extension of OllyDbg that is

integrated with Python.

Existing scripts for OllyDbg are plentiful on the web for performing a myriad

of analysis and reverse engineering tasks and far exceed those available

freely for IDA Pro. It is this researcher’s conjecture that this is because

OllyDbg and more recently, the Immunity Debugger, have been the

favorite tool of software crackers who have a spirit of sharing more

prevalent than the commercial users of IDA Pro. IDA Pro was initially only

a disassembler used for performing static analysis and a debugging

capability was added in the past few years. The existing scripts for OllyDbg

include a very wide variety of unpackers which are not only useful in their

own right, but also serve as a source of information on how to unpack

particular packers. These can also be used as an algorithmic template to

implement the routine in other scripting languages such as IDA Python.

Scripts written in IDC or IDAPython can then be run against the IDA Pro

database, which is stored in an IDB (IDA Pro Database) file, or against the

original executable itself on the command line, or through the Graphical

User Interface (GUI). The IDB file saves previous analysis work that has

been conducted on the file which can include identification of functions,

Analysis Avoidance Techniques of Malicious Software

 82

structures, enumerations and unions as well as any mitigation work against

anti forensic techniques and obfuscation. This assists in automating analysis

on malicious files. For example, to run an IDAPython script with IDA Pro on

the command line named walkTheSegments.py against an IDB file named

CheckRemoteDebuggerPresent.idb, the following would be entered on the

command line or in a script as shown in Figure 2-31. This feature greatly

assists automation.

idag -A -OIDAPython:walkTheSegments.py

CheckRemoteDebuggerPresent.idb

Figure 2-31 Calling IDA Pro on the command line to run a

IDAPython script assists automation of code analysis.

2.19. TRACING

Scripts and plugins that are used to unpack malware typically allow the

malware to unpack itself at run time, and halt execution when the OEP is

recognized. Ideally, the analyst can then use a memory dumping tool to

capture the unpacked malware in memory and analyse it (Aquilina et al.,

2008; Skoudis & Zeltser, 2004; Zeltser, 2007). However, this approach can

miss anti-analysis techniques incorporated into the unpacking code. Lau and

Svajcer (2008) point out that executable packers such as Themida®

(Oreans Technologies, 2008) will not unpack underlying code if it detects

that it is running inside VMWare and that tracing is very useful to uncover

the use of anti-analysis techniques. “Tracing offers a means of logging

specific events that occur while a process is executing” (Eagle, 2008a, p.

508). Events can include every instruction that is executed, function calls,

register activities or any other parameter of interest that changes as the

malware is executed.

Sun et al. (2008) also employ tracing to locate the OEP of packed software

by creating a histogram of the addresses of executed instructions and

ordering the histogram by the last time an instruction is executed.

“Decryption, decompression and copying appear as large spikes at the start

of the histogram, followed by a flat section, of height one, which is usually

Analysis Avoidance Techniques of Malicious Software

 83

the OEP” (Sun et al., 2008). The researchers show good results for

analyzing non malicious software packed by various packers.

2.20. NEW PARADIGMS FOR MALWARE DETECTION

AV software, that relies on signature matching and heuristics is recognized

by AV researchers to be far less than optimal (Mila Dalla et al., 2008;

Szewczyk & Brand, 2008; W. Yan et al., 2008; Z. Yan & Inge, 2008; Zhou &

Meador Inge, 2008). This has led to a variety of research to be conducted

on alternate techniques for malware detection as discussed in the following

subsections.

2.20.1. Statistical Structures

Bilar (2005) shows how malware can be classified by analyzing statistical

structures. Three perspectives examined by Bilar, includes assembly

instructions, Win 32 API Calls and system dependence graphs. Examination

of assembly instructions is primarily a static analysis technique where the

frequency distribution of operation codes (opcodes) is developed from the

disassembly of the binary. Bilar shows that this technique can be useful to

provide a quick identification. Just looking at the most frequent opcodes is a

weak predictor. Looking at fourteen of the most infrequently used opcodes

such as an interrupt (int) and no operation (nop), it may be possible to

classify malware. Bilar suggests that root kits make heavy use of software

interrupts whilst viruses make use of the nop instruction for padding sleds.

Additional work being carried out in this area includes investigating

equivalent opcode substitution effects between compilers and types of

opcodes.

2.20.2. Win 32 API Calls

Looking at Win 32 API Calls is an active analysis technique that observes

the API calls that a program under investigation makes. These calls are

recorded and a count vector is saved into a database. These vectors are

then compared to known malware vectors in the database if it is determined

that the vectors are related. Bilar (2005, p. 25) claims that this vector

classification is successful in classification of malware into a family. The Win

Analysis Avoidance Techniques of Malicious Software

 84

32 API call fingerprint is shown by Bilar (2005, p. 27) to be robust, even

though various packers were used.

2.20.3. System Dependence Graphs

System Dependence Graphs is a newly developing static analysis technique

described by Bilar (2005, p. 31) that represents control, call and data

dependencies of a program through graph modeling. Then graph structures

can be used as fingerprints, which assist in the process of identification,

classification and prediction of behaviour.

2.20.4. Run Time Behaviour Monitoring

Malware detection and analysis by an investigator can be a labor intensive

process using static and active techniques. Due to time constraints and the

abilities of the investigator, there is a possibility that critical forensic

evidence could be overlooked. To this end, automated malware detection

and classification tools are being developed. Lee and Mody (2006, p. 3)

“propose an automated classification method based on runtime behavioral

data and machine learning”. Essentially the run time behaviour of a file is

represented by a sequence of events, which is stored in a canonical format

in a database. Machine learning is used to recognize patterns and

similarities, which are then used to classify new objects. Such an automated

system is important because human analysis can be inefficient and time

consuming (Lee & Mody, 2006). However, development of algorithms,

validation training data for the classification system requires the input from

manual analysis.

2.20.5. Obfuscation Detection

Obfuscation is used by legitimate software to protect the Intellectual

Property (IP) as well as by authors of malware whose intention is to hide

the malware from AV software. Wysopal (2009) suggests that the very

presence of obfuscated code could indicate the presence of malware.

Wysopal says that if the behaviour of software cannot be verified, then the

software could have a malicious nature and could violate the privacy of the

user.

Analysis Avoidance Techniques of Malicious Software

 85

2.21. IMPLICATIONS OF THE LITERATURE REVIEW

The search of the literature, directly related to the implementation,

detection and mitigation of anti-analysis techniques malware employs,

reveals a number of lines of enquiry not fully covered in the literature.

Various methodologies exist for analyzing malware. The more effective

methodologies take the presence of analysis avoidance techniques into

account and encourage the use of mitigation strategies for them. Zeltser

(2007) uses a sequential static and dynamic, phased approach, where he

discovers something from each phase that assists with progressing to the

next phase to discover more about how the malware works. An effective

technique to support the detection and mitigation of analysis avoidance

techniques could be to use such an incremental static and dynamic spiral

approach, where anti forensic techniques are discovered and mitigated as

the analyses of the malware progresses from a high level of perspective

down to the most detailed perspective.

An extensive range of anti forensic techniques can be implemented in

malware. A non-exhaustive list of techniques can include anti-dumping,

anti-debugging, anti-disassembling, anti-virtual machine, anti-online

analysis, use of root kits, IAT destruction, anti-tool specific and process

injection. Techniques are dispersed amongst the literature and generally

only exist as code snippets. This leaves the prospect to fully implement the

techniques and validate their use against analysis tools. This also includes

an opportunity to determine how effective the tools are against such a large

number of techniques. It also provides a chance to determine how the use

of the techniques can be detected and mitigated. A variance of anti-analysis

taxonomies was revealed in the literature and this provides an opportunity

to combine the taxonomies into an overall one.

Before detailed analysis of the code of malware can be examined, the

malware has to be unpacked and the OEP reached. Packers are used to

compress multiple malware files into one file and are unpacked when

installed or at run time by run time unpacking routines. Various tools and

methods are available to unpack packed malware but are very dependent

Analysis Avoidance Techniques of Malicious Software

 86

on knowing which packer was used. This information may come from a

packer signature detector, but tools such as PEiD are becoming dated,

unless the signature database they rely on are updated with signatures of

the latest packers. The use of a packer can be determined by measuring the

entropy of the malware, which tends to have very high levels of entropy

when packed. Malware collected from the internet could be used to

determine the prevalence of the use of packers and protectors.

Plugins exist for popular debuggers that assist in hiding the debugger from

some of the anti-forensic techniques discussed above, but their coverage of

the number of techniques is limited. A variety of scripting languages that

are available for use with the debuggers are available and these can be

used to detect, log and mitigate the use of these techniques. This opens the

door to examine the existing plugins and to discover how effective scripting

languages are at extending the tools to detect and mitigate anti-analysis

techniques.

The literature search revealed that researchers claim that traditional AV

software is far less than ideal at detecting malware and that alternate

methods exist. This provides an opportunity to examine their claims.

Analysis Avoidance Techniques of Malicious Software

 87

CHAPTER 3 RESEARCH METHODS

The research questions examined in this thesis were stated in the

Introduction chapter of this thesis as:

1. What techniques can malware use to avoid being analyzed?

2. How can the use of these techniques be detected?

3. How can the use of these techniques be mitigated?

These questions, refined whilst searching the literature, clearly initiated this

line of research. Hernon (1991, p. 4) describes research as an inquiry

process and lists the aims of research to include the “Discovery or creation

of knowledge, or theory building”. In addition, Hernon says that another

aim of research could be the “Testing, confirmation, revision, refutation of

knowledge and theory”. Alternatively, Hernon says that the aim of the

research could be the “Investigation of a problem for local decision making”.

Without a doubt, all three research questions for this thesis could have any,

some or all of these aims. However, for research to be considered to have

been conducted with appropriate rigor, and to be accepted as truth, the

process and methods used to arrive at the result must be shown to be

justifiable, the line of enquiry to be clearly defined, with traceability all the

way from the research questions to the resultant conclusions and claims of

contribution to knowledge. The research process itself could be considered

as the linking activities that the researcher conducts to connect the research

questions to the aims and results of the research via a number of

intermediatory phases (Bouma & Ling, 2004, p. 5).

3.1. A MODEL OF THE RESEARCH PROCESS

A possible model of the research process that is discussed and represented

in diagrammatic form by Oates (2007, p. 23) is reproduced as Figure 3-1.

Analysis Avoidance Techniques of Malicious Software

 88

Figure 3-1 Model of the research process showing the variety of

paths that can be undertaken (Oates, 2007, p. 23).

The process diagram assists in charting a course to navigate from

formulating research questions to discovering answers for the research

questions. The particular model presented by Oates shows that experiences,

motivation and a literature review are inputs into developing appropriate

and meaningful research questions. An objective of this initiating phase of

the process is to show why this line of research is important, why it has not

been fully addressed in published literature and how the research will be

used. The research question is the underlying thread throughout the entire

process. After it has been formulated, it is then used to select an

appropriate research strategy, data generation method and data analysis

method. Research questions clearly have traceability throughout the

research process and arriving at answers to an enquiry is dependent upon

the selection of an appropriate research strategy, data generation method

and data analysis method most appropriate for the questions being asked.

Significant consideration is required to be allocated to the choice of research

paradigm before the selection process of research method commences.

Analysis Avoidance Techniques of Malicious Software

 89

Various research paradigms exist to guide the enquiry (Guba & Lincoln,

1994, p. 105; Marshall, 1997, p. 16; Oates, 2007, p. 283). Lincoln and

Guba (1994, p. 105) say that “Questions of method are secondary to

questions of paradigm, which we define as the basic belief system or

worldview that guides the investigator, not only in choices of method but in

ontologically and epistemologically fundamental ways .” This is a significant

statement, because it emphasizes that in order to conduct research, the

researcher must adopt an appropriate and over arching, philosophical

viewpoint, referred to as a research paradigm.

3.2. RESEARCH PARADIGMS

Oates (2007, p. 282) describes a paradigm as “a set of shared assumptions

or ways of thinking about some aspect of the world”. Various philosophical

paradigms exist and have different views about the nature of the world,

referred to as ontology, and the way that the knowledge is acquired,

referred to as epistemology.

Paradigms can be subdivided further by asking ontological, epistemological

and methodological questions (Guba & Lincoln, 1994, p. 108). Epistemology

essentially focuses on the theory of knowledge and its acquisition (Carroll &

Swatman, 2000). Ontology is concerned with examining the nature of

reality from an existence point of view. This philosophical viewpoint asks

questions such as “what is?” Epistemology on the other hand, focuses on

asking how this knowledge is acquired in the format of questions such as

“how do we know what we know?” The methodological question is “how can

we come to know it?” (Pickard, 2007, p. 6).

Some common research paradigms include positivism, interpretivism and

critical research (Guba & Lincoln, 1994, p. 105; Oates, 2007, p. 283).

3.2.1. Positivism

Oates (2007, p. 283) says positivism is the foundation of the experimental

method, which in turn, has two fundamental assumptions:

• The world has order, is regular and is non-random.

• The world can be investigated objectively.

Analysis Avoidance Techniques of Malicious Software

 90

These assumptions are significant because it facilitates the discovery of

regularities, patterns and laws through the conduct of experimentation to

discover evidence of cause and effect. The discovery process is initiated by

the formulation of a hypothesis which is followed by experiments designed

to refute or confirm the hypothesis. Confidence in a theory may be gained

each time it fails to be refuted. Positivist researchers typically use controlled

experiments but they are not limited to the use of controlled experiments as

their research strategy. Other strategies such as surveys are also frequently

used by this paradigm. Positivists are considered to be reductionist. That is,

they study phenomena by breaking them down into simpler components

(Easterbrook, Singer, Storey, & Damian, 2008, p. 291).

Guba et al. (1994, p. 109) describe the ontology of positivism as a realism

and that “an apprehend able reality is assumed to exist, driven by

immutable laws and mechanisms”. Guba et al. describe the epistemology of

positivism as dualist and objectivist. This is because the investigator and

the phenomena under investigation are assumed to be independent entities

and the investigator studies the object without influencing it, or is

influenced by it. Validity is threatened if an influence exists. Guba et al. (p.

110) describe the methodology of positivism to be experimental and

manipulative. “Questions and/or hypotheses are stated in propositional form

and subjected to empirical test to verify them; possible confounding

conditions must be carefully controlled (manipulated) to prevent outcomes

from being properly influenced” (Guba & Lincoln, 1994, p. 110).

3.2.2. Interpretivism

In contrast to positivism, interpretivism does not seek to prove or disprove

a hypothesis. The interpretivist approach tries to understand phenomena

through the meanings and values people assign to them. In this way,

multiple, subject realities are detailed. Hence, there is no single truth.

Different researchers can view the world differently and their values and

actions mold the research process. This results in multiple interpretations.

Data collected via this paradigm is generally qualitative (Easterbrook et al.,

2008, p. 291; Oates, 2007, pp. 292-293).

Analysis Avoidance Techniques of Malicious Software

 91

Guba et al. (1994, p. 110) describe the ontology of interpretivism as

relativist. This is because realities are interpreted from social experience

and intangible mental constructions from individuals or groups that hold the

constructions. Constructions from such individuals or groups may be more

or less informed than those formed by other individuals or groups. Guba et

al. (p. 111) describe the epistemology of interpretivism as transactional and

subjectivist. That is, the investigator and the object of investigation are

assumed to be interactively linked. Guba et al. (p. 111) describe the

methodology of interpretivism as hermeneutical and dialectical and say that

“… constructions can be elicited and refined only through interaction

between and among investigator and respondents” .

Williamson (2002) explains that what differentiates interpretivism from

positivism is that knowledge can be acquired differently because the natural

world is viewed as separate to the social world. The researcher becomes

part of the study and loss of the benefit of objectivity obtained from

empirical observation may result.

3.2.3. Critical Research

Critical research is similar to interpretivism from the perspective that there

are multiple views of reality, but differs by saying that social reality

possesses objective properties that interpretivists discount. “Critical

researchers seek to identify and challenge the conditions of domination, and

the restrictions and unfairness of the status quo and taken-for-granted

assumptions” (Oates, 2007, p. 297).

Guba et al. (1994) describe the ontology of critical research as historical

realism and describe the epistemology of critical research as transactional

and subjectivist.

Similar to the description of the epistemology of interpretivism by Guba et

al., the investigator and the object under investigation are assumed to be

interactively linked and the values of the investigator influence the inquiry.

The same researchers describe the methodology of critical research as

dialogic and dialectical. A dialog is required between the investigator and

the subjects of the inquiry and Guba et al. (p. 110) say “… dialogue must be

Analysis Avoidance Techniques of Malicious Software

 92

dialectical in nature to transform ignorance and misapprehensions

(accepting historically mediated structures as immutable) into more

informed consciousness …” .

3.2.4. Research Paradigm Selected for this Research

This research does not consider the social meaning of the phenomena under

investigation. This discounts the use of the other identified research

paradigms other than the positivist paradigm. The approach selected to

address the research questions of this thesis is therefore positivist.

An empirical approach is appropriate because the result should be the same,

no matter how it is measured. The use of various tools to perform

measurements should produce the same results. This research is

reductionist. It is studying the plethora of anti-forensic techniques malware

can incorporate by measuring the effectiveness of these techniques on an

individual basis together with the effectiveness of being able to detect the

use of the techniques and how effectively the use of the techniques can be

mitigated. The number and type of techniques employed within any

particular collected malware specimen under investigation must be finite.

3.3. EMPIRICAL RESEARCH

“Empirical research seeks to explore, describe, predict, and explain natural,

social, or cognitive phenomena by using evidence based on observation or

experience” (Sjoberg, Dyba, & Jorgensen, 2007, p. 361). Empirical research

involves the collection and interpretation of evidence through methods such

as surveys, interviews, experimentation and observation.

Easterbrook et al. (2008, p. 290) say that once the research questions have

been developed, thought has to be given to the determination of what will

be accepted as the empirical truth. If ontology is considered as the nature

of the world with respect to knowledge, epistemology is understood as the

process in which that knowledge is obtained. This thesis undertakes an

empirical approach to obtain knowledge relevant to answering the research

questions.

Analysis Avoidance Techniques of Malicious Software

 93

The steps listed by Perry et al. (2000, p. 348) to conduct an empirical study

are :

• Formulation of an hypothesis or question to test

• observing a situation,

• abstracting observations into data,

• analyzing the data, and

• drawing of conclusions with respect to the tested hypothesis.

There are various types of empirical research in which data can be produced.

Easterbrook, Singer, Storey, & Damian (2008, p. 286) explicitly list the five

classes of empirical research methods that they believe are most relevant to

software engineering as:

• Controlled Experiments (including Quasi-Experiments)

• Case Studies (both exploratory and confirmatory)

• Survey Research

• Ethnographies

• Action Research

A controlled experiment manipulates one or more independent variables to

measure the effect on one or more dependent variables to assist the

researcher to determine how the variables are related and to identify

causality. A hypothesis is used to guide the steps of the experimental

design including which variables to include in the study and how they will be

measured. This is essentially reductionist and positivist in nature.

Complexity is reduced by allowing only a few variables of interest to vary in

a controlled manner, whilst holding all other variables constant (Easterbrook

et al., 2008, pp. 294-296).

A case study investigates a phenomenon within a context and can reveal

causality. Case studies are used where the reductionism of a controlled

experiment is inappropriate. This could include when effects may take a

long time to appear or where the context plays a role in the phenomena

under investigation (Easterbrook et al., 2008, pp. 296-298). To address the

research questions of this thesis, a case study could include observing

Analysis Avoidance Techniques of Malicious Software

 94

malware analysts in the field and noting how the analysts detect and

mitigate anti-forensic techniques over a period of time.

Survey research can be conducted via questionnaires, structured interviews

or data logging to identify characteristics of a representative sample from a

well defined population. A clear research question is a precondition, the

sampling technique must be sound and the survey questions must be

designed to yield useful and valid data (Easterbrook et al., 2008, pp. 298-

299). To address the research questions of this thesis, a survey could create

a questionnaire tailored for malware analysts to determine if they believe

the use of anti-forensic techniques are being increasingly used by the

malware they are analyzing.

“Ethnography is a form of research focusing on the sociology of meaning

through field observation” (Easterbrook et al., 2008, p. 300). To address

the research questions of this thesis, ethnography could be used to observe

malware analysts create practices and use strategies to detect and mitigate

the use of anti-forensic techniques over a period of time.

Action research focuses on solving real world problems. “While most

empirical research methods attempt to observe the world as it currently

exists, action researchers aim to intervene in the studied situations for the

explicit purpose of improving the situation” (Easterbrook et al., 2008, p.

301). The research questions of this research could be addressed by

working in a malware research laboratory and interacting with malware

analysts.

Selection of the most appropriate research method requires consideration of

ontology, epistemology, methodology, resources and the abilities of the

researcher with respect to the phenomena under investigation. Empirically

based questions can be asked to facilitate comprehension of the ontology of

the phenomenon. One of the first steps Easterbrook et al. (p. 287)

recommends in selecting the research strategy is to clarify the research

question. This begins by asking exploratory questions to aid in

understanding the phenomena. Such questions assist in the determination

Analysis Avoidance Techniques of Malicious Software

 95

of measurable and valid evidence. Table 3-1 re-represents the exploratory

questions and the form of the question discussed by Easterbrook et al.

(p.288) in the form of a table.

Table 3-1 Examples of exploratory research questions

Question Form of Question

Existence questions “Does X exist?”

Description and

classification

questions

“What is X like?”

“What are its properties?”

“How can it be categorized?”

“How can we measure it?”

“What is its purpose?”

“What are its components?”

“How do the components relate to each other?”

“What are all the types of X?”

Descriptive-

Comparative

questions

“How does X differ from Y?”

The research questions in this thesis are fundamentally exploratory in

nature and can be answered in a literature review and through empirical

methods. Answering these questions assists in progressing to the next

stage of questioning where Easterbrook et al. (p. 288) says “ … base-rate

questions about the normal patterns of occurrence of the phenomena” need

to be asked. Base-rate questions help to determine if a particular situation

is normal or abnormal. Table 3-2 re-represents the base-rate questions and

the form of the question discussed by Easterbrook et al. (p. 288) in the

form of a table. These questions are appropriate for formulating the

research questions, particularly from the perspective of gaining knowledge

about how the anti-analysis techniques work and how effective they are.

Analysis Avoidance Techniques of Malicious Software

 96

Table 3-2 Examples of base-rate research questions

Question Form of Question

Frequency and

distribution questions

“How often does X occur?”

“What is the average amount of X?”

Descriptive-Process

questions

“How does X normally work?”

“What is the process by which X happens?”

“In what sequence do the events of X occur?”

“What are the steps X goes through as it evolves?”

“How does X achieve its purpose?”

Relationship questions seek to find out how phenomena are related to each

other. Table 3-3 re-represents relationship questions in the form of table

discussed by Easterbrook et al. (p. 288). Although relevant to future

research, relationship questions are considered to be out of the scope for

the line of investigation nominated in this thesis.

Table 3-3 Examples of relationship research questions

Question Form of Question

Relationship

questions

“Are X and Y related?”

“Do occurrences of X correlate with occurrences of

Y?”

Causality questions attempt to identify the relationship between cause and

effect. Answering such questions is assisted by having answered the

relationship questions presented in Table 3-3. Easterbrook et al. (2008, p.

289) points out that it is very important to be able to differentiate

correlation and causality. This is because it is harder to demonstrate

causality than it is to show correlation. If high values of variable X correlate

with high values of variable Y, it could be because X causes Y, or because Y

causes X. However, it could also be that some other, common variable is

the cause and that neither is the cause of the other. It could also be the

case that they co-evolve in complex ways and that no clear cause and effect

can be identified (Easterbrook et al., 2008, p. 289).

Analysis Avoidance Techniques of Malicious Software

 97

Table 3-4 re-represents the causality questions discussed by Easterbrook et

al. (p. 289). Causality questions are considered to be out of scope for this

thesis, but remain relevant for future research that extends the line of

enquiry developed in this thesis.

Table 3-4 Examples of causality research questions

Question Form of Question

Causality questions “Does X cause Y?”

“Does X prevent Y?”

“What causes Y?”

“What are all the factors that cause Y?”

“What effect does X have on Y?”

Causality-

Comparative

questions

“Does X cause more Y than does Z?”

“Is X better at preventing Y than is Z?”

Causality-

Comparative

interaction questions

“Does X or Z cause more Y under one condition but

not others?”

3.3.1. Selected Empirical Research Method

All of the empirical research methods listed in the discussion above would

be suitable for addressing the research questions of this thesis. However,

action research, ethnography, survey and case study would require access

to malware researchers desirably working in AV software laboratories for an

extended period of time, and preferably, in situ. Such access is not possible

for the author at this time. The research questions of this thesis are

essentially exploratory in nature. The empirical research method selected

for this research is via controlled experiment.

3.4. EXPERIMENTAL STRATEGIES

Various experimental strategies are available. “In academic research, an

experiment is a strategy that investigates cause and effect relationships,

seeking to prove or disprove a causal link between a factor and an observed

Analysis Avoidance Techniques of Malicious Software

 98

outcome” (Oates, 2007, p. 127). The strategy starts with a hypothesis

which can then be tested empirically with an experiment designed to prove

or disprove the hypothesis. The design of the experiment takes care to

remove all factors from the study that could affect the result, apart from the

one factor that is considered to cause the outcome of interest. Easterbrook

et al. (p. 133) says true experiment concentrates on the “… manipulation of

the independent variable, pre- and post-test measurement of the dependent

variable(s), and control or removal of all other variables”.

