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Abstract 

Time series models have been applied in many areas including economics, stock 

recruitment and the environment. Most environmental time series involve highly 

correlated dependent variables, which makes it difficult to apply conventional 

regression analysis. Traditionally, regression analysis has been applied to the 

environmental dependent stock and recruitment relationships for crustacean species in 

Western Australian fisheries. Alternative models, such as transfer function models 

and state space models have the potential to provide unproved forecasts for these 

types of data sets. 

This dissertation will explore the application of regression models, transfer function 

models, and state space models to modelling the puerulus stage of the western rock 

lobster (Panulirus Cygnus) in the fisheries of Western Australia. The transfer 

function models are consulted to examining the influences of the environment on 

crustacean species and can be used where correlated variables are involved. These 

models aim at producing short-term forecasts that may help in the management of the 

fisheries. 

In comparison with regression models, TFM models gave better forecast values with 

state space models given the forecast values in the first two years. Overall, it was 

shown that environmental effects, westerly winds and the Leeuwin Current, have a 

significant effect on the puerulus settlement for Dongara and Alkimos. It was also 

shown that westerly winds and spawning stock have a significant effect on the 

puerulus settlement at the Abrolhos Islands. 
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CHAPTER I 

INTRODUCTION 

1.1 About this Chapter. 

This dissertation will compare the application of regression, transfer function, and 

state-space modelling for analysing environmentally dependent stock and recruitment 

related data. In particular, the puerulus stage of western rock lobster will be considered. 

Section 1.2 briefly discusses the biological background to this study while section 1.3 

looks at the statistical aspects. The data used in this report are described in section 1.4. 

Finally, the objectives and significance of the research are stated in sections 1.5 and 1.6. 

1.2 Biological Background. 

The spawning of western rock lobsters, when they hatch their eggs occurs mainly in 

waters of 40 to 100 m depth. The larvae are carried offshore by currents, spending 9-1 1 

months in the open ocean between 400 and 1500 km offshore. They are then returned to 

the continental shelf where they metamorphose to the first post larval stage, called 

puerulus1
• The puerulus then swim across the shelf to settle mainly on the inshore reefs 

and moult into juveniles. 

The modelling of environmentally dependent stock and recruitment relationships for 

crustacean species has been considered essential for the management of the fisheries. 

One of the crustacean species to be examined in this thesis is the puerulus stage of the 

western rock lobster (Panulirus cygnus), from three regions of the western rock lobster 

fishery of Western Australia. This puerulus stage is used to predict rock lobster catches 

three years ahead and thus is important in the management of the western rock lobster 

fishery (Caputi et al., 1995a). This fishery is one of the major rock lobster fisheries in the 

1 Puerulus is better referred to as pueruli. Throughout this dissertation, the term puerulus will be used. 



world. The rock lobster is one of the exceptional single species in Western Australia, 

worth about 200 to 300 million dollars a year (Morgan, 1980). 

Environmentally driven changes in recruitment have been examined in the western rock 

lobster fishery as well as for other crustacean fisheries. These changes may prove useful 

in understanding the variation in the annual rates of the puerulus settlement as well as 

making future predictions of puerulus abundance. 

Thus understanding the factors, which affect the variation in puerulus settlement, will 

assist in the management of the fishery. A variety of models were used at three sites, 

Dongara and Alkimos and the Abrolhos Islands in Western Australia as illustrated in 

Figure 1.1. 

Figure 1.1 : Location of the Abrolhos Islands, Dongara and Alkimos in Western 
Australia. 
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1.3 Statistical Model Background. 

The purpose of this dissertation is to examine environmental factors affecting the stock -

recruitment relationships (SRR) by developing appropriate time series models. Three 

different approaches will be compared. Thus, for the environmental - stock - recruitment 

relationships of the western rock lobster fishery in Western Australia. These approaches 

are regression analysis, transfer function modelling and state space modelling (See 

Appendix 1 for summary). 

Regression analysis is a traditional method of analysis that can be used to determine if 

dependency relationships exist in the data. It assumes each observation is independent 

and normally distributed. However, highly correlated variables may be involved in the 

analysis of these environmental time series. 

For this reason, Box and Jenkins (1976) introduced transfer function models (TFM). 

These models take into account the autocorrelation of the dependent variables. TFM 

modelling consists of three main stages. These are identification, estimation and 

diagnostics checking. TFM modelling can incorporate these correlated explanatory 

variables. Therefore, these types of models are flexible time series models that can be 

used for a variety of applications. 

The third approach will examine the application of state-space models (SSM) including 

structural models and regression models with Box-Jenkins' Autoregressive integrated 

Moving Average (ARIMA) disturbances. Well suited to stock assessment, the 'state of 

the system' contains necessary information in order to predict the future. These are 

particularly useful to obtain when missing data are involved and also when the data set 

involved is non-stationary (Freeman and Kirkwood, 1994). 

The aim of building models is to understand factors affecting variation in recruitment for 

the given factors, Leeuwin Current level, westerly winds and the spawning stock. This 

research will provide the most suitable model to explain the puerulus settlement rate that 

can provide valuable biological as well as statistical information. It will also aid in 
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the management of the western rock lobster fishery in Western Australia by maintaining 

sustainable stock levels. 

1.4 Data. 

1.4.1 Puerulus Settlement. 

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the 

Fisheries Department of Western Australia, from the coastal sites Dongara, Alkimos and 

the Abrolhos Islands collected the puerulus settlement data used in this analysis. The 

peak settlement of the puerulus occurs during the period September to November (refer to 

the data given for this area in Appendix m. The mean number of puerulus per collector 

during the period May to April was used as a measure of the index of abundance of the 

puerulus settlement (Caputi et al., 1995b). Unfortunately, for the Abrolhos region there 

were five years of missing data. A full description of the data is given in Table 1.1. 

Table 1.1 - Description of the Data 

Region Starting Year Last Year of Missing Values Number of 

of Puerulus Puerulus Observations 

Settlement Settlement 

Dongara 1968169 1992193 NIA 25 

Alkimos 1982183 1992193 NIA 11 

Abrolhos Islands 197ln2 1992/93 5 missing values 22 

from 

1979180 to 

1983184 

The mean Fremantle sea level for the calendar year (January - December) was used as an 

index of the Leeuwin Current strength (Pearce and Phillips, 1988). The impact of the 

westerly winds during the period of peak settlement (October to November) was taken 

into account by using rainfall as a surrogate variable. The spawning stock index for the 

whole fishery was based on catch rates for the coastal fishery and the total catch for the 

Abrolhos Islands (Caputi et al., 1995b). These factors were assessed to be significant 
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using regression analysis and will be examined here using a TFM approach. See 

Appendix 2 for data for the puerulus settlement used in this dissertation. 

1.4.2 Missing Values 

TFM models cannot accept missing values. These missing values were estimated mainly 

for this purpose. The catch - puerulus relationship which has been successfully used to 

predict catches was re-estimate with puerulus _v3,, and catch 4 years backwards C3,,_4 to 

predict puerulus missing values for the Abrolhos Islands for the period 1979/80 to 

1983/84. Catch estimates were used to predict the puerulus values four years previously 

at different sites in WA. This relationship produced puerulus estimates that were realistic 

from a biological perspective. This procedure had to be applied because TFMs cannot 

involve missing values. 

The earlier years should not be predicted too far in advance as changes in fishing 

predictions may have altered the catch - puerulus relationship. The missing values for 

catch-puerulus relationship for the Abrolhos Islands were estimated by 

ln_v3,, = -68.031 + 5.047ln(C3.,_4 ). 

where _v3,, is the puerulus settlement at the Abrolhos Islands, C3,,_ 4 is the catch four years 

backwards. Using this equation, the missing values were estimated by the fishing 

industry. 

1.4.3 Effect of Environmental Conditions on Puerulus Recruitment. 

The strength of the Leeuwin Current has a positive influence during the larval phase of 

the puerulus settlement at Dongara and Alkimos (Pearce and Phillips, 1988, Caputi et al., 

1995a). The impact of the westerly winds in southern locations and the Leeuwin Current 

was used to examine the variation of puerulus settlement at Dongara and Alkimos, while 

the impact of westerly winds in the northern regions and the spawning stock are both 

examined for the area of Abrolhos Islands. Fremantle sea level for the calendar year 

(January to December) was used as an index of the current strength from that year. The 
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regression analysis (Caputi at al., 1995a) and will be examined here using a TFM 

approach. 

For the two sites, Alkimos and Dongara stock-recruitment relationships were investigated 

and the spawning stock was found to be an insignificant factor. On the other hand, the 

decline in Abrolhos Islands settlement was explained by the reduction in spawning stock 

which plays a major part in the analysis (Caputi et al., 1993). 

1.5 Aim of Research. 

The research objectives are as follows: 

1) To apply and compare regression models, transfer function and state-space models for 

the environmental-dependent stock recruitment relationships of crustacean species in 

Western Australia. 

2) To find if the application of state-space models provide a better insight into the 

factors that affect the recruitment of crustacean species. 

3) To investigate whether the increased complexity of transfer function and general 

state-space models justify their use in practice. 

1.6 Significance of Research. 

State-space methods and TFMs have not been applied extensively to analyse stock

recruitment and environmental relationships for rock lobsters in Western Australia, in the 

fisheries literature or elsewhere. The dissertation will determine the feasibility of using 

such models for the better management of the fishing industry. 

1. 7 Computer Software. 

Throughout this dissertation Minitab will be used to illustrate the application of multiple 

regression models. The Statistical Computing Associates (SCA)2 package will be used 

for illustrating the application of transfer function models. To illustrate the application of 

2rhe SCA package can be used extensively for the analysis of the data using Regression, ARIMA and TFM modelling 
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state-space models to the given data computer packages such as S-plus for Windows and 

ST AMP will be used. 

1.8 Structure of the Dissertation. 

This dissertation will assume that the reader has a basic knowledge of Box-Jenkins' 

ARIMA models and linear stationary and non-stationary stochastic models. Chapter II, 

ill and IV will provide the theory and application of analysing the multiple regression 

models, transfer function models and state-space models. The environmental data sets for 

the western rock lobster data described in section 1.4 and a variety of other applied data 

sets will be used by way of example throughout this report. The results of using the three 

models for puerulus settlement data set are produced in chapter V and used to compare 

the application of state space models and transfer function models with multiple 

regression models. 
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CHAPTER II 

REGRESSION ANALYSIS 

2.1 About this Chapter. 

This chapter will investigate regression analysis as introduced in section 2.2. Section 2.3 

outlines the mathematical formulation of multiple regression. Also stated in section 2.3 

are the assumptions of regression models as well as the problems that may be 

encountered in the application of this model. Section 2.4 reinforces the importance of a 

graphical analysis prior to the application of regression models. Section 2.5 focuses on 

the estimation of the linear regression model for the puerulus data. Diagnostics are 

discussed in section 2.6 and section 2. 7. 

2.2 Multiple Regression Models. 

Regression analysis is a common statistical tool that is widely used to represent the 

relationship of one or more independent variables with multiple dependent variables. The 

method can be easily applied for time-dependent data obtained in equal time intervals. 

Chatfield (1989) discusses the possibility of using simple linear regression models for 

time series data. Caputi et al. ( 1993) and Caputi et al. ( 1995a) in particular illustrate that 

the fluctuations of the puerulus settlement in the coastal sites of Dongara and Alkimos. 

These fluctuations are mainly caused by the environment. Simple linear regression 

models were used to represent the environmental relationships on the western rock lobster 

fishery as well as other fisheries in W estem Australia. 

Suppose x 11 ,···,xkt are ekR predictor variables influencing a value of a univariate 

dependent variable y 1 • Then the observations are 

t= 1,2 ... n 
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assuming that these observations were taken over n periods of time. The conditional 

expectation of the response variable y, given x it is linear for j = I . .. k is given as 

where /3;, i = 0 ... k are fixed parameters and t:,R is the regression model error term. The 

parameters, /3; , would be estimated from the given observations. The error term is given 

as 

The value of the dependent variable at time t differs from its expectation. The multiple 

regression model is then given as, 

Y, = f3o + f31x1, + · · · + f3kxk, + t:,R 

where /3;, i = O ... k are parameter values and t:,R is the error term. If the arrays y,,x,,t:,R 

are defined as 

f3o 

Y2 X12 
Y, = ,x, = Xk2 £2R /31 

'and /3 = ,£,R = 

Then this can be represented in the form 

Y, = x,/3 +t:,R, (2.1) 

Equation (2.1) is called a multiple regression model (Johnson and Wichern, 1992, 

pp. 287-290). 

2.2.1 Assumptions. 

Some of the assumptions involved in describing a multiple regression problem are stated 

below: 

1) For each specific combination of values of the independent variables 

x, = (x 11 , .. ·, xk,), y, is a random variable with a certain probability distribution; 
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2) the y, observations are statistically independent of one another; 

3) for any fixed combination of x, =(x1,.···,xk,), y, is normally distributed. In other 

words, 

Y, - N/D(µ y, Ix,, cr2). 

This assumption is required for inference-making purposes 

(Kleinbaum and Kupper, 1988, pp. 136-137). 

The ordinary least squares (OLS) method can then be used to estimate the regression 

coefficients. This method is based on the assumption that the residuals, e,R , are 

independent of the input variables. The error terms are assumed normally distributed 

random variable with mean zero and variance ae 2 by (i), that is, e - NID (0, ae 2
) 

IR IR 

(Draper and Smith, 1981, p. 460-461). 

2.2.2 Problems and Pitfalls. 

In practice, many difficulties may arise when applying regression analysis and in this 

section, two main classes of problems will be discussed in detail. These are 

a) problems due to the assumptions, and 

b) problems arising due to the form of the data 

(Wetherhill et al., 1986, p. 14 ). 

2.2.2.1 Problems Due to the Assumptions. 

1) The assumptions stated in section 2.2.1 that might not be valid. This can result in an 

incorrect or an ineffectual model. 

2) The linear form of the model fitted to the data may not be appropriate. In this case, a 

transformation would then be required to fit a non-linear model to the data 

(Wetherhill et al., 1986, p.14 ). 

2.2.2.2 Problems Due to the Form of the Data. 

Multicollinearity is one major difficulty that arises. This problem occurs when the 

exploratory variables are highly correlated. This produces near or exact linear 
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relationships among the exploratory variables. The exploratory variables are 

multicollinear when [x;xJ1, where x, = (x1r, .. ,xk,) is near-singular. A complex linear 

relationship is illustrated in example 2.1, to show the effect of multicollinearity. This is 

referred to as an ill-conditioned system. 

2.2.3 Example 2.1. 

This example investigates the relationship between the number of households ( x
1
,) and 

the number of occupied households ( x2,) and the monthly sales ( y,) (see Appendix II). 

A company specialising in manufacturing backyard satellite antennae predicts sales by 

geographic sales district. Therefore, nine districts are randomly selected to develop and 

test a model. For each district, the number of antennae sold in the previous month, the 

number of households and the number of owner occupied households were recorded. The 

variables X1r and x2, were regressed on y,. A multiple regression model was produced 

as shown by Figure 2.1. It was concluded that the exploratory variables x 1, and x2, are 

strongly linearly related to y,, the multiple regression model, which can be shown by the 

close relationship or high correlation (R2). In this example, problems were caused when 

estimating the model parameters and in the interpretation as well. These problems can be 

caused by multicollinearity since it can be concluded [x;x, J-1
, where x, = (x 1,, x 2, ), 

[ 
0.0318 -0.0478] , . 

produced a near linear relationship as x, = , and x,x, 1s near-
- 0.0478 0.0722 

singular. 

Figure 2.1 - Multiple Regression Model for Sales data. 

Regression Analysis 
The regression equation is 
Yt = - 2. 4 + 2. 40 X1t + 1. 44 X2t 

Predictor Coe£ StDev T p 

Constant -2.38 10. 91 -0.22 0.834 
X1t 2.402 2.221 1. 08 0.321 
X2t 1. 444 3.525 0.41 0.696 

s = 12.10 R-Sq = 92.8% R-Sq(adj) = 90.4% 
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Figure 2.1- Multiple Regression Model for Sales Data (Cont.) 

Analysis of 
Source 
Regression 
Error 
Total 

Variance 
DF 

2 
6 
8 

ss 
11318.9 

879.1 
12198.0 

Source DF Seq SS 
X1t 1 11294. 4 
X2t 1 24.6 
Durbin - Watson Statistic= 2.04 4 

2.3 Data Analysis. 

MS 
5659.5 
146.5 

F 
38.63 

p 

0.000 

Exploratory data analysis may be used to reveal the features of the data set under study. 

This helps to show interesting aspects in the sets of data. A main objectives of data 

exploration is the detection of errors in the data. A few of the features that need to be 

examined are the linear relationships, time trends and outliers (Wetherhill et al., 1986, 

pp. 14-15, 18-19). 

The presence of outliers in the dataset may lead us to detect non-normality, 

heteroscedacity3 or even the need for transformation. Figure 2.2 (a) and (b) show the 

probability plot (Q-Q plot) (see Johnson and Wichern, 1992, p. 157) for x 11 and x 2, in 

example 2.1 (section 2.3.3). Though, a few outliers exist for x 11 , this plot clearly shows 

that x 11 follows a normal distribution for the remaining data. No outliers exist for x 2, 

which shows that x 2, follows a normal distribution. 

3 Heteroscedacticity is the_local variability of data changes across the study area 
(Gooverts, 1997, p. 82) 
4 The durbin-Watson Statistic is explained in more detail in section 2.5.4. 
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Figure 2.2 - {a) Probability Plot for Number Of Households 
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Figure 2.2 - {b) -Probability Plot for Number Of Occupied Households 
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The exploratory data analyst uses such graphical methods as a major tool. Various 

methods for plotting the data are given to help the analyst gain an insight into the 

structure of the data. Univariate plots are useful for the purpose of finding outliers. 

Bivariate plots are also examined, which can involve any standard two-dimensional plot 

as shown in Figure 2.3 from example 2.1, section 2.3.3 (Wetherhill et al., 1986, p. 30). 

When the number of owner-occupied households ( x2,) is plotted against the number of 

households ( x11 ), it can be deduced that these two variables affect the analysis because of 

the presence of an outlier in the data. 

Figure 2.3 - Bivariate plots of the Sales data. 
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2.4 Linear Estimation. 

The main objective for the investigator is to develop an equation that will allow the 

prediction of the response for certain given values of the predictor variables. Therefore, 

values for the constant regression coefficients, fi and the error variance a;R , must be 

determined so as to "fit" the model in (2.1) to the observed y, (Johnson and Wichern, 

1992, p. 289). For finding the best estimate of the linear multiple regression equation, the 
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least squares approach is used. The sum of squared differences of observed y, model 

is then given by 

(2.2) 

I 

=<y, - x, P)'<y, - x,P). 

This is known as the error sum of squares. The least squares estimates of the regression 

parameters /3 are determined by the coefficients P , which are chosen by the least 

squares criterion so that the sum in (2.2) is a minimum (Johnson and Wichern, 1992, 

p. 289). 

The deviations, e,R = y, - Po - p1x1, - ... - Pk x Jt, are called residuals. Thus, the 

deviations in (2.2) are also related to the residual sum of squares. The unknown 

parameter a 2 is derived from the information given from the vector of residuals eR 

e,R = y, - x,P (Johnson and Wichern, 1990, p. 289). The minimisation of S(P) = e;Re,R 

leads to the system of equations (x,' x,)P = x,' y,, which are called normal equations. 

This system of equations can be solved explicitly as P = (x;x, r' (x,' y,); assuming 

(x;x,) has an inverse (Chaterjee and Price, 1977, p. 72). 

A variety of computer packages are used for estimating multiple regression models. 

Packages including Scientific Computing Associates (SCA), SPLUS for Windows and 

Minitab for Windows, which will be used for the purpose of this research. These 

packages also use multiple analysis of variance (MANOV A). The MANOV A in Table 

2.1 shows the significant results produced when estimating a multiple regression model. 
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Table 2.1 

Multiple Analysis of Variance - MANOV A Table 

Source of Sumof Degrees of Mean Square (SS/df) F 
Variation Squares (SS) Freedom 

(df) 

Treatment SS(R) g-1 
g 

SS(Rx I,niex;-x)2 (g - I) 
l=I 

s~ 
Ln1-g 
/=I 

Residual(Error) SS(E) fn,-g gt L (xlj -x,)2 
/=I 1=1 J=I 

Total (Corrected SS(T) g g n, 
for the mean) I,n,-1 I.I.cxlj -x)(xlj -x)' 

/=I l=I J=I 

In this table, 

n1 is a random sample containing x11, x12 .••• x
101 

, 

SS(R) denotes the regression sum of squares, 

SS ( E) denotes the residual sum of squares, 

SS(T) = SS(R)+ SS(E) denotes the corrected total sum of squares, 

g refers to the number of dimensions of an arbitrary set of observations of vector x, 

l =1,2 ... g and j = 1,2 .... n, .. 
(Johnson and Wichern , 1992, p. 245). 

The MANOVA stage analyses the variation the component parts in y,. One part 

analyses the variation due to relationship with x, and one part is due to the error 

(Younger, 1985, pp. 418,483). 

From the analysis of the data given in example 2.1 (section 2.3.3), the values for the 

MANOV A results based on the relationship between x 11 , x 21 and y1 is provided in Table 

2.2. 
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Table 2.2 

Multiple Analysis of Variance for Sales Data. 

Source of Sum of Degrees of Mean Square F 
Variation Squares Freedom 
Regression 11318.9 2 5659.5 38.63 

Error 879.1 6 146.5 

Corrected total 12198.0 8 

The critical value (with a= 0.05) of the !-tests is to.o2s, 6 = 2.447. Since the t-statistics for 

/31 and /32 are both less than the critical value, it can be concluded that neither x 11 nor 

x2, is linearly related toy,. On the other hand, it can be noticed that the coefficient of 

determination is 92.8% (from Figure 2.1) while the P value is less than the 0.05 level of 

significance. It can be deduced that at least one of /31 and /32 is significantly different 

from zero. As a result, it can be concluded that at least one of x 11 and x 21 is linearly 

related to y
1

• This is the result of collinearity. 

2.5 Diagnostics. 

Regression diagnostics is an important stage in the building of linear regression models. 

For the purpose of checking the adequacy of the model, some simple graphical techniques 

as well as some formal statistical tests may be utilised (Neter et al., 1989, p.113). This 

analysis checks the adequacy of the model prior to using the estimated models for 

important decision-making. This is a major process in which "outliers" can have a 

considerable effect on the analysis of the given response or exploratory variables. This 

effect may not be easily detected from an examination of residual plots. High leverage 

points or influential observations may cause a significant effect on the inferences of the 

data (Johnson and Wichern, 1992, p. 311). 
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To detect if any of the assumptions have been violated, the plots and tests that were used 

in this research are given below. Some of the following plots and tests may be used to 

analyse if e ,R - NID(O, a R 
2

) : 

1) Plots of the residuals against the fitted values can help identify two types of 

phenomena. They can be used to detect any instability in the variance and the 

dependency of the residuals on the fitted values y j. These also help to reveal any 

outliers with large homogenous variance. An error may occur in the analysis if the 

term ~0 is omitted from the model by mistake. The plot for example 2.1 (section 

2.3.3) is shown in Figure 2.4. This plot clearly reveals a few outliers that may be 

causing problems in interpretation. 

Figure 2.4 - Plot of Residuals versus Fitted Values 
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2) Plot of the residuals against the independent variables x j, , for j = 1, 2 ... k for every 

t = 1,2 .. . n. These plots are formed, by plotting the residuals e,R against each 

exploratory variable involved x1, and x 2, for example 2.1 (section 2.3.3). A few 

outliers, shown in Figure 2.5 (a) and Figure 2.5 (b ), can be detected from each plot. 

