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ABSTRACT 

Sprint cycling ability is a key determinant of road cycling performance, with many 

races designed specifically for sprinters. The ability to excel in the final sprint is relevant 

for both individual riders and teams. Despite the importance of sprints within professional 

road cycling, the characteristics of professional road sprints and sprinters have yet to be 

extensively described. Thus, the overall objective of the five research studies contained 

within this doctoral thesis was to describe road cycling sprint performance and improve 

the general understanding of the physical, technical and tactical factors associated with 

such performances.  

The first two descriptive field studies document the physical and physiological 

demand of sprint races during actual road cycling competitions. Specifically, Study 1 was 

designed to quantify the demands of sprinting in the male professional category. 

Seventeen competitions from six male professional cyclists (mean ± SD: age, 27.0 ± 3.8 

y; height, 1.76 ± 0.03 m; weight, 71.7 ± 1.1 kg) who placed Top 5 in professional road 

races were analysed. Calibrated SRM power meters were used to monitor power output, 

cadence and heart rate. Data were averaged over the entire race, different durations prior 

to the sprint (60, 10, 5 and 1 min) and during the actual sprint. Variations in power during 

the final 10 min of the race were quantified using Exposure Variation Analysis. Power, 

cadence and heart rate were different between various phases of the race, increasing from 

316 ± 43 W, 95 ± 4 rpm and 88 ± 3 % of maximal heart rate in the last 10 min to 487 ± 58 

W, 102 ± 6 rpm and 96 ± 2 % of maximal heart rate in the last minute prior to the sprint. 

The peak power during the sprint was 17.4 ± 1.7 W∙kg
-1

. Exposure Variation Analysis 

revealed a significantly greater number of short duration and high intensity efforts in the 

final five minutes of the race, compared with the penultimate five minutes (p=0.01). 

These findings quantified the power output requirements associated with high level 

sprinting in men’s professional road cycling and highlighted the need for both aerobic and 

anaerobic fitness. In Study 2, the characteristics of successful road sprints in professional 

and under 23 y male cycling races were compared. As in Study 1, Study 2 also described 

the exercise intensity for the sprinters throughout final 10 min of the race. Nine successful 

(Top 3) sprints performed by a professional (PRO: 23 y, 1.76 m, 71.8 kg) and an under 23 

(U23: 18 y, 1.67 m, 63.2 kg) cyclist sprinter were analysed in this study. No statistical 
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differences were found between PRO and U23 in the absolute peak power, mean power, 

duration and total work during the sprint (PRO: 1370 ± 51 W, 1120 ± 33 W, 14.5 ± 2.4 s, 

16.2 ± 2.6 KJ; U23: 1318 ± 60 W, 1112 ± 68 W, 12.8 ± 1.1 s, 14.2 ± 1.4 KJ). However, 

the intensity of the race recorded in the last 10 min prior to the sprint was significantly 

higher in PRO compared with U23 (4.6 ± 0.3 and 3.7 ± 0.2 W·kg
-1

, respectively). Race 

duration, total elevation gain (TEG) and mean power were similar between PRO and U23. 

In conclusion, the physiological demands leading into road sprints (intensity of the last 10 

min) were found to be higher in PRO compared to U23 races. Nevertheless, a similar 

sprint power output (> 2500 W·Ap
-1

 or > 15.5 W·kg
-1

 for approximately 14 s, with a peak 

power output > 3100 W·Ap
-1

 or > 19 W·kg
-1

; where Ap is Projected Frontal Area) 

indicates that sprint characteristics may be similar in PRO and U23.  

As a result of the findings observed in the first two studies of this thesis, Study 3 

was designed to better understand the effects of variable and non-variable exercises that 

replicate the intensity of the final portion of road competitions on maximal sprint 

performance. In this laboratory trial, ten internationally competitive male cyclists (age, 

20.1 ± 1.3 y; height, 1.81 ± 0.07 m weight, 69.5 ± 4.9 kg; and VO2max, 72.5 ± 4.4 ml·kg
-

1
·min

-1
) performed a 12-s maximal sprint in a rested state and again following: i) 10 min 

of non-variable cycling, and ii) 10 min of variable cycling. Variable and non-variable 

trials were conducted in a randomized, crossover fashion. The intensity during the 10 min 

efforts gradually increased to replicate the pacing observed in final sections of cycling 

road races. During the variable cycling subjects performed short (2 s) accelerations at 

80% of their peak sprint power, every 30 s. Mean power output, cadence and heart rate 

during the 10 min efforts were similar between conditions (5.3 ± 0.2 W∙kg
-1

, 102 ± 1 rpm, 

and 93 ± 3 %, respectively). Post exercise blood lactate concentration and perceived 

exertion immediately after exercise were also similar (8.3 ± 1.6 mmol∙L
-1

, 15.4 ± 1.3 (6-

20 scale), respectively). Peak and mean power output and cadence during the subsequent 

maximal sprint were not significantly different between the three experimental conditions 

(p≥0.14). These results indicate that neither the variable nor the non-variable 10 min 

efforts performed within this study impaired the sprint performance in elite competitive 

cyclists.  

Due to the importance of the elevation gain variable in road cycling, the fourth 

study of this thesis was methodological and investigated the consistency of commercially 

available devices used to measure the TEG during races and training. This chapter was 

separated in two observational validation studies. Garmin (Forerunner 310XT, Edge 500, 
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Edge 750 and Edge 800; with and without elevation correction) and SRM (Power Control 

7) devices were used to measure TEG over a 15.7 km mountain climb performed on 6 

separate occasions (6 devices; Study 4a) and during a 138 km cycling event (164 devices; 

Study 4b). TEG was significantly different between Garmin and SRM devices (p<0.05). 

The between device variability in TEG was lower when measured with SRMs, compared 

to Garmin (Study 4a: 0.2 and 1.5%, respectively). The use of the Garmin elevation 

correction option resulted in a 5-10% increase in the TEG. Thus, while measurements of 

TEG were relatively consistent within each brand, the measurements differed between 

SRM and Garmin devices by as much as 3%. Caution should be taken when comparing 

elevation gain data recorded with different settings or with devices of different brands. 

The final study of this thesis was an analysis of technical and tactical factors that 

influence sprint performance in professional competitions; particular focus was put on the 

TEG which was a factor identified as a potential cause of fatigue. More specifically, the 

subject of Study 5 was the highest international ranked professional male road sprint 

cyclist during the 2008-2011 seasons. Grand Tour sprint stages were classified as WON, 

LOST, or DROPPED from the front bunch prior to the sprint. Video of 31 stages were 

analysed for mean speed of the last km, sprint duration, position in the bunch and number 

of teammates at 60, 30, and 15 s remaining. Race distance, TEG and mean speed of 45 

stages were determined. Head-to-head performances against the 2
nd

 to 5
th

 most successful 

professional sprint cyclists were also reviewed. Within the 52 Grand Tour sprint stages 

the subject started, he WON 30 (58%), LOST 15 (29%), was DROPPED in 6 (12%) and 

had one crash. Position in the bunch was closer to the front and the number of team 

members was significantly higher in WON compared to LOST at 60, 30 and 15 s 

remaining (p<0.05). The sprint duration was not different between WON and LOST (11.3 

± 1.7 and 10.4 ± 3.2 s). TEG was significantly higher in DROPPED (1089 ± 465 m) when 

compared to WON and LOST (574 ± 394 and 601 ± 423m, p<0.05). The ability to finish 

the race in the front bunch was lower (77%) compared to other successful sprinters (89%). 

However, the subject was highly successful, winning over 60% of contested stages while 

his competitors won less than 15%. Findings from Study 5 support the notion that tactical 

aspects of sprinting are important for performance outcomes. 

In conclusion, the general findings of this thesis were as follows: as expected, 

exercise intensity significantly increases in the last 10 min of relatively flat road races; 

there is a significantly greater number of short duration and high intensity efforts in the 

final 5 min of competitive road cycling races when compared with the penultimate 5 min; 
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sprint duration and peak power output does not differ between PRO and U23 races and is 

approximately 13 s  and 17 W∙kg
-1

, respectively; the physiological demands in the 10 min 

before the sprint are higher in PRO compared to U23 races; neither a variable nor a non-

variable 10 min lead up effort appears to impair the sprint performance of elite 

competitive cyclists; measurements of elevation gain are consistent within devices of the 

same brand, but differed between brands or when different settings were used; and 

technical and tactical aspects of road sprinting are related to performance outcomes. 
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CHAPTER ONE  INTRODUCTION 

1.1 Overview 

This doctoral thesis contains five research studies with an underlying focus aimed 

at describing road sprints in endurance cycling and improving the understanding of 

factors that influence the sprint performances. Specifically, the purpose of this research 

was to examine sprints in endurance cycling, with particular focus on the elite and 

professional categories. The first two of these studies were descriptive, field based 

studies, aimed at examining and documenting the physiological demand of sprint races 

during actual professional and Under 23 cycling competitions.  Study 3 was a laboratory 

experimental study aimed at understanding the effects on maximal sprint performance of 

variable and non-variable exercises that replicate the intensity of the final part of road 

competitions. The fourth study was methodological and investigated the consistency of 

commercially available devices used to measure the total elevation gain (TEG) during 

races and training. Following this, the final study of this thesis was an analysis of 

technical and tactical factors that influence sprint performance in professional 

competitions; particular focus was put on the TEG, factor identified as potential cause of 

fatigue.  

1.2 Background 

Successful road cycling performance is dictated by a variety of factors, including 

technique, tactics and the aerobic and anaerobic characteristics of cyclists (66). Based on 

physiological traits and primary objectives during competition, cyclists have been 

classified into a number of different specialty groups, including climbers, sprinters, time 

trialists, all terrain specialists and flat terrain specialists (52, 64, 93, 109). In the past 

decade there have been several studies describing both the physiological demands of 

competition and the characteristics of various specialty cycling groups (64, 93). However, 

these studies have focused primarily on aerobic characteristics of athletes (22, 90) and 
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associated uphill and/or time trial performances (64, 93). For instance, Lucia and 

colleagues (64) showed that professional climbers have a lower body mass index and 

higher maximal oxygen uptake (VO2max) normalized to body mass, when compared with 

time trial specialists. This area of research has been important in the monitoring of athlete 

fitness, assessing the effectiveness of various training programs and identifying talent in 

junior athletes, with relevance to uphill and time trial cycling performance. However, 

since cycling has traditionally been considered an endurance based aerobic sport, to date 

few research studies have examined the anaerobic characteristics important to road 

cycling (33, 34, 89).  

Sprint cycling ability is often a key determinant of road cycling performance. In 

fact, many stages (e.g. approximately 7 out of 21 stages) within each of the grand tours 

(i.e. Giro d’Italia, Tour de France and Vuelta a Espana) are designed specifically for 

sprinters, with other races still often decided in bunch sprints or sprints between a few 

riders. Furthermore, several World Road Championships have been won by a sprint 

cyclist. It therefore appears that the ability to excel in the final sprint could be highly 

relevant for individual riders (and team) performances. Indeed, top level sprinters are 

usually well positioned in the international road cycling seasonal rankings 

(www.cqranking.com). Despite the importance of sprints within professional road cycling, 

the physiological characteristics of professional road sprinters have yet to be described. 

To the best of our knowledge, only two research studies describing the physiological 

characteristics of competitive nonprofessional sprint cyclists have been published (79, 

109). In these studies, sprinters showed a higher short term absolute and relative sprint 

power output but lower aerobic capacity (relative to body mass), when compared with 

other cycling specialists (i.e. climbers and flat terrain).  

Furthermore, the physiological demand of successful professional road sprints is a 

topic that appears to have only been described once, on a single subject (68). In the 

mentioned study, Martin and colleagues (68) reported the power output of a single sprint 

performed by a single cyclist winning a professional road race. In this case study, the 

cyclist rode at a mean power output of 490 W in the last 3 min and exceeded 600 W for a 

total of 64 s. The duration of the final sprint was 14 s, while the mean power was 926 W 

(peak power 1097 W) and the maximal recorded speed was 65 km∙h
-1

. Such high power 

outputs are not far from those ridden by elite pursuit track cyclists (4000 m) and highlight 

the high physiological load experienced during road sprint cycling.  
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1.3 Purpose of the Research 

The general purpose of the research composing this thesis was to describe road 

sprint performances, and investigate the factors that may influence the development of 

fatigue during prolonged cycling. The literature related to the physiological demand of 

sprint races in professional road cycling is limited. Thus, the purpose of the first study 

contained within this thesis (Study 1) was to examine and describe the characteristics of 

the sprint finish over various road competitions in male professional cyclists, with 

particular focus on the lead up phase and the final sprint. Also, the variability of the 

power output in the final part of the race was examined with Exposure Variation Analysis 

(EVA). Following this, the purpose of Study 2 was to describe and compare the power 

output data recorded during successful road sprints in professional and amateur (U23) 

male cycling races. Furthermore, a secondary aim of Study 2 was to examine the intensity 

in the final 10 minutes of race to describe the difficulties that a sprinter has to overcome 

to be in contention for the sprint. The purpose of Study 3 was to examine the effects of 

variable and non-variable 10 minutes efforts on the maximal sprint capacity of 

internationally competitive male cyclists. These trials were performed under laboratory 

conditions and were set to replicate the intensity of the final part of road competitions. 

Study 4 was aimed at determining the consistency of several devices typically used for 

measuring altitude and elevation gain in outdoor activities and sporting events. Finally, 

the purpose of Study 5 was to examine technical and tactical factors that may influence 

road sprint performances, such as the TEG during the competitions. A secondary aim of 

this investigation was to provide a description of the sprint characteristics during Grand 

Tours in order to extend methodology used for evaluating road sprints. Collectively, this 

research aims at better understanding the physical, technical and tactical factors that 

influence road sprint cycling performance. Such information can assist in establishing the 

basis for selection of successful sprinters, as well as support the advancement of specific 

training programs and the development of better tactical considerations.  
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1.4 Research Questions 

The research questions asked in this PhD thesis have been separated into five 

separate studies, as listed below: 

1.4.1 Study 1 (chapter 3) 

Demands of the sprint finish in professional road cycling 

i. What are the characteristics of successful road sprints (e.g. duration, peak and 

mean power, cadence and speed)? 

ii. How intense is the final hour of competition before the sprint?  

iii. Does the power output and variability of power increase in the last 5 min of a 

road race when compared to the penultimate 5 min? 

1.4.2 Study 2 (chapter 4) 

Physiological demands of road sprinting in professional vs U23 cyclists 

i. Do the characteristics of successful road sprints (e.g. duration, peak and mean 

power) differ between professional and amateur (U23) road cycle races? 

ii. Do the physical demands prior to the sprint differ between professional and 

amateur (U23) road cycle races? 

1.4.3 Study 3 (chapter 5) 

Maximal sprint power following variable or non-variable high intensity exercise in 

road cyclists 

i. Is sprint power output impaired by the physical demands of exercise occurring 

in the last 10 min of road competitions? 

ii. Does a 10-min variable intensity effort result in greater decrements in 

subsequent sprint power output, when compared to a non-variable effort of the 

same intensity? 
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1.4.4 Study 4 (chapter 6) 

Consistency of commercial devices for measuring elevation gain 

i. What is the reliability of commercially available devices that are used for 

measuring elevation gain within cycling? 

ii. Is elevation gain consistent between different commercially available devices? 

iii. Does correcting for positioning on the software of commercially available 

devices (i.e. GPS-corrected) influence the reliability of devices? 