3.4.1. True Experiment

The experiment needs to consider the variables that can be controlled and

those that can be measured. The variables can be classified as either

dependent or independent. The dependent variable (effect) changes as a

result of a change in the independent variable (cause). Experiments

typically manipulate the independent variable and observe the effect on the

dependent variable. The idea is to determine the independent variable that

causes the change in the dependent variable. The experimental method is

essentially positivist and reductionist. “They reduce complexity by allowing

only a few variables of interest to vary in a controlled manner, while

controlling all other variables” (Easterbrook et al., 2008, p. 295). The aim is

to show that only one factor causes the observable change. Ways of

controlling variables to assist the determination of the factor are listed by

Oates (2007, p. 130) to include:

• Eliminate the factor from the experiment.

• Hold the factor constant if it is not possible to eliminate the factor.

• Use random selection of subjects

• Use control groups

• Make the researchers and subjects blind

Oates (p. 131) says an experiment has good internal validity if the

measurements obtained are the result of the experimenter’s handling of the

independent variable and not due to other factors. Threats listed by Oates

(pp. 131-132) to internal validity include:

• Differences between the experimental and control group

• History

Analysis Avoidance Techniques of Malicious Software

 99

• Maturation

• Instrumentation

• Experimental mortality

• Reactivity and experimenter effects

Oates (p. 132) says an experiment has good external validity if the “results

are not unique to a particular set of circumstances but are generalizable.

That is, the same results can be predicted for subsequent occasions and in

other situations”. Threats listed by Oates (p. 133) to external validity

include:

• Over reliance on special types of participants

• Too few participants

• Non-representative participants

• Non-representative test cases

3.4.2. Quasi Experiment

Quasi-experiments try to remain within the spirit of the true experiment,

“but concentrate on observing events in real-life settings where there is a

‘naturally occurring’ experiment” (Oates, 2007, p. 134). This is because the

true experiment endeavors to have nearly complete control over the

independent and dependent variable and can exhibit good internal and

external validity. Pickard (2007, p. 108) points out that “internal validity is

always seen as the greatest threat to quasi-experimental research design;

lack of control over intervening variables means it is almost impossible to

eliminate rival explanations of any relationship between variables”.

In the field, control over variables is harder, and the manipulation of an

independent variable is more difficult as well. Therefore, determining cause

and effect is not as conclusive as that obtainable from conducting a true

experiment (Oates, 2007, p. 134). The quasi-experiment “has some of the

components of experimental research, but not all” (Pickard, 2007, p. 107).

Oates (p. 108) explains that there are two types of quasi-experimental

research design. The non-equivalent group design and the time series

design. The non-equivalent group design is similar to the true experiment,

except that the selection of participants is non-random and the study is

Analysis Avoidance Techniques of Malicious Software

 100

conducted in the field and not in the laboratory. The time series design is

similar to the design of the non-equivalent group, except the observations

are made in time intervals. This gives more observational data that can

provide detail on progressive change.

3.5. CHOICE OF RESEARCH METHOD

The selected research method to address the research questions is positivist,

empirical and quasi-experimental. The independent variable is the individual

anti forensic technique under investigation and the dependent variable is

the binary result of either detection or non-detection.

3.6. CONCEPTUAL FRAMEWORK

3.6.1. Validation of Techniques

This section discusses the general processes used to address the three

research questions of this thesis. The first part of the research design is

designed to validate the techniques as described and uncovered in the

Literature Review chapter of this thesis. This includes determination of the

ability to detect and mitigate these techniques via small quasi experiments.

The results from this process are presented in the Validation of Techniques

chapter of this thesis.

3.6.2. Collection of Network Based Malware

The Nepenthes (Nepenthes, 2006) project is a malware collection tool that

works by emulating known vulnerabilities and which then downloads the

payload of the malware that attempts to exploit these vulnerabilities. Dr

Craig Valli of Edith Cowan University (ECU) has been participating in the

Nepenthes project and has been collecting malware using a network of

distributed sensors deployed within the geographical locale of Perth,

Western Australia. Figure 3-2 is a process diagram depicting how malware

is collected and processed by Nepenthes and has been adapted from the

paper by Valli and Wooten (2007) which outlines how the honeynet was

deployed and used to collect malware for analysis purposes.

Analysis Avoidance Techniques of Malicious Software

 101

The process diagram shows that multiple avenues of processing are

conducted on the collected malware before results are stored in a SQL

database and made available via a web interface. The highlighted process

box designates the source of data for the research that was conducted for

this thesis using malware collected by the ECU Nepenthes malware

collection system. By the very nature of the way this malware has been

collected via a network interface, the malware is classified as network based.

This networked based malware was used a source of data to examine

particular types of techniques malware uses to hinder analysis, namely,

packers and protectors which is one of the first techniques malware analysts

encounter.

Analysis Avoidance Techniques of Malicious Software

 102

Figure 3-2 Model of the nepenthes malware collection system

depicting the source (highlighted) of malware collected for this

research.

3.6.3. Analysis of Collected Malware Packers

The second part of the research design is designed to analyze the use of

Packers and Protectors in Microsoft Windows platform, network based

malware, collected by the ECU Nepenthes sensors. This is also used to

support the examination of the research questions, primarily with respect to

the ability to detect the use of packers and protectors which is used by

Analysis Avoidance Techniques of Malicious Software

 103

malware to hinder analysis. The results of this process are presented in the

Analysis of Collected Malware chapter of this thesis.

3.6.4. Risk Mitigation

All steps of the process were conducted on a Linux machine which will not

natively run the malware. Downloading the malware from Nepenthes and

uploading the malware to the online analysis engines necessitated a

connection to the internet. All other analysis work was conducted on a

standalone Linux machine without an internet connection to ensure that the

malware did not inadvertently interact with the internet. VMWare Virtual

Machines were used to run the malware for analysis purposes under

Microsoft Windows XP. The advantage of using Virtual Machines was that

the state of the Virtual Machine could be restored quickly and easily at any

point. Data was transferred between the Virtual Machines and the Linux

host using a USB memory device.

3.7. RESEARCH DESIGN

3.7.1. Validate Individual Techniques

This process addresses the exploratory questions outlined in Table 3-1

above. The objective of this process is to validate the requirement that each

individual technique prevents code from being analyzed. It also investigates

the effectiveness of detection and mitigation methods that can be used

against the techniques under investigation.

Inputs – Literature review, research questions, individual techniques.

Outputs – Success or failure result for Technique, Detection and Mitigation.

The steps used were:

1. Write standalone executable programs which employ the individual

analysis avoidance technique as identified in the Literature Review

section of this thesis.

Analysis Avoidance Techniques of Malicious Software

 104

2. Validate that the technique works by testing the general requirement

for each technique, that is, “The use of the technique detects that the

program is running in a debugger”.

3. Write a script that will detect the use of each technique.

4. Validate that the detection script correctly identifies each technique.

5. Write a script that will mitigate each technique.

6. Validate that the mitigation script defeats the technique.

7. Analyse results.

3.7.2. Analysis of Collected Malware

The objective of this process is to collect empirical data from the malware

collected from the ECU Nepenthes honeypot from a variety of analysis tools.

This process seeks to assess the effectiveness of Packer Detection tools and

methods.

Inputs – Malware specimens from ECU Nepenthes sensors.

Outputs – Results from various Packer detection tools and methods.

The steps used to analyze the malware from an empirical perspective were:

1. Download the malware from the ECU Nepenthes sensor.

2. Create a directory with the same name as the hash of the collected

malware specimen on the analysis machine.

3. Enter the hash into the “MD5 Sum” column of the “Malware Analysis”

spreadsheet for each sheet that was used to record the result of each

specific type of analysis method that was used.

4. Record the date the malware was collected by Nepenthes into the

“Nepenthes” sheet.

5. Submit the specimen to Virus Total for analysis. Store the html

page result in the directory. Virus Total is a site where malware can

be submitted and the malware is tested by in excess of 30 AV

Engines. Extract information from result and store in “Malware

Analysis” spreadsheet in the “Virus Total” sheet. Extract data and

store in the appropriate column in the sheet. Count the number of

successful detections and store in “Detections” column. Count the

Analysis Avoidance Techniques of Malicious Software

 105

number of engines and store in the “Number of Engines” column.

Calculate the detection result and store in column “Detection Result”.

6. Submit the specimen to Anubis which is an online dynamic analysis

engine. Store the resultant web page into a text file (Anubis) in the

directory. Record results into the sheet named “Anubis” in the

appropriate columns.

7. Validate the collected malware as malicious or not.

8. Load the unpacked version of the malware into Mandiant’s Red

Curtain analysis tool. Record entropy and PEiD results directly into

the “Red Curtain” sheet in “Entropy” and “PEiD” column of the sheet

respectively.

9. Determine effectiveness of Packer detection on validated malware.

Analysis Avoidance Techniques of Malicious Software

 106

CHAPTER 4 VALIDATION OF ANTI-ANALYSIS

TECHNIQUES RESULTS

4.1. OVERVIEW

The literature review discussed two fundamental types of analyses

appropriate to analyse malware as static and dynamic analysis. Malware

tends to be heavily obfuscated to avoid signature based AV software also to

defeat static analysis. Analysts generally run the malware under

investigation inside a debugger so that instructions are potentially de-

obfuscated and revealed at run time. After this, further analysis can

commence, however, malware may contain hundreds of thousands of

instructions and stepping through every instruction manually can

understandably become untenable. This is because the time the analyst can

allocated to the analysis is a limited resource. Debuggers have associated

scripting languages to perform fundamental analysis tasks in an automated

manner to avoid stepping manually through the code.

The literature review revealed that malware can use run time packers that

are a stub program embedded in the malware that unpack the original code

at run time into memory. Once the malware has been unpacked, the

original instructions are executed. The point at which the original code is

reached, after the unpacking process is completed, is referred to as the

Original Entry Point (OEP). Generally, it is at this point where the program

can be dumped from memory and analyzed to determine its functionality,

including access to the registry, files, network communications, vectors of

attack to other systems and other very useful information to the analyst.

In order to hinder dynamic analysis at such a level, the search of the

literature exposed a plethora of techniques malware incorporates into its

code to hide functionality. Malware can determine if it is running inside a

debugger and then take control of the flow of execution so that it can use

deception to hide its true intent and not reveal which files it was going to

modify, how it was going to communicate over the network and other

malicious activities that could identify it as malicious. This information is

Analysis Avoidance Techniques of Malicious Software

 107

also required for disinfection purposes. If a known specimen of malware is

detected, the intent of the quarantine process is to remove the files that are

known to be associated with the specimen.

The literature associated with anti-analysis techniques very sparsely covers

routines to detect the use of these techniques. Detection of the use of anti-

analysis techniques was identified in the literature as potentially a very

good indicator that the software under investigation is possibly of a

malicious nature. Equally, the literature review revealed that mitigation

techniques available in popular plugins for dealing with anti forensic

techniques such as OllyAdvanced and IDA Stealth for OllyDbg and

IDA Pro respectively, do not come close to providing coverage for the

number of anti-analysis techniques. This provides an opportunity to

investigate the methods that can be employed to detect and mitigate the

use of anti-analysis techniques.

The purpose of this chapter is three fold. The first part validates a selection

of the anti-analysis techniques presented in the literature review. Once the

technique has been validated as successful, the implementation of the

technique can be used for the next two parts. The second part is used to

determine if the use of the same technique can be detected. The third part

determines if the use of the same technique can be mitigated. The intention

is to produce Objective Quality Evidence (OQE) to directly support answers

to the three research questions of this thesis. The OQE is produced by a

series of small quasi experiments where strict control over the flow of

execution of the programs is maintained and external influences are

minimized.

4.2. METHODOLOGY

The fundamental methodology for performing the quasi experiments is as

follows:

For each anti-analysis technique under investigation:

1. Implement the technique in as simple a program as possible.

2. Observe if the anti-analysis technique is successful or not.

Analysis Avoidance Techniques of Malicious Software

 108

3. Implement a detection script or employ a detection technique

to try to detect the presence of the technique.

4. Observe if the detection technique is successful or not.

5. Implement a mitigation script or technique to try and mitigate

the use of the anti-analysis technique.

6. Observe if the mitigation technique is successful or not.

Steps one and two are used to produce OQE to address research question

one. That is, “What techniques can malware use to avoid being analyzed?”.

Steps three and four are used to produce OQE to address research question

two. That is, “How can the use of these techniques be detected?”. Steps five

and six are used to produce OQE to address research question three. That is,

“How can the use of these techniques be mitigated?” The function of each of

these steps is outlined in the following sub sections.

4.2.1. Implement the technique in as simple a program as possible

The literature review presented a wide variety of techniques malware can

incorporate to hinder analysis. Code to implement the anti-analysis

techniques discussed in the referenced papers exists only as code snippets.

That is, as non-functioning and non-complete programs. To progress the

examination of the anti-analysis technique and to determine its

effectiveness, the code had to be implemented in small standalone

programs. The selection of the language to develop the programs in was

assembly language. This is because this is the lowest level a programmer

can write code in and this is the same language that an analyst would work

with when analyzing a malicious program. It has the added benefit of

ensuring that the most strict control was obtained over the functioning of

the code. That is, it allows control of external variables that could influence

the behaviour of the program.

4.2.2. Observe if the anti-analysis technique is successful or not

Once the anti-analysis technique has been implemented, the program is run

to determine if it effectively detects the presence of a debugger and alters

its path of execution. This can be observed at the debugger level, by

stepping through the program and observing each and every instruction as

it is executed at the assembly language level. It is intended that the result

Analysis Avoidance Techniques of Malicious Software

 109

of each of these tests will either show cause and effect, or not. Figure 4-1

depicts the execution logic of the program and shows the only two possible

observable results in a simple flow chart. Either the technique detects the

presence of a debugger or it does not.

Detect
Tool?

Record Result
as Tool

Detected

Record Result
as Tool not
Detected

Finish

Start

Yes No

Figure 4-1 Simple flowchart to record if technique was successful or

not in detecting the presence of a tool.

4.2.3. Implement a detection script or employ a detection technique

to try to detect the presence of the technique.

The purpose of this step is to implement a debugging script or to use an

analysis technique to detect the use of the anti-analysis technique in the

developed program. A small variety of scripting languages was used to

achieve this, using the two most popular debuggers used in Malware Digital

Forensics, IDA Pro (Commercial) and OllyDbg (Non Commercial)

(Zeltser, 2007). Scripts are written such that they will either detect the

technique or not and no unnecessary programming overhead is included.

Where scripting languages were not used, features of the debuggers were

used instead to detect the use of the technique. Selection of techniques to

implement was essentially determined by the techniques implemented in

popular anti forensic plugins such as the IDA Stealth plugin for validation

purposes. This gave an addition validating mechanism to determine if the

technique was successful or not.

Analysis Avoidance Techniques of Malicious Software

 110

4.2.4. Observe if the detection technique is successful or not.

Figure 4-2 depicts the logic of the observable result from conducting the

test. It is intended that the result of each of these tests will show cause and

effect. The results of each test are recorded as observations, the detection

technique either worked or it did not.

Technique
Detected

?

Record
Technique as

Detected

Record
Technique as
Not Detected

Finish

Start

Yes No

Figure 4-2 Simple flow chart depicting logic of recording the result

of script or technique to detect implementation of anti-analysis

technique.

4.2.5. Implement a mitigation script or technique to try and mitigate

the use of the anti-analysis technique.

Scripts were written or techniques were employed to mitigate the use of the

anti-analysis technique. Scripts are written such that they will either

mitigate the technique or not and no unnecessary programming overhead is

included. Where scripting languages were not used, features of the

debuggers were used instead to mitigate the use of the technique.

4.2.6. Observe if the mitigation technique is successful or not.

Figure 4-3 depicts the logic of the test of the mitigation script or technique.

Either the mitigation technique was successful or not.

Analysis Avoidance Techniques of Malicious Software

 111

Technique
Mitigated

?

Record
Technique as

Mitigated

Record
Technique as
Not Mitigated

Finish

Start

Yes No

Figure 4-3 Simple flow chart depicting the logic of recording the

result of the mitigation script or technique.

4.3. KERNEL32 ISDEBUGGERPRESENT() QUASI EXPERIMENT

4.3.1. Implementation of anti-analysis technique

Figure 4-4 demonstrates a call to the kernel32 DLL function

IsDebuggerPresent(). IsDebugger present will return 1 if the process is

being debugged, 0 if not being debugged, and an appropriate message will

be displayed. The ADDR keyword specifies that pointers to the strings are

being passed to the MessageBox function.

Analysis Avoidance Techniques of Malicious Software

 112

.686

.MODEL flat, stdcall
OPTION CASEMAP:NONE ;Case sensitive

include windows.inc
include kernel32.inc
includeLib c:\masm32\lib\kernel32.lib
include user32.inc
includeLib c:\masm32\lib\user32.lib

.DATA
 text1 db 'Debugger Not Detected', 0
 caption db 'IsDebuggerPresent',0
 text2 db 'Debugger Detected', 0
.CODE
Start:
 INVOKE IsDebuggerPresent
 TEST EAX,EAX
 JNZ DebuggerDetected
 INVOKE MessageBox, 0, ADDR text1, ADDR caption, MB_OK
 JMP Finish
DebuggerDetected:
 INVOKE MessageBox, 0, ADDR text2, ADDR caption, MB_OK
Finish:
 INVOKE ExitProcess, 0
End Start
Figure 4-4 Listing of implementation of kernel32 IsDebuggerPresent

technique.

4.3.2. Effectiveness of anti-analysis technique observation

The debugger was detected when the program was run in OllyDbg and IDA

Pro.

4.3.3. Implementation of detection of analysis avoidance technique

The use of functions can be easily detected from a static analysis point of

view in IDA Pro. The IDA Python script in Figure 4-5 shows how the

name of a function can be detected. It should be noted that this is a very

simple example and that malware can obfuscate function names so that

detection is not so easy. The function prints to the screen, but could just as

easily write to a file or a port. It should be noted that this script works with

the static disassembly. A script can also be written that will work inside the

debugger as it runs. This approach facilitates dynamic analysis and even

allows decisions to be made about the control flow of the program as it runs.

The reality is that a function found from a disassembly may never be

actually called. This can be determined by checking to see what other

Analysis Avoidance Techniques of Malicious Software

 113

functions (cross references) call the function of interest. The compromise is

that with a static analysis, the analyst is not actually running malicious code.

However, with a dynamic analysis (running in the debugger), the malicious

code is actually interacting with the system.

detectFunction(functionToFind)
detect the presence of a particular function
input : functionToFind = function to find as string
output : True if function found, False otherwise
def detectFunction(functionToFind):
 found = False
 # get the segments starting address
 ea = ScreenEA()
 # loop through all the functions in the segment
 for function_ea in Functions(SegStart(ea), SegEnd(ea)):
 if GetFunctionName(function_ea) == functionToFind:
 found = True
 print hex(function_ea), GetFunctionName(function_ea)
 return found

def main():
 detectFunction("IsDebuggerPresent")

if __name__ == "__main__":
 main()
Figure 4-5 IDA Python function detection script used for static

analysis.

4.3.4. Effectiveness of detection of technique observation

The detection script effectively detected the use of the technique.

4.3.5. Implementation of mitigation technique

The mitigation technique employed was the use of the selection of the

OllyAdvanced option to detect IsDebuggerPresent in OllyDbg and to use

the IsDebuggerPresent flag in IDA Stealth.

4.3.6. Effectiveness of mitigation technique observation

The OllyAdvanced option and the IDA Stealth option were effective in

mitigating the technique in the implemented program in Figure 4-4.

Analysis Avoidance Techniques of Malicious Software

 114

4.4. PEB ISDEBUGGED() QUASI EXPERIMENT

4.4.1. Implementation of anti-analysis technique

In such a simple example as shown in the listing in Figure 4-4, the

IsDebuggerPresent() function call shows up in the import table and can be

detected. Since the API function call itself is simply reading the second byte

of the Process Environment Block (PEB) at offset 2, a stealthy version can

attempt to do this itself directly instead of calling the IsDebuggerPresent

API function as shown in the listing of Figure 4-6. Offset +30 from the

Thread Environment Block (TEB) data structure points to the PEB of the

current process. Because a BYTE is being transferred to EAX, it must be

extended with zeros (MOVZX) to fill the register.

.686

.MODEL flat, stdcall
OPTION CASEMAP:NONE ;Case sensitive

include windows.inc
include kernel32.inc
includeLib c:\masm32\lib\kernel32.lib
include user32.inc
includeLib c:\masm32\lib\user32.lib

.DATA
 text1 db 'Debugger Not Detected', 0
 caption db 'IsDebugged',0
 text2 db 'Debugger Detected', 0
.CODE
Start:
 ASSUME FS:NOTHING
 MOV EAX, DWORD PTR FS:[30h]
 MOVZX EAX, BYTE PTR [EAX+2] ;mov with zero extend
 TEST EAX,EAX
 JNZ DebuggerDetected
 INVOKE MessageBox, 0, addr text1, addr caption, MB_OK
 JMP Finish
DebuggerDetected:
 INVOKE MessageBox, 0, addr text2, addr caption, MB_OK
Finish:
 INVOKE ExitProcess, 0
End Start
Figure 4-6 Listing of implementation of PEB!IsDebugged technique

Analysis Avoidance Techniques of Malicious Software

 115

4.4.2. Effectiveness of anti-analysis technique observation

The use of the technique effectively detected the presence of OllyDbg and

IDA Pro.

4.4.3. Implementation of detection of analysis avoidance technique

The IsDebuggerPresent flag is an option in IDA Stealth that can be

used to detect the use of this technique. An alternative to using IDA

Stealth is to patch the IsDebugged field of the Process Environment Block

(PEB) using the IDC script in Figure 4-7, partially extracted from an

example from Eagle (2008b). Although Eagle’s technique is effective at

mitigation, some additional modification is required to check if the malware

is using this detection method.

#include <idc.idc>

static main() {
 auto globalFlags, func, end;
 // run to the entry point
 RunTo(BeginEA());
 // launch the debugger, but suspend
 GetDebuggerEvent(WFNE_SUSP, -1);
 //ebx points to peb on entry. This is only true at BeginEA,
not main
 PatchByte(EBX + 2, 0); //PEB!IsDebugged = 0;
 // resume the debugger
 GetDebuggerEvent(WFNE_CONT , -1);
}
Figure 4-7 IDC script PatchIsDebuggerPresent.idc to patch

IsDebuggerPresent flag in PEB.

Another way to detect that this technique is being used, is to check when

the PEB is being accessed. One way to do this is to check the second

operand for each instruction to see if it is accessing the PEB at FS:[30h] as

shown in the listing in Figure 4-8.

Analysis Avoidance Techniques of Malicious Software

 116

// simple example to find a pattern dynamically
#include <idc.idc>

static main() {
 auto code;
 EnableTracing(TRACE_STEP, 1);
 findPattern(GetEventEa(), "fs:30h");
 for (code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1); code >
0;
 code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1))
{
 findPattern(GetEventEa(), "fs:30h");
 }
 EnableTracing(TRACE_STEP, 0);
}

// if pattern found in second operand, print a short message
static findPattern(addr, pattern)
{
 auto oper1, oper2, mnem;
 mnem = GetMnem(addr);
 oper1 = GetOpnd(addr, 0);
 oper2 = GetOpnd(addr, 1);
 if (strstr(oper2, pattern) >= 0) {
 Message("Found %s\n", pattern);
 Message("%x %s %s, %s\n", addr, mnem, oper1, oper2);
 }
 return 0;
}
Figure 4-8 IDC script to find a pattern at run time.

4.4.4. Effectiveness of detection of technique observation

Both the manual detection technique discussed above and the detection

scripts were very effective at detecting the use of the anti-analysis

technique. If the OllyAdvanced option to detect IsDebuggerPresent is

selected when the code in Figure 4-6 is run, OllyDbg will be detected

because the call to the function IsDebuggerPresent is never called. This

emphasizes the importance of understanding the limitations of the

functionality of tools and the likelihood of workarounds to have been

discovered and implemented to mitigate detection methods used by

analysts.

Analysis Avoidance Techniques of Malicious Software

 117

4.4.5. Implementation of mitigation technique

The PEB can be viewed in OllyDbg by pressing Ctrl+G (Goto Expression) in

the data window and entering FS:[30]. Highlight the offset at 0x02

(remembering to start at 0), press the space bar to pull up the editor, and

change the 0x01 to 0x00. This emphasizes a significant difference between

IDA Pro and OllyDbg. It is much easier to patch code with OllyDbg than

with IDA Pro and save the modified binary. OllyDbg is working with the

actual, original binary, whereas IDA Pro is working with an analyzed

version of the original binary that is stored in a database, but can still be

patched and run.

4.4.6. Effectiveness of mitigation technique observation

The use of the mitigation technique was effective.

4.5. PEB NTGLOBALFLAGS() QUASI EXPERIMENT

4.5.1. Implementation of anti-analysis technique

The DWORD located at offset 0x68 in the PEB contains flags that define how

various APIs will be used by the loaded program, and certain flags are set if

the process is being run in a debugger. These flags are listed in Figure 4-9.

