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Abstract

The aim of this thesis is to develop a methodology for the selection of a paradigm of
reasoning under uncertainty for the expert system developer. This is important since
practical information on how to select u paradigm of reasoning under uncertainty is

not generally available.

The thesis explores the role of uncertainty in an expert system and considers the
process of reasoning under uncertainty. The possible sources of uncertainty are

investigated and prove to be crucial to some aspects of the methodology.

A variety of Uncertainty Management Techniques (UMTS) are considered, including
numeric. symbolic and hybrid methods. Considerably more information is found in
the literature on numeric methods, than the latter two. Methods that have been
proposed for comparing UMTs are studied and comparisons reported in the literature
are summarised. Again this concentrates on numeric methods. since there is more

literature available.

The requirements of a methodology for the selection of a UMT are considered. A
manual approach to the selection process is developed. The possibility of extending
the boundaries of knowledge stored in the expert system by including meta-data to
describe the handling of uncertainty in an expert system is then considered. This is
followed by suggestions taken from the literature for automating the process of

selection.

Finally consideration is given to whether the objectives of the research have been met
and recommendations are made for the next stage in researching a methodology for
the selection of a paradigm of reasoning under uncertainty in expert system

development.
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Chapter 1: Introduction

1.1 Chapter overview

Chapter One introduces the tliesis. which is concerned with the developinent of a
methodology for the selection of a paradigm of reasoning under uncertainty in
expert system development. The chapter explains the research that will be covered.
The significance of the study and the purpose of the study are described in the s ht
of literature material. The research questions are posed and the organisation of the

thesis 1s outlined.

1.2 Introduction to the thesis

This thesis is concerned with the investigation of paradigms of reasoning under
uncertainty that have been applied tc expert systems. It will consider in detai! a
number of Uncertainty Management Techniques (UMTs) and consider their
application. Procedures to compare UMTSs will be investigated and an attempt
made to develop a methodology that can be used to select the appropriate UMT for

a particular expert system development.



1.3 The significance of the study

The research topic outlined above, was suggested to me by a (then) lecturer in
Compt ‘er Science at Edith Cowan University, Mr. Tim Roberts. He has some
experience in the development of Diignostic Expert Systems. He had discovered
that although there were many theoretical papers on the subject of uncertainty in
expert systems. practical information on how to select a paradigm of reasoning

under uncertainty was not readily available.

Expert systems are designed to solve real-life problems. Such problems are often
not straightforward enough to be dealt with by the use of applied predicate calculus
-- as was hoped in the 1960s (Lucas & Van Der Gaag, 1991). Expert systems may
be distinguished from classical decision theory systems by the importance of the
“representation of knowledge in an explicit qualitative form rather than implicitly

in an algorithmic form” (Fox, Clark. Glowinski. O’Neil. 1990).

The real-life situations tackled by expert systems are often typified by a degree of
uncertainty. This tnay include imprecise or conflicting information. Since expert
system applications are designed to deal with real-life problems at the level of the
human expert, they must cope with uncertain information. However. uncertainty
does not arise from a single source and may arise even in completely deterministic
systems (Rothman, 1989). This concept is dealt with in more detail in section 2.5

Sources of uncertainty.



In the development of cxpert systems that deal with uncertain information, the
selection of a paradigm of reasoning under unceitainty is critical (Hsu & Chu,
1989). If uncertainty is not properly dealt with, the expert system may have an

illusion of precision (Kerr, 1992).

The largest group of expert systems that must deal with uncertainty are referred te

as diagnostic systems (Weichselberger & Pohlman. 1990). This type of system is

most often connected with the medical field but examples are also present in many

other fields including financial planning, accounting, geology, meteorology and

the control of technical installations.

Techniques have been developed specifically for handling uncertainty in expert
systems. For example Certainty Factors were developed for the early medical
expert system MYCIN (Shortliffe & Buchanan, 1975). Others especially the
probability based methods have evolved from long established mathematical
techniques (Bhatnagar & Kanal, 1986). However, in the theory of the
management of uncertainty there is often criticism of Certainty factors as being
mathematically invalid. Is the criticism valid or is it enough for a technique to
produce satisfactory results? If so, then how should the selection of a method be

made and on what criteria should that selection be based?

10



1.4 The purpose of the study

Muiny different paradigms for reasoning under uncertainty in expert systems have
becn proposed in the last twenty-five years, Most of them have been numeric
systems often based. however loosely, on mathematical probability. Some have
argued that the uncertainty in expert systems cannot be combined into numeric
values (Cohen. 1988). More recently there has been the development of hybrid
systems that have numeric and non-numeric components (D’Ambrosio. 1988)

(Cohen. 1985).

In recent years there has been an almost religious debate about which is the right
system to use for reasoning under uncertainty. Some have claimed that the
established mathematical probability methods must be used (Cheeseman. 1986)
(Lindley. 1985). whilst others have claimed that new methods are required (Zadeh,
1986). Max Henrion, in the preface to Uncertainty in Artificial Inteiligence 5
indicates that this debate is inappropriate (Henrion. 1990). He suggests that it is not
possible to select onie UMT over another by considering only the basic mechanics
or mathematical soundness of the theory. There are other practical considerations
that must also be made such as the reliability and complexity of calculations. In
addition users must be able to understand the model in order to provide data that

can be used with confidence.

11



Henrion suggests that the criterion for success of an approach is its effectiveness
tor application. "The marketplace for idcas, like more tangible goods., is ultimately
ruled more by consumers than producers.” (Henrion et al. 1990, p. v). This thesis
will explore the experience gained in the marketplace and look for

recommendations that can be made © "consumers”.

Clark agrees that attempts to demonstrate that one particular UMT was the best for
all situations. were unfortunate. He concurs with the aim ol this study “to suggest

the most appropriate paradigm for a particular situation™ (Clark. 1990. p. 140).

Saffioti supports the argument that it is appropriate to identify the paradigm of
reasoning under uncertainty that should be used for a given application (Saffioti.
1988). Fox suggests that the debate about the correct way of dealing with
uncertainty is unfortunate. He submits rather that debate should focus on
considering the strengths and weaknesses of alternate methods of representing

uncertainty (Fox, 1986).

The objective of this study is to select from the many alternatives. the most
appropriate paradigm for reasoning under uncertainty for a particular application.
Ginsherg (1986) advises that comparing the theory of UMTs is difficult. "The true
advantages of the various competing paradigms will only be apparent when these
paradigms have been incorporated in full-scale systems." It is now true that many

paradigms are in use, and this thesis will investigate them. However, there

12



continue to be theoretical developments that cannot be ignored. Where possible

these developments will be given some consideration.

1.5 Statement of research questions

In the early stuges of expert system development, the selection of a paradigm for
reasoning under uncertainty is important. However Hsu and Chu in their paper
"Practical issues in designing knowledge-based expert systems” (Hsu & Chu,
1989) identify the representation of uncertainty as one¢ area that is often neglected
in the design of an expert system. This is unfortunate. since an Uncertainty
Management Technique (UMT) provides the expert system with 2 means of
assessing evidence and making credible inferences about hypotheses in an

indefinite environment.

This project has two aims.

1. To define the criteria on which the selection of a paradigm of reasoning under

uncertainty for an expert system should be made.

2. To consider whichrecent advances in the theory of reasouning undet uncertainty

are worthy of consideration for incorporation into expeit system developments.

The first is the major aim and the thesis will be structured around this aim. The
second is considered to be of secondary importance and will be censidered

alongside the first.

13



In an attempt io answer these questions, information will be gathered from two

ITELOT s0oUrces.

{.  The theory of reasoning under uncertainty. There is a great deal of material

available in journals and books

[

Expert System applications. Detailed information on the success or failure of
the particular UMT used is more difficult to obtain. There are a few usetul
studies that discuss the attributes of systems in relation to their reasoning

under uncertainty.

1.6 Organisation of the thesis

Chapter 2 sets the scene for this study. It outlines the structure of expert systems
and discusses how uncertainty may become a part of this structure. It discusses the
role of uncertainty and explains the process of reasoning under uncertainty. The
problem faced by the expert system developer of having to select a paradigm of
reasoning under uncertainty is described, sources of uncertainty are outlined and

the concept of validating expert systems is discussed.

Chapter 3 provides the detail of the major paradigms for reasoning under
uncertainty in expert systems. Several numeric approaches are discussed at length,
whilst the symbolic and hybrid approaches receive rather less detailed
consideration. For each paradigm the advantages anc disadvantages of the
technique are discussed and in some cases the relationship to other UMTs is

clarified.

14



Chapter 4 begins by considering structures by which campartsons of paradigms for
reasonmg under uncertainty may be made. A list of the requirements of a theory of
uncertainty management due to Bonissone (Bonissone, 1987) is discussed, A

comparison of techniques is then made in the nght of these ideas.

Suggestions concerning how to select a specific UMT for a particular application
are to be found in chapter 5. This includes a discussion of the process of making a

decision and the concepts of the expert systems that should be given cognisance.

Chapter 6 concludes this study by considering whether the objectives have been

met and making recommendations for the next step in the study of this topic.

Finally. a comprehensive bibliography is included at the end of the thesis.

15



Chapter 2: Expert Systems and reasoning

under uncertainty

2.1 Chapter overview

This chapter explains the concept of an expert system. It considers the structure of
expert systems and how uncertainty may be incorporated into them. The reasoning
process is outlined, as are the required changes to reasoning when uncertainty is
involved. The requirement for an expert system developer to consider uncertainty
is discussed. Sources of uncertainty are investigated that will indeed prove
important in selecting the appropriate paradigm of reasoning under uncertainty.
Finally the chapter considers the process of validation of expert systems and
explains why this validation process is necessarily different from that in a system

that uses exact reasoning.

2.2 Expert systems

An expert system is designed to make judgments in a complex field. Itis supposed
to make judgments at least as well as a human expert. This goal can be approached
from two different perspectives. The first is to concentrate solely on the results of
the system, if it makes the same recommendations as the human expert then that is

all that is required of the system. The second approach achieves the same results

16



but places additional importance on the reasomng process that achieved those
results. This process shoutd be as close as s possibie to the psychological
reasoning provess that is used by the human expert. It has been argued that
backward chaining uses a process that s similar to the human expert when

propositional data is used (Neopolitan, 1990)).

Backward chaining is the process of reasoning from a conclusion to proving the
facts that support that conclusion. Forward chaining is the reverse process of
reasoning from the facts to the conclusions that the facts support. Both directions
of reasoning have been used by the inference engine of expert systems. EMYCIN
uses backward chaining whilst OPSS and CLIPS use forward chaining (Giarratano
& Riley. 1994). Some inference engines actually allow both types of reasoning. A
backward chaining reasoning process is usually more convergent simply because

irrelevant facts can be discarded immediately (Juckson, 1990).

The greater number of expert system applications may be defined as clussification
problems (Ignizio. 1991). Included here are the diagnostic systems that given a set
of symptoms will attempt to diagnose the disease and also systems that consider
the cause of machinery failure. Since this type of system is attempting to establish
an hypothesis given the conclusion, backward chaining reasoning is preferable.
Forward chaining should be selected for other types of expert systems, those that
attempt to solve construction problems (Ignizio, 1991). This includes expert

systems for prognosis, monitoring and control (Giarratano & Riley. 1994). For

17



example XCON was to advise on suttable configurations of VAX computers

(McDermott, 19821,

Expert systems generally work in a narrow domain. MYCIN, probably the world’s
best known expert system was intended to be used tor diagnosis of infectious
blood discases (Shortliffe. 1975). Despite this. complete certain knowledge of that
domain is the exception rather than the rule. Human experts very often must reach
decisions with concepts that are unreliable. incomplete or inconsistent and expert
systems must do the same. Velverde and Gehl emphasise that expert systems must
be capable of managing uncertainty before they can thrive in their intended field

and use their knowledge successfully (Valverde & Gehl. 1992).

2.3 Expert system structure

Expert systems are usually considered to have three main components. a
knowledge base, inference engine and user interface. These components
respectively represent, manipulate and communicate knowledge. In addition. most
systems also contain explanation and trace facilities. The interfaces between these
components are shown in Fig 2.1. Explanation facilities are primarily for the expert
system user and will provide more information on such questions as "How did you

reach that answer?", whereas trace facilities are for the knowledge engineer and

18



will provide for stepping through the interencing process (Lucas & Van der Gaag,

1991).

User Interface

RN

Explanation Trace
Facilities Facilities

; i
k]
A

Inference Engine

Knowledge Base

Figure 2.1 The Structure of an Expert System

How does the processing of uncertainty fit into the structure of an expert system?
There are two possibilities. First from (Cortez-Rello and Golshani, 1590) is the
separate approach that includes two additional inodules in an expert system, the

Belief base and Uncertainty module. They indicate that the Belief base



communicates with the Uncertainty module which in turn communicates with the
inference engine. An integrated approach would include aspects of uncertainty in
all the components of the system. Since uncertainty must he represented.,
manipulated and communicated it will he a part of cach of the three major

components. Bonissone endorses the integrated approach

In building expert-system architectures three distinct layers must be
defined: representation, inference, and control layers. The treatment of
uncertainty must address each of these layers. (Bonissone, 1987, p.
859)

Paul Cohen confirms that the integrated approach is important by emphasising that
the management of uncertainty should not be an after thought that is an addition to
a categorical inference system. He views uncertainty management as an “integral

part of the problem solving process.” (Cohen. 1989. p. 263)

2.4 The role of uncertainty in expert systems

Expert systems need to have the capability to infer from premises that are
imprecise, incomplete or not totally reliable, just as human experts function in the
same situation. The strict implication, “for all x. A(x) implies B(x)" is weakened
by some degree, expressed as a scalar value, to “for most x. A(x) implies B(x}"
(Bonissone, 1987). Less formally this statement has been phrased “the A’s are B's”
or “generally the A’s are B’s”. A group of French researchers investigated the ways
uncertainty was introduced into this statement in various formalisms. They used

the title, Lea Sombe, from the French “les A sont B (Lea Sombe, 1990). Their

20



versions of this statement expressed using vartous paradigms of reasoning under

uncertainty will be considered in the appropnate sections of Chapter 3.

The degree to which there is still a belief in the implication has been called @
degree of belief (Shater. 1976). The functions that propagate degrees of belief over
inferences are called combimng functions. Some systems propagate two degrees of
belief. usually an upper and a lower bound. so indicating a range of values.

Bonissone explains the process of reasoning under uncertainty:

Facts must be aggregated to determine the degree to which the premise
of a given rule has been satisfied, to verify the extent to which external
constraints have been met, to propagate the amount of uncertainty
through the triggering of a given rule, to summarize the findings
provided be various rules or knowledge sources or experts, to detect
possible inconsistencies among the various sources, and to rank
different alternatives of different goals. (Bonissone, 1987, p. 854).

Bob Avanzato. an expert system developer. was looking for a suitable UMT to use
in an Acoustic Signal Interpretation Expert System. He considered uncertainty to
be an integral part of the expert system. and emphasised the importance of this part
of the system. He felt that the UMT must be able to represent and reason with
uncertainty, and should encompass all the facets of uncertainty in order to
guarantee success in the evolution and installation of the expert system (Avanzato.

1991 )(see Section 2.5 Sources of uncertainty).

Some have seen the numerical approaches to uncertainty as attempting to produce
results with excessive precision. Most numeric UMTs require numerical values
from the user as an accurate measure on a scalar or interval scale. They then

perform complex calculations that produce seemingly precise results. It has been
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suggested that this apparent accuracy may not be justified given the difficulty of

obtaining accurate initial figures (Bonissone. 1987).

2.5 Sources of uncertainty.

It would be convenient to package all forms of uncertainty into a single bundle and
deal with this in a consistent manner throughout the expert system. Bonissone

reminds us that uncertainty is not a single issue.

the presence of uncertainty in reasoning systems is caused by a variety
of sources: the reliability of the information, the inherent imprecision of
the representation language in which the information is conveyed, the
incompleteness of the information, and the aggregation or summarization
of information from multiple sources. (Bonissone, 1987, p. 854)

All uncertainty involved in expert systems then. does not arise from a single
source. In fact it may be inappropriate to package several different concepts
together when considering expert systems or any reasoning system. Ng and
Abramson (1990, p. 30) identify the same four sources of uncertainty as Bonissone

but use diffe~~nt terminology. Each will be considered individually.

1. Lack of precision of knowledge/natural language.

Ambiguities may not be clarified during translation to a formal language.
Thus it may be necessary to allow for the imperfect matching of facts with
premises. Statements such as “the economy has a low inflation rate™ are

imprecise (Bhatnagar & Kanal, 1992).
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2 Unreliable information.

May be due to:

I.  lll-defined domain concepts.

2. Inaccurate data possibly due to poor reliability of instruments used to
make the observations.
3. Weak implications may occur because the system builder is not able to

establish a concrete relationship between the antecedent and

consequent.

This is perhaps the only true *Uncertainty of knowledge' (Bhatnagar &
Kanel. 1992).

3. Incomplete information.

Partial information results when the answers to questions are unknown.
Approximate pattern matching is required here also. Bonissone (Bonissone.
1987) suggests that this type of uncertainty has often been modelled by non-

numerical methods.

23



4. Disagreement amongst experts.,

Conflicting information from a number of sources will result in conclusions that
are suspect. Bonissone points out that when unconditional facts are combined three

possible problems may appear:

« the single-valued certainty measure may be combined into an
interval-value

o the combination of conflicting statements could generate a
contradiction

o the rule of evidence may create an overestimate of the
aggregated fact if a normalization is used to hide a
contradiction. This was shown possible by Zadeh cited by
Bonissone (Bonissone, 1987).

It has been shown that it is possible that a consensus can be reached by

weighting each source. (depending on the expertise of the source) and thus
calculating composite information. It would however be difficult to define
the weights since this requires a weight [or each expert and experts do not

have uniform expertise across their domain (Ng & Abramson, 1990).

Graham (1991) suggests that it is important to consider two different kinds of

uncertainty arising from:

1. Natural variation

This includes such concepts as probability and possibility that can be

handled by statistical and fuzzy methods respectively (in Graham's view)



2. Conceptual apprehension,
This includes ideas of vagueness., variations in belief, degrees of truth, ete.

It would appear then that only the first of Ng and Abramson’s concepts is part of
the first of Graham's. The second. third and fourth listed by Ng and Abramson

however can all be included as Graham's second.

This thesis agrees with van der Lubbe and colleages that the type of uncertainty is
crucial to the selection of an appropriate paradigm of reasoning under uncertainty

for a given application (van der Lubbe. Backer & Krijgman. 1991).

