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Abstract 

The aim of this thesis is to dev�lop a methodology for the selection of a paradigm of 

reasoning under uncertainty for the expert system developer. This is important since 

practical information on how to select a paradigm of reasoning under uncertainty is 

not generally available. 

The thesis explores the role qf uncertainty in an expert system and considers the 

process of reasoning under uncertainty. The possible sources of uncertainty are 

investigated and prove to be crucial to some aspects of the methodology. 

A variety of Uncertainty Management Techniques (UMTs) are considered, including 

numeric. symbolic. and hybrid methods. Considerably more information is found in 

the literature on numeric methods, than the latter two. Methods that have been 

proposed for comparing UMTs are studied and comparisons reported in the literature 

are summarised. Again this concentrates on numeric methods. since there is more 

literature available. 

The requirements of a methodology for the selection of a UMT are considered. A 

manual approach to the selection process is developed. The possibility of extending 

the boundaries of knowledge stored in the expert system by including meta-data to 

describe the handling of uncertainty in an expert system is then considered. This is 

followed by suggestions taken from the literature for automating the process of 

selection. 

Finally consideration is given to whether the objectives of the research have been met 

and recommendations are made for the next stage in researching a methodology for 

the selection of a paradigm of reasoning under uncertainty in expert system 

development. 
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Chapter 1 : Introduction 

1. 1 Chapter overview 

Chapter One introduces the tlicsis. which is concerned with the development of a 

methodology for the selection of a paradigm of reasoning under uncertainty in 

expert system development. The chapter explains the research that will be covered. 

The significance of the study and the purpose of the study are described in the li
t: 

ht 

of literature material. The research questions are posed and the organisation of the 

thesis is outlined. 

1.2 Introduction to the thesis 

This thesis is concerned with the investigation of paradigms of reasoning under 

uncertainty that have been applied to expert systems. It wilJ consider in detail a 

number of Uncertainty Management Techniques ( UMTs) and consider their 

application. Procedures to compare UMTs will be investigated and an attempt 

made to develop a methodology that can be used to select the appropriate UMT for 

a particular expert system development. 

8 



1.3 The significance of the study 

The research topic outlined ahove. was suggested to me hy a (then) lecturer in 

Compl •.er Science at Edith Cowan University. Mr. Tim Rohcrts. He has some 

experience in the development of Diagnostil: Expert Systems. He had discovered 

that although there were many iheorctical papers on the suhject of uncertainly in 

expert systems. practical information on how to select a paradigm of reasoning 

under uncertainty was not readily available. 

Expert systems are designed to solve real-life problems. Such problems are often 

not straightforward enough to be dealt with by the use of applied predicate calculus 

-- as was hoped in the 1960s (Lucas & Van Der Gaag. 1991 ). Expert systems may 

he distinguished from classical decision theory systems by the importance of the 

"representation of knowledge in an explicit qualitative form rather than implicitly 

in an algorithmic form" (Fox, Clark, Glowinski. O'Neil. 1990). 

The real-life situations tackled by expert systems are often typified by a degree of 

uncertainty. This may include imprecise or conflicting information. Since expert 

system applications are designed to deal with real-life problems at the level of the 

human expert, they must cope with uncertain information. However. uncertainty 

does not arise from a single source and may arise even in completely deterministic 

systems (Rothman, 1989). This concept is dealt with in more detail in section 2.5 

Sources of uncertainty. 
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In the development of expert systems that deal with uncertain information. the 

selection of a paradigm of reasoning under u1H.:crtainty is critical ( Hsu & Chu. 

1 989) If uncertainty is not properly dealt with, the expert system may have an 

i l lusion of precision ( Kerr. 1 992). 

The largest group of expert systems that must deal with uncertainty are referred to 

as diagnostic systems (Weichsclbcrger & Pohlman. 1 990). This type of system is 

most often connected with the medical field hut examples are also present in many 

other fie lds inc luding financial planning. accounting. geology, meteorology and 

the control of technical i nstall ations. 

Techniques have been developed specifical ly for handl ing uncertainty in expert 

systems. For example Certainty Factors were developed for the early medical 

expert system MYCIN (Short l iffe & Buchanan. 1 975 ) .  Others especial ly  the 

probabi li ty based methods have evolved from long established mathematical 

techniques (Bhatnagar & Kanai, 1 986) .  However, in the theory of the 

management of uncertainty there is often criticism of Certainty factors as being 

mathematically inval id .  Is the criticism val id or is it enough for a technique to 

produce satisfactory results? If so. then how should the selection of a method be 

made and on what criteria should that selection be based? 
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1.4 The purpose of the study 

Many di fferent paradigms for reasoning under uncertainty in  expert systems h..ive 

been proposed in  the last twenty-five years. Most of them have hccn numeric 

systems often hased. however loosely, on mathematical probabi lity .  Some have 

argued that the uncertainty i n  expert systems cannot he combined into numeric 

values (Cohen. 1 988 ). More recently there has been the development of hybrid 

systems that have numeric and non-numeric components (D'Ambrosio. 1 988) 

( Cohen. 1 985 ). 

In recent years there has been an almost re l igious debate about which is the right 

system to use for reasoning under uncertainty . Some have c laimed that the 

establ ished mathematical probabi l ity methods must be used (Cheeseman. 1 986) 

(Li ndley. 1 985). whi lst others have claimed that new methods are required (Zadeh. 

1 986). Max Henrion, in the preface to Uncertainty in Artificial Intei l igence 5 

indicates that this debate is i nappropriate ( Henri on. I 990) .  He suggests that it is not 

possible to select one UMT over another by considering only the basic mechanics 

or mathematical soundness of the theory. There are other practical considerations 

that must also be made such as the reliabi l i ty and complex i ty of calculations. In 

addi tion users must be able to understand the model in  order to provide data that 

can be used with confidence. 

l l  



Hcnrion suggests that the criterion for succe'is of an approach io., its e lTect ivcnc..,.., 

for appl icat ion. "The marketplace for idea .... . l i ke more tangihlc goods.  j ..,  u l t i mate ly 

ruled more hy consumers than producers . "  ( llcnrion ct a l .  1 91)0. p. v ) .  Thi.., the.., , ..,  

wi l l  explore the experience gained in  the marketplace and look for 

recommendat ions that can he made to "consumers" .  

Clark agrees that attempts to  demonstrate that one part icular UMT was the hcst for 

al l  s i tuat ions.  were unfortunate . He concurs with the aim o t' th is study '"to suggc ... 1 

th(' most appropriate paradigm for a particular s i tuation" (C lark.  1 990. p. I 40J .  

Saffiot i supports the argument that i t  is appropriate to  ident i fy the paradigm of  

rea.,;oni ng under uncertainty that should be used for a given appl icat ion ( Saffiot i .  

1 988 ). Fox suggests that the debate about the correct way of deal i ng with 

uncertainty is unfortuuate. He submi ts rather that debate should focus on 

considering the strengths and weaknesses of al ternate methods of represent i ng 

uncertainty (Fox, 1 986) .  

The object ive of this study i s  to select from the many alternati ves. the most 

appropriate paradigm for reasoning under uncertainty for a part icular appl icat ion .  

Ginsherg ( 1 986) advises that comparing the theory of  UMTs is  d ifficult . "The true 

advantil.ges of the various cvmpeting paradigms w i l l  only be apparent when these 

1,1aradigms have been incorporated in ful l -scale systems. "  It is now true that many 

paradigms are in use, and this thesis w i l l  i nvestigate them. However. there 
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cont:nue �o he theo;·ct ical developments that cannot he ignored. Where pm,!-.ihk: 

lhesc developments will he g iven some consideration. 

1.5 Statement of research questions 

In the early stages of expert system development , the selection of a paradigm for 

reasoning under uncertainty is important. However Hsu and Chu in thei r  paper 

"Practical issues in designing knowledge-based expert systems" ( Hsu & Chu, 

1 989) ident ify the representation of uncertainty a� one area that i s  often neglected 

in the design of an expert system. This is unfortunate. s ince an Uncertainty 

Management Technique (UMT) provides the expert system with a means of 

assessing evidence and making credible inferences about hypotheses in  an 

indefinite environment. 

This project has two aims. 

1 .  To define the criteria o n  which the selection of a paradigm o f  reasoning under 

uncertainty for an expert system should be made. 

2. To consider which recent advances in the theory of reasouing under uncertainty 

are 1,1.1orthy of consideration for incorporation into expe11 system developments .  

The first i s  the major aim and the thesis will be structured around this aim. The 

second is considered to be of secondary importance and will be ccnsidered 

alongside the first. 
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In an altcmpt m answer 1hc:-.c quc,tion:-.. informa1mn wil l  he galhcrcd from lwo 

ma1or :-.oun:cs. 

I .  The theory of reasoning under uncertainty. Then: i :-.  a great deal of material 

avai l able in journals and books 

' Expert System appl ications. Detailed information on the succes" or fai lure of 

the particular UMT used i:-. more di fficult to ohtain .  There are a few w,elul 

studies that discuss the attributes of system.'> in relation to their reasoning 

under uncertainty. 

1 .. 6 Organisation of the thesis 

Chapter 2 sets the scene for this study. It out l ines the structure of expert systems 

and discusses how uncertain ty may become a part of this structure. I t  discusses the 

role of uncertain ty and explains tlie process of reason ing under uncertainty. The 

problem faced by the expert system developer of havi ng to select a paradigm of  

rea,on ing under uncertai nty i s  described, sources of uncertainty are outl i ned and 

the concept of validating expert systems is discussed. 

Chapter 3 provides the detai l of the major paradigms for reasoning under 

uncertainty i n  expert systems. Several numeric approaches are discussed at length. 

whilst the symbolic  and hybrid approaches receive rather less detailed 

consideration. For each paradigm the advantages and disadvantages of the 

technique are discussed and i n  some cases the relat ionship to other UMTs is 

clarified. 
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Chapter -I hcg ins hy considering strUL'l urc, hy wlm.:h compan,ons of paradigm, for 

rL·asnnmg under m11:crtainty may he made . A l i ,t of t he requircmcnh of a t heory of 

urn:ertainty management Jue 10 Boni ,sonc ! Bonis,onc. 1 987 ) i, discw,scd . A 

comparison of techniques i s  1hcn made i n  rhc 1 1ght of  these idea!->. 

Suggest ions concern ing how to select a speci fic UMT for a particu lar appl icat ion 

are to be found i n  chapter 5 .  This includes a discussion of the process of making a 

dec is ion and the concepts of the expert systems that should be given cogni sance. 

Chapter 6 concludes this study by considering whether the objec t ives have been 

met and making recommendat ions for the next step in the study of this topic .  

Final ly .  a comprehens ive bibl iography i s  inc luded at  t he end of the thesis. 
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Chapter 2: Expert Systems and reasoning 

under uncertainty 

2. 1 Chapter overview 

This chapter explains the concept of an expert system. It considers the structure of 

expert systems and how uncertainty may be incorporated into them. The reason ing 

process is outl ined. as are the required changes to reasoning when uncertainty is 

involved. The requirement for an expert system developer to consider uncertainty 

is  discussed. Sources L'f uncertainty are invest igated that wi l l  indeed prove 

important i n  selecting the appropriate paradigm of reasoning under uncertainty. 

Final ly the chapter considers the process of val idation of expert systems and 

explains why this val idation process is necessari ly di fferent from that in a system 

that uses exact reason ing. 

2 .. 2 Expert systems 

An expert system is designed to make judgments i n  a complex field. I t  i s  supposed 

to make judgments at least as wel l  as a human expert. This goal can be approached 

from two different perspectives. The first is to concentrate solely on the results of 

the system, if it makes the same recommendations as the human expert then that i s  

all that i s  required of the system. The second approach achieves the same results 
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hut pl.u..·l·, add11 1onal 1mportann· on the: rc:a,onmg prrn:c" t hal ad11cvcd tho,c 

rl·,ul t, .  Thi, prrn .. ·c....., ,hould he a, do,c a, ,.., po,, 1hk to the p,yd1ologH.:al 

n.•.tsl1nmg prot..:c:-., t hat 1, u,cd hy the human expert . It ha"' hcen argued that 

hack\vard chaining use:-. a prm:c,.., t hat 1s .... imi lar to the human expert when 

proposit ional data is used ( Neopol i tan. I 990). 

Backward chaining is t he proccs, of reasoning from a conclusion to proving the 

facts that support that conclusion. Forward chain ing is the reverse process of 

reasoning from the facts to the conc lusions that t he facts support. Both directiom, 

of reasoning have been used by the inference engine of expert '>ystem'>. EM YCIN 

uses backward chaining whilst OPS5 and CLIPS use forward chain ing (Giarratano 

& Riley. 1 994 ). Some inference engine'> actual ly allow both types of reasoning. A 

backward chaining reasoning proces.., is usual ly  more convergent simply because 

irrelevant facts can be discarded immediate ly <Jackson, 1 990) .  

The greater number of expert system applicat ions may be defined as classification 

problems (Ignizio. 1 99 1  ). Included here arc the di agnostic systems that given a set 

of symptoms wil l  attempt to diagnose the disease and also systems that consider 

the cause of machinery fai lure. S ince th is type of system is attempting to establ ish 

an hypothesis given the conclusion. backward chaining reasoning i s  preferable . 

Forward chaining should be selected for other types of expert systems, those that 

attempt to solve construction problems (lgnizio, 1 99 1  ). This includes expert 

systems for prognosis, monitoring and control (Giarratano & Riley. 1 994) .  For 
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examph: XCON was to advbc on ... ul lahlc configurat 1orh of VAX compulcr.., 

l Mdkrmoll .  I 982 I. 

Expert systems general ly work in a narrow domain .  M YCIN . prohahly the world ' ..,  

best known expert system was intended to he used for d iagnc,..,is of  in fcct iou.., 

blood diseases {Shon l i ffc. 1 975 ). Dc ... pite thi .... complete certain knowledge of that 

domain is the exception rather than the rule. Human expert.., very often must reach 

dec isions with concepts that are unre l iable. incomplete or inconsistent and expen 

systems must do the same. Velverdc and Gehl emphasi ... e that expert systems must 

be capable of managing uncertainty before they can thri ve in their i ntended field 

and use their knowledge successfu l ly  ( Valverde & GehL 1 992 ). 

2.3 Expert system structure 

Expert systems are usual ly cm1:.idered to have three main components. a 

knowledge base. inference engine and user interface. These componems 

respectively represent, manipulate and communicate knowledge. In addition. most 

systems aJso contain explanation and trace faci l ities. The interfaces between these 

components are shown i n  Fig 2. 1 .  Explanation faci l i ties arc primari ly for the expert 

system user and will provide more information on such questions as "How did you 

reach that answer?". whereas trace faci l ities are for the knowledge engineer and 
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wil l  provide for stepping through the i nfcrcm:ing procc,, C Lm:a, & Van dcr Gaa):!. 

1 99 1  ). 

Explanation 
Facilities 

_____ , .. _ .. 

r 

User Interface 

Trace 
Facilities 

-----·.---

Inference Engine 

Knowledge Base 

II' 

Figure 2.1 The Structure of an Expert System 

I 

How does the processing of uncertainty fit into the structure of an expert system? 

There are two possibilities. First from (Cortez-Rello and Golshani, 1 990) is the 

separate approach that includes two addit:onal modules in an expert system, the 

Belief base and Uncertainty module. They indicate that the Belief base 

19 



c1 1nmumii.:atcs with thl' Uncertainty module whic - 1 1  m turn communicate'> wilh the 

infcn:ncc engine . An in1cgrated approach wou ld include aspect.., of uncertainty m 

,I l l  the comp,mcnts of the ... y ... tcm. Since uncertainty mu'.'>t he rcpre1.,cntcd. 

manipulated and communicated it wi l l  he a part of each of the three major 

components. Boni ssonc endorse� the integrated approach 

In building expert-system architectures three distinct layers must be 
defined: representation, inference, and control layers. The treatment of 
uncertainty must address each of these layers. (Bonissone, 1 987, p. 
859) 

Paul Cohen confirms that the integrated approach is important by emphasis ing that 

the management of uncertainty ,;hould not be an after thought that is an addit ion to 

a categorical inference system. He views uncertainty management as an .. integral 

part of the problem solving process." (Cohen. 1 989. p. 263 ) 

2.4 The role of uncertainty in expert systems 

Expert systems need to have the capabi l ity to infer from premises that are 

imprecise, incomplete or not total ly rel iable, just as human experts function i n  the 

same situation. The strict implication, "for all x. A (x )  impl ies B (x)" is weakened 

by some degree, expressed as a scalar value, to "for most x. A(x )  impl ies B (x )" 

(Bonissone, 1987). Less formall y  this statement has been phrased ·'the A's are B's" 

or "generally the A's are B 's". A group of French researchers investigated the ways 

uncertainty was introduced into this statement in various formal isms. They used 

the title, Lea Sombe, from the French "les A sont B" (Lea Sombe, J 990). Their  
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Vl'rsions of th is statement expre,sed w,mg vanou, parachpn, of rea,on ing undn 

uncl·rtainty will he considerl·d in  the appropriate sec1 11 111 , of Chapter �i . 

The degree to which there is st i l l  a he l icf  in the impl ication ha, hccn cal led u 

dt•grt't' cfhdh:{ (Shafcr. 1 976) .  The funct ions that propagate degrees of hclicf over 

inferences are cal led nm1himngjimctim1s. Some systems propagate two degrees of 

belief. usual ly an upper and a lower bound. so indicating a range of values. 

Bonissone explains the process of reason ing under uncertainty: 

Facts must be aggregated to determine the degree to which the premise 
of a given ru le has been satisfied, to verify the extent to which external 
constraints have been met, to propagate the amount of uncertainty 
through the triggering of a given rule, to summarize the findings 
provided be various rules or knowledge sources or experts, to detect 
possible inconsistencies among the various sources, and to rank 
different alternatives of different goals. (Bonissone, 1 987, p. 854) .  