FLG_HEAP_ENABLE_TAIL_CHECK (0x10)
FLG_HEAP_ENABLE_FREE_CHECK (0x20)
FLG_HEAP_VALIDATE_PARAMETERS (0x40)
Figure 4-9 NTGlobal Flags used to detect if program is running

inside a debugger

The NtGlobalFlag will be set to 0x00 in a program that is not being

debugged. If the program is being debugged, the NtGlobalFlag will be set

to 0x70 which shows that the above flags are set. These flags can be set by

the call to the ntdll function LdrpInitializeExecutionOptions(). The

listing in Figure 4-10 demonstrates this technique.

Analysis Avoidance Techniques of Malicious Software

 118

.686

.MODEL flat, stdcall
OPTION CASEMAP:NONE ;Case sensitive

include windows.inc
include kernel32.inc
includeLib c:\masm32\lib\kernel32.lib
include user32.inc
includeLib c:\masm32\lib\user32.lib

.DATA
 text1 db 'Debugger Not Detected', 0
 caption db 'NtGlobalFlags',0
 text2 db 'Debugger Detected', 0
.CODE
Start:
 ASSUME FS:NOTHING
 MOV EAX, DWORD PTR FS:[30h]
 MOVZX EAX, BYTE PTR [EAX+68h]
 CMP EAX, 70h
 TEST EAX,EAX
 JNZ DebuggerDetected
 INVOKE MessageBox, 0, addr text1, addr caption, MB_OK
 JMP Finish
DebuggerDetected:
 INVOKE MessageBox, 0, addr text2, addr caption, MB_OK
Finish:
 INVOKE ExitProcess, 0
End Start
Figure 4-10 Listing of implementation of PEB!NTGlobalFlags

technique to detect presence of debugger.

4.5.2. Effectiveness of anti-analysis technique observation

The use of the technique effectively detected the presence of OllyDbg and

IDA Pro. OllyDbg was detected, unless the OllyAdvanced NtGlobal

flag option was enabled. Equally, IDA Pro was detected until the

NtGlobalFlag (Patch global heap flag) option was selected.

4.5.3. Implementation of detection of analysis avoidance technique

To detect the use of this technique, the pattern searching script in Figure

4-8 can be used to notify the analyst about code access to the PEB. The

pattern searching script could be modified to cater for the various

permutations that are possible.

Analysis Avoidance Techniques of Malicious Software

 119

4.5.4. Effectiveness of detection of technique observation

The pattern matching technique in Figure 4-8 effectively detected the use of

the technique using IDA Pro.

4.5.5. Implementation of mitigation technique

The listing in Figure 4-11 is partially extracted from an example by (Eagle,

2008b) and shows how the NtGlobalFlag can be successfully patched at

run time using the IDC scripting language in IDA Pro.

#include <idc.idc>

static main() {
 auto globalFlags, func, end;
 RunTo(BeginEA());
 GetDebuggerEvent(WFNE_SUSP, -1);
 globalFlags = Dword(EBX + 0x68) & ~0x70;
 PatchDword(EBX + 0x68, globalFlags);
}
Figure 4-11 IDC Script to patch NtGlobalFlags at run time to avoid

detection of debugger.

4.5.6. Effectiveness of mitigation technique observation

Use of the script in Figure 4-11effectively mitigated the use of the technique.

4.6. HEAP FLAGS QUASI EXPERIMENT

4.6.1. Implementation of anti-analysis technique

When the first heap of a program is created, its Flags will be set to 0x02 to

designate that the heap can grow and the ForceFlags field will be set to

0x00. However, when a process is being debugged, “these flags are usually

set to 0x50000062 (depending on the NTGlobalFlag) and 0x40000060

(which is Flags AND 0x6001007D)” (Yason, 2007, p.5). The following heap

flags in Figure 4-12 are also set when a heap is created on a debugged

process.

Analysis Avoidance Techniques of Malicious Software

 120

HEAP_TAIL_CHECKING_ENABLED (0X20)
HEAP_FREE_CHECKING_ENABLED (0X40)
Figure 4-12 Heap flags that are set when a process is being

debugged. These can be used to detect the presence of a debugger.

Falliere (2007, p.3) says that checking the ForceFlags field in a heap

header at offset 0x10 can be used to detect the presence of a debugger.

This technique is implemented in the listing in Figure 4-13.

.686

.MODEL flat, stdcall
OPTION CASEMAP:NONE ;Case sensitive

include windows.inc
include kernel32.inc
includeLib c:\masm32\lib\kernel32.lib
include user32.inc
includeLib c:\masm32\lib\user32.lib

.DATA
 text1 db 'Debugger Not Detected', 0
 caption db 'Heap Flags',0
 text2 db 'Debugger Detected', 0
.CODE
Start:
 ASSUME FS:NOTHING
 MOV EAX, DWORD PTR FS:[30h]
 MOV EAX, [EAX+18h] ;process heap
 MOV EAX, [EAX+10h] ; heap flags
 TEST EAX,EAX
 JNZ DebuggerDetected
 INVOKE MessageBox, 0, addr text1, addr caption, MB_OK
 JMP Finish
DebuggerDetected:
 INVOKE MessageBox, 0, addr text2, addr caption, MB_OK
Finish:
 INVOKE ExitProcess, 0
End Start
Figure 4-13 Listing of implementation of HeapFlags detection

technique.

4.6.2. Effectiveness of anti-analysis technique observation

The use of the technique effectively detected the presence of OllyDbg and

IDA Pro.

Analysis Avoidance Techniques of Malicious Software

 121

4.6.3. Implementation of detection of analysis avoidance technique

To detect the use of this technique, the pattern searching script from Figure

4-8 can be used to detect when the PEB is being accessed. However, it

should be noted that it would be very easy to further obfuscate the operand

to access the PEB.

4.6.4. Effectiveness of detection of technique observation

The use of the detection technique proved to be effective.

4.6.5. Implementation of mitigation technique

Falliere (2007, p.3) suggests two ways to mitigate the use of this technique

as follows:

1. Create a non-debugged process, and attach the debugger once the

process has been created. An easy solution is to create the process

suspended, run until the entry-point is reached, patch it to an infinite loop,

resume the process, attach the debugger, and restore the original entry-

point.

2. Edit the registry key:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File

Execution Options

“Create a subkey (not value) names as your process name, and under this

subkey, a String value GlobalFlags set to nothing” (Falliere, 2007, p.3).

Yason (2007, p.5) says that a solution is to patch the PEB.NTGlobalFlag

and PEB.HeapProcess flag to the values as if the process is not being

debugged. Yason provides an OllyScript to patch the flags that is

reproduced as follows in the listing in Figure 4-14. The assembly language

feel is very evident in OllyScript syntax and serves as a very interesting

contrast to IDAPython and IDC script. A variety of OllyScripts can be

found on most reverse engineering web sites and can be used to see how

particular analysis techniques work and if desired, transform the algorithm

into another scripting language such as IDAPython to work with IDA Pro.

Analysis Avoidance Techniques of Malicious Software

 122

var peb
var patch_addr
var process_heap

// retrieve PEB via a hardcoded TEB address (first thread:
// 0x7ffde000)
mov peb, [7ffde000+30]

//patch PEB.NtGlobalFlag
lea patch_addr, [peb+68]
mov [patch_addr], 0

//patch PEB.ProcessHeap.Flags/ForceFlags
mov process_heap, [peb+18]
lea patch_addr, [process_heap+0c]
mov [patch_addr], 2
lea patch_addr, [process_heap+10]
mov [patch_addr], 0
Figure 4-14 OllyScript to patch Heap Flags

4.6.6. Effectiveness of mitigation technique observation

The technique was mitigated when the Heap Flag option of IDA Stealth

was checked. The script in Figure 4-14 effectively mitigated the technique

in IDA Pro. Setting the Heap Flags option in OllyAdvanced (v1.26) did

not help in mitigating this case, the debugger was still detected.

4.7. NTQUERYINFORMATIONPROCESS() QUASI EXPERIMENT

4.7.1. Implementation of anti-analysis technique

The NtQueryInformationProcess call is used to retrieve information about

the running process. Its prototype is shown in Figure 4-15.

NTSTATUS WINAPI NtQueryInformationProcess(
 __in HANDLE ProcessHandle,
 __in PROCESSINFOCLASS ProcessInformationClass,
 __out PVOID ProcessInformation,
 __in ULONG ProcessInformationLength,
 __out_opt PULONG ReturnLength
);
Figure 4-15 NtQueryInformationProcess call used to retrieve

information about the running process

The PROCESSINFOCLASS enumeration can be set with a value of 7 to retrieve

the port number of the debugger for the process. The process is being

Analysis Avoidance Techniques of Malicious Software

 123

debugged if the return value is non zero. An example implementation of this

technique by ap0x (2006) is shown in the listing in Figure 4-16.

.386

.model flat, stdcall
option casemap :none ; case sensitive

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

.data
 DbgNotFoundTitle db "Debugger status:",0h
 DbgFoundTitle db "Debugger status:",0h
 DbgNotFoundText db "Debugger not found!",0h
 DbgFoundText db "Debugger found!",0h
 ntdll db "ntdll.dll",0h
 zwqip db "NtQueryInformationProcess",0h
.data?
 NtAddr dd ?
 MinusOne dd ?
.code

start:

; MASM32 antiOlly example
; coded by ap0x
; Reversing Labs: http://ap0x.headcoders.net
; This example can detect Olly by using
NtQueryInformationProcess API.
MOV [MinusOne],0FFFFFFFFh
PUSH offset ntdll ;ntdll.dll
CALL LoadLibrary
PUSH offset zwqip ;NtQueryInformationProcess
PUSH EAX
CALL GetProcAddress
MOV [NtAddr],EAX
MOV EAX,offset MinusOne
PUSH EAX
MOV EBX,ESP
PUSH 0
PUSH 4
PUSH EBX
PUSH 7
PUSH DWORD PTR[EAX]
CALL [NtAddr]
POP EAX
TEST EAX,EAX
JNE @DebuggerDetected
PUSH 40h
PUSH offset DbgNotFoundTitle
PUSH offset DbgNotFoundText
PUSH 0

Analysis Avoidance Techniques of Malicious Software

 124

CALL MessageBox
JMP @exit
 @DebuggerDetected:
PUSH 30h
PUSH offset DbgFoundTitle
PUSH offset DbgFoundText
PUSH 0
CALL MessageBox
 @exit:
PUSH 0
CALL ExitProcess
end start
Figure 4-16 Implementation of NtQueryInformationProcess

technique to detect the presence of a debugger (ap0x, 2006)

4.7.2. Effectiveness of anti-analysis technique observation

The use of the technique effectively detected the presence of OllyDbg and

IDA Pro.

4.7.3. Implementation of detection of analysis avoidance technique

The use of particular functions (where the use of the function is not

obfuscated) can be easily detected in IDC by the use of the function call

LocByName() which takes the name of the function to search for as a

parameter and returns the address of the function which serves to detect

the use of the function.

4.7.4. Effectiveness of detection of technique observation

The use of the technique was effectively detected using the function call

LocByName() in IDC.

4.7.5. Implementation of mitigation technique

The NtQueryInformationProcess is a wrapper around the

ZwQueryInformationProcess system call. The debugger will be found until

the OllyAdvanced option ZwQueryInformationProcess is enabled. The

NtQueryInformationProcess signature is as follows in Figure 4-17.

Analysis Avoidance Techniques of Malicious Software

 125

NTSTATUS NTAPI NtQueryInformationProcess (
 HANDLE ProcessHandle,
 PROCESSINFOCLASS ProcessInformationClass,
 PVOID ProcessInformation,
 ULONG ProcessInformationLength,
 PULONG ReturnLength
}
Figure 4-17 Signature of NtQueryInformationProcess

IDA Stealth has an option to mitigate this technique using the

NTQueryInformationProcess option.

Once the address of the function has been found, the function can be

mitigated by setting a breakpoint on the return from

NtQueryInformationProcess. An algorithm presented by Eagle (2008a, p.

534) using IDA Pro is as follows:

• Locate the address of NtQueryInformationProcess.

• Create a function at the address.

• Find the end address of the function.

• Find the beginning of the return instruction by subtracting three from

the end address and set a breakpoint at this address.

• Add a condition function on the breakpoint and set the breakpoint’s

attributes so that execution is prevented from stopping on the

breakpoint.

The listing in Figure 4-18 is extracted from an example by (Eagle, 2008b)

that implements the algorithm described above.

Analysis Avoidance Techniques of Malicious Software

 126

#include <idc.idc>

//handle a return from NtQueryInformationProcess
#define ProcessDebugPort 7
static bpt_NtQueryInformationProcess() {
 auto p_ret;
 if (Dword(ESP + 8) == ProcessDebugPort) {
 //test ProcessInformationClass
 p_ret = Dword(ESP + 12);
 if (p_ret) {
 PatchDword(p_ret, 0); //fake no debugger present
 }
 }
}

static main() {
 auto globalFlags, func, end;
 RunTo(BeginEA());
 GetDebuggerEvent(WFNE_SUSP, -1);

// func = LocByName("ntdll_NtQueryInformationProcess");
 func = LocByName("ntdll_ZwQueryInformationProcess");
 MakeFunction(func, BADADDR);
 end = GetFunctionAttr(func, FUNCATTR_END) - 3;
 AddBpt(end);
 SetBptAttr(end, BPT_BRK, 0); //don't stop
 SetBptCnd(end, "bpt_NtQueryInformationProcess()");

}
Figure 4-18 Listing of NtQueryInformationProcess avoidance

technique (Eagle, 2008b)

A code snippet from Yason (2007, p.7) that uses

NtQueryInformationProcess is reproduced in Figure 4-19:

; using ntdll!NtQueryInformationProcess (ProcessDebugPort)
lea eax,[.dwReturnLen]
push eax ; ReturnLength
push 4 ; ProcessInformationLength
lea eax, [.dwDebugPort]
push eax ; ProcessInformation
push ProcessDebugPort ; ProcessInformationClass (7)
push 0xffffffff ; ProcessHandle
call [NtQueryInformationProcess]
cmp dword [.dwDebugPort], 0
jne .debugger_found
Figure 4-19 Code snippet using NtQueryInformationProcess (Yason,

2007, p.7)

Analysis Avoidance Techniques of Malicious Software

 127

An example OllyScript presented by Yason (2007, p.7) is reproduced in

Figure 4-20. It shows how a breakpoint can be set where

NtQueryInformationProcess() returns and then patches

ProcessInformation to 0 when the breakpoint is hit.

var bp_NtQueryInformationProcess

// set a breakpoint handler
eob bp_handler_NtQueryInformationProcess

// set a breakpoint where NtQueryInformationProcess returns
gpa “NtQueryInformationProcess”, “ntdll.dll”
find $RESULT, #c21400# //retn 14
mov bp_NTQueryInformationProcess, $RESULT
bphws bp_NTQueryInformationProcess, “x”
run

bp_handler_NtQueryInformationProcess:
// ProcessInformationClass == ProcessDebugPort ?
cmp [esp+8], 7
jne bp_handler_NtQueryInformationProcess_continue

// patch ProcessInformation to 0
mov patch_addr, [esp+c]
mov [patch_addr], 0

// clear breakpoint
bphwc bp_NtQueryInformationProcess

bp_handler_NtQueryInformationProcess_continue:
run
Figure 4-20 OllyScript to Patch ProcessInformation (Yason, 2007,

p.7)

4.7.6. Effectiveness of mitigation technique observation

The mitigation techniques were observed to be very effective.

4.8. KERNEL32 CHECKREMOTEDEBUGGERPRESENT() QUASI
EXPERIMENT

4.8.1. Implementation of anti-analysis technique

This call has two parameters, a process handle, and a pointer to a BOOLEAN

variable that will be set to TRUE if it is found that a debugger is attached to

the process. The signature of this call is as follows in Figure 4-21.

Analysis Avoidance Techniques of Malicious Software

 128

BOOL CheckRemoteDebuggerPresent (
 HANDLE hProcess,
 PBOOL pbDebuggerPresent
)
Figure 4-21 Signature of CheckRemoteDebuggerPresent

The call chain for this function is via the ntdll function

NtQueryInformationProcess which queries the DebugPort field of the

EPROCESS kernel structure. An example listing (ap0x, 2006) is provided in

Figure 4-22 that uses the CheckRemoteDebuggerPresent function call.

.386

.model flat, stdcall
option casemap :none ; case sensitive

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

.data
DbgNotFoundTitle db "Debugger status:",0h
DbgFoundTitle db "Debugger status:",0h
DbgNotFoundText db "Debugger not found!",0h
DbgFoundText db "Debugger found!",0h
krnl db "kernel32.dll",0h
chkrdbg db "CheckRemoteDebuggerPresent",0h
.data?
IsItPresent dd ?
.code

start:

; MASM32 antiRing3Debugger example
; coded by ap0x
; Reversing Labs: http://ap0x.headcoders.net
; CheckRemoteDebuggerPresent is function similar to
; IsDebuggerPresent.
; This function is available only in Windows NT and it
; outputs TRUE or FALSE value if debugger is present
; in selected process.

; Load the function via GetProcAddress

PUSH offset krnl ;kernel32.dll
CALL LoadLibrary
PUSH offset chkrdbg ;CheckRemoteDebuggerPresent
PUSH EAX
CALL GetProcAddress

Analysis Avoidance Techniques of Malicious Software

 129

; IsItPresent variable will store the result
PUSH offset IsItPresent
PUSH -1
CALL EAX
MOV EAX,DWORD PTR[IsItPresent]
TEST EAX,EAX
JNE @DebuggerDetected
PUSH 40h
PUSH offset DbgNotFoundTitle
PUSH offset DbgNotFoundText
PUSH 0
CALL MessageBox
JMP @exit
 @DebuggerDetected:
PUSH 30h
PUSH offset DbgFoundTitle
PUSH offset DbgFoundText
PUSH 0
CALL MessageBox
 @exit:
PUSH 0
CALL ExitProcess
end start
Figure 4-22 Listing of CheckRemoteDebuggerPresent technique to

find presence of remote debugger (ap0x, 2006)

4.8.2. Effectiveness of anti-analysis technique observation

The use of the technique effectively detected the presence of OllyDbg and

IDA Pro.

4.8.3. Implementation of detection of analysis avoidance technique

The use of this technique can be detected by locating calls to the

CheckRemoteDebuggerPresent function call as exemplified by the routine

presented in Figure 4-23.

4.8.4. Effectiveness of detection of technique observation

Detection of the use of the technique proved to be effective.

4.8.5. Implementation of mitigation technique

A technique to detect and patch the use of this technique with the

Immunity Debugger is provided by BoB (2007) in the procedure listed in

Figure 4-23.

Analysis Avoidance Techniques of Malicious Software

 130

#---

CheckRemoteDebuggerPresent ..
Note: This Api calls ZwQueryInformationProcess Api,
so usually no need to patch both ..

def Patch_CheckRemoteDebuggerPresent(imm):
 deb = imm.getAddress("kernel32.CheckRemoteDebuggerPresent"
)
 # Just incase on Win2k .. ;)
 if (deb <= 0):
 imm.Log("No CheckRemoteDebuggerPresent to patch ..")
 return

 imm.Log("Patching CheckRemoteDebuggerPresent ..", address =
deb)
 imm.writeMemory(deb, imm.Assemble(" \
 Mov EDI, EDI \n \
 Push EBP \n \
 Mov EBP, ESP \n \
 Mov EAX, [EBP + C] \n \
 Push 0 \n \
 Pop [EAX] \n \
 Xor EAX, EAX \n \
 Pop EBP \n \
 Ret 8 \
 "))

Figure 4-23 Implementation of CheckRemoteDebuggerPresent

detection technique (BoB, 2007)

After detection, the procedure patches the program by assembling new

instructions to replace the original instructions. The assembly language

commands and assembled instructions appear as follows in Figure 4-24.

MOV EDI, EDI 8B FF
PUSH EBP 55
MOV EBP, ESP 8B EC
MOV EAX, [EBP + 0Ch] 8B 45 0C
PUSH 0 6A 00
POP [EAX] 8F 00
XOR EAX, EAX 33 C0
POP EBP 5D
RET 8 C2 08 00
Figure 4-24 Resultant patched program after running

CheckRemoteDebuggerPresent detection script.

Once the start address of the CheckRemoteDebuggerPresent function is

found in the Kernel32 DLL, memory can be over written with the new

instructions. This can be done manually through a debugger, or through a

Analysis Avoidance Techniques of Malicious Software

 131

script. Figure 4-25 provides an equivalent example written in IDC script.

A variety of other anti anti debugging techniques in BoB’s script include:

• IsDebuggerPresent

• ZwQueryInformationProcess

• CheckRemoteDebuggerPresent

• PEB.IsDebugged

• PEB.ProcessHeap.Flag

• PEB.NtGlobalFlag

• PEB.Ldr

• GetTickCount

• ZwQuerySystemInformation

• FindWindowA

• FindWindowW

• FindWindowExA

• FindWindowExW

• EnumWindows

#include <idc.idc>

detect and patch CheckRemoteDebuggerPresent

static main() {
 auto addr;
 RunTo(BeginEA());
 GetDebuggerEvent(WFNE_SUSP, -1);
 addr = LocByName("kernel32_CheckRemoteDebuggerPresent");
 if (addr != BADADDR){
 Message("CheckRemoteDebuggerPresent at address %x\n", addr);
 patchCheckRemoteDebuggerPresent(addr);
 }
}

static patchCheckRemoteDebuggerPresent(addr) {
 PatchDword(addr, 0x8B55FF8B);
 PatchDword(addr + 4, 0x0C458BEC);
 PatchDword(addr + 8, 0x008F006A);
 PatchDword(addr + 12, 0xC25DC033);
 PatchWord(addr + 16, 0x0008);
}
Figure 4-25 CheckRemoteDebuggerPresent detection and mitigation

IDC Script (Dynamic)

Analysis Avoidance Techniques of Malicious Software

 132

4.8.6. Effectiveness of mitigation technique observation

The implemented mitigation techniques proved to be very effective. The

debugger was detected when run inside OllyDbg, but was mitigated when

the OllyAdvanced ZwQuerySystemInformation option was enabled. IDA

Pro was detected when the program was executed. The

NTQueryInformation process (which includes

CheckRemoteDebuggerPresent) checkbox must be selected in IDA

Stealth to prevent its discovery by the anti-analysis technique.

4.9. UNHANDLED EXCEPTION FILTER QUASI EXPERIMENT

4.9.1. Implementation of anti-analysis technique

Windows has a chained Structured Exception Handler (SEH) mechanism to

pass exceptions to handlers instead of crashing the program if possible.

Malware can take advantage of SEH to gain control of the malware to detect

it is being debugged. The malware throws an exception deliberately, and if

its own SEH does not handle the exception, it can deduce that it is being

debugged. OllyDbg does have a setting to not handle exceptions and to

pass exceptions to the process being debugged. Exceptions are handled in

the following way for Windows XP SP2, Windows 2003 and Windows Vista

(Falliere, 2007, p.5):

• Pass control to the per process Vectored Exception Handler if any.

• Otherwise, pass control to the per thread SEH which is pointed to by

FS:[0] in the thread that generated the exception.

• If not processed by the previous two steps, the final SEH in the chain

will call the kernel32 function UnhandledExceptionFilter which is

set by the system. This function will determine what to do next

dependent upon whether the program is being debugged or not. If

not being debugged, a user defined filter function will be called, that

is set by the kernel32 function SetUnhandledExceptionFilter. If it

is being debugged, the program is terminated.

Two types of exception handlers are (Gordon, n.d.) :

Analysis Avoidance Techniques of Malicious Software

 133

• Final exception handler.

• Per thread exception handler.

The final exception handler is set up in the main thread by a call to the API

function SetUnhandledExceptionFilter which replaces the top level

exception handler that Win32 places at the top of each thread and process.

If an exception occurs after this call “in a process that is not being

debugged, and the exception makes it to the Win32 unhandled exception

filter, that filter will call the exception filter function specified by the

lpTopLevelExceptionFilter parameter”(+Pumpqara, n.d.). A modified

version of an example developed by +Pumqara is shown in Figure 4-26.

Analysis Avoidance Techniques of Malicious Software

 134

.686

.model flat, stdcall
option casemap:none

include c:\masm32\INCLUDE\Windows.inc
include c:\masm32\INCLUDE\user32.inc
include c:\masm32\INCLUDE\kernel32.inc
includelib c:\masm32\lib\user32.lib
includelib c:\masm32\lib\kernel32.lib

.data
caption db "SetUnhandledExceptionFilter",0
text4 db "Return Point from Handler", 0
text1 db "In Handler",0

.code
ExceptionHandler proc
 INVOKE MessageBox, 0, addr text1, addr caption, MB_OK
 ; get the EXCEPTION_POINTERS structure from the stack
 MOV EAX, DWORD PTR [ESP+4] ;
 ; from the EXCEPTION_POINTERS structure, get the pointer
 ; to the CONTEXT structure
 MOV EAX, [EAX+4] ; CONTEXT
 ASSUME EAX:PTR CONTEXT
; change the regEip member of the CONTEXT to the safe address
 MOV [EAX].regEip, OFFSET SafeAddress ; Change regEip
 ; Set EXCEPTION_CONTINUE_EXECUTION flag in EAX
 XOR EAX,EAX
 DEC EAX
 RETN 4 ; Normalize stack and return
ExceptionHandler endp

start:
 ; register the exception handler
 INVOKE SetUnhandledExceptionFilter,offset ExceptionHandler
 ; force a divide by 0 exception
 XOR EAX,EAX
 DIV EAX

SafeAddress:
 INVOKE MessageBox, 0, addr text4, addr caption, MB_OK
 INVOKE ExitProcess,0
end start
Figure 4-26 Listing of implementation of

SetUnhandledExceptionFilter technique.