These may have an effect on estimation of the parameters as well as the interpretation. 
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Figure 2.5 - (a) Residuals versus Number of Households 
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Figure 2.5 -{b) Residuals versus Number of Occupied Households 
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3) If data from example 2.1 are treated as chronological data, a residual plot can be 

constructed by comparing the residuals against the chronological order of sampling. 

Figure 2.6 can reveal any outliers that may exist, a non-constant variance over time 

and a linear or quadratic trend that should have been included in the model. This also 

helps to detect any serial correlation that may exist in the data. According to Figure 

2.6, the residuals do not appear to be stationary. The outliers that exist in the data 

have affected the analysis of the data. 
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Figure 2.6 - Residuals versus Time 
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4) To detect serial correlation, the autocorrelation function (ACF) is used. 

Autocorrelation may be caused if exploratory variables are omitted; or an 

inappropriate equation is estimated 

An alternative tool called the Durbin-Watson test (D), is defined as 

n 

IcejR -elj-l)R)2 
D = -'-'=-"2 _____ _ 

where e jR is the residual at point j about the fitted regression model. We test the null 

hypothesis Ho: p = 0 against the alternative hypothesis HA: p > 0. 

For various numbers of observations n, and fork = 1,2 ... 5 independent variables both 

give the critical values at the (1-a) % level of significance (dL, du). Using the D test we 

can then test for positive serial correlation as described in (Durbin and Watson, 1950, 

1951), 

1. One-sided test against p > 0. If D < dL, conclude that D is significant then reject Ho, 

at confidence level (1-a) %. 

If D > du, conclude that Dis not significant and do not reject Ho. 

If dL ~ D ~du, the test is inconclusive. 
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2. One-sided test against the alternative p < 0. Repeat step 1 using (4- D) in place of D. 

3. Two-sided equal-tailed test against the alternative p '# 0. If D < dL or (4- D) < dL, 

conclude that D is significant and reject Ho at level 2a. 

If D < du and 4- D > du, conclude Dis not significant and do not reject Ho at level 2a. 

Otherwise, the test is said to be inconclusive. 

Figure 2.7 shows that the ACF of residuals for example 2.1 (section 2.3.3). Figure 2.7 

clearly shows that an inappropriate equation has been estimated or multicollinearity can 

be detected in example 2.1 (section 2.3.3). On the other hand, no positive autocorrelation 

(p) can be detected to exist in example 2.1 as D = 2.04 > du = 1.699 which is not 

significant. 

Figure 2. 7 - ACF of Residuals for Example 2.1 

Autocorrelation Function 
ACF of RESI1 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 
+----+----+----+----+----+----+----+----+----+----+ 

1 -0.027 xx 
2 -0.481 xxxxxxxxxxxxx 
3 -0.060 xx 
4 -0.002 X 
5 0.042 xx 
6 -0.006 X 
7 0.042 xx 
8 -0.007 X 

5) To detect normality the probability plot (Q-Q plot) of the residuals is an important 

plot, which is used as a visual check of the residuals. This checks if the assumption 

of normality is valid, by showing if an approximate straight line is produced. Any 

outliers can be spotted in this case (Liu et al., 1992, pp. 4.29-4.30). From Figure 2.7 

it can be deduced that the residuals do not follow a normal distribution. 
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Figure 2.8 · Normal Probability Plot of the Residuals for Example 2.1 
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2.6 Analysis of the Puerulus Settlement Data. 

7.89E.·15 

10.4826 

The simple linear regression models for the puerulus settlement off the shores of 

Dongara, Alkimos and Abrolhos Islands were estimated using the Minitab package. 

It must be noted that a logarithmic transformation was applied for the puerulus settlement 

because of the skews in the abundance distribution. This led the data to have 

multiplicative log normal distribution (Peterman, 1981). This transformation also helped 

to avoid negative predicted values of puerulus settlement and helped to analyse the data 

from a realistic biological point of view. 

A graphical analysis of the residuals was carried out by Minitab for Windows. For each 

model, four plots were constructed. These four plots are: 

1. a probability, normal plot or a Q-Q plot of the residuals; 

2. a time series plot of the residuals; 

3. a histogram of residuals; 

4. a plot of the residuals versus fits. 
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Let model (A), model (B), model (C) and model (D) represent the simple linear 

regression models for Dongara, Alkimos, Abrolhos Islands (without estimated missing 

values) and Abrolhos Islands (with estimated missing values) respectively. 

2.6.1 Puerulus Settlement off Dongara. 

A logarithmic transformation was applied to the puerulus settlement for Dongara. The 

regression model, known as Model (A) was as follows, 

In Yi., = -1.058 + 0.0139x1, + 0.0638x2, + £,R. 

Here Yi., is the puerulus level for Dongara, x1, is the sealevel and x 21 is the rainfall. 

Figure 2.9 shows the regression results for Model (A) with R2 = 55.4 %. The residuals 

plot diagnostics in Figure 2.10 for Model (A) are negative with large fit values. These 

plots provide contradictory results. Therefore it cannot be concluded whether 

£ - NID (0, ae 2 
). It is also inconclusive at a = 0.05 level of significance whether the 

IR 

residuals are serially correlated. 

Figure 2.9 - Regression Results for Model (A) :Puerulus settlement at Dongara 
Region 

Regression Analysis 
The regression equation is 

Lny1T = - 1 . 0 6 + 0 . 013 9 x 1T + 0 . 0 6 3 8 x2T 

Predictor Coe£ 
Constant -1. 058 
X1T 0.013883 
X2T 0.06381 

s = 0.4210 R-Sq 

Analysis of Variance 
Source DF 
Regression 2 
Error 22 

Total 

Source 
xlT 
x2T 

24 

DF 
1 
1 

StDev 
1. 605 

0.005706 
0.02446 

55.4% 

ss 
4.8391 
3.8984 

8.7376 

Seq SS 
3.6331 
1. 2060 

Durbin-Watson Statistic= 1.25 

T 
-0.66 
2.43 
2.61 

R-Sq(adj) 

MS 
2.4196 
0 .1772 

23 

p 

0.517 
0.024 
0.016 

51. 3% 

F 
13.65 

p 

0.000 



Figure 2.10 - Diagnostic Plots for Model (A) : Puerulus settlement at Dongara 
Region 

Regression Residual Plots for Dongara 

us 

... 

_. .. 
...... 

. ·· 

... 

-1.0 L,--~~-~---,--, 
-2 -1 1 2 

N'.nmS::ae 

------- 3.0Sl=1 .004 

1 - -3 OSL:..1 .004 

0.5 

'r----r----r--~~---,-' 
0 5 1015a:J25 

0-VaimNJTm 

Rsi.els vs. Fis 

l 00 

.. . . . ' . . .. 

-0.8 -U6 -U4 -U2 UO U2 U4 U6 

Feia 

2.6.2 Puerulus Settlement off Alkimos. 
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A logarithmic transformation was applied to the puerulus settlement for Alkimos. The 

regression model, for Model (B), was as follows; 

ln j\, = -6.590 + 0.021x11 + 0.108x2 1 + &m, 

where j 2,, is the puerulus level for Alkimos, x1t is the sea level and x 21 is the rainfall. 

Figure 2.11 shows the regression results for model (B), with R2 = 66.1 %. The diagnostic 

plots could not prove that &m belongs to NID(O,CY/) as the normal plot of the residuals 

does not resemble a straight line (see Figure 2.12) . Also, from the D statistic it can be 

concluded that the residuals are serially autocorrelated. This was not a final conclusion. 

Figure 2.11 - Regression Results for Model (B) : Puerulus settlement at Alkimos 
Region 

The regression equation is 
lny2 t = - 6.59 + 0.0208 X 1t + 0.108 X zt 

Predictor Coef StDev T p 

Constant -6.590 3.758 -1. 75 0.118 
X1t 0.02079 0.01126 1. 85 0.102 
X2t 0.10817 0.05708 1. 90 0.095 

S = 0.6273 R-Sq = 66.1% R-Sq(adj) = 57.6% 
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Figure 2.11 - Regression Results for Model (B): Puerulus settlement at Alkimos 
Region- Cont. 

Analysis of Variance 

source DF ss 
Regression 2 6 .1395 
Error 8 3 .1476 
Total 10 9 . 2871 

Source DF Seq SS 
X1t 1 4.7265 

X2t 1 1. 4131 

Durbin-Watson Statistic= 2.14 

MS 
3.0698 
0.3934 

F 
7.80 

p 

0.013 

Figure 2.12 - Diagnostic Plots for Model (B): Puerulus settlement at Alkimos Region 
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2.6.3 Puerulus Settlement of/tile Abrollws Islands. 

2.6.3.1 Without Estimated Missing Values 

For the Abrolhos Islands, the puerulus settlement off these shores was represented by the 

multiple regression model, Model (C), 

lnj\, = 0.918-0.014x3, +1.16lnx4, +Bm, 

where j\, is the puerulus level for the Abrolhos Islands, x 3, is the rainfall and x 4, is the 

spawning stock. For the logarithmic transformation of x41 , the spawning stock was used 

as this is the commonly used form of the variable in the fishing industry. Figure 2.13 
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shows the regression results for Model (C), with R = 69.6%. The residual plot diagnostics 

for model (C) (see Figure 2.14) cannot confirm that the residuals do follow a normal 

distribution. From Figure 2.14, the residuals are negative with smaller fit values. Also no 

conclusion could be drawn as the D statistic was not significant. 

Figure 2.13 - Regression Results for Model (C) ; Puerulus settlement at Abrolhos 
Islands Region. 

The regression equation is 
lnY3t = 0. 918 - 0. 0136 x 3t + 1.16 lnx4t 

17 cases used 5 cases contain missing values 

Predictor Coef StDev T p 

Constant 0.9183 0.8774 1. 05 0.313 
X 3t -0.013567 0.003934 -3.45 0.004 
lnx4t 1.1579 0.2551 4.54 0.000 
s = 0.2687 R-Sq 69.6% R-Sq(adj) = 65.2 % 

Analysis of Variance 

Source DF ss MS F p 

Regression 2 2.3129 1. 1565 16.02 0.000 
Error 14 1.0109 0.0722 
Total 16 3 .3239 

Source DF Seq SS 
X 3t 1 0.8586 
lX4t 1 1. 4543 

Durbin - Watson Statistic= 1.26 

Figure 2.14 - Diagnostic Plots for Model (C) : Puerulus settlement at Abrolhos 
Islands Region 

Residual Model Diagnostics 

Normal Plot of Re,iduals I Oiart of Residuals 

04 
0.3 0.5 
02 .. 
~ 

11 0.1 . 
~ .;i 0.0 .. 

00 x-0000 

ii -01 ..... ii 
0: -02 0: 

-03 
-04 -0.5 
-05 

-2 -1 0 10 20 

No""a1 Score Observation Number 

Hstogram of Residuals Residuals vs. Fits 

UITT 
0.4 . 
0.3 

>, 3 02 
11 01 

J 2 
.;i 00 

! -01 # • 

J! -02 
1 

I I I I -03 
-0 4 
-05 

-05-04 -03-0.2-01 00 0.1 02 03 0.4 34 39 .. 49 

Residual Fit 

26 



2.6.3.2 With Estimated Missing Values 

For the Abrolhos Islands, the multiple regression Model (D), for the puerulus settlement 

off these shores was; 

lnj\, = 0.341-0.009x3, + 1.250lnx4, +sm. 

Again y3,, is the puerulus level for the Abrolhos Islands, x 3, is the rainfall and x4, is the 

spawning stock. Figure 2.15 shows the regression results for Model (D), with 

R2 = 39.1 %. From the residual plot diagnostics for Model (D) (see Figure 2.16), it 

cannot be concluded that the residuals do follow a normal distribution. 

Figure 2.15 - Regression Results for Model (D): Puerulus settlement at Abrolhos 
Islands Region 
The regression equation is 
lny3 t = 0. 34 - 0. 00865 XJt + 1. 25 lnx4t 

Predictor Coef 
Constant 0.341 
X3t -0. 008651 
lnx4t 1. 2499 

StDev 
1.338 

0.005916 
0.3913 

s = 0.4225 R-Sq = 39.1% 

Source DF 
Regression 2 
Error 19 
Total 21 

Analysis of Variance 

Source DF 
1 
1 

ss 
2.1776 
3.3920 
5.5697 

Seq SS 
0.3562 
1. 8215 

Du~iP.~ yatson Statistic= 1.48 

T 
0.25 

-1. 46 
3.19 

p 

0.802 
0.160 

0.005 

R-Sq(adj) = 32.7% 

MS 
1.0888 
0.1785 
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Figure 2.16 - Diagnostic Plots for Model (D): Puerulus settlement at Abrolhos 
Islands Region 
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CHAPTER Ill 
TRANSFER FUNCTION MODELS 

3.1 About this Chapter. 

In chapter II, the use of the regression model was described as a model that relates one 

response variable to more than one exploratory variable. A common problem affecting 

this class of models occurs when the residuals are serially correlated. Therefore, the use 

of another class of models, called transfer function models, is considered in this case. 

These models are introduced in section 3.2 and their statistical background is given in 

section 3.3. An iterative modelling strategy, given in section 3.4, is also used to 

formulate this class of models. This is described to be similar to that of Box-Jenkins' 

methodology, consisting of three important stages: identification, estimation and 

diagnostics checking. The identification method is then described in section 3.4 and 

different ways for identifying transfer function parameters are given in section 3.5. The 

parameters are then estimated and checked as shown in sections 3.6 and 3.7. The 

application to the fisheries data is given in section 3.8. 

3.2 Transfer Function Models. 

The class of transfer function models will be introduced here in order to account for the 

correlated structure of time series data. Due to the flexibility of transfer function models, 

these models can be used in a variety of applications. Transfer function models are 

widely used in applications such as engineering, economics, management science and 

environmental science (Liu et al., 1992, Chapter 8). 

A possible dynamic response is caused when an immediate output is not affected by 

change in the level of the input. The transfer function model (Box and Jenkins, I 976, 

p. 355) represents this dynamic response, which also models the disturbance or 

noise 
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in the system. This is an example of a dynamic relationship which is encountered with 

transfer function models (TFMs). 

3.3 Statistical Background of TFM. 

TFMs take into account relationships within and between exploratory variables which can 

be expressed in the form 

m,(B) b mk(B) b 
Y,=C+--BX 1,+ ... + BXk1 +N,. 

c51 (B) c5k (B) 
(3.1) 

where 

Bis a backshift operator, eg. BX, = X,_" B2 X, = X,_2 , ••• , Bd X, = X,_d. 

For example, for a TFM with one input variable, (3.1) can be re-written in the form of 

c51-J (B)Y, = C + ml (B)Bb xii + N,. 

Here N, represents the stochastic noise component such that 

N - 8(B) 
, - </>(B) e,F . 

For N,, it is assumed that ew -NID(O,a;). This is defined as a Gaussian white noise 

process5
• The roots of the polynomials </>(B) and8(B) given by 

8(B) = 1-81 (B)-82 (B)2 - ... -8/Br and 

</>(B) = 1-</>1 (B)-</>2 (B)2 - ... -</>q (B)P 

respectively. 6 

5 A white noise can be represented by a linear combination of random 'shocks'. Thus, a sequence 

of those random variables is called a white noise process. 

6 In general, a Box-Jenkins' ARIMA(p, d, q) can be defined as 

w, = </>, w,_, + </>2 w,_ 2 + · · · + </>" w,_" + e,F + 8,e<,-' JF • • • + 8qe(,-qJF. 

where W
1 

is defined as VdY, 
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In this term, the polynomial 8(B) is called a moving average component of order q 

(MA(q)) and </>(B) is called a autoregressive operator of order p (AR(p)). These are 

assumed to lie outside the unit circle to ensure stationarity and invertibility (Chatfield, 

1989, p. 41, Box et al., 1976, pp. 50-51, 9). 

For (3.1), the orders b, r and s need to be determined. Thus, the linear combinations 

m, (B), · ·,m/B) ando1 (B), ... ,ok (B) need to be estimated. 

It must be noted that all parameters b, r, s (for the actual TFM) and p, q (for the noise 

model) must be estimated to ensure a successful TFM model be provided. Estimating as 

few parameters as possible could help produce accurate forecasts. 

It can be shown that the TFM can also be expressed in a linear form. For example, 

consider the following TFM model 

(1-mB) 
Y, = C + X It 3 + N t' 

(1-0B) -

:. Y, = C + (1-mB)(I-OB)-' x,,-3 + N,, 

:. Y, = C + (1-mB)(1-(-1)oB-(-1)(-1)02B
2 + ... )X,,_3 + N,, 

:. Y, = C + (1-mB)(I + oB - 02B 2 + ... )X1,_3 + N,, 

:. Y, = C+(1+0B-oB 2 -mB-moB2 +mo2B3-···)X,,_3 +N,, 

In general (3.1) can be expressed in the linear form 

Y, = C + (v1•0 + v1,1B + v1,2B 2 + · · · + v,.k 1Bk' )Bb X11 + 

··· + (vk.o + vk.1B + vk.2B
2 + ·· · + vk.kkBkk )Bb Xkt + N, 

(3.2) 

The transfer function model described in (3.1) assumes that the relationship between X 1 

and Y, is uni-directional and the input series and the noise component of the model are 

assumed to be independent of each other. 
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33.1 Assumptions of the TFM. 

It must be pointed out that the system being modelled is assumed to be stable. The input 

series are stationary. This can be confirmed by checking if the data have a constant mean 

and a constant variance. Consider the data given in example 2.1 (section 2.3.3), where 

X,, and X 2,, can be shown to be close to stationarity as an almost constant mean and a 

constant variance can be deduced from Figure (3.1) (a) and (3.1) (b). 

Figure 3.1 (a) -Time Series Plot of Number of Households 

Figure 3.1 (b) - Time Series Plot of Number of Occupied Households 
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3.;.2 Interpreting the Terms of the TFM 

The TFM terms are b, m;(B) and c5;(B) as shown by (3.1) and v;(B) as shown by (3.2). 

These terms are interpreted as follows : 
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a) A change in the input may not affect the response until after an initial period of a 

delay. With relation to the polynomial, w;(B)/8;(B), this time delay is represented 

by the parameter b. The parameters of m;(B), the numerator polynomial, describe the 

initial effects of the input process. The decay pattern that results from the initial effect 

of the response variable are characterised by the denominator polynomial D; (B). 

b) The parameters v;,o, v;,1, v;,2, ... , in (3.2) are called TFM weights or impulse response 

weights for the input series Xu. Given the weights at each time lag, these weights 

are used to measure the effect of the input series on the output series. For this 

dynamic system, the concept of stability is significant. 

Definition: Stability. 

The system is said to be stable if the infinite series v;,o + v;,1B + v;. 2B 2 +·· converges for 

This definition of stability implies that a total change in the input would result in the total 

change of the output (Box and Jenkins, 1976, p. 340). 

3.4 Modelling Strategies of TFM. 

The classical approach to time series modelling which was first proposed by Box et al. 

(1976) is adopted for building TFMs. This iterative modelling strategy consists of three 

stages. These are identification, estimation, and diagnostic checking. 

The identification stage is the most difficult stage for TFM modelling. A major step in 

identifying a TFM model is concerned with a preliminary estimation of the parameters. 

These estimates help to express the model in a rational form. A method must be used to 

devise the orders r, s and b for the TFM model in 3.1. A common method that was 

introduced by Beguin et al. ( 1980) is called the comer method. The identification stage 

therefore, involves a great deal of analysis and calculations which makes it the most 

difficult. 
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Both the Linear Transfer Function (LTF) method and estimation using Edlund's 

regression approach are outlined in the next few sections. Both approaches will be 

described and illustrated. An approach looking for estimation at adding moving average 

(MA) and autoregressive (AR) terms to the regression model are also examined. 

Description : The Corner Method. 

This method was devised by Beguin et al. in 1980. In the selection of an autoregressive

moving average, or a "mixed" ARMA (p, q), model, a problem generally occurs in 

finding the orders p and q. A solution to this problem uses the comer method to find the 

values p and q. 

Lui and Hanssens (1982) altered the comer method to help find the orders r, sand b. The 

transfer function would then be expressed in a rational form. Using this method, an 

[<M +l)xM] array C is constructed with L\ (f, g) at its!, g-th element, wheref= 0,1, 

2, ... , Mand g = 1, 2, ... , M. Ag x g matrix L\ (f, g) is constructed for each input variable 

to the transfer function input-output system. This is defined as 

Tl;,! Tli,f-l Tli,f-g+l 

L\ (f, g) = Tl;,J+l Tl;,J Tl;,J-g+2 (3.3) 

Tl;,J+g-l Tl;,J+g-2 Tl;,J 

v .. 
wheref~ 0, g ~ 1, r,. 

1
. = -'·1- and r, . = 0 for Vj < 0. The C array can then be obtained 

I, 1,1 
V i,max -

by calculating determinants of L\ (f, g) in (3.3) for different values off and g. The 

structure of this array is represented in Table 3.1 (Liu and Hanssens, 1982). 

Let the v;,i denote the estimate of the true TFM weights vi.i, of the rational polynomial 

m;(B)/D;(B). It follows that vi.max is the maximum value of I v;,i I, where i = 1,2, ... k, andj 

= 0, 1, 2, ... , K;. 
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The orders r, s and b are determined from the pattern if and only if the first b rows and the 

south-east comer starting at the (s + b - l)1
h row and (r + 1)1

h of the C array are all zeros 

(Liu and Hanssens, 1982). 

Table 3.1 

The Corner Table 

,-.............. n I 2 .. r r+l . .. M 

0 
........... 

0 0 0 0 0 ... . .. 
I 0 0 ... 0 0 . .. 0 

b •• 0 0 0 0 .. 0 

b Mb. I) Mb, 2) ... Mb,r) Mb, r+I) . .. Mb,M) 

s+b ·l Ms +h - I.I) Ms +b -1, 2) ... X X X 

s +b Ms +b, I) Ms +h, 2) ... X 0 . .. 0 

M !J.IM ll /IJM 21 ... X 0 . ... 0 

3.4.1 Example 3.1 

Consider the data used in chapter II. This is a simple example to help illustrate how the 

comer table method works to identify the TFM. The comer tables for the two inputs 

Number of Households ( X 1,) and Number of Occupied Households ( X 2,) are represented 

by Table 3.2 and Table 3.3 respectively. 

Table 3.2 
Corner Table for the Number of Households. 

1 2 3 4 5 6 7 8 9 

-----------------------------------------------------
0 .29 .09 .02 .01 .00 .00 .00 .00 .00 
1 .58 .28 .18 .09 .05 .03 .01 .01 ***** 
2 .21 -.32 .25 .01 -.08 .06 .00 ***** ***** 
3 .63 .18 .37 .22 .12 .14 ***** ***** ***** 
4 1. 00 .61 .38 .21 .18 ***** ***** ***** ***** 

----------------------------------------------
5 .63 -.03 .03 - .10 ***** ***** ***** ***** ***** 
6 .42 -.03 .00 ***** ***** ***** ***** ***** ***** 
7 .33 - .11 ***** ***** ***** ***** ***** ***** ***** 
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Table 3.3 
Corner Table for the Number of Occupied Households. 

1 2 3 4 5 6 7 8 9 
---------------------------------------------------

0 .37 .13 .05 .02 .01 .00 .00 .00 .00 
1 .60 .30 .23 .13 .07 .05 .03 .01 ***** 
2 .17 -.37 .33 -.04 -.10 .10 -.02 ***** ***** 
3 .67 .28 .41 .27 .19 .19 ***** ***** ***** 
4 1. 00 .53 .29 .15 .16 ***** ***** ***** ***** 

----------------------------------------------
5 . 70 I -.01 .01 -.09 ***** ***** ***** ***** ***** 
6 .50 I -.01 .00 ***** ***** ***** ***** ***** ***** 
7 . 37 I -.15 ***** ***** ***** ***** ***** ***** ***** 
8 .57 I***** ***** ***** ***** ***** ***** ***** ***** 

It was deduced from both tables that b = 0, s = 6, r = 1. 

