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ABSTRACT

Automatic human face detection in digital image has been an active area of research
over the past decade. Amor , its numerous applications, face detection plays a key role
in face recognition system for biometric personal identification, face tracking for
intelligent human computer interface (HCI), and face segmentation for object-based
video coding. Despite significant progress in the field in recent years, detecting human
faces in unconstrained and complex images remains a challenging problem in
computer vision. An automatic system that possesses a similar canability as the human
vision system in detecting faces is still a far-reaching goal. This thesis focuses on the
problem of detecting human faces in color images. Although many early face detection
algorithms were designed to work on gray-scale images, strong evidence exists to
suggest that face detection can be done more efficiently by taking into account color
characteristics of the human face.

In this thesis, we present a complete and systematic face detection algorithm that
combines the strengths of both analytic and holistic approaches to face detection. The
algorithm is developed to detect quasi-frontal faces in complex color images. This face
class, which represents typical detection scenarios in most practical applications of
face detection, covers a wide range of face poses including all in-plane rotations and
some out-of-plane rotations. The algorithm is organized into a number of cascading
stages including skin region segmentation, face candidate selection, and face
verification. In each of these stages, various visual cues are utilized to narrow the
search space for faces. In this thesis, we present a comprehensive analysis of ckin
detection using color pixel classification, and the effects of factors such as the color
space, color classification algorithm on segmentation performance. We also propose a
novel and efficient face candidate selection technique that is based on color-based eye
region detection and a geometric face model. This candidate selection technique
eliminates the computation-intensive step of window scanning often employed in

holistic face detection, and simplifies the task of detecting rotated faces.

Besides various heuristic techniques for face candidate verification, we develop
face/nonface classifiers based on the naive Bayesian model, and investigate three
feature extraction schemes, namely intensity, projection on face subspace and edge-
based. Techniques for improving face/nonface classification are also proposed,
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including bootstrapping, classifier combination and using contextual information. On a
test set of face and nonface patterns, the combination of three Bayesian classifiers has
a correct detection rate of 98.6% at a false positive rate of 10%.

Extensive testing results have shown that the proposed face detector achieves good
performance in terms of both detection rate and alignment between the detected faces
and the true faces. On a test set of 200 images containing 231 faces taken from the
ECU face detection database, the proposed face detector has a correct detection rate
of 90.04% and makes 10 false detections. We have found that the proposed face
detector is more robust in detecting in-plane rotated faces, compared to existing face
detectors.
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Chapter 1

Introduction

The human face, a vital means of conveying a person’s identity, always receives a
special attention in our social interactions. Through some complex underlying
mechanisms, which are transparent to us, we are capable of leaming a myriad of useful
information based on the visual cues on a person’s face. The list includes the identity,
and, to a large extent, emotional state, gender, ethnic origin and age of the person. For
decades, understanding this capability of ours has drawn research interests from diverse
fields including psychophysics, neurosciences, computer science and engineering. It is
not hard to imagine the vast applications that are possible if computer systems can be
constructed to reliably infer a person’s identity, emotional state, and gender from the
person’s facial image. However, such systems need, in the first place, an algorithm to

detect and locate the face in a visual scene.

This thesis focuses on the task of automatic human face detection in digital images.
Automatic face detection has dual purposes: it asserts if human faces are present in a
digital image, and if so it pinpoints exactly their positions and spatial extents. We
present in this thesis a complete algorithm for face detection in color images. This
introductory chapter is organized into three main parts. The motivation and significance
of automatic human face detection, its major challenges and practical applications are
presented in Section 1.1. The research objectives are defined in Section 1.2. Finally, the

organization of the thesis is outlined in Section 1.3.
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1.1 Motivation and Significance

Face detection is an important task in the broader research field of automated facial
image understanding, which aims to mimic in computers some of our cognitive
capability in interpreting facial images. The list of common research topics in
automated understanding of facial images includes:

o face detection: detecting and locating faces in unconstrained images;

e face recognition: differentiating the face images of a person from the face
images of other people, see [17] for a review;

o facizl expression analysis: identifying the emotional state of a person by
analyzing the person’s facial expressions, see [76] for a review of the state-of-
the-art;

e lip reading: inferring a spoken message by a visual means of tracking the lip
movement;

e face tracking: locating and following the face as it moves around in a visual
scene.

Research in face detection is motivated both by its scientific challenges and by its
practical applications. In the two subsections below, we will discuss in turn these two

motivations.

1.1.1 Challenges in Automatic Face Detection

Automatic face detection inevitably involves two important concepts: ‘“face” and
“nonface”. The concept of “face” encompasses all human faces in their fullest
variations, and the concept of “nonface” representing all other objects. Automatic face
detection essentially means the identification of visual attributes that distinguish the
face from all other objects. Therefore, face detection is very much different from face
recognition, which requires the identification of visual attributes that differentiate face
images of a person from face images of all other people. In face detection, we search for
common attributes among the face images of all people, whereas in face recognition, we
seek attributes that are ideally different for different people, yet similar for faces of the

same person regardless of the facial expression or other intra-personal variations.
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In finding visual attributes that are common for all human faces, yet distinct from all
other objects, we need to realize that there exist a vast number of factors that can
influence the appearance of the human face in a 2-D image. Because of such factors,
there are wide variations in the face pattern. These variations can be divided into two
groups: (i) intrinsic variations that are due to intrinsic properties of the human face; (ii)

extrinsic variations that are caused by external factors such as the imaging condition.

A. Intrinsic Face Variations

Intra-personal variations refer to the differences in the face appearance of the same
person. The human face is a non-rigid object that possesses a formidable degree of
shape variability caused by facial muscles. Many facial features such as the eyes,
eyebrows, lips and cheeks usually change from their neutral shapes as a result of
different facial actions. Besides facial expression, aging and the presence/absence of
some facial features such as beard and moustache can also cause intra-personal
variations. Inter-personal variations refer to the differences in the face appearance
between different people. People of different ethnic origins often differ in skin colors or
general facial features. Even within the same ethnic group, very few people have faces
that are exactly alike (apart from identical twins). Furthermore, there are facial

differences between males and females.

B. Extrinsic Face Variations

The external factors that cause extrinsic variations in the face patterns include face pose,
face size, and lighting condition. Because the face is a 3-D object, its 2-D projection
image is highly dependent on the orientation between the face and the camera, i.e. the
face pose. The face contour varies a great deal under different views (e.g. frontal upright
view or profile view). Some facial features are not visible under certain views. The face
size in an arbitrary input image is usually not known, and this forces some face
detection algorithms to search the input image at multiple scales. Lighting conditions on
the scene coupled with the optical properties of the capturing devices add another

dimension of complexity to face detection. For example, the colors of the facial region
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in an image vary depending on the spectrum of the illuminating light and the lighting
compensation scheme implemented in the camera hardware.

Although the image background has no effect on the face appearance, its content and
complexity can influence significanily the outcome of face detection. This is
understandable because face detection aims to locate faces among a plethora of other
objects in the image background whose appearance can make face/nonface

discrimination easy or difficult.

1.1.2 Applications of Automatic Face Detection

A. Face Recognition

Face recognition, which is the identification of humans from unique characteristics of
their faces, is traditionally an important application of face detection. There are two
main different aspects of face reccgnition: face verification and face identification. In
face verification, a user claims an identity and presents a live face; the system
determines if the live face matches with the one stored in the system for the claimed
identity. In face identification, a live face is presented and the system locates the
identity that matches the live face most closely. Face verification involves one-to-one
comparison, whereas face identification needs one-to-many comparison. Nevertheless, a
face recognition system typically compares a probe face with face(s) stored in a
database. The system accepts a facial image as the input, which contains a face in a
controlled and relatively simple background scene. However, the precise position of the
face in the image is usually not known, and there are certain variations in the face pose.
Therefore, a fully automatic face recognition system in practice requires a face detection
stage, in which the face is localized in the input facial image, and then normalized to a
canonical form accepted by the recognition algorithm. The canonical form is usually a
fully frontal upright face where only the part relevant to face comparison is kept. The
face detection stage is also essential in non-invasive video surveillance applications

where less can be assumed about the face size and location in the captured images.
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B. Face Segmentation for Region-Of-Interest Coding

In a region-of-interest image/video coding scheme, higher bitrates are allocated for
image regions, which are deemed as important to the viewers. It has been found that in
videophone or teleconferencing applications, the viewers tend to pay more attention to
the face of the speaker. Therefore, facial regions in the video frames can be extracted by
a face segmentation algorithm, and then coded at higher fidelity compared to the image
background [14]. This way, even if the overall bitrate is the same, viewers can perceive

significant improvements in the image quality.

C. Perceptual Human-Computer Interface

If the face can be detected in a scene and its movement can be tracked in real-time,
many applications are possible, especially in the area of perceptual human-computer
interface. A perceptual human computer interface (HCI) employs communication
channels that humans routinely use to interact with each other. One of such channels is
vision where the computer actively tracks, understands, and responds to the pose,
gesture or facial expression of the user. For example, Xu and Sugimoto [129] developed
a real-time face tracking system, in which the face of the user is kept at the center of the
captured video through software manipulation of a pan-tilt-zoom controllable camera.
Such a system is useful in videoconferencing or video surveillance applications where
the person can move freely in front of the camera. Bradski [6] presented an
experimental computer interface based on face tracking that allows the user to play a 3D
graphics game (Quake 2) by moving his/her head. Using this interface, the leftward,
rightward, backward, and forward head movements trigger the virtual player in the
game to slide leftv-ards, rightwards, backwards, and forwards, respectively; roll leftward
and rightward head movements trigger the virtual player to look left and right,
respectively; up and down head movements signal the virtual player to shoot. Silva et
al. [102] built a vision-based interface in which the computer mouse is moved according
to the movement of the user’s nose tip, and a mouse click can be entered by a mouth

opening action.
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D. Multimedia Content Management

Face detection has many applications in the management of multimedia contents that
have become ubiquitous on the Web and in digital archives. Text-based descriptions are
usually insufficient for such media-rich contents, which integrate text, images and
video. Satoh er al. [98] developed the Name-It system, which aims to associate
automatically faces in a video clip (TV news) with the correct person names. In their
system, faces are located using the neural-network face detector developed by Rowley
[90], names are extracted by analyzing both the audio component and the text caption of
the video clip; association between faces and names are based on their temporal
coincidence. With such a system, it is possible to enter a person’s name and rekieve
video clips relating to the person. Lienhart et al. [62] presented a video abstracting tool
for automatic creation of movie trailers for feature films, in which face detection and
face recognition are utilized to find video frames containing close-up shots of the main

actors/actresses. These video frames are grouped to form part of the movie trailer.

1.2 Research Objectives

In this thesis, we present a complete and systematic face detection algorithm that
combines the strengths of both analytic and holistic approaches to face detection. The
algorithm is developed to detect quasi-frontal faces in complex color images. This face
class, which represents typical detection scenarios in most practical applications of face
detection, covers a wide range of face poses including all in-plane rotations and some
out-of-plane rotations. In our approach, color characteristics of the human face are
extensively used to make its detection more efficient. The proposed algorithm is
organized into a number of cascading stages including skin segmentation, face
candidate selection, and face verification. At each stage along the cascade, the search
space for face is narrowed down, and this is a central theme of the work presented in

this thesis.

The main objectives of this thesis are to:
1. understand the problem of automatic face detection, its definition and

significance, its challenges and practical applications;
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2. provide a comprehensive review of the state-of-the-art in face detection.

3. formulate an efficient and robust strategy to detect in-plane rotated faces in
color images;

4. investigate and compare techniques for modeling object colors and the approach
of object detection using color pixel classification;

5. develop image segmentation techniques that can be used to enhance the pixel-
wise approach to skin segmentation;

6. study face candidate selection schemes that are suitable for scale-invariant and
rotation-invariant face detection;

7. investigate pattern classification techniques for differentiating between face and
nonface patterns;

8. create a comprehensive database that supports the construction and evaluation of
color-based as well as gray-scale-based approaches to face detection;

9. develop a complete and systematic face detector that integrates the above system
components, and perform detailed analysis of the face detector; and

10. discuss possible applications of the face detector.

1.3 Thesis Organization

The research objectives that are outlined in the previous section are systematiczlly
addressed in eight chapters and the appendix. An overview of the thesis chapters is

given below:

1. The current chapter is a general introduction of the thesis. The chapter states the
research topic, its motivation and significance. In the current chapter, research
objectives are defined; the outline of the thesis is given; main challenges and practical

applications of face detection are discussed. [Objective 1]

2. Chapter 2 presents a comprehensive review of the state-of-the-art of face detection as
evidenced in published literature. We systematically investigate two major existing
approaches to face detection, namely analytic and holistic. Face detection is a very

rapidly changing field with new and novel approaches being published nearly every six
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months. In this review, wz focus on new developments in the field within the last few

years. [Objective 2]

3. Chapter 3 addresses the approach of skin detection using color pixel classification. In
this chapter, we attempt to answer two important questions: (i) which classification
algorithm and which color space give the best skin detection performance in terms of
accuracy, speed and memory load? (ii) how effective is the approach of skin detection
using pixel color for general images? Although skin detection is routinely used in face
detection algorithms, these two questions have not been adequately addressed in the
existing literature. We report in this chapter several important findings regarding color-

based skin detection. [Objective 4]

4. Chapter 4 presents our proposed techniques to enhance the result of pixel-wise skin
detection. These techniques take into account texture characteristics of the human skin
to remove false detections, and prepare segmented skin regions for the next stage of

face detection. [Objective 5]

5. Chapter 5 focuses on the problem of face candidate selection. The motivation for the
work described in this chapter is twofold: (i) to eliminate the computational-intensive
and brute-force approach of window scanning commonly adopted in holistic face
detection; (ii) to address a deficiency in existing skin-color-based approaches to face
detection, which treat each segmented skin region in its entirety as a face candidate. The
face candidate selection technique presented in this chapter attempts to solve both the

scale and in-plane rotation problems in face detection. [Objective 6]

6. Chapter 6 addresses the task of classifying face/nonface patterns, which is a difficult
problem in its own right. It is fair to say that face/nonface classification has been widely
used as the *‘test-bed™ for machine learning techniques. such as new neural network
architectures. Here, we present a statistical pattern classification technique based on the
naive Bayesian model. Face/nonface classifiers developed in this chapter are used to
perform the final verification of the face candidates formed in the previous stage of face

detection. [Objective 7]
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7. Chapter 7 presents a complete face detection algorithm that integrates the
components described in Chapters 3 to 6 of the thesis. We report a comprehensive
analysis of the face detector. Comparisons with existing face detectors are also
presented. The last part of the chapter discusses possible applications of the proposed

face detector. [Objectives 3, 9, 10]

8. Chapter 8 provides concluding remarks and summarizes the major contributions of
this thesis. It also includes suggestions on how the works presented in this thesis may be

extended. [Objective 3]

9. Appendix A describes ihe ECU face detection database, its datasets and usage. It also
presents a technique for performance evaluation of face detection algorithms using the

database. {Objective §}



Chapter 2

Face Detection: eview

2.1 Introduction

In this chapter, we present a comprehensive review of existing approaches to face
detection. Background materials that are essential for understanding subsequent
chapters are also given. The problem of automatic human face detection can be
described as follows. Given an arbitrary 2-D input image, determine whether there are
any human faces in the image, and if there are, return the location of each human face in
the image. Research on face detection dated back to the early 1970s with the works
published by Sakai, Nagao and Kanade [93, 94]. However, interests in face detection
remained stagnant until the mid 1990s, and even then, studies in face detection were
motivated mainly by its application in face recognition for biometric personal
identification [17]. In recent years, research in face detection has gained pace with more
emphasis on detecting faces in color images for applications in multiinedia content
management [l, 98], region-of-interest video coding [14, 71], and advanced human-

computer interfaces [6, 102, 115].
There are a huge number of face detection approaches in literature. A systematic

investigation of these approaches requires the categorization of face detection

approaches into logical and meaningful groups. Different categorization schemes are

10
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possible. For example, Yang er al. [132] divided face detection approaches into four
major categories: knowledge-based top-down, feature invariant, integration of multiple
features, and appearance-based face detection, whilst Hjelmas and Low [42] used two
categories: feature-based and image-based face detection. In this review, existing face
detection approaches are divided into two broad categories: analytic and holistic.
Analytic approaches detect faces by using explicit features, which typically have close
resemblance to the visual features that humans perceive from a face. Heuristic rules
about relationships between these features are used to distinguish between face and
nonface patterns. For example, we can exploit the fact that the face has an
approximately elliptical shape with two eye regions appearing darker than the rest of the
face. Holistic approaches, on the other hand, treat the whole face as a pattern and
employ machine learnii.g techniques to extract automatically the decision rules that
differentiate between face and nonface patterns. The categorization of face detection

approaches is illustrated in Fig. 2.1.
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v v
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Figure 2.1: Categorization of face detection approaches.
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The current chapter is organized as follows. Analytic and holistic approaches to face
detection are presentcd in Section 2.2 and Section 2.3, respectively. Summaries in
tabular form of existing face detection approach:s, face databases, and face detection

software are presented in Section 2.4. The chapter summary is given in Section 2.5.

2.2 Analytic Face Detection

Analytic face detection approaches can be divided into two groups: those that use low-
level image features such as skin color, texture, edge, and projection profiles, and those

that use facial features such as eyes, mouth and nose.

2.2.1 Low-level Features

A. Skin Color

Skin color is one of the most commonly used features for face detection. In a skin color-
based approach, faces are located by first searching for skin-colored regions in the
image. This approach, which is fast and invariant to the face pose, requires a color pixel
classifier to differentiate skin pixels from nonskin pixels. There are many existing color
pixel classifiers; they are based on linear decision boundaries [14, 33, 105], Gaussian
densities [16, 44, 72, 98, 131], self-organizing maps (8], or Bayesian decision theory
[121]. Color spaces that have been used for skin detection include RGB [129], HSV [4,
105], YCbCr [15], normalized RGB [98, 130], CIE Luv [131], and Famsworth UCS
[127].

Face detection based on skin color is susceptible to the color constancy problem. This
problem arises because the color of an object in a captured image also depends on the
lighting condition and the capturing device characteristics. A number of techniques have
been proposed to cope with this problem. First, the dependency on the lighting intensity
can be reduced if only chrominance information is used in skin color detection [4, 72,
121]. Second, we can use skin color models that are adaptive to the lighting condition.

For example, Bojic and Yang (4] constructed an adaptive skin color model for each

12
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specific video sequence. However, their method requires skin colors in the first video
frame to be labeled either manually or using other automatic extraction schemes. Third,
colors in the input image can be corrected. For example, Stomring et al. [109] proposed
an image correction approach, in which the illuminant color is first estimated, and the
image captured is then rendered to an equivalent image under a canonical lighting
condition. Recently, Hsu et al. [43] introduced a lighting compensation approach, in
which image pixels are adjusted so that the average gray value of “reference white”
colors are linearly scaled to 255. Hsu et al. considered pixels with the top 5 percent of
the luminance values as the reference white. The image is not corrected if the number of

reference white colors is small.

Apart from the color constancy problem, most existing skin color-based approaches to
face detection have another limitation in that they use relatively simple post-processing
techniques. These post-processing techniques work well when the face can be
segmented neatly using skin colors but fail when detected skin regions consist of not
only the face but also other exposed skin regions such as neck, chest, and arms or even
background regions that have skin color. This short-coming of existing skin color-based

face detection approaches will be addressed in this research.

B. Face Texture

The three face detection approaches described below rely on the texture feature of the
human face. In these approaches, pattern classification techniques are used to
characterize the texture feature. Rikert er al. [89] argued that the recognition of an
object is not based purely on geometric reasoning, and must rely on texture recognition
under difficult conditions such as deformation or changes in pose. In their approach, the
face texture is described using a wavelet-based texture model. Each pixel location in the
input image is represented by a vector of wavelet coefficients that are generated by a set
of multi-scale and multi-orientation filters. The classification of this vector into
face/nonface classes is done through a Gaussian mixture model of its distribution, and
the Bayes’ rule. On a test set of 266 frontal faces and 2,500 nonfaces, the proposed

approach achieved a detection rate of 96% for a false detection rate of 5%.
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Wavelets were also applied by Garcia and Tziritas [33] to analyze the face texture for
the purpose of face/nonface classification. In their approach, a rectangular face
candidate region, which is found by skin color detection and region merging, is
processed using the wavelet packet decomposition. The region (intensity face candidate)
is divided into four equal rectangular parts; each part is decomposed, through filtering-
and-subsampling steps, into an approximation image and a series of detail images.

Garcia and Tziritas used the following pair of conjugate quadrature filters:

H(z) =0.853 + 0.377(z + 2*) = 0.111(Z+z?) — 0.024(2 + 2°) - 0.038(z* + z7¥), (2.1)

G(2) =-2'H(-zY). (2.2)

The number of decomposition levels is chosen according to the region size: three levels
for large regions (height > 128 pixels), and two levels for medium regions (height < 128
pixels). The region is represented by a feature ve - that consists of the standard
deviations of the approximation and detail images. The feature vector is classified into
the face class if the Bhattacharrya distance to the average face is below a threshold. In
Garcia and Tziritas’ approach, the features are assumed to be uncorrelated. Under this
assumption, the Bhattacharrya distance between two feature vectors is computed as the
sum of distances between feature pairs. In addition, the standard deviation of an
approximation image is found to have a Gaussian distribution, whereas the standard
deviation of a detail image is found to follow a Laplacian distribution. The
Bhattacharrya distance between two feature vectors v = (Gok, Oik,..., Om,) and

v = (Cor, Ouss---, Ons,) is computed as follows:

x* O,
D(vk,v,)-—-ZI (2 oo J+Zl (2* '} (2.3)

1‘0 i=4 Ud il

where N is the number of features. Features o+, g1+, 02+, and o3« in the first summation
term correspond to the four approximation images, and features g4 to aa» in the second
summation term correspond to the detail images. Different distance thresholds are used
for large and medium regions. On a test set of 100 images containing 104 faces, this
face detection approach had a correct detection rate of 94.23% and a false detection rate

0f 19.23%.
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Luo and Eleftheriadis [67] proposed a texture-based approach to detecting faces in
JPEG images and MPEG videos'. Their approach is novel in that face detection is done
directly on the DCT domain®. Each region of MxM DCT blocks (a DCT block has a size
of 8x8) is represented as a feature vector of length d by selecting in each DCT block k&
coefficients that correspond to the lowest frequencies, where k = d/(MxM). This feature
vector is classified as face/nonface using a distribution-based technique similar to [111]
(see Subsection 2.3.3A). There are two major issues with detecting faces in the DCT
domain: (i) the misalignment between the DCT block boundary and the face boundary;
and (ii) detecting faces of variable sizes. To address these issues, Luo and Eleftheriadis
created six face models for face sizes from 40x40 to 80x80. For each face size, the
model is developed for all 64 possible alignment positions between the face and the
DCT block boundary. On a test set of 586 frames containing 36 frontal upright faces,
the face detection algorithm (with skin color filtering) had a correct detection rate of

94.4% and a false detection rate of 25%.

C. Edge

Sirohey [104) used a Canny edge detector to generate an edge map of the input image.
Edge segments that have common break points and similar directions are joined. An
ellipse-fitting technique is applied to group edge segments that approximate an ellipse.
A bound on the aspect ratio of the best-fit ellipse is used to verify a face candidate. This
approach was tested on 48 frontal images with moderately cluttered background and an

accuracy of 80% was achieved.

Govindaraju [35] used the Marr-Hildreth operator for edge detection. Post-processing
steps such as thinning, spur removal, filtering and corner detection are then performed.
The detected edges are labeled as belonging to the left side, right side or the hairline of a
face, and then combined to fonn a face candidate. The aspect ratio of the face candidate
is tested if it matches the golden aspect ratio of (1+V5)/2. The algorithm has a detection

rate of 70% on a test set of 150 images.

! JPEG stands for Joint Photographic Experts Group, MPEG stands for Motion Picture Experts Group.

2 o .
“ Discrete Cosine Transform
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D. Projection Profiles

In the face detection approach by Campos et al. [11], a horizontal edge map of the input
image is computed and represented as a 1-D signal. The signal is characterized by a set
of Fourier descriptors computed from its Fourier transform. Campos er al. discussed
three strategies for constructing the descriptor set: selecting the d-lowest-frequency
descriptors, selecting the d-largest descriptors and adaptive descriptor selection.
Descriptor sets are classified by thresholding the distances to the prototype descriptor

set for faces.

2.2.2 Facial Features

Face detection approaches in this category consider the human face as a constellation of
facial features, such as eyes, eyebrows, mouth, and nose, that are arranged spatially in a
non-rigid, yet characteristic configuration. The face, therefore, can be detected by
searching for these facial features and verifying a number of constraints about the
configuration of facial features or the face geometry. These approaches have a major
advantage in that both the feature search and face verification steps, in most cases, are
not computation-intensive. A drawback is that for the facial feature search to be
accurate, input images must have good resolution. Furthermore, it is difficult to extract

heuristics that are valid under a wide range of conditions.

A. Hsu, Abdel-Mottaleb, and Jain’s Approach

In the face detection approach by Hsu et al. [43], potential face regions are first
identified through skin color detection. In each detected skin region, eye regions are
detected by observing that the eye has high Cb and low Cr, and contains both bright aad
dark pixels. Therefore, two eye maps are defined, EyeMapC based on the chrominance

images, and EyeMapL based on the luminance image:

EyeMapC = %{Cb2 +(255-Cr)* + (Cb/Cr)} s 2.4)
YOg
EyeMapL = . (2.5)
yeriap YOg+1
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Each of the three terms in (2.4) is normalized to the range [0, 255]. In (2.5), @ and O,
respectively, are gray-scale morphological dilation and erosion by structuring element g.
The chrominance eye map is histogram-equalized and multiplied with the luminance
eye map, and the resulting eye map is dilated, masked and normalized to brighten the

eyes and suppress other facial areas.

Mouth regions are detected by observing that they have stronger red component Cr and
weaker blue component Cb compared to other facial regions. The mouth map is defined

as follows:
MouthMap = Cr*(Cr’ —n(CriCh))*. (2.6)

where the parameter 7 is estimated as the ratio of the average Cr* to the average of
Cr/Cb for the mouth. Again, the term C 7 and Cr/Cb in (2.6) are normalized to the range
[0, 255].

The centers of the detected eye and mouth regions are grouped into eye-eye-mouth
triangles; these triangles are considered as face candidates. Each face candidate is
verified by checking (i) the luminance variations; (ii) the average gradient orientations
of the eye and mouth regions; (iii) the geometry and the orientation of the triangle; and
(iv) the presence of an ellipse-like boundary around the triangle. The Hough transform
is used to find the best-fit ellipse of the face boundary. On a test set of 332 images
containing 683 faces, the proposed algorithm had a correct detection rate of 80.35%,

and a false detection rate of 10.41%.

B. Xu and Sugimoto’s Approach

In a real-time face tracking sysiem developed by Xu and Sugimoto [129], skin regions
are first detected using a Gaussian model of the skin color in the RGB color space. A
color vector x = (R, G, B)" is considered as a skin color if the (squared) Mahalanobis
distance to the skin color cluster is below a predetermined threshold. The Mahalanobis
distance from a vector x to a Gaussian distribution with mean p and covariance X is

defined as follows:

Mx)=[x-p) = x-p) 7. 2.7
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thresholding is compared with rotated versions of a binary face template using the
Hausdorff distance. This comparison not only eliminates some nonfaces but also
provides an estimate of the face rotation angle. Face candidates are finally verified using

a holistic technique based on the reduced Coulomb energy classifier [21].

E. Yow’s Approach

Yow [134] proposed a feature-based face detection approach in which facial points such
as eyes, lips, nostrils are detected using elongated Gaussian-derivative filters. The
detected facial features are grouped to form face candidates using affine invariants in
the face geometric structure. The face candidates are then processed by belief networks,
and finally verified against constraints about the face boundary and face motion. In
Yow’s approach, the active contour technique is used to extract the face boundary. Yow
showed that the feature-based approach is robust under illumination and viewpoint
changes. However, it has a disadvantage in that the feature detector based on Gaussian

derivative filters generates many false alarms, even for images of moderate complexity.

F. Burl, Leung and Perona’s Approach

In the face detection approach by Burl et al. [9], facial points, namely left eye, right eye,
left nostril, right nostril, and middle point between the nose and the lip are detected by a
Gaussian derivative filter. Each face constellation constructed from the pool of detected
facial points is represented by a feature vector that consists of all distances between
facial points in the constellation. This feature vector is normalized to achieve rotation,
translation and scale invariance, and the distribution of the normalized feature vector for
face is modeled as a Gaussian. Burl er al.’s approach is interesting in that it handles the

case of incomplete constellation caused by missing facial points.

G. Face Geometry Heuristics

Following, heuristics about the face geometry that have been used for face verification
are described. These heuristics are useful in removing quickly obvious nonfaces.

o Aspect ratio: The aspect ratio of the facial region must be in a valid range. In
[82], the range is [0.8, 2.2], whereas in [121], the range is [I, 1.7].
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Circularity: The human face resembles an oval shape even under difference
viewing angles. The most commonly used shape circularity measure is the ratio

of area to squared perimeter” [16, 72]:

Area___ 2.8)

Cicularity = —— 3
Perimeter

Compactness: The following measure, which is similar to the above circularity

measure, was used by Menser and Wien [72]:

Compactness = _ Area 29)

Widthx Height

Ellipse fitting: Sobottka and Pitas [105] computed the best-fit ellipse E for each
face candidate region C. A measure V of how the region fits in the ellipse is used
to verify the face candidate. In the following definition, the numerator is the
number of distinct pixels between region C and the interior of E, |C\E| denotes
the number of pixels in C that are not in E:

|C\E|+|E\C|
|E|

1% (2.10)

2.3 Holistic Face Detection

Holistic approaches to face detection typically involve a scanning process, in which

fixed-size rectangular regions or windows of the input images are processed

sequentially to determine if they contain face patterns. To detect faces of varying sizes,

the input images are repeatedly scaled down, and then scanned. The key element of

these approaches is the classification of each window into face and nonface. Almost all

face/nonface classification algorithms in holistic face detection share a common pointin

that the decision rule is automatically learmed from a set of examples, rather than being

hand-engineered through designer’s knowledge as in feature-based approaches. Hence,

holistic approaches provide a better mechanism to cope with face variations.

? This measure has a maximum value of 0.25/1t when the shape is a circle.
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2.3.1 Template Matching

Template matching is a well-known technique in visual object detection and
recognition. In template matching, a template or prototype pattern of the object of
interest is created, and an input pattern is matched against the template through a
similarity measure [48]. An ideal template should be generic to represent all patterns
belonging to the same object, yet specific to differentiate with patterns of all other

objects. Templates can be divided into two groups: rigid and non-rigid.