4.9.2. Effectiveness of anti-analysis technique observation

This technique was found to be very effective. If the program is run

normally, the exception handler will be called after the deliberate divide by

zero exception, and will return to the location of SafeAddress. If the

program is run in OllyDbg, the program will not enter the exception

Analysis Avoidance Techniques of Malicious Software

 135

handler and will crash, unless the debug options are set to pass the

exceptions to the program. IDA Pro performs in a very similar manner and

can also be set to pass exceptions to the application. Many packers use this

technique to make the analysis process more difficult. This is because if the

program is being debugged, the top level exception handler is never called.

Only the per thread or per process handler is called.

4.9.3. Implementation of detection of analysis avoidance technique

Detection of this technique was accomplished by searching for a call to

SetUnhandledExceptionFilter function call.

4.9.4. Effectiveness of detection of technique observation

The detection technique proved to be effective.

4.9.5. Implementation of mitigation technique

The type of exception that is raised could be examined as well as the

handler and patched out if it assists the analysis.

4.9.6. Effectiveness of mitigation technique observation

The mitigation technique proved to be effective.

4.10. NTSETINFORMATIONTHREAD() QUASI EXPERIMENT

4.10.1. Implementation of anti-analysis technique

A thread can be hidden from a debugger by using the ntdll function

NtSetInformationThread. This is usually used for setting the priority of a

thread, but can be used to prevent debugging events from being sent to the

debugger. It’s prototype is as follows in Figure 4-27.

NTSYSAPI NTSTATUS NTAPI NtSetInformationThread(
IN HANDLE ThreadHandle,
IN THREAD_INFORMATION_CLASS ThreadInformationClass,
IN PVOID ThreadInformation,
IN ULONG ThreadInformationLength
);
Figure 4-27 NtSetInformationThread signature

Analysis Avoidance Techniques of Malicious Software

 136

The ThreadInformationClass has to be set to 0x11 to hide the thread,

which essentially detaches the thread. The following listing, an extension of

an example by (Falliere, 2007, p.7) demonstrates this technique.

.386

.model flat,stdcall
option casemap:none
include c:\masm32\include\windows.inc
include c:\masm32\include\user32.inc
include c:\masm32\include\kernel32.inc
includelib c:\masm32\lib\kernel32.lib
includelib c:\masm32\lib\user32.lib

.data
LibName db "ntdll.dll",0
FunctionName db "NtSetInformationThread",0
DllNotFound db "Cannot load library",0
AppName db "Load Library",0
FunctionNotFound db "Function not found",0
strAllOk db "Debugger Not Found", 0

.data?
hLib dd ? ; the handle of the library (DLL)
FunctionAddr dd ? ; the address of the function

.code
start:
 invoke LoadLibrary,addr LibName
 .if eax==NULL
 invoke MessageBox,NULL,addr DllNotFound,addr AppName,MB_OK
 .else
 mov hLib,eax
 invoke GetProcAddress,hLib,addr FunctionName
 .if eax==NULL
 invoke MessageBox,NULL,addr FunctionNotFound,addr AppName,MB_OK
 .else
 mov FunctionAddr,eax
 push 0
 push 0
 push 11h
 push -2
 call [FunctionAddr]
 invoke MessageBox, NULL, addr strAllOk, addr AppName, MB_OK
 .endif
 invoke FreeLibrary,hLib
 .endif
 invoke ExitProcess,NULL
end start
Figure 4-28 Listing of implementation of NtSetInformationThread

technique.

Analysis Avoidance Techniques of Malicious Software

 137

4.10.2. Effectiveness of anti-analysis technique observation

When run outside a debugger, the MessageBox will display the message that

the debugger was not found. If stepped in OllyDbg, the thread will be

detached, and an error will be displayed that access is denied when trying

to exit from the debugger, effectively detecting the presence of the

debugger.

4.10.3. Implementation of detection of analysis avoidance technique

The use of this technique can be detected by locating calls to

NtSetInformationThread.

4.10.4. Effectiveness of detection of technique observation

The detection technique proved to be effective.

4.10.5. Implementation of mitigation technique

The OllyAdvanced option ZwSetInformationThread can be set to mitigate

this technique or when the IDA Stealth plugin NtSetInformationThread

option is selected.

4.10.6. Effectiveness of mitigation technique observation

IDA Pro was not detected when run without breakpoints, but detached the

thread when stepped through with the debugger. The debugger was not

detected when the IDA Stealth plugin NtSetInformationThread option

was selected. If the first breakpoint is set one instruction (or more) beyond

the call to the function, the breakpoint is reached ok, effectively mitigating

the technique.

4.11. KERNEL32 CLOSEHANDLE() AND NTCLOSE()QUASI
EXPERIMENT

4.11.1. Implementation of anti-analysis technique

The presence of a debugger can be detected by making use of the ZwClose

system call. CloseHandle indirectly makes use of this call. Calling ZwClose

with an invalid handle will generate a STATUS_INVALID_HANDLE exception.

Analysis Avoidance Techniques of Malicious Software

 138

Falliere (2007, p.7) says that “the only proper way to bypass the

CloseHandle anti-debug is to either modify the system call data from ring 0,

before it is called, or set up a kernel hook.” The listing in Figure 4-29, an

extension of an example provided by (Falliere, 2007, p.7) demonstrates this

technique.

.686

.MODEL flat, stdcall
OPTION CASEMAP:NONE ;Case sensitive

include windows.inc
include kernel32.inc
includeLib c:\masm32\lib\kernel32.lib
include user32.inc
includeLib c:\masm32\lib\user32.lib

.DATA
 text1 db 'Debugger Not Detected', 0
 caption db 'Heap Flags',0
 text2 db 'Debugger Detected', 0
.CODE
Start:
 PUSH OFFSET Finish
 PUSH 1234h ; invalid handle
 CALL CloseHandle
 INVOKE MessageBox, 0, addr text1, addr caption, MB_OK
 JMP Finish
DebuggerDetected:
 INVOKE MessageBox, 0, addr text2, addr caption, MB_OK
Finish:
 INVOKE ExitProcess, 0
End Start
Figure 4-29 Listing of Kernel32 CloseHandle technique to detect

presence of debugger

4.11.2. Effectiveness of anti-analysis technique observation

The program runs fine outside a debugger, but inside OllyDbg, the

STATUS_INVALID_HANDLE exception was raised. IDA Pro behaved in a very

similar manner.

4.11.3. Implementation of detection of analysis avoidance technique

The call to CloseHandle is easy enough to find for detection purposes. An

example script to locate functions and their cross references adapted and

modified from an example by Eagle (2008a, p.271) is shown in Figure 4-30.

Analysis Avoidance Techniques of Malicious Software

 139

#include <idc.idc>

// locate functions and their cross references
// adapted from an example by Chris Eagle, p.271
// The IDA Pro Book

static findFunction(func) {
 auto f, addr, xref, source;
 f = LocByName(func);
 if (f == BADADDR) {
 Message("%s not located\n", func);
 }
 else {
 for (addr = RfirstB(f); addr != BADADDR; addr = RnextB(f,
addr)) {
 xref = XrefType();
 if (xref == fl_CN || xref == fl_CF) {
 source = GetFunctionName(addr);
 Message("%s is called from 0x%x in %s\n", func, addr,
source);
 }
 }
 }
}

static main() {
 // add functions to find
 findFunction("CloseHandle");
}
Figure 4-30 Listing of findFunction script adapted from Eagle

(2008a, p.271)

4.11.4. Effectiveness of detection of technique observation

The detection technique was found to be effective.

4.11.5. Implementation of mitigation technique

IDA Stealth has an NtClose option that can be used to mitigate this

technique.

4.11.6. Effectiveness of mitigation technique observation

The mitigation technique was found to be effective.

Analysis Avoidance Techniques of Malicious Software

 140

4.12. USER-MODE TIMERS QUASI EXPERIMENT

4.12.1. Implementation of anti-analysis technique

Packers and debug detection routines take advantage of the fact that code

running in a debugger is going to take longer to execute than when not

running in a debugger. The routines measure the time elapsed and compare

it with a normal run time value. If it took longer to run than expected, then

it is probably running in a debugger. The RDTSC (Read Time Stamp Counter)

instruction can be used before and after a routine to determine how much

time elapsed.

The kernel32 DLL has a function called GetTickCount that returns with the

number of milliseconds elapsed since the system was started. A

SharedUserData data structure is always located at address 0x7FFE0000

and contains the fields TickCountLow and TickCountMultiplier.

The following listing, in Figure 4-31, shows an full implementation of a

partial example presented by Yason (2007, p. 8). It shows how the RDTSC

instruction can be used to determine if the program could be being stepped

in a debugger.

Analysis Avoidance Techniques of Malicious Software

 141

; this code uses the RDTSC instruction to get the time stamp
; before and after a section of timed code to determine if it
; is being debugged.

.686
.MODEL flat, stdcall
OPTION CASEMAP:NONE ;Case sensitive

Include windows.inc
Include kernel32.inc
IncludeLib c:\masm32\lib\kernel32.lib
Include user32.inc
IncludeLib c:\masm32\lib\user32.lib

.DATA
 text1 db 'Debugger Not Detected', 0
 caption db 'RDTSC',0
 text2 db 'Debugger Detected', 0
.CODE
Start:
 ; result of RDTSC returned in EDX:EAX
 RDTSC
 PUSH EAX
 PUSH EDX
 ; just a delay to simulate some function
 MOV ECX, 10
L1: NOP
 LOOP L1
 ; get time stamp again
 RDTSC
 ; work out the delta
 POP EBX
 CMP EDX, EBX
 JA DebuggerDetected
 POP EBX
 SUB EAX, EBX
 CMP EAX, 500h
 JA DebuggerDetected
 INVOKE MessageBox, 0, addr text1, addr caption, MB_OK
 JMP Finish
DebuggerDetected:
 INVOKE MessageBox, 0, addr text2, addr caption, MB_OK
Finish:
 INVOKE ExitProcess, 0
End Start
Figure 4-31 Listing of implementation of RDTSC technique to detect

presence of a debugger.

Analysis Avoidance Techniques of Malicious Software

 142

4.12.2. Effectiveness of anti-analysis technique observation

This technique proved to be effective at detecting the presence of a

debugger.

4.12.3. Implementation of detection of analysis avoidance technique

This use of this technique can be found by locating the instruction RDTSC.

4.12.4. Effectiveness of detection of technique observation

Locating calls to the instruction RDTSC proved to be effective

4.12.5. Implementation of mitigation technique

A simple solution to this technique would be to identify where the timing

checks are being performed in the code, and then set a breakpoint before

the first time delta measurement and then perform a run instead of a step

until the breakpoint is hit (Yason, 2007, p.9). Alternatively the result

returned from a call to GetTickCount and modify the return value. Yason

says that OllyAdvanced installs a kernel mode driver that sets the Time

Stamp Disable bit (TSD) in the CR4 control register which will trigger a

General Protection (GP) exception if the RDTSC instruction is executed in a

privilege level other than 0. The Interrupt Descriptor Table (IDT) is setup so

that the GP exception is hooked and the execution of the RDTSC is filtered.

Yason emphasises that this driver may cause instability to the system.

4.12.6. Effectiveness of mitigation technique observation

OllyAdvanced has two anti RDTSC options, but the debugger was still

detected. The most effective mitigation strategy was to locate the calls to

the function and patch out appropriately.

4.13. KERNEL32 OUTPUTDEBUGSTRINGA() QUASI EXPERIMENT

4.13.1. Implementation of anti-analysis technique

Falliere (2007, p.7) reports that he encountered this technique whilst

examining files packed with ReCrypt v0.80. If OutputDebugStringA is

called with a valid ASCII string under the control of a debugger, the return

value will the address of the string passed as a parameter. When not run in

Analysis Avoidance Techniques of Malicious Software

 143

a debugger, the return value should be 1. This technique is demonstrated in

the listing in Figure 4-32. Yason (2007, p.26) says that this technique is

specific to OllyDbg because it is vulnerable to a format string bug.

; this code will detect the presence of OllyDbg v1.1 and
; v2.0 alpha by exploiting a string format vulnerability

.686
.MODEL flat, stdcall
OPTION CASEMAP:NONE ;Case sensitive

include windows.inc
include kernel32.inc
includeLib c:\masm32\lib\kernel32.lib
include user32.inc
includeLib c:\masm32\lib\user32.lib

.DATA
 text1 db 'Debugger Not Detected', 0
 caption db 'OutputDebugStringA',0
 text2 db 'Debugger Detected', 0
 textString db 'My Test String', 0
.CODE
Start:
 XOR EAX,EAX
 INVOKE OutputDebugString, addr textString
 CMP EAX, 1
 JNE DebuggerDetected
 INVOKE MessageBox, 0, addr text1, addr caption, MB_OK
 JMP Finish
DebuggerDetected:
 INVOKE MessageBox, 0, addr text2, addr caption, MB_OK
Finish:
 INVOKE ExitProcess, 0
End Start
Figure 4-32 Listing of implementation of OutputDebugStringA to

detect presence of a debugger.

4.13.2. Effectiveness of anti-analysis technique observation

The technique worked in OllyDbg v1.10 and OllyDbg v2.00 (alpha2) and

it was found that the technique also worked in IDA Pro.

4.13.3. Implementation of detection of analysis avoidance technique

This technique can be detected by adding the following line to the main

function in the listing in Figure 4-30:

 findFunction(“OutputDebugStringA”);

Analysis Avoidance Techniques of Malicious Software

 144

A technique that works to detect and then patch the return result from

OutputDebugStringA is provided in Figure 4-33 which was extracted and

modified from an example by (Eagle, 2008b).

#include <idc.idc>

static main() {
 auto addr, funcName, end;
 funcName = "kernel32_OutputDebugStringA";
 // run to entry point
 RunTo(BeginEA());
 // wait until process is suspended
 GetDebuggerEvent(WFNE_SUSP, -1);
 // locate address of function
 addr = LocByName(funcName);
 if (addr != BADADDR) {
 Message("%s found at %x\n", funcName, addr);
 MakeFunction(addr, BADADDR);
 end = GetFunctionAttr(addr, FUNCATTR_END) - 3;
 AddBpt(end);
 SetBptAttr(end, BPT_BRK, 0); //don't stop
 //fix the return value as expected in non-debugged
processes
 SetBptCnd(end, "EAX = 1");
 } else {
 Message("%s not found\n", funcName);
 }
}
Figure 4-33 Script to patch result of OutputDebugStringA function

call to hide presence of debugger.

4.13.4. Effectiveness of detection of technique observation

The use of the detection techniques was found to be effective.

4.13.5. Implementation of mitigation technique

This technique can be mitigated by enabling the OutputDebugString option

in IDA Stealth. Alternatively, the listing in Figure 4-33 can be employed.

4.13.6. Effectiveness of mitigation technique observation

The mitigation techniques were found to be effective.

Analysis Avoidance Techniques of Malicious Software

 145

4.14. ROGUE INT3 QUASI EXPERIMENT

4.14.1. Implementation of anti-analysis technique

The idea of this technique is to insert INT3 opcodes into the binary to trick

the debugger into thinking it is one of the software breakpoints it has

inserted into the binary being debugged. Control will be given to an

exception handler when the INT3 is encountered in a program that is not

being debugged and the program continues executing. Debuggers typically

handle these debugger interrupts themselves. The exception handler of the

malware can set flags so that it can determine if it is running in a debugger

if the exception handler is not entered. Yason (2007, p.7) says that the

kernel32 DLL function DebugBreak() internally invokes an INT3 and this

can be used instead. An example presented by ap0x (2006) is presented in

Figure 4-34. It sets the value of EAX to 0xFFFFFFFF (via the CONTEXT

record) in the exception handler to flag the fact that the exception handler

has been entered. The purpose of the context record is to contain the state

of a thread. The context record that is passed to an exception handler

contains the current state of the thread that threw the exception (Yason,

2007, p.8). Yason (2007, p.7) points out that the kernel32 DLL function

DebugBreak() internally invokes INT3, and some packers use this call

instead of using INT3 directly.

.386

.model flat, stdcall
option casemap :none ; case sensitive

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

.data
msgTitle db "Execution status:",0h
msgText1 db "No debugger detected!",0h
msgText2 db "Debugger detected!",0h
.code

start:

; MASM32 antiRing3Debugger example
; coded by ap0x
; Reversing Labs: http://ap0x.headcoders.net

Analysis Avoidance Techniques of Malicious Software

 146

; This code takes advantage of debugger not handling INT3
; instructions correctly. If we set a SEH before INT3 executing
; INT3 instruction will fire SEH. If debugger is present it
; will just walk over INT3 and go straight forward.
; If debugger is not present exception will occur and execution
; will be handled by SEH.

; Set SEH
ASSUME FS:NOTHING
PUSH offset @Check
PUSH FS:[0]
MOV FS:[0],ESP

; Exception
INT 3h

PUSH 30h
PUSH offset msgTitle
PUSH offset msgText2
PUSH 0
CALL MessageBox

PUSH 0
CALL ExitProcess

; SEH handling
@Check:
POP FS:[0]
ADD ESP,4

PUSH 40h
PUSH offset msgTitle
PUSH offset msgText1
PUSH 0
CALL MessageBox

PUSH 0
CALL ExitProcess

end start
Figure 4-34 Listing of implementation of INT3 technique to detect

the presence of a debugger (ap0x, 2006)

4.14.2. Effectiveness of anti-analysis technique observation

This code successfully detects that it is running in OllyDbg.

4.14.3. Implementation of detection of analysis avoidance technique

This technique can be detected by searching the code for the INT3

instruction.

Analysis Avoidance Techniques of Malicious Software

 147

4.14.4. Effectiveness of detection of technique observation

Searching for the presence of INT3 instructions was found to be effective.

4.14.5. Implementation of mitigation technique

This technique can be mitigated in a couple of different ways. The first

solution was to allow the interrupts to be automatically passed to the

exception handler by setting the debugging options to pass INT3 breaks

and Single-step breaks to the program. Another method was to identify the

exception handler address (in OllyDbg, View > SEH Chain) and then set

a breakpoint on the exception handler. Then the exception can be passed to

the exception handler by pressing Shift + F9, and the code of the exception

handler can be traced. Note that you have to step through (or set a

breakpoint) the code until the SEH is installed before you can see it in the

SEH window.

4.14.6. Effectiveness of mitigation technique observation

The mitigation techniques were found to be effective. A software breakpoint

exception was raised in IDA Pro when the program was run and an option

to pass the exception to the program is offered via a dialog box. If the

exception is not passed to the program, the debugger was detected,

otherwise the debugger is not detected. Essentially, this technique can be

mitigated by setting an option to pass breakpoint exceptions to the program.

4.15. “ICE” BREAKPOINT QUASI EXPERIMENT

4.15.1. Implementation of anti-analysis technique

The Ice breakpoint is an undocumented Intel instruction that can be used

to detect programs that are being debugged. Its opcode is 0xF1. This

instruction generates a SINGLE_STEP exception when executed and the

debugger will not call the exception handler and execution will not continue

as expected. An example implementation is shown in the listing in Figure

4-35, which is a very simple modification to the example developed by ap0x

which was shown above in the listing of Figure 4-35.

Analysis Avoidance Techniques of Malicious Software

 148

.386

.model flat, stdcall
option casemap :none ; case sensitive

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

 .data
msgTitle db "Execution status:",0h
msgText1 db "No debugger detected!",0h
msgText2 db "Debugger detected!",0h
 .code

start:

; Set SEH
ASSUME FS:NOTHING
PUSH offset @Check
PUSH FS:[0]
MOV FS:[0],ESP

; Exception
db 0F1h

PUSH 30h
PUSH offset msgTitle
PUSH offset msgText2
PUSH 0
CALL MessageBox

PUSH 0
CALL ExitProcess

; SEH handling
@Check:
POP FS:[0]
ADD ESP,4

PUSH 40h
PUSH offset msgTitle
PUSH offset msgText1
PUSH 0
CALL MessageBox

PUSH 0
CALL ExitProcess

end start
Figure 4-35 Listing of implementation of Ice Breakpoint technique

to detect the presence of a debugger.

Analysis Avoidance Techniques of Malicious Software

 149

4.15.2. Effectiveness of anti-analysis technique observation

This technique was successful with OllyDbg and IDA Pro

4.15.3. Implementation of detection of analysis avoidance technique

The use of this technique can be found by searching for the opcode F1h.

4.15.4. Effectiveness of detection of technique observation

The detection technique was found to be effective.

4.15.5. Implementation of mitigation technique

This technique can be overcome by setting the debugging options to pass

single-step breaks to the program.

4.15.6. Effectiveness of mitigation technique observation

The mitigation technique was found to be effective.

4.16. INTERRUPT 2DH QUASI EXPERIMENT

4.16.1. Implementation of anti-analysis technique

Interrupt 2Dh will raise a breakpoint exception if the program is not being

debugged. Note how this is different to the other examples. If a debugger is

attached, there will not be an exception. This technique is demonstrated in

the listing shown in Figure 4-36.

Analysis Avoidance Techniques of Malicious Software

 150

.386

.model flat, stdcall
option casemap :none ; case sensitive

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

.data
msgTitle db "Execution status:",0h
msgText1 db "No debugger detected!",0h
msgText2 db "Debugger detected!",0h
.code

start:
; Set SEH
ASSUME FS:NOTHING
PUSH offset @Check
PUSH FS:[0]
MOV FS:[0],ESP

; Exception
INT 2DH
POP FS:[0] ; clear the SEH
ADD ESP, 4

INVOKE MessageBox, 0, offset msgText2, offset msgTitle, 30h
JMP Finish

; SEH handling
@Check:
POP FS:[0]
ADD ESP,4
INVOKE MessageBox, 0, offset msgText1, offset msgTitle, 40h

Finish:
PUSH 0
CALL ExitProcess

end start
Figure 4-36 Listing showing use of INT 2DH to raise an exception if

the program is not being debugged.

4.16.2. Effectiveness of anti-analysis technique observation

This was effective in both OllyDbg and IDA Pro.

4.16.3. Implementation of detection of analysis avoidance technique

This technique can be detected by search for Interrupt 2Dh.

Analysis Avoidance Techniques of Malicious Software

 151

4.16.4. Effectiveness of detection of technique observation

The detection technique proved to be effective.

4.16.5. Implementation of mitigation technique

This technique can be overcome by setting the debugger options to pass all

exceptions to the program being debugged.

4.16.6. Effectiveness of mitigation technique observation

The mitigation technique proved to be effective.

4.17. POPF AND THE TRAP FLAG QUASI EXPERIMENT

4.17.1. Implementation of anti-analysis technique

The trap flag in the Flags register is used to control the tracing of a program.

If the trap flag is set, an instruction that is being executed will raise a

SINGLE_STEP exception. Falliere (2007, p.10) says that this can be used to

thwart tracers. A working implementation using Falliere’s snippet of code is

given in the listing of Figure 4-37. This will have no effect on the flags

register of a program that is being traced. The debugger will process the

exception that is raised, and the associated exception handler will not be

executed.

Analysis Avoidance Techniques of Malicious Software

 152

.386

.model flat, stdcall
option casemap :none ; case sensitive

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

.data
msgTitle db "Execution status:",0h
msgText1 db "No debugger detected!",0h
msgText2 db "Debugger detected!",0h
.code
start:
; Set SEH
ASSUME FS:NOTHING
PUSH offset @Check
PUSH FS:[0]
MOV FS:[0],ESP
; Exception
PUSHF
MOV EAX, 100h
MOV [ESP], EAX
POPF
INVOKE MessageBox, 0, offset msgText2, offset msgTitle, 30h
JMP Finish
; SEH handling
@Check:
POP FS:[0]
ADD ESP,4
INVOKE MessageBox, 0, offset msgText1, offset msgTitle, 40h
Finish:
PUSH 0
CALL ExitProcess
end start
Figure 4-37 Listing of implementation POPF and the Trap Flag

technique to detect the presence of a debugger.

4.17.2. Effectiveness of anti-analysis technique observation

OllyDbg and IDA Pro were detected if the exception was not passed to

the program.

4.17.3. Implementation of detection of analysis avoidance technique

The use of this technique can be detected by examining exceptions.

4.17.4. Effectiveness of detection of technique observation

This technique proved to be effective.

Analysis Avoidance Techniques of Malicious Software

 153

4.17.5. Implementation of mitigation technique

This was defeated by passing all raised exceptions to the program being

debugged.

4.17.6. Effectiveness of mitigation technique observation

This technique proved to be effective.

4.18. SUMMARY OF VALIDATION OF TECHNIQUES RESULTS

The literature review revealed a large and wide variety of techniques

malware can incorporate to hinder analysis and avoid detection. A subset of

these techniques were implemented and validated in small, standalone

programs. All of the implemented techniques were observed to be effective

at detecting the presence of a debugger, namely IDA Pro and OllyDbg.