3.5 First Stage of Identification Process - Estimation of Parameters. 

3.5.1 Estimation of TFM Weights. 

Consider for simplicity the following two-input transfer function model 

y =C+ m1(B) X + Wz(B) B +N. 
, 81 (B) i, Oz(B) 2, , 

This model can then be expressed in the following linear form based on the model in 

(3.2) 

The Ki's must be reasonably large values which are chosen judiciously by the analyst. 

Using (3.4), the transfer function weights v 1,0, v1.1, .•. , v1.K 1 
and v2.0 , v2.1 , • •• , v2.K

2 
can be 

estimated using the OLS method. 

The f3 estimates of OLS can be expressed as 

(Liu and Hanssens, 1982). 

Liu and Hanssens (1982) pointed out two problems that may be encountered when using 

the ordinary least squares method : 
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1. The XX matrix may be ill-conditioned as a result of being near-singular. This would 

occur if one of the input series contains an autoregressive (AR) factor with roots close 

to one. If an input series follows a moving average (MA) process, then this problem 

may be less serious. Common filters are mostly applied when this problem occurs. For 

example, consider the two input series X1, and X 2, which follow AR processes 

(l-0.60B)(l-0.80B) X11 = e 1tF • 

(l-0.70B) X 2,= e2,F. 

Therefore, the common filter, being the largest factor, that is chosen is recommended to 

be (l-0.80B). It is important to point out that this is done for numerical accuracy rather 

than statistical efficiency. 

2. The second problem may occur when the noise series, N, , may not be white noise. 

This would then imply the inefficiency of the OLS estimates of /3. This problem may 

be avoided by transforming the input and output variables, using the principle 

components regression (PCR) method, or using generalized least squares (GLS) 

method. The principle component regression (PCR) is a biased regression technique 

used to reduce the effects of multicollinearity (Liu and Hanssens, 1982). 

3.5.1.1 Identification of Noise Model. 

Having obtained preliminary estimates of the parameters of the transfer function model, 

the estimated noise series is provided by 

ii, = Y, + 5;~/ (ii ,_1 - Y,_1) + ... + 5;~~ (ii,_, - Y,_, )-

moXu.r-b> +m,X(i.1-b-1> + ... + m,Xu.,-b-,> 

where ii
1 
is an estimate of the true noise series defined as 

n, =Vd N, 

(Wei, 1990, pp. 289-290). 
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By examining the standard identification tools for univariate time series, the sample ACF 

and partial autocorrelation function (PACF), the appropriate model for the noise can then 

be identified as 

£,F = <1>;1 (B)8;1 (B)n,, 

assuming the input was prewhitened previously to give 

/3, = v(B)a, + £,F. 

The series, N,, should not be assumed to be white noise. When the series does not 

exhibit any seasonal behaviour then it would be best approximated by a low-order 

autoregressive process such as 

1 
N = e 

I (l -</J1B) IF' 
(3.5) 

(Lui et al., 1992, p. 8.14). 

The noise model relating to example 3.1 was identified as in (3.5). As, the number of 

parameters was larger than the number of observations, the orders, b = 0, r = 1, s = 1 of 

the operators were chosen as a better alternative. 

3.5.2 Principal Component Regression (PCR) Method. 

To overcome the major problem of multicollinearity encountered when using least 

squares estimators in multiple regression, principal components analysis is often 

used as a first step in assessing the reasonableness of the data. This is the best known 

method that uses biased regression estimators. 

Consider the standard regression model defined in (2.1). In principle component 

regression, the analyst is first required to transform the predictor variables to principal 

components. The data are transformed by finding the Principal Components (PC) for 

each variable. The transformed data are then regressed against the original responses. 

The PC's for each observation are given by 

Z=X,U, 
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where ( i, k) element of Z is the value (score) of the k th PC for the i th observation, and 

U is a (p x p)matrix whose kth column is the kth eigenvector of x;x,. X,/3 in (2.1) 

can be rewritten as X,UU'/3 = Zb, where b = U'/3. Equation (2.1) can therefore be 

rewritten as 

Y, = Zb+c. 

Now that the predictor values have been transformed we need to undertake the following 

steps: 

a) find u'X;Y,, 

b) find b which gives the biased estimators such that 

h = u [u'X; x ,u J-1 u'X;Y, 

(Jackson, 1991, pp. 271-273). 

This method would only prove to be successful when the variables are highly correlated. 

A major step in identifying a transfer function model is concerned with the estimation of 

TFM weights. 

3.S.3 Example 3.2 

The Standardized Linnerud Data is published by the SAS Institute, Inc. to illustrate the 

PCR method (Jackson, 1991, pp. 267 -268). This data set is measured on 20 middle-aged 

men in a fitness club and consists of three physiological variables. These variables are 

predictors and are identified by Weight (X1t), Waist (X21) and Pulse (X31). Three exercise 

variables are the responses and are identified by Chins (Ytt), Situps (Y21) and Jumps (Y31). 

First, we set X and Y as 20 x 3 matrices. Then the matrix U is found, by finding the 

eigenvectors. These eigenvectors are produced by solving the matrix x;x,. The 

residual sum of squares and crossproducts are Y'Y -Y' Zb z, where Z = XU , and 

b, =[U'X'XU)-1U'X'Y. Hence, h,is 
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[

12.5471 

5.9615 

7.7904 

5.9615 

10.7186 

10.7097 

7.7904] 
10.7097 . 

17.9390 

The parameter estimates b, where b = Ubz, are then computed via PCR analysis. The 

results are given in Table 3.4. 

Table 3.4 - Principle Component Regression Analysis 

Chins (Y1t) Situps (Y21) Jumps (Y31) 
Constant - ( C ) 0.0003 0.0002 -0.0003 

Weight (X 11) 0.3695 0.2904 -0.2597 

Waist (X21) -0.8840 -0.8937 0.0147 

Pulse (X21) -0.0264 0,0164 -0.0532 

3.6 Identification Methods of Transfer Function Models. 

3.6.1 The LTF Method. 

The linear transfer function (LTF) identification procedure is based on finding the least 

squares estimates of the TFM weights using the original or filtered series. The comer 

method is then used to determine the rational form of the transfer function model. 

A major step in identifying a transfer function model is concerned with the estimation of 

TFM weights. These estimates help to express the model in a rational form by the use of 

the corner method. A five-stage procedure that incorporates filtering and least squares 

estimation is given as follows: 

Stage 1 

Build ARMA models for all input series after the series are appropriately differenced to 

achieve stationarity. 
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If no AR factors are found or the roots of the AR factors are large (not close to 1) then 

Proceed to Stage 2 

else 

If there are processes with AR roots close to I then 

Choose a common filter from the AR factors. 

Apply this filter to all input series and the output series. 

Stage 2 

a) Perform least-squares estimation of the transfer function weights for the series 

obtained from Stage 1. The value K; should be chosen from subject-matter 

considerations and should be sufficiently large to avoid truncation bias. 

b) It is also important to check the sample ACF of the residuals since they provide 

information about the reliability of the usual least squares hypothesis testing. It is 

recommended to omit the unnecessary terms in (3.3) if it is clear that they can be 

deleted. 

Stage 3 

Build an ARMA model for the residuals computed from the linear model selected in 

Stage 2. If the residuals are white noise then 

Proceed to Stage 5 

else 

Go to Stage 4. 

Stage 4 

Using the Stage 3 ARMA model as a filter, perform OLS estimation of the transfer 

function weights based on the filtered series. Alternatively, the full transfer-noise model 

may jointly be estimated by nonlinear least squares. The significance tests of the weights 

can be carried out in the usual regression manner. 

41 



L 

Stage 5 

If no prefiltering was used in Stage 1 then 

The noise model is the one obtained in Stage 4 

else 

Compute the noise of the original output series by using the transfer function 

weights from Stages 2 or 4 and identify an ARMA model for the noise. Then, 

obtain a rational form m;(B)/D;(B) for the input series Xu, by using the corner 

method on v, (B), if necessary. Note that the corner method should be used only if 

some of the transfer function weights are significant. 

3.6.2 Edlund's Method. 

The PCR method can be applied when using Edlund's technique which provides a 'good' 

method for producing efficient estimates of v;(B). This method involves the use of 

biased regression techniques to estimate TFM models. This method is shown to be easy 

and reduces time for usage (Edlund, 1984). In his paper, Edlund (1984) focuses mainly 

on the problem of the estimation of the v;,i weights. The regression approach by Pukkila 

( I 982), considered to be successful due to the efficient estimates produced, was also 

investigated. 

3.6.2.1 The Regression Method 

It was found by Pukkila (1982) that the linear model, given in (3.2), produces reasonably 

good estimates. Despite this fact, some serious problems were found to occur to disturb 

the estimates of the transfer function weights. Three of these problems are (a) 

determining lag K;, (b) multicollinearity, and (c) the residuals being autocorrelated. 

The first problem is encountered when determining the values K;. This problem can be 

solved by assuming that the values v;,i are approximately zero for j > K;. It must be noted 
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that although many degrees of freedom will be lost if large values of K; are chosen, it is 

recommended by Edlund (1984) to begin with these large values initially. 

Multicollinearity is a second problem, which occurs when the supposed independent 

variables are not independent. To reduce the effects of multicollinearity, Edlund (1984) 

proposes the use of biased regression techniques. Introducing the bias results in deflating 

the variance of the estimate, and as a result a lower value of Mean Square Error (MSE) is 

obtained in comparison to the OLS estimator. The principal component estimators are 

produced by the PCR method as described earlier in this section (Edlund, 1984). 

Finally, if the residuals are correlated, one of the basic assumptions of multiple regression 

will then be violated. If this problem occurs, then the analyst would not be able to utilise 

the standard regression diagnostic checks described in chapter II. As a result of this 

problem, a bias in the estimate of the variance of the disturbance N, will also be 

introduced. This problem can be dealt with by using GLS instead of OLS, or by 

transforming the input and output variables. 

Edlund (1984) presents the following two-step procedure for the purpose of identifying 

the impulse response function when the input variables are correlated. 

Stage 1 

Identification, estimation and checking of the noise model and transformation of the input 

and output variables. The multiple regression model 

(3.6) 

where it is assumed that the weights v;,i z O for K + 1 variables, then (3.6) can be estimated 

using a biased regression technique such as principal component regression, 

a) the estimated residuals are then computed by 

m 

ii, = Y, - L V;(B)X;, = Y, -C + i\oXlt +l'i,1 x,,-1 + ... + V;,KXi,-K· 
i=I 

The noise model 
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A O(B) 
n =--£ ' 

I </J(B) tF 

is then identified and estimated using the standard Box-Jenkins procedure for ARMA 

models. 

b) The estimated operators are then used to transform the original variables Y, , X ,, and 

X 2, such that, 

A I A 

O(B)Y, = </J(B)Y,, for all t 

and 
A I A 

O(B)X;, = </J(B)X;, for all t 

where i is the number of inputs. 

Stage 2 

Estimation of the impulse response function from the transformed variables Y,' and x;,. 
In this second step, the linear model 

Y I C A X' A X' A I 
t = + v,.o It+ V1,1 1,-1 + ... + V;.KXit-k + £,F' (3.7) 

is re-estimated by a biased regression technique. In (3.7) the residuals £,F almost follow 

a white noise process, and the bad effects of multicollinearity should be decreased by 

biased regression. Good estimates of v. . should be obtained and the transfer function 
I,} 

model may be identified. 

If the estimated residuals in (3.7) are not white noise then Step 1 could be repeated using 

the estimated values of v;,i in (3.7) for calculating the residuals n,. Step 2 is then 

performed again. In the end acceptable estimates of vi.i will be obtained (Edlund, 1984; 

Edlund, 1989). 

3.7 Estimation of the TFM. 

Assuming that the tentative TFM has been identified as in (3.1), then the parameters 

D; ( B) = ( 81 , ••• , Dr ) ', m; ( B) = ( m0 , m, , ... , m. ) ' , </J( B) = ( </J, , ... , </J, ) ' , and (}(_ B) = ( 81 , ••• , 8
9 

) ' 
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and aE: need to be estimated. Various estimation procedures can be used to estimate 

(3.7). Two well-known techniques that are used to estimate the TFM are the conditional 

maximum likelihood method7 and the exact likelihood method8
. A nonlinear 

estimation procedure developed by Marquardt (1963) can also used. 

3.8 Checking the Fitted TFM. 

The form of the transfer function model was specified. Then, the parameters were 

estimated by employing a non-linear least squares algorithm as described in section 3.7. 

It is then necessary to check the 'adequacy' of the fitted model so that it meets all of the 

following listed criteria (Lai, 1979, pp.24-25): 

a) It must involve a small number of parameters (according to the principle of 

parsimony). 

b) The transfer function component of the model must represent a stable linear dynamic 

system. 

c) The noise ARIMA model has to be stationary. 

d) The residuals of the model should not be autocorrelated and should be independent of 

the input variables. 

e) Good prediction values. 

3.8.1 Checking the Parameter Estimates 

Firstly, check the parameter estimate with its estimated standard error. Testing if the 

estimates are significantly different from zero can do this. The estimates are not 

considered significant if they lie within their corresponding standard error limits. The 

model can then be represented by fewer parameters (Lai, 1979, p.26). 

7 The reader is referred to Farag (1994). 
8 This estimation technique is discussed in more detail in Farag (1994). 
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Check the stability of the fitted TFM Model, that is , the following conditions are 

required: 

l. for r = 1 then -1 < 81 < 1, 

2. for r = 2 then 

o, + 02 < 1, 
02 -o, < 1, 

-1 < 02 < 1. 

If the fitted TFM is of order r :;:. 0, the o parameters must satisfy the above mentioned 

requirements. The model would have to be re-idenified if the stability requirement fails. 

To check the stationarity and invertibility of the noise model, it is required that: 

1. For p = 1, q = 1, 

-1 < <I>, < 1, 

-1<0,<1. 

2. For p = 2, q = 2, 

</>, + </>2 < 1, Bi + 82 < 1, 

</>2 - </>, < 1, 82 -0, < 1, 

- 1 < </>2 < 1. -1 < 82 < 1. 

If the TFM weights in v(B) are correctly fitted, the estimated autocorrelations would then 

have zero mean and variance s2 = Ym, where m=(n-µ-p \ with mean µ, number of 

parameters p * and number of observations n. 

As an approximate guide to the significance of individual autocorrelation estimates, the 

values ± y ..r,;;_ can be used. A chi-square test can be used as a helpful overall check. 

That is, if the fitted model is adequate, the quantity given by 

(3.8) 
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would approximately follow a x2 distribution with K-p-q degrees of freedom. It must be 

noted that in (3.8) the number of degrees of freedom would depend on the number of 

parameters in the noise model (Lai, 1979, p. 26; Box and Tiao, 1975). 

The chi-square test would then show that the TFM or the noise component of the model 

is inadequate. As a result the TFM or the noise model would be incorrect (Lai, 1979, p. 

27). 

The criterion, used in assessing the suitability of the model, is namely the Akaike 

Information Criterion (AIC) (Akaike, 1974 ). This criteria reflects the closeness of fit to 

the data and p * estimated number of parameters. AIC is defined as 

where 

AIC(p*) ""nloga 2
• +2p*, 

p 

n A2 
A2 - ~ a, 
a.-£.- •' 

P 1=p'+1 (n- P ) 

a,,2 is the square of the residuals, 

n is the total number of observations, and 

p * is the number of parameters. 

3.9 Analysis of the Puerulus Settlement Data. 

The TFMs for the puerulus settlement off the shores of Dongara, Alkimos and the 

Abrolhos Islands were estimated using Minitab for Windows and SCA. 

3.9.1 Applying Edlund's Method to Dongara. 

Using the PCR method different values of K; are determined as a first step, the results are 

shown in Table 3.5. 
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Table 3.5- Determining Appropriate Values of KL for Original Series (Using PCR 
method) 

Values of K; Ki =5, Ki =6, K1 =7, Ki= 8, 
K2=5 K2=6 K2= 7 K2= 8 

Residual Sum of 0.7253 0.4216 0.3379 4.1918xl03 

Squares and (loo large) 

Crossproducts 
AIC 59.92537 32.58304 -0.35624 172.5763 

t (Min) 

The residuals series from can then be identified as an AR(2) model in the form of 

(1- 0.3288B + 0.5288B 2
) n, = e,F. 

Therefore, the estimated operator (1- 0.3288B + 0.5228B 2 ) can be used to transform the 

original X 11 , X 21 and Y
1 

• Thus, 

Y/ = (l -0.3288B + 0.5228B 2)Y1 , 

x;1 = (l-0.3288B + 0.5228B 2)X1,, 

x;1 = (1-0.3288B+0.5228B 2)X21 • 

In Table 3.6, PCR is applied to estimate the impulse response function from the 

transformed variables. 

Table 3.6 -Determining Appropriate Values of Ki for the Transformed Variables 
(Using PCR method) 

Values of K1 Ki= 5, K1=6, K1=7, K1=8, 
K2= 5 K2=6 K2 = 7 K2= 8 

Residual Sum of 0.2492 0.1530 -697.1217 -269.6530 
Squares and 
Crossproducts 
AIC -11.5585 -10.115 52.71726 165.0787 

t (Min) 

From Table 3.6, K= 5 is chosen, as it is almost white noise and follows an MA(l) 

process. Reasonable estimates of TFM weights are shown in Table 3.7. 

48 

: t 
l 



Table 3.7 - Estimates of the Transfer Function Weights when Kl= 5, Kl= 5. 
A v, . A v,. /3 ,J /3 ,J 

C 1.0286 
v,o 0.0245 Vzo 0.0272 
VJ I 0.0120 Vz 1 -0.0339 

V12 0.0084 Vz 2 -0.0134 

V13 -0.0034 V23 -0.0163 

V14 -0.0096 Vz4 0.0267 

V15 -0.0125 Vz.5 0.0501 

Having estimated the TFM weights, these can then be used to construct the corner table 

(see section 4.4), the orders for the TFM are determined to be b = 0, r = I ands= 2 for 

X ,, and b = 0, r = 3, s = I for X 2, • 

Figure 3.2 - Estimate of Dongara's Model (Output by SCA Statistical System) 

TSMODEL DONG.ARA. MODEL IS LNYlT = C +@ 
(w10-wll*B-w12*B**2)/(1-dll*B)X1T +@ 
(w20-w21*B)/(1-d21*B-d22*B**2-d23*B**3)X2T +@ 
1/(1-THETA1*B-THETA2*B**2)NOISE. 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- DONGARA 

VARIABLE TYPE OF ORIGINAL DIFFERENCING 
VARIABLE OR CENTERED 

LNY1T RANDOM ORIGINAL NONE 

X1T RANDOM ORIGINAL NONE 

X2T RANDOM ORIGINAL NONE 
-----------------------------------------------------------------------
PARAMETER VARIABLE NOM./ FACTOR ORDER CONS- VALUE STD 

LABEL NAME DENOM. TRAINT ERROR 
VALUE 

1 C CNST 1 0 NONE .0000 
2 wlO XlT NUM. 1 0 NONE .1000 
3 wll XlT NUM. 1 1 NONE -.1000 
4 w12 XlT NUM. 1 2 NONE -.1000 
5 dll XlT DENM 1 1 NONE .1000 
6 w20 X2T NUM. 1 0 NONE .1000 
7 w21 X2T NUM. 1 1 NONE -.1000 
8 d21 X2T DENM 1 1 NONE .1000 
9 d22 X2T DENM 1 2 NONE .1000 

10 d23 X2T DENM 1 3 NONE .1000 
11 THETAl LNYlT D-AR 1 1 NONE .1000 
12 THETA2 LNYlT D-AR 1 2 NONE .1000 

estim Dongara. hold resids(resl) ,fits(fitl). 

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 25 
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Figure 3.2 - Estimate of Dongara's Model {Output by SCA Statistical System) - Cont. 

>> HEAVY COMPO'l'ATION FOLLOWS. PLEASE WAIT!!! << 

ITERATION 1, USING STANDARD ERROR= 33.51927086 
ITER. OBJ. PARAMETER ESTIMATES 

1 .8261E+03 

2 .1087E+02 

3 .1153E+Ol 

4 .1125E+Ol 

5 .1104E+Ol 

6 .1080E+Ol 

7 .1054E+Ol 

8 .1026E+Ol 

9 .9970E+OO 

10 .9690E+OO 

1. 43 
.614E-01 
.142 
.604 
.536E-01 
.738E-01 
.570 
.515E-01 
.720E-02 
.585 
.518E-01 

-.187E-01 
.599 
.521E-01 

-.305E-01 
.614 
.525E-01 

-.426E-01 
.631 
.529E-01 

-.566E-01 
.650 
.532E-01 

-.727E-01 
.669 
.535E-01 

-.907E-01 
.689 
.538E-01 

- .110 

.147E-01 . 931E-02 . 220E-01 . 418E-01 

.543E-01 -.135E-01 .201E-01 .322E-01 

.115 

.112E-01 . 312E-02 . 630E-02 .184E-01 

.105E-01 -.168 -.725E-01 -.107 

.655E-01 
.118E-01 . 277E-02 . 645E-02 . 458E-01 
.674E-02 -.235 -.899E-01 -.304 

-.831E-01 
.120E-01 . 288E-02 . 673E-02 . 560E-01 
.664E-02 -.237 -.967E-01 -.333 

-.730E-01 
.121E-01 . 295E-02 . 701E-02 . 655E-01 
.649E-02 -.242 -.107 -.364 

-.697E-01 
.123E-01 .299E-02 .730E-02 .759E-01 
.630E-02 -.248 -.121 -.398 

-.677E-01 
.125E-01 . 303E-02 . 761E-02 . 870E-01 
.608E-02 -.255 -.136 -.433 

-.669E-01 
.127E-01 . 305E-02 . 794E-02 . 986E-01 
.581E-02 -.264 -.153 -.470 

-.676E-01 
.128E-01 . 307E-02 . 828E-02 .110 
.550E-02 -.274 -.170 -.508 

-.701E-01 
.129E-01 .307E-02 .863E-02 .122 
.512E-02 -.284 -.188 -.545 

-.743E-01 

ITERATION TERMINATED DUE TO: 
MAXIMUM NUMBER OF ITERATIONS 10 REACHED 
TOTAL NUMBER OF ITERATIONS 
RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**0.5 
MAXIMUM RELATIVE CHANGE IN THE ESTIMATES 

REDUCED CORRELATION MATRIX OF PARAMETER ESTIMATES 

1 
2 
3 
4 
5 

1 2 3 4 5 6 
1. 00 

1. 00 
.59 1.00 

1. 00 
-.67 -.87 1.00 

-.82 -.49 .58 1.00 

7 

1. 00 

8 

-.85 1.00 

11 
.1413D-01 
. 2118D+OO 

9 

6 
7 
8 
9 -.53 .68 1.00 

10 

10 .59 1.00 
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Figure 3.2 - Estimate of Dongara's Model (Output by SCA Statistical System) - Cont. 