Bob Avanzato. an expert system developer. was look ing for a suitable UMT to use 

in an Acoustic S ignal Interpretation Expert System. He considered uncertainty to 

be an integral part of the expert system. and emphasised the importance of this part 

of the system. He felt that the UMT must he able to represent and reason with 

uncertainty, and should encompass al l the facets of uncertainty in  order to 

guarantee success in the evolution and instal lation of the expert system (Avanzato. 

1 99 1  )(see Section 2 .5 Sources of uncertainty). 

Some have seen the numerical approar.:hes to uncertainty as attempting to produce 

results with excessive precision. Most numeric UMTs require numerical values 

from the user as an accurate mea-;ure on a scalar or interval scale. They then 

perform complex calculations that produce seemingly precise results. It has been 
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suggested that this apparent aceurrn . .:y may not he jus1 1 ficd l,! ivcn the d i ffi<.:u l ty of 

ohtaining accurate ini t ial figures ( Bonissonc. I 987 ) .  

2.5 Sources of uncertainty. 

It would be convenient 10 package al l forms of uncenainty i nto a single bundle and 

deal with this in a consi stent manner throughout the ex pen system. Bonissone 

reminds us that uncertainty is not a s ingle i ssue. 

the presence of uncertainty in reasoning systems is caused by a variety 
of sources: the reliability of the information, the i nherent imprecision of 
the representation language in which the information is conveyed, the 
incompleteness of the information, and the aggregation or summarization 
of information from multiple sources. (Bonissone, 1 987 , p. 854) 

All uncertainty involved in expen systems then. does not arise from a s ingle 

source. In fact it may be inappropriate to package several d ifferent concepts 

together when cons idering expert systems or any reasoning system. Ng and 

Abramson ( 1 990, p. 30) ident i fy the same four sources of uncertainty as Bonissone 

but use diffe-�nt terminology. Each will be considered indiv idually. 

I .  Lack of prec ision of knowledge/natural language. 

Ambiguities may not be c larified during translation to a formal language. 

Thus it may be necessary to allow for the imperfect matching of facts with 

premises. Statements such as "the economy ha,;; a low inflation rate" are 

imprecise (Bhatnagar & Kanal, I 992). 
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�. ll nrcl iahk i n formation. 

May he due to: 

I .  I l l-defined domain concepts. 

Inaccurate data possibly due to poor re l iabil ity of im,trument!'> used to 

make the observations. 

3. Weak i mpl ications may occur becau!'>e the system builder is not able to 

estahlish a concrete relationship between the antecedent and 

consequent . 

This is perhaps the only true ' Uncertainty of knowledge ' ( Bhatnagar & 

Kane!. 1 992 ) .  

3 .  Incomplete information. 

Partial i nformation results when the answers to questions are unknown. 

Approximate pattern matching i s  required here also. Boni ssone (Bonissone. 

1 987) suggests that this type of uncertainty has often been model led by non­

numerical methods. 
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4 .  Disagrccmcnl amungsl expert,, 

Con tl i.:l ing infomrnl ion from a numhcr o f  -.ourcc-. wi l l  rc-.uh in com: lw,ion, 1hat 

arc suspect. Bonissonc point-. oul that when uncondit ional fact-. arc comhincd three 

possible problems may appear: 

• the single-valued certainty measure may be combined into an 
interval-value 

• the combination of conflicting statements could generate a 
contradiction 

o the ru le of evidence may create an overestimate of the 
aggregated fact if a normalization is used to hide a 
contradiction . This was shown possible by Zadeh cited by 
Bonissone (Bonissone, 1 987) .  

It has been shown that i t  is poss ible that a consensus can be reached by  

weighting each source. (depending on  the expert ise of  the source ) and thus 

calcul ating composi te information. It would however be difficul t  to define 

the weights s ince this requires a weight for each expert and experts do not 

have un iform expertise across the ir  domain  (Ng & Abramson. 1 990). 

Graham ( 1 99 1 )  suggests that it is important to consider two di fferent kinds of 

uncertainty arisi ng from: 

1 .  Natural variation 

This includes such concepts as probabil ity and possibi lity that can be 

handled by statistical and fuzzy methods respectively ( in  Graham's view) 
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Conc.:eptuul apprehension. 

This includes ideas of vagucne,,. v,iriatHHb m hcl ic f. dcgn.::c, of tru th .  etc 

It wou ld appear then that only the first of Ng and Ahramson\ concepts i, part of 

the first of Graham' s. The second. th ird and fourth listed hy Ng and Abramson 

however can all he included as Graham ' s  second. 

This thesis agrees with van der Lubhe and col leages that the type of uncertainty is 

cruc ial to the selection of an appropriate par<1digm of reasoning under uncertainty 

for a g1\'en appl ication (van der Lubbe. Backer & Krijgman. 1 99 1  ) . 

2.6 Reasoning under Uncertainty 

Exact reason ing involves the use of exact facts and exact conclusions fol low. In a 

deductive argument, the conclusion must fol low from the premises. When facts are 

uncertain there may be a great number of possible conclusions and the problem 

becomes selecting the best conclusion . 

When reasoning under uncertainty, a conc lusion may be arrived at with less than 

1 00% certainty. A doctor may diagnose a certain treatment because it appears 

likely the patient has a d isease. The treatment may be the correct decision without 

confirmation of the diagnosis if there are few side effects to the treatment il nd the 

cost (in time or money) of confirming the diagnosis is great. 
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It j.., not c.:lc�tr how hunmn expert-. repre..,ent and reason under uncerta 1 11 ty. Some 

have argued th�1t a form of " logic .. 1.., U<,ed. others tlwt human.., at.:lual ly  evaluate 

probahi l it ic ... .  At the other ern.1 of the spectrum arc tho..,c t hat ..,uggc..,t that no 

explicit representat ions arc w,ctl (Graham. 1 99 1  J. Whatever  the method. it j.., true 

that experts can make "useful and mcamngful rccommcndat iom," even when faced 

with imprecise and uncertain information (Clarke. McLei!>h & Vyn. 1 99 1  J .  

I f  the presence of uncertain ' :: is acknowledged and a method of approximate 

reasoning is to be included in an expert system then there remain two major 

problems that must be resolved: 

• how to measure the degree of inexactness and calculate certainty 
factors for inexact situations, 

• how to propagate uncertainty in making inferences and arrive at best 
conclusions in spite of some rules not being definite. 

(Cortes-Rello and Golshani, 1 990, p. 9) 

These problems can be summarised as how to represent and reason with 

uncertainty. Chapter 3 considers various possible paradigms for reasoning under 

uncertainty. Each provides its own solut ion to these problems. 
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2. 7 The problem for an expert system 

developer. 

Some expert system developers have not considered including the ha.11dl ing of 

uncertainty in thei1 systems. This has resulted in what Kerr ref erred to as an 

" i l lus ion of precision" ( Kerr. 1 992 ) .  He reported that ir. some (schedul ing) systems 

the lack of approximate reasoning can resul t  in large numbers of calculations when 

minor data changes are made. So the lack of a method for deal ing with uncertainty 

can result  in major problems for the expert system. 

The handling of uncertainty in expert systems is a complex task that has several 

possible solutions. There are no simple methods to provide an answer to the 

question "which UMT is appropriate for my expert system?" .  Expert systems are 

being asked to solve more challanging problems that involve many types of 

uncertainty and i t  is  therefore becoming essential that the designers of expert 

systems are able to select a UMT that is appropriate (Avanzato, l 99 l ) .  

Bonissone describes a change in view that has occuned in the process of looking 

for an appropriate method for deal ing with uncertainty. 

The search for a normative uncertainty theory to be used in reasoning 
systems has long been a major driving force in our research community . 
. . . . .  More recently, these controversies have subsided, and a slightly 
more tolerant view has emerged. Uncertainty tools have been divided 
into extensional and intentional approaches, according to their respective 
focus on computational efficiency or purer semantics[Pearl, 1 988]. There 
has been an increased awareness of classes of problems requiring a 
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prescriptive rather than a normative approach to reasoning with 
uncertainty. (Bonissone, 1 990, p. 237) 

So it is no longer a matter of select ing the nwtlwd of reasoning under uncertainty 

that is appropriate for expert systems. Rather a matter of selecting the method that 

is appropriate for a particular expert system (or set of simi lar systems) .  

This research aims to provide assistance in this selection. Chapter 4 compares 

paradigms of reasoning under uncertainty and Chapter 5 provides a methodology 

for the selection of an appropriate method. 

2.8 Validation of expert systems -- its 

implication for UMT's. 

Definitions of expert systems often include some mention of the notion that they 

can function at close to human expert levels (O'Keefe. Balci & Smith. 1 987 ). They 

are usually expert only in a narrow domain. can produce recommendations. make 

enquiries to complete gaps in their knowledge and often explai n  how a conclusion 

has been reached (Graham, 199 l ) . It is imperative that the expert system is able to 

supply accurate responses and perform in a manner that is dependable (Guida & 

Spampinato, 1 989). 

Quality assurance is a concept that has recent ly become important in almost every 

endeavor. Yet in the past, the quality of many systems was rarely tested rigorously 

to ascertain if a satisfactory level of perforrnanC;e was achieved. As with all other 
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software. expert systems should undergo hoth val idat ion and veri fic.:at ion . 

Validatlon meam, suhstantiat ing that the -.yslem performs accurate ly, whiht 

veri fication is substant iat ing that a sy-.te rn has implemented its speci ficat ion. Yet 

this terminology docs not in itse l f  define a c.:lear methodology that wi ll allow the 

quality ot an expert systems to be assured. 

It is l ikely to be a longer process to validate an expert system that uses rea'.'>oni ng 

under uncertainty than a system with a crisp reasoning process (Chang & Hal l .  

1 992 ). In  addi tion the importance of  testing any system wi l i  depend on  the nature 

of advice given by the system and whether anything critical is at stake i f  an 

i ncorrect decision is made by the system. A critical domain ha" been defined as one 

"where the occurrence of inappropriate or incorrect decision may cause damage" 

(Guida & Spampinato, 1 989). It is ea-;y to i maging damage occurring i f  incorrect 

decisions were made in many medical and industrial fields. 

It i s  worthwhi le considering what i t  is  that is to be validated, especial ly in an expert 

system that reasons under uncertainty. Guida and Spampinato in their paper 

"Assuring adequacy of expert systems in critical appl ication domains" distinguish 

two fundamental parts of the yual i ty process (Guida & Spaminato, 1 989). These 

are the external behaviour and the internal ontology. The former can be observed as 

the results of the system but the later deals with the structure (knowledge 

representation and reasoning algorithms) and content ( knowledge base) of the 

system. 
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It could he argued for example thal an expert system that produces safo-fuctory 

( valid) resulls shou ld he acceptable : MYCIN has received support of this k ind 

( l lorvitz & Hcckcrman . 1 986 ). However it is a more widely held view that the 

internal ontology including the reasoning proces!'. itse l f  should he validated. not 

simply the results it produces (O'Kccfe. Balci & Smith. 1 987 J <Guida & 

Sparnpinato. 1 989) .  Some suggest it would be unreasonable to extend the 

knowledge base or scale up to a l arger appl ication domain, a system that had a poor 

reasoning process. The implicat ion of this argument to UMTs is that they must not 

only be shown to produce reasonable results but must support a val id reasoning 

process. 

An order has been suggested to this val idation process. The inference engine. 

knowledge acquisition faci lity and explanation faci l ity should be validated first . 

This is because these parts of the system are the most procedural and therefore 

standard methods as used for more general computer systems could be used. This 

may be the easier part of the validation when compared to val idating the 

knowledge base (Hollnagel, 1 989). The performance of the system is heavily 

rel iant on the structure and content of the knowledge base. Consequently the 

system must be validated continuously throughout the l i fe of the system every t ime 

the knowledge base is updated. 

The validation process requires some known or expected behaviours to val idate 

against. It is important that these should not have been used in the development of 

the system. The opinion of an expert or group of experts should normal ly  be used 
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bul i n  some problem domains ii may be feasible to use known result, instead 

lChang & HalL 1 992 ). There may he a di fficulty i f  1,1e val idalion foi l s  in 

determining whether the error is in the expert system or i.., with the tc..,t rc..,u l l'> 

thcmsc I vcs. 

The validation of an imprecise or fuzzy expert system ha., an additional level of 

complexity. Not only must the correct recommenda�ion be made by the ... ystcm hut 

it must be made with an appropriate strength. In a system using fuzzy logic -- "the 

fuzzy set defined by the conclusion must be within the acceptable bounds of its 

possible range" (Chang & Hal l ,  1 992. p. 600). 
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Chapter 3: The theory and practice of 

uncertainty management 

3. 1 Chapter overview 

This chapter discusses the variety of melhods lhat have been sugge..,ted for handling 

reasoning under uncertainty in expert systems. The UMTs presented here are divided 

into three main groups, numeric. symbolic and hybrid (which is a combination of the 

previous two). 

In this chapter each technique is presented. advantages and disadvantages of the 

techniques are discussed and in some cases the relationship to other UMTs is clarified. 

An objective comparison of paradigms for reasoning under uncertainty may be found 

in chapter 4, whilst suggestions a-; to how to select a specific UMT for a particular 

application are to be found in chapter 5. Figure 3 . 1 on the next page shows various 

classifications of UMTs that will be considered. 
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I 
Symbolic 
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I 
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I I I 
One-valued Two-valued Fuzzy-valued 

I I I 

Bayesian Cer1ainty Dempster-Shafer 
Suppor1 Logic 

Probability Factors Belief Theory 
Programming 

F ig 3.1 Paradigms of reasoning under uncertainty 

3.2 Numeric approaches 

3.2.1 Bayesian 

Probability is the oldest and most widely used formalism for representing uncertainty. 

Shafer and Pearl ( 1990) explain that the concept of the degree of probability was used 

"in law and philosophy before mathematical probability was invented" (Shafer & 

Pearl, 1990). Scholars developed mathematical probabi lity in the late 1 600s and early 

1700s. James Bernoulli's book Art of Conjecture was one of the first books on 

mathematical probability and from the title it can be seen that he intended the theory as 
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a mechanism for plausihlc reasoning . 

The frcqucmist view of probability did not emerge until the mid nine teenth century 

(Shafer & Pearl. 1 990). The frcqucntist view leads to the most widely used description 

of Classical Probability Theory. that i t  is used for games involving the toss of a coin 

and the throw of a dice. From this point of view. probabilitie!-1 arc defined a-; the 

proportion in the long run. a frequency interpretation of probability. 

The original account of probabil ity is more useful for Expert Systems , thi s is to 

interpret probabilities as personal or subjective evaluations (Freund, 1 972, p. 36 ) .  The 

probability of a proposit ion is a measure of a person's degree oi bel ief in it, given the 

person's current level of information. A probabil i ty is the degree of belief in a 

particular proposition .  (Cheeseman. I 986. p. 86). Hunter agrees with this interpretation 

... for there are decision problems involving uncertainties that cannot plausibly be 
given a frequency interpretation, but which are really uncertainties about the truth 
of non-vague propositions. 

(Hunter, 1 986, p. 209) 

Zadeh, the inventor of Fuzzy Sets. (Zadeh. 1 986) has the opinion that probabil ity is 

not appropriately expressive for representing the many kinds of uncertainty that can be 

found in expert systems. He also believes that most probabil it ies are not known with 

"sufficient precision to be representable as real numbers" .  Zadeh prefers fuzzy 

tenninology such as likely, unlikely and not very l ikely. 

Hunter maintains that Zadeh's interpretation of probabi lity, as being unabie to 

represent vagueness, is i ncorrect. Hunter also distinguish. ,  ��· ween static and 

dynamic views of uncertainty. He asserts that for a complete theory of uncertain 

reasoning, the static probabil ity theory must be combined with a dynamic theory. 
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(he suggests Maximum Entropy Theory) which i� conc.:crncd with how one's degree of 

bel ief should change in the light nf new cvidcm.:c. 

3.1. 1 .1  Probability - the basics 

Let A be an event . Then S i s  the set of all possible events called the Sample Space. 

The probability of event A is denoted P(A) .  The probability mea�ures must satisfy 

three given postulates. (Freund. 1 972. p. 38) 

1. P (A) >= 0 . for any subset A of S. 

2. P(S) = I .  

3. If A l ·  A2, A3, . . . .  is a sequence of disjoint subsets of S. then 

Further rules that can be derived include 

a} Probabilities cannot exceed one 

b) The probabilities of A and not A, sum to 1 .  

Postulate 3 is the addition rule for mutually exclusive events. But if events are not 

mutually exclusive 

eg. P(student 90 1087 will pass Intermediate Algebra) and 

P(student 901087 wilJ pass Advanced Algebra) 
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then the appropriate rule for addition of prohahi litics is 

P( AU  B)  P(  A ) + P( B l  - PC  A n B)  

3.2. 1 .2 Conditional probability 

Any measure of probability is relative to the sample space, thus PC student 90 1 087 will 

score top grade in Advanced Programming) may vary depending on whether S,  the 

sample space includes students from one or all campuses. To clarify this P( AIS ) is the 

conditional probabi lity of event A relative to the sample space S. (Freund, 1 972, p. 

5 1  ). 

When considering two events. A and B .  The conditional probability of A given B, is 

the probabil ity of event A occurring given that event B ha-; occurred. This is defined a.,; 

P(AIB ) = P(A and B )  I P(B )  

or altemative]y i n  the Bayes rule format. 

P(AIB) = ( P(BIA) * P(A) ) I P(B) 

Another description of conditional probabil i ty that is  more directly useful in  expert 

systems is that, the conditional probabi lity of a hypothesis P(HIE) is the probability of 

the hypothesis in the light of the evidence E ( Lee, Grize & Dehnad, 1 987). 

3.2.1.2.1 Bayes Theorem 

B ayes Theorem al]ows for the calculation of the updated degree of belief in a 

hypothesis when new evidence becomes availab]e. For a given hypothesis Hk, there is 

36 



a prior probability that it is true. P( fl, ) . In the l ight of new evidence our bel ief i.e., 

altered to produce a posterior probabil ity. P( flt I /:· ) for the hypothcc.,i:-. f/
1 

: 

p H  I E) = 
P( H

4 
l P( EI H, ) 

( 4 
P( E l  

Bayes rule can be used t o  infer the probability o f  a disea,e from the given symptoms. i f  

one has knowledge of the probability of the symptoms given each disease. and the 

prior probabi lity of each disease (Neapolitan, 1 992). 