 

1.4.5 Study 5 (chapter 7) 

Performance analysis of a world class sprinter during cycling grand tours 

i. What influence does elevation gain have on success of a professional road 

sprint cyclist? 

ii. Is team support (e.g. number of teammates) associated with successful road 

sprint performance? 
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1.5 Definitions of Selected Terms 

Ap: Projected Frontal Area 

ADP:  Adenosine diphosphate 

ANOVA: Analysis of variance 

ATP:  Adenosine triphosphate 

ATP-PC: Adenosine triphosphate – Phosphocreatine 

BMI:  Body Mass Index 

CdA:  Aerodynamic drag area 

CI:  Confidence intervals 

CON:  Fresh condition (Control) 

Cr:  Free creatine 

CTpeak:  Peak crank torque 

CV:  Coefficient of variation 

ECU:  Edith Cowan University 

EMG:  Electromyography 

EVA:  Exposure variation analysis 

EVASD: Standard deviation of the exposure variation analysis matrix 

GT:  Grand Tours (Giro d’Italia, Tour de France, Vuelta a Espana) 

HC:  Hors Category cycling competition 

HRmax:  Maximum heart rate 

MA:  Musculoarticular 

MAP:  Maximal aerobic power 

min:  Minute(s) 

MMP:  Maximal Mean Power 

MVC:  Maximal voluntary contraction 

N-VAR: Non-variable 

PAP:  Post activation potentiation 

PC7:  Power Control 7 (part of the SRM device) 

PCr:  Phosphocreatine 

PO:  Power output 

POpeak:  Peak power output 

PRO:  Professional cyclist(s) 

r:  Pearson’s product moment correlation coefficient 
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RCTD:  Rate of Crank Torque Development 

rh:   relative humidity 

RPE:   Rating of Perceived Exertion 

RR:   Road race events 

s:  Second(s) 

SD:  Standard deviation 

SRM: Schoberer Rad Meßtechnik: A portable power monitoring system 

for bicycles 

STMP: short term muscle power 

TEG: Total elevation gain 

TEM: Technical error of measurement 

TT:  Time trial event 

U23:  Under 23 cycling category, according to UCI rules 

UCI:  Union Cycliste Internationale; International Cycling Union 

VAR:  Variable 

2
OV :  Oxygen consumption 

max2OV : Maximal oxygen consumption 

peak2OV : Peak oxygen consumption 

VT1:  First ventilation threshold 

VT2:  Second ventilation threshold 

WT:  World Tour cycling competition 
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CHAPTER TWO  REVIEW OF LITERATURE  

SPRINTING IN ENDURANCE CYCLING 

This review of literature provides information relevant to the studies of this PhD 

thesis. This chapter outlines research that has been observed and reported in peer 

reviewed manuscripts, relating to the characteristics and demands of road sprint cycling. 

This review also discusses the energetics of short duration maximal efforts and the effects 

of prolonged exercise on maximal sprint capacity.   

2.1 Introduction 

In an attempt to enhance the understanding of cycling performance, physiologists 

and sport scientists have described characteristics of cyclists (33, 63, 93) and the demands 

of cycling competitions (94-96, 125, 126). Despite the importance of the final section of 

competitions (i.e. final sprint) for road cycling performance outcomes only one study has 

reported data related to this specific aspect of cycling (69). Indeed, to date research into 

cycling performance has largely focused on time trial and/or uphill performances (2, 15, 

31, 86, 106, 124, 125). Several studies have also investigated the physiological 

characteristics of track sprinters (18, 39, 40, 74, 112). However, the physiological and 

performance characteristics of road cycling sprints and sprinters have not been the focus 

of extensive scientific investigation. Therefore, the purpose of this review was to: i) 

define and describe road cycling sprint performances, ii) describe the energetics of short 

duration maximal efforts, and iii) highlight the effects of prolonged cycling on short 

duration maximal cycling efforts. 

2.2 Sprinting in cycling 

The performances of road cyclists are influenced by many physiological, 

technical, tactical, psychological and environmental variables (12, 63). When focusing on 
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physiological aspects associated with performance, cycling is often described as an 

aerobic activity (22, 84, 90). Nonetheless, anaerobic characteristics are extremely 

important and the contribution of the anaerobic metabolism is required during the high 

intensity sections of cycling competitions (33, 34, 89). For instance, anaerobic 

metabolism is extremely important near the end of road races when more than one cyclist 

approaches the finish line and a maximal effort (i.e. final sprint) determines the race 

result. 

2.2.1 Definition of sprint  

Short duration maximal exercise has been described with different and not always 

consistent terminology. In a review paper, Girard and colleagues (43) defined the sprint as 

a brief exercise of duration equal to, or shorter than, 10 s in which the maximal workout 

intensity (e.g. power) is maintained and does not decrease. In the same review, maximal 

intensity efforts of longer duration (e.g. lasting 30 s or more) were described as ‘all-out’ 

exercise where it is possible to measure a decrease in exercise capacity despite maximal 

intensity effort. In a separate review, Van Praagh and Doré (122) defined short term 

muscle power (STMP), or peak power, the maximal mechanical power that can be 

produced in efforts lasting up to 30 s. To date, therefore, the description of a road sprint is 

not entirely clear. As such, for the purpose of this thesis, sprint refers to the maximal 

effort done at the end of a road cycling competition in order to be successful over direct 

competitors. Details on the identification of sprints as they pertain to road cycling are 

outlined below. 

2.2.2 Road cycling and sprints 

A road cycling sprint can be measured and defined as the continuous time elapsed 

between a rapid increase in power output (i.e. begin of the sprint) and an immediate drop 

of power (i.e. end of the sprint) (Fig. 2.1). This increase in power output represents the 

rapid acceleration that a cyclist produces in order to reach the finish line before the other 

competitors. Technically, therefore, a sprint occurs every time two or more cyclists 

compete to reach the finish line (or, any other “line” such as for intermediate sprints or 

for the king of the mountain competitions) before their respective competitor or 

competitors. However, the focus of this thesis is purely on “bunch sprints”, which are 

generally different from small group sprints (e.g. less than 10 cyclists in a breakaway). 
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The definition of bunch sprint is difficult as there are no strict criteria to define the bunch. 

Generally, a bunch sprint occurs when a large number of competitors (e.g. >20; or, the 

bigger group of cyclists riding together, named bunch or peloton) reach the finish line 

together, often at the end of a flat or hilly road race, and the final part of competition is 

ridden at relatively high speed (e.g. ≥ 50 km∙h
-1

).  

To date, only one study has reported the power output recorded in a bunch sprint 

performed in a professional road cycling competition. Interestingly, the power data were 

recorded during a successful sprint; however, they were from a single subject and from a 

single competition. It was found that the duration of the final sprint was 14 s, and the 

mean power was 926 W (peak power 1097 W), with a maximal recorded speed of 65 

km∙h
-1

. Interestingly, the authors also reported the intensity recorded before the sprint. 

The cyclist rode at an average power output of 490 W in the last 3 minutes and, within 

that time frame, he exceeded 600 W for a total of 64 s (68). These data appear to be very 

unique and difficult to evaluate as there are limited data on sprinters previously published. 

In fact, this may be the first and only published study describing a road sprint 

performance. 

 

 

 

Figure 2.1 Example of power output and speed recorded at the end of a road race. The 

final sprint is highlighted in grey. 
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2.2.3 Cycling specialties and road sprinters 

Within elite and professional cycling, athletes can be categorized into one of 

several different specializations. For instance, Padilla and colleagues defined a total of 

five categories of male road cycling specialists, including uphill riders, flat terrain riders, 

all terrain riders, time trial specialists, and sprinters (93). Similar categories of specialized 

riders have also been described in elite women, amateur (Under 23) and junior (Under 19) 

cyclists (52, 79, 109). Uphill riders, also known as climbers, excel in hilly or mountainous 

competitions; conversely, sprinters mainly compete for successes in predominantly flat 

races. Flat terrain riders often have the role to control the race before the climbs or before 

the final sprint. Among them, the highest performing athletes can win time trial races and 

they are often described as specialized time trialists. A restricted number of cyclists are 

capable of succeeding in all kind of terrains and for this reason they are named all-terrain 

riders. Despite competing in the same races and over the same courses, the 

anthropometric and physiological characteristic of various specialty cyclists can 

significantly differ. For instance, climbers are shorter and have lighter weight, while time 

trialists are taller and heavier (33, 63, 64). Padilla and colleagues (93) showed that 

climbers were significantly lighter than all the other cyclists, they also had higher frontal 

area to body mass ratio (i.e. aerodynamic disadvantage) when compared to flat specialists 

and time trialists. The abovementioned results highlight the climbers’ advantage while 

riding uphill, as well as the disadvantage on flat terrains whereby air resistance is the 

main resistance to overcome (93). Other studies have also confirmed that flat specialists 

and time trialists are significantly taller and heavier than climbers (63, 109). Anecdotal 

observations would suggest that road sprinters may have a broader range of body sizes 

when compared to other specialists, however, the extremely limited published data do not 

allow a conclusion to be drawn in this regard.  

Not only the anthropometric but also the physiological data related to specialized 

road sprinters are currently lacking within the literature. Such limited information 

pertaining to the characteristics of successful road sprinters is likely to be due to the 

limited number of road sprinters per team (e.g. 1 or 2 in a team of 25-30 cyclists), and 

thus in the overall peloton. As such, physiological and anthropometric characteristics of 

elite road sprinters have, to date, only been reported within a single study by Sallet and 

colleagues (109). In their study four cyclists were categorised as sprinters. These cyclists 

were 20.2 ± 2.6 y, 1.76 ± 0.02 m tall and weighed 67.3 ± 2.5 kg. Sprinters were 
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significantly younger than uphill and flat terrain cyclists (23.6 ± 3.6 y and 23.5 ± 3.87 y, 

respectively). Stature and body weight of the sprinters weren’t statistically different from 

stature and weight of the other specialists (overall mean ± SD: 1.79 ± 0.05 m and 69.7 ± 

1.7 kg). The reported body fat was 8.2 ± 2.3 %, similar to the 8.6 ± 1.7 % reported for the 

other groups (30). The sprinters’ maximal oxygen uptake was 71.8 ± 4.7 mL∙kg
-1

∙min
-1

, 

with a maximal aerobic power of 428 ± 33 W, corresponding to 6.3 ± 0.3 W∙kg
-1

. The 

overall mean for the study participants were a maximal oxygen consumption of 74.6 ± 6.5 

mL∙kg
-1

∙min
-1

, maximal aerobic power of 452 ± 39 W, corresponding to 6.5 ± 0.5 W∙kg
-1

. 

None of the above mentioned parameters were significantly different when sprinters were 

compared with the other specialty groups. The sprinters gross mechanical efficiency was 

25.4 ± 1.4 %, similar to the overall mean of 25.1 ± 2.5 %. The sprinters reached a 

maximal peak power of 1279 ± 74 W during a 30 s all-out test, which corresponds to 19.0 

± 1.1 W∙kg
-1

; the maximal power was found to be significantly higher in sprinters when 

compared to uphill, flat terrain and all-terrain riders (15.5 ± 1.5, 16.7 ± 1.5 and 15.7 ± 1.8 

W∙kg
-1

, respectively). 

Published data on anthropometric and physiological characteristics of road 

sprinters do not reveal unique attributes compared to other categories of specialised 

cyclists, with the exclusion of peak power expressed in relation to body weight. Whether 

this was due to the limited sample size (only four road sprinters were part of the study) or 

to minimal differences between categories is not possible to determine. Further research 

investigating these aspects is warranted.  

 

2.2.4 Literature on cycling track sprint 

Road sprinters are not the only sprinters within the sport of cycling. Indeed, track 

cyclists that specialise in sprint events are also known as sprinters. Despite similarities in 

the terminology used to describe these cyclists, track and road sprinters are extremely 

different athletes. It is likely that the main reason for the differences among these athletes 

is due to the significant differences in the task demands of road and track cycling 

competitions. However, what both the sprinter categories have in common is their ability 

to produce relatively high power output for short periods of time, when compared to other 

cyclists competing in the same setting. In practical terms, road sprinters are “faster” (or, 
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more powerful over short distances) than the average road cyclist, and similarly track 

sprinters are “faster” than the average track cyclist. 

To date, considerably more research has focused on the track (aka velodrome) 

sprinter, when compared with road sprinting.  Indeed, a number of research groups have 

reported the anthropometric and physiological characteristics of specialised track sprinters 

along with the specific demands of competition (27, 40, 68). Due to the track sprinters’ 

extreme specialization they can be described as the most powerful competitive cyclists, 

which make their characteristics of interests for this literature review. Indeed, their 

absolute short term muscle power can be considered as the highest power output that can 

be achieved on a bicycle. Dorel and colleagues (27) analysed the performances of 12 

French track sprinters (including gold medallists at World Championships and Olympic 

Games). The participants were 24.3 ± 3.9 years old, their stature was 1.81 ± 0.04 m and 

their body mass was 83 ± 5 kg. The body fat was estimated in 11 ± 2 % (29). In this study, 

the cyclists’ peak power was 1600 ± 116 W, corresponding to 19.3 ± 1.3 W∙kg
-1

. The 

optimal cadence (i.e. the cadence at which maximal sprint power occurred) was 130 ± 5 

rpm, with a maximal torque of 236 ± 19 Nm. In a different study, a maximum power of 

1792 ± 156 W was found in Australian elite sprinter cyclists, equal to 20.8 W∙kg
-1

. Data 

were recorded while the cyclists were sprinting on the track (40). The seven Australian 

male sprinters were 1.80 ± 0.3 m and 86 ± 6 kg. Their optimal cadence was 129 ± 9 rpm, 

with a maximal torque of 266 ± 13 Nm. No differences were found by Gardner and 

colleagues (40) between parameters recorded in laboratory versus field (i.e. track) 

conditions. 

Track sprinters are generally considered the most powerful competitive cyclists 

within all disciplines of the sport of cycling (i.e. road, track, BMX, MTB and cyclo-

cross). Similarly, road sprinters are considered the most powerful cyclists in the 

professional road cycling peloton making comparisons between these two specialities 

interesting. Due to different anthropometric characteristics (i.e. track sprinters have bigger 

body sizes compared to road sprinters, thus higher lower limb muscle masses) track 

sprinters can produce considerably higher absolute peak power outputs than road sprinters 

(peak power: ≥ 1600 W and ~1100, respectively) (27, 40, 69). Such differences appear 

largely due to differences in muscle mass characteristics. Indeed, despite limited 

published data, it seems that when accounting for body weight track and road sprint 

cyclists appear much more comparable. Supporting this, similarities in the relative peak 
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power outputs of track and road sprinters were also found in a pilot study by Menaspà and 

colleagues (77). 

2.3 Physiology of sprinting in cycling 

2.3.1 Energetics of high intensity cycling exercise      

        

While road cycling is typically described as an aerobic activity (22, 84, 90), 

research on the physiological demands of competitions indicates that both anaerobic and 

aerobic metabolism are extremely important to performance (13, 33). Given that road 

competitions last several hours, the main contribution to energy supply comes from the 

aerobic metabolism; however, road cycling could, at least in part, be assimilated to 

intermittent sport events (or multiple sprint sports) in which several short and high 

intensity efforts are repeated (4). Exercise associated with repeated high intensity or 

maximal effort of short duration is regulated by complex energetics. The energy to 

produce work at muscular level is obtained by the adenosine triphosphate (ATP) 

hydrolysis in adenosine diphosphate (ADP) and inorganic phosphate (Pi), but this source 

of energy is only available for a few seconds (38, 97). For exercises of duration up to 10 s, 

the human body relies heavily on phosphocreatine (PCr), with a reaction that produces 

ATP and creatine (Cr) (11). This energy production pathway is one of the major 

contributors during the final sprint of road cycling competitions (120). However, during 

the high intensity phases of road races in which several efforts last more than 5-10 s, ATP 

supply becomes more reliant on anaerobic glycolysis (42, 54). The current understanding 

of intermittent exercises strongly depends on research examining performance and 

physiology during repeated sprints. Noteworthy, studies clearly show the importance of 

the aerobic metabolism during sprinting, even for efforts as short as 6 s (42). Indeed, it 

has been shown that approximately 9% of the energy used during the first 6 s of a 30 s 

maximal sprint comes from aerobic metabolism (97). Research also indicates that when 

maximal sprints are repeated, oxygen uptake (VO2) kinetics are improved supporting 

additional reliance on aerobic energy yielding systems. When sprints are repeated before 

VO2 returns to resting levels, the oxygen uptake will be elevated during the following 

sprints (38, 44). The higher VO2 during recovery (or, low intensity cycling) allows 
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restoration of homeostasis via replenishment of oxygen saturation of myoglobin, 

resynthesis of PCr, lactate metabolism and removal of intracellular Pi (10, 37).  