THE RECIPROCAL CONDZTZON VALUE FOR THE CROSS PRODUCT MATRIX OF 
THE PARAMETER PARTIAL DERZVATZVES ZS .443349D-04 
SUMMARY FOR UNZVARZATE TZME SERIES MODEL -- DONGARA 

VARIABLE 

LNY1T 

TYPE OF ORZGZNAL 
VARIABLE OR CENTERED 

RANDOM 

RANDOM 
RANDOM 

ORIGINAL 

ORIGINAL 
ORIGINAL 

DZFFERENCZNG 

NONE 

NONE 
NONE 

PARAMETER 
LABEL 

VARIABLE NUM./ FACTOR ORDER CONS- VALUE 
NAME DENOM. TRAZNT 

STD T 
ERROR 

VALUE 
1 C CNST 
2 wlO X1T NUM. 
3 wll X1T NUM. 
4 w12 X1T NUM. 
5 dll X1T DENM 
6 w20 X2T NUM. 
7 w21 x2T NUM. 
8 d21 x2T DENM 
9 d22 x2T DENM 

10 d23 x2T DENM 
11 THETAl LNY1T D-AR 
12 THETA2 LNY1T D-AR 

TOTAL SUM OF SQUARES 
TOTAL NUMBER OF OBSERVATIONS 
RESIDUAL SUM OF SQUARES . . . 
R-SQUARE . ........ . 
EFFECTIVE NUMBER OF OBSERVATIONS 
RESIDUAL VARIANCE ESTIMATE 
RESIDUAL STANDARD ERROR . .... 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
1 
2 
1 
0 
1 
1 
2 
3 
1 
2 

NONE 
NONE 
NONE 
NONE 
NONE 
NONE 
NONE 
NONE 
NONE 
NONE 
NONE 
NONE 

.873755E+Ol 
25 

.969044E+OO 
.861 

20 
.484522E-01 
.220119E+OO 

.6891 
.0129 

-.0031 
-.0086 

.1220 

. 0538 
-.0051 
-.2845 
-.1881 
-.5448 
-.1099 
-.0743 

1. 6572 
.0037 
.0070 
.0040 
.5423 
.0238 
.0374 
.5948 
.2991 
.3296 
.1957 
.2182 

.42 
3.50 

.44 
2.14 

.23 
2.26 

.14 
-.48 
-.63 

-1. 65 
- .56 
- .34 

The model in (3.1) was estimated and the results shown in Figure 3.2. The linear form of 

this model produced an almost exact relationship due to the high correlation between the 

input variables. 

~19".1. l Checking the fitted TFM of Dongara 

To first check the stability of the TFM, it is required to check the parameter estimates. 

Since r = l (for X 11 ), -1 < 0.1220 < 1, r = 3 (for X 21 ), -1< 0.4484 < 1, then the TFM is 

stable and does not have to be re-identified. For the noise model, since p = 2, then 
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,/Ji + <Pz < 1 = (-0.1099 -0.0743) < 1, 

<A - ,i>z < 1 = (-0.0743 + 0.1099) < 1, 

-1 <<h < 1 = -1 < -0.0743 < 1. 

This ensures the stationarity of the noise model. Figure 3.3 also shows that the residuals 

are approximately normal and stationary, and there is some serial correlation observed in 

the data. 

Figure 3.3 - Residual Diagnostics for Dongara 

Residual Model Diagnostics for Dongara 

Normal Plot of Residuals I Olart of Residuals 

05 . 1 

o• Xl!ll.-0.7111D 

o., . . 
~ 

0.2 .. 
~ 0.1 .. 

~ .. 0 11-1 21.0:, 

J! 00 . J1 -01 .. .. 
-0.2 . . .. 
-0, . . .::Jml.•.0.7115 
-0, ·1 

-2 -1 0 1 2 0 5 10 15 20 25 
Ncrrra ax,-e Cbse"Wla, turbr 

1-i!togram of Residuals Resdualsvs Fits 

• 0.5 . 
0.4 -

>- 0_3 - . . ' 
f 2 

0.2 - ... - ~ 01 - . .. 
n m ·m 0.0 •' . a: -0.1 -,I: 1 

I 
. 

-0.2 - . . . . 
-0, - . . 0 -04 

-0.4-0.3-0.2-01 00 0 1 02 0.3 04 0.5 4.0 45 50 

Resid.e Rt 

3.9.2 Applying Edlund's Method to Alkimos. 

Using the PCR method, appropriate values of K; for the original series are then 

determined as in Table 3.8. 

Table 3.8 - Determining Appropriate Values of Ki for Original Series (Using PCR 
method) 

Values of K; K1 = 3, K1 =4, K1 = 5, K1 =6, 
K2= 3 K2=4 K2= 5 K2=6 

Residual Sum of 17868566 NIA NIA NIA 
Squares and 
Crossoroducts 
AIC 97.7729 NIA NIA NIA 

t <Min) 
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The residuals can be then identified as an AR(2) model in the form of 

(I - I.8669B + -0.872 I B2
) n, = £IF . 

Therefore, the estimated operator (I - I .8669B + -0.872 I B2
) can be used to transform the 

original X ,, , X 2, and Y, . Thus, 

Y,' = (1- I .8669B +-0.8721B2)Y,, 

x;, =(I-I .8669B +-0.8721B2)X1,, 

X~, = (l-I.8669B +-0.8721B2)X2,. 

In Table 3.9, PCR is applied to estimate the impulse response function from the 

transformed variables. 

Due to the shortage of this series, a guess can be taken of the orders of the input variables. 

These were b = 0, r = I s = I for X,, and b = 0, r = I, s = I for X 21 • The model in (3.1) 

was estimated and the results shown in Figure 3.4. Again, an almost exact linear 

relationship was formed due to the high correlation between the input variables. 

Figure 3.4 · Estimate of Alkimos' Model (Output by SCA Statistical System) 

TSMODEL ALKIMOS. MODEL IS LNY2T = C +@ 
(WlO - Wll*B) / (1-Dll*B)Xa +@ 
(W20 - W21*B) / (1-D21*B)X2T +@ 
1/(1-THETAl*B)NOISE. 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- ALKIMOS 

VARIABLE TYPE OF ORIGINAL 
VARIABLE OR CENTERED 

LNY2T 

XlT 

X2T 

RANDOM 

RANDOM 

RANDOM 

ORIGINAL 

ORIGINAL 

ORIGINAL 

DIFFERENCING 

NONE 

NONE 

NONE 

PARAMETER VARIABLE NUM./ FACTOR ORDER CONS
T 

LABEL 
VALUE 

1 C 

NAME DENOM. 

CNST 

TRAINT 

1 0 NONE 
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VALUE 

.0000 

STD 

ERROR 
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Figure 3.4 - Estimate of Alkimos' Model {Output by SCA Statistical System) - Cont. 
Jl 

Ii 2 WlO XlT NUM. 1 0 NONE .1000 
3 Wll XlT NUM. 1 1 NONE -.1000 e 

4 Dll XlT DENM 1 1 NONE .1000 t 
5 W20 X2T NUM. 1 0 NONE .1000 ,·i ... 

6 W21 X2T NUM. 1 1 NONE -.1000 ' 
7 D21 X2T DENM 1 1 NONE .1000 ',f''' 
8 THETAl LNY2T D-AR 1 1 NONE .1000 'l 

.I 
,•') 

ESTIM ALKIMOS. METHOD IS CONDITIONAL. @ l STOP-CRITERIA ARE MAXIT (80). @ : I. HOLD RESIDS(RESl), FITS(FITl). 

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 11 

>> HEAVY COMPUTATION FOLLOWS. PLEASE WAIT ! ! ! << 
. I C 

. ' 
ITERATION 1, USING STANDARD ERROR= 27.74417747 

ITER. OBJ. PARAMETER ESTIMATES 
1 .2247E+03 - .205 .129E-01 .172E-01 -.780E..:01 .504E-01 

.490E-01 -.353E-01 .162 
2 .8999E+02 -.821 .637E-02 .129E-Ol -1. 40 .687E-01 

-.225E-01 .294 .296 
3 .1461E+02 -2.94 .375E-02 .160E-01 -1. 35 .108 

-.450E-01 -.624E-Ol -.158 
4 .1334E+02 -5.26 .505E-02 .196E-01 -1. 22 .153 

- .139E-01 -.555 -.454 
5 .1983E+Ol -4.92 .711E-02 .244E-Ol -1. 00 .166 

.301E-02 -.860 -.403 
6 .1573E+Ol -5.10 .115E-01 .128E-01 -.367 .163 

-.434E-02 -.707 -.418 
7 .1386E+Ol -5.10 .123E-Ol .126E-Ol -.553 .163 

-.409E-02 -.696 -.398 
8 .1371E+Ol -5.12 .126E-01 . 134E-01 -.498 .162 

-.634E-02 - . 678 -.487 
9 .1362E+Ol -5 .11 .128E-01 .136E-01 -.580 .162 

-.606E-02 -.674 -.434 
10 .1358E+Ol -5 .11 .125E-01 .138E-01 -.549 .162 

-.623E-02 -.673 - . 471 
11 .1356E+Ol -5 .11 .125E-Ol .140E-01 -.585 .162 

-.614E-02 -.671 -.446 
12 .1354E+Ol -5.10 .123E-01 .143E-01 -.570 .161 

-.670E-02 -.660 -.449 
13 .1353E+Ol -5.09 .122E-Ol .145E-01 -.595 .161 

-.664E-02 -.658 -.427 
14 .1351E+Ol -5.08 .121E-Ol .146E-01 -.579 .160 

-.720E-02 -.649 -.426 
15 .1350E+Ol -5.07 .120E-01 .147E-01 -.602 .160 

-.716E-02 -.648 -.406 
16 .1350E+Ol -5.05 .119E-01 .148E-01 -.580 .159 

-.777E-02 -.641 -.409 
17 .1349E+Ol -5.04 .119E-01 .149E-01 -.608 .159 

- . 771E-02 -.639 -.387 
18 .1348E+Ol -5.04 .118E-01 .150E-01 -.592 .159 

-.781E-02 -.639 -.397 
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Figure 3.4 - Estimate of Alkimos' Model {Output by SCA Statistical System) . Cont . 

19 . 1348E+Ol -5.04 
-.779E-02 

20 .134 7E+Ol -5.01 
-.847E-02 

21 .1346E+Ol -5.00 
-.841E-02 

22 .1346E+Ol -5.00 
-.852E-02 

ITERATION TERMINATED DUE TO: 

.117E-01 
-.637 

. ll 7E-01 
-.631 

.11 7E-01 
-.630 

.116E-01 
-.630 

.151E-01 
- . 382 

.150E-01 
-.386 

.152E-01 
-.365 

.152E-01 
-.377 

- . 611 

-.586 

-.615 

-.597 

.159 

.158 

.158 

.158 

RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**O.S LESS THAN' .lOOOD-03 
TOTAL NUMBER OF ITERATIONS. . . . . . . . . 22 
RELATIVE CHANGE IN (OBJECTIVE FUNCTION)**O.S 
MAXIMUM RELATIVE CHANGE IN THE ESTIMATES .. 

REDUCED CORRELATION MATRIX OF PARAMETER ESTIMATES 

1 2 3 4 5 6 7 8 
1 1. 00 
2 1. 00 
3 1. 00 
4 .83 -.88 1. 00 
5 -.79 1. 00 
6 1. 00 
7 -.68 -.68 1. 00 
8 -.73 .74 -.84 -.77 .78 1. 00 

.9035D-04 

.3287D-01 

THE RECIPROCAL CONDITION VALUE FOR THE CROSS PRODUCT MATRIX OF 
THE PARAMETER PARTIAL DERIVATIVES IS .688427D-04 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- ALKIMOS 

VARIABLE TYPE OF ORIGINAL DIFFERENCING 
VARIABLE OR CENTERED 

LNY:.iT RANDOM ORIGINAL NONE 

X1T RANDOM ORIGINAL NONE 

X:.iT RANDOM ORIGINAL NONE 
-----------------------------------------------------------------------
PARAMETER VARIABLE NUM. / FACTOR ORDER CONS- VALUE STD 
T 

LABEL NAME DENOM. TRAINT ERROR 
VALUE 

1 C CNST 1 0 NONE -5.0018 2.8496 
-1. 76 

2 WlO xlT NUM. 1 0 NONE . 0116 . 0145 
.80 

3 Wll xlT NUM. 1 1 NONE -.0152 .0164 
.93 
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Figure 3.4 · Estimate of Alkimos' Model (Output by SCA Statistical System) - Cont. 

4 Dll xlT DENM 
-.43 

5 W20 x2T NUM. 
2.41 

6 W21 x2T NUM. 
-.15 

7 D21 X2T DENM 
-1. 23 

8 THETAl LNY2T D-AR 
-.39 

TOTAL SUM OP SQUARES . . . . 
TOTAL NUMBER OP OBSERVATIONS 
RESIDUAL SUM OP SQUARES . . . 
R-SQUARE ......... . 
EPPECTIVE NUMBER OP OBSERVATIONS 
RESIDUAL VARIANCE ESTIMATE 
RESIDUAL STANDARD ERROR . .... 

1 

1 

1 

1 

1 

3.9.2.1 Checking the fitted TFM of Alkimos. 

1 

0 

1 

1 

1 

NONE 

NONE 

NONE 

NONE 

NONE 

.928709E+Ol 
11 

.134605E+Ol 
.823 

9 
.149561E+OO 
.386731E+OO 

-.5970 

.1577 

.0085 

-.6297 

-.3770 

1.3747 

.0655 

.0563 

. 5136 

.9739 

To first check the stability of the TFM, it is necessary to check the parameter estimates. 

Since r = l and ff = -0.5493 (for X 11 ), the condition -1 < 4 < 1 is satisfied. Since 

A A 

r = 1 and Si = -0.6732 (for X 21 ), the condition -1 < Si < 1 is satisfied. This shows that 

the model is stable. The model diagnostic plots of the residuals were produced via 

Minitab as shown in Figure 3.5. From the residual model diagnostics, it appears that the 

regression assumptions are almost satisfied as the Q-Q plot almost follows a straight line 

and the I-chart of the residuals is stationary and there is only one outlier in the residual 

versus fit plot which seems to affect the small data set. 
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figure 3.5 - Residual Model Diagnostics for Alkimos 

Residual Model Diagnostics for Alkimos 
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3.9.3 Applying Edlund's Method to the Abrollws Islands. 

3.9.3.1 Using Estimated values for the Abrolhos Islands. 

For the original series, using appropriate values of K; for the PCR method are then 

determined as in Table 3.9. 

Table 3.9 - Determining Appropriate Values of .K; for Original Series (Using PCR 
method) 

Values of K; K1 = 5, K1 = 6, K1=7, K1 = 8, 
K2= 5 K2=6 K2=7 K2=8 

Residual Sum of 0.8621 0.4878 1.64E+03 3.56E+03 
Squares and 
Cross roducts 
AIC -5.66401 32.32749 76.64239 NIA 

t in 

The residuals series from can be then identified as an AR(2) model in the form of 

(1-0.6875B-0.3195B2 )n1 = &,F . 

Therefore, the estimated operator can be used to transform the original X 11 , X 21 and }'i . 

Thus, 

~, = (1-0.6875B-0.3195B2
)~, 

x;1 = (1-0.6875B-0.3195B2 )X1i, 
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In Table 3.10, PCR is applied to estimate the impulse response function from the 

transformed variables. 

Table 3.10 -Determining Appropriate Values of K1 for the Transformed Variables 
(Using PCR method) 

Values of K; K1 =5, K1=6, K1 =1, K1 = 8, 
K2 =5 K2=6 K2=1 K2= 8 

Residual Sum of 1.1877 0.5738 -0.7301 0.0967 
Squares and 
Crossproducts 
AIC 9.803155 25.74656 NIA NIA 

f (Min) 

The residuals for K = 5 follows an MA(l) process therefore it can be concluded that it is 

almost white noise. Using the estimates of TFM weights shown in Table 3.11 to help 

identify the TFM. 

Table 3.11- Estimates of the Transfer Function Weights when Kl= 5, Kl= 5 
A v,.1 A v, . /3 /3 ,} 

C 0.1197 

V10 0.0014 V20 2.8338 

V11 0.0154 V21 1.4762 

V12 0.0201 V22 -2.2526 

Vi 3 0.0203 V2_3 0.1600 

V14 -0.0012 V24 0.7688 

VJ,5 -0.0136 V2.5 -0.1977 

The orders for the TFM are b = 0, r = 1, s = I for X 3, and b = 0, r = 1, s = I for X 41 , 

the TFM weights estimated can be determined. The model in 3.1 was estimated and the 

results shown in Figure 3.6. The linear form relationship produced an exact relationship, 

this again is due to the high correlation between the input variables. The residuals of this 

model are white noise. 
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Figure 3.6 - Estimate of Abrolhos Islands' Model {Output by SCA Statistical System} 

TSMODEL ABROLHOS. MODEL IS LNY3T = C +@ 

(Wl0-Wll*B)/(1-Dl1*B)X~ +@ 

(W20-W2l*B) / (l-D2l*B)LNX,T + @ 

1/(1-THETA1*B)NOISE. 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- ABROLHOS 

VARIABLE TYPE OF 
VARIABLE 

ORIGINAL DIFFERENCING 

LNY 3T RANDOM 

RANDOM 

RANDOM 

OR CENTERED 

ORIGINAL NONE 

ORIGINAL 

ORIGINAL 

NONE 

NONE 

PARAMETER VARIABLE NUM./ FACTOR ORDER 
LABEL NAME DENOM. 

VALUE 
1 C CNST 1 0 
2 WlO X3T NUM. 1 0 
3 Wll X3T NUM. 1 1 
4 D11 X3T DENM 1 1 
5 W20 LX4T NUM. 1 0 
6 W21 LX4T NUM. 1 1 
7 D21 LX4T DENM 1 1 
8 THETAl LNY3T D-AR 1 1 

ESTIM ABROLHOS. METHOD IS CONDITIONAL. @ 

STOP-CRITERIA ARE MAXIT(80).@ 
HOLD RESIDS(RESl), FITS(FIT1). 

CONS-
TRAINT 

NONE 
NONE 
NONE 
NONE 
NONE 
NONE 
NONE 
NONE 

VALUE 

.0000 

.1000 
-.1000 

.1000 

.1000 
-.1000 

.1000 

.1000 

THE FOLLOWING ANALYSIS IS BASED ON TIME SPAN 1 THRU 22 

>> HEAVY COMPUTATION FOLLOWS. PLEASE WAIT I I I << 

ITERATION 1, USING STANDARD ERROR= 8.72869610 

ITER. OBJ. PARAMETER ESTIMATES 
1 .5756E+Ol 2.88 -.745E-03 .130E-01 .115 

.108 -.196 .153 
2 .2996E+Ol -.792 -.283E-02 .701E-02 .896 

.350 -.700 .127 
3 .2860E+Ol -.936 -.281E-02 .719E-02 .880 

.540 -.631 .723E-01 
4 .2775E+Ol -1. 05 -.269E-02 .743E-02 .858 

.629 -.581 .762E-01 
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Figure 3.6 - Estimate of Abrolhos Islands' Model (Output by SCA Statistical System)
Cont. 

5 . 2711E+Ol -1.14 -.251E-02 . 785E-02 .826 1.25 
.687 -.545 .709E-01 

6 .2651E+Ol -1.23 -.231E-02 .850E-02 . 781 1. 26 
.729 -.517 .596E-01 

7 .2588E+Ol -1.32 -.219E-02 .940E-02 .721 1.28 
.762 -.496 .450E-01 

8 .2534E+Ol -1.42 -.220E-02 .104E-01 .662 1.31 
. 786 -.483 .307E-01 

9 .2526E+Ol -1. 81 -.194E-02 .119E-01 .568 1. 40 
.866 -.463 .186E-01 

10 .2510E+Ol -1. 83 -.202E-02 .119E-01 .580 1.39 
.863 -.466 .483E-02 

11 .2505E+Ol -1. 85 -.201E-02 .119E-01 .611 1. 38 
.856 -.471 .353E-02 

12 .2503E+Ol -1. 88 -.191E-02 .121E-01 .627 1.38 
.851 -.475 .386E-02 

13 .2502E+Ol -1. 94 -.170E-02 .122E-01 .625 1. 38 
.863 -.476 .167E-02 

14 .2502E+Ol -1. 96 -.163E-02 .122E-01 .630 1. 37 
.890 -.490 -.516E-04 

ZTERATZON TERMINATED DOE TO: 
RELATIVE CHANGE ZN (OBJECTIVE FUNCTZON)**O.S LESS THAN .lOOOD-03 
TOTAL NUMBER OF ZTERATZONS 14 
RELATIVE CHANGE ZN (OBJECTIVE FUNCTZON)**O.S .2730D-04 
MAXZMtJM RELATIVE CHANGE ZN THE ESTIMATES . .1031D+Ol 

REDUCED CORRELATION MATRIX OF PARAMETER ESTIMATES 

1 2 3 4 5 6 7 8 
1 1. 00 
2 -.47 1.00 
3 1.00 
4 1.00 
5 1.00 
6 -.54 1.00 
7 .50 -.95 1.00 
8 1.00 

THE RECIPROCAL CONDZTZON VALUE FOR THE CROSS PRODUCT MATRIX OF 
THE PARAMETER PARTIAL DERZVATZVES ZS .239327D-04 

SUMMARY FOR UNZVARZATE T:IME SERIES MODEL -- ABROLHOS 

VARIABLE TYPE OF ORZGZNAL DZFFERENCZNG 
VARIABLE OR CENTERED 

LNY3T RANDOM 

LNXn RANDOM 

PARAMETER VARIABLE 
T 

ORZGZNAL 

ORZGZNAL 

ORZGZNAL 

NONE 

NONE 

NONE 

NOM./ FACTOR ORDER 
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Figure 3.6 - Estimate of the Abrolhos Islands' Model (Outuut hI SCA Statistical S1:stem}-
Cont. 

PARAMETER VARIABLE NUM./ FACTOR ORDER CONS- VALUE STD 
T 

LABEL NAME DENOM. TRAINT ERROR 
VALUE 

1 C CNST 1 0 NONE -1.9616 1.6353 
-1.20 

2 W10 X3T NUM. 1 0 NONE - . 0016 .0072 
-.23 

3 W11 X3T NUM. 1 1 NONE -.0122 .0068 
1. 80 

4 D11 x3T DENM 1 1 NONE .6295 .4159 
1. 51 

5 W20 LNX4T NUM. 1 0 NONE 1. 3714 .7497 
1. 83 

6 W21 LNX4T NUM. 1 1 NONE -.8904 2.2327 
.40 

7 D21 LNX4T DENM 1 1 NONE -.4897 1.1890 
-.41 

8 THETA1 LNY3T D-AR 1 1 NONE -.5156E-04 .2473 
-E-03 

TOTAL SUM OF SQUARES .556967E+Ol 
TOTAL NUMBER OF OBSERVATIONS 22 
RESIDUAL SUM OF SQUARES. . 250211E+Ol 
R-SQUARE . .480 
EFFECTIVE NUMBER OF OBSERVATIONS 19 
RESIDUAL VARIANCE ESTIMATE .131690E+OO 
RESIDUAL STANDARD ERROR. .362891E+OO 

3.9.3.2 Checking the Fitted TFM of the Abrolhos Islands. 

To first check the stability of the TFM, it is required to check the parameter estimates. 

Sincer= 1 (for X 3, ),-1 <0.6451 < 1,andr= 1 (for lnX4,)-1 <0.4550< !,therefore, 

the TFM is stable and does not have to be re-identified. 

For the noise model, for parameter, ¢1 , -1 < 0.0388 < 1. This ensures the stationarity of 

the noise model. Figure 3.7 also shows that the residuals are approximately normal and 

stationary, and there is some serial correlation observed in the data. 
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filgure 3. 7 - Residual Model Diagnostics for the Abrolhos Islands 
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3.9.4 Simpler Models/or Dongara, Alkimos and tile Abrollios Islands. 