A. Rigid Templates

Rigid templates have no adjustable parameters and are created entirely from a training
set. Because a rigid template has a fixed format, the degree of match between an input
pattern and the template can be measured directly using some form of correlation
metrics. Let t be the template and x be an input pattern. The following correlation
metrics are commonly used in template matching (these metrics are almost equivalent

after some normalization):

dot product = x"t = )_ xi, , (2.11)

Euclidean distance = |x - t| = \[(x,;-1,)*, (2.12)
th letl

IxIlt| Jfo \/er

i

(2.13)

cosine vector angle =

> (x5 =)t - 1)

correlation coefficient = - . (2.14)
O-XO-I

Except for its simplicity, correlation-based template matching is very limited in
face/nonface classification because the matching scores are susceptible to image

variations caused by geometric transformations (e.g. rotation, shifting, and scaling).

Cai er al. [10] used templates in Fig. 2.4a and Fig. 2.5a for profile and frontal faces, and

the correlation coefficient metric for comparison with the templates. Wong et al. [126]
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intrinsic properties of the snake and controls how much it can deform. ixternal energy
which depends on the image features, such as image gradient and peak, forces the snake
contour to move to new locations. Once released in the vicinity of an object candidate,
the snake will lock onto nearby edges and eventually approximate the object shape.
Snakes were used by Lam and Yan [59) and Gunn and Nixon [37] to detect head

boundaries, and by Yullie e al. [136] to detect eyes.

2.3.2 Principal Component Analysis - Eigenfaces

Turk and Pentland [116] applied principal component analysis (PCA) to face
recognition and detection. Their approach, which is widely known as eigenfaces, was
motivated by an earlier work of Kirby and Sirovich [54] on the application of the
Karhunen-Loéve transform to facial image representation. In the eigenfaces approach,
each face image of D pixels is treated as a vector in D-dimensional space. PCA is
performed on a set of training face vectors in order to find a set of kK most significant
eigenvectors, where k < D. These eigenvectors, termed as eigenfaces, account for most

variations in the training vectors.

Eigenfaces can be constructed as follows. Suppose Fy, Fs, ..., Fy are N face column-

vectors in R, First, we compute the average face vector:
1 N
F.=—>YF, (2.15)
N i=1
and the covariance matrix:

N
C=ﬁZ(F,—Fm)(F,—Fm)T. 2.16)

Next, the set of all eigenvectors of C is computed. A vector v in R® is an eigenvector of

C if there exists a scalar 4 such that:
Cv =Av. 2.17)

The scalar A is called an eigenvalue of C.
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The set of k-most significant eigenvectors that correspond to the k-largest eigenvalues of
C is selected. This set V = (v, va,..., v¢) forms an orthogonal basis of a face subspace.

Each new pattern x € R® is represented by its projection onto the face subspace:

w=Vi(x-Fu). (2.18)
The pattern x can be reconstructed from its feature vector w as follows:

X, = Vw' + Fy,. (2.19)
The distance to the face subspace (DTFS) is defined as its reconstruction error:

DTEFS = ||x - x| (2.20)

The feature vector w is used in face recognition to discriminate different face classes
(i.e. the faces of a person is said to belong to one face class). For face detection purpose,

an input pattern is considered as a face if its distance to the face subspace is small.

Principal component analysis was later used for face candidate verification by Menser
and Wien [72], and Satoh et al. [98]. In Menser and Wien's approach, PCA is applied to
the skin probability image generated from a skin color detection step; in Satoh et al.’s
approach, the Euclidean distance between two feature vectors in the face subspace is

used to measure the similarity to a face pattern.

2.3.3 Distribution-based Approaches

A. Gaussian Distribution Model

Sung and Poggio [1.1] proposed an example-based learning approach for locating
frontal upright faces. Input windows of size 19x19 are treated as vectors in 381-
dimensional space. The distributions of face and nonface vectors in this space are
modeled using 12 Gaussian clusters: six clusters for face and six clusters for nonface.
These clusters are found from a training set of faces and nonfaces using the ellipsical
k-i::eans clustering algorithm. Subsequently, an input pattern is represented by a feature
vector that consists of 24 values: 12 Euclidean distances and 12 modified Mahalanobis
distances. Each distance is measured from the projections of the pattern onto the PCA

subspace (constructed specifically for the cluster) to the cluster center. The feature
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vector is classified by a multilayer perceptron (MLP). The algorithm works well for
images consisting near-frontal upright faces. On the MIT test set A, which contains 301
faces of 71 people, the algorithm had a correct detection rate of 96.3% with 3 false
detections. On the MIT test set B, which contains 23 low quality images with 149 faces,
the correct detection rate was 79.9% with five false detections. However, the algorithm

can not detect faces with large rotation.

Sung and Poggio suggested a bootstrap strategy for updating the face/nonface classifier.
This strategy has been incorporated in several holistic approaches to face detection (25,
75, 91]. The classifier, after training, is applied to a validation set; false detections and
false rejections are collected to be used as further training examples for the classifier.
This strategy is instrumental in coping with the problem of finding a representative set
of nonobject patterns. Sung and Poggio also described a number of preprocessing
techniques: excluding background pixels from classification (i.e. background masking),

and subtracting the best-fit intensity plane (i.e. illumination gradient correction).

B. Bayesian Decision Theory

If the a posteriori probability functions of face and nonface are known, the
classification of face/nonface can be done by assigning an input pattern to the class with
the highest a posterior probability. This classification scheme is known as the Bayesian

decision rule or the maximum-a-postcriori (MAP) rule [21]:
x is face if P(face|x) > P(nonfacex), (2.21)

where P(face|x) and P(nonface|x) are the respective a posteriori probability functions of
face and nonface classes. Applying the Bayesian theorem, we can express this decision

rule in terms of the class-conditional probability density functions (pdfs) as follows:

£ p(x| face) _ P(nonface) (2.22)

x is face i >
p(x | nonface) P(face)

where p(x|face) and p(x|nonface) are the respective class-conditional pdfs, and P(face)
and P(nonface) are the respective a priori probabilities. A number of different
approaches have been proposed for estimating the class-conditional pdfs p(x|face) and

p(x|nonface). For example, Moghaddam and Pentland [73] used PCA and Gaussian
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mixtures; Colmenarez and Huang [20] used Markov processes; Schneiderman and
Kanade [100] used a naive Bayesian model. Yang et al. [133] proposed two multimodal
density models for pdf estimation: one using a mixture of factor analyzers; the other
using a mixture of Gaussians. In Yang et al.’s models, mixture parameters are estimated
using the Expectation/Maximization algorithm. Lui [65] used features based on the 1D
Harr representation, and vertical and horizontal projections, and modeled each class-
conditional pdf as a Gaussian distribution. In Lui’s approach, the nonface patterns,

which are near the face class, are selected and used for pdf estimation.

2.3.4 Neural Networks

A. Multi-layer Perceptrons

Rowley et al. [91] presented a neural network-based approach to face detection. Their
approach is perhaps one of the best known and most referenced works in the field of
face detection. In their approach, the input window size is 20x20, the down-sampling
scale factor is 1.2, and the network output is between -1 and | indicating whether the
window contains a face. Rowley et al. used a feed-forward neural net with retinal-like
input connections. The input window of size 20x20 is divided into several overlapped
subregions: 4 sub-regions each of size 10x10, 16 sub-regions each of size 5x5, and 6
sub-regions each of size 20x5. Each subregion is connected to a neuron in the hidden

layer.

Rowley et al. suggested two post-processing techniques: (i) merging overlapping
detections from a single network; and (ii) arbitrating detection results of multiple
networks. A location in the input image is classified as belonging to a face if there are
sufficient detections in its spatial neighborhood (detections at nearby scale are also
counted). Outputs of individual network classifiers are fused using arbitration schemes
that include the logical arithmetic operators, and a neural network-based arbitrator.
However, arbitration takes place between only two neural networks, and this limits its
effectiveness. Like other holistic approaches involving window scanning,
Rowley et al.’s approach is quite computation-intensive because a large number of

overlapping windows need to be processed. Different versions of the face detection
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approach had detection rates ranging from 77.9% to 90.3% on the CMU database. An
optimized version of the algorithm, running on 200MHz R4400 SGI Indigo 2, took

between two to four seconds to process a 320x240 image.

B. Constrained Generative Models

The face detection algorithm developed by Féraud et al. [25] is organized into a number
of cascading stages; each stage aims to eliminate a portion of nonface windows. In the
first stage, an input video sequence is processed by a motion filter, which they reported
to exclude up to 90% of nonfaces. The motion filter works based on the observation that
the face is often under constant movement as a result of speaking, breathing and eye
blinking. In the second stage, a color filter is used to eliminate windows that do not
contain skin colors. The color filter is based on a lookup table of skin colors that are
collected from face images. In the third stage, the remaining windows are histogram-
equalized, smoothed, and normalized by subtracting the mean intensity. In the fourth
stage, the normalized window is classified into face and nonface using a neural network
known as the Constrained Generative Model (CGM). Féraud et al. used a window size
of 15x20. A window, treated as a vector, is classified as a face if iis Euclidean distance
to the face subset is below a threshold. The novelty in their approach is that CGM is
trained to predict the projection onto the face subset. The technique of combining
several neural networks to improve face/nonface classification is also used. The
face/nonface classifier, with different configurations, had detection rates ranging from
73% to 95% on the CMU test set, and from 74.7% to 80.1% on another test set of
13,182 images.

C. Convolutional Neural Networks

Garcia and Delakis [32] presented a face detection approach that uses convolutional
neural network (CNN) to classify windows of size 32x36 into face and nonface. In the
CNN architecture, a network has a cascade of convolution layers that act as feature
extractors. A convolution layer (C layer) consists of a number of planes; each plane is a
2-D convolutional filter. The filters can have different sizes and coefficients; each filter

aims to detect a visual feature. The outputs of the convolutional layer are sent to a sub-
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sampling layer (layer S), which simply reduces the sizes of its input matrices by a factor
of 2. In the CNN architecture, C-S pairs are connected in a feed-forward topology. Each
output matrix of the last C-S pair is averaged to give one value. The values obtained
from all matrices form a feature vector, which is then clessified by a cascade of
perceptron layers (layers N). CNNs have two important strengths: (i) they utilize a
retinal-like connection scheme, which is biologically more plausible than the approach
of lexicographically grouping image pixels into a feature vector; (ii) convolution layers
can be trained to automatically extract good features for the classification of visual
patterns. In Garcia and Delakis’ approach, convolutional neural networks are trained
with the error back-propagation algorithm. They reported a detection rate of 98% on a

test set of 104 images.

Recently, Tivive and Bouzerdoum [114] developed a new class of convolution neural
networks called SICoNNets. The difference between a SICoNNet and a CNN is that the
convolution layers of a SICoNNet consist of a special type of neurons, called shunting
neuron, that model the shunting inhibition mechanism in early vision [5]. The activity of

a static shunting neuron can be described by the following non-linear equation:

I+,

Y < B (2.23)
¢ a,+f(Zw,,l.Ij)

where z; is the output of the ith neuron, a; and b; are its biases, f is the activation, I; is an
input to the neuron, and wy; is a connection weight. Tivive and Bouzerdoum investigated
three connection schemes, namely full-connected, semi-connected, and binary-
connected. The SICoNNets are trained with a variant of the backpropagation algorithm
(the resilient backpropagation with momentum). On a set of 1000 face and nonface
patterns, a trained SICoNNet had a correct classification rate of 97.6% at a false alarm

rate of 3.4%.

D. Radial Basis Functions Networks

Huang et al. [45, 46] presented a face detection approach that uses a radial basis
function network for face/nonface classification. They used preprocessing techniques
similar to [91]: linear lighting correction, histogram equalization, and window comer

masking. In their approach, a 386-dimensional vector is formed from each 20x20 input
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window. This vector is further processed by PCA (see Subsection 2.3.2) to reduce its
dimensionality to a value between 40 and 120. The PCA feature vector is then classified

into face/nonface using a radial basis function network.

A radial basis function (RBF) network has feed-forward architecture. It has a hidden
layer, which is made up of radial basis neurons, followed by a percepwon output layer.
Radial basis neurons model Gaussian functions; each neuron has a center p and a

covariance 0'2. and generates an output of

h(x)= exp(%} . (2.24)

The output of the RBF network is computed as follows:

N
y(x) =g(z w;h, (x) + wo], (2.25)

i=l

where wy is a bias factor, and w; (j = 1, 2, ..., N) are the connection weights, and g(.) is
the activation function. The centers of the radial basis neurons are often initialized by
the k-means clustering algorithm. After that, the network parameters are updated
through a gradient-descent training algorithm in order to minimize an error function,
which is usually the mean-square error evaluated on the waining set. However, in
Huang et al.’s approach, the distance from face subspace (see Subsection 2.3.2) is
included in the error function to improve classification performance. These authors
showed that the RBF face/nonface classifier had similar performance compared to the

classifier by Sung and Poggio [111] (described in Subsection 2.3.3A).

RBF networks were also used by Wang et al. [122] for face/nonface classification. In
their approach, two RBF-based face/nonface classifiers were developed: one operating
at low resolution of 3x3, and the other at a higher resolution of 15x15. The AdaBoost
algorithm was used to improve the classification rates of individual RBF classifiers. For
face/nonface classification, Wang et al. reported a correct detection rate of 91% and a

false detection rate of less than 3x10”° on the CMU test set.
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E. Polynomial Neural Networks

Huang er al. [47]) developed a face/nonface classification algorithm that uses a
polynomial neural network (PNN). A PNN is a generalized linear classifier. Let

x = (X1, X2, ..., X4)" be an input pattern, the output of a PNN is computed as follows:

y(x)= g(z WX, +ZZW X.x, +w,), (2.26)

i=l =l j=l

where w; and wj; are adjustable weights, and g(.) is a sigmoid activation function. Image
normalization steps and PCA are performed on the 20x20 input window, and a feature
vector is exwracted. The PNN is trained with the stochastic gradient descent algorithm to
classify this feature vector into face or nonface. The training algorithms for PNN are
much simpler than those for multilayer perceptrons. However, the number of connection
weights in a PNN, which is proportional to the square of the input vector’s dimension,
can be prohibitively large. The performance of this classifier on the CMU test set was

slightly lower than that of the system by Rowley et al. [91].

2.3.5 Support Vector Machines

Support vector machines [117] are an emerging paradigm in pattern recognition. The
main difference between neural networks and support vector machines is that the former
are trained to minimize training errors (i.e. empirical errors) whereas the latter is trained
to minimize the upper bound on generalization errors (i.e. structural errors). A SVM
classifier maximizes the margin between classes by selecting a minimum number of
support vectors. Support vector machines (SVMs) have been used to detect frontal faces
by Osuna et al. [75), Bassiou er al. [3], Heisele et al. [41), and Tasi et al. [112]. In
Osuna et al.’s approach, the window size is 19x19, and pre-processing techniques such
as wmasking, illumination gradient correction, and histogram equalization are used. Their
face detector was reported to run 30 times faster than the detector by Sung and
Poggio [111]. Osuna et al. reported a detection rate of 97.1% on the MIT test set A, and
74.2% on the MIT test set B.
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2.3.6 Classifier Combination and Boosting

In this category of holistic face detection, face/nonface classification is done by
combining a large number of individual classifiers. We discuss below two approaches
of classifier combination and boosting: classifiers cascade based on the AdaBoost
algorithm, and the maximal rejection classifier. Both approaches are similar in that each
new classifier is trained to focus on the examples that the preceding classifiers have

difficulty in leaming.

A. Classifiers Cascade based on AdaBoost algorithm

Recently, Viola and Jones [120] proposed an object detection approach that is based on
the AdaBoost algorithm and the use of simple image features. In their approach, four
Harr-like features are computed for each rectangle in the classification window (see
Fig. 2.6); each feature is the difference between the sum of pixels in the white parts and
the sum of pixels in the gray parts. Viola and Jones proposed the integral image
representation: the value of the integral image at a given point is the sum of all the
pixels above and to the left of the point. This image representation allows fast
computation of the features even across different scales. For a classification window of
size 24x24, an exhaustive set of 45,396 such features is generated. However, not all
features are used for face/nonface classification. Viola and Jones applied the AdaBoost

algorithm as a feature selection mechanism.

rectangle region in a classification window

Figure 2.6: Four Harr-like features used by Viola and Jones [120].

The AdaBoost algorithm, introduced by Freund and Schapire [30], is a recent

development in machine leaning. The AdaBoos: algorithm trains several weak
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classifiers through a progressive and error-hased adjustment of the distribution of the
training examples. These weak classifiers are then combined into a strong classifier.
Freund and Schapire show that the classification error on the training set can be reduced
exponentially with the number of boosting rounds. The AdaBoost algorithm in its

original form is shown in Table 2.1.

Table 2.1: The original AdaBoost algorithm [29].

Input: Set of N labeled examples { (1, c(1)), (2, ¢(2)), ..., (N, c(N)) }
Distribution D over the examples
Weak learning algorithm WeakLearn
Number of iterations T

Initialize the weight vector w! = D(i) fori=1,2, ..., N.

Dofort=1,2,....T
1. Set

N (s
Zi=l }vi
2. Call WeakLearn, providing it with the distribution p,; get back a hypothesis A,.

3. Calculate the error of . €, = ::l pi @) —c@)].

4. Set ﬂ' =li.
-&

t

S. Set the new weights vector
wﬁl W ﬂl—-lh,(a)-c(lﬂ
Output the hypothesis
Loify og 7 Dy = > (log—)

0, otherwme

h,(i) =

We return to the face detection approach by Viola and Jones. For a given training set
and a predetermined number #;, a strong classifier that uses n; features is constructed
through n; rounds of AdaBoost training. At each round of training, the best feature is
selected among the pool of features, and a weak classifier (simple thresholding) that

operates solely on the feature is added to the strong classifier. In Viola and Jones’
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approach, face/nonface classification is done using a cascade of strong classifiers. The
threshold used for each strong classifier is selected so that it produces a specified correct
detection rate on a validation set. The number of strong classifiers is increased
incrementally until an overall target overall false detection rate is achieved. The final
face detector consists of 32 swong classifiers that use a total of 4297 features. On the
CMU frontal face test set, the face detector has a correct detection rate of 88.8% for a
false detection rate of 9.8%. At the time of this writing, the face detector is one of the
fastest detectors: it can detect faces at 15 frames per second (frame size = 384x288) on a
700MHz Pentium III. This speed advantage can be explained by the fast scheme for
feature computation, and the use of a boosted cascade for face/nonface classification.
Viola and Jones [118] later developed a variant of the AdaBoost algorithm that takes
into account the highly asymmetric diswribution between faces and nonfaces. They
showed that the asymmetric AdaBoost yields significant performance improvements

over the conventional AdaBoost.

Recently, Lienhart er al. [60, 61] extended the set of Harr-like features used by Viola
and Jones. The extended set includes four edge features, eight line features and two
center-surround features (Fig. 2.7). Lienhart er al. showed that at the same correct
detection rate, the extended feature set has a 10% lower false detection rate compared
with the basic feature set used by Viola and Jones. However, the face detector runs at a
slower speed compared to the face detector by Viola and Jones. Lienhart et al. have
included an implementation of their face detector in the OpenCV library, which we will

use in Chapter 7 for comparison with our face detector.

mIRC RN 2] <o

edge features canter-surround features

o

line features

Figure 2.7: Extended set of Harr-like features used by Lienhart et al. [60, 61].
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The AdaBoost algorithm has been also used by Fréba et al. [31] and Wang et al. [122]
to boost the performance of underlying face/nonface classifiers. In Froba et al.’s
approach, the weak classifier is edge orientation matching based on the Bayes rule; in

Wang et al. approach, the weak classifier is the radial basis function network.

B. Maximal Rejection Classifier (VRC)

Elad er al. [22] proposed an object/non-object classification algorithm based on the
maximal rejection principle and successive linear projections. They applied this
algorithm to the problem of detecting frontal upright faces in gray-scale images. The
algorithm relies on the assumption that the object class forms a convex hull. For given
two training sets, X of object examples and Y of non-object examples, a projection
vector u is selected so that there is maximum separability between the projections of the
two sets on u. Elad er al. show that, if the distribution between objects and non-objects

is highly unbalanced, this is equivalent to minimizing the following distance function:

u'Zu

d(u) = .
VI L, v, - ), —p)u

(2.27)

where X and L, are the covariance matrices; p, and p, are the means of sets X and Y,
respectively. The vector u that minimizes d can be found by solving the generalized

eigenvalue problem Au = ABu, where:

A =zx,

B=X +X +(u,-p)p, 1) (2.28)

Once the projection vector is identified, the examples in X and Y on u are classified by
thresholding their projections on u. The examples that correspond to the overlaps
between the projections of X and Y are considered as unknown class. These examples
will be used in the next round of training to select a new projection vector. This process
continues repeatedly to produce a set of projection vectors. Elad er al. used 50
projection vectors for face/nonface classification. The MRC is similar in spirit to the
Fisher Linear Discriminant (FLD), which aims to minimize the within-class variances
and maximize the between-class variances. The only difference is that MRC deals with

non-equally probable classes. Elad et al. reported a similarity in detection accuracy
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between the MRC face detector and the neural network face detector by Rowley ez al.
[91]). However, the MRC face detector was found to be many times faster than the

neural net'ork face detector.

2.4 Summary of Face Detection

The existing face detection approaches are summarized in Table 2.2. The classification
rates are as reported by the respective authors; some authors use common databases for
testing, whereas others use a custom database to test certain aspect of their algorithms.
Therefore, classification rates listed in the table are only indicative of the detection
performance, and should not be used for an objective comparison of different face
detection approaches. Online face detection demo and software are given in Table 2.3.

Online databases for facial image analysis are given in Table 2.4.

Table 2.2: Summaries of face detection approaches.

Burl eral. [9] Gaussian-derivative facial feature detectors intensity, (84%, * . 150)

Gaussian model of distances between facial feature frontal
Chai & Ngan | Fixed-range skin color map in Cb-Cr plane color, (82, *,60)
(15] Face verification based on shape criteria mainly frontal
Elad er al. Maximal rejection classifier intensity, *
(22) frontal upright
Féraud es al. Constrained generative model color, (86%. 1.97%.
(25) Multi-staged algorithm frontal/ CMU)

Window size = 15x20 side views
Garcia & Convolutional neural networks intensity, (97.5%. 2.4%,
Delakis [32) Window size = 32x36 frontal/ small 100)

in-plane rotation
Garcia & Linear model of skin color in YCbCrand HSV, color, (94.2%. 19.23%,
Tziritas (33) Wavelets frontal/ small in- | 100)
plane rotation

Govindaraju Edge-based face model intensity, (70%.*, 150)
[35] Marr-Hildreth edge detector frontal upright
Hsueral. [43] | Color correction, color, (80.35%, 10.41%.,

Color-based detection of skin, eye, and mouth semi-frontal/ 382)

Geometric verification of facial feature placement side views
Huang er al. Radial basis function network, PCA intensity, (84.6%, 16.1%,
(46) Window size = 20x20 frontal upright MIT set B)
Huang er al. Polynomial neural network, PCA intensity, (84.73%. *,
(47) Window size = 20x20 frontal upright CMU)
Jeon ez al. Eye region through intensity thresholding, intensity, (91%, 0%, CMU)
(49) Face binary template using Hausdorff distance, frontal upright

First order reduced Coulomb energy classifier

Window sizec = 21x21
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Window size = 20x20

frontal or in-
plane rotated

Liu [65) Bayesian classifier with Gaussian density estimation, | intensity, (97.4%, 0.4%.
Modeling of nonfaces that are near the face class, frontal upright CMU)
ID Harr wavelet and projection features,
Window size = 21x21
Luo & Gaussian mixture skin color model color, (81%, 21%, 586)
Eleftheriadis Gaussian clustering of DCT-coefficient feature frontal upright
[67) vectors
Lienhart eral. | Extension of Viola & Jones [118-120) intensity, (82.3%, 4.7%,
(60.61) Extended Harr-like features frontal upright CMU)
Menser & Gaussian skin color model in Cb-Cr plane, color, *
Wien [72) Connected operators based on shape criteria, mostly frontal
PCA of skin probability image upright
Osuna [75) Support vector machines intensity, (97.1%, 1.3%,
Window size = 19x19 frontal upright MIT Set A),
(74.2%, 13.4%,
MIT set B)
Rikert er al. Wavelet-based texture model of human face intensity, *
[89] upright (frontal/
non-frontal)
Rowley et al. Neural networks (MLP) intensity, (88.4%, 19.5%,

CMU)

Schneiderman | Naive Bayesian classifier intensity, (90.5%,6.8%,
& Kanade Window size = 64x64 frontal or profile | CMU)
[100)
Sirohey [104] | Edge-based ellipse-fitting of face boundary, intensity, (80%, *, 48)
Canny edge detector mostly frontal
Sobottka & Region-based ellipse-fitting color, d
Pitas [105] frontal upright
Sung and Gaussian clustering of faces and nonfaces intensity, (96.3%, 1.0%,
Poggio 111} Window size = 19x19 frontal upright MIT set A),
(79.9%, 3.5%.,
MIT set B)
Viola & Jones | Cascade of face/nonface classifiers intensity (88.8%, 9.8%,
{118) AdaBoost algorithm for feature detection frontal & upright | CMU)
Harr-like features
Window size = 24x24
Yow {134) Gaussian-derivative facial feature detectors, intensity, (66.3%, 14.7%.
Belief networks, semi-frontal Manchester Set
Active contours for face boundary extraction A),
(17.8%, 16.7%,
Manchester Set B)
Note:

Performance is given as (correct detection rate%, false detection rate%, databasc name or database size)
False detection rate is the ratio of the number of false detections to the number of true faces.
Database size (i.e. the number of images) is given for custom dataset.

* not available entry
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Table 2.3: Online face detection demonstration and software.

Face detector

Authors

Descriptions

BuFalLo

face detector

Frank Fritze

URL: www .geocities.com/fritzfra2001/

Based on the works of Viola and Jones [120], Lienhart
etal. (6]).

face detector (32]

CMU face detector | H. Schneiderman, URL: www.vas.ri.cmu.edu/cgi-bin/demos/findface.cgi
H.Rowley, eral. Face must be upright and at least 20 pixels from mouth
(91, 99] to eyes.

University of Crete | C. Garcia, M. Delakis | URL:

www.csd.uoc.gr/~cgarcia/FaceDetectDemo.html

In-plane rotation angle must not exceed 20°.

Table 2.4: Online image databases for facial image analysis.

Database

Descriptions

5

LIy
%
ey

(Purdue Uni. face database)

Over4000 images, 126 people,
different facial expression, lighting conditions
URL: htip://rvli.ecn.purdue.edu/~aleix/

AT&T face database [97]
(ORL face database)

400 images, 40 distinct people,
different lighting conditions, facial expressions, facial details
URL: hup:/iwww.uk.research.att.convfacedatabase.html

UMIST face database [36]

564 images, 20 people, gray-scale,
image size 220x220, profile to frontal views

!

ee.umist.ac.uk/dann X/da abase.html
S

BT

Expression database (JAFFE)

213 images, 10 Japanese fema]e;.-
6 basic facial expressions + 1 neutral
URL: http://www.mis.atr.co.in/~mlvons/iaffe.html

[681

1521 images: 23 people, a manual set cﬁye positions

CMU face database [91]

130 images, 507 faces, gray-scale
URL: http//vasc.ri.cmu.edw/idb/himl/face/index.html

Manchester face database

Set A: 300 images, frontal upright faces
Set B: 90 images, frontal upright faces, with occlusion.

MIT face database [111]

Ser A: 301 images, 71 different people, near frontal faces.
Set B: 23 images, 149 faces, varying quality.

Stirling Psychological Image
Collection [39])

Over 800 face images
URL: hup:/fpics.psych.stir.ac.uk/
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2.5 Chapter Summary

This chapter provides a systematic review of existing approaches to automatic human
face detection in digital images. These approaches can be divided into two main
categories: analytic and holistic. Analytic approaches treat the human face as a
composition of facial features, and use heuristic constraints about these features to
distinguish face and nonface patterns. Analytic approaches are often not computation-
intensive. However, they are highly susceptible to the image quality and variations in
the imaging condition. Holistic approaches treat the human face as a whole pattern and
employ machine iearning techniques to differentiate face from nonface. Holistic
approaches involve window scanning, in which windows at different image locations
and at multiple scales are classified into face and nonface patterns. As such, these
approaches are in general very computation-intensive. The advantage of these
approaches is that the classifiers are mostly developed with machine leaming
algorithms, which are capable of handling large variations in the face pattern and

extracting non-obvious decision rules.

We propose a new face detection algorithm that combines the strengths of both analytic
and holistic approaches to face detection. Components of the new algorithm are
presented in Chapters 3-6. Chapter 3 addresses the skin detection technique that relies
on color pixel classification. Chapter 4 addresses various techniques to enhance pixel-
wise skin segmentation. Chapter 5 presents a technique for selecting face candidates
from the segmented skin regions. Chapter 6 introduces holistic techniques to perform
the final verification of face candidates. Chapter 7 presents a complete face detector

together with its analysis and applications.
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Chapter 3
Skin Detection Using

Color Pixel Classification

3.1 introduction

This chapter and the next focus on the problem of detecting skin regions in a digital
image. In recent years, skin detection has attracted considerable research interest. It is a
crucial step in several color-based approaches to human face detection [33, 43, 127). It
also plays a key role in applications such as hand segmentation for gesture analysis
[138] and objectionable image filtering (27, 52]. in these applications, the search space
for the objects of interest, such as faces or hands, is reduced through the detection of
skin regions in the input image. This strategy of search space reduction is motivated by
the pre-attentive mechanism commonly exhibited in biological vision systems. To this
end, skin detection is very effective because it is fast, involves a small amount of

computation and can be done regardless of pose.

In this chapter, we use the term “skin detection™ to refer to the detection of skin at pixel
level, in which image pixels are divided into skin and nonskin pixels. In comparison, in
the next chapter, we use the term *skin segmentation™ to refer to the detection of skin at

region level, in which image pixels are grouped into skin regions and nonskin regions.
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The focus of the current chapter is the skin detection approach that differentiates skin
pixels from nonskin pixels on the basis of pixel color. This approach is based on the
observation that the human skin has very consistent and distinctive colors compared to
the colors of most natural and man-made objects. This skin detection approach involves
a color classification algorithm whose major requirements are stated below:

o Very low false rejection at low false detection. Color pixel classification is the
first step in skin detection; therefore it is crucial that almost all skin colors are
picked up while keeping false detections to a minimum. False detections can be
handled in later stages when more a priori knowledge is available.

o Robust detection of different skin types. There are many skin color types
including whitish, blackish, yellowish and brownish, which must all be
classified as skin.

¢ Robustness to variations in lighting conditions. Skin color can appear
markedly different under different lighting conditions. It is, therefore,
impractical to construct a skin color classification algorithm that works under all
possible lighting conditions. However, a good classification algorithm should

exhibit some sort of robustness to lighting variations.

