
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses: Doctorates and Masters Theses 

1-1-2003 

A study of the security implications involved with the use of A study of the security implications involved with the use of 

executable World Wide Web content executable World Wide Web content 

Christopher Hu 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses 

 Part of the Other Computer Engineering Commons 

Recommended Citation Recommended Citation 
Hu, C. (2003). A study of the security implications involved with the use of executable World Wide Web 
content. https://ro.ecu.edu.au/theses/1305 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses/1305 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ro.ecu.edu.au%2Ftheses%2F1305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1305


Edith Cowan University 
 

 

Copyright Warning 
 
 
 
 
 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 
 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 
 

You are reminded of the following: 
 

 Copyright owners are entitled to take legal action against persons 
who infringe their copyright. 

 

 A reproduction of material that is protected by copyright may be a 

copyright infringement. Where the reproduction of such material is 

done without attribution of authorship, with false attribution of 

authorship or the authorship is treated in a derogatory manner, 

this may be a breach of the author’s moral rights contained in Part 

IX of the Copyright Act 1968 (Cth). 

 

 Courts have the power to impose a wide range of civil and criminal 

sanctions for infringement of copyright, infringement of moral 

rights and other offences under the Copyright Act 1968 (Cth). 

Higher penalties may apply, and higher damages may be awarded, 

for offences and infringements involving the conversion of material 

into digital or electronic form.



USE OF THESIS 

 

 

The Use of Thesis statement is not included in this version of the thesis. 



A Study of the Security Implications Involved 
with the use of Executable World Wide Web 

Content 

Christopher Hu 
0920484 

For the Award of: 
Master of Science (Computer Science) 

Edith Cowan University 

Supervisor: 
Assoc/Prof William Hutchinson 



Abstract 

Malicious executable code is nothing new. While many consider that the concept of 

malicious code began in the 1980s when the first PC viruses began to emerge, the 

concept does in fact date back even earlier. Throughout the history of malicious 

code, methods of hostile code delivery have mirrored prevailing patterns of code 

distribution. In the 1980s, file infecting and boot sector viruses were common, 

mirroring the fact that during this time, executable code was commonly transferred 

via floppy disks. Since the 1990s email has been a major vector for malicious code 

attacks. Again, this mirrors the fact that during this period of time email has been a 

common means of sharing code and documents. 

This thesis examines another model of executable code distribution. It considers the 

security risks involved with the use of executable code embedded or attached to 

World Wide Web pages. In particular,. two technologies are examined. Sun 

Microsystems' Java Programming Language and Microsoft's ActiveX Control 

Architecture are both technologies that can be used to connect executable program 

code to World Wide Web pages. This thesis examines the architectures on which 

these technologies are based, as well as tl1e security and trust models that they 

implem~nt. In doing ~o, this thesis aims .to assess the level of risk posed by such 

technologies and to highiig..'1t simil;:11 risks that might occur with similar future 

technologies. 



Declaration 

I certify that this thesis does not incorporate without acknowledgement any material 

previous submitted for a degree or diploma in any institution of higher education; 

and that to the best of my knowledge and belief it does not contain any material 

previously published or written by another person except where due reference is 

made in the text. 

Signature

Date ..... J../.2./.1'.9.!?..3. .......... . 

iii 



Acknowledgements 

I would like to thank Dr Helen Armstrong and Dr Timo Vuori for all of their help in 

preparing this thesis. 

Iv 



Table of Contents 

1. INTRODUCTION AND SCOPE ..................................................................................................... 9 

1.1. 1NTR0DUCI10N ................................................................. ,,,,,, ............................. ,,,,,,, .. ,, ............ 10 
1.2 SCOPE OF THESIS ........................................ ,,,,,,,,, ................................................ ,,,,,,,, ............... 12 
1.3. S!GNIFICANCEOFTHESIS ............................................................................................................ 13 

2. RESEARCH METHODS AND MODELS .................................................................................... 14 

2.1. OVERVIEW .................................................................................................................................. lS 
2.2. REsEARCH QUESTIONS ....................... "' ..................................................................................... JS 
2.3. SUMMARY .................................................................................................................................... 17 

3. AIMS OF SECURITY AND THREATS POSED BY MALICIOUS CODE ............................. 18 

3.1. OVERVIEW .................................................................................................................................. 19 
3.2. AIMS OF SECURffY ..................................................................................................................... 19 
3.3. THREATS POSED BY MALICIOUS CooE ....................................................................................... 20 
3.4. EXECUTABLE WEB CONTENT SPECIFIC THREATS ....................................................................... 21 

3.4.1. Models a/Code Distribution ............................................................................................... 22 
3.4.2. User Involvement ................................................................................................................ 23 

3.5. SUM1tARY ................................................................................................................................... 24 

4, THE JAVA PROGRAMMING LANGUAGE ............................................................................. 26 

4.1. OVERVIEW .................................................................................................................................. 27 
4.2. INTRODUCING TI{E JAVA LANGUAGE .......................................................................................... 27 
4.3. JAVA VsJAVASCRIPT ................................................................................................................. 28 
4.4. JAVA APPLETS AS A FORM" OF EXECUTABI£ WEB CONTENT ....................................................... 29 
4.5. CHARACTERISTICS OF nm JAVA LANGUAGE .............................................................................. 30 

4.5.J. Portability ........................................................................................................................... 30 
4.5.2. Security ............................................................................................................................... 31 

4.6. THE EVOLUTION OFUIE JAVA SECURITYMODEL ....................................................................... 32 
4.7. KEY COMPONENTS OF nm JAVA SECURTIT MODEL ................................................................... 35 
4.8. IMPLEMENTATIONS OF JAVA TECHNOLOGY ................................................................................ 36 
4.9. RlsKS AND THREATS AssOCIATED wrmnmJAVA LANGUAGE .................................................. 37 
4.10. HOSTILE JAVA APPLETS ............................................................................................................ 38 
4.11. CHALLENGES FACING THE JAVA LANGUAGE ............................................................................ 38 
4.12. SUMMARY ................................................................................................................................. 40 

S. MICROSOFr'S ACTIVEX ARCHITECTURE .......................................................................... 41 

5.1. 0Vl3RVIEW .................................................................................................................................. 42 
5.2. ACTIVEX, COM AND OLE ......................................................................................................... 42 
5.3. OLE CONTROLS AND VISUAL BASIC .......................................................................................... 44 
5.4. ADAPTING OLE CONTROLS TO 1HE WORID WIDE WEB ............................................................. 44 
5.5. CLASSIFYING ACTIVEX CONlllOLS ............................................................................................ 46 
S.6. AC11VEX CON'IROL CAP ABILITIES ............................................................................................. .4 7 
S.7. IMPLEMENTING ACTIVEX CoN'ixOLS ......................................................................................... 47 

5. 7.1. Jnterfaces and Methods ....................................................................................................... 48 
5. 7.2. GUIDs and UUJDs .............................................................................................................. 49 

S.8. ACTIVEX AND 1HE WINDOWS REGISTRY .................................................................................... 51 
S.9. AC11VEX CONIROLS AND MICROSOFT AUTiiENTICODE ............................................................ .52 

5.9. J. Oyptographic Characteristics of Authenticode .................................................................. 53 
5.10. SECURirY CONCERNS SURROUNDING AC11VEX ....................................................................... 54 

5.10.1. ActiveXControls Can Be Very Powerful .......................................................................... 54 
5.10.2. ActiveX Controls Do Not Execute within a Restrictive Environment ................................ 54 
5.10.3. Reliance on Authentication ....................................................... '. ....................................... 54 
5.10.4. Controls Run with User's Permissions ............................................................................. 57 
5.10.5. Malicious Controls ............................................................................................................ 57 
5.10.6. Exploitation of Legitimate Controls .................................................................................. 57 
5.10.7. Lack of Auditing and Management Tools .......................................................................... 58 

V 



5.ll.S~Y ................................................................................................................................. 58 

6. THE ROLE OF WEB BROWSER AND OPERATING SYSTEM LEVELCONTROLS ...... 60 

6.1. OVERVIEW .................................................................................................................................. 61 
6.2. WEB BROWSER ISSUES ............................................................................................................... 61 

6.2.1. Microsoft Internet Explorer ................................................................................................ 61 
6.2.2. Zones ................................................................................................................................... 61 
6.2.3. Third Party, Internet Exp/or,Jr Based Browsers ................................................................. 63 
6.2.4. Netscope/Mozllla .............. ................................................................................................... 64 
6.2.5. Opera .................................................................................................................................. 65 

6.3. OPERATING SYSTEM ISSUES ........................................................................................................ 65 
6.3.1. File Permissions .................................................................................................................. 66 
6.3.2. Cryptographic Separation ................................................................................................... 66 
6.3.3. Logging andauditing .......................................................................................................... 67 
6.3.4. Logging ActiveXControls ................................................................................................... 67 

6.4. TmRD PARTY TOOLS .................................................................................................................. 68 
6.4.l. Personal Firewalls .............................................................................................................. 69 
6.4.2. Web Content Filters ............................................................................................................ 69 
6.4.3. Cryptographic Tools ........................................................................................................... 70 

6.5. SUMMARY ................................................................................................................................... 70 

7, COMPARISON AND EVALUATION OF SECURITY ARCHITECTURES .......................... 72 

7.1. OVERVIEW .................................................................................................................................. 73 
12. EVOLUflON VS REVOLUilON ...................................................................................................... 73 
7.3. SECURITY MODELS VS TRUST MODELS ...................................................................................... 74 
7.4. IMPLEMENTATION ISSUES, BUGS AND VULNERABlLITIES ........................................................... 76 
7.5. EXEClifABLE WEB CoNlENT SECURfl'Y ..................................................................................... 77 
7 .6, SUMMARY ................................................................................................................................... 77 

8, RESEARCH QUESTIONS ............................................................................................................ 78 

8.1. OVERVIEW .................................................................................................................................. 79 
8.2. DoES EXECUTABLE WWW CONTENT POSE A SIGNIFICANT SECURITY THREATlOCLIENf 
MACHINES? ........................................................................................................................................ 79 
8.3. Do TIIE SECURITY MECHANISMS OFFERED BY mESE TECHNOLOGIES PROVIDE A SUITABLE LEVEL 
OF PROTECTION? ................................................................................................................................ 79 
8.4. ARE TIIERE SIGNIFICANT DIFFERENCES IN THE SECURITY MECHANISMS PROVIDED BY POPULAR 
WWW BROWSERS? ........................................................................................................................... 80 
8.5. ARE TiiERESIGNIFICANT BENEFITS TO BE GAINED FROM USING SECURE DESKTOP OPERATING 
SYSTEMS IN CONJUNCTION WITH WWW APPLICATIONS? ................................................................... 81 
8.6. SUMMARY ................................................................................................................................... 83 

9. CONCLUSIONS AND FUTURE RESEARCH ........................................................................... 84 

9.1. OVERVIEW .................................................................................................................................. 85 
9.2. CONCLUSIONS ............................................................................................................................. 85 
9.3. F'UTURE REsEARCH ..................................................................................................................... 88 

9.3.1. World Wide Web Privacy Issues ......................................................................................... 88 
9.3.2. Peer-to-Peer Security Issues ............................................................................................... 89 
9.3.3. Microsoft's .Net Framework ............................................................................................... 89 

9.4. SUMMARY ................................................................................................................................... 90 

10. APPENDIX A: ASYMMETRIC ENCRYPTION AND DIGITAL SIGNATURES .............. 91 

10.1. OVERVIEW ................................................................................................................................ 92 
10.1.J. Digital Signatures and Electronic Commerce ................................................................... 92 

10.2. CODE SIGNING- THE "DIGITAL SHRINK-WRAP" CONCEPT ...................................................... 93 
10.3. AsYlofMETRIC ENCRYP110N ...................................................................................................... 95 
10.4. CERTIFICATES ........................................................................................................................... 96 
10.5. CERTIFJCATEAunlORITIES ...................................................................................................... 97 
10.6. LEGAL ISSUES AND CHAUENGES ............................................................................................. 98 

10.6.1. Legal Standing of Digital Signatures in Australia ............................................................ 98 
10.7. SUPdPdARY ................................................................................................................................. 99 

vi 



11. APPENDIX B: ACTIVEX DEVELOPMENT TOOLS ............................................. , ............ 101 

12. APPENDIX C: INTERNET EXPLORER ZONES ................................................................ 105 

13. APPENDIX D: WINDOWS NT/2000/XP SECURITY ARCHITECTURE ..................... - .. 107 

13.1. BACKGROUND •.•••••••••• , ............................................................................................................ 108 
13.2. CHARACTERISTICS OF WINDOWS NT/ 2000 ............................................................................ 109 
13.3. THE WINDOWS NT ARCHITEC1l/RE ........................................................................................ 110 
13.4. THE WINDOWS NT SECURITY ARCHITECllJRE ....................................................................... 11 l 
13.5. THEL0CALSECURl1Y AUTHORITY ANDLOGONPROCESS ..................................................... 112 
13.6. THE SECURITY REFERENCE MONITOR .................................................................................... 114 
13.7. SECURING WINDOWS NT ........................................................................................................ l 15 

13. 7.1. Managing User and Group Accounts .............................................................................. 116 
13.7.2. File System Security ........................................................................................................ 118 
13.7.3. RegislrySecurity ............................................................................................................. 120 
13.7.4. NetworkSecurity ............................................................................................................. 122 
13. 7.5. Service Packs, Patches and Hotfues ............................................................................... 122 

13.8. SUMMARY ............................................................................................................................... 122 

14. LIST OF REFERENCES ....................................................................................... , ................... 124 

BIBLIOGRAPHY ............................................................................................................................. 130 

vii 



Table of Figures 

Figure 1: Standalone Program Distribution Model ............................................................................... 24 
Figure 2: Executable Web Content Distribution Model ........................................................................ 24 
Figure 3: ActiveX Control Types (Li & Economopoulos, 1997, p191) ................................................ 46 
Figure 4: ActiveX Control Registry Infonnation .................................................................................. 52 
Figure 5: X.509 Certificate Structure (Microsoft Corporation, n.d) .................................................... 97 
Figure 6: Windows NT/2000 Architecture. ........................................................................................ 112 
Figure 7: Windows NT Security Architecture ................................................................................... 113 

viii 



1. Introduction and Scope 

9 



1.1. Introduction 

The idea of malicious program code is as old as modem computers themselves. In 

1949, John von Neumann's "A self reproducing program in Theory and Organization 

of Complicated Automata" (cited in McMullin, 2000) proposed the idea that a 

computer program could reproduce itself. 

When Fred Cohen began researching the idea of programs that replicate by inserting 

code into other programs in 1983 the idea of the Computer Virus was born. While 

vifus..like code such as 11Elk Cloner" (Skrenta, n.d) bad earlier appeared on Apple II 

systems, Fred Cohen's work led to the coining and definition of the term Computer 

Virus. Cohen defin~d a virus as " ... a program that can 'infect' other programs by 

modifying them to include a possibly evolved copy of itself' (Cohen, 1984). 

In 1988 the Morris Wonn (CERT,1997) spread around the Internet with frightening 

speed. While not the first code of its type, the Morris Worm demonstrated the 

vulnerability of connected systems to a rapidly spreading attack 

The Back Orifice Trojan, released by the Cult of the Dead Cow (cDc) in 1998 

(CERT, 19981 received a significant amount of attention. Trojans such as B02K 

can grant an attacker almost total control of a victim's machines. While other client~ 

server Trojans such as Netbus provided similar capabilities, Back Orifice still 

remains one of the most high profile and most dangerous of Trojar..s. Its current 

form, known as B02K is one of the most notable of current Trojans. 

Since the 1980s, malicious code has been part of the computer security landscape hut 

this landscape is changing. It is interesting to note that recent years have seen 

somewhat of a blurring between some of these types of malicious code. In particular 

10 



the distinction between viruses and wonns has narrowed. For example, some articles 

refer to Melissa as an example of a wonn (Sophos Anti-Virus, 2002), others refer to 

it as a virus (CERT, 1999b) while others refer to it as a hybrid that exhibits the 

characteristics of both a virus and a worm (Nachenberg, n.d). While CERT refers to 

Melissa as virus rather than a worm, due to its reliance on human interaction in order 

to spread, it does acknowledge that the level of hwnan interaction required is 

minimal (CERT, 1999b). Likewise the Loveletter Worm is also sometimes referred 

to as a virus (Microsoft, 2002a). 

Increasingly email is becoming the major vector for such wonns and viruses. 

However, new technologies such as various fonns of executable web content may 

play an important role in this changing landscape of malicious code. Email has a 

nwnber of characteristics that makes it an attractive to writers of malicious code as 

an infection vector. The ubiquitous availability of email allows an attacker 

potentially affect vast numbers of systems. As a form of personal communication, 

email allows an attacker opportunities to make use of social engineering techniques 

to spread malicious code. Finally the lack of intrinsic, integrated security controls 

means that there are many avenues of attack that can be exploited by the writers of 

malicious code. 

This thesis examines the possibilities for malicious code being implemented using 

executable web content technologies such as Java and ActiveX. Both Java and 

Active allow executable code to be embedded within a web page and executed on 

client machines when that page is viewed. While this can help web developers to 

create increasingly dynamic and engaging web pages, the fact that untrusted, 

possibly malicious code is being executed raises a number of security concerns. The 

11 



architectures of Java and ActiveX will be examined along with the security 

functionality that they provide. 

The addition of executable code to web pages raises several new concerns. This 

code has a different model of distnbution to other fonns of software. With this new 

model of distribution comes a range of new security issues. Such code has the ability 

to affect confidentiality of infonnation, integrity of data, software and operating 

systems as well as the availability of systems and services. There are also a number 

of issues related to the authenticity of such code and the ability of people to deny 

developing malicious code. 

This thesis will argue that while operating system and web application levels security 

mechanisms are an important layer of defence, executable web content technologies 

need to implement their own trust and security architectures. 

1.2. Scope of Thesis 

While the risks facing users of the World Wide Web are many and varied, this thesis 

is quite specific in its scope. It focuses solely on the risks to World Wide Web users 

posed by malicious executable web content. In particular it focuses on Sun 

Microsystems' Java programming language and Microsoft's ActiveX technology. 

While interpreted forms of executable web content including scripting languages do 

raise certain security concerns, this thesis limits its scope to binary fonns of 

executable web content. 

This thesis discusses the security and trust models employed by Java and ActiveX. 

This thesis also considers the security mechanisms implemented by the Windows 

NT/2000/XP line of Microsoft Operating Systems as well as those implemented by 

common web browser applications. 

12 



1.3. Significance of Thesis 

While Java, ActiveX and the World Wide Web have now existed for several years, it 

is important to reflect upon the issues that have been raised by these technologies and 

to consider those issues that might be raised by the next generations of World Wide 

Web oriented code delivery mechanisms. 

This thesis contends that the World Wide Web and the Internet in general will be one 

of the major channels for code distribution in the near future. As such it is important 

to examine the security issues raised by current fonns of executable web content so 

that the next generations of such code can build on this experience. 

13 



2. Research Methods and Models 

14 



2.1. Overview 

This chapter outlines the research methods that will be employed in this thesis. 

2.2. Research Questions 

This thesis aims to answer several important questions regarding the security risks 

posed by current web technologies. All of these questions revolve around client 

machines and consumers of World Wide Web services, as opposed to service and 

content providers. 

Does executable WWW content pose a significant security threat to client 

machines? 

This thesis attempts to detennine whether or not there are significant inherent 

security risks posed by the concept of executable web content. By examining two 

such fonns of executable web content, this thesis attempts to highlight the basic level 

of risk that technologies such as Java and ActiveX must attempt to guard against. 

Do the security mechanisms offered by these technologies provide a suitable 

level of protection? 

This thesis also examines the concepts behind the security mechanisms implemented 

by both Java and ActiveX. It pays particular attention to the question of whether or 

not the security models on offer are adequate to offset any inherent security risks (if 

any) posed by the use of executable web content. 

Are there significant differences in the security mechanisms provided by 

popular WWW browsers? 

15 



The security models offered by Java and ActiveX are also examined in the context of 

the web browsers through which such code will operate. This thesis examines the 

differences between the security features offered by current web browser 

applications and assess the role played by such browsers in reducing any risks posed 

by executable web content technologies. Web browser security featlll'es will only be 

discussed in tenns of their relationship to executable web content technologies 

Are there significant benefits to be gained from using secure desktop operating 

systems in conjunction with WWW applications? 

Finally, this thesis attempts to detennine whether or not there are any real security 

benefits to be gained from using a desktop operating system that implements various 

security controls. It examines the code signing, access control and auditing features 

of the Windows NT/2000/XP line of Microsoft operating systems in order to 

detennine the effectiveness of operating system level controls in guarding against 

any risks that might be posed by executable web content technologies such as Java 

and ActiveX. 