During high intensity intermittent exercise, metabolic pathways are required to 

both fuel muscular contractions and restore homeostasis (9). Due to the high intensity 

nature of the final sections of road racing, anaerobic glycolysis and aerobic metabolisms 

are likely to be the main pathways responsible for ATP supply leading into the final 

sprint.  This is important since ATP supply is the major limitation to the production of 

maximal power in sprints that occur at the end of road cycling competitions.  

 

2.3.2 Factors affecting cycling sprint exercise 

Several factors can positively or negatively influence sprint exercise performance, 

including energy availability and metabolic pathways, neuromuscular fatigue and 

biomechanical variables. As previously reported, ATP supply is extremely important in 

the ability to generate high power outputs. According to the energy supply model a failure 

to provide sufficient ATP will cause fatigue (87). Nonetheless, in the energy depletion 

model fatigue during high intensity sprint exercise occurs when the levels of PCr are 

almost completely depleted (46). Thus, these models attribute fatigue to inadequate 

supply or depletion of substrates (1). Although energetic models provide an explanation 

for the development of fatigue in cycling, there are other theories to explain fatigue. The 

neuromuscular fatigue model attributes fatigue to the muscle functionality, in particular to 

functions involved with excitation, recruitment and contraction of muscles (7, 80, 115). 

Neuromuscular fatigue can be described as the inability to maintain a certain level of 

strength (or power); this reduced capacity after prolonged cycling is a result of both 

central and peripheral mechanisms (5, 59, 60, 116). According to the neuromuscular 

fatigue model there are three different points along the neuromuscular pathway where the 

decrease in muscle activation and contraction could originate (1). However, it is beyond 

the scope of this literature review to provide detail regarding the mechanistic aspects of 

neuromuscular fatigue. Numerous biomechanical aspects are also important to sprint 

exercise performance. In fact, it has been shown that the ability to produce a high peak 

power output (POpeak) and peak crank torque (CTpeak) are important determinants that 

contribute to achieve superior cycling sprint performances (27, 40). In this context, crank 

length and cadence may be important variables that, when appropriately adjusted, can 
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contribute to enhance sprint performances (22, 32, 85). Watsford and colleagues 

suggested that musculoarticular (MA) stiffness is a contributor factor in sprint cycling, 

and due to its link with the rate of crank torque development (RCTD), MA stiffness may 

increase the sprint performance (127). These results are supported by research conducted 

by Ditroilo and colleagues who report reduction in MA stiffness of the quadriceps after a 

fatiguing cycling exercise (26). The authors also observed reductions in POpeak, CTpeak and 

RCTDpeak due to changes in neuromuscular properties. These results suggest that a 

training modality which helps in maintaining MA stiffness could assist in maintaining, or 

improving, sprint performances in fatigued conditions. 

While some aspects of fatigue related mechanisms are yet to be fully understood, 

it’s clear that cycling sprint exercise can be influenced by numerous metabolic, 

neuromuscular and biomechanical mechanisms. 

 

2.4 Effects of prolonged cycling exercise 

 During prolonged exercise fatigue is associated with metabolic alterations and 

impairment of muscular strength (1, 24, 59, 108, 114). The latter could be due to 

impairment of excitation-contraction coupling (8, 72). Maximal Voluntary Contractions 

(MVC) have been extensively used in exercise physiology research to investigate the 

effect of prolonged cycling (or exercise in general) on muscle contractile functions (i.e. 

neuromuscular fatigue). Another valid method of assessing the effect of prolonged 

cycling exercise is the evaluation of changes in whole-body power output. The change 

within these variables following relevant cycling related exercise tasks is outlined below. 

2.4.1 Peak torque of isometric and isokinetic force  

Isometric MVC has been used in several studies to evaluate the effect of 

prolonged exercise on neuromuscular functions. Sahlin and Seger (108) assessed the 

quadriceps strength during and after prolonged time to exhaustion cycling exercise. With 

exercise intensity at 75% of the estimated VO2max, the authors observed a 9% decrease in 

strength after only 5 minutes of exercise. After 40 minutes of cycling the isometric MVC 

was 82% of the pre exercise value, and it further decreased to 66% at exhaustion. This 

research is noteworthy because of the short period of time between the beginning of the 
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exercise and the measure of strength loss. Other authors have also found similar 

decrements in isometric MVC (~ 30%) after prolonged cycling exercise to exhaustion 

(intensity above 70% of the VO2max). These studies also found that at 20 and 30 minutes 

post exercise the MVC is only partially recovered (14, 100). Some authors have reported 

significant decrements in MVC torque only after hours of cycling exercise. For example, 

Vallier and colleagues showed that prolonged cycling reduced the isometric MVC of 

trained cyclists and triathletes only after the 3
rd

 hour of exercise at 60% of their VO2max 

(121). Interestingly, Lepers and colleagues reported significant reduction of isometric 

MVC after two or more hours of cycling at intensity below the 65% of the maximal 

aerobic power output (MAP). However, results showed that other indicators of fatigue 

(i.e. excitability and central drive) where only impaired in the final part of the 5-hour ride 

(58, 59). Collectively, these results are interesting because road sprints occur at the end of 

several hours of cycling exercise. Contrasting results were found by Decorte and 

colleagues (24). Indeed, measures of contractile function (e.g. maximal rates of force 

development and time to peak force) were significantly impaired at the beginning of 

exercise yet voluntary activation (i.e. EMG amplitude) increased near the end of the 

exercise (24). A possible explanation of the increased central motor drive could be a 

compensatory mechanism to account for the reduced muscle functionality and attempt to 

maintain the required exercise demands. 

Investigators have also examined on the effects of prolonged cycling on peak 

isokinetic force during concentric and/or eccentric contractions. Research has shown 

reductions of isokinetic MVCs ranging between 11 and 26% after prolonged cycling (58, 

108). Lepers and colleagues also showed that riding at the freely chosen cadence does not 

help in preserving the muscle strength of the leg extensors muscles (60). This result 

suggests that in road cycling the use of different gears in an attempt to preserve the 

muscle functionality is unlikely to be a successful strategy. 

In conclusion, prolonged intense exercise can cause neuromuscular fatigue, both at 

peripheral and central level. The impairment in muscle function could result in a 

reduction in maximal sprint capacity after hours of road cycling. 

 

2.4.2 Whole-body power output 

While the assessment of muscle fatigue in isolated muscle (e.g. quadriceps) may 

be ideal to investigate the fatigue mechanism in vivo, whole-body power output is a more 
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appropriate measure of performance. However, the literature investigating the effects of 

prolonged cycling exercise on whole-body POpeak is limited. Moreover, only few studies 

have reported the time course of fatigue. Marcora and Staiano (67) evaluated the time 

course of fatigue measuring maximal sprint power at different stages of time to 

exhaustion cycling efforts. In their study, once the time to exhaustion was known, the 

subjects rode at the same intensity and performed maximal sprints after 25%, 50% and 

75% of that time. As expected, the authors found a decrement in the maximal sprint 

power toward the end of the effort and overall, comparing pre and post  exercise maximal 

sprints, the power output was reduced by about 30%. However, between 50 and the 75% 

of the time to exhaustion the maximal sprint power did not change significantly. Thus, 

these results highlight that in certain situations, and despite increased fatigue, whole-body 

sprint power output can be maintained. McIntyre and colleagues (73) have also recently 

studied the effects of a time to exhaustion exercise on whole-body power output. In their 

study, participants rode subsequent 20 minutes stages at 70% of VO2peak, with 30 s 

maximal test at the end of each step (plus ~ 6 minutes recovery to collect data). As 

expected, at exhaustion the peak power output was reduced (19%); however, none of the 

subjects had a decline in peak power output after the first cycling stage. Even more 

interestingly, after 1 or 2 stages, the authors found that 50% of the subjects had either 

“potentiated or unchanged” sprint power. Finally, Del Coso and colleagues (25) used 

maximal cycling sprints as performance outcome while comparing the effects of different 

exercise modalities; in particular the endurance trained cyclists rode three different 

intermittent protocols, keeping the average intensity of 50% of the second ventilatory 

threshold for a total of 24 minutes. Surprisingly, the maximal sprint power produced by 

the participants was not impaired in any of the three conditions. The above mentioned 

studies indicate that well-conditioned cyclists can endure a variety of different types of 

endurance exercise (including intense bursts) for prolonged periods possibly without 

impairing maximal sprint performances.  

 

2.5 Summary and Conclusion 

Sprinting in endurance sports is widespread and directly influences performance 

outcomes, however, the individuals that specialise in endurance sprinting have received 
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very little attention from sport scientists.  It is possible that the endurance sprint has been 

evaluated but thus far published research on this topic is scarce.  

The available literature describing the anthropometric and physiological 

characteristics of track and road cycling sprinters indicates that these athletes are unique 

in many ways (35, 74). The demands of competitions between the track and the road 

sprint are greatly different: track sprint competitions last generally less than one minute, 

and the real maximal efforts usually last around 10 s; while road cycling competitions 

ending with a sprint are generally longer than 4 hours, and the final sprints usually last 

about 12-14 s. Also due to these reasons, track sprinters have a different body type: they 

are quite heavy and possess a relatively large proportion of muscle mass, while road 

sprinters are lighter and maintain less muscle mass, especially in the upper body (35, 74). 

To date, only one study reported cycling power output data collected in the field 

from a successful road sprint. This lack of basic information does not allow to do further 

studies investigating relevant aspects of this kind of performances, such as the effect of 

fatigue on sprint power after prolonged exercise. Also, training studies that may try to 

increase the sprinters’ performances are limited by the fact that the determinants of road 

cycling sprints have not been described. Physiological studies investigating the metabolic 

contribution of different energetic systems to efforts of different duration allow 

understanding the mechanisms involved in generating force, thus power output during 

maximal cycling. 

The fatiguing effects of prolonged cycling exercise have been repeatedly reported 

in literature. Maximal voluntary contractions, both in isometric and isokinetic conditions, 

are impaired after exercise. The impairment varies based on duration and intensity of the 

exercise. Whole-body power output is likely to be the best measure to evaluate the 

fatiguing effect of prolonged exercise on sport performances. Multiple studies reported 

the loss of maximal power production (i.e. short term power output, or sprint power) 

during or after prolonged cycling. The biggest impairment in performance generally 

occurs at time to exhaustion. However, some studies have clearly shown that certain types 

of cycling exercise, despite being intense, do not impair sprint performance. Research 

examining the endurance sprinter can be of interest for a number of reasons including: 1) 

performance review, 2) talent identification, 3) construction of appropriate training 

programs, and 4) unique insights into manifestations of fatigue and related physiology. 
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CHAPTER THREE 

DEMANDS OF THE SPRINT FINISH IN PROFESSIONAL ROAD 

CYCLING  

3.1 Abstract 

The aim of this study was to quantify the demands of sprinting in male professional 

road cycling competitions. It was conducted in the field in order to maximise the 

ecological validity of the results. Seventeen performance files from 6 male 

professional cyclists (age, 27.0 ± 3.8 y; height, 1.76 ± 0.03 m; weight, 71.7 ± 1.1 kg) 

who placed top 5 in professional road cycling races were analysed. SRM power 

meters were used to monitor power output, cadence and heart rate. Data were 

averaged over the entire race, different durations prior to the sprint (60, 10, 5 and 1 

min) and during the actual sprint. Variations in power during the final 10 min of the 

race were quantified using EVA. Power, cadence and heart rate were statistically 

different between different phases of the race, increasing from 316 ± 43 W, 95 ± 4 

rpm and 88 ± 3 % of maximal heart rate in the last 10 min to 487 ± 58 W, 102 ± 6 

rpm and 96 ± 2 % of maximal heart rate in the last min of the race. Peak power 

during the sprint was 17.4 ± 1.7 W∙kg
-1

. EVA revealed a significantly greater number 

of short duration high intensity efforts in the final 5 min of the race, compared with 

the penultimate 5 min. These findings quantify the power output requirements 

associated with high level sprinting in men’s professional road cycling and highlight 

the need for both aerobic and anaerobic fitness. 

3.2 Introduction 

Sprinting is the act of accelerating toward the end of a competition in order to reach 

the finish line in front of other competitors. Sprinting is an important aspect of road 

cycling, with approximately one third of grand tours stages (i.e. Tour de France, Giro 

d'Italia, and Vuelta a España) finishing in a sprint. Furthermore, several high profile 
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one day races are specifically designed for sprinters. Despite the importance of 

sprinting to the overcomes of a race and the high number of sprint finishes within 

professional road cycling, the number of sprint cycling specialists is limited (75). 

Indeed, cycling teams typically only have one or two designated sprinters, making 

research on such athletes difficult. As an example, Padilla and colleagues described 

the characteristics of different types of professional road cycling specialists (93). 

Despite listing five categories of road cycling specialists (i.e. uphill riders, flat terrain 

riders, all terrain riders, time trial specialists and sprinters), their study only 

examined four groups without presenting data on sprinters. In a similar study, Sallet 

and colleagues identified only four sprinters out of a total of 71 cyclists (109). 

Likewise, the current literature describing the demands of professional road sprints is 

extremely limited with one study presenting data from a single cyclist (69).  

The majority of research that has examined the physiological characteristics 

and demands of road cycling have focused on uphill and time trial performances (64, 

86, 93). Of these studies, performance has largely been explored and quantified by 

reporting data averaged over entire stages or large sections of a race (103, 123, 125). 

A contemporary modelling approach used to evaluate the stochastic nature of road 

cycling is EVA (4). This method of analysis has been used to describe variation in 

power output during cycling in a variety of cycling events (4) and under various 

environmental conditions (99). EVA may be useful for providing insights into the 

demands of road cycling sprinting whereby power output continually changes due to 

several technical and tactical factors. Indeed, the lead up to the sprint (i.e. lead up 

phase: the final 10 min prior to the sprint) could be considered the most crucial part 

of sprint competitions. In this phase the race intensity may dramatically increase as 

cyclists attempt to find the best position within the peloton. Prior to the sprint, team 

support is also considered an important factor presumably because it enables efficient 

positioning in the bunch, thus decreasing both the intensity and number of efforts 

ridden prior to the sprint finish (71). However, to the best of our knowledge, there 

are no published studies providing a detailed analysis of the variability in power 

output for sprinters competing in road races finishing with a bunch sprint. Therefore, 

the aim of this study was to examine and describe the characteristics of the sprint 

finish over various road competitions in male professional cyclists, with particular 

focus on the lead up phase and the final sprint.       
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3.3 Methods 

The study was observational, and was conducted in the field in order to 

maximize the ecological validity of the results.  

3.3.1 Subject  

Race data from six male professional sprint cyclists (age, 27.0 ± 3.8 y; height, 

1.76 ± 0.03 m; weight, 71.7 ± 1.1 kg) were collected during seventeen professional 

road races finished with a bunch sprint. At the time of the study, all subjects were 

specialised sprinters, competing for a UCI WorldTour professional team. Cyclists 

were classified as sprinters when their best performances were achieved in relatively 

flat competitions finishing at high speed and against a relatively large number of 

competitors (75). As a selection criterion, only races in which the subjects finished in 

the top 5 were included in this study. The races analysed involved 4 first, 4 second, 4 

third, 4 fourth and 1 fifth places. The analysed sprints were performed in World 

Tours (WT; n=7), Hors Category (HC; n=6), and Category 1 (n=4) competitions. The 

subjects provided written informed consent to participate in this study, which was 

approved by Edith Cowan University’s Human Research Ethics Committee, in the 

spirit of the Helsinki Declaration.  

3.3.2 Procedures 

Power output, cadence, speed, heart rate and elevation gain were recorded at 

1 Hz using SRM powermeters mounted on the subjects’ bikes (PC7, SRM Training 

System, Jülich, Germany). The “automatic zero” setting was selected on the SRM 

PC7 according to the manufacturer recommendation. The accuracy and consistency 

of power and elevation gain data recorded with SRM devices have been previously 

reported (3, 76). Race files were uploaded online with the web based service 

TrainingPeaks, then downloaded and analysed using the WKO+ 3.0 software 

(Peaksware LLC, Lafayette, CO, USA) or Microsoft Excel (EVA; described below). 