Lee and Clark provide examples of the application of Bayes Theorem in the expert 

system domain (Lee et al. 1 987. p. 1 8 ) (Clark. 1990, p. 1 1 4 ). 

Expert systems can reason through forward-chaining or backward-chaining processes. 

Bayes Theorem is appropriate for either type of reasoning. Thus if probablilities are 

more readi ly available to support reasoning in a certain direction. Bayes Theorem can 

be adapted to support that direction of argument (Valverde. 1 992). 

A particular version of Bayes Theorem is pert inent to the question of assessing a set of 

competing hypotheses in the light of a set of evidence (Valverde, 1 992 ). There are 

dangers in progressively updating an assessment in the light of a new piece of 

evidence. It is vital that the interelationships between separate pieces of evidence be 

considered so that conflicts will become evident rather than be submerged. (Buxton, 

1989) 
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3.2.1 .2.2 Independent Events 

Two events arc independent if the occurrence of one has no ef
f

ect on the occurrence of 

the other. Then by definition P(AIB ) = P(A )  and P(BIA) = P(B). 

3.2.1 .2.3 Probabilities in Expert Systems 

When an expert system is based on Bayesian probability many probability values are 

required. These will be provided by the domain expert and will be both the estimates 

of the probability of hypotheses and also the probability of hypotheses in the light of 

evidence. 

Valverde and Gehl ( 1992) report on an expert system used to determine an accurate 

diagnosis of the reao;on for Boiler tube failure in fossil fuel driven power plants. They 

implemented two systems, one using a Bayesian model and the other using Dempster­

Shafer (see Section 3.2.3 Dempster-Shafer belief theory). They report that it was 

possible to acquire estimates of probabilities from actual data. The historical records of 

observed causes of failure in the boiler provided the required estimates of relative 

frequencies (Valverde &Gehl, 1992). 

Where historical information is not available the probabilities required by an expert 

system must be provided by human experts. This will usually include all prior and 

conditional probabilities. The required amount of data grows exponentially with the 

number of hypotheses. This, together with the enormous amount of computational 

effort required when new evidence becomes available provides the reason that full 

probabilistic representations have not been popular in expert system development 

(Wise &Henrion, 1986). 
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Bayes Theorem must he adapted in the case that the evidence itse l f  is uncertain .  The 

changes required arc due to the intcrl inkcu nature of system, and the use of Bayes 

theorem to calculate posterior prohabi l i t ics ( Lee ct al . ,  1 987) .  

They also identify four 's igni ficant drawbacks' in using Bayesian techniques in  expert 

systems (Lee ct a l . .  1 987) .  

I .  The subject ive nature of the ass ignments of probabi l ity by a domain expert may 

lead to a set of probabi l i ties that are internall y  inconsistent. This can be prevented 

but on ly through a lot of work on the part of the domain expert and the 

knowledge engineer. 

2. The hypotheses that are used in Bayes theorem are assumed to be disjoint. This 

requirement may not be practical . 

3 .  If disjoint sets of  hypothesis cannot be achieved then the results achieved may 

not be valid. 

4. A single change to the probabi l ity of an event requires the recalculation of many 

probabi lities. 

Although Bayesian inference is the most common strategy used in expert systems, 

there are some situations where it is inappropriate (Neopoli tan . 1 992). Such situations 

are those in which a probability cannot be assigned to al l pertinent events. In this 

instance, other techniques such as Dempster�Shafer may be appropriate (see Section 

3.2.3 Dempster-Shafer belief theory}. 

The next section considers two early and yet successful expert systems that were based 

on probability, but in different ways. 
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3.2. 1.3 Some examples of probability based expert systems 

In this section the thesis wi l l  consider two expert sy..,terrn. that u..,ed prohahi i i ty lo 

handle uncertainty. The first expert system. Prospector was reported lo be re..,pon..,ihlc 

for making a great deal of money. The second. Inferno wa.., ahle to make 

recommendations even when provided with certain inconsi..,tent information . 

3.2.1 .3.1 Prospector 

This expert system was intended as an aid to geologists in their search for ore deposits 

and its fame is based on its success (Dan & Dudeck, 1 992 ) .  

Prospector's designers intended that the system would provide answers that were 

"reasonably close approximations" to those that would result from the use of 

probability analysis (Yadrick et al. 1 988, p. 8 1  ) .  The uncertainty handl ing mechanism 

is regarded as having a stronger theoretical foundation than that of MYClN's certainty 

factors and therefore "it has not been reviewed in a critical way" (Dan & Dudeck. 

1992). Prospector used an inference network to identify dependent probabil i ties. This 

was an early version of the Bayesian Bel ief Network (See section 3 .2. 1 .4 Bayesian 

Belief Networks) .  

3.2.1 .3.2 Inferno 

Quilin's Inferno( 19�3) is a probabaJistic inference system that solves some of the 

problems of earlier systems. Inferno can make inferences in a cyclic way. n desirable 

but unaccomplished feature in systems like Prospector. Inferno is able to use both 

forward and backward chaining in its reasoning process (Section 2 .2 Expert Systems). 
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An�,ther uncommon feature or Inferno is its ahi l i ty lo deal with inconsistent 

information. If information is inconsi stent, Inferno can make thi!s fact evident along 

with some alternative ways that the in formation could he made consistent. However 

the appropriateness of this feature has heen questioned (Cheeseman 1 985 ) . 

3.2.1.4 Bayesia11 Belief Networks 

Bayesian Belief Networks in respect to expert systems have their origins in the 

infen=nce networks of Prospector. They are bal.ied on probability theory and have been 

largely developed to their current form by Pearl . However the Bayesian Network is 

an annotated directed graph and was first used by the statistician Wright in 1 92 1  for 

the analysis of crop failure (Heckerman, Mamdani & Wel lman. 1 995 ). 

A belief network representation consists of two components, a qual itati ve directed 

acyclic graph (DAG) that demonstrated the existence of probabi l istic dependence 

between variables and a quantitat ive set of conditional probability tables for the graph. 

A belief network has to be sparse if it is to be comprehensible to the user and 

inference using the network is to be computat ionally tractable (Srinivas, Russel l  & 

Agogino, 1 990). This is a technique which al lows for the explicit representation of 

dependencies as wel l  as independencies, thus allowing the experts to accurate ly  

represent their beliefs with respect to some domain .  One of  Heckerrnan's objections to 

Certainty factors was that they did not allow any such expl icit representation and thus 

were ambiguous with respect to dependence or i ndependence (Heckerman, 1 986). 
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The belief network is seen as a real istic approach to huilding expert systems. It solves 

some of the short comings of the Certainty factor model whi lst not requiring the huge 

volumes of data of classical probabilty ( Heckermann & Short l i ff c. 1 992 ) .The 

requirement that the relation:-. between variables he specified by a conditional 

probabil ity matrix .  forces the knowledge engineer to consider the various 

combinations of variable values (Morowski, 1 989). 

Booker, Hota and Ramsey ( 1 990) suggest that bel ief networks solve one of the 

commonly made mistakes of early systems - the idea that uncertain inferences are 

modular. They developed BaRT a Bayesian Reasoning Tool for knowledge based 

systems, to "make state of the art techniques for uncertain reasoning avai lable to 

researchers concerned with the clac;sificatory problem solving" (Booker. Hota and 

Ramsey , 1990, p.280). Its designers claim that BaRT is efficient and practical for 

real appl icat ions. 

3.2.1.5 Probability in practice 

One of the most common criticisms of the use of probabi l ity theory in  expert systems 

is that the theory is impractical to apply in realistic situations. Heckerman and others at 

Stanford converted Quick Medical Reference (QMR), one of the largest medical 

expert systems in existence, to a probabilistic framework (Heckermann, 1990). This 

was largely successful although several assumptions were made which may not always 

be present in other systems. One of the assumptions was that the variables under 

consideration (diseases and findings) were binary. A second that diseases are 

marginally independent is probably the most important in allowing them to limit the 

total quantity of data required and the least likely to apply in general. 
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It has hccn shown that i f  the rc4uircmcnt to provide an exponent ia l quant i ty of data 

can be control led, perhaps hy some feature of the prohlcm domain C a!> in QMR ahove J, 

then probab i l i ty can be useful ly applied. 

An algorithm for computing the posterior probability of each disease given a set 
of observed findings. is presented. Although the time complexity is exponential in 
the number of positive findings, the algorithm is useful in practice because the 
number of observed positive findings is usually far less than the number of 
diseases under consideration. (Heckerman, 1 990, p. 1 63) 

There has been much discussion. about the rel i abi l i ty of the probabi l ity estimates 

el icited from human experts, since the earliest expert systems attempted to use 

numerical representations of uncertainty. This can be seen as less of a problem if these 

numerical estimates are considered a starting point that wil l  be refined over t ime as the 

system is used. The abi l ity of systems that use probabil istic representations to rea<;on 

and produce reasonable results even with inaccurate numeric a<;sessments can also be 

seen as a strength of the representation (Spiegel halter, Frankl in & Bull ,  1 990). 

It may be that the amount of research carried out and the stabil ity of the domain may 

affect the reliabi l ity of the probabil ity estimates. Studies have shown that in certain 

domains probability assessments can be dependable although they may lean to more 

extreme values (Spiegelhalter, Frankl in  & 81 11 1 ,  I 990). 

In this area, as in  many others, the capabilities of modem computers are making it 

feasible to solve problems that were previously considered not practical. Programs 

that implement complex algorithms will execute within a reasonable t ime on today's 

computers where they could not have been considered practical 20 years ago 

(Heckennann and Shortliffe, 1992). Heckennan, Mamdani and WelJman report that 

small powerful computers and GUI interfaces have made Bayesian networks a more 
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common choice for expert system appl ications in a numhcr of d ifferent fields. 

including diagnosis, forecasting and manufacturing control (Heckerman, Mamdani & 

Wellman. 1 995 ) .  

3.2.2 Certainty factors 

One of the earliest and most widely used methods for reasoning under uncertainty in 

ex.pert systems is the Certainty factors (CF) of MYCIN (Shortli ffe & Buchanan. 1 975), 

(Dan & Dudeck, 1 992). EMYCIN (Empty M YCIN) is an expert system shell which 

made CF available for other expert system developments. Shortl i ffe and Buchanan 

developed CF in the mid- 1970s specifically to be used with MYCIN, an expert system 

for the diagnosis and treatment of meningitis and bacteraemia. 

Our certainty factor model was developed in response to our desire to deal with 
uncertainty while attempting to keep knowledge modular and in rules. (Buchanan 
& Shortliffe, 1 984, p. 56) 

Certainty factors were introduced in the well-known expert system MYCIN and 

remain one of the most used uncertainty management paradigms. Certainty factors 

were devised because their creators felt good enough data did not exist to create a ful l  

statistical database for the medical application (Ng and Abramson, 1 990). There are 

also indications that the artificial inteHigence research community felt that ful l  

probability theory would prove too cumbersome (Heckermann & Shortliffe, 1 992) .  At 

the time some probabilistic diagnostic medical systems used a 'simple Bayes' model. 

These included assumptions of mutually exclusive and exhaustive hypotheses and 

conditional independence. The assumptions were made for practical reasons. They 

made it possible to build diagnostic systems wherea,; without them the volume of 

probability estimates required and the complexity of calculations would have been 
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restrictive. It is clear however, that the assumptions were unfaithful to the domain 

(Heckcrmann & Shortliffc, 1 992 ) .  

3.2.2. I The mechallics of Certai11ty factors 

When Certainty factors are used. the knowledge base has the form: 

If <evidence> then CF <hypothesis>. 

CFs have values between - 1  and I which represent the change in belief about a 

hypothesis given some evidence. Certainty factors were originally defined in terms of 

probability. a probability of I corresponding to a CF of I and a probability of O 

corresponding to a CF of - 1 .  A CF of O represents the situation of using the prior 

probability. ''Piece wise linear interpolation is used between these three points " (Wise 

and Henrion. 1 986, p. 72) . 

An inference network of the connecting rules exists and they are combined using 

parallel and sequential combination as appropriate. These rules were devised by 

Shortliffe and Buchanan as approximations of related statistical techniques and 

showed that they satisfied certain intuitive properties. One such property is that 

parallel combination should be commutative (Heckermann, l 986) . If all evidence and 

hypothesis in the knowledge base are simple propositions then only the serial and 

parallel combination rules are required. 
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3.2.2.1 .1  Parallel Combination Function 

f 
CF, + CF

! 
- CF; CF: Cf; . cf:. � o 

CF, = , CF, + CF
!

+ CF. ('f� Cf; . CF
! 

::; 0 

l ( CF; + CF, ) I { I  - min( I Cf� I . ICF1 1 )  otlu.•n1:i.w: 

For example two pieces of evidence which support the same hypothesis result in  a 

greater certainty factor. For CF I = 0.8 and CF2 = 0.9 then 

CF3 = 0.8 + 0.9 - (0.8)(0.9) = 0.98 

3.2.2.1 .2 Serial Combination Function 

The combination function is used to combine two rules where the hypothesis in the 

first rule is the evidence in the second rule. 

{CF.
I
CF, 

CF = 

3.2.2.1 .3 Combination of Rules with Conjunctions and Disjunctions 

Suppose the knowledge ba<;e contains rules of the form: 

RI :  if A AND B then C. Cf 1 = 0.9 

R2: if X then A. CFz = 0. 7 

R3: if Y then B, CF3 = 0.9 

The new composite rule (R4) can be created and the Certainty factors combined with 

the following combination function: 

R4: if X AND Y then C, CF4 
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The minimum of the Certainty factors is used for comhinacion in a conjunction and 

the maximum for a disjunction. 

The parallel-combination function appeared in a di fferent form in the earliest of the 

CF models. The terms Measure of belief (MB) and Measure of disbelief (MD) were 

used (for positive and negative CF) and the final CF wa;; given as; the di fference 

between MD and MB.  

Variations to the model have been made in implementations of i t .  For example in  

MYCIN Certainty factors of 0 .2  or  less are treated as i f  they were O (Heckerrnann & 

Shortli ffe, 1 992, p. 39). This meant that where there was very l ittle probability (<0.2) 

of an hypothesis being used, it would be discarded thus avoiding pointless questions 

to the user of the expert system. 

3.2.2.2 A critique of Certainty factors 

The CF model was created for the domain of MYCIN and in blinded evaluat ions ha-; 

been shown to provide recommendations for treatment equivalent to, or better than 

human experts (Heckermann & Shortliffe, 1992). 

Two reasons have been suggested for the success of thi s  method of modelling 

uncertainty. Certainty factors are relatively simple to implement when compared to 

other methods and the resulting modular knowledge base is helpful to the developer 

(Dan & Dudeck, 1 992). 

Heckermann has shown that the statistical definition of CF and the rules for 

combination show some gross inconsistencies. He suggests that the definition he 
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ahandoncd i n  favour of one which works statistically (Hcckcrmann, 1 986). 

Certainty fm.:tors an.! isomorphic to a suhsct of probabil ity theory under an appropriate 

set of ussumptions (Rothmun. l 989 ) .  One of these assumptions is conditional 

i ndependence of evidence given an hypothesis .  This is a very strong assumption and 

is not the case in all rules i n  all expert systems. However, this system has been shown 

to be successful ( Yu. Buchanan. Shortl iffe et al . ,  1 979). Buchanan and Shortl i ffe, the 

creators of Certainty factors wrote, .. the motives were l argely pragmatic, we justified 

the underlying a-;sumptions by emphasizing the system· s excel lent 

perforrnance"(Buchanan & Short l iffe. 1 984). 

Horvitz and Heckerman ( 1 986 ) highl ight a m isuse of Certainty factors and provide 

examples of the problem i n  two wel l  known ex pen systems . They suggest that the 

problem stems from the inab i iity to distinguish between a change in  belief and an 

absolute meai,ure of belief. 

Positive certainty factors then, correspond to an increase in belief while 
negative certainty factors correspond to a decrease in belief. While certainty 
factors were intended to represent measure of belief update, they were elicited 
from experts as absolute beliefs. In particular certainty factors were elicited from 
experts with the phrase "On a scale of one to ten,  how much certainty do you 
affix this conclusion?" (Horvitz and Heckerman, 1 986, p. 1 46) 

Certainty factors can produce some apparently il1ogical results. It is demonstrated that 

CF values can be the opposite of the conditional probabilities with the fol lowing 

example (Giarratano & Riley, 1994). 

P(H 1 ) = 0.8 

P(H 1 I  E) = 0.9 

then CF (H 1 . E) = 0.5 

P(Hz) = 0.2 

= 0.8 

CF(Hz, E) = 0.75 
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Since one purpose of CF is to rank hypotheses in terms of likely diagnosis, it is 
a contradiction for a disease to have a higher conditional probability (P(HIE) and 
yet have a lower certainty factor, CF(H.E). (Giarratano & Ailey, 1 994, p. 268) . 

Adams had reported the same prohlcm using the same example several year.., earlier 

l Adams. 1 985 ) . It has heen shown that these contradictory results arc quite 

reasonahle (Dan & Dudeck, 1 992). The real problem may he that highlighted by 

Horvitz and Heckerman above, which is whether CF's measure absolute bel ief or a 

change in belief. So in the example above. the results are contradictory. if CF's are 

absolute measures of belief. However if CF's are measures of bel ief updating then the 

fact that CF(H J ,  E) < CF(H2. E) results from P(H t ) > P(Hz) and P(H I IE) >P(H2IE) 

should not be surprising. It simply shows that the evidence E has provided for a 

greater increase in bel ief in hypothesis 1 than hypothesis 2. 

The operational definit ion of CF is preferred by some researchers. They suggest that 

this is appropriate since CF's are el icited from domain expens as absolute beliefs ,  

used by the inference engine as absolute bel iefs and have results interpreted as if  they 

were absolute beliefs. They suggest changes to the computations of the system to 

maintain consistency with this(Dan & Dudeck, 1 992) .  