The TFMs in sections 3.9.1, 3.9.2 and 3.9.3 provided better fits for Dongara (R2 = 86.1%) 

and Alkimos (R2 = 82.3 %) and Abrolhos Islands (R2 = 48.0%) respectively, These are 

more complex models than that of the regression models and difficult to use for 

forecasting . Thus, a variety of TFMs with simpler forms for ln YL,i, L = l, 2, 3, were 

constructed. These forms can also be regarded as alternative regression forms, where they 

include an AR term and an MA term or both. These models are in the form 

A. A simple TFM with a moving average term with order one (MA(l)); 

In YL,t = C + (W1o)XL,11 + (w2o)XL,21 + (l-B1B)&tF · 

B. A simple TFM with an autoregressive term with order one (AR(l)); 

(l-¢1B)ln YL,t = c + (w1o)XL,11 + (w20)XL,21 + &tF. 

c. A simple TFM that has both autoregressive and moving average terms 

(ARIMA (1,0,1)); 

(l-¢1B)ln YL,t = c + (w10 )XL,tt + (w20 )XL,zr + (l-B1B)&1F. 

D. A TFM model with differenced data in the form of an ARIMA(0,1,0); 

(1- B)ln YL,t = c + (w10 )(l-B)XL,Jt + (w20 )(l-B)XL,zr + &tF. 

E. The data in this TFM model is differenced and contains a moving average term of 

order one (ARIMA(0,1 ,1) ); 
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(1-B)ln YL.t = c +(m10 )(1-B)XL.tr +(m20 )(l-B)XL.2t +etF. 

E. The data in this TFM model is differenced and contains a moving average term of 

order one (ARIMA(0,1,1) ); 

(1- B) In Yl.t = C + ( @10 )(1- B)X l,It + ( @20 )(1 - B)X l,2t + (1 - (JIB)& tF . 

F. The data in this TFM model is differenced and contains an autoregressive term of 

order one (ARIMA (1,1,0) ); 

G. This TFM model contains an autoregressive term as its denominator; 

3.9.4.1 Applying Simple Models for the Puerulus Settlement at Dongara 

According to Dongara, the best model, from Table 3.12, was Model A (an MA(l) model) 

with If= 60.4 %, according to theA/C criterion was 

In 1\, = -1.617 + O.Ol1X1•1, + 0.074X1•21 + (1 + 0.328B)etF. 

where the residual plots for this model are illustrated in Figure 3.8. 

Table 3.12-The Area ofDongara (1968/1969- 1992/1993) 

Model Number of R2(%) AJC 

Parameten 

fitted 

A 4 60.4 -11.587 

B 4 61.9 -11.119 

C 5 62.6 - 8.764 

D 3 44.4 - 9.682 

E 4 50.2 - 8.328 

F 4 63.0 -10.535 

G 4 61.2 -10.936 

Regression 3 55.4 -12.792 

Model 
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Table 3.13-Comparing LTF, Edlund and simplified TFM models for the Dongara 
Area. -

R2(%) AIC 

LTFmethod 87.4 4.999169 

Edlund's method 86.1 9.629785 

Model A 60.4 -11.587 

Figure 3.8 Residual Diagnostics for Dongara (Model A) 
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3.9.4.2 Applying Simple Models for the Puerulus Settlement at Alkimos 

As shown in Table 3.14 the best model, according to Alkimos, was Model E with 

R2 = 78.0 %, which was 

(1- B)ln ¥2,1 = 0.158 + 0.019(1-B)X11 + 0.172(1- B)X21 + (1-1.675B)etF . 

where the residual plots for this model are illustrated in Figure 3.9. 
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Table 3.14 - The Area of Alkimos (1982/1983 -1992/1993) 

Model Number of R2(%) AIC 

Parameters 

fitted 

A 4 67.3 4.017 

B 4 73.8 3.718 

C 5 87.4 3.286 

D 3 27.9 5.393 

E 4 78.0 2.913 

F 4 33.1 7.283 

G 4 73.2 3.764 

Regression 3 66.1 16.700 

Model 

The results for the LTF method and Edlund's method are worse compared with the 

simplified TFM model (Model E) is shown in Table 3.15. 

Table 3.15 - Comparing L TF, Edlund and simplified TFM models for the Alkimos 
Area. 

R2(%) AIC 

LTFmethod Series too short not enough data 

Edlund's method 82.3 17.16348 

Model E 78.0 2.913 
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figure 3.9 Residual Diagnostics for Alkimos (Model E) 
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3.9.4.3 Applying Simple Models for the Puerulus Settlement at the Abrolhos Islands -
without Estimated Missing Values 

Finally, according to Table 3.16, for the Abrolhos Islands, Model E was the best model 

according to the AIC criterion with R2 = 57.9 %, which was 

(1- B)ln I'; 1 = 0.072- 0.147(1- B)X3 31 + 2.746(1- B)X3 4 1 + (1-1.285B)stF. , , , 

where the residual plots for this model are illustrated in Figure 3.10 

Table 3.16 - The Area of Abrolhos Islands without estimated missing values 
(1971/72-1992/93) 

Model Number of R2(%) AJC 

Parameters 

fitted 

A 4 43 .3 8.637 

B 4 42.7 -7.678 

C 5 43 .2 -5 .199 

D 3 14.2 -6.519 

E 4 57.9 -10.501 

F 4 57.3 8.000 

G 4 49.8 8.000 

Regression 3 39.1 -10.465 

Model 

66 



The results for the L TF method and Edlund' s method are worse in comparison to the 

simplified TFM model (Model E) as shown in Table 3.17. 

Table 3.17-Comparing LTF, Edlund and simplified TFM models for the Abrolhos 
Islands Area. 

R2(%) AIC 

LTFmethod Multi-collinearity 

(with estimated missing data) problem 

Edlund's method 48.0 3.776 

(with estimated missing data) 

Model E 57.9 -10.501 

(without estimated missing data) 

Figure 3.10 Residual Diagnostics for Abrolhos Islands (Model E) 
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CHAPTER IV 

STATE SPACE MODELLING 

4.1 About this Chapter. 

State space models discussed in section 4.2 are a powerful tool in modelling time series 

data. Regression model with ARIMA disturbances is a special class of state space models 

which is discussed in section 4.3. Section 4.4 discusses structural space models. A 

special class of structural models, called linear growth models is examined and 

demonstrated by application. The parameters in these models are estimated using the 

Kalman filter, which is outlined in detail in section 4.5. Finally, the regression model 

with ARIMA disturbances are applied to the fisheries data in all three location and 

compared with linear growth models in section 4.6. 

4.2 State Space Modelling. 

State-space methods were originally developed by control engineers to navigate systems 

such as controlling the position of a space rocket. They have also been found to be useful 

in modelling time series data. These equations have been used to focus on a set of m state 

variables, which change over time (Harvey, 1981, p. 101). In state-space models, the 

actual observation is given by 

Observation = signal + noise 

This signal is represented in the form of a linear combination of a set of variables, called 

state variables. These variables thus constitute a state vector at time t. The state of the 

system is described by this vector and is referred to as the 'state of nature' (Chatfield, 

1989,p.181). 

68 



Definition: State 

The state of a system or of a mathematical process is a minimum set of variables (called 

state variables) which contains sufficient information about the history of the system or 

process to allow computation of future behaviour (Timothy and Bona, 1968, p. 105). 

In mathematical terms, a system can be described as a set of m input variables 

(I) (Z) (m) d t f b , , bl a, ,a, ,··,a, an a se o no servat1on vana es y1,y2,··,YN 

The general State Space Model (SSM) consists of m random variables. The N variables 

are observed and are defined by the N x 1 vector y, . These observations are related to 

the state variables by a measurement or transition equation. Thus, a stationary SSM can 

be represented in the form 

4.l(a) 

4.l(b) 

Equation 4.l(a) is known as the observation equation and produces an Nxl vector. Eqn 

4.l(b) is known as the transition equation and an m x 1 vector is produced. Both 

equations are referred to as state equations. The reader is referred to Appendix 1 for more 

detail on equations 4.l(a) and 4.l(b). The error £,<ss> is an Nxl vector which is a white 

noise variable with a normal distribution with a zero mean and covariance matrix z,. 

The white noise 11, is a g x 1 vector [11
1
°> 11?> ·.. 11,<g> ]'. The vector 11, follows a 

normal distribution with zero mean and covariance matrix Q,. The disturbances 11, and 

£,rss/ are both serially uncorrelated. They are also both uncorrelated with each other for 

all time periods, and with the state vector, a, (Harvey, 1989, pp. 100-102). 

The system matrices are the measurement vectors H, and Z, and the transition vectors 

T,, R, and Q, . If these matrices do not change over time The SSM is said to be time

invariant or time-homogeneous (Harvey, 1989, p. 101). 
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4.2.1 Example 4.1. 

The SSM with m = 2, N =5, n = 5 and g = 4 can be represented as follows 

Y1 hi I "'12 £1/ss) 

Y2 '1-i1 hi2 [a;"] £2/ss) 

Y3 = "31 "32 (2) + £3/ss) 

y4 h41 h42 
a, 

£4/ss) 

Y5 h,1 hs2 £5/ss) 

where, 

771 

[ a,"} [T,; T,? I a:;':]+ [ 'i , 'i2 lj3 "'] 112 

a<2> T* T22 a,_1 r21 r22 r23 r24 1}3 I 21 
1}4 

4.2.2 Assumptions of SSMs. 

The SSM is assumed to have the following assumptions (Harvey, 1989, pp.115 -116, 

pp. 101-102): 

a) E(y,) and the autocorrelations of y, are independent oft for weak stationarity, 

b) £,<.,.> is a zero mean white noise term with variance Z, and 771 is a vector white noise 

with variance matrix Q,, that is, 

Two further assumptions are specified by (Harvey, 1981, pp. 101-102) for the state space 

system: 

c) The initial state vector, <Xo, has a mean of a0 and a covariance matrix Po, that is, 
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d) The disturbances t:1(ssJ and 111 are uncorrelated with each other in all time periods, and 

uncorrelated with the initial state, that is, 

E(t:f(ss)1J1 ) = Q ' for all s, for t =1, ... , N 

and for t =1, ... , N 

4.2.3 State Space Representation of an ARMA Model. 

First, consider an ARIMA(p, d, q) process expressed in the Box-Jenkins' form 

</J(B)(l - B)4 Y, = {j(B); I (4.2) 

p 

where </J(B) = 1- L</J;Bi 
j=I 

q 

and (J(B) = 1- L(JiBi 
j=I 

Assume </J(B), (J(B) have roots outside the unit circle and ;, is a sequence of 

independent N (O,a 2
) random variables. Therefore, (I- B)4 y, = V 4 y, will be stationary 

and invertible (Chatfield, 1989, p. 41). 

Equation ( 4.2) can then be re-written in the form 

r 

Y, = L viyi + (J(B);, , 
j=l 

where 

r 

</J(B)(l - B)4 = 1-L viBi 
j=l 

and r = p+d. 

The ARIMA(p, d, q) model can be represented in the state space form 

y,=H,a, 

a, = T,a,_ 1 + R,;, 
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(4.3) 

(4.4 (a)) 

(4.4 (b)) 



where H,, T, , R, and a, , if f is defined as max(r ,q + 1) , therefore, 

H, is a 1 x / vector given by 

H, = ~ 0 ... 0] 

T, is an / x/ matrix given by 

Vi 0 

V2 0 1 

T-,-
V f-l 0 0 

vi 0 0 

where V; = 0 for i > r. 

R, is an / x 1 vector given as 

where 8 j = 0 for j > q . 

and 

r q 

0 

0 

1 

0 

aj,t = L V;Yr-l+j-i + ie;c;,-l+j-i · i = 2, ... J 
i=j i=j-1 

The above equations for a, can be confirmed by substituting state space equations ( 4.4). 

By definition H,a, = Y,, by substituting in equation (4.4 (b)) then 

r q 

= v;Y,.1 + I v;Y,.; + Ie;c;,_; +c;, 
i=2 i=I 

r 

= L V;Yr-i +8(B)<;, 
i=I 

=Y, by (4.3) 
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r q 

= vjy,_, + LV;Y1-l+j-i + :I,eigt-l+j-i +ej_,g, 
i=j+l i=j 

r q 

= I v;Y,-,+j-i + :I,e;g,_,+j-i 
i=j i=j-l 

(Kohn and Ansley, 1986). 

4.2.3.1 Example 

Consider ARIMA ( 1, 1,2) model 

(I - 0.2B)Vy, = g, + 0.8g,_, + 0.1g,_2 

Y, = 1.2y,_1 +o.2y,_2 +g, +o.8g,_1 +o.1g,_2 

r = p + d = 2, q = 2 

Therefore, f= max(r, q+l) = 3. 

The state space form is then given by 

Y, = [1 0 o}x, 

ll.2 1 OJ l 1 ] a, = 1.2 0 1 a,_, + 0.8 ~ 

0 0 0 0.1 and 

where a, = [0.2 y,_1 + o~g, + o.1g,_1]. 

0.1g, 

where j> 1 

4.3 Regression Models with ARIMA Disturbances. 

Consider the regression model 

Y, = z,' /3 + m, 

where f3 is a 1 x p vector of coefficients; 

m, is generated by the ARIMA model in (4.2); 

y, and z, are observations in the form of Ix p vectors. 
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The disturbance m, is generated by the stationary ARIMA process 

assuming e, are NID(O,a 2
) and independent (Kohn and Ansley, 1985). 

Kalman filtering techniques may be used for estimating regression models with ARIMA 

disturbances. Thus, a series with missing observations can be used (Harvey and Phillips, 

1979). This model will be considered for the analysis of the puerulus settlement data to 

analyse environmental - stock recruitment relationships. 

4.4 Structural Time Series Modelling. 

Structural time series models are a special class of state space models. These are 

modelled as a sum of meaningful and separate components and are well suited to stock 

assessment. 

A Basic Structural Model (BSM) is represented as the observed value in terms of one or 

more unobserved components, called the state vector. These components can be 

partitioned into separate groups. Thus, a s-seasonal BSM model is 

s-1 
~ (3) 

Y, = - £..J Y,- j + 11, 
j=I 

The structural model can be represented in a state space form. That is, the one-

dimensional state would be a, = [µ,, /3,, y,, y,_1, y,_2 , • • ·, Y,-s+ 2 ]' and the state noise vector, 

consisting of uncorrelated white noise disturbances, would be 771 = (77,<I) 77,<2l 11?ll'. For 

example, assuming s = 4, the basic structural model has observation equation 

µ, 

/3, 
y, = [1 O l O O y, + £,<ss), 

Y,-1 
Y,-2 
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and transition equation 

µ, 0 0 0 µ, 0 0 

/3, 0 1 0 0 0 /3, 0 0 
[ q,'" J Y, = 0 0 -1 -1 -1 Y, + 0 0 1 11,(2) 

y,_, 0 0 1 0 0 y,_, 0 0 0 11,<3) 

Y,-2 0 0 0 0 Y,-2 0 0 0 

with covariance matrix, I, = diag( 11,<ll, 11,<2>, 17,<3>) Equivalently, this can be written as 

y, = (t 0 1 0 0 )a, + e,(ss) 

and 

0 0 0 1 0 0 

0 0 0 0 0 0 [ ~'"] a= 0 0 -1 -1 -1 a,_,+ 0 0 1 11,<2> I 

0 0 1 0 0 0 0 0 17,<3> 
0 0 0 0 0 0 0 

(Janaceck and Swift, 1992, pp. 88-89). 

The state space methodology can then be applied to determine the local level, trend and 

seasonal components. 

Without the seasonal component, structural models will be of the form 

Y,= µ, + e,<ss> 

- /3 (I) µ, - µ,_, + 1-1 + 11, 

/3, /3, (2) 
t = t-1 + 1J, · 

This is called a linear growth model. The first equation is the observation equation, while 

I 

the next to two equations. The state vector a, = [µ, /3,] , where µ, is the local level, 

which changes through time and /3, is the local trend or growth rate which may evolve. 

In state-space form, the observation equation is 
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y, = 6 o{~:J+e,,,,, 
' 

and the transition equation is 

[
µ']=[1 1][µ,_ 1

] [1 o][TJ/1)] 
/3, 0 1 /3,_1 + 0 1 TJ/2) 

' 
or 

a,=[~ :Ja,_, +[~ ~]~ 
(Chatfield, 1989, p. 184). 

All the main structural models have a time-invariant state space form. In this chapter, 

structural models incorporate in addition the effect of explanatory variables. This class of 

models is described in more detail in Harvey ( 1981) and Harvey (1989). The observation 

equation for the linear growth model will then be of the form: 

y, = [1 o { ~:] + /J,x .. + /J,,x,, + e,,., 

where X1t and X2t are exploratory variables. 

4.4.1 Example 4.2. 

In order to test structural models, an analysis was undertaken of the consumption of 

spirits in the UK (Yspiri,L) from 1870 to 1938 see Appendix 2 for data). The diagnostics 

of this model are shown below in Figure 4.1. Involved are two dependent variables (1) 

the real income per capita (Xspind, and (2) the relative price of spirits (XspriceL), The 

statistical software used to fit a linear growth model for this time series is ST AMP9 which 

incorporates an exact maximum likelihood routine (see section 4.5). 

9 STAMP is a structural time series Package by Simon Peters (with Bahram Pesaran and Andrew Harvey) 
Copyright © LondonSchool of Economics and ERSC centre in Economic Computing version 3. 
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Figure 4.1 - Regression Model Diagnostics to Analyse the Consumption of Spirits 
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From the regression residual plots, it can be deduced that the Normal plot of residuals 

resembles a straight line. The histogram of the residuals almost follows a normal 

distribution. However, the I Chart of residuals is not stationary and the residuals vs fits 

plot is skewed to the left. This interpretation varies, as the data is non-stationary. 

The following structural model take into account non-stationary time series 

y sp,n~ = [1 0 {;:] + 0.7142zs,;ruC - 0.8763 X spri~C + E</• ), 

where 

[ µ1
] = [ 1 l][A-i] + [1 OJ[ 771;::J . 

Pi o 1 A-1 o 1 111 

Applying a structural model to the data shows that XspinL and X spriceL are dependent on 

YspiritL · The structural model residual plots illustrate this. This is because of the normally 

distributed histogram, the normal plot which is almost a straight line, the stationary plot of 

the residuals versus the fits. 
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From Table 4.1, it can be shown from the forecast values, that the forcecasts for 

structural models were calculated to be much more precise than that of multiple regression 

models. 

Table 4.1 - Forecasts for Regression models in comparison with structural models 

Year Actual Forecast for Forecast for 
Regression Models Structural Models 

1936 1.2763 1.3122 1.2631 

1937 1.2906 1.3368 1.2695 

1938 1.2721 1.3439 1.2614 

Figure 4.2 - Structural Model Diagnostics to Analyse the Consumption of Spirits 

Residual Model Diagnostics 

Q1 

h QO 

~ -01 

.-----·· 
-02 ..... ·~~~~~~ ...... 

-2s-20-1.s-1.o-as ao as 1.0 1.s 20 2s 

NmEIS:ae 

Hstr:gcmct lei.as 

-

-

- - ' ~ -
-Q2 -Q1 0.0 Q1 

01 

l 
QO - f-l=W-\~:ttJ~ ~-'w.Y#\ X=-5 SE-03 

+-----t--- -30SL=-007278 
-Q1 

010;!)30,0606070 

CJ:servaia, f\urber 

leias~Rs 
01 --------, 

h QO 

~ -Q1 

. . .. . .. ... . . . .. 

12 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20 21 22 

R 

Structural models have been applied to environmental data as an alternative method to 

transfer function models. For example, structural models were used to forecast 

precipitation, stream flow, and suspended sediment load for the Middle Fork Eel River 

Basis near Dos Rios, California. These models determined the stream flow, rainfall 

intensities and sediment equation. The triangular structure for this model performs better 

than transfer function models as the data plays an important part in the model's 

specification (Havenner and Tracy, 1992). 
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4.5 Evaluation of the Likelihood Function. 

Maximum likelihood estimation procedures are developed for regression models with 

ARIMA disturbances. These are similar to random-walk parameter models as shown by 

(Harvey, 1981, p.204) which are defined as 

t=l, .. ·,T 

where the vector /3, is generated by the process 

/3, = /3,-t + 11,, 

where 171 - NID(O,a 2Q). 

In this case, the most convenient way to derive the likelihood function is Kalman filter 

recursions. The Kalman filter recursions is a set of recursive equations that are used to 

estimate parameter values in a state space model, using the likelihood function. 

The maximum likelihood method is applied to estimate the parameters 

'I' = [H </J K L a;<ss> a;]. One very well known numerical maximisation routine 

that is applied for state-space models is called the expectation-maximisation or EM 

algorithm. In STAMP, the exact likelihood function is used, which can be relied upon to 

produce more accurate results. This is preferred by the analyst and is used for 

estimating10 structural models. After the parameter values are estimated, the model can 

then be checked (Janaceck and Swift, 1992, p. 93). 

4.5.1 The Expectation-Maximisation (EM) Algorithm. 

An algorithm for nonlinear optimisation algorithm that is appropriate for time series 

applications involving unknown components. This forms what is called the Expectation 

Maximisation (EM) algorithm (Shumway, 1988, p. 200). 

10 The interested reader should refer to Farag (1994) as the estimation procedures, namely, the 
maximum likelihood and exact likelihood methods are explained in more detail. 
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Consider the unobserved signal process a, and an unobserved noise process e,<ss>. Both 

processes form the function y, an incomplete data set. Log likelihood logL(y, '¥) may 

be based on the complete data set, or log likelihood based in an incomplete data set, 

where the parameters denoted by the matrix 'I' are to be estimated. The incomplete-data 

likelihood, which requires maximising a function using one of the conventional non

linear optimisation techniques. In comparison, for the complete-data likelihood, the 

maximisation technique is usually very easy, except for the unobserved values of a, and 

e,<ss> (Shumway, 1988, p. 200-201). 

The EM algorithm was used for estimating the unknown parameters in an unobserved 

component model. Consider a general model that is time-invariant as follows, 

with a 0 and P0 are known, and Var(1J,) = Q is unrestricted. If the elements in the state 

vector are observed fort= 0, .. . ,N, the log-likelihood function for the y, 'sand a/s would 

be 

It follows that the iterative procedure of the EM algorithm proceeds by evaluating 

This is conditional on the latest estimate of 'I'. The expression is then set to a vector of 

zeros and solved to yield a new set of estimates of 'I' . The likelihood will remain the 
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same or increase at each iteration under suitable conditions. It will also converge to a 

local maximum (Harvey, 1989, p. 188). 

The EM algorithm requires modification to be applied to the basic structural model. The 

EM is a very slow procedure compared with the Kalman filter. 

4.5.2 The Kalman Filter. 

The main objective in state space modelling is to estimate the signal in the presence of 

noise. Therefore, the state vector a, needs to be estimated (Chatfield, 1989, p. 187). 

A set of equations, defined as the Kalman filter, allows an estimator to be updated as soon 

as a new observation becomes available. In particular, this is a two-stage process. 

The prediction equations forms the optimal predictor of the next observation of a,, given 

all the information is available. Then, using the updating equations, the new observation 

is then incorporated into the estimator of the state vector (Harvey, 1981, p. 102). 

4.5.2.1 The General Form of the Kalman Filter. 

This stage is concerned with a, from time t - 1, and the optimal estimator is denoted by 

the known vector a,_1 , based on the observations up to and including Yr-I· Denote the 

covariance matrix of the estimation error by P,_1 which is also known, that is 

P,_1 = E[(a,_1 -a,_1)(a,_1 -a,_1)']. 

The optimal estimator of a, is calculated by the prediction equations given a,_1 and P,_1. 