Power output (W and W∙kg
-1

), cadence, percentage of maximal heart rate (% 

HRmax) and TEG were averaged over the entire race. Furthermore, in order to gain 

an understanding of the lead up phase and overall sprint performance, data were also 

analysed in the 60, 10, 5 and 1 min prior to the sprint. During the actual sprint, the 

duration and speed of the final effort were also measured. The sprint was defined 
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using the SRM data and measured as the continuous time elapsed between the rapid 

increase in power output (i.e. beginning of the sprint) and the immediate drop of 

power (i.e. end of the sprint). 

EVA was used to provide a detailed analysis of the variations in power output 

during the penultimate and final 5 min of the race. EVA has been previously utilized 

in road cycling to describe the total time and the “acute” time spent at different 

intensities (4). The total time was defined as the overall time spent in a 

predetermined intensity zone, while the “acute” time referred to the duration for 

which power output was continuously within a zone. The intensity zones were 

determined arbitrarily and defined as power to body mass ratio (W∙kg
-1

) in order to 

allow comparisons among different cyclists and to provide useful information to the 

readers. In fact, the aim of the study was to describe road sprint finishes and the 

demands of competition, not the subjective intensity of the subjects to this 

investigation. Increments of 3.33 W∙kg
-1

 were used to define intensity zones, 

resulting in a total of five zones (see Fig. 3.1). 

Finally, to correspond to previous research, the length of time of the acute 

bands was split into the following zones: from 0 to 1.875, 1.875-3.75, 3.75-7.5, 7.5-

15 and >15 s (4, 98). EVA results are expressed as a tridimensional distribution. The 

standard deviation of the EVA matrix was determined to provide an indication of 

variability in power output (4, 99). 

3.3.3 Statistical Analysis 

Results are presented as mean ± standard deviation (range). Dependent 

variables (power, cadence, % HRmax, TEG, speed) were compared between 

different competition’s phases (race, 60, 10, 5 and 1 min prior to the sprint) using a 

one-way analysis of variance (ANOVA). The EVASD matrix were calculated and 

compared using a paired T-test (penultimate 5 min vs last 5 min) in order to evaluate 

the variation in power output in the final part of the race before the sprint. A greater 

standard deviation indicates higher variability with intensity. The time spent at high 

intensity (> 6.6 W∙kg
-1

) for short period of time (< 3.8 s) was also compared using a 

paired T-test. Relationships between individual EVASD and race outcomes were 

evaluated via correlation data analysis. Significance was set at p≤0.05. 
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3.4 Results 

Power output, cadence, % HRmax, TEG and speed over the entire race and in 

the final 60 min are summarized in Table 3.1. Power, cadence, % HRmax, TEG and 

speed were statistically different among different races’ phases (P<0.001).  

 

 

 

Table 3.1 Characteristics of professional sprint races; mean ± SD (range).  

 

 RACE 

60 min 

before sprint 

10 min 

before 

sprint 

5 min 

before 

sprint 

1 min before 

sprint 

Power (W) 
a
 

200±27 

(155-256) 

233±33 

(180-287) 

316±43 

(231-424) 

363±38 

(273-438) 

487±58 

(409-593) 

Cadence (rpm) 
a
 

87±4 

(80-91) 

89±4 

(82-96) 

95±4 

(84-104) 

96±5 

(84-105) 

102±6 

(91-113) 

HR (%HRmax) 
a
 

70.9±6.7 

(58.4-79.0) 

77.3±5.8 

(66.2-88.9) 

87.6±3.2 

(81.7-92.2) 

91.4±2.5 

(86.4-94.8) 

95.6±1.7 

(90.4-97.9) 

TEG (m) 
a
 

1101±725 

(144-2397) 

218±192 

(0-581) 

27±37 

(0-152) 

15±19 

(0-59) 

3±6 

(0-25) 

Speed (km∙h
-1

) 
a #

 

41.0±2.2 

(37.1-45.4) 

45.4±2.9 

(41.2-50.1) 

50.5±3.3 

(46.1-56.4) 

52.1±4.1 

(44.1-60.3) 

55.4±4.7 

(45.7-61.9) 

 

a
 Significantly different among competition’s phases (P<0.001) 

# n = 15 races 
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Figure 3.1 shows the mean EVA plots. The EVASD was not statistically 

different between the penultimate 5 min and last 5 min of competitions (15.3 and 

13.6, respectively). The time spent at high intensity (> 6.6 W∙kg
-1

) for short period of 

time (<3.8 s) was different between the penultimate and last 5 min, with 36 ± 17 (11-

70) and 70 ± 14 (41-88) s, respectively (P=0.010) (Fig. 3.1, black bars). No 

correlation was found between the individual EVASD and race outcome (R
2
 = 0.009). 

 

 

 

Figure 3.1 Exposure variation analysis of the penultimate 5 min (A), and last 5 

min (B) of competition prior to the sprint. In black the time spent in short duration 

and high intensity efforts. 
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Mean and peak values during the sprints are reported in Table 3.2. Sprint 

duration was 13.2 ± 2.3 s (9.0-17.0 s). The HRmax recorded during the sprints was 

192 ± 7 bpm (175-206 bpm), corresponding to 99 ± 1% (96.0-100%) of the HRmax 

recorded during the races.  

 

 

Table 3.2 Characteristics of road sprints in professional competitions; mean ± 

SD (range).  

 

 Whole sprint Peak data 

Power (W) 

1020±77 

(865-1140) 

1248±122 

(989-1443) 

Power (W∙kg
-1

) 

14.2±1.1 

(12.2-15.8) 

17.4±1.7 

(13.9-20.0) 

Cadence (rpm) 

110±5 

(100-117) 

114±5 

(102-121) 

Speed (km∙h
-1

) # 

63.9±3.8 

(53.7-69.1) 

66.1±3.4 

(57.1-70.6) 

 

# n = 15 races 

 

 

3.5 Discussion 

 The aim of this study was to examine the characteristics of the sprint finish 

in professional road cycling competitions, thus describing the physiological demands 

of road sprints. The main findings of this study were that: i) when approaching the 
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finish line the intensity gradually increased, with an mean power output of 487 W, 

heart rates of 95% HRmax and cadence of 102 rpm in the last minute prior to the 

sprint; ii) the last 10 min of racing was stochastic in nature with about twice as many 

short, high intensity efforts in the last 5 min when compared with the penultimate 5 

min and; iii) during the final sprint the peak power was 17.4 W∙kg
-1

, with a peak 

cadence of 114 rpm and a peak speed of 66 km∙h
-1

. 

Within the present study both external (i.e. power output) and internal (i.e. 

heart rate) load were 10% higher in the last 60 min of race when compared with the 

intensity over the entire race. The race intensity continued to increase with a power 

output in the final 10 min of race similar to the one previously reported in a pilot 

study examining professional road sprint competitions (316 and 332 W, respectively) 

(78). In the 5 min prior to the sprint the heart rate was 91% of HRmax, indicating 

that the sprinters were riding at intensity close to their lactate threshold (28). Indeed, 

although data on the physiological characteristics of the subjects in this study is not 

available, the 363 W produced in the 5 min prior to the sprint are very similar to the 

356 W previously reported to be the anaerobic threshold of professional road 

sprinters (109). Interestingly, the highest 5 min power to mass ratio observed in this 

study was 6.1 W∙kg
-1

, which is only 8% lower than the estimated  6.6 W∙kg
-1

 

required for a 4 min (20% shorter) world record pace team pursuit event (111). These 

results highlight the high intensities that are required by professional road sprinters in 

the final kilometers of a race in order to be in contention for the sprint finish. 

Associated with the very high power outputs and speeds observed in the final 

kilometres of the race is the variability in intensity, which is likely to be as important 

to sprint performance. Indeed, many important tactical and technical factors are 

likely to influence the variability in power output, including team support, position 

within the peloton, cornering and the need to rapidly accelerate. Furthermore, it has 

been previously shown that team support during the last minute of the lead-up to the 

sprint is an important factor in road sprint performance (75). In this study it was 

suggested that team support allows sprinters to be protected from the wind and 

sudden changes in speed, allowing them to conserve energies (75). However, it was 

not possible to provide power data as power was not monitored in the study. Within 

the present study EVA was used to quantify the variability in power output in the 

final 10 min of the races. While examination of the entire EVA matrix did not 

highlight significant differences between the penultimate and final 5 min of the race, 



    

 

   

 

44 

closer analysis indicated that twice as many high intensity, short duration efforts (i.e. 

>6.6 W∙kg
-1

 and <3.8 s) were evident in the last 5 min, compared with the 

penultimate 5 min (Fig. 3.1, black bars). Unfortunately, it is unclear from the present 

study whether this increase in the variability of power output was associated with 

technical and tactical factors, such as a decrease in number of team members 

supporting the sprinter, a decrease in the total number of riders, changes in the race 

profile (i.e. corners or elevation) or the slight increase in speed (50.5 km∙h
-1

 to 52.1 

km∙h
-1

; Tab. 3.1). Regardless, these findings are important in understanding the 

physical demands of professional road sprinting and will potentially assist in 

selecting cyclists and developing training programs for athletes who specialise in 

sprinting.  

Results of the present study indicate that the cyclists produce high power 

outputs during the sprint finish. The mean and peak power observed during the sprint 

in the present study (1020 W and 1248 W, respectively; Tab. 3.2) are somewhat 

similar to those previously published within case studies on professional sprinters 

(e.g. mean, 926 and 1120 W; peak 1097 W and 1370 W) (69, 78). Likewise, the peak 

speed observed in this study (66.1 km∙h
-1

) is similar to that observed by Martin and 

colleagues (65 km∙h
-1

) (69). While such high power outputs indicate the importance 

of anaerobic metabolism to successful road sprint performance, no significant 

relationship was observed between performance (i.e. race results) and sprint power 

output. This observation is probably because many other factors are important to 

sprint performance, such as aerodynamics, position and tactics. Indeed, position in 

the bunch has already been shown to be important for successful sprint performances 

(75). Further research examining multiple riders within the same sprinting ability 

may assist in better understanding the tactical and technical factors that influence the 

relationship between sprint power output and performance.  

Despite the high power outputs observed here, the maximal sprint capacity of 

these athletes is considerably lower than those previously reported in track sprinters 

(i.e. ~21 W∙kg
-1

) (40). These differences are reasonable given the vastly different 

characteristics of road and track sprint races. Indeed, prior to the sprint, road sprint 

cyclists are required to cycle for prolonged periods at moderate intensities. Within 

the present study, the mean power output over the entire race was 2.8 W·kg
-1

, which 

is higher than previously reported in flat races (2.0±0.4 W·kg
-1

) (125), but slightly 

lower than reported in a stage race (3.1±0.2 W·kg
-1

) (123). A major factor 
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influencing the mean power output throughout the stage is the TEG. A large range in 

the TEG was observed in the races analysed in this study (i.e. 144 to 2397 m), with 

the mean (i.e. 1100 m) being considerably higher than that previously reported in a 

case study of an extremely successful professional sprinter (~600 m) (75). Clearly, 

the climbing ability of different sprinters could be diverse and, as such, the elevation 

change throughout a race is likely to have considerable influences on sprint 

performance. It’s noteworthy to consider that the distribution of the elevation gain 

along the race course is likely to be of great importance to the race outcomes. As a 

matter of fact, in this study no sprints occurred when the elevation gain was above 

580 m in the last 60 min. Such data is important as it gives an indication of the 

climbing ability that could be required by sprinters in order to reach the finish line 

and be in contention to sprint. From a practical point of view, these data contribute to 

highlight the importance of aerobic fitness in road sprint cycling and could have 

significant influences on training prescription and/or the selection of sprinters for 

particular races. 

In conclusion, despite the small number of successful road sprinters, a relatively 

high number of road sprints from high level professional cyclists were examined in 

this investigation. The results of the present study indicate that the physical demands 

of road sprint cycling are unique. In fact, in order to be in contention for the sprint 

cyclists are required to ride for prolonged periods (~4 h) at moderate intensities (2.8 

W∙kg
-1

) with varying elevation gain (up to 580 m∙h
-1

 of vertical ascension rate in the 

60 min prior to the sprint). The final 5 min of the race could be extremely demanding 

due to the combination of very high intensity and significant variability in power 

output. Indeed, the final 5 min of the race contained about twice as many short 

duration, high intensity efforts as the penultimate 5 min. Top 5 finishers observed in 

this study produced mean power outputs of 14.2 W∙kg
-1

 for 13 s during the sprints, 

reaching peak powers of 17.4 W∙kg
-1

. These data provide important information 

regarding the physical demands of professional road sprinting and thus may aid in 

the identification of talent, in training prescription, and in the selection of teams or 

athletes for specific road races. 
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CHAPTER FOUR 

PHYSIOLOGICAL DEMANDS OF ROAD SPRINTING IN 

PROFESSIONAL VS U23 CYCLISTS 

4.1 Abstract 

  This study described and compared the power output (absolute, relative to 

body weight and relative to frontal area) recorded during successful road sprints in 

professional and under 23 men’s cycling races. The study also described the exercise 

intensity and requirements of sprinters throughout final 10 min of the race. Nine 

successful (top 3) sprints performed by a professional (PRO: 23 y old, 1.76 m, 71.8 

kg) and an under 23 (U23: 18 y old, 1.67 m, 63.2 kg) cyclist sprinter were analysed 

in this study. No statistical differences were found in absolute peak and mean power, 

duration and total work (PRO: 1370 ± 51 W, 1120 ± 33 W, 14.5 ± 2.4 s, 16.2 ± 2.6 

KJ; U23: 1318 ± 60 W, 1112 ± 68 W, 12.8 ± 1.1 s, 14.2 ± 1.4 KJ). However, the 

mean power output relative to body weight and relative to projected frontal area (Ap) 

was lower in PRO compared to U23 (15.6 ± 0.4 and 17.4 ± 1.1 W·kg
-1

; and 2533 ± 

76 and 2740 ± 169 W·Ap
-1

, respectively). The intensity of the race recorded in the 

last 10 min prior to the sprint was significantly higher in PRO than U23 (4.6 ± 0.3 

and 3.7 ± 0.2 W·kg
-1

, respectively). The races duration, TEG and mean power were 

similar between PRO and U23. In conclusion, the physiological demands leading 

into road sprinting (intensity of the last 10 min) were found to be higher in PRO 

compared to U23 races; however, a similar sprint power output (> 2500 W·Ap
-1

 or > 

15.5 W·kg
-1

 for approximately 14 s, with a peak power output > 3100 W·Ap
-1

 or > 19 

W·kg
-1

) indicates that sprint characteristics may be somewhat similar between PRO 

or U23 races. Further research is warranted in order to better understand 

physiological and tactical aspects important to road sprint cycling. 
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4.2 Introduction 

Several studies have described and compared the anthropometric and 

physiological characteristics of cyclists from various disciplines, specialties and 

levels of competition (65, 83). Generally, these studies have examined the cyclists’ 

aerobic characteristics, with few studies reporting performance in efforts with 

durations relevant to sprinting (i.e. ≤ 30 s). Interestingly, similar absolute (W) and 

relative (W·kg
-1

) power outputs have been reported between high and low level male 

junior cyclists (79), and between under 23 and professional male cyclists (109), 

during laboratory based sprint tests (i.e. 5 to 30 s duration). However, these tests 

were performed with subjects that were not exclusively sprint specialists and under 

laboratory and not race conditions.  

Despite the frequency of sprints in road cycling (e.g. ~7 out of 21 stages 

within Grand Tours) limited scientific research is available, with only a single study 

reporting the power output of a cyclist in a professional road sprint (69). Moreover, 

in road cycling the number of successful sprinters is somehow limited (e.g. 1 or 2 

riders out of 30 per team). These factors, together with the complexity of road 

sprinting, may be the reason for the lack of scientific research describing the 

physiological demands of road sprinting. As such, little is known on the 

characteristics and performance demands of successful road sprinting. To date, a 

considerably greater body of literature has examined sprint performance during track 

cycling. While it has been suggested that maximal power may be a predictor of sprint 

performance, Dorel and colleagues (27) found that mean sprint speed during track 

cycling was not correlated with maximal power output (in W or W·kg
-1

) but instead 

significantly correlated with power output relative to the cyclists frontal area (r = 

0.75, p = 0.01).   

