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ABSTRACT 

Throughout recorded Chinese history, regions of the country populated by 

persons of non-Han ancestry often fluctuated significantly in population numbers 

:t.'1d in their political and commercial influence. However, at all times they were 

/consid"ered as important contributors to the nation. Many of these peoples had 

moved from their homelands, settled in China and had intermarried with Han 

· Chinese. Over the generations they became accepted as fully-fledged Chinese 

citizens although, in many instances, they retained their traditional customs and 

religious practices, and frequently their own language. The Hui Muslims are a 

good example of this process of integration, and today they comprise some 8.6 

million individuals thus forming approximately half of the total Muslim 

population ofPR China. 

The purpose oft his study is to investigate the genetic structure of two 

populations, the Han and Hui of Liaoning, Northeast PR China. The study seeks 

to provide a better understanding of the effect of population subdivision on the 

genetic diversity of human populations, by comparing genome-based 

investigations using single tandem repeat markers with historical and 

anthropological information. As the Hui of Liaoning are endogamous, and they 

are known to contract consanguineous marriages, the study also attempts to assess 

the effect of consanguinity on overall genetic diversity in the Hui. 

Genetic analysis of the Han and Hui was undertaken by surveying the 

allele distribution patterns at ten autosomal and seven y "chromosome 

microsatellite loci in both study populations. Various population genetic 
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techniques were applied, based either on the Infinite Allele Mutation model or the 

Stepwise Mutation Model. It was found that both the Han and the Hui exhibited 

appreciable heterogeneity at autosomal and Y~chromosome loci, indicative of the 

presence of population substructure and that the AMOV A test best defined genetic 

relationship between two populations. It was concluded that further detailed 

anthropological and demographic information was needed to provide a more 

detailed account of population structure and for the ~reation of a detailed 

phylogeny tracing male Hui gene flow. 

It was also found that consanguinity seemed to have a negligible effect ()h 

the genetic diversity of the Hui population of Liaoning. It was concluded tha\i 
if 

1/ 
either the practice of consanguinity had not occurred over a sufficiently lon~)time 

' !I 
period to alter overall genetic diversity or that heterozygote advantage may) be 

/I 
/,' 

operating at various loci. i1 , 
.'i 
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I. t Human populations and the concept of race 

The concept of race was first applied in the study of human populations in 

the eighteenth century with the aim of extending to humans a taxonomic 

classification below the level of species (Senior and Raj 1994). As time 

rrogressed, the study of human variation reflected general sociopolitical biases 

derived from human social experience that carried over to the Scientific realms 

(Lewontin 1972). 

The publication of Darwin's Origin of the Species gave rise to a belief that 

Northern European man was more fully evolved than ~ny of the other races 

(Marks 1995). Thus began numerous studies based on phenotypical traits such as 

skull size, skin colour, height, eye shape and intelligence. These phenotypic 

studies bloomed with the growth of eugenics movements, which reached their 

peak in the 1920s and 1930s (Marks 1995). 

It can be argued that the first studies into human genotypic, as opposed to 

phenotypic, variation began in the first decades of the 20th century, when variation 

in the ABO blood grouping system amongst pre-conceived human races was 

demonstrated (Weiss 1998). The study of the racial variation of ABO blood 

groups was conducted by Hirszfeld and Hirszfeld (1918-19) with four ABO 

"types" identified, European, Asian, African and Intermediate, based on the ratio 

of the blood groups A and AB to blood groups B and AB. Later studies showed 

this was simply the result of the eugenic bias of the researchers, as distinct racial 

boundaries in the distribution of ABO genotypes did not exist (Marks 1995). 

Instead, -Nhat was apparent was that human blood group data showed a gradual 

change in the frequency of specific genotypes across space ( clinal variation), 
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rather than exhibiting clear boundary differences between groups (Cavalli-Sforza 

eta/. 1994). 

1.2 Protein polymorphism 

It was not until the 1960s that the extent of genetic variation in the human 

species was appreciated, concomitant with the introduction of protein 

electrophoresis. It was found that a gene could have many functionally equivalent 

alleles, seemingly in direct contradiction to the classical Mendelian model of 

mutational deviations evolving from one wild type allele. This situation has been 

tenned neutral variation and was first defined by Kimura (1968). 

In the 1970s many studies concentrating on worldwide human diversity 

based on blood groups and protein fumilies were published, for example Lewontin 

(1972) and Cavalli-Sforza and Bodmer (1971). These studies centred on 

genotypes based on blood groups, allozyme data, and other protein families. The 

results used to estimate times since the separation of major racial (continental) 

populations, by treating groups at the extremities of the human species 

distribution a:, if they had been living in complete isolation and estimating how 

long the present differences between them would have taken to accumulate (Weiss 

1998). All studies found most variation within African populations, lending 

support to the Out of Africa theory of human origins, initially developed from the 

fossil record. 

Lewontin (1972) carne to the conclusion that only 6.3% of human 

diversity was assignable to race. That is, most variation, (93.7%) is due to 

differences helween individuals within a particular racial group. He therefore 

concluded that racial classifications were of no genetic or taxonomic significance 

and so no justification could be offered for their continued usage. 
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1.3 DNA polymorphism 

Studies on variation using protein polymorphisms are, by definition, 

limited, as proteins only represent that fraction of the human genome that encodes 

, functional products. It is now estimated that approximately I 0% ofthe human 

genome contains functional genes, with the rest often described as junk DNA, 

mainly consisting of sequences such as pseudogenes, long interspersed sequences 

(LINES), short interspersed sequences (SINES) and satellite DNA. 

The first method developed for quantification of the molecular variation of 

DNA was Restriction Fragment Length Polymorphisms or RFLPs. RFLPs are 

fragments of DNA produced through cleavage of DNA strands by restriction 

enzymes. Restriction enzymes cleave DNA at specific nucleotide sequence 

recognition sites e.g., CAAG, resulting in the production of DNA sequences that 

vary in size according to the placement of the restriction site. Variation occurs 

between individuals due to mutations at restriction sites eithei· disabling the 

occurrence of restriction sites or creating new sites, in tum creating new DNA 

s~qi.Jence variants. These restriction enzyme cleavage sites are detected by 

Southern blot hybridisation. RFLP analysis was soon utilised in human 

population genetic analysis. An example is the study by Wainscoat (1984) where 

RFLPs in the P-globulin gene cluster were analysed in eight different human 

populations. The result was a cladistic lineage similar to those produced from 

earlier protein polymorphism studies. 

The use of RFLP technology in human mitochondrial sequences by Cann, 

Stoneking and Wilson (1987) resulted in the mitochondrial Eve hypothesis which 

calculated that the ancestral human female could be dated bock 200,000 years. 

The same study also showed that it was difficult to locate any distinctive 
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geographical patterns amongst the human samples. Individuals from the same 

local population generally had similar mtDNAs, but there often was evidence that 

persons from other different populations were scattered amongst them. 

The discovery of variable number of tandem repeat loci (VNTRS), or 

minisatellite DNA, by Jeffreys eta/. (1985) led to the creation of a tool with 

which geneticists could resolve identification of the individual for forensic 

purposes. This concept, termed DNA fingerprinting, further demonstrated that the 

great majority of human genetic variation could be ascribed to differences 

between individuals and not to differences between groups. 

The subsequent discovery of smaller repeat sequences termed 

microsatellites (Weber and May 1989) resulted in the development of what is 

currently the most widely used genetic marker. A worldwide survey of 

indigenous populations, akin to that attempted with RFLP analysis, revealed that 

microsatellite data showed discrete clusters which corresponded with the 

population of origin (Bowcock el a/. 1994). The success of the technique was 

probably due to the fact that microsatellites exhibit much greater variation than 

any of the classical polymorphisms and nuclear RFLPs, and they also have greater 

diversity than mtDNA (Bowcock et aL 1994). However, the clustering patterns 

were enhanc<d by the fact the samples were collected from geographically 

discrete populations, and a more randomised sample would probably give a more 

complex picture. 

The most recent development in the study of human genetic variation is 

the detection of single nucleotide polymorphisms (SNPs). A SNP is a position on 

the DNA ladder at which two alternative bases occur at appreciable frequency 

(>1%). They are the most common polymorphism in the human genome 
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occurring at a density of about I every lkb of DNA (Chakravarti 1998). The 

development of so called DNA Chip technology will allow the simultaneous 

scanning of hundreds, even thousands ofSNPs in an individual. Utilisation of this 
• 

technology will add to the ever more complex picture of human genetic v'ariation. 

1.4 The concept of ethnicity 

The discovery of blood group, protein and DNA polymorphisms indicates 

that human genetic variation is fluid, created by mutation, but vetted over history 

by biological, demographic and historical processes (Chakravarti 1998). From 

this conclusion it is clear that no race possesses a discrete package of genetic 

characteristics (Senior and Raj 1994), and so classification of the human species 

on racial grounds cannot be regarded as scientifically valid. 

New concepts of human population structure are, however, needed. 

Unlike race, ethnicity is a socially constructed phenomenon, and ethnic 

boundaries are, by their very nature, imprecise and fluid (Senior and Raj 1994). 

The defmition of ethnic groups is based on linguistic, religious and cultural 

differences. In other words, ethnicity is primarily an anthropological construct 

which has only recently been recognised in human genetics. 

1.5 Genetic anthropology 

One result of the recognition ofethnicity in the field ofhuman genetics is 

the development of the new scientific discipline, genetic anthropology. Genetic 

anthropology can be considered as a merger of population genetics and 

anthropology. The discipline utilises patterns of genetic similarity among 

different human populations to infer demographic history, including mating 

structure, the history of migration and admixture with surrounding groups, and 
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por)ulation size fluctuations, with cultural information such as linguistic 

characteristics, archaeological artefacts and historical records. 

Ambitious projects are now in train where such anthropological data are 

being collected in combination with genetic information. An example is Eurasia 

9~ which was planned as a collaborative Arnerican-British-Uzbek anthropological 

expedition to the regious of Transcaucasia, Central Asia and Siberia, to investigate 

the genetic anthropology of Central Asian populations (see appendix A) 

A more ambitious project, called the Human Diversity Database, is being 

conducted at the Human Population Genetics Laboratory at Stanford University 

(see appendix A). The Database is planned as a comprehensive community 

repository supporting work in human population genetics and quantitative 

anthropology. Initially it will contain data published in the book History and 

Geography of Human Genes (Cavalli-Sforza eta/. 1989), but it is hoped that a 

collection of published and unpublished DNA data by individual and by 

population (including RFLPs, microsatellites, and SNPs), and data from the 

Centre d'Etudes du polymorphisme Humaine (CEPH) database will be included. 

Eventually it is envisaged that the Database will serve as the core source of 

information derived from the Human Genetic Diversity Project. 

1.6 Conclusion 

The establishment oflarge, global collaborative projects highlight the need 

for a multiMdisciplinary approach to understanding human genetic diversity. It is 

now apparent that the study of human genetic diversity is more historical and 

medical in orientation than biological and taxonomic (Senior and Raj 1994). 

Using genetic approaches it is possible to trace population migrations, analyse the 

effect of population bottlenecks resulting from major historical events (e.g., the 
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effect of major disease epidemics) and assess the effects of population isolation 

and consanguinity. 

I. 7 Aims of the study 

The aim of the present study is to adopt a genetic anthropological 

approach to investigate the structure of two co-resident populations, the Han and 

Hui of Liaoning, Northeast PR China via the use of historical, demographic and 

genetic data. In summary, the study will attempt to: 

I) Detennine if distinct patterns of genetic diversity can be defined between the 

Han and the Hui populations of Liaoning province at autosomal and Y­

chromosome single tandem repeat loci~, 

2) Determine if, within each population, the patterns of diversity are comparable 

at autosomal and Y -clu·omosome loci. 

3) Detennine if patterns ofY-chromosome allele variation observed in the Hui 

can be ascribed to male-directed gene flow; and 

4) Determine tbe effect of inbreeding on the observed pattern of genetic variation 

in the Hui. 

Thus it is envisaged that the study will lead to a better understanding of the 

effect of ethnic affiliation and consanguinity on the genetic diversity of human 

populations, by comparing genome-based investigations using single tandem 

repeat markers with historical and anthropological information. 

The study wiiJ also attempt to compare Y -chromosome and autosomal 

data, a topic that to date has received Jesser attention because of the paucity of 

appropriate Y -chromosome markers (Roewer et a/. 1996, Perez-Lezuan et a/. 

1997b, de Knijff eta/. 1997). Comparisons between autosomal andY-
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chromosome data should prove useful, as historical references indicate that the 

main founders of the Hui population were mainly male Arab and/or Iranian 

traders who married Han women (Wong and Dajani 1988; Du and Yip 1993; 

Gladney 1998). Thus Hui males should exhibit significantly different Y­

chromosome haplotypes than their Han counterparts but share autosomal 

haplotypes. 
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Chapter 2 

Historical background 



2.1 Introduction 

This study is based on two ethnic groups, the Han and Hui, who are co-

fesident in the northeastern province of Liaoning, PR China. In order to 

adequately analyse genetic variation within and between the two communities, 
i; 

knowledge of the history of the area in which they live and a broad understanding 

of their individual histories is needed. This information will allow a perspective 

on the genetic structure of the communities in terms of the effects of population 

migration, admixture and isolation. 

2.2 Chinese Dynasties 

In tbe following discussion of the historical background ofthis study, 

much of the historical chronology will be discussed in terms of Dynastic periods 

as much of Chinese history prior to the20"' century was classified in this way. 

Thus Table 2.1 shows in chronological order the major Chinese dynasties/periods 

of the modem era. 

Table 2.1 Chinese dynasties 

'\r 

Western Han Dynasties 
Chi'in Dynasty 
Eastern Han Dynasty 
Six Dynasties Period 
Sui Dynasty 
Tang Dynasty 
Five Dynasties Period 
Song Dynasty 
Yuan Dynasty 
Ming Dynasty 
Qing Dynasty 
Republican period 
Peoples Republic period 

II 

206BC - SAD 
SAD- 25AD 

25 AD- 220AD 
220 AD - 5SI AD 
5SI AD - 61S AD 
61S AD - 907 AD 
907 AD - 960 AD 
960 AD- 1279 AD 

1279 AD -136S AD 
136S AD -1662 AD 
1662 AD-190S AD 
190S AD-1949 AD 

·1949AD-
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2.3 Liaoning province 

Liaoning province is located in Northeast China on the border with North 

Korea (Figure 2.1 ), and forms part of the region formerly called Manchuria. 

Liaoning has a population of approximately 40 million people, of which the Han 

majority numbers approximately 33 million and the Hui minority 263 000 (Family 

Planning Commission 1997). 

The area that is now the southern tip of Liaoning province was for many 

centuries the border between the Chinese Empire and the "barbarian" horde~, the 

Jurchen (Fairbank and Reishauer 1990). Through contact with the Chinese 

Empire the Jurchen tribes learned of Chinese culture, resulting in the formation of 

·'a Manchu nationality and eventually the successful tbunding of the Qing dynasty 

in !662 AD. During the early Qing period Mukden (now modem Shenyang) 

became the centre of Qing Dynasty power, before the seat of government was 

moved to Beijing (Fairbank and Reischauer 1990). 

Liaoning, as part ofthe puppet state Manchuko was under Japanese rule 

from 1932-1945 (Fairbank and Reischauer 1990). It served as a centre for heavy 

industry with its rich natural resources being used to fuel the Japanese Military 

machine. Liaoning remains an industrial region, with parts of the province 

enjoying special economic status under the current government of the Peoples 

Republic of China. 
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Figure 2.1 Map of the Peoples Republic of China 
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0~~~~~1oookm 

*Shaded area is Liaoning province 

2.4 Chinese ethnography 

China is usually portrayed as a homogenous monoethnic state, but this is 

far from the truth (Gladney 1998). In fact, China is a multicultural and ethnically 

diverse nation with great cultural, geographic, and linguistic diversity among its 

dispersed populations. The Peoples Republic of China (PR China) is composed of 

56 officially recognised nationalities, including the majority Han nationality. The 

other 55 nationalities have a total population of approximately 91 million (Family 
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Planning Commission 1997). The largest minority nationality are the Zhuang 

peoples of Guangxi province who number approximately IS million, and the 

smallest are the Luoba of Tibet numbering just 2,312 individuals. 

A contemporary definition of ethnicity is that members of an ethnic group 

share consciousness of group solidarity, by virtue of sharing common descent and 

common custom and habits (Lipman 1998). The government ofPR China gives 

ethnicity, or in official terminology, minzu (nationality), definition by markers 

such as common territory, language and economy (Gladney 1998). 

Chinese history sheds light on this definition of ethnicity. The concept of 

the "Middle Kingdom" was central to Chinese thinking, and probably still is 

(Fairbank and Reischauer 1990). Throughout Chinese history, the Chinese ruling 

elite viewed China as the middle kingdom, the centre of the world with all other 

states in the "barbarian" fringe. Foreign "barbarians" were labelled wayji 

(outside barbarians), whereas minorities who lived within the middle kingdom 

were labelled neiyi (inside barbarians) (Dikotter 1992). This practice is in 

accordance with the Confucian practice of zheng mlng (rectification of names), 

whereby labelling and categorisation restores order and all is well with the world 

(Leslie 1986). 

Further categorisation of populations within China was also a common 

practice of the ruling dynasties. One example is the categories defined by the 

Mongol dynasty (1279-1368), with the population of imperial China divided into 

four categories: The Mongols, Semu ('the coloured eyes', Western and Central 

Asians), Hanren ('Han people', Northern Chinese, Khitans, Jurchens and 

Koreans), and Nanren ('southerners') (Dikotter 1992). In essence, by 

categorising populations, a sense of order was created which allowed the ruling 

14 

I 



dynasties to create the impression of firm control over their dominions. The 

modern-day official minzu is little different in that it seems to create a sense of 

order out of the complox ethnography ofPR China, thus giving the government at 

least the appearance of central control over the populace. 

2.5 The Han nrinzu , 

The Han can trace th~ir history back to the Huaxia period that extended 

from the 21"to the 8th centuries BC. In essence, it is believed that the Han were 

an ethnic group based on th~. ancient Huaxia of the middle and lower reaches of 

the Yellow River, who subsequently assimilated other loca·l and regional ethnic 

groups (Du and Yip 1993). 

The term Han is used collectively to' define the majority population in PR 

China. It was adopted into common usage after the fall of the Eastern Han 

Dynasty which ruled between 25 AD and 220 AD, often thought of as a golden 

age in Chinese history (Du and Yip 1993). According to the 1990 census, the Han 

make up 92% of the population ofPR China and number approximately I, I 00 

million (Family Planning Commission 1997). The Han are resident throughout 

PR China, but they are most numerous in the more densely populated east of the 

country. Although the written Mandarin language is uniform, the spoken 

language differs from province to province with nine major dialects recognised. 

Hence, it can be argued that use ofthe term Han to encompass all of these people 

is more a political convenience than a true measure of ethnicity. 

Recognition of the Han as a nationality coincided with the advent of the 

Republican period in 1908. Dr Sun Yat-sen discerned a need for the Chinese 

people to develop a sense of nationhood if post-imperial China was to succeed. 

Sun admired the western nations such as Britain and the United States for their 

15 



sense of nationhood and national pride, something that was not present in Chinese 

society ~t' that time. During this time the figure of the Yellow Emperor 

(Huangdi) was elevated in status to that of a national symbol and declared to be 

the first ancestor (shizu) oftheHan mim11 (Dikotter 1992). The Yellow Emperor 

was a mythical figure who was thought to have reigned from 2697 BC to 2597 

BC. In fact, he became a figurehead for radical nationalist organisations during 

the first half of the 20th century. This sense of national pride and belonging was 

necessary in order to mobilise all of the Chinese peoples initially against the rule 

of the Qing dynasty, and later to establish a strong Chinese republic under a 

centrally controlled government which in effect was similar to the proceeding 

imperial dynasties (Gladney 1996). 

After the establishment of the Peoples Republic of China in 1949, the 

Communist Party also used nationalist ideals to exert its power through a ',1_ 

centralised government. Almost from the start of the Peoples Republic, there li~s 

been continuous evaluation of ethnicity and nationhood (Lipman 1998), and the 

Han were defined as an official nationality along with 55 other minority 

nationalities. At first, official recognition of the minority populations fulfilled a 

promise of ethnic autonomy made during the Long March in 1932 in order to 

facilitate the survival of the Chinese Communist Party. 

Once power had been secured, the PR China government eroded this 

autonomy for the sake of national unity. For example, the government removed 

from the constitution a clause allowing ethnic nationalities the right to secede 

from the Republic, and forced many ethnic peoples into communes with Han 

Chinese (Gladney 1996). Amongst many other reforms, the 3rd Party Plenum of 

1978, restored most of the autonomy of the minorities. The net result was a huge 
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rise in the numbers of persons recognised as belonging to a minority population, 

with more and more Chinese citizens identifying themselves as belonging to a 

specific minority group (Gladney 1996). 

2.6 The Hui 

2.6.1 Introduction 

According to the 1990 PR China census, the Hui are the largest Muslim 

community in the country. At 8.6 million, they account for some 50% ofthe total 

Muslim population and are resident in 19 of the provinces of PR China (Figure 

2.2 (Family Planning Commission 1997). It is notable that the Hui are recognised 

as an official minority despite their lack of a common territory or a common 

language. Their extensive geographical spread suggests that the Hui may actually 

comprise many smaller subpopulations which could claim minority status in their 

own right, and so the Hui of Liaoning province should perhaps be more properly 

regarded as a separate distinctive community from other Hui communities. 

The origins of the Hui (or Huizu) are diverse, and it is believed that 

they include individuals whose ancestors originated in pre-Islamic times, from 

Central Asia, Iran, and the Middle East (Du and Yip 1993). For example, in 61 

AD some 10,000 Turkic families from the Central Asian city-states ofSarnarkand 

and Bokhara were recorded as settling in the ancient capital of China, Chang'an, 

now called Xi'an (Du and Yip 1993). Otller recorded exoduses to China include 

the influx of Persian refugees from what is now modern Iran after the fall of the 

Sassanid Empire in 652 AD. 
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Figure 2.2 The geographical spread of the Hui minzu over PR China 
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*Each dot represents 3000 Hui Muslims. Bordered area 
is Liaoning province. Adapted from Gladney (1998) 

2.6.2 The introduction of Islam into China 

With the establishment of Arab rule over the Middle East and parts of 

Central Asia in approximately 652 AD, many Arab rulers made contact with their 

Chinese counterparts and established trade contacts via the Silk Road. The 

ancient Silk Road was an overland route that stretched some 7,000 km between 

Xi'an and Constantinople/Istanbul on the Mediterranean and flourished between 

100 BC and 1630 AD (Hopkirk 1980, Yifu et al. 1989). During the Tang (618 

AD-907 AD), the Five Dynasties (907 AD -960 AD), and especially in the Song 

period (960 AD- 1279 AD), Arab traders began to actively trade in Chinese cities, 

mingling with the resident merchants from West and Central Asia. These Arab 
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traders were largely unaccompanied males who settled in PR Chi ria, married Han 

women, and procreated (Du and Yip 1993, p. 44). 

In addition to traders, it is also teported that Arab troops settled in China. 

In 755AD the Emperor Su Tsung appealed to the second Abbasid Caliph, Abu 

Ja'far, for help in recapturing Ch'ang-an from a military commander who had 

rebelled against the Tang emperor and captured his capital city. In response to the 

Emperors appeal, the Caliph sent 4,000 troops and the city was recaptured. After 

this successful military campaign, these Arab troops remained in China, 

intermarried w'•h Chinese and formed a Muslim community (Wong and Dajani 

1988). 

2.6.3 The Yuan dynasty 

It was during the Yuan dynasty (1279 AD -1368 AD) that Muslim ethnic 

groups came to prominence in China. Muslims were entrusted with vast 

responsibilities and powers, primarily acting as middlemen between the Mongol 

overlords and the majority Chinese population (Leslie 1986). The Muslims were 

employed by the Mongol rulers to administer conquered populations in positions 

such as Governors, trade commissioners and various other bureaucratic roles. 

Muslims also were influential in the creation of the Chinese calender, in the 

building of Peking (now Beijing), in medicine, and in the military (Leslie 1986). 