After ensuring that the anti-analysis technique was effective, small scripts

were developed or sourced to determine if the use of the technique could be

detected. All of the implemented detection techniques were observed to be

effective. Mitigation scripts were then developed or sourced to determine if

the use of the technique could be mitigated. All of the implemented

mitigation techniques or scripts were observed to be effective. A summary

of the results is provided in Table 4-1.

Analysis Avoidance Techniques of Malicious Software

 154

Table 4-1 Validation of Techniques Results

Technique Implemented
in Code

Debugger Detection Technique
Detectable

Technique
Mitigatable IDA

Pro
OllyDbg

IsDebuggerPresent     

IsDebugged     

NtGlobalFlags     

Heap Flags     

NtQueryInformationProcess     

CheckRemoteDebuggerPresent     

UnhandledExceptionFilter     

NtSetInformationThread     

CloseHandle     

User Mode Timers     

OutputDebugString     

INT 3     

ICE Breakpoint     

INT 2DH     

POPF     

These results provide a significant measure of validation for the anti-

analysis techniques discussed in the literature review (Falliere, 2007; Ferrie,

2008; Yason, 2007).

The ability to detect the use of anti-analysis techniques provides confidence

in being able to implement an application to detect malware, as suggested

by Wysopal (2009) who said that the use of such techniques could be a very

good indicator of the program under investigation to possibly have a

malicious nature. This is important, because the literature review

represented claims that existing malware detection paradigms are less than

effective and that a new approach is required.

The literature review showed that the coverage of anti-analysis techniques

in popular plugins was limited. These results show that mitigation scripts

can be very useful to extend the coverage of such plugins to aid in the

analysis of malicious software and to hide the presence of analysis tools.

Significant programming and operating system knowledge is required to

detect and mitigate the techniques malware can incorporate to avoid

analysis, as evidenced in the programs and scripts used to derive the

results in this chapter. The conduct of this research led to the identification

of a Malware Analysis Body of Knowledge by Valli and Brand (2008) that

Analysis Avoidance Techniques of Malicious Software

 155

attempts to identify an appropriate spectrum of knowledge required to

analyse malicious software. A key component of the MABOK is the

treatment of anti-analysis techniques. The MABOK is discussed in greater

detail in section 6.7.9 of this thesis.

Analysis Avoidance Techniques of Malicious Software

 156

CHAPTER 5 ANALYSIS OF COLLECTED MALWARE

RESULTS

5.1. OVERVIEW

The purpose of this chapter is to present the results of examination of

network based malware collected by the ECU Nepenthes sensors as

described in the Conceptual Framework, section 3.6 of this thesis. It

examines claims in the literature review that existing approaches to the

detection of malware is less than effective and supports research question

two, that is, “How can the use of these techniques be detected?”. In general,

the literature review discussed three techniques common to AV software to

detect malicious software as signature recognition, heuristics and file

integrity checking. To this end, the effectiveness of existing virus signature

detection is examined as well as an examination of the effectiveness of

heuristics.

An additional facet of this chapter is an examination into the use of run time

packers which are arguably, one of the most fundamentally used analysis

avoidance techniques. Methods that can be used to detect the use of run

time packers, include packer signature recognition and by measures of

entropy (randomness) in the code.

898 malware samples were collected by the ECU Nepenthes sensors

between June 25 2007 and August 9 2008. All samples were collected by

the Nepenthes system which emulates known vulnerabilities that network

based malware takes advantage of, to install malware on the vulnerable

computer.

5.2. VIRUS SIGNATURES

5.2.1. Anubis

All 898 samples were submitted to Anubis and of these, 738 (82.2%) were

able to be analyzed and 160 (17.8%) were not able to be analyzed. Of the

738 specimens of malware that were able to be analyzed, 544 virus

signatures were able to be determined by the Ikarus virus scanner. This

Analysis Avoidance Techniques of Malicious Software

 157

represents a detection rate by the Ikarus virus scanner of 73.7%. This is

the solitary virus scanner Anubis uses. The results of Ikarus are shown in

Table 5-1 and it is clearly dominated by the Allaple (Anonymous, n.d.-a)

worm. Variants exist of most types of malware and these variants were

grouped together where possible in the results in Table 5-1.

Table 5-1 Ikarus Virus Scanner results showing high incidence of

Allaple worm in the collected malware specimens.

Ikarus Signature Count %
Allaple 422 77.57
Virut 30 5.51
PoeBot 17 3.13
Rbot 16 2.94
Agent 10 1.84
Nepoe 8 1.47
SdBot 7 1.29
Delf 6 1.10
WinFixer 4 0.74
VanBot 4 0.74
Hupigon 3 0.55
NSPM 3 0.55
Lovesan 2 0.37
ProcessHijack 2 0.37
IRCBot 2 0.37
oda 1 0.18
Lineage 1 0.18
AHKD 1 0.18
Adload 1 0.18
Zlob 1 0.18
Klone 1 0.18
Slaper 1 0.18
Sasser 1 0.18

5.2.2. Virus Total

Virus Total is an online virus scanner site that accepts uploaded files

which are then processed by up to 36 virus scanner engines. Results for the

submission of a particular collected specimen to Virus Total are given in

Table 5-2 as an example. It shows that 33 of the 36 virus engines

recognized the signature of the malware. This particular specimen was

collected on October 17 2007 and the analysis was conducted on September

4 2008.

Analysis Avoidance Techniques of Malicious Software

 158

Table 5-2 Virus Total results from a single submission showing

disparity in signatures by different vendors.

Anti Virus Scanner Result
AhnLab-V3 Win32/Allaple.worm.B
AntiVir WORM/Allaple.Gen
Authentium W32/RAHack.A.gen!Eldorado
Avast Win32:Allaple
AVG Worm/Allaple.B
BitDefender Win32.Worm.Allaple.Gen
CAT-QuickHeal I-Worm.Allaple.gen
ClamAV Worm.Allaple-311
DrWeb Trojan.Starman
eSafe Suspicious File
eTrust-Vet Win32/Mallar
Ewido -
F-Prot W32/RAHack.A.gen!Eldorado
F-Secure Net-Worm.Win32.Allaple.b
Fortinet W32/ALLAPLE.E!worm
GData Net-Worm.Win32.Allaple.b
Ikarus Net-Worm.Win32.Allaple.a
K7AntiVirus Net-Worm.Win32.Allaple.a
Kaspersky Net-Worm.Win32.Allaple.b
McAfee W32/RAHack
Microsoft Worm:Win32/Allaple.A
NOD32v2 a variant of Win32/Allaple.Gen
Norman Allaple.gen
Panda W32/Rahack.gen
PCTools Worm.Allaple.Gen
Prevx1 -
Rising Worm.Win32.Allaple.a
Sophos W32/Allaple-F
Sunbelt Worm.Win32.Allaple.JF
Symantec W32.Rahack.W
TheHacker -
TrendMicro WORM_ALLAPLE.IK
VBA32 Net-Worm.Win32.Allaple
ViRobot Worm.Win32.Allaple.Gen
VirusBuster Worm.Allaple.Gen
Webwasher-Gateway Worm.Allaple.Gen

The differing naming conventions used by each of the 36 Anti Virus

scanners is clearly evident.

162 specimens, collected between June 25 2007 and October 21, were

submitted to Virus Total. This had been a period of over a year for most

of the specimens since they had been collected. Only 17 of the 162 samples

(10.4%) were detected by all of the Anti Virus scanners. The results of this

test are plotted in Figure 5-1. It indicates that 100% detection by all Anti

Virus scanners is not achieved nearly a year after collection and suggests

Analysis Avoidance Techniques of Malicious Software

 159

that the 73.7% virus detection rate by Ikarus may be considered within

the norm.

Figure 5-1 Virus Total detection rate plot showing less than ideal

detection results.

5.3. MALWARE FUNCTIONALITY

Anubis reports contain a summary of the functionality of the malware it

analyzes. Functionality reported by Anubis for the submitted samples

included various combinations of the following reports:

• Performs Address Scan.

• Auto Start Capabilities.

• Creates Files in the Windows System Directory.

• Changes Security Settings of Internet Explorer.

• Joins IRC Network.

Address scans are performed by malware to locate other targets on the

network to attack. Auto start capabilities are generally changes made to the

registry to ensure that the malware is activated each time the computer is

restarted. Malware is generally packed when it is initially loaded onto a

vulnerable machine, and usually consists of multiple files which are then

0

10

20

30

40

50

60

70

80

90

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

Pe
ce

nt
ag

e
D

et
ec

ti
on

Malware Specimens June 25 2007 - October 21 2007

Virus Total Detection Rate

Analysis Avoidance Techniques of Malicious Software

 160

copied to various locations in the Windows System directory with the hidden

attribute set and given file names that very closely resemble legitimate file

names to provide additional camouflage. Security settings are changed in

Internet Explorer so that more malware can be downloaded from sites

without warnings. IRC networks are used by Bots to accept remote

commands from a BotNet. Table 5-3 lists the results of the high level

malicious activities the malware performed. Note that various combinations

of activities are possible.

Table 5-3 Submitted malware functionality results

Malware Function Occurrence
Count

Performs Address Scan 301
Auto start capabilities 282
Creates files in the Windows system directory 276
Changes security settings of Internet Explorer 135
Joins IRC network 58

The Allaple (Anonymous, n.d.-a) worm was the most representative

specimen collected by the sensors. Four variants of this worm were

detected, including Allaple.A, Allaple.B, Allaple.D and Allaple.E.

The number of detections for each variant is presented in Table 5-4.

Table 5-4 Allaple variants detection results

Allaple Variant Detections
Allaple.A 340
Allaple.B 63
Allaple.D 1
Allaple.E 18
Totals 422

Table 5-5 presents the functionality detected by Anubis of the variants.

Analysis Avoidance Techniques of Malicious Software

 161

Table 5-5 Functionality of Allaple variants results

Malware Function Allaple.
A

Allaple.
B

Allaple.
D

Allaple.
E

Performs Address Scan 164 29 1 13
Autostart Capabilities 119 22 0 3
Creates Files in the Windows System
Directory

112 21 0 4

Changes security settings of Internet
Explorer

9 0 0 3

Joins IRC network 0 0 0 0

In contrast, Table 5-6 shows the Allaple specimens where Anubis did not

record any activity at all, even though these particular specimens’ run time

was around 150 seconds as depicted in Figure 5-2.

Table 5-6 Allaple variants showing no activity recorded

Allaple Variant No
Activity

Ikarus
Detections

%

Allaple.A 62 340 18.24%
Allaple.B 13 63 20.63%
Allaple.D 0 1 0.00%
Allaple.E 2 18 11.11%
Totals 77 422 18.25%

Analysis Avoidance Techniques of Malicious Software

 162

Figure 5-2 Run time Of Allaple specimens where no activity is

recorded could indicate deception.

5.4. PACKER ANALYSIS

Anubis uses SigBuster as its packer signature detector during the time

this research has been conducted and it is not publicly available. The only

way to use SigBuster is to upload a malware specimen to Anubis and

have the file analyzed online. Of the 738 samples that were able to be

analyzed, the SigBuster packer detector recognized 543 signatures of

packers, as listed in Table 5-7.

0

50

100

150

200

250

300

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

Ru
n

Ti
m

e
(s

ec
)

Specimen

Run Time Of Allaple Specimens Where No
Activity Recorded

Analysis Avoidance Techniques of Malicious Software

 163

Table 5-7 SigBuster detected packer signature results

SigBuster Signature Count %
Allaple_Polymorphic_Packer vna SN: 1647 444 60.16
eXpressor v1.4.5 SN:225 21 2.85
Signature_Safe v2. SN:49 9 1.22
PolyCrypt_PE v2005.06.01 SN:391PolyCrypt_PE v2.1.4b/2.1.5
SN:1150

8 1.08

Themida vna SN:732 6 0.81
eXpressor V1.4 SN: 1654 4 0.54
UPX All_Versions SN:1634 4 0.54
UPX All_Versions SN:1634EXE_Cryptor v2.2X SN:193 4 0.54
Allaple_Polymorphic_Packer vna SN: 1647UPX All_Versions SN:1634 3 0.41
FSG V1.3x SN:1637 3 0.41
Unknown_packer vna SN: 1671Allaple_Polymorphic_Packer vna SN:
1647

3 0.41

ASProtect v1.2x-1.3x SN:137 2 0.27
ASProtect v1.2x-1.3x SN:137ASProtect v2.1/2.2(exe) SN:1424 2 0.27
DotFix NiceProtect vna SN: 1655 2 0.27
EXE_Cryptor v2.2X SN:193 2 0.27
eXpressor V1.4 SN: 1654Unknown_packer vna SN: 1679 2 0.27
eXpressor V1.4 SN: 1654UPX All_Versions SN:1634 2 0.27
PKLITE32 v1.1 SN:1153 2 0.27
Unknown_packer vna SN: 1660 2 0.27
eXpressor V1.4 SN: 1654UPX All_Versions SN:1634EXE_Cryptor v2.2X
SN:193

1 0.14

Expressor v1.4 SN: 1672 1 0.14
Expressor v1.4 SN: 1672UPX All_Versions SN:1634 1 0.14
FSG V1.3x SN:1637EXE_Cryptor v2.2X SN:193 1 0.14
NsPack All_Versions SN:1635 1 0.14
PE_Compact v2.0x SN:1610FSG V1.3x SN:1637 1 0.14
PE_Compact v2.X SN:660FSG V1.3x SN:1637 1 0.14
PE_Pack v1.0 SN:1399 1 0.14
PE_Pack v1.0 SN:72 1 0.14
PE_Pack v1.0 SN:72 1 0.14
Unknown_metamorphic_packer vna SN: 1658 1 0.14
Unknown_packer vna SN: 1654 1 0.14
Unknown_packer vna SN: 1654UPX All_Versions SN:1634EXE_Cryptor
v2.2X SN:193

1 0.14

Unknown_packer vna SN: 1671Unknown_packer vna SN: 1679 1 0.14
Unknown_packer vna SN: 1676Signature_Safe v2. SN:49 1 0.14
Unknown_packer vna SN: 1679 1 0.14
UPX_xor_stub vna SN:1612 1 0.14
Xtreme_Protector v1.05 SN:78 1 0.14
Total 73.58

The SigBuster results are dominated by the

Allaple_Polymorphic_Packer vna SN: 1647 signature with 444

occurrences, followed very distantly by variations of Expressor with 32

occurrences. In contrast, Mandiant Red Curtain (MRC) uses PEiD as its

Analysis Avoidance Techniques of Malicious Software

 164

packer signature detector which is publicly available together with its

database of signatures. The PEiD database consists of over 400 signatures.

MRC only detected 43 known signatures, the results of which are displayed

in Table 5-8.

Table 5-8 PEiD signature results indicating disparity in signature

matching with those performed by SigBuster.

PEiD Signature Count %
PECompact v2.x 11 1.49
CodeSafe v2.0 9 1.22
Anticrack Software Protector v1.09
(ACProtect)

4 0.54

Borland Delphi v6.0 - v7.0 3 0.41
Microsoft Visual Basic v5.0 / v6.0 3 0.41
UPX v0.89.6 - v1.02 / v1.05 - v1.22 3 0.41
ASProtect v1.23 RC1 2 0.27
UPX v1.03 - v1.04 1 0.14
PKLITE32 v1.1 1 0.14
PEtite v1.4 1 0.14
NeoLite vx.x 1 0.14
Symantec Visual Cafe v3.0 1 0.14
Microsoft Visual C++ v5.0/v6.0 (MFC) 1 0.14
Xtreme-Protector v1.05 1 0.14
UPX-Scrambler RC v1.x 1 0.14
Total 5.83

The significant contrast in results between Table 5-7 and Table 5-8 could be

attributed to SigBusters ability to detect the AllAple Polymorphic

Packer which is not in the PEiD database of signatures. It is also observed

that not a single signature matched between PEiD and SigBuster.

An alternative method for the detection of the use of a packer is through

measuring the entropy (randomness) of the program. MRC employs this

technique as one of the criteria it uses to develop a risk score to identify

malicious software. Packed code has a higher value of entropy than

unpacked code. MRC uses a value of 0.9 as a threshold to signal files of

interest. MRC was used to scan the directory of malware and returned 838

results. Of these, 829 returned a measurement of entropy of greater than,

or equal to 0.9. This represents 98.9% of the files. In comparison, when

MRC was used to scan the C:\Windows\System32 directory of an

Analysis Avoidance Techniques of Malicious Software

 165

uncompromised system, 19 files out of 671 executable files returned an

entropy of greater than, or equal to 0.9. This represents 2.83% of the files.

The entropy method appears to be very successful for the detection of

runtime packed files.

Figure 5-3 displays the entropy of the malware that was collected during

the period June 25 2007 to October 21 2007 and clearly shows the high

level of entropy of the malware.

Figure 5-3 Graph indicating high measures of entropy of malware

exceeding accepted threshold

5.5. SUMMARY OF COLLECTED MALWARE RESULTS

The results in this chapter support claims that signature based virus

detection is less than ideal. The Ikarus Virus Scanner used by Anubis only

detected 73.7% of malware collected by the ECU Nepenthes sensors, even

though the malware had been in the wild for a period of up to a year. In

addition, the specimens were clearly malicious because they had arrived on

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 46 91 13
6

18
1

22
6

27
1

31
6

36
1

40
6

45
1

49
6

54
1

58
6

63
1

67
6

72
1

76
6

81
1

En
tr

op
y

Malware June 25 2007 - October 21 2007

Entropy of Malware over Collection Period

Detection Threshold

Entropy

Analysis Avoidance Techniques of Malicious Software

 166

the sensors by deliberately exploiting an emulated vulnerability and

installed software uninvited.

The functionality of the malware determined by Anubis clearly

demonstrated malicious intent. This does provide a good indicator of the

nature of the malware, however, running the software to determine its

nature gives control of the malware to employ deception techniques and

does provide an opportunity to the malware to do damage to the system.

Measures of entropy showed to be a very good method to determine if the

malware is packed. The results also showed that two different packer

signature determination tools provided very different results. This is

significant because identification of a packer signature assists in the

determination of the appropriate unpacking algorithm to employ to unpack

the malware to arrive at the OEP so that detailed analysis can commence.

Analysis Avoidance Techniques of Malicious Software

 167

CHAPTER 6 DISCUSSION

6.1. DISCUSSON OF VALIDATION OF ANTI-ANALYSIS
TECHNIQUES RESULTS

Only a subset of the techniques discussed in the Literature Review of this

thesis were validated due to the extensive number of techniques uncovered

through a search of the literature and software reverse engineering sites.

The validation process included implementing individual techniques in

simple, standalone programs, running the program in two popular

debuggers (IDA Pro and OllyDbg) and then observing whether or not, the

debugger was able to be detected. The simple nature of the validating

program was designed to ensure that no other factor was present to

account for the behaviour of the program. This was followed by writing or

sourcing a detection and mitigation script or method and observing the

result. A summary of the results of the techniques that were validated is

presented in Table 6-1. The check symbol () designates that the technique

was successful, whilst the use of the cross symbol () would have been

used to designate failure of the technique.

All of the implemented techniques were successful in detecting the presence

of the two debuggers. The use of these anti-analysis techniques was

successfully detected and mitigated using scripts or via manual methods.

The techniques that were not implemented and discussed by other

researchers (Eagle, 2008b; Falliere, 2007; Ferrie, 2008; Yason, 2007)

appear to be sound, and this researcher is confident that these techniques

would also be able to be detected and mitigated successfully.

Documentation for scripting languages to support the validation activity was

found to be sparse and mostly focused on function definitions. Learning how

to implement scripts to perform a particular function was attained by

examination of existing scripts from reverse engineering software web sites

such as Tuts4You (T. Rogers, 2008) and analyzing how they were

implemented. Scripting languages provide a rich set of functionality and are

essential for analysis of malware that employs anti-analysis techniques. The

Analysis Avoidance Techniques of Malicious Software

 168

same scripting languages are also extremely useful for detection and

mitigation of anti-analysis techniques.

Table 6-1 Validation of techniques results showing validity of

technique and the ability to detect and mitigate the techniques.

Technique Implemente
d

in Code

Debugger Detection Technique
Detectable

Technique
Mitigatable IDA

Pro
OllyDbg

IsDebuggerPresent     

IsDebugged     

NtGlobalFlags     

Heap Flags     

NtQueryInformationProcess     

CheckRemoteDebuggerPresent     

UnhandledExceptionFilter     

NtSetInformationThread     

CloseHandle     

User Mode Timers     

OutputDebugString     

INT 3     

ICE Breakpoint     

INT 2DH     

POPF     

6.2. DISCUSSION OF COLLECTED MALWARE ANALYSIS
RESULTS

The Nepenthes sensors work by emulating known vulnerabilities and

allowing network based malware to install itself on the vulnerable computer.

It could be considered that any software that takes advange of such

vulnerabilities and installs itself on a computer over the internet, uninvited,

be categorised as malicious. The malware collected by the ECU Nepenthes

sensors was validated as malicious software by its behaviour, however the

detection rate by the Ikarus virus detector employed by Anubis was

approximately 73.7%. A detection rate of much lower than 100% may not

be an unusual result when compared with other virus detectors results as

performed when the malware was submitted to Virus Total, which

employs up to thirty six AV engines from various vendors .

A continuous subset of the malware collected between June 25 and October

21 2007 was submitted to VirusTotal on or around September 04 2008.

Analysis Avoidance Techniques of Malicious Software

 169

Even though each malware specimen was submitted to 36 virus detectors,

approximately one year after collection and submission to online virus

collection agencies, only 93.7% of the virus engines agreed that the

specimens were malicious. This indicates that AV software may provide less

than ideal detection ability and supports the claims by other researchers

(Mila Dalla et al., 2008; Szewczyk & Brand, 2008; W. Yan et al., 2008; Z.

Yan & Inge, 2008; Zhou & Meador Inge, 2008).

The specimens were dominated by the Allaple worm at approximately

77.57% of the total number of specimens that could be analyzed.

Approximately 18% of these specimens recorded no activity when run

inside the sandbox Anubis provides, even though the average run time was

148 seconds. Although purely speculation at this point in time, this could

indicate specimens that have detected the presence of Anubis or other

analytical tools and used deception to not perform malicious activity to

avoid being detected and remains to be investigated. These samples should

be flagged for special consideration for determining if they were using anti

online analysis techniques that have been documented in this research.

98.9% of the specimens indicated very high levels of entropy which means

they were packed or protected. Packing and protecting is typically used by

malware to mitigate detection by Anti Virus software. The two packer

detectors did not agree on the names of any of the packer signatures they

detected. SigBuster provided a name for 73.58% of the specimens and

PEiD gave a name for 5.83% of the specimens. Knowledge of the name of

the packer greatly assists malware analysis because the appropriate

unpacking algorithm can be used to unpack the malware to arrive at the

OEP. Using packers that are not recognised by packer detectors assists the

malware from not being analyzed in detail and certainly implies that

automated unpacking based on recognition of a name could produce a lot of

false positives. Measurement of entropy appears to be a very successful

method of detecting packed and protected malware as supported by other

researchers (Ebringer & Sun, 2008; Lyda & Hamrock, 2007) .

Analysis Avoidance Techniques of Malicious Software

 170

6.3. RESEARCH QUESTION 1 - WHAT TECHNIQUES CAN
MALWARE USE TO AVOID BEING ANALYZED?

This research question is essentially exploratory in nature. It was answered

by

• Uncovering techniques from a review of the literature.

• Implementation of the techniques.

• Validation of the techniques through quasi experimentation.

The literature review uncovered an extensive range of techniques, mostly

published by three key researchers (Falliere, 2007; Ferrie, 2008; Yason,

2007) who each provide their own, differing taxonomies of techniques. Note

that these papers have only been published within the past year or two of

this research and this could be indicative of the problems encountered by

the increased spectrum of techniques malware can now employ to hinder

analysis. Their work is supplemented by other researchers (Anthracene,

2006; Gordon, n.d.; Rolles, 2007; Smidgeonsoft, 2005; Smith & Quist,

2006; xC, 2007) whose online articles focus on more individual techniques

and provide greater detail with respect to implementation and analysis. The

work of Rolles in particular, focuses on leading edge techniques such as

malware that uses its own virtual machines to avoid detailed analysis. Such

malware is difficult to analyse because the custom virtual machines have

their own instruction sets and these customised instruction sets have to be

determined before detailed analysis can commence. A proposed taxonomy

by the author of this research combines elements of the taxonomies of

Falliere, Ferrie and Yason appears in Table 6-2, in an attempt to provide a

more complete coverage of techniques. Note that each technique listed in

the taxonomy is the highest level stratum and could be further stratified.

Analysis Avoidance Techniques of Malicious Software

 171

Table 6-2 Taxonomy of anti-analysis techniques

Technique Description

Anti Emulation A range of techniques exist to detect that the

malware is running inside popular VM’s such as

VMWare or Virtual PC.

Anti Online

Analysis

A variety of techniques exist for malware to

determine if it is running in a online analysis engine

such as Anubis or Norman Sandbox.

Anti Hardware

Techniques that target hardware such as the CPU

including the debug registers.