To the best of our knowledge, no study has examined the sprint power output 

of road cyclists competing at different levels of competition, or reported the sprint 

power output in relation to frontal area. Thus, in order to better understand the 

physiological demands of road sprinting, the main aim of this study was to describe 

and compare the power data (absolute, relative to body weight and projected frontal 

area) recorded during successful road sprints in professional and U23 male cycling 

races. Moreover, a secondary aim of this study was to examine the intensity in the 
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final 10 min of the race to describe the difficulties that a sprinter has to overcome to 

be in contention for the sprint.  

It was hypothesised that the sprint power output relative to frontal area will 

be similar between successful professional and U23 sprints; however the intensity in 

the final kilometres of the race will be higher in professional road competitions. 

 

4.3 Methods 

The study was a retrospective observational study. The study was conducted 

in the field in order to maximize the ecological validity of the results.  

4.3.1 Subjects 

The subjects of this investigation were a male professional cyclist, competing 

for a UCI World Tour team in his fourth year as a professional cyclist (PRO: age, 23 

y; height, 1.76 m; weight, 71.8 kg; VO2max, 72.5 ml·kg
-1

·min
-1

) and a male non-

professional cyclist competing at International level for his first year in the UCI 

Under 23 category (U23: age, 18 y; height, 1.67 m; weight, 63.2 kg; VO2max, 70.3 

ml·kg
-1

·min
-1

). The subjects were successful road cycling sprinters and the 

performances analysed in this study included at least 3 winning sprints for each rider, 

in their respective categories. The subjects provided written informed consent to 

participate in this study, which was approved by a University Human Research 

Ethics Committee. The study meets the international ethical standards described by 

Harriss and Atkinson (48). 

4.3.2 Procedures 

Performance data of the cyclists over an entire road cycling season have been 

collected. Only flat or hilly races, finishing at high speed and with a relatively high 

number of contenders (i.e. bunch sprint) have been considered for this study. 

Furthermore, only events where subjects finished within the top 3 positions have 

been analysed. As such, a total of nine sprint performances have been analysed (PRO 

n: 4, U23 n: 5).  
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Power output and elevation gain were recorded at 1 Hz using SRM 

powermeters mounted on the subjects’ bikes (PC7, SRM Training System, Jülich, 

Germany). As suggested by the manufacturer the “automatic zero” setting was turn 

on the SRM PC7 powermeters. The accuracy and reliability of the SRM powermeters 

have been previously reported (3, 41). Race files were uploaded online with the web 

based service TrainingPeaks, then downloaded and analysed using the WKO+ 3.0 

software (Peaksware LLC, Lafayette, CO, USA).  

The peak and mean power output, sprint duration and total work were 

determined for each sprint. Sprint power data were presented as absolute (W), 

relative to body weight (W·kg
-1

) and relative to projected frontal area (W·Ap
-1

). The 

power output of the cyclists in the 1, 5 and 10 min prior to each sprint were also 

determined. In order to describe the external load, power data were presented as 

absolute (W), relative to body weight (W·kg
-1

), and percentage of the subjects’ 

maximal mean power for 60 minutes (%MMP60) (101). Also, total time, mean power 

(W and W·kg
-1

) and TEG of the races were recorded (PC7, SRM Training System, 

Jülich, Germany).  

The projected frontal area (Ap) of the cyclists has been calculated using 

digital pictures, as previously done in track sprint cycling research (27). A modified 

version of the method described by Heil (49) was used. Briefly, frontal photographs 

of the sprinting cyclists were used to determine the area of the rider and bike and 

calculated in pixels
2
 using a computer based photograph analysis software (Adobe 

Photoshop 12.0, Adobe System Inc, San Jose, CA, USA). The height of the front 

wheel was calculated in pixels and used to convert pixels into meters based upon a 

wheel’s height of 0.668m (700c wheel with 23mm tyre). Two pictures for each 

cyclist were utilized, and the mean Ap was used for the analysis (PRO, 0.442 m
2
; 

U23, 0.406 m
2
). 

4.3.3 Statistical Analysis 

Sprint data were compared between PRO and U23 using a one-way ANOVA 

on each dependent variable which met the parametric assumptions. When parametric 

assumptions were not met, an independent samples Mann-Whitney U test was used 

to compare categories. The exercise intensity in the 10 min prior to the sprint was 

compared using a two-way ANOVA (2 categories x 3 times). When a significant F-

value was found, Bonferroni’s post hoc test was applied. Critical level of 
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significance was established at P<0.05. As per the study above, results are presented 

as mean ± SD.  

4.4 Results 

Table 4.1 reports the sprint parameters for PRO and U23. No statistical differences 

were found in absolute peak and mean power, duration and total work. The peak and 

mean power output relative to body weight was higher in the U23 compared to the 

PRO sprinter.  Likewise, mean power output relative to projected frontal area was 

higher in the U23 compared with the PRO. 

 

 

 

Table 4.1 Peak and mean sprint power, sprint duration and total work in 

successful PRO and U23 sprints. 

 

  

PRO           

(n: 4) 

U23                                

(n: 5) P 

Peak Power (W) 1370 ± 51 1318 ± 60 P=0.214 

Peak Power (W·kg
-1

) a 19.1 ± 0.7 20.6 ± 1.0 P=0.034 

Peak Power (W·Ap
-1

) 3098 ± 116 3246 ± 148 P=0.148 

Mean Power (W)  1120 ± 33 1112 ± 68 P=0.905 

Mean Power (W·kg
-1

) a 15.6 ± 0.4 17.4 ± 1.1 P=0.016 

Mean Power (W·Ap
-1

) a  2533 ± 76 2740 ± 169 P=0.016 

Sprint Duration (s) 14.5 ± 2.4 12.8 ± 1.1 P=0.194 

Work (J) 16220 ± 2645 14221 ± 1364 P=0.183 

 

 a P<0.05 
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Power outputs in the 10 min prior to the sprint are showed in Table 4.2. 

Power output, presented as absolute, relative to body weight and %MMP60, were all 

significantly higher in PRO than U23. The race intensity prior to the sprint was 

higher in the final minute compared to the final 5 and 10 min. However, no 

interactions between categories and time were found. 

 

Table 4.2 Physiological demands of road sprint competitions, before the sprints.  

 

 PRO a U23 

Time (min)  b 1 5 10  1 5 10 

Power (W)  450±40 376±28 332±23  385±27 270±26 237±14 

Power to weight (W·kg
-1

)  6.3±0.6 5.2±0.4 4.6±0.3  6.0±0.4 4.2±0.4 3.7±0.2 

%MMP60  138±13 116±9 102±7  141±10 99±10 87±5 

 

a Significantly different from U23 (P<0.001); PRO>U23 

b Significantly different between times (P≤0.001); 1>5>10 

 

 

Total time, mean power (W and W·kg
-1

) and TEG of the races were not 

statistically different between categories: 228 ± 47 min, 213 ± 29 W, 3.0 ± 0.4 W·kg
-

1
 and 1295 ± 664 m for the PRO; and 239 ± 11 min, 186 ± 14 W, 2.9±0.2 W·kg

-1
 and 

1038 ± 204 m for the U23. 

4.5 Discussion 

The purpose of this study was to describe and compare performances in 

professional and U23 successful male road sprints. The main findings from this study 

were that: i) the power output (absolute, relative to body weight and relative to 

frontal area) and total work recorded in successful PRO sprints were similar to 

successful U23 sprints and, ii) the race intensity (absolute and relative power output) 

in the 10 min leading into the sprint was higher in PRO compared with U23 races.  

Contrary to our hypothesis, the results from the present study indicate that a 

number of sprint parameters (i.e. scaled to body weight and frontal area) were 
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actually higher in the U23 than in the PRO. Whether this was due to the different 

body size of the subjects (9 cm and ~9 kg) or to the relatively higher performance 

level of the U23 sprinter is unclear. However, the aim of the study was to describe 

the power output necessary to be successful in these categories, as such the data 

presented here remains relevant in regard to the scope of the study. In particular, the 

present examination shows that producing a power output > 2500 W·Ap
-1

 (or > 15.5 

W·kg
-1

) for approximately 14 s, with a peak power output > 3100 W·Ap
-1

 (or > 19 

W·kg
-1

), can potentially lead to a successful sprint in both the professional and U23 

categories. Indeed, previously published data has shown that a professional sprint can 

be won with an even lower peak (~15.2 W·kg
-1

) and mean power output (~12.9 

W·kg
-1

) over similar duration (14 s) (69). Similarities in power output between the 

professional and U23 cyclists observed in this study support previous research that 

has found no difference in 30 s all-out laboratory sprint performance of professional 

and U23 cyclists (16.0 ± 1.6 and 16.6 ± 1.9 W·kg
-1

, respectively) (109). These 

laboratory based power outputs are somewhat higher than those observed in this field 

study and possibly reflect the fact that in road cycling the sprint occurs after hours (> 

4 h) of riding and following a prolonged period of high intensity cycling as showed 

in the present study (Tab. 4.2).  

Interestingly, the relative intensities in the 10 min leading into the finish were 

higher in the professional races compared with the U23 races. It should be noted that 

numerous factors may influence a cyclists power output prior to and during a sprint, 

including physiological characteristics, race dynamics, gradient of the road, wind 

speed, team support and the ability of the cyclists to position themselves within the 

bunch appropriately. Indeed, it has recently shown that performances of world class 

sprint cyclists are related to the team support and the cyclists position within the 

bunch (75). As such, it is unclear from the present study if technical and tactical 

factors influenced the power output, relative intensities and performances of cyclists 

within this study. Irrespectively, the overall intensity of the events analysed in this 

study (3.0 ± 0.4 W·kg
-1

 and 2.9 ± 0.2 W·kg
-1

 for PRO and U23, respectively) were 

higher than those recorded in professional flat races (2.0 ± 0.4 W·kg
-1

) (125), but 

similar to the one previously reported in a professional road stage race, with both flat 

and mountainous stages (3.1 ± 0.2 W·kg
-1

) (123). 

 Calculating sprint power output relative to a cyclist’s projected frontal area, 

as in the present study, is likely to be extremely important to sprint cycling 
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performance. However, it was unfortunately not possible within this study to 

accurately determine other factors that may influence the calculated sprinters’ 

aerodynamic drag, including air density, wind strength and  direction (70). Moreover, 

other variables such as the bike position (standing or seated) and the position in the 

bunch (front position or drafting) can influence the aerodynamic drag area (69). 

Further research examining the importance and methods of determining road sprint 

cycling power output relative to projected frontal area and aerodynamic drag area is 

warranted.  

A limitation of the present examination is the small number of sprints 

performed by two single PRO and U23 riders. However, it’s worth mentioning that 

there are very few specialist sprinters in the entire peloton with approximately only 

one or two per team. Furthermore, the number of races throughout a season whereby 

these sprinters may be in contention to sprint and ultimately achieve a successful 

outcome is limited. Considering that all analysed files were from successful sprint 

performances with professional and U23 events, the data presented here are of great 

value when it comes to describing the physiological demands and characteristics of 

successful sprints. 

As practical applications, describing and understanding the characteristics 

important to successful road sprinting will assist professionals, coaches, researchers, 

and athletes in training program development, talent identification and physical load 

monitoring. Moreover, examining the physical requirements of sprinters in the final 

kilometres prior to the race finish will assist in a better of understanding the 

physiological characteristics important to successful cycling performance. 

Awareness that a given rider has the physiological capability to win a road sprint, 

allows them or their team to focus on other aspects that may be important to success, 

such as the technical and tactical aspects of road sprinting (e.g. team support) or 

improving climbing ability to ensure the sprinter reaches the finish line with the main 

group.  

In conclusion, this study showed that the physiological demands of male road 

sprinting in professional races are higher compared to U23 races, in particular the 

power output in the final part of the race, prior to the sprint. However, a similar 

sprint power output can theoretically allow a cyclist to win a bunch sprint in either 

PRO or U23 races.  
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CHAPTER FIVE 

MAXIMAL SPRINT POWER FOLLOWING VARIABLE OR 

NON-VARIABLE HIGH INTENSITY EXERCISE IN ROAD 

CYCLISTS 

5.1 Abstract 

  This study compared the sprint performance of professional cyclists 

following 10 min of variable or non-variable high intensity cycling with sprint 

performance in a rested state. Ten internationally competitive male cyclists (mean ± 

SD: 20.1 ± 1.3 y, 1.81 ± 0.07 m, 69.5 ± 4.9 kg, and 72.5 ± 4.4 ml·kg
-1

·min
-1

) 

performed a 12 s maximal sprint in a rested state and following two conditions: i) 10 

min of non-variable cycling, and ii) 10 min of variable cycling. The intensity during 

the 10 min efforts gradually increased to replicate power output previously observed 

in the final section of cycling road races for this calibre of road cyclist. During the 

variable cycling subjects performed short (2 s) accelerations at 80% of their sprint 

peak power, every 30 s. Mean power output, cadence and heart rate during the 10 

min efforts were similar between conditions (5.3 ± 0.2 W∙kg
-1

, 102 ± 1 rpm, and 93 ± 

3 % HRmax). Post exercise blood lactate concentration and sessional perceived 

exertion were also similar (8.3 ± 1.6 mmol∙L
-1

, 15.4 ± 1.3 (6-20 scale)). Peak and 

mean power output and cadence during the subsequent maximal sprint were not 

different between the three experimental conditions (p≥0.14). In conclusion, this 

study showed that within the intensity limits introduced in this protocol that neither 

the variable nor the non-variable 10 min efforts impaired sprint performance in elite 

competitive cyclists.  
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5.2 Introduction 

Road sprint cyclists are unique athletes that specialise in producing maximal 

power output following several hours of cycling. The final section of races, known as 

lead up phase, is particularly intense as cycling teams aim to place their sprinter in 

the best possible position for the finish. Indeed, intensity in the final 10 km of a race 

typically increases during which several important tactical decisions are made (71). 

In professional races ending with a bunch sprint the power output is often variable 

and can increase from approximately 3 W∙kg
-1

 to more than 6 W∙kg
-1

 during the last 

minute prior to the sprint (78). The high intensity cycling prior to the sprint may 

impair cycling power output during maximal efforts (67, 73, 117). To the best of our 

knowledge, no studies have examined the effect of a task specific effort similar to the 

lead up phase typical of road races on a maximal cycling sprint performance.  

Team support and good position in the bunch during the lead up phase are 

associated with successful performance in the sprint (71). For instance, it has been 

previously shown in a world class road sprinter that the position in the bunch was 

closer to the front, and the number of team members supporting the sprinter was 

higher in races won than lost (75). Team support may assist sprint performance by 

allowing a smoother and more even distribution of power output in the lead up phase 

of the race. Conversely, when unsupported the sprinter is required to fight for 

position within the bunch of cyclists (i.e. peloton), thereby resulting in a variable and 

intermittent distribution of power output, possibly compromising sprint performance. 

Indeed, rapid accelerations and high intensity efforts are likely to result in greater 

recruitment of type II muscle fibres and reliance on anaerobic metabolism, thereby 

compromising the final sprint performance.  However, in addition to high anaerobic 

capacities, road sprint cyclists are also known to have very high aerobic fitness and 

thus they may be able to rapidly recover from such variable intensity exercise.  

While previous research has compared the physiological effects of constant 

versus variable intensity exercise (62, 118), we are unaware of any studies that have 

examined the influence of such exercise on maximal sprint cycling power output. 

Furthermore, to the best of our knowledge none of the abovementioned studies 

involved elite cyclists. Therefore, the aim of this study was to examine the effects of 

variable and non-variable lead up efforts on the maximal sprint capacity of 
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internationally competitive male cyclists. It was hypothesised that a variable lead up 

would result in greater decrements in performance when compared with a non-

variable lead up effort. 