In conclusion, during the period of the Mongol reign the Muslims were second in 

influence only to the Mongols themselves, and they became an important part of 

the ruling bureaucracy. 
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2.6.4 The Ming dynasty 

With the founding of the Ming dynasty (1368·1662), Islam had been 

established in China for approximately 700 years (Rahman 1997). Up to this time 

Muslims had maintained a separate, alien status, with their own customs, 

language, and traditions. Under the Ming dynasty this situation began to change, 

as Muslims became fully integrated into Han society (Leslie 1986, Lipman !998). 

Assimilation was strongly encouraged to wipe out the influence of any 

foreign group and to establish the superiority of Han culture. The practice of male 

foreigners marrying Han women was specifically encouraged by an Imperial edict 

issued during the fifth year of the reign ofHongwu which stated that: 

"Mongolians and Se Mu (Hui) people are allowed to marry Chinese but 

no/their own kind" (Du and Yip 1993). 

One result of the integration of Chinese Muslims into Han society was the 

process by which Muslim names changed. Many Muslim men simply took the 

name of their Han wife, while others adopted the Chinese character that most 

closely resembled their own name (Rahman 1997). 

2.6.5 The Qing dynasty 

During the Ming dynasty, Muslim communities had been almost fully 

integrated into Chinese society. This changed with the onset of the Qing dynasty 

(1662 AD- 1908 AD). During the years 1781 • 1784 many new imperial edicts 

were enacted in which Muslims were lumped together in a single group, with 

special laws referring to them as such (Leslie 1986). A result of this new imperial 

policy was a split of the Hui into those who supported the Qing dynasty, mostly 

communities involved in trade in the eastern regions of the empire, and those who 
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did not, predominantly resident in the north west of the country (Lipman 1998). 

The founding of many Islamic sects and philosophies further facilitated this split. 

The schism on political and religious grounds could have further isolated Hui 

communities, resulting in an increased restriction on the availability of potential 

marriage partners and possibly affecting the patterns of genetic diversity of 

subsequent generations. 

Until the seventeenth century, virtually all Muslim communities in China 

focused their communal life around the local mosque that was run by an A hong, 

or teacher, appointed by the community elders (Lipman 1998}. This local version 

oflslam is called Gedimu and it remains the most predominant style oflslam in 

China today (Gladney 1996). During the mid- to late Ming, some Muslim 

communities began to take a greater interest in Islamic history and law, in part as 

a means of alleviating problems caused by the Ming policy of integration (Leslie 

1986). This change coincided with the arrival of Sufism in China. Sufism, 

sometimes called Islamic Mysticism, revolves around the following of a Sufi or 

teacher. These Islamic cults first arose in the Islamic heartlands during the 13th 

century, when the Mongol Empire was at its zenith. Although the orders spread to 

China at that time, they did not make an impact until the late eighteenth and the 

nineteenth century (Lipman 1998). 

During the Qing period, a number of Sufi orders spread throughout 

Muslim China, with the teaching of each order based on different interpretation of 

Islamic texts. The four main Sufi orders founded in China are the Jahriyya, 

Khufiyyt:, Qadiriyya and Kubrawiyya. These menhuan (saintly lineages) were 

further subdivided into many smaller menhuan and branches created along 

ideological, political, geographical and historical lines (Gladney 1998). 
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One result of the growing power of the Sufis was the occurrence of battles 

between different Muslim orders, and clashes between Muslims and the Imperial 

army during the eighteenth and especially in the nineteenth century (Gladney 

1996, 1998). In one war between the Qing imperial forces and the Sultanate of 

Dali from 1855-1873 an estimated I 0 million persons died (Dessain! 1995-1996). 

Since the present population of Muslims in China is approximately 16 million 

(Family Planning Commission 1997), and assuming that around half ofthe 

casualties were supporters of the Sultanate, i.e., Chinese Muslims, casualties on 

this scale may have had a significant bottleneck effect on the present genetic 

structure of the Hui. 

2.6.6. The Republican period 

The Republican period {1908 -1949) followed the fall of the Qing 

dynasty. An eastern republic was established and, at the same time, there were 

many different warlord states, some of which were ruled by Muslims. The most 

powerful of the Muslim rulers was the warlord who controlled Ningxia, Ma 

Fuxiang (Lipman 1998). He sided with the Guomindang on its ascent to power in 

1928, and thus became an important regional leader to the Guomindang leader 

Chiang Kai-shek. This political power resulted in the establishment of the China 

Islamic Society, and the reopening of many Muslim schools and other similar 

religious institutions which had been closed or destroyed during the Qing Dynasty 

(Lipman 1998). 

While the support of warlords was needed by the Guomindang to keep its 

hold on power, a contrary policy was adopted to the ethnic minorities to suppress 

etlmic nationalism. In a reference to the Muslim minorities, Chiang Kai~shek 

stated that the "Mohammedans in present-day China are for the most part actually 
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members of the Han clan who embraced Islam"(Giadney 1996), and "the 

differentiation among China•s five nations (as first defined by Dr Sun Yat-sen) is 

due to regional and religious factors, and not to race and blood". Under this 

policy, the Hui were not considered a separate nation, but a religious group with 

special characteristics. This policy is still maintained by the government of The 

Republic of China, Taiwan, which refers to the Hui as a religious group, not an 

ethnic community. 

2.6.7 The Peoples Republic period 

As previously noted, the origins of the present system of official minorities 

in PR China go back to the Long March of 1932, when the Communists were 

expelled into the regional areas of China by their Guomindang opponents 

(Fairbank and Reischauer 1990). As a result the Communists had to negotiate 

with the various minority peoples who lived in western China, but who were wary 

of this army from the east. Unlike the Guomindang, the Communists promised 

autonomy to the minorities when they ascended to power, that is recognising 

ethnic mimu, unlike the Guomindang polices. This was confirmed in The 

Communist Constitution of I 932, which allowed for complete autonomy of 

various minority regions, prefectures and counties (Gladney 1996). 

Almost immediately after the establishment of the Peoples Republic of 

China, anthropologists and demographers were recruited to survey the population 

of China. As a result people who were formally called Hui were divided into 10 

separate Muslim minzu, the Uygur, Kazak, Dongxiang, Kirghiz, Sal a, Tadjik, 

Uzbek, Baonan, Tatar and Hui. The first nine were given separate minzu status as 

they each had a unique language of their own. In essence the modern Hui minzu 
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refer to those Muslims who do not have a language of their own but who speak 

the dialects ofthe peoples among whom they live (Gladney 1998}. 

While autonomous regions, prefectures and counties were set up 

specifically for these Muslim minzu, in reality these communities had limited 

power and most populations were forced into commun~s with the effective loss of 

autonomy (Gladney 1996}. Subsequently the PR China government enforced the 

One China nationalism first espoused by the first Chinese president, Dr Sun yat­

sen and later by Chiang Kai-shek. 

The situation was however reversed after the reforms of 1978 when the 

minority nationalities again gained a bigger voice in China. As a result of these 

changes, the Hui people have now developed a strong sense of ethnic identity and 

nationalism. 

2.7 Summary 

The different concepts of ethnicity indicate that, in defining populations 

for genetic analysis, great care is needed to differentiate between population 

groupings which are either a political construct, a scientific construct, or a 

culturally distinct grouping. The Hui have only recognised themselves as a 

nationality from the beginning of the 20th Century. Serious arguments about the 

existence of a Hui minzu started to occur in Hui communities with the fall of the 

Qing Dynasty (Lipman 1998). This change occurred in parallel with the coming 

to power of various Warlords in North West China, and then the creation of 

official Hui minzu status with the establishment ofthe Peoples republic in 1949. 

Before this, the Hui were recognised purely as a religious group, and the tenm Hui 

literally translates as Muslim thus encompassing all those who held the Islamic 

faith and resided in China regardless of their original ethnic origins (Gladney 
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1996). The Han also are more of a political construct than a culturally distinct 

grouping, consisting, as they do of different cultural heritages, di!Terent language 

groupings, and even possibly different evolutionary origins (Chu eta/. 1998). 

Any genetic analysis of these populations must recognise the complicated 

underlying social and cultural divisions, and the possible effects on genetic 

diversity that may be entailed. 

25 

' • 



Chapter 3 

Molecular and population genetics 

methodology 
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3.1 Introduction 

For the purposes of the present study it was decided that the most 

appropriate method of 8'ssessing genetic variation in the Hui and Han ethnic 

groups was via analysis based on a panel of microsatellite markers. Since the 

s.tudy is mainly concentrated within a historical rather than an evolutionary time 

frame, -it was hypothesised that the effects of migration, admixture, and isolation 

would prove to be major factors influencing the differentiation ofHui from Han. 

Acc'ording to historical sources the history of the Hui includes a number of 

unique features, including male migration, female admixture and consanguinity. 

Therefore a comparison of autosomal andY- chromosome microsatellite markers 

should provide genetic evidence of these influences. 

The primary methods used to measure differentiation of microsatellite 

.markers in the Hui and Han populations include a direct comparison of allele 

frequency distributions, the calculation and comparison of observed and expected 

heterozygosity, an assessment of linkage disequilibrium, and the calculation ofF-

statistics and F-statistic analogues. 

(; ,, 
\\ 
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3.2 Microsatellite markers 

3.2.1 Definition or microsatellite markers 

Microsatellites are tandemly repeated sequences whose unit of repetition is 

between one and six base pairs. Microsatellite sequences, which are randomly 

dispersed in the genome, are members of a larger group of repetitive DNA 

sequences and include satellite DNA, minisatellite DNA and transposable 

elements (Charlesworth eta/. 1994). 

Microsatellites have been proposed as the genetic marker of choice in 

molecular genetic studies, as they have a high level of polymorphism and are 

assumed to be selectively neutral according to the definition first proposed by 

Kimura (1968). That is, while many different alleles may exist, each allele is 

functionally equivalent. It is assumed that microsatellites play no functional rol~ 

in the human genome, and so they would have a constant rate of evolution, which 

is independent of the size of the population. 

Microsatellites can be used as markers for the analysis of genetic diversity 

between populations of the same species because they have very high mutation 

rate, some tandem repeats have mutation rates as high as 10"3 (Goldstein et al. 

1995, Perez-Lezuan eta/. 1997a). As noted earlier, this equates to a 

correspondingly high level of polymorphism. These features ofmicrosatellites 

have led to their widespread adoption in paternity testing, linkage analysis, and 

the reconstruction of human phylogenetic trees (Goldstein eta/. 1995). 
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3.2.2 Microsatellite mutation models 

The analysis of population structure using microsatellites is dependent on a 

correct appreciation of the various mutation models applicable to microsatellite 

markers. Two broad theories pertain, the Infinite Allele Model (JAM), and the 

Stepwise Mutational Model (SMM). 

In basic terms, lAM assumes that every new mutation gives rise to a new 

allele. Therefore alleles that are identical by state (i.e., the same size) are also 

identical by descent (i.e., the allele was inherited from a common ancestor). 

Microsatellite mutation does not fit this model exactly. Initially it was believed 

that microsatellite mutation involved the gain or loss of a single repeat unit 

(Weber and Wong 1993}, although more recently some microsatellites have been 

found to mutate by more than one repeat unit at a time (Di Rienzo eta/. 1994). 

Empirical observation has further demonstrated that through the course of several 

generations microsatellites can, for example, lose a repeat and a generation later 

regain that repeat. This phenomenon, termed homoplasy, results in aiieles that are 

identical by state but not necessarily identical by descent. Since microsatellite 

mutation rates are high, levels of homoplasy among microsatellite alleles are 

assumed to be equivalently large (Goldstein el a/. 1995). 

The SMM model, first defined by Kimura (1968}, can be utilised in 

microsatellite nucleotide sequences to simulate single step mutation, with the 

possibility of high rates of homoplasy (Goldstein eta/. 1995, Takezaki and Nei 

1996), and parameters such as the Ddm (delta mu squared) genetic dist•mce is 

based on this theory. Ddmis based on the square of the difference in the means of 

allele size between populations, with a comparison of allele size difference acting 

as the main parameter for SMM distances. 
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Since the fonnulation of the various mutation theories, there has been 

widespread debate as to which distance measure is best suited for use with 

microsatellite data. The very structure of micro satellites is complicated. They 

can comprise repeats ranging from 1-6 base pairs long, and have one of three 

structures, pure, compound and interrupted (see Table 3.1) 

Table 3. 1. Microsate!lite classification 

Pure CACACACACACACACACACACACACA 

Compound CACACACACACACACACACAGAGAGA 

Interrupted CACATTCACACACACACATCACATCACA 

This complexity results in different types of microsatellite that mutate in 

different ways and at different mutation rates. A study by Shriver (1993) 

attempted to compare the observed genetic diversities of various classes of 

Variable Number of Tandem Repeat loci (VNTRs), with simulations derived from 

the SMM model. The sequences studied included di-, tri-, tetra- and 

pentanucleotide microsatellites, and minisatellites composed of 15-70 base 

repeats. The results indicated that all microsatellites with 3-5 base repeats, 65% 

of microsatellites with dinucleotide repeats, and 27% of minisatellites matched the 

corresponding s.imulation values. It was concluded that minisatetlites, and to a 

lesser degree, dinucleotide microsatellites, are more similar to thf: expectations of 

the JAM model than to the SMM model. In theory, it may be possible to yield 

information on evolutionary origin and on recent genetic drift from the same 

microsatellite data, depending on the type of microsatellite and the mutation 

model that is utilised. 
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3.2.3 The human Y -chromosome and microsatellites 

The strong pattern of male migration, as suggested by historical 

information on the Hui, indicates another possible site for the study of genetic 

variation, i.e. theY ~chromosome. The first Y ~chromosome polymorphisms were 

reported more than a decade ago (Casanova eta/. 1985, Lucotte and Ngo 1985), 

however progress in elucidating further examples has been slow because 

conventional DNA polymorphisms have been difficult to find on theY­

chromosome, and those that have been discovered often have proved to be of 

limited informativity (Jobling and Tyler Smith 1995). 

Recently, a series of polymorphic microsatellites have been developed and 

tested on many different population samples from around the world (Kayser eta/. 

1997, de Knijff et a/!997). These microsatellites (DYS19, DYS388, 

DYS389l+II, DYS390, DYS391, DYS392 and DYS393) are highly polymorphic, 

compared to other Y-chromosome polymorphisms, but are still less polymorphic 

than their autosomal counterparts (Perez-Lezuan eta/. 1997b). Nonetheless, they 

have proven useful as tools for forensic analysis, in such applications as stain 

analysis and paternity analysis (Kayser eta/ 1997). 

Y~chrornosome microsatellite markers have also proven useful in 

population genetics because of the ability to perfonn accurate haplotype analysis. 

By their nature, Y-chromosomes are effectively haploid, with only a small portion 

of the chromosome that can undergo limited recombination with the X­

chromosome. The lack of recombination means genetic diversity is more limited 

in Y -chromosomes than in autosomal chromosomes, but in turn, the absence of 

recombination increases the effect of genetic drift. It is this property of Y­

chromosomes that could prove very useful in elucidating genetic differences 
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between closely related populations whose time of divergence has been relatively 

short (de Knijff el a/1997). 

The advent of these probes and other Y-chromosome markers 

subsequently developed, has allowed geneticists to exploit the haploid nature of 

Y -chromosomes, to provide a unique insight into human genetic variation via the 

construction and analysis ofY-chromosome haplotypes (Cooper eta/. 1996, 

Roewer e/ a/.1996). One such study showed that the Finnish people have both 

European and Asiatic origins (Kittles el a/. 1998). Other analyses have indicated 

specific patterns of geographic clustering, allowing scientists to pinpoint the 

origins of human populations through male gene flow (Malspina el a/. 1998, 

Zerjal eta/. 1997). 

3.3 Population genetics methodology 

3.3.1 Hardy-Weinberg equilibrium 

Hardy-Weinberg equilibrium is a central facet of population genetics 

theory (Hartl and Clark 1997 p 74). As the name suggests, the concept was first 

defined by Godfrey Hardy, an English mathematician, and Wilhelm Weinberg, a 

German physician. Through mathematical modelling, it was concluded that gene 

pool frequencies are inherently stable but that evolution should be expected in all 

populations virtually all of the time. This apparent paradox was resolved by 

analysing the probable net effects of evolutionary mechanisms. Hardy, Weinberg, 

and the population geneticists who followed them came to understand that 

evolution would not occur in a population if seven preconditions were met: 
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Table 3.2 Seven conditionsfor the non­
occurrence of evolution in a population 

I. Mutation is not occurring 

2. Natural selection is not occurring 

3. The population is infinitely large 

4. All members of the population breed 

5. All mating is totally random 

6. Everyone produces the same number of offspring 

7. There is no migration in or out of the population 

In other words, if no mechanisms that can cause evolution to occur are 

acting on a population, evolution will not occur and the gene pool frequencies will 

remain unchanged. However, since it is highly unlikely that any of these seven 

preconditions, let alone all of them, apply in the real world, evolution is the 

inevitable result. 

A simple equation was developed that can be used to determine the 

genotype frequencies in a population and to track their changes from one 

generation to another. This has become known as the 11Hardy-Weinberg 

equilibrium equation". This equation is defined in terms of a biallelic locus where 

pis defined as the frequency of the first allele and q as the second allele for a 

locus consisting of a pair of alleles (A and a). This final equation is as follows: 

p2 +2pq+q2 =l 

Equation 3.1 Hardy-Weinberg equilibrium for a bialleic locus 
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In this equation, p2 is the frequency of homozygous (AA) individuals in a 

population, 2pq is the frequency of heterozygous (Aa) individuals, and q2 is the 

frequency of those who are homozygous (aa). Deviation from equilibrium occurs 

when the observed frequency is significantly different from that predicted by the 

above equation. 

Microsatellite loci are polymorphic and therefore the two-allele model 

could not apply. A more general equation is shown below where p1 is the allelic 

frequency of A1 and Pi is the allelic frequency of Aj. 

L p,'A,A, + L Zp,pjA/Aj 
I l,j 

Equation3.2 Hardy-Weinberg equilibrium genotypic array 

Detection of deviation from Hardy-Weinberg equilibrium is usually tested 

for statistical significance. Traditionally this was accomplished using x2 

"goodness offlt tests" (Guo and Thompson 1992). Testing relies on asymptotic 

results, which may or may not be a characteristic of the data, making the level of 

statistical confidence low. The alternative is computation ofFisher's exact tests. 

In the past, due to a lack of computing power, use of the exact test has been 

restricted to biallelic loci assessed from small sample sizes. With the 

development of appropriate computational power, these calculations are now 

commonplace and they have all but superseded goodness of fit methods. 

Even with the statistical methods available, by direct interpretation of the 

theory, some deviation from Hardy-Weinberg equilibrium (HWE) might be 

expected in all human populations, as they could not meet all of the seven criteria 

listed in Table 3.2. However, the interaction of mutation, selection, migration, 

admixture and inbreeding, which happens to various degrees in every human 
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population, can produce an effect tantamount to no statistically significant 

deviation being detected (Guo and Thompson 1992). But if one effect is clearly 

the dominant factor over the others in a particular population, deviations may be 

observed. 

3.3.2 Linkage equilibrium 

Associations between alleles can be expanded from associati6l!s of alleles 

within one locus, to the association of alleles at two different loci. This random 

gametic association between two alleles from two different loci is called linkage 

equilibrium. It occurs with random mating and any deviation from this is called 

linkage disequilibrium. 

Linkage disequilibrium is not necessarily correlated with linkage, as 

alleles at different loci may have frequencies that show association whether or not 

they are linked (Weir 1996). In other words, loci from two separate chromosomes 

can show associations. 

One commonly used measure of linkage disequilibrium is the linkage 

disequilibrium parameter (D). This is most easily defined for two autosomal 

biallelic loci. Two loci, A and Beach have two alleles A1, A2 (at frequencies p 1 

and q1), and B1,B2(at frequenciesp2and q,) respectively. Given P11 = p1q1, 

P12=p1q,, P21 = p2q1 and P22 = p,q2 the linkage disequilibrium parameter is: 

D ==P11P,.2- ~2p2t 

Equation 3.3 Linkage disequilibrium parameter 

The paranneter D is therefore defined as the difference between the 

observed frequency of a gametic type, and the frequency expected on the basis of 
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random association of alleles (Slatkin 1994). Larger values of D suggest 

increased levels of linkage disequilibrium in a population. 

A second, more commonly used definition of linkage disequilibrium, as 

with HWE, is in the sense of statistical difference. In this usage, linkage 

disequilibrium exists between two loci if a statistical test shows there is a 

significant non-random association between any two alleles at the respective loci. 

The most commonly employed statistical method, as used to assess deviation from 

HWE, is Fisher's exact test (Slatkin 1994). However these tests can be 

computationally difficult. Therefore it is only since the development of rapid 

algorithms for performing Fisher's test using Monte Carlo methods to 

approximate the results from an exact test that these analyses have been possible. 

Population genetics software, such as GENEPOP (Roussel 1995) and 

ARLEQUIN (Excoffier eta/. 1992), include algorithm methods for the 

computation ofHWE and linkage disequilibrium 

While HWE tests internal population structure, linkage disequilibrium 

measurement has been primarily used as a gene-mapping tool, usually as an 

alternative to linkage analysis when the number of informative families for a trait 

is exhausted. More recently it has been proposed as a method for the genetic 

analysis of the demographic history of populations, e.g., population growth and 

decline, mating structure and migration and isolation (Slatkin 1994, Weiss 1998). 

Simulation results (Slatkin 1994), and surveys of genome databases (Peterson 

1995 eta/.), have shown that the extent of statistically significant disequilibrium 

depends both on the recombination rate between loci and on the demographic 

history of the population from which the samples were obtained. 
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3.3.4. Consanguinity 

Inbreeding can be a major cause of deviation from HWE, and possibly 

linkage equilibrium. The basic observation of inbreeding is that of mating 

between biological relatives. Two individuals are said to be related if among the 

ancestors of the first individual are one or more ancestors of the second 

individual. Because of shared common ancestors, these two individuals could 

share genes at one or more loci that are identical. Identical gene copies that are 

due to shared ancestry are said to be identical by descent (IBD). 

Identity by descent in human populations is defined in terms of 

consanguinity. In communities with a tradition of close kin unions, marriages 

between persons biologically related as second cousins or greater are generally 

categorised as consanguineous (Bittles 1998). However, in populations where 

consanguinity generally is avoided or proscribed, the definition may be extended 

to cover third cousin or more remote unions. In assessing the degree of 

consanguinity in a pedigree, the most commonly used measure is the pedigree 

inbreeding coefficient. 

F represents the probability that the offspring is homozygous due to 

identity by descent at a randomly chosen autosomal locus. As such, F is a 

probability that can range in value only from zero (no loci identical by descent) to 

one (all loci identical by descent). F therefore can be calculated for an individual 

if the pedigree ofthe individual is available and it shows a marriage(s) between 

biological relatives in previous generations. For example, in Figure 3.1, I is the 

child of a first cousin marriage between D and E with a common ancestor A F is 

calculated by tracing the paths of the gametes that lead from the parents of I back 

to A, through B and C. The probability of the alleles being identical by descent is 
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one-half because, with Mendelian segregation, the probability that a particular 

allele present in a parent is transmitted to a child is one-half (Hartl and Clark 1997 

p149-152). 

Figure 3.1 Abbreviated diagram of a first cousin marriage. 

·~ 

Therefore, in the present example, there are five paths between I and A, 

and so the probability of identity by descent is 1/2 • 1/2 • 1/2 • 1/2 • 1/2 or 1/32. 

This can be simplified to the equation: 

Equation 3.4 Pedigree inbreeding coefficient. 

where n is the number of individuals separating the child and the common 

ancestor and 1/2 is the probability that the child will inherit the allele of a specific 

parent. The child of a first cousin marriage will have two such paths, one for each 

grandparent and so the probability of autozygosity is 1/32 + 1/32 = 1/16. Hence 

the child of a first cousin union is predicted to display 6.25% greater 

homozygosity than the child of a non-consanguineous marriage. 
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[n a large pedigree with a history of consanguinity prior to the current 

generation, the actual coefficient of inbreeding predicably will be higher than can 

be calculated for a single gener1J.tion, due to the cumulative effect of inbreeding 

(Shami el a/., 1994). The effect of prior inbreeding is calculated as the sum of the 

probability of identity by descent due to each separate path of inheritance of the 

alleles, and is represented by the equation: 

Equation 3.5 Pedigree inbreeding coefficient: multiple generations. 

where n is the number of individuals in each path connecting the parents and A is 

the common ancestor in each path (Hartland Clark 1997 p 149-152). 