2.3. Research Validity 

This thesis aims to address the research questions outlined in the preceding section. 

In taking such a qualitative approach, it is intended that this thesis will ..• 

These questions have been chosen in order to examine the security models employed 

by executable web content technologies, as well as the ways in which these security 

models interact with the security features offered by certain web browsers and 

Operating Systems. 

16 



By examining the security issues associated with current fonns of executable web 

content, this thesis aims to provide an insight into the types of security issues that 

will need to be addressed by future generations of mobile code. While this thesis 

does not seek to define the security architectures that will or should be employed by 

such generations of code, it does aim to highlight the strengths, weaknesses and 

limitations of the security models offered by current executable web content 

technologies. 

2.4. Summary 

The research questions outlined in this chapter form the basis of this thesis. These 

questions are addressed after examining the technologies in question. 

17 



3. Aims of Security and Threats Posed by 
Malicious Code 

18 



3.1. Overview 

Tiris chapter provides an overview of the types of risks posed by various fonns of 

executable code and the aims of computer security that are threatened by these risks. 

While the security risks posed by malicious code such as viruses, worms and Trojans 

have been discussed at length in many texts over a number of years, this chapter 

highlights some unique security concerns raised by the use of executable web content 

technologies. In particular, it highlights the different models of distribution between 

traditional stand-alone applications and code delivered via the World Wide Web. 

3.2. Aims of Security 

Many authors including Pfleeger (2000) and Pipkin (2000) describe three major of 

computer and infonnation security, these being Confidentiality, Integrity and 

Availability. Two additional aims, Authenticity and Non-Repudiation are also often 

discussed. Essentially, any fonn of attack can be categorised as a breach of one or 

more of these aims. 

This thesis will define these aims in the following manner: 

Confidentiality: This aim encompasses the idea that information or 

infonnation systems should only be available to those that are authorised to 

access the resources. 

Integrity: Refers to the concept that data, information or infonnation 

systems should be modified only by those that are authorised to do so. 

Availability: This aim suggests that infonnation, systems or other resources 

should be available to authorised parties when required 

19 



Authenticity: This aim states that people or devices must be correctly 

identified and determined to be genuine. 

Non-Repudiation: The goal of non-repudiation is that entities must be 

accountable for the actions and be unable to falsely deny these actions. 

This thesis takes the view that confidentiality, integrity and availability are the 

primary goals of any computer or infonnation security effort and that authenticity 

and non-repudiation, while being important in their own right, support these first 

three aims. For example, the principle of confidentiality requires that only 

authorised people are able to read, view or make use of information. Authenticity 

plays a major role in the fulfilment of this aim, as it also does with integrity and 

availability. For this reason, this thesis refers to the three major aims of computer 

and information security and confidentiality, integrity and availability, while 

recognising the importance of authenticity and non-repudiation. 

1b.is thesis considers these aims as they relate to desktop systems. While these same 

aims can apply to a range of information assets and systems, this thesis is primarily 

concerned with desktop systems. 

3.3. Threats Posed by Malicious Code 

The idea of malicious code is nothing new. While some forms of malicious code did 

exist before the 1980s, that particular decade was pivotal in the history of malicious 

code. The late 1980s saw the emergence of several notable forms of malicious code 

including the Brain and Stoned viruses (White, Kephart, Chess, 1995) as well as the 

Morris Wonn. These and other examples of malicious code demonstrated the 

vulnerability of systems to executable code written with malicious intent. While 

many of these examples affected the integrity and availability of systems and 

20 



information, the potential was there for code to breach all of the aims previous 

mentioned. 

The 1990s saw several new types of malicious code including macro viruses. These 

viruses forced many to re-think their views of viruses. These viruses propagated by 

attaching themselves to documents rather than executable files or boot sectors of 

disks. This proved to be quite a successful vector for virus propagation. Given the 

number of macro-supporting documents written, stored and shared, the use of 

docwnents as hosts for viruses led to many widespread infections (CERT, 2000a). 

Since the late 1990s there have been a number of wonns that have caused 

widespread infections. Some of these such as the Loveletter wonn (CERT, 2000b) 

have blurred the lines between viruses and worms. Some have begun to refer to such 

pieces of malicious code as Virus/Worm Hybrids (Nachenberg, n.d). 

Many of the forms of executable code in use today are quite different to those used in 

the 1980s and other periods in the history of computer usage. Today ex(:cutable code 

may exist in the form of executable program files, document macros as well as other 

fonns such as executable web content. One of the main aims of this thesis is to 

examine the possibility of malicious code being implemented using executable web 

content technologies such as Java and AvtiveX 

3.4. Executable Web Content Specific Threats 

This thesis identifies a number of risks and threats as being specific to executable 

web content. While the threats raised by forms of malicious code such as viruses, 

worms and Trojans have been clearly documented over a number of years, this thesis 

will expand upon some of these threats and will contend that there are several risks 

that specific to forms of executable Web content such as Java and ActiveX. 

21 



3.4.1. Models of Code Distribution 

Traditional file infecting and boot sector viruses such as Brain and Stoned achieved 

widespread infections due to the fact that their method of propagation mirrored the 

prevailing model of code distribution. At the time, sharing of executable code via 

the swapping of disks was common. 

In more recent years email has been a major vector for infection by malicious code. 

Examples of email-borne viruses and worms such as Melissa and LoveLetter have 

highlighted the suitability of email as a major vector for malicious code attacks. 

Again these fonns of malicious code have exploited a major mechanism for the 

distribution of executable code. The transferral of executable program code and 

macro capable documents is now so common that many forms of malicious code 

now use this as the primary method of propagation. 

Executable web content employs a significantly different model of execution when 

compared with other forms of software. Such code is not distributed as a shrink

wrapped retail product, nor is it passed armmd between users, nor is it transferred via 

email. By definition executable web content is executable code that is attached to 

web pages and transparently downloaded and executed as part of that web page. As 

a result malicious executable web content will have significantly different vectors for 

infection than other fonns of malicious code such as viruses and Trojan horses. As 

there is little sharing of Java Applets or ActiveX Controls directly between users 

(See Figures 1 & 2) the distribution models for viruses and executable web content 

are not very closely aligned. 

~model of distribution of executable web content is more closely aligned with the 

typical distribution model of Trojan Horses. In this model of distribution, the 

22 



malicious code is more likely to be distributed from a single source or group or 

sources than by propagation between users as is the case with a more conventional 

virus. 

This thesis contends that the behaviour of malicious executable web content is more 

likely to be comparable with that of Trojan Horses than viruses or wonn. While this 

thesis does not dismiss the possibility that a malicious ActiveX Control or Java 

Applet could be used as a delivery mechanism for a more conventional virus or 

wonn, it does take the view that malicious Java or ActiveX Code will be more likely 

take the form of a Trojan. 

3.4.2. User Involvement 

Another factor that distinguishes malicious executable web content from other fonns 

of malicious code is the level of user involvement. As executable web content is run 

when the page containing it is viewed, there is often very little choice on the part of 

the user as to whether or not that code is to be executed. When the user makes a 

decision to go to a web page, there is no real prior indication that a page contains 

Java Applets or ActiveX Controls. In many cases if a user were to be affected by a 

piece of malicious executable web content, the only conscious decision might have 

been the initial decision to visit the web page. Depending of configuration of web 

browsers, personal firewalls, anti-malware or content filtering software, users may be 

presented with a warning prior to the execution of such code, at which point a 

conscious decision can be made. However in many cases the downloading and 

execution of the code happims automatically and transparently. 

23 



Users obtain 

program from 

Standalori: 
executable 
program.file 

'°'"" 
Other users may 

lso download 

Program User Program User Program User 

Users may transfer Users may transfer 

Figure 1: Standalone Program Distribution Model 

Web page 
containing 
CXCCb1ab\c code 

Each user downloads 
copy of Java Applet 

Java Applet 

""'· 
Java Applet 

1----,M ""'· 
Java Applet 

1---<M ""'· 
Very little Very little 

Figure 2: Executable Web Content Distribution Model 

In this sense, executable web content is similar to executable code that might arrive 

via email In both cases the user does not have to consciously seek out the piece of 

code. 

3.5. Summary 

Malicious executable code has the potential to affect the aims of confidentiality, 

integrity and availability. While it is not the intention of this thesis to re-examine the 

24 



threat posed by malicious code in general, this thesis does contend that malicious 

executable web content does pose some specific threats. These threats have been 

described in this chapter. In particular this chapter has identified models of 

distribution and level of user interaction as two are.11...s in which the possibility of 

malicious executable web content raises some specific concerns. 

25 



4. The Java Programming Language 

26 



4.1. Overview 

When Sun Microsystems released the Java Language in 1995, it was surrounded by 

both genuine interest and a large degree of industry hype. Java is an object oriented 

programming language that is well suited to use with networked environments such 

as the World Wide Web. 

Although Java can be used to develop stand-alone applications, much of its 

popularity stems from its networking capabilities. When used in an environment 

such as the World Wide Web, the Java language is typically used to create 

distributed applications referred to as applets. These applets can be downloaded and 

executed on a wide range of heterogeneous platforms. Java applets and ActiveX 

Controls (discussed later in this thesis) comprise two popular fonns of executable 

web content. 

This chapter will discuss the origins of the Java language, the characteristics that 

define it, its security architecture and the ways in which the language has evolved. 

4.2. Introducing the Java Language 

The Java programming language was developed by Sun Microsystems. The release 

of the language in I 995 was greeted with both g~nuine interest and a high degree of 

industry hype. In many ways, the explosion of interest in this new language has 

mirrored the excitement surrounding the World Wide Web itself. In the years since 

its release, Java has become one of the most popular and high profile languages 

available to software developers (McGraw & Felten, 1998). 

The Java language exists in several fomts. While Sun distributes the language 

through various versions of its Java Development Kits (JDK 1.0, 1995; JDK I.I, 

27 



1996; JDK 1.2, 1998), Java Runtime Environment (JRE, 1998) and other 

downloadable resources, Java technology has also been licensed by a number of 

vendors including Microsoft and Netscape. TWs thesis will use the term Java to 

describe the language as specified by Sun Microsystems and implemented in various 

versions of Sun's JDK. 

There are a number of Java related technologies that exist around the periphery of the 

language itself. Some of these related technologies are produced by Sun 

Microsystems while others have been developed by other parties. It is not the 

intention of this thesis to examine all possible java-related technologies and APls, 

rather it will discuss the basic language itself and the security issues that it raises. 

One notable example of these peripheral technologies is what Sun has named Java 

Beans. Java Bean technology is an Application Programming Interface (API) that 

provides a software component architecture for the Java language (Hamilton, 1997). 

Java Beans are small, independent Java components that can be combined to create 

larger, more complex applications. Java beans have some similarities to ActiveX 

Controls in that they are both software component architectures. 

There are also a number of other Java APis that can be used with the Java language 

to provide database connectivity, speech capabilities, telephony features and other 

functions to extend the capabilities of the language (Sun Microsystems, 2000). 

4.3. Java Vs JavaScript 

It is important to note that Java and JavaScript are not the same things. JavaScript is 

a scripting language that can be used in conjunction with web pages to perform some 

actions when a page is viewed with a JavaScript capable browser. Unlike the Java 

language, JavaScripts are not compiled in any way. As stated earlier, this thesis 

28 



intends to focus on binary fonns of executable code and as such a detailed discussion 

regarding security issues raised by JavaScript and other scripting languages is outside 

the scope of this thesis. 

Given the number of variations of the Java language, peripheral technologies such as 

Java Beans, and the number of additional APis available, the terminology 

surrounding the Java language can become very confused. This thesis will use the 

tenn Java to describe the core language as specified by Sun Microsystems and as 

implemented in the various JDK releases. 

4.4. Java Applets as a Form of Executable Web 
Content 

Like most programming languages, Java can be used to create stand-alone 

applications. However, much of its popularity arises from its ability to create 

distributed applications referred to as applets. 

These applets can be added to Web pages and as such, they comprise one fonn of 

executable web content. Java applets are typically downloaded to and executed on 

the client machine when the web page is viewed. When attached to web pages, Java 

applets can be used for a wide range of purposes. At one end of this spectrum, 

applets may be used to display simple eye-catching animations or perfonn other such 

tasks. Towards the centre of the spectrum, an applet could be used to extend the 

capabilities of a web page and/or browser, by adding user interface features. At the 

other extreme of this spectrum, Java applets could be used to deploy complex 

distributed applications. 

A Java applet is added to a web page by using the APPLET tag within the H1ML file 

that makes up the web page. As this thesis is not intended to act as an HTML 

29 



reference, the syntax and semantics of the APPLET HTML tag will not be discussed 

here. However, detailed explanations and examples can be found in any number of 

HTML references or from organisations such as the World Wide Web Consortium 

(www.w3.org). 

4.5. Characteristics of the Java Language 

Sun Microsystems (1996) have described the Java language as "A simple, object

oriented, network-savvy, interpreted, robust, secure, architecture neutral, portable, 

high-performance, multithreaded, dynamic language." 

In describing the language in such a way, it seems that Sun is acknowledging the fact 

that a large degree of hype surrounds the language. Regardless of this hype, this 

string of buzzwords does list some important characteristics of the language. 

4.5.1. Portability 

Portability is one of Java's most important characteristics (Sun, 1996; Gosling & 

McGilton, 1995). This portability has helped to make Java one of today's most 

popular languages. Given the portable, cross-platform nature of the language, Java is 

well suited to the heterogeneous nature of the World Wide Web and has become one 

of the most popular tools for developing distributed applications (McGraw & Felten, 

1998). 

Java's portability stems from its use of bytecodes as an intermediate level of 

compilation. Rather than being a completely compiled or completely interpreted 

language, Java takes a hybrid approach. Java solll'Ce code is compiled to a series of 

byte codes, which are in tum interpreted by a Java Virtual Machine (NM) (Pistoia, 

Relle, Gupta, Nagnu, Raman, 1999). The bytecodes comprise the instructions that 

drive the NM. Theoretically, a NM can be implemented as a piece of software 

30 



nmning on almost any computer platform. Alternatively, a JVM could be 

implemented in hardware. In such a case, the Java bytecodes would form the native 

instructions for the Java machine. The difference would be largely transparent to 

Java program (Edwards, 1997). 

While this "Write Once, Run Anywhere" (Sun, 1999) approach makes Java a viable 

alternative for many development projects, many consider that the performance 

degradation resulting from the interpretation process makes the language unsuitable 

for large complex applications. In many cases, Just-In-Time (JIT) compilers are 

considered necessary in order to improve the performance of Java code. Rather than 

interpreting Java bytecodes, IlT compilers compile the bytecodes into code native to 

the particular platform. This native code is generally faster to execute than 

interpreted bytecodes (Appel, 1999). In spite of the perfonnance improvements 

offered by JIT compilers, there are still significant execution overheads compared to 

the execution of purely native code. 

4.5.2. Security 

Security is another important characteristic of the Java language. The security 

features of the language (which will be discussed later in this chapter) demonst:J.ate 

some commitment on the part of Sun Microsystems to produce a secure language. 

Sun (1999) acknowledges that in a language as well suited to distributed computing, 

security is an important requirement. For this reason, security has been an important 

consideration since the earliest stages of the design of the language. In fact, it is 

often unusual for security to rank so highly as a consideration at such early stages of 

the development of the language (Pistoia et al. 1999). 

31 



The Java language boasts an integral security model (Pistoia et al., 1999; Gosling & 

McGilton, 1995), the evolution of which will be discussed in this chapter. This 

model has undergone several modifications since the release of the language in 1995. 

These modifications have been widely discussed by a nwnber of commentators 

(Gong et al., 1997; Koved et al., 1998; Chess & Morar, 1998; McGraw & Felten, 

1998). Each major revision of the Java language has seen significant changes to the 

security mechanisms offered by the language. The evolution of the Java security 

model shows an interesting progression away from an all-or-nothing approach 

towards a flexible, policy driven approach. 

The cornerstone of Java security is a restrictive run-time environment commonly 

referred to as the Sandbox (Gong, 1998; Pistoia at al, 1999, p70). Since the release 

of the Java in 1995, the operation of this sandbox has evolved significantly with each 

revision of the language. Despite this evolution, its role has remained largely 

unchanged- to restrict the actions of untrusted, possibly malicious code. 

4.6. The Evolution of the Java Security Model 

The initial versions of the Java Language (JDK 1.0, 1995) provided a largely all-or· 

nothing approach to the issue of trust. The Java sandbox provided a tight restrictive 

environment in which untrusted applets could be safely executed. The decision as to 

whether or not an applet was considered to be trusted was made simply on the 

grounds of its source. Under this model, code loaded from the local file system 

would be considered to be trusted and would be allowed to operate without 

restriction. Alternatively, code loaded from external sources such as the World Wide 

Web would be subject to tight sandbox restrictions (Gong, 1998). 

32 



Comments were often made (Pistoia et al, 1999, p71), however that the tight sandbox 

restrictions of this initial model prevented reputable developers from fully exploiting 

the advantages offered by the Java language. In many cases, it was difficult to write 

practical software given the tight restrictions of the sandbox. Typically, untrusted 

code (any code not loaded from the local file-system) would not be allowed access to 

resources such as files. Additionally, applets would only be allowed to use network 

resources in order to contact the site from which the applet was downloaded. Chess 

& Morar (1998) also describes several other sandbox restrictions and in doing so, 

makes the point that it was inevitable that mechanisms would have to be provided to 

let trusted applets step outside of the restrictive sandbox. 

Simply making more privileges available within the sandbox was not an adequate 

long-tenn solution (Presotto cited in Sun, 1996). There was a distinct danger that 

sandbox implementations would grow to include more and more privileges until the 

sandbox allowed almost full system access and restricted very little. Eventually this 

trend would defeat the purpose for which the sandbox was originally intended. 

Sun's second major version of the Java Language (JDK 1.1, 1996) made some 

attempt to remedy this situation by allowing trusted applets to execute without the 

tight restrictions imposed by the sandbox (Pistoia et al., 1999, p72; Gong, 1998). 

While the sandbox remained an integral component of the JDK I.I security model, 

applets could now be signed using digital signature technologies. Applets with 

signatures trusted by the client were treated in much the same way as code !11aded 

from the local file system, in that it would not be subjected to tight sandbox 

restrictions (Pistoia et al., 1999, p72). However, this was still largely an all or 

nothing approach. Decisions regarding trust were made on an applet-by-applet basis 

and an applet could only be considered either completely trusted or completely 

33 



untrusted. Under this model, there was no notion that code could be partially trusted 

(McGraw & Felten, 1998). 

The next version of the language saw several major changes. Not the least of which 

was a renaming of the language. With the release of JDK 1.2, Sun renamed the 

language Java 2. While the name Java 2 describes the current state of the language 

itself, the tenn JDK 1.2 is used to describe the Sun's implementation of this 

language. This thesis will adhere to this convention and use the tenn Java 2 to 

describe the language in general. The term JDK 1.2 will be used to describe a 

specific version of Sun's Java 2 implementation In addition to this change in name; 

JDK 1.2 introduced a heavily re-designed security architecture. 

This latest security architecture focuses around the concept of a security policy, 

which can grant varying permissions to different applets in a fine-grained manner. In 

contrast to previous versions, this model does not force a yes or no decision to be 

made as to whether or not an applet is executed within the sandbox. Instead, applets 

can be assigned various privileges depending on the level of trust placed in the code. 

This highly flexible approach has the effect tha4 "the entire meaning of sandbox 

becomes a bit vague" (McGraw & Felten, 1998). Instead of one clearly defined 

sandbox, each applet can in effect, run in its own sandbox each of which can be 

afforded different permissions. 

While this approach does offer a high degree of flexibility, it relies heavily on the 

creation of a sound policy. This raises the important of issue of who is responsible 

for the creation and maintenance of such a policy. End users may not have the 

experience or expertise necessary and system administrators may see such a security 

policy as a low priority in relation to other more pressing tasks (McGraw & Felten, 

34 



1998). In addition, once a policy is defined, it must be maintained. The environment 

in which such a policy operates is often very dynamic. There is a risk that once a 

policy is defined, it will be forgotten. In such a case, the old adage "out of sight, out 

of mind" may be particularly relevant. 

This highlights the fact that the technical security features offered by the language 

are highly dependent on sound configuration. As such, management becomes a very 

important issue. 

4.7. Key Components of the Java Security Model 

There are several components of the Java language which enforce the Java Security 

model. In particular, Java makes use of what it refers to as the Bytecode verifier, 

Class Loader and Security Manager. Together these components work to enforce the 

Java Security Model. 