Anti Debugger

Anti Disassemblers

Anti Tools

Anti Memory

Anti Process

Anti-analysis

Target the way Debuggers work and take advantage

of these to take control of the flow of execution.

Target the way Disassemblers work and take

advantage of this to produce a false disassembly.

Detect the presence of specific analysis tools and

enter a deceptive mode.

Target the way memory is used when a process is

being debugged and take advantage of this as well

as the way processes can be dumped from memory

including stolen bytes.

Target the way processes are handled when being

debugged and take advantage of this including

structured exception handling.

Target the way analysis is conducted. Use junk

code, code camouflage, check sum checks,

destruction of the Import Address Table and other

deceptive techniques to make analysis harder.

Packers and

Protectors

Use run time packers and protectors to obfuscate

code and data and make it hard to unpack to find

the original entry point. This includes packers that

use their own virtual machines such as

HyperUnpackme2.

Rootkits Insert rootkits at Ring 0 to take control of the way

the operating system manages processes and use

deception to hide malicious processes.

Analysis Avoidance Techniques of Malicious Software

 172

The existing literature only provided snippets of code and these snippets

had to be implemented in standalone programs for the purpose of validation.

Each technique that was validated was implemented in isolation to provide

as much control as possible over the environment and written in assembly

language. Assembly language was used because collected malware, such as

that collected by the ECU honeypot (Valli & Wooten, 2007) are binaries and

are in assembly language in their disassembled state. Validation was

conducted by employing quasi experiments where the effects on common

debuggers such as IDA Pro and Ollydbg were observed. All of the

techniques that were implemented were determined to be valid and

prevented analysis.

Malware is often packed or protected to hinder analysis by anti-virus

software or static analysis. One of the first steps the malware analyst

performs after detection of the virus signature is the detection of the packer

used to pack the malware. Determination of the name of the packer allows

the analyst to apply the appropriate algorithm to unpack the malware.

Hundreds of different packers exist and range from using simple techniques

through to very complex techniques that use Virtual Machines. Unpacking

can be conducted by automated scripts or with manual methods to arrive at

the OEP. Even simple packers can be customized by malware authors to

disrupt automated scripts and hence hinder analysis. Additionally, the

unpacking routines can contain the analysis avoidance techniques discussed

and validated in this thesis. A common technique is to cause a divide by

zero exception during the unpacking process to give control to the malware

so that it can determine if it is running inside a debugger. If it detects it is

running inside a debugger, the malware can take control and exit the

program.

Malware can use anti-forensic techniques at any time and use deception to

hide its real purpose. If it does not perform any malicious action while it is

being analyzed, it may be accepted on the system as being safe. Then once

free from analysis, it can perform its original, malicious objective.

Analysis Avoidance Techniques of Malicious Software

 173

6.4. RESEARCH QUESTION 2 – HOW CAN THE USE OF THESE
TECHNIQUES BE DETECTED?

 This research question was also mostly exploratory in nature, particularly

with respect to how the technique can be detected. A number of the

techniques that were discussed in the literature review were validated in

small quasi-experiments where a single technique was implemented and its

behaviour was observed and empirically recorded from conducting

controlled experiments. Once the technique was validated, scripts were

written or sourced particular to the two debuggers that were being used to

detect the use of the technique. There are a variety of plugins for the

popular debuggers whose purpose is to hide the debugger from malware

that uses these techniques, but these plugins only provide a very small

subset of anti-anti-forensic functionality and generally do not log the

detection event. This necessitated the development of scripts that not only

hide the debugger but also log the detection event. It was found that all of

the techniques that were implemented could be detected using scripts or by

manual methods. A very good source for discussing the development of

these detection scripts for IDA Pro are discussed by Eagle (2008b), but the

number and scope of the scripts is relatively small compared to the number

of techniques revealed from the literature review. A much higher number of

scripts are available from software reverse engineering sites such as the

Tuts4You web site maintained by Rogers (2008). However, the scripts at

such sites are written for debuggers such as OllyDbg and either have to be

rewritten into IDC or IDAPython scripts for IDA Pro, or the analyst must be

prepared to use multiple debugging tools and multiple scripting languages.

It is therefore highly advisable for malware analysts to develop or source

detection scripts and have a library of suitable scripts at their disposal. It is

also advisable for malware analysts to develop or have access to malware

analysts with scripting skills particular to popular debuggers.

It was noted that plugins for OllyDbg and IDA Pro such as Olly Advanced

and IDA Stealth focus mostly on hiding the debuggers. This researcher

recognizes three limitations of these plugins. The first is that the number of

techniques that are currently mitigated by the plugins is limited. This is

exemplified by the discrepancy in the large number of techniques uncovered

Analysis Avoidance Techniques of Malicious Software

 174

in the literature review compared to the limited number of techniques

available in the plugins. The second is that the techniques focus on hiding

the debugger only. Other methods and approaches are required to cover

the other techniques that are available as specified in the taxonomy in Table

6-2 above. This means that extensive knowledge of techniques and tools

including acknowledgement of their limitations is required to mitigate the

anti forensic techniques that malware has at its disposal to employ. The

third limitation uncovered in this research is that the plugins do not provide

notification through logs that particular techniques were detected. This

limitation does not assist the collection of forensic evidence.

A review of the literature on malware analysis methodologies (Skoudis &

Zeltser, 2004; Zeltser, 2007) found that the most effective methodologies

take the presence of analysis avoidance techniques into account. Zelter’s

incremental, static and dynamic spiral approach for analyzing malware from

a high level of detail down to a low level of detail provided an effective

methodology to discover and mitigate analysis avoidance techniques as the

analysis progresses. Zelter’s methodology uses an iterative and recursive

technique to traverse through the phases of static analysis, molding the

environment for conitnued dynamic analysis. Zelter’s methodology begins

by performing a basic static analysis of the malware specimen such as

performing a virus scan, determining the type of file and the type of packer

used. This is followed by setting up a suitable environment to examine the

specimen in, such as Windows XP in a Virtual Machine. This is followed by

running the malware and observing its behaviour. The methodology

continues to spiral in from obtaining information from a low level of detail,

down to a highly detailed level. A graphical representation of Zelter’s

methodology is depicted in Figure 6-1. An extended model of Zelter’s spiral

analysis methodology is represented by Figure 6-2. The advantage of

extending Zelter’s spiral analysis methodology is that when anti forensic

techniques are encountered, they can be detected and mitigated before

proceeding with the analysis. This appears to be a far superior approach to

that discussed by (Skoudis & Zeltser, 2004) who neglects to include a

strategy for detecting and mitigating anti forensic techniques.

Analysis Avoidance Techniques of Malicious Software

 175

Figure 6-1 Graphical representation of Zelter's analysis

methodology showing spiral nature through phases.

Detailed Static Analysis

Detailed Dynamic Analysis

Tailor Dynamic Analysis
Environment

Detect and Mitigate Dynamic
Analysis Avoidance

Technique

Tailor Static Analysis
Environment

Detect and Mitigate Static
Analysis Avoidance

Technique

Preliminary Static Analysis

Preliminary Dynamic Analysis

Figure 6-2 Extended analysis methodology to cater for anti-forensic

techniques. Anti-analysis techniques are mitigated as they are

detected.

The analysis that was conducted in this research showed that the

measurement of the entropy of the malcode is very effective at detecting if

a packer has been used. The analysis of the collected malware via two

different, packer signature detectors also provided very different signature

results. Generally, once the packer signature has been determined, the

Analysis Avoidance Techniques of Malicious Software

 176

appropriate algorithm can be applied to unpack the malware to arrive at the

OEP. However, if conflicting packer signatures are determined from two or

more packer signature detectors, both algorithms may have to be applied to

arrive at the OEP, and there is no guarantee that either one of them is

correct. This has implications with respect to wasting the time of the analyst

and certainly benefits the malware writer whose objective is to prevent or

hinder analysis of the malcode.

6.5. RESEARCH QUESTION 3 – HOW CAN THE USE OF THESE
TECHNIQUES BE MITIGATED?

This research question was also mostly exploratory in nature and answered

through empirical results gained from controlled quasi-experiments. It was

found through quasi experimentation of the techniques that were selected

to be validated, that the techniques could be mitigated once they had been

detected. However, although popular debugging tools such as OllyDbg and

IDA Pro have plugins to help hide the debugger such as Olly Advanced

and IDA Stealth respectively, their coverage of techniques is relatively

limited given the much larger number of techniques that are available in

contrast to the number of techniques covered by the plugins. Additionally,

these plugins concentrate mostly in hiding the debugger leaving a

considerable lack of overall mitigation coverage for the remainder of the

techniques. This leaves considerable work to be done in providing mitigation

coverage for the remaining techniques in tools and scripts.

6.6. LIMITATIONS OF THE STUDY

6.6.1. Methodology

Although the research questions were answered via the literature review,

validated through quasi-experimentation and detection of the use of

packers and protectors in collected malware, other research methods would

be of assistance, particularly to assist in triangulation to gain an improved

perspective of this phenomena. This could include a case study where

observations are made of how malware analysts in the field detect and

mitigate anti-forensic techniques. It could include survey research

conducted via questionnaires and structured interviews of malware analysts

Analysis Avoidance Techniques of Malicious Software

 177

in the field to find data to address a hypothesis such as “Is Malware

increasingly using anti forensic techniques”. Conceivably, given the

complexity of malware, teams of malware analysts have specialties and

work together. A ethnography could be conducted to find meaning through

field observation of malware analysts and how they work together and

detect and mitigate anti-forensic techniques. Additionally, action research

could be conducted to interact with malware analysts in the field to assist in

improving the processes and methodologies associated with countering anti-

forensic techniques in malware.

Although detection and mitigation scripts were validated against the

implemented techniques, they were not used against the collected malware

because of the restraints of the research questions and limitations of time.

This remains as an activity to pursue.

6.7. DISCUSSION OF CONTRIBUTION TO KNOWLEDGE

This research claims to contribute to the body of knowledge associated with

the anti-analysis techniques malware can incorporate to hinder forensic

analysis. These claims are discussed in the following subsections.

6.7.1. Confirmation that anti-analysis techniques are very effective

This research shows that a variety of techniques are available to authors of

malware to hinder the malware forensic analyst from fully discovering the

capabilities of the malware. Malware can use these techniques to detect if it

is being analyzed and can then use deception to hide its true intent (Brand,

2007; Eagle, 2008a; Falliere, 2007; Grugq, n.d.; Yason, 2007). This

research shows how these techniques work, how the use of these

techniques can be detected and how they can be mitigated. This line of

research that combines these three aspects has not been located in existing

research.

6.7.2. Anti-analysis techniques can be detected and mitigated

This research shows that the use of scripting for debuggers and

disassemblers extends the functionality of the tools to facilitate the

Analysis Avoidance Techniques of Malicious Software

 178

detection and mitigation of analysis avoidance techniques employed by

malware. This research recommends that the development of debugger and

disassembly scripting skills is a requisite to being able to detect and counter

analysis avoidance techniques of malware. This contribution exists at the

current front line of research in the detection of malware.

6.7.3. Confirmation that virus signature detection is less than ideal

An examination of a sample of the malware specimens collected for the

purposes of this research shows that even though the majority of the

malware collected had been “in the wild” for up to, or exceeding one year,

the unanimous detection by a collection of thirty six AV detection engines

was only 10.4%. The particular AV engine used by the Anubis

(International Secure Systems Lab et al., 2008) online virus analyzer only

recorded a 73.7% detection rate. This is a significant and potentially

alarming result. It indicates that even though it is accepted computer

security policy to run AV software, detection of all malware could be highly

unlikely. This is supports the findings of other researchers (Masood, 2004;

Mohandas, n.d.; Skoudis & Zeltser, 2004; Szewczyk & Brand, 2008).

6.7.4. Malware extensively uses Packers and Protectors

Runtime packers are utilized by network based malware to compress

malware and to act as a counter measure to signature based AV software

via obfuscation (Sun et al., 2008). The packed malware has to be unpacked

to be able to perform a detailed static analysis because packed malware

obfuscates the malware code. Knowledge of the packer used, assists in the

process of unpacking because the appropriate unpacking methodology can

be employed. Software tools are available that attempt to determine the

name of the packer that was used to pack the malware. This research

shows that two popular packer detectors that were used by this researcher

did not agree on the names of any of the packers that were used. This is

significant because it indicates uncertainty could be associated with the

determined packer signatures and more in depth analysis is required to

validate the type of packing that was conducted. The line of this research

was extended to examine entropy (randomness) measurements of the

packed malware as a method of determining if the collected malware was

Analysis Avoidance Techniques of Malicious Software

 179

packed or not. Entropy measurements are shown in this research to be a

very good indicator that malware has been packed.

6.7.5. Support for a new paradigm for malware detection

AV software typically uses signature matching and recognition of heuristics

to detect malware. This approach generally requires the malware to have

been collected “from the wild”, analyzed and signatures downloaded to

client computers to approach any level of effectiveness. Significant damage

to computers could occur between the time of collection and signature

updates have been performed. In addition, it is very unlikely that AV

software will detect custom malware that has not been set loose on the

internet, but targeted against an individual or a corporation because it will

not have been analyzed and a signature will not have been obtained by an

AV company. AV software that uses this approach is seen to be fighting a

losing battle in the literature and from this research (Mila Dalla et al., 2008;

Zhou & Meador Inge, 2008). This research supports a proposal for a new

paradigm for malware detection. In particular, this research proposes that

detection of deception and anti-analysis techniques in software should flag

the software as potentially malicious and delegate for further in depth

analysis or removal.

6.7.6. Identification of analysis tool deficiencies

A number of software tools are utilized by malware forensic analysts. Static

analysis and dynamic analysis are two methodologies that can be used to

analyse the malware (Aquilina et al., 2008). Software disassemblers and

debuggers such as IDA Pro (Hex-Rays, 2008) and OllyDBg (Yuschuk,

2008) can be used to perform a detailed analysis of the malware code and

provide an internal view of the malwares functionality (Valli & Brand, 2008).

This is referred to as static analysis. In contrast, dynamic analysis runs the

malware and observes the interaction of the running malware with the

computer from an external point of view. A number of plug-ins that extend

the functionality of IDA Pro and OllyDBg include IDA Stealth (Newger,

2008) and Olly Advanced (MaRKuS, 2006) respectively to work with

malicious code that employ anti-analysis techniques. The intention of such

plug-ins is to provide functionality to hide their associated tools from the

malware they are analyzing. The research in this thesis shows that the

Analysis Avoidance Techniques of Malicious Software

 180

number of anti forensic techniques covered by such plug-ins is much less

than the number of techniques that are available to be implemented by

malware. In addition, this research shows that although the plug-ins

successfully hides the debugger or disassembler, the tools do not provide

any information to the analyst about having detected the use of analysis

avoidance techniques. This is significant because detection of the use of

anti-analysis techniques in software may be of assistance to a digital

forensic investigator to show that deception was used to hide malicious

intent.

6.7.7. Determination of suitable malware analysis methodology

Essentially, types of malware analysis fall under two main categories,

dynamic analysis and static analysis. Dynamic analysis means the code is

run and its behaviour and interaction with the computer it is running on,

and the interaction with inter connected computers is observed. Static

analysis means that the code is not run, but the code itself is analyzed to

determine the functionality and capability of the code. Generally, dynamic

analysis is easier to perform than static analysis but malware can more

easily employ deception to hide its true intent without the analyst being

aware of it. In reality, both types of analysis can be subverted. This

research recommends that given the deceptive nature of malware, a

combination of dynamic and static analysis is best performed in a sequential

manner to mitigate analysis avoidance techniques. Fundamentally, this

means that an initial high level static analysis of the malware is first

performed. Using this information, a high level dynamic analysis is

conducted using the information from the first static analysis to setup a

suitable working environment. Information gathered from this phase is

used as an input to conduct a more detailed static analysis, mitigating

analysis avoidance counter measures in the malware. This process of

dynamic analysis following static analysis is then followed, spiraling in from

a high level of perspective until a low level of perspective of the malware is

attained. This is very much along the lines recommended by Zeltser (2007),

but explicitly adds the search for anti forensic techniques and subsequent

mitigation as the analysis proceeds.

Analysis Avoidance Techniques of Malicious Software

 181

6.7.8. Development of a taxonomy of analysis avoidance techniques

This research amalgamates existing anti-analysis technique taxonomies into

a single taxonomy as shown in Table 6-2 (Falliere, 2007; Ferrie, 2008;

Yason, 2007). This is envisaged as being potentially very useful for

classification purposes.

6.7.9. Malware Analysis Body of Knowledge

This research has shown that malware does make extensive use of packers

and protectors to hinder analysis. This research has also shown that the

recursive and iterative approach outlined by Zeltser (2007) to analyse

malware is the most effective methodology to detect and mitigate anti-

analysis techniques as they are uncovered to continue analysis.

Combination of these two findings led to a proposed analysis process that

incorporates a learning taxonomy and is reproduced from the paper by Valli

and Brand (2008, p. 3) as Figure 6-3. Research remains to be done on

developing the learning taxonomy that incorporates anti-analysis techniques

into the malware analysis process. This research could possibly be

continued with surveys, case studies and ethnographies with AV software

company malware analysts and malware academic researchers. Nothing on

this particular research front has been able to be ascertained from known,

existing research. This line of research would also benefit from a study of

learning taxonomies such as Bloom’s learning taxonomy which divides

educational objectives into three domains, affective, cognitive and

psychomotor (Anderson et al., 2001).

Analysis Avoidance Techniques of Malicious Software

 182

Figure 6-3 Malware analysis process incorporating a learning

taxonomy that assists in the development of the MABOK.

The paper by Valli and Brand (2008) identified a Malware Analysis Body of

Knowledge (MABOK) that could “be used as a framework for competency

development and assessment for the field of malware analysis” (Valli &

Brand, 2008, p. 2). Essentially this is because malware analysis is

recognised to be difficult and a very broad knowledge domain is required to

undertake detailed, in-depth analysis of malware. A knowledge domain

identified by Valli and Brand (2008, p. 4) essentially from the research

conducted for this thesis, is reproduced as Figure 6-4. Essentially, the

diagram shows eight, high level categories of knowledge that are required

to undertake malware analysis. The next lower stratum identifies numerous

sub-domains of knowledge that could also be broken down into even more

sub-domains.

Analysis Avoidance Techniques of Malicious Software

 183

Figure 6-4 Model of the learning domain of the Malware Analysis Body of Knowledge (MABOK)

Analysis Avoidance Techniques of Malicious Software

6.8. FUTURE RESEARCH

The lines of enquiry examined in this research could be extended in a

number of avenues, as outlined in the following sub sections.

6.8.1. Hypothesis

Future research could include addressing a hypothesis such as:

• Network based malware is increasingly using anti forensic techniques.

This could be conducted by examining the network based malware collected

by the ECU Nepenthes honeypot using the analysis avoidance detection

and mitigation scripts presented in this thesis using a positivist, empirical,

quasi experimental research methodology as outlined in this thesis.

6.8.2. Plugin Development

This research noted that plugins such as IDAStealth and OllyAdvanced

provide coverage for only a subset of analysis avoidance techniques

Additional research could be conducted on extending the coverage of

techniques of such plugins. A limitation of the existing plugins is that their

focus is on hiding the debugger and do not have the ability to detect and log

the use of anti-analysis techniques. The detection and logging of techniques

as they are discovered during forensic analysis of malware could assist in

the collection of evidence suitable for a court of law.

6.8.3. Collation of Techniques

This research revealed an extensive range of analysis avoidance techniques

that is distributed amongst research papers, hacking and reverse

engineering sites. Detection and mitigation techniques are not represented

any where near the same extent in academic literature or on hacking and

reverse engineering sites. A very useful contribution to the field of malware

analysis research could be to collate analysis avoidance techniques together

with their corresponding detection and mitigation techniques into a central

library and to develop an encompassing taxonomy.

Analysis Avoidance Techniques of Malicious Software

 185

6.8.4. Improved Packer Signature Detection

Packer signature detection has been revealed in this research to be an area

that requires further and most likely, continual research. This also extends

to the area of unpacking packed malware as well. This is because malware

can use multiple packers not only from a sequential sense, for example,

pack the entire malware specimen with packer A and then pack the result

with packer B, but firstly pack sections of code with packer A and then pack

the result with packer B. This last scenario is another deception trick that is

generally only uncovered once manual analysis is conducted. It is possible

that an automated analysis process may miss the second (or third, or more)

level of packing. This remains an area of research that lacks published work.

6.8.5. A New Paradigm for Malware Detection

This research has shown that AV software to be less than fully effective at

detecting malware. Research could continue into investigating a new

paradigm for malware detection, particularly by detecting the use of anti-

analysis techniques in scanned software and flagging it for more detailed

attention.

6.8.6. A Model for Automating the Spiral Analysis Methodology

The spiral analysis methodology depicted in Figure 6-2 was proposed as a

suitable process to follow to detect and mitigate anti-forensic techniques

employed by malware in a very manual, labor intensive manner. This same

methodology is presented in Figure 6-5 in the form of a process diagram

that could be implemented in software to more automate the malware

analysis process where anti-forensic techniques need to be detected and

mitigated. It shows malware under investigation as the input to the process

that employs the spiral analysis methodology. A central control supervisor

processor is responsible for managing each step and phase of the analysis,

where recording, processing and reporting is managed or delegated to a sub

process. The supervisor function interacts with each phase by providing

control over the constituent steps in each phase. It also acts as the

recipient of data which is produced by each phase which is required to make

Analysis Avoidance Techniques of Malicious Software

 186

decisions on how to tailor the subsequent phases. In addition to assisting

the forensic analyst, such a process could be a supplementary tool, or a

replacement, for traditional signature and heuristic based anti-virus

software. This is because detection of the use of deception techniques could

be a very good indicator of malicious intent as argued by this research.

Continuation of this line of research into automating the analysis process is

left to be researched.

Figure 6-5 Proposed process model to automate the spiral analysis

methodology which recursively and iteratively detects and mitigates

static and dynamic anti-analysis techniques

Analysis Avoidance Techniques of Malicious Software

 187

CHAPTER 7 CONCLUSION

7.1. ANALYSIS AVOIDANCE TECHNIQUES OF MALWARE

AV software generally employs heuristics and signature matching to detect

the presence of malware. Determination of the signatures and heuristics of

malware is performed by analysts and sent out in updates to the signature

files anti-virus software depends on to detect its presence. It is not

uncommon for these updates to be conducted multiple times per day

because of the large number of new malicious threats that appear each day

on the internet. AV software has been shown in this research to be less than

fully effective and this supports the claims of other AV researchers. Malware

can employ a variety of techniques to avoid detection by anti-virus software

and hinder the analysis conducted by analysts. This is because malware is

becoming increasingly profit driven and more likely to incorporate stealth

and deception techniques to avoid detection.

Malware has an extensive range of anti-forensic techniques that it can

incorporate into its overall functionality to hinder analysis. This can include,

but is not limited to the following taxonomy of techniques:

• Anti emulation

• Anti online analysis

• Anti hardware

• Anti debugger

• Anti disassembler

• Anti tools

• Anti memory

• Anti process

• Anti-analysis

• Packers and Protectors

• Rootkits

The overall aim of malware that incorporates these techniques is to defeat

the signature and heuristic based nature of anti-virus software and to

hinder the forensic analyst by making detailed analysis time consuming and

difficult. This research has validated a number of these techniques and all

Analysis Avoidance Techniques of Malicious Software

 188

proved to be effective. This research has also shown that these techniques

can be detected and their use mitigated so that detailed forensic analysis

can be conducted. However, it remains a time consuming activity, based on

methodology and analysis that requires a very broad range of knowledge

and a significant skill set. Competence with scripting languages associated

with the popular debuggers is a requisite to being able to detect and

mitigate these techniques, particularly when new techniques arise. This is

because the coverage of the techniques in existing plugins and scripts is

limited. Plugins tend to concentrate on hiding the debugger, or mitigate

only a small number of the anti-analysis techniques that are available. This

is identified as a limitation analysts must be aware of. Existing analysis

scripts for some tools are more prevalent than for other tools. In either case,

the forensic analyst will need the ability to create or modify existing scripts

to conform to the requirements of the tools that the forensic analyst has

validated as forensically sound to employ.

7.2. CONTRIBUTION TO KNOWLEDGE

This research contributes to the body of knowledge directly related to the

anti-analysis techniques malware incorporates into its code, from a variety

of perspectives, as outlined in the following sub sections.

7.2.1. Confirmation that anti-analysis techniques are very effective

This research shows that a variety of techniques are available to authors of

malware to hinder the malware forensic analyst from fully discovering the

capabilities of the malware.

7.2.2. Anti-analysis techniques can be detected and mitigated

This research shows that the use of scripting for debuggers and

disassemblers extends the functionality of the tools to facilitate the

detection and mitigation of analysis avoidance techniques employed by

malware.

7.2.3. Confirmation that virus signature detection is less than ideal

An examination of a sample of the malware specimens collected for the

purposes of this research shows that even though the majority of the

malware collected had been “in the wild” for up to, or exceeding one year,

Analysis Avoidance Techniques of Malicious Software

 189

the unanimous detection by a collection of thirty six AV detection engines

was only 10.4%.

7.2.4. Malware extensively uses Packers and Protectors

Runtime packers are utilized by network based malware to compress

malware and to act as a counter measure to signature based AV software

via obfuscation (Sun et al., 2008). Entropy measurements are shown in this

research to be a very good indicator that malware has been packed.