So  Certainty factors were el icited without a clear operational definition. However 

MYCIN performs as well as experts in the field. This suggests that detailed 

considerations of uncertainty are not critical to the systems performance. Indeed it has 

been shown that performance does not change significantly when many of the 

certainty factors in the knowledge base were changed (Heckerman, 1 986). Avanzato 

(Avanzato, 199 1 )  agrees with Heckerman. he states that the CF model has been 

shown to be equivalent to probability theory with the additional assumption of 
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:-.tat istical i ndependence. Adams is c i ted hy Avanzato a.'> concluding that the success 

of MYCIN despite the theoretical d i fficulties is  

due to the fact that MYClN uses short chains of reasoning and simple 
hypothesis. (Avanzato, 1 99 1 , p. i'O) 

However MYCIN's creators were interested first in getting a system that worked. 

They were not principally mot i vated with the mathematical correctness of their UMT 

but more especially concerned with design ing a system that performed well in a 

particular medical area. Some of the problems may have s ince arisen by the use of 

Cenainty factors in other domains that are unsui table for its reasoning process 

(Horvitz & Heckerman, 1 986). 

To be more specific, there are features of MYCIN's problem domain that are unusual 

(Heckerman & Shortl iffe, 1 992) .  MYCIN's therapy recommendations are i nvariant to 

changes in the CF values, whereas the diagnostic assessments degrade more rapidly. 

However MYCIN is primarily a therapy advice system and the antibiotics 

recommended often cover several diagnostic assessments. Thus Heckerman and 

Shortliffe emphasise that 

"the CF model may be inadequate for diagnostic systems or in domains where 
appropriate recommendations of treatment are more sensitive to accurate 
diagnosis. Unfortunately, this point has been missed by many investigators who 
have built expert systems using CFs" (Heckerman & Shortliffe, 1 992, p.36). 

3.2.3 Dempster-Shafer belief theory 

The belief theory was originally developed by Dempster (Dempster, 1 967) and 

extended by Shafer (Shafer, 1 976). It attempts to provide a measurable means of 

defining the concept of belief, which relates to "our conviction in the truth of some 

statement" (Valverde &Gehl, 1992). Dempster-Shafer (D-S) theory is a 

50 



general isation that was designed to take into account a short coming of prohahility 

theory. that is it cannot explicitly represent ignorance. D-S is  ah .o ahlc to loosen the 

requirement for prior and conditional probabilit ies ( Avanzato, 1 990) .  

The essence of the Dempster-Shafer theory is that the language of bel ief functions is  a 

general isation of the Bayesian language (Shafer. 1 986 ) .  Shafer states that a belief-

function argument differs from a Bayesian argument in that the former involves a 

probabil ity model for the 'evidence bearing on the question· whereas the latter 

i nvolves a probabi l ity model for the 'answer to the question · .  The belief-function 

generalisation makes it possible to use certain kinds of i ncomplete probabil ity models. 

So the use of bel ief-functions allows for the simplification and general isation of 

Bayesian probabi l ity. Bel ief-functions concentrate on the evidence and also provide 

for an upper and lower level of probabi l ity. A wide margin between the upper and 

lower levels expresses explicitly a state of ignorance. This is not possible in classical 

probabil ity where ignorance is typically represented by a probabi l ity of 0.5. This 

muddles the concept of ignorance with the actual probability of an event, which may 

indeed be 0.5. 

Naturally Dempster-Shafer theory continues to develop as more experience is gained 

with its use. Yen cited by Avanzato points out that some of the problems with the 

system have been conquered. 

[YEN, 1 989] describes an expert system, GERTIS (General Evidential 
Reasoning Tool for Intelligent Systems), which extends D-S theory to overcome 
several of the problems . . . . . .  this is accomplished in part by modifying Dempster's 
Rule to combine belief updates instead of absolute belief measures.(Avanzato, 
1 991 , p. 70) 

A full description of Dempster's Rule of Combination is found in the next section. 
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3.2.3. 1 The mechanics of Dempster-Sha/ er 

The Dcmpstcr-Slmfer theory is a generalisation of pmhahil ity theory with it!-> root!-> in a 

theo1y of upper and lower probabi l ities (Fung & Chong. 1 986>. 

The main d ifference between Dempster-Shafer Evidential reasoning ( also called 

Belief Calculus) and standard probabi l ity theory is the relaxation of the constraint that 

the probabi l ity of an event and the probabi l i ty of i ts negation must sum to one. 

ie P(X) + P(not X )  = I in  probabil ity theory. 

P(X) + P(not X) <= l in Dempster-Shafer. 

The central concept i n  this paradigm is that of the frame of discernment (F). This  is  

s imi lar to the sample space in  probabi lity. The elements of F are mutual ly exclusive 

and exhaustive and can be explai ned as the solutions to the question at hand 

(Valverde & Gelh, 1 992). In the case of n possi ble outcomes there are 2n possibi l i ties. 

these are all possible subsets of the frame of discernment. 

The basic probabil ity function m defines a probabi l ity number for each subset of the 

frame of discernment. 

This function satisfies two basic properties 

1 .  m(0) = 0. The probabil ity number of a nul l event is 0. 

2. The sum of the probabil ities of all the other subsets is t .  
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cg. If there are 2 suspects of a crime. Bil l  and Jim then 

m(Bill} == . I Strength of cvidcm:e th.11 Bil l  is guilty 

m(Jim) == . 2  Strength of  evidence that Jim is guilty 

m( { Bill. Jim } )  = . 7 Strength of evidence that the culprit is in the subset 

I Bill. Jim I 

From the basic probability numbers. two other measures of a hypothesis can be 

derived. belief ( Bel) and plausibility(Plaus). The belief interval for hypothesis(a ). is 

then given by [ Bel(a). Plaus(a) ]  and the difference Plaus(a)  - Bel(a )  represents the 

amount of uncertainty with respect to a (Cortez-Rello and Golshani. 1990, p. 13 ). 

Also since 

Bel(a) <== Prob(a) <= Plaus(a) 

the degree of belief and the degree of plausibility can be regarded as the lower and 

upper bound on the probability. 

The degree of belief in a hypothesis (A a subset of F) is the combined sum of the basic 

probabilities of A and its proper subsets. m(A) is then a measure of belief assigned to 

A but Bel(A) is assigned to A and its subsets. Those basic probabilities in subsets that 

constitute Bel(A) are known as the focal elements of Bel (Valverde & Gehl. 1992). 

The belief of a subset, measures the total belief which includes the belief in supersets. 

eg Bel(Bill) = m(Bill) + m( { Bill.Jim} ) . So Bel(Bill) = .8  

The plausibility of a subset is  ( 1  - Bel(not A)) 
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e.g. Plaus( B i l l )  = I - 111(1101 J im) = .8 

A frequent crit isism of dass ical probahi l i ly theory is in the ca!'.e of l i l l lc evidence for 

or against a hypothesis. the sum of lhc prohahi l il ies mu!-.l s t i l l  he one. Thi!-. is no! the 

case using helicf functions where Bcl (A )  + Bel( not A ) <= Bel (F) = I 

The probabil i t ies arc referred lO as Measures of Belief and are combined according lo 

Dempster's rule of combination (Spillman. 1 989. p. 47-49 ). A composite belief 

function may be generated from two or more bel ief  functions defined over the same 

Frame of Discernment. If Bel I and Bel2 are two bel ief functions based on different 

evidence and m I (A).  m2(B )  and m(C) denote the ba-;ic probabil i tes for Bel I .  Bel2 and 

Bel respectively then Dempsters rule of combinat ion is defined as fol lows: 

There are two perspectives of the Dempster-Shafer theory of Belief functions. The 

compatibil ity view and the probability allocation view. 

The compatibility view, interprets the theory of belief functions in terms of a 
mapping or a compatibility relation between two different but related sets of 
mutually exclusive propositions (Lingras & Wong, 1 990, p. 468) .  

These two sets respectively provide an upper and lower value and together they define 

a belief interval. The Bayesian probability, which is considered to be the 'true' value 

is estimated to be contained within this interval. The second view is the probabil ity 

allocation view. 

Another view of the theory constructs belief functions based on a body of 
evidence which is too vague to be described in terms of propositions. The 
belief functions in the second view are constructed by allocating a certain 
probability mass to not necessarily singleton sets of possible answers. 
(Lingras & Wong, 1990, p. 468) 
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3.2.3.2 Advantages of Dempster-Sha/ er 

Dempster-Shafer theory is seen as a generalisation nf prohahility theory (Fung & 

Chong. 1986). It explicitly represents measurement of a degree of belief ( Valvcrc.lc & 

Gehl. 1992). and :.11Jows for the explicit representation of ignorance (Spillman.1989}. 

A common problem with the representation of uncertainty is that of effectively 

combining information from several sources (sec Section 2.5 Sources of Uncertainty). 

Dempster-Shafer through its combining function explicitly provides a solution to this 

si tuation (Cortes-Rello & Golshani. J 990). 

Along with the advantages of course come some disadvantages. 

3.2.3.3 Disadvantages of Dempster-Sha/ er 

A significant disadvantage of D-S theory is  that the assumption of independence of 

evidence is not always realistic (Henkind & Harrison. 1988 ). This same disadvantage 

applies to Certainty factors and the early Bayesian Techniques. Bayesian Belief 

networks however, explicity express dependence by the arcs in the network. 

Shafer, one of the creators of the theory points out that the combination rule is 

pragmatically rather than mathematically based. He indicates that there is r.o 

theoretical justification for the combination rule. 

"there is no conclusive a priori argument for Dempster's rule ... the rule does 
seem to reflect the pooling of evidence" ( Shafer, 1 976, p.57) 

The belief interval is defined by the values Bel (The degree of belief) and Plaus (the 

degree of plausibility). These values have been said to be estimates of the true 

probability (Lingras & Wong, 1990) but Neopolitan is not sure of their use. 
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Bel and Plaus are nebulous entities. They are not probabilities of the event 
of interest nor the lower and upper probabilities the ref ore what meaning 
can we attach to them? (Neopolitan, 1992, p.73). 

Zadeh in Giarratano and Riley illustrates a problem with Dempster-Shafer theory by 

the use of an example that produces unanticipated results (Giarratano & Riley, 1994 ). 

The example used is the belief by two doctors. A and B. in a patent's illness. The 

beliefs in the patient's problem are: 

IDA (meningitis)= 0.99 

mA (brain tumor)= 0.01 

m8 (concussion)= 0.99 

mB (brain tumor) = 0.0 I 

The Dempster rule of combination gives a combined belief of I in the brain tumour. 

The problem arises in this instance because this is the only illness that is supported by 

both doctors. 

Dempster-Shafer has also been considered to be computationally complex (Lee, 1987). 

There have been recent improvements to this by Xu and Kennes reported in their 

paper, "Steps towards an Efficient Implementation of Dempster-Shafer Theory" (Xu & 

Kennes, 1994). 
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3.2.3.4 Support Logic Programming 

Support Logic Programming (SLPl was developed hy J. Baldwin and co-worker'> 

(Dubois and Prade. 1990). At first sight this is simply one of the multiplicity of other 

techniques proposed for handling uncertainty. Careful consideration ho• "Ver reveals 

that the support pair is very similar to the belief interval [Belief. Plausibility J of the 

Dempster-Shafer Theory. Dubois and Prade( I 990.p2 l ) indicate that this model is in 

accordance with the theory of evidence- at lea-;t mathematicalli It is unclear whether 

Support Logic Programming is a proposed improvement to Dempster-Shafer theory 

or simply an alternate form of implementation. 

In SLP an uncertain statement is expressed as 

where A is an atomic formula in first order logic. 

Sn is the degree of necessary support for A 

Sp is the degree of possible support for A. 

The degree of possible support for A is interpreted as the fact that 

I - Sp is the support for not A. 

eg. (0,0) A is certainly false 

(1,1) A is certainly true 

( O, l) It is unknown if A is true or false. 
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A voting model is considered when looking to comhine information. This solves the 

problem of combining information from several sources (sec Section 2.5 Sourl'l'" of 

Uncertainty). It is done by considering the information to he from a numhcr of 

different expert sources. they each have a vote, and tl,c votes arc considered to have 

equal influence. The proportion of the population voting yes to proposition A is 

denoted p(A) . Baldwin extended the voting model to allow for don't know answers. 

For two hypothesis A and B, information required is what proportion of voters support 

(A and B). (not A and B), (not A and not B) and (A and not B). This clearly depends 

on the voting behaviour of individuals and different combination rules are presented 

for the three cases of Independence ( see Section 3.2.1.2.2 Independent Events). 

I Mutual Dependence and Mutual Exclusion. 
j 
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3.2.4 Possibility Theory (Fuzzy sets) 

Fuzzy logic is one of the larger class of multi valued logil:s. They arc named multi 

valued because they allow more values than the simple true and false of classical lcgic. 

The difficulties of representing imprecise information in probability theory led to the 

development of Possibility Theory. This is an extension, by Zadeh, of his theory of 

Fuzzy Sets. Possibility Theory replaces the binary logic of probability with a multi 

valued logic. Lea Sombe (Lea Sombe. 1990) suggests that the logic statement "all A's 

are B's" should be expressed "the more one is A, the more one is B" in fuzzy logic. 

Fuzzy logic is able to represent and reason with such terms as hot, dangerous, a lirrle 

and .erymuch (Giarratano & Riley. 1994). Neopolitan (1992) explains that wherea-; 

probability theory allows us to attach a measure of how uncertain we are of the truth or 

falsity of a proposition, Fuzzy set theory "deals with propositions that have vague 

meaning" (Neopolitan, 1992, p. 74 ). When a doctor says that an operation has a 90% 

chance of improving a patient's condition by 50%. then the 90% represents a 

probability while the 50% represents fuzzy set membership. 

Shenoy has proposed a framework of VBS (Valuation Based Systems) for managing 

uncertainty in expert systems (Shenoy, I 992a). This framework is general enough to 

include many of the possible paradigms for managing uncertainty that have been 

proposed. In another article "Using possibility theory in expert systems", Shenoy 

shows how possibility theory can be fitted into the framework of VBS. In possibility 

theory the "basic representational unit is called the possibility function" (Shenoy, 

1992). Projection and particularization are the main operations for manipulating 
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possibili1y functions. Dubois and Pradc cited in Shcnoy (Shcnoy. 1992J pointed out the 

correspondence between projection and marginalisation. an operation in VBS that 

corresponds to the coarsening of knowledge: and the corrcspondenc.:c hctwccn 

particularisation and combination. the VBS operations that is used for the aggregation 

of knowledge. 

It has been argued that probability theory is all that is required to deal with unccnainty 

(Cheeseman. 1986) and therefore Fuzzy sets must simply be expressing a form of 

probability theory. However this example demonstrates that fuzzy set theory is able to 

express concepts not applicable to probability theory (a similar example appears in 

(Neopolitan, 1990)). Consider a cross bred animal, for example a sheep that has a pure 

bred Marino and a pure bred Dorset for its parents. It is neither a Marino nor a Dorset 

but has 50% membership in both sets. there is no probability involved. 

It has been suggested that there are two ways of using fuzziness in ex pen systems: 

One method is to provide fuzzy truth values to rules and conditions in their 
premises, ..... The second approach is to handle uncertainty and imprecision with 
linguistic quantifiers and the use of fuzzy terms in the condition. eg. If the water 
level of the river is high and the water level of the river is rapidly rising then 
prepare to open the gates to the bypass canal. (Chang & Hall, 1992, p.598) 

The second approach may be referred to a'> linguistic logic (Novak.1992). It is 

however always based on the first approach. 

Miyoshi et al. ( Miyoshi et al., 1992) have developed an expen system shell that 

incorporates two different kinds of uncertainty both based on fuzzy logic, a fuzzy 

production system and a fuzzy frame system. They report that they are working on 

expert systems in the fields of foreign exchange and image recognition. 
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3.2.4. l Tlie meclia11ics of Fuzzy sets 

In (normul) set theory. membership of a set is a hoolcan value. that i.., either true( I) or 

false(O). A clwracteristicjimctirm is the cstahlished way of showing which ohjccts arc 

members of a set (Giarratano & Riley. 1994). 

if x is an clement of set A 

0 if x is not an element of set A 

An alternate definition is in terms of af1111crio11al mappin,:. 

UA(X): X->{0.l} 

A Fuzzy set may be represented by a generalisation of the characteristic function that 

is called the membershipf1mctio11 (Giarratano & Riley. 1994). 

UA(X): x -> [0,1] 

Although on the surface these two definitions appear very similar. the membership 

function is a real number between O and I that represents the grade of membership of 

the fuzzy set. 

So in contrast to the crisp sets of standard set theory, Fuzzy set theory allows grades of 

membership. Imprecise terms such as "short man" can be represented by a Fuzzy set 

which has a value of 1 (conclusively is a member of the set of short men) for a height 

of 150cm and a value of O (definitely not in the set of short men) for a height of 180cm 

and is smooth and monotonic between these values (see Figure 3.2 An Example of a 

Fuzzy membership function, on the next page) .. 
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Q. 1 

O i 0.8 
,8 i 0.6 
ftl .c 0.4 

Membership of Fuzzy set - Short man 

o I 0.2 
� 0-+--�������+-�������-+-������_.... 

150 160 170 180 
Height 

Figure 3.2 An example of a Fuzzy membership function 

Fuzzy sets can be combined using the operations of intersection and union. The 

intersection operation is carried out by taking the minimum value of the two 

membership functions. 

m(short and fat)= MIN(m(short), m(fat)) 

Whilst the union of two fuzzy sets is found by taking the maximum values. 

m(short or fat)= MAX{m(short), m(fat)) 

The fuzzy set membership function can also be altered by the use of other linguistic 

terms. In Table 3.1 ( on the next page), m is a modifier, Fis the modified membership 

function (Lee, Grize and Dehnad, 1987, p. 29), the descriptions are from a d =fferent 

source (Giarratano & Riley, 1994). 
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m F Description 

Not l - f(x) Negation 

Very f � (X) lntcnsi fication 

More t
i 

:;(X) Dilation 

or Less 

Table 3.1 Fuzzy Qualifiers 

3.2.4.2 Approximate Reasoning 

Approximate Reasoning \� ;:.<= proposed by Zadeh as a mathematical method to model 

human reasoning wi!ih "vague m,ttions present" (Novak. 1992). It contains two kinds of 

rules, Translation an,1d Inference. irhe former are used to obtain fuzzy sets from natural 

language, the latter are i0 obt:1i,lt conclusions from premises, that is to carry out the 

reasoning process. 