 

5.3 Methods 

5.3.1 Subjects 

Ten internationally competitive male cyclists (age, 20.1 ± 1.3 y; height, 1.81 

± 0.07 m; weight, 69.5 ± 4.9 kg; VO2peak, 72.5 ± 4.4 ml·kg
-1

·min
-1

) volunteered to 

participate in this study. The subjects are classifiable as professional cyclists or 

“performance level 5”, accordingly to the Guidelines to Classify Subject Groups in 

Sport-Science Research (23). The cyclists provided written informed consent to 

participate in the study, which was approved by the University Human Research 

Ethics Committee in accordance with of the Declaration of Helsinki.  

5.3.2 Procedures 

The subjects visited the laboratory on 5 separate occasions. All the visits were 

separated by at least 48 h and were completed within two weeks. The subjects were 

asked to avoid intense exercise for 24 h prior to each visit. During all testing sessions 

the temperature of the physiology laboratory was between 20-23°C and relative 

humidity was between 45-60%.  

During the first visit to the laboratory the cyclists performed an incremental 

cycling test to exhaustion. In the following two sessions subjects were familiarised 

with the sprints and lead up efforts. During the remaining two sessions subjects then 

performed the two experimental trials in a randomised and counter-balanced order. 

During these trials maximal sprint capacity was assessed in a rested/fresh state 

(CON) and then following 10 min of either variable or non-variable cycling 

(described below).  

 

5.3.2.1 Incremental cycling test 

Subjects performed an incremental cycling test to exhaustion on an 

electronically braked cycle ergometer (Lode Excalibur, Groninger, The Netherlands), 
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fitted with the cyclist’s own pedal system and adjusted to replicate their individual 

riding position. The test started at 100 W and increased by 50 W every 5 min until 

volitional exhaustion. The cyclists self-selected a cadence between 90 and 100 for 

the duration of the test. Heart rate (Polar S710, Polar Electro, Kempele, Finland) was 

recorded in the final 30 s of each step, and oxygen consumption was measured 

throughout the test using a customised gas analysis system (Australian Institute of 

Sport, Canberra, Australia). Calibration of this system has been described by 

Saunders and colleagues (110). The peak power output for the incremental test was 

calculated using the formula of Kuipers and colleagues (57). VO2peak was determined 

as the two highest consecutive 30 s samples. 

 

5.3.2.2 Experimental exercise sessions 

Every experimental session was preceded by a standardised 15 min warm-up. 

The warm-up intensity was set at 100 W and the cyclists were requested to do 2 short 

accelerations during the warm-up. During the experimental sessions subjects 

performed a maximal 12 s effort prior to and immediately following 10 min of either 

variable or non-variable cycling. Subjects then repeated this protocol on the same 

day separated by 15 min recovery. Thus during each of the two experimental 

sessions each subject completed two maximal sprints in a rested condition and two 

sprints following the 10 min lead up phase. The lead up efforts and sprints were 

completed on a custom built wind-braked ergometer (AIS, Canberra, Australia) 

adjusted to replicate the individual riders’ positions, and fitted with the cyclists’ own 

pedals. The ergometer consisted of a stainless steel frame that supported a 15 kg 

flywheel with 18 fan blades to provide air resistance. The mass of the wheel and 

gearing system were designed to replicate the kinetic energy and crank inertial load 

typical of road cycling (101). Cyclists accelerated the flywheel via an intermediate 

drive; the gearing system was adjusted by the researcher in order to provide the 

adequate cadence and intensity.  

During the 12 s sprint cyclists were asked to perform a ‘maximal sprint, as if 

sprinting for a road race victory’. During all sprints the ergometer’s resistance was 

manually adjusted so that they started at the same power output and cadence. During 

the sprints the cyclists were allowed to remain seated or sprint “out of the saddle”. 

Strong verbal encouragement was provided to subjects during all sprints. Technical 

error of measurement (TEM) in our laboratory, for peak and mean sprint power after 
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exercise, were 2.2 and 2.1%, respectively (unpublished data). The 12 s sprint was 

designed to replicate the sprint duration observed in professional road cycling sprints 

(69, 75). 

The variable and non-variable lead up phases were matched for total work 

(i.e. mean power output). Both the variable and non-variable lead up phases 

progressively increased in intensity to simulate the demands observed in the final 10 

min of road races ending in a sprint (78). The intensity started at 3 W∙kg
-1

 and 95 

rpm and progressively increased to ~4 W∙kg
-1

 (100 rpm) during the first nine 

minutes, and ~5 W∙kg
-1

 during the 10
th

 minute (Fig. 5.1). The familiarization sessions 

(days 2 and 3) were used to fine tune the individual targeted power output in order to 

ensure that subjects rode the last minute at intensity above 92% of their maximal 

heart rate. The cyclists were verbally instructed and reminded about their targeted 

power output and cadence every 30 s during the lead up phase. Every 30 s during the 

variable condition subjects performed an acceleration. During these accelerations 

subjects were asked to do 3 complete pedal strokes (less than 2 s in duration) with 

the goal of reaching a power output equivalent to 80% of the peak power measured 

during the fresh maximal sprints in day 2 and 3. (Fig. 5.1, B). The mean peak power 

reached during the accelerations was 12.1 ± 1.3 W∙kg
-1

. 

 

 

 

 

 

Figure 5.1  Example of the experimental conditions within this study: A) sprint in 

fresh condition followed by non-variable lead up and sprint, B) sprint in fresh 

condition followed by variable lead up and sprint.  Power (black line), cadence 

(grey line), and heart rate (dotted line). 
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Throughout the lead up phase and the sprints power output, cadence and heart 

rate were recorded at a sampling rate of 1 Hz with a SRM power meter fitted to the 

crank of the ergometer (SRM PowerControl V; Schoberer Rad Messtechnik, 

Germany). The SRM was calibrated prior to data collection and the zero offset was 

checked prior to each test as per the manufacturer guidelines (3). Lactate 

concentration was measured from a sample of fresh blood collected from the 

subjects’ fingertip, with a portable analyser (Lactate Pro, Arkray, Shiga, Japan), 48 s 

following the sprint (i.e. 1 min following the lead up efforts). 

After each sprint the cyclists were asked to rate the effort they gave on a 0 to 

100% scale by answering the question: “How much did you give?” Thirty minutes 

following each session subjects were also asked to rate the intensity of the session 

utilizing a modified perception of effort scale (36). The subjects were familiar with 

the use of the scales prior to the experimental trials. 

5.3.3 Statistical Analysis  

To confirm that subjects were able to maintain the required intensity (and 

total work) during the lead up phase, dependant variables (i.e. mean power output, 

mean heart rate, lactate and session RPE) were compared between the variable and 

non-variable conditions using a one-way ANOVA. Analysis was completed on the 

entire 10 min effort and on the last minute of data prior to the sprint. Sprint 

performance (i.e. peak and mean power output and cadence) was compared between 

conditions (CON, variable and non-variable conditions) using a one-way ANOVA 

(JMP Pro 10, Cary, North Carolina). Statistical significance was set at P≤0.05.  

Sprint data from the three conditions were analysed using the magnitude-

based inference approach recommended for studies in sports medicine and exercise 

science (51, 128). A specifically designed spreadsheet (available at 

newstats.org/xCombineGroups.xls) was used to determine the clinical significance of 

each treatment. Uncertainty in the effect was expressed as 95% confidence limits. 

Magnitude of the effects were interpreted using thresholds of 0.2, 0.6, 1.2 and >2.0 

for small, moderate, large and very large, respectively. The smallest worthwhile 

value was determined by multiplying the between subject SD by Cohen’s value of 

the smallest worthwhile effect of 0.2. In circumstances where the chance (%) of the 
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true value of the statistic being > 25% likely to be beneficial or harmful, a practical 

interpretation of risk is given. The effect was deemed unclear if its confidence 

interval overlapped the threshold for substantiveness (e.g. if the effect could be 

substantially positive and negative, or beneficial and harmful). 

 

5.4 Results 

As expected no statistical differences were observed in mean power output, 

cadence, mean heart rate, lactate and session RPE between the variable and non-

variable cycling exercises. In particular, the mean parameters for the lead up efforts 

were: power output 3.78 ± 0.07 and 3.74 ± 0.08 W∙kg
-1

, cadence 96.6 ± 0.7 and 96.2 

± 0.8 rpm, % HRmax 82.0 ± 3.5 and 83.4 ± 4.6, lactate 8.2 ± 1.3 and 8.4 ± 1.9 

mmol∙L
-1

∙min
-1

, and RPE 15.1 ± 1.2 and 15.7 ± 1.3 for the non-variable and variable 

conditions, respectively (P≥0.11). Similarly, during the last 60 s prior to the sprint 

there were no differences between non-variable and variable conditions: 5.34 ± 0.17 

and 5.30 ± 0.17 W∙kg
-1

, 101.5 ± 1.1 and 101.6 ± 1.2 rpm, and 92.3 ± 2.3 and 93.4 ± 

3.4 % HRmax, respectively (P≥0.25). 

 Sprint results in rested condition and following the variable and non-variable 

protocols are summarized in Table 5.1. Peak and mean power output and peak and 

mean cadence were not different between the three conditions (CON, variable and 

non-variable). There was no difference in the cyclists’ effort during the sprints, with 

subjects giving 97.2 ± 5.4, 98.7 ± 3.1, and 98.9 ± 3.1 % in the CON, variable and 

non-variable condition, respectively (P=0.260).  
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Table 5.1 Mean ± SD [95% CI] sprint parameters observed in fresh (CON), variable (VAR) and non-variable (N-VAR) cycling.   

 

 

 

 

CON 

 

 

VAR 

 

 

N-VAR 

 

 

P value 

Chances (% and qualitative) of 

positive/trivial/negative outcome compared to CON 

VAR                                 N-VAR 

Peak power 

(W∙kg
-1

) 

15.2±2.0 

[14.5, 15.8] 

16.0±1.5 

[15.3, 16.8] 

16.0±2.1 

[15.0, 16.9] 
0.168 

34/66/0 

possibly beneficial 

36/64/0 

possibly beneficial 

Mean power 

(W∙kg
-1

) 

13.1±1.5 

[12.6, 13.6] 

13.8±1.5 

[13.1, 14.5] 

13.8±1.5 

[13.0, 14.5] 
0.142 

24/76/0 

likely trivial 

25/75/0 

likely trivial 

Peak cadence 

(rpm) 

118.9±3.5 

[117.8, 120.0] 

118.1±3.4 

[116.4, 119.8] 

118.4±3.1 

[116.9, 119.9] 
0.660 

4/54/42 

possibly trivial 

5/66/29 

unclear 

Mean cadence 

(rpm) 

114.9±3.1 

[113.9, 115.9] 

114.5±3.1 

[113.0, 115.9] 

114.9±3.2 

[113.4, 116.4] 
0.851 

5/71/24 

possibly trivial 

13/74/13 

possibly trivial 

 

a
 P<0.05 
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5.5 Discussion 

The primary findings in this study were: i) 10 min of cycling, designed to 

simulate the lead up phase prior to a cycling road race sprint, did not impair the 

sprint performance in elite cyclists; and ii) there were no differences in the sprint 

power output after an either variable or non-variable 10 min effort. 

Despite the moderate to high intensity of the variable and non-variable 

cycling exercises in the present study (10 min at ~82-83% HRmax), neither condition 

had a negative effect on the cycling sprint power. These results are somewhat 

surprising and in contrast to previously published studies which have reported the 

detrimental effects of intense exercise on maximal cycling sprint performance (67, 

73, 117). However, a main difference between the present study and previous 

research is the performance level of recruited subjects. Within the present study we 

recruited well trained internationally competitive cyclists classifiable as 

‘performance level 5’, or professional, according to the Guidelines to Classify 

Subjects Groups in Sport-Science Research, while the participants of the 

abovementioned studies were active male cyclists or rugby players with a mean 

VO2peak below 56 mL∙kg
-1

∙min
-1

, which places them in the lower “performance level 

3” (23). Furthermore, the exercise protocol (i.e. intensity and duration) within the 

present protocol differs to previous research thereby impacting on the comparability 

of results.  

The intensity and duration of the 10 min cycling bout in the present study was 

developed to replicate the physical demands experienced by cyclists during the final 

lead up phase of professional road cycle races (78). As such, the similar power 

outputs observed during the sprints both prior to and following the efforts indicate 

that the high intensity nature of the lead up phase itself has limited influence on 

sprint ability, at least within such trained cyclists. It is possible that during such short 

duration exercise (10 min) the maintenance of performance is associated with an 

increase in central drive to overcome the progressive development of peripheral 

fatigue. Indeed, it has previously been observed during high intensity cycling of 

slightly higher intensity (90% of Pmax) but shorter duration (5:49 min:s) that 

peripheral fatigue occurs early in the exercise task (60% of time to exhaustion) and is 

associated with a progressive increase in voluntary activation towards the end of the 
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task (91). Furthermore, McIntyre and colleagues (73) found that 50% of their 

participants “had either potentiated or unchanged” sprint power output following 

prolonged cycling exercise (20 min at 70% of VO2peak, with 30 s maximal test, plus 

~6 min recovery).  Interestingly, the majority of the studies which have observed 

a decline in sprint performance following exercise have typically involved prolonged 

exercise at high intensities. For instance, Theurel and colleagues (117) found a 

difference in the maximal power ridden by trained cyclists and triathletes after 30 

min of exercise at 75% of the maximal aerobic power (p<0.05). It is therefore 

plausible that the prolonged exercise duration of typical road cycling events has a 

great influence on sprint performance than the physical demands of the lead up phase 

per se. 

It has previously been shown that the number of team members in the final 

part of competition before the sprint effects the sprinter’s performance. This scenario 

could result in a smoother/less variable distribution of the power output, due to the 

fact that the sprinter is riding in a protected position. Therefore, in addition to 

examining the overall effects of high intensity exercise on sprint performances, this 

study also investigated possible differences induced by variable and non-variable 

exercise. Results from this study indicate that the variable distribution of power 

output during the 10 min before the sprint has little influence on sprint performance, 

at least in these cyclists and over duration/intensities that aimed to replicate the lead 

up phase typical of road races. Research has, to date, studied the effects of constant 

versus variable cycling exercises focusing on physiological parameters and whole-

body exercise performance. For example, it was found that the magnitude of central 

and peripheral fatigue was similar towards the end of 30 min of constant (75% of the 

maximal aerobic power) and variable (up to ± 15% of mean power output) cycling 

trials in well trained triathletes (61). Del Coso and colleagues (25) used maximal 

cycling sprints while comparing the effects of three differently variable exercises. 

The participants rode for 24 minutes at a mean power output corresponding to 50% 

of the second ventilatory threshold’s power, with three different power variation 

ranges. The maximal sprint power produced by endurance trained cyclists was not 

impaired in any of the three variable conditions. In fact, the maximal sprint power 

was 1620 ± 160 W power prior to the exercise, and 1590 ± 204, 1606 ± 177, and 

1582 ± 170 W after exercises with low, moderate and high intensity variations, 

respectively (p≥0.12). Interestingly, after the highly variable protocol the blood 
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lactate concentration was 11.3 ± 1.5 mmol∙L
-1

, thus even higher than the 8.4 ± 1.9 

mmol∙L
-1

 reached with the variable lead up effort in the present study, however the 

maximal sprint performance was not different than in the pre exercise condition 

(p=0.12). The abovementioned studies confirm the present investigation’s findings: 

certain type of variable exercises, despite being intense, do not increase fatigue and 

do not impair short term power output, especially in highly trained endurance 

cyclists.  Whether similar results would be observed following 4 to 6 hours of road 

cycling, and or with different power variability remains to be established, and may be 

the subject of future studies. 

Noticeably, a study evaluating performances in senior soccer players found 

higher repeated jump parameters in the post match, versus the pre match condition. 

The authors suggested that “an acute bout of intense exercise has an arousing 

effect that counteracts fatigue effects” (19). Similarly, in our study the 10 min 

exercise had a possibly beneficial effect on the sprint peak power output. It is 

possible to speculate that in highly competitive cyclists the lead up efforts used to 

simulate race conditions had a similar arousing effect, allowing them to maintain or 

slightly increase the sprint ability. 