Many different skin color classification algorithms have been proposed. These include
piece-wise linear decision boundary classifiers [15, 33, 106], classifiers based on
parametric [72, 129, 131] and nonparametric density estimation [52, 83, 121], and self-
organizing maps [8). The color spaces used in classification also vary: RGB [98],
YCbCr [15, 72, 121], HSV [138], CIE-Luv [131], Famsworth uniform color space
[127), and normalized RGB [130]). A number of comparative studies on skin color
classification have been reported. Brand et al. [7] compared three different approaches:
simple thresholding of the R/G ratio, color space mapping with 1-D indicator, and RGB
skin probability map. These authors used the Compaq skin database created by Jones
and Rehg [51), which consists of nonskin images (i.e. images that have no skin region),
and skin images (i.e. images of skin regions that are coarsely segmented). Terrillon et
al. [113] compared two classifiers based on the Gaussian and Gaussian mixture density
models across 9 chrominance spaces. However, only 110 images of 30 Asian and
Caucasian people were used in their experiments. Shin ez al. [101] compared skin

detection in eight color spaces. In their experiments, the skin and nonskin samples were
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taken separately from different sources: skin samples from the AR face recognition
database and the University of Oulo physics-based face databases, and nonskin samples
from the University of Washington content-based image retrieval dataset. There is a
clear need to evaluate skin detection algorithms on a comprehensive database that is

designed specifically for the testing of skin detection in unconstrained imagery.

In this chapter, we address two important questions related to the approach of skin
detection using color pixel classification:
o which classification algorithm and which color space give the best skin detection
performance in terms of accuracy, speed and memory load?
o how effective is the approach of skin detection using pixel color for general
images?
In order to answer the first question, we analyze several color classification algorithms
that have been reported in the literature. These algorithms include piece-wise liniear
decision boundary, classifiers based on Gaussian densities, Bayesian classifier with
nonparametric density estimation, and the self-organizing map. Furthermore, we
propose a new classification algorithm that uses multilayer perceptron neural networks.
The segmentation performances of different color spaces are compared using the
Bayesian classifier with nonparametric density estimation. To answer the second
question, we report the skin detection results on the ECU database. This database
consists of over 3,300 color images that have been manually segmented for skin

regions.

This chapter is organized as follows. The different families of color spaces, namely
RGB, YCbCr, HSV, and CIE-Lab are described in Section 3.2. Characteristics of the
human skin colors are investigated using visualization tools in Section 3.3. Major
classification algorithms, namely the piece-wise linear decision boundary, classifiers
based on Gaussian densities, Bayesian classifier based on nonparametric density
estimation, and multilayer perceptrons are presented in Section 3.4. A comparative
analysis of the classification algorithms is presented in Section 3.5. The skin detection
approach using the Bayesian color pixel classifier is discussed in Section 3.6. The

chapter summary is given in Section 3.7.
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3.2 Color Spaces

Color is a visual sensation formed when an electromagnetic waveform in visible
spectrum falls on light-sensitive coues in the retina. Three attributes are associated with
this visual sensation:

o brightness (or luminance): indicates if an area appears to exhibit more or less
light.

o hue: indicates if an area appears to be similar to combination of two of the basic
colors, red, green, blue. It is the visual attribute that we use to give color names,
suich as blue, yellow, purple, etc.

o saturation (or colorfulness, color purity): indicates if an area appears to exhibits
more or less of its hue. For example, pink and red differ in saturation with the

red being more saturated.

A color space specifies how colors are represented and coded. Almost all color spaces
in existence originate from the tri-chromatic theory, which states that any color (visible
light) can be described in terms of three reference colors or primaries. Typically, a color
is expressed as a linear combination of the primaries, and each weight is a color value.
Color values corresponding to a primary are said to belong to a color channel. Clearly,
different sets of primaries and color transforms (linear or nonlinear) lead to different
color spaces. There exist a large number of color spaces; color spaces that have similar
characteristics are grouped into a color space family. Next, we shall describe four
representative color spaces:

e the RGB color ..pace;

o the HSV color space, which represents hue-saturation-intensity color spaces;

o the YCbCr color space, which represents class-Y color spaces;

e the CIE-Lab color space, which represents perceptually uniform color spaces
(UCS).
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Table 3.1: Color conversion from RGB to HSV.
V =max(R, G, B)
A=V -min(R, G, B)
_ {O if v=0
A/V otherwise

If A #0 then
: (G-B)YA when R=V
H=-=x¢2+(B-R)A when G=V
4+ (R-G)/A  when B=V
H=H+1whenH<0
else
H=0
End if

3.2.3 The YCbCr Color Space

This color space belongs to a color space family known as *‘class Y”', which includes the
YCbCr for digital image and video, the YIQ for NTSC television®, the YUV for
SECAM television® and PAL television®. In this color space family, color information is
stored in one luma and two chroma signals. The luma signal corresponds to the
luminance channel Y, and the two chroma signals correspond to the two chrominance
channels (i.e. CbCr, IQ, or UV). The separation between luminance and chrominance
channels, together with signal modulation schemes, allowed back-and-white receivers to
continue displaying black-and-white picture when color television was first introduced.
In addition, this separation enables efficient processing and transmission of video
signals. For example, because the human vision system responds more strongly to
brightness changes than chrominance changes, the separated chrominance signals can

be compressed by sub-sampling.

* National Television Standards Committee
5 Sequentiel Couleur Avec Mémoire (Sequential Color with Memory)

S Phase Alternation Line
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Table 3.2: Color conversion from RGB to CIE-Lab.

o Convert RGB to CIE-XYZ as in (3.5)

o o JHEX(YIY,)' ~16, if Y/Y, >0.008856
903.3%(Y’Y,), otherwise

o a=500x(AX/X,)-RYIY,))
e b=200x(RY/Y,)-AZZ,))
where

)= {:“3 if Y/Y, >0.008856

7.787t +16/116 otherwise

Xn=0.9504, Y, =1, and Z, = 1.0889 are the CIE-XYZ coordinates for

the white reference point in the CIE standard illuminant D65.

The conversion steps from RGB to CIE-Lab are presented in Table 3.2. The nonlinear
conversion involves an intermediate color space known as the CIE-XYZ color space,

which is described next.

CIE-XYZ color space. The CIE-XYZ color space was developed by the Commission
Internationale de I’Eclairage in 1931, and it is the root of all color spaces. The CIE-
XYZ color space has three imaginary primary colors X, Y and Z defined so that all
visible colors can be represented using non-negative color values. The CIE-XYZ color
space is sometimes represented as Yxy where the pair (x, y) describes the color

chromaticity:

X = XI(X+Y+2), (3.3)

y =Y/(X+Y+Z), (3.4)

The plot of all (x,y) pairs for visible colors is called the chromaticity diagram,; it is

shown in Fig. 3.8. Conversion from RGB to CIE-XYZ is linear and device dependent.
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A number of skin color classification algorithms operate on a chrominance plane. The
rationale for such algorithms is that using only chrominance channels makes

classification less sensitive to changes in the lighting intensity.

In this study, we focus on four main color spaces, namely RGB, HSV (representing hue-
colorfulness-brightness color spaces), YCbCr (representing class-Y color spaces) and
CIE-Lab (representing perceptually uniform color spaces), and four chrominance

planes, namely normalized rg, HS, CbCr and ab.

3.3 Skin Color Characteristics

In this section, we use visualization tools to investigate the characteristics of the human
skin color, especially its distribution in different color spaces. The section is divided
into three main parts. First, we examine the skin color distribution in different coior
spaces (Subsection 3.4.1). Second, we investigate how the skin color distribution varies
for different skin color types (Subsection 3.4.2). Third, we explore the characteristics of

the chrominance and luminance components of skin colors (Subsection 3.4.3).

3.3.1 Skin Color Distribution in Different Color Spaces

The distributions of skin colors in the four color spaces RGB, HSV, YCbCr and
CIE-Lab are shown in Fig. 3.9. Each dot represents a skin color. To generate this figure,
we collected a set of over 14,000 skin colors. These colors were automatically sampled
from the skin regions of the first 100 images of the ECU face detection database.
Fig. 3.9 shows that the human skin color indeed has a very specific distribution in all

four color spaces.

3.3.2 Distributions of Different Skin Color Types

Although there is a large number of skin colors, all skin colors can be divided into a

number of major skin types. The major skin types are whitish, blackish and
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3.4 Color Pixel Classification Algorithms

In this section, we describe five skin detection approaches that use color pixel
classifications: piece-wise linear decision boundary, classifiers based on Gaussian

densities, self-organizing maps, Bayesian classifier, and multilayer perceptrons.

3.4.1 Piece-wise Linear Decision Boundary

In this approach to color pixel classification, skin and nonskin colors are separated by a
piece-wise linear decision boundary that is explicitly defined [15, 33, 106). A simple
technique to create a decision boundary is through thresholding the color channels.
Because the luminance of skin colors is found to spread widely, this thresholding
technique is only effective for chrominance channels. For example, Chai and Ngan [15]

considered a color in the YCbCr space as a skin color if:

77<Cb<127and 133 <Cr<173. 3.9

Sobottka and Pitas [106] defined the following ranges for skin colors in the HSV color

space:

023<S5<0.68 and 0 < H <50°. (3.10)

Garcia and Tziritas [33] proposed another decision boundary that is formed by eight

planes in the YCbCr color space. The decision rule is summarized in Table 3.3.

Table 3.3: Garcia and Tziritas' piece-wise linear skin color decision boundary.
Cb=Cb-128
Cr=Cr-128
If (Y >128)
0, =-2+(256-Y)/16;0,=20- (256-Y)/16;083=6; 6s=-8

Else
0)=6;0,=12:0;=2+Y/32;0:=-16+ Y/16
A skin color must satisfy the following conditions:
Cr >-2(Cb+24); Cr>-(Cb+17);  Cr2>-4(Cb+32); Cr>2.5(Cb+6y)
Cr>80;; Cr>0.5(0: - Cb); Cr<(220-Cb)/6; Cr<4(62-Cb)/3
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3.4.2 Classifiers based on Gaussian Densities

Classifiers in this category assume that the distribution of skin colors p(x) has a
parametric functional form. The most common parametric form is the Gaussian
function. A Gaussian function, g(x; p, C), is characterized by a mean vector p and a

covariance matrix C:
p(x) = g(x; p, C) =(2n)™"* | C| ™" exP{--;—(x—p)TC"(x-u)). (3.11)

where d is the dimension of the feature vector X, and |C| is the determinant of matrix C.
The mean vector p and the covariance matrix C are estimated from a training set of skin

color S = { Xy, X2, ..., Xn}:

p= Eix}, (3.12)

C= E{(x-m(x-p)'}, (3.13)

where E is the expectation operator. Once p(x) is computed as in (3.11), a color x is

considered as skin color if:
p(x) = 6. (3.14)

where 6, is a threshold value. Xu and Sugimoto [129] used a 3-D Gaussian in the RGB
color space to model the skin colors of East Asian people. To cope with other skin types
and lighting changes, Menser and Wien [72] used a 2-D Gaussian in the CbCr plane.

The skin color decision boundary is an ellipse in 2-D, and an ellipsoid in 3-D.

In some chrominance planes, such as CbCr, the distribution of skin color can be
modeled using a single Gaussian. However, this is not the case in other chrominance
planes, such as uv (of CIE-Luv) or HS (of HSV). In such chrominance planes, a
Gaussian mixture model would be more appropriate. A Gaussian mixture is a weighted

sum of Gaussian functions:

LY
p(x)= ) mg(x:p,,C,), (3.15)

ial

where K is the number of Gaussians, and #;, pi, C; are, respectively, the weight, the

mean, and the covariance of the ith Gaussian. The weights are positive and must satisfy
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the condition: 3/ 7= 1. The parameter set ® = (x;, p;, Ci|i=1, 2,..,K } is usually

estimated using the Expectation/Maximization (EM) algorithm [21]. The idea is to find
iteratively a parameter set that maximizes the joint-probability of occurrence of the

training vectors, or the following log-likelihood of the training set:

N
£=log] [ p(x,|®) (3.16)

i=|
The Gaussian mixture model of skin colors has been applied to the chrominance planes
uv by Yang and Ahuja [131], and HS by Zhu et al. [138). We reported in [82] a skin
color model in the YCbCr color space which consists of 3 Gaussian clusters for three

levels of luminance (low, medium and high).

3.4.3 Self-Organizing Maps

The self-organizing map (SOM) is an artificial neural network developed by Kohonen
in the ear'y 1980s [57]. It has found many applications in unsupervised clustering of
high-dimensional data. Brown et al. [8] proposed two SOM-based schemes for
classifying skin and nonskin colors. The first scheme uses only skin samples, and the
second scheme uses both skin and non-skin samples. Brown et al. found that the second
scheme performs better than the first, and both schemes show no preference to any of

the four color spaces HSV, Cartesian HSV, TSL and normalized rg.

In Brown et al.’s approach, a SOM consisting of several neurons arranged in a zrid of
fixed topology is used. Each neuron is associated with a codebook vector, which is
initialized randomly at the start of training. During training, input vectors are presented
sequentially to the SOM. Each time, the winning neuron, which is the closest to the
training vector according to some distance measure, is identified. The codebook vectors

of the winning neuron and neurons in its neighborhood are updated as follows:
flnew = B+ a(X - p), (3.17)

where p is the neuron codebook vector, and x is a training vector, and a is the learning
rate. As training progresses, the learning rate and the neighborhood size are reduced.

Once training is completed, each neuron is assigned a label (i.e. skin or nonskin) to
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which it responds most frequently. A new vector is assigned with the label of the
corresponding winning neuron. This scheme is similar to the nearest-neighbor

classification algorithm. The only difference is that clustering is done by a SOM.

It should be pointed out that clustering in a SOM is driven by the distances between the
input vectors rather than their class memberships. Kohonen [57] suggested that for
classification tasks, a SOM-based architecture, known as the leaning vector quantization
(LVQ), is more suitable. A LVQ network consists of two layers: a competitive layer that
learns to cluster data according to the competitive learning rule, and a linear layer that
maps the clusters to the final class. During training, the weight vector of the winning
neuron is moved fowards or away from a training vector, depending on whether or not

the training vector is correctly classified.

3.4.4 Bayesian Classifier with Nonparametric Density
Estimation

This classifier uses the Bayesian decision rule for minimum cost, which is a well-
established technique in statistical pattern classification [21]. The Bayesian classifier
has been used by a number of authors for skin detection [52, 83, 121]. It can be
described as follows. Let @, and w, denote the skin color and nonskin color classes,
respectively. Let P(w;), i = 1, 2, be the a priori probability of class w;. Let p(x|w;) be the
class-conditional probability density function (pdf) of class w;. Let 4;, i, j =1, 2, be the
cost of classifying a color x into class w; when the color actually belongs to class w;.
Clearly, 4; is the cost of a correct decision when i = j, and the cost of an incorrect

classification when i # j. A color pixel x is classified as skin color (class w,) if:

—20 , (3.18
p(x|w) °F :

where 8, is a threshold. The theoretical threshold value that minimizes the total

classification cost is:

’112_'122 P(wz)
g, = X . 3.19)
’ ’121“311 Plw,)
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In practice, this threshold is determined experimentally.

The class-conditional pdfs in (3.18) are computed using a histogram technique (i.e.
nonparametric density estimation). From a training set of skin and nonskin colors, two
histograms 7;(x) and h»(x) are generated, where A;(x) is the count of pixels from class w;
that have a value of x. The class-conditional pdfs are obtained by normalizing the color

histograms:

p(Xlewi) = B (x)/ D h(x). (3.20)

The histogram technique for pdf estimation is viable in this classification problem
because the feature vector x has a low dimension (at most 3). Implementation of the
Bayesian classifier requires a very large labeled set of skin and nonskin samples. This is
one of the reasons we have prepared such a large number (over 3000) of segmented skin

images in the ECU database.

[t can be argued that the Bayes decision rule optimizes the class separability in the sense
of Bayes error. In this study, we use the Bayesian classifier to compare different choices
of the feature vector x (i.e. different color spaces and chrominance planes). We also
investigate the effect of the histogram size n (i.e. the number of histogram bins per
dimension) on classification performance. Because of storage constraints, there is a
need for using a small n. For example, for the RGB space a histogram needs 128MB if n
= 256, and only 256KB if n = 32. The effects of the color space and histogram size are

investigated in Section 3.5.

3.4.5 Multilayer Perceptrons

A. A Brief Introduction to Multilayer Perceptrons

Multilayer perceptron (MLP) is a neural network architecture that has been widely used
in pattern classification [24]. A multilayer perceptron (Fig. 3.12) has three types of
layers: an input layer, an output layer, and one or more hidden layers. Except for the
input layer whose sole purpose is to receive an input vector from the environment, each

layer in a MLP has a number of basic processing elements called neurons. The layers in
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a MLP are connected in a feed-forward topology by weighted synapses, through which
each neuron receives inputs from neurons in the preceding layer, and broadcasts its

output to neurons in the succeeding layer.

The processing performed at each neuron can be described by the following equation:

o=fQQ_ wp,+b), (3.21)

where o is the output of the neuron, f is its activation function, p;’s are the inputs
received from the previous layer, w;’s are connection weights to the neuron, and b is a
scalar factor called the bias. That is, the neuron applies its activation function on the
weighted sum of its inputs to generate a scalar output. The network output is a vector
consisting of the outputs of the neurons in the last layer’. This output vector is
computed by propagating the network’s input through intermediate hidden layers. In the
MLP architecture, the number of layers, the number of neurons in each layers, and the
type of activation functions used in each layer are determined by the designer. The

connection weights and biases are found by means of a training algorithm.

Feature Vector  Connection Weight Neuron Output Vector/

e T T Class Indicator
I |

Input Layer Layers Output Layer

Figure 3.12: Multilayer perceptron architecture.

In pattern classification applications, the network input is a feature vector describing the

pattern to be classified, and the network output indicates the class of the feature vector.

¥ This reduces to a scalar if the output layer contains a single neuron.
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The network can generate meaningful output only after it is trained. The training
process is iterative in nature, during which the network is presented with several
training examples. Each training example is a pair of a feature vector and the desired (or
target) output vector. During training, the network’s adjustable parameters, namely the
connection weights and biases, are systematically updated so that the network produces
the expected output vectors for the given feature vectors in the training set. Updating
network parameters is typically, but not necessarily, done through the error back-
propagation algorithm (see, e.g. [24]). MLP networks are remarkable in that they have
the ability to generalize from the training examples to correctly classify previously

unseen feature vectors.

B. Color Pixel Classifier Using the MLP Networks

The color pixel classification technique presented is an extension of the neural-network
approach we reported in [84). In the following discussion, the RGB color space is used.

However, this technique can be extended easily to any color space.

In the proposed MLP approach, the color vector x is normalized linearly so that its
elements are in the interval [0, 1]. The structure of the MLP is chosen as follows. The
input layer accepts the normalized color vector; the output layer has one neuron. The
network has two hidden layers, each of which consists of a few neurons. The network
output is a scalar that indicates if the network input is a skin color. The activation
function is the hyperbolic tangent tanh. This activation function is differentiable and
monotonically increasing, and it ensures that the network output is always in the

interval [-1, 1]:

tanh(t) = (&' — e")I(e' + e”) (3.22)

The training set consists of 4,096 training samples. During training, the expected
outputs for skin and nonskin colors are set to +0.9 and -0.9, respectively. The training
algorithm is Levenberg-Marquardt [38]. A validation set consisting of 32,768 samples is
used to monitor the generalization performance of the network during training and to

determine the appropriate network size.
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We use a technique known as the committee machine to improve the robustness and the
stability of the MLP classifier. Basically, the classification results of several individual
networks are fused to form the final classification. In our approach, a large number of
networks are trained, and N networks (N = 5) with the highest classification rates on the
validation set are selected. Let r;, i = 1, 2, ..., N, be the classification rate of the ith
network on the validation set, and y;(x) be the output of the ith network. The output of

the committee machine is the weighted average of the outputs of the individual

networks:
N
2. 57i(%)
Wx) = e (3.23)
2
i=1
The input vector x is considered as skin color if
Y(X) 2 Omip, (3.24)

where Gmyp is a threshold that controls how conservative the classifier is. The various

parameters in our MLP approach are summarized in Table 3.4.

Table 3.4: Settings of the MLP classifier.

Network Training
Training set 4,096 samples
Validation set 32,768 samples
Training algorithm Levenberg-Marquardt
Maximum training epochs | 5,000
Target mean squared error | 0.C1

Network Structure
Number of MLPs 4 S

Arbitration function weighted average

Network input vector

(R G B)range [0, 1]

Network output vector

Scalar y in range [-i, 1]

Network size

First hidden layer: 6 neurons
Second hidden layer: 6 neurons
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3.5 Results and Analysis

This section presents the results of several experiments that were carried out to analyze
the skin detection performance of the color pixel classification algorithms described in
the previous section. An overview of the experimental setup is given in Subsection
3.5.1. The Bayesian classifier with nonparametric density estimation and the effects of
the histogram size and the color space on skin detection are analyzed in Subsection
3.5.2. Finally, the color pixel classification algorithms are compared in Subsection
3.5.3.

3.5.1 Data Preparation and Performance Measures

The data used in this section are taken from the ECU face detection database [79] that
we have created at Edith Cowan University. This database differs from existing online
face detection databases, such as the CMU and MIT databases, in several aspects. First,
the ECU database contains color images, and hence supports color-based approaches to
face detection. Second, the database is comprehensive in terms of both the number of
images (4,000 images at the time of writing) and the image contents (varied background
scenes, lighting conditions, faces, skir etc.). Third, we have segmented manually the
images for face and skin regions (using the Adobe Photoshop software). The availability
of a large number of ground-truth images enables the construction and reliable testing of
skin detection and face detection algorithms. The segmented skin images consist of not
only facial skin regions but also other skin regions, such as exposed neck, arms, and
hands. More information about the database can be found in Appendix A, or at the

database website [79].

We used 2500 images (images 1 to 2500) for training. The skin pixels (colors) were
taken from database set 3, which consists of manually segmented skin images
(Fig. 3.13c). The nonskin pixels were taken from complement images of the skin-
segmented regions (Fig. 3.13d). The training set consisted of 116.6 million skin colors

and 564.7 million nonskin colors.
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(a) Original image (Set 1) (b) Face image (Set 2)

A

(c) Skin image (Set 3) (d) Nonskin image

Figure 3.13: Example images from ECU face detection database.

We used 500 images (images 2501 to 3000) to test skin detection performance of the
color pixel classification algorithms described in Section 3.4. These images contained a
wide range of skin types including whitish, blackish, yellowish, and brownish. The
lighting conditions in these images varied from indoor office lightings to outdoor
daylight. Images in the test set consisted of 27.1 million skin pixels and 97.5 million

nonskin pixels.

The color pixel classifiers described in Section 3.4 were applied to the test images. The

results reported in this section are from the raw classifier outputs; no extra processing

63



Chapter 3 Skin Detection Using Color Pixel Classification

steps were applied. Each output image generated by a classifier was compared pixel-
wise with the manually segmented skin image. The segmentation performance is
measured in terms of the correct detection rate (CDR), false detection rate (FDR), and

classification rate (CR):

No. of sx... pixels detected
No. of skin pixels

CDR = x100% (3.25)

_ No. of nonskin pixels falsely classified
No. of nonskin pixels

FDR x 100% (3.26)

_ No. of pixels correctly classified y
No. of pixels

CR 100% (3.27)

3.5.2 Analysis of Bayesian Color Pixel Classifier

A. Histogram Size

We experimented with six dyadic histogram sizes: 256, 128, 64, 32, 16, and 8. The
highest histogram size was so chosen because almost all hardware-realizable colors are
encoded in the RGB color space with 8 bits per channel, which gives 256 different
levels per channel. The receiver operating characteristic' (ROC) curves of the
Bayesian classifier for different histogram sizes across 8 choices of feature vectors are
shown in Fig. 3.14. The results show that there are only small differences in the
classification rates when the histogram size n varies from 64 to 256. For the RGB, HSV,
and YCbCr color spaces, the classification rates remain more or less the same down to a
histogram size of 32. There is a decrease in the classification performance when n
drops below 3Z2; the chrominance-plane feature vectors (e.g. rg, HS, CbCr, and ab) are
among the worst affected. The RGB, YCbCr and HSV feature vectors are more robust
to changes in the histogram size compared to the CIE-Lab feature vector or

chrominance-based feature vectors.

1 Terminology borrowed from radar where a receiver is characterized by its ability to detect a transmitted signal.
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Figure 3.14: Effects of histogram size on skin detection.
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B. Color Space

We compared eight choices of feature vectors RGB, HSV, YCbCr, CIE-Lab,
normalized rg, HS, CbCr and ab. The ROC curves of the Bayesian classifier for these
feature vectors are shown in Fig. 3.15. The results show that regardless of the histogram
size, feature vectors consisting of all channels (i.e. RGB, HSV, YCbCr, and CIE-Lab)
outperform feature vectors consisting of only chrominance channels (i.e. normalized rg,
HS, CbCr, and ab). It has been suggested by many authors that skin color classification
becomes more robust to the lighting intensity if the luminance is not included in the
feature vector. We believe that such robustness to the lighting intensity is essentially the
result of expanding the skin color decision boundary to cover the entire luminance
channel. This comes at the cost of more false detections, which reduces the
effectiveness of skin detection. Therefore, we propose that all color channels be used for

accurate detection of skin pixels.

100 100
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(a) histogram size n =256 (b) histogram size n = 64

Figure 3.15: Effects of feature vector on skin detection.
Figure 3.15 shows that, for high histogram sizes (n > 64), the classification
performances are almost the same for all tested color spaces (i.e. RGB, HSV, YCbCr,
and CIE-Lab). This is an interesting result because the distributions of skin colors
appear to be more compact in CIE-Lab and YCbCr colors spaces (see Fig. 3.9) than in
other color spaces, such as RGB and HSV. This result shows that the overlap between
skin and nonskin is not reduced by transforming to compact (skin-wise) color spaces,
such as CIE-Lab or YCbCr. Therefore, skin color pixel classification can be done in any

color space. The color space should be selected according to the format of the input
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image or the need of subsequent processing so that the color conversion step is
eliminated. Our conclusion agrees with a result published recently by Shin et al. [101].
The difference is that Shin er al. measured the skin and nonskin separability for
different color spaces using metrics derived from the class scatter matrix and
histograms, whereas in our work, the performances of different color spaces are directly
evaluated on a large test set. Figure 3.15 also shows that the CbCr feature vector is

significantly better than other chrominance-based feature vectors.
The classification rates of the Bayesian classifier in the RGB color space with n = 64
are listed in Table 3.5. Sample results of skin detection using the Bayesian classifier are

shown in Figs. 3.17 and 3.18 in Section 3.6 of this chapter.

Table 3.5: Results of skin detection using the Bayesian classifier (RGB, n = 64).

False Detection Rate (%) 5 5.8 10 15 20
Correct Detection Rate (%) 71.0 74.0 84.4 91.0 94.5
Classification Rate (%) 89.7| 898° 88.7 86.1 83.1

* Maximum classification rate.

3.5.3 Comparison of Color Pixel Classification Algorithms

In this subsection. we compare the skin detection performances of the pixel color
classifiers that are presented in Section 3.4:
e the rectangular decision boundary (fixed-range) in the CbCr plane of the YCbCr
color space, proposed by Chai and Ngan [15].
o the piece-wise linear decision boundary in the YCbCr color space, used by
Garcia and Tziritas [33].
o the Gaussian models. The 2-D Gaussian model in the CbCr plane, proposed by
Menser and Wien [72], was used as an example.
o the SOM classifier proposed by Brown er al. [8]. Similarly to
Brow et al.’s approach, we used a SOM that operated on the normalized rg plane
and consists of 100 neurons arranged in a hexagonal grid. The winning neuron

was selected based on the Euclidean distance. The label (i.e. skin or nonskin) of
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the winning neuron was determined by the ratio of the number of skin training
samples to the number of nonskin training samples that the neuron responded to.

e the Bayesian classifier using nonparametric density estimation. The
performance of this classifier in different color spaces and at different histogram
sizes is thoroughly investigated in the previous subsection. In this comparative
study of classifiers, we used the Bayesian classifier in the RGB color space with
a histogram size n of 64 bins per channel. At this histogram size, the storage
requirement is 2MB. More accurate Bayesian classifiers are possible but at the
cost of much larger memory requirements.

e the multilayer perceptron classifier (MLP), which is an extension our approach

described in [84].

A. Skin Detection Accuracy

The ROC curves of the classifiers on the test set of 500 images are shown in Fig. 3.16.
Because the parameters of the fixed-range and piece-wise linear classifiers are fixed, the
corresponding ROC curves have only a single point. For the other classifiers, the
classification rates were obtained by varying the decision thresholds on the continuous
classifier outputs. The results in Fig. 3.16 show that the Bayesian classifier clearly
outperforms all other classifiers in teris of classification accuracy. It has CDRs of
84.4% and 94.5% at FDRs of 10% and 20%, respectively (see also Table 3.5). For false
detection rates between 5% and 20%, there is a difference of more than 5% between the

correct detection rates of the Bayesian classifier and the other classifiers.

The MLP classifier is the next best in terms of classification accuracy. It performs
consistently better than the SOM and the Gaussian classifiers. At the same false
detection rates, the MLP classifier is better than the fixed range classifier, and almost
the same as the piece-wise linear classifier. The fixed-range and piece-wise linear
classifiers both operate in the region of high false detection rates (over 15%). The
classification measures are a CDR of 94.2% at a FDR of 29.8% for the fixed-range
classifier, and a CDR of 87.2% at a FDR of 19.0% for the piece-wise linear classifier.

We can conclude that at high false detection rates, the manually constructed decision
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boundaries of the fixed-range and piece-wise linear classifiers are comparable to the

decision boundary produced by the MLP classifier.

The SOM classifier and the Gaussian classifier do not perform as well as the Bayesian
and MLP classifiers. For the SOM classifier, this can be attributed to a number of
factors. First, the class memberships of the training vectors are not taken into account
during the unsupervised clustering step of SOM. Second, more neurons are probably
needed to cover the input space. Lastly, as mentioned in Section 3.4, the leaming vector
quantization architecture is probably more suitable than the SOM for classification
problems. Results of the Gaussian classifier indicate that the approximation of the skin
color distribution as a Gaussian has some merit but is not sufficiently accurate for skin
detection. In literature, the Gaussian model of the human skin color is usually applied to
chrominance planes. However, we show in the previous subsection that classification
using only two chrominance channels is not as good as classification using all three
color channels. The CDRs of the Gaussian classifier are only 58.9% and 79.5% at FDRs
of 10% and 20%, respectively.
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Figure 3.16: Comparison of color pixel classifiers in skin detection.
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B. Memory Requirement

The memory requirements of the color pixel classifiers are shown in Table 3.6. The
memory requirements are listed for the run-time classifiers that produce continuous
outputs (i.e. continuous skin color scores). We find it desirable to keep continuous skin
color scores rather than a binary 0/1 because in post-processing stages, the relative
classification confidence reflected in these scores can be valuable. In our calculations,
we assume that each double-precision floating-point value takes 8 bytes. The memory
requirements for the fixed-range, piece-wise linear and Gaussian classifiers are almost
negligible. The SOM and MLP classifiers require medium amounts of memory
(between 2-3KB). In contrast, a good-performance Bayesian -classifier with
nonparametric density estimartion requires at least 2MB of memory to store the matrix

of skin color likelihood ratios (histogram size n = 64 bins/channel).

Table 3.6: Comparison of color pixel classifiers in terms of memory and speed.