These are 

(4.5) 

and 

t=l, ... ,T (4.6) 

The updating equations are given by 
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and 

where 
t=l, ... ,T 

The prediction error V, is Y, -z,a,11 _1 ,where t = 1, ... ,T, is an Nxl vector. This vector has 

zero mean, E(V,) = 0, and covariance matrix, F,, where E(V,V/) = F, (Harvey, 1981, 

pp. 110, 116-117). 

4.5.2.2 The Log-Likelihood Function. 

The variance of the conditional distribution required for the likelihood is 

F ,= E{(x, - X,1,_1 J }of X, at time t -1 . This, therefore, will be the one step prediction 

error variance. The one step prediction error is 

V, = X, - X,-1 = X, - Ha,,,-1 

Assuming t:,<ss> is independent of H(a, -a,1,_1), thus the variance F, 

with mean and covariance matrix a1_1 and P,_1 of the estimator a,_1 at time t -1 . Thus, 

prediction equations of the Kalman filter were developed for the state estimate a,1,_1 and 

its variance P,1,_ 1 as defined in (4.5) and (4.6). 

The log-likelihood function to be evaluated using the Kalman filter 

N 1 N 1 N v 2 

logL('I') = --log2n --LlogF, --I-1 
• 

2 2 t=I 2 t=I F, 

The smoothed estimator is denoted by a,,r and its covariance at time t, is denoted by P,,r . 

The smoothing equations may therefore be written as 
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and 

* *' P,IT = P, + P, (P,+IIT - P,+111 )P, 

where 

t = T-1, ... , 1 

and a,1T = aT and P,1T =PT, and Pr+llt =P1+1 + q, 

starting the algorithm at t = T (Harvey, 1981, pp. 115-117). 

A modified version of the Kalman filter has been obtained to help predict future 

observations. This also helps in interpolating missing values with the aid of the modified 

fixed-point smoothing algorithm (Kohn and Ansley, 1986). 

Missing data is allowed when estimating arima.mle commands to determine regression 

model with ARIMA disturbances. This would then allow the Kalman filter to be used 

with the state space representation of Kohn and Ansley ( 1986). However, missing values 

at the beginning of the series are not permitted. 

4.5.3 Application of the Kalman Filter. 

Consider the model 

Yt = 4+a, + t:,<ss>, t:,<ss> - NID(O,a 2
) 

171 - NID(0,4a 2
) 

Then, if T = 4, and the observations are y1 = 4.4, y 2 =4.0, y3 = 3.5, y4 = 4.6, then the 

remaining entries are calculated in the following steps : 

1. First the prediction equations would reduce to 

a,1,-1 = a,_, and P,11-I = P,_, + q 

while the updating equations are 

a, = a,!t-1 (Yt - a,!1-1) /( ~!1-1 + 1) ' 
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and 

P, = P,,,-1 - P,~-1 /(P,,,_1 + 1) 

Let z, = Yi - 4, and Yi, Y2, y3, Y4 are available. The variable a.a has a mean of a0 and 

covariance matrix 4 Po. The values of the observations are given in Table 4.1, given 

a0 =4,P0 = 12and q=4. 

Given Y1 = 4.4, 

a1 = a0 + (Po +q)(z1 -a0 )l(Po +q + 1) = 0.188 

Pi = Po - Po2 !(Po+ 1) = 0.923 

Since, from the measurement equation H, = 1, then Vi for all tis defined as, 

v; = Z1 -a0 = 0.4-1(4) =-3.6 

Similarly, for t = 2, a2 =0.032, Pi =0.480, and V2 = -0.188, 

for t = 3, a3 = -0.403, ~ =0.324 and l,; =-0.532, 

for t = 4, a4 = 0.412, ft = 0.245 and V4 = 1.003. 

The final estimates obtained are a4 = 0.412 and ft= 0.245. These values may now be 

used as starting values for the smoothing algorithm. 

Table 4.2 - Smoothed Estimators and Residuals. 

T 1 2 3 4 

Vt 4.4 4.0 3.5 4.6 

z, 0.4 0.0 -0.5 0.6 

a, 0.612 0.103 -0.405 0.460 

P, 0.923 1.366 2.155 0.293 

v; -3.600 -0.612 -0.603 1.005 

a,,r 0.552 0.266 0.839 0.460 

P,,r 1.397 1.951 0.225 0.293 

e, -0.152 -0.266 -1.339 0.14 
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4.6 Diagnostics. 

As described in the previous chapters, the state space models estimated in this chapter can 

be used as the basis for modelling multivariate time series. In particular, regression 

models with ARIMA disturbances are obtained and tested in this chapter. The method 

for testing the residuals is as described in chapter II. 

4. 7 Analysis of the Puerulus Settlement Data. 

In this section the state space models are represented as regression models with ARIMA 

disturbances and linear growth models. Both models are applied to the puerulus 

settlement data for all locations. 

For Dongara, the results are calculated usmg the regression models with ARIMA 

disturbances (see section 4.5). The S-plus computer package is used to obtain the 

models. These results are summarised in Table 4.3 for Dongara. 

Table 4.3 - Regression Models with ARIMA Disturbances Applied to Dongara 

Puerulus Settlement Data. 

M odel AIC Log-Likelihood 

A RIMA((l,0,1)) 28.3515 20.3515 

A RIMA(l,0,0) 27.4625 21.4624 

A RIMA(0,0,1) 28.5683 22.5683 

A RIMA(l,1,1) 24.3992 16.3992 

A RIMA(2,0,0) 18.4602 10.4602 

A RIMA(2,0,1) 10.8966 0.8966 

From Table 4.3, it can be concluded that the best model is a regression model with 

ARIMA(2,0, I) noise. The S-plus printout is given in Appendix 3. This model converges 

and has a minimum AIC value of I 0.8966. The variance-covariance matrix between the 

parameters in the model is given as 
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l 0.0431 -0.0294 0.0004j 

-0.0294 0.0431 0.0004 . 

0.0004 0.0004 0.0005 

From the residual plot, which is given in Figure 4.3, it can be concluded from the Q-Q 

plot that the residuals are approximately normal. The residual plot is stationary and the 

histogram is approximately normally distributed and no outliers seem to appear in the 

residuals versus fits plot. 

The regression model with an estimated innovations variance ( d-) of O. 0923, 

ln .vu = o.001sx1•11 + o.os6sx1•2 , + s ,(ss) 

where 

s,(ss ) = 0.7845s(t-l)ss +-0.128&(1-l)ss +e, + 0.9948e,.J . 

Figure 4.3 - Residual Plots for Regression Model with ARIMA{2202l} 
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The residual plot for the regression model with ARIMA(2,0, 1) disturbances, defined in 

( 4. 7), is then compared with that of the residuals of the linear growth model ( classified 

earlier in this chapter as structural time series models) defined in (4.8). 

Using the STAMP package, the observation equation would then be given as 

In .ii,., ~ [1 oG J + 0.0104.x,,., + 0.0722x,,,, + e,,,,) , (4.8) 

and the transition equation is 

The residuals model diagnostics in Figure 4.3 are better than the residuals in Figure ( 4.4). 

This confirms that the residuals are normally distributed from the Q-Q plot and the 

histogram. The residuals versus observation number plot is stationary and in the residuals 

versus fits in Figure 4.3 it is shown that there are no outliers in the data in comparison 

with Figure 4.4 which shows that few outliers exist in the data (which reduces the data set 

as a result). 

Figure 4.4 - Linear growth Model Results for Dongara 
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Secondly, for Alkimos, the results are calculated to develop a regression model with 

ARIMA disturbances. These results are summarised in Table 4.4 for Alkimos. 
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Table 4.4 - Regression Models with ARIMA Disturbances Applied to Alkimos 

Puerulus Settlement Data. 

Model A/C Log-Likelihood 

ARIMA((l,0,1)) 22.10953 14.10953 

ARIMA(l,0,0) 22.24731 16.24731 

ARIMA(0,0,1) 26.9179 20.9179 

ARIMA(l,1,1) 23.41894 15.41894 

ARIMA(2,0,0) 18.68386 10.68386 

ARIMA(2,0,l) 17.67991 7.679914 

From Table 4.4, it can be concluded that the best model is a regression model with 

ARIMA(2,0,1) noise. This model converges and has a minimum AIC value of 17.6799, 

and a variance-covariance matrix between the parameters in the model is 

l0.0895 

-0.0149 

0.0461 

-0.01491 

0.0766 

-0.0298 

0.04611 
-0.0298 

0.0958 

From the residual plot, which is given in Figure 4.5, a conclusion can be drawn that the 

residuals are approximately normal. Due to the size of the data set, it can be difficult to 

determine whether that is true or not. 

Therefore, according to this the regression model with an estimated innovations variance 
') 

( er) of 0.1296, 

In Y2., = -0.0035x2,1, + 0.0395x2,2t + e,(ss)' (4.9) 

where 
t:,<.,s> = 0.0140t:11 _1><ss> -0.6276t:11 _2 J<••> +e, +-0.6407e1_1 • 
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Figure 4.5 - Residual Plots for a regression model with ARIMA(2,0,1) 

disturbances for Alkimos 
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The residuals for ( 4.9) are then compared with that of the residuals of the linear growth 

model defined in (4.10) 

In h , = [I O {~] + 0.0 I ?Ox,.,, + 0.1153x,,,, + &,,~,, (4.10) 

and the transition equation is 

[µt] = [1 l][µt-1] + [1 
A o 1 A-1 o 

OJ[ 17i<1)] 
1 17i(2) . 

In Figure 4.5, the Q-Q plot is almost a straight line and the residuals are approximately 

stationary. This which shows that the residuals are normally distributed compared with 

the results given in Figure 4.6. This can be seen in the other plots as well as there appears 

to be no outlier and the residuals seem to be stationary. However, due to the size of the 

data set a final conclusion cannot be drawn as to which model has the best performance 

accuracy. 
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Figure 4.6 - Linear growth Model Results for Alkimos 
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Thirdly and finally, for the' Abrolhos Islands, the results are calculated to develop 

regression models with ARIMA disturbances. These results are then summarised in Table 

4.4 for the Abrolhos Islands. 

Table 4.4 - Regression Models with ARIMA Disturbances Applied to the Abrolhos 

Islands' Puerulus Settlement Data {without Estimating Missing Data). 

Model AIC Log-Likelihood 

i\JllMi\.((1,0,1)) 1.0911 -6.9089 

i\JllMi\.(1,0,0) 0.2913 -5.709 

i\JllMi\.(0,0,1) 3.1997 -2.800 

i\JllMi\.(1,1,1) 8.8835 0.8835 

i\JllMi\.(2,0,0) -0.1624 -8.1624 

i\JllMi\.(2,0,1) 1.4529 -8.5471 

From Table 4.4, it can be concluded that the best model is a regression model with 

ARIMA disturbances of the form ARIMA(2,0,0). This model has minimum AIC value -

0.1624 with a variance-covariance matrix 
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[ 
0.0666 - 0.0225] 

- 0.0225 0.0666 

From the residual plot, which is given in Figure 4.8, we can conclude that the residuals 

are approximately normal. The residual plot is stationary and the histogram is 

approximately normally distributed. 

Therefore, according to this the regression model with an estimated innovations variance 

(o- 2
) of 0.0337, 

In j\1 = -O.Ol 19x3,31 + 1.4367 x 3,41 + &1css), 

where &1rssJ = 0.3429&ri- t)(ssJ - O.Ol 63&r1-z){ssJ + e1 . 

Figure 4. 7 - Residual Plots for a Regression Model with ARIMA(2,0,1) 

Disturbances for the Abrolhos Islands 
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(4.11) 

The residuals from (4.11) are then compared with the residuals of the following defined 

linear growth model (in 4.12). The observation equation for this model is 

In Y, ,, ~ (1 0 {;: ]- 0.00790x,,,, + 23153x,,., + s,(n )' (4.12) 

and the transition equation is 
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[A]=[l l][µt-1]+[1 
Pi O l Pi-1 0 

OJ[ 'llto>] 
1 77/2) . 

The residuals in Figure 4. 7 are also normally distributed in comparison with the residuals 

in Figure 4.8. Model in Figure 4. 7 appears to represent a better fit than that in Figure 

4.8. 

Figure 4.8 -Linear growth Model Results for the Abrolhos Islands 
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Overall it can be concluded that regression models with ARIMA disturbances perform 

better than linear growth models. 
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CHAPTERV 

CONCLUSION 

5.1 Comparison of Models. 

5.1.1 Results for the Dongara Area. 

A multiple regression model (Regression) was developed to represent the relationship 

between the puerulus settlement ( In Y,., ), the rainfall ( tJ ) and the Fremantle sea level 

(x2,) at Dongara. This model, with R2 = 55.4 %, was given in Chapter II, as 

In Y,., = -1.058 +0.0139x1, + 0.0638x2, +e,R. 

Secondly, a transfer function model (TFM) was developed to represent the relationship 

between the puerulus settlement, the rainfall and the Fremantle sea level at Dongara. 

This model, with R2 = 60.4 %, was given in Chapter ID, as 

In Y1.1 = -1.617+0.01 lx1, + 0.074x2, + (1 + 0.328)£,F. 

Thirdly, a linear growth model (with R2 = 58.3%) (SSMl), classified in chapter IV as a 

structural time series model consists of an observation equation 

I nj) ,., = [! 0 { ~ J + 0. I 04 x,. + 0.0722x2, + e ,,.,. 

and the transition equation 

[µ,] [1 l][µ,_ 1] [I 0][17,°>] 
/3, = 0 1 /3,_, + 0 1 11,<2> • 

Finally, a multiple regression model with ARIMA(2,0, 1) disturbances (SSM2) was 

developed to represent the relationship between the puerulus settlement, the rainfall and 

the Fremantle sea level at Dongara. This model, with R2 = 61.6%, was given in Chapter 

IV, as 

In Y,, = 0.0075xlt + 0.057 X2, + e,(ss)' 

where e,(ss) = 0.7845£(1-l)ss -0.1288e(t-l)ss +e, +0.9948e,_,. 
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Figure 5.1, shown below, shows the values or fits obtained from the models listed above. 

Figure 5.1 - Comparison of Regression Fits, Transfer Function (TFM) Fits_. 
Linear Growth (SSMl) Fits and Multiple Regression Model{with 
ARIMA(2,0;l) Disturbances) (SSM2) Fits for Dongara 
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Based on the AIC criterion, it can be shown that structural fits or SSMl fits (with 

AIC = 4) for Dongara do not perfonn well. Turning points for these fits seem to be under 

estimated in the data set. TFM's (with AIC = -11.587) are a better fit than regression fits 

(with AIC = -12.792) but more parameters are involved in the model. Overall, regression 

models with ARIMA disturbances seem the best fit for Dongara with minimum AIC 

value of -19 .111. 

5.1.2 Results for the Alkimos Area. 

For the Alkimos area, a multiple regression model was developed to represent the 

relationship between the puerulus settlement (In y2., ), the rainfall ( x,,) and the Fremantle 

sea level ( x 2,) at Alkimos. This model, with R2 = 66.1 %, was then given in Chapter II, as 

In y 2., = -6.590 + 0.02 lx1, + 0.108x2, + £,R. 

Then, a transfer function model was developed for Alkimos to represent the relationship 

between the puerulus settlement, the rainfall and the Fremantle sea level. This model, 

with R2 = 78.0 %, was represented in Chapter ill as 

(1- B) In y2•
11 

= 0.158+0.019(1- B)x11 + 0.172(1- B)x2, + (1-1.615B)t:,F . 

Then, the observation equation, of the linear growth model with R2 = 53.1 %, is 

lnj),., - [! o{~ J + 0.017x,, +0. I !Sx,, + e,,,,, 

and the transition equation is 

[µ,] = [1 l][Jlr-1] [l 0][77,<'l] 
/3, 0 1 /3, + 0 1 11(2) • 

t t-1 .,, 

Finally, a multiple regression model with ARIMA(2,0,1) disturbances with R2 = 54.1 % 

was developed to represent the relationship between the puerulus settlement, the rainfall 

and the Fremantle sea level at Alkimos. This model was given in Chapter IV, as 

lny2., = -0.003x1r +0.039x2, +t:,<ssJ 

where t:,<ssJ = 0.0141e1,_1xssJ -0.6282e(t_2 xssJ +e, +0.64Ie,_,. 
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These fits are compared and illustrated in Figure 5.2. 

Figure 5;2 - Comparison of Regression Fits, Transfer Function (TFM) Fits; 
Linear Growth (SSMl) Fits and Multiple Regression Model (with 
ARIMA(2,0,1) Disturbances)(SSM2) Fits forAlkimos 
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From Figure 5.2, it can be shown that the linear growth fits for Alkimos are the worst 

models with an AIC value of 19.277. This is because of bad starting points for slope and 

level seem which seem to over estimate and under estimate turning points in the data set. 

TFM's has the minimum AIC value compared with regression fits which produced an 

AIC value of 16.700. TFMs provide a better fit with minimun AIC value but more 

parameters are involved in this model. Regression models with ARIMA disturbances are 

the second best fit to the data for Alkimos. 

5.1.3 Results for the Abrolhos Islands Area. 

A multiple regression model was developed to represent the relationship between the 

puerulus settlement (In J3., ), the rainfall ( x 31 ) and the transformed stock recruitment 

( x 4,) at the Abrolhos Islands. This model, with R2 = 69.6%, was given in Chapter II, as 

lny3., = 0.918-0.014x3, + 1.16x4, +e,R. 

A transfer function model was developed to represent the relationship between the 

puerulus settlement, the rainfall and the transformed stock recruitment at the Abrolhos 

Islands without estimated missing values. This model, with R2 = 57.9%, was given in 

Chapter III, as 

(l-B)lny3_, = 0.072-0.147(1-B)x3, + 2.746(1-B)x4, + (1-1.285B)e,F. 

A linear growth model, with R2 = 25.1 %, with observation equation 

lnJ,., = [! O {~ ]-0.008x3, + 2.375x., + e,,,,, 

and the transition equation is 

[µ,]=[I l][µ,_ 1] [1 0][77,°l] 
/3, 0 1 /3, + 0 1 11(2) • 

t t-1 'It 
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A multiple regression model with ARIMA(2,0,0) disturbances was developed to represent 

the relationship between the puerulus settlement, the rainfall and the transformed stock 

recruitment at the Abrolhos Islands. This model was given in Chapter IV, as 

lnh,r = -0 .013x3t +l.437.x41 +&t(ss) 

where &t(ssJ = 0.3431 &(t- iJ(ssJ - 0 .0162 &(1_ 2 HsJ + e, . 

These fits are compared as shown below in Figure 5.3. 

Figure 5.3 - Comparison of Regression Fits, Transfer Function (TFM) Fits • . 
LinearGrowth (SSM1) Fits and Multiple Regression Model(with_ 
ARIMA(2,0,1) Disturbances) (SSM2) Fits for the Abrolhos -Islands 
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From Figure 5.3, it can be shown that regression models with ARIMA disturbances seem 

to be the best fit for Abrolhos Islands with AIC = -18 .4 78. It can be shown that the 

regression,fits for the Abrolhos Islands are the second best fit with AIC =-10.465 . TFM's 

are a better fit (with AIC = -10.501) but more parameters are involved in this model. 

Structural (SSMl) fits are the worst performing models for this area. This is due to bad 

starting points. 

5.2 Discussion. 

The results for the regression models are also compared with TFM models, linear growth 

models (SSMl fits) and regression models with ARIMA disturbances (SSM2 fits), to 

estimate the puerulus settlement for the years not used in determining the relationship 

starting from 1993/94 to 1995/96. These results are shown in Tables 5.1, 5.2 and 5.3. 

Figure 5.1 (Dongara), Figure 5.2 (Alkimos) and Figure 5.3 (the Abrolhos Islands) plot 

the actual data, comparing TFM, regression models, linear growth models and SSM 

models for each location. The forecasts are given Figure 5.4, Figure 5.5 and Figure 5.6. · 

Figure 5.4 - Forecasts from 1993/94 - 1995/96 for Dongara~ 
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Figure 5.5 - Forecasts from 1993/94 -- 1995/96 for Alkimos; 
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Figure 5.6 - Forecasts from 1993/94 -1995/96 for the Abrolhos Islands 
(without estimated missing -data). 
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Based on the AIC criteria, for Dongara, the order of the models from best to worst were 

as follows: (1) regression models with ARIMA(2,0,0) disturbances or SSM2 models (with 

R2 = 61.6 %), (2) regression models (with R2 
= 55.4%) (3) TFM models (R2 

= 60.4%) and 
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60.4%) and (4) linear growth models or SSMl models (with R2 = 58.3%). The results in 

addition to forecasts for these models are given in Table 5.1. 

Based on the A/C criteria, for Alkimos, the order of the models from best to worst were as 

follows: (1) TFM models (R2 = 78.0%), and (2) regression models with ARIMA(2,0, 1) 

disturbances (with R2 = 78.6 %), (3) regression models (with R2 = 66.1 %), (4) linear 

growth models (with R2 = 70.6%). The results in addition to the forecasts for these 

models are given in Table 5.2. 

Table 5.1 - Comparison of Multiple Regression Models, Transfer Function Models 
(TFM), Linear Growth Models (SSMl) and Multiple Regression Model (with 
ARIMA(2,0,1) Disturbances) Models (SSM2) for Dongara 

Year 1992/93 1993/94 1994/95 1995/96 

lnY1., 4.043 4.143 4.635 5.389 

Forecasts In j\, for 4.346 3.855 4.261 5.248 

Regression Model 
(3.170, 4.860) (2.880, 4.550) (4.430, 5.910) 

(95% C.I.) (R2 = 55.4%) 

Forecasts In j\, 4.290 4.038 3.729 5.084 

(Best TFM Model -
(3.260, 4.810) (2.950, 4.510) (4.310, 5.860) 

Model A)) 

(95% C.I.) ( R2 = 60.4%) 

Forecasts In )'i., for 4.562 3.985 3.873 5.212 

Linear Growth Model 
(3.893, 4.074) (3.783, 3.963) (5.121, 5.302) 

(SSMl Models) 

(95% C.I.) ( R2 = 58.3%) 

Forecasts In Y1.1 3.670 3.900 3.976 4.998 

For Regression Model 
(3.482, 4.804) (3.973, 5.296) (4.728, 6.050) 

with ARIMA (2,0,0) 

Disturbances 

(SSM2 Models) (95%C.L) 

( R2 = 61.6%) 
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Table 5.2 - Comparison of Multiple Regression Models, Transfer Function 
Models(TFM), Linear Growth Models (SSMl) and Multiple Regression Model (with 
ARIMA(2,0.1) Disturbances) Models (SSM2) for Alkimos 

Year 1992/93 1993/94 1994/95 1995/96 

lny2., 2.303 1.946 3.807 4.431 

Forecasts In y 2., for 2.706 3.831 3.461 3.104 

Regression Model 
(0.336, 2.950) (0.097, 2.710) (2.490, 5.100) 

(95% C.I.) (R2 = 66.1 %) 

Forecasts for In J2., 2.497 1.640 1.401 3.800 

(best TFM Model - Model E) 
(l.370, 3.350) (0.815, 2.800) (2.680, 4.670) 

(95 % C.I.) (R2 = 78.0 %) 

Forecasts In J2., for 2.853 2.059 1.988 4.156 

Linear Growth Model 
(1.643, 2.474) (1.573, 2.403) (3.741, 4.572) 

(SSMl Models) 

(95 % C.I ) (R2 = 70.6 %) 

Forecasts In y 2., for 2.521 2.709 2.926 3.834 

For Regression Models with 
(2.645, 2.772) (2.883, 3.01) (2.789, 2.916) 

ARIMA (2,0, I) Disturbances 

(SSM2 Models) 

(95 % C.I ) (R2 = 78.6 %) 

For the Abrolhos Islands, the order of the models from best to worst were as follows: (1) 

regression models with ARIMA(2,0,0) disturbances (with R2 = 75.0%). (2) regression 

models (with R2 = 69.6%), (3) TFM models (R2 = 57.9%), (4) linear growth models (with 

R2 = 25. l % ), according to AIC criterion. The results in addition to the forecasts for the 

Abrolhos Islands are given in Table 5.3. 