3.3.5 Inbreeding as a deviation from random mating expectations 

Another definition of inbreeding is in terms of a system of mating 

definition at the population level. It is useful in this context to examine deviations 

from the genotype frequencies expected in HWE that are due to inbreeding. It can 

be shown that with inbreeding the allele frequencies remain the same, only 

genotype frequencies change (Hartl and Clark 1997 pl26). 

The work of Wright (1951) determined thatthe deviation from random 

mating expectations could be calculated by what is known as the covariance, 

COV, between uniting gametes. With random mating, COV= 0 but with non­

random mating, this COV can be either positive or negative in sign. 

The actual correlation between uniting gametes is COV/pq, so one way to 

defme the correlation coefficient is: 
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f = cov 
pq 

Equation 3. 6 Correlation coefficient 

Defined in this way, as shown in Table 3.3, genotype frequencies with inbreeding 

can be expressed as: 

Table 3.3 Deviation of genotype frequencies from Hardy-Weinberg expectations 

Genotype AA Aa aa 

Frequency p'+pqf Zpq(l:f) q'+pqf 

Note that a positive correlation between uniting gametes leads to a 

heterozygote deficiency in the population, and a negative correlation gives an 

excess ofheterozygotes. Hence,jmeasures deviation from Hardy-Weinberg 

genotype frequencies but not the probability of being identical by descent. The 

value ofjcan range from -1 to 1 and denote inbreeding (f>O), random mating 

(f=O) and avoidance of inbreeding (f<O). By comparison, avoidance of inbreeding 

cannot be measured by F. 

3.3.6 The inbreeding effect of population subdivision 

Another definition of inbreeding is the inbreeding-like effect that occurs 

due to population subdivision. Wright (1951) found that the effect of population 

subdivision could be measured by a quantity called the fixation index, Fsr. Given 

thatp1 and q1 are the frequencies of alleles A and a in one population, andp, and 

q, are the frequencies of alleles A and a in a second population then: 
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F 
_ Var(p) 

.\'1.-
pq 

' Equation 3, 7 Wrights F.1'T 

- - - -2 
where p = '/,(p1+p,j, q = Y,(q1 +q,j and Var(p) = p2

- p. Wright's Fsr can be 

put into context by examining a pooled population composed of two populations. 

The pooled population genotypes can be described using parameters defined in 

equation 3.7 as follows: 

Table 3.4 Deviation of pooled genotype frequencies from Hardy-Weinberg 
expectations 

Genotype AA Aa aa 

Frequency P2 + pqFsr q' + pqFfl' 

Table 3.4 shows that subdivision of the population into genetically distinct 

subpopulations causes deviations from HWE that are identical in form to those 

caused by the inbreeding system of mating within a population shown in Table 

3 .3. Wlight went further and described a relationship between deviations from 

HWE within a population to deviations from HWE between populations as 

follows: 

(1-FJT) =(1-FJs)(I-Fsr) 

Equation 3.8 Relationship ofF m F sr and F JT 
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where F1s is the inbreeding coefficient due to the reduction in heterozygosity of an 

individual due to non-random mating within a population, and Fir is the overall 

inbreeding coefficient of an individual. 

The most widely used interpretation of these statistics is that determined 

by Nei (1973), who defined the statistics for multiallelic multilocus information 

from any number ofsubpopulations as follows: 

1=1 

Equation 3.9 Heterozygosity of an individual in a subpopulation 

where His the observed heterozygosity in subpopulation i from k subpopulations; 

k 

H3 =1-'f,p,~, 
; .. ] 

Equation 3.10 Heterozygosity of an individual population 

where p;., is the frequency of the ith allele in subpopulation s, and 

Equation 3.11 The expected heterozygosity of an individual in an equivalent 
random mating total population. 

where p; is the frequency of allele i averaged over k subpopulations. The 

inbreeding coefficients are then defined as: 

(a) (h) 

Equatiou 3.12 (a)- (c) Nei 's interpretation of Wright's F-statistics 
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where F1s is defined by Nei as the reduction in heterozygosity of an individual due 

to non-random mating within a subpopulation, F,\i' is the reduction in 

-·heterozygosity of a subpopulation due to random genetic drift, and Fir is the 

reduction in heterozygosity of an individual relative to the total population. 

In addition to manipulating Wright's original statistics, Nei developed his 

own F-statistic analogues, called Gsr statistics. These statistics were based solely 

on the partitioning of gene diversity rather than the inbreeding effect on 

heterozygosity. Gene diversity, while computationally the same as expected 

heterozygosity, is defined as the probability of two randomly chosen genes from 

the same population being different. 

D = 1-E.x;' 

Equation 3.13 Nei 's gene diversity 

where x equals the population frequency of a locus in the ith population. An 

estimate of this population gene diversity can be calculated from the sample gene 

diversity. These formulae for gene diversity can be extended for population 

subdivision as follows: 

Equation 3.14 Gene diversity within a subpopulation 

where Xkt is the frequency of the ith allele in the kth subpopulation. 

Dsr =:E:E[[:Ei(x~ -xu)' /2]/s'J 
k I 

Equation 3./5 Coefficient of gene differentiation 
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where xu is the frequency of the ith allele in the lth locus and s is the number of 

subpopulations. It then follows that: 

Hr=Hs+ Dsr 

Equation 3.16 Gene diversity in the total popula.tion 

and 

Gsr=Dsr!Hr 

Equation3.17 Average gene diversity between .mhpopulations 

The advantage of this method is that haploid systems and other systems 

not ~beying HWE can be analysed using these statistics, as only gene diversity is 

utilised and not heterozygosity. 

Earlier, Cockerham ( 1969) developed a convenient way to position F-

statistics into a familiar context for hypothesis testing. This involves the 

partitioning ofF by analysis of variance. The result was a set of formulae solved 

to give F~statistics in terms of variance components. 

rlr=riA+riB +rlw 

Equation 3.18 Total variance of allele frequency 

That is cl r. the total variance of allele frequency within a population, is 

equal to the sum of its components. These components are, ciA, between 

subpopulation variance in allele frequency; dn,between individuals within 

subpopulation variance in allele frequency; and clw, between gametes within 

individuals variance in allele frequency. 

Using this approach Cockerham defined three F-statistic type parameters. 

F, the correlation of genes within individuals , B, the correlation of genes of 
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different individuals in different populations; and/, the correlation of genes within 

individuals within populations. This resulted in the formula: 

! ~ (F -8)1(1 -8) 

Equation 3.19 Cockerham's correlation of genes 

These parameters can be defined as ratios of the variOus components of 

variance as: 

a' 
(c) f = F;, = 2 

8 
2 

a B + O"w 

Equation 3.20(a)-(c) Cockerham's F-statistics 

By relating F-statistics to analysis of variance, it is possible to add levels 

of population subdivision, and to extract their effects as additional components of 

variation. 

Weir and Cockerham (1984) further developed this concept for a 

multiallelic multilocus hierarchical structure. Their model involves the weighted 

sum of variances. Mathematically, the method is much more complex than the 

definition by Wright or Nei, but leads to unbiased estimators that are statistically 

more robust. One example is an Fsr analogue called Bw which can be estimated 

from: 

Equation 3.21 Weir and Cockerham's Ow 
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where the variances in allele frequency are summed over all alleles i and all loci u. 

The advantage of an analysis of variance approach is that the proportion of 

variances are additive, making possible a wide range of hierarchical population 

structures. 

With the advent of large-scale analyses ofmtDNA sequences, a haploid 

sequence approach to population subdivision was necessary as the previous 

methods involved departures of allele frequencies from panmictic genotypic 

expectations. HWE predictions were not applicable to mtDNA sequence data, 

being haploid. An approach using phenetic and evolutionary distances between 

haplotypes was developed for mtDNA by Excoffier eta/. (1992). The method is 

tenned Analysis of Molecular Variance (AMOVA). 

The variance components produced from AM OVA analysis can be 

derived to produce an analogue to F-statistics called tP statistics (Excoffier 1991). 

These <tistatistics reflect the correlation of haplotypic diversity at different levels 

of hierarchical subdivision. AMOV A offers the advantage of an analysis of 

variance model without the requirement for many of the assumptions, such as the 

assumption of normality. This is achieved through the utilisation of non­

parametric permutation tests to assess statistical significance instead of using the 

asymptotic approach adopted in ANOV A. 

The technique is adequate for haploid sequence systems such as mtDNA, 

. but its application to diploid data is much more difficult, especially if gametic 

phase is unknown. The problem was solved by Michalaklis and Excoffier (1996) 

who defined AM OVA for a diploid system, with ~rbeing analogous to (),,using 

maximum likelihood techniques. The result was a population subdivision 
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technique applicable to all types of genetic data, based on the partition of within 

population and among population variance of difference in the number of alleles 

of each haplotype. This enables different genetic data types to be compared (i.e., 

allozymes, RFLPs, microsatellites, mtDNA sequences), as well as specific 

formulae for population subdivision analysis using microsatellites (Michalakis 

and Excoffier 1996). 

All of the F-statistic models presented so far share one common 

assumption, the assumption of the Infinite Allele Model. As previously discussed, 

microsatellite mutation mostly follows the SMM. Therefore, the previous F­

statistic metbuds based on the lAM may not be appropriate. An S:tvfM alternative 

to Fs:rwas defined by Slatkin (1995) and called Rs:r: 

s 
Equation 3.22 Slatkin's Rsr 

where Rs:r is essentially a Fsr analogue for microsatellite data that takes into 

account the difference between microsatellite allele sizes, where Swis the average 

squared difference in allele size between pairs of genes within populations and S 

is the average square size between pairs of genes taken from a collection of 

populations. 

Roussel (1996) further defined this approach with the fonnulation of the 

analogous Rho statistics, a SMM equivalent of F1s ,Fsr and Fm labelled Pis, 

PST, and pm The parameter psr is related to Slatkin's RsT in the following 

manner: 
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---------------------------------------------------------------~ 

R = (! -c)Psr 
·'7 I -CPsr 

Equation 3. 23 Correlation between Rou,\~W!/ 's p,\"1' and Slatkin's R.\7~ 

where c = (2.\'1 - 1)/(2.\·.~n.f- 1), ,\'11 is the sample size, and /Jr is the sample number. 

Michalakis and Excoffier (1996) also defined their <A.ir with regard to the 

Rst estimate psr. This variant of AMOV A is modelled for differences in allele 

size and not, as in the original, differences in the number of alleles. Thus, for 

microsatellite data AMOV A can be performed in two modes, according to 

differences between haplotypes due to the number of alleles not shared by both 

haplotypes summed over all loci, and according to differences between haplotypes 

due to the squared difference in allele size summed over all loci. 

3.3.5 Genetic distance 

Genetic distance has been defined as the extent of gene difference between 

populations or species that is measured by some numerical quantity (Nei 1987). 

Nei (1987) classified two types of distances, the first of which included 

measurements for population classification whereas the second was applicable to 

evolutionary study. 

Distances that are appropriate for contemporary population comparisons 

are applicable for population classification. Distances such as Ds (Nei 1973), and 

Dp,(Bowcock eta/. 1994), are two of the measures that have been used. Nei's 

standard distance, Ds is the most commonly used genetic distance and is defined 

as follows: 

Ds = -In(J xr I .JJ Jr) 
Equation 3. 24 Nei 's standard genetic distance. 
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where Jx and Jy are the average homozygosities across loci in populations X and 

Y. 

These measures are based either on the product frequencies of all alleles at 

shared loci between populations, or on the proportion of all alleles at all shared 

loci. They do not directly involve a mutation rate over a long period and hence do 

not necessarily indicate an evolutionary relationship, but are simply a measure of 

the effect of genetic drift on population genetic diversity. 

Distances based on the SMM model make use of the difference in size 

between alleles (Goldstein eta/. 1995). An example of this distance measure is 

Ddm, or delta mu squared. 

(op.)' =(p.A -J.Js)' 
Equation 3.25 Goldstein's delta mu squared genetic distance 

where J.l.A and Jla are the means of allele size, summed over all loci, in populations 

A and B respectively. These distance measures are quite accurate in measuring 

evolutionary genetic distance as they maintain a linear relationship to time over a 

long period, for example, several thousand generations. 

3,4 Summary 

To date, microsatellites provide the most approachable and informative 

method of analysing human genetic diversity. They are among the easiest and 

most polymorphic markers to detect and analyse and, as microsatellites are PCR 

typable only minute DNA samples are needed for allele detection. Micro satellite 

markers are also the most polymorphic markers available, allowing the detection 

of variation between closely related populations. 
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Information from microsatellite analysis involves the usc of various 

statistical and genetic methods to define population structure and genetic 

diversity. As previously discussed, most microsatellite mutations involve the 

addition or subtraction of a small number of repeat units a process called the 

Stepwise Mutation Model (SMM) (Kimura 1968). To account for these 

observations, various genetic parameters have been proposed for microsatellites, 

for example, Slatkin's Rsr. The advantage of such an approach for this study is 

the fact that SMM-based parameters are not subject to sample size bias (Goldstein 

el a/. 1995). This is important in the present study, as there is a substantial 

difference in the sample sizes collected from the Han and Hui of Liaoning. 

However, the study is focused on genetic diversity developed in a human 

historical timeframe. Given that most dinucleotide microsatellites mutate at 

around 10-3 -10-4per generation, mutation would not be expected to exert a major 

effect on genetic diversity in the Han and Hui in the timeframe studied. 

Furthermore, it was concluded by Pen!z-Lezuan el a/. (1997b) that genetic drift, 

not mutation, plays the main role in generating the microsatellite variation which 

has been observed among human populations. 

Consequently, it was decided that the combined use of both SMM and 

non-SMM based statistics would be the best approach to inferring relationships 

among the Han and Hui. In conclusion, only by the comparison of several 

different measures and methods with other types of evidence, such as historical 

information, can the genetic relationship between two populations be inferred 

with any confidence. 
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Chapter 4 

Sample collection and experimental 

methodology 
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4.1 Sample collection 

Dr Wei Wang and his Chinese colleagues collected all blood samples on to 

3MM Whatman00 filter paper. The acquisition of blood spots from Hui 

community members in Liaoyang, Liaoning province, was administered through 

the pennission of local religious leaders. Religious leaders who were interested in 

the proposed study organised finger prick blood spot collection from community 

members on site in their villages. The two pedigrees in the study were obtained 

via the permission and involvement of the elders of each family. Each person 

who consented to give blood did so after signing a consent form. 

The Han samples were obtained on a random basis from volunteers who 

provided finger prick blood spots at the Peoples Liberation Army (P.L.A.) No 201 

Hospital Liaoyang, P.R China. A signed consent form also was a prerequisite for 

the acquisition of blood samples from these volunteers. All individuals sampled 

were from various co-resident communities in the city Liaoyang, located in 

central Liaoning province, PR China. 

4.2 Extraction of DNA 

The collected blood spots were forwarded by courier to the Centre for 

Human Genetics at ECU for storage at -80° C. In this study, 102 random Han, all 

male, and 53 random Hui samples, from 27 males and 26 females, were analysed, 

as well as samples obtained from two Hui kindreds numbering 31 and 14 

individuals. 

For each individual DNA was isolated from two blood spots, using 

proteinase K treatment followed by phenoVchlorofonm extraction and isopropanol 

precipitation at -20°C. The blood spots were cut from the filter paper, quartered, 

and placed in a l.Sml microtube with 250 fil 0.1% Triton X-100 and IS fi) 
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I Omg/ml proteinase K at room temperature. The sample was mixed gently for I 

minute, before incubation on a heating block at 50°C for 30 minutes. This step 

was repeated once. At the completion of the second incubation period, 25 !J.II Ox 

SET buffer (500mM Tris pH 8.0, 50mM EDTA, 5% SDS) was added to the 
,• 

sample and mixed. 500 ~I of I: I chloroform/phenol was then added and mixed 

by inversion for at least 10 minutes. The sample was centrifuged for 30 minutes 

at 13,000 rpm, and the supernatant transferred to a fresh microtube with waste 

paper materials excluded. A 1/10 volume of3M Na acetate pH 4.9 and I volume 

of I 00% isopropanol were added to the supernatant, mixed and the tube was left 

overnight at -20°C to precipitate the DNA from solution. The sample tube was 

then centrifuged for 30 minutes at 13,000 rpm. The supernatant was discarded, 

and the DNA pellet washed with ice cold 70% ethanol by inversion. The ethanol 

was then removed, after another 10 minute centrifugation at 13000 rpm, and the 

microtube left to dry at room temperature for an hour. Finally, the pellet was 

resuspended in 25~1 autoclaved distilled water. 

4.3 Measurement of DNA concentration via spectrophotometry 

The DNA concentration and sample purity of the samples was analysed 

' with a Beckman DU li40 UV spectrophotometer. This was achieved by 

measuring the optical density of a twenty-fold dilution ofthe original DNA 

solution at wavelengths of260 nm and 280 nm. Measurement at 260 nm detects 

nucleic acids while 280 nm detect proteins. A ratio of 1.6:1 or above indicates 

satisfactory purity of nucleic acids for amplification. The spectrophotometer was 

blanked with dHZO used in the dilution of the DNA solution. A concentration of 

at least 5-!0ng/J.tl of DNA was required for successful PCR amplification. 
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4.4 Microsatellite markers 

The autosomal markers analysed in this study were chosen from a panel of 

markers recommended by Stanford University (see figure 4.1 ). Y-chromosome 

markers used in this study were chosen from a panel of markers recomrilended by 

the Forensic Laboratory for DNA Research, Department of Human Genetics, 

Leiden University (Appendix A). Linkage and cytogenetic maps of chromosomes 

13 and 15 indicating the positions of the markers used in the study are shown in 

figure 4.1. As theY-chromosome is effectively haploid, only a cytogenetic map 

could be created. Most of theY-chromosome markers used in the study have yet 

to be located to a particular position on the chromosome, as seen in figure 4.2. 
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Figure 4.1 Comparative linkage maps locating microsatellite markers analysed 
from chromosomes 13 and 15. The distances are measured in 
centiMorgans. 
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Figure 4.2 Cytogenetic map of the Y-chromosome indicating the 
approximate positions of the microsatellite markers used. 
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4.5 Polymerase chain reaction 

The dinucleotide tandem repeat sequences were amplified using the 

polymerase chain reaction or PCR, an in vitro method for synthesising defined 

sequences of DNA catalysed by a thermostable DNA polymerase enzyme. The 

reaction consists of three steps: denaturatio'n, annealing and extension. In the first 

step the DNA is separated into single strands that can be used as a template. Step 

2 employs two oligonucleotide primers that anneal to the template DNA at 

positions flanking the target DNA sequence. Finally, a complementary copy of 

the region specified by the two primers is synthesised using the enzyme Taq 

polymerase. Repetition ofthese steps results in exponential amplification of the 

target DNA sequence. 

4.6 PCR protocol for autosomal markers 

Each autosomal PCR was made up to 5~1, containing 2~1 (5-lOng/~1) of 

target DNA, 0.5~1 offorward primer and 0.5~1 of reverse primer, 1~1 of5x buffer 

(l.SmM MgCh solution [Perkin Elmer]; lmMdNTPs, 0.5~110xpolymerase buffer 

(Perkin Elmer), 0.05~1 of Amplitaq Taq polymerase (Perkin Elmer®_> and 0.95~1 

ofdH20. Due to variability in the quality of the target DNA and the fidelity of 

the primers, MgCh concentration was varied between I.SmM and 3.5mM. 

D13Sl26, DI3Sl33, D13Sl92, Dl3S270, Dl5Sll, Dl5S 101, Dl5SI08 and 

GABRB3 were successfully amplified by a touchdown procedure which consisted 

of four main components. Initially, the samples were denatured for 5 minutes at 

94°C. This was followed by fifteen denaturing cycles of20 seconds at 94°C, one 

minute of annealing, starting at 63°C and reducing in each cycle by 0.5°C (giving 

a final temperature of55.SOC), and a 30 second extension period at n•c. A 
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further fifteen cycles followed, each consisting of20 seconds denaturing at 94°C, 

20 seconds annealing at 55°C, and 30 seconds of extension at 72°C. The cycle 

concluded with a five~ minute extension period at 72°C. 

Markers D!5S98 and D!5S97 were found to require lower annealing 

temperatures, and a composite of the protocol given above was used with 

temperatures of 58-50°C for the touchdown phase and 50°C for the extension 

phase. 

4. 7 PCR protocol for Y-chromosome markers. 

Each Y-chromosome PCR mixture was made up to 10~1. containing 5~1 of 

target DNA solution, 1~1 of !Oxbuffer solution (containing(LsmM ofMgCJ, 

(QIAGE~, 0.04 J.ll of25mM MgC!, solution, 0.20J.1l of !OmM dNTPs, 0.50J.ll of 

forward and reverse primer containing lOOng of primer oligonucleotides, 0.05J.1l 

of Hot Star™ Taq polymerase (QIAGE~ and 3.21 ~I of distilled water. 

Qiagen® Hot Star™ Taq polymerase was used for Y -chromosome markers 

as experimentation with this enzyme produced greater amplification and fidelity 

of the markers, most of which proved difficult to amplify. The microsatellite 

marker DYS391 consistently proved very difficult to amplify from a majority of 

Han and Hui samples, and consequently its use was discontinued. 

4.8 Agarose gel electrophoresis 

To ensure that the microsatellite sequences were amplified, PCR 

products were tested by agarose gel electrophoresis. This technique employs an 

electric current to move the negatively charged DNA towards a positively charged 

electrode through an agarose gel. The larger the allele fragment, the slower it 

moves through the agarose. Therefore the alleles are differentiated by length 
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fractionation. The PCR products are visualised using ethidium bromide (EtBr) 

under fluorescent light. 

A 3% agarose gel solution (3g agarose powder, Sigma Chemical 

Company) in lOOm! lxTAE buffer (0.04M Tris-acetate; O.OOIM EDTA) was 

prepared and poured on to an 8.5cm xllcm mini-gel tray, and a small toothed 

comb was inserted at one end of the tray. The gel was allowed to set for 

apprOximately forty minutes at room temperature, after which the comb was 

removed and the gel was then placed in the electrophoresis unit. 3~1 of the PCR 

products were loaded into the wells with 3~1 of 6x Fico loading buffer (0.25% 

bromophenol blue, 0.25% xylene cyanol FF; 15% Ficoll (Type 400; Pharmacia) ). 

pUCI9 DNA/Hpa II (O.Smglml; Biotech; fragment size range from 26-50lbp) 

was loaded into lane I as a size standard. The gel was electrophoresed at 80V for 

approximately 20 minutes. It was then stained for 10 minutes in EtBr (1.5~1 

100% EtBr, 30m! water) and visualised under a Hoefer® Mighty BrightTM UV 

transilluminator. 

Ifbands were. present, the gel was photographed using the Kodak® DCI20 

Electrophoresis Documentation and Analysis System™, which included the 

Kodak00 DC ZoomTM Digital Camera and lD Image Analysis SoftwareTM The 

resulting digital image could then be stored on a diskette or printed. 

4.9 Fluorescent labelling of markers 

Fluorescent detection of alleles using an ABI 3 73 DNA Sequencer™ with 

GENES CAN™ allele scoring software was used to accurately size microsatellite 

alleles. The forward primers for the microsatellites are 22-mer oligonucleotides 

with either TET (4, 7,2, 7- tetrachloro-6-carboxyfluorescein), HEX (4, 7, 2, 4, 5, 7 
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- hexachloro-6-carboxyfluorescein) or F AM (6-carboxyfluorescein) molecules 

chemically bonded to them. 

These fluorescently labelled primers are incorporated into the 

microsatellite markers during amplification with PCR. For loading into a 

polyacrylamide gel, 1.5).11 ofPCR sample was mixed with 2.5 ).II offormamide, 
' 

0.5).11 of loading buffer and 0.5).11 ofT AMRA-labelled internal size standard. The 

loading buffer and T AMRA-labelled size standard are supplied in the 

GENESCAN-500 kitTM. The size standard is the result of digestion of plasmid 

DNA with the restriction enzymes Pstl and BstUJ. The resulting DNA fragments ,., 

are then labelled with T AMRA (N, N, N', N'-tetramethyl-6-carboxyrhodiamine) 

chemically bonded to it. 