Not surprisingly, the Java Class Loader is used to invoke Java classes as they are 

needed. A typical NM contains a "Primordial" loader as well as any nwnber of 

custom Class Loaders (Venners, 2002). These class loaders can if written 

appropriately, enforce separation of applets by providing distinct namespaces for 

different applets and applications (Venners, 2002; Oaks, 1998a). Class Loaders also 

aim to guard against malicious code masquerading as trusted Java APis (Venners, 
' 

2002; McManis, 1996). Together with the Bytecode Verifier and Security Manager, 

the Class Loader comprise the ·major components of the Java Sandbox. 

The Security Manager component enforces Sandbox restrictions by determining what 

actions can be taken by loaded classes. Oaks (1998b) makes the point that many of 

the restrictions enforced by the Security Manager are similar to the types of controls 

35 



that one would normally consider to be the responsibility of an operating system, 

such as arbitrating access to files, network resources and other resources. 

As the name suggests, the Bytecode Verifier is tasked with examining Java Classes 

to ensure that they conform to the specifications of the Java language. Titls aims to 

ensure that classes are not malformed either deliberately or accidentally. The 

Bytecode Verifier checks the integrity of the bytecodes to ensure that classes have 

not been created using hostile compilers, do not contain buffer overflows as well as 

performing many other tests. The eventual aim is that the once the class has been 

verified, it can be executed with confideuce by the NM (Gosling & McGilton, 

1996). 

4.8. Implementations of Java Technology 

While this chapter has mainly discussed Sun's design of the Java language and its 

implementation via Sun's JDK releases, Java technology has been licensed by a 

number of vendors including Microsoft and Netscape. As a result, there are several 

major implementations of Java technology. 

Many of today's major web browsers, including Internet Explorer and Netscape 

Navigator, Mozilla and Opera all support the use of the Java language. Java enabled 

web browsers often ship with their own implementation of the NM. While each 

vendor supplied JVM should confonn to the Java specifications from Sun, 

implementations can vary greatly. In addition, vendor supplied JVMs may 

incorporate proprietary extensions. As a result, it can be confusing as to which NM 

is used to execute a particular piece of Java code. Additionally, it is reasonable to 

expect that different implementations may contain different bugs. These bugs could 

possibly be exploited in order to bypass various security mechanisms. In addition to 

36 



the NMs incorporated within web browsers, Sun distributes its own NM as part of 

it JDKs and JREs. Sun also distributes Java 2 NM plug-ins for the major web 

browsers. When these plug-ins are installed, older Java code can still be executed by 

the browser's inbuilt JVM. When Java 2 code is encountered, it can be diverted and 

executed using Sun's Java 2 plug-ins. 

This situation can become very confused when multiple NMs are installed on one 

machine. Chess & Morar (1998) describes a hypothetical case in which; 

" •.. you have a JVM developed by Microsoft inside Internet Explorer, a 

NM developed by Netscape inside Navigator, a NM developed by Sun 

inside Lotus Notes, and the Java plugins from Sun inside both browsers for 

a grand total of four different NMs in five different locations using four 

different signature databases and four sets of security settings." 

The replication of signature databases and security settings makes it very difficult to 

implement and maintain a coherent, overall security policy. Additionally there is the 

possibility that each different NM will have its share of design and implementation 

errors, which may be exploited by an attacker. Currently there are no known tools to 

centralise the management of Java security across a number of separate JVMs (Chess 

& Morar, 1998). 

4.9_ Risks and Threats Associated with the Java 
Language 

While Java is an interesting and no doubt useful technology, there are a number of 

threats associated with its use. As detailed in previous chapters, there are certain 

risks specific to executable code. As Java provides a means whereby executable 

37 



code can be run on a client machine as a result of viewing a web page, its use does 

imply a certain level of risk. 

4.1 O. Hostile Java Applets 

Several hostile Java Applets have been written and for some the source code is 

available. Many of these act as Trojans with effects range from annoyances such as 

displaying images of Dancing Bears to the unauthorised use of resources such as 

power time to false login prompts designed to capture passwords (LaDue, n.d). 

4.11. Challenges Facing the Java Language 

While Java undoubtooly has a great deal of potential, there are a number of 

challenges facing the language. Concerns over the perfonnance of the language, 

reluctance to rewrite legacy applications, problems with the "write once, run 

anywhere" concept and fighting between Sun and Microsoft all threaten the long 

term viability of the Java language. 

The performance of the Java language has been seen by many as a major concern. 

Given Java's commitment to portability and its reliance on bytecodes as an 

intermediate level of compilation, it is inevitable that the performance of the 

language will suffer to some degree. One concern is that the Java language may not 

be able to offer the performance levels required for mission-critical applications. 

Sun claimed that the release of Java 2 would put an end to the performance problems 

that had previously plagned the langnage. 

Another major concern is that the Java language is becoming fragmented as more 

and more platform specific APis and class libraries become available. While such 

additions to the Java language can be helpful in optimising Java applications for 

38 



particular platfonns, they do tend to limit the "Write once, run anywhere" potential 

of the language. To combat this trend, Sun has implemented the "100% Pure Java" 

Program (Sun Microsystems, 1999). The aim of this program is to certify that a Java 

program does not rely on any platfonn specific code and that it has been tested for 

cross platform compatibility and portability. 

Fighting between Sun and Microsoft also threatens the future of the Java language. 

Initially Microsoft licensed Java technology from Sun Microsystems. Sun 

considered that with Microsoft supporting Java, the language would quickly become 

a de facto standard. Microsoft was interested in licensing the language in order to 

compete with Netscape's Navigator browser, which also made use of Java (Wong, 

1998). 

Since its licensing of the Java language, Microsoft has been accused of trying to 

"kidnap" the Java language by distributing a NM that Sun claimed violated 

Microsoft's license agreement Sun claimed that Microsoft had deliberated 

attempted to undermine the cross-platfonn nature of the Java language; by adding 

platfonn specific APis and omitting certain core Java APis. As a result, Sun began 

legal action against Microsoft in October 1997 (Sun Microsystems, n.d; Microsoft 

Cozporation, 1997). 

While the Java language shows a lot of potential, its future is by no means 

guaranteed. While there is little doubt that the Java language has been thrust into 

public attention by some effective marketing, there is also a great deal of genuine 

interest surrounding the language. If nothing else, the language has highlighted the 

level of industry interest in a programming language suited to use with an 

environment such as the World Wide Web. The Java language has several important 

39 



challenges ahead. How Sun handles these challenges will go a long way to deciding 

the future of the language. 

4.12. Summary 

Toe Java language was developed with several key objectives, including portability, 

robustness and security. Since the release of the language in 1995, Java has evolved 

significantly. The current version of the language is marketed under the name Java 2 

and implemented by Sun in the fonn of the JDK 1.2. 

Although its implementation and design may havr changed, the Java's Sandbox 

remains a central component of the language. The purpose of this Sandbox is to 

restrict the actions of possibly malicious Java code, by executing this code within a 

protective run-time environment. 

Toe most current version of the Java language allows various permissions to be 

granted to an applet depending on the level of trust placed in the code. These 

pennissions can be granted in an app\et-by-app!et basis in accordance with a security 

policy. This provides a high level of flexibility but raises several issues regarding 

configuration and management. 

40 



5. Microsoft's ActiveX Architecture 

41 



5.1. Overview 

The term ActiveX describes a number of technologies from Microsoft, all of which 

are based on the company's Component Object Model (COM) and Object Linking 

and Embedding (OLE) technologies. This thesis concentrates on one specific type of 

ActiveX Object - ActiveX Controls, as these can be added to web pages and 

comprise one popular form of executable web content. 

ActiveX technology is tightly integrated with both the Windows family of operating 

systems and Microsoft Internet Explorer and as such, many of the security issues 

raised by the use of ActiveX will be discussed in later chapters. However, in order to 

fully understand these security implications, it is necessary to examine the 

architecture that underlies this technology. Some of the discussion in chapter does 

not relate directly to security issues, although a thorough understanding of the 

technology will enable a more detailed discussion of these issues in later chapters. 

This chapter discusses the architecture behind ActiveX and the security mechanisms 

put in place by the technology itself. Security mechanisms put in place by operating 

systems and applications that make use of ActiveX controls will not be discussed in 

this chapter. 

5.2. ActiveX, COM and OLE 

ActiveX is a tenn used to describe a range of technologies based on Microsoft's 

Component Object Model (COM) and Object Linking and Embedding (OLE) 

technologies. 

Microsoft's Component Object Model (COM) is a specification designed to allow 

reusable binary objects to interoperate and communicate (Li & Economopoulos, 

1997, p.11). As it is a binary specification, COM objects can be written in any 

42 



programming language that can produce a binary result that conforms to these 

specifications. 

Microsoft's Object Linking and Embedding (OLE) technology builds on the 

framework provided by COM. OLE's main role is to "enable and facilitate 

component integration" (MSDN [CD-Rom], 1997). OLE technology first appeared 

in 1991 and was originally designed as method for creating rich, compound 

documents that could incorporate a number of enhancements such as sound and 

video. The next version of OLE went way beyond this concept of compound 

documents and provided a much more comprehensive architecture for component 

integration (MSDN [CD-Rom], 1997). 

Microsoft draws comparisons between the software component approach of 

COM/OLE and the hardware component approach oflntegrated Circuits (!Cs). Just 

as electronic devices can be created by connecting pre-made and pre-tested 

integrated circuits, component architectures such as OLE/COM allow software 

developers to create complex software by connecting existing components (MSDN 

[CD-Rom], 1997). Given that these components have been well tested and 

documented, software developers do not need to re-implement fundamental 

algorithms or even consider the implementation of the particular component 

In 1996, Microsoft coined the phrase ActiveX. This concept was intended to form 

the cornerstone of the corporation's "Activate the Internet" strategy. Microsoft drew 

together a range of concepts based on OLE and COM technologies and renamed 

them under the banner of ActiveX. While, the tenn ActiveX covers a range of 

objects including Automation Server and Controllers, COM objects, Documents and 

43 



Containers (Anderson, 1997, p. 9), this thesis concentrates on ActiveX Controls, as 

they comprise one form of executable web content. 

5.3. OLE Controls and Visual Basic 

Many Visual Basic developers would be familiar with the concept of component 

based software development, in particular with VBX and OLE Controls. Component 

based software development with Visual Basic began with the introduction of VBXs 

in Visual Basic 3. VBXs allowed software developers to create applications 

containing pre-built components and were essentially Windows Dynamic Link 

Library (DLL) files that conformed to certain architectural specifications. These 

components were usually self contained and controlled their own user interfaces. 

While the original VBXs were a boon for software developers, they did have severe 

limitations. The specifications to which VBXs had to conform were limited to 16-bit 

Windows/Intel platforms. In order to be of use with operating systems such as 

Windows NT and Windows 95, a new 32-bit control architecture would need to be 

designed (Li & Economopoulos, 1997, p. 174). 

This new 32-bit architecture took the form of OLE controls. These controls were 

considerably more powerful, flexible and robust than their VBX predecessors. In 

addition, OLE controls could be used by a range of containers other than visual basic 

(Li & Economopoulos, 1997, p. 174). OLE Controls are often referred to as OCXs 

as these controls were generally given this file extension. 

5.4. Adapting OLE Controls to the World Wide Web 

With a surge in the popularity of the World Wide Web, Microsoft attempted to 

prepare many of its existing technologies for use with this new medium. In the face 

44 



of competition from technologies such as Sun's Java programming language, 

Microsoft made the decision to re-vamp its OLE control technologies in order to 

make them better suited to low-bandwidth Web usage (Li & Economopoulos, 1997, 

p 187). 

Microsoft recognised that OLE Control-like components could be used to extend the 

capabilities of web pages in much the same way as wifu Visual Basic programs. 

However, with the low bandwidth environment of the World Wide Web the need for 

lean, efficient controls was even more pronounced than was ever the case with 

Visual Basic applications. This need gave rise to ActiveX Controls. 

ActiveX Controls are effectively streamlined OLE Controls. While the 

specifications for OLE Controls require the control to implement a large amount of 

mandatory functionality, the requirements for ActiveX Controls are greatly relaxed. 

In order to qualify as an ActiveX Control, an object needs only to implement one 

mandatory interface (discussed later in this chapter). In addition, it must also be able 

to self-register and unregister (also described later in this chapter). This effectively 

means that any COM Object can qualify as an ActiveX Control, without having to 

fulfil higher-level OLE requirements. As a result, ActiveX Controls are free to 

implement only the interfaces are absolutely necessary. By freeing developers of the 

need to implement unnecessary features, ActiveX controls are better suited to use 

with the World Wide Web than previous OLE Controls (Microsoft Corporation, 

1999). 

ActiveX controls comprise one form of executable web content. Like Java applets, 

ActiveX controls can be added to web pages in such a way that they download, 

install and execute when the page is viewed with a compatible browser, 

45 



Microsoft's Internet Explorer browser has in built support for ActiveX controls. 

Plug-ins are available for Netscape that allow ActiveX controls to be used with 

Netscape Navigator. 

As a specific type of ActiveX Object, controls are always in-process. That is they 

execute within the same process as their container application (Anderson, 1997, 

p 10). When used as a form of executable web content, a Web Browser such as 

Microsoft Internet Explorer acts as the control's container. Hence, when a control is 

added to a web page it executes within the same process as the Web Browser. 

5.5. Classifying ActiveX Controls 

While they comprise one form of ActiveX object, ActiveX controls can be further 

divided into several categories. The main division revolves around whether a control 

is classed as visual or non-visual. Several control variations can be seen in Figure 3. 

ActiveX Control 
(Any COM object) 

ActivcX Control 
Compliant to OC96 

OCX Support 

ActiveX Control 
without visual 

Non-Visual ActiveX 
Control 

Fully oompliant and 
designed to OC96 and 

Internet Extenslon 

Figure 3: ActiveX Control Types (Li & Economopoulos, 1997, pl91) 

ActiveX Controls can then be broken down into two categories - those with a visual 

representation and those without. Controls with visual representations are often used 

46 

I 

~ 
! 



to extend the capabilities of a user interface. These controls not only manage their 

own data, they also maintain their own user interface (Li & Economopoulos, 1997, 

pl92). 

Alternatively, ActiveX Controls can exist without any fonn of user interface. These 

controls can be used to implement business logic or perfonn calculations behind the 

scenes. When embedded within a web page, ActiveX controls do not necessarily 

need to be a highly visible element of a web page. 

5.6. ActiveX Control Capabilities 

ActiveX Controls can make use of a variety of different Application Programming 

Interfaces (APls),just as if the control were any other Windows executable program. 

As a result, ActiveX Controls can access a number of resources using standard 

Win32 functions including local file systems, network connections and the Windows 

registry. 

Unlike with Java Applets, there is nothing built into the ActiveX Control architecture 

to restrain the actions of an ACtiveX Control once it has begun execution. ActiveX 

Controls are subject to operating system security mechanisms and may be restrained 

using third party tools. However there is nothing in the ActiveX architecture itself 

that limits the capabilities of a control. As such, controls have effectively the same 

capabilities as standalone windows programs. 

5.7. Implementing ActiveX Cr,ntrols 

ActiveX Controls are binary objects that confonn to certain specifications. 

Historically, compiled OLE controls were given the extension .OCX, although they 

are effectively implemented within a Windows Dynamic Link Library (DLL). In 

47 



fact, Microsoft now recommends that the extension DLL be used in favour of OCX 

(Microsoft Corporation, 1999). Not all Windows DLLs implement ActiveX 

Controls. Many simply implement libraries of compiled code. However, those that 

do contain ActiveX Controls may implement one or more controls within a single 

DLL file. More detailed discussion of the tools commonly used to develop ActiveX 

Controls can be fowtd in Appendix B. 

5. 7 .1. Interfaces and Methods 

ActiveX Controls expose their functionality to the containers that host them through 

the methods that they implement. Related methods are usually grouped together to 

form interfaces. Each Interface of each COM object residing on a computer system 

has a unique Interface ID (IID). 

Each ActiveX Control must implement at least one basic interface, commonly known 

as the IUnk.own Interface. This interface contains three methods that are vitally 

important to the way in which COM Objects and ActiveX Controls operate. 

The first of these three methods is called QuerylnterfaceO. Programs making use of 

a COM object can use this method to obtain pointers to other interfaces implemented 

by the object. Client programs should only be able to access the functionality of an 

interface by first calling the QuerylnterfaceO method (Li & Economopoulos, 1997, 

p. 28). 

The other two methods of the !Unknown Interface deal with the fact that a COM 

object or ActiveX Control may be used concurrently by more than one client 

program. Each interface of a control contains a reference counter that determines 

when it is safe for a control to be discarded from memory. The AddRefQ and 

ReleaseQ methods are used to increment and decrement these counters respectively. 

48 



When a client obtains a reference to an interface (by calling QuerylnterfaceO) it must 

call the AddRef() rnethod(Li & Economopoulos, 1997, p. 31). When the program no 

longer requires the services of the interface, it can call the ReleaseQ method to 

decrement the reference counter. When each interface is no longer needed, the 

control can unload itself from memory and free any resources that it currently holds 

(Li & Economopoulos, 1997, p. 32). 

Many COM objects also support the concept of "late binding". Early binding is 

suitable if a client knows exactly what controls will be needed throughout the entire 

lifespan of the client application. In many cases, this is not practical, particularly in 

the case of development environments such as Visual Basic. The Visual Basic 

environment cannot reasonably be expected to know the details of every COM object 

it will ever host. Late binding solves this problem by allowing clients to discover the 

capabilities of a COM object at run-time rather than compile-time. Late binding is 

achieved through the use of a specific interface called IDispatch. This interface 

allows a client to detennine the capabilities of an object at run-time (Li & 

Economopoulos, 1997, p. 54). So-called "Dual Interface" objects support both early 

and late binding (by providing an !Dispatch interface), although there are significant 

perfonnance overheads when late binding is used. 

5.7.2. GUIDs and UUIDs 

COM technology (and therefore ActiveX technology) relies heavily on the use of 

large, randomly generated numerical sequences. The generation process talces into 

account factors including the current date and time in order to produce a unique 128-

bit identifier. The result is a randomly generated number large enough that the 

49 



possibility of generating the same twice is negligible (Li & Economopoulos, 1997, p. 

33). 

These numbers are used to uniquely identify a range of entities including COM 

objects and the interfaces that they expose. The terminology used often differs 

depending on what it is that these sequences are identifying. When referring to 

COM/ActiveX technology several terms and abbreviations are commonly used. The 

main terms are summarised in Table 1. 

Abbreviation Term Describes 
GUID Globally Unique Identifier Used to descn"be a 128-bit identifier in 

general terms (not in any particular 
context). 

UUID Universally Unique Identifier Used to describe a 128-bit identifier in 
general terms (not in any particular 
context). 

CLSJD Class ID Used to identify COM objects 
(lncludinl! ActiveX Controls. 

IJD Interface JD Uniquely identifies every interface 
imolemented bv evet"V control. 

CATID Category ID Identifies a component category. Used 
to state that a control implements 
certain functionalitv. 

Table 1: Identifier Types 

The use of such numerical identifiers eliminates the ambiguity that would be caused 

if such entities were simply assigned names. For example, by using unique 

identifiers, a program can be sure that it is using a particular COM Object rather than 

another entity that happens to have the same name. 

50 



5.8. ActiveX and the Windows Registry 

ActiveX Controls rely heavily on the Windows Registry in order to operate (Li & 

Economopoulos, 1997, p. 46; Anderson, 1997, p. 35). The Windows Registry is a 

hierarchical repository containing a wide range of configuration data relating to the 

operating system itself as well as installed hardware and software and information 

regarding users. This registry is organised as an hierarchical collections of keys, sub

keys, values and data. The structure of this registry differs slightly depending on the 

version of Windows being used. However, at the top of the hierarchy are four main 

keys; HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE and 

HKEY_USERS. 

Each COM object (and therefore ActiveX Control) installed on a particular computer 

system has at least one entry in that system's registry. It is a requirement of an 

ActiveX Control that it be able to add and remove its own registry information 

(Anderson, 1997, p22; Li & Economopoulos, 1997, pp28-34). This is accomplished 

using two functions implemented within the control's .DLL file titled 

DLLRegisterServer and DLLUmegisterServer. 

ActiveX Controls register themselves under the HKEY_CLASSES_ROOT key. 

This major key contains a sub-key labelled CLSID. The same registry information 

can be found under the HKEY_LOCAL_MACHINE/Software/Classes/CLSID. 