2.6 Reasoning under Uncertainty

Exact reasoning involves the use of exact facts and exact conclusions follow. In a
deductive argument, the conclusion must follow from the premises. When facts are
uncertain there may be a great number of possible conclusions and the problem

becomes selecting the best conclusion.

When reasoning under uncertainty, a conclusion may be arrived at with less than
100% certainty. A doctor may diagnose a certain treatment because it appears
likely the patient has a disease. The treatment may be the correct decision without
confirmation of the diagnosis if there are few side effects to the treatment and the

cost (in time or money) of confirming the diagnosis is great.
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It is not clear how humin experts represent and reason under uncertainty. Some
have argued that a form of "logic™ 15 used. others that humans actually evaluate
probabilities. At the other end of the spectrum are those that suggest that no

exphicit representations are used (Graham, 1991 ). Whatever the method. it s true

that experts can make "usetul and meaningful recommendations” ¢ven when faced

with imprecise and uncertain information (Clarke, McLeish & Vyn, 1991).

If the presence of uncertaint, is acknowledged and a method of approximate
reasoning is to be included in an expert system then there remain two major

problems that must be resolved:

e how to measure the degree of inexactness and calculate certainty
factors for inexact situations,

o how to propagate uncertainty in making inferences and arrive at best
conclusions in spite of some rules not being definite.

(Cortes-Rello and Golshani, 1990, p. 9)
These problems can be summarised as how to represent and reason with
uncertainty. Chapter 3 considers various possible paradigms for reasoning under

uncertainty. Each provides its own solution to these problems.
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2.7 The problem for an expert system

developer.

Some expert system developers have not considered including the handling of

uncertainty in their systems. This has resulted in what Kerr referred to as an

“illusion of precision” (Kerr. 1992). He reported that ir. some (scheduling) systems

the lack of approximate reasoning can resuli in large numbers of calculations when

minor data changes are made. So the lack of a method for dealing with uncertainty

can result in major problems for the expert system.

The handling of uncertainty in expert systems is a complex task that has several
possible solutions. There are no simple methods to provide an answer to the
question "which UMT is appropriate for my expert system?". Expert systems are
being asked to solve more challanging problems that involve many types of
uncertainty and it is therefore becoming essential that the designers of expert

systems are able to select a UMT that is appropriate (Avanzato, 1991).

Bonissone describes a change in view that has occurred in the process of looking

for an appropriate method for dealing with uncertainty.

The search for a normative uncertainty theory to be used in reasoning
systems has long been a major driving force in our research community.
..... More recently, these controversies have subsided, and a slightly
more tolerant view has emerged. Uncertainty tools have been divided
into extensional and intentional approaches, according to their respective
focus on computational efficiency or purer semantics[Pearl, 1988]. There
has been an increased awareness of classes of problems requiring a
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prescriptive rather than a normative approach to reasoning with
uncertainty. (Bonissone, 1990, p. 237)

So it is no longer a matter of sclecting the method of reasoning under uncertainty
that is appropriate for expert systems. Rather a matter of sclecting the method that

is appropriate for a particular expert system (or set of similar systems).

This research aims to provide assistance in this selection. Chapter 4 compares
paradigms of reasoning under uncertainty and Chapter S provides a methodology

for the selection of an appropriate method.

2.8 Validation of expert systems -- its

implication for UMT's.

Definitions of expert systems often include some mention of the notion that they
can function at close to human expert levels (O'Kecfe. Balci & Smith. 1987). They
are usually expert only in a narrow domain, can produce recommendations, make
enquiries to complete gaps in their knowledge and often explain how a conclusion
has been reached (Graham, 1991). It is imperative that the expert system is able to
supply accurate responses and perform in a manner that is dependable (Guida &

Spampinato, 1989).

Quality assurance is a concept that has recently become important in almost every
endeavor. Yet in the past, the quality of many systems was rarely tested rigorously

to ascertain if a satisfactory level of performance was achieved. As with all other
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software, expert systems should undergo both validation and verification.
Validation means substantiating that the system performs accurately, whilst
verification is substantiating that a system has implemented its specification. Yet
this terminology does not in itself define a clear methodology that will allow the

quality ot an expert systems to be assured.

It is likely to be a longer process to validate an expert system that uses reasoning
under uncertainty than a system with a crisp reasoning process (Chang & Hall.
1992). In addition the importance of testing any system wili depend on the nature
of advice given by the system and whether anything critical is at stake if an
incorrect decision is made by the system. A critical domain has been defined as one
“where the occurrence of inappropriate or incorrect decision may cause damage”
(Guida & Spampinato, 1989). It is easy to imaging damage occurring if ncorrect

decisions were made in many medical and industrial fields.

It is worthwhile considering what it is that is to be validated, especially in an expert
system that reasons under uncertainty. Guida and Spampinato in their paper
“Assuring adequacy of expert systems in critical application domains™ distinguish
two fundamental parts of the yuality process (Guida & Spaminato. 1989). These
are the external behaviour and the intenal ontology. The former can be observed as
the results of the system but the later deals with the structure (knowledge
representation and reasoning algorithms) and content (knowledge base) of the

system.
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It could be argued for example that an expert system that produces satisfactory
(valid) results should be acceptable: MY CIN has received support of this kind
(Horvitz & Heckerman,1986). However it is a more widely held view that the
internal ontology including the reasoning process itself should be validated. not
simply the results it produces (O’Keefe. Balci & Smith, 1987) (Guida &
Spampinato. 1989). Some suggest it would be unreasonable to cxtend the
knowledge base or scale up to a larger application domain, a system that had a poor
reasoning process. The implication of this argument to UMTs is that they must not
only be shown to produce reasonable results but must support a valid reasoning

process.

An order has been suggested to this validation process. The inference engine.
knowledge acquisition facility and explanation facility should be validated first.
This is because these parts of the system are the most procedural and therefore
standard methods as used for more general computer systems could be used. This
may be the easier part of the validation when compared to validating the
knowledge base (Hollnagel, 1989). The performance of the system is heavily
reliant on the structure and content of the knowledge base. Consequently the
system must be validated continuously throughout the life of the system every time

the knowledge base is updated.

The validation process requires some known or expected behaviours to validate
against. It is important that these should not have been used in the development of

the system. The opinion of an expert or group of experts should normally be used
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but in some problem domains it may be feasible to use known results instead
(Chang & Hall, 1992). There may be a difficulty if tne validation fiils in
determining whether the error is in the expert system or is with the test results

themselves.

The validation of an imprecise or fuzzy expert system has an additional level of
complexity. Not only must the correct recommendaiion be made by the system but
it must be made with an appropriate strength. In a system using fuzzy logic -- “the
fuzzy set defined by the conclusion must be within the acceptable bounds of its

possible range” {Chang & Hall, 1992. p. 600).
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Chapter 3: The theory and practice of

uncertainty management

3.1 Chapter overview

This chapter discusses the variety of methods that have been suggested for handling
reasoning under uncertainty in expert systems. The UMTs presented here are divided
into three main groups, numeric. symbolic and hybrid (which is a combination of the

previous two).

In this chapter each technique is presented, advantages and disadvantages of the

techniques are discussed and in some cases the relationship to other UMTs is clarified.

An objective comparison of paradigms for reasoning under uncertainty may be found
in chapter 4, whilst suggestions as to how to select a specific UMT for a particular
apnlication are to be found in chapter 5. Figure 3.1 on the next page shows various

classifications of UMTs that will be considered.
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Reasoning under
uncertainty
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Hybrid (Non-numeric)
| l I
Theory of Non-monotonic
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Bayesian Certainty DeBn;?.s:e;zhafer Support Logic
Probability Factors e ory Programming

F ig 3.1 Paradigms of reasoning under uncertainty

3.2 Numeric approaches

3.2.1 Bayesian

Probability is the oldest and most widely used formalism for representing uncertainty.
Shafer and Pearl (1990) explain that the concept of the degree of probability was used
"in law and philosophy before mathematical probability was invented” (Shafer &
Pearl, 1990). Scholars developed mathematical probability in the late 1600s and early
1700s. James Bernoulli's book Art of Conjecture was one of the first books on

mathematical probability and from the title it can be seen that he intended the theory as

33



a mechanism  for plausible reasoning.

The frequentist view of probability did not emerge until the nud nineteenth century
(Shafer & Pearl. 1990). The frequentist view leads to the most widely used description
of Classical Probability Theory, that it is used for games involving the toss of a coin
and the throw of a dice. From this point of view, probabilities are defined as the

proportion in the long run. a frequency interpretation of probability.

The original account of probability is more useful for Expert Systems , this is to
interpret probabilities as personal or subjective evaluations (Freund, 1972, p. 36). The
probability of a proposition is a measure of a person's degree of belief in it, given the
person’s current level of information. A probability is the degree of belief in a

particular proposition. (Cheeseman. 1986. p. 86). Hunter agrees with this interpretation

...for there are decision problems involving uncertainties that cannot plausibly be
given a frequency interpretation, but which are really uncertainties about the truth
of non-vague propositions.

(Hunter, 1986, p. 209}
Zadeh, the inventor of Fuzzy Sets, (Zadeh, 1986) has the opinion that probability is
not appropriately expressive for representing the many kinds of uncertainty that can be
found in expert systems. He also believes that most probabilities are not known with
"sufficient precision to be representable as real numbers”. Zadeh prefers fuzzy

terminology such as likely, unlikely and not very likely.

Hunter maintains that Zadeh's interpretation of probability, as being unabie to
represent vagueness, is incorrect. Hunter also distinguish.+ L:..ween static and
dynamic views of uncertainty. He asserts that for a complete theory of uncertain

reasoning, the static probability theory must be combined with a dynamic theory,
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(he suggests Maximum Entropy Theory) which is concerned with how one's degree of

belief should change in the light of new evidence.

3.2.1.1 Probability - the basics

Let A be an event. Then S is the set of all possible events called the Sample Space.
The probability of event A is denoted P(A). The probability measures must satisfy

three given postulates. (Freund. 1972, p. 38)

1. P (A) »>= 0O, for any subset A of S.

2. P(S)=1.

3. If A1, A9, A3. ..., is a sequence of disjoint subsets of S, then

P(AUAUA U= P(A) + P(A) + P(A)+......

Further rules that can be derived include :

a) Probabilities cannot exceed one

b) The probabilities of A and not A, sumto |.

Postulate 3 is the addition rule for mutually exclusive events. But if events are not

mutually exclusive ,

eg. P(student 901087 will pass Intermediate Algebra) and

P(student 901087 will pass Advanced Algebra)
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then the appropriate rule for addition of probabilities is

PCAUB) = P(A) + P(B) - P(AN B)
3.2.1.2 Conditional probability
Any measure of probability is relative to the sample space, thus P{student 901087 will
score top grade in Advanced Programming) may vary depending on whether S, the
sample space includes students from one or all campuses. To clarify this P(AIS) is the

conditional probability of event A relative to the sample space S. (Freund, 1972, p.

50.

When considering two events. A and B. The conditional probability of A given B, is

the probability of event A occurring given that event B has occurred. This is defined as
P(AIB) = P(A and B) / P(B)

or altemnatively in the Bayes rule format.
P(AIB) = ( P(BIA) * P(A)) /P(B)

Another description of conditional probability that is more directly useful in expert
systems is that, the conditional probability of a hypothesis P(HIE) is the probability of

the hypothesis in the light of the evidence E ( Lee, Grize & Dehnad, 1987).

3.2.1.2.1 Bayes Theorem

Bayes Theorem allows for the calculation of the updated degree of belief in a

hypothesis when new evidence becomes available. For a given hypothesis Hy, there is
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a prior probability that it is true. P(H, ). In the light of new evidence our belief is

altered to produce a posterior probability, PCH, | F) {or the hypothesis H, :

P(HP(EIH,)

P(HE) = -
PE)

Bayes rule can be used to infer the probability of a disease from the given symptoms, if
one has knowledge of the probability of the symptoms given each disease, and the

prior probability of each disease (Neapolitan, 1992).

Lee and Clark provide examples of the application of Bayes Theorem in the expert

system domain (Lee et al, 1987, p. 18) (Clark. 1990, p.114).

Expert systems can reason through forward-chaining or backward-chaining processes.
Bayes Theorem is appropriate for either type of reasoning. Thus if probablilities are
more readily available to support reasoning in a certain direction, Bayes Theorem can

be adapted to support that direction of argurnent (Valverde. 1992).

A particular version of Bayes Theorem is pertinent to the question of assessing a set of
competing hypotheses in the light of a set of evidence (Valverde, 1992). There are
dangers in progressively updating an assessment in the light of a new piece of
evidence. It is vital that the interelationships between separate pieces of evidence be
considered so that conflicts will become evident rather than be submerged. (Buxton,

1989)



3.2.1.2.2 Independent Events

Two events are independent if the occurrence of one has no effect on the occurrence of

the other. Then by definition P(AIB) = P(A) and P(BIA) = P(B).

3.2.1.2.3 Probabilities in Expert Systems

When an expert system is based on Bayesian probability many probability values are
required. These will be provided by the domain expert and will be both the estimates
of the probability of hypotheses and also the probability of hypotheses in the light of

evidence.

Valverde and Gehl (1992) report on an expert system used to determine an accurate
diagnosis of the reason for Boiler tube failure in fossil fuel driven power plants. They
implemented two systems, one using a Bayesian model and the other using Dempster-
Shafer (see Section 3.2.3 Dempster-Shafer belief theory). They report that it was
possible to acquire estimates of probabilities from actual data. The historical records of
observed causes of failure in the boiler provided the required estimates of relative

frequencies (Valverde &Gehl, 1992).

Where historical information is not available the probabilities required by an expert
system must be provided by human experts. This will usually include all prior and
conditional probabilities. The required amount of data grows exponentially with the
number of hypotheses. This, together with the enormous amount of computational
effort required when new evidence becomes available provides the reason that full
probabilistic representations have not been popular in expert system development

(Wise &Henrion, 1986).
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Bayes Theorem must be adapted in the case that the evidence itself is uncertain. The
changes required are due to the interlinkea nature of system, and the use of Bayes

theorem to calculate posterior probabilities (Lee et al., 1987).

They also identity four ‘significant drawbacks’ in using Bayesian technigues in expert

systems (Lee et al.. 1987).

I.  The subjective nature of the assignments of probability by a domain cxpert may
lead to a set of probabilities that are internally inconsistent. This can be prevented
but only through a lot of work on the part of the domain expert and the

knowledge engineer.

)

The hypotheses that are used in Bayes theorem are assumed to be disjoint. This

requirement may not be practical.

3. If disjoint sets of hypothesis cannot be achieved then the results achieved may

not be valid.

4. A single change to the probability of an event requires the recalculation of many

probabilities.

Although Bayesian inference is the most common strategy used in expert systems,
there are some situations where it is inappropriate (Neopolitan, 1992). Such situations
are those in which a probability cannot be assigned to all pertinent events. In this
instance, other techniques such as Dempster-Shafer may be appropriate (see Section

3.2.3 Dempster-Shafer belief theory).

The next section considers two early and yet successful expert systems that were based

on prebability, but in diffierent ways.
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3.2.1.3 Some examples of probability based expert systems

In this section the thesis will consider two expert systems that used probability to
handle uncertainty. The first expert system, Prospector was reported to be responsible
for making a great deal of money. The second. Inferno was able to make

recommendations even when provided with certain inconsistent information.

3.2.1.3.1 Prospector

This expert system was intended as an aid to geologists in their search for ore deposits

and its fame is based on its success (Dan & Dudeck, 1992).

Prospector’s designers intended that the system would provide answers that were
“reasonably close approximations” to those that would result from the use of
probability analysis (Yadrick et al, 1988, p. 81). The uncertainty handling mechanism
is regarded as having a stronger theoretical foundation than that of MY CIN's certainty
factors and therefore "it has not been reviewed in a critical way” (Dan & Dudeck.
1992). Prospector used an inference network to identify dependent probabilities. This
was an early version of the Bayesian Belief Network (See section 3.2.1.4 Bayesian

Belief Networks).

3.2.1.3.2 Inferno

Quilin’s Inferno(19%3) is a probabalistic inference system that solves some of the
problems of earlier systems. Inferno can make inferences in a cyclic way. a desirable
but unaccomplished feature in systems like Prospector. Inferno is able to use both

forward and backward chaining in its reasoning process (Section 2.2 Expert Systems).
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Anuther uncommon feature of Inferno is its ability to deal with inconsistent
information. If information is inconsistent, Inferno can make this fact evident along
with some alternative ways that the information could be made consistent. However

the appropriateness of this feature has been questioned (Cheeseman 1985).

3.2.1.4 Bayesian Belief Networks

Bayesian Belief Networks in respect to expert systems have their origins in the
inference networks of Prospector. They are based on probability theory and have been
largely developed to their current form by Pearl. However the Bayesian Network is
an annotated directed graph and was first used by the statistician Wright in 1921 for

the analysis of crop failure (Heckerman, Mamdani & Wellman. 1995).

A belief network representation consists of two components, a qualitative directed
acyclic graph (DAG) that demonstrated the existence of probabilistic dependence

between variables and a quantitative set of conditional probability tables for the graph.

A belief network has to be sparse if it is to be comprehensible to the user and
inference using the network is to be computationally tractable (Srinivas, Russell &
Agogino, 1990). This is a technique which allows for the explicit representation of
dependencies as well as independencies, thus allowing the experts to accurately
represent their beliefs with respect to some domain. One of Heckerman's objections to
Certainty factors was that they did not allow any such explicit representation and thus

were ambiguous with respect to dependence or independence (Heckerman, 1986).
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The belief network is seen as a realistic approach to building cxpert systems. It solves
some of the short comings of the Certainty factor model whilst not requiring the huge
volumes of data of classical probabilty (Heckermann & Shortliffe, 1992). The
requirement that the relations between variables be specified by a conditional
probability matrix, forces the knowledge engineer to consider the various

combinations of variable values (Morowski, 1989).

Booker, Hotaand Ramsey (1990) suggest that belief networks solve one of the
commonly made mistakes of early systems - the idea that uncertain inferences are
modular. They developed BaRT - a Bayesian Reasoning Tool for knowledge based
systems, to "make state of the art techniques for uncertain reasoning available to
researchers concerned with the classificatory problem solving” (Booker. Hota and
Ramsey ., 1990. p.280). Its designers claim that BaRT is efficient and practical for

real applications.