4.10 Detection of markers using the ABI 373 DNA sequencer"' 

A gel mixture of I OOml 40% acrylamide/bisacrylamide at a ratio of 19: I, 

420.5g of urea, and lOOm! of I OxTBE buffer (890 mM Tris-borate, 2mM 

NaEDT A.2H20), was made up to I litre with distilled water and stored at 4°C. 

30m) of this gel preparation was then mixed with 150).11 of 10% ammonium 

persulphate aod 17).11 ofTEMED. This was dispersed between two glass plates 

using a I OOml syringe with a 24cm well-to-read distance, and fixed together with 

bulldog clips. A 50 well square tooth, comb was placed in the top of the gel 

apparatus, and the gel allowed to set for approximately 2 hours at room 

temperature. The gel was then pre-run for 5 minutes at 28°C to optimise the 

temperature of the gel. 

After the pre-run, 3].d of each sample solution was pipetted into the gel 

wells. The gel was then run for 8-12 hours using filter B. The use of filter B 
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results in the fluorescent markers displaying the following colours: blue (FAM), 

green (TET), yellow (Hex) and red (TAMRA). The resulting gel pictures were 

assembled and analysed with the GENSCAN™ software program. The 

GENOTYPERT" software program was then used to analyse the data extracted by 

GENESCAN™, and to assign peaks to microsatellite alleles. The results are 

presented as a series of peaks with each microsatellite marker resulting in either 

one peak for homozygotes or two peaks for heterozygotes. The resulting base 

lengths were then recorded using Microsoft Excel™ version 7. 

4.11 Statistical ana!ysis ofmicrosatellite data from the random sample 
populations 

Basic statistical computations, such as the calculation of allele frequencies 

and of observed and expected heterozygosity, were performed using the 

GENEPOP program (Rousse! 1995; also see Appendix A). The GENEPOP 

program calculates a range of statistical tests and computations for population' 

genetics research. This program was utilised to calculate HWE probability tests, 

tests for linkage disequilibrium, the calculation of population correlation 

coefficients, and the F statistics described by Weir and Cockerham (1984). For 

each of the populations, observed and expected heterozygosities were tested for 

statistical significance using the ·i test. 

Analysis of Molecular Variance (AMOVA) was then performed using the 

ARLEQUIN software program (Excoffier et al. 1992). ARLEQUIN is a multi-

faceted population genetics software program, freely available on the Internet (see 

appendix A). ARLEQUIN can process a wide range of genetic information 

including sequence data, RFLP data and standard frequency data. It can also be 
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used to perform specific procedures in the treatment of microsatellite data, such as 

differences in allele size using AMOV A. 

Autosomal allele frequencies.~fthe Han and Hui populations were then 

compared to other populations gathered from the Genome Database (GDB) and 

Centre d'Etudes du polymorphisme Humain (CEPH) (see Appendix A). 

Comparisons were made between the levels of heterozygosity and gene diversity 

in the study populations and these reference populations. Computation of the 

Wilcoxon matched pairs signed ranks test was performed using SPSS™ Version 

8.0. 

Han and Hui Y-chromosO".ne allele frequencies were compared to 

populations gathered from a dat ,l,ase located in the Forensic Laboratory fo/'DNA 

Research, Department of Human Genetics, University ofLeiden. These data are 

an updated version of information presented in Kayser eta/. (1997) and de Knijff 

eta/. ( 1997). Comparisons were also made to population data presented in an 

unpublished article made available by Perez Lezuan eta/. Both sets of 

comparisons were made on the basis of genetic distance calculations. 

The calculation of genetic distances was accomplished using the 

MICROSAT software package (Minch 1998; also see Appendix A). MICROSAT 

is a program specifically designed for the processing ofmicrosatellite data. 

MICROSAT generates eight different genetic distances includingDs (Nei 1973) 

and otl (Goldstein eta/. !995). From these distances, unrooted neighbour joining 

trees (Saitou and Nei 1987) were generated by the PHYLlP version 3 .Sc software 

package (Felsenstein 1989). This program was also used to test tree robustness 

based on a statistical comparison of one thousand bootstrap iterations (Felsenstein 

1985). 
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4.12 Statistical analysis of microsatellite data from the pedigree samples 

Pedigree information was collected in China from two families and the 

pedigree constructed in the Cyrillic™ Version 2. J software. This software 

enabled the definition of chromosomal genotypes, and the calculation of pedigree 

inbreeding coefficients. 

Independent genotypes were isolated by analysis of the final constructed 

pedigrees. Independent individuals were defined as those individuals in the 

pedigree who represented the genetic founders of the pedigree. 

As in the population study, observed and expected heterozygosities were 

statistically tested using the ·l goodness of fit test. Data gathered from 

independent genotypes and full pedigree data were processed in GENEPOP, in a 

similar manner to the random sample population data for the calculation of 

expected heteroZYgosities, linkage disequilibrium tests and so forth. 
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Chapter 5 

Genetic analysis of the Han and the Hui ethnic 

groups 
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5.1 Introduction 

The study has been separated into two sections coinprising population-

based analysis and pedigree-based analysis. In the first section, random sample 

populations of the Hui and the Han will be compared in terms of within- and 

between-population genetic variation. The major aim of this part of the study is to 

gauge the degree to which the genetic structure of the two sample populations 

matches historical narrative. Therefore emphasis is placed on comparisons of 

allele distribution patterns, the effects of reproductive isolation, and migration 

based on the autosomal andY-chromosome gene pools of both populations. 

5.2 Analysis of autosomal frequency distributions 

The first step in the study was to compile allele frequency distribution 

profiles for the ten autosomal loci studied in each of study populations. The allele 

frequency distributions were similar in both populations, presenting a variety of 

forms including unimodal, bimodal and multimodal distributions according to the 

locus studied (see Appendix B). The two populations could however be 

differentiated by comparing the most frequent allele (MFA) at each loci. 

Different MF As were observed in the two populations at a majority of loci, with 

the Hui generally exhibiting smaller MF As. The only exception to this pattern 

was Dl3Sl92 (Table 5. 1). 

The observed patterns of population differentiation were subjected to 

~tatistical assessment using an unbiased probability test, according to the method 

of Raymond and Rousse! (1995). The null hypothesis of identical allelic 

distribution across populations was rejected for eight of the ten autosomal loci 

(see Table 4. l ). Therefore, differentiation between the two populations can be 

observed by sampling autosomal microsatellite markers. 
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Further in depth analysis of the allele distributions at each locus exhibited 

a high level of polymorphism, with the number of alleles per locus ranging from 6 

alleles (locus DI3SI26 in the Hui) to 16 alleles (locus DI3SI33 in the Han). 

There was an average of 11.3 alleles per locus recorded for the Han population 

and I 0.1 for the Hui population (Table 5.1 ). The pattern of allele size distribution 

also varied slightly between the two populations. The average allele size was 

calculated as the variance of the number of dinucleotide repeats per locus 

averaged over each population. An average size variance of 15.52 was recorded 

for the Han sample population and 16.23 for the Hui (Table 5.1). The statistical 

significance of these values was assessed by performing a Wilcoxon signed ranks 

test, which is a non~parametric equivalent of the paired t-test. This test was 

chosen in preference to the paired t-test as previous studies have demonstrated 

that the distributions of allele size and frequency show non-normal distributions 

(Morell eta/. 1995), and so normalised statistical tests could give unreliable 

results. Neither the difference in size variance (p = 0.456) or number of alleles (p 

= 0.062) showed a significant difference between the Han and Hui. The marginal 

result recorded for the average allele size variance suggests that the analysis of 

more loci may have produced a significant result at p<0.05. 

Even in the absence of statistical significance, the results do concur with 

available historical evidence on the population structure of the Hui. The paradox 

of a wide allele size variance but a low number of alleles suggests that the Hui 

gene pool could have been sourced from a number of diverse origins; but recent 

endogamy may have accelerated genetic drift thereby reducing the total number of 

alleles. 
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Table5.1 Summary of the distribution of autosomal microsatellite alleles in the Han and Hui 
random sample populations 

' Allele Distribution Data Exact test 
'-.. ; 

Marker Population Allele rnnge (bp) No. of alleles MFA* ASV** Ho Henn: pvalue 
0138126 H>m 102-106 7 106 5.81 0.667 0.702 0.0001 

Hui 100-110 6 102 3.50 0.396 0.735 
. . 

D13S133 H"' 128-189 16 !32 31.12 0.621 0.838 0.0001 
Hui 126-183 12 !32 ,20.26 ' 0.490 0.697 

Dl3S192 H"' 87-121 14 97 21.14 0.790 0.823 0.0001 
Hui 93-119 !4 103 17.50 0.520 '

00,883 

D138270 H>m 75-97 10 81 '6.00 " 0.443 0.535 0.0001 
Hui 77-97 8 79 4.67 0.509 0.820 

D15Sll H>m 242~266 13 244 15.17 0.618 0.623 0.058 
Hui 240-272 10 244 30.49. 0.396 0.478 

D15S97 H"" !72·196 10 182 . 7.12 0.652 0.801 0.005 
Hui !72-188 8 ISO- 13.07 0.373 0.829 

015898 H"' 145-171 9 157 15.23 0.817 0.779 0.2694 
Hui 131-175 14 -- 153 ,36.68 0.528 0.808 

0158101 H>m -99-117 12 . 109 14.08 0.781 0.811 o.ooo: 
Hui 95-123 10 105 ·11.57 0.415 0.845 

DI5S108 H>m 131-161 12 145 29.24 0.556 0.536 0.0276 
Hui 139-165 -~ 10 145 12.09 0.490 0.652 

GABRB3 H>m. 181-201 10 185 10.27 0.430 0.663 0.0001 
. 

Hui 181-201 9 183 12.50 0.320 0.737 

Average H"' 11.3 - 15.52 0.637 G.711 

Hui 10.1 16.23 0.457 0.746 

* MFA= Most frequent allele ·~ 

,,, 
** ASV = Allele size variance (variance of allele repent size) 
#Ho = Observed h~terozygosity 
H~e = E:-.:pcctcd hel:crozygosity 
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5.3 Heterozygosity and gene diversity 

The next step in the analysis of the autosomal allele distributions was the 

calculation and comparison of observed and expected heterozygosity. Observed 

heterozygosity is defined as the ratio ofheterozygotes in a sample population 
' 

compared to the sum ofheterozygotes and homozygotes. Expected 

heterozygosity is defined as the level of heterozygosity in a population when the 
',\ 

population is in Hardy-Weinberg equilibrium. Givenp as the frequency of the ith 

allele at a locus, expected heterozygosity is calculated by the formula: 

H~J-.Ep/.' 

Equation 5.1 Expected heterozygosity 

On average, the Hui exhibited a higher level of expected heterozygosity. 

·? 0.746, than the Han 0.711 (Table 5.1, Figure 5.1). However, the difference was 

not statistically significant according the Wilcoxon signed ranks test (p ~ 0.155). 

When considered in combination with the higher allele size variance and lower 

average number of alleles observed in the Hui, the higher expected heterozygosity 

supports the correlation between the diverse historical origins of the Hui and the 

genetic structure of the population. 

In contrast .. the observed heterozygosity in the Hui population was low, 

0.456, compared to the Han, 0.657. The difference between these values was 

significant (p ~ 0.03) and suggests that the Hui are more endogamous than the 

Han. 

To confirm the differences between the levels of expected and observed 

hetrozygosity within the Han and Hui, Pearson's x' goodness of lit test was 
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applied to the data. The results showed that the level of observed heterozygosity 

in the Hui was significantly smaller (p<O.OO I, d. f. ~ 9) than the level of expected 

heterozygosity found in the same population (see Figure 5.1 ). A significant, but 

smaller difference was also recorded for the Han (p ~ 0.04, d.f. ~ 9) 

According to population genetics theory, the significant result for both 

populations may represent either an artefact ofunre~ogl}is_ed population 
·--- -----

subdivision in the population under study and/or the effect of endogamy. As 

discussed in chapter 2, given the nature of the Han minzu, it seems more probable 

that in the Han population, population subdivision is the principal causative agent. 

The lower levels of observed heterozygosity in the Hui may also be due to 

population subdivision reflected by the diverse origins of the population. 

However, the difference between gene diversity and heterozygosity levels in the 

Hui is so large that population subdivision is probably not the sole reason. 

Another possible explanation is that, in accordance with the available historical 

evidence, the low level of observed heterozygosity might have resulted from the 

practice of nonMrandom mating, due to cultural and religious isolation and via 

preferential consanguinity. 
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Figure 5.1 Observed and expected heterozygosity in 
the Han and Hui sample populations 
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5.4 Hardy-Weinberg equilibrium analysis 

To further examine the difference between the levels of expected and 

observed heterozygosity in both study populations, deviation from HWE 

expectations was determined along with the direction (heterozygote excess or 

deficiency) of any observed deviation. The exact probability test, developed by 

Guo and Thompson (1992) from Fisher's exact test, was used to assess the 

significance of deviation from HWE. The exact probability test utilises the Monte 

Carlo Markov chain method to reduce the computational complexity of the exact 

test permutations, and to provide a confidence interval for testing statistical 

significance. The U-test developed by Rousset and Raymond (1995), which is an 

extension of the exact probability test, was used to determine whether there was 

heterozygote excess or a heterozygote deficiency. 
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The exact probability test results indicated that, averaged across all loci, 

both the Han and Hui populations deviated significantly from Hardy~ Weinberg 

expectations (Tables 4.2a and 4.2b). This conclusion is predictable as empirical 

,~vidence, such as tinite population size·and non~random mating, had previously 

indicated deviations from Hardy~Wc;inberg equilibr~um. 

Computation of the U-test showed that the Hui had a high level of 

heterozygote deficiency, with 9 of the 10 loci surveyed showing significant 

deviations (DISSJ I being the exception). The result may be taken as indicative 

0
. 
0 

of non-random mating in the Hui population resulting in an increase in 

homozygosity. 

The results of the exact and U-tests in the Han were not as pronOunced as 

those for the Hui. The exact test showed that only 5 of I 0 loci surveyed in the 

Han exhibited significant deviation from Hardy-Weinberg equilibrium, and the U-

test indicated a similar result (Table 5.2a). As with the previous results in the 

study, the most probable causative explanation would appear to be population 

subdivision. 

}<' 
__ ,!'/ 
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Table 5.2a Evaluation of Hardy-Weinberg equilibrium 
iu the Han sample population 

Locus Probability test U-tcst 
p value S.E. p value S.E. -

Dl3S126 0.4881 0.0252 0.0445 0.0120 
D13Sl33 0.0000 0.0000 0.0000 0.0000 
Dl3S192 0.0302 0.0165 0.3295 0.0466 
Dl3S270· 1 0.0033 .0.0029 0.0100 0.0047 
D15S1i ' 0.4847 . 0.0557 0.1925 0.0469 
015397 

. 
0.0008 0.0008 0.0022 0.0014 

ot5.S9s 0.1860 0.0220 0.2948 0.0341 
D15Sl01 0.0667 0.0277 0.3067 0.0316 
DJ5Sl08 0.1707 0.0351 0.4742 0.0452 
GABRB3 0.0000 0.0000 0.0032 0.0027 

Table 5.2b Evaluation of Hardy-Weinberg equilibrium in 
the Hui sample population 

Locus Probability test U-test 
pvalue S.E. p value S.E. 

D13S126 0.0000 0.0000 0.0000 0.0000 
D13S!33 0.0013 0.0013 0.0000 0.0000 
D13S192 0.0000 0.0000 0.0000 0.0000 
DJ3S270 0.0000 0.0000 0.0000 0.0000 
D!5Sll 0.0733 0.0223 0.0889 0.0269 
D15S97 0.0000 0.0000 0.0000 0.0000 
DJ5S98 0.0000 0.0000 0.0000 0.0000 
D!5S101 0.0000 0.0000 0.0000 0.0000 
D!5Sl08 0.0000 0.0000 0.0000 0.0000 
GABRB3 0.0000 0.0000 0.0000 0.0000 

.• 

' 
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5.5 Gametic association 

As the results to date have appeared to indicate significant non-random 

mating patterns in both study populations due to population stratification, the Han 

and Hui sample populations were subject to testing for gametic association. If no 

population stratification exists in a population, then each separate locus would 

segregate independently regardless of the effect of the presence of other loci. In 

theory, non-random mating would nullify the assumption of independence of loci, 

and create significant non-random associations between loci. The presence of 

non-random associations is tenned linkage disequilibrium. However, as discussed 

in Chapter 3, the use of the word linkage may not be accurate as the presence of 

linkage disequilibrium can occur between alleles that are not necessarily 

physically linked. Therefore it is proposed that the term gametic association be 

used to describe this phenomenon, as the major interest of the study lies in 

assessing the effect of non-random mating on allele frequencies, rather than 

disease association and gene mapping, where the term linkage, has a more direct 

application. 

To investigate if gametic associations are present in the autosomal data 

from the Han and the Hui, the exact probability test was used, as in the previous 

tests for population differentiation. Exact tests for gametic association depicted 

significant p values for three pairs ofloci in the Han population and two pairs of 

loci for the Hui, from a total of 45 comparisons. The proportion of significant 

results expected by chance alone is approximately 2 (expected from type I error at 

a= 0.05). Therefore, in the ten loci surveyed the Han exhibited a slightly 

elevated number of deviations from genotypic equilibrium while the Hui did not. 

' i. 
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The Han result provides additional evidence in support of the hypothesis 

of population subdivision present within the Han minzu. The three locus pairs at 

which significant gametic association were observed were D 13 S 192/D 13 S270 (p 

= 0.019), D13SI92/GABRB3 (p = 0.008) and DI3S270/DI5S98 (p = <0.001). It 

appears highly improbable that there is linkage in any of these cases, as the first 

pair are 38.691 eM apart (Figure 4.1) and the other two pairs are on different 
.. 

chromosomes. It is however of interest that one of the two significant gametic 

associations in the Hui was also DI3S 192/GABRB3 (p = 0.021). 

Pritchard and Rosenberg (I 999) suggested that the presence of a 

significant number of unlinked loci pairs was indicative of the presence of 

population subdivision therefore it could be concluded that the Han of Liaoning 

are composed of several or even multiple subpopulations. However the number 

of loci surveyed are small and they are restricted to just two chromosomes, and a 

genome~ wide screen employing many more loci would be needed to produce a 

more definitive result. 

One possible explanation for the non-significant result obtained with the 

Hui is the historical admixture of Han females. In combination with the diverse 

male founding populations, this may have resulted in multiple recombination 

events through the generations. Equally, as in the Han, the result may principally 

reflect the small number of loci tested. Pritchard and Rosenberg (I 999) 

recommended the study of at least 15 unlinked microsatellites to test for 

population stratification using a gametic association approach. Only ten 

microsatellites were surveyed in the present study. 
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Table 5. 3a Gametic association in the Han 

Locus 0138126 DI3SI33 0138192 DI3S270 015811 DI5S97 015898 DISS!fJI D15Sl08 

0138192 0.139 0.988 
0138270 0.104 0,905 

015811 0.774 0.742 0.8!19 
015897 0.061 0.952 0.359 0.321 n.6!18 

015898 0.138 0.!181 0.708 - 0.721 0.623 
0158101 0.518 0.242 0.712 0.454 0.748 0.820 . 0.971 

0158108 0.432 0.994 0.921 0.098 0.846 0.981 0.146 0.199 
GABRB3 0.571 0.604 0.750 0.162 0.332 0161 0.156 0.369 

Table 5. 3h Gametic association in the Hui 

Locus 0138126 0138133 0138192 0138270 015811 Dl5S97 Dl5898 0158101 0158108 

0138192 0.399 0.084 
0138270 0.764 0.353 0.971 
015811 0.100 0.347 0.919 
0!5897 0.747 0.707 0.804 0.384 

015898 0.333 0.462 0.707 0.873 0.088 
0158101 0.368 0.619 1.000 0.383 0.773 0.895 0.769 

D15S108 0.264 0.541 0.649 0.775 0.163 0.638 0.995 0.919 

GABRB3 0.070 0.650 0.926 0.270 0.624 0.664 0.257 0.960 

.-~I 

5.6 Allelic correlation coefficient 

Since the assessment of gametic association was unsuccessful in 

quantifying non-random mating in the study populations, an alternative method 

was utilised to assess the within-population genetic structure of the Han and the 

Hui. The method chosen was estimation of the allelic correlation coefficient (j), 

which measures the correlation of genes within individuals within populations 

(see section 3.3. 6). This coefficient was derived according to the partitioning of 

analysis method devised by Weir and Cockerham (1984) and was tested using the 

GENEPOP software. In effect, the parameter is a multiallelic version ofthef 

parameter described in equation 3.6. As/ is a parameter, rather than a statistic, it 

is more statistically robust than Wright's original F18 (Weir and Cockerham 1984). 
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High between-locus levels of variation were observed in the correlation 

coefficients calculated for the Han population. The f estimates varied between 

-0.041 and 0.357 with an average value of0.100. In contrast, f values calculated 

for the Hui population, ranged from 0.181 to 0.557 with a mean of 0.400. The 

results indicate that the Hui have a greater number of alleles that are identical by 

state than the Han population, a finding in keeping with the isolated nature of the 

population. The variance off coefficients between negative and positive values in 

the Han indicates a more complex situation, providing further presumptive 

evidence for the presence of population substructure. 

Fvalue 

0.7 

Figure 5.2 Correlation coefficients of the Hui 
and Han sample populations 
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5.7 Fsr 

The next step in the study was to establish the degree of genetic variance 

between the two populations. This was attempted by calculation of parameters 

analogous to Wright's Fsr according to the method of Weir and Cockerham 

(1984), once again using the GENEPOP software. The average Fsr calculated for 

the 10 loci surveyed was 0.0793. However, individual Fsr values exhibited large 

variance from locus to locus with values ranging from 0.0071 to 0.2283. For 

greater statistical reliability of the average Fsrvalue the analysis of additional loci 

would be helpful. 

Figure 5.3 Fsr calculated from Hui and Han sample 
populations 
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5.8 AM OVA calculated for the llUtosomalloci 

The analysis of molecular variance (AMOV A) was chosen to assess 

between-population genetic variation. The hierarchical nature of AMOVA allows 

a statistically robust assessment of the variance seen in individual chromosomes 

within and between popUlations. For this study, data from chromosomes 13 and 

15 were tested individually and as a pooled data set. 

In all tests the between-population variance is represented as l/Jsr. The 

significance of the f./Jsr statistic was assessed by the methoJ described by 

Excoffier et a/.(1992), where the original calculated <Psrvalue is compared to a 

distribution of f/Jsr values generated from 10,000 random permutations of the 

original data set. If the calculated <P.srvalue is larger than 95% or more of the 

generated <Psr values, then it is deemed significant. 

As mentioned in section 3.3.4, two methodologies pertain when 

conducting AMOV A on micro satellite data, the difference in the number of alleles 

and the sum of squared allele size difference. According to Mickalakis and 

Excoffier (I 996) the first method is analogous to Fsr analysis (Weir and 

Cockerham 1984) which earlier was found to be of limited application (Section 

5.7). Instead, the sum of squared allde size difference method was utilised. 

UnlikeFsr analysis, it is not subject to sample size bias, and as such, is more 

statistically robust (Goldstein eta/. 1995). 

AMOV A analysis showed no significant between-population variance for 

the separate chromosome data (Table 5.4), possibly due to the small number of 

loci surveyed. By comparison, the data from all ten loci produced a significant 

between-population result (p<O.OOl). The proportion of variance, equivalent to an 
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F;1· value of0.0463, was much smaller than the global average F."· of0.15 

reported by Babujani eta/. (1997), and may reflect the admixture of Han females 

within the Hui population. 

Table 5.4 Analysis of the molecular variance (AMOVA) of autosomal markers in 
the Han and Hui random sdmple populations 

<Psr </J1s Significance of fPsr 
Chromosome (%) (%) p S.E (+t-) 

13 2.09 97.91 0.06 0.008 

15 1.14 98.86 0.06 0.008 

13 + 15 4.63 95.37 <0.001 < 0.001 

5.9 Reference population comp~risons 

In order to gain some perspective on the population structure of the Han 

and Hui, comparisons were made with a Caucasian reference population 

composed ofCEPH (Dl3SI26, Dl3S270, DI5SII-GABRB3) and GDB data 

(DI3SI33 and Dl3Sl 92) Given their Western European origins, it assumed that 

neither data sets are from endogamous communities. As with the comparison 

between the Han and the Hui, these tests were conducted using the Wilcoxon 

signed ranks test. A summary of the reference data is shown in Table 5.5. 