Color Pixel Classifier Memory (bytes) Normalized Processing Time

Fixed-range [15] 32 1.0

Piece-wise linear [33] 130 5.1
Gaussian [72] 50 35.6
SOM (8] 3,200° 186.1
Bayesian (52, 83, 121] 2,097,152° 2.1
MLP (84] 2,600° 73.7

2100 neurons.

®3.D color vector, n = 64 bins/channel.

€5 MLPs, 1* and 2™ hidden layers have 6 and 5 neurons, respectively.
4 Takes 0.11s to process an image of size 352x288.

C. Processing Time

Table 3.6 also shows the processing times of the color pixel classifiers. The classifiers
were applied to process a color image of size 352x288, and the average processing
times (over 10 runs) were recorded. In our experiments, MATLAB implementations of
the classifiers running on a Pentium III 600MHz were used. However, to obtain a more
machine-independent comparison of the algorithm speeds, the processing times were

normalized against the shortest processing time. Results in Table 3.6 show that the
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fixed-range classifier is the fastest classifier taking only 0.11s to process the 352x288
image. The Bayesian classifier is the next fastest, and is twice as fast as the Gaussian
classifier and 36 times faster than the MLP classifier. The SOM classifier has the

longest processing time.

3.6 Skin Detection Using Color

In this section, we formalize the skin detection approach that uses the Bayesian color
pixel classifier. The analysis in the previous section has shown that the Bayesian
classifier (with nonparametric density estimation) outperforms the other color pixel
classifiers in terms of classification accuracy and speed. In addition, the Bayesian
classifier is largely unaffected by the choice of the color space, provided that all three
color channels are used. The Bayésian classifier has only one drawback in that it
requires a significant amount of memory (= 2MB) for good performance. For the rest of
this thesis, the Bayesian color pixel classifier, operating on the RGB color space and
having a histogram size of 64 bins per color channel, is used. However, as mentioned

earlier, the Bayesian classifier can be applied to any color space.

A. Formulation of the Skin Detection Approach

The skin detection approach can be described as follows. Let I be a color input image,
and I(x,y) be the color of a pixel at location (x, y)“. Let f;(x) be the likelihood ratio

function defined as follows:

fix)= Pxlo) , (3.28)
P(xla)z)

where p(x|w;) and p(x|w,) are the‘probability density functions of skin and nonskin

classes.

For each image pixel I(x, y), a skin score S(x, y) is computed as follows

"!"'In this thesis, the image coordinate system is used. The coordinate origin is the top left of the screen. The
horizontal coordinate, denoted by x or the first index, increases from left to right. The vertical coordinate, denoted
by y or the second index, increascs from top to bottom.
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S(x, y) =£:(x,Y)). (3.29)

The higher this score is, the more likely the pixel is a skin pixel. The skin scores S(x, y)
of all pixels in the input image I can be treated as a gray-scale image S (i.e. image
having only one channel). We use the term ‘skin score image’ to refer to this image. The

skin score image is thresholded to obtain a binary mask B for skin-colored regionslz:

1, if S(x,y)26,

. 3.30
0, otherwise ( )

Be(x, y) = {

In our work, a threshold 8, =1 is used.

B. Skin Detection Results

The results of skin detection using the Bayesian color pixel classifier, in terms of
classification rates, have been presented previously in Subsection 3.5.2. In this
subsection, we present some visual results of the skin detection approach. The skin-
detected images for three test images in the ECU face detection database are shown in
Fig. 3.17. The test image contains different skin types, namely blackish, yellowish and
whitish. In Fig. 3.17, we also report, for each test image, the amount of image search
space that is reduced as a result of skin color pixel classification. This figure shows that
the proposed Bayesian classifier can detect different skin color types very reliably.

Furthermore, it reduces the search space for skin significantly.

Results of skin detection on two additional test images are shown in Fig. 3.18. Again,
all skin pixels are reliably detected. However, some nonskin regions that have skin-like
colors, such as the wooden surface behind the boy in Fig. 3.18b, are incorrectly
identified as skin. Because of this type of false detection, the amount of search space
reduction becomes smaller. Nevertheless, the proposed skin detection technique proves
to be very effective as an attention-focus step, considering that it relies on only one

visual cue that is skin color.

2 The subscript “sc” signifies that this is a binary mask created based on skin color.
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Figure 3.17: Results of skin detection using Bayesian color pixel classifier — Part I.
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Figure 3.18: Results of skin detection using Bayesian color pixel classifier — Part II.
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3.7 Chapter Summary

This chapter addresses the skin detection approach that uses color pixel classification.
The approach is based on the observation that the human skin has a very consistent and
distinct color compared to other objects. In this chapter, we presented a comprehensive
comparative analysis of several color pixel classifiers including classifiers with piece-
wise linear decision boundaries, Gaussian-based classifiers, Bayesian classifier using
nonparametric density estimation, and neural network classifiers. The Bayesian
classifier has been found to outperform other classifiers in terms of segmentation
accuracy and speed, but requires significantly more memory for good performance. The
study of several color spaces has revealed that the skin detection approach is largely
unaffected by the choice of color space, provided that all three color channels are used.
Experimental results on a large database have demonstrated the viability of skin

detection through color pixel classification.

Skin detection can be made more robust if other features of the human skin are taken
into account. Nevertheless, the color-based approach to pixel-wise skin detection
presented in this chapter is a crucial stepping stone towards efficient skin detection and
face detection algorithms described in later chapters. We believe that the analysis of
color pixel classification algorithms presented in this chapter will be useful not only for
skin and face detection but also for the other computer vision tasks that need color-

based object detection and recognition.
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Skin Region Segmentation

4.1 Introduction

In the previous chapter, we presented an approach to skin detection using color pixel
classification, in which image pixels are divided into skin and nonskin pixels entirely on
the basis of their colors. Extensive experiments have shown that this skin detection
approach is attractive because skin pixels can be identified with almost minimal amount
of computation. In the previous chapter, it was pointed out that false detections can
occur because there are background objects with skin-like color. This chapter addresses
post-processing techniques that aim to improve the results of pixel-wise skin detection
by taking into account the texture property of the human skin. The work presented in
this chapter has three major motivations: (i) to reduce false skin detections, (ii) to group
skin pixels into homogenous skin regions for the face candidate selection stage
(described in Chapter S), and (iii) to adhere to the attention-focus strategy we have used
so far, that is reducing search space significantly using computation-efficient image

operations.
The current chapter is organized into five sections. A brief review of image

segmentation techniques is given in Section 4.2. The proposed techniques for skin

segmentation enhancement are presented in Section 4.3. An experimental analysis of
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these techniques is provided in Section 4.4. Finally, the chapter summary is given in

Section 4.5. Part of the work in this chapter has been reported in [81, 83].

4.2 Image Segmentation Techniques

Image segmentation is defined as the partition of a digital image into non-overlapping

regions that are meaningful with respect to an application [13, 40). General image

segmentation techniques can be divided into four main categories [23]: thresholding,

boundary-based, region-based, and hybrid techniques:

(]

Thresholding techniques assign pixels to different classes according to their
gray level. They assume that the objects of interest and the image background
have distinct ranges of gray level.

Boundary-based techniques perform segmentation by locating the boundaries
between regions. The region boundaries are often constructed through edge
detection and edge linking.

Region-based techniques, most notably split-and-merge and region-growing
approaches, are generalizations of the thresholding techniques. In the split-and-
merge approach, the input image is first divided recursively into non-
overlapping and homogenous regions using visual features such as intensity,
color or texture. An example of this step is the quadtree image decomposition.
Next, the split regions are merged iteratively as long as some region
homogeneity criteria are satisfied. In the region-growing approach, some initial
pixels are identified as seed regions, and at each subsequent step, unlabeled
pixels are added to these regions according a growth mechanism and a region
homogeneity rule.

Hybrid techniques use a combination of the above segmentation techniques.

4.2.1 Thresholding Segmentation

This technique works best when the object of interest and the background have

homogenous but distinct gray levels. Suppose F(x, y) is an image that contains a bright

object resting on relatively dark background. Such image can be segmented as follows:
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1, if F(x,y)2T

L. (4.1)
0, otherwise

G(x,y) = {

The threshold T, which can be either fixed or adaptive, is often determined from the
gray level histogram. For example, if an image contains one object and the background
scene both having uniform gray levels, the image histogram will be bimodal; therefore,
the object can be segmented with a threshold chosen between the two peaks of the
histogram. A well-known adaptive thresholding technique is the watershed algorithm
[13]). Thresholding is less effective for complex images that have wide-varying gray
levels. However, if the objects of interest are different from the backgiound in terms of
other features such as color and texture, we can transform such features to gray-scale

measures so that segmentation can be done in the new gray-scale domain.

4.2.2 Boundary-based Segmentation

As described above, boundary-based segmentation attempts to find and link edges to
form region boundaries. Edges are modeled as abrupt transitions in the gray-scale
image, which can be found by searching for either high gradient magnitudes or zero-
crossings of the second-order derivatives. Well-known techniques for locating edges
include Sobel, Prewitt, Roberts, Laplacian of Gaussian (LOG) and Canny edge
detectors. Except for images of low complexity, detected edges are often noisy and do
not form a closed curve. In most cases, only part of the detected edges belongs to region
boundaries. Therefore, an important task of boundary-based segmentation is to form
perceptual object boundary from the edge mask, and this often involves a boundary
tracking process. Boundary tracking techniques, such as maximum gradient tracer and
the tracking bug, are described in [13]. Boundary-based segmentation is often used in

conjunction with other segmentation techniques.

4.2.3 Region-based Segmentation
An example of region-based image segmentation is the algorithm by Salgodo ez al. [95].

The algorithm consists of two stages — a detailed global segmentation followed by a

merging procedure. In the first stage, the original image is repeatedly subsampled by a
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factor of 2 to form an image pyramid. The image at the top of the pyramid is segmented
into different classes using a probabilistic relaxation labeling technique.

The probabilistic relaxation labeling technique can be described as follows. The number
of classes M and the class-representative intensities are determined automatically from
the image histogram. Each image pixel (x,, y,) is assigned an M-dimensional probability

vector Py:
Pn = (Pnl, Pn21 ey PnM)v (4-2)

where P, is the probability that the pixel belongs to class a. Similarly, to each image
pixel, an M-dimensional compatibility vector is assigned; each element of this vector
measures the degree of support received from the neighboring pixels to classify the
pixel into a particular class. The probability vector is initialized according to the
differences between the pixel intensity and the class-representative intensities. The
compatibility vector is computed as the average probability vector of all pixels in the
neighborhood of the current pixel. The probability and compatibility vectors for all
image pixels are updated iteratively until they are stabilized. Each image pixel is then

assigned to the class with the highest entry in the probability vector.

The segmented image at the pyramid top is projected iteratively to lower levels of the
pyramid. At each level, the uncertainty area caused by downward projection is handled
using the same probabilistic relaxation labeling technique described above. In the
second stage, wansitional or frontier regions are identified based on a global contrast
measure, and then merged to the appropriate adjacent region according to a local
contrast measure. A region having a low global contrast and surrounded by a single
region is considered as a noise region; it is subsequently merged into its surrounding
region. Finally, adjacent regions are joined if their frontiers are short and the average

gradient over their frontiers are small.

4.2.4 Hybrid Segmentation
An example of hybrid image segmentation is the algorithm proposed by Fan ez al. [23].

First, color edge pixels are detected using gradient operators and entropic thresholding.

The edge masks of three image channels Y, U and V are combined to form the final
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edge mask. Connected edge pixels are grouped into edge regions, and adjacent edge
regions are identified. The midpoints between these edge regions are taken as seed
regions, which are then grown pixel-by-pixel. At each step, a pixel is assigned to the
adjacent region that corresponds to the minimum distance between pixel color and
region centroid color. Next, the set of pixels on a region boundary is compared with the
set of color-edge pixels in that region. Pixels that belong to only one of these two sets

are deemed as uncertain pixels, which are then refined on the basis of their neighbors.

4.2.5 Existing Skin Segmentation Techniques

As mentioned in the last chapter, the vast majority of skin segmentation techniques are
based on skin color [4, 8, 25, 43, 127). There are a number of techniques that extend the
color-based pixel-wise segmentation by taking into account the labels of adjacent pixels.
For example, Chen and Chiang [18] considered an image pixel as a skin pixel if more
than 4 of its neighbors have skin colors. Ir. addition, skin regions with size smaller than
5x5 are deleted. Feris et al. [26] used a morphological closing operator and a median
filter to refine skin-colored regions. Regions with a size smaller than 1% of the input
image are eliminated. Cai er al. [10] selected an optimal threshold for skin color
likelihood by monitoring the change in the skin-colored region size as the threshold
varies. These authors suggested that the change in the region size reaches a minimum

near the optimal threshold.

The face detection algorithm proposed by Albiol er al. [1] consists of a skin
segmentation stage, in which skin colors in the input image are first detected using a
Gaussian mixture model in the Cb-Cr plane (YCbCr color space). Once skin-colored
pixels are detected, a 2-D histogram of these pixels in the Cb-Cr plane is constructed
and treated as an image. This image is segmented using a watershed algorithm with
markers being all local maxima in the histogram. Results of histogram segmentation are

used to partition skin-colored pixels into homogenous regions.

More complex techniques use skin texture for segmentation. Fleck et al. [27] considered
only skin-colored pixels that have small texture amplitude as skin pixels. Garcia and

Tziritas (33, 34] proposed a skin segmentation approach that involves color quantization

80



Chapter 4 Skin Region Segmentation

and region merging. In their approach, pixel colors in the input image are mapped to a
set of 16 dominant colors (in the HSV color space), which are found through a color
clustering algorithm. Next, skin colors are detected using a piece-wise linear model of
skin color. Adjacent skin-colored regions are iteratively merged if their dissimilarity is

small. The following dissimilarity measure between two regions was used:
Dr(R.. R) = alH, - H| + AIS, - S| + y|Hi - H, (4.3)

where R, and R, are two adjacent regions, (H,. S, Vi) is the average color vector of
region R,, and a, §, and y are scalar weights. The color vector quantization technique
increases the homogeneity of skin regions, but it leads to poor detection of skin colors
(we showed in Chapter 3 that using fewer than 32 quantization bins per color channel
results in low skin detection rates). In addition, using the global measure in (4.3) two
different regions may have a very low dissimilarity measure because of the averaging of

colors in each region.

4.3 Proposed Skin Region Segmentation
Algorithm

The techniques presented in this section take into account the texture property of the
human skin. It is found that the skin has a smooth texture. In addition, we find that the
tface candidate selection approact described in Chapter 5 is most effective when
detected skin (including possibly false detections) is separated into homogenous
regions. That way, facial features. namely the eyes. can be identified with fewer false
detections. The proposed skin region segmentation algorithm consists of three main

stages: color-based skin detection. skin region verification, and skin region refinement.
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1. Color-based 2. Skin Roglon o 3 Skin Reglon
Skin Detection Vorification Refinoment

v

Chapter 3

Figure 4.1: Block diagram of the proposed skin segmentation algorithm.

The color-based skin detection stage is the focus of Chapter 3. In this section, we
describe the last two stages of the proposed skin region segmentation algorithm. Let I
be a color input image. The outcomes of the color-based skin detection stage are:
e a skin color score image S whose entry S(x, y) of the color-based skin score
image indicates the likelihood of pixel k(x, y) having a skin color; and
e a color-based skin mask Bs. whose entry B (x, y) has a value of either 1 or 0,
indicating whether or not the pixel I(x, y) is a skin color. This mask is obtained

from the score image S using a threshold 6. = 1.

4.3.1 Skin Region Verification

This stage is based on two properties of the human skin: (i) the human skin has a
relatively smooth texture; and (ii) there exists, in most cases, a boundary between the
actual skin region and the image background. Two skin verification techniques based on

these properties are presented next.

A. Skin Texture Verification

Texture is an intuitive property of the surface of an object, yet there is no precise and
unique definition of texture [107]. This is because there is a wide variability in textures.
Pitas [87] defined texture as “a measure of image coarseness, smoothness and
regularity”, whereas Forsyth and Ponce [28] considered image textures as “organized

patteins of quite regu’ar subelements™. Texture is made up from a large number of
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primitive elements or textels. Some textels are well-defined, and follow a regular
pattern; others are less well-defined, and arranged in a less ordered pattern. Two
features are often associated with a texture: fone and structure. Texture tone is defined
based on color or intensity properties of pixels in each textel, whereas texture structure
is related to the placement of textels. For regular textures, such as a brick wall and
checker board (Fig. 4.2a,b), texture structure is the dominant feature, and the textures
are known as macro-textures. In contrast, for irregular and unordered textures, such as
hair and grass (Fig. 4.2d.e), texture tone is the dominant feature, and the textures are

known as micro-textures. Examples of different textures are shown in Fig. 4.2.

The different approaches to texture representation can be divided into three main
categories: statistical, structural and filter-based. Statistical approaches (see e.g. [40])
characterize texture using statistical measures such as mean, variance, skewness,
kurtosis, and entropy. These measures are computed from a variety of sources including
the gray-level histogram, the gray-level difference histogram, the gray-level co-
occurrence matrices, the autocorrelation function, or the spectral power density
function. Structural approaches describe textures in terms of textels and the placement
rules [66]. Filter-based approaches apply a series of linear filters on the image. Texture
features are then extracted from the filter responses. Recently, there has been a growing

emphasis on the use of wavelets for multi-scale representations of texture [74, 137].

(a) brick wall (b) checker board (c) woven mat

(d) hair (e) grass (f) skin

Figure 4.2: Texture examples.

13 The term textel stands for texture element.
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The human skin texture is due to the relatively unordered grouping of several pixels that
are similar in color and intensity. Therefore, the dominant feature of the skin texture is
texture tone, for which simple statistics compuied from local windows are sufficient to
describe. Our method can be described as follows. Let C be a channel of the input color
image. For each pixel location (x, y) in C, the standard deviation of its WxW

neighborhood is computed:

a<.r.y)=\/- ! > (Chp-w)t, (4.4)

WXW i jenien

where u is the mean intensity in the neighborhood N(x,y) at of pixel (x, y). The standard
deviations for all pixels in C is treated as an image ©. This image is thresholded to form

a binary mask By(x, y) for homogenous regions:

1, if 6(x, y) <6,

L 4.5)
0, otherwise

Bh(xv )’) = {

The standard deviation is very small for the interior o1 a skin region. However, this
measure can be unstable for skin pixels near the skin region boundary because the local
windows at these pixels may straddle over the inhomogeneous regions including skin,
skin boundary, and possibly nonskin regions. To address this issue, we select a small
window size of 3x3. This window size is sufficiently large to describe intensity
variations in the local neighborhood of each pixel. The standard deviations are

computed using an efficient algorithm that is based on linear filtering (see [able 4.1).

Table 4.1: Computing standard deviation image.

Input; Color channel C(x, y), window size WxW

Output: Image of standard deviations 6(x, y).

Algorithm:

Step 1: Construct an averaging filter mask h of size WxW.

Step 2: Compute image of squared intensities: Cz(x, y) = C(x, y)2

Step 3: Apply the averaging mask to the gray-scale and squared-intensity
images: p=C*h,andm;=C>*h

Step 4: Compute the image of standard deviations:

o(x, y) = \m,(x, y) -1 (x, y)
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So far, the standard deviation image is computed only for one color channel. We find
that non-uniform region detection can be improved if all three color channels are used.
Figure 4.3 illustrates that using three color channels we can locate non-uniformity that is
not evident in the gray-scale version of the input image. A homogeneity binary mask is
computed for each image channel as in (4.5). The final homogeneity mask is the
combination, through logical AND, of the three homogeneity masks. The result of

detecting smooth regions in another test image is shown in Fig. 4.4.

(a) input image

(b) skin texture using gray-scale (c) skin texture using all color channels
Figure 4.3: Comparison of using gray scale and all channels for finding skin-textured

regions. White pixels indicate homogenous regions.
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(a) input image (b) skin-texture region
Figure 4.4: Finding skin-textured regions. White pixels indicate homogenous

regions.

B. Finding Skin Region Boundary

The skin texture test in (4.5) eliminates most non-uniform image regions. In an
unconstrained input image, there may be nonskin regions that have relatively low
standard deviations &(x, y). Common examples of such regions are smooth painted walls
and wooden surfaces. We believe that a much more complex texture model is needed to
distinguish reliably the texture of such nonskin regions from the skin texture. Here, we
adopt an alternative strategy that aims to separate skin regions from regions of similar
textures. The separation is achieved by first detecting edge pixels and then removing
such pixels from the skin mask image. The end results of combining the skin color test,
the skin texture test, and the skin boundary test are skin regions that can be treated

separately during later stages of face detection.

In our work, edge detection is done using the Canny edge detector [12], which works as
follows. The input image is convolved with two Gaussian derivative filters (x and y
direction). The gradient magnitude and direction at each pixel location are computed

from two filter outputs. Edges are found by looking for local maxima of the gradient
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magnitude. Two magnitude thresholds are used to detect strong and weak edges. Weak

edges are included in the output only if they are connected to strong edges.

We find that using all color channels in edge detection is better than using only one
color channel or gray-scale image. The reason is that weak edges in one color channel
can still be visible in other channels. Therefore, the Canny edge detector is applied to
the three color channels of the input image. A final edge mask Begge(x, y) is formed by
combining the three edge masks via logical OR operator. Results of detecting skin

boundary in two test images are shown in Fig. 4.5.

(a) for input image in Fig. 4.3a (b) for input image in Fig. 4.4b
Figure 4.5: Finding skin region boundary.

An image pixel is considered as skin pixel if it satisfies the following conditions:
) it has skin colors (binary mask By.)
(ii) its local neighborhood is homogenous (binary mask By)
(iii)  itis not an edge pixel (complement of binary mask Begge)
Mathematically, a binary mask Bs for skin regions can be defined as:

Bs =B By "B (4.6)

edge

The edge pixels are removed from the skin binary mask in order to separate skin-

colored regions that are dissimilar in texture and color.
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4.3.2 Skin Region Refinement

A. Connected-Component Labeling

The skin binary mask B consists of 1's and 0's for skin and nonskin pixels,
respectively. Objects in the binary mask are labeled using a connected-component
labeling algorithm [40]. This labeling cperation can be considered as the partitioning of
the binary mask into a set of smaller disjoint regions Bg,. The disjoint regions Bs; are

processed separately in the next stage (Chapter 5) of our face detection algorithm.

B. Noise Removal in Skin Binary Mask

Noise in the binary mask, which is caused by a few skin-cclored background pixels,
tends to scatter and has small area. This suggests the following noise removal
techniques. Any skin region B; with area, compared to the largest skin area, that is
below a threshold is removed. We find that an area threshold of @y, = 1% works quite
well in most cases. In addition, regions whose area reduces to less than Gerosion = 10%
after a morphological erosion operation are removed. This technique can deal with

regions of sparse density.

C. Region-growing Using Image Morphology

To locate the boundaries between skin and nonskin regions, and to remove non-
homogenous regions, aggressive thresholds are used in the skin verification stage. A
side-effect of this approach is that a significant number of pixels within each skin region
are removed during the verification of skin homogeneity and the detection of skin
boundary. These skin pixels can be recovered as follows. For each detected skin region
B;, the corresponding skin color mask Bs; is identified. The skin region mask B is
enlarged within its bounding rectangle through a morphological dilation operation. All
holes within the enlarged skin mask are filled. The enlarged and filled skin mask is
combined with the skin color mask B, using the logical AND operator, to form the

output skin mask for the region.
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Another pcst-processing step is to remove skin regions that fall mostly inside another
skin region. These enclosed regions may be present due to over-segmentation of a skin

region. The complete skin segmentation algorithm is given in Table 4.2.

Table 4.2: Propose skin region segmentation algorithm.

Input Image I(x, y) in the RGB color space (or any other color space)

Output  Binary masks B;, i =1, 2, ... for skin regions

Algorithm

STAGE | - Skin Color Detectiori

Step 1: Compute skin color score image S(x,y) and skin color mask By as described

in Chapter 3.

STAGE Il - Skin Region Verification

Step 2: Compute standard deviation images o(x, y) for 3 image channels. Threshold
these images with &, = 12 to obtain three homogeneity masks. Combine these masks
using logical AND operator to form the final homogeneity mask B,

Step 3: Apply the Canny edge detector on three image channels. Combine the three

edge masks using logical OR operator to obtain the final edge mask Beagc-

Step 4: Form the skin binary mask B; = B« n B, N B,

STAGE Il - Skin Region Refinement

Step 5: Label connected components of the skin mask B;. Remove regions smaller
than 8, = 1% of the largest region, and regions whose area reduces to less than
Oerosion = 10% after a morphological erosion operation.
Step 6: For each remaining region B; (x, y):

o Obtain the corresponding skin color mask By (x, y),

e Morphologically dilate Bs; (x, y) within its bounding rectangle and fill all

holes in the dilated mask.
o Obtain refined mask for the skin region:
Bs.i(x, y) (refined) = By i(x, y) N Bs(x, y) (enlarged)

Step 7: Remove skin regions that fall mostly inside another skin region.
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4.4 Results and Discussion

The proposed skin region segmentation algorithm was tested on 500 images in the ECU
database (images 2501-3000). These images were segmented manually for skin regions
so a pixel-wise comparison betwcen the algorithm outputs and the segmentation
ground-truths is possible. The various classification rates are defined in the same way as
in (3.25)-(3.27). The classification rates for the proposed segmentation algorithm are
listed in Table 4.3. The classification rates of the skin detection approach using only
color pixel classification (i.e. the approach described in Chapter 3) are also included in
the Table for comparison. The table shows that the proposed skin region segmentation
algorithm, by using the texture property of the human skin, does improve skin detection.
For example, at a FDR of near 10%, the proposed algorithm has a CDR of 89.1%
compared to a CDR of 84.4% by the approach of using only skin color. The
classification rate of the proposed algorithm (the last column) is higher than both cases

of skin detection using only color pixel classification.

Table 4.3: Comparison of skin region segmentation approaches.

CDR (%) FDR (%) CR (%)
Skin detection using color 84.4 10.1 88.7
pixel classification: T = 2
Skin detection using color 894 13.7 86.9

pixel classification: T = 1.2

Proposed skin region 89.1 99 89.9
segmentation algorithm

Results of skin region segmentation performed on three test images are shown in
Fig. 4.6. Each segmented skin region is enclosed by a red rectangle. In all cases, skin
regions are correctly detected, and the actual skin regions are well separated from false
detections. This is a very desirable property of the proposed algorithm because we can
treat each detected skin region (enclosed in a red rectangle) independently of other skin
regions. Additional results on two test images are shown in Fig. 4.7. There are a number

of falsely detected skin regions in the output in Fig. 4.7b. These false detections can be

90



Chapter 4 Skin Region Segmentation

removed if more aggressive thresholds are used in our algorithm. However, we decide
to keep these false detections at this stage: they can be discarded more easily in later

stages of face detection using more a priori information about the face pattern.

(a) input image 1 (b) output 1
(c) input image 2 (d) output 2
(e) input image 3 (f) output 3

Figure 4.6: Skin region segmentation examples — Part .
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Input Images Skin Region Segmentation Results

|

(a) (b)

(©)

Figure 4.7: Skin region segmentation examples — Part II.
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4.5 Chapter Summary

In this chapter, an algorithm has been proposed for segmenting human skin regions in
color images. Thec proposed algorithm, which combines region-based and boundary-
based segmentation techniques, is novel compared to existing skin detection approaches
in that it takes into account both color and texture properties of the human skin. The
proposed algorithm consists of three main stages: color-based skin detection, skin
region verification, and skin region refinement. Color-based skin detection is done using
the Bayesian classifier described in the previous chapter. In the skin region verification
stage, a statistical homogeneity measure is used to select only skin-colored regions that
have smooth texture. In addition, the Canny edge detector is applied to all color
channels of the input image in order to enforce the outline of skin regions. In the skin
refinement swge, a number of post-processing techniques are employed to remove noise

and to cope better with the problem of over-segmentation.
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Feature-based

Face Candidate Selection

5.1 Introduction

The last two chapters address the problem of segmenting regions in unconstrained color
images. The segmented skin regions provide an initial estimation of face locations in an
input image, and through skin segmentation as much as 90% of the face search space
can be eliminated. In this chapter, we focus oa the task of finding face candidates in the
detected skin regions. In addition, several heuristic techniques are proposed for a
preliminary verification of the face candidates. More sophisticated techniques for final

verification of the remaining candidates will be discussed in the next chapter.

The majority of skin color-based face detection techniques consider each detected skin
region as one face candidate (15, 23, 105, 127, 135). The face candidate is checked
against heuristic rules about the face shape (23, 105], compared with face templates
[127, 135}, or processed by face/nonface pattern classifiers [72]. This approach works
based on the assumption that the facial skin region is separated neatly from other skin
regions because of the presence of nonskin-colored image backgrouad (Fig. 5.1a). This
assumption is reasonable in applications such as face segmentation for videophone

sequence coding [15) and face tracking with a desktop camera, in which the input image
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typically consists of a head-and-shoulder view of the person. In more general imagery,
this assumption is no longer valid because the facial skin region may be merged with
other exposed skin regions, especially the neck, shoulders and arms (Fig. 5.1c), or one
skin region may consist of multiple faces (Fig. 5.1e). Clearly, in these cases, verification
of face candidates will fail if each detected skin region is treated in its entirety as one
face candidate. Therefore, there is a clear need for identifying face candidates in each

segmented skin region.

An obvious approach to finding face candidates in a segmented skin region is to use a
window-scanning technique [25]. In this approach, rectangular windows of fixed size in
the skin region are scanned for faces. For each window centered at a given pixel
location, a pattern classification algorithm is emplayed to determine if the window
contains a face. In fact, the window-scanning approach is commonly taken in the
holistic approach to face detection that we described in Chapter 2. However, there
remain a number of issues to be resolved with the window-scanning approach. First,
because the face can appear at any location in the skin region, an exhaustive scan of a
large number of windows in the skin region is required. Second, because a face can
have any size, whereas the scanning window has a fixed size, several scales of the skin
region must be examined. Third, there is a prcblem of multiple detections of the same

face across different scales and at nearby pixel locations.

In this chapter, we propose a novel feature-based approach to identifying face
candidates in a skin region. In our approach, potential eye regions in the skin region are
first located. For each pair of eye regions, two face candidates are constructed based on
a geometric model of the human face. These candidates are then subjected to a series of
preliminary tests in order to remove obvious nonfaces. All remaining face candidates
will be further examined using pattern classification techniques that are presented in
Chapter 6. The current chapter is organized as follows. A novel technique for detecting
potential eye regions in a skin region is presented in Section 5.2. The formation of face
candidates from a pair of eye regions is described in Section 5.3. In that section, we also
discuss the validity of our face-from-eyes approach. Several techniques for preliminary

verification of the face candidates are proposed in Section 5.4. Experimental results of
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the feature-based approach to face candidate selection are discussed in Section 5.4. The

chapter summary is presented in Section 5.5.