3.2.1.5 Probability in practice

One of the most common criticisms of the use of probability theory in expert systems
is that the theory is impractical to apply in realistic situations. Heckerman and others at
Stanford converted Quick Medical Reference (QMR), one of the largest medical
expert systems in existence, to a probabilistic framework (Heckermann, 1990). This
was largely successful although several assumptions were made which may not always
be present in other systems. One of the assumptions was that the variables under
consideration (diseases and findings) were binary. A second that diseases are
marginally independent is probably the most important in allowing them to limit the

total quantity of data required and the least likely to apply in general.
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It has been shown that if the requirement to provide an exponential quantity of data
can be controlled, perhaps by some feature of the problem domain (as in QMR above),

then probability can be usefully applied.

An algorithm for computing the posterior probability of each disease given a set
of observed findings, is presented. Although the time complexity is exponential in
the number of positive findings, the algorithm is useful in practice because the
number of observed positive findings is usually far less than the number of
diseases under consideration. {Heckerman, 1990, p. 163)

There has been much discussion. about the reliability of the probability estimates
elicited from human experts, since the earliest expert systems attempted to use
numerical representations of uncertainty. This can be seen as less of a problem if these
numerical estimates are considered a starting point that will be refined over time as the
system is used. The ability of systems that use probabilistic representations to reason
and produce reasonable results even with inaccurate numeric assessments can also be

seen as a strength of the representation (Spiegelhalter, Franklin & Bull, 1990).

It may be that the amount of research carried out and the stability of the domain may
affect the reliability of the probability estimates. Studies have shown that in certain
domains probability assessments can be dependable although they may lean to more

extreme values (Spiegelhalter, Franklin & Bull, 1990).

In this area, as in many others, the capabilities of modern computers are making it
feasible to solve problems that were previously considered not practical. Programs
that implement complex algorithms will execute within a reasonable time on today's
computers where they could not have been considered practical 20 years ago
(Heckermann and Shortliffe, 1992). Heckerman, Mamdani and Wellman report that

small powerful computers and GUI interfaces have made Bayesian networks a more
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common choice for expert system applications in a number of difterent fields,
including diagnosis. forecasting and manufacturing control (Heckerman, Mamdani &

Wellman, 1995).

3.2.2 Certainty factors

One of the earliest and most widely used methods for reasoning under uncertainty in
expert systems is the Certainty factors (CF) of MYCIN (Shortliffe & Buchanan. 1975),
(Dan & Dudeck, 1992). EMYCIN (Empty MYCIN) is an expert system shell which
made CF available for other expert system developments. Shortliffe and Buchanan
developed CF in the mid-1970s specifically to be used with MYCIN, an expert system

for the diagnosis and treatment of meningitis and bacteraemia.

Our certainty factor model was developed in response to our desire to deal with
uncertainty while attempting to keep knowledge modular and in rules. (Buchanan
& Shortliffe, 1984, p. 56)

Certainty factors were introduced 1n the well-known expert system MYCIN and
remain one of the most used uncertainty management paradigms. Certainty factors
were devised because their creators felt good enough data did not exist to create a full
statistical database for the medical application (Ng and Abramson, 1990). There are
also indications that the artificial intelligence research community felt that full
probability theory would prove too cumbersome (Heckermann & Shortliffe, 1992). At
the time some probabilistic diagnostic medical systems used a 'simple Bayes' model.
These included assumptions of mutually exclusive and exhaustive hypotheses and
conditional independence. The assumptions were made for practical reasons. They
made it possible to build diagnostic systems whereas without them the volume of

probability estimates required and the complexity of calculations would have been



restrictive. It is clear however, that the assumptions were unfaithful to the domain

(Heckermann & Shortliffe, 1992).

3.2.2.1 The mechanics of Certainty factors

When Certainty factors are used. the knowledge base has the form:

If <evidence> then CF <hypothesis>.

CFs have values between -1 and | which represent the change in belief about a
hypothesis given some evidence. Certainty factors were originally defined in terms of
probability, a probability of | corresponding to a CF of | and a probability of O
corresponding to a CF of -1. A CF of O represents the situation of using the prior
probability. “Piece wise linear interpolation is used between these three points” (Wise

and Henrion. 1986, p. 72) .

An inference network of the connecting rules exists and they are combined using
parallel and sequential combination as appropriate. These rules were devised by
Shortliffe and Buchanan as approximations of related statistical techniques and
showed that they satisfied certain intuitive properties. One such property is that
parallel combination should be commutative (Heckermann, 1986) . If all evidence and
hypothesis in the knowledge base are simple propositions then only the serial and

parallel combination rules are required.
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3.2.2.1.1 Parallel Combination Function

[ CF, + CF, - CF,CF, CF,.CF, 20
CF, = CF, + CF, + CF.CF, CF,.CF, <0
]KT}+Cﬁ)H!~mmuCﬁLKTﬂ]nMwnﬂe

For example two pieces of evidence which support the same hypothesis result in a

greater certainty factor. For CF) =0.8 and CF3 = 0.9 then
CF3=0.8+0.9-(0.8)(0.9)=0.98

3.2.2.1.2 Serial Combination Function

The combination function is used to combine two rules where the hypothesis in the

first rule is the evidence in the second rule.

- [CRCF,  CR>0
1 o CF, <0

3.2.2.1.3 Combination of Rules with Conjunctions and Disjunctions

Suppose the knowledge base contains rules of the form:

Rl: if AANDBthenC,CF;=0.9
R2:if X then A,CF2=0.7
R3:if Y then B, CF3 =0.9

The new composite rule (R4) can be created and the Certainty factors combined with

the following combination function:

R4:if X AND Y then C, CF4
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CF4 = CF| min/max (CF>, CF3)

The minimum of the Certainty factors is used for combination in a conjunction and

the maximum for a disjunction.

The parallel-combination function appeared in a different ferm in the earliest of the
CF models. The terms Measure of belief (MB) and Measure of disbelief (MD) were
used (for positive and negative CF) and the final CF was given as the difference

between MD and MB.

Variations to the model have been made in implementations of it. For example in
MYCIN Certainty factors of 0.2 or less are treated as if they were O (Heckermann &
Shortliffe, 1992, p. 39). This meant that where there was very little probability (<0.2)
of an hypothesis being used, it would be discarded thus avoiding pointless questions

to the user of the expert system.

3.2.2.2 A critique of Certainty factors

The CF model was created for the domain of MYCIN and in blinded evaluations has
been shown to provide recommendations for treatment equivalent to, or better than

human experts (Heckermann & Shortliffe, 1992).

Two reasons have been suggested for the success of this method of modelling
uncertainty. Certainty factors are relatively simple to implement when compared to
other methods and the resulting modular knowledge base is helpful to the developer

(Dan & Dudeck, 1992).

Heckermann has shown that the statistical definition of CF and the rules for

combination show some gross inconsistencies. He suggests that the definition be
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abandoned in favour of one which works statistically (Heckermann, 1986).

Certainty factors are isomorphic to a subsct of probability theory under an appropriate
set of assumptions (Rothman, [989). One of these assumptions is conditional
independence of evidence given an hypothesis. This is a very strong assumption and
is not the case in all rules in all expert systems. However, this system has been shown
to be successful (Yu. Buchanan. Shortliffe et al., 1979). Buchanan and Shortliffe, the
creators of Certainty factors wrote, “'the motives were largely pragmatic, we justified
the underlying assumptions by emphasizing the system’s excellent

performance”(Buchanan & Shortliffe. 1984).

Horvitz and Heckerman (1986) highlight a misuse of Certainty factors and provide
examples of the problem in two well known expert systems . They suggest that the
problem stems from the inabiiity to distinguish between a change in belief and an

absolute measure of belief.

Positive certainty factors then, correspond to an increase in belief whiie
negative certainty factors correspond to a decrease in belief. While certainty
factors were intended to represent measure of belief update, they were elicited
from experts as absolute beliefs. In particular certainty factors were elicited from
experts with the phrase "On a scale of one to ten, how much certainty do you
affix this conclusion?” (Horvitz and Heckerman, 1986, p. 146)

Certainty factors can produce some apparently illogical results. It is demonstrated that
CF values can be the opposite of the conditional probabilities with the following

example (Giarratano & Riley, 1994).

P(H)) = 0.8 P(Hp) = 0.2
P(H;lE) = 0.9 P(H2l E) = 0.8
then CF(H} E) =05 CF(H9,E) =0.75
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Since one purpose of CF is to rank hypotheses in terms of likely diagnosis, it is
a contradiction for a disease to have a higher conditional probability (P(HIE) and
yet have a lower certainty factor, CF(H.E}. (Giarratano & Riley, 1994, p. 268).

Adams had reported the same problem using the same example several years earlier
(Adams, 1985). It has been shown that these contradictory results are quite
reasonable (Dan & Dudeck, 1992). The real problem may be that highlighted by
Horvitz and Heckerman above, which is whether CF's measure absolute belief or a
change in belief. So in the example above, the results are contradictory, if CF's are
absolute measures of belief. However if CF's are measures of belief updating then the
fact that CF(H . E) < CF(H2, E) results from P(H|) > P(H3) and P(H|IE) >P(H3IE)
should not be surprising. It simply shows that the evidence E has provided for a

greater increase in belief in hypothesis 1 than hypothesis 2.

The operational definition of CF is preferred by some researchers. They suggest that
this is appropriate since CF's are elicited from domain experts as absolute beliefs,
used by the inference engine as absolute beliefs and have results interpreted as if they
were absolute beliefs. They suggest changes to the computations of the system to

maintain consistency with this(Dan & Dudeck, 1992).

So Certainty factors were elicited without a clear operational definition. However
MYCIN performs as well as experts in the field. This suggests that detailed
considerations of uncertainty are not critical to the systems performance. Indeed it has
been shown that performance does not change significantly when many of the
certainty factors in the knowledge base were changed (Heckerman, 1986). Avanzato
(Avanzato, 1991) agrees with Heckerman, he states that the CF model has been

shown to be equivalent to probability theory with the additional assumption of
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statistical independence. Adams is cited by Avanzato as concluding that the success

of MYCIN despite the theoretical difficulties is

due to the fact that MYCIN uses short chains of reasoning and simple
hypothesis. (Avanzato, 1991, p. 70)

However MYCIN's creators were interested first in getting a system that worked.
They were not principally motivated with the mathematical correctness of their UMT
but more especially concemed with designing a system that performed well in a
particular medical area. Some of the problems may have sincc arisen by the use of
Certainty factors in other domains that are unsuitable for its reasoning process

(Horvitz & Heckerman, 1986).

To be more specific, there are features of MYCIN's problem domain that are unusual
(Heckerman & Shortliffe, 1992). MYCIN's therapy recommendations are invariant to
changes in the CF values, whereas the diagnostic assessments degrade more rapidly.
However MYCIN is primarily a therapy advice system and the antibiotics
recommended often cover several diagnostic assessments. Thus Heckerman and

Shortliffe emphasise that

"the CF model may be inadequate for diagnostic systems or in domains where

appropriate recommendations of treatment are more sensitive to accurate
diagnosis. Unfortunately, this point has been missed by many investigators who
have built expert systems using CFs" (Heckerman & Shortlifte, 1992, p.36).

3.2.3 Dempster-Shafer belief theory

The belief theory was originally developed by Dempster (Dempster, 1967) and
extended by Shafer (Shafer, 1976). It attempts to provide a measurable means of
defining the concept of belief, which relates to "our conviction in the truth of some

statement” (Valverde &Gehl, 1992). Dempster-Shafer (D-S) theory is a
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generalisation that was designed to take into account a short coming of probability
theory. that is it cannot explicitly represent ignorance. D-S is also able to loosen the

requirement tor prior and conditional probabilities (Avanzato, 1990).

The essence of the Dempster-Shafer theory is that the language of belief functions is a
generalisation of the Bayesian language (Shafer. 1986). Shafer states that a belief-
function argument differs from a Bayesian argument in that the former involves a
probability model for the ‘evidence bearing on the question’ whereas the latter
involves a probability model for the ‘answer to the question’. The belief-function

generalisation makes it possible to use certain kinds of incomplete probability models.

So the use of belief-functions allows for the simplification and generalisation of
Bayesian probability. Belief-functions concentrate on the evidence and also provide
for an upper and lower level of probability. A wide margin between the upper and
lower levels expresses explicitly a state of ignorance. This is not possible in classical
probability where ignorance is typically represented by a probability of 0.5. This
muddles the concept of ignorance with the actual probability of an event, which may

indeed be 0.5.

Naturally Dempster-Shafer theory continues to develop as more experience is gained
with its use. Yen cited by Avanzato points out that some of the problems with the

system have been conquered.

[YEN, 1989] describes an expert system, GERTIS (General Evidential
Reasoning Tool for Intelligent Systems), which extends D-S theory to overcome
several of the problems......this is accomplished in part by modifying Dempster's
Rule to combine belief updates instead of absolute belief measures.(Avanzato,
1991, p. 70)

A full description of Dempster’s Rule of Combination is found in the next section.
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3.2.3.1 The mechanics of Dempster-Shafer

The Dempster-Shater theory is a generalisation of probability theory with its roots in a

theory of upper and lower probabilities (Fung & Chong, 1986).

The main difference between Dempster-Shafer Evidential reasoning ( also called
Belief Calculus) and standard probability theory is the relaxation of the constraint that

the probability of an event and the probability of its negation must sum to one.

ie P(X) + P(not X) = | in probability theory.

P(X) + P(not X) <=1 in Dempster-Shafer.

The central concept in this paradigm is that of the frame of discernment (F). This is
similar to the sample space in probability. The elements of F are mutually exclusive

and exhaustive and can be explained as the solutions to the question at hand

(Valverde & Gelh, 1992). In the casc of n possible outcomes there are 2" possibilities.

these are all possible subsets of the frame of discernment.

The basic probability function m defines a probability number for each subset of the

frame of discernment.

This function satisfies two basic properties :

1. m(&) = 0. The probability number of a null event is 0.

2. The sum of the probabilities of all the other subsets is I.
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eg. If there are 2 suspects of a crime. Bill and Jim then

m(Bilh = .1 Strength of evidence that Bill is guilty

m(Jim) = .2 Strength of evidence that Jim is guilty

m({Bill. Jim}) =.7 Strength of evidence that the culprit is in the subsct

{Bill. Jim}

From the basic probability numbers. two other measures of a hypothesis can be
derived. belief (Bel) and plausibility(Plaus). The belief interval for hypothesis(a). is
then given by [ Bel(a). Plaus(a)] and the difference Plaus(a) - Bel(a) represents the
amount of uncertainty with respect to a (Cortez-Rello and Golshani. 1990, p. 13).

Also since

Bel(a) <= Prob(a) <= Plaus(a)

the degree of belief and the degree of plausibility can be regarded as the lower and

upper bound on the probability.

The degree of belief in a hypothesis (A a subset of F) is the combined sum of the basic
probabilities of A and its proper subsets. m(A) is then a measure of belief assigned to
A but Bel(A) is assigned to A and its subsets. Those basic probabilities in subsets that

constitute Bel(A) are known as the focal elements of Bel (Valverde & Gehl, 1992).

The belief of a subset, measures the total belief which includes the belief in supersets.

eg Bel(Bill) = m(Bill) + m({Bill,Jim}). So Bel(Bill) =.8

The plausibility of a subsetis (1 - Bel(not A))
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e.g. Plaus(BilD = I - m(not Jim) = .8

A frequent critisism of classical probability theory is in the case of little evidence for
or against i hypothesis, the sum of the probabilities must still be one. This is not the

case using belief functions where Bel(A) + Bel(not A) <= Bel(F) = |

The probabilities are referred to as Measures of Belief and are combined according to
Dempster's rule of combination (Spillman, 1989, p. 47-49). A composite belief
function may be generated from two or more belief functions defined over the same
Frame of Discernment. If Bel| and Bel; are two belief functions based on different
evidence and m|(A), mp(B) and m(C) denote the basic probabilites for Bel | Bel and
Bel respectively then Dempsters rule of combination is defined as follows:

Zm, (A, )’"z(B,)
I—Zm,(A, ym,(8,)

m(C) =

There are two perspectives of the Dempster-Shafer theory of Belief functions. The

compatibility view and the probability allocation view.

The compatibility view, interprets the theory of belief functions in terms of a
mapping or a compatibility relation between two different but related sets of
mutually exclusive propositions (Lingras & Wong, 1990, p. 468).

These two sets respectively provide an upper and lower value and together they define
a belief interval. The Bayesian probability, which is considered to be the ‘true’ value

is estimated to be contained within this interval. The second view is the probability

allocation view.

Another view of the theory constructs belief functions based on a body of
evidence which is too vague io be described in terms of propositions. The
belief functions in the second view are constructed by allocating a certain
probability mass to not necessarily singleton sets of possible answers.
(Lingras & Wong, 1990, p. 468)
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3.2.3.2 Advantages of Dempster-Shafer

Dempster-Shafer theory is seen as a generalisation of probability theory (Fung &
Chong. 1986). It explicitly represents measurement of a degree of belief (Valverde &
Gehl. 1992), and allows for the explicit representation of ignorance (Spillman.1989).
A comimon problem with the representation of uncertainty is that of effectively
combining information from several sources (sec Section 2.5 Sources of Uncertainty).
Dempster-Shater through its combining function explicitly provides a solution to this

situation (Cortes-Rello & Golshani., 1990).

Along with the advantages of course come some disadvantages.

3.2.3.3 Disadvantages of Dempster-Shafer

A significant disadvantage of D-S theory is that the assumption of independence of
evidence is not always realistic (Henkind & Harrison, 1988). This same disadvantage
applies to Certainty factors and the carly Bayesian Techniques. Bayesian Belief

networks however, explicity express dependence by the arcs in the network.

Shafer, one of the creators of the theory points out that the combination rule is
pragmatically rather than mathematically based. He indicates that there is ro

theoretical justification for the combination rule.

"there is no conclusive a priori argument for Dempster's rule... the rule does
seem to reflect the pooling of evidence" ( Shafer, 1976, p.57)

The belief interval is defined by the values Bel (The degree of belief) and Plaus (the
degree of plausibility). These values have been said to be estimates of the true

probability (Lingras & Wong, 1990) but Neopolitan is not sure of their use.
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Bel and Plaus are nebulous entities. They are not probabilities of the event
of interest nor the lower and upper probabilities therefore what meaning
can we attach to them? (Neopolitan, 1992, p.73).