Fuzzy "if-then" rules have the form: 

If Xis Cj then Y is Sj 

where Ci and Sj are fuzzy sets over X and Y respectively. eg. If the road is quite wet 

then drive slowly. (Koczy & Hirota, 1992) 

In their paper "A fast algorithm for Fuzzy Inference", Koczy and Hirota state that 

there have been various methods used for the Inference process over a knowledge base 

that c:ontains fuzzy rules. They investigate two methods, "probably those two which 
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arc applied mosl frcyucntly" and discover thal one algori lhm ha" a weak sensitivily in 

reasoning and has low compulational complex ity whibt the other ha" good reasoning 

but is complex computationally. They go on lo suggest a "fast and sensiti ve" algorithm 

that itself contains some other minor prohlcms { Km:zy & Hirota, 1 992 ). 

3.2.4.3 A critique of Fuuy sets 

The main limilations of probability theory is that it is based on two valued logic. An 

event either occurs or it does not. Another limitation is that probabilities are real 

numbers. Important issues which Zadeh (Zadeh. 1 985. p. 4) says can be dealt with by 

fuzzy logic and not probability are 

1 .  The fuzziness of antecedents or consequents 

2. Partial match between the antecedents of a rule and a fact supplied by the user. 

through the compositional rule of inference and interpolation. 

3. The presence of fuzzy quantifiers in  the antecedent and/or the consequent 

Fuzzy logic has been shown to be a successful representation for uncertainty in 
expert system design, some difficulties have been identified . .. . elements of fuzzy 
set theory ignore some mutual exclusivity requirements and that some 
distributions and qualifier operations (eg. squaring for 'Very') are subjective in 
nature and may exhibit inaccuracies[Ng, Abramson, 1 990J. (Avanzato, 1 990, 
p.71 ) 

Graham ( 199 1 )  in his paper "Fuzzy logic in commercial expert systems" considers a 

number of expert systems and plant and machinery controllers that use fuzzy logic. He 

cites numerous examples mainly from the U.S.A. and Japan, many of which were, at 

the time of writing, in experimental form. Graham considered one of the most 

impressive applications of fuzzy logic to be the automatic train operations system 
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developed by Hitachi for the Sendai municipal suhway sy-.tcm. The -.ystcrn optimi:.cs 

fuel consumption and other aspects of system pcrfonnam.:c through the use of fuzzy 

rules. such as " i f  the speed is far he/ow the l imi 1  thcn the power notch is selected" 

(Grahan, 1 99 1  ). 

Shiraishi ( 1 989) suggest that fuzzy reasoning was useful in the development of an 

expert system for damage assessment. 

1 .  By introducing the fuzzy set manipulation system into the expert system, it 
is possible to utilize the knowledge and rules which are expressed in terms 
of natural language. 

2. Based on fuzzy reasoning, it is possible to reduce the number of rules 
necessary for deriving a meaningful conclusion. The reduction is very useful 
for building a practical expert system (Shiraishi , et al., 1 989, p. 21 6). 

It has been shown that as wel l as being appl icable to rule-ba<ied expert systems. Fuzzy 

sets may also be appl ied to connectionist expert systems that is. those based on Neura, 

networks (Cohen & Hudson, 1 992). 

Some have c laimed to have demonstrated that fuzzy logic has been incorrectly used in 

problems that are examples of uncertain inference {Cheeseman, 1 986). Further claims 

have been made that fuzzy set theory can be subsumed by Bayesian probabi l i ty. 

Others disagree and maintain that fuzzy set theory addresses a "fundamentally 

d ifferent class of problems from that of probability theory". This sect ion concludes 

with a very useful example that aims to demonstrate this difference (Neopolitan, 1 992, 

p.77). 
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Suppose we have the constraints: 

C 1 = "X should be close to 4" 

C2 = ··x should be close to 6" 

and the goals 

G1 = ··x should be close to 5" 

G2 = "X should be close to 3" 

If we are restricted to the set of integers, these constraints and goals can be 
represented by the fuzzy sets in Table 3.2 If we take we 

obtain the fuzzy set D this is our dP.cision. Since no X has full membership in D , 
we can define our optimal decision as being X that maximizes D. I n  this case that 
is X equal to 5. This problem has nnthing to do with uncertainty. it is preferably 
called approximate. (Neapolitan, H,G2, p.78) 

I 2 3 4 5 6 7 8 9 

0 0. 1 0.4 0.8 1 .0 0.7 0.4 0.2 0 

0. 1 0.6 1 .0 0.9 0.8 0.6 0.5 0.3 0 

0.3 0.6 0.9 1 .0 0.8 0.7 0.5 0.3 0.2 

0.2 0.4 0.6 0.7 0.9 1 .0 0.8 0.6 0.4 

0 O. l 0.4 0.7 0.8 0.6 0.4 0.2 0 

Table 3.2 The fuzzy set membership in Gt, G2, Cl, C2 and D 
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3.3 Symbolic approaches 

Symbolic approaches lo handling uncertainly arc also referred to as 1w11-1wmeric or 

qualitati\'e methods (Graham. 1 99 1  ). In addition the Lenn plausihle rea.rn11i11}!. is often 

used. It has been defined as "reasoning ihat leads to uncertain conclusions because ib 

methods arc fallible or its premises arc uncertain" (Shafer&Pearl. 1 990). Plausible 

reasoning has not developed a typical language because formalisations have been 

absorbed by probability theory. (This lack of typical language has caused difficulty 

when researching this topic for this thesis.) 

Symbolic treatments of uncertainty are seen to have advantages and disadvantages in 

relation to numeric methods. Symbolic methods generally have "strong explanation 

capabil ities" but that their fragility is in the combining of evidence (Avanzato. 1 99 L 

p. 7 1  ). This can be clearly seen in the ability of the theory of endorsements to provide 

its reasons for believing (or disbelieving) in an hypothesis (see Section 3.3. l Theory 

of Endorsements). 

Symbolic representations are also more suitable to handle uncertainty of particular 

types. The ability to reason with incomplete information has been identified as a 

strength but researchers have suggested that symbolic methods are unable to cope with 

imprecise information, "since they lack any measure to quantify confidence levels" 

(Bonissone & Decker, 1 986, p. 2 1 8). 

Other researchers use different terminology. Methods for handling uncertainty have 

been categorised as either quantitative or qualitative approaches (Graham, 1 99 1  ). The 
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qualitat ive methods arc said to vary from 1hose that hide uncertainty in lingui.,tic: 

terms to those that provide intricate methods u ... ing nonmonotonic logil' or 

endorsements. 

Sul l ivan and Cohen { l 990 ) argue against the use of numbers to represent uncertainty. 

Their argument has been summarised to the following points 

1 . Subjective degrees of belief do not behave as probabilities 

2. Experts are uncomfortable in committing themselves to numbers 

3. I n  some situations the accuracy has little effect on performance 

4. Numbers tell us how much to believe, not why to believe (Sullivan & 
Cohen. 1 990). 

The theory of endorsements provides an answer to the concerns about the use �f 

numbers to represent uncertainty by providing a clear alternat i ve .  Although. a� wil l be 

explained in the next section numerical rnea�ures are not e l iminated completely. 

3.3.1 Theory of Endorsements 

The main principle behind this uncertainty management system is to avoid the use of 

numbers to represent uncertainty. Cohen bel ieves that where numbers are used to 

represent imprecise information, that they act as a summary of several different 

aspects of uncertainty, (see Section 2.5. Sources of Uncertainty above) and therefore 

infonnation is lost. 

The Theory of Endorsements explicitly records the reasons for believing or 

disbelieving a proposition. This method would appear to be closer to the actual 

method of reasoning used by human experts, who would simply endorse their belief in  

a statement by a list of reasons. Clark indicated that endorsements may be divided 
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into five classes: rules, data. task. conclusion and resolution endorscm::nls, however 

no detail on how the types comp,trc is included (Clark, 1 990) .  

Bonissone suggests that there arc possihlc problems in the combinatorial explosion of 

information required. 

a set of rules is needed to propagate endorsements over inferences 

.. combination of endorsements in a premise, propagation of endorsements 
to a conclusion, and ranking of endorsements must be explicitly specified 
for each particular context (Bonissone, 1 987, p. 859) 

Although the process of endorsement is similar to the recording of just ifications in 

truth maintenance systems (TMS). there is an important d ifference (de Kleer. 1984) 

(Cohen and Grinberg, 1988). TMS are discussed briefly in section 3 .4 .2 .  In the TMS 

the kind of support for a justification is i rrelevant. However. endorsements consider 

the aspects of inferences that are relevant to reasoning about their certainty. 

Endorsements can be ranked. The user would have more confidence in an hypothesis 

with a higher ranked endorsement. 

Clark suggests that the motivation for Cohen's Theory of Endorsements is the 

realisation that the composition of reasons to believe or disbelieve produce the level of 

certainty. (Clark, 1 990). 

The Theory of Endorsements developed by Cohen has been implemented in the 

Expert System shell appropriately named Solomon. The system is working in an ES 

to advise on portfolio investments (Bhatnager and Kanal, 1 986, p. 14) and provides a 

natural approach to uncertainty although it still has difficulties to be overcome. 

Bhatnager and Kanai ( 1 986, p. 1 5) explain ,that 
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When Solomon derives inferences using rules, all the endorsements carried 
by the antecedents are transferred to the consequent. The endorsements of 
the rule , the tasks, the data and the conclusion are all included in the 
endorsement of the consequent. Since such conclusions are used to prove 
other tasks. SOLOMON builds up huge bodies of endorsements for 
conclusions only after a few inferences. 

There are still limitations to the theory of endorsements. Although combining 

evidence and ranking propositions are important in controlJing inference, these 

operations are not readily available when using the theory of endorsements. A limi ted 

ranking of endorsements would be reasonable to consider when using combination 

rules but given a large number of endorsements it is not clear how combination could 

be performed. Cohen has not provided an answer to the question, "How do experts 

combine evidence?" 

Cohen has pointed out that : "The model of endorsements does not preclude 

endorsements that include numerical measures such 'lS degrees of belief' (Cohen. 

1 985. p. 53) . 

Grech and Sammut describe an expert system shell that was used to i mplement a 

system for the i dentification of radar emitters (Grech & Sammut. 1989). They suggest 

that the shell was developed for dynamic domains in which "the use of probabili ti es is 

highly questionable". As a result the shell uses a combination of an assumption-based 

truth maintenance system and a system of endorsements to enable it to reason under 

uncertainty. One of the features of the system which i s  important i s  that i t  "enables 

problem solving to occur incrementally as new information concerning the state of the 

world is acquired" (Grech and Sammut, I 989, p. 308). 
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3.3.2 Non-monotonic logics 

There arc thre<: bn)ad categories of Non-monotonic reason ing (Boni..,sone, Cyrluk ,  

Goodwin and St i l lman, 1 990) 

I .  consistency - such as McDermott and Doyle's non-monotonic logic and Reiter\ 

default logic. 

2.  minimization - circumscription, McCarthy( 1 980) . 

3 .  epistemology - autoepistemic logic. Moore( 1 983  J. 

According to Cohen ( 1 985) non-monotonic reasoning was first applied by Stal lman 

and Sussman in 1 977 in a system for electronic c ircuit analysis. Reiter (Reiter, J 987 l 

describes non-monotonic reasoning as a "particular kind of plausible reasoning". He 

explains that most examples of such reasoning are of the kind: "Normally. A Holds. ·· 

This type of reasoning then is different to the predicate logics. Lea Sombe ( 1 990) 

suggests that the logic statement "all the A's are B ' s" should be expre<;sed "an A is a 

B, up to exceptions" in Rei ter' s default logic. 

Traditional mathematic logic does not provide for reasoning with incomplete 

information as it is inherently monotonic . ..,..his means that whenever we have a 

relationship between a set of sentences (S) and a conclusion (c) such as S implies c 

then i ncluding new sentences in the antecedent wil l  not change the conclusion. Reiter 

sums this up as "new information, preserves old conclusions." (Rei ter. 1 987). 

As an example of default reasoning, suppose we know of a bird called Pengui and 
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wish to know whether it is capable of flight. A non monotonic logic hold� the 

following rules: 

I .  " if x is a bird and failing any evidence to the contrary then assume x can fly" 

"if x is a penguin then x cannot fly" 

3. "if x is an ostrich then x cannot fly" 

If our knowledge of Pengui is incomplete but we know that she is a bird then we must 

assume from l that she can fly. If we later discover that Pengui is in fact a penguin 

then we must revise our assumption. It is quite clear that classical logic is inadequate 

to represent this type of logical mechanism because here adding information has 

changed the original conclusion. 

Bonissone and co-workers ( 1990) suggest that non-monotonic logic allows a more 

natural form of reasoning, it mirrors more closely the manner that most people reason 

.. we are constantly making assumptions about the world and revising those 
assumptions as we obtain more information. Informally the common idea of 
non-monotonies is that we may want to be able to jump to conclusions. 
which might have to be retracted as new information about the world 
becomes available. 

(Bonissone, Cyrluk, Goodwin & Stillman, 1 990, p. 69) 

Non-monotonic logic does not manage without the use of numerical measures of 

uncertainty by magically transforming uncertainty to certainty. McDermott and Doyle 

( 1980) explain 

the purpose of non-montonic inference rules is not to add certainty where 
there is none, but rather to guide the selection of tentatively held beliefs in 
the hope that fruitful investigations and good guesses will result. This 
means that one should not a priori expect non monotonic rules to derive 
valid conclusions independent of the non-monotonic rules. Rather one 
should expect to be led to a set of beliefs which, while perhaps ev1:mtually 
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shown incorrect, will meantime coherently guide im1estigations. (McDermott 
& Doyle, 1 980. p. 42) 

So non-monotonk logics arc useful in situat ions that arc uncertain hccausc of 1hc Jack 

nf ( incomplete) information hut arc 1101 ahlc to deal with prohahi l istic or fuzzy 

reasoning. Rcscurchers have crit ic ised non-monotonies for this inadequacy 

(Bonissone. 1 987). Others however have elaborated on this aspect of defau lt reasoning 

and demonstrated that non-monotonies perform a different type of reasoning under 

uncertainty and are therefore not in competit ion with the other methods of reasoning 

under uncertainty (Clark, 1 990). 

At any point in time, propositions are considered to be true or false, but no 
degrees of credibility are permitted. So using a nonmonotonic logic it is not 
possible to deal comprehensively with partial information about an event. 
(Clark, 1 990, p. 1 29) 

Nonmonotonics were developed to deal with uncertainty resulting from i ncomplete 

not partial information. 

Reiter ( 1 987) suggests that there are two basic approaches to diagnost ic reasoning. 

The experimental approach i s  dominant and uses rules of thumb, stat istical intui tion 

and past experiences of human experts. 

The second approach diagnosis from structure and behaviours, the only 
information at hand, is a description of some system together with an 
observation of that system's behaviour. If this observation conflicts with 
intended system behaviour then the diagnostic problem is to determine 
which components could by malfunctioning account for the discrepancy 
between observed and correct system behaviour. Since components can 
fail in various and often unpredictable ways, their normal or default 
behaviours should be described. These descriptions fit the pattern of 
plausible reasoning. (Reiter, 1 987, p.638) 

It has been noted that several distinct versions of Reiters defaul t  logic (DL) were 

suggested between 1988  and I 99 1 .  The main work publ ished by Rei ter on this topic 

was in 1980 (Reiter, 1 980). This work is all entirely theoretical and appears not yet 
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to haw been applied to expert system development so it wil l  not he further 

invest igated here (Giordano & Martel l i .  1 994 J. 

Marvin Cohen sums up non-monotonic logk as a "computational ly efficient method 

for reasoning with incomplete informat ion" (Cohen, 1 985 ) . He also suggests that the 

features of non-monotonic reasoning make it particularly suitable for 'meta­

reason ing'. that is the process of control l ing the application of the uncertainty calculus. 

This idea wi l l  be revisited in  Chapter 5. 

The method of Reasoned Assumptions is another form of non-monotonic logic. 

Uncertainty embedded in an impl ication is removed by listing all the exceptions to 

that rule. Like other non-monotonies Assumption-based systems can cope with the 

case of incomplete information, but they are inadequate to handle the case of 

imprecise information with rea<;oned assumptions (Bonissone, 1 987). 

It has been suggested that the essential difference between numeric and non-numeric 

approaches to uncertainty is that in numeric approaches each piece of evidence may be 

believed to only a partial extent whilst the reasoning may have a "high degree of 

confidence". This can be contrasted with non-numeric approaches where each piece of 

evidence is completely believed or disbelieved and confidence in the reasoning is 

based on the underlying assumptions (Bhatnagar & Kanal. 1 986). 

So in non-monotonic reasoning before inferencing can be performed assumptions 

have to be made (or defaults assigned). The results obtained may be l ater revised in  

the light of new evidence. 
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3.4 Hybrid approaches 

Hybrid approaches to the handl ing of uncertainty use aspects of both nu meric and 

symbolic reasoning. The aim is to take advantage of both methods of reasoning, and lO 

combine these advantages into a single method of reasoning. 

3.4.1 The Non-Monotonic Probabilist 

Cohen ( 1 985) developed the Non-Monotonic Probabi l ist (NMP), a hybrid approach 

to uncertainty. spec ifical ly for the field of image analysis. A domain that he describes 

as requiring an "explicit and valid quantitat ive model of uncertainty". and "a 

metastructure of qual itative reasoning", in which the conjectures of the model are 

reconsidered in  the reasoning process. This method was introduced by considering 

the handl ing of confl ict resolution in numeric and non-numeric paradi gms. I t  is  

suggested that Bayesian methods ( and all other numeric methods) actual ly expect 

d ivergence occasionally and because of this. the l ine of rea-;oning is s imilar to that 

where extreme meac;urements are expected to "cancel each other out " . This 

perspective is quite different to the quali tative v iewpoint where contrary evidence can 

only occur as a result of flawed knowledge, thus the response is to identify the 

mistake(s) in  the argument and correct it (them). Cohen explains 

Pure probabilistic systems never learn anything new about their probabilistic 
beliefs and assumptions from the experience of applying them. Pure non­
monotonic systems do learn, but they have an arbitrariness and an all-or­
none quality about the new beliefs they acquire. Our argument, quite simply, 
is that both capabil ities are needed, and that satisfactory systems will, in 
general require their combination" (Cohen, 1985, p. 3. 1 8). 