These two keys are functionally equivalent and can be used interchangeably. Each 

object registers its Class ID under this CLSID registry key. Each object can then add 

a nwnber of sub•keys describing various properties belonging to the object. Several 

COM objects can be seen registered under the 

HKEY_CLASSES_ROOT/Software/Classes/CLSID key in Figure 4. This figure 

shows the 128·bit CLS1Ds of several COM objects registered under the CLSID 

51 



registry key. The figure also shows two sub-keys belonging to one COM Object and 

the values and data associated with the first of these sub-keys. 

r,. Registry Editor -, :-1'ffil • 

Figure 4: ActiveX Control Registry Information 

T 

REG_SZ D:\Pro'1'am Files\Common Fies\t,lcrosoft Shared\DAO\dao360.cl 
REG...SZ Apartment 

The registry is vitally important to the operation of COM/ ActiveX on Windows 

platforms. 

5.9. ActiveX Controls and Microsoft Authenticode 

ActiveX Control security is heavily reliant on Microsoft' s Authenticode code signing 

technology. This section will discuss the underlying technology that powers 

Microsoft's Authenticode. However, it is often programs such as Internet Explorer 

that use this technology to provide security in relation to ActiveX Controls. 

Consequently, issues relating to the configuration, user interface and application of 

Authenticode technology will be discussed in conjunction with Microsoft's Internet 

Explorer Web Browser in later chapters. In contrast, this section will discuss the 

underlying concepts behind Authenticode and its relationship with ActiveX Controls. 

52 



ActiveX Control security revolves around users making an informed decision as to 

whether or not a control should be allowed to begin execution. Once a control has 

begun execution, the only restrictions placed on it are those provided by the 

operating system or other third party security tools. 

This approach differs significantly with that taken by the Java language. While Java 

seeks to provide security through restricting the actions of applets at run time, 

ActiveX relies on preventing hostile code from being executed. 

Authenticode aims to assure the authenticity of a binary object such as an ActiveX 

Control by positively identifying the author of the object. It also attempts to assure 

integrity by proving that control has not been modified since its release. 

Authenticode 1.0 was released in 1996, and can be used to sign various forms of 

executable code including .EXE, .DLL, .OCX and Java Class files. While 

Authenticode can be used to sign a variety of types of code, it forms the only real 

line of defence against malicious ActiveX controls and therefore this technology is 

extremely important in relation to ActiveX. 

5.9.1. Cryptographic Characteristics of Authenticode 

Authenticode makes use of several existing technologies including X.509 

certificates, PKCS #7 cryptographic standards and I 024-bit RSA keys for encryption 

and decryption (Feghbi, Feghbi & Williams, 1999, p. 102). 

In order to sign code with Authenticode, developers must first generate a key pair 

and apply for a suitable certificate from a Certificate Authority (CA). In order to 

obtain a certificate, applicants must submit various personal details. The certificate, 

in effect binds this personal information to the developer's public key. Applicants 

53 



must also agree to a pledge stating that they will not deliberately distribute code that 

is hannful or malicious in nature. 

5.10. Security Concerns Surrounding ActiveX 

The use of ActiveX Controls technology does give rise to certain security concerns. 

As this chapter has highlighted, ActiveX Controls are very powerful in that they 

execute directly on hardware and can make use of various libraries and APls. 

Additionally they are not bound by any form of sandbox-like runtime restrictions. 

This thesis contends that there are very real security concerns surrounding the use 

ActiveX controls as a form of executable web content. This section descnbes the 

security concerns identified by this thesis. 

5.10.1. ActiveX Controls Can Be Very Powerful 

ActiveX Controls can be very powerful in that they can make use of any number of 

libraries and AP!s. 

5.10.2. ActiveX Controls Do Not Execute within a Restrictive 
Environment 

In contrast to Java Applets, ActiveX Controls are not designed to be executed within 

a restrictive run-time environment (CERT, 2000c). Once a Control has been 

allowed to begin execution, it is not restrained by any security measures other than 

those implemented by Operating Systems or third party products. 

5.10.3. Reliance on Authentication 

ActiveX Controls rely heavily on users being able to make decisions as to whether or 

not the control should be allowed to begin execution. Once a control has been 

allowed to begin execution, it can only be restrained through OS or third party 

54 



controls. As a result, it is imperative that users can make a decision concerning the 

trustworthiness of the piece of code. This chapter has discussed the role played by 

Microsoft's Authenticode code signing technology in relation to ActiveX Controls. 

This reliance on authentication does give rise to certain concerns. Firstly, there is a 

risk that users may not fully understand the consequences of allowing untrusted code 

to execute. The is often a tendency for users, when presented with a dialog box 

requesting permission for a Control to execute, to allow the action simply to dismiss 

the dialog box and continue. Often the consequences of allowing untrusted code to 

execute are no:t fully considered. 

Additionally, reliance on authentication is a largely re-active stance. One aim of 

Microsoft's Authenticode technology is to allow legal action to be taken against 

individuals or organisations that sign malicious code. However, given the difficulties 

and expense involved with taking legal action against such individuals or 

organisations, often complicated by geographic, political and jurisdictional 

boundaries, such a re-active approach may not always be practical. 

In an example highlighting the dangers of ActiveX's reliance on trust, The US Dept. 

of Energy sponsored Computer Incident Advisory Capability (CIAC) reports that in 

2001, the certifying authority Verisign mistakenly issued two code signing 

certificates to an individual believing that the person in question was an employee of 

the Microsoft Corporation (CIAC, 2001). The certificates were issues the 29ili and 

30m January, 2001. The CIAC advisory issuing the warning was dated 22'' March, 

2001. 

Such certificates could have allowed the attacker to sign code including ActiveX 

Controls using the name "Microsoft Corporation". The code would not be 

55 



automatically trusted, but by displaying the common name ''Microsoft Corporation" 

the attacker could effectively be able to conduct a social engineering attack by 

convincing a user to allow the code to begin execution. As stated in the advisory 

published by CIAC (2001), "The danger ... is that even a security-conscious user 

might agree to let the content execute, and might agree to always trust the bogus 

certificate". 

When the mistake was discovered, Verisign revoked the certificates by adding them 

to the organisation Certificate Revocation Lists (CRLs). However the window 

between the issue of the certificates and their subsequent revocation could have 

given the attacker a substantial opportunity to use the certificates in a malicious 

manner. Additionally, as Versigin certificates did not specify a location for the CA's 

revocation list, web browsers were not able to verify the validity of the certificates 

once they had been revoked (CJAC, 2001). 

Trust can be a complicated concept. While it is natural for users to associate the 

level of trust that they might have in a web page with the level of trust that they place 

in executable web content embedded in that page, such assumptions could be 

dangerous. For example, the author of a web page might not necessarily be the 

author of the controls used on that web page. It is not uncommon for web page 

authors to make use of third party controls. While the author of the web page might 

trust that the controls are free of malicious code, this might not be the case. 

Similarly, users of that web page may not draw a distinction between the page itself 

(which they may trust) and the executable code used on that page (which may come 

from a third party). Such users might not notice or be concerned about the fact that 

the common name in a certificate might not be the same as the common name of the 

site on which that code is hosted. 

56 



5.10.4. Controls Run with User's Permissions 

All ActiveX Controls execute in-process; that is they execute within the same 

process as their parent container. When Controls are used in conjllllction with web 

pages, this container is often a web browser such as Internet Explorer. As this 

container application executes within the security context of the current user, so too 

does the ActiveX Control (CERT, 2000c). As a resul4 if the current user has a high 

level of privileges so too will any ActiveX Control invoked by that user. If a user 

has access to various files, network resources so too will the ActiveX Control. 

Additionally, if a malicious control is allowed to perform some kind of attack, any 

audit logs may identify the user that invoked the control as the source of the attack. 

As such, an WISuspecting user may be highlighted as the sow"Ce of an attack. 

5.10.5. Malicious Controls 

There are definite concerns that ActiveX Controls could be used for malicious 

purposes. The most pressing concern in this area is that ActiveX Controls could be a 

very convenient mechanism for the delivery of a Trojan horse to a system or as a 

convenient delivery mechanism for a more conventional virus. As mentioned earlier, 

the distribution model used by ActiveX Controls 

5.10.6. Exploitation of Legitimate Controls 

In some cases it might not be necessary for an attacker to implement a malicio~ 

ActiveX Control. Attackers may be able to exploit vulnerabilities in existing 

controls using data driven attacks. Controls can be marked by their authors as being 

'Safe for Scripting'. In effect, authors are claiming that their legitimate, non

malicious controls cannot be exploited by attackers using data driven attacks. 

57 



However this provides little assurance for control users. Organisations such as 

CERT have released a number of advisories that warn of controls that are incorrectly 

labelled as 'Safe for Scripting' (CERT, 1999b; CERT, 2000c; CERT, 2001). 

5.10.7. Lack of Auditing and Management Tools 

Windows does not have a log dedicated to downloaded code such as Java Applets 

and ActiveX Controls CERT (2000). Windows NT/2000/XP could be configured to 

audit modifications to certain registry keys (such as 

HKEY _ CLASSES_ROOT _ CLSID), however the volume of entries in this key could 

result in the generation of a large volumes log entries. 

5.11. Summary 

ActiveX is a term introduced by Microsoft to describe a variety of binary objects, all 

based in some way on COM/OLE technology. Of all the different types of ActiveX 

Components, this thesis is only concerned with ActiveX Controls, as they comprise 

one fonn of executable web content. 

ActiveX Controls resulted from Microsoft's attempt to adapt OLE Controls to use 

with the World Wide Web. In a low-bandwidth environment such as the World 

Wide Web, it is necessary that controls are as lean and efficient as possible in order 

to reduce download times. For this reason, ActiveX Controls do not need to 

implement as much mandatory code as full OLE Controls. ActiveX Control 

developers need to implement very little mandatory code and are therefore free to 

implement as much or as little code as is necessary to solve the problem at hand. 

ActiveX Controls can be classified as either visual or non-visual. Visual controls are 

often used to extend the user interface of their client Non-visual controls are well 

58 



suited to implementing business rules and logic. ActiveX Controls can make use of a 

variety of APis and have essentially the same capabilities as standalone executable 

programs. 

Unlike Java Applets, ActiveX Controls are not restrained by any restrictive run-time 

environment. ActiveX Control security depends upon users making an informed 

decision as to whether or not a control should be allowed to begin execution. 

Microsoft's Authenticode code signing technology aims to prove the authenticity and 

integrity of ActiveX Controls as well as .DLLs, .EXEs, .OCXs and .CAB files and 

Java Applets. 

ActiveX Controls and COM Components in are tightly integrated with both the 

Windows family of operating systems and Microsoft's Internet Explorer Web 

Browser. As a result, many of the security issues relating to ActiveX Controls will 

be discussed in relation to both Windows and Internet Explorer in later chapters. 

59 



6. The Role of Web Browser and Operating 
System Level Controls 

60 



6.1. Overview 

This chapter examines the role of web browsers, operating systems and third party 

tools in controlling the actions of executable web content. While this thesis has 

argued the importance of security mechanisms that are integrated into executable 

web content technologies, this chapter highlights the importance of a layered of 

defence against the possibility of malicious web content. 

6.2. Web Browser Issues 

As executable web content technologies are closely integrated with web browsers it 

is important to consider the role of these applications in the execution and control of 

such code. While many issues make it difficult to get meaningful statistics on web 

browser usage, much of the web browser market is currently dominated by 

Microsoft's Internet Explorer product (BrowserNews, 2002; NUA Internet Surveys, 

2002). However, there are a nw~ber of other browsers that also deserve some 

attention. Browsers such as Netscape, Mozilla and Opera still have a loyal following 

and it is important not to overlook these products. 

6.2.1. Microsoft Internet Explorer 

Microsoft's Internet Explorer product currently dominates the web browser market 

(BrowserNews, 2002). While it is acknowledged that Internet Explorer does suffer 

from a number of vulnerabilities and that such vulnerabilities continue to be found, 

this thesis limits its examination of this browser to the security mechanisms that it 

implements, particularly as they relate to issues involving executable web content. 

6.2.2. Zones 

Internet Explorer employs a concept of zones in order to classify web sites and pages 

and handle various forms of content accordingly. Internet, Local Intranet, Trusted 

61 



and Restricted comprise the four zones provided by the browser and a set security 

controls can be applied to individually to each zone. Among these settings are 

options dealing with executable web content such as Java and ActiveX. 

ActiveX related settings include options regarding the download and execution of 

signed and unsigned controls. One of the major concerns regarding executable web 

content raised in this thesis is that such the execution of such code is largely 

transparent to users. These web browser settings can alleviate this concern to some 

degree as the browser can be configured to prompt users for decisions regarding the 

downloading and execution of ActiveX Controls. Such prompting can however be 

seen by users as an annoyance, particularly as some websites might contain a nwnber 

of ActiveX Controls, which would each prompt the user for a decision. 

Zones can be configured to allow or disallow the downloading of both signed and 

unsigned controls, or to prompt the user for a decision. While the presence of such a 

signature can provide some degree of trust it does not completely guarantee that a 

control is non-malicious and safe for execution. 

Another of the ActiveX related settings implemented by Internet Explorer detennines 

the behaviour of the browser when confronted with controls that are marks as being 

"safe for scripting". This is intended to protect against situation in which an attacker 

might use scripts to control existing ActiveX controls and use them in a hostile 

manner. In this type of attack, the control itself is not malicious, although the 

attacker tries to use the control in a manner that is. By being marked as safe for 

scripting, the control is effectively claiming that it cannot be exploited in this 

fashion. The "Safe for Scripting" security setting offered by Internet Explorer 

62 



governs whether such controls are initialised automatically, prevented from 

initialising or whether a user prompt is issued. 

There are also a number of settings that govern the way in which Internet Explorer 

interacts with its Java Virtual Machine (JVM). A number of pre-defined security 

levels can be invoked for Java Applets, or settings can be customised. As the JVM 

has the ability to restrict code once it has begun execution, the list of custom settings 

offered by Internet Explorer are quite extensive when compared to the settings 

controlling ActiveX Controls. The browser can work in conjunction with the 

underlying JVM in order to control capabilities of Java Applets, whereas with 

ActiveX controls the decisions revolve around deciding whether or not a control 

should allowed to begin execution. 

While the ability to classify web pages and sites and configure a rnnge of security 

settings is a positive attribute of the Internet Explorer browser, the effective of such 

an approach does rely heavily on its configuration. An administration kit from 

Microsoft is available which allows administrators to configure these settings across 

a range of individual installations in a consistent manner. More detail regarding 

Internet Explorers Zone Settings can be found in Appendix C. 

6.2.3. Third Party, Internet Explorer Based Browsers 

There are a number of web browsers based on Microsoft's web browser engine that 

forms the basis of Internet Explorer. The majority of such browsers offer identical 

security features to Internet Explorer and will not be discussed in detail in this thesis. 

Some of these browsers do differ slightly in terms of cookie handling and other such 

functionality and there is the possibility that such browsers may have design flaws, 

implementation flaws and other vulnerabilities not found in Internet Explorer. 

63 



However it is not the intention of this thesis to ex.amine Internet Explorer based 

browsers in detail. 

6.2.4. Netscape/Mozilla 

Despite the early popularity of the Netscape web browser, Microsoft's Internet 

Explorer currently enjoys dominance on Windows platfonns (BrowserNews, 2002; 

NUA Internet Surveys, 2002). However browsers other than Internet Explorer are 

used on Windows platforms. 

It is important to note that current versions of the Netscape browser are actually 

based on the Mozilla Web browser. As a result Netscape versions 6.0 and higher are 

quite different to earlier version of Netscape. This thesis will discuss Netscape and 

Mozilla as being essentially one product. 

Netscape and Mozilla are available for several platfonns including Windows, 

Macintosh and Linux. Mozilla does support Java, although it does not natively 

support ActiveX Controls. However plug-ins did exist that allowed earlier versions 

of Netscape to use ActiveX Controls. These plug-ins also work with Mozilla and 

another project to add ActiveX Support to the browser (albeit in a rather limited 

fashion) is currently underway (Lock, 2002). 

As a result of Mozilla's lack of integrated ActiveX Control support, the browser's 

executable web content security is largely limited to sandbox restrictions enforce by 

the Java Virtual Machine. The browser does have an option to enable or disable 

JavaScript and there are some cookie management features. While the concept of 

Internet Explorer-like zones is not as important in a browser like Mozilla that does 

not support ActiveX, the lack of such features does limit the user's control of 

64 



JavaScripts. The ability to enable or disable JavaScript on a site-by-site basis would 

be a welcome addition. 

6.2.5. Opera 

Opera is another alternative to the Internet Explorer browser. Like Mozilla, Opera is 

available for a number of platforms including Windows, Macintosh and Linux. As a 

result of this cross platform nature, Opera also does not support ActiveX Controls. 

Hence executable web content security is largely enforced by the Java sandbox. The 

browser provides simple options for enabling and disabling Java and JavaScript. As 

with Mozilla, this approach lacks the fine grained control of web elements such as 

JavaScripts that can be achieved through the use of Internet Explorer's Zones. 

6.3. Operating System Issues 

This section will endeavour to highlight the importance of operating system level 

controls when dealing with executable web content. This thesis presents the view 

that operating system level controls are an important part of a layered defence when 

dealing with possibly malicious executable web content technologies, although they 

do not provide a complete solution to the problems raised. 

This thesis will demonstrate that operating system level controls alone do not address 

the problems associated with malicious code, as there is not one standard set of 

security functionality that is provided by all operating systems that might encounter 

such code. The controls offered by Windows NT/2000/XP are very different to those 

offered by Windows 95/98/98SE/ME. These are quite different again when 

compared to Unix and Linux machines and Macintosh systems. As these operating 

systems do not implement a standard set of security features there is most definitely a 

role to be played by executable web content technologies themselves. 

65 



This chapter will focus on Windows NT/2000/XP and examine the security controls 

that are provided by this family of operating systems. A more detailed discussion of 

this family of operating systems can be found in Appendix D. 

6.3.1. File Permissions 

Unlike operating systems such as Windows 95/98/ME, Windows NT/2000/XP 

provides quite robust file permission functionality. Such functionality is available 

when the NTFS file system is used. 

File permissions prevent users from interfering with files owned by other users. 

Under the Windows NT/2000/XP architecture, executable web content executes with 

the security context of the current user. Therefore file permissions could be used to 

prevent malicious code executed by one user form interfering with the files 

belonging to another user. However such controls would not prevent the malicious 

code from interfering with files owned by the current user. As such, some benefit 

may be gained may be gained from the use of file permissions when multiple users 

have files on the client machine or network shares accessible on the client machine. 

This assumes that the NTFS file system is used and that file pennissions have been 

set. There is little protection to be gained from operating system level controls on 

files belonging to the current user as any malicious code would be executed with the 

permissions and privileges associated with that user. 

6.3.2. Cryptographic Separation 

Windows 2000 and Windows XP offer an encrypted file system that can be used to 

encrypt files. Tiris prevents information being disclosed in the event of the theft of a 

hard disk, or by the attacker booting another operating system and using tools such as 

NTFSDos to gain read access to NTFS volumes. However such measures would be 

66 



ineffective against malicious code such as ActiveX Controls as such code would 

execute with the pennissions of the current user. This user would be able to decrypt 

file from the file system. In this sense, a transparent, encrypted file system such as 

the one offered by Windows 2000 and XP will provide no more protection than that 

provided by file pennission mechanisms. Malicious ActiveX Controls would not be 

able to decrypt files belonging to other users, however file pennissions could also be 

used to restrict such access. 

6.3.3. Logging and auditing 

Windows NT, 2000 and XP provide the ability to log a range of different events, 

including file accesses and uses of certain pri'Vileges. Three main logs are managed 

by these operating systems; a system log, an application log, and a security log. 

6.3.4. Logging ActiveX Controls 

Operating Systems such as Windows NT/2000/XP provide important logging and 

auditing featmes. These features can be used to record file accesses, successful and 

unsuccessful uses of privileges as well as errors and warnings. This auditing is 

performed by Security Reference Monitor and the Local Security Authority 

components (See Section 13.6, in appendix D). Windows 95/98/ME does not 

include such functionality. 

The addition and removal of ActiveX Controls could be logged by auditing accesses 

to the HKEY _CLASSES_ ROOT key or the 

HKEY _LOCAL_ MACHINE/Software/Classes/CLSID key. However, pjven the 

large number of keys placed under these keys, such auditing may impose a 

significant perfonnance overhead. 

67 



Some utilities are available that allow users to view registered ActiveX Controls 

including the OLEView tool from Microsoft 

(http://www.microsoft.com/Com/resources/oleview.asp#OLEViewer). However, 

due to the extensive use of OLE and COM technology within the Windows family of 

operating systems, many such tools display large numbers of objects, many of which 

are operating system components rather than installed web content. 

It would be advantageous to be able to record the addition and removal of executable 

web content, in particular ActiveX Controls, in an Internet specific log. While 

logging and auditing are largely re-active measures, such a log would be a welcome 

addition. 

6.4. Third Party Tools 

While it is important to consider controls implemented by executable web content 

technologies themselves as well a,s operating system level controls, third party tools 

can also play an important role in protecting against malicious executable web 

content. This section will examine the role of tools such as personal :firewalls and 

web content filters. 