(a) input image (b) skin region: face
(c) input image (d) skin region: face, neck, & shoulder
(e) input image (f) skin region: multiple faces & neck

Figure 5.1: The need for finding face candidates in each segmented skin region: (b),
(d), and (f) are segmented skin regions produced by the algorithm in Chapter 4; skin
region perimeters are shown in red; the ground-truth faces are shown as blue

rectangles.
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5.2 Eye Region Detection

5.2.1 Existing Eye Detection/Extraction Techniques

The eye is a prominent feature of the human face, and it has been used as an important
visual cue in face recognition. Compared to other facial features such as mouth and
chin, the eye changes very little even in different facial expression. For example, the
distance between the comers of the two eyes remains almost fixed for a person, and this
fact has been used to normalize two face images before comparison. Many techniques
f.r extracting eye and other facial features have been studied in the context of face
recognition. These techniques are mostly limited to processing frontal facial images that
contain typically a mug-shot of a person on a relatively simple and uniform background.
Under this assumption, the problem of extracting the eyes is simplified. For example,
De Silva and Win [103] used horizontal and vertical projection of the edge map to
locate eyes; Lin er al. [64) proposed an a!gorithm for detecting eyes in facial images
using fractal dimension; Lin and Wu [63] used genetic algorithms to locate eyes as well

as other facial feature points (eyebrows, nose, and mouth).

A number of eye detection techniques have been proposed in the context of face
detection. These techniques are designed to work on unconstrained images. Yow [134]
proposed that facial features such as eyebrows, eyes, nose and mouth can be modeled as
dark bars on light background, which can be located using bar detectors. In Yow’s
approach, the following elongated 2-D Gaussian derivative filters are used as bar
detectors:

dZ
fy)=gx)=—5g(y). (5.1)
dy

where g(x) is the Gaussian function with mean g, and variance 0',2:

! _
g(x)= exp— S H) ) (52)
\/27z0' 20,

The elongation of the filter (g,/0, = 3:1) is chosen to correspond to the aspect ratios of
the eye and nose. This approach to facial feature extraction has a number of practical

limitations. First, to detect facial features in an image containing in-plane rotated faces,
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rotated versions of the Gaussian derivative filters are needed. Second, different
scales, o, are required to detect facial features of different sizes. Third, the feature
detection approach using Gaussian derivative filters hias been found to have a high

number of false detections, even for images of moderate background complexity [77].

Yuan et al. [135] modeled facial features (eye and mouth) as image valleys, which are
detected using templates of fixed sizes. The feature detector is designed for frontal
upright faces where the eye and mouth are almost horizontal. Wong et al. [125]
proposed an eye detection approach, in which eye regions are emphasized by
subtracting, from the original image, a valley image that is obtained through gray-scale
morphological operations. Sobottka and Pitas [105] modeled the eye and mouth regions
as dark image regions, which are located by analyzing horizontal and vertical
projections of the intensity image. Jeon er al. [49] observed that (i) among facial
features, the eyes and eyebrows are always darker than the rest of the facial region; (ii)
the eye and eyebrow regions occupy about 20% of the circular face mask. Based on
these observations, an intensity threshold is selected so that only 20% of image pixels
are smaller than it. The intensity threshold is applied on the input window of size 21x21
to form a binary image for eye and eyebrow regions. Face orientation is determined by
comparing, using the Hausdorff distance, the binary image with rotated versions of a
binary face model, which consists of two horizontal lines representing the two eyes. Wu
and Zhou [128] developed a face candidate selection technique that relies on the
detection of eye regions. In their approach, eye-analogue segments are first detected as
regions that are darker than their neighborhood. Detected segments are paired to form
face candidates if they satisfy a number of size, orientation and distance constraints.
Their experimental results showed that the technique may fail if the face rotation angle

is too large.

Sung (110] proposed an cxample-based learning approach for object detection. The
proposed approach, which is described in Section 2.3.3, is applied to the detection of
human faces and eyes, and the recognition of hand-printed digits. The distribution-based
model consists of 16 Gaussian “eye” clusters and 8 “noneye” clusters. The clusters are
generated by performing elliptical k-means clustering on a set of 6684 human eye

patterns, and 8335 noneye patterns. The noneye clusters are carefully formed so that
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they are close to the eye clusters. Because the eye-detection system was trained with

only frontal eye patterns, it fails at large rotation angles.

Hsu et al. [43] presented a color-based eye detection approach, which is based on the
observation that the eye has high Cb and low Cr (Cb and Cr are chrominance channels

of the YCbCr color space). In their approach, two eye maps are first computed:

EyeMapC = %{Cb2 +(255-Cr)* + (Cb/Cr)} , (5.3)
YOg

EyeMapL = , 54

Y = Y9 g +1 64)

where @ and © are, respectively, gray-scale morphological dilation and erosion
operators, g is the structuring element. Each of the three terms in (5.3) is normalized to
the range [0, 255]. The chrominance eye map EyeMapC is enhanced with histogram
equalization, and then multiplied with the luminance eye map EyeMapL. The resulting
eye map is dilated, masked and normalized to brighten the eyes and suppress other
facial areas. In this color-based approach to eye detection, the eye color is modeled
using scores that are highly heuristic. In conwrast, in the eye detection algorithm we

propose below, the eye color is modeled using a robust statistical technique.

5.2.2 Proposed Eye Region Detection Technique

We present in this subsection a novel technique for locating eye regions in a segmented
skin region for the purpose of face candidate construction. Our assumptions and goals in
eye region detection are stated below:

o Lighting conditions: the assumption regarding the lighting condition is
essentially the same as with skin segmentation; that is, the focus is on typical
outdoor daylight and office lighting conditions.

o Face orientation: the eye must be detected regardless of the face pose,
provided that the eye is visible in the face pose.

o Facial expression: the eye must be detected regardless of the facial expression

(e.g. eye open or closed). This implies that detection methods based on
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geometric assumptions, such as the eye is made up of elliptic curves, are
unlikely to be effective.

o Eye outside segmented skin regions: in some cases, because of artifacts of the
skin segmentation process, for example due to the presence of hairlines, the
actual eye may fall outside the corresponding segmented skin region (see, e.g.,
Fig. 5.1f). It is important that eye regions are detected even when they are not
enclosed within a segmented skin region.

o Eye detection accuracy: because the centers of detected eye regions are used
later steps to construct face candidates (Section 5.3), it is important that these
centers are pinpointed with reasonable accuracy. In addition, while falsely
detected eye regions cannot be avoided entirely, it is necessary to keep the
number of false eye detections to a minimum.

o Eye spectacles: spectacles pose a difficult challenge to eye detection. In our
work, eye region detection in the presence of spectacles should still be possible,

as long as the spectacles do not alter too much the eye color.

The above goals suggest a color-based approach to detecting the eye because color,
unlike shape, is a visual feature that is less sensitive to changes in pose. The proposed
technique locates eye regions by first looking for pixels that have eye color. We use the
term ‘eye color’ to represent the color of eye-pupil, iris, eyelash, and the white of the
eye. This definition of eye color allows the eye to be located even when it is closed. Our
experiments have shown that the eye has very consistent but distinctive color. Eye color
is generally different from skin color; this makes color-based detection of the eye in 3

segmented skin region possible.

A. Color-based Eye Score

In the following description, the notation follows with that of Chapters 3 and 4. Let w,,
w3, and w3 represent the skin color, nonskin color, and eye color classes respectively.
Let p(x|jw:) be the class-conditional probability density function (pdf) of class w;. The
class-conditional pdf of skin color p(x|w;) is estimated as in Subsection 3.4.4. The class-
conditional pdf p(x|ws) of eye color can be determined in a similar way using a training

set of eye pixels. We use Set 4 of the ECU face detection database; this set consists of
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manually segmented eye images. An eye score is defined as the likelihood ratio of the

eye and skin color classes:

P, 5.5

fx) = P

Because our aim is to detect eye regions in segmented skin regions, a score that
differentiates the eye and the skin is needed. Hence, the skin color ndf is used in (5.5) to
compute the eye score. The eye score is based on the Bayesian decision rule for
minimum cost (see Subsection 3.4.4), and it measures how likely a pixel can be
considered as an eye pixel. Based on the analysis of color space and histogram size in
Chapter 3, we decide to use the RGB color space and a histogram size of 64 bins per
color channel in estimating the eye color pdf p(x|ws). Note that any color space can also

be used.

Let I, be the rectangular region of the input image that corresponds to a segmented skin
region, I(x, y) be the color of the pixel at image location (x, y). An eye score image E; is

obtained by computing the eye score for every pixel in region I;:

Ei(x, y) = f(lix, y)). (5.6)

If the eye score for a pixel is greater than a predefined threshold 8.y, we can consider
the pixel as a potential eye pixel. Further processing is needed for eye detection, but

before discussing that, we investigate the properties of the eye score defined in (5.5).

The images in Fig. 5.1 are used as test images, and a threshold ., = 1.0 is applied on
the corresponding eye score images. The detected eye pixels are shown in Fig. 5.2. We
show only the detected eye pixels that are inside the bounding bexes of segmented skin
regions. The following observations can be made about the color-based eye score:
o In all three cases, the eye pixels are picked up. This holds regardless of whether
the eye lies completely inside (Fig. 5.2b,d) or outside a segmented skin region
(Fig. 5.2f).
o The eye score is very effective within a skin region. There are very few false eye

detections inside each skin region.
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o The eye score is not very effective outside a skin region. There are many false
eye detections outside the skin region or nearby the skin region perimeter. This
problem can be addressed through post-processing.

o If the actual eye region does not lie inside the segmented skin region (Fig. 5.2f),
it still remains close the segmented skin region. In fact, the actual eye region
often corresponds to a concave part of the segmented skin region.

¢ The eye regions belong to image regions that are detected as nonskin. More
precisely, the eye regions tend to have very low skin scores. Therefore a
detected eye pixel that has a high skin score can be considered as a false

detection.

It is fair to say that the color-based eye score produces many eye candidates. For the eye
detection to be applicable to the proposed face candidate selection approach, it is
necessary to limit the number of detected eye candidates. This can be done by
incorporating some of the existing techniques described in Subsection 5.2.1 for eye
verification. Alternatively, we can rank the detected eye candidates, and then select only
a fixed number of eye candidates. The following ranking scheme is used in our work.
Let 4. be the average eye score, and us be the average skin score for pixels in an eye
candidate region. The rank of this eye candidate is determined by the ratio of these two

scores:

eye rank = 1 u, . 5.7)
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(a) segmented skin 1 (b) eye color pixels 1
~
5
E
|
1
|
!
b
-
(c) segmented skin 2 (d) eye color pixels 2
(e) segmented skin 2 (f) eye color pixels 3

Figure 5.2: Eye detection using a color-based eye score. In (b), (d), (f), the

perimeters of the segmented skin regions are shown in red.

B. Eye Region Detection Algorithm

Potential eye pixels are considered as pixels with high eye scores and low skin scores.
We define an eye search region that consists of two parts (Fig. 5.3). The inner part is the
skin mask eroded by a circular structuring element with a radius of 8 pixels. The outer

part is obtained from the skin mask and its convex region. The convex region is eroded,
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by a circular structuring element of radius 6 pixels, and combined with a strip outside
the skin mask. The strip is the difference between two dilated versions of the skin mask
by circular structuring elements with radii of 4 and 7 pixels. This definition of the eye

search region allows the detection of eye pixels that fall outside the skin mask.

Two different sets of thresholds (for skin score and eye score) are used to find potential
eye pixels in the inner part and the outer part. This strategy is necessary because the eye
score is more effective inside the skin region. For the inner part, eye pixels must have
eye score greater than 0.8, and skin score smaller than 2. For the outer part, eye pixels
must have eye score greater than 6, and skin score smaller than 2. The detected eye
pixels are grouped into eye regions through connected-component labeling. Eye regions
that do not satisfy some constraints are removed. We check the following constraints for
each eye region:

e region area compared to the largest eye region must be larger than 1%;

e region aspect ratio must be within the interval [0.1, 10];

e region area compared to the bounding box area must be greater than 0.3.
A step-by-step description of the proposed algorithm is given in Table 5.1. We should
point out that the parameters used in our algorithm are empirically determined through

experimentation with a wide range of input images.

Eye Search Region =
Skin Region Inner + Skin Region Outer

Skin Region
Inner
Skin Region
Perimeter
Excluded
Gap

Figure 5.3: Defining eye search region based on the skin mask.
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Table S.1: Proposed eye detection algorithm.

Input: B;; : Binary mask of a skin region.

I; : Rectangular part of the input image for the skin mask By ;.

Si: Rectangular part of the skin score image for the skin mask B .
Output: A list of eye regions.
Algorithm:
Step 1: Compute the eye score image E; for the region as in (5.5) and (5.6).
Step 2: Obtain binary masks for potential eye pixels

=(E, 208 N (S <2)

L

for inner part: B

color outer.d

for outer part: B =(E z6) n (S =2)

color inner.d

Step 3: Define the eye search region as described above.

chc seuchi — { Beyc search inner,i ? chc search outerf }
Step 4: Obtain the final eye mask:
chc.l = (chcsauchoutcr.i a Bmlor oulct.l) v (chcmh innes.d N Bcolor inncr.a‘)

Step 5: Perform connected-component labeling of By . Remove noise regions using
constraints about eye region area and aspect ratio, as described above.
Step 6: Select a fixed number of eye regions according to the eye rank defined in

(5.7). Each selected eye region is represented by its centroid.

C. Restilts of Eye Detection

The results of eye detection on the test images of Fig. 5.1 are shown in Fig. 5.4. The
perimeters of skin regions are shown in red, and the detected eyes are shown as blue
dots. The proposed algorithm can detect all eyes, even when the eyes fall outside the
segmented skin regions (Fig. 5.4c). The number of false eye detections is typically
between 4 and 18 in a skin region. Because for each pair of eyes, two face candidates
are formed (see Section 5.3), we can expect fewer than 400 face candidates per skin
region. Results of eye detection for different input images are shown in Fig. 5.5 and
Fig. 5.6.
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(a) for input of Fig. 5.1a (b) for input of Fig. 5.1c (c) for input of Fig. 5.1e

Figure 5.4: Results of eye detection — Part I. The perimeters of segmented skin regions

are shown in red, and the detected eye points are marked as blue dots.

(a) eyes closed (b) detected eye points =3

(c) with glasses (d) detected eye points =7
Figure 5.5: Results of eye detection — Part II. The perimeters of segmented skin

regions are shown in red, and the detected eye points are marked as blue dots.
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(a) eye point outside segmented skin (b) detected eye points =7
(c) rotated face (d) detected eye points = 14

(e) multiple faces (f) detected eye points = 30
(g) different eye colors (h) detected eye points = 16

Figure 5.6: Results of eye detection — Part III. The perimeters of segmented skin

regions are shown in red, and the detected eye points are marked as blue dots.
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5.3 Face Candidate Selection

In this section, we present a new approach to face candidate selection that is based on
the results of eye detection described in the previous section. The geomeiric face model
is addressed in Subsection 5.3.1. The steps of constructing face candidates from a pair

of eye points are described in Subsection 5.3.2.

5.3.1 Geometric Face Model

We propose a geometric face model, shown in Fig. 5.7, to determiue the spatial extent
of the face once the eyes have been detected. The geometric face model is an extension
of a model we described in [86]. The model reflects roughly the relative anthropometric
distances between the facial landmarks. The key property of this geometric face model
can be stated as follows. Let D be half of the distance between the two eye points,
where each eye point is taken as the center of an eye region. The central part of the face
can be considered as the rectangular region of size 4Dx40 highlighted in Fig. 5.7. The
four comers of the region are completely determined from the two eye points. Hereafter,
this approach is termed as the face-from-eyes approach. Since in later face/nonface
verification stages, we are interested only on the central portion of the face, the aspect
ratio of 1:1 is used in the geometric face model. This aspect ratio of the face is also used

by many other authors in face/nonface classification [91, 111].

A similar face model is also used by Samad et al. [96] in a hybrid rule-based approach
to eye detection. However, Samad et al. used the face model to locate eyes in a face
image so that the face image can be normalized for face recognition purpose. In
contrast, we used the face model to determine the spatial extent of the face in an
unconstrained image where the eye positions are known. Furthermore, Samad et al.
assumed the face is in a frontal upright position whereas in our approach, provision is

given for face rotations about different axes.
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S e e
Figure 5.7: Geometric face model.

The geometric face model becomes less accurate when the face is rotated. We need to
determine the extent of rotation, under which the face-from-eyes approach is still
reasonably accurate. Because the face is a 3D object, three types of rotation need to be
considered:
(1) roll is the rotation about the axis which is perpendicular to the image plane
(also known as the in-plane rotation);
(2) yaw is the left-and-right rotation;

(3) pitch is the up-and-down rotation.

We conducted an experiment to investigate the effects of the above types of rotation on
the face-from-eyes approach. The experiment involved five human subjects. During the
experiment, the subjects’ faces were captured at various rotation angles. The rotation
axes are shown in Fig. 5.8(c), Fig. 5.9(1), and Fig. 5.10(h). The orientations of these
rotation axes are chos..1 according to the righr-hand-rule: if we curve our right palm
following the rotation arrow, then the thumb will point along the direction of the
rotation axis. In reporting the rotation angles, we follow the following convention: the
rotation angle is the angle that a face image must be rotated in the positive direction, as

indicated by the rotation arrow, so that it becomes a frontal upright face.

Clearly, the face-from-eyes approach is valid for all in-plane rotations (Fig. 5.8).
Results of the experiment indicated that the face-from-eyes approach is also applicable
for yaw rotations where the rotation angle is between -18° and 18° (Fig. 5.9), and for

pitch rotations where the rotation angle is between -36° and 36° (Fig. 5.10). In
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Figs. 5.8-10, the rotation angles, for which the face-from-eyes approach is valid, are
indicated by images with green bounding rectangles. For illustration purpose, the face
bounding rectangles (in red), which are generated automatically according to the

geometric face model in Fig. 5.5, are drawn on top of the original images.

(@) 0° (b) any angle (¢) rotation axis

Figure 5.8: Effects of in-plane rotation on the face-from-eyes approach.

(a) —90° (b) -72° (c) —54° (d) -36°
(e)-18° H0° (g) +18° (h) +36°
(i) +54° G) +72° (k) +90° () rotation axis

Figure 5.9: Effects of yaw rotation on the face-from-eyes approach.
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(a) =54° (b) —36° (o) -18° (d) 0°
|

_— | I 4 "G._-J
(e) 18° (f) 36° (g) 54° (h) rotation axis
Figure 5.10: Effects of pitch rotation on the face-from-eyes approach.

(a) upright-frontal (b) roll rotation: any angle (c) yaw rotation: —18°

LS *--J

(d) yaw rotation: +18° () pitch rotation: —36° (f) pitch rotation: +36°

Figure 5.11: Rotation angle limits of quasi-frontal faces.

Table 5.2: Assumptions about face orientation in quasi-frontal views.

Rotation Type Rotation Angle
Roll (in-plane) any angle

Yaw -18°to +18°
Pitch (tilt) -36° to +36°

Based on the above analysis, we summarize in Table 5.2 the assumptions about the
quasi-frontal views. We can expect that the face-from-eyes approach to work also for

face orientations that are formed by a combination of roll, yaw, and pitch rotations
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within the limits listed in Table 5.2. These quasi-frontal assumptions are not too
restrictive because in applications such as face recognition or surveillance, the human
face contains the most discriminative information when it is seen in a quasi-frontal

view. The constraints of the quasi-frontal face views are illustrated in Fig. 5.11.

5.3.2 Constructing Face Candidates

The task of constructing face candidates can be described as follows: given two eye
points, find the spatial boundary of face candidates that satisfy the geometric face model
described in the previous subsection. In Fig. 5.7, the face is in the frontal upright
position, and the eye line is horizontal. The method of finding the face spatial boundary
proposed here can be applied to the general case when the eye line has an arbitrary
orientation. In the following description, for an image point p, px denotes its horizontal

coordinate and py denotes its vertical coordinate.

(a) Candidate 1: face angle a; =S (b) Candidate 2: face angle a; = + ©

Figure 5.12: Determining the face boundary for a given eye pair.

For a given pair of eye points, there are two possible face candidates, as shown in

Fig. 5.12. The two candidates have opposite orientations. The face orientation can be
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characterized by face angle, which is defined as angle in the range [0, 2r) that a face
must rotate in the anti-clockwise direction to become an upright frontal face. The face
angle is actually the (directed) angle between the eye line and the horizontal axis.
Clearly, if one candidate has a face angle of f, then the other candidate has a face angle

of eitherf+morf-m.

Let e, and e; be the two eye points. The coordinates of the four corners ry, r,, r3, and r4

of the face bounding box can be computed as follows:

Step 1: Compute half the distance between the two eyes.

- %\/(eh e, +(e;, €, ) (5.8)

Step 3: Compute the nwo points p; and p; along the eye line.
The positions of the two points p; and p; with respect to the two eye points are shown in

Fig. 5.12. The points p; and p; can be located as follows:

p.= Ge,~¢,)/2, p,= (3e,-¢,)/2

Py = (e, —¢,)/2, p,, = (3¢, — €,)/2. (5.9)

Step 4: Compute the four face cornersry, rj, r3, and ry.
The following formulae are applicable to both cases shown in Fig. 5.12a and Fig. 5.12b,

assuming that the face angle is a:

5. =p, +Dsine, hy =p, — Dcosax
nh. =P, — 3Dsina, n, =p +3Dcosa
n, =Dy — 3Dsina, n, =p,, + 3Dcosa (5.10)

r.. =p,, +Dsina, I, =p,, — Dcosax.

Step 5: Form face candidates.

113



Chapter 5 Feature-based Face Candidate Selection

For a given face bounding rectangle, a face mask is formed by selecting only the part of
the rectangle that lies inside the bounding box of the skin region. A face candidate is
created by extracting the original image region that corresponds to the face mask. This
face candidate is rotated by an angle a (a is the face angle) so that the eye line is
horizontal. The normalized (i.e. rotated) face candidate is then said to be in an upright

position. The process of constructing face candidates is illustrated in Fig. 5.13.

(a) an image region (b) segmented skin region

and a pair of detected eye points

(c) face candidate 1 from the eye pair (d) face candidate 2 from the eye pair
(e) normalized face candidate 1 (f) normalized face candidate 2
(rotated to the upright position) (rotated to the upright position)

Figure 5.13: Steps of constructing face candidates from eyes.
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5.4 Preliminary Face Candidate Verification

In this section, we present a number of simpie verification techniques designed to
remove obvious nonfaces from the face candidate list. More sophisticated verification

techniques will be presented in the next chapter.

5.4.1 Eye Distance

The distance between two eye points cannot be too short. Let d.max be the largest
distance between two eye points in the eye list. Face candidates are constructed for the

pair of eye points only if their distance d. satisfies the following conditions:

a. >68, and d.>0a0, (5.11)

cmax

where G.q; = 0.02 and .4, = 10.

5.4.2 Face Bounding Rectangle

The face bounding rectangle is constructed based entirely on the two eye points, and it
may extend beyond the bounding box of the corresponding skin region. Let f; be the
proportion of the face bounding rectangle that lies inside the skin region bounding box.

The face candidate is removed if:

fee <6, (5.12)

where 6 is a threshold, & = 0.8. This verification step eliminates many face candidates
having eye points that either are far apart or lie near the skin region boundary

(Fig. 5.14a).

5.4.3 Skin Proportion

The skin region must form a significant part of the face region. Let f;; be the ratio of the
number of skin pixels inside the face mask to the number of image pixels inside the face

bounding rectangle (Fig. 5.14b). The candidate is removed if

fip < Osp, (5.13)
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where 6y, = 0.3. This threshold is set lower than an anthropologically reasonable value to

account for errors in skin detection.

Face Bounding Rectangle Skin Mask
i
\ Skin Region Bounding Rectangle ce Bounding Rectangle
(a) face bounding rectangle test (b) skin proportion test

Figure 5.14: Face mask verification

5.4.4 Face Inhomogeneity

The human face consists of regions (the eye, mouth, and chin) that differ significantly in
intensity, and consequently has a high intensity variance. Let f; be the standard

deviation of the pixel intensities in the face mask. The face candidate is removed if:
(5.14)

where 05 = 40. This verification technique can remove false face candidates that are

formed by mostly uniform skin pixels.

5.4.5 Face Rotation Angle

In this subsection, we present a technique to estimate the in-plane rotation angle of the
face. This technique has application not only in our preliminary face candidate
verification but also in the general setting of face pose estimation. The problem of
estimating in-plane face rotation angles can be described as follows. Given an arbitrary
quasi-frontal face image, determine the angle £, that the image has to be rotated in the
anti-clockwise direction so that it becomes most similar to a quasi-frontal upright face.
It must be stressed that in this problem formulation, no other information about the face

is known a priori.
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The problem of estimating the in-plane face rotation angle has been studied by a number
of authors in the context of face detection. Most notably, Rowley [90] trained neural
networks to estimate face rotation angle for a given input window of size 20x20. Once
the face angle is estimated, the input window is then rotated back to the upright
position. The corrected input image is then processed by another neural network face
detector to determine if it is indeed a near frontal face pattern. In this subsection, we
present a novel technique for estimating the in-plane face rotation angle, and discuss

how this technique can be applied for face candidate verification.

A. In-plane Face Rotation Angle Estimation

The proposed technique relies on the fact that for a human face, the eye and mouth are
relatively darker compared to the cheeks. This fact is used to find the angle to rotate the
input face so that it becomes closest to a quasi-frontal upright face. For a quasi-frontal
upright face, the eye, motith and cheek regions can be approximately located as shown
in Fig. 5.15a. Let E;, E;, M, C,, and C; denote the two eyes, the mouth and the two
cheeks, respectively. For a region X, let ux be the average intensity in the intersection of
region X and the green circle O. The circle O is centered on the face image rectangle,
and it is used to exclude irrelevant pixels from face angle estimation. For each angle £,
a rotation score is defined to measure the degree of match between the input face image

and the image obtained by rotating the upright frontal face by an angle —5.

The rotation score for angle 5 = 0 is computed as follows:
R(B=0)= oty + ity + O +Ocfic, + Oty (5.15)

where ag < 0, ac > 0, and am < O are scalar weighting factors for the eye, cheek and
mouth regions, respectively. We find that the values ag = - 0.75, ac = 1, and ay = -0.25

work quite satisfactorily.
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Face Image Face Image

(a) rotation angle 5 =0 (b) arbitrary rotation angle 8
Figure 5.15: Rotation score calculation.

To generalize the rotation score definition for other angles, we need to consider the
rotation score in (5.15) from the template-matching perspective. We construct a face
template T, of size 32x32 (i.e. having the same aspect ratio as the face). Except for the
eye, mouth and cheek regions that fall inside the circle O, all coefficients of the
template are set to zero. For the intersection region E; m O, the template coefficients

arc

a
T, =—c 5.16
0.E;nO |E1 - OI ( )
where |X| denotes the total number of pixels in region X. The template coefficients for
other regions are defined in a similar fashion. Given an input face image, it is first
resized to form an image F that has same size as the face template T. The rotation score

for angle = 0 for the face image F can be expressed as:

R(B=0)= > F(i, YTy, )) - (5.17)

(i.))
The rotation score for an arbitrary angle § can be computed as follows (see Fig. 5.15b).
The T, template is rotated by an angle -3 to obtain a rotated template Ty of the same
size (by keeping the part inside of the green circle). The rotation score for angle S is

computed similarly to (5.17):

RPB) =D FT,,. (5.18)

For a given face image F, the rotation scores are computed for 2K + 1 angles S that are

equally spaced in the interval [-60°, 60°], where K = 16 in our work. This interval is so
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chosen because our technique for face rotation angle estimation is designed to work on
near-upright face candidates (similar to those in Fig. 5.13e,f). Next, the maximum

rotation score Rp.x and the corresponding angle fqux are identified:

2K +1
R . =mng(ﬂ,.), (5.19)
B = B suchthat R(B)=R_, . (5.20)

We use two input faces in Fig. 5.16a and Fig. 5.16d to illustrate the effects of the
rotation score. The rotation scores at various rotation angles for the two input images
are shown in Fig. 5.16b and Fig. 5.16e, respectively. The plots show that in both cases,
the rotation score reaches its maximum near the actual face angle. Therefore, the angle
Brmax can be used as an estimate for the rotation angle S, of the face image F. However,
we can obtain a more robust estimate of 3, by using a set of angles near Smax. This set,
denoted A, consists of angles that are close to Sm.x and have high rotation scores

compared to Rpax:
A={B|R(B)2 min(0.95R,,,.1.05R,,,) and | B~ Br., I< KA, 18}, (5.21)

where Ag = | B — Bi.i| is the difference between two adjacent angles'®. The estimated
face angle is the mean of set A. Once this angle is found, the face can be rotated to the
upright position. The normalized faces for the two input images are shown in Fig. 5.16¢

and Fig. 5.16f, respectively.

"* The min firaction and the tertn 1.05Rqy, are introduced in (5.21) to handle the case when Rps is negative.
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(a) input face image: actual (b) estimated face angle (c) corrected image after
face angle By, =16° B=16.9° rotation by the angle S
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(d) input face image: actual (e) estimated face angle (f) corrected image after
face angle B,,= —28° B=-28.1° rotation by the angle 8

Figure 5.16: Template-based face angle estimation.

B. Face Angle Verification

For normalized face candidates produced by the proposed face candidate selection
algorithm, the eye line is horizontal and the face rotation angle should be close to zero.
This suggests the following technique for face candidate verification. Let S, be the face
rotation angle estimated using the template-based technique presented above. If f,; is
significantly different from zero, the face candidate should be rejected. In other words, a

face candidate is removed if
| Bur | > Our, (5.22)

where 6,; =10° is a threshold.
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5.4.6 Face Template Matching

We use the template matching technique to compare the normalized face candidate with
a prototype quasi-frontal upright face. The face template is generated by averaging
aligned quasi-frontal upright face patterns. In our work, 1521 face patterns extracted
from the BiolD database [50] are used. This database is chosen because it provides the
eye coordinates for each face, which can be used together with our geometric face
model to extract well-aligned faces". The face template of size 32x32 is shown in
Fig. 5.17. Comparison between a normalized face candidate and the face template is
based on the cross-correlation measure. Let F be the normalized face candidate, and T

be the face template. The template matching face score is computed as follows:

Z(F. —ﬂF)(Y; = lr)

fim= - . (5.23)
(o ¥ 8

where up and ur are the means, and o and or are the standard deviations of F ad T,
respectively. The face score in (5.23) is undefined for input pattern F with op = 0 (i.e. all
elements in the pattern are equal). In this case, the pattern is considered as nonface, and
the face score is set to 0. The higher the face score, the more likely the input pattern is a

face.

Figure 5.17: Quasi-frontal upright face template.

We computed the template matching scores for a test set of 3,000 face patterns and
6,000 nonface patterns. The histograms of template matching scores for face and
nonface classes are normalized and shown in Fig. 5.18. The figure shows that face

patterns have high matching scores, where nonface patterns have low matching scores.

1% faces where the eye points are at the same predefined pixel positions.
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However, the figure also shows that there is a significant amount of overlap between the
template matching scores for face and nonface classes. The ROC curve (Fig. 5.19a) of
the template-based face/nonface classifier shows that template matching is not sufficient
to separate between face and nonface patterns. Nevertheless, we use template matching
as a preliminary verification of face candidates. A pattern that has a face score below 7
= 0.05 is considered as a nonface. At the chosen threshold, the classifier has a correct
detection rate of 97.1%, and a correct rejection rate of 26.7%. The patterns that pass this
template matching test will be further examined using the pattern classification

techniques presented in the next chapter.
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Figure 5.18: Normalized histograms of template matching score for face and nonface

classes.
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Figure 5.19: Classification performance of the template matching face/nonface

classifier.