The reference population produced results similar to the Han population. 

The mean number of alleles was the same at 11.3, and the mean ASV values were 

very similar (p = 0.420) with 15.495 in the reference population and 15.518 in the 

Han random sample population. It can be concluded from these comparisons that 

the Han exhibit a similar level of genetic diversity to that of this composite 
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Caucasian population. Therefore, a possible interpretation is that the Han 

population in Liaoning represents a similarly broad grouping. 

The values for the Hui were lower thari for the reference population (see 

Table 5.1 ). The ASV values for the reference data and the·Hui were not 

significantly different (p = 0.40 I). The comparisons of mean number of alleles 

also were non-significant, bu'.·t:the result was marginal {p=0.054) again suggesting 

some degree of population endogamy. 

The observed and expected heterozygosity levels in the reference 

population were very similar, 0.745 and 0.747 respectively. Comparisons of the 

reference population with Han observed and expected heterozygosity levels 

showed that expected hetrozygosity levels were not significantly different 

(p = 0.114) but that observed heterozygosity levels in the Han were significantly 

lower than levels observed in the reference population (one tailed p = 0.021 ). 

Similar conclusions were drawn from comparisons of expected and observed 

hetrozygosity levels between the Hui and the reference population. The expected 

heterozygosity levels were not significantly different (p = 0.721) but the observed 

heterozygosity levels in the Hui were significantly smaller than those found in the 

reference population (one tailed p = 0.001). 

In conclusion, both the Han and the Hui exhibited significantly lower 

observed heterozygosity levels than the reference population. This effect can 

most convincingly be ascribed to population subdivision in both of the Chinese 

populations. 
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··T~·bk 5.·5 Summary of allele distributions ofaUtDso,lnal lnicrosatellite markers in the reference population 

Marker 

Dl3Sl26 
DI3Sl33 
Dl3SI92 
DI3S270 
DI5Sl! 
DI5S97 
DI5S98 
DISSIOI 
D15S108 
GABRB3 

Average 

Allele range (bp) No. of alleles . MFA* 

100-112 7 110 
132-187 15 136 
89-123 15 .. 103 
75-95 6 •,\ 89 . ·~ 

238-262 ;":: II 238 .• 
168-186 10 ,' 248· 
141-175 17 !55 
101-133 9 123 
141-161 10 157 
171-201 13 185 

11.3 

* MFA= Most frequent allele 
** ASV = Allele size variance (variance of a1lele repeat size) 
11lo = Observed heterozygosity 
##He =Expected heterozygosity 
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ASV** .li'Ho lfifHe, 

4.66." .· 0.650 0.677 
21.97 0.800 0.820 
24.92 0.880 0.900 
6.17 0.679 0.680 
12.96 0.61.4 . 0.643 
9.17 0.899. 0.811 

26.56 0.852 0.860 
2Ll4 0.763 0,781 
12.22 0.570 0.563 
15.18' 0.743 0.734 

15.495 0.745 0.747 



5.10 Analysis ofY -chromosome allele frequency distributions 

Y -chromosome diversity in the two study populations also was analYsed, 

with the patterns ofY -chromosome allele variation observed in the Hui 

additionally assessed to see if they concurred with the hypothesis of male-directed 

gene flow. 

The markers DYS19, DYS388, and DYS390 showed similar distributions 

in the Han and the Hui, with both populations sharing the same MFA (Table 5. 7). 

By comparison, at the four other markers examined, DYS3891, DYS3891~ 

DYS392 and DYS393, variant MFAs were observed in each population. As with 

the autosomal data, the level of population differentiation exhibited at each locus 

was statistically assessed using the exact test. The results showed statistically 

significant differentiation at four of the seven Y-chromosome loci (Table 5.7). 

Further analysis of theY-chromosome allele distributions indicated that 

the Hui had a lower average number of alleles per locus, 4.3, and a lower mean 

allele size variance, 2.2, than the Han, 5.3 and 3.1 respectively. The Wilcoxon 

signed ranks test indicated that the variance of allele size difference in the Hui 

was significantly lower than the corresponding Han value (one tailed p = 0.030). 

A similar difference did not, however, exist between the number of alleles in the 

two populations (one tailed p = 0.065). 
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Table 5. 6 Summary of allele distributions of Y­
chromosome markers in the Han and Hui 
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5.1 I Y ~chromosome gene diversity 

To accurately_ compare Y -chromosome and autosomal genetic diversity in 

the Han and Hui, the gene diversity of both populations was calculated. Gene 

diversity is mathematically akin to expected heterozygosity but, as the Y-

chromosome is effectively haploid, this value represents the probability that two 

randomly chosen alleles from the same population are different. 

The gene diversity ofY -chromosome markers in the Han and Hui were 

0.672 and 0.656 respectively (Table 5.7). While gene diversity in the Han was 

slightly higher than in the Hui, the difference was not statistically different, 

according to the Wilcoxon signed ranks test (p = 0.452). When compared to 

average gene diversities derived for different European populations, such as the 

Basques, 0.435 (Perez Lezuan et al. 1997b), a German population, 0.389, and a 

Dutch population, 0.435, (Roewer et a/!996), the Hui and Han Y-chromosome 

diversities were very high. This suggests that the Han and Hui contain a more 

diverse range ofY-chromosome haplotypes then these European populations. 

It was proposed by Perez-Lezuan et at. (1997b) that it was possible to 

directly compare Y -chromosome and autosomal gene diversity by transforming 

Y -chromosome gene diversity using the following formula: 

4D, 
D =--...,­

"' (3D, -1) 

Equation 5. 2 Ratio of autosomal to Y~chromosome gene diversity 

where Dau is autosomal gene diversity and Dy is Y -chromosome diversity. This 

method assumes that the effective number ofY~chromosomes is one quarter the 

number of autosomal chromosomes. From equation 5.1 an equivalent autosomal 
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gene diversity of 0.886 was calculated for the Hui, and 0.895 for the Han, from 

their respective Y ~chromosome gene diversities. These values are higher than the 

actual expected heterozygosity values of0.754 and 0.713 respectively. By 

comparison, the same analysis performed on a Basque population resulted in the 

adjusted Y -chromosome gene diversity being in close agreement with autosomal 

gene diversity (Perez-Lezuan eta/. 1997b). 

The most parsimonious explanation for the contrast between the adjusted 

Y-chromosome diversity and the autosomal gene diversity in the Han and the Hui 

is the presence of population substructure. The Basque population for which 

equation 5.1 was created is an isolated endogamous population with no history of 

population substructure (Perez-Lezuan eta/. 1997b ). However, the results 

obtained from the analysis of autosomal diversity in the Han and the Hui clearly 

exhibited evidence of population substructure (Sections 5. I - 5. 9). Therefore the 

simple model used by Perez-Lezuan eta/. (1997b) is not appropriate for 

comparative studies in the Han and the Hui. 

5.12 Y chromosome haplotype analysis 

The advantlig~ ofY-chromosome studies is that direct haplotype analysis 

can be readily performed, and so the next stage of the study was to undertake this 

step. From the Han, 75 complete haplotypes consisting of all markers (DYS19, 

DYS388, DYS3891, DYS38911, DYS390, DYS392, and DYS393) could be 

extracted from a total of I 02 samples. As noted in section 4. 7, in some cases 

specific markers could not be amplified from all Han sam,les, possibly due to 

partial sample degradation. From the 26 male Hui samples, 18 complete 

haplotypes could be defined, two of which proved to be identical. 
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A comparison of the Han and the Hui haplotypes showed no shared 

haplotypes between the two populations, demonstrating complete differentiation 

of the two populations. The power ofY-chromosome haplotype analysis is due to 

the fact that a majority of the chromosome does not undergo recombination. This 

allows researchers to create haplotype networks which allows male gene flow to 

be traced (Job ling 1995). The construction of networks using microsatellite 

haplotypes, however, presents computational problems. A study by Roewer eta!. 

(1996) showed that in two closely related European populations, German and 

Dutch, there were 3x 1027 equally parsimonious haplotype networks based on just 

four Y -chromosome microsatellite markers (DYS 19, DYSJ89l, DYS38911 and 

DYS390). 

A similar analysis on more heterogenous populations, such as the Han and 

the Hui, using a larger number of markers would logically result in an even 

greater number of possible networks. Therefore, in the present study a more 

feasible method would be to perform a broader analysis of haplotype diversity in 

the Han and the Hui using AMOV A analysis. 

In summary, AMOVA analysis of Han and Hui ¥-chromosome haplotypes 

showed that 10.31% of total molecular variance could be ascribed to between­

population variance ( 1/Jsr= 0.1031, p = 0.001), which is more than double the size 

of the corresponding autosomal value (1/Jsr= 0.0463, p <0.001) (Tables 5.5 and 

5.7). 

Besides comparing the seven locus haplotypes, a shorter six locus 

haplotype based on markers DYS19, DYS388, DYS3891, DYSJ90, DYS392 and 

DYS393 was also tested by AMOV A. The reason for this step was that the 

DYS38911 fragment comprises the length variation in DYS3891 plus three 
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additional stretches oftetranucleotide repeats (Rolf el a/.1998, Perez Lezuan e/ a/. 

1999). Therefore, in the seven locus haplotype, DYS3891 is effectively counted 

twice which could suggest an apparently more homogenous haplotype pool than 

actually is present in the two populations. 

As found with the seven locus haplotypes, no haplotypes were shared 

between the Han and Hui, thus confirming the complete differentiation between 

the populations. AMOV A for the six loci haplotype demonstrated a significant 

between~population molecular variance amounting to 13.99% of total molecular 

variation (<t!.r = 0.1399, p <0.001), an increase of 4% from the seven locus 

haplotype and demonstrating the homogenising effect of counting both DYS3891 

and DYS38911 in a haplotype. 

Table 5. 7 Analysis of molecular variance (AMOVA) of seven and six locus 
Y chromosome haplotypes 

<t!.r <l>Js Significance of<t!.r 
Haplotype (%) (%) p S.E (+/-) 

Seven allele 10.13 89.87 0.001 0.001 
Six allele 13.99 86.01 <0.001 0.001 

The t!>sr value of0.1399 is again more than double than the autosomalt!>sr 

value of0.0463. However, a direct comparison of these two values may not be 

appropriate as the Y -chromosome result was based on haplotypic variance 

whereas the :!utosomal reflects genotypic variance. In addition, the Y-

chromosome is effectively haploid while the autosomal chromosomes are diploid. 

In conclusion, an indirect analysis would be more appropriate. 

To this end, the t1Jsr value obtained from the study was compared to other 

<I>sr values reported from comparisons of four different European populations (de 
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Knijff eta/. 1997). The European f/Jsr values ranged from 0.007 from a 

comparison of Dutch and Swiss populations to 0.0812 between Dutch and 

German populations. These values are obviously lower than the C/ls·r value of 

0.1399 in the present study, indicating that the Han and Hui are comparatively 

less related to each other than ~he European populations tested. The findings are 

thus in keeping with historical evidence showing that the Han and the Hui 

originated from different male founding populations. 

5.13 Comparison ofY~chromosome haplotypes to reference populations 

The calculation of genetic distances, and the construction ofunrooted 

neighbour-joining trees provides a further alternative to haplotype network 

construction for population comparisons based on Y -chromosome markers. This 

analysis was undertaken by comparing Han and Hui data with information 

sourced from the database at the Centre for Forensic Genetics, Leiden University 

and Perez -Lezuan eta/. (I 999). The comparisons were based on the calculation 

of Ds distance (Equation 3.24), (oJIJ genetic distance (Equation 3.25), and Rsr 

(Equation 3.22), from which unrooted neighbour-joining trees were constructed. 

The first comparisons were with broad level continental data from the 

Leiden database (Figure 5.4 a-c) with the Han and the Hui matched with 

populations classified as Southeast Asian, Northeast Asian, Indian and European. 

All the distances calculated resulted in trees that had one recurring property, the 

shortest distance was the distance between the Han and the Hui. The small 

distance between the Han and Hui could be explained on the basis of internal 

population structure. The reference populations were composite populations, 

amalgamated from different sample populations collected and assessed by 

different laboratories and simply grouped into their region of origin. As a result 
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little or no regard was paid to the anthropology, history or demography of the 

populations included in each of the population groups. By contrast, classification 

ofthe Han and the Hui populations were primarily based on cultural and religious 

grounds. Therefore comparison of the two different population types may not be 

meaningful. 

With this caveat in mind, two specific populations were isolated from the 

broad population groups analysed by de Knijff el a/.(1 997) using information 

contained in an appendix published by the authors. The populations chosen were 

a population termed Chinese, extracted from the Southeast Asian group, and a 

population termed Mongolian, extracted fi·om the Northeast Asia group. The 

same European sample population analysed in the first tree construction (Figure 

5.4) was used for the analysis, as it has been shown (Cavalli Sforza eta/. 1994, 

de Knijff eta/. 1997, Pen\z Lezuan eta/. 1997b) that genetic variation between 

European populations is significantly smaller than in the other major continental 

population groups. Four Central Asian populations also were compared to the 

Hui and Han (Figure 5.5a-c) using data sourced from Perez Lezuan eta/. (1999). 

These were the Uigur, Kazakh, and two Kirghiz populations collected in the 

Republics ofKirghizstan and Kazakhstan on the border with China. 

The three consensus trees generated are very similar. ln all three trees the 

C'ntral Asian population are clustered together and separated from the other 

populations. Therefore, for the purposes of this study, these Central Asian 

populations can be considered as one. Given this assumption, it can be concluded 

that the first two trees, D, and DvM (Figures 5.5a and 5.5b), have the same 

physical structure, with the Dvutree being more statistically robust. The third tree 

separates the populations in three clusters, European, Central Asian, and East 
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Asian. This seems to be the most credible tree construction, based on evidence 

from historical and anthropological data (Hammer et at. 1998). 

However, all trees displayed the Han and Hui on the same branch as in the 

first constructions, with lesser genetic variation identified between them with any 

of the other populations. The results thus suggests the male Han and Hui of 

Liaoning may be more closely related than first thought. Alternatively, in the 

absence of appropriate data from other East and West Asian populations, the true 

genetic lineages of the Han and the Hui cannot be resolved from the present 

phylogenetic analyses. 

It can also be argued that the small distance between the Han and the Hui 

may reflect similarly complex population structures rather than shared genetic 

ancestry. The mean gene diversity for the combined Central Asian populations 

was 0.432 (Perez-Lezuan eta/. 1999), a small value compared to gene diversities 

of0.672 and 0.656 for the Han and Hui. As Nei's distance, Ds, is based on 

differences in gene diversity (Equation 3.24); the trees constructed from this 

distance would reflect the clustering of populations around similar heterogeneity 

and not necessarily be based on a coalescent ancestry. 

The SMM distances used (DvM and RST) (Figures 5.5 b, c) are based on 

allele size difference and, in theory, would more accurately deftne coalescent 

ancestry. However, in order to define ancestry, it must be assumed that one 

population is a founder of another population and the population groups used in 

the present study are too broad to permit any such assumption. For example, both 

the Han and the Hui have multiple ancestries, demonstrated by their large gene 

diversities, while the Central Asian population grouping appears more resiricted, 

as indicated by the low diversity and the multiple instances of shared haplotypes 
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(Pen!z-Lezuan eta/. 1999). Therefore, unless the Han and Hui populations are to 

be further defined into smaller groups based on shared ancestry, the use of SMM 

distances in the present study may not be accurate for tracing male gene flow. 
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Figure 5.4 (a) -(c). Unrooted Neighbour-Joining trees showing phylogenetic 
relationships between five populations based on five different genetic distances. 
The numbers at each node indicate the number of trees out of 1000 bootstrap 
replicates with such a node. 
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Figure 5.5 (a)-(c) Unrooted Neighbour-Joining trees showing phylogenetic 
affinities between nine populations using five different genetic distances. The 
numbers at each node indicate the number of trees out of 1000 bootstrap 
replicates with such a node 
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Chapter6 

Analysis of the effects of consanguinity 

on genetic variation in the Hui of 

Liaoning Province 



6,1 Introduction 

Comparisons of inter-population structure showed that the two populations 

differed genetically, with the Hui revealing a greater deficiency in heterozygosity 

than the Han, probably ascribableto their greater levels of endogamy. Since the 

major genetic differences appeared to result from within-population 

differentiation, the internal structure of the Hui population was further explored 

via pedigree analysis. 

As discussed in Chapter four, two Hui pedigrees were constructed from 

data gathered in P.R. China and the blood samples were taken from these 

individuals. This provided an opportunity to study the effects of consanguinity on 

genetic diversity in the Hui and thus examine the internal structure of the 

population. The analysis of the pedigree data was conducted by calculation of 
\1 

pedigree inbreeding coefficients, an analysis of allele number and size 

distribution, calculation of the observed and expected heterozygosity levels, 

investigation ofY-chromosome marker diversity, and calculation of the ailelic 

correlation coefficients. 

6,2 Pedigree structure and identity by descent 

The number of individuals sampled from the Wang pedigree numbered 31 

of a total of81 individuals identified, and for the Wu 13 of 17 individuals 

identified were sampled. The pedigrees were constructed from information 

supplied by local religious leaders and from collaborating researchers in P.R. 

China (appendix D). Genotypes for individual M (mother), in the Wang pedigree 

were inferred from the genotypes of her children and by comparison with her 

spouse. 
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It is evident that in both pedigrees there is an appreciable prevalence of 

consanguineous marriage (Appendix D). However, it was impossible to calculate 

an inbreeding coefficient from the WU pedigree, because although 

consanguineous marriages were identified no information was available on the 

actual degree of each relationship. Of the 6 consanguineous marriages identified 

in the Wang pedigree, specific relationships had been defined for three of the 

marriages; F ~ 0.0625,0.0156 and 0.0039, equivalent to a first cousin, second 

cousin and third cousin marriage respectively. From these figures, a mean 

inbreeding coefficient (a.) ofO.OOl was calculated. Clearly this represents an 

under-estimate as the three other known consanguineous unions could not be 

included in the calculation and the cumulative inbreeding coefficient from the 

most recent common ancestor Qv1RCA) also was unavailable because of a lack of 

data on the relevant individuals. 

Due to this lack of data, an estimated maximum mean pedigree inbreeding 

coefficient was calculated based on the assumption that the most likely maximum 

Fvalue for any individual would be 0.0625. This figure was chosen as the 

maximum possible on the basis that first cousin unions (F = 0.0625) are the most 

common marriages among consanguineous communities (Bittles and Neell994}, 

including those in P.R China (Bittles 1998). Using this assumption, estimated 

maximum mean pedigree inbreeding coefficients (a) of0.003 and 0.007 were 

derived for the Wang and Wu pedigrees respectively. These results are similar to 

those obtained by means of household surveys from Hui populations in Gansu, 

Guandong and Guizhou, PR China, which ranged from 0.0012 to 0.0065 (Wu 

1987). The figures are high compared to values derived from similar studies of 

consanguinity in Han populations, which recorded mean inbreeding coefficients 
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from 0.0003 to 0.0045 depending on the region of China surveyed (Duet a/. 

1981; Wu 1987, Zhan eta/. 1992). 

6.3 Autosomal allele distributions 

Analysis ofthe allele distributions shows that the pedigrees exhibit a 

smaller number of alleles per locus and a smaller allele size variance than the 

random Hui sample population. The Wang and Wu had an average number of 

alleles of6.0 and 4.3 respectively and an average size variance of 13.9 and 12.0 

respectively (Table 6.1) by comparison with an average of 10.3 alleles per loci 

and an average size variance of 16.2 in the Hui random sample population (Table 

5.1). 

Calculation of statistical significance using the Wilcoxon signed ranks test 

showed no significant difference in allele size variance between either the Wang 

or Wu pedigrees and the Hui random sample population (one tailed p ~ 0.187 and 

0.063 respectively). However, there was a significant difference in the number of 

alleles between the Wang or the Wu and the Hui random sample (p ~ 0.001 and 

0.02 respectively). 

As the pedigrees would predicably have a more constricted number of 

genotypes, this contraction in allele number was not unexpected. Nonetheless the 

average size variance values calculated for the pedigrees show that, while allele 

numbers were low, there was still a wide range of allele sizes present at most loci. 

As in the unrelated sample data, this finding may be indicative of residual genetic 

diversity due to the diverse genetic origins of the Hui. 
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Table 6.1 Summary of allele distributions of autosomal microsatellite markers in the Wang and Wu pedigrees 

Wu 106-122 3 106 2.3 0.462 0.492 
D13SI33 Wang 133-185 4 133 44.7 0.613 0.621 

Wu 133-177 5 175 15.7 0.846 0.723 
DI3S192 Wang 95-123 10 107 20.9 0.935 0.861 

Wu 97-115 7 9'1 10.6 0.917 0.797 
DI3S270 Wang 81-91 3 81 7.0 0.645 0.52~ 

Wu 81-91 3 81 7.0 0.154 0.151 
D15Sll Wang 242-272 7 244 29.6 0.613 0.544 

Wu 244-260 4 244 11.3 0.769 0.578 
D15S97 Wang 176-188 6 172,182 4.7 0.800 0.721 

Wu 170-182 4 176 7.0 0.385 OA-43 
Dl5S98 Wang 143-173 7 151 6.7 0.731 1.000 

Wu 145-171 5 153,157 22.8 0.733 0.778 
DJ5S101 Wang 103-113 6 107 3.5 0.903 0.819 

Wu 101-113 6 107 5.4 0.846 0.778 
D15S108 Wang 143-159 5 157 9.7 0.733 0.773 

Wu 143-157 3 143 10.3 0.692 0.557 
GABRB3 Wang 179-197 7 185 9.6 0.774 0.667 

Wu 179-199 3 183 28.0 O.i70 0.540 

Average Wang 6 13.9 0.729 0.706 

Wu 4.3 12.0 0.657 0.584 

* :tviF A= Most frequent allele 
** ASV =Allele size variance (variance of allele repeat size) 
'1lo = Obsetved heterozygosity 
~e = Ex-pected heterozygosity 
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6.4 Expected and observed heterozygos;ty 

In both the Wang and Wu pedigrees expected heterozygosity was less than 

observed heterozygosity, opposite to the results obtained rrom the unrelated Hui 

sample populations. For the Wang pedigree, average expected heterozygosity was 

calculated as 0.703 while the average observed heterozygosity was 0.722. In the 

Wu pedigree, the average expected and observed heterozygosity values were 

0.619 and 0.674 respectively (Table 6. I, Fi!,'tlre 6. 7). The comparable figures for 

the unrelated Hui sample population were an average expected heterozygosity of 

0.755 and an average observed heterozygosity of0.457 (Table 5.1, Figure 5.1). 

The level of expected heterozygosity in the Wang was not significantly 

different to the random sample population (p = 0.185). By comparison, the Wu 

pedigree was significantly different to the random sample population (p = 0.017). 

Furthermore, in both the Wang and Wu pedigrees observed heterozygosity was 

significantly larger than in the random sample population (p = 0.001 and p = 

0.010 respectively). 

The overall pattern of expected and observed heterozygosity levels was 

surprising given the limited number of alleles available. However higher than 

expected levels of heterozygosity also have been observed in other communities. 

with a high prevalence of consanguineous unions, and the conclusion reached was 

that some form of selection against homozygosity may be operating at early 

development gene loci (Wang eta/. 2000}. As the Hui also permit and practise 

consanguineous unions, a similar phenomenon may be operating in these 

pedigrees. However, once again, the sample sizes may be inadequate to permit 

unbiased statistical analysis. 