Further research using different magnitude of the power variability, aiming at 

better understanding what kind of exercise impairs the maximal sprint performance is 

recommended. 

In conclusion, this study showed that neither variable nor non-variable lead up 

efforts (designed to replicate the final part of road races) impaired cycling sprint 

parameters in elite competitive cyclists. Considering the demonstrated positive effect 

of team support on successfulness of road sprints, this study’s results suggest that the 

importance of the team during the lead up phase could be more related to technical 

and tactical factors (e.g. good positioning), instead of to save energies. As a practical 

application, coaches and professional cyclists should consider to use the team mainly 

to better position the sprinter, rather than to protect him from speed variations. 
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CHAPTER SIX 

CONSISTENCY OF COMMERCIAL DEVICES FOR 

MEASURING ELEVATION GAIN 

6.1 Abstract 

The aim of this study was to determine the consistency of commercially 

available devices used for measuring elevation gain in outdoor activities and sports.  

Two separate observational validation studies were conducted. Garmin (Forerunner 

310XT, Edge 500, Edge 750 and Edge 800; with and without elevation correction) 

and SRM (Power Control 7) devices were used to measure TEG over a 15.7 km 

mountain climb performed on 6 separate occasions (6 devices; Study 4a) and during 

a 138 km cycling event (164 devices; Study 4b).  

TEG was significantly different between the Garmin and SRM devices (p<0.05). The 

between devices variability in TEG was lower when measured with the SRM, 

compared with the Garmin devices (Study 4a: 0.2 and 1.5%, respectively). The use 

of the Garmin elevation correction option resulted in a 5 to 10% increase in the TEG.  

While measurements of TEG were relatively consistent within each brand, the 

measurements differed between the SRM and Garmin devices by as much as 3%. 

Caution should be taken when comparing elevation gain data recorded with different 

settings or with devices of different brands. 
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6.2 Introduction 

Commercially available microtechnology devices are widely used to monitor 

physical activity and sport (6, 56). For many outdoor activities (e.g. cycling, hiking, 

cross-country skiing) the vertical distance travelled (i.e. elevation gain) contributes 

significantly to the total physical load (47, 82). As a result, TEG is a key factor 

influencing the outcome of competition. Scientists, coaches and athletes often use 

TEG data to monitor, quantify, reproduce and/or plan training and competition loads. 

Commercially available devices calculate elevation change using barometric 

altimeters and/or Global Positioning Systems (GPS) to determine elevation. Despite 

the importance of the elevation gain when monitoring physical activity and sport 

performance (75, 81), the consistency of commercially available devices has to our 

knowledge not been established. Therefore, the aim of this study was to determine 

the consistency of several devices typically used for measuring elevation and 

elevation gain in outdoor activities and sporting events. 

6.3 Methods 

Two separate studies were performed to assess the variability in 

measurements of TEG within and between 6 devices over a relatively short distance 

(Study 4a), and between 188 devices over a long distance (Study 4b).  

6.3.2 Procedures 

6.3.2.1 Variability of TEG within and between devices 

 

In the first study (4a), a total of six separate devices were used to measure the 

TEG over a 15.7 km mountain climb performed on six separate occasions. Two Edge 

800, one Edge 500, one Forerunner 310XT (Garmin International, Olathe, KS, USA), 

and two SRM Power Control 7 (Schoberer Rad Mebtechnik, Julich, Germany) were 

mounted on the roof rack of a car which travelled up the 15.7 km long climb in 

Varese (Italy) at a mean speed of 32 ± 2 km∙h
-1

, on six separate occasions. In order to 

simulate everyday use, the six trials were performed at different times of the day and 

with different weather conditions (Kestrel 4200; Nielsen Kellerman, Boothwyn, PA) 
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(temperature range: 10.9 - 24.3 °C; humidity range: 55.0 - 98.8%; pressure range: 

660 - 745 mmHg). The ‘smart recording’ option, which varies the recording rate 

based on changes of speed, direction and elevation, was used with the Garmin 

devices as, based on the manufacturer’s recommendation, this increases the storage 

capacity. The Edge devices (500 and 800) and the SRM use a barometric altimeter to 

determine elevation, whereas the Forerunner 310XT relies only on GPS. All devices 

were switched on 20-30 min prior to data acquisition. The data from the Garmin 

devices were uploaded to the Garmin Connect website (http://connect.garmin.com) 

and then analysed both with and without the ‘elevation correction’ option. Using 

elevation correction, the geographic coordinates of the GPS (latitude and longitude) 

are cross referenced and corrected to the elevation data obtained from professional 

surveys (description provided by the manufacturer, http://connect.garmin.com). 

 

6.3.2.2 Variability of TEG during a cycling competition 

 

In the second study (Study 4b), data were collected during an actual 

recreational cycling event. This study used a retrospective, observational design and 

used online, publically available information. The study presented low risk to 

subjects, therefore written informed consent was not obtained. As outlined in the 

Australian National Statement on Ethical Conduct in Human Research the 

requirement for informed consent may be waived in such circumstances. This study 

was approved by Edith Cowan University’s Human Research Ethics Committee, in 

the spirit of the Helsinki Declaration.  

Data were collected from 188 road cyclists who completed the 138 km course 

of the renowned Italian granfondo, Maratona Dles Dolomites (Badia, BZ, Italy) on 

July 10
th

, 2011. All subjects in this study used a Garmin GPS device during the 

event. The subjects then uploaded and shared their files on the Garmin Connect 

website (http://connect.garmin.com). For inclusion, all GPS data had to follow the 

road course (be superposable on the map of the actual course). For this reason, 24 

files were excluded (the start or finish point was at a distance > 0.3 km from the start 

or finish lines). A total of 164 files from three different Garmin devices (Edge 500, 

n=85; Edge 705, n=44; and Edge 800, n=35), were included for analysis. All the 

devices used in this investigation have a barometric altimeter. All files were analysed 
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without elevation correction, since this is displayed as a default for Garmin devices 

with a barometric altimeter (as suggested by the manufacturer).  

6.3.3 Statistical Analysis 

In study 4a, within and between devices variability of the TEG over the six 

climbs was determined. In study 4a, between devices variability of the TEG was 

determined for each device model. Variability in TEG was assessed by examining 

the mean, range and standard deviation. Measures of centrality and spread are 

presented as mean  ± SD. The TEG from both study 4a and study 4b was compared 

between devices using a one-way ANOVA. Where a significant effect was observed, 

a Bonferonni post hoc analysis was performed. Statistical tests were conducted using 

IBM SPSS Statistics version 19.0 (Chicago IL, USA). Significance was set at 

P≤0.05.  

6.4 Results 

  The TEG measured by two Garmin devices was significantly higher than 

both SRM devices (Tab. 6.1). TEG was not significantly different among the Garmin 

devices with the same setting (i.e. with or without elevation correction). However, 

elevation correction significantly increased the TEG (P>0.05; Tab. 6.1).  
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Table 6.1 TEG recorded during a 15.7 km climb performed on six separate 

occasions.  

 

 Total Elevation Gain 

(m) 

Mean ± SD (range) 

SRM 1 816 ± 8 

(20) 

SRM 2 815 ± 8 

(22) 

Without Elevation Correction 

Garmin Forerunner 

310XT 

 

853 ± 30
a 

(77) 

Garmin Edge 500 828 ± 5 

(13) 

Garmin Edge 800a 858 ± 17
a 

(41) 

Garmin Edge 800b 832 ± 13 

(36) 

With Elevation Correction 

Garmin Forerunner 

310XT 

 

897 ± 26
ab 

(65) 

Garmin Edge 500 910 ± 10
ab 

(26) 

Garmin Edge 800 1 912 ± 13
ab 

(35) 

Garmin Edge 800 2 908 ± 19
ab 

(50) 

 

 

a 
P<0.05, significantly different to both SRM devices;

 b 
P<0.05, significantly different 

to same device without elevation correction 
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The within device variability of TEG was slightly lower when measured with 

the SRM devices, compared with the Garmin devices (1.0 and 1.9%, respectively). 

The within device variability of TEG measured with the Garmin devices was similar 

both with and without elevation correction (Tab. 6.1). The between devices 

variability was lower when measured with the SRM, compared with the Garmin 

devices (SRM: 0.2%, Study 4a; Garmin: 1.5 and 3.6%, Study 4a and 4b, 

respectively). In Study 4b, the variability of TEG of each GPS device as measured by 

the standard deviation was relatively low (Fig. 6.1). All three Garmin devices had a 

large range in the TEG (Fig. 6.1). 

 

 

 

 

 

Figure 6.1 TEG of subjects competing in the Maratona Dles Dolomites while using a 

Garmin Edge 500 (n=85), Edge 750 (n=44), or Edge 800 (n=35). 
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6.5 Discussion 

 Measurements of elevation change are meaningful in determining the 

physical load experienced during physical activities or sporting activities (47, 75, 

81). As such, a number of devices and methods have been established in order to 

determine changes in elevation during outdoor activities. Results of this study 

indicate that while measurements of elevation are relatively consistent within each 

model, the measurements differ considerably between the different brands examined 

(SRM and Garmin). Indeed, the between devices variability of the TEG measured 

with Garmin devices in Studies 5a and 5b were within 1.5 to 3.6%, respectively 

(Tab. 6.1 and Fig. 6.1), while the between devices variability of the TEG measured 

with the two SRM devices in Study 4a was within 0.2 % (Tab. 6.1). However, 

measurements of TEG were up to 3% greater in Garmin devices (without elevation 

correction) compared to SRM devices (Tab. 6.1). These results suggest that 

measurements of TEG may be comparable between athletes using devices of the 

same brand and with the same settings (e.g. elevation correction).  

Within both studies a relatively small number of devices either over or under 

estimated the TEG. Indeed, the TEG measured by different Garmin 500 devices 

ranged by as much as 917 m during the 138 km Maratona Dles Dolomites. 

Nevertheless, over the 4000 m of climbing during this event the majority of values 

measured by each of the Garmin devices were within a range of approximately 150 

m.  

While we observed similarities in TEG measurements between all Garmin 

devices with the same settings, the use of elevation correction resulted in a 5 to 10% 

(50 to 80 m) increase in measurements of TEG over a 15.7 km climb (Tab. 6.1). 

Interestingly, this change also resulted in the TEG measured with the Garmin devices 

being approximately 11% greater than that measured with the SRM devices. Such 

differences in TEG are likely to have a meaningful influence on the estimates of 

physiological load experienced by athletes, especially when exercising over longer 

mountainous course profiles. Manufactures of Garmin devices indicate that use of 

elevation correction improves the accuracy of elevation measurements by cross-

referencing the position of the GPS device with accurate survey data. However, since 

the aim of this study was to assess the consistency of the elevation change, this study 
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cannot confirm that the elevation correction actually improved the accuracy of 

elevation data.  

Further research assessing the accuracy of these devices is needed in order to 

assess these claims and establish the best method for determining physical load 

during such outdoor sporting activities. Irrespectively, the results of the present study 

indicate that caution should be taken to ensure consistency in the use or non-use of 

elevation correction when comparing the elevation profile of various courses. Due to 

the high reliability of GPS devices to measure position within a horizontal plane (20, 

45, 53), cross-referencing elevation based on the position of the GPS is likely to 

improve the reliability of instantaneous measurements of elevation. However, the use 

of elevation correction did not decrease the within devices variability in relative 

measurements of the TEG, which was lower for the SRM, compared with all Garmin 

devices in this study (Tab. 6.1). These results are important since it is the TEG, rather 

than the absolute altitude, which is most meaningful for determining the physical 

load experienced by athletes.  

While this study has provided initial insight into the consistency of these 

devices, future research should further investigate the accuracy of commercially 

available devices to determine absolute altitude and elevation changes. 

As practical applications arising from these studies, researchers, coaches and 

athletes who measure TEG to plan and/or analyse training and race loads should 

avoid comparing data collected with devices of different brands. Moreover, when 

using devices of the same brand, it is strongly recommended that settings are 

consistent. Comparing the elevation gain measured using different devices or settings 

may result in unreliable measurements of physical load.   

In conclusion, the results of the present study indicate that measurements of 

TEG are relatively consistent within devices of the same brand (SRM and Garmin) 

when the same setting is used (e.g. elevation correction). However, measurements of 

TEG differed considerably between brands. Furthermore, Garmin’s elevation 

correction setting, which cross-references altitude based on the position of the GPS, 

significantly increased the measurements of elevation gain.  
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CHAPTER SEVEN 

PERFORMANCE ANALYSIS OF A WORLD CLASS SPRINTER 

DURING CYCLING GRAND TOURS  

7.1 Abstract 

This investigation describes the sprint performances of the highest 

international ranked professional male road sprint cyclist during 2008-2011 Grand 

Tours. Sprint stages were classified as WON, LOST or DROPPED from the front 

bunch prior to the sprint. Thirty-one stages were video analysed for mean speed of 

the last km, sprint duration, position in the bunch and number of teammates at 60, 30, 

and 15 s remaining, Race distance, TEG and mean speed of 45 stages were 

determined. Head-to-head performances against the 2
nd

-5
th

 most successful 

professional sprint cyclists were also reviewed. In the 52 Grand Tour sprint stages 

the subject started he WON 30 (58%), LOST 15 (29%), was DROPPED 6 (12%) and 

had one crash. Position in the bunch was closer to the front and the number of team 

members was significantly higher in WON compared to LOST at 60, 30 and 15 s 

remaining (P<0.05). The sprint duration was not different between WON and LOST 

(11.3 ± 1.7 and 10.4 ± 3.2 s). TEG was significantly higher in DROPPED (1089 ± 

465 m) compared to WON and LOST (574 ± 394 and 601 ± 423m, P<0.05). The 

ability to finish the race with the front bunch was lower (77%) compared with other 

successful sprinters (89%). However, the subject was highly successful; winning 

over 60% of contested stages, while his competitors won less than 15%. This 

investigation explores methodology that can be used to describe important aspects of 

road sprint cycling and supports the concept that tactical aspects of sprinting can 

relate to performance outcomes. 



    

 

   

 

74 

7.2 Introduction 

Road cycling sprint performance is influenced by a variety of factors, 

including individual and team tactics, technique and the physiological characteristics 

of the cyclist. Road sprinters have the distinctive ability to excel in mainly flat 

cycling competitions (84, 93), in which the final sprints are initiated from high speed 

(69). Within professional cycling the sprinters often make up a very small proportion 

of the team (e.g. 2 out of 30 riders). This factor, together with the complexity of road 

sprinting, may be the reason for the lack of scientific research detailing the 

characteristics important to successful road sprinting. Indeed, several studies have 

described the physiological demands of competition and the characteristics of other 

specialty cycling groups, including time trialists, climbers and off road cyclists (52, 

64, 93, 109). Further a number of studies have examined the physiological 

characteristics of track sprinters (27, 39, 40). However, we are currently aware of 

only one study that has provided a detailed description of road sprint cycling 

performance, and this study was on a single cyclist performing a single sprint (69). 

There is little, if any, research describing the tactical approach adopted by 

road sprint cyclists. Bullock and colleagues (17) have examined bunch position in 

World Class short track speed skaters and observed unique positioning strategies in 

winners over three different race distances. Similar to cyclists, speed skaters gain an 

advantage by drafting but also face the disadvantage of passing a competitor as they 

approach the finish (107). It is possible that a similar evaluation of sprint cycling 

could be useful for understanding performance.  

Sprints are an extremely important aspect of professional road cycling. In 

fact, many stages (e.g. ~7 out of 21) within each of the Grand Tours (i.e. Giro 

d’Italia, Tour de France and Vuelta a Espana) are designed specifically for sprinters. 