122



Chapter 5 Feature-based Face Candidate Selection

5.5 Results and Discussion

The proposed eye detection algorithm and face candidate selection algorithm were
applied to process 100 images from the ECU database (images 1 to 100). The detection
results are presented in Table 5.3. In this test set, there were 108 faces and 216 eye
regions. The eye detection algorithm could locate 202 eye regions correctly (correct
detection rate of 93.5%). On average, 12.5 candidate eye regions were generated for an
actual eye region. This large number of false detections is necessary so that only few
true eye regions are dismissed. From these eye points, 329.2 face candidates were
generated, on average, for each actual face. After preliminary verification steps, the

number of face candidates dropped to 89.8 face candidates for each actual face.

We show some visual results of running the face candidate selection algorithm. Images
in Fig 5.1a, S.1c, and S.le are used as inputs. The face candidates for the three input
images that remain after the preliminary verification steps are shown in Fig. 5.20. Each
face candidate has been rotated so that the eye line is horizontal. In the next stage of our
face detection algorithm, these candidates will be verified if they are indeed quasi-

frontal upright faces.

Table 5.3: Results of eye detection and face candidate selection.

Test images 100 | Images 1-100
g § Number of true faces 108
Number of true eye points 216
Number of eye points generated 2742 12.5 eye candidates
o ,‘g per true eye region
w %’, Number of eye points correctly 202 CDR =93.5%
° identified
Number of face candidates generated | 35554 | 329.2 face candidates
g g g (without preliminary tests) per true face
i g % Number of face candidates generated 9698 | 89.8 face candidates
o @ (after preliminary verification steps) per true face
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(a) face candidates for input image of Fig. 5.1a

(b) face candidates for input image of Fig. 5.1¢

(c) face candidates for input image of Fig. 5.1e

Figure 5.20: Results of face candidate selection. The true face is indicated by a green
box; the eye points, from which a face candidate is formed, are marked by blue dots.

In (b), face candidates from the same segmented skin region are grouped inside a
dashed box.
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The proposed color-based eye detection technique has a number of important

advantages. First, since only color is used, eye regions can be detected regardless of

whether the face is in frontal upright or rotated positions. Second, the eye points, taken

as the centers of eye regions, are localized with very high spatial accuracy. This enables

the application of the geometric face model to define the face extent. However, the

color-based eye detection technique also has a number of drawbacks:

First, because very few geometric constraints are imposed on the eye, the
proposed eye detection approach produces many false detections. It is possible
to reduce the number of false detections further by incorporating some of the
existing eye detection techniques described in Section 5.2.1 to verify the eye
candidates. However, we find it better to maintain a high correct positive rate
for eye detection at the cost of high false positive rates. Face candidates from
false eye points will be further examined by a later stage of face detection.

Second, for the proposed eye detection technique to work, it is necessary to
have input images of high quality. We find that the necessary condition for the

eye detection technique is that the face has at least 40 pixels in one dimension.

The face-from-eyes approach presented in this chapter is better than the window-

scanning approach to face candidate selection in a number of ways:

]

First, in the window-scanning approach, a face candidate is a rectangular
window aligned with the image axes, whereas in the proposed approach, a face
candidate is a rectangular window explicitly defined according to the eye line,
which can have an arbitrary orientation. Therefore, it is reasonable to expect
thai faces detected with our approach align better to the true face than do faces

detected with the window-scanning approach.

Second, our approach provides an explicit face angle and accurate eye positions
for each detected face, whereas in the window-scanning approach, this
information needs to be estimated from the candidate window (e.g., Rowley
[90] used neural networks to estimate the face rotation angle for a given
window). Accurate face angle and eye positions are needed to normalize the

detected faces in applications such as face recognition.
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o Third, the face-from-eyes approach simplifies the task of face/nonface
classification in later face verification. Each face candidate can be normalized
(given the two eye points) so that the eye line is horizontal; subsequently, we
only need to determine if the normalized face candidate is actually an upright
face. In other words, the face/nonface classifier needs to distinguish only quasi-

frontal upright faces from all other patterns.

5.6 Chapter Summary

In this chapter, a color-based technique for detecting eye regions in the segmented skin
regions was proposed. The proposed eye detection technique can locate the eyes very
precisely even for different face orientations. The detected eye regions are used with a
geometric face model to construct face candidates in a face-from-eyes approach. We
stated in the chapter the necessary conditions for the face-from-eyes approach to be
applicable. This approach to face candidate selection can provide accurate information
about face angle and eye positions for the detected faces. It also simplifies the task of

face/nonface classification.
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Face/Nonface Classification

6.1 introduction

In the last chapter, we presented an approach for identifying face candidates in
segmented skin regions. Several preliminary verification techniques based on heuristics
about the face pattern were proposed to remove obvious nonfaces among these
candidates. However, there remain nonfaces among these candidates for which simple
heuristics cannot reliably remove. In this chapter, we focus on more sophisticated
classification techniques to perform final verification of the remaining face candidates.
This final verification of face candidates is treated as a pattern classification problem, in
which image patterns are classified into either face or nonface classes. The organization
of this chapter is as follows. A concise problem statement and major assumptions are
given in Section 6.2. Several preprocessing techniques for reducing image variations
caused by different imaging conditions are described in Section 6.3. A new and accurate
face and nonface classifier based on the naive Bayesian model is proposed in
Section 6.4. Strategies for improving the performance of the Bayesian classifier are
presented in Section 6.5. Experimental results and discussion are provided in Section

6.6. The chapter summary is given in Section 6.7.
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6.2 Problem Statement and Assumptions

The iace/nonface classification problem can be described as follows. Given a
rectangular image window, determine whether or not the window as a whole can be
considered as a face pattern. Because in the previous stages of our face detection
system, color information has been used extensively in skin segmentation, face
candidate selection, and preliminary face verification, we expect that coler information
provides little distinction between the remaining face candidates and a true face.
Therefore, in this chapter we focus on the classification of face and nonface on the basis
of image intensity only. Other assumptions are listed below:

e Input size: The size of classification window is 64x64. This window size is
found to be sufficiently large to capture the detailed appearance of the human
face, yet small enough to be computationally viable. The aspect ratio of the
window is the same as that of the face candidates generated in the candidate
selection stage. A face candidate of arbitrary size is first resized to this standard
size before classification takes place. In addition, windows of smaller size (e.g.
16x16) can be constructed from this base window depending on the particular
need of a classification scheme.

o Face pose: The face class should include all quasi-frontal upright faces.
Examples of quasi-frontal faces are shown in Fig. 5.11. We only have to
consider the upright position because all face candidates have been normalized
so that the eye line is horizontal.

o Lighting conditions: The face/nonface classifier should be able to accept face

patterns under different lighting conditions.

6.3 Image Preprocessing Technigques

The principal aim of face/nonface classification is to learn the concept of “human face”,
or in other words, to identify visual attributes that distinguish the human face from all
other patterns. A major challenge of this task is coping with possible variations in the
face pattern, both intrinsic and extrinsic. Examples of intrinsic variations are different

people, different facial expressions, the presence or absence of natural facial features
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such as moustaches and beards. Examples of extrinsic variations are different lighting
conditions, viewing angle, and scale, and the presence of artificial accessories such as
eye glasses. A simple solution is to collect a training set that includes all these
variations. However, this solution is impractical because such a training set would be
huge, and training a classifier to learn salient features from such a set is computationally
prohibitive. Alternatively, we can use image normalization techniques to reduce the
variations due to some imaging factors such as lighting intensity, and use a
comprehensive data set that covers most of the intrinsic variations; this is, in practice, a

more plausible strategy.

The goal of image normalization is to bring the input image to some ‘“standard”
condition, and to extract invariant features for classification. In the last chapter, we
showed how the detection of two eyes is used to normalize the face candidate so that we
can now focus on differentiating upright faces (where the eye line is almost horizontal)
from all other 2-D patterns. In this section, we continue to discuss a number of
preprocessing techniques that have been developed for coping with variations in the

imaging conditions, and excluding irrelevant image portion from classification.

6.3.1 Image Normalization

A. Mean Normalization

This technique, which involves the removal of the mean pixel intensity from the input
image, can correct a constant shift in the image intensity. Let I be the input image, and
Imean be the mean of all pixel intensities in the image. The corrected image L using this

technique is:

I = I-Inean. (6.1)

129



Chapter 6 Face/Nonface Classification

B. Range Normalization

The input image is normalized (i.e. stretched) linearly so that its range is [0, 255]. Let
I and Iy, respectively be the maximum and minimum intensity level in I. The

corrected image I is obtained as follows:

I-1,
2" omn 6.2
I (6.2)

max min

I, = 255x

It is easy to show that this normalization technique, like the mean normalization

technique, cancels out the effects of constant shifts in the image intensity.

C. Standard Deviation Normalization

The input image is scaled so that it has a standard deviation of 1. Let fnn and /g be,
respectively, the mean and the standard deviation of pixel intensities for the input image

I. The image is normalized as follows:

I = —e== (6.3)

This technique is similar to the range normalization technique above. It handles both

additive and multiplicative variations in pixel intensity.

D. illumination Gradient Correction

Under a strong directional lighting, some facial regions may cast heavy shadows on
other facial regions. In that case, the following technique, which was first used by Sung
(110], and later on by Rowley {90], can be applied. The change in the intensity of image
pixel (x, y) due to directional lighting can be modeled approximately as a linear function

of the pixel coordinates:
Afx,y)=ax+ by +c, 6.4)

where a, b, and ¢ are constant coefficients. These coefficients are found as the least-

square-error solution to the following over-determined system of linear equations:

(xy1)(a bc) =1, (6.5)
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where x is a column vector consisting of horizontal coordinates of all image pixels, y is
a column vector consisting of vertical coordinates of all image pixels, 1 is a column
vector of all 1's, I is a column vector consisting of intensities of all image pixels. The

normalized image I is obtained as follows:

I(x, y)=I(x, y) — (ax + by + ¢). (6.6)

Because the number of equations in (6.5) is much large than the number of unknown
variables, the normalized image in (6.6) can have a quite large dynamic range. To correct

this, we propose to apply a range normalization on L to limit its range to [0, 255].

E. Histogram Equalization and Modification

The histogram of an image consists of the counts of intensity levels in the image. In
histogram equalization, an intensity mapping function is applied on image pixels so that
the resultant image has approximately uniform histogram. Suppose there are L + 1
intensity levels: 0, 1,..., L. Let h(i) be the histogram count of intensity level i in the
input image I. The probability density function (pdf) and the cumulative density

function (cdf) for intensity level are defined respectively as:

pdf:  p(i)= L"(i) : 6.7)

D h(j)
j=0

cdf:  Pi)=Y p(j), (6.8)
/=0

The intensity mapping function f required for histogram equalization transforms an

original intensity level i to a new intensity level f{i) such that:
f@)=[LxP@®], (6.9).

where [.] denotes the nearest-integer operator. It is a well-known fact that histogram
equalization increases the image contrast, but at the same time tends to amplify noise
[87]. An extension of histogram equalization is histogram modification, in which the
intensity mapping function is chosen so that the resultant image has a histogram that is
similar to a predefined histogram. The predefined histogram can be created from, for

example, the mean of several “well lit” faces [53].
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The above list of normalization techniques is by no means exhaustive; other possibilities
such as normalization in the DCT domain [22] also exist. However, in this work, we
consider only the above normalization techniques. A comparative analysis of these

techniques will be presented in Subsection 6.4.2.

6.3.2 Background Masking

A technique widely used in face and nonface classification is background masking [90,
110], in which the pixels near the four corners of the rectangular window are excluded
from classification. These pixels either belong to the image background or lie near the
face contour, which is highly variable from one person to another. Therefore, excluding
these pixels not only reduces the dimensionality of the input but also improves

classification accuracy.

In our work, a circular mask centered on the input image is used for background
masking (Fig. 6.1a). When this circular mask is applied on a human face, only the
central region of the face is selected (Fig. 6.1b). We find that face/nonface classification
is entirely possible even when only this central part of the face is used. In addition,
variations in this central region can be more easily characterized than variations in the
face contour, especially for different individuals or views. Using the circular mask, as
much as 17% of the window can be excluded. The masked region can be treated as a
2-D image pattern, or alternatively as a vector through lexicographic ordering of the

pixels.

(a) circular mask (b) example 1: face (c) example 2: nonface

Figure 6.1: Background masking.
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6.4 Naive Bayesian Classifier

This is a statistical-based approach to face and nonface classification. The two classes
are face and nonface. Let x be a feature vector: x = (xi, X2,..., X); the elements x;, x2,
..., xy are called features. Features can simply be pixel intensities; they also can be
generated with sophisticated feature extraction techniques. Let P(face|x) and
P(nonface|x) be the respective a posteriori probabilities for face and nonface classes.
Let p(x|face) and p(x|nonface) be the respective class-conditional pdfs, and P(face) and
P(nonface) be the respective a priori probabilities. Let Ay be the cost of a false
detection'®, and A, be the cost of a false rejection”; we assume the cost of a correct

classification decision to be zero.

For an arbitrary input pattern x, the cost of classifying x into face class is

Rtace(X) = g P(nonfacelx). (6.10)
Similarly, the cost of classifying x into nonface class is

Rnonface(X) = Age P(face|x). (6.11)

Clearly, the pattern should be classified into the class that gives the lowest classification

cost. In other words, x is classified as a face if
Rl‘n::c(x) < Rnonfncc(x)- (61 2)

Combining with (6.10) and (6.11), we can express this classification criterion as

_P(face|x) _ Ay,
P(nonface| x) 2 A, ' (6.13)

T

Applying the Bayes theorem, which states that

P( face | x) = p(x| face) P( face) ’ (6.14)
p(x)

and

'6 when a nonface pattemn is incomrectly classified as a face pattem.

7 when a face pattern is incorvectly classified as a nonface pattern.
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P(nonface| x) = p(x | nonface) P(nonface) ’ 6.15)

p(x)

where p(x) is the probability of observing the pattern x, yields

p(x| face) > A, P(nonface)

> 6.16
p(x|nonface) A, P(face) (©.16)
The left-hand-side term of (6.16) is the likelihood ratio
Lix) =P face) 6.17)

p(x | nonface)

The right-hand-side term of (6.16), on the other hand, is independent of x, and can be

treated as a threshold.

6.4.1 Density Estimation Using Naive Bayesian Model

To use decision rule (6.16), the class-conditional pdfs must be estimated. This is a
difficult problem to tackle, especially in high-dimensional spaces when only limited
data are available. There are a number of different approaches to solving this problem.
Yang et al. [133] presented two different approaches based on mixture density. In the
first approach, a mixture of factor analyzers are used, and the parameters of the mixture
are estimated using the expectation-maximization (EM) algorithm. In the second
approach, the Kohonen’s self-organizing map [57] is used to divide face and nonface
samples to subclasses (i.e. clusters). Fisher's linear discriminant analysis (FLD) is then
applied to project the samples to a lower-dimensional feature space. The class-
conditional pdfs are modeled as mixture of Gaussians, and each subclass (in the feature
space) is modeled by a Gaussian. The parameters of the Gaussian mixture are again
estimated using the EM algorithm. We presented in [80, 85] a face/nonface
classification approach that is based on PCA for dimensionality reduction, and Gaussian
mixtures for density estimation. A commonality in the above approaches is that they are
extremely computation-intensive. The training usually takes long time, and it is not easy

to update or retrain the resulting classifier to cope with new false classification.
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We present an approach to estimating the class-conditional pdfs p(x|face) and
p(x|nonface), which is based on the naive Bayesian model. In the naive Bayesian model,
the statistical dependency between elements of the feature vector is not modeled, i.e. the
elements are assumed to be statistically independent. With this assumption, the problem
of estimating the probability densities is transformed from a problem in N-dimensional
space to a problem in 1-D space, which is more manageable. The class-conditional pdfs

for a given feature vector x = (xy, x3, ..., xy) are estimated as follows:
N
p(x| face) = H pi(x; | face), (6.18)
i=1
and

N
p(x| nonface) = H p;(x; | nonface), (6.19)

i=1

where pi(x{face) and p{x{nonface) are, respectively, the marginal class-conditional pdf
of the ith feature in x. Although the assumption of independent features is not entirely
accurate (e.g. certain regions of the face have correlated intensity), in practice the class-
conditional densities estimated based on this assumption can form a basis for
face/nonface discrimination. A similar naive Bayesian approach has been used by
Schneiderman and Kanade [100]. In their approach, each image window (of size € x64)
is decomposed in to a set of overlapping sub-regions (of size 16x16), and the overall
class-conditional pdfs are estimated as the products of the class-conditional pdfs of the
subregions. The class-conditional pdfs for a subregion are determined according to both
its appearance (i.e., subregion intensity) and position (i.e., subregion coordinates). In
comparison, in our approach different choices of the feature vector x are possible, and
one of our goals is to investigate the suitability of such choices for the naive Bayesian

model.

It is convenient for implementation purposes to express the decision rule (6.16) in

logarithmic form. We define the log likelihood ratio as

Lx) = log L(x), (6.20)

which can be expressed, using (6.17), as follows:
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Ax) = log p(x| face)—log p(x| nonface). (6.21)
The pattern x is clarsified into the face category if
L£(x)26,., (6.22)

where G is a threshold with a theoretical value of

( Ay P(nonface)‘] 6.23
Bfacc_ gkjf P(face) ) ( . )

Using (6.18) and (6.19), we can rewrite (6.21) to emphasize the role of individual

features of x in the final classification:

L(x) = Z!og p,(x,| face) - Zlog p,;(x; | nonface)

= (6.24)
= Z{log p.(x,| face) - log p;(x; | nonface)}
i=]
The term inside the last summation sign can be expressed as a scalar function:
L.(x)={log p,(x| face)-log p,(x qx (6.25)

We can consider £(x) as a marginal “face score” produced when the ith feature of x has

a value of x. Even though each score by iiself is small, the final face/nonface

discrimination score £x) can be very robust as a result of combining the marginal

scores of a large number of features.

The marginal class-conditional pdfs pi(x{face) and pi(x|nonface) are estimated using the
traditional histogram technique. From a large set of face and nonface samples, two
histograms are generated for each feature x;:

© g i(x) is the number of face samples whose ith element .x; = x;

®  Mponuces(x) is the number of nonface samples whose the ith element x; = x

The individual class-conditional pdfs are simply the normalized histograms:
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p.(x| face) = —h’""—m— , (6.26)

Z hﬁxt.i (X)

X

h/m'(.l (X)

(x| nonface) = =——~,
p:(x| nonf Sh, )

(6.27)

If the number of features (i.e. number of elements of the feature vector x) is #, and the
number of histogram bins per feature is K, then each histogram will have NxK entries.
This number is many magnitudes smaller than the number of entries K™ required for a
full histogram in N-dimensional space. Apart from memory consideration, there are
usually not enough training samples for a direct (full histogram) estimation of
probability density in a high dimensional space. These are manifests of the curse of

dimensionality of pattern recognition [48].

6.4.2 Preparation of Face and Nonface Patterns

In the following study of face/nonface classification using the naive Bayesian classifier,
we use a dataset of over 9,000 different face windows (Set S of the ECU database). To
create this dataset, we collected images containing faces from the following sources:

o the AR face recognition database [70].

o the AT&T face database [97],

o the BiolD face detection database [50],

o JAFEE face database [68],

o the Stirling university face database [39),

o the UMIST face database (36],

o Web images, and images we took with digital cameras.
The face windows were manually cropped from these images. The windows contain
faces that are different in terms of persons, facial expressions, and/or lighting
conditions. We also prepared nonface windows by selecting random rectangular regions
in 500 landscape and scenery digital photos (Set 7 of the ECU database) that are known
to contain no faces. Examples of face and nonface windows are shown in Fig. 6.2 and

Fig. 6.3. These figures are screenshots of the GUI program written to manage the ECU
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database. Although some of the windows are in full color, face/nonface classification

described in this chapter is always done in the gray-scale domain.

E] ECU Face Detection Database - [Face /Nonface Patterns]

Select Pattern Number To View

| Pattein: 1 %Y 1. R

Figure 6.2: Examples of face patterns.

D ECU Face Detection Database - [Face/Nonface Patterns)

Select Pattern Number To View

Pattemn: 1 > AT

Figure 6.3: Examples of nonface patterns.
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The set of 9,000 face windows was partitioned into two parts: part I of 6,000 face
windows was used for training, and part 2 of 3,000 face windows was used for testing.
For training purpose, each training face window was rotated, scaled and shifted by small
random amounts to generate 10 extra face windows. Although we focused on detecting
quasi-frontal upright faces, these artificial variations would make the classifier more
robust to small variations in orientation, scale and position. The final data sets were:

e “Train 1" 60,000 face patterns and 120,000 nonface patterns, used for training;

o “Test 1" 3,000 face patterns and 6,000 nonface patterns, used for testing.

6.4.3 Intensity Feature Vector

In this feature extraction approach, the feature vector x consists of pixel intensities (after
an image normalization step). The input window is rescaled to 16x16 size. A circular
mask is applied (i.e. background masking), and the image pixels within the circular
mask are collected to form a feature vector x that has N = 216 features. The number of
histogram bins used for the estimation of marginal class-conditional pdfs is K = 64 bins.
In this subsection, we first analyze the performance of different image normalization
techniques. The best normalization technique is selected for use throughout this chapter.

We then analyze thoroughly the performance of the intensity feature vector.

A. Analysis of Image Normalization Techniques

Image normalization has been used in aimost all existing face/nonface classification
algorithms. However, to the best of our knowledge, there has been no reported
investigation of different image normalization techniques. It is known that image
normalization techniques can reduce the variations in the visual pattern caused by the
lighting conditions. However, it is not clear how such techniques will affect the
separability between the face and nonface classes. Quite often, the normalization

technique is heuristically chosen by the classifier designer.

We present here a study into the effectiveness of the normalization techniques that have
been described in Subsection 6.3.1. In our experiment, these normalization techniques

are individually applied to the input window before the feature vector x is extracted.
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The classification rates of the naive Bayesian classifier are then recorded and used as
comparative measures. We used set “Train 1” for training, and set “Test 1” for testing. It
should be pointed out that the two sets covered a wide range of lighting possibilities.
The ROC curves of the naive Bayesian classifier for different normalization techniques
are shown in Fig. 6.4. The results clearly show that face/nonface classification is
significantly improved with image normalization. For example, for a false detection rate
between 5% and 30%, there is an increase of more than 5% in the correct detection rate
(compared to no normalization) when the range normalization is used. The increase in
the correct detection rate is even much higher (in some case more than 25%) for
histogram equalization. These experimental results also show that the histogram
equalization technique is significantly better than the other four normalization
techniques, namely mean, range, standard deviation normalization and gradient
illumination correction. The standard deviation normalization technique is the next best
in performance. This technique, which can be implemented through linear filtering, is

less computation-intensive compared to the histogram equalization technique.

75
70

Correct Detection Rate (%)
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Figure 6.4: Comparison of image normalization techniques.

B. Analysis of Intensity Feature Vector

The input image is preprocessed using the histogram equalization technique, and an

intensity feature vector of size 216 is extracted. The naive Bayesian classifier was
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trained with set “Train 1” and tested on set “Test 1”. The ROC curve in Fig. 6.5a shows
that the classifier can achieve correct detection rates of 91% and 96% for false detection
rates of 5% and 10%, respectively. The classification rates at various log-likelihood
thresholds are shown in Fig. 6.5b. At threshold 6 = 0, the correct detection rate is
89.1% and the correct rejection rate is 96.2%. At threshold fgee = -5, the correct
detection rate is 93.4% and the correct rejection rate is 93.2%. We can conclude that
reasonable classification performance can be achieved even when no statistical

dependency among features is modeled.

Percentage

Zorrect Detection Rate (%)

40 = CorrectDetectionRate |

"""""" == Correct Rejection Rate
1 = ClassificationRate |
o0 15 =& % ® % 25 20 45 0 5 0 5 10 15 20
False Detection Rate (%) Log Likelihood Threshold
(a) ROC curve (b) classification rates

Figure 6.5: Performance of naive Bayesian classifier with intensity feature vector.

Once the marginal class-conditional pdfs are found, the pattern that produces the highest

face score Lx) can be identified as follows. Fori=1, 2, ..., N, we find the value of the

ith feature that maximizes the marginal face score defined in (6.25):

x, =argmax F,(x). (6.28)

The 2-D pattern reconstructed from the feature vector x’ =(xl* ,x;,...,x;,) has the

highest face score, and can be considered as the “face concept™ learned by the classifier.
The “face concept” for the naive Bayesian classifier with intensity feature vector is
shown in Fig. 6.6a. The two eyes in the “face concept” are very distinctive; the mouth
and nose regions have a blurry but still visible boundary. This can be attributed to the
fact that the classifier has been trained using quasi-frontal upright faces. The upright
condition specifies a horizontal eye line, but the quasi-frontal condition allows for

certain yaw and pitch rotations. The 2-D pattern, for which the classifier produces the
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lowest face score, is called the “nonface concept” learned by the classifier. The

“nonface concept” produced by the naive Bayesian classifier is shown in Fig. 6.6b.

(a) face concept: Lyax = 72.1 (b) nonface concept: L, = -325.3
Figure 6.6: The face and nonface concepts learned by the naive Bayesian classifier

with intensity feature vector.

6.4.4 Projection onto Face Subspace Feature Vector

This choice of feature vector, namely projection onto face subspace (PFS) feature
vector, is motivated by the eigenface approach in face recognition, which was described
in Chapter 2. Each input pattern is represented by its linear projection onto the face
subspace. This face subspace is spanned by the eigenvectors that are computed from a
training set of face patterns. We are interested in experimenting with the PES feature
vector because of two reasons: (i) the dimensionality of the feature vector is reduced

through PCA; (ii) the elements of the feature vector are uncorrelated for the face class.

Suppose there are M training face patterns Fj, F,, ..., Fy, each of which is a D-
dimensional column vector formed through lexicographic ordering of the face images.

First, the average face pattern Fy, is calculated:
F,=—>'F,. (6.29)
The covariance matrix of face patterns is estimated as:
1 M
C=——> (F, -E)¥ -F,)". (6.30)
M _1 =1

N eigenvectors of this covariance matrix that correspond to the N largest eigenvalues are
selected. The selected eigenvectors, also known as the principal components, form a
basis V = (vy, va, ..., vy) for a face subspace. The PFS feature vector x is computed for

each input pattern I (face or nonface) as follows:
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x=VII-Fy). (6.31)

For the computation of the PFS feature vector, we use a window size of 16x16.
Background masking and histogram equalization are applied as pre-processing
techniques. The 6,000 face patterns in set “Train 1’ were used to generate a set of N =
100 principal components. This set accounts for more than 97% of the variances in the

training set.

The PES feature vector extracted is processed by the Bayesian classifier, which was
developed using set “Train 1”. As before, we identify the input pattern, for which the
classifier produces the most positive response. This pattern, shown in Fig. 6.7a, appears
to be more realistic than the pattern produced by the Bayesian classifier that accepts
intensity feature vector (Fig. 6.6a). The “nonface concept” produced by the naive

Bayesian classifier with PFS feature vector is shown in Fig. 6.7b.

The ROC curve and the classification rates of the naive Bayesian classifier with PFS
feature vector are shown in Fig. 6.8. Set “Test 1” was used for testing. The classifier
achieves correct detection rates of 88.8% and 92.9% for false detection rates of 5% and
10%, respectively. The classification rates at thresholds f,ce = 0, Gace = =5, and Ggace = 5
are 92.9%, 81.7%, and 86.8%, respectively. Performance comparison between the PFS

feature vector and the intensity feature vector will be presented later in this chapter.

(a) face concept: L= 62.4 (b) nonface concept: Lyin = -454.3

Figure 6.7: The “face concept” and “nonface concept” learned by the naive Bayesian

classifier with PES feature vector.
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Figure 6.8: Performance of naive Bayesian classifier with PFS feature vector.

6.4.5 Edge-based Feature Vector

In this feature extraction approach, face patterns are characterized by image edges.
Compared to pixel intensities, image edges are visual features that are less sensitive to
the scene illumination. In the past, face detection approaches based on comparison
between the edge mask of the input window and an edge-based face model have been
proposed [50, 108, 123]. In these approaches, the similarity score is computed, through
some variant of the Hausdorff distance, without reference to nonface patterns. In this
subsection, we present a face/nonface classifier that is based on the naive Bayesian
model and uses an edge-based feature vector. The difference between our approach and
the existing edge-based approaches is that the face similarity score is constructed from

both face and nonface patterns.

(a) pattern 1: face (b) edge mask 1 (c) pattern 2 - nonface  (d) edge mask 2

Figure 6.9: Edge masks of face and nonface windows.
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In our approach, the Canny edge detector is applied on the input window to produce an
edge mask (Fig. 6.9). Entries of the edge mask are binary: 1’s represent edge pixels, and
0’s represents nonedge pixels. A feature vector is then extracted through lexicographic
ordering of the edge mask. Only edge mask entries that are inside the central circular
region are selected (see Fig. 6.1 on background masking). Because image edges exhibit
strong invariance to the lighting condition, we decide not to apply any lighting
correction technique. In addition, we find that for edge detection to be effective, the
input window must have a reasonably large size; we use a window size of 64x64. Each

input window is represented by a feature vector x of 3,300 binary elements.

The class-conditional densities p(x|face) and p(x|nonface) are estimated using set
“Train 1” as described in Subsection 6.4.1. Using a similar method as described in
Subsections 6.4.3 and 6.4.4, we identify the edge patterns, for which the face/nonface
classifier produces the highest and the lowest face scores. These patterns (i.e. face and
nonface concepts) are shown in Fig. 6.10a and Fig. 6.10b, respectively. We can
conclude that the “face concept” learned by the classifier has edge pixels in the eye,
nose and mouth regions. The shapes of these regions in Fig. 6.10a are relatively wide,
which can be explained by spatial variations in the facial edges. The “nonface concept”
in Fig. 6.10b has edge pixels at spatial positions that correspond to smooth regions of

the face (e.g. the cheek and the chin).

The naive Bayesian classifier with edge-based feature vector was run on set “Test 1”.
The performance indicators of the classifier on this test set are shown in Fig. 6.11. The
classifier had correct detection rates of 81.03% and 88.9% for false detection rates of
5% and 10%, respectively. The classifier using edge-based feature vector is quite

accurate, but is not as good as the classifier using intensity or PFS feature vector.

(a) face concept: Lax = 254.1 (b) nonface concept: L = 402.2
Figure 6.10: The face and nonface concepts (edge masks) learned by the naive

Bayesian classifier with PFS feature vector.
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Figure 6.11: Performance of naive Bayesian classifier with edge-based feature

vector.