6.4. 1. Anti-Malware Tools 

Of all the types of third party security tools mentioned in this section, Anti-virus 

tools are probably the most well known. However this thesis will use the term Anti

Malware software to describe such products in order to reflect the fact that modem 

anti-virus software protects against more than just viruses. Such products typically 

provide protection against, viruses, Trojans, wonns and in some cases malicious web 

content in the form of Java applets and ActiveX Controls. 

68 



6.4.2. Personal Firewalls 

Personal Firewalls are similar to network firewalls in that they can apply filtering to 

network communications. However, personal firewalls are software products that 

operate on client machines. Some personal firewalls, including Norton Personal 

Firewall and Outpost can be used to filter out Java applets and ActiveX Controls, or 

at least prompt users for decisions as to whether or not these types of code should be 

allowed to begin execution. 

It is important to note that ActiveX Controls in particular execute within the same 

process as the web browser that is hosting it. While many personal firewalls apply 

controls on an application~hy~application basis, a malicious ActiveX Control acting 

within the process of a web browser, would appear to that personal firewall to be the 

web browser itself. As such, users may elect to trust the web browser, yet malicious 

code in the form of an ActiveX Control could exploit this trust and perfonn 

malicious actions. 

6.4.3. Web Content Filters 

Web content filtering tools can be used to guard against malicious executable web 

content as well as for a range of other purposes. Among other things, web content 

filters can be used to filter out Java applets and Active Controls. Some tools 

implement lists of trusted an un-trusted sites and allow a policy to be implemented 

accordingly. Such a policy might include the filtering of Java applets and ActiveX 

Controls. 

69 



Some tools such as Naviscope (2001) and Web-washer (2002) operate as personal 

proxy servers. Like their more fully fledged relatives, personal proxies operate as 

intennediaries between web clients and web servers. However, personal proxy 

servers reside on the same machine as the web client. 

The use of such trusted and un-trusted lists is similar to the concept of zones 

implemented in Internet Explorer. Effective use of such zones in Internet Explorer 

would render such third party proxies redundant. However, such tools can be useful 

when browsers without the functionality of Internet Explorer's zones are used. Such 

proxies can also be useful when multiple browsers are installed on the one machine. 

A personal proxy server could be used to apply a consistent executable web content 

policy despite a particular user's choice of browser. 

6.4.4. Cryptographic Tools 

Third party cryptographic tools could provide some protection for sensitive files 

from malicious web content. Unlike a transparent, encrypted file system, the use of 

third party software to manually encrypt and decrypt sensitive files could prevent 

theft of information by code such as malicious ActiveX Controls. 

6.5. Summary 

This chapter examines the role of web browser, operating system and third party 

tools in protecting against malicious web content such as Java applets and ActiveX 

Controls. While these layers of protection are significant and play an important role, 

they do not diminish the need for controls to be implemented by the technologies 

themselves. Technologies such as Java may be used across a range of platfonns, 

operating systems and web browsers. While ActiveX Controls are more Windows 

oriented, they can also be used across a range of web browsers and Windows 

70 



Platforms. In both cases there may be a very wide range of third party security tools 

in use. 

This chapter highlights one of the main distinctions between Java and ActiveX 

ActiveX's reliance on code signing and lack of sandbox-like run-time environment 

increases the reliance of users on browser, OS and third party level controls. 

However as such code executes within the security context of the current user, files 

and other resources belong to that user may by at risk. 

71 



7. Comparison and Evaluation of Security 
Architectures 

72 

I 



7 .1. Overview 

Technologies such as Java and ActiveX fill a similar niche. They both provide a 

mechanism whereby web developers can extend the capabilities of web pages and 

work around limitations of HTML. While this is not the only application of these 

technologies, it is one area where there is a definite overlap between the two. 

It is true that both Java and ActiveX have a very different design philosophy, security 

architecture and method of implementation, however comparisons between the two 

are inevitable. The terms Java and ActiveX are often used in the same context. 

Where people refer to one, they often make mention of the other. When Antivirus 

software provides functionality to verify one it usually does so for the other as well. 

When a personal firewall allows the blocking of one it usually does so for the other 

as well. 

Titls chapter compares, contrasts and comments on the security architectures, models 

and implementations of these two technologies. In particular, it pays attention to the 

very different approaches to issues of security offered by the two technologies. It 

contrasts the sandbox approach of java, with ActiveX's reliance of code signing. 

7.2. Evolution Vs Revolution 

Previous chapters have made mention of the design philosophies behind Java and 

ActiveX and the origins of both of these technologies. ActiveX is the result of an 

evolutionary process that began with VBX controls and OLE objects. While existing 

languages influenced the design of the Java language, it was the result of a specific 

design process rather than an evolution from previous products. 

73 



llrls allowed the designers of the Java language to consider code security as one of 

the major design goals of the language. While other issues such as portability and 

robustness were also important design considerations, it was quite unusual for a 

security model such as the one implemented by Java, to be considered at such an 

early stage of development and so tightly integrated into the language. In contrast, 

ActiveX evolved from an environment in which code integrity and security was not 

such an important issue. 

7 .3. Security Models Vs Trust Models 

As mentioned in previous chapters, Java employs a highly integrated security model 

that encompasses both authentication and authorisation. In the later versions of the 

Java language, authentication can be achieved tluough the use of digital signatures 

and authorisation can be enforced by the Java sandbox. 

In contrast, Acfr,,eX relies on verification of integrity and authenticity through code 

signing. ActiveX lacks any method to enforce controls over what a control can do 

once it has been allowed to begin execution. Operating system controls can offer 

some protection particularly when multiple users share the same machine and 

controls are enforced via file permissions. As the ActiveX control operates within 

the security context of the user that launched the browser. Additionally, third party 

products such as encryption tools may offer some protection against theft of 

information attacks that could be performed using ActiveX controls. However the 

fact that ActiveX teclmology does not provided any integrated mechanism to control 

the activity of controls is a major concern. 

It could be argued that stand-alone executables do not provide an in-built security 

model and that therefore this omission is from ActiveX technology is not an 

74 



important issue. However this thesis argues that executable web content is designed 

to integrate seamlessly with web pages and is often quite transparent to users. This 

removes the need for a user to consciously and explicitly, seek out, download and 

execute code (which could possibly be malicious in nature). As a result, this thesis 

argues that there is some responsibility for executable web content technologies to 

implement controls that can restrict the actions of a piece of code. Java makes a 

well-intentioned, reasonable attempt to provide such a mechanism through is 

sandbox approach. ActiveX makes no such attempt. 

While Java's sandbox approach does attempt to provide a safe, restricted run-time 

environment for executable web content, its developers have, in the past, struggled to 

defme the boundaries of this environment. As mentioned in previous chapters, 

Java's security model has undergone significant changes. The initial release of the 

Java language saw a largely all-or-nothing security model under which all local Java 

applications were completely trusted an allowed to operate without restriction 

whereas remote applets were subject to significant sandbox restrictions. Since this 

initial release there has been a distinct move away from this all-or-nothing approach, 

to a more fine-grained, policy driven arrangement. The latest versions of the 

language allow sandbox restrictioos to be tailored for specific applets based on a 

security policy. 

While the developers of the Java laogoage should be commended for firstly 

desigoing the language with a tightly integrated security model and then for refining 

this model, there are concerns that the policy driven approach may be self~efeating 

in its complexity. Referring to the policy driven approach of Java 2, Schneier (2000, 

pl 67) states ''This works much better, but has proven too complicated to use". 

75 



Commentators such as Bruce Schneier (2002b) have raised a number of concerns 

regarding code signing as a means of protection against malicious code. Schneier 

(2002b) cautions, "Remember, digital signatlll'es provide accountability, not 

protection." and also makes the point that "Code signing can't protect you if you can't 

figure out whom to trust". 

7 .4. Implementation Issues, Bugs and Vulnerabilities 

This is one area of concern, particularly with the Java language. As noted earlier, 

there are a number of Java Virtual Machine implementations from many vendors. 

While all of these implementations should confonn to the Java specifications, it is 

reasonable to expect that there will be a number of vulnerabilities that could 

potentially be exploited. 

Not surprisingly, since the release of the Java language in 1995, a number of 

significant vulnerabilities have been found. Sun Microsystems maintains a 

chronological list of such bugs (Sun Microsystems, 2002). Examining this list tends 

to emphasise the fact that different implementations will have different 

vulnerabilities and flaws. 

The most recent example documented on this list describes a possible attack to 

escalate the privileges of a piece of Java code by exploiting a vulnerability in the 

Bytecode Verifier of the Java Sandbox. However privilege escalation attacks are not 

the only type of problem documents. Attacks against confidentiality and availability 

of infonnation and systems can also be found in this list. 

76 



7.5. Executable Web Content Security 

In a paper titled A Comparison between Java and ActiveX Security, Hopwood 

(1997) asks thC question "Would ActiveX or Java be secure if all implementation 

bugs were fixed?" While the security architecture of Java in particular has changed 

significantly since Hopwood wrote this paper, it remains an interesting CJ.uestion as it 

highlights the differences between the design philosophy a'nd security architectures 

of the two technologi_es. 

7 .6. Summary 

TIIis chapter compares and contrasts the approaches taken by the developers of the 

Java and ActiveX technologies. It builds on previous chapters and argues the merits 

and weaknesses of the approaches taken by these technologies to the difficult task of 

executable web content security. 

This thesis argues that there are inherent risks involved with the principle of 

attaching executable code to web pages in such a way that they download and 

execute transparently on client systems. It is therefore important to address these 

issues and consider the security models implemented· by technologies such as. Java 

and ActiveX. 

This chapter argues that the approach taken by the Java language at least attempts to 

address the inherent risks associated with executable web content, while ActiveX's· 

reliance on digital signatures does little to address these concerns. 

77 



8. Research Questions 

78 



8.1. Overview 

This chapter provides answers to the research questions identified in Chapter 2. It 

provides and analysis of chapters· present~ in this thCsis and aims. to provide clear, 

concise answers to these questions. 

8.2. Does executable WWW content pose a significant 
se1curity threat to client machines? 

This thesis argues that there are inherent risks associated with the use of executable 

web content technologies -such as Java and ActiveX. Security problems associated 

with untrusted, potentially malicious code have been well documented over a number 

of years. However with most fonns of executable code, there is a conscious decision 

on the part of users to first seek out, download and then execute the code. This is not 

the case with code embedded in web pages. 

Web users will not necessarily be aware that a web pagC contains executabte·code 

before visiting that page. This, combined with the fact that such code could be 

downloaded and executed in a largely transparent manner, removes much of the 

decision making from the user. 

8.3. Do the security mechanisms offered by these 
technologies provide a suitable level of protection? 

Both of the major forms of executable web content discussed in this thesis implement 

some form of security or trust mechanisms. However there are stark _differences 

between the approaches taken by Java and ActiveX. 

Java's sandbox approach acknowledges some the concerns raised by the use of 

executable web content by providing a mechanism with which to restrict the 

79 



capability of a piece of code. This sandbox approach has a number of positive 

attributes. 

Java has been designed as an architectlll'e neutral language. It is intended that applets 

can be written once and then executed on a number of very different platforms. The 

Java Virtual· Machine is the cornerstone of Java ·portability: As ~uch, it would be 

inappropriate for the Java language to rely on operating system or other platfonn 

specific controls. The large variation in security controls offered by various 

operating systems necessitates a security model that is integrated into the language 

itself. 

In contrast ActiveX is limited to Windows platfonns. Despite this, ActiveX 

technology cannot rely on a certain set of operating system security featlll'es being 

present The Windows 9x product line and the Windows NT/2000/XP line provide a 

very different set of security functionality. As such the ActiveX technology can not 

rely on the presence of certain OS level controls. For this reason, this th-esis argues 

that ActiveX provides insufficient protect against the threats raise by the use of such 

code. 

8.4. Are there significant differences in the security 
mechanisms provided by popular WWW browsers? 

The significance of this question has changed somewhat during the writing of this 

-thesis. The current dominance of Microsoft's Internet Explorer web browser has 

reduced the importance of this question as it is written. However the issue of web 

browser security mechanisms is still an important one. 

Internet Explorer's concept of security_ zones is an.important step. This feature does 

allow the implementation of a security policy in that web sites can be classified and 

80 



that application level controls can be applied depending upon this classification. 

When Internet Explorer initially introduced the Security Zone functionality, its main 

competitors did not have any equivalent features. 

There are some significant differences in the executable web content security. 

functionality provided by the current popular browsers. This is to be expected as 

there are some quite fundamental differences in terms of the types of executabl~· web 

content supported by such browsers. Internet Explorer's support for ActiveX does 

necessitate the concept of zones that is supported by the browser .. Browser's such as 

Mozilla and Opera that do not support ActiveX (natively) can afford to rely on the 

security features offerCd by the Java sandbox approach for executable web content 

security. However, In~et Explorers Zones concept spread beyond ActiveX and 

allows users increased control over scripts and cookies. 

The use of third party tools can play an important role in enforcing a consistent 

executable web content policy across a number. of web browsers. Tools such as 

privacy enhancing proxy servers can be useful when multiple web browsers are 

present on one machine. B}' using tools such as these personal proxy servers, users 

can enforce a consistent policy regarding executable_ web content such as Java and 

ActiveX and scripts, as well as cookies and banner advertisements, ·regardless of. the 

security features provided by web browsers. 

8.5. Are there significant benefits to be gained from 
using secure desktop operating systems in 
conjunction with WWW applications? 

This thesis argues that operating system level controls are an important factor when 

considering executable web content technologies. However as stated earlier, it is the 

position of this thesis that operating system level controls ori their own are not 

81 



sufficient, rather that they play an important role in terms of defence in depth. As 

argued eai-lier, technologies such as Java and ActiveX cannot assume that a certain 

set of Operating system level .controls·.will be present. -Active~ controls,. while 

largely limited to the Windows platform could be expected to exec~te On Windows 

9x systems or Windows NT/2000/XP s~ms. Tb~ situation is_: more complex·in 

terms of Java applets; which could be expected -to. operate .. on Windows and 

Macintosh systems, as well as Linux and Unix variants. 

ActiveX's reliance on digital signatures and assurances of aUthenticity and integrity 

result in a strong need for operating system level controls. As ActiveX controls 

operate in-process with respect to the web browser used, they operate with the same 

permissions as the user of the operating system. As such, when multiPle users share 

systems, operating system level permissions are .necessary to separate resources 

belonging to these users. While a. malicious ActiveX cOntrol may be able to affect 

the resources to which the particular,user has access, it should not be able to. affect 

objects belonging to other users. 

Systems such as Windows 9x machines are more problematic as far. as ActiveX 

controls are concerned. A lack of strong operating ·system level resource permissions 

means that if allowed to begin execution, a control will effectively have unrestricted 

access to all of the resources available on that m~hine.' In··colltr~ Java applets 

would still be confined by the restrictive run-time environment of the Java Sandbox. 

It is the position of this thesis that operating system level controls are of great 

importance when considering the possibility of malicious executable web cOntent, 

but as part of a defence in def)th approach. This ·thesis contends that COntrols ~ 

necessary at the level of the technology itself, as we,11 as the op~ting system level. 

82 



The controls implemented by the technologies themselves are often closely 

integrated .with the application level controls such as Internet Explorer's se·curity 

Zone concept. 

8.6. Summary 

This chapter. examines re-visits the research questions identified in Chapter 2. 

Perhaps this chapter should close with a statement made by Bruce Schneier (2002a) 

"Mobile code is very dangerous, but it's.here to stay. For_mobile code to survive, it 

should be redesigned with security as a primary feature." 

83 



9. Conclusions and Future Research 

64 



9.1. Overview 

This chapter provides some concluding remarks and suggests possible areas for 

future research. A number of such areas were identified during the preparation of 

this thesis. Some of these areas are quite closely related to issues discussed in this 

document, but were considered to fall outside the scope of this thesis. Other topics 

such as peer-to-peer networking have been suggested as areas of future research due 

to their sudden prominence and widespread use. Given the sudden surge in use of 

peer-to-peer technologies, it will become increasingly important to be aware of the 

security issues surrounding their use. 

9.2. Conclusions 

This thesis has examined issues surrounding the use of executable web content and 

has examined the possibilities for malicious code to be delivered in this manner. In 

particular it has focused on Sun Microsystems' Java Programming Language and 

Microsoft's ActiveX Control Technology. 

The general conclusions reached by this investigation are that there are significant 

risks inherent with the concept of attaching binary, executable code to web page in 

such a way that the code is automatically downloaded and executed when the web 

page is rendered within a browser. 

The dangers of running code from untrusted sources have been well documented 

over a number of years. 1broughout the last two decades in particular, the vectors 

for attack by fonns of malicious code have mirrored the prevailing methods of code 

distribution. In the 1980s and early 1990s, file infecting and boot sector viruses were 

common. This mirrored the fact that code executable code was commonly 

85 



distributed between users via floppy disks. During the mid to late 1990s, email 

became a major vector for malicious code attacks. Often this involved documents 

infected with macro viruses. Again, this mirrored the fact that email had become one 

of the major ways in which executable code was distributed. 

Technologies such as Java and ActiveX represent another method for distributing 

executable code. This thesis takes the view that the distribution of such code via web 

pages represents another mode of executable code distribution and has the potential 

to become a major vector for malicious code attacks. 

Technologies such as Java and ActiveX increase the possibility· that users will 

execute code from untrusted sources. However, it is not entirely practical to 

advocate that such technologies are not used. Users tend to expect a certain amount 

of functionality from web pages and many services rely on embedded code. Internet 

banking and similar services often make use of these sorts of technologies. Simply 

advising web users to tum off Java and ActiveX is becoming less and less practical 

as more service begin to rely on such technologies. As a result it is important to 

understand the features and limitations of the security measures offered by such 

technologies. 

This thesis takes the view that the security model offered by the Java Programming 

Language is a positive aspect of the language. The Java security model does not 

make any assumptions about the security capabilities of the underlying system and 

this tends to reflect the portable nature of the language. 

In contrast, this thesis also talces the view that ActiveX's reliance on authenticity, 

integrity and non-repudiation through digital signatures raises some concerns. Once 

an ActiveX Control is allowed to begin execution it is only really constrained by 

BB 



operating system and third party controls. Given that the capabilities of such 

operating system and third party controls can vary from system to system, the 

effectiveness of this approach can vary dramatically. 

This thesis contends that when considering the issue of executable· web content, a 

layered defence must be employed. The first layer in series of defences should be 

available at the level of the technology itself. Java's sandbox model is an important 

step in this direction. Conversely, this thesis has some concerns over ActiveX's 

reliance on digital signatures. 

Application level defences comprise the next layer in this series of defences. This 

thesis has examined the security mechanisms of several popular web browsers, 

including Internet Explorer, Netscape, Mozilla and Opera. It must be noted that this 

thesis has limited its examination of these browsers to the principles behind the 

secwity mechanisms implemented by these products, particularly as they relate to 

executable web content. It is acknowledged that many vulnerabilities have been and 

will continue to be discovered in various browsers. While many of these 

vulnerabilities could result in significant security breaches, a discussion of individual 

vulnerabilities is well beyond the scope of this thesis. 

This thesis takes the view that flexibly policy based approaches such as that offered 

by the concept of Zones in the Internet Explorer range of web browsers is a positive 

step, even though this approach cannot restrain the actions of an ActiveX Control 

once it has begun execution. 

Aside from web browsers themselves, application level controls might also include a 

nwnber of third products such file encryption tools, personal firewalls, anti-malware 

as well as auditing and logging tools. 

87 



Finally, operating system level controls are also of great importance. 'This is one 

area that varies considerably between systems. For example, systems employing the 

Windows 98 operating system, will provide very different functionality to. those 

employing the Linux, or Windows NT/2000/XP. This thesis conteods that while 

operating system level controls are an important aspect of executable web content 

security, the variation in functionality offered by client operating systems indicates 

that other levels of controls will also be of great importance. 

Finally, while they are outside the scope of this thesis, this author acknowledges the 

importance of non-technical measures such as education and awareness of end users 

as well as a solid policy framework, in which these users make use of World Wide 

Web resources. 

9.3. Future Research 

During the preparation of this thesis, it became clear that there are a number of 

World Wide Web and other Internet related security issues that that need attention. It 

was unfortunate that many of these issues fell outside the scope of this thesis and 

could not be discussed. The following section suggests some areas that deserve 

some attention and could be grounds for future research. 