From Table 5.1, 5.2 (for the areas of Dongara and Alkimos) TFM models were fitted 

with a reasonable R2 value compared with multiple regression models, SSM l models and 

SSM2 models. From Table 5.3 (for the Abrolhos Islands), SSM2 models were fitted 

with a reasonable R2 value to the data compared with multiple regression models, SSM l 
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models and TFM models. For Dongara and the Abrolhos Islands SSM2 models were 

concluded to be a better model to fit the data. For the Abrolhos Islands, this shows that 

SSM2 models perform best when missing values are involved. For Alkimos, which is a 

very short data set, TFM models perform better. 

Table 5.3 - Comparison of Multiple Regression Models, Transfer Function Models 
(TFM), Linear Growth Models (SSMl) and Multiple Regression Model (with 
ARIMA(2,0,0) Disturbances) Models (SSM2) for the Abrolhos Islands (without 
estimated missing data) 

Year 1992/93 1993/94 1994/95 1995/96 

lny3., 3.761 3.296 4.673 4.890 

Forecasts In J3., for 3.725 3.936 3.417 3.724 

Regression Model 
(3.315, 4.444) (3.868, 4.997) (3.832, 4.961) 

(95% C.L)(R2 = 69.6 %) 

Forecasts In y3., (best TFM 3.884 4.191 3.278 4.141 

model - Model E) 
(3.520, 4.870) (2.600, 3.950) (3.470, 4.820) 

(95% C.I.)( R2 = 57.9 %) 

Forecasts In y3., for 4.049 5.322 4.215 6.015 

Linear Growth Model 
(5.289, 5.355) ( 4.182, 4.248) (5.981, 6.048) 

(SSMI Models) 

(95% C.L)(R2 = 25.1%) 

Forecasts In y3., for 3.836 3.806 4.753 4.556 

For Regression Models with 
(3.797, 3.815) (4.744, 4.762) (4.548, 4.565) 

ARIMA (2,0,0) disturbances 

(SSM2 Models) 

(95% C.L)(R2 = 75.0 %) 

In forecasting, SSM2 models produced a smaller confidence interval (C.I.) compared with 

multiple regression models, TFM models and SSMI models but for the Abrolhos Islands 

the actual values are not in the confidence intervals. This indicates that SSM2 models 

can produce more reliable forecasts compared with multiple regression models, TFM 
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models and SSMl models. For SSM2 models, the forecast values of 1993/1994 to 

1995/1996 in all three locations were much more reasonable to the actual values 

compared with the forecast values from multiple regression models, TFM models and 

SSMl models. For Alkimos, it can be deduced that the TFM models seem to have a 

better short term prediction. 

The forecast values for SSM2 models produced reasonable estimates of the puerulus 

population for all areas. Though, due to management changes for the Abrolhos Islands 

area from 1993/94 to 1995/96 it was difficult to forecast using the same model. Overall, 

it can be deduced that rainfall and sea level do have a significant effect on puerulus 

settlement for Dongara and Alkimos. Also the spawning stock and rainfall have an effect 

on the puerulus settlement at the Abrolhos Islands. 

In general, SSM2 models can give us a more reliable forecast within the next three years 

and a better fit for the data compared with multiple regression models. For long term 

forecast, multiple regression models can give a better forecast value compared with 

SSM2 models. This could be reflected from the forecast values in 1995/1996 for 

Dongara. 

The SSM2 models could not predict future values due to changes in fishing practices. 

The changes in the last three years in fishing practice also show in the confidence interval 

(especially for the Abrolhos Islands) where, in 1995/96, the predicted value was 4.556 

compared with the actual value 4.890 with confidence interval (4.548, 4.565). 

5.3 Future Research Directions. 

A variety of models were applied to the forecasting of puerulus settlement. Other models, 

which are worthy of consideration, include regression models with ARIMA disturbances 

with time-varying parameters that can be represented as in (Chatfield, I 989, p. 186) 

X, =a, +b,u, +n, 
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where X, is an explanatory variable known to be linearly related to an explanatory 

variable u,. The regression coefficients at and ht are allowed to evolve through time 

according to a random walk. As a Kalman filter approach, this model would be 

represented as 

x, = h;e, +11,, 

(), = (),_, + w, . 

where e; = [a, b,], h; = [I u,]. The regression models with time-varying coefficients 

were not applied here due to the unavailability of suitable software. New software would 

need to be developed. 

These approach as well as other Kalman techniques can be explored and compared for 

environmental data sets. The impact of management changes in the model can be also 

explored as more data is being collected. 

5.4 Conclusion. 

The main aim of this research has been to compare the application of multiple regression 

models, TFM models, SSMl models and SSM2 models so as to examine the relationship 

between the westerly winds and the Leeuwin Current, and the puerulus settlement at 

Dongara and Alkimos. Another objective is to examine if the westerly winds and the 

spawning stock, have a significant effect on levels of puerulus settlement at the Abrolhos 

Islands in the western rock lobster fishery. In general, SSM2 models have generally 

produced better results than the other three stochastic models examined in this thesis. 

Therefore, SSM2 models may be considered suitable for modelling relationships to 

environmental data sets. 

The aims of this research were to apply and compare regression models, transfer functon 

models and state space models for the environmental-dependent stock recruitment 
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relationships of crustracean species in Western Australia. These models have been 

applied and compared in this chapter and it was found that the application of state-space 

models which was found to provide a better insight into the factors that affect the 

recruitment of crustacean species. The third aim of this research was investigate the 

increased complexity of transfer function and general state-space models justify their use 

in practice. 

In conclusion where there are missing values in the data sets SSM2 models seem to 

handle these datasets much better than TFM models. However, SSM2 models can only 

produce reliable forecasts for the input processes compared with the TFM models. TFM 

models can produce reliable forecasts for the output process as well. Thus, regression 

models with ARIMA disturbances are best applied to environmental data with missing 

data involved. These regression models are generally easier to forecast and easier to 

explain the process to biologists. The SSM2 approach accounts for a marked 

autocorrelation in the time series data. Overall, SSM2 models are best applied than 

dynamic TFM models to environmental data. 
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APPENDIX I 
Glossary 

Regression Analysis 

t = 1,2 .. . n determines the time of the observation; 

i = I .. . k, where k is the number of explanatory variables involved in the data analysis of a 

regression model; 

n is the number of observations; 

at the lh observation; 
A 

/30 is a constant; 

y, is the output vector; 

• •th . '. 
X; = (xi,···,x;,) IS the i mput vector; x IS the transpose of x, 

c is the constant present in the regression model; 
A A 

f3 represents a vector for the estimated regression coefficients where A , 
i = 0, ... , k ; £,R are error terms in a regression model. These error terms are 

normally distributed random variables with mean zero and constant variance 

a 2. 
ER ' 

y, are the fitted values for the regression analysis; 

ln y, is the expectation or predicted value of the puerulus settlement. 

Transfer Function Models (TFM) 

t = 1 ,2 .. . n determines the time of the observation; 

i = 1 .. . k where k is the number of explanatory variables involved in the data analysis of a 

TFM; 

n is the number of observations; 

at the lh observation, 
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Transfer Function Models (TFM) (Cont.). 

Y, is the output factor; 

X;, is the i1h input vector; 

N, is defined as the noise model as part of the TFM ; 

C is the constant present in the TFM; 

t:tF are error terms in a TFM from the noise component. These error terms are 

normally distributed random variables with mean zero and constant variance 

(j 2. 
e,., ' 

K = Max(K1, K2), 

n=N-K, 

f3 = [c V1.o 

and 

where 

XO 
- I 

V ••• V 1,1 l,K1 

. · 0 0 [ 
X 1 = B1 X and X = xi,K+I 
- - - u 

V V ••• V ] 2,0 2,1 2,L2 

Xi,K+2 • • • Xi,K+n]; 

vi,i = v;,o,vi.l,vi.2,. .. are called TFM weights or impulse response weights for the 

input series X;, ,where i =1,2, ... ,k andj = 0,1,2, ... ,K;.; 

B is defined as a backshift operator ; 

TFM a Transfer-Noise Function Model, in these models the parameters b, r, and s 

need to be estimated. Chapter m gives an in depth description of the model; 

bis a time delay parameter, an order to be determined in a TFM; 

r is an order of the polynomial 8;(B) = 1- 81,1B - <>;, 2B
2 
_., ·-<>i.rBr, to be 

determined when identifying a TFM; 

113 



Transfer Function Models (TFM) ( Cont.). 

determined when identifying a TFM; 

p is an order of the autoregressive component </J(B) of the ARMA model , where 

q is an order of the moving average component (J(B)of the ARMA model, where 

(J(B) = 1- (}1 (B) - (}2 (B/-· · ·-(Jq (Bt; 

d is difference operator of the ARMA model; 

ARIMA(p, d, q) - Autoregressive Integrated Moving Average model, with 

autoregressive terms p, difference term d, and moving average terms q; 

w, is a variable defined as Vd X, which is equivalent to (1- B)' X,; 

I 

X means the transpose of X ; 

In Y, is the expectation or predicted value of the puerulus settlement; 

C, is the catch for the fishing zones encompassing the three settlement sites. 

Ll (J, g) is the determinant in a comer table at its J, g'h element where 

f = 0,1,2, ... ,M, f"?:. 0 and g = 1,2, ... ,M, g "?:. I, where Mis the maximum! and g 

components; 

v,.
1 

are the true values of the impulse response weights; 

v ,.1 are the estimated values of the impulse response weights; 

State Space Models. 

Y, is an output factor 

X, is an N x m matrix for the actual observations, 

a,, a,.1, are m x 1 matrices, 
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State Space Models (Cont.). 

T, is an m x m matrix, 

R, an m x g matrix, 

77, is a g x 1 matrix, 

H, is an N x m matrix of known parameters, 

K, is a fixed matrix of order m x g. 

e,<ss> is an Nxl vector, 

µ, is the local level, 

/3, is the local trend, 

r, is the seasonal index, 

s is the number of seasons, 

e1,,, e2.,, e3., are assumed to be additive and mutually uncorrelated white noise 

disturbances. 
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I 
Sales Data 

District Number of 
Households ( X 11 ) 

(in 10.000s) 
1 14 
2 28 
3 IO 

4 30 
s 48 
6 30 
7 20 
8 16 
9 25 

APPENDIX II 
Data Sets Used 

Number of Occupied 
Households ( X2,) 

(in 10.000s) 
11 
18 
5 
20 
30 
21 
15 
11 
17 
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I 
Monthly Sales ( y 1 ) 

50 
73 
32 
121 
156 
98 
62 
51 
80 



Dataset used for Example 3.2 - Linnerud Data 

ID# Weij?ht Waist Pulse Chins Situps Jumps 
l 191 36 50 5 162 60 
2 189 37 52 2 110 60 
3 193 38 58 12 101 101 
4 162 35 62 12 105 37 
5 189 35 46 13 155 58 
6 182 36 56 4 101 42 
7 211 38 56 8 101 38 
8 167 34 60 6 125 40 
9 176 31 74 15 200 40 
10 154 34 56 17 251 250 
11 169 31 50 17 120 38 
12 166 33 52 13 210 115 
13 154 34 64 14 215 105 
14 247 46 50 l 50 50 
15 193 36 46 6 70 31 
16 202 37 62 12 210 120 
17 176 37 54 4 60 25 
18 157 32 52 11 230 80 
19 156 33 54 15 225 73 
20 138 33 68 2 110 43 

Dataset used for Example 3.2 - Standardized Linnerud Data 

Wei2ht Waist Pulse Chins Situps Jumps 
ID# XJ X2 X3 YI Y2 Y3 
l 0.50 0.19 -0.85 -0.84 0.26 -0.20 
2 0.42 0.50 -0.57 -1.41 -0.57 -0.20 
3 0.58 0.81 0.26 0.48 -0.71 0.60 
4 -0.67 -0.12 0.82 0.48 -0.65 -0.65 
5 0.42 -0.12 -1.40 0.67 0.15 -0.24 
6 0.14 0.19 -0.01 -1.04 -0.71 -0.55 
7 1.31 0.81 -0.01 -0.27 -0.71 -0.63 
8 -0.47 -0.44 0.54 -0.65 -0.33 -0.59 
9 -0.11 -1.37 2.48 1.05 0.87 -0.59 
10 -1.00 -0.75 -0.01 1.43 1.69 3.50 
11 -0.39 -0.44 -0.85 1.43 -0.41 -0.63 
12 -0.51 -0.75 -0.57 0.67 1.03 0.87 
13 -1.00 -0.44 1.10 0.86 1.11 0.68 
14 2.77 3.31 -0.85 -1.60 1.53 -0.40 
15 0.58 0.19 -1.40 -0.65 -1.21 -0.77 
16 0.95 0.50 0.82 0.48 1.03 0.97 
17 -0.11 0.50 -0.29 -1.03 -1.37 -0.88 
18 -0.87 -1.06 -0.57 0.29 1.35 0.19 
19 -0.92 -0.75 -0.29 1.05 1.27 0.05 
20 -1.64 -0.75 1.65 -1.41 -0.57 -0.53 
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Dataset used for Example in Chapter IV 

SpinL SpriceL SpiritL 

1870 1.7669 1.9176 1.9565 
1871 1.7766 1.9059 1.9794 
1872 l.7764 1.8798 2.0120 
1873 1.7942 1.8727 2.0449 
1874 1.8156 1.8984 2.0561 
1875 1.8083 1.9137 2.0678 
1876 1.8083 l.9176 2.0561 
1877 l.8067 1.9176 2.0428 
1878 1.8166 1.9420 2.0290 
1879 l.8041 1.9547 l.9980 
1880 1.8053 1.9379 l.9884 
1881 1.8242 1.9462 1.9835 
1882 l.8395 1.9504 l.9773 
1883 l.8464 1.9504 1.9748 
1884 l.8492 l.9723 l.9629 
1885 l.8668 2.0000 1.9396 
1886 1.8783 2.0097 1.9309 
1887 l.8914 2.0146 l.9271 
1888 l.9166 2.0146 1.9239 
1889 1.9363 2.0097 l.9414 
1890 l.9548 2.0097 1.9685 
1891 1.9453 2.0097 1.9727 
1892 1.9292 2.0048 l.9736 
1893 1.9209 2.0097 l.9499 
1894 l.9510 2.0296 1.9432 
1895 1.9776 2.0399 1.9569 
1896 1.9814 2.0399 1.9647 
1897 1.9819 2.0296 1.9710 
1898 1.9828 2.0146 1.9719 
1899 2.0076 2.0245 1.9956 
1900 2.0000 2.0000 2.0000 
1901 1.9936 2.0048 1.9904 
1902 1.9933 2.0048 1.9752 
1903 1.9797 2.0000 l.9494 
1904 1.9772 1.9952 1.9332 
1905 1.9924 1.9952 1.9136 
1906 2.0117 1.9905 1.9091 
1907 2.0204 1.98 I 3 1.9136 
1908 2.0018 l.9905 1.8886 
1909 2.0038 1.9859 1.7945 
1910 2.0099 2.0518 1.7644 
1911 2.0174 2.0474 l.7817 
1912 2.0279 2.0341 1.7784 
1913 2.0359 2.0255 1.7945 
1914 2.0216 2.0341 l.7888 
1915 l.9896 1.9445 1.8751 
1916 1.9843 l.9939 1.7853 
1917 1.9764 2.2082 1.6075 
1918 1.9965 2.2700 l.5185 
1919 2.0652 2.2430 l.6513 
1920 2.0369 2.2567 l.6247 
1921 1.9723 2.2988 1.5391 
1922 1.9797 2.3723 1.4922 
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Dataset used for Example 4.2 in Chapter IV 

SpinL SpriceL SpiritL 

1923 2.0136 2.4105 1.4606 
1924 2.0165 2.4081 1.4551 
1925 2.0213 2.4081 1.4425 
1926 2.0206 2.4367 1.4023 
1927 2.0563 2.4284 1.3991 
1928 2.0579 2.4310 1.3798 
1929 2.0649 2.4363 1.3782 
1930 2.0582 2.4552 1.3366 
1931 2.0517 2.4838 1.3026 
1932 2.0491 2.4958 1.2592 
1933 2.0766 2.5048 1.2635 
1934 2.0890 2.5017 1.2549 
1935 2.1059 2.4958 1.2527 
1936 2.1205 2.4838 Missing 
1937 2.1205 2.4636 Missing 
1938 2.1182 2.4580 Missing 
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Puerulus Settlement Data at Dongara from 1968 - 1995. 

Rainfall Sealevel ln(Puerulus Settlement) 

Xu X21 lny1,t 

1968 53 71.4 4.55388 
1969 26 65.2 2.63906 
1970 47 72.7 3.55535 
1971 78 74.6 4.20469 
1972 60 67.9 3.49651 
1973 47 73.2 4.41884 
1974 80 79.3 5.07517 
1975 64 80.7 4.58497 
1976 84 73.7 4.74493 
1977 70 68.2 4.45435 
1978 59 74.5 5.20401 
1979 56 69.2 4.35671 
1980 52 69.1 4.59512 
1981 67 72.3 4.41884 
1982 38 67.4 3.68888 
1983 55 73.1 4.65396 
1984 106 76.6 5.25227 
1985 49 73.7 4.85203 
1986 41 69.4 4.09434 
1987 54 65.5 4.11087 
1988 63 77.1 4.44265 
1989 86 78.1 5.32301 
1990 54 70.0 4.66344 
1991 86 69.4 4.53260 
1992 68 69.9 4.04305 
1993 66 64.7 4.14313 
1994 29 68.3 4.63473 
1995 110 74.9 5.38907 
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Puerulus Settlement Data at Alkimos from 1982 - 1995. 

Rainfall Sealevel ln(Puerulus Settlement) 

Xtt X21 lny2,1 

1982 38 67.4 0.69315 
1983 55 73.1 2.30259 
1984 106 76.6 3.73767 
1985 49 73.7 2.56495 
1986 41 69.4 1.09861 
1987 54 65.5 2.48491 
1988 63 77.1 3.87120 
1989 86 78.1 3.21888 
1990 54 70.0 2.70805 
1991 86 69.4 2.56495 
1992 68 69.9 2.30259 
1993 66 64.7 1.94591 
1994 29 68.3 3.80666 
1995 110 74.9 4.43082 
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Puerulus Settlement Data at the Abrolhos Islands from 1971 - 1995. 

Rainfall ln(Spawning ln(Puerulus Settlement) 
Stock) 

X31 lnX41 lny3,1 

1971 78 3.68888 3.87120 
1972 30 3.61092 4.20469 
1973 32 3.49651 4.33073 
1974 45 3.78419 4.87520 
1975 51 3.61092 4.66344 
1976 35 3.58352 4.66344 
1977 44 3.58352 4.72739 
1978 16 3.55535 5.20949 
1979 33 3.49651 Missing 
1980 38 3.29584 Missing 
1981 36 3.21888 Missing 
1982 27 3.29584 Missing 
1983 53 3.29584 Missing 
1984 50 3.25810 3.95124 
1985 13 3.29584 4.70953 
1986 34 3.13549 3.71357 
1987 55 3.40120 4.00733 
1988 41 3.33220 4.12713 
1989 38 3.17805 3.97029 
1990 28 3.04452 4.07754 
1991 73 2.94444 3.71357 
1992 41 2.94444 3.76120 
1993 33 2.94444 3.29584 
1994 19 3.2580 4.67283 
1995 42 3.4965 4.89035 
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APPENDIX III 
Estimated Regression Models with ARIMA disturbances 

(Using Splus version 4.0) 

Dongara Results. 

> dongara5.fit 
$model: 
$model$order: 
[1] 2 0 1 

$model$ar: 
[1] 0.7845047 -0.1288463 

$model$ndiff: 
[1] 0 

$model$ma: 
[1] 0.9947838 

$var.coef: 
ar(l) ar(2) ma(l) 

ar(l) 0.0431212562-0.029359747 0.0004171374 
ar(2) -0.0293597474 0.043100657 0.0004051890 
ma(l) 0.0004171374 0.000405189 0.0004769909 

$method: 
[ 1] "Maximum Likelihood" 

$series: 
[1] "lnylt" 

$aic: 
[1] 10.89663 

$loglik: 
[ 1] 0.8966252 
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Dongara Results (Cont.). 

$sigma2: 
[1] 0.05329282 

$n.used: 
[1] 23 

$n.cond: 
[1] 2 

$converged: 
[1] F 

$conv.type: 
[ 1] "iteration limit" 

$reg.coef: 
[1] 0.007537681 0.056774283 

$reg.series: 
[ 1] "x 1.dat" 

Residuals. 

> dongara5.diag <- arima.diag(dongara5.fit, acf.resid=T, 
+ resid=T, plot=T) 
> dongara5.diag 
$acf.list: 
$acf.list$acf: 

' ' 1 
[, 1] 

[ 1,] 1. 000000000 
[2,] -0.076507039 
[3,] -0.154877648 
[ 4,] -0.227105796 
[5,] 0.049641673 
[6,] 0.051200144 
(7 ,] 0.036928143 
[8,] 0.142622203 
[9,] -0.364687562 
(10,] -0.010408816 
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Dongara Results (Cont.). 

[11,] 0.073397532 
[12,] 0.103727214 
[13,] -0.033816744 
[ 14,] -0.00907 4821 
[ 15,] -0.181079775 

$acf.list$1ag: 

• ' 1 
[,I] 

[I,] 0 
[2,] 1 
[3,] 2 
[4.] 3 
[5,] 4 
[6,] 5 
[7,] 6 
[8,] 7 
[9,] 8 

[10,] 9 
[11,] 10 
[12,] 11 
[13,] 12 
[14,] 13 
[15,] 14 

$acf.list$n.used: 
[1] 23 

$acf.list$type: 
[I] 11 correlation 11 

$acf.list$series: 
[I] 11 resid 11 

$acf.list$snames: 
character(O) 
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Dongara Results (Cont.). 

$gof: 
$gof$statistic: 
[1] 1.929280 1.989574 2.020939 2.488784 5.547715 5.550207 

5.674113 5.921577 
[9] 5.947879 5.949773 

$gof$df: 
[I] 1 2 3 4 5 6 7 8 9 10 

$gof$p. value: 
[1] 0.1648372 0.3698023 0.5680722 0.6466454 0.3527421 

0.4754094 0.5782740 
[8] 0.6560161 0.7451232 0.8194653 

$gof$1ag: 
[1] 3 4 5 6 7 8 9 10 11 12 

$std.resid: 
1 2 

8 
3 4 5 6 7 

NA NA 0.2270815 -0.06039654 -1.715631 0.4774403 0.1405477 -
1. 760235 

9 10 
14 15 

-0.3075773 -0.06712753 
0.3476892 -1.318868 

16 17 
22 

11 12 13 

1.906652 0.05735652 1.481581 -

18 19 20 21 

0.4393456 0.3257606 1.266694 -0.3907165 0.2435639 -1.537417 
0.9114188 

23 24 25 
1.041146 -0.05082021 -1.570229 

$resid: 
1 2 

7 8 
3 4 5 6 

NA NA 0.07394324 -0.01703183 
0.03545064 -0.4377797 

-0.4561407 0.1229084 

9 10 11 12 13 
14 

-0.07571184 
0.08332892 

15 
20 

-0.01639428 0.4627725 0.01385156 0.3563207 -

16 17 18 19 
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Dongara Results (Cont.). 