Zadeh in Giarratano and Riley illustrates a problem with Dempster-Shafer thcory by
the use of an example that produces unanticipated results (Giarratano & Riley, 1994).
The example used is the belief by two doctors, A and B. in a patent’s illness. The

beliefs in the patient’s problem are:

ma (meningitis) = 0.99

my (brain tumor) = 0.01

mg (concussion) = 0.99

mg (brain tumor) = 0.01

The Dempster rule of combination gives a combined belief of 1 in the brain tumour.
The problem arises in this instance because this is the only illness that is supported by

both doctors.

Dempster-Shafer has also been considered to be computationally complex (Lee,1987).
There have been recent improvements to this by Xu and Kennes reported in their
paper, “Steps towards an Efficient Implementation of Dempster-Shafer Theory” (Xu &

Kennes, 1994).
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3.2.3.4 Support Logic Programming

Support Logic Programming (SLP) was developed by J. Baldwin and co-workers
(Dubois and Prade, 1990). At first sight this is simply one of the multiplicity of other
techniques proposed for handling uncertainty. Careful consideration ho' ~ver reveals
that the support pair is very similar to the belief interval [Belief. Plausibility] of the
Dempster-Shafer Theory. Dubois and Prade(1990.,p21) indicate that this model is in
accordance with the theory of evidence- at least mathematically! It is unclear whether
Support Logic Programming is a proposed improvement to Dempster-Shafer theory

or simply an alternate form of implementation.
In SLP an uncertain statement is expressed as
A: [Sn_Sp]
where A is an atomic formulain first order logic.
Sp, is the degree of necessary support for A
Sp is the degree of possible support for A.
The degree of possible support for A is interpreted as the fact that
I - Sp is the support for not A.
eg. (0,0) A is certainly false
(1,1) A is certainly true

(0,1) Itis unknown if A is true or false.
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A voting model is considered when looking to combine information. This solves the
problem of combining information from several sources (see Section 2.5 Sources of
Uncertainty). It is done by considering the information to be from a number of
different expert sources, they each have a vote, and tlic votes are considered to have
equal influence. The proportion of the population voting yes to proposition A is

denoted p(A) . Baldwin extended the voting model to allow for don’t know answers.

For two hypothesis A and B, information required is what proportion of voters support
(A and B) . {not A and B) , (not A and not B) and (A and not B). This clearly depends
on the voting behaviour of individuals and different combination rules are presented
for the three cases of Independence ( see Section 3.2.1.2.2 Independent Events).

Mutual Dependence and Mutual Exclusion.
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3.2.4 Possibility Theory (Fuzzy sets)

Fuzzy logic is one of the larger class of multi valued logics. They are named multi

valued because they allow more values than the simple true and false of classical legic.

The difficulties of representing imprecise information in probability theory led to the
development of Possibility Theory. This is an extension, by Zadeh, of his theory of
Fuzzy Sets. Possibility Theory replaces the binary logic of probability with a multi
valued logic. Lea Sombe (Lea Sombe. 1990) suggests that the logic statement “all A’s
are B's"” should be expressed “‘the more one is A, the more one is B™ in fuzzy logic.
Fuzzy logic is able to represent and reason with such terms as hot, dangerous, a little
and .erv much (Giarratano & Riley. 1994). Neopolitan (1992) explains that whereas
probability theory allows us to attach a measure of how uncertain we are of the truth or
falsity of a proposition, Fuzzy set theory "deals with propositions that have vague
meaning” (Neopolitan, 1992, p.74). When a doctor says that an operation has a 90%
chance of improving a patient’s condition by 50%. then the 90% represents a

probability while the 50% represents fuzzy set membership.

Shenoy has proposed a framework of VBS (Valuation Based Systems) for managing
uncertainty in expert systems (Shenoy, 1992a). This framework is general enough to
include many of the possible paradigms for managing uncertainty that have been
proposed. In another article "Using possibility theory in expert systems", Shenoy
shows how possibility theory can be fitted into the framework of VBS. In possibility
theory the "basic representational unit is called the possibility function” (Shenoy,

1992). Projection and particularization are the main operations for manipulating
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possibility functions. Dubois and Prade cited in Shenoy (Shenoy. 1992) pointed out the
correspondence between projection and marginalisation, an operation in VBS that
corresponds to the coarsening of knowledge: and the correspondence between
particularisation and combination, the VBS operations that is used for the aggregation

of knowledge.

It has been argued that probability theory is all that is required to deal with uncertainty
(Cheeseman. 1986) and therefore Fuzzy sets must simply be expressing a form of
probability theory. However this example demonstrates that fuzzy set theory is able to
express concepts not applicable to probability theory (a similarexample appears in
(Neopolitan, 1990)). Consider a cross bred animal, for example a sheep that has a pure
bred Marino and a pure bred Dorset for its parents. It is neither a Marino nor a Dorset

but has 50% membership in both sets. there is no probability involved.

It has been suggested that there are two ways of using fuzziness in expert systems:

One method is to provide fuzzy truth values to rules and conditions in their
premises,...,, The second approach is to handle uncertainty and imprecision with
linguistic quantifiers and the use of fuzzy terms in the condition. eg. If the water
level of the river is high and the water level of the river is rapidly rising then
prepare to open the gates to the bypass canal. (Chang & Hall, 1992, p.598)

The second approach may be referred to as linguistic logic (Novak,1992). It is

however always based on the first approach.

Miyoshi et al. ( Miyoshi et al., 1992) have developed an expert system shell that
incorporates two different kinds of uncertainty both based on fuzzy logic, a fuzzy
production system and a fuzzy frame system. They report that they are working on

expert systems in the fields of foreign exchange and image recognition.
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3.2.4.1 The mechanics of Fuzzy sets

In (normal) set theory, membership of a set is a boolean value , that is cither true( 1) or
talse(0). A characteristic function is the established way of showing which objects arc

members of a set (Giarratano & Riley. 1994).

Ualx) =1 if x is an element of set A

0 if X is not an element of set A

An alternate definition is in terms of a functional mapping.

Ua(x) @ x> {0.1}

A Fuzzy set may be represented by a generalisation of the characteristic function that

is called the membership function (Giarratano & Riley, 1994).

Ua(x):x->{0,1]

Although on the surface these two definitions appear very similar. the membership
function is a real number between O and 1 that represents the grade of membership of

the fuzzy set.

So in contrast to the crisp sets of standard set theory, Fuzzy set theory allows grades of
membership. Imprecise terms such as “short man" can be represented by a Fuzzy set
which has a value of 1 (conclusively is a member of the set of short men) for a height
of 150cm and a value of O (definitely not in the set of short men) for a height of 180cm
and is smooth and monotonic between these values (see Figure 3.2 An Example of a

Fuzzy membership function, on the next page).
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Membership of Fuzzy set - Short man

Grade of
Membership

150 160 170 180
Height

Figure 3.2 An example of a Fuzzy membership function

Fuzzy sets can be combined using the operations of intersection and union. The
intersection operation is carried out by taking the minimum value of the two

membership functions.

m(short and fat) = MIN(m(short), m(fat))

Whilst the union of two fuzzy sets is found by taking the maximum values.

m(short or fat) = MAX{(m(short), m(fat))

The fuzzy set membership function can also be altered by the use of other linguistic
terms. In Table 3.1(on the next page), m is a modifier, F is the modified membership
function (Lee, Grize and Dehnad, 1987, p. 29), the descriptions are from a d*fferent

source (Giarratano & Riley, 1994).
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m F Description

Not - f(x) Negation
Very £ (x) Intensification
More £7(x) Dilation

or Less

Table 3.1 Fuzzy Qualifiers

3.2.4.2 Approximate Reasoning

Approximate Reasoning . 2¢ proposed by Zadeh as a mathematical method to model
human reasoning wish “vague nutions present” (Novak. 1992). It contains two kinds of
rules, Translation amd Inference. The former are used to obtain fuzzy sets from natural

language, the latter are” *o obtasi conclusions from premises, that is to carry out the

reasoning process.
Fuzzy "if-then” rules have the form:

If Xis Cj then Y is §;

where Cj and S; are fuzzy sets over X and Y respectively. eg. If the road is quite wet

then drive slowly. (Koczy & Hirota, 1992)

In their paper "A fast algorithm for Fuzzy Inference"”, Koczy and Hirota state that
there have been various methods used for the Inference process over a knowledge base

that contains fuzzy rules. They investigate two methods, "probably those two which
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are applied most {requently” and discover that one algorithm has a weak sensitivity in
reasoning and has low computational complexity whilst the other has good reasoning
but is complex computationally. They go on to suggest a “fast and sensitive” algorithm

that itself contains some other minor problems (Koczy & Hirota, 1992).

3.2.4.3 A critique of Fuzzy sets

The main limitations of probability theory is that it is based on two valued logic. An
event either occurs or it does not. Another limiiation is that probabilities are real
numbers. Important issues which Zadeh (Zadeh. 1985, p. 4) says can be dealt with by

fuzzy logic and not probability are :

I. The fuzziness of antecedents or consequents

2. Partial match between the antecedents of a rule and a fact supplied by the user. -

through the compositional rule of inference and interpolation.

3. The presence of fuzzy quantifiers in the antecedent and/or the consequent

Fuzzy logic has been shown to be a successful representation for uncertainty in
expert system design, some difficulties have been identified....elements of fuzzy
set theory ignore some mutual exclusivity requirements and that some
distributions and qualifier operations (eg. squaring for ‘Very') are subjective in
nature and may exhibit inaccuracies[Ng, Abramson, 1990]. (Avanzato, 1990,

p.71)
Graham (1991) in his paper "Fuzzy logic in commercial expert systems” considers a
number of expert systems and plant and machinery controllers that use fuzzy logic. He
cites numerous examples mainly from the U.S.A. and Japan, many of which were, at
the time of writing, in experimental form. Graham considered one of the most

impressive applications of fuzzy logic to be the automatic train operations system
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developed by Hitachi for the Sendai municipal subway system. The systemn optimises
fuel consumption and other aspects of system performance through the use of fuzzy
rules, such as "if the speed is far hefow the limit then the power notch is selected”

(Graham 1991).

Shiraishi (1989) suggest that fuzzy reasoning was useful in the development of an

expert system tor damage assessment.

1. By introducing the fuzzy set manipulation system into the expert system, it
is possible to utilize the knowledge and rules which are expressed in terms
of natural language.

2. Based on fuzzy reasoning, it is possible to reduce the number of rules
necessary for deriving a meaningful conclusion. The reduction is very useful
for building a practical expert system (Shiraishi, et al., 19889, p. 2186).

It has been shown thatas well as being applicable to rule-based expert systems. Fuzzy
sets may also be applied to connectionist expert systems that 1s. those based on Neura,

networks (Cohen & Hudson,1992).

Some have claimed to have demonstrated that fuzzy logic has been incorrectly used in
problems that are examples of uncertain inference (Cheeseman, 1986). Further claims
have been made that fuzzy set theory can be subsumed by Sayesian probability.
Others disagree and maintain that fuzzy set theory addresses a "fundamentally
different class of problems from that of probability theory”. This section concludes
with a very useful example that aims to demonstrate this difference (Neopolitan, 1992,

p.77).
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Suppose we have the constraints:
C1 = "X should be close to 4"
C2 = "X should be close to 6"
and the goals
G1 = "X should be close to 5
G2 = "X should be close to 3"

If we are restricted to the set of integers, these constraints and goals can be
represented by the fuzzy sets in Table 3.2 If we take we
obtain the fuzzy set D this is our decision. Since no X has full membership in D ,
we can define our optimal decision as being X that maximizes D. In this case that
is X equal to 5. This problem has nnthing to do with uncertainty, it is preferably
called approximate. (Neopolitan, 1£52, p.78)

I 2 3 4 5 6 7 8 9 10
0 0.1 04 0.8 1.0 0.7 04 0.2 0 0
0.1 0.6 1.0 0.9 0.8 0.6 0.5 0.3 0 0
0.3 0.6 0.9 1.0 0.8 0.7 0.5 0.3 0.2 0.1
0.2 0.4 0.6 0.7 0.9 1.0 0.8 0.6 0.4 0.2
0 0.1 0.4 0.7 0.8 0.6 0.4 0.2 0 0

Table 3.2 The fuzzy set membership in G1, G2, C1, C2and D
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3.3 Symbolic approaches

Symbolic approaches to handling uncertainty are also referred to as non-nuumerie or
qualitative methods (Graham,1991). In addition the term plausible reasoning is often
used. It has been defined as "reasoning that leads to uncertain conclusions because its
methods are fallible or its premises are uncertain” (Shafer&Pearl.1990). Plausible
reasoning has not developed a typical language because formalisations have been
absorbed by probability theory. (This lack of typical language has caused difficulty

when researching this topic for this thesis.)

Symbolic treatments of uncertainty are seen to have advantages and disadvantages in
relation to numeric methods. Symbolic methods generally have "strong explanation
capabilities” but that their fragility is in the combining of evidence (Avanzato. 1991,
p. 71). This can be clearly seen in the ability of the theory of endorsements to provide
its reasons for believing (or disbelieving) in an hypothesis (see Section 3.3.1 Theory

of Endorsements).

Symbolic representations are also more suitable to handle uncertainty of particular
types. The ability to reason with incomplete information has been identified as a
strength but researchers have suggested that symbolic methods are unable to cope with
imprecise information, "since they lack any measure to quantify confidence levels"

(Bonissone & Decker, 1986, p. 218).

Other researchers use different terminology. Methods for handling uncertainty have

been categorised as either quantitative or qualitative approaches (Graham, 1991). The
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gualitative methods are said to vary from those that hide uncertainty in linguistic
terms to those that provide intricate methods using nonmonotonic logic or

endorsements.

Sullivan and Cohen (199Q) argue against the use of numbers to represent uncertainty.
Their argument has been summarised to the following points :

1. Subjective degrees of belief do not behave as probabilities

2. Experts are uncomfortable in committing themselves to numbers

3. In some situations the accuracy has little effect on performance

4. Numbers tell us how much to believe, not why to believe (Sullivan &
Cohen, 1990).

The theory of endorsements provides an answer to the concerns about the use .f
numbers to represent uncertainty by providing a clear alternative. Although, as will be

explained in the next section numerical measures are not eliminated completely.

3.3.1 Theory of Endorsements

The main principle behind this uncertainty management system is to avoid the use of
numbers to represent uncertainty. Cohen believes that where numbers are used to
represent imprecise information, that they act as a summary of several different
aspects of uncertainty, (see Section 2.5. Sources of Uncertainty above) and therefore

information is lost.

The Theory of Endorsements explicitly records the reasons for believing or
disbelieving a proposition. This method would appear to be closer to the actual
method of reasoning used by human experts, who would simply endorse their belief in

a statement by a list of reasons. Clark indicated that endorsements may be divided
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into five classes: rules, data, task, conclusion and resolution endorsements, however

no detail on how the types compare is included (Clark, 1990).

Bonissone suggests that there are possible problems in the combinatorial explosion of
information required.

a set of rules is needed to propagate endorsements over inferences

..combination of endorsements in a premise, propagation of endorsements
to a conclusion, and ranking of endorsements must be explicitly specified
for each particular context (Bonissone, 1987, p. 859)

Although the process of endorsement is similar to the recording of justifications in
truth maintenance systems (TMS). there is an important difference (de Kleer, 1984)
(Cohen and Grinberg, 1988). TMS are discussed briefly in section 3.4.2. In thc TMS
the kind of support for a justification is irrelevant. However. endorsements consider
the aspects of inferences that are relevant to reasoning about their certainty.
Endorsements can be ranked. The user would have more confidence in an hypothesis

with a higher ranked endorsement.

Clark suggests that the motivation for Cohen’s Theory of Endorsements is the
realisation that the composition of reasons to believe or disbelieve produce the level of

certainty. (Clark, 1990).

The Theory of Endorsements developed by Cohen has been implemented in the
Expert System shell appropriately named Solomon. The system is working in an ES
to advise on portfolio investments (Bhatnager and Kanal, 1986, p. 14) and provides a

natural approach to uncertainty although it still has difficulties to be overcome.

Bhatnager and Kanal (1986, p. 15) explain that
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When Solomon derives inferences using rules, all the endorsements carried
by the antecedents are transferred to the consequent. The endorsements of
the rule, the tasks, the data and the conclusion are all included in the
endorsement of the consequent. Since such conclusions are used to prove
other tasks, SOLOMON builds up huge bodies of endorsements for
conclusions only after a few inferences.

There are still limitations to the theory of endorsements. Although combining
evidence and ranking propositions are important in controlling inference, these
operations are not readily available when using the theory of endorsements. A limited
ranking of endorsements would be reasonable to consider when using combination
rules but given a large number of endorsements it is not clear how combination could
be performed. Cohen has not provided an answer to the question, “How do experts

combine evidence?”

Cohen has pointed out that : "The model of endorsements does not preclude
endorsements that include numerical measures such as degrees of belief” (Cohen.

1985. p. 53).

Grech and Sammut describe an expert system shell that was used to implement a
system for the identification of radar emitters {(Grech & Sammut. 1989). They suggest
that the shell was developed for dynamic domains in which "the use of probabilities is
highly questionable”. As a result the shell uses a combination of an assumption-bascd
truth maintenance system and a system of endorsements to enable it to reason under
uncertainty. One of the features of the system which is important is that it "enables
problem solving to occur incrementally as new information concerning the state of the

world is acquired" (Grech and Sammut, 1989, p. 308).
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3.3.2 Non-monotonic logics

There are three broad categories of Non-monotonic reasoning (Bonissone, Cyrluk,

Goodwin and Stillman, 1990

1. consistency - such as McDermott and Doyle’s non-monotonic logic and Reiter's

default logic.
2. minimization - circumscription, McCarthy(1980).
3. epistemology - autoepistemic logic. Moore(1983).

According to Cohen (1985) non-monotonic reasoning was first applied by Stallman
and Sussman in 1977 in a system for electronic circuit analysis. Reiter (Reiter, 1987}
describes non-monotonic reasoning as a “particular kind of plausible reasoning”. He
explains that most examples of such reasoning are of the kind: "Normally, A Holds.”
This type of reasoning then is different to the predicate logics. Lea Sombe (1990)
suggests that the logic statement “all the A’s are B's" should be expressed “an A is a

B, up to exceptions™ in Reiter's default logic.

Traditional mathematic logic does not provide for reasoning with incomplete
information as it is inherently monotonic. ""his means that whenever we have a
relationship between a set of sentences (5) and a conclusion (¢) such as § implies ¢
then including new sentences in the antecedent will not change the conclusion. Reiter

sums this up as “new information, preserves old conclusions.” (Reiter. 1987).