99 



Figure 6.1 Observed and expected heterozygosity in the Wang and Wu 
pedigrees 
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6.5 Allelic correlation coefficient 

As with the Hui and Han unrelated sample populations,/values were 

calculated for both the Wang and the Wu as a measure of deviation of genotypes 

from RWE. It was found that the f value for the Wang was -0.062 and for the Wu 

it was -0.140. This is sharp contrast to the random sample population, which 

recorded an/value of +0.401. These negative/values indicate an avoidance of 

inbreeding (Section 3.3.5), in contradiction to the analysis of pedigree structure 

and calculation of F values (Section 6.2) which indicated the presence of 

consanguinity. The smaller size of the Wu pedigree suggests that the computed 

value may not be statistically robust, but the larger sample size of the Wang also 

shows a negative correlation coefficient. On the assumption that non-paternity 
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does not occur in the two kindreds, a convention supported by the inheritance 

patterns of the microsatellite markers, these results in concert with section 6.2 are 

suggestive of some form of selection against homozygote genotypes. 

Figure 6. 2 Correlation coefficients calculated from the Wang pedigree 
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Figure 6.3 Correlation coefficients calculated from the Wu pedigree 
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6.6 Polymorphic information content 

Given the paradox:. of high heterozygosity and low polymorphism found in 

the pedigree data, the polymorphic information content, PIC, also was calculated 

to assess of the effect of consanguinity. The PIC value is the probability that the 

genotype of a given offspring wilt permit identification of which marker allele at a 

locus was inherited from each parent. Thus, in effect PIC measures the potential 

cf J. marker for use in identity testing. The formula is as follows: 

n 11 -1 

PIC= 1-~>;-I 
i=l i=l j=i+l 

Equation 6.1 Polymorphic information content 

Figures 6.3 and 6.4 show that the computed PIC values were well below 

the observed heterozygosity values for both pedigrees. Average PIC for the Wang 

was 0.587 and for the Wu 0.499, while average observed heterozygosity was 

0.775 and 0.658 respectively. Therefore the PIC values reflect the reduced allele 

numbers found in both pedigrees. 

Like heterozygosity, PIC decreases in proportion to the number of alleles. 

However PIC provides a more conservative estimate of heterozygosity from the 

observed allele frequencies (Taylor eta/. I994). If a PIC is low, it indicates a 

high probability that the parental haplotypes are identical with a corresponding 

increased potential for the homozygous genotype. Under these circumstances PIC 

would be expected to indicate a greater deviation ofthe observed heterozygosity 

from expected heterozygosity. Thus it may be a better indicator than observed 

heterozygosity ifthere is selection against homozygous. 
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ln summary. the combined results from the analysis of observed 

heterozygosity and calculation of correlation coefficients for the two pedigrees 

support a hypothesis of heterozygote advantage. The PIC values of the two 

pedigrees are smaller than the observed heterozygosity levels indicating that 

selection against homozygous genotypes may be occurring. If such selection was 

not apparent the PIC values would have been higher, more closely resembling the 

level of observed heterozygosity. 

103 

I 



0.9 

0.8 

0.7 

Proportion °-6 

of O 5 
heterozygous · 

genotypes 0.4 

0.3 

0.2 

0.1 

0 

Figure 6.4 Comparison of PIC, observed and expected 
heterozygosity levels in the Wang pedigree 

Dl3Sl26 Dl3Sl 9 Dl5Sll Dl5S98 Dl5Sl08 All 

rn~sn~ nnsno Dl5S97 Dl5SIOI GABRB3 

Locus 

Figure 6.5 Comparison of PIC, observed and expected 
heterozygosity levels in the Wu pedigree 

l.lh·······················································································································································································~ 

0.9'+--~~~~----, 1--~~~~~~~~---1 ,-~----; 

0.8 

07 

• PIC 
CJ Observed heterozvgositv 
o Expected heterozygosity 

P . 0.6 
roport1on 

of O.'i 
heterozygous 

genotypes o.4 

0.3 

0.2 

0 1 

0 
Dl3Sl26 Dl3Sl 92 

Dl3Sl33 Dl3S270 

Dl5Sll Dl5S98 

Dl5S97 

Locus 

104 

Dl5Sl08 All 

Dl5SIO GABRB3 



6,7" Y~chromosome allele distributions 

A total of 16 Y-chromosome haplotypcs were extracted from the Wang 

pedigree and 6 haplotypes from the Wu pedigree (Appendix C). The haplotypes 

obt~ned from the pedigrees were first compared to the Hui random sample 

population via analysis using the ARLEQUIN software package. No Wang or Wu 

haplotypes were shared with the Hui random sample population. 

Further analysis of the pedigree haplotypes showed that the Wu pedigree 

had only one allele for markers DYS392 and DYS3891 with two alleles for each 

of the other markers. The Wang pedigree had nearly triple t.he number of 

haplotypes observed in the Wu pedigree, but only approximately double the 

number of alleles per locus (Table 6.2). 

Calculation of the mean number of alleles showed that the Wang pedigree 

had an average of3.29 alleles per locus and the Wu had 1.17 alleles per locus. 

The allele size variance was equivalently low with the Wang exhibiting a variance 

of2.43 and the Wu 0.93. Statistical assessment showed that the mean number of 

alleles per locus in the Wang was not significantly different to the random sample 

population (p ~ 0.095) whereas tlhe mean number of alleles per locus in the Wu 

were significantly smaller that the random sample population (p = 0.01). The 

latter finding is mostly probably due to the small number of samples in the Wu 

pedigree, adversely affecting the reliability of the testing. The same effect was 

seen when allele size variance was compared with the random sample population: 

the Wang ASV was not significantly different (p = 0.425) but the Wu ASV was 

significantly smaller (p = 0.021). 
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As hypothesised when the autosomal data were analysed, the similarity 

between the ASV and mean number of alleles per loci in the Wang and the 

corresponding values in the random Hui sample population can be interpreted as 

evidence of residual diversity originating from the diverse founding populations. 

Ifthis is correct, then either the level of diversity has not been greatly reduced by 

a history of consanguineous marriage, or close kin marriage may be a recent or 

intermittent practice. 

The average level of gene diversity in the Wang pedigree was 0.589, and 

0.390 in the Wu pedigree (see Figure 6.6). Calculatimt of statistical significance 

showed that the level of gene diversity in the Wang did not differ significantly 

from random sample population (p = 0.148), but the level of gene diversity in the 

Wu was significantly smaller than the random sample population (p = 0.04). As 

with the comparison of ASV and mean number of alleles, the significant result for 

the Wu is most probably associated with the small available sample size. 

Meanwhile, the nonwsignificant result for the Wang also mirrors the comparisons 

of ASV and mean number of alleles, as this relatively high level of gene diversity 

is a further indication of residual diversity originating from the diverse founding 

populations. 
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Table 6.2 Summary of allele distributions ojY-chromosome microsatellite markers in the Wang and Wu pedigrees 

Marl= Population Allele range (bp) No. of alleles MFA* ASV** Gene Diversity 

DYSI9 Wang 182-202 4 202 4.3 0.725 

Wu 190-194 2 190 0.5 0.533 

DYS388 Wang 126-135 3 128 2.3 0.433 

Wu 129-138 2 137 4.5 0.533 

DYS3891 Wang 249-257 3 249 1.0 0.433 

Wu 253 [ 253 0.0 0.000 

DYS389II Wang 361-377 3 361 4.3 0.567 

Wu 369-373 2 369 0.5 0.533 

DYS390 Wang 207-219 4 211 1.7 0.742 

Wu 215-219 2 215 0.5 0.533 

DYS392 Wang 248-260 4 245 2.9 0.658 

Wu 245 I 257 0 0.000 

DYS393 Wang 115-119 2 liS 0.5 0.567 

Wu 115-119 2 115,119 0.5 0.600 

Average Wang 3.29 2.43 0.590 

Wu 1.71 0.93 0.390 

* MFA= Most frequent allele 
** ASV = Allele size variance (variance of allele repeat size) 
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7.1 Introduction 

Recent advances in genome technology, such as the polymerase chain 

reaction and the development of fluorescent DNA sequencing, have enabled 

researchers to qualitatively and quantitatively assess human genetic variation in 

concert with demographic, historical and anthropological data. For example, in 

studies of the genetic anthropology of Amerindians, where at least three different 

migration events have been traced by the combination of anthropological and 

genetic research (Karafet eta/. 1999). 

The main purpose of the present study was to investigate correlations 

between genetic variation and human history, focusing on the Han and Hui 

peoples of Liaoning province, PR China. The history of these peoples is 

essentially that of population migration, amalgamation and then, most 

predominantly in the Hui, reproductive isolation. In the following discussion, it 

will be seen that through the combined study of historical and genetic information 

on the Han and the Hui populations, an overview of the relationship between 

intra~ and inter~population genetic diversity may be formulated. 

7.2 Patterns of genetic diversity within the Han and Hui 

It was evident from the analysis of the random sample populations of the 

Han and the Hui that the genetic characteristics of both ethnic groups are 

primarily defined by genetic differences within each population. This conclusion 

can be drawn by comparing the results of the population differentiation exact tests 

with those obtained from AMOV A analysis of autosomal data (Tables 5.1 and 

5. 7). The exact test results exhibited significant differences between the 

populations at 8 of 10 loci. 
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Yet AMOV A results produced only a small fPsr value for the pooled data set 

from the two chromosomes studied, chromosomes 13 and 15, and when the data 

for the two chromosomes were analysed separately, both yielded non-significant 

fPsr values (Table 5.4). Thus, the low fPsr values indicate that the strong genetic 

differentiation between the Han and Hui shown by the exact tests is predominately 

due to their different internal population structures. 

While the analysis of autosomal alleles revealed that intra-population 

diversity was the main factor determining differentiation between the Han and the 

Hui, the results of theY-chromosome analysis produced a different conclusion. A 

comparison of the exact test and AMOV A results for the Y -chromosome data 

indicated a more significant role for inter-population diversity in the relationship 

between the Han and the Hui. The exact tests for population differentiation 

showed that 4 of the 7 loci exhibited significant differentiation between the Han 

and the Hui (Table 5.6). In contrast, the AMOVA results indicated a much larger 

between-population variance, accounting for 13.99% oftotal variation (Table 5. 7). 

Thus, the Y -chromosome haplotype distribution appears to be more affected by 

inter-population diversity than autosomal genotypes, and so it is better suited to 

inter-population genetic diversity analysis. This topic is further discussed in 

Section 7.3. 

In summary, the population structures of the Han and the Hui most 

probably result from different historical backgrounds and differing cultural 

practices. Consequently, the discussion of genetic diversity within the Han and 

Hui is considered separately. 
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7.2.1 .Genetic diversity in the Han 

The term Han minzu is a politically convenient label to encompass the vast 

majority of the Chinese population. It was initially used at the beginning of the 

20th century to develop a sense of national unity and thus facilitate the fall ofthe 

Qing dynasty, which occurred in 1908 (see Sections 2.2 and 2.6.5). The wide 

allele size distributions and the diverse range ofY-chromosome haplotypes 

revealed by genetic analysis of the Han of Liaoning province shows that this sense 

of Han minzu is of limited value in purely genetic terms. 

This hypothesis is backed up by available historical information. For 

example, Du and Yip (1993) describe the Han as an ethnic group based on the 

ancient Huaxia ofthe middle and lower reaches ofthe Yellow River. It is 

believed that the Han of the north east provinces of China originated from groups 

in the south of the country who settled in the North East in order to solidify 

dynastic control of the region (Fairbank and Reischauer 1990). Through 

generations, the Han would have intermingled with the indigenous Jurchen tribes 

(now known as the Man or Manchu minzu), and the Mongolian peoples of the 

North East region, resulting in a heterogenous population. 

The patterns of genetic diversity found in the Han of Liaoning supports 

this notion of a population with a heterogenous mix of different ethnic origins. 

The random sample of the Han exhibited a large array of alleles, averaging 

approximately eleven alleles per locus (Table 5.1). Nonetheless, the observed 

level of heterozygosity in the Han was significantly lower than in the reference 

Caucasian population. The combination of a large array of alleles but a restricted 

array of genotypes may be interpreted as an indication of the existence of 

population stratification (Section 5.9). In addition, a variety ofY-chromosome 
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haplotypes (Section 5.12) and a high level ofY-chromosome gene diversity, were 

found (Section 5.11 ), adding further support to the hypothesis of population 

stratification. 

To fully appreciate the population· structure of the Han of Liaoning, it 
! 

would have been helpful to haVe, access to greater anthropological detail on their 

population structure and origins, including extended pedigrees for genetic 

analysis. This was not possible c:.s the sampling procedure adopted was originally 

focused on the study of genetic differentiation and population structure in the Hui, 

using a random sample Han population as the local reference population. 

In conclusion, further anthropological research into the Han of Liaoning 

province is needed to provide a more comprehensive analysis of their genetic 

structure. It is therefore proposed that, if possible, further demographic and 

genetic studies should be undertaken to elucidate the source, type, and nature of 

the variation and structure of the Han population. 

7.2.2 Genetic diversity in the Hui 

To fully understand the patterns of genetic diversity in the Hui of 

Liaoning, it is appropriate to note the relatively small size of the Hui population, 

i.e., approximately 263,000 individuals, by comparison with 33 million Han who 

are resident in the province (Family Planning Commission 1997). Therefore, 

when collecting a random sample population, the probability of inadvertently 

selecting related individuals would be much higher in the Hui than the Han. The 

combined effect of restricted local population sizes and endogamous marriage 

patterns could explain the statistically significant heterozygote deficiency 

demonstrated by HWE analysis (Table 5.2b), and the positive average correlation 

coefficient of0.400 (Figure 5.2). 
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Contrasting results were found in the analysis of the Wang and Wu 

pedigrees. In summary, an excess of heterozygous genotypes was observed in 

both pedigrees, demonstrated by the average correlation coefficient value of-

0.062 for the Wang and -0.140 for the Wu (Figures 6.2 and 6.3). This is 

unexpected, as study of the pedigrees indicates the prevalence of consanguineous 

marriages, and population genetics theory suggests that one result of inbreeding 

would be an increase in homozygosity (Hartl and Clark 1997 pp 135 -149). 

One explanation for the paradox between the low level of heterozygosity 

in the Hui random sample population and the high level of heterozygosity in the 

two Hui pedigrees may be the existence of groupings within the wider Hui 

community based on cultural and religious affiliations. It has been shown that 

many different Islamic sects exist within the Hui minzu (see chapter 2). While 

divisions of this type are relatively recent in the history of the Hui people (200-

300 years), there could have been a sufficient number of generations of restricted 

marriage within specific religious sub-sects to initiate the formation of smaller 

reproductively isolated populations in the Hui population ofLiaoning. 

Groupings could also be based on the urban/rural divide, as urban Hui 

communities tend to differ from their rural counterparts in tenns of adherence to 

religious and cultural practices (Gladney 1998). In any event, such population 

stratification would be evident, in a genetic sense, by the presence of lower than 

expected levels ofhetrozygosity in the wider Hui population. Finally, the 

enormous loss of life experienced in the wars of the mid-191
h century (Section 

2.6.5), during the Japanese invasion and the subsequent Civil War during the 

1930s and 1940s, and later by famine in the 1960s, all could have exerted a 

profound effect on the genetic structure of the various Hui communities in China. 
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Of course, the observed contrasts might also be due to the effect of small 

Sflmple size. Only 53 Hui samples were available for the random sample 

population analysis, and there were even fewer pedigree samples, 31 Wang and 14 

Wu. In addition, only 10 autosomal loci from two chromosomes were analysed, 

along with 7 Y-chromosome loci. The analysis of this relatively small data pool 

may produce results that do not reflect the true nature of the Hui gene pooL 

For a more conclusive analysis of genetic diversity in the Hui, further 

samples would need to be taken. To establish statistically robust results, it would 

also be beneficial to test a larger number of loci from a wider range of 

chromosomes. This proposed extended analysis of the population genetics of the 

Hui would however also require knowledge of any population stratification 

revealed through demographic and anthropological studies. 

7.3 Comparison of the autosomal andY-chromosome genetic diversity of 

the Han and Hui 

According to the historical record two of the major founding populations 

of the present Hui population were Arab males and Han females (Wong and 

Dajani 1988). Therefore, it would be expected that the distribution of autosomal 

alleles in the modem Han and Hui might exhibit similarity due to the shared 

female ancestry. 

The comparison of autosomal andY -chromosome AMOV A results seem 

to confirm with this hypothesis. To put the AMOV A results into perspective, it 

has been found that the global population variance for autosomal STRs is <Psr = 

0, 15 (Barbujani 1997). The autosomal between-population proportion of total 

variance obtained for the Han and Hui was just 4.63% ( <Psr £' 0.046), indicating a 
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much closer genetic relationship than found between the major continental human 

populations such as European, Amerindian, Southern Asian and Northern Asian. 

The most obvious cause is the initial admixture of Han females in the cr.eation of 

the Hui population, and possible subsequent mingling of the populations. 

Meanwhile theY-chromosome haplotype between-population proportion of total 

variatio" was 13.99% (<f!sr :0.1399) (Table 5. 7), a value closerto the 

worldwide autosom~l. average. In addition, this proportion of variance is higher 

than corresponding values calculated from a comparison of European populations 

(de Knijff et al. 1997) (Section 5.12). 

However, as stated in Section 5.12, the direct comparison of autosomal 

and Y-cbromosome l/Jsr values may not be justified. Firstly, the autosomal l/Jsr 

parameter is a measure of genotypic between-population variance, while theY­

chromosome C/Jsr is a measure of haplotype between-population variance. This 

difference is due to the different ways in which autosomal and Y-chromosorne 

markers are inherited. TheY -chromosome is effectively haploid and is passed 

from father to son, while autosomal markers are diploid and transmitted by both 

parents to sons and daughters. This difference leads to an effective Y­

chromosome population that is approximately one quarter the size of the effective 

autosomal population (Perez-Lezuan el al. 1997b). In addition, the diploid nature 

of the autosomal markers leads to autosomal diversity being influenced by 

recombination during meiosis. In summary, the lower autosomal f/Jsr may not be 

due solely due to female admixture between the Han and the Hui, but also 

possibly to the larger effective population size and the effect of recombination. 

116 

l 



The analysis of the hypervariable regions (HVR-1 and HVR-11) of the 

human mtDNA genome could provide a direct assessment of female gene flow 

free from the complexities of recombination. The mtDNA genome is maternally 

inherited and therefore haploid. Hence, mtDNA diversity, like Y -chromosome 

diversity, is measured on a haplotypic basis, allowing for a more direct 

comparison of the female and male gene pools of the Han and the Hui. A 

comparison ofY-chromosome haplotypic diversity and mtDNA haplotypic 

diversity would be more likely to confirm the presence of any differential patterns 

of male and female admixture and migration (Comas e/ a/. 1998). 

7.4 Y-chromosome microsatellites and male gene flow in the Hui 

It was demonstrated in the previous section that the male Han and Hui 

show significantly different distributions ofY -chromosome haplotypes. Further 

analysis of male Hui genetic diversity, in combination with the analysis of 

available historical information, demonstrates the existence of diverse ancestral 

origins in the male Hui population. 

The Hui had a relatively high average Y -chromosome gene diversity of 

0.656, compared with the values from other studies in which the same markers 

were analysed (Section 5.11). This is indicative of an array ofY-chromosome 

haplotypes and hence diverse male ancestry. Further evidence of this diversity 

was seen in the relatively large pairwise difference in allele numbers between the 

Hui haplotypes, with an average difference between Hui haplotypes of 

approximately 5 alleles for the seven locus haplotypes, and 4 for the six locus 

haplotype. In addition, the analysis of pedigree Y-chromosome haplotypes 

showed that they all differed from the random sample population haplotypes 

(Section 6.7). Therefore, the actual level of haplotypic diversity in the male Hui 
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of Liaoning may be even greater than indicated by the analysis ofthe random 

sample population. 

The next step in confirming the existence of diverse male ancestry in the 

Hui was by tracing gene flow through phylogenetic analysis. The construction of 

unrooted neighbour-joining trees exhibited a consistent pattern of greater 

similarity between male Hui and male Han than with other populations, such as 

Southern Chinese, Mongolian and Central Asian populations. However, it was 

previously shown that theY-chromosome haplotype (/J,r value for the male Han 

and the male Hui populations was 0.1399, a large value compared to 1/isrvalues 

found from comparisons of European populations, which ranged from 0.007 to 

0.0812 (de Knjiff el a/. 1997). It could be concluded that, from the perspective of 

phylogenetic analysis, microsatellite markers are efficacious in clarifying genetic 

divisions between closely related populations. But as the genetic relationship 

between population decreases, they become less useful in resolving genetic 

relationships. 

It seems, however, that a major factor confounding the present 

phylogenetic analysis stems from the founding history of the Hui, which involved 

the amalgamation of many different populations. For example, the available 

historical information suggests origins stemming from Turkic, Iranian and Arab 

populations, which themselves may have been genetically heterogenous (Section 

2.6.1). The large range of alleles present in the male Hui population may result 

from population admixture caused by such population movements. If so, tracing 

male gene flow using just microsatelliL markers would be very difficult, as the 

distribution of alleles would have become increasingly heterogenous due to the 

intermingling of these populations. Therefore, the analysis of male Hui gene flow 
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may be best seJVed by tracing the various genetic origins separately, rather than 

by attempting a broad overview of male Hui genetic diversity as a whole. 

In attempting to trace the different lineages of the male Hui of Liaoning, it 

may be more advantageous to analyse the distribution of less polymorphic 

markers, such as SNPs. For example, a recent study used SNPs to trace the 

origins of Amerindian tribes (Karafet el a/. 1999). This resulted in the discovery of 

several founder haplotypes from which ancestry was traced to a region 

surrounding Lake Baikal, which anthropologists previously had suggested as the 

possible origin of the ancestors of Native Americans. 

Conceptually, SNPs can be visualised as defining the fundamental 

branches of a phylogenetic tree, while more polymorphic loci, such as 

microsatellites, would be used to recognise the finer divisions. A more complete 

phylogeny of the male Hui population could thus be uncovered by the combined 

use of a haplogrouping strategy involving both SNPs and microsatellite loci. 

7.5 Consanguinity and genetic diversity 

The final part of the investigation was assessment of the effect of 

consanguinity on the level of genetic diversity in the Hui. To date, the major 

focus of studies into human consanguinity has been the increased risk of 

morbidity ~nd mortality, due to the higher probability of the expression of 

autosomal recessive disorders. In general, it has been concluded that the less 

common the disorder, the greater the influence of consanguinity on its prevalence 

(Bittles 1998). However, there has been little study of the effect of consanguinity 

on genetic diversity in ethnic groups. 

In the present study, the genetic structure of two Hui pedigrees, the Wang 

and the Wu, was analysed to specifically investigate this effect. There was a 
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modest prevalence of consanguineous marriage in both the Wang and Wu 

indicated by estimated mean pedigree inbreeding coefficients of a= 0.003 and 

a= 0.007 for the Wang and Wu respectively (Section 6.2). However, genetic 

analysis of both pedigrees indicated the presence of excess heterozygosity, 

demonstrated by their negative genotypic correlation coefficients of -0.062 and 

-0.140 for the Wang and Wu respectively (Figures 6.2 and 6.3). 

As it has been shown in the population study, the Hui have diverse 

backgrounds demonstrated by the existence of wide allele distribution. One 

possible reason for these findings is that consanguineous marriage had not been 

continuously practised over a sufficiently long number of generations in the Hui 

community, and at an appropriately high prevalence, to reduce the number of 

alleles present in the pedigrees. 

Another possibility is associated with the effect of small sample size and 

sampling error. The two pedigrees were of different sizes; the Wang encompasses 

81 individuals over 5 generations while the Wu pedigree includes just 17 

individuals over 3 generations. In addition, only 34 of the 81 individuals could be 

sampled from the Wang and only 14 from the Wu. Since just 10 loci from 2 

chromosomes 13 and 15 were surveyed, error due to the small number of samples 

and number of loci surveyed may have arisen. 

However, other studies being undertaken in the Centre for Human 

Genetics, Edith Cowan University, suggest that the excess heterozygosity 

observed is not due to sampling error. The same markers used in the present 

study have been analysed in pedigrees from Pakistan and Southern India, 

populations in which consanguineous marriage is commonplace. 
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In both sets of analyses, significant heterozygosity excess was found. Since the 

studies involved much larger pedigrees and, in Southern India, the analysis of 

many more markers, they serve to confirm the veracity of the findings obtained in 

the present study. 