7.2.5. Support for a new paradigm for malware detection

This research supports a proposal for a new paradigm for malware detection.

In particular, this research proposes that detection of deception and anti-

analysis techniques in software should flag the software as potentially

malicious and delegate for further in depth analysis or removal.

7.2.6. Identification of a Malware Body of Knowledge

The knowledge required to analyse malware is extensive. A Malware

Analysis Body of Knowledge (MABOK) has been identified from the conduct

of this research, to include anti-forensics as a very significant component.

7.2.7. Identification of analysis tool deficiencies

The research in this thesis shows that the number of anti forensic

techniques covered by such plug-ins is much less than the number of

techniques that are available to be implemented by malware. In addition,

this research shows that although the plug-ins successfully hides the

debugger or disassembler, the tools do not provide any information to the

analyst about having detected the use of analysis avoidance techniques.

This is significant because detection of the use of anti-analysis techniques in

software may be of assistance to a digital forensic investigator to show that

deception was used to hide malicious intent.

7.2.8. Determination of a suitable malware analysis methodology

This research outlines a suitable methodology for analyzing malware that

incorporates anti-analysis techniques.

Analysis Avoidance Techniques of Malicious Software

 190

7.2.9. Development of a taxonomy of analysis avoidance techniques

This research amalgamates existing anti-analysis technique taxonomies into

a single taxonomy.

7.3. LINKING OF CONTRIBUTIONS TO KNOWLEDGE

Malware can use anti-forensic techniques and use deception to hide its real

purpose whilst being analyzed. If it does not perform any malicious action

while it is being analyzed, it may be accepted on the system as being safe,

or excluded from the evidence collection process. Then once free from

analysis, the malware can perform its original, malicious objective. Some

considerations must be made in order to closely analyze malware. Firstly,

totally relying on AV software to classify the malware could be a mistake

because signature based detection is far less than ideal. It is unlikely to

recognize customized malware that has not been analyzed before. This

leads to necessity of the digital forensic analyst to analyze the malware

manually. It must be noted that a significant number of anti-analysis

techniques exist covering the entire spectrum of the computational

mechanics of computers. These techniques are very effective at hindering

analysis. This can be compounded by additional factors. This includes

deficiencies in analysis tools that do not cover the number of anti-analysis

techniques that are available. It is made more difficult by the number of

packers and protectors that malware can use. This makes it hard because a

typical technique to unpack the malware is to use known algorithms to let

the malware unpack itself to reach the OEP. In doing so, control is given to

the malware and an opportunity exists for the malware to detect that is

being analyzed and to employ deception. An additional consideration is that

a very extensive knowledge of programming, debugging and operating

system internals is required that arguably exceeds the level attained even

by competent software engineers. On the positive side, the use of anti-

analysis techniques can be detected and mitigated, given significant

analysis skills have been attained. This can be assisted by using an

appropriate methodology where static and dynamic methods are combined

in such a way that the view of the malware transitions from a high level of

detail down to a low level of detail, mitigating the anti-analysis techniques

Analysis Avoidance Techniques of Malicious Software

 191

as analysis progresses in a spiral analysis methodology. Although legitimate

software uses anti-analysis techniques to protect itself from reverse

engineers, malware is almost certain to use anti-analysis techniques. So

much so, the detection of the use of anti-analysis techniques may be a very

good indicator of the presence of malware.

7.4. LESSONS LEARNED FROM RESEARCH APPROACH AND
CONDUCT

The selected research method to address the research questions was

positivist, empirical and quasi experimental. The research questions were

essentially exploratory in nature. Validation of the techniques, followed by

their detection and mitigation, was conducted in a series of controlled quasi-

experiments. This effectively answered the research questions. Other

empirical methods such as action research, ethnography, survey and case

study could have been used, but would have required access to malware

researchers desirably working in AV software laboratories for an extended

period of time, and preferably, in situ. Such access is not possible for this

researcher at this time. A combination of these methods would not have

necessarily enhanced the validity of the results but would have undoubtedly

contributed to answering the research questions. Triangulation would have

been assisted by using additional tools to validate the results as would have

using multiple analysts to perform the quasi experiments.

7.5. RESEARCH IMPLICATIONS

A number of significant implications have arisen from this research. A large

number of anti-analysis techniques were uncovered and found to be very

effective when implemented in small stand alone programs. These same

techniques could be detected and mitigated by the development of scripts

and plugins. Existing analysis tools serve primarily to hide the tools from

being counter detected by the malware and cover a small minority of the

available techniques malware can use to hinder analysis. These tools do not

provide functionality to log or record detection of analysis avoidance

techniques. Logging or recording of these techniques may be of great use to

the digital forensic investigator when analyzing malware whilst investigating

a case. Functionality can be added to existing tools by custom development

of scripts and plugins. Knowledge of analysis avoidance techniques and

Analysis Avoidance Techniques of Malicious Software

 192

being able to script and develop plugins adds to a body of knowledge, the

MABOK, identified by this research. The MABOK covers the knowledge

domain required to analyse malware and will be useful for assessment and

skill development for analysts working with malware. In addition, this

research shows an appropriate methodology should be employed by the

forensic analyst to detect and mitigate these anti-analysis techniques as

analysis continues.

This research supports claims that AV software performs at a less than ideal

level and that a new paradigm is warranted. This research recommends that

any software that employs anti-analysis techniques be treated as suspicious.

This is because a characteristic employed by nearly all malware examined in

this research employed anti forensic techniques, primarily packers and

protectors.

Deficiencies in existing tools and plugins were found in the tools used for

this research with respect to handling anti forensic techniques. This

exemplifies the need for analysts to be able to conduct manual analysis and

to not rely on automated tools. In addition, this emphasizes the importance

of possessing the ability to be able to extend the functionality of the tools

on an as required basis.

This research can be continued on a number of fronts. Firstly, it could

continue the search for anti forensic techniques employed by the malware

that was collected for the purposes of this research. Such a line of enquiry

could use the existing detection and mitigation scripts as a foundation and

continue in the development and use against the collected malware. This

work could use a hypothesis such as “malware is increasingly using anti

forensic techniques” and show the use of the techniques over time for

collected malware.

Another line of enquiry would be to use the detection of anti forensic

techniques as a new paradigm for AV software. This would very much suit

the application of the true experiment research methodology.

Analysis Avoidance Techniques of Malicious Software

 193

REFERENCES

+Pumpqara. (n.d.). My Own Tricks to Detect OllyDbg. Retrieved Feb 10,
2008, from http://pe-
lib.sourceforge.net/pumqara/html/code_protection/Detecting%20Olly
Dbg/DetectOllyDbg+Pum.htm

ANAKiN. (2005). PE-Pack.
Anderson, L., Krathwohl, D., Airasian, P., Cruikshank, K., Mayer, R., Pintrich,

P., et al. (2001). A Taxonomy for Learning, Teaching, and Assessing:
A Revision of Bloom's Taxonomy of Educational Objectives. New York:
Longman.

Anonymous. (1999). PrettyPark.
Anonymous. (2003). SpyBot.
Anonymous. (2004). PolyBot.
Anonymous. (2005). GpCoder.
Anonymous. (n.d.-a). Allaple.
Anonymous. (n.d.-b). Bagle.
Anonymous. (n.d.-c). exetk.
Anonymous. (n.d.-d). ExtremBot.
Anonymous. (n.d.-e). ForBot.
Anonymous. (n.d.-f). HideWindow.
Anonymous. (n.d.-g). HyperUnpackMe2.
Anonymous. (n.d.-h). Kuang.
Anonymous. (n.d.-i). MLSRH.
Anonymous. (n.d.-j). Morphine.
Anonymous. (n.d.-k). MyDoom.
Anonymous. (n.d.-l). RBot.
Anonymous. (n.d.-m). Tibs.
Anthracene. (2006). Unpacking with Anthracene. Retrieved August 21,

2007, from http://www.tuts4you.com/download.php?list.18
ap0x. (2006). OpenRCE Anti Reverse Engineering Techniques Database.

Retrieved Feb 08, 2008 from
https://www.openrce.org/reference_library/anti_reversing

Aquilina, J., Casey, E., & Malin, C. (2008). Malware Forensics Investigating
and Analyzing Malicious Code. Burlington, MA: Syngress.

Arnold, B., Chess, D., Morar, J., Segal, A., & Swimmer, M. (2000). An
Environment for Controlled Worm Replication and Analysis.
Retrieved March 18, 2007
from http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.
htm

ASPack Software. (2008). ASProtect.
Aycock, J. (2006). Computer Viruses and Malware. New York: Springer

Bart, & Xtreeme. (2005). FSG.
Bilar, D. (2005). Statistical Structures: Fingerprinting Malware for

Classification and Analysis. Retrieved September 2, 2006
from www.blackhat.com/presentations/bh-usa-06/BH-US-06-Bilar.pdf

Bitsum Technologies. (2008). PECompact.
Blinkinc. (2003). Shrinker.
BoB. (2007). HideDebug.
Bouma, G., & Ling, R. (2004). The Research Process, Fifth Edition. Oxford

UK: Oxford University Press.

http://pe-lib.sourceforge.net/pumqara/html/code_protection/Detecting%20OllyDbg/DetectOllyDbg+Pum.htm�
http://pe-lib.sourceforge.net/pumqara/html/code_protection/Detecting%20OllyDbg/DetectOllyDbg+Pum.htm�
http://pe-lib.sourceforge.net/pumqara/html/code_protection/Detecting%20OllyDbg/DetectOllyDbg+Pum.htm�
http://www.tuts4you.com/download.php?list.18�
http://www.openrce.org/reference_library/anti_reversing�
http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.htm�
http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.htm�
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Bilar.pdf�

Analysis Avoidance Techniques of Malicious Software

 194

Brand, M. (2007). Forensic Analysis Avoidance Techniques of Malware.
Paper presented at the 5th Australian Digital Forensics Conference,
Edith Cowan University, Mount Lawley Campus, Western Australia.

Canavan, J. (2005). The Evolution of Malicious IRC Bots. Retrieved Dec 28,
2007,
from www.symantec.com/avcenter/reference/the.evolution.of.malicio
us.irc.bots.pdf

Carroll, J. M., & Swatman, P. A. (2000). Structured-case: A methodological
framework for building theory in information systems research. Paper
presented at the European Conference on Information Systems.

CG SoftLabs. (2008). Stud_PE.
Chess, B., & West, J. (2007). Secure Programming with Static Analysis.

Upper Saddle River, NJ: Addision-Wesley.
Chouchane, M., Walenstein, A., & Lakhotia, A. (2007). Statistical signatures

for fast filtering of instruction-substituting metamorphic malware.
Paper presented at the Proceedings of the 2007 ACM workshop on
Recurring malcode.

Collberg, C., Thomborson, C., & Low, D. (1998). Manufacturing cheap,
resilient, and stealthy opaque constructs. Paper presented at the
Annual Symposium on Principles of Programming Languages, San
Diego, California, United States

Combs, G. (2008). Wireshark.
Compuware. (2008). SoftIce.
Craig, P. (2006). Unpacking Malware, Trojans and Worms.

from www.security-
assessment.com/files/presentations/Ruxcon_2006_-
_Unpacking_Virus, _Trojans_and_Worms.pdf

Diabl0. (2005). MyTob.
Dunham, K. (2006). Criminalization of Code.

from http://www.nortel.com/corporate/events/2006a/collateral/battli
ng_malware_01_18_06/criminalization.pdf

Eagle, C. (2008a). The IDA Book: No Starch Press.
Eagle, C. (2008b). The IDA Book Examples.

from http://www.idabook.com/examples/
Eagle, C. (n.d.). Honeynet Scan of the Month 32 Analysis.

from http://honeynet.org/scans/scan32/sols/1-
Chris_Eagle/analysis.html

Easterbrook, S., Singer, J., Storey, M., & Damian, D. (2008). Selecting
Empirical Methods for Software Engineering Research. In D. Sjoberg,
F. Shull & J. Singer (Eds.), Guide to Advanced Empirical Software
Engineering: Springer.

Ebringer, T., & Sun, L. (2008). A Fast Randomness Test that Preserves
Local Detail. Paper presented at the Virus Bulletin 2008.

Eilam, E. (2005). Reversing : Secrets of Reverse Engineering. Indianapolis:
Wiley Publishing, Inc.

Erdélyi, G. (2008). IDA Python.
Falliere, N. (2006). Anatomy of a Malware. Retrieved October 20, 2007,

from http://www.securityfocus.com/infocus/1893
Falliere, N. (2007). Windows Anti-Debug Reference. Retrieved October 1,

2007 from http://www.securityfocus.com/infocus/1893
Farwell, J. (2004). The Heart of the Matter, What Makes Antivirus Software

Tick? Retrieved March 17, 2007,

http://www.symantec.com/avcenter/reference/the.evolution.of.malicious.irc.bots.pdf�
http://www.symantec.com/avcenter/reference/the.evolution.of.malicious.irc.bots.pdf�
http://www.security-assessment.com/files/presentations/Ruxcon_2006_-_Unpacking_Virus�
http://www.security-assessment.com/files/presentations/Ruxcon_2006_-_Unpacking_Virus�
http://www.security-assessment.com/files/presentations/Ruxcon_2006_-_Unpacking_Virus�
http://www.nortel.com/corporate/events/2006a/collateral/battling_malware_01_18_06/criminalization.pdf�
http://www.nortel.com/corporate/events/2006a/collateral/battling_malware_01_18_06/criminalization.pdf�
http://www.idabook.com/examples/�
http://honeynet.org/scans/scan32/sols/1-Chris_Eagle/analysis.html�
http://honeynet.org/scans/scan32/sols/1-Chris_Eagle/analysis.html�
http://www.securityfocus.com/infocus/1893�
http://www.securityfocus.com/infocus/1893�

Analysis Avoidance Techniques of Malicious Software

 195

from http://www.smartcomputing.com/editorial/article.asp?article=ar
ticles/2004/s1511/24s11/24s11.asp&articleid=23737&guid=

Ferrie, P. (2008). Anti-Unpacker Tricks. Paper presented at the 2nd
International Caro Workshop. from http://www.datasecurity-
event.com/uploads/unpackers.pdf

FireDaemon Technologies Ltd. (2009). FireDaemon.
Foundstone. (2008). Fport.
G-RoM, Lorian, & Stone. (1999). ProcDump.
Gembe, A. (2002). AgoBot.
Gordon, J. (n.d.). Win32 Exception handling for assembler programmers.

Retrieved Feb 10, 2008
from http://win32assembly.online.fr/Exceptionhandling.html

Grugq. (n.d.). The Art of Defiling, Defeating Forensic Analysis on UNIX File
Systems.

Guba, E., & Lincoln, Y. (1994). Competing Paradigms in Qualitative Reseach.
In N. Denzin & Y. Lincoln (Eds.), Handbook of Qualitative Research.
London: SAGE Publications Ltd.

Harbour, N. (2007). Stealth Secrets of the Malware Ninjas. Retrieved
October 20, 2007 from https://www.blackhat.com/presentations/bh-
usa-07/Harbour/Presentation/bh-usa-07-harbour.pdf

Hernon, P. (1991). The Elusive Nature of Research in LIS. In C. McClure & P.
Hernon (Eds.), Library and Information Science Research:
Perspectives and Strategies for Improvement (pp. 3-14). Norwood,
NJ: Ablex Publishing.

Hex-Rays. (2008). IDA Pro.
Hoglund, G., & Butler, J. (2005). Rootkits: Subverting the Windows Kernel.

Upper Saddle River, NJ: Addison Wesley Professional.
Holt, T. (2007). The Market for Malware. Retrieved May 04, 2008,

from http://www.dc414.org/download/confs/defcon15/Speakers/Holt
/Presentation/dc-15-holt.pdf

Immunity. (2008). Immunity Debugger.
Innes, S., & Valli, C. (2006). Honeypots: How do you know when you are

inside one? Paper presented at the 4th Australian Digital Forensics
Conference, Edith Cowan University, Perth, Western Australia.

Insecure.org. (2008). nmap.
International Secure Systems Lab, Vienna University of Technology,

Eurecom France, & UC Santa Barbara. (2008). Anubis: Analyzing
Unknown Binaries. Retrieved October 4, 2008,
from http://anubis.iseclab.org/

iroffer.org. (n.d.). IrOffer.
Jibz, Qwerton, Snaker, & XineohP. (2006). PEiD.
Kaspersky Labs. (2007a). Network Worms. Retrieved October 7, 2007

from http://www.viruslist.com/en/virusesdescribed?chapter=152540
408

Kaspersky Labs. (2007b). Trojan Programs. Retrieved October 7, 2007
from http://www.viruslist.com/en/virusesdescribed?chapter=152540
408

Kessler, G. (2007). Anti-Forensics and the Digital Investigator. Retrieved
May 04, 2008,
from http://scissec.scis.ecu.edu.au/conference_proceedings/2007/for
ensics/01_Kessler_Anti-Forensics.pdf

http://www.smartcomputing.com/editorial/article.asp?article=articles/2004/s1511/24s11/24s11.asp&articleid=23737&guid=�
http://www.smartcomputing.com/editorial/article.asp?article=articles/2004/s1511/24s11/24s11.asp&articleid=23737&guid=�
http://www.datasecurity-event.com/uploads/unpackers.pdf�
http://www.datasecurity-event.com/uploads/unpackers.pdf�
http://win32assembly.online.fr/Exceptionhandling.html�
http://www.blackhat.com/presentations/bh-usa-07/Harbour/Presentation/bh-usa-07-harbour.pdf�
http://www.blackhat.com/presentations/bh-usa-07/Harbour/Presentation/bh-usa-07-harbour.pdf�
http://www.dc414.org/download/confs/defcon15/Speakers/Holt/Presentation/dc-15-holt.pdf�
http://www.dc414.org/download/confs/defcon15/Speakers/Holt/Presentation/dc-15-holt.pdf�
http://anubis.iseclab.org/�
http://www.viruslist.com/en/virusesdescribed?chapter=152540408�
http://www.viruslist.com/en/virusesdescribed?chapter=152540408�
http://www.viruslist.com/en/virusesdescribed?chapter=152540408�
http://www.viruslist.com/en/virusesdescribed?chapter=152540408�
http://scissec.scis.ecu.edu.au/conference_proceedings/2007/forensics/01_Kessler_Anti-Forensics.pdf�
http://scissec.scis.ecu.edu.au/conference_proceedings/2007/forensics/01_Kessler_Anti-Forensics.pdf�

Analysis Avoidance Techniques of Malicious Software

 196

Kleiman, D. (2007). The Official CHFI Study Guide (Exam 312-49) for
Computer Hacking Forensic Investigators. Burlington, MA: Syngress
Publishing Inc.

Kotadia, M. (2006). Beware ‘suicidal’ malware, says CyberTrust. Retrieved
August 27, 2006
from http://software.silicon.com/malware/0,3800003100,39160966,0
0.htm

Koziol, D., Litchfield, D., Aitel, D., Anley, C., Eren, S., Mehta, N., et al.
(2004). The Shellcoder's Handbook. Indianapolis: Wiley Publishing
Inc.

Krack. (2006). Defeating Norman Sandbox. Retrieved July 21, 2006
from http://www.ryan1918.com/viewtopic.php?t=2676&highlight=def
eat

Larsson, L. (2007). Meeting the Swedish Bank Hacker. Retrieved April 14,
2007 from http://computersweden.idg.se/2.2683/1.93344

Lau, B., & Svajcer, V. (2008). Measuring Virtual Machine Detection in
Malware Using DSD Tracer. Journal in Computer Virology.

Lee, T., & Mody, J. (2006). Behavioural Classification. Retrieved 16 March,
2006, from
secureitalliance.org/blogs/microsoft/attachment/1244.ashx

Lyda, R., & Hamrock, J. (2007). Using Entropy Analysis to Find Encrypted
and Packed Malware. IEEE Security and Privacy, 5(2), 40-45.

MackT. (2008). Import REConstructor.
Mandiant. (2007). Red Curtain. Retrieved October 20, 2007,

from http://www.mandiant.com/mrc
Mardam-Bey, K. (1995). mIRC.
MaRKuS. (2006). Olly Advanced.
Marshall, P. (1997). Research Methods. Plymouth, United Kingdom: How To

Books.
Masood, S. G. (2004). Malware Analysis for Administrators. Retrieved 17

March, 2007 from http://www.securityfocus.com/infocus/1780
Microsoft. (2007). Virtual PC.
Microsoft. (2008a). Explorer.exe.
Microsoft. (2008b). windbg.
Microsoft. (2008c). Windows Sysinternals.
Mila Dalla, P., Mihai, C., Somesh, J., & Saumya, D. (2008). A semantics-

based approach to malware detection. ACM Trans. Program. Lang.
Syst., 30(5), 1-54.

Mohandas, R. (n.d.). Hacking the Malware – A reverse-engineer’s analysis.
Retrieved 17 March 2007, from
geocities.com/rahulmohandas/hacking_the_malware.pdf

Nepenthes. (2006). Nepenthes – Finest Collection. Retrieved March 16,
2004 from http://nepenthes.mwcollect.org

Newger, J. (2008). IDA Stealth Plugin.
Newman, R. (2006). Cybercrime, identity theft, and fraud: practicing safe

internet - network security threats and vulnerabilities. Paper
presented at the Proceedings of the 3rd annual conference on
Information security curriculum development.

NIST. (2004). Computer Security Incident Handling Guide. Retrieved 15
Sept 2005, from http://csrc.nist.gov/publications/nistpubs/800-
61/sp800-61.pdf

Norman. (2008). Submit file for Sandbox analysis. Retrieved April 12,
2008, from http://www.norman.com/microsites/nsic/Submit/en-us

http://software.silicon.com/malware/0,3800003100,39160966,00.htm�
http://software.silicon.com/malware/0,3800003100,39160966,00.htm�
http://www.ryan1918.com/viewtopic.php?t=2676&highlight=defeat�
http://www.ryan1918.com/viewtopic.php?t=2676&highlight=defeat�
http://computersweden.idg.se/2.2683/1.93344�
http://www.mandiant.com/mrc�
http://www.securityfocus.com/infocus/1780�
http://nepenthes.mwcollect.org/�
http://csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf�
http://csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf�
http://www.norman.com/microsites/nsic/Submit/en-us�

Analysis Avoidance Techniques of Malicious Software

 197

Northfox. (2004). MEW.
Oates, B. (2007). Researching Information Systems and Computing.

London: Sage Publications Ltd.
Oberhumer, M., Molnár, L., & Reiser, J. (2008). UPX.
OG. (2007). Defeating Anubis File Analyzer. Retrieved Jul 21, 2007

from http://www.ryan1918.com/viewtopic.php?t=8654
Oreans Technologies. (2008). Themida.
Perry, D., Porter, A., & Votta, L. (2000). Empirical studies of software

engineering: a roadmap. Paper presented at the International
Conference on Software Engineering Limerick, Ireland.

Pickard, A. (2007). Research Methods in Information. London: Facet
Publishing.

Pietrek, M. (n.d.). PEdump.
Porras, P., Saidi, H., & Yegneswaran, V. (2007). A Multi-perspective

Analysis of the Storm (Peacomm) Worm. Retrieved Dec 7, 2007
from http://www.cyber-ta.org/pubs/StormWorm/SRITechnical-
Report-10-01-Storm-Analysis.pdf

random, killa, & acpizer. (1999). PECRYPT32.
Reversing Labs. (2008). RLPack.
Rogers, M. (2006). Panel session at CERIAS 2006 Information Security

Symposium. Journal. Retrieved
from http://www.cerias.purdue.edu/symposium/2006/materials/pdfs/
antiforensics.pdf

Rogers, T. (2008). Tuts4You. from www.tuts4you.com
Rolles, R. (2007). Defeating HyperUnpackMe2 With an IDA Processor

Module. Retrieved Feb 28, 2008
from http://www.openrce.org/articles/full_view/28

Rubenking, N. J. (2007). Jaaaane! Get Me off This Crazy Thing! Retrieved
March 26, 2007 from http://0-
proquest.umi.com.library.ecu.edu.au/pqdweb?did=1204578291&sid=
2&Fmt=3&clientId=7582&RQT=309&VName=PQD

Sandboxie. (2008). About Sandboxie. Retrieved April 12, 2008,
from http://www.sandboxie.com/

Schiller, C., Binkley, J., Harley, D., Evron, G., Bradley, T., Willems, C., et al.
(2007). Botnets : The Killer Web App. Rockland: Syngress Publishing
Inc.

Schwittay, B. (2006). Towards Automating Analysis in Computer Forensics.
Retrieved Dec 05, 2007 from http://pi1.informatik.uni-
mannheim.de/filepool/theses/diplomarbeit-2006-schwittay.pdf

sd. (2002). SDBot.
Seculab. (2008). neoGuard.
SHaG. (2006). OllyScript.
Shub-Nigurrath. (2006). HideDebugger.
Silicon Realms. (2008). Armadillo.
Sjoberg, D., Dyba, T., & Jorgensen, M. (2007). The Future of Empirical

Methods in Software Engineering Research. Paper presented at the
International Conference on Software Engineering.

Skoudis, E., & Zeltser, L. (2004). Malware Fighting Malicious Code. New
Jersey: Prentice Hall.