As an example of default reasoning, suppose we know of a bird called Pengui and
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wish to know whether it is capable of flight. A non monotonic logic holds the

tollowing rules:

1. "if x is a bird and failing any evidence to the contrary then assume x can fly”

-

“if X is a penguin then x cannot fly”

3. "if x is an ostrich then x cannot f1y"

If our knowledge of Pengui is incomplete but we know that she is a bird then we must
assume from 1 that she can fly. If we later discover that Pengui is in fact a penguin
then we must revise our assumption, It is quite clear that classical logic is inadequate
to represent this type of logical mechanism because here adding information has

changed the original conclusion.

Bonissone and co-workers (1990) suggest that non-monotonic logic allows a more

natural form of reasoning, it mirrors more closely the manner that most people reason

. we are constantly making assumptions about the world and revising those
assumptions as we obtain more information. informally the common idea of
non-monotonics is that we may want to be able to jump to conclusions.
which might have to be retracted as new information about the world
becomes available.

(Bonissone, Cyrluk, Goodwin & Stillman, 1990, p. 69)
Non-monotonic logic does not manage without the use of numerical measures of

uncertainty by magically transforming uncertainty to certainty. McDermott and Doyle

(1980) explain

the purpose of non-montonic inference rules is not to add certainty where
there is none, but rather to guide the selection of tentatively held beliefs in
the hope that fruitful investigations and good guesses will result. This
means that one should not a priori expect non monotonic rules to derive
valid conclusions independent of the non-monotonic rules. Rather one
should expect to be led to a set of beliefs which, while perhaps eventually
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shown incorrect, will meantime coherently guide investigations. (McDermott
& Doyle, 1980, p. 42)

So non-monotonic logics are useful in situations that are uncertain because of the lack
of (incomplete) information but are not able to deal with probabilistic or fuzzy
reasoning. Researchers have criticised non-monotonics for this inadequacy
(Bonissone. 1987). Others however have elaborated on this aspect of default reasoning
and demonstrated that non-monotonics perform a different type of reasoning under
uncertainty and are therefore not in competition with the other methods of reasoning

under uncertainty (Clark, 1990).

At any point in time, propositions are considered to be true or false, but no
degrees of credibility are permitted. So using a nonmonotonic logic it is not
possible to deal comprehensively with partial information about an event.
(Clark, 1990, p. 129)

Nonmonotonics were developed to deal with uncertainty resulting from incomplete

not partial information.

Reiter (1987) suggests that there are two basic approaches to diagnostic reasoning.
The experimental approach is dominantand uses rules of thumb, statistical intuition

and past experiences of human experts.

The second approach diagnosis from structure and behaviours, the only
information at hand, is a description of some system together with an
observation of that system's behaviour. If this observation conflicts with
intended system behaviour then the diagnostic problem is to determine
which components could by malfunctioning account for the discrepancy
between observed and correct system behaviour. Since components can
fail in various and often unpredictable ways, their normal or default
behaviours should be described. These descriptions fit the pattern of
plausible reasoning. (Reiter, 1987, p.638)

It has been noted that several distinct versions of Reiters default logic (DL) were
suggested between 1988 and 1991. The main work published by Reiter on this topic

was in 1980 (Reiter, 1980). This work is all entirely theoretical and appears not yet
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to have been applied to expert system development so it will not he further

investigated here (Giordano & Martelli, 1994),

Marvin Cohen sums up non-monotonic logic as a "computationally efficient method
for reasoning with incomplete information” {Cohen,1985). He also suggests that the
features of non-monotonic reasoning make it particularly suitable for 'meta-
reasoning’. that is the process of controlling the application of the uncertainty calculus.

This idea will be revisited in Chapter 5.

The method of Reasoned Assumptions is another form of non-monotonic logic.
Uncertainty embedded in an implication is removed by listing all the exceptions to
that rule. Like other non-monotonics Assumption-based systems can cope with the
case of incomplete information, but they are inadequate to handle the case of

imprecise information with reasoned assumptions (Bonissone, 1987).

It has been suggested that the essential difference between numeric and non-numeric
approaches to uncertainty is that in numeric approaches each piece of evidence may be
believed to only a partial extent whilst the reasoning may have a *high degree of
confidence”. This can be contrasted with non-numeric approaches where each piece of
evidence is completely believed or disbelieved and confidence in the reasoning is

based on the underlying assumptions (Bhatnagar & Kanal, 1986).

So in non-monotonic reasoning before inferencing can be performed assumptions
have to be made (or defaults assigned). The results obtained may be later revised in

the light of new evidence.
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3.4 Hybrid approaches

Hybrid approaches to the handling of uncertainty use aspects of both numeric and
symbolic reasoning. The aim is to takc advantage of both methods of reasoning, and to

combine these advantages into a single method of rcasoning.

3.4.1 The Non-Monotonic Probabilist

Cohen (1985) developed the Non-Monotonic Probabilist (NMP), a hybrid approach
to uncertainty. specifically for the field of image analysis. A domain that he describes
as requiring an “explicit and valid quantitative model of uncertainty”. and “a
metastructure of qualitative reasoning”. in which the conjectures of the model are
reconsidered in the reasoning process. This method was introduced by considering
the handling of conflict resolution in numeric and non-numeric paradigms. It is
suggested that Bayesian methods ( and all other numeric methods) actually expect
divergence occasionally and because of this, the line of reasoning is similar to that
where extreme measurements are expected to “"cancel each other out”. This
perspective is quite different to the qualitative viewpoint where contrary evidence can
only occur as a result of flawed knowledge, thus the response is to identify the

mistake(s) in the argument and correct it (them). Cohen explains

Pure probabilistic systems never learn anything new about their probabilistic
beliefs and assumptions from the experience of applying them. Pure non-
monotonic systems do learn, but they have an arbitrariness and an all-or-
none quality about the new beliefs they acquire. Our argument, quite simply,
is that both capabilities are needed, and that satisfactory systems will, in
general require their combination” (Cohen, 1985, p. 3.18).

NMP is an expert system building tool that incorporates hybrid methods for reasoning
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under uncertainty. It uses Shaferian belief rather than Bayesian probability because of

the possibility for the explicit representation of ignorance (Cohen, 1985).

3.4.2 Truth Maintenance Systems

Truth Maintenance Systems(TMS) are identified by de Kleer as having the problem of
only considering one solution at a time (de Kleer, 1984). However Assumption-Based
Truth Maintenance Systems (ATMS) allow “arbitrarily many contradictory solutions
to coexist™ (de Kleer. 1984, p. 81). D'Ambrosio discusses an hybrid approach to

reasoning under uncertainty using ATMS:

"the method relies on the propagation mechanisms in an ATMS to perform
most evidence combination operations symbolically, and only substitutes
numeric values when asked for the certainty of a proposition” (D*Ambrosio,
1989, p. 268).

Advantages of this technique include improved handling of dependent and partially
independent evidence, rapid re-evaluation of propositional certainty values with
different sets of assumption certainties, and the ability to obtain certainty values for a
variety of different perspectives (partial solutions) with little computational effort

(D’Ambrosio, 1989, p. 282).

Filman adds further weight to the argument, that this type of assumption-based

reasoningis more similar to most human reasoning, than that of traditional logic.

In general, reasoning is the process of deriving new knowledge from old. If
the underlying knowledge never changes, if we never explore hypothetical
spaces, and if our knowledge is free of internal contradictions, the
accumulation of knowledge is straight forward: We just add the results of
our reasoning to our pile of knowledge. Unfortunately, few problems are so
simple. We usually find ourselves reasoning under a set of assumptions
that may be withdrawn or changed. Often the entire reasoning process is
focused on identifying preferred assumption sets. ldeally when the
assumptions change we would like t¢ withdraw those conclusions that are
no longer valid, retaining those that a: 2 still true. This requires attaching to
derived facts justifications or dependencies, that is, reasons for belief in
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these facts (Filman, 1988, p.384).
So with this method of reasoning we may concentrate on the assumptions that drive
the process of reasoning. Doyle's system uses the concept that certain assumptions are
either believed or not believed. A particular derivation would be valid, for example.

if assumptions X and Y were in, but Z out” (Filman, 1988, p.384).

Assumption based Truth Maintenance Systems then provide for many contradictory

solutions to be held and a natural way of reasoning.
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Chapter 4: A comparison of uncertainty

management techniques

4.1 Chapter overview

This chapter will attempt to compare uncertainty management techniques. The chapter
is in four parts. The first introduces the concept of comparison and contains a warning
for the expert system developer. The second part of the chapter considers three
methods that have been suggested in the literature to perform the comparison. Each
suggests features that are important in the comparison. The first (Wise & Henrion,
1986) considers the results of the expert system to be of paramount importance. The
second (Cohen, 1985) is in effiect a cost benefit analysis that suggests it is important to
weigh up the Validity (Benefits) and Feasibility (Costs). The third method of
comparison (Bonissone, 1987) is in the form a Desiderata for uncertainty management
techniques. Each UMT is classified on whether or not it meets each of thirteen

objectives.

The third part of the chapter considers comparisons of UMTs that have been reported
in the literature. This section is dominated by numeric UMT’s with little on Non-
numeric and barely a mention of hybrid methods reflecting the amount of material
available. Hybrid methods especially are in their infancy and therefore are rarely
mentioned beyond the hope that they may provide for a better method for the future.

The complexity of such implementation is a limiting factor for the present.
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Finally the chapter considers some of the recent advances in the theory of reasoning

under uncertainty.

4.2 An introduction to comparison and warning

Ginsberg advised that comparing Uncertainty Management Technigues was in the too
hard basket. "The true advantages of the various competing paradigms will only be
apparent when these paradigims have been incoiporated in full-scale systems”
(Ginsberg, 1986). Even then. a mecthod of performing the comparison, or a scale
along which the performance of the UMT's is to be measured may be difficult or

inappropriate to find.

There appears to be a trend in the literature that identifies a shift in belief over the
years from the mid-eighties to the early nineties. The start of the period is
characterised by claims that certain UMT's are the one and only correct system: eg.
Cheeseman (Cheeseman. 1986) argued in favour of probability and Zadeh (Zadeh.

1986) in favour of fuzzy set theory.

The following quote from Shafer was ahead of its time and is far more characteristic

of the early nineties.

| believe that in the next few years both Bayesian and belief-function
designs will find their niches in the world of expert systems. Bayesian
designs will predominate in systems that are repeatedly applied under
conditions so constant that the picture of answers determined at random
with known chances fits. Belief-function designs will be more successful in
systems whose each use represents a relatively unusual conjunction of
different small worlds of experience (Shafer, 1986, p. 135).
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4.2.1 Warning to the expert system developer, your UMT

may not be what it claims

Magill and Leech (1991) investigated two commercially available expert system tools
that used respectively, Bayes’ Theorem and Certainty Factors, for the handling of
uncertainty. Their aim was to reccommend the more appropriate tool for a particular

task.

They discovered that the complex decision of which UMT was more appropriate for
an individual ES development was further hampered by the fact that "the two specific

tools do not follow strictly the theories on which they are based”.

This matter is beyond the scope of this investigation since it was never intended to
investigate particular implementations. It is included here as merely a wamning to
expert system developers that it is possible that the methodology selected may not be

implemented in its purest form.

Returning to the comparison of UMTs, is this a matter of comparison of apples with
oranges? If so, then when should the apple be selected for a particular application

ahead of the orange.
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4.3 Methods for comparing UMT's

Before beginning to compare UMTS. the manner in which they are to be compared
should be considered. This section will consider three methods of comparison that
have been suggested. The first suggests accuracy of results (Wise & Henrion, 1986),
the second suggests a framework of features for comparison - itisin essence a cost
benefit analysis (Cohen, 1985), and the third is a Desiderata - a list of requirements

{Bonissone, 1987).

4.3.1 Comparison using resuits produced

Wise and Henrion in 1986 felt that it was important to test Uncertain Inference

systems ( UISs, usually elsewhere in this paper referred to as paradigms of reasoning

under uncertainty or UMTs) in respect of the results they produced whilst

acknowledging that other aspects were important.

The main purpose of this paper is to present and try to justify a framework
for testing the accuracy of UIS's results, ignoring for the moment issues of
computational effort, clarity, cor simplicity. ..we believe that clearer
presentation of these fundamentals and examination of the methods against
the full range of criteria, including the theoretical, pragmatic issues, as well
as the experimental comparison of performance explored here, could shed
some needed light. (Wise & Henrion, 1986, p.82)

Despite the drawbacks of this method of comparison they consider that information
regarding the accuracy of outcomes from the expert system will assist the expert

system developer in making a selection.
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Different people will have different weightings for these criteria, reflecting
their different goals, and so it may never be appropriate to attempt definitive
evaluation of the techniques. But in any case, better analytic and
experimental evidence which compares the performance of UIS's in terms
of their resuits, should help to provide system designers a more solid basis
for choosing among them (Wise & Henrion, 1986, p.82).

It is true that the system designer does need to know that a certain UMT provides

reasonable results, but it is not likely that this is to be the overriding selection criterion

on every occasion. Accuracy of result is only one of several possible criteria for the

selection of a paradigm. Other criteria. including the feasibility of implementing a

particular paradigm are considered by the framework suggested by Marvin Cohen and

outlined in the following section (Cohen. 1985).

4.3.2 A framework for evaluating paradigms

A framework for evaluating theories of uncertainty is presented by Marvin Cohen

(Cohen, 1985, p. 2-4). He suggests that the framework:
e provides an opportunity to clarify our comprehension of the task.
e suggests ways in which models may be changed.

s possibly provides the structure on which to build new inference methods.
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FIGURE 4.1: A Framework for Evaluating Theories of Uncertainty

This framework is illustrated in Figure 4.1. It provides for a number of features of the
various paradigms to be evaluated without specifying which of the features is the most
important. This will depend on the specific development being undertaken, especially
the importance of the overall system and the available budget. A developer of a low
budget system may not have the luxury of selecting validity as their most important
criterion. They may make a different decision because of time constraints or limited

equipment and be unable to consider more complex methods.
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4.3.3 The requirements of a theory of uncertainty

management

Bonissone (1987) presents a Desiderata for Uncertainty management techniques in a
paper entitled Plausible reasoning. This consists of a set of thirteen objectives for an
UMT. It concentrates on the theoretical aspects rather than the practical, twelve of the
thirteen objectives are related to the validity rather than the feasibility of the UMT.
Nine UMT's are evaluated in respect of whether or not they meet these objectives.
Each of these objectives will be discussed in turn. Bonissone's results are presented in

Table 4.1.

1. Combination rules should not be based on global assumptions of
evidence independence.

Certainty factors are said to have this independence assumption. Heckerman (1986)
objected to Certainty factors on the grounds that they did not allow explicit
representation of dependence or independence. The early Bayesian methods also made

this assumption.

2. The combination rules should not assume the exhaustiveness and
exclusiveness of the hypotheses.

Given this assumption there could quite clearly be inaccuracies in a system that had
not included all possible hypatheses if it were using probabilities of a variation. Since

all probability is relative to a sample space (Freund, 1972).

3. There should be an explicit representation of the amount of evidence for
and against each hypothesis.

Since it is "the amount of evidence” that is to be represented, then a numeric



representation would be appropriate but cannot be combined into a single figure.

4. There should be an explicit representation of the reasons for and against
each hypothesis.

Cohen's Theory of Endorsements provides the most explicit representation of the
rcasons to support of an hypothesis or not. This is one of Cohen’s major arguments
against numeric methods -- that they mask the rcasons by simply combining them

Into a nun.Jer.

5. The representation should allow the user to decide the uncertainty of any
information at the available level of detail (i.e. allowing heterogeneous
information granularity).

It would appear pointless 10 insist that the user provide numbers {uncertainty levels)
that are not known. These must be only guess-rimares. It would be better to allow
information that is actually known even if less detail is therefore provided. This is the
sole objectives to consider the feasibility of the system, specifically the quantity of

input (see Figure 4.1: A Framework for Evaluating Theories of Uncertainty).

6. There should be explicit representation of consistency.

7. There should be an explicit representation of ignorance to allow
noncommittal statements.

Proponents of Dempster-Shafer (that includes an upper and lower limit to allow for
representation of ignorance) argue that this is one of the major limitations of

probability theory.

8. There should be a clear distinction between a conflict in the information
(violation of consistency) and ignorance about the information.

9. There should be a second order measure of uncertainty recording the
uncertainty of the information as well as the uncertainty of the measure
itself.

10. The representation must be, or appear to be, natural to the user to

facilitate graceful interaction, natural to the expert to permit, elicitation of
consistent weights or reasons, and the semantics of procedures for
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propagating and summarising information must be clear.
Graham (Graham, 1991) suggests that since it is true that people are generally very
had at estimating probabilities then the Bayesian approach is not suitable for systems

to be used by non-statisticians.

11. The syntax and semantics of the representation should be closed under
the rules of combination.

12. Making pairwise comparisons of uncertainty should be feasible as these
are required for decision making.

In general this type of comparison is possible with numeric values, but not symbolic.

Proponents of symbolic methods argue that this comparison may be invalid.

13. The traceability of the aggregation and propagation of uncertainty
through the reasoning process must be available to resolve conflicts of
contradictions, to explain the support of conclusions, and to perform
meta-reasoning for control.

This support for the reasoning process is available with symbolic methods and not

with numeric methods.

With the final two requirements of his Desiderata, Bonissone has dismissed. in
general, all numeric and symbolic methods. This leaves only the hybrid methods as
options to be further considered when looking for a method of uncertainty

representation that passes all his stipulations.

Table 4.1 of the next page summarizes how Bonissone sees various UMTs in relation
to his Desiderata. He considers seven numeric and two non-numeric systems

(Reasoned assumptions and The Theory of Endorsements).
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Uncertainty 2 (3 9 (10 [1T1 [12 [13
Representation

Modified Bayesian N | N NIY Y Y N
Confirmation Y | YN N[N N Y N

{

Upper and lower probabilitics N|Y YI|Y Y Y N
Evideniial reasoning NI|Y Y|Y Y Y N
Probability bounds YI|Y Y|Y Y Y N
Fuzzy necessity and possibility Y |Y YI|Y Y Y N
Evidence space Y |Y Y|Y Y Y N
Reasoned assumptions Y |N NI|Y Y N Y
Endorsements Y [N NIY Y N Y

Table 4.1 Bonissone’s view of Uncertainty Representations




4.4 Comparisons reported in the literature

In this section the thesis will consider comparisons that have been made between
various UMTs. There are three major sections here, reflecting firstly the overall
comparison between numeric and non-numeric methods in general. then two more
specific sections dealing with each of those in turn. The number of comparisons of
numeric methods found in the literature far outweighs that of the non-numcric

methods. This reflects the quantity of research in each area at this point in time.