6.4.6 Discussion of Naive Bayesian Classifier
A. Comparison of Feature Vectors

We compare the three different feature vectors presented in the previous subsections,
namely intensity feature vector, PFS feature vector, and edge-based feature vector. The
ROC curves of the Bayesian classifiers using these feature vectors on set “Test 1™ are
shown in Fig. 6.12. For comparison purpose, we also show the ROC curve of the
template matching classifier, described in Subsection 5.4.6, on the the same test set. The
figure shows that all three naive Bayesian classifiers outperform the template matching
classifier by large margins. At any false detection rate between 5% and 25%, there is a
difference of more than 10% between the CDR of the naive Bayesian classifiers and the
CDR of the template matching classifier. Among the three Bayesian classifiers, the
classifier with intensity feature vector has the best performance. However, there is only
a small difference in the performances of the classifier using intensity and PFS feature
vectors. The edge-based feature vector does not perform as well as the other two feature

vectors.
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Figure 6.12: Comparison of feature vectors used in the naive Bayesian classifier:
intensity, PFS, and edge-based. The ROC curve of the template matching classifier

is included as a baseline for comparison.

B. Advantages of Naive Bayesian Classifier

The experiment results presented in this section have shown that the naive Bayesian
classifier can achieve quite high classification rates. We also find that the classifier is
robust to various changes in facial expression, lighting conditions, and viewing angles
(within the assumptions of quasi-frontal upright faces). Compared to other classifiers,
the naive Bayesian classifier has three important advantages regarding computation
efficiency. First, it is fast in classifying input windows because classification involves
mostly table lookup operations. Second, it requires a relatively small amount of
memory. For example, a classifier using intensity feature vector needs, assuming that
each floating-point value takes 8 bytes, only 8NxK = 8x216x64 = 108 KB of memory.
Third, training the naive Bayesian classifier is much faster than training other
classifiers, such as neural networks and parametric density models. Because of the
simplicity of the training algorithm (i.e. the histogram-based density estimation), very
large data sets can be used in training the Bayesian classifier. For example, for set
“Train 1” with a total of 180,000 patterns, it takes only about 5 hours on a Pentium III
600 MHz to generate the class-conditional pdfs (i.e. 0.1s per training sample). In
comparison, for a feed-forward neural network, a single pass through the same training

set may take days of computation; for such a large training set, it requires typically
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thousands of passes for the network to converge. Furthermore, it was pointed out that in
[90], for large training sets, by the time the network reaches the last pattern of the
training set, it may have forgotten the characteristics of the first pattern. Classifiers that
require clustering in a high-dimensional space or parametric density estimation using

the expectation-maximization algorithm must face similar dilemmas.

C. Other Feature Extraction Techniques

Besides FPS and edge-based techniques, other feature extraction techniques can also be
used with the Bayesian classifier. One of such techniques is independent component
analysis (ICA). Unlike PCA, which identifies components that best explain the variance
in the data, thereby allowing a least-square-error reconstruction of the samples, ICA
seeks directions that are most independent from each other. ICA has many applications
in the domain of blind source separation‘s, which aims to extract original signals from
observed data. The oi:served data are mixtures of the original sources, which are
assumed to be independent. ICA is also a promising tool for feature extraction task in
pattern classification because the extracted features are highly independent, and as such
.he naive Bayesian model can be readily applied to compute the multivariate density
function as in (6.18) and (6.19). ICA has been applied in tasks such as face recognition
and facial expression analysis [2], and cork-stopper classification [88]. However, ICA
often involves a gradient-descent optimization of a multi-dimensional target function
(e.g. the entropy) [21], which is very computation-intensive. In this thesis, ICA is not
used for feature extraction primarily due to computational concerns. Other possible
feature extraction techniques are projections to vertical and horizontal axes, and

wavelets.

'® The terms blind signifies the fact that the mapping between the original sources and the observed data is unknown.
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6.5 Improving Face/Nonface Classification

In this section, we discuss a number of techniques for improving the performance of the
naive Bayesian classifier. In genera), there are three main strategies for classifier
enhancement. The first strategy involves progressive training and updating of the
classifier; it is often called the bootstrap strategy. The second strategy is classifier
combination, in which the classification problem is solved by combining multiple
classifiers that can be different in terms of classification architecture, feature vector,
training set, and even performance. The third strategy makes use of contextual
information in forming the final classification decision. These three -classifier

enhancement strategies will be examined below.

6.5.1 Bootstrap Strategy

With the bootstrap strategy, a classifier is first trained with a limited training set of face
and nonface patterns. The partially-trained classifier is then run on a larger validation
set of face and nonface patterns, and false detections and false rejections are collected to
be used as further training examples for the classifier. The bootstrap strategy was
described by Sung [110], and since then it has been used in many other face/nonface
classification algorithms [75, 90]. There are two major justifications for bootstrapping:

o First, it is a means to overcome the difficulty in selecting a representative
training set. Like in many other object detection problems, it is easy to collect
representative face patterns, bat it is harder to collect representative nonface
patterns. In addition, the nonface class is magnitudes larger than the face class;
for example, in an image of size 640x480 there can be hundreds of thousands
nonface patterns, whereas there are typically at most a few dozens face patterns.
Therefore, we may run the risk of omitting nonface patterns that are essential for
learning the decision function. This problem does not exist in training
algorithms that use only positive training examples (i.e. face patterns), but such
algorithms are very poor in defining the decision boundary between face and

nonface classes.
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o Second, bootstrapping allows the classifier to be trained progressively.
Presenting a huge training set to the classifier is computationally prohibitive in
terms of storage and processing time. It is far more efficient to train the classifier
using small chunks of samples, and to focus the training efforts on ‘“hard”

examples in the feature space.

The implementation of bootstrap strategy for the naive Bayesian classifier is quite
straightforward. It involves updating the feature histograms, and then the marginal pdfs.
It is, therefore, necessary to keep the histograms for both face and nonface classes. In
our work, the updated classifier is evaluated on a validation set of 1,000 faces and 5,000
nonfaces to prevent overfitting, and to identify the point where bootstrapping is no
longer effective. In this thesis, bootstrapping is implemented only to this extent.
However, there are two possibilities for extending the bootstrap strategy:

o adding new Bayesian classifiers to the classification system to handle new
classification errors. These new classifiers focus on sub-regions of the feature
space. Issues such as avoiding overfitting and combining individual
classification scores must be considered.

e training a cascade of Bayesian classifiers using boosting algorithms such as

AdaBoost [29, 30]. This approach has been taken by Schneiderman [99].

6.5.2 Classifier Combination

Classifier combination has been an active research topic in pattern recognition [SS, 56,
58]. By exploiting complementary capabilities of several classifiers, classifier
combinetion aims to achieve a better performance than that of an individual classifier, in
terms of accuracy and robustness. Jain ef al. [48] described three main architectures for
classifier combination, namely parallel, series, and hierarchical:

o Parallel architecture: Individual classifiers are activated independently, and
their outputs are fused by a combiner to form the final output. Simple
combiners, such as majority voting, mean, weighted average, max, min, and
median operators, are commonly used. More sophisticated combiners require
extensive training but they can operate adaptively according to the input pattern.

It can be shown that the mean combiner reduces classifier variance.
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o Series architecture: Individual classifiers are arranged in a sequential fashion;
the range of classes that the input pattern may belong to is reduced at each stage
along the classifier chain. The series architecture is functionally equivalent to the
parallel architecture with the max and min combiners. However, the series
architecture can be more computationally efficient in some cases.

o Hierarchical architecture: Individual classifiers are arranged in a tree-like
structure.

It is also possible to use these architectures in a hybrid classification system. Classifier
combination has been used for face/nonface classification by many authors (see Chapter
2). For example, Rowley er el. [91) used a combination of two feed-forward neural
networks; Viola and Jones [118-120], Lienhart er al. [60, 61}, Fréba et al. [31), Wang er
al. [122] used the AdaBoost algorithm to train a cascade of classifiers; Elad er al. [22]

constructed as series of linear classifiers through the maximal rejection mechanism.

We propose an approach of combining the three different naive Bayesian classifiers that
were described and analyzed in Section 6.4. These classifiers use intensity, PFS and
edge-based feature vectors. The schematic diagram of the proposed combination
approach is shown in Fig. 6.13. An input window is processed by three Bayesian

classifiers, and three log likelihood scores Ly, Lor, and {igpe are produced. These

scores are mapped to the range (0. 1] using the following mapping function:

(0, x<L
S 1 (x) =11, x> H, (6.32)
(x-LYH-L), L<x<H

where H and L are the upper and lower limits of mapping. The mapping function is
necessary because the scores produced by the three classifiers have different dynamic
ranges. We use (H =40, L = -60) for the intensity feature vector, (H = 20, L = -40) for
the PFS feature vector; and (H = 60, L =-60) for the edge-based feature vector. The
mapped face scores pin. Ppts. and pegge in range |0, 1] can be considered as pseudo a
posteriori probabilities. They are fused into the final score p using the mean operz'r;

classification into face or nonface is done by thresholding this final score.
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Figure 6.13: Classifier combination scheme.

The combination of classifiers was tested on set “Test 1. Results of comparison with
the three individual classifiers are shown in Fig. 6.14. The figure confirms that classifier
combination does improve face/nonface classification. At a FDR of 5%, the classifier
ensemble has a CDR of 96.6% compared to a CDR of 91.0% of the best individual
classifier. At a FDR of 10%, the classifier ensemble has a CDR of 98.6% compared to a
CDR of 96.0% of the best individual classifier. A reason for this improvement is the
diversity in the classifier ensemble, which is enforced through the use of different
feature vectors. We believe that higher classification rates can be achieved by using
more Bayesian classifiers that rely on new feature extraction schemes. The classification

rates of the classifier ensemble at different face score thresholds are shown in Fig. 6.15.
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Figure 6.14: Comparison of classifier combination and three individual classifiers.
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Figure 6.15: Classification rates of the classifier ensemble.

6.5.3 Using Contextual Information

It is widely agreed that more accurate classification decisions can be made by

incorporating contextual information. For example, Rowley [90] observed that the face

is often detected at multiple nearby scales and positions in the image, while false

detections tend to occur with less consistency. In his approach, for a given detection, if
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the number of detections within its neighborhood is below a certain threshold, the
detection is rejected. Rowley also suggested that if a particular location is correctly
identified as a face, then all other detections that overlap the location are likely to be
errors. It is fair to say that these heuristics contribute very significantly to the classifier
performance. For example, the false detection rate of a network trained in [90] is 1 in
89,546 without heuristics, and 1 in 161,044 with heuristics (i.e. an improvement of 1.8
times). For almost any classifier, it is possible to boost the detection results simply by
tuning the parameters in the post-processing heuristics; however, this fact is often

overlooked in reporting classifier performance.

We present here a technique of using contextual information to improve face/nonface
classification, which is more suitable to our face detection strategy. The candidate
selection algorithm proposed in Chapter 5 produces many face candidates that partially
overlap; quite often the overlapping candidates belong to the same segmented skin
region. Clearly, if two face candidates overlap, one of them must be removed; it is
natural to reject the face candidate with a lower face score. For each face candidate F,
the set of all face candidates that overlap it is identified. The face candidate F; is kept

only if its face score is greater than the face scores of the overlapping candidates.

A. Identification of Overlapping Candidates

We use a simple and fast technique to determine if two face candidates F; and F;
overlap. First, overlapping is possible only if the two candidates are formed from the
same segmented region. This means candidates from the same segmented skin regions
must be processed together. Second, overlapping happens only if the bounding boxes of
the two candidates overlap. Third, overlapping can occur only if the face masks of the
two candidates overlap. These three tests are performed in series so that the costly

computation in the third test is avoided unless absolutely necessary.
We do not consider overlaps where the amount of overlapping is small. That is, let |F]

and |F|| be the size of the two face masks, and |F; N F| be the size of the intersection

between the face masks. The amount of overlapping is defined as:
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|F0F|

o(F,F)= —t—4
7" min(| F, |, |F, )

(6.33)
When this overlap factor is below a threshold, the two candidates are not considered to
overlap. Overlapping between bounding boxes in the second test is handled in a similar
way. The only differences are that the overlap threshold is higher and |F; N F} can be

evaluated very quickly given the box coordinates.

B. Selecting Face Score

The overlapping elimination post-processiiig technique is deterministic in the sense that
only the best of the overlappi.3 candidates is kept. However, for this technique to work,
the face/nonface classifier must produce a face score that has a higher value for a
pattern that is more similar to a face. For this purpose, we use the face score produced

by the ensemble of Bayesian classifiers described in the previous subsection.

To illustrate the effect of the ensemble face score, we process the 19 face candidates
that are shown in Fig. 5.20c. These face candidates belong to the same segmented skin
region; some of the candidates overlap. There are two true faces among these
candidates. In this case, the candidates are divided neatly into two groups, each of
which consists of candidates that overlap with a true face. In Fig. 6.16, the face score
produced by the classifier ensemble is shown next to each face candidate. The figure
shows that:
o Using a face score threshold'® of Trace = 0.47, there are 3 detections (candidates 1,
3, and 14), of which candidates 3 and 14 are correct detections, and candidate 1
is a false detection.
o Applying the overlapping candidate elimination technique, the false detection in
candidate | is removed because it overlaps with two face candidates (3 and 14)
that have higher face scores than its face score. Only two correct detections

remain.

' At this threshold, the CDR of the classifier ensemble is 98.6% and the FDR is 10%.
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Figure 6.16: False detection elimination using contextual information. A face candidate
is kept only if its face score is greater than face scores of all candidates that overlap with

it.
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6.6 Chapter Summary

We have presented an algorithm for face/nonface classification that is based on the
naive Bayesian classifier and nonparametric estimation of marginal density. Because of
the normalization of face candidates in the previous stage of our face detection
algorithm, the classifier has to differentiate only quasi-frontal upright faces from all
other patterns. Experiment results have shown that the naive Bayesian classifier has a
very high accuracy. For the classifier using intensity feature vector, the correct detection
rates are 91% and 96% at false detection rates of 5% and 10%, respectively. In addition,
the naive Bayesian classifier has three important advantages compared to other
classifier architectures: fast classification, small memory requireients, and fast training.
We investigated also three choices of the feature vectors, namely intensity, PFS and
edge-based; and five different image normalization techniques, namely mean, standard
deviation, range normalization, histogram equalization, and gradient illumination
correction. It is found that the intensity feature vector is slightly better than the PFS
feature vector, but the latter requires less memory due to the dimensionality reduction
capability of PCA. Both intensity and PFS feature vector perform better than the edge-
based feature vector. We found that, with the intensity feature vector, image
normalization improves classification performance very significantly, and the histogram
equalization technique outperforms other normalization techniques. In this chapter,
strategies for improving the performance of the naive Bayesian classifier were also
discussed. They include bootstrapping, classifier combination, and using contextual
information. Based on the analysis of these classifier enhancement techniques, we
developed a final face/nonface classifier that combines three naive Bayesian classifiers.
These naive Bayesian classifiers use intensity, PFS and edge-based feature vectors. The

combined classifier is used to perform the last verification of face candidates.
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Chapter 7
The Face Detector and

Its Applications

7.1 Introduction

In this chapter, we present a complete system for detecting human faces in color images
that integrates the various components described in the previous chapters of the thesis.
The organization of the chapter is as follows. Section 7.2 describes the complete face
detector and its major stages. Section 7.3 provides a comprehensive analysis of the face
detector performance. Section 74 describes a number of applications of the face

detector. Section 7.5 gives the chapter summary.
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7.2 System Description

The face detector consists of five main stages as shown in its block diagram in Fig. 7.1:

[

Stage I: Skin Detection using Color Pixel Classification (Chapter 3)

Pixels of the input color images are classified as skin or nonskin pixels on the
basis of their color. The classifier based on the Bayesian decision rule for
minimum cost is used.

Stage II: Skin Region Segmentation (Chapter 4)

Skin region verification and skin refinement techniques are combined to enhance
the results of skin detection in the previous stage.

Stage III: Feature-based Face Candidate Selection (Chapter 5)

In this stage, color-based eye detection and a geometric face model are used to
construct face candidates from segmented skin regions. Preliminary face/nonface
tests are also performed.

Stage IV: Face Candidate Verification (Chapter 6)

The face candidates produced in the previous stage are verified using
face/nonface pattern classifiers that are based on the naive Bayesian model.
Stage V: Face Detection Output

In this final stage, the detection results are presented in a form that is suitable for

particular needs of face detection.

Stages I to IV have been described thoroughly in chapters 3 to 6, respectively. Stage V

is included in the face detector so that appropriate information about the detected faces

can be produced according to the user needs. The record of a detected face consists of

the following fields:

Face mask: a rectangular binary mask that indicates the spatial extent of the
face.

Face angle: the angle by which the face needs to be rotated counter-clockwise
so that it will be in the upright position.

Eye points: the coordinates of the two eyes.

Face score: a confidence score of the face detection.
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Depending on the user needs, the face detector can optionally produce the following
information regarding each detected face:

e Skin mask: a free-shape binary mask of the skin region that corresponds to the
face. This skin mask can be combined with the face mask to generate a more
precise face mask that follows the face contour. Accurate face contour is needed
in applications such as facial image compression.

e Normalized face: the detected face is normalized so that it is in the frontal-
upright position and has a size of 64x64. This normalized face is often used as

input to a face recognition system.

Skin Detection Using _ Bayesian color
Color Pixel Classification pixel classifier

v

Stage Il | Skin Region Segmentation _

Y

Feature-based E'Color-based eye detection'i
Face Candidate Selection - Geometric face model :

* S

Stage IV | Face Candidate Verification

Stage |

Skin region verification
Skin region refinement

Stage Il

{ Heuristic face verification
i Naive Bayesian classifier

Stage V Face Detection Output -_ Face detection needs

Detection Outputs

Figure 7.1: Block diagram of the proposed face detector.
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7.2.1 Face Detection Database

Because of the color-based nature of the proposed face detection algorithm, it is
necessary to evaluate the algorithm on a face detection database that consists of color
images. To the best of our knowledge, no large and comprehensive database with such
property exists online at the time of this writing. This deficiency has motivated us to
develop the ECU face detection database to support the development and evaluation of
both intensity-based and color-based approaches to face detection. The ECU database
has been mentioned a number of times in this thesis, and its full description can be

found in Appendix A.

7.2.2 Training the Face Detector

We used 2,500 color images for * ining (images 1 to 2,500 in the ECU database). Such
a large number of training images were needed so that very large sets of skin, nonskin
and eye pixels could be extracted. These sets were used in the estimation of ‘he class-
conditional densities of the skin, nonskin, and eye classes, as described in Chapters 3
and 5. Fewer images were actually used in determining appropriate parameters for the
skin region segmentation algorithm and the face candidate selection algorithm. We
excluded all training images from our tests below. A separate training set of face and
nonface patterns was used for constructing the naive Bayesian face/nonface classifiers
presented in Chapter 6. The patterns were collected from various online face databases
as described in that chapter. The settings for individual stages of the face detector are

described in the previous respective chapters.

7.2.3 Speed Optimization

In this section, we discuss a technique to improve the processing speed of the proposed
face detector. In our analysis, the MATLAB profiling tool was used to assist in
identifying the bottlenecks in the algorithm. We have found that one of the most time-
consuming steps in the algorithm is normalizing the face candidate to the upright

position after it is constructed from an eye pair. This normalization involves an image
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rotation operation, which could be quite computation-intensive if the entire face
candidate in its original size has to be rotated. However, we note that in the subsequent
verification steps, the analysis window sizes are very small: 32x32 for face angle
estimation and template matching classifier, 16x16 for naive Bayesian classifiers that
use intensity and PFS feature vector, and 64x64 for naive Bayesian classifier with edge-
based feature vector. Therefore, significant speed-up can be achieved if the face
candidate is subsampled to a smaller size before rotation so that the normalized face
candidate will have a size of 64x64. This technique is illustrated in Fig. 7.2. The
bounding box (aligned with the vertical and horizontal axes) of the face candidate is
identified, and the corresponding square image region (width W) is resized through
subsampling to a square region of width W’ = 64(cosa + sina), where a is the face
angle. This resized region is rotated by an angle a, and the 64x64 pixel region at the
center of the rotated region is taken as the normalized face candidate. This technique is

not applied when the distance between the two eye points is smaller than 32.

-— W —P

W= 64(cosa+sing) r=— - 64
i = : | <P
|
'j‘ > | e
L] —
|
ad =

|
| L -
S Normalized

Face Candidate Subsampling Rotation Face Candidate

Figure 7.2: Rotation speed-up through window subsampling.

7.2.4 Software Implementation

The face detector was implemented using the MATLAB software — a mathematical
package from MathWorks Inc. Most experiments in this thesis were performed on a
Pentium III 600MHz with 512 RAM running Windows XP. Based on the software
implementation, we have developed a MATLAB library for face detection, and a Web-
based demo of the face detector. Both tools will be released online at

http://www.soem.ecu.edu.au/~sphung/face detection/.
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7.3 Analysis and

Discussion

7.3.1 Performance lNieasures

A face detection algorithm can be evaluated in terms of three major criteria:

computation requirements, detection accuracy, and detection quality:

Computation requirements refer to both processing time and memory storage
needed by the algorithm to handle an image of fixed size.

Detection accuracy is usually measured in terms of the correct detection rate
(CDR) and the false detection rate (FDR). A correct detection is when a face is
correctly identified, whereas a false detection is when a nonface image region is
incorrectly identified as a face. It is widely accepted that the correct detection
rate is the percentage of faces in an image test set that are detected by the
algorithm. However, there is not yet a consensus on how to report the false
detection rate. It is sometimes defined, especially in holistic face detection
approaches, as the ratio of the number of false detections to the number of image
windows examined by the classifier. This measure puts more emphasis on the
accuracy of face/nonface classifier. However the measure is not suitable for
reporting face detection performance because there is significant redundancy in
these image windows. A uniform background patch, for instance, will generate a
large number of obvious nonface windows. We suggest that it is more
appropriate to define false detection rate as the ratio of the number of false
detections to the number of faces. This measure is useful because it indicates the
average number of false detections that the face detector makes per true face.
We should point out that this FDR is a conservative measure as the number of
face candidates tested usually far exceeds the number of faces in the image. In

summary, we use the following formal definitions:

CDR = Number of correct detections x100% 1)

Total number of faces

FDR = Number of false detections %100% 12)

Total number of faces
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Detection quality is measured in terms of how well a detected face aligns with
the corresponding true face. This performance criterion is often overlooked in
face detection literature. Because the ECU database includes also manually
segmented face images (Set 3), it can be used to evaluate the detection quality of
face detection algorithms. We propose the following region-based alignment
measure. Let Fy be the ground-truth mask for a face and F be the mask
produced by the face detector. The ground-truth mask can be obtained using the
code example in Table A.3 (Appendix A). An alignment score can be defined as

follows:

FNF
a= I 8t l , (7.3)

| Fy uF]
where |x| represents the number of 1-pixels in a binary mask x. This alignment
score is the ratio between areas of the intersection and the union of the two
masks Fg and F; it is independent of the face size. A perfect alignment has a

score of 1; a total miss has a score of 0. We find that an alignment score of 0.6 or

more can be considered as a good detection.

Another approach to measuring face alignment is based on the normalized
distances between the detected and the actual facial landmarks. The most
common facial landmarks used for this purpose are the two eyes. For example,
the eye-based alignment score is recommended with the BiolD face detection
database [50). It is possible to use this alignment score for our face detector
because it also locates the two eye points in each face. However, because the eye
segmented images in the ECU database “ave been prepared only for eye color
modeling purpose, we decided to adopt the region-based alignment score in
(7.3).

7.3.2 Detection of Faces in the ECU Database

The face detector was applied on a test set of 200 images from the ECU database. The

images in this test set contain faces that have the following properties:

different skin color types,
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o different pcople,

e various facial expressions,

o quasi-frontal faces with arbitrary in-plane rotations,

o out-of-plane rotations with small angles,

e taken under different but moderate lighting conditions,

o with and without glasses.
We should point out that the test images have quite high resolution, which is an
essential requirement of the proposed eye detection algorithm. The image sizes range
from 352x288 to 1280x960 pixels. The face sizes range from 40 to 300 pixels in width
and height.

The detection results are listed in Table 7.1. The face detector can detect 208 out of 231
faces and make 10 false detections. That is. it has a correct detect rate of 90.04% and a
false detection rate of 4.3%. The average alignment score between the detected faces
and the true faces is 0.71. Example outputs of the face detector are shown in Fig. 7.3
and Fig. 7.4. Detected faces arc indicated by green rectangles. and detected eyes by blue
circles. Although, the face mask defined by the geometric face model is rectangular, the
final face mask can be a polygon after combining with the rectangular box of the
corresponding skin region. Results in Fig 7.3 and 7.4 show that the detected faces are
well aligned with the true faces (the alignment scores vary between 0.6 and 0.7). The
alignment score can be improved if we combine the polygonal face mask with the skin

mask.

The complete results produced by our face detector for the above test set are included in
Appendix B. Referring to Appendix B, false detections in images 2521, 2527, 2528,
2551, and 2563 are caused by the face/nonface classifiers' failure to reject the nonface
patterns. False detection in image 2659 is due to the face score of the true face being
lower than the face score of an overlapping nonface. False rejection in image 2654 is
because the true face is rejected by the naive Bayesian classifier with intensity feature

vector.
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(aTF=1,CD=1,FD=0,a=0.78 @ TF=1,CD=1,FD=0,a=.77
(c)TF=5,CD=5,FD=0,a=0.75 (dTF=1,CD=1,FD=0,a=0.68
(e)TF=2,CD=2,FD=0,a=0.71 ®TF=1,CD=1,FD=0,a=0.70

Figure 7.3: Visual results of face detection — Part I: TF = number of true faces,

CD = correct detections, FD = false detections, a = average alignment score.
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(a) TF=1,CD=1,FD =0, a=0.64 (a) TF=1,CD=1,FD=0,a= .67

(c)TF=2,CD=2,FD=0,a=0.75 dTF=2,CD=2,FD=0,a=0.77

() TF=4,CD=4,FD=0,a=0.75 (f) TF=2,CD=2,FD=1,a=0.79

Figure 7.4: Visual results of face detection — Part II: TF = number of true faces,

CD = correct detections, FD = false detections, a = average alignment score.
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Table 7.1: Face detection results.

@ Number of images 200

é” Images 2501-2700

7] Number of faces 231

2

® Number of faces detected 218

§ Number of correct detections | 208 CDR =90.04%
% Number of false detections 10 FDR =4.3%

- Average alignment score 0.71

7.3.3 Detection cf Rotated Faces

We present here an analysis of the fac~ detector’s performance for rotated faces. In this
experiment, we collected images o: :atatec! fuces of 3 people in our lab. The face of
each person was captured at 9 di‘ferent orientations.

e frontal upright

o two yaw rotations: -18° and i8”

o two pitch rotations: -36° and 36°

o four roll rotations: -60°, -30°, 30° and 60°
The yaw and pitch rotations are within the requirements of quasi-frontal faces that we
showed in Table 5.2. Because the aim of this experiment is to evaluate detection
performance for rotated faces, the images were taken against relatively simple
background. Each of the five frontal, yaw and pitch face images are rotated in-plane by

9 angles kx36°, k= {-5,—4,...,.—1, 1,2...,4} using software. Together, there were 49

images per person, and a total of 147 images in the test set. The results of face detection
are shown in Table 7.2. A high detection rate of 94.35% on this set shows that the
proposed algorithm is robust in detecting in-plane rotated faces. In fact, the way in
which face candidates are constructed in our algorithm automatically compensates the
effect of in-plane rotation. The 9 cases of false detections were actually caused by the
failure in locating the eyes. Results of detecting rotated faces for one person are shown
in Fig. 7.5.
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(a) Frontal upright (b) Yaw 1 (c) Yaw 2
(d) Pitch 1 (e) Pitch 2 (HRoll 1
(g) Roll 2 (h) Roll 3 (i) Roll 4
(3) Software roll 1 (k) Software roll 2 (1) Software roll 3

Figure 7.5: Detecting quasi-frontal faces with large in-plane rotation

Table 7.2: Results of detecting rotated faces in images of simple background

Number of images 147
Number of faces 147
E § Yaw rotations -18°%,18°
Pitch rotations -36°, 36°
Roll rotations from -180° to 180°
" Number of faces detected 147
§ -_‘% Number of correct detections 133 CDR=94.35% |
" & Number of false detections 9 FDR = 5.65%
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7.3.4 Comparison with Other Face Detectors

Several reasons make it difficult to obtain a fair comparison between different face
detectors. First, the different face detectors must be evaluated on the same test set.
Common test sets do exist online, for example the CMU, MIT, and BiolD databases.
Unfortunately, these databases consist of only gray-scale images, and therefore are not
suitable for testing color-based face detectors like ours. Second, the implementations of
face detection algorithms are not usually made available publicly. We may add that

implementing published algorithms is often a time-consuming and difficult task.

In this section, the proposed face detector is compared with a number of face detectors
that are available as either online demo or stand-alone program. The face detectors used

in our comparison study are listed below:

o BuFaLo face detector

The acronym BuFaLo stands for base-unit for face localization. This face detector,
written by Frank Fritze, is available as a stand-alone program and can be
downloaded from http://www.geocities.com/fritzfra2001/. The face detector is based
on algorithms proposed by Viola and Jones [118-120] and Rainer Lienhart et al. [60,
61]. These algorithms, which are based on the AdaBoost algorithm and Harr-like

features, are described in Chapter 2.

o University of Crete (UC) face detector

This detector is based on the face detection approach b'. Garcia and Delakis [32]. In
their approach, face/nonface classification is donc oy a convolutional neural
network (see Chapter 2). The face detector is an interactive online demo that accepts

input images submitted over the Web.

e Carnegie Mellon University (CMU) face detector

This face detector is based on the work of Rowley et al. [90-92] (neural network)
and Schneiderman et al. [99, 100] (naive Bayesian classifier). This face detector is
an online demo that allows people to submit input images over the Web. However,

the demo is not interactive.
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The same test set of 200 images, described in Subsection 7.3.2, was used. We submitted
this test set over the Internet to the two online face detectors at CMU and the University
of Crete. The test set was also processed by the stand-alone program BuFalLo. We

should point out that these three face detectors use only gray-scale images as inputs.

Table 7.3: Comparison with other face detectors.

Number of images 200
Number of faces 231
Proposed CMU BuFaLo University
Detector | [90, 91, 99, 100] | [60, 61, 118- of Crete
120] [32]
Correct Detection 218 faces 218 faces 180 faces 228 faces
90.04% 90.04% 77.92% 98.7%
False Detection 10 283 5 19 faces
4.30% 122.5% 2.15% 8.2%
Average Alignment 0.71 * * *
Score
Processing Time 120-140s * 4-5s 9-10s

The test results are shown in Table 7.3. The following observations can be made:
o Compared to the CMU face detector, our face detector has the same correct
detection rate. However, the CMU makes 28.3 times more false detections. In
fact, the CMU face detector has the highest number of false detections (283),
among the four face detectors. We notice that the CMU face detector makes
many false detections in textured image regions counsisting of tree leaves, grass,

or painted shirts.

o Compared to the BuFaLo face detector, our face detector has a much higher
correct detection rate. The BuFaLo face detector can locate only 78% of the
faces, whereas our face detector can detect 90.04% of the faces. However, the

BuFalLo face detector makes only S false detections, compared to 10 false
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detections produced by our face detector. In fact, among the four face detectors,
the BuFaLo face detector makes the least number of false detections. We use the
following simple approach to compare our face detector and the BuFalo face
detector at a similar false detection rate. The threshold on the face score of our
face detector is raised so that only 5 of its 10 false detections remain (i.e. a false
detection rate of 2.15%, which is same as that of the BuFaLo face detector). At
the new threshold setting of 0.53, only 199 of the original 218 correct detections

produced by our face detector remain (i.e. a correct detection rate of 86.1%).

o Compared to the UC face detector, our face detector has a lower correct
detection rate. The UC face detector can locate 98.7% of the faces. However, the
UC face detector makes almost twice as many false detections as our face
detector does. We were not able to adjust our face detector to produce similar
false detection rate as the UC face detector. The current implementation of the
UC face detector has a limitation in that it cannot detect faces rotated in-plane by
more than 20°. The CMU and BuFaLo face detectors also cannot detect face
rotated in-plane by very large angles. In comparison, our face detector is

designed to handle arbitrary in-plane rotation, i.e., any angle from -180° to 180°.