-0.3151512 0.1047165 0.07747157 0.3006544 -0.09257781 
0.05762205 

21 22 23 24 25 
-0.3632179 0.2150562 0.2453886 -0.01196554 -0.3693601 

$series: 
[1] "lnylt" 

ARIMA Model Diagnostics: lny1 t 

~ ~ 

AC• Pio,<' -••••I• 

I ~ f r- . --~ --, --:--. --: --. --,-----: --. -------~ -1 

J J' • " II ,.. iJ' •• 

i :r -------- ----~~-~r-.... ~ .. , -- ---------' 
I I I I I 

II •• 1l ,,, 

Alkimos Results. 

> alkimos6.fit <- arima.mle(lny2t, model = list( order=c(2,0, 1) ), xreg=x2.dat, 
+ var.coef=T,reg.coef=T) 
> alkimos6.fit 
$model: 
$model$order: 
[1] 2 0 1 

$model$ar: 
[1] 0.01402415 -0.62764168 
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Alkimos Results (Cont.). 

$model$ndiff: 

[I] 0 

$model$ma: 
[I] -0.640668 

$var.coef: 
ar(I) ar(2) ma(I) 

ar(I) 0.08952947 -0.01490798 0.04611733 
ar(2) -0.01490798 0.07659237 -0.02977887 
ma( I) 0.04611733 -0.02977887 0.09585048 

$method: 
[ 1] "Maximum Likelihood" 

$series: 
[1] "Iny2t" 

$aic: 
[1] 17.67991 

$Ioglik: 
[1] 7.679914 

$sigma2: 
[I] 0.1296068 

$n.used: 
[I] 9 

$n.cond: 
[I] 2 

$converged: 
[I] T 

$conv.type: 

[I] "relative function convergence" 

$reg.coef: 
[I] -0.003519045 0.039542467 
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Alkimos Results (Cont.). 

$reg.series: 
[ 1] "x2.dat" 

Residuals: 

> alkimos6.diag <- arima.diag(alkimos6.fit, acf.resid=T, resid=T, plot=T) 

Warning messages: 
I: lag.max> series length: reduced to series length - 1 in: acf(resid, 

lag.max = lag.max, plot= F) 
2: NAs generated in: cumsum(acf.list$acf[2:(n.parms + gof.lag + 1)]"2) 

> alkimos6.diag 
$acf.list: 
$acf.list$acf: 

' ' I 
[, 1] 

[ l ,] 1.00000000 
[2,] 0.17225194 
[3,] 0.06369496 
[4,] -0.23519218 
[5,] -0.33081383 
[6,] -0.29935488 
[7,] 0.04552769 
[8,] 0.07047667 
[9,] 0.01340965 

$acf.list$lag: 

' , 1 
[,I] 

[I,] 0 
[2,] I 
[3,] 2 
[4,] 3 
[5,] 4 
[6,] 5 
[7,] 6 
[8,] 7 
[9,] 8 
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Alkimos Results (Cont.). 

$acf.list$n.used: 
[l] 9 

$acf.list$type: 
[1] "correlation" 

$acf.list$series: 
[1] "resid" 

$acf.list$snames: 
character(O) 

$gof: 
$gof$statistic: 
[1] 1.786328 2.592849 2.611504 2.656206 2.657825 NA NA NA 
[9] NA NA 

$gof$df: 
[l] 1 2 3 4 5 6 7 8 9 10 

$gof$p. value: 
[1] 0.18137410.27350800.4554764 0.6168994 0.7525610 NA NA 
[8] NA NA NA 

$fgof$lag: 
[ 1] 3 4 5 6 7 8 NA NA NA NA 

$std.resid: 
1 2 3 4 5 6 

8 9 

NA NA -0.1556 -1.0748 -1.5922 0.9760 -0.3392 1. 5252 
10 11 

0.3318 -0.6075 

$resid: 
1 2 3 4 5 6 

8 
NA NA -0.06652 -0.4094 -0.5856 0.3544 -0.1225 0.5499 

9 10 11 
0.4281 0.1195 -0.2187 
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Alkimos Results (Cont.). 

$series: 
[1] "lny2t" 

ARIMA Model Diagnostics: lny2t 
PIO< <I s ....... 12N ~l•••I< 

: I : ! I ~ : ~ I : ~ I 
J • :5, " T I :t 11& 11 

AC• Ploc <I ~l•••I< 

I : f t--
1 

- - - - : - - - -,- - - - ! ----I - - - -: - - - -. - - - - : -1 

f, J • " • 

i : f . --------- -..... ~~--, .. ~ ... -----------. _I 

... 

Abrolhos Islands Results. 

> abrolhos6.fit <- arima.mle(lny3t, model = list( order=c(2,0, 1 )), xreg=x3.dat, 
+ var.coef=T, reg.coef=T) 
> abrolhos6.fit 
$model: 

$model$order: 
[1] 2 0 1 

$model$ar: 
[1] 0.5428477 -0.1477915 

$model$ndiff: 
[1] 0 

$model$ma: 
[1] 0.2661509 
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Abrolhos Islands Results (Cont.) 

$var.coef: 
ar(l) ar(2) ITia(l) 

ar(l) 8.302064 -1.9795020 8.342422 
ar(2) -1.979502 0.5262213 -1.973636 
Ina( 1) 8.342422 -1. 9736359 8.449343 

$JTiethod: 
[ 1] "MaxiITiuITI Likelihood" 

$series: 
[ l] "lny3t" 

$aic: 
[ 1] 1.452933 

$loglik: 
[1] -8.547067 

$sigITia2: 
[1] 0.03277408 

$n.used: 
[ l] 15 

$n.cond: 
[1] 2 

$converged: 
[l] T 

$conv.type: 
[ 1] "relative function convergence" 

$reg.coef: 
[1] -0.012227 1.437816 

$reg.series: 
[ 1] "x3.dat" 
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Abrolhos Islands Results (Cont.). 

Residuals. 

> abrolhos6.diag <- arima.diag(abrolhos6.fit, acf.resid=T, resid=T, plot=T) 
Warning: couldn't compute acf.list or gof due to NA's> 
> abrolhos6.diag 
$std.resid: 

1 2 3 4 5 6 7 
8 9 10 

NA NA -0.2103 0.2685 0.3943 -0.5304 0.7434 1.4288 NA NA 
11 12 13 14 15 16 17 

18 19 
NA NA NA -0.6491 0.8856 -2.3463 -0.5447 -0.7217 -0.6193 

20 21 22 
0.3402 1.9115 -0.4140 

$resid: 
1 2 3 4 5 6 7 

NA NA -0.0394 0.0487 0.0714 -0.0960 0.1346 
10 11 12 13 14 15 16 

18 

8 
0.2587 

17 

NA NA NA NA -0.1220 0.1609 -0.4249 -0.0986 -0.1306 
19 20 21 22 

-0.1121 0.0616 0.3460 -0.0749 

$series: 
[I] "lny3t" 

ARIMA Model Diagnostics: lny3t 

~ 

-

I I I I . 
I I I I I I 

T 

., 

.. 
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APPENDIX IV 
Estimated Regression Models 
(Using Minitab version 11.0) 

Mini tab Regression Results for Dongara 

The regression equation is 
lnylt = - 1.06 + 0.0139 xlt + 0.0638 x2t 

Predictor Coef StDev T 
Constant -1. 058 1. 605 -0.66 
xlt 0.013883 0.005706 2.43 
x2t 0.06381 0.02446 2.61 

s = 0.4210 R-Sq = 55.4% R-Sq(adj) 

Analysis of Variance 

DF ss MS 

p 

0.517 
0.024 
0.016 

= 51. 3% 

F p Source 
Regression 
Error 
Total 

2 4.8391 2.4196 13.65 0.000 

Source 
xlt 
x2t 

22 
24 

DF 
1 
1 

3.8984 
8.7376 

Seq SS 
3.6331 
1.2060 

Unusual Observations 
Obs xlt lnylt 
St Resid 

2 26 2.6391 
-2.23R 

0.1772 

Fit StDev Fit Residual 

3.4630 0.2008 -0.8239 

R denotes an observation with a large standardized residual 
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Minitab Regression Results for Alkimos 

The regression equation is 
lny2t = - 6.59 + 0.0208 xlt + 0.108 x2t 

Predictor 
Constant 
xlt 
x2t 

s = 0.6273 

Analysis of 

Source 
Regression 
Error 
Total 

Source 
xlt 
x2t 

Coef 
-6.590 
0.02079 
0.10817 

R-Sq 

Variance 

DF 
2 
8 

10 

DF 
1 
1 

StDev 
3.758 

0.01126 
0.05708 

= 66.1% 

ss 
6.1395 
3.1476 
9.2871 

Seq SS 
4.7265 
1.4131 
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T 
-1. 75 

1. 85 
1. 90 

R-Sq(adj) = 

MS 
3.0698 
0.3934 

p 

0.118 
0.102 
0.095 

57.6% 

F p 

7.80 0.013 



Minitab Regression Results for Abrolhos Islands 

The regression equation is 
lny3t = 0.918 - 0.0136 x3t + 1.16 log(x4t) 

17 cases used 5 cases contain missing values 

Predictor Coef StDev T p 

Constant 0.9183 0.8774 1. 05 0. 313 
x3t -0.013567 0.003934 -3.45 0.004 
log(x4t) 1.1579 0.2551 4.54 0.000 

s = 0.2687 R-Sq = 69.6% R-Sq(adj) = 65.2% 

Analysis of Variance 

Source DF ss MS F p 

Regression 2 2.3129 1.1565 16.02 0.000 
Error 14 1.0109 0.0722 
Total 16 3.3239 

Source DF Seq SS 
log(x3t) 1 1.4543 
x4t 1 0.8586 
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DONGARA 

APPENDIXV 
Estimated Structural Models 

(Using STAMP) 

Time Domain Estimation 

Dependent variable is LNYlT 

Sample period 1968 to 1992 25 Observations 

Estimate 
.0207 
.0000 
.1135 

Parameter 
ay(Level) 
ay(Trend) 
ay(Irregular) 

Standard Error 
.0198 

1.0000 
.0432 

Dependent variable is LNYlT 

t-ratio 
1. 0432 

.0000 
2.6278 

Sample period 1968 to 1992 25 Observations 

Estimate 
-1.3934 

. 0160 

.0104 

.0722 

Observation 

1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 

State 
Level 
Trend 
XlT 
X2T 

Actual 

4.5539 
2.6391 
3.5554 
4.2047 
3. 4965 
4.4188 
5.0752 
4.5850 
4.7449 
4.4544 
5.2040 
4.3567 
4.5951 
4.4188 
3.6889 
4.6540 
5.2523 
4.8520 
4.0943 
4 .1109 
4.4427 
5.3230 
4.6634 
4.5326 
4.0431 

Fitted 

.0000 
3.4756 
4.1600 
4.7929 
2.5101 
2.4523 
5.2089 
5.1717 
4.1799 
3.8193 
4.4610 
4.5052 
4.4361 
5.0081 
4.1073 
4.5992 
5.6430 
4.5803 
4.3245 
4.0645 
5.1608 
5.1743 
4.3303 
4.8265 
4.5625 

RMSE 
1. 3904 

.0323 
.0051376 

.0216 
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Error 

4.5539 
-.8366 
-.6047 
-.5882 

.9864 
1. 9665 
- .1337 
-.5868 

.5650 

.6351 

.7430 
-.1485 

.1590 
-.5892 
-.4184 

.0548 
-.3907 

.2717 
-.2302 

.0464 
-.7182 

.1487 

.3332 
-.2939 
-.5194 

t-ratio 
-1.0022 

.4939 
2.0330 
3.3385 

RMSE Residual 

Missing 
Missing 
Missing 
Missing 

Missing 
Missing 
Missing 
Missing 

1.2288 
2.2792 
- . 2313 

-1. 0519 
.9161 

1.1199 
1. 4870 
-.3107 

.3457 
-1. 3328 
-.8708 

.1229 
-.7091 

.5785 
-.5095 

.1003 
-1.5509 

.3309 

.7591 
-.6336 

-1. 2124 

.8027 

.8628 

.5779 

.5578 

.6167 

. 5671 

.4997 

.4779 

.4601 

.4421 

.4805 

.4454 

.5510 

.4697 

.4518 

.4626 

.4631 

.4495 

.4389 

.4638 

.4284 



DONGARA {CONT.) 

Residual skewness 
Residual kurtosis 

Normality tests 

Skewness chiA2(1)= 
Kurtosis chiA2(1)= 

Normality chiA2(2)= 

-.0204 
2.0280 

.0015982 
.9054 
.9070 

Sum of squares of standardized residuals 
Sum of squares about the mean 

Mean of standardized residuals 

Heteroscedasticity test F( 7, 7) = 

21.0054 
20.5312 

.1436 

.9072 

Lag--------------------0--------------------Autocorrelation:Q-
statistic 

1 
2 
3 
4 
5 
6 
7 
8 

95% C.I. 

I****** 
I*** 
I** 

I
*** 
*** 

I**** 

I
***** 

**** 
+++++++++O+++++++++ 

Log-likelihood kernel 3.5399 
Prediction error variance .1733 

Prior and missing observations 4 

Steady State 25 

R2 = .5834 
RD2= .7100 

Obs. Actual Trend Cycle Seasonal 

1968 4.5539 -1.7768 .0000 .0000 
1969 2.6391 -1.8740 .0000 .0000 
1970 3.5554 -1.8862 .0000 .0000 
1971 4.2047 -1.8441 .0000 .0000 
1972 3.4965 -1. 7742 .0000 .0000 
1973 4.4188 -1. 6571 .0000 .0000 
1974 5.0752 -1. 5946 .0000 .0000 
1975 4.5850 -1.5518 .0000 .0000 
1976 4.7449 -1.4437 .0000 .0000 
1977 4.4544 -1. 3337 .0000 .0000 
1978 5.2040 -1.2478 .0000 .0000 
1979 4.3567 -1. 2449 .0000 .0000 
1980 4.5951 -1.2457 .0000 .0000 
1981 4.4188 -1.3026 .0000 .0000 
1982 3.6889 -1.3233 .0000 .0000 
1983 4.6540 -1.2982 .0000 .0000 
1984 5.2523 -1.2912 .0000 .0000 
1985 4.8520 -1.2669 .0000 .0000 
1986 4.0943 -1.2946 .0000 .0000 
1987 4 .1109 -1.3132 .0000 .0000 

138 

. 295211 

.136937 

. 094119 

.140858 

.126417 

.171942 

.243895 
-.158576 

2/sqrt ( 23) = 

Exogenous 

5.7092 
4.9795 
5.7404 
6.2013 
5.5295 
5.7765 
6.5616 
6.4956 
6.1990 
5.6557 
5.9957 
5.5816 
5.5326 
5.9204 
5.2637 
5.8528 
6.6382 
5.8335 
5.4394 
5.2936 

2.278 
2.791 
3.046 
3.646 
4.157 
5.157 
7.295 
8.258 

.417029 

Irregular 

.6215 
-.4664 
-.2988 
-.1525 
-.2588 

.2995 

.1082 
-.3588 
-.0104 

.1324 

.4561 

.0200 

.3082 
-.1989 
-.2515 

.0994 
-.0947 

.2855 
-.0504 

.1305 



DONGARA {CONT.) 

1988 
1989 
1990 
1991 
1992 

ALKIMOS 

4.4427 
5.3230 
4.6634 
4.5326 
4.0431 

-1.3555 
-1.3200 
-1.3037 
-1.3509 
-1.3934 

Time Domain Estimation 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

Dependent variable is LNY2T 

Sample period 1982 to 1992 11 Observations 

6.2252 
6.5376 
5.6185 
5.9094 
5.7575 

Estimate Parameter Standard Error 
.0000 ay(Level) 1.0000 
.0000 ay(Trend) 1.0000 
.3894 ay(Irregular) .1836 

Dependent variable is LNY2T 

Sample period 1982 to 1992 11 Observations 

- . 4271 
.1054 
.3486 

-.0259 
- . 3211 

t-ratio 
.0000 
.0000 

2.1213 

Estimate State RMSE t-ratio 
-7.0909 Level 3.7693 

.0673 Trend .0648 

.0158 XlTl .0122 

.1242 X2Tl .0589 

Observation Actual Fitted Error 

1982 .6931 .0000 .6931 
1983 2.3026 .8125 1. 4901 
1984 3.7377 7.8333 -4.0956 
1985 2.5650 5.8577 -3.2928 
1986 1. 0986 1. 5644 -.4658 
1987 2.4849 .0593 2.4256 
1988 3. 8712 3.4709 .4003 
1989 3.2189 4.7018 -1.4830 
1990 2.7081 2.6798 .0283 
1991 2.5650 3.5159 -.9510 
1992 2.3026 2.8534 -.5508 

Residual skewness .4635 
Residual kurtosis 2.7240 

Normality tests 

Skewness chiA2(1)= .3223 
Kurtosis chiA2(1)= .0286 

Normality chiA2(2)= .3508 

Sum of squares of standardized residuals 
Sum of squares about the mean 

Mean of standardized residuals 
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-1. 8812 
1.0387 
1.2978 
2 .1111 

Residual 

Missing 
Missing 
Missing 
Missing 

-.2324 
1.5675 

.3525 
-1.6805 

.0333 
-1. 0118 
-.7201 

7.0045 
5.7101 
- . 3792 

RMSE 

Missing 
Missing 
Missing 
Missing 

2.0039 
1. 5474 
1.1357 

.8825 

.8475 

.9399 

.7650 



ALKIMOS {Cont.) 

Heteroscedasticity test F( 3, 3) = 1.0099 

Lag-~------------------0--------------------Autocorrelation:Q
statistic 

1 
2 
3 
4 
5 
6 

95% 

*******I 
*******I 

!******** 
*****I 

*I 
I** 

C.I.++++++++++++O++++++++++++++ 

Log-likelihood kernel 
Prediction error variance 

-4.1399 
.3894 

Prior and missing observations 4 

Steady State 11 

R2 = .7063 
RD2= .7824 

Obs. Actual Trend Cycle Seasonal 

1982 .6931 -7.7637 .0000 .0000 
1983 2.3026 -7.6964 .0000 .0000 
1984 3.7377 -7.6291 .0000 .0000 
1985 2.5650 -7.5618 .0000 .0000 
1986 1.0986 -7.4946 .0000 .0000 
1987 2.4849 -7.4273 .0000 .0000 
1988 3.8712 -7.3600 .0000 .0000 
1989 3.2189 -7.2928 .0000 .0000 
1990 2.7081 -7.2255 .0000 .0000 
1991 2.5650 -7.1582 .0000 .0000 
1992 2.3026 -7.0909 .0000 .0000 

ABROLHOS ISLANDS 

Time Domain Estimation 

-.339100 
-.319873 

.395160 
-.230910 
-.047512 

.056258 
2/sqrt ( 9) = 

Exogenous 

8.9750 
9.9521 

11.1934 
9.9317 
9. 2710 
8.9920 

10.5755 
11.0635 

9.5511 
9.9826 
9.7600 

Dependent variable is LNY3T 

Sample period 1971 to 1992 22 Observations 

Estimate 
.0632 
.0000 
.0000 

Parameter 
ay(Level) 
ay(Trend) 
ay(Irregular) 

Standard Error 
.0200 

1.0000 
1. 0000 

Dependent variable is LNY3T 

Sample period 1971 to 1992 22 Observations 

Estimate 
-1. 5177 

.0485 
-.0111 
1.9478 

State 
Level 
Trend 
X3T 
LX4T 

RMSE 
1. 4092 

.0575 
.0026042 

.4798 
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t-ratio 
-1.0770 

.8429 
-4. 2719 

4.0599 

1. 423 
2.870 
5.447 
6.502 
6.558 
6.663 

.666667 

Irregular 

-.5182 
.0469 
.1734 
.1951 

-.6778 
.9202 
.6557 

-.5519 
.3825 

-.2594 
-.3665 

t-ratio 
3.1623 

.0000 

.0000 



ABROLHOS ISLANDS (Cont.} 

Observation Actual Fitted Error Residual RMSE 

1971 3. 7812 .0000 3. 7812 Missing Missing 
1972 4.2047 1. 4607 2.7440 Missing Missing 
1973 4.3307 4.6898 - . 3591 Missing Missing 
1974 4.8752 4.7997 .0755 Missing Missing 
1975 4.6634 4. 9115 -.2480 - . 6137 .4041 
1976 4.6634 4.9401 -.2766 -.9692 .2854 
1977 4.7274 4.7583 -.0309 -.1064 .2903 
1978 5.2095 5.0175 .1919 .6527 .2941 
1979 Missing 5.1442 Missing Missing Missing 
1980 Missing 4.9477 Missing Missing Missing 
1981 Missing 5.0047 Missing Missing Missing 
1982 Missing 5.3634 Missing Missing Missing 
1983 Missing 5.3206 Missing Missing Missing 
1984 3.9512 5.4482 -1.4969 -1.5530 .9639 
1985 4.7095 4.4990 .2106 .6829 .3083 
1986 3. 7136 4.1754 -.4618 -1.5750 .2932 
1987 4.0073 4.0774 -.0701 -.2094 .3347 
1988 4 .1271 4.0925 .0346 .1315 .2631 
1989 3.9703 3.8521 .1182 .4416 .2676 
1990 4.0775 3. 8611 .2164 .8198 .2640 
1991 3. 7136 3.2231 .4904 1. 6062 .3053 
1992 3.7612 4.1826 -.4214 -1. 5424 .2732 

Diagnostic Results are not reliable 
Log-likelihood kernel 11.0209 

Prediction error variance .0632 

Prior and missing observations 9 
Steady State 22 

R2 = -.26E+09 
RD2= -.35E+09 

Obs. Actual Trend Cycle Seasonal Exogenous Irregular 

1971 3.7812 -2.5361 .0000 .0000 6.3173 .0000000 
1972 4.2047 -2.4948 .0000 .0000 6.6995 .0000000 
1973 4.3307 -2.1236 .0000 .0000 6.4544 .0000 
1974 4.8752 -1. 9949 .0000 .0000 6.8701 .0000 
1975 4.6634 -1. 8024 .0000 .0000 6.4658 .0000 
1976 4.6634 -1.9270 .0000 .0000 6.5905 .0000 
1977 4.7274 -1.7630 .0000 .0000 6.4903 .0000 
1978 5.2095 -1.5375 .0000 .0000 6.7470 .0000 
1979 Missing .0000000 .0000 .0000 Missing Missing 
1980 Missing .0000000 .0000 .0000 Missing Missing 
1981 Missing .0473 .0000 .0000 Missing Missing 
1982 Missing .0035731 .0000 .0000 Missing Missing 
1983 Missing -.0002458 .0000 .0000 Missing Missing 
1984 3.9512 -1.8385 .0000 .0000 5. 7898 .0000000 
1985 4.7095 -1. 5654 .0000 .0000 6.2749 .0000 
1986 3. 7136 -2.0154 .0000 .0000 5.7289 .0000 
1987 4.0073 -2.0055 .0000 .0000 6.0129 .0000 
1988 4.1271 -1.9071 .0000 .0000 6.0342 .0000 
1989 3.9703 -1.7970 .0000 .0000 5.7673 .0000 
1990 4.0775 -1.5410 .0000 .0000 5.6185 .0000 
1991 3. 7136 -1.2094 .0000 .0000 4.9230 .0000 
1992 3.7612 -1.5177 .0000 .0000 5. 2789 .0000000 
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ABROLHOS ISLANDS (Cont.) 

Log-likelihood kernel 
Prediction error variance 

11.0209 
.0632 

Prior and missing observations 9 

Steady State 22 

R2 = 
RD2= 

-.9258 
-1. 6119 
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