4.4.1 Numeric versus non-numeric

Bonissone and colleagues argue in favour of the use of a numerical representation of
uncertainty on the grcunds that this provides a method that can be used in the

inference engine.

With numerical representations, it is possible to define a calculus that
provides a mechanism for propagating uncertainty throughout the reasoning
process. The use of aggregation operators provides summaries which can
then be ranked to perform rational decisions. (Bonissone, Cyrluk, Goodwin
& Stillman, 1990, p. 69)

They continue to suggest that models based on qualitative approaches are usually
designed to handle the aspect of uncertainty derived from the incompleteness of the
information. Doyle’s method of Reasoned Assumptions (Doyle, 1983) and Reiter’s
Default reasoning (Reiter, 1980) are examples of these. With a few exceptions they
are generally inadequate to handle the case of imprecise information, as they lack any

measure to quantify confidence levels.

Graham (Graham, 1991) suggests that since it is true that people are generally very
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bad at estimating probabilitics then the Bayesian approach is not suitable for systems

to be used by non-statisticians.

However Bonissone in an carlier paper (Bonissone, 1987) had argued that numerical
approaches to uncertainty required precision that an expert could simply not provide.
He considered that the complex calculations may not be justified given the difficulty

of obtaining accurate initial figures.

it is clear that these models of uncertainty require an unrealistic level of
precision that does not actually represent a real assessment of uncertainty.
{Bonissone, 1987, p. 73)

One of the very interesting expert systems of recent times is Cyc. This enormous
system is designed to capture common sense. Lenat and Guha (1990) published a
“snapshot of research in progress™ at the half way point in the ten year project.
Certainty factors were initially used in the project but were not popular with the
authors. They criticised CFs because of the “problem™ that all numbers could be
compared. This meant that unreasonable comparisons could be made between very
similar CFs, numbers that really should not be compared. The Cyc project abandoned
CFs in favour of a system having only five possible values, absolutely certain,
curtently believed true (but capable of being overridden), unknown. currently believed
false (but capable of being overridden) and absolutely impossible. Lenat and Guha
suggest that this method works well when there “isn’t too much semantic knowledge™
and fails generally when some knowledge is missing (Lenat & Guha, 1990, p. 307).
Since no other detail of Cyc’s uncertainty handling has been located, this method is

not included in the section on symbolic approaches (Section 3.3 Symbolic

approaches).
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Henkind and Harrison surveyed four numeric UMTSs and concluded that although
cach had its strong points they saw the common disadvantage that they “compute
aggregate numbers but keep no record of divergent opinion” (Henkind & Harrison,

1988. p.713).

Bonissone suggests that non-numeric UMTSs have deficiencies in their ability to
"represent and summarize" measures of uncertainty (Bonissone, 1987, p. 860). Yet he

also points to restrictions in some of the numeric representations of uncertainty.

The numerical approaches tend to impose some restrictions on the type and
structure of the information (e.g. mutual exclusiveness of hypotheses,
conditional independence of evidence) (Bonissone, 1987, p.860).

Most numerical UMTSs represent uncertainty as an exact quantity (scalar or interval)
on a given scale. They direct the user or expert to provide an accurate and consistent
numerical assessment of the uncertainty of both the facts and rules in the knowledge
base. The results of these systems are produced by lengthy calculations guided by
well-defined methods and appear to be equally accurate. However, given the difficulty
in obtaining such numerical values from the user, "it is clear that these models of
uncertainty require an unrealistic level of precision that does not actually represent a

real assessment of the uncertainty” (Bonissone, 1987, p.860).

4.4.2 Comparisons of numeric UMTs

Wise and Henrion cited by Ng and Abramson(1986, p. 44) compared the performance
of different schemes using the same set of rules and data. They report Bayesian
networks produced better results than both fuzzy sets and Certainty factors, which

were on a par. Heckermann (1990, p. 283) reported that the Bayesian approach



outperformed Dempster-Shater and Certainty factors in a large scale system in the
domain of lymph-node pathology. Unfortunately in neither case were the criteria for
measurement clearly stated. Hence it remains indeterminate as to how one UMT

outperformed the others.

Bayesian Dempster- | MYCIN's | Fuzzy Set
Probability | Shafer Certainty | Theory
factors
Theoretical Strong Strong Weak Moderate
Background
Computational | Low Moderate Low Moderate
Complexity
Model Setup Moderate Moderate Low Moderate
Model Low Moderate Low Moderate
Execution
Complexity of Low Moderate Low Moderate
Theory
Ease of Easy Difficulr Easy Easvy
Application

Table 4.2 Comparison of Theories (Lee et al., 1987, p. 35)

Table 4.2 shows a comparison of UMT's as developed by Lee et al. Some of the entries
for Bayesian probability are surprising in the light of results reported elsewhere. The
theoretical background of Bayesian methods are undoubtedly high but the
computational complexity has been reported as exponential (NP hard). There are

however a number of different ways of using Bayesian methods.
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The ease of application is surprising when considering a comment from Shafer
(Shafer, 1986), that has already been noted carlier in this section, that Bayesian design
does not have the modularity of production rules. Certainty tactors for example does
have this modularity and has been claimed to be easier to use for this reason ( Dan &

Dudeck. 1992).

Ramsbottom and Adams report on a series of expert systems that were developed
using an expert system shell specifically to compare three UMTSs ( Bayesian logic,
Certainty factors and Fuzzy logic). They conclude that "the use of fuzzy logic
functions allow easier expansion of the system and more accurately represent the
nature of the uncertainty and vagueness associated with the analytical test performed”

(Ramsbottom & Adams, 1993, p.S3).

4.4.2.1 Probability Theory and its suitability for expert system

development

Probability theory is where the concept of the management of uncertainty started.
Zadeh (Zadeh, 1986) and Kosko (Kosko, 1992) have been among the most vocal
critics of its use in expert systems, others consider that probabilities can be applied
generally to any system requiring the handling of uncertainty. The major conceptual
change necessary for applying probability theory to typical fuzzy situations is to
interpret probabilities as a measure of belief in a relevant proposition rather than a

long run frequency (Cheeseman , 1986).

Probability theory and its use in handling uncertainty may be mathematically sound

but there are still difficulties with the volume of data required from experts regarding
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conditional probabilitics.

It is clear that a Bayesian design does not have the modular character of expert system
production rules. We are not free to add or remove probability judgments from a
Bayesian design in the way that we are frec to add or remove production rules from a
production system. A Bayesian design specifies very rigidly just what probability

judgment it requires. (Shafer, 1986)

It has been suggested that we are bound to apply probability theory if uncertainty is
represented by real numbers and every relevant event may be allocated a real number
(Neopolitan. 1992). When this is not possible then other techniques must be

investigated.

Lindley cited in Neopolitan states:

It was good to realize that workers in expert systems are beginning to
understand that uncertainty statements must be combined according to the
rules of probability. What is surprising is that they took so long to see this.
The explanation presumably is that workers in new fields seem to think that
everything is new and sometimes fail to recognize connections with older
work (Neopolitan, 1992, p.69).

This is certainly not a universally held view. Lindley (1985) asserts that decision

making under uncertainty consists of three steps:
1. Quantify uncertainties with probability values
2. Describe the results of all actions in terms of utility.
3. Select the action that will be the most useful.

Yet this is clearly not always possible. “Circumstances do not always permit

[quantification of uncertainties yet a decision may still be urgently required” (Fox et
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al.. 1990). Lindley claims then that a decision cannot be made. However there are

expert systems that are able to produce results under such circumstances. They do not

however. use classical decision making.

Pearl (1988) cited in Neopolitan (Neopolitan, 1992) has demonstrated that his
approach to probability (e-semantics) "can better handle many of the problems for

which default logic and nonmonotonic logic were specifically designed”.

Others have stated more explicitly the restricted applicability of the Bayesian
technique (Magill and Leech. 1991). This is a summary of the problems that have

been found:

1. Experts required to quantify uncertainty in a probabilistic manner based on

long past experience and prohibitively large samples.

2. Two or more pieces of evidence in a rule are assumed independent.

3. The algebraic requirement is contravened by the intuitive beliefs of experts.

Problem | is based on a statement by Shortliffe and Buchanan (Shortliffe &
Buchanan, 1975) in support of their work on Certainty factors and should not be

considered current thinking. Problem 2 is also wrong when leveled at Bayesian

Techniques in general. Since the independence assumption is completely optional, it

may be made to simplify the situation but is open and acknowledged. (Early Bayesian

Techniques often made this assumption!) It is strange to consider the independence

assumption a problem of Bayesian Techniques in the light of evidence from Rothman

that Certainty factors are isomorphic to a subset of probability theory under an
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appropriate set of assumptions (Rothman, 1989). One of these assumptions is
conditional independence of evidence given an hypothesis. Let us consider the
possible correlation between two cevents and the corresponding probabilities of the

conjuriction and disjunction.

. Maximum correlation between two events is present when the less probable

event occurs only when the more probable event occurs.
The conjunction p(A&B) = Min(p(A),p(B)}
The disjunction p{A or B) = Max(p(A), p(B))

2. If two events are Independent then:
The conjunction p(A&B) = p(A)p(B)
The disjunction p(A or B) =p(A) + p(B) - p(A)p(B)
3. If minimum correlation applies then
The conjunction p(A&B) = Max(0,p(A)+p(B) - 1)
The disjunction p(A or B) = Min(l, p(A) + p(B))

It can be seen from this set of rules that the combination rules for disjunction and
conjunction that are used in Fuzzy set theory have used the assumption of maximum
correlation between the events. This may be correct or incorrect depending on the

example.

4.4.2.2 Certainty factors -- the original UMT

Magill and Leech (1991) investigated two commercially available expert system tools
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that used respectively, Bayes' Theorem and Certainty tactors, for the handling of
uncertainty. Their aim was to recommend the more appropriate tool for a certain task.
They discovered that the complex decision of which UMT was more appropriate for a
particular ES development was further hampered by the fact that "the two specific
tools do not follow strictly the theories on which they are based”. They simply quote
Shortliffe and Buchanan when looking at the applicability of MYCIN's Certainty

factors toother applications. This thesis will follow their example.

"it is potentially applicable to any problem area in which real world knowledge must
be combined with expertise before an informed opinion can be obtained to explain

observations, or to suggest a course of action”. (Shortliffe & Buchanan. 1975. p. 353)

Some of the difficulties with Certainty factors were considered in Chapter 3, Section
3.2.2.2 A critique of Certainty factors. Problems that have been identified by
Giarratano and Riley (Giarratano & Riley, 1994), Heckerman (Heckerman, 1986) and

others, that could severely limit other potential application areas, were discussed.

Wise and Henrion explain that in attempting to simplify standard probabilistic
methods, UMTs such as Fuzzy sets and Certainty factors, are actually making

unacknowledged assumptions about the relationship between propositions.

Any uncertain inference methods, by implication at least, makes certain assumptions
about the unspecified parameters, particularly the correlation between propositions

(Wise and Henrion, 1986).

Bonissone (1987) suggests that there are “numerous serious problems” with the use of

CF'’s. These include the interpretation of the number, the supposition of independence
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of evidence and the impossibility of interpreting a CF of zero, which doces not allow

one to distinguish between lack of information and discordant information.

4.4.2.3 In favour of Dempster-Shafer

When compared to ad hoc techniques. Dempster-Shafer is considered by some to be
more desirable because of its rigorous mathematical underpinning. (Cortes-Rello &
Golshani. 1990). This is despite Shafer's comment that Dempster’s nile of
combination had a pragmatic rather than mathematical basis (Shafer, 1976).
Compared with other probability based methods such as Bayesian, the Dempster-
Shafer theory is more powerful since it can work with probability of sets of points
instead of probability of just individual points. In addition it can handle contradictory

evidence in a satisfactory manner. (Cortes-Rello & Golshani, 1990)

Neopolitan (1992) is a supporter of probabilistic techniques yet he states that there is
still a place for Dempster-Shafer. He suggests it is unfortunate that this theory has
been applied inappropriately in some expert systems because there are situations when

Dempster-Shafer can provide meaningful results and Bayesian analysis cannot.

Lingras and Wong (Lingras & Wong, 1990, p. 468) discuss two views of belief
functions. They suggest that the compatibility view allows the use of
conditionalizations that are more usually confined to Bayesian theory. This is
contrasted with the probability allocation view that should be used when the
information available cannot be explicitly expresses in terms of propositions, but

probability allocation based on the evidence is possible. Lingras and Wong explain
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that this 1s because Dempster's rule fer combining belief functions is defined for
independent bodies of evidence. If there are dependencices then they should be

identificd and Bayes rule of conditionalization used.

Cortes-Rello and Golshani (1990) selected the Dempster-Shafer method for an expert
system in forecasting and marketiny management because they felt it better handled

the application, because:

l. the solution is not a single method, but a set of methods.

2. the problem is complex and the solution is based on subjective ( and possibly

contradictory) opinions of expert in forecasting techniques.

3. we can build fer different levels of abstraction (for example, rules referring to

an individual method, or rules referring to a ‘class’ of methods.

4. the concept of methods having strengths and weaknesses can be modelled

using rules with confirming and 'deconfirming’ beliefs over sets ot hypotheses.

(Cortes-Rello & Golshani, 1990, p. 17)

4.4.2.4 Other Comparisons.

It is also interesting that although these techniques all claim to be different from the
next several researchers have shown that some are (just) special cases of other

techniques.

Cheeseman (Cheeseman, 1986) and Barclay in Rothman (Rothman, 1989) both liken
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Certainty factors to probability methods. Heckerman (Heckerman, 1986)
demonstrates a "clear relationship between certaiaty factors and probabilities,” that he
suggests. adds weight, to the idea that probability theory is sufficient for managing

uncertainty.

Grosof has shown that the revised versions of MYCIN's Certainty factors arc

equivalent to a special case of Dempster-Shafer theory. (Grosof, 1986, p. 163)

Zadeh's method of combining fuzzy sets via the max and min functions has been
criticized as “failing to describe the real world™ (Jumarie, 1993). Jumarie suggests that
other methods that are closer to subjective probability should be used when

appropriate.

4.4.3 Comparisons of non-numeric UMTSs

The research for this thesis has uncovered very few attempts to compare non-numeric
UMTs. When mentioned in comparison it has mainly been in view of the discussion

about non-numeric versus numeric techniques that was covered in Section 4.4.1.

One criticism of Cohen’s theory of endorsements is due to Fox (Fox. 1986). He
suggests that although Cohen's theory of endorsements is able to successfully preserve
information about the sources of beliefs, it does not show how to deal with

knowledge that must be revised in the light of new information.
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4.5 Recent advances in the theory of reasoning

under uncertainty

There are recent advances in the theory of reasoning under uncertainty that could be
considered tor incorporation into an expert system. Probably the most important
developments are in the areas of Fuzzy Logic and Nen-monotonic logics. Hybrid

systems provide an area for useful investigation.

Fuzzy logics have recently been further investigated (Novak, 1992), (Graham, 1991)
and their use is becoming accepted. Shiraishi describes Fuzzy logic as useful because
it simplifies the process of building an expert system by reducing the number of rules
required (Shiraishi, 1989). Further work that has been done on the efficiency of
implementation algorithms will assist with the practicalities of Fuzzy logic in expert
systems (Koczy & Hirota, 1992) and also Dempster-Shafer theory (Xu & Kennes,
1994). Fuzzy logic has also been shown to be useful in connectionist expert systems

(Cohen & Hudson, 1992).

Default logics are said to mirror more closely the reasoning process of humans than do
other forms of automated reasoning (Lea Sombe, 1990). Giordano and Martelli have
summarised the work of Reiter and others in the area of default logics (Giordano &
Martelli, 1994) and this method of reasoning is likely to become more widely used. It
is perhaps going to be most useful in the future in hybrid systems that are today still in

their infancy (Clark, 1990) (Bonissone et al. 1990).

Distributed expert systems and the problems of cooperation between expert systems is
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considerea by Zhang {Zhang, 1992). This interesting work also considers
transformations from one UMT to another. This is done by considering the UMTS as
members of a mathematical structure known as a group. Isomorphic transformations
beiween the UMTS are defined. This type of definition and the transformations may

prove to be useful when designing expert systems that can implement several UMTs.
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Chapter 5: A methodology for the
selection of a paradigm of reasoning under
uncertainty in expert system

development.

5.1 Chapter overview

This chapter presents a methodology for the selection of a paradigm of reasoning
under uncertainty in expert system development. It begins by considering the
requirements of a methodology for the selection of an UMT. Several methodologies
from the literature will be considered and shortcomings in each noted. The thesis will
then present its own methodology to assist the expert system developer in selecting an
appropriate paradigm of reasoning. The possibility of viewing the process of selection
of a paradigm as a meta-problem is then considered. The final section of the chapter

considers using this to incorporate the selection process into an expert system.
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5.2 Some methodologies for the selection of an

UMT.

This section will consider several methodologies for the selection of an UMT

suggested in the literature and consider their appropriateness for the required task.

It has been suggested that the decision as to which is the appropriate UMT for an
expert system development is a trade-off between complexity and precision
(Bonissone & Decker. 1986). However consideration of the nature, reliability and
characteristics of the data is also important. Clark agrees that the selection process is

multidimensional.

The most appropriate technique for a particular application will thus depend
upon a number of factors, such as the nature of the domain, how much
data, expertise and time is available to construct the appropriate
representation, what level of accuracy is required, what functions the
system is intended to support, the importance of meta-level capabilities and
so on. (Clark, 1990, p. 140)

The thesis now considers three methods.
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5.2.1 Saffioti’s method - an outline

Saffioti suggests a method of selecting a paradigm of reasoning under uncertainty.

This approach to the problem is very much simply an outline of the process and does
little to assist the expert system developer with the information required to complete
each of the steps. His method indicates that the comparison should be done in three

phases (Saffioti. 1988, p. 93)

1. Select those techniques which are applicable to the problem (the
problem fits its preconditions)

2. Verify the epistemological and computational adequacy of the selected
techniques for the uncertainty at hand.

3. Weigh the remaining techniques and choose one: the general context
should be taken into account

This is a method that requires a great deal of work on the part of the expert system
developer. The first point, that very simply states ““select those techniques that are
applicable to the problem” is a very complex search of the literature in itself. unless
some form of assistance is provided to summarize the various options. The second
point requires yet more work when to the expert system developer, uncertainty is only
one (albeit important) aspect of the system development that they have to consider. It

is the objective of this thesis to simplify the process.
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5.2.2 Lee’s method - numeric UMTs enly

Lee et al. provided a more reasonable approach in a table (reproduced as Table 5.1)

that compares four aspects of four numeric UMTSs (Lec et al, 1987, p.36).