9.3.1. World Wide Web Privacy Issues 

Issues such as the privacy implications raised by cookies, banner advertisements, and 

other profiling mechanisms and the effectiveness of controls such as third party 

filtering products could be an interesting area for exploration 

88 



9.3.2. Peer-to-Peer Security Issues 

The growing popularity of peer-to-peer (P2P) networking giVes rise to some 

important security concerns. Notable examples of peer-to-peer n~tworking include 

the controversial Napster (www.napster.com) application and the Gnutella protocol 

and related applications (www.limewire.com; www.bearshare.com). Other current 

examples include Morpheus, Kazaa .and Grokster. 

There are a nwnber of questions that are raised by the use of such technologies. 

Some of these questions include: 

• Is the idea oflarge numbers of uncontrolled peer nodes sharing many forms of data and 
software fundamentally dangerous? 

• Are there weaknesses in current protocols? 

• How can the protocols be improved? 

• Are there weaknesses in current applications? 

• How can these applications be improved? 

• Will peer-to-peer networking be a major source of attacks and intrusion attempts? 

• How can peers be authenticated? Do we want peers to be positively identified or will 
peers prefer to remain anonymous? 

• How will peer-to-peer change views on issues such as copyright and intellectual 
property? 

• Will technologies such as watermarking and digital rights management be effective? 

• What are the legal challenges involved? 

• Will peer-to-peer have adverse effects on the perfonnance and reliability of networks? 

9.3.3. Microsoft's .Net Framework 

Microsoft's .Net framework could also be an interesting area for future research. 

Microsoft touts this framework as being the next major paradigm in distributed 

systems, in some cases comparing it to the Enterprise Editions of Java 2 (Microsoft, 

2002b ). An examination of the security issues raised by such technologies and 

appropriate- security measures could an interesting extension to some of the aspects 

covered in this thesis. 

89 



9.4. Summary 

This chapter has presented the conclusions of this thesis as well as suggested some of 

the areas that fell outside the scope of this thesis as ,possible avenues for future 

research. 

90 



10. Appendix A: Asymmetric Encryption 
and Digital Signatures 

91 



10.1. Overview 

Digital signature technologies use asymmetric encryption techniques in order to 

provide a level of trust when dealing with digital communications. As the name 

suggests, there are some distinct similarities between a digital signature and a 

handwritten signature on a physical document. 

Trust is a difficult issue when dealing with an electronic medium such as the World 

Wide Web. It is often seen as a barrier preventing the widespread adoption of 

electronic commerce. Digital signatures can alleviate some of these problems as they 

can be used to authenticate various parties in a transaction and prove the integrity of 

digital documents. However, aside from their usefulness in terms of electronic 

commerce, digital signatures can also benefit other WWW users by providing a trust 

mechanism for use with executable code. 

This section will begin by highlighting the importance of trust, particularly in 

relation to electronic commerce. However, as this thesis is primarily concerned with 

the risks associated with executable web content, the discussion will shift to the code 

signing applications of digital signature technologies, 

Currently, several digital signature technologies exist, marh\ed and supported by a 

variety of vendors. Thi.s section will simply discuss the basic concepts behind digital 

signature technology. 

10.1.1. Digital Signatures and Electronic Commerce 

Security is often seen as a significant barrier restricting the widespread adoption of 

electronic commerce (Margherio et al., 1998) (Electronic Commerce Expert Group, 

1998). Given these concerns over security, trust becomes an important issue (IBM, 

1998). In an electronic environment, it can be difficult to be sure that the parties 

92 



involved in a transaction are who they claim to be and transactions and 

communications have not been intercepted or fabricated (IBM, 1998). 

Digital signature technologies aim to prove the authenticity and integrity of message 

or transaction (Feghhi, Feghhi & Williams, 1999, p 45). The ability to reliably 

assess the origin and integrity of a digital communication goes a long way towards 

providing a level of trust suitable for use with electronic commerce. While decisions 

regarding the trustworthiness of a digital message ultimately rely on human 

judgement, technologies such as digital signatures aim to improve our ability to make 

these decisions. Digital signatures are one tool to help users make infom1ed 

decisions in an electronic environment (IBM 1998). 

Whlle digital signatures have the potential to play an important role in the context of 

electronic commerce, they can also be used to indicate trust with regard to executable 

program code. When used in this manner, these signatures can act as "digital shrink-

wrap". 

10.2. Code Signing - The "Digital Shrink-Wrap" 
Concept 

Several conunentators have used analogies comparing digitally signed program code 

with shrink-wrapped software purchased through retail outlets (Microsoft, 1996a) 

(Microsoft, 1996b) (Feghhi, Feghhi & Williams, 1999, p 99) (Garfinkel & Spafford, 

1997, p169). The phrase "digital shrink-wrap" suggests similarities between signed 

program code and physically packaged software. When software is purchased 

through a retailer, there are a number of factors that indicate the authenticity of the 

product Shrink-wrapping, although hardly foolproof, provides some indication that 

the product has not been tampered with since its release. The presence of authentic 

93 



manuals and anti-piracy features such as holograms also suggest that a piece of 

software is authentic (Garfinkel & Spafford, 1997, pl69). The appearance of the 

retail outlet and the reputation of the merchant can also help consumers make a 

decision as to the trustworthiness of the software. 

When software is obtained from an electronic source such as the World Wide Web, 

indicators of trust are often not present or are not verifiable. Whereas in the physical 

world, a retail outlet may consist of bricks and mortar, the digital equivalent is often 

a website. Given the ease with which web sites can be created, copied and modified, 

it can be very difficult to establish a level of trust. Electronically obtained software 

usually lacks indicators such as physical manuals and anti-piracy features. There is 

often nothing to indicate the source of the software or anything to prove that the 

software has not been modified since its release (Feghhi, Feghhi & Williams, 1999, p 

99). The absence of physical trust indicators necessitates other means of establishing 

the·authenticity and integrity of a piece of software. 

Code signing technologies attempt to positively identify the author of a piece of code 

and to prove that the code has not been tampered with since its release (Feghhi, 

Feghhi & Williams, 1999, p 99). As this provides sintilar indicators of authenticity as 

with physically purchased software, the tenn "digital shrink-wrap" is particularly apt. 

Additionally, if a piece of code can be shown to be malicious, positive identification 

of the author may make it possible for the victim to seek legal redress. Without the 

accowitability offered by code signing technologies, publishers of a piece of 

malicious code may deny creating the software, or may claim that it had been 

modified since its release (Feghhi, Feghhi & Williams, 1999, p 100). 

94 



Code signing technologies have been enabled by the development of certain 

technologies and infrastructure. In order to sign code, asymmetric encryption 

techniques are used. In order to make this signature a meaningful way of generating 

trust and accountability, certificates and certificate authorities become necessary. 

This chapter will discuss these enabling technologies and infrastructure. 

10.3. Asymmetric Encryption 

Digital signatures and code signing technologies have been made possible largely 

because of the development of public key cryptography. The defining characteristic 

of this type on encryption is its use of two keys. Also referred to as asymmetric 

encryption, public key encryption uses different keys for encryption and decryption. 

Although this fonn of encryption requires both a public key and a secret private key, 

it is referred to as public key encryption rather than secret or private key encryption 

so as not to cause confusion with other techniques (Feghhi, Feghhi & Williams, 

1999, p 36). 

In order to use public key encryption, users generate two keys. One of which must 

be kept secret, while the other can be freely transmitted. When encrypting a message 

such as an email or a piece of text, a user must perfonn the encryption using the 

public key of the intended recipient. Only the holder of the corresponding private 

key can then decrypt the message. When used to digitally sign a document or 

message, the private key is used to create a signature, which can then be verified 

using the corresponding public key. 

Simply using public key encryption to sign a digital object does not guarantee that 

the object is trustworthy. All that a digital signature guarantees is that the object was 

signed with a private key that corresponds to the public key used for verification. If 

95 



the recipient of the object does not know or trust the sender, then the fact that the 

object is signed is effectively meaningless. Anyone could conceivably create a key 

pair and sign a digital object. 

One solution to this problem is though the use of certificates. Certificates allow a 

trusted third party to vouch for the credentials of the certificate holder. 

10.4. Certificates 

Public key encryption itself does not guarantee that a digital object comes from a 

reputable source. Anyone, regardless of his or her intentions, could generate a key 

pair, distribute a public key and use asymmetric encryption techniques in order to 

gain trust. For this reason, in order to be meaningful, digital signatures usually 

include a certificate from a trusted third party. In effect, the trusted third party 

vouches for the identity of the certificate holder. 

A digital certificate (or a digital ID or simpiy a certificate) binds inforniation 

identifying an entity with a public key (Feghhi, Feghhi & Williams, 1999, p 61). 

Without such a binding, digital signatures are of little use and "the key is just a byte 

string and can be yours as well as anyone else's." (Gerek, 1998). 

One common certificate format is X.509. X.509 is a standard developed by the 

International Teleconamunication Union (ITU) (http://www.itu.int/home/) and the 

International Standards Organization (ISO) (http://www.iso.ch). The general 

structure of and X.509 certificate can be seen in Figure 5. 

Certificates are issued, maintained and revoked by trusted third parties. These 

usually take the fonn of Certificate Authorities (CAs). 

96 



10.5. Certificate Authorities 

Certificate Authorities (CAs) act as trusted third parties in order to vouch for the 

identity of various clients. Each CA is expected to publish a document describing 

the organisation's Certification Practice Statements (CPS). 

Certificate Authorities perform a range of duties. While these duties vary between 

CAs there are some basic responsibilities that are common to all. Microsoft (MSDN 

CDROM) describes some of the duties performed by CAs as; 

• They publish the criteria for granting certificates. 

• They grant certificates if an applicant meets the published criteria. 

• Managing certificates (enrolling, renewal, and revokation). 

• Storing root keys. 

• Verifying evidence submitted by applicants. 

• Providing tools for enrolment. 

• Accepting the liability associated with these responsibilities. 

Version 

Serial Number 

Algorithm Identifier 
Algorithm 
Parameters 

h 

Issuer I\ 

Period of Validity 
Not Before 

Date 

Subject '" 
Subject's Public Key 

Algorithm 
II Parameters 

Pu 

Signature 

Figure S: X.509 Certificate Structure (Microsoft Corporation, n.d) 

97 



10.6. Legal Issues and Challenges 

While digital certificates and signatures provide a useful trust mechanism, they do 

not guarantee that a message is accurate or that a piece of code is free of malicious 

intent. Code signing teclmologies do however attempt to prove authorship of a 

particular piece of program code. Such proof of authorship may, in the event that a 

piece of program code is found to be intentionally hannful, allow victims to take 

legal action against the author. However given the electronic nature of these 

technologies and the global nature of the Internet, seeking legal redress based on 

digital signatures gives rise to a number of issues. 

Given the current level of interest in electronic commerce it is not surprising that 

much has been written regarding the legal issues involved with the using digital 

signatures for commercial reasons. Many of the same issues apply when considering 

the use of digital signatures code signing purposes. 

One major issue revolves around the legal standing of a digital signature compared 

with that of a handwritten signature on a legal document. It can be argued that 

electronic signatures can fulfil the characteristics required of a traditional 

handwritten signature (McCullagh, Little & Caelli, 1998) and as such, deserve a 

similar legal standing. 

10.6.1. Legal Standing of Digital Signatures in Australia 

In April 1998, the Electronic Commerce Expert Group (ECEG) presented a report 

the Commonwealth Attorney General. This report made mention of the fact that "At 

present the law in Australia does not generally recognise forms of electronic 

signatures which can perfonn the functions of a handwritten signature." (Electronic 

Commerce Expert Group, 1998). The report recommends that legislation should be 

98 



put in place that deals with the legal effect of electronic signature and that other 

considerations should be left for the market to detennine. 

Many of the recommendations of the ECEG's report were based on the United 

Nations Commission on International Trade Law (UNCITRAL) Model Law on 

Electronic Commerce of 1996 (Electronic Commerce Expert Group, 1998). 

The Commonwealth Government later incorporated many of the ECEG report's 

recommendations into the Commonwealth Government's Electronic Transactions 

Bill 1999. 

10.7. Summary 

The authenticity of digital communications, transactions and program code is often 

very difficult to judge. Digital signatures seek to alleviate this problem by providing 

the electronic equivalent of a handwritten signature. Digital signatures have been 

enabled largely due to the development of public key cryptography (also referred to 

as asyrrunetric encryption). Digital signatures are an important tool in improving the 

security of electronic communications and transactions. 

Code signing is a variation of digital signature technology. It allows the author of a 

piece of program code to prove its origin and to prove that the code has not been 

modified since its release. Code signing is often described as the equivalent of 

digital shrink-wrap as it aims to provide users with some means to detennine the 

trustworthiness of a piece of code. 

A signature attached to a piece of code does not positively identify the author, it 

simply proves that the code was signed with a particular private key. Certificates are 

necessary to attach the identity of the author to a piece of code. These certificates are 

99 



issued, maintained and revoked by certificate authorities that effectively vouch for 

the identity of the author. 

100 



11. Appendix B: ActiveX Development 
Tools 

101 



Unlike Java, ActiveX is not a language. It is a binary specification and as such any 

programming language or tool that can create a binary object that conforms to these 

stands can be used to create an ActiveX Control. However, in reality, certain 

languages and development tools are better suited to the development of Active 

Controls than others. Common development tools include Microsoft Visual C++ and 

Visual Basic. 

Visual C++ provides a flexible, if somewhat complicated method for creating 

ActiveX Controls. When using a C++ environment such as Visual C++, developers 

have several methods for creating ActiveX Controls. Controls can be created 

completely by hand, or by using various class libraries or templates. 

Controls can be created manually or with the help of an existing framework (Li &, 

Economopoulos, 1997, p. 73). While creating controls manually can provide a high 

level of flexibility, it can be very a very tedious and inefficient method of control 

creation. This approach requires an in depth understanding of the inner workings of 

ActiveX Controls and presents a steep learning curve for developers. A much more 

effective way to create controls is to use an existing framework such as the Microsoft 

Foundation Classes (MFC}, the Abstract Library Templates (ATL) or the BaseCtl 

framework. 

The BaseCtl framework was developed by Microsoft's Visual Basic Group in 1995 

to provide a framework for ActiveX Control (then referred to as CCX) development. 

BaseCtl was originally developed to allow the creation of small, lean controls in 

order to reduce the loading times for Visual Basic applications. The major 

disadvantage to using BaseCtl is that it is difficult to use and requires developers to 

implement much of the control's functionality without a great deal of help from the 

102 



framework (Anderson, 1997, p. 19). BaseCtl was one of the earliest control 

development frameworks and has effectively been superseded by MFC and ATL. 

The Microsoft Folllldation Classes (MFC) are a set of C++ classes that can be used 

for a wide range of Windows software development projects including the creation 

of ActiveX Controls. The use of MFC greatly simplifies the development of controls 

compared with creating controls from scratch (Anderson, 1997, p. 143). The use of 

MFC still requires a solid understanding of the ActiveX architecture and bas a 

considerable learning curve, although this approach is much simpler than developing 

controls manually or by using BaseCtl. 

Given the number of developers already familiar with MFC, it seems that this would 

be an ideal choice for the creation of ActiveX Controls (Li & Economopoulos, 1997, 

p. 187). However, there is a significant drawback to using MFC for control creation 

and that is that controls created with MFC are often quite inefficient in terms of file 

size. While this may not be a significant problem in a high bandwidth intranet 

enviromnent, any increase in file size can result in significant download delays 

across a low bandwidth network such as the Internet (Li & Economopoulos, 1997, p. 

125; Anderson, 1997, p. 210). This increase in file size to due to (often unnecessary) 

MFC runtime code that is incorporated into the resulting control. 

Microsoft's Abstract Template Libraries (ATL) provide a practical alternative to 

MFC for the development of ActiveX Controls. The main strength of ATL is its 

ability to create small, lightweight, efficient controls. Unlike MFC, ATL does not 

incorporate large amounts of unnecessary code into the finished control. This makes 

controls created with A TL well suited to the low bandwidth Internet/WWW 

enviromnent. In fact, ATL has been described as a method for generating '1ust 

103 



enough" code to implement the desired control (Li & Economopoulos, 1997, p. 21). 

Controls developed with ATL do not rely on specific DLLs or other libraries being 

included with the finished control. It seems likdy that ATL will increasingly 

become the framework of choice for ActiveX Control development (Anderson, 1997, 

p. 249). 

MFC enjoys a high level of integration with Microsoft's Visual C++ development 

environment, making it a convenient choice for the rapid development of ActiveX 

Controls, particularly where download times are not an important consideration 

(A.iderson, 1997, p. 17; Li & Economopoulos, 1997, p. 20). ATL is also integrated 

with Visual C++, although no as tightly as MFC (Anderson, 1997, p. 18; Li & 

Economopoulos, 1997, p. 21). However, built-in support for ATL within Visual 

C++ is increasing with each new version of the language. This reflects the 

importance that Microsoft places in this library. BaseCtl does not have any real 

integration with Visual C++ (Anderson, 1997, p. 18) and is not currently considered 

a viable alternate for ActiveX Control development. 

104 



12. Appendix C: Internet Explorer Zones 

105 



The following table summarises the differences between the pre-defined security 

levels for Microsoft's Internet Explorer Web browser. Each of the four security 

zones used by the browser can be configured to use either the High, Medium, 

Medium-Low or low security profile listed in the table below. Additionally the 

browser allows users to customise these profiles. 

Securi Level 
Prooertv Hi"), Medium Medium-Low Low 

Download signed ActiveX Disable Prompt Prompt Enable 
controls 
Download unsigned ActiveX Disable Disable Disable Prompt 
controls 
Initialise and script ActiveX Disable Disable Disable Prompt 
controls not marked as safe 
Run ActiveX controls and Pug- Disable Enable Enable Enable 
ms 
Script ActiveX controls Enable Enable Enable Enable 
marked as safe 
Allow Cookies Disable Enable Enable Enable 
Allow ner-session cookies Disable Enable Enable Enable 
File download Disable Enable Enable Enable 
Font download Promot Enable Enable Enable 
Java Pennissions High Safety High Safety Medium Low Safety 

Safetv 
Access data sources across Disable Disable Ptompt Enable 
domains 
Drag and drop or copy and Prompt Enable Enable Enable 
oaste files 
Installation of desktop items Disable Promot Prompt Enable 
Launching programs in an Disable Prompt Prompt Enable 
!FRAME 
Navigate Sub frames across Disable Enable Enable Enable 
different domains 
Software channel permissions High Safety Medium Medium Low Safety 

Safetv Safetv 
Submit non-encrypted fonn Prompt Enable Enable Enable 
data 
User data rsistence Disable Enable Enable Enable 
Active scrintinl! Enable Enable Enable Enable 
Allow paste operations via Disable · Enable Enable Enable 
scrint 
Scrintine of Java Ar1nlets Disable Enable Enable Enable 
Logon Prompt for Automatic Automatic Automatic 

usemameand logon only in logon only in logon with 
password Intranet zone Intranet zone current 

usemameand 
password 

106 



13. Appendix D: Windows NT/2000/XP 
Security Architecture 

107 



This appendix provides information regarding the security architecture of the 

Windows NT line of operating systems. This line also includes Windows 200 and 

WindowsXP. 

Common operating systems, particularly those for WWW clients and servers include 

Windows 95/98, Windows NT Server and Workstation, UNIX, Linux and MacOS. 

In terms of security features, these operating systems vary greatly. While Unix and 

Windows NT offer some important security mechanisms, the security features of 

Windows 95/98 are considered minimal. 

13.1. Background 

Microsoft's Windows Operating System is currently the world's most prolific 

desktop operating system (add reference here). However, Windows is not one single 

product. Rather the name represents a family of operating systems. Currently the 

Windows family contains a number of product lines, primarily Windows 

3.1,Windows 95/98, Windows NT/2000 and Windows CE. 

This thesis will refer to the Windows 95/98/ME line of Microsoft of operating 

systems as Windows9X or Win9X. Architecturally, these operating systems are 

quite similar and as such, they will be discussed as if they are essentially one 

product. As this thesis focuses on Windows NT and Windows 2000 in detail, it will 

refer to products individually despite the fact that there are a number of architectural 

similarities. 

At a superficial level, there are some distinct similarities between the different 

branches of the Windows family. Windows 3.1 and Windows NT 3.5 share a similar 

u:1cr interface, as do Windows 95/98 and Windows NT 4.0. Despite these 

similarities, the different Windows product lines were developed with under different 

108 



circmnstances and with different goals. As a result, there are many important 

architectural differences between Windows NT and other member of the Windows 

family. 

13.2. Characteristics of Windows NT/ 2000 

While there are a number of cosmetic similarities between the Win9x and Windows 

NT/2000 product lines, there a also a number of important architectural differences. 