Therefore, in light of these results, a third possibility must be considered, 

that is the occurrence of selection. The low PIC values calculated for the Wang 

and Wu (Section 6.6) in combination with the high observed heterozygosity, 

indicate the existence of selective processes. These PIC values basically suggest a 

high probability that parental haplotypes in the pedigree are identical, therefore a 

greater potential for the existence of homozygous genotypes in their offspring 

would be expected. However, the observed heterozygosity levels of0.772 and 

0.674 for the Wang and the Wu suggests either that the potential for the formation 

of homozygous genotypes is not realised, or more probably, there is early prenatal 

selection against the survival of homozygous genotypes. 

This hypothesis is supported by reference to other human and animal 

studies. For example, studies by Nee! and Ward (1972), on the Yanomama 

Amerindians, semi-nomadic people who live on the Brazilian-Venezualan border, 

and Workman eta/. (1973) who studied the Papago of Arizona, U.S.A., both 

showed negative correlation coefficients, that is excess heterozygosity, observed 

in populations with a relatively high level of inbreeding. It was suggested in both 

studies that a difference in gene frequencies between the sexes was an explanation 

for the presence of excess heterozygosity. However, a more recent study on an 

inbred Amerindian tribe in Arizona, the Havasu pi, attributed a similar excess of 

heterozygotes at the HLA-A locus to balancing selection, that is, to heterozygote 

advantage (Markow et at. 1993). 
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A review of various animal studies shows stronger evidence for selection 

as a cause of excess heterozygosity in inbred populations. For example, a long~ 

term study into the effects of inbreeding in a herd of Speke's Gazelle at the St 

Louis Zoo, USA (Templeton and Read 1983, 1984, 1998) demonstrated an initial 

adaptation to high levels of inbreeding, with the eventual elimination of 

inbreeding depression. The mean coefficient of inbreeding calculated from the 

pedigree was a.= 0.149, yet an isozyme study showed an allelic correlation 

coefficient of/= -0.291 in the same animals. The high a value arose because the 

herd was founded by just three females and one male, whereas it was concluded 

that the negative/value was due to management of the herd to minimise 

inbreeding, i.e., to artificial selection processes. 

More recently, studies on inbreeding and heterozygosity have focused ori 

microsatellite markers. In both harbour seal pups (Collman eta/. 1998) and red 

deer (Coulson eta/. 1998), a positive correlation was demonstrated between 

microsatellite heterozygosity and neonatal survival, with the heterozygous animals 

more likely to reach reproductive age. Therefore, microsatellite heterozygosity 

was positively linked to overall biological fitness. This result is problematic as it 

is generally accepted that microsatellites play no functional role in the genome. As 

a result they would have a constant rate of evolution independent of the size of a 

population and as a consequence, are selectively neutral (Charlesworth eta!. 

1994, Jobling 1995, de Knijff el a/. 1997). 

A solution to this dilemma was presented in a study of the population 

genetics of the oyster, Ostrea edulis. It was shown that microsatellite multi-locus 

heterozygosity enhanced the early developmental growth of oyster larvae. The 

suggested mechanism was a "hitchhiking effect" in which over-dominant 
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heterozygous genotypes were linked to fitness-associated genes affecting early 

developmental growth, which in turn, were subject to selection. 

In conclusion, excess microsatellite heterozygosity may be indicative of a 

compensatory mechanism for the retention of biological fitness in populations that 

have experienced long-term inbreeding. Therefore, a simple positive correlation 

between consanguinity and reduced heterozygosity, as predicted by classical 

population genetics theory, may not be entirely correct. Rather, there may be a 

more complicated scenario involving both the history and the types of 

consanguineous marriage in the ethnic group. 

7.6 Overall conclusions 

The major difficulty in studying human population genetics is that, due to 

the impact of cultural influences on the population dynamics of human 

populations, humans are the organisms least likely to conform to the expectations 

of population genetics models (Jorde 1997). However, by treating historical and 

anthropological aspects of the Han and Hui populations as variables that effect 

their overall genetic variation, a broad survey of the population genetics of the 

Han and Hui is possible. 

Unfortunately, only limited historical and anthropological information is 

available on the study populations, and so the nature of the population genetics of 

the Han and the Hui could only be cautiously inferred. For a more detailed 

analysis of the genetic structure of the Hui and Han communities, more substantial 

anthropological and demographic data on the social and cultural structures of the 

populations is needed. Thereby a more complex hierarchy of genetic variance 

could be established that more closely reflected the actual structure of each 

population. 
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More detailed anthropological studies would also allow the construction of 

better defined patterns of male gene flow within the Hui, and result in an 

improved understanding of the possible candidate founding populations. 

The simultaneous analysis ofbiallelic and polymorphic Y-chromosome markers 

would be the appropriate genetic methodology for a more precise phylogeny of 

male gene flow in the Hui. This technique has proven to be especially useful in 

elucidating the origins and migration patterns of Amerindians (Karafet eta!. 

1999}, and the migration of early humans out of Africa (Hammer eta/. 1998). It 

is therefore recommended that Y-chromosome biallelic markers should be 

surveyed to genetically define forbears of the male Hui, an ancestry that, 

according to historical sources, can be traced back to a combination of Central 

Asian, Turkic, Iranian and Arab founder populations. 

While this study is based on the present anthropology and population 

genetics oftwo Chinese populations, the genetic heritage of both populations may 

well reflect populations that have long since ceased to exist in a formal manner, 

and are only known from historical record. An example is the possible migration 

of Caucasians into North West China approximately 4000 years ago, and their 

continued existence into the beginning of the modern era. 

Evidence of this migration is present today in the form of mummified 

remains in the museums of the city ofDriimchi in Xingjiang province, P.R. China. 

The local Muslim Uygur community ofXingjiang autonomous region consider 

these mummies to be evidence of their ancient ancestors. This belief may be 

valid, as many non-Chinese people now living in this province have what often 

, are considered Caucasian physical features, such as blue eyes and red hair, 

possibly rer.ulting from the genetic heritage transmitted by their forebears 
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(Wayland Barber 1999). Thus great care must be taken in relating one Chinese 

population to another, as there may have been intermixture with now formally 

extinct populations that contributes to current population genetic structure. 

In conclusion, to take account of the complexities of population 

stratification, sex-biased ancestry and the possible inheritance of alleles from 

extinct populations, future studies into the genetic variation of the Han and Hui 

should involve the simultaneous analysis of several different genetic systems. For 

example, differences in the structure of male and female genetic diversity within 

and between populations could best be investigated by comparisons of mtDNA 

and Y -chromosome haplotypes, while autosomal genotype analysis is better suited 

for more general analyses of intra-population structure. 

An additional layer of complexity is added to the pattern of population 

genetic structure by preferential consanguineous marriage. From the results of the 

present study into the genetic structure of the Hui of Liaoning province, 

consanguinity has been shown to exert no direct influence on molecular diversity 

at microsatellite loci. Rather, consanguinity is more likely to be a factor in the 

generation of population stratification. Further studies involving the investigation 

of population sub-structure in the Hui would be required to validate this 

hypothesis. 

The overall effect of consanguinity is, however, important in terms of 

public health. Many studies have correlated consanguinity with increased risk of 

stillbirths, infant deaths and autosomal recessive diseases (Bittles and Neel 1994, 

Dorsten eta/. 1999, Stoltenberg eta/. 1999). The compensatory effect of early 

prenatal selection hypothesised in this study may reduce these risks in populations 

where consanguineous marriage has been practised for many generations. The 
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possible existence of selection in the inheritance of early development genes in 

humans, as already hypothesised in animal studies, demonstrates that selection 

may be an important factor in the health of inbred populations. Therefore, further 

investigation into the patterns of expression of early development genes is 

required. 
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Addendum 

In addition to the Han and Hui sample populations, the Centre of Human 

Genetics, Edith Cowan University, has obtained samples from three other Muslim 

ethnic groups (Bonan, Sala and Dongxing) and three non-Muslim ethnic groups 

(Tibetan, Yaozu and Baizu) from P.R. China. Therefore the current investigation 

can be considered as part of a wider investigation undertaken by Dr Wei Wang 

and Prof. Alan Bittles ofthe Centre for Human Genetics, Edith Cowan University, 

into the genetic structure often unrelated and geographically dispersed 

populations resident in the Peoples Republic of China (PR China). In this larger 

study, the genomic information obtained will be compared with blood group and 

enzyme polymorphism data, and anthropological and historical sources, to 

determine whether parallels between genetic diversity and historical detail can be 

sustained. 
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A.1 Conference abstract presented nt HGM 1999, HUGO, March 1999, 
Brisbane QLD. 

A comparison of autosomal and Y·chromosome allele profiles in co-resident 
Han and Hui communities in northeast China 
W. Wang 1

, M. Black', H. L. Jia 2 , Cong Qian3,and A.H. Bittles 1 

1Edith Cowan University, Perth, Australia, 2P.L.A. No. 201 Hospital, Liaoyang, 
PR China and 3China Medical University, Shenyang, P.R. China 

Chinese historical records indicate that the Hui, a Muslim minority 
population which currently numbers over 8 million, originated from the marriage 
of non-Chinese males with Han females. A sizeable proportion of the Hui male 
forebears are believed to have been Muslim traders from the Middle East, Iran and 
Central Asia who were involved in the Silk Road, which operated between Xi'an 
in China and Constantinople/Istanbul on the Bosphorus from approximately 120 
BC to 1600 AD. 

To investigate the degree of genetic admixture between co-resident Hui 
and Han communities, finger-prick blood samples were collected from randomly 
selected individuals, 100 Han males and 37 Hui males and 36 females, in 
Liaoning province, northeast China .. DNA was obtained by chloroform-phenol 
extraction and the samples analysed on an ABI 373 DNA Sequencer. Ten 
dinucleotide markers on chromosomes 13 and 15, and 7 tri- and tetranucleotide 
markers on theY-chromosome, were run on samples from both communities. 
The Hui demonstrates a quite different genetic profile on the 10 autosomal 
markers from that of the co-resident Han. Nine out of 10 autosomal makers show 
significant deviation from the Hardy-Weinberg equilibrium when testing the Hui 
samples for heterozygote deficit, which is well correspondent to the wide practice 
of preferential marriages in the same ethnic group and even within same family 
names in the Hui. The investigation of the genetic profiles of theY-chromosome 
markers among Hui and Han, which might provide information on the male­
mediated gene flow in the Hui community, is under progress. The initial results 
o1Jtained with theY -chromosome markers also indicate significant disparity 
between the Hui and Han communities, with less diversity in the Hui in terms of 
allele numbers and allele ranges. 

A.2 DNA Polymorphism Vol 8 2000, Tokyo, Japan. (in press). 

Autosomal andY-chromosome allele profiles in co-resident Han and Hui 
communities in northeast China. 
Wei Wang1

, Michael Black1
, Cong Qian2

, Huling Jia3 and Alan Bittles1 

1Centre For Human Genetics, Edith Cowan University, Perth, Australia, 2China 
Medical University, Shenyang, P.R. China and 3P.L.A. No. 201 Hospital, 
Liaoyang, P.R. China 
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A.3 Useful web pages 

Arlequin 
Home page: http://anthropologie.unige.ch/arlequin/ 

Centre d'Etudes du polymorphisme Humain (CEPH) 
Home page: http://www.cephb.fr 

Eurasia 98 
Home page: http://www.imm.ox.ac.uk/-eurasia/htdocs/index.html 

Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden 
University 
Home page: http://ruly70.medfac.leidenuniv.nl/-fldo/ 

Genepop 
Home page: http://www.cefe.cnrs-mop.fr 

Genome Database 
Home Page: http://www.gdb.org 

Human Genome Diversity Databas.e 
Home page: http://human.stanford.edu/ 

Microsat 
Home page: http://human.stanford.edu/microsat/microsat.html 

Phylip -Phylogeny program 
Home page: http://evolution.genetics.washington.edu/phylip.html 
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Autosomal allele distributions 



B.1 Autosomal Frequency Distributions 
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B.2 Pedigree autosomal allele distributions 
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C./. Random sample population haplotype.\' 

(a) Hem hap/otypes 

1-!nplntypc DYS \9 UYSJR8 DYSJR!J I DYSJR9 II DYS3!J(J 
I 14 If) 12 2!1 25 

2 14 13 I J 29 24 
3 16 12 12 31 21 
4 15 14 12 29 22 
S IS 10 12 29 22 

6 IS 12 12 31 24 
7 IS 12 12 2!1 24 
8 IS 12 12 27 24 
9 IS 12 12 28 26 
10 15 13 12 27 26 
II IS 12 12 29 26 
12 ? 12 12 29 ? 

13 14 II 13 28 22 
14 14 10 13 31 25 
IS . IS 10 13 29 ? 
16 15 12 12 29 24 
17 . 1S 12 12 28 25 
18 15 10 12 30 25 
19 14 ? 13 29 25 
20 14 12 14 31 24 
21 ? ? 12 28 26 
22 15 13 14 30 25 
23 17 12 12 28 25 
24 17 12 12 28 24 
25 15 12 12 28 24 
26 14 12 14 31 24 
27 1S 10 13 30 25 
28 15 12 13 30 24 
29 15 •' 13 13 30 25 
30 15 12 12 28 25 
31 16 12 12 27 26 
32 16" 12 13 27 24 
33 14 12 12 28 24 
34 14 13 12 28 24 
3S IS 10 ? ? 25 
36 15 12 ... 13 29 26 
37 13 IS 14 30 24 
38.. 13 12 13 30 25 
39 16 17 14 30c" 2S 
40 14 13 12 28 25 
41 14 14 13 28 26 

.. 42 14 10 12 28 24 
43 14 12 13 m ? 
44 1S 10 14 30 24 
4S IS 12 14 ·30 2S 
46 14 14 12 28 24 
47 .· .. 14 13 12 28 24 
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(b) Hui haplolypes 

l-luplolyp~~ DYSI9 DYS388 DYS3891 DYS389 II DYS390 DYS3!J2 DYS393 

Hui I 16 12 12 2K 24 14 12 
Hui2 IS " 12 2K 24 ? 12 
Hui 3 16 12 12 '/ '/ '/ '/ 

!lui 4 15 12 13 31 25.-_ '! 13 
Hui5 16 12 13 31 24 14 13 
Hui6 14 12 ? '/ 24 14 '/ 
Hui7 14 12 13 31 23 14 13 
Hui8 IS 16 13 29 23 14 12 
Hui 9 IS 12 13 31 24 12 13 

Hui 10 16 12 13 29 23 12 13 
Hui II 14 17 13 30 23 12 12 
Hui 12 14 12 13 31 23 14 13 
Hui 13 IS 14 13 29 24 12 IS 
Hui 14 14 13 14 31 23 12 12 
Hui 15 IS 14 13 29 24 12 IS 
Hui 16 14 IS 13 30 26 14 13 
Hui 17 16 12 14 30 2S 14 13 
Hui 18 17 14 12 29 24 14 12 
Hui 19 IS 14 14 30 23 12 14 
Hui20 ;s 12 14 30 24 12 14 
Hui22 IS 12 12 28 22 IS 13 
Hui23 14 IS 12 29 21 12 IS 
Hui24 ? 13 13 29 23 12 12 
Hui25 16 12 14 31 2S 14 ? 
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C. 2. Allele frequency distributions of random sample populations 
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I 

C. 3 Pedigree haplotype.\' 
(a) Wang haplotype,\' 

Swnplc Nn DYS\9 DYS3KK DYS3H91 DYS3WJIJ DYS390 DYS392 DYS393 

Wang I 17 12 12 27 23 14 II 

Wung 3 17 II 12 3(1 24 14 II 

Wtmg6 17 II 12 30 24 14 II 

Wung 7 12 14 14 30 25 14 12 

Wung8 12 14 14 3(1 25 14 12 

Wang9 17 12 12 27 23 14 II 

Wang!\ 15 12 13 31 24 II II 

Wang 12 15 12 13 31 24 II II 

Wang 14 17 12 12 27 23 14 II 

Wang \6 17 12 12 27 23 14 II 

Wang \8 17 12 12 27 23 14 II 

Wang20 IS 12 12 27 22 15 12 

Wang22 15 12 12 27 22 15 12 

Wang 26 15 12 12 27 22 15 II 

Wang 29 14 12 12 27 23 13 II 

Wang 30 14 12 12 27 23 13 II 

(b) Wu haplotypes 

Sample No DYSI9 DYS388 OYS389l DYS389II DYS390 DYS392 DYS393 
Wul 14 15 13 29 24 10 II 

Wu6 15 12 13 30 25 10 12 
Wu9 15 12 13 30 25 10 12 

Wuto 14 15 13 29 24 10 12 
Wu 11 14 15 13 29 24 10 II 

Wu 14 14 15 13 29 24 10 II 
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C. 4 Allele frequency distributions of the pedigrees 

DYS19 
1 () ·········· . . ....................................... . ................................. ····-

0.6 

F 0.5 
requency 

04+--·--------4 

0.3+------------j 

o.2+------

0.1 

0.0 
12 

1.0~--------

() Q 

14 

Repeat No. 

15 

o.s+---------------------1owu 

Frequency 

() 7+---------

()~+---------

() 4 

o, 
0? +--------­

() 1 

0.0 
11 

•wang 

12 13 
Repeat No. 

DYS3891 

17 

1nr·································································································································· y--,····················································································································, 

Frequency 

0_9+---------------1 

O.R+---------------1 

() 7 

0.6 

0.5 

() 4 

0.1 

() ?. 

0.1 

0.0 
l'l 14 

DWu 
1----4 •Wang 

Repeat No. 

148 



DYS38911 
1. ····-·········-··············-·····-------············- ···-··--············· 

o_gt-----------------------------1 

O.Rt----------------------1 OWu 

0_7t----------------------1 • Wang 

0.6 
Frequency 

Frequency 

n 'i 

0.4 

0.1 

0.2 

0.1 

0.0 

1.0 

0.9 

OR 

0.7 

06 

n 'i 

0.4 

01 

O? 

n 1 

0.0 

27 

?? 

29 30 11 

Repeat No. 

DYS190 

•wang 

23 24 ?'i 

Repeat No. 

149 

ii 

I 



DYS392 
1.0 

0. 

owu 

0. 
•wang 

0.6 
Frequency 

0.5 

0.4 

0.'.l 

0.2 

0.1 

0. 
10 11 n 14 15 

Repeat No. 

DYS393 
1.0 

0. 

0.8 owu 
0.7 •wang 

Frequency 0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 
11 12 

Repeat No. 

150 





Appendix D 

Wang and Wu 
pedigrees 



D 
0 

Key: 

Male individual 

Female individual 

= Consanguineous marriage 

'0 1st. Deceased individual 

152 



,~ ..... - .......... r.._ •. ,_,, _________ , ... , ..... , .... _________________ .. , ........ 1.211:-.11111, •. lll!ll,ll&•••:.•a1111•••1•. ··"······ 

Markers: 
Dl3Sl26 
Dl3Sl33 
Dl3Sl92 
Dl3S270 

4 

106 
134 
111 
81 

5 

106 
175 
101 
81 

D.1 Wu pedigree - chromosome 13 genotypes 

10611110 134 177 
97 109 
81 81 

3 6 

1061 106 
110 I 106 

1; 175 134 175 
101 109 101 

81 81 81 81 

8 

1121 
106 

134 175 
101 101 
81 81 

7 

106 
175 
101 
81 

2 

1
106 
175 
107 
89 

10 

11211112 110 I 106 
134 134 134 175 
101 113 109 101 
81 91 81 81 

9 

1121 
106 13 

134 175 
113 101 106 1106 81 81 175 . 173 

101 115 
81 . 81 

153 

11 12 

1061 106 10611110 177 175 171 173 
109 101 97 115 
81 81 81 81 

14 

1061 106 
177 175 
97 101 
81 81 



4 

Markers: 
Dl5Sll 
Dl5S97 
Dl5S98 
Dl5SIOI 
Dl5SI08 
GABRB3 

254 
182 
157 
102 
155 
183 

5 

244 
176 
153 
108 
143 
183 

D.2 Wu pedigree - chromosome 15 genotypes 

2 

24411250 176 176 
157 153 
102 108 
143 157 
179 183 

24411244 170 176 
145 153 
106 110 
143 157 
179 183 

3 6 7 10 

™Ir ·~11~ ™Ir wllw 176 176 176 176 182 182 176 176 

153 145 157 145 147 153 157 145 

108 106 108 110 100 112 108 110 

?157/143? ?157/143? 143 157 143 143 

?179/183? 179 179 179 183 ?179/183? 

8 9 

™Ir ™Ir 
13 

182 176 182 176 
147 157 147 157 

™Ir 100 108 112 110 176 176 

157 157 157 157 145 157 

183 179 183 179 108 106 
157 143 
183 . 199 

154 

11 12 14 ·~11~ 244 260 ~II~ 176 176 172 ~ 176 176 176 
153 145 153 ~ 157 157 153 
108 106 106 j 106 102 110 

?143/157? 143 ~ !:! 143 143 
183 183 179 183 183 



4 

Loci: 
DYS19 
DYS388 
DYS3891 
DYS38911 
DYS390 
DYS392 
DYS393 

s 

3 

D. 3 Wu pedigree - Y-chromosome genotypes 

6 

190 
137 
253 
269 
215 
245 
us 

8 

7 

194 
128 
253 
373 
219 
245 
119 

9 

194 
128 
253 
373 
219 
245 
119 

10 II 

190 190 
137 137 
253 253 
269 269 
215 215 
245 245 
115 115 

13 

155 

12 14 

190 
137 
253 
269 
215 
245 
115 



Markers: 
D13Sl26 
D13Sl33 
D13Sl92 
D13S270 

'""I"' 131 111 
tn 115 
11 11 

-r -r 175 111 115 111 

"' ... 115 12!1 
11 ., ,, It 

*l-'" 171-115 
107;12' 
11 ,It 

. 
=11= 113 1ot 
11 .. 

1M;'rM II_ ... , 1S4: 111 1S4 115 
123~ 1B .., '" 11 ~ 11 11 11 

,, ··r '' 131 1S4 ,, 
"' '" '' ., 11 

0 

'' 
,, 

'' '' ,, •• ,, '' 

" 
'' --'' ,, 
'' 

1S4 1S4 ...... 
11• 

,, 
'' '' '' 

to 

'' '"II''" ,, 1S4 131 

' ' 123 l:'1a1 ,, 

" ,, -r '' 171 1S4 

' ' 117 12' 

' ' ,, 11 

D.4 Wang pedigree - chromosome 13 genotypes 

,, 
'' ,, 
'' 

., 
.. T. '' '34,- 1S4 ' ' tl7i 12!1 

,, 
11 .. ,, 

.. " ... 1 ... ,, ,, ... r ... 1 ... 131 171 ' ' '' 1S4 115 1S4 1S4 
ff 117 ' ' 

,, .., "' ..... 
11 .. ,, ,, 11 11 • 11 

" 14 .. -r ... "' ..... 
175 1S4 134 1S4 134111 
117 tol 111107 11117 

?11•1 1111 1111 

~ 
Z1 .. 

''"h"" 114C:1S4 
15 ¥107 
11 ;,, 

... 1·· 134 1S4 ... "' 11 11 

ti -r 115 1S4 

.., '" 11 11 

... 1 ... "' ... . ... 
11 11 

E =0 0156 

,, 
'' ,, ,, 

b .. 
™* 134 114 ,..,,, ,..., 

b .. 
™* ?1S4117t? ...... 
1111 

,, ,, 
'' ,, 

'' '' '' ,, 

'' ,, ,, ,, 

,, ,, ,, ,, 

,, , , 
'' '. 

.. 
, ..... 
134 1711 

?1(17112'? ..... , 

a 
,, ,, ,, ,, 

156 

,, ,, 
'' ,, 

'' ,, 
'' ,, 

'' '' ,, 
'' 

'' '' ,, 
'' 

'' ,, ,, 
'' 

,, ,, 
'' '' 

'' '' '' '' 

'' '' .. 
'' 

'' '' '' '' '' '' '' '' '' ,, 
'' '' 

'' '' ,, '' ,, '' 
,, ,, ,, '' '' '' '' '' 
,, ,, 

---.. Z1 

™I'" 
, .. ,11, ' ' '' 1S4 175 1S4 1S4 ,, ,, 

"' . .. "' '' 
,, 

11 It 11 • ' ' '' 

.. 
-r· '' 1S4 1S4 ,, 
"'"' '' It 11 ,, 

,, 
'' '' '' 

'' '' '' 
,, ,, ,, ,, ,, '' '' ,, ,, 

.. 
-·· 1S417S ...... .... 