Bayesian Dempster- | MYCIN's Fuzzy Set
Probability | Shafer Certainty Theory
Factors
Problem Definition Well-defined | Well-defined | Well/lll- Well/lll-
defined defined
Computing Power Small Small-Large | Small Small-Large
Needed
Needed amount of Linle Moderate Linle Moderate
training in Theory
Needed amount of Lirle Substantial | Linle Moderate
training in application

Table 5.1 Guidelines of Selection

Unfortunately Lee et al. have only considered numeric approaches to handling

uncertainty and have not justified the content of the table. There are further aspects

that required consideration including the source of uncertainty and whether large

amounts of historical imformation are available. These aspects will be included in the
methodology for selection that is proposed in section 5.3, A Manual approach to the

selection.
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5.2.3 Kline and Dolins - guidelines and quotation

The scope of this methodology is broader than managing uncertainty. Kline and
Dolins provide guidelines to selecting techniques for the total implementation of an
expert systen. In their book Designing Expert Systems - a guide to selecting
implementation techniques. Kline and Dolins devised a number of guidelines that
consider aspects of the problem and suggest recommended techniques to use in an
expert system development (Kline & Dolins, 1989). An example guideline is
presented here (Figure 5.1) since this is very similar to the kind of advice that this

thesis was looking to give regarding the selection of an UMT.

Will the expert system be solving a signal-interpretation problem?

and

is it hard to distinguish true signals from noise (i.e, low S/N ratio)?
or

is it easy to distinguish true signals from rioise(i.e. high S/N ratio)?

Low S/N ratio -> Model-Driven Reasoning
Evidence: Weak, moderate

High S/N ratio -> Data-Driven Reasoning
Evidence: Moderate, powerful

Figure 5.1 An example guideline to selecting implementation technigues (Kline &

Delins, 1989).

Quotations are then used in supporting arguments for the design guidelines. Two

advantages are given for this type of supporting evidence:

1. The quotations help to ensure that the design guidelines have some
degree of support among expert system builders, as opposed to merely
reflecting the personal biases of the authors of this book.

2. The quotations provide pointers to additional source of information on a
particular issue. (Kline and Dolins, 1989, p. 6)
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This method provides some casily accessible advice to the expert system developer. It
is provided in a manner that requires careful consideration but does not require too
much additional work beyond the development of the expert system itself. This thesis
will use a similar technique. It will also use quotations to back up the manual

approach to sclection that is presented in the following section.

5.3 A manual approach to the selection

This section will present a manual approach to the selection of a paradigm of
reasoning under uncertainty. It should be noted that whilst this thesis has attempted to
cover a broad range of UMTs the mcthodology for selection concentrates on numeric
methods. This is because Hybrid methods are still largely experimental and the Theory
of Endorsements (see Section 3.3.1) is only considered suitable in situations where the

reasoning chains are very short (Bhatnager & Kanel. 1986).

In selecting the order for the decision making process consideration was given to any
overriding features that would clearly indicate the required form of UMT. It can be
seen in Figure 5.2 A manual approach to the selection of an UMT that the first step is
making far more clear cut decisions that the latter steps. It is also true that the early
steps tend to be more important. This can be likened to a process of first sorting the
goats from the sheep and then going on to sort the sheep into Merinos, Leicesters and

Suffolks.

The manual approach that follows is in the form of a number of questions that the

expert system developer should answer regarding a proposed ES development.
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Questions should be considered in the order given and can be considered to form a
decision tree, as is presented in Figure 5.2 A manual approach to the selection oi a
UMT. If the answer to any question is positive and this is confirmed by the guideline
then that recommendation should be followed. A negative answer means the

following step should be considered.
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Step la: Considers the source of uncertainty

la) I's uncertainty mainly in terms of incomplete data?

Guidelines la

If uncertainty is mainly in terms of incomplete data then default reasoning and
non-monotonic logic is probably appropriate.

Support/Reasons la

The process of reasoning using non-monotonic logics is that :

e judgements are made using the available evidence by making assumptions

e assumptions are revised in the light of new evidence.

Non-monotonic logic is not suitable to deal with imprecise data and so
another method will be required if this type of uncertainty is present. Refer
also to Section 3.3.2. Non-monotonic logics. (McDermott & Doyle. 1980,

p.42), (Clark, 1990, p. 129)
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Step 1b: Considers the source of uncertainty

Ib)  Is uncertainty mainly in terms of imprecision of knowledge?

Guidelines 1b

b} If uncertainty is mainly in terms of imprecision of knowledge then fuzzy

sets may be appropriate.

Support/Reasons 1b

Research has shown that fuzzy set thec v is able to express concepts that are not
applicabie to probability theory (Zadeh. 1985)(Neopolitan. 1998). This may be the
only calculus that has systematically addressed the issue of imprecision of statements
(Bhatnagar & Kanal. 1992). More efficient algorithms have been developed for the
inference process (Koczy & Hirota. 1992). Whenr fuzzy set theory is applicable it may

reduce the number of rules required (Shiraishi, 1989).

Step 2: Historical Data

Are large amounts of historical data available?

Guidelines 2

If large amounts of data are available then Bayesian methods are likely to be
suitable (Valverde & Gehl, 1992, p. 23). There are further requirements if

Bayesian methods are to be chosen, go now to step 3.

If not then go onto step 4.
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Support/Reasons 2

It is important to consider the structure of the problem and ine easc of
obtaining numerical measures. If the sitation is well developed and a full
history of data is available then a system based on mathematical probabilities
would be appropriate (Wise & Henrion. 1986) (Buxton, 1989) (Ncopolitan,
1992). If the structure of the problem is less well defined then a more flexible

approach is required.

Step 3: Conditional Independence

Is there Conditional Independence among cases”

Guidelines 3

Yes - then use Bayes' rule.

No - then Subjective Bayesian may be suitable but steps 4 and 5 should also be

considered.

Support/Reasons 3

Bayes' rule assumes conditional independence (Kline and Dolins, 1989) if not
then the number of conditional probabilities required becomes prohibitive.
Subjective Bayesian Methods using networks reduce this requirement
(Heckerman & Shortliffe, 1992) (Srinivas et al., 1990) (Buxton, 1989)

(Heckerman, 1990).
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Step 4: Representation of Ignorance

Is there an explicit representation of ignorance required?
Guidelines 4

Yes - then use Dempster-Shater.

No - then go on to step 5.
Support/Reasons 4

Dempster-Shater provides explicit representation of ignorance through the use
of an upper and lower probability (Spillman,1989) (Avanzato, 1990)(Fung &
Chong, 1986)(Cortez-Rello & Golshani, 199@) Valverde & Gehl, 1992). The
advantage is the ability to use incomplete probability models (Shafer, 1986.

p-133).

Step S: Difficulty assigning probability

Bayesian inference may be suitable but probability cannot be assigned to all

pertinent events

Guidelines 5

Use Dempster-Shafer (Neopolitan, 1992).

Support/Reasons 5

Dempster-Shafer is suitable when a probability cannot be assigned to all events

(Neopolitan, 1992) (Buxton, 1989).
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Step 6

Is case of implementation important?

Guidelines 6

IF YES then Certainty Factors were devised to be straight forward
IF NO then use Subjective Bayesian methods.
Support/Reasons 6

Certainty Factors niay be used when a simple implementation is important
(Dan & Dudeck, 1992) (Heckermann & Shortliffe, 1992). The modular
knowledge base is helpful to the developer (Dan & Dudeck, 1992). Certainty
Factors have been shown to work (Buchanan & Shortliffe, 1984) and expert
systems that use CFs have performed equivalent to. or better than human

experts (Heckermann & Shortliffe, 1992)(Yu et al.. 1979).

Thus the process of selection has been described and it has resulted in a

recommendation of an UMT to be chosen for an expert system.
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5.4 The process of selection as a meta-problem

This section will consider the process of selecting an UMT as a meta-problem. It
should be possible to extend the knowledge stored by the expert system to beyor.d that
of just the problem domain. The expert system will then include meta-knowledge
about the UMTs themselves. This will mean that during the development process,
features of the expert system can be identified that will allow an appropriate paradigm
of reasoning under uncertainty to be selected. It will then be put into place

automatically by the expert system shell.

Researches have argued for an explicit representation of the methods used for

uncertaimy management.

One of the most innovatory characteristics of Al is its concern with
representing and using knowledge in as explicit a form as possible. This
principle does not seem to have been applied to uncertainty, for which the
implicit numerical methods have usually been the only possibility. (Saffioti,
1988, p. 86)

This suggests that assumptions about the validity of a certain UMT for a particular
application would then become apparent. If this principle were to be applied it would
mean storing meta-knowledge of the uncertainty representation and reasoning

process.

The path for selecting an UMT is thus defined as a meta-problem which is the
approach taken by Fox (Fox, 1986). It does not however provide guidelines as to the

particular features of the UMT to consider.
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Fox (Fox. 1986) presents a radical approach to the problem of reasonimyg under
uncertainty. He puts forward three arguments for extending the framework of

probability:

¢ cxplicit representation of several types of uncertainty, specifically possibility and

plausibility. as well as probability

« the use of weak methods for uncertainty management in problems which are

poorly defined

« symbolic representation of different uncertainty calculi and methods for choosin
y P y g

between them

(Fox, 1986, p. 447)

So the paradigms of reasoning themselves could become part of an extended
knowledge base of an expert system. More appropriately this would be a separate
meta-knowledge base that would be a part of the expert systems shell. This is more
appropriate since this section of knowledge would be standard and appropriate for
any expertsystem development and quite separate from the domain knowledge that is

currently stored.

In the following section this idea is further considered.
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5.5 Incorporating the process of selection in an

expert system

If knowledge about UMTs can be abstracted then the process of selection of a
particular UMT can be performed as a part of the automated process. That is -- within

the expert system itself.

It has been suggested that the expert system shell should be structured to be able to
help in the decision making process. To provide such an implementation a system
would require a set of rules that would provide for the selection of a UMT. automating
the process outlined in section 5.3 A manual approach to the selection. Also required
would be explicit representation of the control processes to implement a number of
selected calculi. The calculi provided could be selected by a trade-off between
complexity and precision and the rules used to select them rely on a number of
features including the nature of uncertainty, availablity of historical data and the
importance of ease of implementation -- as described in section 5.3 (Bonissone and

Decker, 1986).

Others have supported the suggestion that the uncertainty calculi themselves should be
represented in the knowledge base. Fox (1986) demonstrated that the language of
probability theory has a framework similar to other languages. It consists of many of
the features usually associated with context-free grammars and BNF form (Louden,
1993). This includes a “vocabulary of terminal symbols, and a set of composition or
transformation rules for generating sentences from elements of the vocabulary” (Fox,

1986).
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The terminal symbols of probability theory inc.ude the real numbers,
operators (+,-,.. etc) and relations ( = , >, < etc). The composition and
transformation rules are the ordinary algebraic composition and
manipulation rules, extended operators (for example sum, product) and
specific revision rules (eg Bayes rule) (Fox, 1986, p. 455).

The probabilistic reasoning process is represented by the production rules. When
carried out these rules will use a composed set of terminal symbols, to generate a new

set of terminals.

The advantages of including the representation of UMTs explicitly are clear. Once the
methods are included as options for an expert system development then the UMTs
become alternatives to be used as required. This will not be useful until it is possible
to explicitly represent the methodology by which the selection of a UMT will be
performed. This was begun in section 5.3 A manual approach to the selection, but
remains to be validated, refined and automated. Fox suggests that once this in done
UMTs will be seen “not as rivals for all the honours. but as alternatives to be used as

circumstances demand” (Fox, 1986, p. 455).

Figure 5.3 on the next page illustrates this idea with a fragment of an expert system
for advising on the selection of an uncertainty calculus under development in PROPS

2.

The first two rules generate the set of possible methods and the
assumptions which must be tested in order to evaluate them. The second
two rules generate the subset of plausible methods on the argument that
their assumptions are satisfied. The last pair of rules considers the number
of plausible candidates and recommends accordingly. If neither of these
rules is satisfied a weak uncertainty calculus can be suggested. (Fox, 1986,
p.455)

Including meta-knowledge about the method of reasoning under uncertainty would
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provide another level of flexibility that is not currently available. Before it can be done
expert system shells will need to become more flexible so that the knowledge of

UMTSs can be translated into the reasoning process of the expert system itself.

if uncertainty calculus is required

and Method is a kind of uncertainty calulus
and assumptions of Method are not violated
then Method is a possible uncertainty calculus.

if method is a possible uncertainty calculus

and assumptions of Method includes Assumption
then check Assumption is true

and record that assumptions of Method are checked.

if assumptions of Method includes Assumption
and Assumption is false
then assumption of Method are violated

if Method is a possible uncertainty calculus

and assumptions of Method are checked

and assumptions of Method are not violated

then plausible uncertainty methods includes Method.

if plausible uncertainty methods includes Method
and number of plausible uncertainty methods = 1
then method is recommended.

if number of plausible uncertainty methods > 1
Then cost benefit analysis of methods is required.

Figure 5.3 Productions rules demonstrating meta-knowledge (Fox, 1986)
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Chapter 6: Conclusicn

6.1 Chapter overview

This chapter will conclude the thesis. The Bibliography is to follow.

It will be shown that the objectives of the project have been met. Consideration will
be given to the applicability of the results. Suggestions will be made for the next stage

of research in this area.

6.2 Have objectives been met?

To enable consideration of whether the objectives of the project have been met they

are restated here (taken from Chapter 1)

The major aim of this project is:

1. To define the criteria on which the selection of a paradigm of reasoning under

uncertainty for an expert system should be made.
A secondary aim is:

2. Toconsider what recent advances in the theory of reasoning under uncertainty are

worthy of consideration for incorporation into expert system developments.

In an attempt to answer these questions, I have gathered information from two major

sources.
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I.  The theory of reasoning under uncertainty. There is a great deal of material

available 1n journals and books

A great deal of the literature on this subject relates to the formal methods involved.
There are some parts of the field (for example Default and non-monotonic Logic) that
are in the development stages  and as far as [ can ascertain are yet to be incorporated

into expert systems.

2. Expert System applications. Detailed information on the success or failure of the

particular UMT used is more difficult to obtain.

In chapter 5 a manual methodology for the selection of a paradigm of reasoning under
uncertainty was developed. This defines clearly the criteria that should be applied
during the selection process. This methodology should now undergo a process of

validation and verification that is quite likely to require the methodology to be revised.

There are recent advances in the theory of reasoning under uncertainty that could be
considered for incorporation into an expert system. The use of efficient algorithms for
Fuzzy logic and the further use of default logic were considered in Section 4.5: Recent

advances in the theory of reasoning under uncertainty.
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6.3 Consideration of the applicability of the

results

Throughout this research an attempt has been made to cover all types of expert system
development. The main consideration has heen to diagnostic systems but necessarily
all sources of uncertainty were considered. This led to an attempt to research all major
areas of numeric, symbolic and hybrid systems. The latter two areas have proved
particularly difficult to address but perhaps also represent the main areas for future

research. Especially combining the symbolic methods with numeric methods.

The manual approach to the selection of an UMT that has been developed { 5.3 A
manual approach to the selection) makes no recommendations to select an hybrid
method. It may be that if an expert system developer is not able to clearly answer the
steps of the method with a discrete answer then it may become apparent that more

than one method for handling uncertainty should ideally be used in an expert system,

The manual method also makes no attempt to select the type of non-monotonic logic

that would be most appropriate. This level of detail is beyond the scope of the thesis.
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6.4 Recommendations and suggestions for the

next step

The manual methodology for the selection of a paradigm of reasoning under
uncertainty that has been developed should now undergo a process of validation and

verification to ascertain its usefulness for the expert system developer.

It is clear that UMTs that are able to combine the ability to deal with different aspect
of uncertainty in the same system need further investigation. Current expert systems
may select the method that appears most appropriate but they are not able to cope with

the full spectrum of uncertainty. Clark emphasises this

However many domains of interest are composed of a mixture of
quantitative and qualitative relations. So no UMT may be unequivocally
appropriate. This raises the need to intelligently combine ditferesnt UMTs
and suggests that an important area of resezrch is the use of both symbolic
and quantitative representations of uncertainty in the same application.
(Clark, 1990, p. 142)

It will be important to combine methods effectively since some UMTs are able to deal

better with uncertainty arising from different sources.

Non-monotonic logics mirror more closely the reasoning used by humans and it may
be thatas expert systems become able to cover a broader knowledge base these
methods of reasoning become more important. It would be worthwhile investigating

their use in expert systems (Bonissone et al, 1990) .
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6.5 Conclusions

In conclusion this chapter has shown that the objectives of the thesis have largely been

met. This is clear since the methodology for selection has been presented.

The next stages in the research process are in three areas. The first is to validate and
verify the methodology that has been developed in the thesis. The second is to
implement the process of selection of an UMT as a portion of an expert system shell.
The third is to further explore symbolic and especially hybrid methods of reasoning
under uncertainty. Hybrid methods are those that will be able to reason with data that
contains uncertainties of several types. Current examples include a numeric and
symbolic components, in the future they may contain mutiple components both
numeric and symbolic. For example Bayesian probability may deal with uncertainty
that pertains to unreliable information, Fuzzy sets for uncertainty that originates from
lack of precision and non-monotonic methods deal with incomplete information. It is

clear that there is much work still to be done in this area.

A bibliography completes the thesis.

124



Bibliography

Adams. J. (1984). Probabilistic reasoning and certainty factors. In B. Buchanan and
E. Shortcliffe (Eds.). Rule-based Expert Systems, (pp. 263-271). Reading. MA:
Addison-Wesley.

Avanzato, Robert. (1991). Uncertainty management issues in the development of
an acoustic signal interpretation expert system. Proceedings of the (EEE/ACM

International Conference on Developing and Managing Expert System Programs,
pp- 68-75.

Bhatnagar. R.K. and Kanal. L.N. (1986). Handling unceriain information* A review
of numeric and non-numeric methods. In L. Kanal and J. Lemmer (Eds.),
Uncertainty in Artificial Intelligence (pp. 3-26). Amsterdam: Elsevier Science
Publishers B.V.

Bonissone. P.P. and Decker, K.S. (1986). Selecting uncertainty calculi and
granularity. In L. Kanal and J. Lemmer (Ed.). Uncertainty in Artificial Intelligence
(pp- 217-247). Amsterdam: Elsevier Science Publishers B. V.