This is not surprising as both product lines are aimed at different segments of the 

Operating System market. Win9x is generally a consumer level operating systems 

aimed at home users. In contrast Windows NT and Windows 2000 are aimed at a 

nwnber of market segments. There are several variations of Windows NT and 

Windows 2000. There are variations aimed at professional users, designed for 

desktop workstations, as well as several variations designed for use as servers. As 

this thesis focuses on security threats faced by consumers of World Wide Web 

services, it will discuss only the "Professional" versions of Windows NT and 

Windows 2000. Others variations of these operating systems, while architecturally 

similar, fall outside the scope of this thesis. 

In contrast to the Windows 9x line, Windows NT and 2000 were designed to be quite 

portable. Whereas Windows 9x is limited to Intel based platforms, Windows 

NT/2000 versions have been released for other platforms. However Intel remains a 

popular choice of platform for this operating system. Unlike Win9x, Windows NT 

and 2000 make use of a Hardware Abstraction Layer (HAL) in order to insulate most 

of the Operating System from hardware dependencies introduced by various 

platforms. This HAL can be seen in Figure 6. 

109 



While much of Windows9x was written in platfonn dependent assembly code, NT 

and 2000 were developed using higher-level languages. The use of higher-level 

languages and the inclusion for the HAL makes Windows NT and 2000 much easier 

to port to platfonns other than those based on Intel processors. 

While Windows 3.1 and Win9x were heavily dependent on the MS-DOS operating 

system, Windows NT and 2000 are completely independent of this earlier operating 

system. Unlike Windows 3.1, Windows NT and 2000 do not rely on having MS

DOS installed and unlike the Win9x line, Windows NT and 2000 do not incorporate 

large portions of MS-DOS technology. As such Windows NT and 2000 differ 

greatly in tenns of architecture when compared with Win9x. 

Robustness, stability and security were also major design goals of Windows NT and 

2000. Whereas the security features implemented by Win9x can only be described 

as minimal, Windows NT and 2000 do implement some important security features 

(Sheldon, 1997, p 76; Rutstein, 1997, p3), many of which will be discussed in this 

chapter 

13.3. The Windows NT Architecture 

Architecturally, WinNT is very different to the Win9x line of operating systems. It 

is divided into several distinct subsystems and components. The basic architecture of 

the Windows NT can be seen in Figure 6. 

One notable architectural feature is that Windows NT draws a clear distinction 

between User Mode and Kernel Mode. All user applications execute in User mode 

while various system components execute in kernel mode. The intention behind this 

division is to ensure that the kernel remains intact and running even if indivi 181 

110 



applications prove to be unstable. As a result, unstable applications should not affect 

the stability of the whole operating system. 

As shown in Fig we 6, Windows NT is capable not only of running Win32 based but 

also some OS/2 and POSIX applications. Each of these types of applications is 

executed via the appropriate subsystem, each of which is executed in user mode. 

Figure 6 also shows that some sections of the security subsystem are executed in user 

mode while the Security Reference Monitor (discussed later in this chapter) executes 

in kernel mode. 

Figure 6 also shows the Hardware Abstraction layer (HAL) and its relationship with 

other subsystems. As stated previously, this layer insulates much of the Windows 

NT Operating System from hardware specific dependencies. 

13.4. The Windows NT Security Architecture 

Windows NT offers a range of security features that are not available in many 

consumer desktop operating systems such as Win9x. The Windows NT security 

architecture is based on three key components· the Local Security Authority (LSA), 

Security Account Manager (SAM) and the Security Reference Monitor (SRM). 

These components are described in depth by a number of authors (Kelley, Mayson, 

1997; Sheldon, 1997) and their relationship can be seen in Figure 6. 

111 



User Mode 

Logon 
Process 

Win32 
Application 

OS/2 
Application 

POSIX 
Application 

POSIX 
Subsystem 

i 
! 
: 

Security Win32 ! 
Subsystem Subsystem j 

! 
! 

: . : 
O<o•o000 0 00000000000-•oo,oo000000000 .. 0,0 0 0000000•o•Oo000,00, .. 0oo .. 00ooo,00oO O' ,oo0o000o00 .. 0*<0000,0000000 .... 0000H0 .. 00 .. 000H0 .. 0,01 0 0000 .. 000000000000ll0000000 0 0000 .. 00000000 0 00 0 000 .... , ,,,ooH0<00 0 0000000 .. 000H0000,0H 00,0 0,00000 0000000, 

Kernel Mode t l ! ... .. + 
Executive Services 

1/0 Object Security Proce.ss Local Virtual Memory 
Manager Manager Reference Manager Procedure Manager 

Monitor Call Facility 

Kernel 

Hardware Abstraction Layer (HAL) 

• 
Hardware 

Figure 6: Windows NT/2000 Architecture 

13.5. The Local Security Authority and Logon Process 

The heart of the Window NT Security architecture is the Local Security Authority 

(LSA), as can be seen in Figure 7. The LSA is responsible for generating access 

tokens, managing security policies and controlling the auditing process (Rutstein, 

1997, p. 8). 

The Logon Process allows both local and remote users to logon to a Windows NT 

machine. Once users are successfully logged on, they are identified by a Security 

Identifier (SID) and an Access Token. The LSA is responsible for generating access 

tokens as users complete the logon process. This token incorporates the SID of the 

112 



user and the Sills of any groups to which the users account belongs. This token is 

attached to every process invoked by the user and is used to determine whether a user 

should be granted access to a particular object. 

The LSA is also responsible for managing audit logs. When the Security Reference 

Monitor (see section 13.6) alerts the LSA that an event has occurred that should be 

audited, the LSA is responsible for writing that event to the audit logs (Rutstein, 

1997, p 8). 

The LSA's other area of responsibility is in managing the security policy database. 

User Mode 

Security 
Policy 
Database 

Kernel Mode 

Logon 
Process 

Security 
Reference 
Monitor 

Security 
Account 
Manager 

Audit 
---Log 

Figure 7: Windows NT Security Architecture 

User 
---Account 

Database 

The Security Account Manager (SAM) controls a database of account information. 

This database contains information regarding user and group accounts. During the 

113 



logon process, the SAM consults the User Account Database and returns the user's 

SID to the LSA (Kelley & Mayson, 1997). 

The SAM contains infonnation about user accounts including passwords. In most 

cases, Windows NT stores two passwords - a native Windows NT password and a 

password for backward compatibility with Microsoft's LAN Manager product line. 

Both passwords are encrypted twice using one-way functions before being stored in 

the SAM. As one-way functions are used for the two encryption processes, it is 

technically very difficult for a plaintext password to be retrieved from its encrypted 

form. When password checking is perfonned, the password to be tested is encrypted 

using the same one-way functions. ff the resulting encrypted password matches the 

one stored in the SAM, then it can be assumed that the password that was entered 

was correct. 

Much of the information in the SAM is stored in the Windows NT registry 

(discussed in section 13.7.3) under the key HKEY_LOCAL_MACHINE\SAM. This 

registry data is in tom stored in the SAM and SAM.LOG files in the 

%SYSTEM_ROOT"/o\SYSTEM32\CONFIG directory (Rutstein, 1997, p 144). 

13.6. The Security Reference Monitor 

The Security Reference Monitor (SRM) is the only component of the security 

subsystem that executes in kernel mode. This module is primarily responsible for 

comparing an access token (as generated by the LSA) against the permissions set for 

an object and determining the level of access granted, if any. 

Objects such as files, threads and registry keys all have an attached Security 

Descriptor (SD). This SD includes, among other attributes, the SID of the object's 

owner, an Access Control List (ACL) and a system ACL (Sheldon, 1997, p. 86). 

114 



.. 
In most cases, the owner of an object is the user that first created the object. 

However, in some cases it is possible for other user to talce owner ship of a file. 

ACLs are central to Windows NT's object security architecture. ACLs contain zero 

or more Access Control Entries (ACEs). Each ACE specifies a SID representing a 

user or group and a set of permissions assigned to that SID. The SRM is responsible 

for checking a user's access token against the entries in an ACL in order to determine 

whether the level of access requested by the user should be granted. The SRM scans 

through all of the entries in an ACL and ru:cumulates any access permissions 

assigned to the user until the permissions granted match the permissions requested or 

the SRM reaches the end of the ACL. In the fonner case the SRM would grant the 

user the desired access while in the latter case, access would be denied (Sheldon, 

1997, p. 87). It is possible that an ACE will specifically deny all access to a 

particular group or user, in which case this ACE will revoke any permissions granted 

by other ACEs in the object's ACL (Sheldon, 1997, p. 88). In effect, access to an 

object is denied unless an ACE specifically grants permission. Additionally access is 

denied if any ACE denies the user the requested permissions even if another ACE 

specifically grants the user these permissions (R.utstein, 1997, p. 12). 

When the SRM makes the decision to grant or deny access to an object, it generates 

the necessary audit event notification messages and passes them to the LSA, which 

in turn adds entries into various audit logs. 

13.7. Securing Windows NT 

Despite the security features offered by Windows NT, default installations are quite 

relaxed in terms of security. Administrators must be careful to properly configure 

NT to make full use of its security features. 

115 



When attempting to secme an installation of Windows NT, there are several areas 

that need to be considered including users and groups, file systems, registry access, 

network configuration, services packs, updates and hotfixes. 

13.7.1. Managing User and Group Accounts 

Windows NT allows for the creation of user and group accollllts. In most cases, 

users will have their own individual accounts. These accollllts can belong to 011J o..· 

more groups and each group can contain any number of user accollllts. Groups can 

simplify the process of assigning access rights and privileges to users. Instead of 

assigning rights and privileges to each individual account, they can be assigned to 

groups and then inherited by the members of these groups. 

Administrators can create, modify and delete accounts and groups. In addition, 

Windows NT provides several in~built groups and accounts some of which deserve 

special attention as they have significant implications for the security of Windows 

NT systems. These include the Everyone group and the Administrator and Guest 

Accounts. 

The Everyone Group includes every user that accesses a Windows NT System 

(Rutstein, 1997, p37). In fact it is impcssible tc create a user account that is not a 

member of the Everyone group. By default, Windows NT assigns the Everyone 

group several permissions including; full control over new file shares, the ability to 

change pennissions on the root directories of any NTFS partition and the ability to 

change the pennlssions of the System32 directory (Sheldon, 1997, p. 181). This is 

one example of how Windows NT security relies on careful configuration by 

administrators. The default security settings in this area do not lend themselves to 

the creation of a secure environment straight "out of the box". While in most cases it 

116 



is a simple task for administrators to take such permissions away from the Everyone 

group, this issue illustrates the importance of proper configuration rather than relying 

on default security settings. 

There are also certain issues surrounding the use of the administrator and guest 

accounts. Due to the powerful nature of the Administrator account, it is 

recommended that administrators create their own personal accounts for day-to-day 

work such as word processing and Internet access. In contrast, the administrator 

account should only be used for administrative duties. Given the pennissions 

associated with the Administrator account, any malicious code executed by some 

using the administrator would have largely unrestricted access to a Windows NT 

system. This is not a new concept, nor is it restricted to Windows NT. It is 

considered good practice when using any operating system that allows different users 

to be awarded different levels of permissions to not use highly privileged accounts 

for mundane duties. 

The in-built Guest account also deserves special consideration. The guest account 

allows users without and existing account to logon on to a Windows NT machine, 

albeit with very minimal permissions. In most cases, users will not even need a 

password in order to log on as a guest The Guest account is a member of the Guests 

group and also the Everyone system group. As the Guest account is member of the 

Everyone group, by default it will have access to shared directories, unless 

permissions for the Everyone group are specifically revoked. In addition, any 

number of users may share one guest account and as such, audit logs will not reveal 

any infonnation about any particular guest account user (Sheldon, 1997, p. 98). In 

versions prior to Windows NT 4.0, the guest account was enabled by defauh. This 

117 



was changed with the release of Windows NT 4.0. The guest account is now 

disabled by default and if needed, must be specifically re-enabled. 

13. 7 .2. File System Security 

Windows NT variants prior to version 4.0 allowed the use of three distinct file 

systems - File Allocation Table (FAT), High Perfonnance File System (HPFS) and 

New Technology File System (NTFS). Windows NT 4.0 only supports the use of 

FAT and NTFS, and as such, this section will only discuss these two file systems. 

FAT is the file system made popular by the MS-DOS operating system and Windows 

95/98. While it can be used with Windows NT, it offers no advantages in tenns of 

security and will not be discussed here in depth. NTFS is the "Native" file system of 

Windows NT and offers several security advantages over other file systems. 

The advantages of using the NTFS file system include speed improvements, reduced 

file fragmentation, small cluster sizes to reduce waste, file and directory compression 

(Kelley, Mayson, 1997). In addition, NTFS is the only file system that allows 

administrators to make use of the file pennission mechanisms offered by Windows 

NT (Rutstein, 1997, p. 66). 

Having the choice of two file systems also raises several issues. As the FAT file 

system caa be used by both Windows 95/98 and Windows NT, there is a risk that 

FAT volwnes my be accessed by operating systems other than Windows NT. Even 

though file pennissions cannot be set on FAT volumes, in most cases users will still 

need to log Windows NT using a defined account in order to access files. However, 

this can easily be bypassed by installing another operating system on the machine 

such as Windows 95/98 or MS-DOS. 

118 



As NTFS cannot be used by Windows 95/98, any volumes fonnatted with this file 

system will be invisible to users not using Windows NT. While it is true to say that 

Windows 95/98 cannot access NTFS volumes natively, utilities such NTFSDOS can 

give operating systems such as Windows 95/98 read-only access to any NTFS 

volumes on a particular machine. This has significant implications for Windows NT 

file system security as security mechanisms such as the logon process and file system 

permissions can be bypassed simply by booting a machine with an operating system 

such as Windows 95/98 or MS-DOS, running NTFSDos and copying sensitive files 

over to FAT based hard disk or removable media. As Windows NT is not even 

running, the Security Reference Monitor cannot prevent access to such sensitive files 

and the LSA cannot audit the file access. Third party encryption tools can provide 

some protection against this type of situation. Physically securing Windows NT 

machines must also be an important consideration. 

Unlike the FAT file system, NTFS allows files to be owned by particular users or 

groups. It also allows the setting of access permissions on files and directories and 

offers provisions for auditing file accesses. 

File system security is quite relaxed in a default installation of Windows NT, 

particularly for the Workstation version. It is the system administrator's 

responsibility to ensure that, where required, file system security features are used. 

When created, files give access to the Everyone group and as a result any other user 

would have access to this file. It is the responsibility of the creator of the file and 

system administrators to ensure that appropriate access restrictions are placed on the 

file 

119 



However, file system security can be a complex issue. While file ownership and 

access may be quite straightforward when dealing with user's documents such as 

word processing and spreadsheet files, it can be difficult to assign pennissions to 

certain system files. Not specifying permissions on such files may have certain 

security implications, while restricting access too tightly may interfere with the 

nonnal operation of a particular system. Some authors including Sheldon (1997) 

describe some of the default pennissions on key system files and make some 

suggestions as to how pennissions may be set safely. 

13. 7 .3. Registry Security 

Both the Windows 95/98 and Windows NT product lines make use of a centralised 

database to store various users, hardware and configuration settings. Not only does it 

govern the behaviour of hardware and application software, but also the operating 

system itself. As a result, measures should be taken to guard against accidental or 

deliberate tampering. 

The Windows NT registry is a structured hierarchy of hives, keys, sub-keys, values 

and data and is similar in structure, but not identical to the Windows 95/98 registry. 

The top level of the Windows NT registry is divided into five major groupings 

referred to as hives. These hives can be seen in Table 2. These hives are in tum 

divided into a number of keys and sub-keys. 

Hive Descriotion 
IIKEY _CLASSES_ ROOT Contains infonnation about registered software 

components including COM/OLE and ActiveX 
Controls. 

IIKEY_CURRENT_USER Contains information regarding the user that is 
currentlv }onned on. 

IIKEY_LOCAL_MACHINE Contains information regarding the local Windows 
NT machine. It includes information about drivers, 
installed hardware and software, svstem 

120 



HKEY_USERS 
confim1mtion and securirv settine:s. 
Contains infonnation about all users of the local 
machine. 

IIKEY_CURRENT_CONFIG Contains information about the current 
confiunm,tion of the local machine. 

Table 2: Windows NT Regsitry Structure (Rutstein, 1997, p. 143) 

Given the wealth of infonnation stored in the Windows NT registry, it should be 

obvious that some measures will be need to prevent accidental or malicious 

modification of registry infonnation (Rutstein, 1997, p144). To further complicate 

matters, users may attempt to modify registry settings remotely on any Windows NT 

machine on which the user has an account. User may also try to connect to a 

machine using a guest account in order to perform remote registry modifications 

(Rutstein, 1997, pl44). 

The Windows NT registry can be secured in a similar manner to an NTFS file system 

volume. Permissions can be added to keys in much the same way as they can be 

added to files and directories. However tie same difficulties remain. As with file 

system pennissions, it can be very difficult to detennine the level of permissions that 

should be assigned to certain keys. Some keys are relied upon by the Windows NT 

System and/or user application. Placing tight restrictions on these keys may prevent 

the system or applications from perfonnin&.properly. In contrast, lax permissions 

may adversely affect the security of a system. The sheer number of keys in the 

registry and the importance of this database to a Windows NT system can make the 

setting of permissions a difficult task. A number of authors present guidelines 

suggesting permissions that can be applied to certain registry keys (Sheldon, 1997, 

p.627; Rutstein, 1997, p.148; Jumes, Cooper, Chamoun& Feinman, 1999, p. 191). 

121 



in addition to setting registry pennissions, access to registry keys can also be audited. 

However given the sheer number of keys in the Windows NT registry, the addition of 

auditing infonnation can greatly increase the overall size of the registry. In addition, 

perfonnance overheads involved with auditing may be significant if a large number 

of keys are to be audited. 

13.7.4. Network Security 

As this thesis is mainly concerned with security issues that affect Windows NT 

platfonns as Internet and World Wide Web clients, Windows Networking security 

will not be discussed here in detail. 

13.7.5. Service Packs, Patches and Hotfixes 

Since the release of Windows NT 4.0 in 1996, Microsoft has released a number of 

official updates in the form of service packs, patches and Hotfixes. It is important 

for administrators to be aware of the latest official updates and the issues that they 

address. Currently six service packs have been released for Windows NT 4.0. 

13.8. Summary 

Microsoft Windows NT and 2000 are members of a larger family of Microsoft 

operating systems. This thesis focuses on the Windows NT/2000 variants that are 

designed to be used on workstations and desktop machines. These operating systems 

were chosen due to the fact that they implement a number of important security 

features and are commonly used on WWW client machines. 

This chapter describes the security features and architecture of Windows NT/2000. 

Later chapters will build on this discussion and argue the advantages and 

122 



disadvantages of operating system level controls in tenns of reducing risks posed by 

WWW usage. 

123 



I 

14. List of References 

Anderson, J. (1997). ActiveX Programming with Visual C++ 5.0. Que Co!J>Oration. 

Appel, A. (1999) Protection against untrusted code: The JIT compiler security hole, 
and what you can do about it. [On-line]. Available WWW: http1/www-
4.ibm.com/software/developerflibrary/untrustsed-code. [16/11/1999] 

BrowserNews. (2002). Browser News: Statistics. [On-line]. Available WWW: 
http://www.upsdell.com/BrowserNews/stat.htm [29/10/2002] 

CERT. (1997). Security of the Internet. [On-line]. Available WWW: 
http://www.cert.org/encyc _ article/tocencyc.html [13/09/2002] 

CERT. (1998). CERT Vulnerability Note VN-98.07. [On-line]. Available WWW: 
http://www.cert.org/vul _ notes/VN-98.07 .backorifice.html [ I 3/09/2002] 

CERT (I 999a). Frequently Asked Questions About the lv!elissa Virus. [On-line]. 
Available WViW: http://www.cert.org/tech_tips/Melissa_FAQ.html [13/09/2002] 

CERT. (1999b). Vulnerability Note VU#24839. [On-line]. 
http://www.kb.cert.org/vuls/id/24839 [03/06/2002] 

CERT. (2000a). CERT® Advisory CA-1999-04. [On-line]. 
http://www.cert.org/advisories/CA-1999-04.html [28/07/2002] 

CERT. (2000b). CERT® Advisory CA-2000-04 Love Letter Wonn. [On-line]. 
http://VfWW.cerl.org/advisories/CA-2000-04.html [06/08/2002] 

/ 
CERT. (2000c). Results of the Security in ActiveX Workshop. [On-line]. 
Available WWW: http://www.cert.org/reports/activeX_report.pdf. [09/02/2001]. 