In terms of processing time, our face detector takes longer to process a file compared to
the BuFalo and UC face detectors. Approximate measures indicated that, to process a
file in the test set (including file I/O), the BuFalLo and UC detectors take on average less
than 10s whereas our face detector takes more than 120s. Processing time of the CMU
face detector is not made available, but a version of the detector has been reported to
take about 383s, running on a 200MHz R4400 SGI Indigo 2, to process a 320x240 pixel
image (91). Strictly speaking, a fair comparison of the processing times requires face
detection algorithms to be implemented in the same programming language and run on
the same hardware platform. Our face detector is implemented in MATLAB; the core of
the BuFalo face detector is implemented in C++; implementation information of the
CMU and UC detectors is not known to us. We believe that the staged MATLAB

implementation of our face detector can be optimized to run faster.
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7.4 Applications

In this section, we describe two applications of the proposed face detector. The first
application is face localization and normalization for face recognition purposes. The
second application is facial region segmentation for foreground/background video
coding. We also discuss necessary adjustments to the proposed face detector to take

advantage of a priori knowledge about the input images in these application domains.

7.4.1 Face Normalization for Face Recognition

A face recognition system for biometric personal identification typically consists of two
stages: face localization and face identification [78). In the first stage, the face is
extracted from an input image, and then normalized for factors such as face size, face
pose, and the lighting condition. In the second stage, the normalized face is compared
with stored face images in a database. In face recognition, the face image of a person is
usually taken in the frontal upright pose, and against a relatively simple background. It
is fair to assume that the face lies approximately in the center of the image. However, its
precise location and size usually varies. In addition, the face may not be exactly frontal
upright because the person may tilt his or her head slightly. Therefore, even in this
simple setting, it is necessary to extract and normalize the face for recognition purposes.
Although some face recognition algorithms can handle imprecisely located faces [69], it

is quite clear that accurate face localization is essential for good face recognition.

The proposed face detector is particularly suited for a fully automatic face recognition
system because of the following reasons. First, it detects not only the face but also the
in-plane rotation angle of the face (based on the eye angle); therefore, detected faces can
be rotated to the exact frontal upright position. Second, the face detector also outputs
precise locations of the two eye points, which can be used to normalize the face for
subsequent matching. Third, the geometric face model used in the face detector allows
the central portion of the face to be extracted. Chen et al. [19] pointed out that statistics-
based face recognition should use only the central face portion, which includes internal

facial features such as the eyes, nose and mouth. They showed that if extra portions
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such as the hair, neck, shoulder and the background are also used in recognition, these

nonface portions can actually dominate the face recognition process.

For the face recognition application, we modify the proposed face detector based on the
following assumptions, which are reasonable in most face recognition settings:

(1) the face to be detected is in an almost frontal upright position.

(i1) there is only one face in the image.
The first assumption allows us to ignore eye pairs that have large angles. The second
assumption means that only the highest-scored face should be kept. With these
simplifications, we are able to implement a version of the face detector that takes less

than 20s to process an image of size 568576 (running on a 600 MHz PC).

This modified face detector was applied to locate faces and correct small in-plane
rotations for face recognition purpose. In our experiment, the AR face recognition
database [70] was used. This database has been created by Aleix Martinez and Robert
Benavente at Purdue University, and at the time of this writing, it consists of over 4,000
facial images of 134 people (75 males and 59 females). From this database, a test set of
134 images containing faces of different people was used. The detection results are
shown in Table 7.4. The face detector can correctly locate and normalize 124 faces out
of 134 faces (i.e. a correct detection rate of 92.54%). Some of the correct detections and
the corresponding normalized faces are shown in Fig. 7.6 and Fig. 7.7, respectively. The
detector make no false detections. However, it fails to detect faces in 10 images. In
these 10 images, the faces are either darkly lit or taken with eye glasses that reflect
lights strongly (see Fig. 7.8). Under these conditions, the eyes can not be located

correctly by our algorithm.

Table 7.4: Face localization/normalization on the AR face database.

Number of images 134
§ % Image size 568x576
- 0
Number of faces 134
° Number of faces detected 124
§ § Number of correct detections 124 CDR =92.54%
~ a
o Number of false detections 0 FDR = 0%
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(a) Face detection 1 (b) Face detection 2 (c) Face detection 3

(d) Face detection 4 (e) Face detection 5 (f) Face detection 6

Figure 7.6: Visual results of face detection in AR face database.

(@) (b) © (@ ©) o

Figure 7.7: Normalized faces after detection for images of Fig. 7.6

(a) Darkly lit face (c) Reflective eye glasses

Figure 7.8: Cases of face detection failure in the AR test set. The face is either

darkly lit or taken with eye glasses that reflect lights very strongly.
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7.4.2 Face Segmentation for Videophone knage Coding

Face segmentation has been applied together with a foreground/background coding
scheme to improve the subjective quality of videophone sequences [14, 15]. The low
bitrate used in videophone coding results in what commonly known as the blocking
artifacts or discontinuities at the block boundary, which are visually displeasing to the
viewers. The blacking artifacts are present in the entire video frame if all regions are
coded with a constant bitrate. However, if the region of interest (ROI) to the viewer is
coded with a higher bitrate at the cost of lower bitrate available for other regions, then
overall subjective quality of the video is improved. It is found that in a videophone
application, it is the face of the speaker that is of more importance to the viewers.
Hence, face segmentation can be used to extract the facial regions, which then are coded
with higher fidelity compared to the background [14]. We should stress that in this
psychovisual coding scheme, the overall bitrate stays the same, but the subjective video

quality is enhanced (see Fig. 7.9).

We applied to proposed face detector to locate and extract the facial region in a video
sequence. In the experiment, the carphone video sequence was use. The video sequence
consists of 382 frames, each of size 352x288. The face detector was applied to
individual video frames, i.e. without taking into account temporal cues. This experiment
is useful to see how the proposed face detector performs for different facial expressions
because the same person in the 382 frames of the video shows a wide range of facial
actions (eye open/close, mouth movement due to speaking, eyebrow raise, smile, etc.).
The face detection results are shown in Table 7.5. The face detector can locate correctly
91.36% of the faces. Some visual results of face detection are shown in Fig. 7.10. The
face detector takes, on average, 45.1 seconds to process one frame (including file I/O).
This processing time is currently much longer than what required for a practical
application of face segmentation. Nevertheless, we outline below a number of ways that

our face detector can be improved:
¢ Using temporal information. A motion filter can be applied to limit the search
space for face because the facial region is usually under constant motion (the
person speaks or move his or her head). In addition, there are strong correlations

between the face locations/orientations in one frame and the next.
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(a) original carphone image coded at 24 bits/pixel

(b) DCT coded image at a bitrate of 0.41 bits/pixel

(c) DCT coded image at an overall bitrate of 0.41 bits/pixel. The background and the

segmented facial region are coded at 0.35 bits/pixel and 0.81 bits/pixel, respectively.

Figure 7.9: Improving perceptual image quality through region-of-interest coding.

Notice how the perceptual image quality in (c) is improved compared to (b).
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These facts can be used to speed up face tracking and eliminate quickly false
detections. For example, we enforced the following temporal constraint on the
face orientation: the difference between the face argles in two consecutive
frames must not exceed 20°. This constraint removes many false detections that
overlap with the true face; these false detections win over the true faces in the
overlapping elimination step. Using this temporal constraint, the face detector

can correctly locate faces in 368 frames of the total 382 frames (CDR = 96.3%).

Using pixel-wise skin segmentaticn for face tracking. The Bayesian approach
to skin color detection presented in Chapter 3 is very accurate and sufficiently
fast for real-time tracking of skin regions. We can perform all stages of face
detection for video frames at regular intervals. When a face is detected, the
system can go into a tracking mode where it is sufficient to perform only skin

segmentation and minimal face verification.

Table 7.5: Face detection in video

Video sequence carphone
© Number of video frames 382
9; Frame size 352x288 CIF
. Number of faces in all frames 382
Face characteristics Different facial expressions
" Number of faces correctly detected 349 CDR =91.36%
? Number of faces incorrectly detected 33 FDR= 8.64%
% Processing time per frame 45.1 £11.5 seconds
i (without using temporal information)
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(a) Carphone frame 1 (b) Carphone frame 288

Figure 7.10: Face segmentation for videophone image coding.

7.5 Chapter Summary

In this chapter, we present a complete face detection system that integrates the various
components described in the previous chapters of this thesis. The face detector was
analyzed using the ECU data detection database. On a test set of 200 images, the face
detector achieved a correct detection rate of 90.04% and a false detection rate of 4.30%.
The face detector was compared with three existing face detectors using the same test
set. Comparison results have indicated that the proposed face detector outperforms the
BuFalLo and the CMU face detector. Compared to the UC face detector, the proposed
face detector has a lower detection rate. However, the online implementation of the UC
cannot detect faces rotated by more than 20°, whereas our face detector can handle faces
rotated in-plane by an arbitrary angle. In fact, detecting in-plane rotated faces is one of
the major strength of the proposed face detector. In this chapter, we also discussed two
possible applications of the proposed face detectors, namely face localization and
normalization for recognition purpose, and face segmentation for perceptual video

coding.
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Conclusions and Further

8.1 Thesis Summary

This thesis addresses the problem of automatic human face detection in cclor images.
The principal goal of the thesis is to develop a robust algorithm for detecting quasi-
frontal faces with arbitrary in-plane rotation, which combines the strengths of both
analytic and holistic approaches to face detection. To this end, several research
objectives are defined and systematically addressed in the preceding chapters of the
thesis. This section summarizes important findings from our study, and highlights the

inajor contributions of the work reported herein.

The thesis is organized into 8 chapters. In Chapter 1, we describe the problem of
automatic face detection, and its significance in the broader field of automated facial
image understanding. We show that automatic face detection is indeed a difficult
problem in computer vision. In face detection, visual attributes common to all faces that
differentiate the human face from all other objects must be identified and implemented
in an efficient way. In doing so, one realizes that there is a tremendous degree of
intrinsic and extrinsic variations in the face pattern. In Chapter 1, we also describe
important applications of face detection in several domains including face recognition

for biometric personal identification, face segmentation for region-of-interest image and
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video coding, perceptual human computer interface (HCI), and multimedia content

management.

In Chapter 2, we present a comprehensive and systematic review of the state-of-the-art
in face detection. Our literature review reveals that research interests in face detection
have been strong, especially in the last few years. This can be explained in a number of
ways. First, despite several years of research and impressive progress in the field, there
remain many unexplored paths and unsolved problems in face detection. For example,
we find that intrinsic face variations can be handled quite adequately by many existing
face detection algorithms, whereas coping with many extrinsic variations (face pose,
scale, and lighting) is still open for improvement. In this thesis, we attempt to tackle two
important sources of extrinsic variations: in-plane rotation and scale. Second, novel
applications of face detection and tracking are being identified, for example perceptual
HCI, video surveillance, and video coding and indexing. These applications have led to
a new perspective on face detection, and necessitated many domain-specific
performance requirements of face detection algorithms. Two major categories of face
detection approaches, namely analytic and holistic, are described in Chapter 2. In our
literature review, we focus on several recent developments in the field that were not

described in earlier survey papers [42, 132].

Chapter 3 presents a comprehensive study into skin detection using color pixel
classification. Because a significant part of the facial region is skin, we use skin
detection as the first stepping stone towards face detection. This skin detection approach
works at pixel level, in which image pixels are classified as either skin or nonskin on the
basis of their color. This is possible because the human skin has very consistent colors
that are distinct from the color of many other objects. It is fair to say that many authors
have used skin color for face detection. However, each author uses a different color
space or classification algorithm, and there has been no established confirmation of
which method has better performance in terms of accuracy and robustness. In our study,
we attempt to evaluate the skin detection performance of different color spaces and
color pixel classification algorithms. For this purpose, we use a set of 3,000 color
images and manually segmented these images for skin and nonskin regions. This image

set represents a wide variation in the lighting conditions and the skin color types
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(blackish, whitish, yellowish, brownish). Overall, a training set of over 650 million
color pixels and a test set of over 120 million color pixels have been collected and used

in the study.

In this chapter, we compare four main families of color spaces, namely RGB, YCbCr
(representing class Y color spaces), HSV (representing hue-saturation-value color
spaces), and CIE-Lab (representing perceptual uniform color spaces), and six different
classification algorithms, namely fixed range skin color map [15], piece-wise linear
decision boundary [33], self-organizing map [8], Gaussian densities [72], multilayer
perceptron 34), and Bayesian classifier [83]). Based on comparison results, we can
conclude that if all three color channels are used for classification, there is no clear
difference in performance to favor the use of one color space over another. In addition,
the segmentation approach of using all color channels is consistently better than the
approach of using only two chrominance channels (nortnalized rg, HS, CbCr, or ab).
Regarding classification algorithms, we find that the Bayesian classifier is superior to
the other five classifiers in terms of both segmentation accuracy and speed.
Segmentation accuracy of the Bayesian classifier can be attributed to accurate
estimation of class-conditional densities using a large labeled set of skin and nonskin
pixels. In Chapter 3, experiments are also performed to determine the optimum trade-of f
between the histogram size (i.e. memory storage) and segmentation accuracy of the
Bayesian classifier. We find that histogram sizes of more than 64 bins per channel are
necessary for good skin detection performance. Using the histogram size of 64 bins, the
CDRs are 84.4% and 94.5% for FDRs of 10% and 20%, respectively. We believe that
our study on color spaces and color pixel classification algorithms is important not only
for skin detection but alsc for the general task of color-based object detection. For
example, the Bayesian color pixel classifier can be used to segment objects with
consistent colors, such as fruits, coal, and timber in production lines, regardless of the

object orientation and shape.

Chapter 4 focuses on skin detection at region level, in which detected skin pixels are
grouped into homogenous skin regions. In Chapter 4, we propose a complete skin
region segmentation algorithm that consists of three stages: color-based skin detection,

skin region verification, and skin region refinement. Texture property of the human skin
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is taken into consideration in order to remove false detections. We find that skin has a
special texture that results from the grouping of many pixels that have similar colors. As
a result, the skin texture can be considered a type of micro-texture, for which texture
tone is a dominant factor. Hence, simple texture model based on local homogeneity is
suitable for describing the human skin texture. Based on this model, skin-colored pixels
detected by the Bayesian classifier are removed if their local neighborkood is not
homogenous. The proposed approach of skin texture verification using local
homogeneity measure is valid for a wide range of skin textures. Skin regions are also
verified using edge information. Edge pixels are removed from the skin binary mask in
order to separate true skin region from background regions having skin colors and skin-
like texture. Experimental results indicate that these verification techniques can remove
false detections quite significantly. The skin region segmentation algorithm presented in
this chapter allows us to treat each segmented skin regions independently from other

skin regions in the next stage of face detection.

Chapter 5 presents a novel approach to face candidate selection that gives our face
detection algorithm scale-invariant and in-plane rotation-invariant capabilities. The
proposed approach eliminates the need for scanning the input image window-by-
window, as is commonly done in holistic approaches to face detection. In addition, it
addresses a major deficiency in many existing skin color-based approaches to face
detection: they treat each segmented skin region in their entirety as one face candidate.
In Chapter 5, we propose a new technique for detecting eyes in the segmented skin
region. Our eye detection technique is based on eye color. Unlike the technique
developed by Hsu et al. [43], in which ihe eye is detected using rather heuristic rules
about the chrominance and luminance of eye color, our technique models the eye color
using the Bayesian color pixel classifier described in Chapter 3. We are able to handle
automatically different eye color types, including blackish, bluish, brownish, etc. The
eye color pixel classifier takes advantage of the fact that we need to differentiate only
the eye and the skin. The proposed color-based technique to eye detection is very
attractive compared to the filter-based [134] or distribution-based [110] techniques

because the eye can be detected regardless of its orientation.
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For each detected eye pair, two face candidates are constructed using a geometric face
model. This geometric model is found to be valid for the class of quasi-frontal faces that
our face detector is design to handle. The face class includes the frontal upright face and
its variations caused by all in-plane rotations and certain out-of-plane rotation (see
Table 5.2). Because the face orientation is known explicitly from the eye-to-eye line,
each face candidate can be rotated (normalized) to the upright position. That way, in
later verification of the face candidates, we only need to check if the normalized
candidate is indeed similar to a frontal upright face. In Chapter S, we also propose
several new techniques for preliminary verification of the face candidates. Applying the
proposed face candidate selection approach, we found that on average, we need to
examine only about 90 face candidates per true face. This number is much smaller than
the number of windows to be examined in a window scanning approach. Actually in the
latter approach, the number of windows is basically proportional to the number of pixels

in the image, which is in the order of hundreds of thousands for a typical image.

Chapter 6 addresses pattern classification techniques to perform final verification of the
remaining face candidates. We focus on face/nonface classifiers that are based on the
naive Bayesian model. The naive Bayesian model, which assumes statistical
independence between variables in a feature vector, is a well known model in statistical
pattern recognition [21). Our approach is motivated by the simplicity and the accuracy
of the naive Bayesian model. We need to acknowledge that this model has been used in
the past by Schneiderman and his colleague [99, 100]. However, there are a number of
differences between our approach and theirs. Schneiderman et al. modeled both the
appearance (i.e. intensity) and the position of the window subregions, whereas in our
approach the position information is implicitly captured in the lexicographic ordering of
window pixels. Furthermore, we investigate different feature extraction techniques
(intensity, PFS, and edge-based) and their suitability for face/nonface classification. The
intensity feature vector performs better than the PFS feature vector. The edge-based
feature vector, although not as good as the intensity and PFS feature vectors, has quite
good classification rates. At false detection rate of 10%, the correct detection rates of
the intensity, PFS, and edge-based feature vectors are 96.0%, 92.9% and 89.9%,

respectively.
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In Chapter 6, we describe different image preprocessing techniques, and analyze the
effects they have on the separability between face and nonface classes. To the best of
our knowledge, there is, to date, no reported comparative study of different
preprocessing techniques. Experimental results in Chapter 6 indicate that image
preprocessing indeed improves face/nonface classification significantly. For example, at
the same false detection rate, the correct detection rate with histogram equalization
increases by more than 20% compared to no preprocessing. Among the five
preprocessing techniques, namely mean, range, standard deviation normalization,
histogram equalization and gradient illumination correction, histogram equalization is
found to have the best performance. In Chapter 6, three strategies to improve
classification performance are presented: bootstrapping, classifier combination, and
using contextual information. We show that face/nonface classification is improved by
fusing the classification results of naive Bayesian classifiers, which use different feature
vectors. On the same test set of face and nonface patterns, the ensemble of three
classifiers using intensity, PFS and edge-based feature vectors has a CDR of 98.6% at a
FDR of 10%, compared to a CDR of 96% of the best individual classifier. As for using
contextual information, we show that many false face detections can be removed using
the overlapping elimination technique, which keeps a face candidate only if it has a

higher face score than all the face candidates that overlap with it.

In Chapter 7, the complete face detector integrating the components described ‘n
Chapters 3 to 6 is presented. This face detector is analyzed using a test set of 200 color
images taken from the ECU face detection database. On this test set, the proposed face
detector has a correct detection rate of 90.4% and a false detection rate of 4.3%. We
also perform comparison of the proposed face detector and three existing face detectors
on the same test set. Results show that the proposed face detector has better detection
rates compared to the CMU and the BuFalLo face detectors. The proposed face detector
has a lower CDR (90.04%) compared to the UC face detector (98.7%). However, our
face detector makes only 10 false detections compared to 19 false detections by the UC
face detector. In addition, experiments have shown that the proposed face detector can
handle large in-plane rotations, where the UC face detector cannot locate faces rotated
by large angles. Compared to the three face detectors, the proposed face detector has the

following important advantages: (i) it does not require the exhaustive scanning of the
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(without using sparse-matrix coding, a high-performance Bayesian classifier needs at
least 2MB for this table). We suggest that memory requirement can be reduced further
while maintaining the accuracy and speed advantages by training a small neural network

to approximate the color pdfs of the Bayesian classifier.

3. Integration with other eye detection techniques

The eye detection technique developed in Chapter 5 is very effective in finding eye
regions that are enclosed within a segmented skin region. We find that the proposed eye
score based on the eye and skin color pdfs can discriminate well between the eye and
the skin. However, the eye score is less effective in detecting eye regions that fall
outside a segmented skin region. This problem can be addressed in two ways. First, a
complementary eye score based on the eye and the background color pdfs can be used.
Here, the term “background color™ represents the color of objects other than the eye and
the skin. Second, we can incorporate other eye detection techniques based on multi-
scale and multi-orientation filters to detect eye regions that are outside but close to a

segmented skin region.

4. Combining multiple pattern classification techniques for face candidate
verification

In Chapter 6, we show how multiple naive Bayesian classifiers are combtined to yield a
classifier ensemble with higher classification rates, compared to even the best individual
face/nonface classifier. In addition, we show how the face scores produced by different
classifiers are combined into a robust face score that can be used to rank and eliminate
overlapping detections. The successes of these two techniques prove the feasibility of a
face/nonface classification system combining multiple classifiers that may have
different architectures or use different features. Although we focus on the naive
Bayesian classifier in this thesis, other classifiers, such as neural networks and support

vector machines, do exist and can be used for more robust face candidate verification.

5. Face detection and tracking in video

Real-time face detection and tracking in video play a key role in applications such as
vision-based human-computer interactivity and video surveillance. While many
components of the proposed face detector such as skin segmentation, in-plane rotation

invariant and scale-invariant face candidate selection are attractive for a real-time
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application, there exist aspects of the face detector that can be improved or optimized by

incorporating temporal information.

8.3 Closing Remarks

Automatic human face detection is an important research topic in computer vision. It
has an established application in automatic face recognition systems, and many
emerging applications in perceptual human computer interface, region-of-interest video
coding, and multimedia content management. This thesis presents a complete automatic
face detection algorithm that integrates both analytic and holistic approaches to face
detection. The algorithm combines a color-based skin detection technique, a face
candidate selection scheme using a geometric face model and color-based eye detection,
and a face/nonface classification method based on the naive Bayes model. The proposed
approach eliminates the computation-intensive step of window-scanning commonly
adopted in holistic face detection approaches. The proposed approach addresses two
important problems in face detection, namely coping with arbitrary in-plane rotation and
detecting faces of different sizes. It is our hope that the work in this thesis represents
continued progress towards an automatic face detection system that is comparable to the

human vision system.
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APPENDIX

Appendix A: The ECU Face Detection Database

A crucial requirement for research in automated facial image understanding is the
availability of a large and comprehensive image database, based on which algorithms
can be constructed and reliably tested. For face recognition task, large databases exist,
for example, the FERET database with over 14,000 images of 1,199 individuals (78],
and the AR database with over 4,000 images cf 126 individuals [70]). However, images
in face recognition databases are not adequate for face detection because they often
have very simple background. There are a number of online databases specific to face
detection, but the numbers of images in such databases are usually quite small. For
example, the CMU database [91], which is often used for reporting face detection
performance, has only 130 images. Recently, BioID made available a large image
database for face detection research [50). The database consists of 1521 original images
with face detection ground-truths. However, the images are in gray-scale, and therefore

are not suitable for color-based approaches to face detection.

We have created, as part of this Ph.D. research, a large and comprehensive face
detection database at Edith Cowan University. Compared to existing face detection
datasets, this database is unique in three important aspects. Firstly, the database consists
of color images, and therefore supports both color-based and intensity-based face
detection algorithms. If face detection needs to be done in the gray-scale domain, the
images can be converted to gray-scale. Secondly, the database consists of a large
number of images (4,000 images at the time of this writing). These images are widely
varied in terms of the image size, the background, the person, the lighting condition, the
facial expression, and the face pose. Therefore, the database provides a wide spectrum
of face detection scenarios. Thirdly, the database contains ground-truth images that have
been manually produced. This appendix describes the ECU database, its datasets, and
how it can be used. We also suggest a method for evaluating tlic performance of face

detection algorithms on the database.
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A. The Datasets

The ECU face detection database consists for the following datasets:

Set 1 consists of original color images. The images are stored in the JPEG
format. The image files are named sequentially in the form for imnnnnn.jpg,
where nnnnn is a five-digit sequence number starting from 1.

Set 2 consists of the skin segmented images for the images in Set 1. The
segmentation is done manually. In Set 2, nonskin regions are replaced with
white pixels (R = G = B =255). Note that we segment not only the facial skin
regions but also all other exposed skin regions such as the neck, the hands, and
the arms. This set is very valuable for skin color models and skin segmentation
algorithms.

Set 3 consists of the face segmented images for the images in Set 1. In Set 3,
nonface regions are replaced with white pixels. We segment the face manually
by following closely the face contours and not including any parts such as the
hair, the ears, or background regions. This dataset can be used to evaluate face
detection algorithms.

Set 4 consists of the eye segmented images for the images in Set 1. In Set 4,
noneye regions are replaced with white pixels. We consider the eye region to
include the iris, the pupil, the eyelashes, and the white of eye.

Set 5 consists of face patterns. These face patterns are obtained by manually
cropping the central region of the face in images obtainec from various online
sources. The face patterns in this set are mainly for face/nonface classification
task.

Set 6 consists of nonface patterns. These patteins are extracted from nonface
images in Set 7. The nonface pattemns are needed for the task of classif ying face
and nonface.

Set 7 consists of nonface images. These images are known to contain no faces.

This set consists of mostly landscape and scenery photos.

Summaries of the datasets are given in Table A.1. Examples of the images in Set 1, 2, 3,

and 4 are shown in Fig. A.1. The ECU database comes with a Windows program that

can be used to browse its datasets. Screenshots of the program are shown in Fig. A.2.
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Table A.1: ECU face detection database.

Set Description
1 Original color images
2 Skin segmented images
3  Face segmented images
4  Eye segmented images

5  Face patterns

6  Nonface patterns

7  Nonface images

Size Filename File Format Other Info.
4,000 imnnnnn.jpg JPEG
3,300 imnnnnn_s.bmp Bitmap
4,000 imnnnnn_f.bmp Bitmap"
1,000 imnnnnn_e.bmp Bitmap"
12,000 Face nnnnn.bmp Bitmap Image size =
64x64
260000 Nonface nnnnn.bmp Bitmap Image size =
64x64
1845 LSnnnn.jpg JPEG Landscapes

To save storage, these ground-truths can be converted into binary images.

Y

(a) Set 1: original image (b) Set 2: skin segmented image

im03168.jpg

im03168 s.bmp

(c) Set 3: face segmented image (d) Set 4: eye segmented image

im03168 f.bmp

im03168 e.bmp

Figure A.1: Example images in the ECU face detection database.
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(a) viewing sets 1-4 (b) viewing sets 5-6

Figure A.2: A GUI program for viewing the ECU database.

B. Using the Datasets

In this subsection, we show how to extract data from the ECU database for various tasks
including skin color modeling, skin segmentation, and face detection. In the following
examples, the MATLAB environment and its Image Processing toolbox are used. Users
need to adapt these examples to their programming environments. The essential idea is
that non-object pixels in the segmented images are replaced by white pixels
(R=G =B =255). Here, the term “object” refers to skin, face, or eye. Once object
pixels are identified, they can be grouped into objects through connected-component

labeling. Two simple MATLAB code examples are shown in Tables A.2 and A.3.

Table A.2: Using skin segmented images - MATLAB example

% Read skin segmented image
im_skin = imread('im0000l_s.bmp');

% Create skin mask - skin pixels are non-white pixels

skin mask = (im skin(:,:,1) ~= 255) | ..,
(im_skin(:,:,2) ~= 255) | ...
(im_skin(:,:,3) ~= 255);

% Extract skin pixels and nonskin pixels

im _org = imread('im00001.jpg"'); Read original image
r_org = im org(:,:,1); Red component

g org = im org(:,:,2); Green component
Blue component

Red values for skin pixels

b_org = im org(:,:,3);

r_skin = r_org(skin_mask);
g_skin = g_org(skin_mask);
b_skin = b_org(skin_mask);

r nonskin = r org(~skin mask);
g_nonskin = g_org(~skin_mask);
b nonskin = b _org(~skin_mask);

%
%
%
%
%
% Green values for skin pixels

% Blue values for skin pixels

% Red values for nonskin pixels

% Green values for nonskin pixels
%

Blue values for nonskin pixels
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Appendix C: List of Publications

Below is the list of publications arising from this research study. The relevant objectives

stated in Chapter 1 are shown next the publication.

1.

S. L. Phung, D. Chai, and A. Bouzerdoum, "A universal and robust human skin
color model using neural networks," in Proceedings of INNS-IEEE International
Joint Conference on Neural Networks, Washington DC, July 2001, vol. 4, pp. 2844 -
2849. [Objective 4]

S. L. Pheng, D. Chai, and A. Bouzerdoum, "Skin color based face detection," in
Proceedings of the Seventh Australian and New Zealand Intelligent Information
Systems Conference, Perth, Australia, Nov. 2001, pp. 171-176. [Objective 3]

S. L. Phung, A. Bouzerdoum, and D. Chai, "A novel skin color model in YCbCr
color space and its application to human face detection," in Proceedings of IEEE
International Conference on Image Processing, Rochester, New York, Sep. 2002,
vol. 1, pp. 289-292. [Objectives 3, 4]

S. L. Phung, D. Chai, and A. Bouzerdoum, "A distribution-based face/nonface
classification technique," Australian Journal of Intelligent Inforination Processing
Systems, vol. 7, no. 3/4, pp. 132-137, June 2002. [Objectives 3, 7]
S. L. Phung, A. Bouzerdoum, and D. Chai, "A distribution-based face/nonface
classifier using Gaussian mixtures," in Proceedings of the Fourth IASTED
International Conference on Signal and Image Processing, Hawaii, Aug. 2002, pp.
485-490. (Objectives 3, 7]
S. L. Phung, D. Chai, and A. Bouzerdoum, "Adaptive skin segmentation in color
images," in Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, Hong Kong, Apr. 2003, pp. 353-356. [Objective 5]

S.L. Phung, A. Bouzerdoum, and D. Chai, "Skin secgmentation using color and edge
information,” in Proceedings of IEEE International Symposium on Signal

Processing and Applications, Paris, France, July 2003. [Objective 5)
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