NMP is an ex.pert system bui lding tool that incorporates hybrid methods for reasoning 
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under uncertainty. I t  uses Shafcrian belief rather than Bayc .... ian probability bccaw,c of 

the possibility for the ex plicit representation of ignorance {Cohen, 1 985 ). 

3.4.2 Truth Maintenance Systems 

Truth M .. 1intemmce Systcms(TMS) are identified by de Klecr as having the problem of 

only considering one solution at a time (de KJeer. 1984). However Assumption-Based 

Truth Maintenance Systems (ATMS) allow "arbitrarily many contradictory solutions 

to coexist" (de Kleer. I 984. p. 81 ). D'Ambrosio discusses an hybrid approach to 

reasoning under uncertainty using A TMS: 

"the method relies on the propagation mechanisms in an A TMS to perform 
most evidence combination operations symbolically, and only substitutes 
numeric values when asked for the certainty of a proposition" (D'Ambrosia, 
1 989, p. 268). 

Advantages of this technique include improved handling of dependent and partially 

independent evidence, rapid re-evaluation of propositional certainty values with 

different sets of assumption certainties, and the ability to obtain certainty values for a 

variety of different perspectives {partial solutions)  with little computational effort 

(D'Ambrosia, 1989, p. 282). 

Filman adds further weight to the argument, that this type of assumption-based 

reasoning is more similar to most human reasoning, than that of traditional logic. 

In general, reasoning is the process of deriving new knowledge from old. If 
the underlying knowledge never changes, if we never explore hypothetical 
spaces, and if our knowledge is free of internal contradictions, the 
accumulation of knowledge is straight forward: We just add the results of 
our reasoning to our pile of knowledge. Unfortunately, few problems are so 
simple. We usually find ourselves reasoning under a set of assumptions 
that may be withdrawn or changed. Often the entire reasoning process is 
focused on identifying preferred assumption sets. Ideally when the 
assumptions change we would like tc withdraw those conclusions that are 
no longer valid, retaining those that a1 � stil l  true. This requires attaching to 
derived facts justifications or dependencies, that is, reasons for belief in 
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these facts (Filman, 1 988, p.384). 

So with this method of reasoning we may concentrate on the assumptions that drive 

the process of reasoning. Doyle· s system uses the concept that certain assumptions arc 

either believed or not believed. "A particular derivat ion would be valid, for example. 

i f  assumptions X and Y were in, but Z out" ( Filman, 1 988, p.384). 

Assumption based Truth Maintenance Systems then provide for many contradictory 

solutions to be held and a natural way of reasoning. 

77 



Chapter 4: A comparison of uncertainty 

management techniques 

4. 1 Chapter overview 

This chapter will attempt to compare uncertainty management techniques. The chapter 

is in four parts. The first introduces the concept of comparison and contains a warning 

for the expert system developer. The second part of the chapter considers three 

methods that have been suggested in the l iterature to perform the comparison. Each 

suggests features that are important in the comparison. The first (Wise & Henrion. 

1986) considers the results of the expert system to be of paramount importance. The 

second (Cohen, 1 985) is in effect a cost benefit analysis that suggests it is important to 

weigh up the Val idi ty (Benefits} and Feasibili ty (Costs). The third method of 

comparison (Bonissone, 1987) is in the form a Desiderata for uncertainty management 

techniques. Each UMT is classified on whether or not it meets each of thirteen 

objectives. 

The third part of the chapter considers comparisons of UMTs that have been reported 

in the literature. This section is dominated by numeric UMT' s with little on Non­

numeric and barely a mention of hybrid methods reflecting the amount of material 

available. Hybrid methods especial ly are in their infancy and therefore are rarely 

mentioned beyond the hope that they may provide for a better method for the future. 

The complexity of such implementation is a limiting factor for the present. 
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Finally the chapter considers some of the recent advances in the theory of reasoning 

under uncertainty. 

4.2 An introduction to comparison and warning 

Ginsberg advised that comparing Uncertainty Management Techniques was in the too 

hard basket. "The true advantages of the various competing paradigms wil l onl y  be 

apparent when these paradigms have been incoq1orated in ful l-scale systems" 

(Ginsberg, 1986). Even then, a method of performing the comparison, or a scale 

along which the performance of the UMT's is to be measured may be difficult or 

inappropriate to find. 

There appears to be a trend in the l iterature that identifies a shift in belief over the 

years from the mid-eighties to the early nineties. The start of the period is 

characterised by claims that certain UMT's are the one and onl y  correct system: eg. 

Cheeseman (Cheeseman. 1986) argued in favour of probability and Zadeh (Zadeh. 

1986) in favour of fuzzy set theory. 

The following quote from Shafer was ahead of its time and is far more characteristic 

of the early n ineties. 

I believe that in the next few years both Bayesian and belief-function 
designs will find their niches in the world of expert systems. Bayesian 
designs will predominate in systems that are repeatedly applied under 
conditions so constant that the picture of answers determined at random 
with known chances fits. Belief-function designs will be more successful in 
systems whose each use represents a relatively unusual conjunction of 
different small worlds of experience (Shafer, 1 986, p. 1 35). 

79 



4.2. 1 Warning to the expert system developer, your UMT 

may not be what it claims 

Magill and Leech ( 1 99 1 ) investigated two commerc ially avail ahlc expert system tools 

that used respectively, Bayes' Theorem and Certainty Factors, for the handl ing of 

uncertainty. Their aim was to recommend the more appropriate tool for a particular 

task. 

They discovered that the complex decision of which UMT was more appropriate for 

an individual ES development was further hampered by the fact t hat "the two specific 

tools do not follow strictly the theories on which they are based". 

This matter is beyond the scope of this investigation since it was never intended to 

investigate particular implementations. It is  included here as merely a warning to 

expert system developers that i t  is possible that the methodology selected may not be 

implemented in its purest form. 

Returning to the comparison of UMTs, is this a matter of comparison of apples with 

oranges? If so. then when should the apple be selected for a particular application 

ahead of the orange. 
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4.3 Methods for comparing UMT's 

Before beginning to compare UMTs. the manner in which they arc to he compared 

should be considered. This section will consider three methods of comparison that 

have been suggested. The first suggests accuracy of results (Wisc & Hcnrion, 1 986), 

the second suggests a framework of features for comparison - it is in essence a cost 

benefit analysis (Cohen, 1 985). and the third is a Desiderata - a list of requirements 

(Bonissone. 1 987 ). 

4.3.1 Comparison using results produced 

Wise and Henrion in 1 986 felt that it was important to test Uncertain Inference 

systems ( UISs. usually elsewhere in this paper ref erred to as paradigms of reasoning 

under uncertainty or UMTs) in respect of the results they produced whilst 

acknowledging that other aspects were important. 

The main purpose of this paper is to present and try to justify a framework 
for testing the accuracy of UIS's results, ignoring for the moment issues of 
computational effort, clarity, or simplici ty. . .. we believe that clearer 
presentation of these fundamentals and examination of the methods against 
the full range of criteria, including the theoretical, pragmatic issues, as well 
as the experimental comparison of performance explored here, could shed 
some needed light. (Wise & Henrion, 1986, p.82) 

Despite the drawbacks of this method of comparison the1 consider that information 

regarding the accuracy of outcomes from the expert system will a,;sist the expert 

system developer in making a selection. 
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Different people will have different weightings for these criteria, reflecting 
their different goals, and so it may never be appropriate to attempt defin itive 
evaluation of the techniques. But in any case. better analytic and 
experimental evidence which compares the performance of UIS's in terms 
of their results, should help to provide system designers a more solid basis 
for choosing among them (Wise & Henrion , 1 986, p.82). 

It is trnc that the system designer docs need to know that a certain UMT provides 

reasonable results. but i t is not l ikely that this i s  to be the overriding selection criterion 

on every occasion. Accuracy of result is only one of se veral possible criteria for the 

selection of a paradigm. Other criteria. including the feasibil ity of implementing a 

particular paradigm are considered by the framework suggested by Marvin Cohen and 

outl ined in the following section (Cohen. 1 985 ). 

4.3.2 A framework for evaluating paradigms 

A framework for evaluating theories of uncertainty is presented by Marvin Cohen 

(Cohen, 1 985, p. 2-4 ). He suggests that the framework: 

• provides an opportunity to clarify our comprehension of the task. 

• suggests ways i n  which models may be changed. 

• possibly provides the structure on which to build new inference methods. 
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FIGURE 4. 1 :  A Framework for Evaluating Theories of Uncertainty 

This framework is i l lustrated i n  Figure 4 . 1 .  It provides for a number of features of the 

various paradigms to be evaluated without speci fying which of the features is the most 

import ant. This wi l l  depend on the specific development being undertaken, especial ly 

the importance of the overal l  system and the available budget. A developer of a low 

budget system may not have the luxury of se lecting val idity as their most important 

criterion .  They may make a different decis ion because of time constra ints or l imited 

equipment and be unable to consider more complex methods. 
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4.3.3 The requirements of a theory of uncertainty 

management 

Bonissone ( 1 987) presents a Desiderata for Uncertainty management techniques in a 

paper entitled Plausible reasoning. This consists of a set of thirteen objecti ves for an 

UMT. It concentrates on the theoretical aspects rather than the practical , twelve of the 

thirteen objectives are related to the validity rather than the feasibility of the UMT. 

Nine UMT's are evaluated in  resper:t of whether or not they meet these objectives. 

Each of these objectives will be discussed in tum. Bonissone ' s  results are presented in 

Table 4. l .  

1 .  Combination rules should not be based on global assumptions of 
evidence independence. 

Certainty factors are said to have this independence assumption. Heckerman ( 1 986) 

objected to Certainty factors on the grounds that they did not allow explicit 

representation of dependence or independence. The early Bayesian methods also made 

this assumption. 

2. The combination rules should not assume the exhaustiveness and 
exclusiveness of the hypotheses. 

Given this assumption there could quite clearly be inaccuracies in a system that had 

not included all possible hypotheses if it were using probabilities of a variation. Since 

all probability is relative to a sample space (Freund, 1972). 

3. There should be an explicit representation of the amount of evidence for 
and against each hypothesis. 

Since it is "the amount of evidence" that is to be represented, then a numeric 

84 



representation would oc appropriate but c annot be combined into a �inglc figure. 

4. There should be an explicit representation of the reasons for and against 
each hypothesis. 

Cohen's Theory of Endorsements provides the most explicit representation of the 

reasons to support of an hypothesis or not. This is one of Cohen's major arguments 

against numeric methods - - that they mask the reasons by simply combining them 

into a nun .Jer. 

5. The representation should al low the user to decide the uncertainty of any 
information at the available level of detail ( i .e .  allowing heterogeneous 
information granularity). 

It would appear pointless to insist that the user provide numbers ( uncertainty levels) 

that are not known. These must be only guess-timates. It would be better to allow 

information that is actually known even if less detail is therefore provided. This is the 

sole objectives to consider the feasibility of the system, specifically the quantity of 

input (see Figure 4. 1 :  A Framework for Evaluating Theories of Uncertainty). 

6. There should be explicit representation of consistency. 

7. There should be an explicit representation of ignorance to allow 
noncommittal statements. 

Proponen ts of Dempster-Shafer ( that includes an upper and lower limit to allow for 

representation of  ignorance) argue that this is one of the major limitations of 

probability theory. 

8. There should be a clear distinction between a conflict in the information 
(violation of consistency) and ignorance about the information. 

9. There should be a second order measure of uncertainty recording the 
uncertainty of the information as well as the uncertainty of the measure 
itself. 

10. The representation must be, or appear to be, natural to the user to 
facilitate graceful interaction, natural to the expert to permit, elicitation of 
consistent weights or reasons. and the semantics of procedures for 
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propagating and summarising information must be clear. 

Graham (Graham. 1 99 1 )  suggests that since it is true that people arc gcncrnl ly very 

had at estimating probabi lities then the Bayesian approach is not suitable for systems 

to be used by non-statistic ians. 

1 1 .  The syntax and semantics of the representation should be closed under 
the rules of combination. 

1 2. Making pairwise comparisons of uncertainty should be feasible as these 
are required for decision making. 

In general this type of comparison is possible with numeric values, but not symbolic .  

Proponents of symbolic methods argue that this comparison may be invalid. 

1 3. The traceabi l ity of the aggregation and propagation of uncertainty 
through the reasoning process must be available to resolve conflicts of 
contradictions, to explain the support of conclusions, and to perform 
meta-reasoning for control .  

This support for the reasoning process is available with symbolic methods and not 

with numeric methods. 

With  the final two requirements of his Desiderata, Bonissone has dismissed. in 

general, all numeric and symbolic methods. This leaves only the hybrid methods as 

options to be further considered when looking for a method of uncertainty 

representation t hat passes all his stipulations. 

Table 4. 1 of the next page summarizes how Bonissone sees various UMTs in relation 

to his Desiderata. He considers seven numeric and two non-numeric systems 

(Reasoned assumptions and The Theory of Endorsements). 
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Uncertainty l 2 3 4 5 6 7 8 9 1 0  l I 1 2  1 3  

Representation 

Modified Bayesian N N N N N N N N N y y y N 

Confirma1ion N y YIN N N N y N N N N y N 

Upp,.:r and low.:r probabilities N N y N y y y y y y y y N 

Evidential reasoning N N y N y y y y y y y y N 

Probability bound5 y y y N y y y y y y y y N 

Fuzzy necessity ::ind possibilicy y y y N y y y y y y y y N 

Evidence space y y y N N y y y y y y y N 

Reasoned assumptions y y N y N y N N N y y N y 

Endorsemenis y y N y N y N N N y y N y 

Table 4. 1 Bonissone • s view of Uncertainty Representations 
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4.4 Comparisons reported in the literature 

In this section the thesis wil l  consider comparisons that have been made between 

various llMTs. There are three major sections here, reflecting firstly the overall 

comparison between numeric and non-numeric methods in general. then two more 

specific sections deal ing with each of those in turn. The number of comparisons of 

numeric methods found in the li terature far outweighs that of the non-numeric 

methods. This reflects the quantity of research in each area at this point in t ime. 

4.4.1 Numeric versus non-numeric 

Bonissone and col leagues argue in favour of the use of a numerical representation of 

uncertainty on the grounds that this provides a method that can be used in the 

inference engine. 

With numerical representations, it is possible to define a calculus that 
provides a mechanism for propagating uncertainty throughout the reasoning 
process. The use of aggregation operators provides summaries which can 
then be ranked to perform rational decisions. (Bonissone, Cyrluk, Goodwin 
& Stillman, 1 990, p. 69} 

They continue to suggest that models based on qualitative approaches are usually 

designed to handle the aspect of uncertainty derived from the incompleteness of the 

information. Doyle' s  method of Reasoned Assumptions (Doyle, 1983) and Reiter's 

Default reasoning (Reiter, 1980) are examples of these. With a few exceptions they 

are generally inadequate to handle the case of imprecise information, as they lack any 

measure to quantify confidence levels. 

Graham (Graham, 1991)  suggests that since it is true that people are generally very 
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bad at est imating probabilit ies then the Bayesian approach is not sui table for systems 

to be used by non-stat istic ians. 

However Bonissone in an earl ier paper ( Bonissonc, 1 987) had argued that numerical 

approaches to uncertainty required precision that an expert could simply not provide. 

He considered that the complex calculat ions may not he justified given the di fficulty 

of obtaining accurate in i tial figures. 

it is clear that these models of uncertainty require an unrealistic level of 
precision that does not actually represent a real assessment of uncertainty. 
(Bonissone, 1 987, p. 73) 

One of the very interesting expert systems of recent t imes is Cyc. This enormous 

system is designed to capture common sense. Lenat and Guha ( 1 990) publ i shed a 

"snapshot of research in  progress" at the half way poin t  in the ten year project . 

Certainty factors were i ni t ia l ly used in  the project but were not popular with the 

authors. They criticised CFs because of the "problem" that all numbers could be 

compared.  This meant that unreasonable comparisons could  be made between very 

s imilar CFs, numbers that real ly  should not be compared. The Cyc project abandoned 

CFs i n  favour of a system having only five possible values. absolutely certain, 

currently believed true (but capable of being overridden). unknown. currently believed 

false (but capable of being overridden) and absolutely impossible. Lenat and Guha 

suggest that this method works well when there "isn ' t  too much semantic knowledge" 

and fail s  generally when some knowledge is missing {Lenat & Guha, l 990, p. 307) .  

Since no other detail of Cyc' s uncertainty handling has been located, this method is 

not included in the section on symbolic approaches (Section 3.3 Symbolic 

approaches). 
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Henkind and Harrison surveyed four numeric UMT� and concluded that although 

each had its strong points they saw the common uisadvantagc that they "compute 

aggregate numbers but keep no record of divergent opinion" (Henkind & Harrison, 

1 988, p.7 13 ). 

Bonissone suggests that non-numeric UMTs have deficiencies in their ability to 

"represent and summarize" measures of uncertainty (Bonissone, 1987, p. 860). Yet he 

also points to restrictions in some of the numeric representations of uncertainty. 

The numerical approaches tend to impose some restrictions on the type and 
structure of the information (e.g. mutual exclusiveness of hypotheses, 
conditional independence of evidence) (Bonissone, 1 987, p.860) . 