Smidgeonsoft. (2005). SetUnhandledExceptionFilterTrick. Retrieved Feb 11,
2008, from http://www.openrce.org/forums/posts/45

Smith, S., & Quist, D. (2006). Hacking Malware: Offense is the new Defense.
Retrieved July 24, 2007

http://www.ryan1918.com/viewtopic.php?t=8654�
http://www.cyber-ta.org/pubs/StormWorm/SRITechnical-Report-10-01-Storm-Analysis.pdf�
http://www.cyber-ta.org/pubs/StormWorm/SRITechnical-Report-10-01-Storm-Analysis.pdf�
http://www.cerias.purdue.edu/symposium/2006/materials/pdfs/antiforensics.pdf�
http://www.cerias.purdue.edu/symposium/2006/materials/pdfs/antiforensics.pdf�
http://www.tuts4you.com/�
http://www.openrce.org/articles/full_view/28�
http://0-proquest.umi.com.library.ecu.edu.au/pqdweb?did=1204578291&sid=2&Fmt=3&clientId=7582&RQT=309&VName=PQD�
http://0-proquest.umi.com.library.ecu.edu.au/pqdweb?did=1204578291&sid=2&Fmt=3&clientId=7582&RQT=309&VName=PQD�
http://0-proquest.umi.com.library.ecu.edu.au/pqdweb?did=1204578291&sid=2&Fmt=3&clientId=7582&RQT=309&VName=PQD�
http://www.sandboxie.com/�
http://pi1.informatik.uni-mannheim.de/filepool/theses/diplomarbeit-2006-schwittay.pdf�
http://pi1.informatik.uni-mannheim.de/filepool/theses/diplomarbeit-2006-schwittay.pdf�
http://www.openrce.org/forums/posts/45�

Analysis Avoidance Techniques of Malicious Software

 198

from http://www.offensivecomputing.net/dc14/valsmith__dquist_hac
king_malware_us06.pdf

Sofpro. (2008). PC Guard.
Sourcefire. (2008). snort.
Stargazer. (2006). Anti-Sandbox code with norman. Retrieved Apr 12,

2008, from http://my.stargazer.at/2006/11/07/anti-sandbox-code-
anhand-von-norman/

Stewart, J. (2006). OllyPerl.
Sub7Crew. (n.d.). SubSeven.
Sukhai, N. (2004). Hacking and cybercrime. Paper presented at the

Proceedings of the 1st annual conference on Information security
curriculum development.

Sun, L., Ebringer, T., & Boztas, S. (2008). Hump-and-Dump: efficient
generic unpacking using an ordered address execution histogram.
Journal. Retrieved from http://www.datasecurity-
event.com/uploads/hump_dump.pdf

Szewczyk, P., & Brand, M. (2008). Malware Detection and Removal: An
Examination of Personal Anti-Virus Software. Paper presented at the
6th Australian Digital Forensics Conference, Edith Cowan University,
Mount Lawley Campus, Western Australia.

Team Cymru. (2006). Cybercrime: an epidemic. Queue, 4(9), 24-35.
Tenable Network Security. (2008). nessus.
TGM. (2004). Telock.
TH-DJM, M. (2006). Olly Advanced.
Thrasher. (2007). Anti Sandboxie. Retrieved July 21, 2007

from http://www.ryan1918.com/viewtopic.php?t=11045
Trend Micro Incorporated (2007). Trend Micro Annual Threat Report:

Cybercriminals are Working Faster Than Ever. Journal. Retrieved
from http://trendmicro.mediaroom.com/index.php?s=43&item=700

Valli, C., & Brand, M. (2008). Malware Analysis Body of Knowledge. Paper
presented at the 6th Australian Digital Forensics Conference, Edith
Cowan University, Mount Lawley Campus, Western Australia.

Valli, C., & Wooten, A. (2007). An Overview of ADSL Homed Nepenthes
Honeypots In Western Australia. Proceedings of The 5th Australian
Digital Forensics Conference, 204-209.

Vilhonen, V. (2007). OllyPython.
Virus Bulletin (2008). Blended Threat. Journal. Retrieved

from http://www.virusbtn.com/resources/glossary/blended_threat.x
ml

Virus Total. (2007). Virus Total. Retrieved March 17, 2006
from http://www.virustotal.com/en/virustotalf.html

Virus Total. (2008). Virus Total. Retrieved October 4, 2008,
from http://www.virustotal.com/en/virustotalf.html

VirusList.com (2009). Trojan Programs. Journal. Retrieved
from http://www.viruslist.com/en/virusesdescribed?chapter=152540
521#arch

VMProtect. (2008). VMProtect.
VMware. (2008). VMware.
Websense (2008). Analysis of Recent Storm Worm Packer. Journal.

Retrieved
from http://securitylabs.websense.com/content/Blogs/3083.aspx

Williamson, K. (2002). Research methods for students, academics and
professionals, Second Edition. Wagga Wagga, NSW: Print Quick.

http://www.offensivecomputing.net/dc14/valsmith__dquist_hacking_malware_us06.pdf�
http://www.offensivecomputing.net/dc14/valsmith__dquist_hacking_malware_us06.pdf�
http://my.stargazer.at/2006/11/07/anti-sandbox-code-anhand-von-norman/�
http://my.stargazer.at/2006/11/07/anti-sandbox-code-anhand-von-norman/�
http://www.datasecurity-event.com/uploads/hump_dump.pdf�
http://www.datasecurity-event.com/uploads/hump_dump.pdf�
http://www.ryan1918.com/viewtopic.php?t=11045�
http://trendmicro.mediaroom.com/index.php?s=43&item=700�
http://www.virusbtn.com/resources/glossary/blended_threat.xml�
http://www.virusbtn.com/resources/glossary/blended_threat.xml�
http://www.virustotal.com/en/virustotalf.html�
http://www.virustotal.com/en/virustotalf.html�
http://www.viruslist.com/en/virusesdescribed?chapter=152540521#arch�
http://www.viruslist.com/en/virusesdescribed?chapter=152540521#arch�
http://securitylabs.websense.com/content/Blogs/3083.aspx�

Analysis Avoidance Techniques of Malicious Software

 199

Winalysis.com. (2008). WinAlysis.
Wysopal, C. (2009). Good Obfuscation, Bad Code. Retrieved May 03 2009,

from http://www.securityfocus.com/columnists/498?ref=oc
xC. (2007). Defeating Anubis File Analyzer. Retrieved Jul 21, 2007

from http://www.ryan1918.com/viewtopic.php?p=68714&sid=35444
8fa02136b766d94dfcea11b4e2d

Xuxian, J., Xinyuan, W., & Dongyan, X. (2007). Stealthy malware detection
through vmm-based "out-of-the-box" semantic view reconstruction.
Paper presented at the Proceedings of the 14th ACM conference on
Computer and communications security.

Yan, W., Zhang, Z., & Ansari, N. (2008). Revealing Packed Malware. IEEE
Security and Privacy 6 (5), 65-69.

Yan, Z., & Inge, W. M. (2008). Malware detection using adaptive data
compression. Paper presented at the Proceedings of the 1st ACM
workshop on Workshop on AISec.

Yason, M. (2007). The Art of Unpacking. Retrieved Feb 12, 2008 from
https://www.blackhat.com/presentations/bh-usa-
07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf

Yin, H., Song, D., Egele, M., Kruegel, C., & Kirda, E. (2007). Panorama:
capturing system-wide information flow for malware detection and
analysis. Paper presented at the Proceedings of the 14th ACM
conference on Computer and communications security.

yoda. (2005a). LordPE.
yoda. (2005b). Yoda's Protector.
Yuschuk, O. (2008). OllyDbg.
Zeltser, L. (2007). Reverse Engineering Malware: Tools and Techniques

Hands-On. Bethesda: SANS Institute.
Zhang, Q., Reeves, D., Ning, P., & Purushothaman Iyer, S. (2007).

Analyzing network traffic to detect self-decrypting exploit code. Paper
presented at the Proceedings of the 2nd ACM symposium on
Information, computer and communications security.

Zhou, Y., & Meador Inge, W. (2008). Malware detection using adaptive data
compression. Paper presented at the Proceedings of the 1st ACM
workshop on Workshop on AISec.

http://www.securityfocus.com/columnists/498?ref=oc�
http://www.ryan1918.com/viewtopic.php?p=68714&sid=354448fa02136b766d94dfcea11b4e2d�
http://www.ryan1918.com/viewtopic.php?p=68714&sid=354448fa02136b766d94dfcea11b4e2d�
http://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf�
http://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf�

	Analysis avoidance techniques of malicious software
	Recommended Citation

	CHAPTER 1 INTRODUCTION
	1.1. OVERVIEW
	1.2. A STATEMENT OF THE PROBLEM
	1.4. SIGNIFICANCE OF RESEARCH
	1.5. STRUCTURE OF THIS THESIS

	CHAPTER 2 LITERATURE REVIEW
	2.1. CHARACTERISATION OF NETWORK BASED MALWARE
	2.1.1. Worms
	2.1.2. Trojans
	2.1.3. Rootkits
	2.1.4. Backdoors
	2.1.5. Bots
	2.1.5.1. Evolution of Bots

	2.1.6. Blended Threats
	2.1.7. Anatomy of a Worm
	2.1.8. Defence Methods

	2.2. PROFILING
	2.2.1. Static Analysis
	2.2.2. Dynamic Analysis

	2.3. OVERVIEW OF COMMON MANUAL ANALYSIS METHODOLOGIES
	2.6. ANTI ONLINE ANALYSIS ENGINES
	2.7. ANTI REVERSING TECHNIQUES
	2.7.1. Eliminating symbolic information
	2.7.2. Code encryption
	2.7.3. Active anti-debugger techniques
	2.7.4. Confusing disassemblers
	2.7.5. Code obfuscation
	2.7.6. Control flow transformations
	2.7.7. Data transformations

	2.8. ANTI UNPACKING
	2.8.1. Anti Unpacking by Anti Dumping
	2.8.1.1. Size of Image
	2.8.1.2. Erasing the Header
	2.8.1.3. Nanomites
	2.8.1.4. Stolen Bytes
	2.8.1.5. Guard Pages
	2.8.1.6. Imports
	2.8.1.7. Virtual Machines
	2.8.1.8. Anti Unpacking by Anti Debugging
	2.8.1.9. NtGlobalFlag
	2.8.1.10. Heap Flags
	2.8.1.11. The Heap
	2.8.1.12. Special API’s
	2.8.1.12.1. IsDebugger Present
	2.8.1.12.2. Check Remote Debugger Present
	2.8.1.12.3. NtQueryInformationProcess
	2.8.1.12.4. Debug Objects
	2.8.1.12.5. NtQuery Object
	2.8.1.12.6. Thread Hiding
	2.8.1.12.7. Open Process
	2.8.1.12.8. Close Handle
	2.8.1.12.9. Output Debug String
	2.8.1.12.10. Read File
	2.8.1.12.11. Write Process Memory
	2.8.1.12.12. Unhandled Exception Filter
	2.8.1.12.13. Block Input
	2.8.1.12.14. Suspend Thread
	2.8.1.12.15. Guard Pages
	2.8.1.12.16. Alternative Desktop

	2.8.2. Hardware Tricks
	2.8.2.1. Prefetch Queue
	2.8.2.2. Hardware Breakpoints
	2.8.2.3. Instruction Counting
	2.8.2.4. Execution Timing
	2.8.2.5. EIP via Exceptions

	2.8.3. Process Tricks
	2.8.3.1. Header Entry Point
	2.8.3.2. Parent Process
	2.8.3.3. Self Execution
	2.8.3.4. Process Name
	2.8.3.5. Threads
	2.8.3.6. Self Debugging
	2.8.3.7. Disassembly
	2.8.3.8. TLS Callback
	2.8.3.9. Device Names
	2.8.3.10. SoftIce Specific
	2.8.3.10.1. Driver Information
	2.8.3.10.2. Interrupt 1

	2.8.3.11. OllyDbg Specific
	2.8.3.11.1. Malformed Files
	2.8.3.11.2. Initial ESI Value
	2.8.3.11.3. Output Debug String
	2.8.3.11.4. Find Window
	2.8.3.11.5. Guard Pages

	2.8.3.12. Hide Debugger Specific
	2.8.3.13. Immunity Debugger Specific
	2.8.3.14. WinDbg Specific
	2.8.3.14.1. Find Window

	2.8.3.15. Miscellaneous Tools
	2.8.3.15.1. Find Window

	2.8.4. Anti Unpacking by Anti Emulating
	2.8.4.1. Software Interrupts
	2.8.4.1.1. Interrupt 3

	2.8.4.2. Time Locks
	2.8.4.3. Invalid API Parameters
	2.8.4.4. Get Proc Address
	2.8.4.5. Get Proc Address (Internal)
	2.8.4.6. “Modern” CPU Instructions
	2.8.4.7. Undocumented Instructions
	2.8.4.8. Selector Verification
	2.8.4.9. Memory Layout
	2.8.4.10. File Format Tricks
	2.8.4.10.1. Non Aligned Size of Image
	2.8.4.10.2. Overlapping Instructions
	2.8.4.10.3. Non Standard Number of RVA and Sizes
	2.8.4.10.4. Non Aligned SizeOfRawData
	2.8.4.10.5. Non Aligned PointerToRawData
	2.8.4.10.6. No Section Table

	2.8.5. Anti Unpacking by Anti Intercepting
	2.8.5.1. Write->Exec
	2.8.5.2. Write^Exec

	2.8.6. Miscellaneous
	2.8.6.1. Fake Signatures

	2.9. PROCESS INJECTION TECHNIQUES
	2.10. CODE EXECUTION FROM MEMORY
	2.11. CHECKSUM CHECKS
	2.12. PROCESS CAMOUFLAGE
	2.13. STRUCTURED EXCEPTION HANDLING
	2.14. IMPORT ADDRESS TABLE
	2.15. ROOTKITS
	2.15.1. System Service Dispatch Table
	2.15.2. IAT Hooking
	2.15.3. Inline Function Hooking
	2.15.4. SSDT Hooking
	2.15.5. Direct Kernel Object Manipulation

	2.16. PACKERS AND PROTECTORS
	2.16.1. ASProtect
	2.16.1.1. Unpacking ASProtect

	2.16.2. The Problem with Packers

	2.17. PLUGINS
	2.18. SCRIPTING LANGUAGES
	2.19. TRACING
	2.20. NEW PARADIGMS FOR MALWARE DETECTION
	2.20.1. Statistical Structures
	2.20.5. Obfuscation Detection

	2.21. IMPLICATIONS OF THE LITERATURE REVIEW

	CHAPTER 3 RESEARCH METHODS
	3.1. A MODEL OF THE RESEARCH PROCESS
	3.2. RESEARCH PARADIGMS
	3.2.1. Positivism
	3.2.2. Interpretivism
	3.2.3. Critical Research
	3.2.4. Research Paradigm Selected for this Research

	3.3. EMPIRICAL RESEARCH
	3.3.1. Selected Empirical Research Method

	3.4. EXPERIMENTAL STRATEGIES
	3.4.1. True Experiment
	3.4.2. Quasi Experiment

	3.5. CHOICE OF RESEARCH METHOD
	3.6. CONCEPTUAL FRAMEWORK
	3.6.1. Validation of Techniques
	3.6.2. Collection of Network Based Malware
	3.6.3. Analysis of Collected Malware Packers
	3.6.4. Risk Mitigation

	3.7. RESEARCH DESIGN
	3.7.1. Validate Individual Techniques
	3.7.2. Analysis of Collected Malware

	CHAPTER 4 VALIDATION OF ANTI-ANALYSIS TECHNIQUES RESULTS
	4.1. OVERVIEW
	4.2. METHODOLOGY
	4.2.1. Implement the technique in as simple a program as possible
	4.2.2. Observe if the anti-analysis technique is successful or not
	4.2.3. Implement a detection script or employ a detection technique to try to detect the presence of the technique.
	4.2.4. Observe if the detection technique is successful or not.
	4.2.5. Implement a mitigation script or technique to try and mitigate the use of the anti-analysis technique.
	4.2.6. Observe if the mitigation technique is successful or not.

	4.3. KERNEL32 ISDEBUGGERPRESENT() QUASI EXPERIMENT
	4.3.1. Implementation of anti-analysis technique
	4.3.2. Effectiveness of anti-analysis technique observation
	4.3.3. Implementation of detection of analysis avoidance technique
	4.3.4. Effectiveness of detection of technique observation
	4.3.5. Implementation of mitigation technique
	4.3.6. Effectiveness of mitigation technique observation

	4.4. PEB ISDEBUGGED() QUASI EXPERIMENT
	4.4.1. Implementation of anti-analysis technique
	4.4.2. Effectiveness of anti-analysis technique observation
	4.4.3. Implementation of detection of analysis avoidance technique
	4.4.4. Effectiveness of detection of technique observation
	4.4.5. Implementation of mitigation technique
	4.4.6. Effectiveness of mitigation technique observation

	4.5. PEB NTGLOBALFLAGS() QUASI EXPERIMENT
	4.5.1. Implementation of anti-analysis technique
	4.5.2. Effectiveness of anti-analysis technique observation
	4.5.3. Implementation of detection of analysis avoidance technique
	4.5.4. Effectiveness of detection of technique observation
	4.5.5. Implementation of mitigation technique
	4.5.6. Effectiveness of mitigation technique observation

	4.6. HEAP FLAGS QUASI EXPERIMENT
	4.6.1. Implementation of anti-analysis technique
	4.6.2. Effectiveness of anti-analysis technique observation
	4.6.3. Implementation of detection of analysis avoidance technique
	4.6.4. Effectiveness of detection of technique observation
	4.6.5. Implementation of mitigation technique
	4.6.6. Effectiveness of mitigation technique observation

	4.7. NTQUERYINFORMATIONPROCESS() QUASI EXPERIMENT
	4.7.1. Implementation of anti-analysis technique
	4.7.2. Effectiveness of anti-analysis technique observation
	4.7.3. Implementation of detection of analysis avoidance technique
	4.7.4. Effectiveness of detection of technique observation
	4.7.5. Implementation of mitigation technique
	4.7.6. Effectiveness of mitigation technique observation

	4.8. KERNEL32 CHECKREMOTEDEBUGGERPRESENT() QUASI EXPERIMENT
	4.8.1. Implementation of anti-analysis technique
	4.8.2. Effectiveness of anti-analysis technique observation
	4.8.3. Implementation of detection of analysis avoidance technique
	4.8.4. Effectiveness of detection of technique observation
	4.8.5. Implementation of mitigation technique
	4.8.6. Effectiveness of mitigation technique observation

	4.9. UNHANDLED EXCEPTION FILTER QUASI EXPERIMENT
	4.9.1. Implementation of anti-analysis technique
	4.9.2. Effectiveness of anti-analysis technique observation
	4.9.3. Implementation of detection of analysis avoidance technique
	4.9.4. Effectiveness of detection of technique observation
	4.9.5. Implementation of mitigation technique
	4.9.6. Effectiveness of mitigation technique observation

	4.10. NTSETINFORMATIONTHREAD() QUASI EXPERIMENT
	4.10.1. Implementation of anti-analysis technique
	4.10.2. Effectiveness of anti-analysis technique observation
	4.10.3. Implementation of detection of analysis avoidance technique
	4.10.4. Effectiveness of detection of technique observation
	4.10.5. Implementation of mitigation technique
	4.10.6. Effectiveness of mitigation technique observation

	4.11. KERNEL32 CLOSEHANDLE() AND NTCLOSE()QUASI EXPERIMENT
	4.11.1. Implementation of anti-analysis technique
	4.11.2. Effectiveness of anti-analysis technique observation
	4.11.3. Implementation of detection of analysis avoidance technique
	4.11.4. Effectiveness of detection of technique observation
	4.11.5. Implementation of mitigation technique
	4.11.6. Effectiveness of mitigation technique observation

	4.12. USER-MODE TIMERS QUASI EXPERIMENT
	4.12.1. Implementation of anti-analysis technique
	4.12.2. Effectiveness of anti-analysis technique observation
	4.12.3. Implementation of detection of analysis avoidance technique
	4.12.4. Effectiveness of detection of technique observation
	4.12.5. Implementation of mitigation technique
	4.12.6. Effectiveness of mitigation technique observation

	4.13. KERNEL32 OUTPUTDEBUGSTRINGA() QUASI EXPERIMENT
	4.13.1. Implementation of anti-analysis technique
	4.13.2. Effectiveness of anti-analysis technique observation
	4.13.3. Implementation of detection of analysis avoidance technique
	4.13.4. Effectiveness of detection of technique observation
	4.13.5. Implementation of mitigation technique
	4.13.6. Effectiveness of mitigation technique observation

	4.14. ROGUE INT3 QUASI EXPERIMENT
	4.14.1. Implementation of anti-analysis technique
	4.14.2. Effectiveness of anti-analysis technique observation
	4.14.3. Implementation of detection of analysis avoidance technique
	4.14.4. Effectiveness of detection of technique observation
	4.14.5. Implementation of mitigation technique
	4.14.6. Effectiveness of mitigation technique observation

	4.15. “ICE” BREAKPOINT QUASI EXPERIMENT
	4.15.1. Implementation of anti-analysis technique
	4.15.2. Effectiveness of anti-analysis technique observation
	4.15.3. Implementation of detection of analysis avoidance technique
	4.15.4. Effectiveness of detection of technique observation
	4.15.5. Implementation of mitigation technique
	4.15.6. Effectiveness of mitigation technique observation

	4.16. INTERRUPT 2DH QUASI EXPERIMENT
	4.16.1. Implementation of anti-analysis technique
	4.16.2. Effectiveness of anti-analysis technique observation
	4.16.3. Implementation of detection of analysis avoidance technique
	4.16.4. Effectiveness of detection of technique observation
	4.16.5. Implementation of mitigation technique
	4.16.6. Effectiveness of mitigation technique observation

	4.17. POPF AND THE TRAP FLAG QUASI EXPERIMENT
	4.17.1. Implementation of anti-analysis technique
	4.17.2. Effectiveness of anti-analysis technique observation
	4.17.3. Implementation of detection of analysis avoidance technique
	4.17.4. Effectiveness of detection of technique observation
	4.17.5. Implementation of mitigation technique
	4.17.6. Effectiveness of mitigation technique observation

	4.18. SUMMARY OF VALIDATION OF TECHNIQUES RESULTS

	CHAPTER 5 ANALYSIS OF COLLECTED MALWARE RESULTS
	5.1. OVERVIEW
	5.2. VIRUS SIGNATURES
	5.2.1. Anubis
	5.2.2. Virus Total

	5.3. MALWARE FUNCTIONALITY
	5.4. PACKER ANALYSIS
	5.5. SUMMARY OF COLLECTED MALWARE RESULTS

	CHAPTER 6 DISCUSSION
	6.1. DISCUSSON OF VALIDATION OF ANTI-ANALYSIS TECHNIQUES RESULTS
	6.2. DISCUSSION OF COLLECTED MALWARE ANALYSIS RESULTS
	6.3. RESEARCH QUESTION 1 - WHAT TECHNIQUES CAN MALWARE USE TO AVOID BEING ANALYZED?
	6.4. RESEARCH QUESTION 2 – HOW CAN THE USE OF THESE TECHNIQUES BE DETECTED?
	6.5. RESEARCH QUESTION 3 – HOW CAN THE USE OF THESE TECHNIQUES BE MITIGATED?
	6.6. LIMITATIONS OF THE STUDY
	6.6.1. Methodology

	6.7. DISCUSSION OF CONTRIBUTION TO KNOWLEDGE
	6.7.1. Confirmation that anti-analysis techniques are very effective
	6.7.2. Anti-analysis techniques can be detected and mitigated
	6.7.3. Confirmation that virus signature detection is less than ideal
	6.7.4. Malware extensively uses Packers and Protectors
	6.7.5. Support for a new paradigm for malware detection
	6.7.6. Identification of analysis tool deficiencies
	6.7.7. Determination of suitable malware analysis methodology
	6.7.8. Development of a taxonomy of analysis avoidance techniques
	6.7.9. Malware Analysis Body of Knowledge

	6.8. FUTURE RESEARCH
	6.8.1. Hypothesis
	6.8.2. Plugin Development
	6.8.3. Collation of Techniques
	6.8.4. Improved Packer Signature Detection
	6.8.5. A New Paradigm for Malware Detection
	6.8.6. A Model for Automating the Spiral Analysis Methodology

	CHAPTER 7 CONCLUSION
	7.1. ANALYSIS AVOIDANCE TECHNIQUES OF MALWARE
	7.2. CONTRIBUTION TO KNOWLEDGE
	7.2.1. Confirmation that anti-analysis techniques are very effective
	7.2.2. Anti-analysis techniques can be detected and mitigated
	7.2.3. Confirmation that virus signature detection is less than ideal
	7.2.4. Malware extensively uses Packers and Protectors
	7.2.5. Support for a new paradigm for malware detection
	7.2.6. Identification of a Malware Body of Knowledge
	7.2.7. Identification of analysis tool deficiencies
	7.2.8. Determination of a suitable malware analysis methodology
	7.2.9. Development of a taxonomy of analysis avoidance techniques

	7.4. LESSONS LEARNED FROM RESEARCH APPROACH AND CONDUCT
	7.5. RESEARCH IMPLICATIONS