/

/ CERT. (2001). Vulnerability Note VU#320944. [On-line]. 
http://www.kb.cert.org/vuls/id/3209441 [03/06/2002] 

Chess, D., Morar, J. (1998). Is Java Still Secure. [On-line]. Available WWW: 
http://www.research.ibm.com/antivirus/SciPapers/Morar/JavaSecure.html. 
[12/11/2002] I CIAC. (2001 ). L-062: Erroneous Verisign-Issued Digital Certificates for Microsoft. 
[On-line]. http://www.ciac.org/ciac/bulletins/l-062.shtml [06/08/2002] 

Cohen, F. (1984). Computer Viruses - Theory and Experiments. [On-line]. 
Available WWW: http://www.all.net/books/virus/ [13/09/2002] 

124 



Edwards, M. (1997). Lets, talk about Java Portability. [On-line]. Available WWW: 
http://http://msdn.microsoft.com/library/defau!t.asp?url-/library/en
us/dnwebtool/html/msdnjavaport.asp [02/04/2003] 

Electronic Commerce Expert Group. (1998). Electronic Commerce: Building The 
Legal Framework. [On-line]. Available WWW: 
http://www.law.gov.au/aghome/advisory/eceg/ecegreport.btml. [11/11/2002]. 

Fegbbi, J., Fegbbi, J., Williams, P. (1999). Digital Certificates. Applied Internet 
Security. Addison Wesley Longman. 

Garfinkel, S., Spafford, G. (1997). Web Security & Commerce. O'Reilly and 
Associates 

Gerek, E. (1998). Overview of Certification Systems. [On-line]. Available WWW: 
http://www.mcg.org.br/cert.htm. [11/11/2002] 

Gong, L., Mueller, M., Prafullcbandra, H., Schemers, R. (1997). Going Beyond the 
Sandbox: An Overview of the New Security Architecture in the Java Development 
Kit 1.2. [On-line]. Available WWW: 
http://java.sun.com/people/gong/papers/jdk 12arch. ps.gz [I 0/09/2002] 

Gong, L. (1998). Java Security Architecture (JDKl.2). [On-line]. Available 
WWW: ftp://ftp.javasoft.com/docs/jdkl.2/security-spec.pdf. [7/12/1999] 

Gosling, J., McGilton, H. (1996) The Java Language Environment A White Paper. 
[On-line]. http://java.sun.com/docs/white/langenv/index.html [12/1112002] 

Hamilton, G. (2001). Java Beans Component APis for Java. [On-line]. Available 
WWW: http://java.sun.com/javaone/javaone96/pres/Plat1nd.pdf [13/09/2002] 

Henry, D.,Cook, S., Buckley, P., Dumagan, J., Gurmukh, G., Pastore, D., LaPorte S. 
(1999). The Emerging Digital Economy II. [On-line]. Available WWW: 
http://www.esa.doc.gov/508/esa/TheEmergingDigita!EconomyII.htm [11/11/2002] 

Hopwood. (1997). A Comparison between Java and ActiveX Security . . [On
line]. http://www.users.zetnet.co. uk/hopwood/papers/compsec97 .html [20/08/2002] 

IBM. (1998). Securing IBM Applications with Publick Key Infrastructure. [On
line]. Available WWW: http://www-3.ibm.com/security/library/wp pki0730.shtml 
[11/11/2002] 

JDK 1.0 [Computer Software]. (1995) [on-line]. Available WWW: 
http://java.sun.com/products/jdk/! ,0.2/ 

125 



JDK I.I [Computer Software]. (1996) [on-line). Available WWW: 
http://java.sun.com/products/jdk/1. l / 

JDK 1.2 [Computer Software). (1998) [on-line). Available WWW: 
http://java.sun.com/products/jdk/1.2/ 

JRE [Computer Software]. (1998) [on-line]. Available WWW: 
Http://www.javasoft.com 

Jwnes, J., Cooper, N., Chamoun, P., Feinman, T. (1999). Microsoft Windows NT 
4.0 Security, Audit and Control. Microsoft Press. 

Koved, L., Nadalin, A., Neal, Don., Lawson, T. (1998) The Evolution of Java 
Security. [On-line]. Available WWW: 
http://www.research.ibm.com/joumal/sj/373/koved.html. [11/11/2002) 

LaDue, M. (n.d). A Collection of Increasingly Hostile Applets. [on-line). 
Available WWW: http://www.cigital.com/hostile-applets/ [24/09/2002). 

Li, S., Economopoulos, P. (1997). ActiveX / COM Control Programming. 
Birmingham: Wrox Press Ltd. 

Lock, A. (2002). Mozilla ActiveX Project [on-line]. Available WWW: 
http://www.iol.ie/-locka/mffl!lila/mozilla.htm [24/09/2002) 

Margherio, L., Henry, D., Cooke, S., Montes, S., Hughes, K. (1998). The Emerging 
Digital Economy. [On-line]. Available.WWW: 
http://www.esa.doc.gov/508/esa/pdf/EmergingDig.pdf [02/10/2002) 

McCullagh, A., Little, P., Caelli, W. (1998). Electronic Signatures: Understand the 
Past to Develop the Future. University ofNSW Law Joumai. 21(2). 452-466. 

McGraw, G., Felten, E. (1998). New Issues in Java Security: How the sandbox 
simultaneously evolved into JDK 1.2 and devolved into Card Java. [On~line]. 
Available WWW: http://www.rstcorp.com/javasecurity/compstrat.htrnl 

McManis, C. (1996). The basics of Java class loaders. [On-line). Available 
WWW: http://www.javaworld.com/javaworld/jw-l 0-1996/jw-10-indepth-p2.html 
(12/11/2002) 

McMullin, B. (2000). John von Neumann and the Evolutionary Growth of 
Complexity: Looking Backward, Looking Forward .... [On-line]. Available WWW: 
http://www.eeng.dcu.ie/-alife/talks/alife7/vn-complexity/html-single/ [13/09/2002) 

126 



Microsoft Corporation. (n.d). Authenticode Appendixes. [On-line]. Available 
WWW: http://msdn.microsoft.com/workshop/security/authcode/appendixes.asp 
[12/11/2002] 

Microsoft Corporation. (1997). Microsoft, Sun and Java. [On-line]. Available 
WWW: http://www.microsoft.com/presspass/java/default.asp [12/11/2002] 

Microsoft Corporation, (1999a). Chapter 6 - Digital Certificates. [MS TechNet 
CD]. 

Microsoft Corporation, (1999b ). Chapter 7 - Security Zones and Permission-Based 
Security for MS Virtual Machine. [MS TechNet CD]. 

Microsoft Corporation, (1999). Info: Difference Between OLE Controls and 
ActiveX. [On-line]. Available WWW: 
http://support.rnicrosoft.com/support/kb/articles/Q 159/6/21.asp. [I 0/11/1999] 

Microsoft (2002a). lnfonnation on the VBS/Loveletter Virus. [On-line]. Available 
WWW: 
http://www.microsoft.com/technet/treeview/default.asp?url=ffechNet/security/virus/ 
vbslvltr.asp [13/09/2002] 

Microsoft (2002b). Microsoft .NET Pet Shop 2.0. [On-line]. Available WWW: 
http://rnsdn.rnicrosoft.com/library/default.asp?url=/library/en
us/dnbda/html/bdasarnppet.asp [13/11/2002] 

Nachenberg, C. (n.d). Computer Parasitology. [On-line]. Available 
http://enterprisesecurity.symantec.com/pdf/computerparasitology.pdflPID91a&EID 
=2 [29/07/2002] 

Naviscope [Computer Software]. (2001) [on-line]. Available WWW: 
http://www.naviscope.com/ 

NUA Internet Surveys. (2002). OneStat: New browsers take on Internet Explorer. 
[On-line]. Available WWW: 
http://www.nua.ie/surveys/index.cgi?f.=VS&art_id=905358l03&rel=true 
[25/09/2002] 

Oaks, S. (1998a). Java Security: Chapter 3. Java Class Loaders. [On-line]. 
Available WWW: http://octopus.cdut.edu.cn/-yf17/javaent/security/ch03_01.htin 
[12/11/2002] 

Oaks, S. (1998b). Java Security: Chapter 4. The Security Manager Class. [On-line]. 
Available WWW: http://octopus.cdut.edu.cn/-yfl 7/javaent/security/ch04_01.hbn 
[12/11/2002] 

Pfleeger, C (2000). Security in Computing. New Jersey: Prentice Hall, Inc. 

127 



Pipkin, D. (2000). Infonnation Security. . New Jersey: Prentice Hall, Inc. 

Pistoia, M., Relle, D., Gupta D., Nagnu, M., Raman, A. (1999). Java 2 Network 
Security. [On-line]. Available WWW: 
http://www.redbooks.ibm.com/abstracts/sg242l09.html [10/09/2002] 

Rutstein, C. (1997). National Computer Security Association Guide to Windows NT 
Security. McGraw-Hill 

Schneier, B. (2000). Secrets and Lies. John Wiley & Sons, Inc: New York. 

Schneier, B. (2002a). Cryptogram Newsletter. [On-line]. Available 
http://www.counterpane.com/crypto-gram-0202.html#J [13/05/2002] 

Schneier, B. (2002b). Cryptogram Newsletter. [On-line]. Available 
http://www.counterpane.com/crypto-gram-0101.html#IO [13/05/2002] 

Schneier, B. (2002b). Cryptogram Newsletter. [On-line]. Available 
http://www.counterpane.com/crypto-gram-OJOJ.html#JO [13/05/2002] 

Skrenta, R (n.d). Elk Cloner (circa 1982). [On-line]. Available WWW: 
http://www.skrenta.com/cloner/ [13/09/2002] 

Sheldon, T. (1997). Windows NT Security Haodbook. McGraw-Hill. 

Sophos Anti-Virus (2002). Melissa wono author sentenced to 20 months. [On-line]. 
Available WWW: 
http://www.sophos.com/pressoffice/pressreUuk/2002050Jsmith.html [13/09/2002] 

Sun Micrososystems. (1996). The Java Language • An Overview. [On-line]. 
Available WWW: http://java.sun.com/docs/overviews/java/java-overview-1.html 
[13/09/2002] 

Sun Micrososystems. (1999). 100% Pure Java Certification Program. [On-line]. 
Available WWW: http:/1ava.sun.com/100percent/ [04/02/2000]. 

Sun Micrososystems. (2000). Products & APJs. [On-line]. Available WWW: 
http://www.javasoft.com/products/ 

Sun Microsystems. (2002) Chronology of security-related bugs and issues, 3/19/02. 
[On-line]. Available http://java.sun.com/sfaq/chronology.html [20/08/02] 

Sun Microsystems, (n.d). Sun Microsystems Takes Legal Action Against Microsoft. 
[On-line]. Available http://www.sun.com/announcement/letter.btml [12/11/2002] 

128 



Venners, W. (2002) Security and the Class Loader Architecture. [On-line]. 
Available: http://www.artirna.com/underthehood/classloaders.html [12/11/2002] 

WebWasher [Computer Software]. (2002) [on-line]. Available WWW: 
http://www.webwasher.com 

White, S., Kephart, J., Chess, D. (1995). Computer Viruses: A Global Perspective. 
[On-line]. Available WWW: 
http://researchweb.watson.ibm.com/antivirus/SciPapers/White/VB95/vb95.distrib.ht 
ml [13/09/2002] 

Wong, W. (1998). Son vs. Microsoft: Political Battle Over Java. [On-line]. 
Available WWW: http://www.techweb.com/wire/story/IWBl 9981106S0002. 
[04/02/2000] 

129 



Bibliography 

Austalian Bureau of Statistics. (2000). Communication and Infonnation 
Technology. Use oflnonnation Technology. [On-line]. Available WWW: 
http://www.abs.gov.au/websitedbs/c3I 1215.NSF /Australia+Now+
+A+Statistical+Profile /09C60548FF693D4FCA256863001 CIFFD[l 6/11/1999]. 

Black, U. (1994). TCP/IP and Related Protocols. McGraw-Hill. 

Berners-Lee, T. (1999). About The World Wide Web Consortium. [On-line]. 
Available WWW: http://www.w3.org/Consortium/ [08/02/2000] 

Caelli, W., Longley, D., Shain, M. (1994). lnfonnation Security Handbook. 
Macmillan Press Ltd. 

Cheswick, W.R., Bellovin S.M. (1994). Firewalls and Internet Security. Addison
Wesley Publishing Company. 

Cohen, F.B. (1995). Protection and Security on the Infonnation Superhighway. New 
York: John Wiley & Sons, Inc. 

Dean, D., Felton, E.W., Wallach, D.S, (1996). Java Security: From Hotlava to 
Netscape and Beyond. [On-line]. Available WWW: 
http://www.cs.princeton.edu/sip/pub/secure96.hunl 

Dietl, J. (1998). World Wide Web Consortium [W3C] Backgrounder. [On-line]. 
Available WWW: http://www.w3.org/Press/Backgrounder.hunl. [08/02/2000]. 

Electronic Frontiers Australia. (1999). Campaign against Australian Internet 
Censorship Legislation. [On-line]. Available WWW: 
http://www.efa.org.au/Campaigns/stop.hlinl 

Electronic Frontiers Australia. (2000). On-Line Privacy Issues. [On-line]. 
Available WWW: http://www.efa.org.au/Issues/Privacy/Welcome.html#bill. 
[08/12/2000]. 

Felten, E. (1999). SIP: News. [On-line]. Available WWW: 
http://www.cs.princeton.edu/sip/history/index.php3. [11/11/2002] 

Gibson, S. (2001a). OptOut-Aureate Spyware. [On-line]. Available WWW: 
http://grc.com/oo/aureate.hlin. Downloaded 11/04/2001. 

Gibson, S. (2001b). The Anatomy of File Download Spyware. [On-line]. 
Available WWW: http://grc.com/downloaders.hlin. Downloaded 11/04/2001. 

130 



Fites, P., Kratz, M.P.J (1993). lnfonnation Systems Security A Practitioners 
Approach. Van Nostrand Rheinhold. 

Gordon, S., Chess, D. (1998). Where There's Smoke There's Mirrors: The Truth 
About Trojan Horses on the Internet. [On-line]. Available WWW: 
http://www.av.ibm.com/lnsideTheLab/ScientificPapers/ Gordon/frojan/html 

Hamilton, G. (1997). JavaBeans. [On-line]. Available WWW: 
http://www.javasoft.com/beans/docs/ spec.html[ 07/06/1999] 

Howard, J. (1997). An Analysis Of Security Incidents On The Internet 1989 - 1995. 
[On-line]. Available WWW: http://www.cert.org/research/IBThesis/Word6/. 
Downloaded 10/02/2000. 

Kindel, C. (1997). ActiveX and The Web· Architecture & Technical Overview. 
[On-line]. Available WWW: 
http://www.microsoft.com/corn/presentations/default.asp 

Lalonde, G, (2001). The Spyware Infested Software List. [On-line]. Available 
WWW: http://www.infoforce.qc.ca/spyware/. [I 1/04/2001]. 

Kabay, M. (1998). !CSA White Paper on Computer Crime Statistics. [On-line]. 
Available WWW: http://www.icsa.net/library/,esearch/#info 

Martin, D., Rajagopalan, S., Rubin, A. (1997). Blocking Java Applets at the 
Firewall. [On-line]. Available WWW: 

Microsoft Corporation, (1996a). Internet Component Download. [On-line]. 
Available WWW: http://www.microsoft.com 

Microsoft Cotporation, (1996b). Microsoft Autehnticode Technology. [On-line]. 
Available WWW: http://www.microsoft.com 

Microsoft Corporation, (1996c). Microsoft Internet Security Framework. [On-line]. 
Available WWW: http://www.microsoft.com 

Microsoft Corporation, (1996d). OLE Controls 96. (On-line]. Available WWW: 
http://www.microsoft.com 

Microsoft Corporation, (1996e). OLE Controls/COM Objects for the Internet. Draft 
4. [On-line]. Available WWW: http://www.microsoft.com 

Microsoft Corporation, (1996!). What ls the Exploder Control aod How Does It 
Relate to Authenticode? [On-line]. Available WWW: http://www.microsoft.com 

131 



Miller, M.A {1994). Troubleshooting TCP/IP Analyzing the Protocols of the Internet. 
San Mateo: M&T Books. 

Morar, J., Chess, D. (1998). Web Browsers-Threat or Menace? [On-line]. 
Available WWW: 
http://www.av.ibm.com/InsideTheLab/Bookshelf/ScientificPapers/Chess/Threate/Thr 
eat.html 

Murharnmer, M., Atakan, 0., Bretz, L., Suzuki, K., Wood, D. (1998). TCP/IP 
Tutorial and Technical Overview. [On-line]. Available WWW: http://www.ibm.com 

Nachenberg, C., Chien, E., Trilling, S. (1998). JavaApp.Strange Brew. [On-line]. 
Available WWW: 
http://www.symantec.com/avcenter/venc/data/javaapp.strangebrew.html. 

Nachenberg, C. (1999). JavaApp.BeanHive. [On-line]. Available WWW: 
http://www.symantec.com/avcenter/venc/data/javaapp.beanhive.html. 

Network Working Group (1999). Hypertext Transfer Protocol-· HTTP/I.I. [On
line]. Available WWW: http://www.w3c.org 

NCompass Labs Inc, (1999). Authoring ActiveX Controls for the ScriptActive Plug
in. [On-line]. Available WWW: http://www.ncompasslabs.com/Plug
lns/Documentation/Authoring+ ActiveX +Controls.htm 

Oaks, S. (1998). Java Security. O'Reilly & Associates. 

Office of the Federal Privacy Commissioner. (2000a). Privacy in Australia. [On
line]. Available WWW: http://www.privacy.gov.au/publications/pia.pdf. 
Downloaded: 8/12/2000. 

Office of the Federal Privacy Commissioner. (2000b). Fact Sheet 2-National 
Privacy Principles (Npps). [On-line]. Available WWW: 
http://www.privacy.gov.au/publications/fs2.pdf [ 8/12/2000.] 

Office of the Federal Privacy Commissioner. (2000c). Fact Sheet 1 - Overview. 
[On-line]. Available WWW: http://www.privacy.gov.au/publications/fsl.pdf. 
[8/12/2000.J 

Office of the Federal Privacy Commissioner. (2000d). Fact Sheet 3 - Codes. [On
line]. Available WWW: http://www.privacy.gov.au/publications/fsl.pdf. 
[8/12/2000]. 

Office of the Federal Privacy Commissioner. (2000e). Fact Sheet 4 - Powers. [On
line]. Available WWW: http://www.privacy.gov.au/publications/fs4.pdf. 
(8/12/2000]. 

132 



Office of the Federal Privacy Commissioner. (20011). Jnfonnation Privacy 
Principles under the Privacy Act 1988. [On-line]. Available WWW 
http://www.privacy.gov.au/publications/ipps.hbnl. [12/04/200 I]. 

Office of the Federal Privacy Commissioner. (2001g). Privacy & the Public Sector. 
[On-line]. Available WWW http://www.privacy.gov.au/public/index.hbnl. 
[12/04/2001]. 

Ogilvie, E. (2000). Cyberstalking. [On-line]. Available WWW 
http://www.privacy.gov .au/public/index.hbnl. [ 11/0520/0 I]. 

Reynolds, J. (1989). RFC:1135 The Helminthiasis of the Internet. [On-line]. 
Available WWW: http://sunsite.hr/rfc/indexjr.hbnl. [ 10/02/2000]. 

Somar Organisation. (1996). Windows NT Security Issues [On-line]. Available 
WWW: http://www.somar.com/security.html 

Sun Micrososystems. (1999a). 100% Pure Java™ Certification Program. [On-line]. 
Available WWW: http://java.sun.com/100percent/ [04/02/2000]. 

Sun Micrososystems. Java Security Story. [On-line]. Available WWW: 
http://www.sun.com 

Sun Micrososystems. The Java Language - An Overview. [On-line]. Available 
WWW: http://www.sun.com 

Sun Micrososystems. (2000a). Chronology of security-related bugs and issues, 
02/26/00. [On-line]. Available WWW: http://java.sun.com/sfaq/chronology.html 

Sun Micrososystems. (2000b). Products & APls. [On-line]. Available WWW: 
http://www.javasoft.com/products/ 

United States Justice Department. (1999). Cyberstalking: A New Challenge for Law 
Enforcement and Industry. [On-line]. Available 
http://www.usdoj.gov/criminal/cybercrime/cyberstalking.htm [l l /05/200 I]. 

Venners, B. (1997). Security and the Class Verifier. [On-line]. Available WWW: 
http://www.javaworld.com/javaworld/jw-10-1997 /jw-10-hood.hbnl. [25/05/1999] 

World Wide Web Consortium. (1999). HTTP - Hypertext Transfer Protocol 
Overview. [On-line]. Available WWW: http://www.w3.org/Protocols/, 
[10/02/2000] 

Yellin, F. (1996). Low Level Security in Java. [On-line]. Available WWW: 
http://www.sun.com 

133 


	A study of the security implications involved with the use of executable World Wide Web content
	Recommended Citation