Most numerical UMTs represent uncertainty as an exact quantity (scalar or interval) 

on a given scale. They direct the user or expert to provide an accurate and consistent 

numerical assessment of the uncertainty of both the facts and rules in the knowledge 

base. The results of these systems are produced by lengthy calculations guided by 

well-defined methods and appear to be equally accurate. However, given the difficulty 

in  obtaining such numerical values from the user, "it is clear that these models of 

uncertainty require an unrealistic level of precision that does not actually represent a 

real assessment of the uncertainty" (Bonissone, 1 987, p.860). 

4.4.2 Comparisons of numeric UMTs 

Wise and Henrion cited by Ng and Abramson( 1 986, p. 44) compared the perfonnance 

of different schemes using the same set of rules and data. They report Bayesian 

networks produced better results than both fuzzy sets and Certainty factors, which 

were on a par. Heckermann ( 1 990, p. 283) reported that the Bayesian approach 
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outperformed Dempster-Shafer and Certainly factors i n  a large scale system in the 

domain of lymph-node pathology. Unfortunately in neither case were the criteria for 

measurement clearly stated. Hence i t  remains indeterminate as to how one UMT 

outperformed the others. 

Bayesian Dempster- MYCIN's f'uzzy Set 

Probability Shafer Certainty Theory 
factors 

Theoretical Strong S1ro11g Weak Moderale 

Backe:round 

Computational Lmv Moderate Low Moderate 

Complexitv 

Model Setup Moderate Moderate Low Moderate 

Model Low Moderate Low Moderate 

Execution 

Complexity of Low Moderate Low Moderale 

Theor:v 

Ease of Easy Difficult Easy Easv 

Application 

Table 4.2 Comparison of Theories {Lee et al., 1987, p. 35) 

Table 4.2 shows a comparison of UMTs as developed by Lee et al . Some of the entries 

for Bayesian probability are surprising in the light of results reported elsewhere. The 

theoretical background of Bayesian methods are undoubtedly high but the 

computational complexity has been reported as exponential (NP hard). There are 

however a number of different ways of using Bayesian methods. 
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The ease of applit.:ation is surprising when considering a comment from Shafer 

(Shafer. 1 986). that has already been noted earlier in this section. that Bayesian design 

does not have the modularity of production rules. Certainty factors for example docs 

have this modularity and has been claimed to be easier to use for this reason ( Dan & 

Dudeck. 1992}. 

Ramsbottom and Adams report on a series of expert systems that were developed 

using an expert system shell specifically to compare three UMTs ( Bayesian logic, 

Certainty factors and Fuzzy logic). They conclude that "the use of fuzzy logic 

functions allow easier expansion of the system and more accurately represent the 

nature of the uncertainty and vagueness associated with the analytical test performed" 

(Ramsbottom & Adams, 1993, p.53). 

4.4.2.1 Probability Theory and its suitability for expert system 

development 

Probability theory is where the concept of the management of uncertainty started. 

Zadeh (Zadeh, 1986) and Kosko (Kosko, 1992) have been among the most vocal 

critics of its use in expert systems, others consider that probabilities can be applied 

generally to any system requiring the handling of uncertainty. The major conceptual 

change necessary for applying probability theory to typical fuzzy situations is to 

interpret probabilities as a measure of belief in a relevant proposition rather than a 

long run frequency (Cheeseman , 1 986). 

Probability theory and its use in handling uncertainty may be mathematically sound 

but there are still difficulties with the volume of data required from experts regarding 
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conditional probabi li ties. 

It is clear that a Bayesian design does not have the modular character of expert system 

production rules. We are not free to add or remove probabil ity judgmenh from a 

Bayesian design in  the way that we are free to add or remove production rules from a 

production system. A Bayesian design specifies very rigidly just what probabil i ty 

judgment it requires . (Shafer. 1 986) 

It has been suggested that we are bound to apply probabi l i ty theory if uncertainty is 

represented by real numbers and every relevant event may be allocated a real number 

(Neopolitan. 1992). When this is not possible then other techniques must be 

investigated. 

Lindley cited in  Neopolitan states: 

It was good to realize that workers in expert systems are beginning to 
understand that uncertainty statements must be combined according to the 
rules of probability. What is surprising is that they took so long to see this. 
The explanation presumably is that workers in new fields seem to think that 
everything is new and sometimes fail to recognize connections with older 
work (Neopolitan, 1 992, p.69). 

This is certainly not a universally held view. Lindley ( 1 985) asserts that decision 

making under uncertainty consists of three steps: 

1 .  Quantify uncertainties with probabil ity values 

2. Describe the results of all actions in terms of utility. 

3. Select the action that will be the most useful. 

Yet this is clearly not always possible. "Circumstances do not always permit 

quantification of uncertainties yet a decision may still be urgently required" (Fox et 

93 



al. .  1990). Lindley claims then that a decision cannot he made. However there arc 

expert sys1ems that arc ahlc to produce results under such circumstances. They do not 

however. use classical decision making. 

Pearl (1988) cited in Neopolitan (Neopolitan, 1992) has demonstrated that his 

approach to probability ( e-semantics) "can better handle many of the problems for 

which default logic and nonmonotonic logic were specifically designed". 

Others have stated more explicitly the restricted applicability of the Bayesian 

technique (Magill and Leech. 1 991 ). This is a summary of the problems that have 

been found: 

1 .  Experts required to quantify uncertainty in a probabilistic manner based on 

long past experience and prohibitively large samples. 

2.  Two or more pieces of evidence in a rule are assumed independent. 

3. The algebraic requirement is contravened by the intuitive beliefs of experts. 

Probletn 1 is based on a statement by Shortliffe and Buchanan (Shortliffe & 

Buchanan, 1975) in support of their work on Certainty factors and should not be 

considered current thinking. Problem 2 is also wrong when leveled at Bayesian 

Techniques in general. Since the independence assumption is completely optional, it 

may be made to simplify the situation but is open and acknowledged. (Early Bayesian 

Techniques often made this assumption !) It is strange to consider the independence 

assumption a problem of Bayesian Techniques in the light of evidence from Rothman 

that Certainty factors are isomorphic to a subset of probability theory under an 
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appropriate sci of assumptions ( Rolhman, 1 989). One of lhesc assumptions is 

conditional independence of evidence gi ven an hypothesis. Let us consider the 

possible correlation between 1wo events and the corresponding probabil ities of Lhe 

conjunction anJ disjunct ion. 

I .  Maximum correlation between two events is present when the less probable 

event occurs only when the more probable event occurs. 

The conjunction p(A&B) = M in(p(A),p( B )} 

The disjunction p(A or B )  = Max(p(A), p(B ) )  

2 .  If two events are Independent then: 

The conjunction p(A&B) = p(A)p(B )  

The disjunction p(A o r  B )  = p(A) + p(B )  - p(A)p(B )  

3 .  If  minimum correlation applies then 

The conjunction p(A&B) = Max(O,p(A )+p(B) - I )  

The disj unction p(A or B )  = Min( l ,  p(A) + p(B) )  

It can be  seen from this set o f  rules that the combination rules for disjunction and 

conjunction that are used in Fuzzy set theory have used the assumption of maximum 

correlation between the events. This may be correct or incorrect depending on the 

example. 

4.4.2.2 Certainty /actors •· the original UMT 

Magill and Leech ( 199 1) investigated two commercially available expert system tools 
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that used respectively. Bayes' Theorem and Certainty 1 actor-., for the handling of 

uncertuinty. Their ,tim was to recommend the more appropriate tool for a certain task. 

They discovered that the complex decision of which UMT was more appropriate for a 

part icular ES development was further hampered by the fact that "the two specific 

tools do not follow strictly the theories on which they are ba-.ed". They simply quote 

Shortliffe and Buchanan when looking at the applicability of MYCIN's Certainty 

factors to other applications. This thesis will follow their example. 

" it is potentially applicable to any problem area in which real world knowledge must 

be combined with expertise before an informed opinion can be obtained to explain 

observations, or to suggest a course of action" .  ( Shortl iffe & Buchanan. 1 975. p. 353) 

Some of the difficulties with Certainty factors were considered in Chapter 3, Section 

3.2.2.2 A critique of Certainty factors. Problems that have been identified by 

Giarratano and Riley ( Giarratano & Riley, l 994 ), Heckerman (Heckerman, 1 986) and 

others, that could severely limit other potential application areas. were discussed. 

Wise and Henrion explain that in attempting to simplify standard probabilistic 

methods, UMTs such as Fuzzy sets and Certainty factors, are actually making 

unacknowledged assumptions about the relationship between propositions. 

Any uncertain inference methods, by implication at least, makes certain assumptions 

about the unspecified parameters, particularly the correlation between propositions 

(Wise and Henrion, 1986). 

Bonissone (1987) suggests that there are "numerous serious problems" with the use of 

CF' s. These include the interpretation of the number, the supposition of independence 
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of evidence and the impossibility of interpreting a CF of zero. which doc� not al low 

one to distinguish hctwecn lack of information and discordant information . 

4.4.2.3 In favour of Dempster-Shafer 

When compared to ad hoc techniques. Dempster-Shafer is considered hy some to be 

more desirable because of its rigorous mathematical underpinning. (Cortes-Rello & 

Golshani. 1990) . This is despite Shafer's comment that Dempster ' -.  n 1le of 

combination had a pragmatic rather than mathematical basis {Shafer, 1 976). 

Compared with other probability based methods such as Bayesian, the Dempster­

Shafer theory is more powerful since it can work with probability of sets of points 

instead of probability of just individual puints. In addition it can handle contradictory 

evidence in a satisfactory manner. (Cortes-Rello & Golshani .  1 990) 

Neopolitan ( 1 992) is a supporter of probabilistic techniques yet he states that there is 

still a place for Dempster-Shafer. He suggests it is unfortunate that this theory has 

been applied inappropriately in some expert systems because there are situations when 

Dempster-Shafer can provide meaningful results and Bayesian analysis cannot. 

Lingras and Wong (Lingras & Wong, 1 990, p. 468) discuss two views of belief 

functions. They suggest that the compatibility view allows the use of 

conditionalizations that are more usually confined to Bayesian theory. This is 

contrasted with the probability allocation view that should be used when the 

information available cannot be explicitly expresses in terms of propositions, but 

probability allocation based on the evidence is possible. Lingras and Wong explain 
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that this is because Dempster's rule for c.:ombining belief functions is defined for 

independent bodies of evidence. ff there arc dependencies then they should he 

identified and Bayes rule of conditionalization used. 

Cortes-Rcllo and Golsh:.mi ( 1990) selected the Dempster-Shafer method for an expert 

system in forecasting and marketinr management because they felt it better handled 

the application. because: 

I. the solution is not a single method, bnt a set of methods. 

2. the problem is complex and the solution is based on subjective ( and possibly 

contradictory) opinions of expert in forecasting techniques. 

3. we can build for different levels of abstraction (for example, rules referring to 

an individual method, or rules referring to a 'class' of methods. 

4. the concept of methods having strengths and weaknesses can be modelled 

using rules with confirming and 'deconfirming' beliefs over sets ot' hypotheses. 

(Cortes-Rello & Golshani, 1990, p. 17) 

4.4.2.4 Other Comparisons. 

It is also interesting that although these techniques all claim to be different from the 

next several researchers have shown that some are (just) special cases of other 

techniques. 

Cheeseman (Cheeseman, 1986) and Barclay in Rothman (Rothman, 1989) both liken 
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Certainty factors to probability methods. Heckerman (Heckerman. 1986) 

demonstrates a "clear relationship between ccrtai.1ty factors and prohabililics," that he 

suggests. adds weight, to the idea that prohahility theory is sufficient for managing 

uncertainty. 

Grosof has shown that the revised versions of MYCIN's Certainty factors arc 

equivalent to a special case of Dempster-Shafer theory. (Grosof. 1986. p. 163) 

Zadeh's method of combining fuzzy sets via the max and min functions has been 

criticized as "failing to describe the real world" (Jumarie. 1993 ). Jumarie suggests that 

other methods that are closer to subjective probability should be used when 

appropriate. 

4.4.3 Comparisons of non-numeric UMTs 

The research for this thesis has uncovered very few attempts to compare non-numeric 

UMTs. When mentioned in comparison it has mainly been in view of the discussion 

about non-numeric versus numeric techniques that was covered in Section 4.4. I. 

One criticism of Cohen's theory of endorsements is due to Fox (Fox, 1986). He 

suggests that although Cohen's theory of endorsements is able to successfully preserve 

information about the sources of beliefs. it does not show how to deal with 

knowledge that must be revised in the light of new information. 
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4.5 Recent advances in the theory of reasoning 

under uncertainty· 

There are recent advances in the theory of reasoning under uncertainty that could be 

considered for incorporation into an expert system. Probably the most important 

developments are in the areas of Fuzzy Logic and Non-monotonic logics. Hybrid 

systems provide an area for useful investigation. 

Fuzzy logics have recently been further investigated (Novak, 1992), (Graham. 1991) 

and their use is becoming accepted. Shiraishi describes Fuzzy logic as useful because 

it simplifies the process of buildmg an expert system by reducing the number of rules 

required (Shiraishi. 1989). Further work that ha,; been done on the efficiency of 

implementation algorithms will assist with the practicalities of Fuzzy logic in expert 

systems (Koczy & Hirota, 1992) and also Dempster-Shafer theory (Xu & Kennes. 

1994 ). Fuzzy logic has also been shown to be useful in connectionist expert systems 

(Cohen & Hudson, 1992). 

Default logics are said to mirror more closely the reasoning process of humans than do 

other forms of automated reasoning (Lea Sombe, l 990). Giordano and Martelli have 

summarised the work of Reiter and others in the area of default logics (Giordano & 

Martelli, 1994) and this method of reasoning is likely to become more widely used. It 

is perhaps going to be most useful in the future in hybrid systems that are today still in 

their infancy (Clark, 1990) (Bonissone et al. 1990). 

Distributed expert systems and the problems of cooperation between expert systems is 
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con:�idered by Zhang (Zhang, 1992). This interesting work also considers 

trnnsformations from one UMT to another. This is done hy con'>idcring the lJMTs as 

members of a mathematical structure known as a group. Isomorphic transformation-. 

between the UMTs are defined. This type of definition and the transformations may 

prove to be useful when designing expert systems that can implement several UMTs. 
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Chapter 5: A methodology for the 

selection of a paradigm of reasoning under 

uncertainty in expert system 

development. 

5. 1 Chapter overview 

This chapter presents a methodology for the selection of a paradigm of reasoning 

under uncertainty in expert system development. It begins by considering the 

requirements of a methodology for the selection of an UMT. Several methodologies 

from the literature will be considered and shortcomings in each noted. The thesis will 

then present its own methodology to assist the expert system developer in selecting an 

appropriate paradigm of reasoning. The possibility of viewing the process of selection 

of a paradigm as a meta-problem is then considered. The final section of the chapter 

considers using this to incorporate the selection process into an expert system. 
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5.2 Some methodologies for the selection of an 

UMT. 

This section will consider several methodologies for the selection of an UMT 

suggested in the literature and consider their appropriateness for the required task. 

It has been suggested that the decision as to which is the appropriate UMT for an 

expert system development is a trade-off between complexity and precision 

(Bonissone & Decker. 1986). However consideration of the nature. reliability and 

characteristics of the data is also important Clark agrees that the selection process is 

multidimensional. 

The most appropriate technique for a particular application will thus depend 
upon a number of factors, such as the nature of the domain, how much 
data, expertise and time is available to construct the appropriate 
representation, what level of accuracy is required, what functions the 
system is intended to support, the importance of meta-level capabilities and 
so on. (Clark, 1990, p. 140) 

The thesis now considers three methods. 
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5.2.1 Saffioti's method - an outline 

Saffioti suggests a method of selecting a paradigm of reasoning under uncertainty. 

This approach to the prohlem is very much simply an outline or the process and docs 

little to �u;sist the expert system developer with the information required to complete 

each of the steps. His method indicates that the comparison should be done in three 

phases ( Saffioti. 1988. p. 93) 

1 . Select those techniques which are applicable to the problem (the 
problem fits its preconditions) 

2. Verify the epistemological and computational adequacy of the selected 
techniques for the uncertainty at hand. 

3. Weigh the remaining techniques and choose one: the general context 
should be taken into account 

This is a method that requires a great deal of work on the part of the expert system 

developer. The first point, that very simply states ".�elect those techniques that are 

applicable to the problem" is a very complex �earch of the literature in itself. unless 

some form of assistance is provided to summarize the various options. The second 

point requires yet more work when to the expert system developer, uncertainty is only 

one (albeit important) aspect of the system development that they hnve to consider. It 

is the objective of this thesis to simplify the process. 
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5.2.2 Lee's method - numeric UMTs only 

Lee ct al. provided a more reasonable approm:h in a table (reproduced as Tahlc 5.1) 

that compares four aspects of four numeric UMTs (Lee ct al. 1987. p.36). 

Bayesian Dempster- MYCIN's Fuzzy Set 
Probability Shafer Certainty Theory 

Factors 

Problem Definition Well-defined Well-defined Well/Ill- Well/Ill-

defined defined 

Computing Power Small Small-Large Small Small-utrl{e 
Needed 

Needed amount of Little Moderate Little Moderate 
trainimz in Theorv 

Needed amount of Little Substantial Little Moderate 
trainine. in annlication 

Table 5.1 Guidelines of Selection 

Unfortunately Lee et aJ. have only considered numeric approaches to handling 

uncertainty and have not justified the content of the table. There are further aspects 

that required consideration including the source of uncertainty and whether large 

amounts of historical imformation are available. These aspects will be included in the 

methodology for selection that is proposed in section 5.3. A Manual approach to the 

selection. 
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5.2.3 Kline and Dolins - guidelines and quotation 

The scope of th is  methodology is hroadcr than managing uncertainty. Kl ine and 

Dol ins provide guidel i nes to selecting techniques for the total implementation of an 

expert system. In their hook Designing Expert Systems - a guide to select ing 

implt'mentation techniques. Kl ine and Doi ins devised a numher of gu idel ines that 

cons ider a-.pects of t he problem and suggest recommended techniques to use in  an 

expert system development ( Kl ine & Dolins, 1 989). An example guidel ine is 

presemi..:d here (Figure 5 . 1 )  since this is very simi lar to the kind of advice that this 

thesis was l ooking to give regarding the selec tion of an UMT. 