'' ,, ,, 
'' 

'' 1N11Z ,, '' '' 
'' 171171 ,, '' '' '' 11112!1 '' '' '' ,, 11 • 

,, '' '' 

'' '' '' 
,, ,, '' '' '' '' '' 

,, '' ,, '' '' 
,, 

.. 
111112 
1)4171 ...... 
• 11 



Markers: 
Dl5Sl l 
D15S97 
D15S98 
D15Sl0l 
D15Sl08 
GARRR'.\ 

... , ... 112 114 
141 157 
112 114 
146 117 
115 111 

... r 112 112 
153 153 
ffll 111 
146 117 
111 1U 

"'Ir 114 112 
157 151 
112 ffll 
146 143 
111 ta 

... , ... 112 112 
153 157 
111 ttJ 
141 146 
1U tU 

-~=-~~ i~u 
114 1N 
10 157 
111 l,a 

~======o ~1,~ ~,:: "' '" "'-"' 1N 114 110 -tN 
143 143 117 117 
111 183 111 tts 

,, -r ,, 114 112 ,, 146 151 ,, 112 1M ,, 157 10 ,, 111 ta 

, , ,, , , ,, ,, ,, 

" 

,, ,, ,, , , , , , , 

,, ...... ,, ,, , , , , , , 
112114 
1111149 ...... 
117154 
183 111 

,, ,, ,, ,, ,, ,, 

,, ,, ,, ,, ,, , , 

, , ,, , , , , , , ,, 

D.5 Wang pedigree - chromosome 15 genotypes 

,, 

-11-171 171 
146 151 
111 111 
10 157 
111 111 

----a 
10 11 

"'II ... 171 112 
151 151 ,,. ... 
157 117 
111 183 

-r 171 112 

:: :: 
151 157 
185 113 

..., ... 1'N ,. 
146 111 
10t 11J 
155 157 
111 117 

... r 1N 112 =~= 1551157 
1r "··-

14 11 ...... ...... 
1N 112 171 112 
157151 157151 
10I 1N 11J 111 
155157 155157 

·111a 

F =0.0625 

... ,, ... 171 112 
151 1111 
1N tN 
10 143 
111,, 113 " 

"'fl"' 
171 t'N 
151 ;tit 
114 HOI 
146 ~143 
111 'ff'111 

,, , , , , b 
24 , , ...... , , ,, 114 112 

?1171151? 
114 111 
157141 
111 111 

,, , , , , ,, ,, ,, 

,, ,, , , , , , , , , 

" 

, , ,, ,, ,, ,, ,, 

,, ,, ,, ,, ,, ,, 

,, ,, ,, , , ,, ,, 

, , , , ,, ,, ,, ,, 

::1= ~ ~ ! ~ ~ ! ta 157 11 11 11 
111 112 ,, ?? 11 
ta 1a 11 11 11 
111 115 11 11 11 

11 

::rr 151,, 117 
104;, 112 
10} 10 
1111116 

• ... , ... 171 1U 
1• 151 
114 111 
146 157 
111 1U 

b 
2S ... ... 

tN 171 
151151 
tlM114 
141146 

,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, 

" 
244244 
112 tN 
151117 
114111 
1411U 
111115 

,, ,, ,, ,, ,, ,, 

,, ,, ,, ,, ,, ,, 

,, ,, , , ,, ,, ,, 

,, ,, ,, ,, ,, ,, 

?11111U? 
F =0.0039 

, , ,, ,, ,, ,, ,, 

157 

, , ,, ,, , , , , ,, ,, ,, ,, , , , , ,, ,, ,, ,, ,, ,, ,, 

,, , , ,, ,, , , ,, , , ,, ,, , , ,, ,, , , ,, ,, , , ,, , , 

0 

=i=J 

Z1 ...r ,, 
171 179 ,, 

143 143 1s1 1n , , 
ttl 11' Ml 114 ,, 
146 117 146 159 ,, 
1a 1u 171 197 ,, 

.. 
... ,." ,, 
112 171 ,, 
143 17S ,, 
111 114 ,, 
146 ,. ,, 
111 171 ,, 

,, ,, ,, ,, ,, ,, ,, ,, ,, , , ,, ,, 

,, , , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , , , , 

,, ,, , , ,, ,, ,, 

" ...... 
1711N 

"' "' ...... 
141155 
117 197 

,, ,, ,, ,, ,, , , 

, , 
"'"' 

,, ,, ,, , , 171114 ,, ,, ,, ,, 1"5157 ,, ,, ,, ,, 108110 ,, ,, ,, ,, 155155 ,, ,, ,, ,, 115 117 ,, ,, ,, 

, , ,, ,, , , ,, , , , , , , ,, , , , , ,, ,, , , ,, , , , , ,, , , , , , , ,, ,, ,, 

.. ...... 
171 114 
151151 ...... 
146 1st 
117 179 



-... .. 
"' ... .. 
"' 

"' "' :: ... .. ... 

Loci: 
DYS19 
DYS388 
DYS389I 
DYS38911 
DYS390 
DYS392 

... ... .. 
"' ... .., .. 

-... .. 
"' ... -"' 
-... ::: ... .. 
"' 

'' '' ~ : 
'' '' '' 

'' '' 
'' 1'? ?? 1'? 
?? ,, 
,, ?? 
?? ?? 
?? ?? 

ilt £) 04 _ 

D. 6 Wang pedigree - Y-chromosome haplotypes 

l ::. ... ... 
"' ... ... ... 

" " ... ... 
:: ... .. ... 

., ... ... .. ... .., 
"' 

-... .. 
"' ... .., 
"' 

-... .. 
"' ... .., 
"' f;' =fl fllo?, 

b .. 

'' '' ,, ,, 
'' '' '' 

... ... .. 
"' --.. 

-'" .. 
"' ... .. 
"' 

... 
"' .. 
"' --.. . 

'' '' '' '. ~ ~ 
'' 

-"' .. 
"' ... .. 
"' 

'' '' ,, .. .. 
'' '' 

~ ~ 
'' .. ,, ,, 
'' 

.. 
ii 
'' '' '' '' 

,., ?? 
?? ?? '' ,, TT T? '' ,, 
?? '' ?? T? 

F=nnmo 

.. 
i ~ 
'' ,, .. 
'' 

158 

,, 
'' '' ,, .. .. 
'' 

.. 
~ ~ 
'' '' '' '' 

'' '' '' ,, 
~ ~ 
'' 

'' '' '' '' '' '' '' 

: J ~ . .. .. 
"' --... 

.. 

,, ,, ,, 
'' '' .. 
'' 

'' '' '' ,, ,, ,, 
'' '' '' '' '' '' ,, ,, 

1'? ?? 

'' ?? ?? ?? 

'' ?? 1'? ?? ,, '' 
'' ?? 

usu ta.llll!I.ILI 

'' '' '' ,, .. 
'' '' 

.. ... 
= ... ... 
"' 

'' '' '' .. ,, 
~ : 

~ ~ 
'' ,, ,, ,, 
'' 

.. ... ... 
"' .. . ... ... 

nne•a: r .. 111 ua1uo tit 

'' '' '' '' ,, ,, 
'' 

: ~ 
'' '' ,, 
'' '' 

111 



List of references 



Barbujani G., A. Magagni, E. Minch and L.L. Cavalli Sforza (1997). An apportionment 
of human DNA diversity. Proceedings of the National Academy of Sciences of the 
United States of America 94(9): 4516-4519. 

Bieme, N., S. Launey, Y. Naciri-Graven and F. Bonhomme (1998). Early effect of 
inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics 
148:1893-1906. 

Bittles, A.H. and J.V. Neel (1994). The costs of human inbreeding and their implications 
for variation at the DNA level. Nature Genetics 8: 117-121. 

Bittles, A.H. (1998). Empirical estimates of the global prevalence of consanguineous 
marriage in contemporary societies. Morrison Institute for Population and Resource 
Studies, Working paper no. 74. Stanford University 

Bowcock, A. M., A. Ruiz Linares, J. Tomfohrde, E. Minch, J.R. Kidd, and L.L., and 
Cavalli-Sforza (1994). High resolution of human evolutionary trees with 
polymorphic microsatellites. Nature 368: 455-457. 

Cann, R.L., M. Stoneking and AC. Wilson (1987). Mitochondrial DNA and human 
evolution. Nature 325: 31-36. 

Casanova M., P. Leroy, C. Boucekkine, J. Weissenbach, C. Bishop, M. Felous et al. 
(1985). A human Y-linked DNA polymorphgism and its potential for estoimating 
genetic and evolutionary distance. Science 230: 1403-1406. 

Cavalli- Sforza L.L. and W.F. Bodmer (1971). The genetics of human populations. W.H 
Freeman Publishers, San Francisco. 

Cavalli-Sforza, L.L., P. Menozzi and A. Piazza (1994). The history and geography of 
human genes. Princeton University Press, Princeton. 

Chakravarti, A. (1998). Population genetics- making sense out of sequence. Nature 
Genetics (supplement) 21: 56-60. 

Charlesworth, B., P. Sniegowski and W. Stephan (1994). The evolutionary dynamics of 
repetitive DNA in eukaryotes. Nature. 371: 215-220. 

Chinese Family Planning Commission (1997). Chinese Family Planning Yearbook 1997. 
Family Planning Commission, Beijing. 

Chu, J. Y., Huang W., Kuang S.Q. et al. (1998). Genetic relationship of populations in 
China. Proceedings of the National Academy of Sciences, US.A. 95: 11763-11768. 

Cockerham, C. C. (1969). Variance of gene frequencies. Evolution. 23: 72-84. 

160 



Coltman D.W., W.D. Bowen and J.M. Wright (1998). Birth weight and neonatal 
survival of harbour seal pups are positively correlated with genetic variation measured by 
microsatellites. Proceedings of the Royal Society of London B 265: 803-809. 

Comas, D., F. Calafell, E. Mateu, A. Perez-Lezuan, E. Bosch, R. Martinez-Arais et al. 
(1998). Trading genes along the Silk Road: mtDNA sequences and the origin of Central 
Asian populations. American Journal of Human Genetics 63: 1824-1838. 

Coulson T.N., J.M. Pemberton, S.D. Albon, M. Beaumont, T.C. Marshall, J. Slate et al. 
(1998). Microsatellites reveal heterosis in red deer. Proceedings of the Royal Society of 
London B 265: 489-495. 

Cooper, G., W. Amos, D. Hoffman, and D.C. Rubenstein (1996). Network analysis of 
human Y microsatellite haplotypes. Human Molecular Genetics 5: 1759 - 1766. 

Dessaint, W. L. (1995-1996). The Lisu, highlanders of the Salaween. Bulletin of the 
International Committee on Urgent Anthropological and Ethnological Research 37-38: 
13-27. 

Dikotter, F. (1992). The discourse of race in modern China. Stanford University Press, 
Stanford University. 

Di Rienzo, A., J.C. Garza, A.M. Valdes, M. Slatkin, and N.B. Friemer (1994). 
Mutational processes of simple-sequence repeat loci in human populations. Proceedings 
of the National Academy of Sciences USA 91: 3166-3170. 

Dorsten, L.E., L. Hotchkiss and T.M. King (1999). The effect of inbreeding on early 
childhood mortality: Twelve generations of an Amish settlement. Demography, 36: 263-
271. 

Du, R. and Z.L. Zhao (1981 ). Percentage and types of consanguineous marriages of 
different nationalities and regions in China. National Medical Journal of China 61, 723-
728. 

Du, R. and V.F. Yip (1993). Ethnic Groups In China. Science Press, 
Beijing and New York. 

Excoffier, L., P.E. Smouse, and J. Quattro (1992). Analysis of molecular variance 
inferred from metric distances among DNA haplotypes: Application to human 
mitochondrial DNA restriction data. Genetics 131: 479-491. 

Fairbank, J and L. Reicher (1990). China: transformation and transition. Allen & Unwin 
Australia, Sydney. 

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. 
Evolution 35: 785-791. 

161 



Felsenstein, J. (1989). PHYLIP - phylogeny inference package (version 3.2). Cladistics 
5: 164-166. 

Gladney, D. C. (1996). Muslim Chinese: ethnic nationalism in the Peoples Republic. 
Harvard University Press, Cambridge, Massachusetts. 

Gladney, D. C. (1998). Ethnic identity in China: The maldng of a Muslim minority 
nationality. Harcourt Brace & Company, FortWorth, Texas. 

Goldstein, D. B., A. Ruiz Linares, L.L. Cavalli-Sforza and M.W. Feldman (1995). An 
evaluation of genetic distances for use using microsatellite loci. Genetics 139: 463-471. 

Guo, S. W. and E.A. Thompson (1992). Performing the exact test of Hardy-Weinberg 
proportion for multiple alleles. Biometrics 48: 361-372. 

Hammer, M.F., T. Karafet, A. Rasanayagam, E.T. Wood, T.K. Altheide, T. Jenkins et al 
(1998). Out of Africa and back again: Nested cladistic analysis of human Y-chromosome 
variation. Molecular Biology and Evolution 15(4): 427-441. 

Hartl, D. L. and A.G. Clark (1997). Principles of population genetics. Sinauer 
Associates, Massachusetts. 

Hirszfeld, L. and H. Hirszfeld (1918-1919). Essai d'application des methodes 
serologigues au probleme des races. Anthropologie 29: 505-537. 

Hopkirk, P. (1980). Foreign Devils on The Silk Road. Oxford University Press, Oxford. 

Jeffereys A., N. Royle, V. Wilson and Z. Wong (1985). Hypervariable "minisatellite" 
regions in human DNA. Nature 314: 67-73. 

Jobling, M.A. (1995). Fathers and sons: The Y-chromosome and human evolution. 
Trends In Genetics 11: 449-456. 

Jorde, L.B., (1997). Inbreeding in human populations. in Encylopedia of Human Biology 
2nd edition 5: 1-13. Academic Press, San Dieago 

Karafet, T.M., S.L. Zegura, 0. Posukh, L. Osipova, A. Bergen et al (1999). Ancestral 
Asian source(s) of new world Y-chromosome founder haplotypes. American Journal of 
Human Genetics 64(3): 817-835. 

Kayser, M., A. Caglia, D. Corach, N. Fretwell, C. Gehrig, G. Graziosi et al (1997). 
Evaluation ofY - chromosomal STRs: a multicenter study. International Journal of 
Legal Medicine 110: 125 - 133. 
Kirnura, M. (1968). Evolutionary rate at a molecular level. Nature 217: 624-626. 

162 



,\ 

! 

'· 
! 

Kittles, R, M. Perola, L. Peltonen, A.W. Bergen, RA. Aragon, M. Virkkunen et al, 
(1998). Dual origins of Finns revealed by Y-chromosome haplotype variation. American 
Journal of Human Genetics 62: 1171-1179. 

de Knijff, P., M. Kayser, A. Caglia, D. Corach, N. Fretwell, C. Gehrig et al (1997). 
Chromosome Y microsatellites: population genetic and evolutionary aspects. 
International Journal of Legal Medicine 110: 134-49. 

Leslie, D. D. (1986). Islam in traditional China: a short history to 1800. Canberra 
College of Advanced Education, Canberra. 

Lewontin, RC. (1972). The apportionment of human diversity. Evolutionary Biology 6: 
381-398. 

Lipman, J.N. (1997). Familiar strangers: a history of Muslims in northwest China. 
Hong Kong University Press, Hong Kong University. 

Lucotte, G. and N.Y. Ngo (1985). p49F, a highly polymorphic probe that detects TaqI 
RFLPs on the human Y chromosome. Nucleic Acids Research 13: 8285. 

Malaspina, P., F. Cruciani, B.M. Ciminelli, L. Terrenato, P. Santolamazza, A. Alonso et 
al. (1998). Network analysis ofY-chromosomal types in Europe, Northern Africa and 
western Asia reveal specific patterns of geographic distribution. American Journal of 
Human Genetics 63: 847-860. 

Markow T., P.W. Hedrick, K. Zuerlein, J. Danilovs, J. Martin, T. Vyvial 
et al. (1993). HLA polymorphism in the Havasupai: evidence for balancing selection. 

American Journal of Human Genetics 53: 943-952. 

Marks, J. (1995). Human biodiversity: genes, race and history. Aldine De Gruyter, New 
York. 

Mickalakis, Y. and Excoffier, L. (1996). A generic estimation of population subdivision 
using distances between alleles with special reference for microsatellite loci. Genetics 
142: 1061-1064. 

Minch, E., (1997) MICROSAT, Stanford University. At: http://human.stanford.edu 

Morell, R, Y. Liang, J. Asher, J. Weber, J.T. Hinnant, S. Winata et al. (1995). Analysis 
of short tandem repeat (STR) allele frequency distributions in a Balinese population. 
Human Molecular Genetics 4: 85-91. 

Neel, J.V. and RK. Ward (1972) Genetic structure of a tribal population, the Yanomama 
Indians. VI. Analysis by F-statistics, including a comparison with the Mkirate and 
Xavante. Genetics 72: 639-666. 

163 



Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the 
National Academy of Science USA 10: 3321-3323. 

Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press, New 
York. 

Perez-Lezuan, A., F. Calafel, E. Mateu, D. Comas, R. Ruiz-Pacheco and J. Bertranpetit 
(1997a). Microsatellite variation and the differentiation of modem humans. Human 
Genetics. 99:1-7. 

Perez-Lezuan, A., F. Calafel, M. Seielstad, E. Mateu, D. Comas, E. Bosch and J. 
Bertranpetit, (1997b). Population genetics ofY-chromosome short tandem repeats in 
humans. Journal of Molecular Evolution 45: 265-270. 

Perez-Lezuan, A., F. Calafel, D. Comas, E. Mateau, E. Bosch, R. Martinez-Arais et al 
(1999). Gender-specific migration patterns in central Asian populations revealed by the 
analysis of Y-chromosome STRs and mtDNA. American Journal of Human Genetics 65: 
208-219. 

Peterson, A.C., A. Di Rienzo, A. Lehesjoki, A. de la Chapelle, M. Slatkin and N.B. 
Freimer (1995). The distribution oflinkage disequilibrium over anonymous genome 
regions. Human Molecular Genetics 4: 887-894. 

Pritchard, J.K. and N.A. Rosenberg (1999). Use of unlinked genetic markers to detect 
population stratification in association studies. American Journal of Human Genetics 
65:220-228. 

Rahman, Y. A. (1997). Islam in China. at: http://www.erols.com/ameen/islchina 

Raymond, M. and F. Rousset (1995). An exact test for population differentiation. 
Evolution 49: 1280 - 1283. 

Roewer, L., M. Kayser, K Dieltjes., M. Nagy, E. Bakker, M. Krawczak & P.de 
Knijff (1996). Analysis of molecular variance (AMOVA) ofY-chromosome specific 
microsatellites in two closely related human populations. Human Molecular Genetics 5: 
1029-1033. 

Rousset, F. (1995). GENEPOP (Version 1.2): Population genetics software for exact 
tests and ecumenicalism. Journal of Heredity 83: 239. 

Rousset, F. (1996). Equilibrium values of measure of population subdivision for 
stepwise mutation processes. Genetics 142: 1357 - 1362. 

Rousset, F. and M. Raymond (1995). Testing heterozygote excess and deficiency. 
Genetics 140: 1413 - 1419. 

164 



Saitou, N. and. M. Nei (1987). The neighbour-joining method: a new method for 
reconstructing phylogenetic trees. Molecular Biological Evolution 4: 406-425. 

Senior, P.A. and B. Raj (1994). Ethnicity as a variable in epidemiological research. 
British Medical Journal 309: 327-330. 

Shami, S.A., J.C. Grant and A.H. Bittles (1994) Consanguineous marriage within 
social/occupational class boundaries in Pakistan. Journal of Biosocial Science 26: 91-
96. 

Shriver, M. D., L. Jin, R. Chak:raborty and E. Boerwinkle (1993). VNTR allele 
frequency distribution under the stepwise mutation model: A computer simulation 
approach. Genetics 134: 983-993. 

Slatkin, M. (1994). Linkage disequilibrium in growing and stable populations. Genetics 
137: 331-336. 

Slatkin, M. (1995). Measure of population subdivision based on microsatellite allele 
frequencies. Genetics 139: 457-462. 

Stoltenberg, C., P. Magnus, A. Skrondal and R. Terje Lie (1999). Consanguinity and 
recurrence risk of stillbirth and infant death. American Journal of Public Health 89: 
517-523. 

Tak:ezak:i, T. and M. Nei (1996). Genetic distances and reconstruction of phylogenetic 
trees from microsatellite DNA. Genetics 144: 389-399. 

Taylor, A.C., W.B. Sherwin and R.K. Wayne (1994). Genetic variability of 
microsatellite loci in a bottleneck species: the northern hairy-nosed wombat Lasiorhinus 
krefftii. Molecular Ecology 3: 277-290. 

Templeton, A.R. and B. Read (1983). The elimination of inbreeding depression in a 
captive herd ofSpeke's gazelle. In: Genetics and Conservation: A reference for 
managing wild animal and plant populations. Addison-Wesley. 

Templeton, A.R. and B. Read (1984). Factors eliminating inbreeding depression in a 
captive herd ofSpeke's gazelle (Gazella spekei). Zoo Biology 3: 177-199. 

Templeton, A.R. and B. Read (1998). Elimination of inbreeding depression from a 
captive population of Speke's gazelle: Validity of the original statistical analysis and 
confirmation by permutation testing. Zoo Biology. 17(2): 77-94. 

Wainscoat, J.S., A.V.S. Hill, A.J. Boyce, J. Flint, J. Hernandez, S.L. Thien et al. (1986). 
Evolutionary relationships of human populations from an analysis of nuclear DNA 
polymorphisms. Nature 319(6053): 491-493. 

165 



Wang, W., S.G. Sullivan, S. Ahmed, D. Chandler, L.A. Zhivotovsky and A.H. Bittles 
(2000). A genome based study of consanguinity in three co-resident endogamous 
Pakistan communities. (in press). 

Wayland Barber, E. (1999) The mummies of Uriimchi. Macmillan, London. 

Weber, J.L. and P.E. May (1989). Abundant class of human DNA polymorphisms which 
can be typed using the polymerase chain reaction. American Journal of Human Genetics. 
44: 388-396. 

Weber, J. L. and C. Wong (1993). Mutation of human short tandem repeats. Human 
Molecular Genetics. 2: 1123-1128. 

Weir, B.S. and C.C. Cockerham (1984). Estimating F-statistics for the analysis of 
population structure. Evolution 38(6): 1358-1370. 

Weir, B.S. (1996). Genetic data analysis Il Sinauer Associates Inc. Sunderland, 
Massachusetts. 

Weiss, K.M. (1998) Coming to terms with human variation. Annual Review of 
Anthropology 27: 273-300 

Wong, H. M. and A. A. Dajani. (1988). Islamic frontiers of China. Scorpion, London. 

Workman, P.L., H. Harpending, J.M. Lalouel, C. Lynch, J.D. Niswander and R. 
Singleton (1973). Population studies on southwestern Indian tribes VI: Papago 
population structure: a comparison of genetic and migration analyses. In: Genetic 
structure of populations. University of Hawaii Press, Honolulu. 

Wright, S. (1951). The genetical structure of populations. Annals of Eugenics 15: 323-
354. 

Wu, L. (1987). Investigation of consanguineous marriages among 30 Chinese ethnic 
groups. Heredity and Disease 4: 163-166. [In Chinese]. 

Yifu, S., ed. (1989). The Silk Road on land and sea China Publishing, Beijing. 

Zerjal, T., B. Dashnyam, A. Pandya, M. Kayser, L. Roewer, F.R. Santos et al. (1997). 
Genetic relationships of Asians and Northern Europeans, revealed by Y-chromosome 
analysis. American Journal of Human Genetics 60: 1174-1183. 

Zhan, J., W. Qin, Y. Zhou, K. Chen, W. Yan and W. Yu (1992). Effects of 
consanguineous marriages on hereditary diseases: a study of the Han ethnic group in 
different geographic districts of Zejiang province. National Medical Journal of China 
172: 674-676. [In Chinese]. 

166 


	Analysis of the population genetics of the Han and Hui of Liaoning province, Peoples Republic of China
	Recommended Citation

	Blank Page