Bonissone, P.P. (1987). Reasoning, Plausible. In Encyclopedia of Artificial
Intelligence, (pp. 854-863).

Bonissone, P.P. (1990). Now that [ have a good theory of uncertainty, what else do
I need?. In M. Henrion, R. Schachtes. L. Kanal, & J. Lemmer (Eds.). Uncertainty in
Artificial Intelligence S (pp. 237-253). Amsterdam: North-Holland.

Bonissone, P.P., Cyrluk, D.A., Goodwin, J.W., Stillman, J. (1990). Uncertainty and
Incompleteness: Breaking the symmetry of defeasible reasoning. ?. In M. Henrion.
R. Schachter, L. Kanal, & J. Lemmer (Eds.), Uncertainty in Artificial Intelligence S
(pp. 67-85). Amsterdam:North-Holland.

Booker, L., Hota, N., Ramsey, C. (1990). BaRT: A Bayesian Reasoning Tool for
knowledge based systems?. In M. Henrion, R. Schachter, L. Kanal, & J. Lemmer

(Eds.), Uncertainty in Artificial Intelligence S (pp. 271-282). Amsterdam: North-
Holland.

Buchanan, B. and Shortcliffe, E. (1984). Rule Based Expert Systems. Addison-
Wesley: Reading, Massachusetts.

Buxton, R. (1990). Modeﬂing uncertainty in expert systems. International Journal

Man-Machine Studies, 31, 415-476.

125



Chang. A. and Hall, L. (1992). The validation of fuzzy knowledge-based systems.

In L. Zadeh and J. Kacprzyk (Eds.), Fuzzy Logic for the Management of
Uncertainty (pp. 589-604). John Wiley & Sons, Inc.: New York.

Cheeseman, P. (1986). Probabilistic versus fuzzy reasoning. In L. Kanal and J.
Lemmer (Eds.). Uncertainty in Artificial Intelligence (pp. 85-102). Amsterdam:
North-Holland.

Clark. D. A. (1990). Numerical and symbolic approaches to uncertainty
management in Al. Aruficial Intelligence Review, 4, 109-146.

Clarke. N.. McLeish, M. and Vyn. T. (1991). Using Certainty Factors and
possibility theory methods in a tillage selection expert system. Expert Systems with

Applications. 4, 53-62.

Cohen, M. (1985). Alternative Theories of Inference in Expert Systems for Image
Analysis. Falls Church, Virginia : Decision Science Consortium.

Cohen. M. and Hudson, D. (1992). Management of uncertainty in knowledge-based
medical systems. In L. Zadeh and J. Kacprzyk (Eds.). Fuzzy Logic for the
Management of Uncertainty (pp. 553-568). New York : John Wiley & Sons, Inc.

Cohen, P. (1985). Heuristic Reasoning about Uncertainty : An Artificial
Intelligence Approach. London: Pitman.

Cohen, P.R. and Grinberg, M.R. (1988)._ A Theory of Heuristic Reasoning About
Uncertainty.  London: Pitman.

Cohen, P.R. (1989). Steps toward programs that manage uncertainty. In L. Kanal,

K. Levitt, J. Lemmer (Eds.), Uncertainty in Artificial Intelligence 3 (pp. 257-265).
Amsterdam: North-Holland.

Cortes-Rello, E. and Golshani, F. (1990). Uncertain reasoning using the Dempster-
Shafer method: an application in forecasting and marketing management. Expert

Systems (U.K.}, 7(1). 9-18.

D’Ambrosio, B. (1989). A Hybrid Approach to Reasoning Under Uncertainty. In L.
Kanal, K. Levitt and J. Lemmer (Eds.), Uncertainty in Artificial Intelligence 3
(pp. 267-282). Amsterdam: North-Holland.

Dan, Q. and Dudeck, J. (1992). Certainty factor theory and its implementation in a
medical expert system shell. Medical Inform, 17(2), 87-103.

De Kleer, J. (1984). Choices without backtracking. Proceedings of the National
Conference on Atrtificial Intelligence (AAAI-84), Austin, Texas, 1984, (pp. 79-85).

Dempster, A. (1967). Upper and lower probabilities induced by a multi-valued
mapping. Annals of Mathematical Statistics, 38, 325-339.

126



Dubois, D. and Prade. H. (1990). A Discussion of uncertainty handling in support
logic programming. International Journal of Intelligent Systems, 3, 65-82.

Filman, R. (1988). Reasoning with worlds and truth maintenance in a knowledge-
based programming environment. Communications of the ACM, 31 (4), 382 - 401.

Fox, J. (1986). Three Arguments for extending the framework of probability. In L.
Kanal and J. Lemmer (Eds.), Uncertainty in Artificial Intelligence (pp. 447-458).
Amsterdam: Elsevier Science Publishers B.V.

Fox. J.. Clark. D., Glowinski, A. and O’'Neil, M. (1990). Using predicate logic to
integrate qualitative reasoning and classical decision theory. [EEE Transactions on
Systems. Man and Cybernetics, 20(2), 347-357.

Freund, J. E. (1972). Mathematical Statistics. London: Prentice-Hall Intemnational.

Giordano. L. and Martelli, A. (1994). On cumulative default logics. Artificial
Intelligence, 66, 161-179.

Ginsburg, M. (1986). Implementing Probabilistic Reasoning. In L. Kanal and J.
Lemmer (Eds.) Uncertainty in Artificial Intelligence (pp. 331-338). Amsterdam:
Elsevier Science Publishers B.V.

Giarratano, J. and Riley, G. (1994). Expert Systems: Principles and Programming.
(2" ed). Boston: PWS-Kent Publishing Company.

Graham, I. (1991). Fuzzy Logic in commercial expert systems - results and
prosgects. Fuzzy Sets and Systems, 40(3), 451-472.

Grech, A. and Sammut, C. (1989). Qualitative plausible reasoning and
assumptions. In J.R. Quinlan, (Ed.) Applications of Expert Systems (pp. 290-309).
Sydney: Addison-Wesley Publishing Company.

Grosof, B. (1986). Evidential reasoning as transformed probability. In L. Kanal and
J. Lemmer (Eds.), Uncertainty in Artificial Intelligence (pp. 153-166). Amsterdam:
Elsevier Science Publishers B.V.

Guida, G. and Spampinata, L. (1989). Assuring adequacy of expert systems in
critical application domains: A constructive approach. In E. Hollnagel (Ed), (1989).

The Reliability of Expert Systems (pp.134-167). Chichester: Ellis Horwoord.

Heckerman, D. (1990). A Tractable inference algorithm for diagnosing multiple
diseases. In M. Henrion, R. Schachter, L. Kanal and J. Lemmer (Eds.), (1990).
Uncertainty in Artificial Intelligence S (pp. 163-171). Amsterdam: Elsevier Science
Publishers B.V.

127



Heckerman, D. (1990). An Empirical Comparison of Three Inference Methods. In
R. Schachter, K. Levitt, L. Kanal and J. Lemmer (Eds). Uncentainty in Artificial
Intelligence 4 (pp. 283-302). Amsterdam: Elsevier Science Publishers B.V.

Heckerman, D. (1986). Probabilistic Interpretations for Mycin's Certainty Factors.
In L. Kanal and J. Lemmer (Eds.). Uncertainty in Artificial Intelligence (pp. 167-
196). Amsterdam: Elsevier Science Publishers B.V.

Heckerman, D.. Mamdani, E. and Wellman, M. (1995). Real-world applications of
Bayesian Networks. Communications of the ACM. 38(3). 24-26.

Heckerman. D. and Shortcliffe. E. (1992). From Certainty Factors to Belief
Networks. Artificial Intelligence in Medicine, 4(1). 35-52.

Henkind. S. and Harrison. M. (1988). An analysis of four uncertainty calculi. JEEE
Transactions on Systems, Man and Cybermnetics, 18(5). 700-714.

Henrion, M., Schacter, R.D., Kanel, L.N. and Lemmer. J. (Eds.). (1990).
Uncertainty in Artificial Intelligence 5. Amsterdam: Elsevier Science Publishers
B.V.

Hollnagel, E. (1989). Issues in reliability of expert systems. In E. Hollnagel (Ed.).
Reliability of Expert Systems (pp. 168-209). Chichester: Ellis Horwood.

Hsu, K. and Chu. C. (1989). Practical issues in designing knowledge-based expert
systems. Computers and Industrial Engineering, 17 (1-4), 61-G6.

Hunter, D. (1986). Uncertain Reasoning using Maximum Entropy Inference. In L.
Kanal and J. Lemmer (Eds.), Uncertainty in Artificial Intelligence (pp. 203-215).
Amsterdam: Elsevier Science Publishers B.V.

Ignizio, J. (1991). Introduction to Expert Systems. New York: McGraw-Hill, Inc.

Isaac, S. and Michael, W. B. (1974). Handbook in research. San Diego: Knapp.

Jackson, P.(1990). Introduction to Expert Systems. Wokingham, England:
Addison-Wesley.

Jumarie, G. (1993). Expert systems and Fuzzy Systems: A new approach via
possibility-probability conversion. Kybernetes, 22(8), 21-36.

Kerr, R. (1992). Expert systems in production scheduling : Lessons from a failed
implementation. Journal of Systems Software, 19, 123-130.

Kline, P. and Dolines, S. (1989). Designing Expert Systems : A Guide to Selecting
Implementaion Technigues. New York: John Wiley & Sons.

128



Kobalicek, J., Gorig, J.. Malik, K. and Dohnal, M. (1993). Examples of the
application of fuzzy expert systems to rubber compounding. Plastics. Rubber and
Composites Processing and Applications, 19 (3), 159-173.

Koczy. L. and Hirota, K. (1992). A fast algorithm for fuzzy inference by compact
rules. L. Zadeh and J. Kacprzyk (Eds). Fuzzy Logic for the Management of
Uncertainty (pp. 297-317). New York: John Wiley & Sons.

Kosko. B. (1992). Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice Hall.

Lea Sombe (1990). Reasoning under Incomplete Information in Artificial
Intelligence. New York: John Wiley & Sons, Inc.

Lee. N., Grize, Y. and Dehnad, K. (1987). Quantitative Models for Reasoning
under Uncertainty in Knowledge-Based Expert Systems. International Journal of
Intelligent Systems, 2, 15-38.

Lenat, D. and Guha, R. (1990). Building Large Knowledge-based Systems.
Reading, Massachusetts: Addison-Wesley Publishing Company, Inc.

Lindley, D. (1985). Making Decisions. London, U.K.: Wiley.

Lingras, P and Wong, S.K.M. (1990). Two perspectives of the Dempster-Shafer
theory of belief functions. International Journal of Man-Machine Studies, 33, 467-
487.

Liu, X. and Gammerman, A. (1986). On the Validity and Appplicability of the

Inferno System. In M.A. Bramer (Ed.) Research and Development in Expert
Systems I (pp. 47-56). Cambridge: Cambridge University.

Louden, K. (1993). Programming Languages: Principles and Practice. Boston,
Massachusetts: PWS Publishing Co.

Lucas, P. and Van der Gaag, L. (1991). Principles of Expert Systems. Wokingham,
England: Addison-Wesley Publishing Co.

Magill, W. and Leech, S. (1991). Uncertainty techniques in system software.
Decision Support Systems, 7, 55-65.

McDermott, D. and Doyle, J. (1980). Nonmonotonic Logic. Artificial Intelligence,
13, 41-71.

McDermott, J. (1982). R1: A Rule-based configurer of computer systems. Artificial
Intelligence, 19, 39-88.

Miyoshi, T., Fukami, S. and Koyama, H. (1992). Management of uncertainty in
LIFE shell fuzzy frame system. Expert Systems with Applications, 5, 359-368.

129



Morawski, P. (1989). Understanding Bayesian Belief Networks. Al Expert , May
1989.(pp. 44-48).

Nceopolitan. R. (1992). A survey of uncertain and approximate inference. In L.
Zadeh and J. Kacprzyk (Eds) Fuzzy Logic for the Management of Uncertainty
(pp. 55-82). New York : John Wiley & Sons. Inc.

Ng. K. and Abramson. B. (1990). Uncertainty Management in Expert Systems.
IEEE Expert , 5(4). 29-48.

Novak, V. (1992). Fuzzy logic as a basis of approximate reasoning. In L. Zadeh

and J. Kacprzyk (Eds.). Fuzzy Logic for the Management of Uncertainty, (pp. 247-
264). New York: John Wiley & Sons, Inc.

O’Keefe. R., Balci, O. and Smith. E. (1987). Validating Expert System
Performance. IEEE Expert, 2(12), 81-87.

Oliphant, J. and Blockley. D. (1989). Knowledge-based system: advisor on the
selection of earth retaining structure. In B.H.V. Topping (Ed.). Anificial
Intelligence Techniques and Applications for Civil and Structural Engineers. (pp.
253-262). Edinburgh: Civil-comp Press.

Ramsbottom. D. and Adams, M. (1993). Uncertainty within a commercial expert

system shell for polymer analysis. Chemometrics and Intelligent Laboratory
Systems, 19, 53-63.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence. 13, 81-132.

Reiter, R. (1987). Nonmonotonic reasoning. In G. Shafer and J. Pearl (Eds).
Uncertain Reasoning (pp. 637-656). San Mateo. California: Morgan Kaufman
Publishers, Inc.

Rothman, Peter. (1989). Selecting an Uncertainty Management System._Al Expert.
July 1989, (pp. 56-62).

Saffiotti, A. (1988). An Al view of the treatment of uncertainty. Knowledge
Engineering Review, 2, 75-98.

Shafer, G. (1986). Probability Judgement in Artificial Intelligence. In L. Kanal and
J. Lemmer (Eds). Uncertainty in Artificial Intelligence. Amsterdam: Elsevier
Science Publishers B.V.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ : Princeton
University Press.

Shafer, G. and Pearl, J. (1990). Non-numerical approaches to plausible inference.
In G. Shafer and J. Pearl (Eds) Uncertain Reasoning (pp. 625-628). Morgan
Kaufman : San Mateo, California.

130




Shenoy, P. (1992). Using possibility theory in Expert Systems. Fuzzy Sets and
Systems, 52, 129-142.

Shiraishi. N., Furata, H.. Umano, M. and Kawakami, K. (1989). Knowledge-based
expert system for damage assessment based on fuzzy reasoning. In Topping.
B.H.V. (Ed). Artificial Intelligence Technigues and Applications for Civil and
Structural Engineers (pp. 211-216). Edinburgh: Civil-comp Press.

Shortliffe . E. and Buchanan, B. (1975). A Model of Inexact Reasoning in
Medicine. Mathematical Biosciences, 23 , 351-379.

Srinivas, S., Russell. S., and Agogino. A. (1990). Automated construction of sparse
bayesian networks from unstructured probabilistic models and domain information.
In M. Henrion. R. Schachter, L. Kanal and J. Lemmer (Eds). Uncertainty in
Artificial Intelligence S (pp. 295-308). Amsterdam: Elsevier Science Publishers
B.V.

Spillman, Richard. (1990). Managing Uncertainty with Belief Functions. Al
Expert, May 1990, (pp.44-49).

Spiegelhalter, D., Franklin, R. and Bull, K. (1990). Assessment, criticism and
improvement of imprecise subjective probabilities for a medical expert system. In
M. Henrion, R. Schachter, L. Kanal & J. Lemmer (Eds). Uncertainty in Artificial
Intelligence 5 (pp.163-171). Amsterdam: Elsevier Science Publishers B.V.

Sullivan. M. and Cohen, P. (1990). An Endorsement-based plan recognition
program. In G. Shafer and J. Pearl (Eds) Uncertain Reasoning (pp. 672-676). San
Mateo, California: Morgan Kaufman.

Tonn, B. E. and Goeltz, R. T. (1990). Psychological validity of uncertainty
combining rules in expert systems. Expert systems, 7(2).

van der Lubbe, J., Backer, E. and Krijgsman, W. (1991). Models for reasoning with
multitype uncertainty in expert systems. In B. Bouchon-Meunier, R. Yager and L.
Zadeh (Eds), Uncertainty in Knowledge Bases. 3rd International Conference on
Information Processing and Management of Uncertainty. Berlin, Germany:
Springer-Verlag.

Vaughan, D, Perrin, B. and Yadrick, R. (1990). Comparing Expert Systems built
using different Uncertain Inference Systems. In M. Henrion, R.D. Schacter, L.N.
Kanel & J.F. Lemmer (Eds), Uncertainty in Artificial Intelligence 5. Amsterdam:
Elsevier Science Publishers B.V.

Valverde, L. and Gehl, S. (1992). Probabilistic Models for Uncertainty
Management in Expert Systems. Journal of Power and Energy. 206(Al), 19-26.

Weichselberger, K. and Pohlmann, S. (1990). A Methodology for Uncertainty in
Knowledge-Based Systems. Berlin: Springer-Verlag.

131



Xu, H. and Kennes, R. (1994). Steps towards an Efficient Implementation of
Dempster-Shater Theory. In R.R. Yager, M. Fedrizzi and J. Kacprzyk (Eds),
Advances in the Dempster-Shafer Theory of Evidence (pp. 153-174) New York:
Wiley.

Yadrick. R.. Perrin, B. and Vaughan, D. (1988). Evaluation of Uncertain Inference
Models I : Prospector. In J.F. Lemmer and L.N. Kanel (Eds}, Uncertainty in
Artificial Intelligence 2 (pp. 77-88) Amsterdam: Elscvier Science B. V.

Yu. V.. Buchanan, B., Shortclifte, E., Wraith, S., Davis, R., Scott. A. and Cohen,
N. (1979). An evaluation of the performance of a computer-based consultant.
Computer Programs in Biomedicine, 9. 95-102.

Zadeh, L. (1985). The role of Fuzzy Logic in the Management of Uncertainty in
Expert Systems. In Gupta. Kandel. Bandler and Kiska (Eds), Approximate
Reasoning in Expert Systems (pp. 132-166). Amsterdam: Elsevier Science.

Zadeh. L. (1986). Is Probability theory sufficient for dealing with uncertainty in Al:
A Negative View. In L.N. Kanal and J.F. Lemmer (Eds). Uncertainty in Artificial
Intelligence (pp. 103-116). Amsterdam: Elsevier Science.

Zhang, C. (1992). Cooperation under uncertainty in distribuied expert systems.
Anrtificial Intelligence, 56, 21-69.

132



	A methodology for the selection of a paradigm of reasoning under uncertainty in expert system development
	Recommended Citation

	tmp.1534478651.pdf.8Fu_l