Will the expert system be solving a signal-interpretation problem? 
and 
Is it hard to distinguish true signals from noise (Le, low SIN ratio)? 
or 
Is it easy to distinguish true signals from noise(i .e. high SIN ratio)? 

Low S/N ratio -> Model-Driven Reasoning 
Evidence: Weak, moderate 

High S/N ratio -> Data-Driven Reasoning 
Evidence: Moderate, powerful 

Figure 5.1 An example guideline to selecting implementation techniques (Kline & 

Dolins, 1989). 

Quotations are then used in supporting arguments for t he design guidelines. Two 

advantages are given for this type of supporting evidence: 

1 .  The quotations help to ensure that the design guidelines have some 
degree of support among expert system builders, as opposed to merely 
reflecting the personal biases of the authors of this book. 

2. The quotations provide pointers to additional source of information on a 
particular issue. (Kline and Dolins, 1 989, p. 6) 
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This method provides some easi ly accessible advice to the expert system developer. It 

i s  provided in a :-mmncr that requires careful consideration hut docs not require too 

much additional work beyond the deve lopment of the expert system itself. This thesis 

will use a simihir technique. It will also use quotations to hack up the manual 

approach to �election that is presented in the following section . 

5.3 A manual approach to the selection 

This section wil l  present a manual approach to the selection of a paradigm of 

reasoning under uncertainty. It should be noted that whilst this thesis has attempted to 

cover a broad range of UMTs the methodology for selection concentrates on numeric 

methods. This is because Hybrid methods are sti ll largely experimental and the Theory 

of Endorsements (see Section 3 . 3 . 1 )  is only considered sui table in situations where the 

reasoning chains are very short (Bhatnager & Kanel. 1 986). 

In selecting the order for the deci sion making process consideration was given lo any 

overriding features that would clearly indicate the required form of UMT. It can be 

seen in Figure 5.2 A manual approach to the selection of an UMT that the fi rst step i s  

making far more clear cut dec isions that the latter steps. It i s  also true that the early 

steps tend to be more important. This can be l ikened to a process of first sorting the 

goats from the sheep and then going on to sort the sheep into Merinos, Leicesters and 

Suffolks. 

The manual approach that follows is in the form of a number of questions that the 

expert system developer should answer regarding a proposed ES development. 
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Questions should be cons idered in the order given and can he considered to form a 

decision tree. as is presented in Figure 5 .2 A manual approach to the select ion of a 

UMT. If the answer to any question is positive and this is confirmed by the guidel ine 

then that recommendation should be fol lowed . A negat ive answer means the 

following step should be considered. 
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Step la: Considers tile source ofu11certai11ty 

l a )  I s  uncertainty mainly in terms of incomplete data'! 

Guidelines la 

If uncertainty is mainly in terms of incomplete data then default reasoning and 

non-monotonic logic is probably appropriate. 

Support/Reasons la 

The process of reasoning using non-monotonic logics is that 

• judgements are made using the available evidence by making assumptions 

• assumptions are revised in the light of new evidence. 

Non-monotonic logic is not sui table to deal with imprecise data and so 

another method wi l l  be required if this type of uncertainty is present . Refer 

also to Section 3.3.2. Non-monotonic logics. (McDennott & Doyle. 1980. 

p.42), (Clark, I 990, p.  1 29) 

109 



Step lb: Considers tire source o(uncertainty 

I h) Is uncertainty mainly in terms of imprecision of knowledge'! 

Guidelines I b 

b) If uncertainty is mainly in terms of imprecision of knowledge then fuzzy 

sets may be appropriate. 

Support/Reasons I b 

Research has shown that fuzzy set ther y is able to express concepts that are not 

applicable to probabi l ity theory (Zadeh. l 985)(Neopolitan. 1990). This may be the 

only calculus that has systematically addressed the issue of imprecision of statements 

(Bhatnagar & Kanai . 1992). More efficient algorithms have been developed for the 

inference process (Koczy & Hirota. 1992). When fuzzy set theory is appl icable it may 

reduce the number of rules required (Shiraishi , 1 989). 

Step 2: Historical Data 

Are large amounts of historical data avail able? 

Guidelines 2 

If large amounts of data are available then Bayesian methods are l ikely to be 

suitable (Valverde & Gehl. 1992, p. 23). There are further requirements i f  

Bayesian methods are to be chosen, go now to step 3 .  

If not then go on to step 4 .  
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Support/Reasons 2 

It is imporlunt to consider the structure of the problem and 1hc case of 

obtaining numerical measures. If the si tuation is wel l  developed and a fu ll 

history of data is avai lable then a system based on mathematical prohahi l i t ics 

would he appropriate (Wisc & Hcnrion. 1 986) ( Buxton. 1 989) (Ncopol itan. 

1 992). If the structure of the problem is less wel l  defined then a more Oexihlc 

approach is required. 

Step 3: Conditional Independence 

ls there Condit ional Independence among cases'! 

Guidelines 3 

Yes - then use Bayes '  ru le. 

No - then Subject ive Bayesian may be sui table but steps 4 and 5 should also be 

considered. 

Support/Reasons 3 

Bayes' rule assumes conditional independence ( Kline and Doi ins, 1 989) if not 

then the number of conditional probabi l i t ies required becomes prohibitive. 

Subjective Bayesian Methods using networks reduce this requirement 

(Heckerman & Shortliffe, 1 992) (Srinivas et al . ,  1 990) (Buxton. 1 989) 

(Heckerman, 1990). 
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Steg 4: Representation of Ignorance 

b 1hcrc an 1.•xpl icit rcpn.·�cnta t ion of ignoram:c rcyull'c<l'! 

Guideli11es .J 

Yes - then use Dempster-Shafer. 

No - then go on to step 5 .  

S11pport/Reaso11s 4 

Dempster-Shafer provides explicit representation of ignorance through the use 

of an upper and lower probabil i ty (Spil lman, 1 989 ) ( Avanzato, l 990 )(Fung & 

Chong, 1 986)(Cortez-Rel lo & Golshani .  1 990)( Valverde & Gehl , 1 992 ) . The 

advantage is the abi l i ty to use incomplete probabil i ty models (Shafer, 1 986. 

p . 1 33 } .  

Step 5: Difficulty assigning probability 

Bayesian inference may be suitable but probabi l i ty cannot be a,;s igned to all 

pertinent events 

Guidelines 5 

Use Dempstei-Shafer �Neopolitan, 1 992). 

Support/Reasons 5 

Dempster-Shafer is suitable when a probability cannot be assigned to all events 

(Neopolitan, 1 992) (Buxton, 1 989). 
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Step 6 

Is case of implcmcntatwn important'! 

Guidelines 6 

IF YES then Certainty Factors were devised to be straight forward 

IF NO then use Subjective Bayesian methods. 

Support/Reasons 6 

Certainty Factors n,ay be used when a simple implementation is important 

(Dan & Dudeck. 1992) (Heckermann & Shortli ffe, 1992). The modular 

knowledge base is  helpful to the developer (Dan & Dudeck, 1992) .  Certainty 

Factors have been shown to work (Buchanan & Shortl i ffe, 1984) and expert 

systems that use CFs have performed equivalent to. or better than human 

experts {Heckermann & Shortliffe, I 992)(Yu et al. ,  1979). 

Thus the process of selection has been described and it has resulted in a 

recommendation of an UMT to be chosen for an expert system. 
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Figure 5.2 A manual approach to the selection of an UMT 
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5.4 The process of selection as a meta-problem 

This section wil l  consider the process of selecting an UMT as a meta-problem. It 

should be possible to extend the knowledge stored by the expert system to beyor.d that 

of just the problem domain. The expert system wil l  then include meta-knowledge 

about the UMTs themselves. This wil l  mean that during the development process, 

features of the expert system can be identi fied that will allow an appropriate paradigm 

of reasoning under uncertainty to be selected. It will then be put into place 

automatical ly by the expert system shell .  

Researches have argued for an explici t  representation of the methods used for 

uncertainty management. 

One of the most innovatory characteristics of Al is its concern with 
representing and using knowledge in  as explicit a form as possible. This 
principle does not seem to have been applied to uncertainty, for which the 
implicit numerical methods have usually been the only possibility. (Saffioti, 
1 988, p. 86) 

This suggests that assumptions about the validity of a certain UMT for a particular 

application would then become apparent. If this principle were to be applied it would 

mean storing meta-knowledge of the uncertainty representation and reasoning 

process. 

The path for selecting an UMT is thus defined as a meta-problem which is the 

approach taken by Fox (Fox, 1 986). It does not however provide guidelines as to the 

particular features of the UMT to consider. 
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Fox ( Fox. 1 986 1 presents a ra<lical approm:h to the prohlcm of rcasunmg under 

um:crtui nty. He puts forward three ar!,!urm:nt, for extending the framework of 

pmhahi l ity :  

• expl icit representat ion of several t ype, of uncertainty, specifical ly  pm,sihi l i ty and 

plausibil i ty. as wel l  as probabil i ty 

• the use of weak methods for uncertainty management in problems which are 

poorly defined 

• symbolic representation of different uncertainty calculi and methods for choosing 

between them 

(Fox, 1986, p. 447) 

So the paradigms of reasoning themselves could become pan of an extended 

knowledge base of an expert system. More appropriately this would be a separate 

meta-knowledge base that would be a pan of the expert systems shell. This is more 

appropriate since this section of knowledge would be standard and appropriate for 

any expert system development and quite separate from the domain knowledge that is 

currently stored. 

In the following section this idea is further considered. 
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5.5 Incorporating the process of selection in an 

expert system 

If knowledge about UMTs can be abstracted then the process of selection of a 

part icular UMT can be performed as a part of the automated process. That is -- within 

the expert system itse lf. 

It has been suggested that the expert system shell should be structured to be able to 

help in  the decision making process. To provide such an implementation a system 

would require a set of rules that would provide for the selection of a UMT, automating 

the process outlined in section 5.3 A manual approach to the selection. Also required 

would be explicit representation of the control processes to implement a number of 

selected calcul i .  The calculi provided could be selected by a trade-off between 

complexity and precision and the rules used to select them rely on a number of 

features including the nature of uncertainty, availabl ity of historical data and the 

importance of easl'! of implementation -- as described in section 5.3 (Bonissone and 

Decker, 1 986). 

Others have supported the suggestion that the uncertainty calculi themselves should be 

represented in the knowledge base. Fox ( 1 986) demonstrated that the language of 

probability theory has a framework similar to other l anguages. It consists of many of 

the features usually associated with context-free grammars and BNF form (Louden, 

1993). This includes a "vocabulary of terminal symbols, and a set of composi tion or 

transformation rules for generating sentences from elements of the vocabulary" (Fox, 

1986). 
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The terminal symbols of probability theory inc .ude the real numbers. 
operators (+.- . . .  etc) and relations ( = , >, < etc). The composition and 
transformation rules are the ordinary algebraic composition and 
manipulation rules, extended operators (for example sum, product) and 
specific revision rules (eg Bayes rule) (Fox. 1 986, p. 455). 

The probabilistic reasoning process is represented by the production rules. When 

carried out these rules will use a composed set of terminal symbols, to generate a new 

set of terminals. 

The advantages of including the representation of UMTs explicitly are clear. Once the 

methods are included as options for an expert system development then the UMTs 

become alternatives to be used as required. Thi s  will not be useful until it is possible 

to explicitly represent the methodology by which the selection of a UMT will be 

performed. This was begun in section 5.3 A manual approach to the selection, but 

remains to be validated, refined and automated. Fox suggests that once thi s  in  done 

UMTs will be seen "not as rivals for all the honours. but as alternatives to be used a-; 

circumstances demand" (Fox, 1986, p. 455 ). 

Figure 5.3 on the next page illustrates this idea with a fragment of an expert system 

for advising on the selection of an uncertainty calculus under development in PROPS 

2. 

The first two rules generate the set of possible methods and the 
assumptions which must be tested in order to evaluate them. The second 
two rules generate the subset of plausible methods on the argument that 
their assumptions are satisfied. The last pair of rules considers the number 
of plausible candidates and recommends accordingly. If neither of these 
rules is satisfied a weak uncertainty calculus can be suggested. (Fox, 1 986, 

p.455) 

Including meta-knowledge about the method of reasoning under uncertainty would 
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provide ,mother level of flex ib i l i ty  Urnt is not current ly  avai lahlc .  Before 11 tan he done 

expert system she l l s  wi l l  need to hccome more tlex i hlc so that the knowledge of 

llMTs can he t ranslated i nto the reason ing process of the expert system i tse l f. 

if uncertainty calculus is required 
and Method is a kind of uncertainty calulus 
and assumptions of Method are not violated 
then Method is a possible uncertainty calculus. 

if method is a possible uncertainty calculus 
and assumptions of Method includes Assumption 
then check Assumption is true 
and record that assumptions of Method are checked. 

if assumptions of Method includes Assumption 
and Assumption is false 
then assumption of Method are violated 

if Method is a possible uncertainty calculus 
and assumptions of Method are checked 
and assumptions of Method are not violated 
then plausible uncertainty methods includes Method. 

if plausible uncertainty methods includes Method 
and number of plausible uncertainty methods = 1 
then method is recommended. 

if number of p lausible uncertainty methods > 1 
Then cost benefit analysis of methods is required. 

Figure 5.3 Productions rules demonstrating meta-knowledge (Fox, 1986) 
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Chapter 6: Conclusion 

6. 1 Chapter overview 

This chapter wil l conclude the thesis. The Bibliography is to follow. 

It will be shown that the objectives of the project have been met. Consideration will 

be given to the applicabil ity of the results . Suggestions will be made for the next stage 

of research in this area. 

6.2 Have objectives been met? 

To enable consideration of whether the objectives of the project have been met they 

are restated here (taken from Chapter l )  

The major aim of this project is: 

1 .  To define the criteria on which the selection of a paradigm of  reasoning under 

uncertainty for an expert system should be made. 

A secondary aim is: 

2. To consider what recent advances in the theory of reasoning under uncertainty are 

worthy of consideration for incorporation into expert system developments. 

In an attempt to answer these questions, I have gathered information from two major 

sources. 
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I .  The theory of rc.1soning under uncertainty. There i ,  a grcal deal of material 

avai lahlc in  journals and hook-. 

A great deal of thc l i tcr.iturc on thi-. -.uhject relate-. to t he formal mcthoch, involved. 

There arc some parts of the field ( for example Default and non-monoronic L.ogic , that 

arc in the development stages and a., far a., I can ascertain arc yet to be incorporated 

into expert systems. 

2. Expert System applications. Detailed information on the success or fai lure of the 

particular UMT used is more difficult to obtain. 

In chapter 5 a manual methodology for the selection of a paradigm of rea-.oning under 

uncertainty was developed. This defines clearly the criteria that should be applied 

during the selection process. This methodology should now undergo a process of 

validation and verification that is quite l ikely to require the methodology to be rev ised. 

There are recent advances in the theory of reasoning under uncertainty that could be 

considered for incorporation into an expert system. The use of efficient algori thms for 

Fuzzy logic and the further use of default logic were considered in Section 4 .5 :  Recent 

advances in the theory of reasoning under uncertainty. 
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6.3 Consideration of the applicability of the 

results 

Throughout this research an attempt has heen made to cover all types of expert system 

development. The main consideration ha:,; heen to diagnostic systems but necessarily 

all sources of uncertainty were considered. This led to an attempt to research all major 

areas of numeric. symbolic and hybrid systems. The latter two areas have proved 

particularly difficult to address but perhaps also represent the main area'\ for future 

research. Especial ly  combining the symbolic methods with numeric methods. 

The manual approach to the selection of an UMT that ha:-. been developed ( 5.3 A 

manual approach to the selection) makes no recommendations to select an hybrid 

method. It may be that if an expert system developer is not able to clearly answer the 

steps of the method with a discrete answer then it may become apparent that more 

than one method for handling uncertainty should ideal ly be used in an expert system. 

The manual method also makes no attempt to select the type of non-monotonic logic 

that would be most appropriate. This level of detail is beyond the scope of the thesis. 
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6.4 Recommendations and suggestions for the 

next step 

The manual methodology for the selection of a paradigm of reasoning under 

uncertainty that has been developed should now undergo a proce!-.!-. of validation and 

veri fication to ascertain its usefulness for the expert system developer. 

It is clear that UMTs that are able to combine the abil i ty to deal with di fferent aspect 

of uncertainty in the same system need further investigation. Current expert systems 

may select the method that appears most appropriate but they are not able to cope with 

the full spectrum of uncertainty. Clark emphasises this 

However many domains of interest are composed of a mixture of 
quantitative and qualitative relations. So no UMT may be unequivocally 
appropriate. This raises the need to intelligently combine diffe"9nt UMTs 
and suggests that an important area of resea·rch is the use of both symbolic 
and quantitative representations of uncertainty in the same application. 
{Clark, 1 990, p. 142) 

It will be important to combine methods effectively since some UMTs are able to deal 

better with uncertainty arising from different sources. 

Non-monotonic logics mirror more closely the reasoning used by humans  and it may 

be that as expert systems become able to cover a broader knowledge base these 

methods of reasoning become more important. It would be worth,.,hile investigating 

their use in expert systems (Bonissone et al, 1990) . 
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6.5 Conclusions 

In \'.'ondusion this chapter has shown that the objectives of the thc"i" have largely hccn 

met. This is clear since the methodology for selection has been presented. 

The next stages in the research process are in three areas. The first is to validate and 

verify the methodology that has been developed in the thesis. The second is to 

implement the process of selection of an UMT as a portion of an expert system shell. 

The third is to further explore symbolic and especially hybrid methods of reasoning 

under uncertainty. Hybrid methods are those that will be able to reason with data that 

contains uncertainties of several types. Curren! examples include a numeric and 

symbolic components, in the future they may contain mutiple components both 

numeric and symbolic. For example Bayesian probability may deal with uncertainty 

that pertains to unreliable information, Fuzzy sets for uncertainty that originates from 

lack of precision and non-monotonic methods deal with incomplete information. It is 

clear that there is much work still to be done in this area. 

A bibliography completes the thesis. 
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