Noticeably, among professional road sprinters only a few are able to win Grand Tour 

stages, and even less can win repeatedly. For example, examination of the sprint 

results within recent Grand Tours (2008-2011) indicates that 79 stages (out of 252 

total stages, 31%) were won by only 24 sprinters. Interestingly, 5 sprinters won 54 

stages of which one sprinter won 30 stages. Due to his outstanding results, this 

cyclist has been selected as the primary subject of the present investigation. The aim 

of this investigation is to provide a detailed description of the sprint performances of 
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a professional world-class sprinter during Grand Tours in order to extend 

methodology used for evaluating road sprints. A secondary aim is to compare 

performances of this cyclist against his closest rivals in order to identify key factors 

that may influence sprint performance.     

7.3 Methods 

This study incorporates a single case study longitudinal design evaluating 

data retrospectively. Performance data were publically available and this research 

project was approved by a University Human Research Ethics Committee. The 

authors of the present manuscript do not have any potential conflicts of interest. 

7.3.1 Subject 

The subject in this investigation was a professional road cyclist (age, 26 y; 

height, 1.75 m; weight, 69 kg; BMI, 22.5 kg∙m
-2

) specialising in sprints. At the time 

of investigation, and in the previous three cycling seasons, this cyclist was ranked as 

the highest international professional male sprinter according to a specific 

international ranking (cqranking.com).  

7.3.2 Procedures 

Performance data and videos from Grand Tours between 2008 and 2011 were 

taken from online public access websites and official race results. All the Grand Tour 

stages won by specialist sprinters were analysed and the subject’s race results were 

classified as rate of victory and defeat per participation. For the purpose of this 

investigation, cyclists have been classified as sprinters when their best performances 

were achieved in relatively flat competitions finishing at high speed (e.g. last km at 

an mean speed of ~60 km·h
-1

) and against a relatively large number of competitors. 

Sprint stages were classified into those in which the subject won or lost the sprint, or 

was dropped prior to the sprint (i.e. WON, LOST and DROPPED). In order to 

determine tactical differences between stages WON and LOST, video footage of 31 

stages were also analysed for the subject’s position in the bunch and the number of 

teammates in front of the subject at 60, 30 and 15 s remaining, mean speed of the last 

km and sprint duration. Sprint duration has been defined as the amount of time 
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elapsed between the moment in which the subject started to sprint (i.e. moved off the 

wheel in front and often began sprinting out of the saddle) to the finish line. 

Moreover, race distance, TEG and mean speed of 45 stages were determined in order 

to establish a relationship with stages WON, LOST and DROPPED. The TEG has 

been calculated using the altitude data presented in the altimetric profile maps. Based 

on the number of wins in Grand Tour stages the second to fifth most successful 

sprinters during the period under investigation have also been identified; they won 7, 

6, 6 and 5 stages, respectively. The performances of these cyclists have been 

compared to the subject’s performances to provide a descriptive head-to-head 

analysis. When performing head-to-head comparisons, only stages performed by 

both subjects have been compared. In the sprint comparison, sprinters have been 

considered in contention for the sprint when they both finished in the top 20 for the 

stage. 

7.3.3 Statistical Analysis 

The mean speed of the last km and the sprint duration were compared 

between stages WON and LOST using independent sample t-tests. Dependant 

variables (i.e. stage distance, TEG and mean speed) were compared between stages 

WON, LOST and DROPPED using a one-way ANOVA. Distance from the front of 

the bunch and number of team mates at 60s, 30s and 15s of the race remaining were 

compared between WON and LOST using a mixed model ANOVA. Where 

significant effect was observed Fisher’s LSD test was performed. Where violations 

of assumptions of sphericity where observed, the degrees of freedom were corrected 

using Greenhouse-Geisser or Huynh-Feldt corrections where appropriate. Critical 

level of significance was established at P<0.05. Results are presented as mean ± SD. 

   

7.4 Results 

The cyclist in this study became professional at the age of 22, winning 75 

professional road races at the end of the 2011 cycling season. This cyclist has twice 

won the general point classification in a Grand Tour. In his professional career he has 

completed 79 ± 9 professional races∙year
-1

, riding approximately 12000 

kilometers∙year
-1

 (only in races). The 2
nd

 to 5
th

 competitors rode a mean of 80 ± 10 
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races∙year
-1

 and also raced over approximately 12000 kilometers∙year
-1

 

(cqranking.com). 

In the four cycling season analysed, the subject started nine Grand Tours (i.e. 

3 x Giro d’Italia, 4 x Tour de France and 2 x Vuelta a Espana) and finished a total of 

52 stages (out of 79 won by sprinters). The cyclist WON 58% (n= 30), LOST 29% 

(n= 15), was DROPPED on 12% (n= 6) of these stages and in one stage he was 

involved in a sprint accident. There was no significant difference in the mean speed 

of the last km (P= 0.51) or the sprint duration (P= 0.33; Tab. 7.1) between WON and 

LOST. The subject’s position in the bunch and the number of teammates at 60, 30 

and 15 s were significantly different between WON and LOST stages (P< 0.05; Tab. 

7.1).  
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Table 7.1 Mean speed, sprint duration, position in the bunch and number of teammates of the subject determined from video analysis of won 

and lost sprints (n=31).  

 

 

 

 

 

 

 

 

a
 Significantly different (P < 0.05) from lost sprints 

b
 Significantly different (P < 0.001) from lost sprints 

# n=9 

  

Mean speed in 

last km (km·h
-

1
) 

Sprint 

duration (s) 

Position from the front of the bunch 

 Number of teammates in front of the 

subject 

60 s to the 

finish 

30 s to the 

finish 

15 s to the 

finish 

60 s to the 

finish 

30 s to the 

finish 

15 s to the 

finish 

WON (n:19) 60.6 ± 4.2 11.3 ± 1.7 # 6 ± 2 
 a
 3 ± 1 

 a
 2 ± 0 

 a
  2 ± 1 

 b
 1 ± 1 

 a
 1 ± 1

 b
 

LOST (n:12) 59.6 ± 4.2 10.4 ± 3.2 # 9 ± 5 * 8 ± 5 . 5 ± 4 .  0 ± 1 . 1 ± 1 .    0 ± 1..... 
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In DROPPED stages, TEG was significantly higher than both WON and 

LOST (P<0.01 and P=0.02; Tab. 7.2). TEG for WON and LOST was not 

significantly different (P=0.85). Stage length and mean speed were not different 

between WON, LOST and DROPPED (P=0.49 and P=0.85; Tab. 7.2).  

 

 

Table 7.2 Distance, TEG and mean speed of stages the subject WON, LOST and 

was DROPPED prior to the finish (n=45).   

 

  

Stage 

distance          

(km) 

TEG                

(m) 

Mean speed 

(km·h
-1

) 

WON (n:28) 179 ± 30 574 ± 394 
a
 41.9 ± 2.5 

LOST (n:11) 173 ± 39 601 ± 423 
a
 41.8 ± 2.1 

DROPPED 

(n:6) 193 ± 28 

1089 ± 465    

. 42.4 ± 2.0 

 

a
 Significantly different (P < 0.05) from dropped stages 

 

 

 

Table 7.3 shows the performances during head-to-head competitions between 

the subject and his closest competitors. The cyclist’s ability to reach the finish line to 

be in contention for the sprint (sprint chances) was lower when compared with the 

four other successful sprinters (77% vs a mean of 89%). However, the subject won 

over 60% of stages in which he was in contention to sprint (win ability), while his 

competitors won less than 15%.  
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Table 7.3 Performance of the subject relative to the 2
nd

 and 5
th

 most successful 

competitors.   

 

 

 

 

Note: only stages competed by both the subject and competitor have been compared 

S= Subject; C= Competitor 

 

7.5 Discussion 

The purpose of this study was to examine the race results of a professional 

world-class sprinter performing in Grand Tours in order to explore methodology and 

identify key factors responsible for winning sprint performances. Our case study 

reveals methodology that can be used to evaluate tactical aspects of road cycling 

sprint finishes and documents that bunch position and team work is associated with 

successful outcomes.  In addition, data collected from a highly successful sprint 

cyclist indicates that in addition to team support and position in the bunch, stage 

characteristics (e.g. TEG) can influence overall sprint performance. 

 2
nd

  3
rd

  4
th

  5
th

 

Number of stages with subject 39  139  92  104 

Number of sprint stages with 

subject 

11  57  39  44 

 S C  S C  S C  S C 

Sprint chances (number of sprint 

stages in the top 20) 

8 11  51 49  28 35  33 35 

Sprint chances (% of sprint stages 

in top 20) 

73 100  89 86  72 90  75 80 

Wins 6 1  29 5  17 8  19 5 

Win/sprint ability (victories 

relative to sprint chances %) 

75 9  57 10  61 23  58 14 
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Despite his young age the cyclist examined is one of the most successful 

sprinters in the history of cycling (http://www.cyclingnews.com/features/the-top-ten-

sprinters-of-all-time). At the time of this investigation, this subject won 58% of the 

Grand Tour sprint stages that he completed. Whereas previous case studies describe 

physiological characteristics of cyclists that have repeatedly won Grand Tours (21, 

92), our investigation focused on a road sprint cyclist and tactical aspects of his 

winning performances.    

It is well accepted that team tactics are extremely important for winning a 

sprint finish in cycling; however, we are unaware of research that has directly 

examined the implementation, execution and success of team tactics during a sprint 

finish in a Grand Tour. Within road cycling, teammates or team members of a 

sprinter will often lead the cyclist through the final kilometers of the event in order to 

allow the sprinter to conserve energy and be well positioned for the final sprint. 

Broker and colleagues (16) characterised the effect of drafting in team pursuit 

cyclists riding at 60km
.
h

-1
 on a velodrome, a speed that is relevant to the road sprint 

lead out. For team pursuit cyclists the power output required to ride at 60km
.
h

-1
 was 

reduced by 29% while riding in second position, and by 36% while riding in third 

position. Martin and colleagues (69) have also used a theoretical model to explored 

the relevance of drafting in road sprint cycling, showing that a cyclist sprinting from 

the second position can win by 1 m when compared to other strategies. Video 

analysis in the present study indicates that in stages resulting in a win, this subject 

had strong team support, as indicated by the presence of 1-2 teammates leading the 

subject out at 60 s from the finish (i.e. approximately the last km). Typically, this 

team support was maintained until the final 15 s where one teammate was still in 

front of the subject in stages resulting in a win. This team organization may be 

responsible for the subject’s positioning and smooth progression through the bunch 

in the last minute of each stage. Indeed, the subject in this investigation was 

significantly better placed at 60 s from the finish in the stages that resulting in a win, 

compared with stages resulting in a loss (i.e. in 5
th

 to 6
th

 vs. 9
th

 to10
th 

position). 

Furthermore, the subject rarely had teammates in front of him in the last 60 s 

(approximately 1km) of the race in the stages that resulted in a loss. These results 

highlight the significant importance of team tactics in successful road sprint 

performance. Further research adopting the novel methodology utilised in this study 

is needed in order to examine the importance of team tactics to other professional 
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sprint cyclists and in other aspects of road cycling (i.e. hill climbing). Such research 

may provide valuable information on the importance of team support to different 

professional cyclists performing various road cycling tasks. Indeed, some 

professional sprinters appear to have the ability to excel in the road cycling sprint 

with little team support. 

We have adopted a performance analysis technique that is similar to the 

approach published by Bullock and colleagues (17) who have examined bunch 

position in elite short track speed skating. Similar to Bullock’s observations with 

skaters, it appears that position within the lead bunch over the final kilometre of the 

race is important to sprint cycling performance. If the sprint cyclist is too far back or 

too close to the front the odds of winning are diminished. More specifically, we 

observed that the winning sprints never occurred if the cyclist was more than nine 

positions back from the front of the race at 60 s remaining.  The ideal position in the 

peloton towards the end of the race for sprinters appears to be somewhere between 

2
nd

 to 9
th

 behind the leader and could be influenced by terrain and technical aspects 

of the race (narrow roads, turns, etc.). 

Road sprint cycling performance is a unique cycling discipline requiring 

cyclists to have high aerobic and anaerobic capacity (22, 34, 88). Improving strength 

and anaerobic capacity may improve sprint performance (104, 105), however, within 

some stages of Grand Tours sprinters are required to cycle over high mountain passes 

in order to reach the finish line (103). The ability to win such stages, some of which 

may last more than 7 hours, requires high aerobic qualities (i.e. maximal oxygen 

uptake and metabolic thresholds). Within this study there was a significant difference 

in the TEG between stages in which the subject was dropped during the stage (1089 

± 465m) and stages in which the cyclist was in contention for the sprint (582 ± 397 

m). The influence of elevation on race dynamics is not only important to the sprinters 

but the entire peloton. Indeed, we observed a logarithmic correlation (R
2
: 0.53), 

between the TEG of stages and the number of riders that reach the finish line in the 

first main bunch (data not shown). In particular, 70% of the stages with less than 

1000 m of TEG finished with a sprint. Only 20% of the stages with a TEG between 

1000 and 2000 m finished with a sprint, and none of the stages with a TEG over 

2000 m has been won by a specialised sprinter. The performance of a sprinter during 

Grand Tours is therefore highly dependent on not only sprint capacity but also other 

physiological attributes related to hill climbing capacity. Supporting this, the cyclist 



    

 

   

 

83 

in the present study had less sprint chances than his most successful competitors 

presumably due to lower hill climbing capabilities (i.e. aerobic capacity). However, 

if he made it to the finish line in the leading group this cyclist was much more likely 

to succeed in the final sprint winning over 60% of the stages he was in contention to 

sprint. These differences occurred despite the number of races completed and total 

kilometers cycled during competitions being similar between the cyclist in this study 

and his closest rivals. Such results highlight the fact that physiological characteristics 

might be different among the various speciality sprinters. Future researches aiming to 

classify and describe different kind of sprinters (e.g. flat or hilly terrain sprinters, 

long or short sprint sprinters) is recommended. Knowing the sprinters’ climbing 

ability (sprint chances) and their likelihood to succeed in the sprint (win ability), 

together with a careful evaluation of the rivals’ characteristics, may be important in 

development of training programs or the selection of events that may best suit 

particular athletes. Noticeably, external factors other than TEG, such as the position 

of the elevation gain within a stage, are of extreme importance to race dynamics. 

Despite this, data from this study provides some indication of the influence race 

profile has on outcomes of the event. Additional valid methods to describe the 

elevation gain and altimetric profile of road cycling events therefore appear 

important when describing stage characteristics. With such data it will be possible to 

analyse the whole race and different sections of competition in order to improve the 

understanding of technical and tactical issues relevant for race outcomes.  

 In practical terms, this case study outlines methodology that can be used by sport 

scientist to quantify key aspects of road sprint cycling. Results showed that 

positioning in the bunch appears to influence the probability of winning, thus athletes 

may benefit by team support or training to position themselves wisely. Sprinters with 

good climbing ability will get more opportunities to sprint, compared to relatively 

poor climbers, and possibly get a chance to sprint against a less competitive field 

because others sprinters (i.e. flat terrain sprinters) are dropped prior to the finish. 

However, training choice (i.e. to improve the climbing ability or the sprint ability) 

should be guided by a careful evaluation of the characteristics (sprint chances and 

win ability) of the cyclist and the cyclist’s competitors.    

In conclusion, this study has examined the race results of a professional world 

class sprinter performing in Grand tours. The results of this study indicate that the 

position of this cyclist in the peloton/bunch and the number of teammates leading 
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into the finish are important factors in stage racing sprint performance. Furthermore, 

compared with his closest competitors, this subject was less likely to reach the finish 

line in the leading group during stages that contained a high TEG. However, when 

arriving at the finish line in the leading group this cyclist was considerably more 

successful than his closest competitors. 
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CHAPTER EIGHT 

GENERAL DISCUSSION 

Sprint ability is a key determinant of success in the majority of endurance 

road cycling events. Indeed, several races or stages during Grand Tours are 

specifically designed for sprinters. Despite the importance of this aspect within the 

sport of cycling, there is little research examining the characteristics of road sprints. 

To date, basic information describing the characteristics of the final sprint, such as 

duration and intensity, is limited. Likewise, little is known about the physical 

demands of the lead up to successful sprint finishes (i.e. last 10 minutes of 

competitions). As such, the training techniques and strategies to best prepare road 

sprinters for competition are not well understood, and cannot be evidence based. 

Thus, the main purpose of this thesis was to document and examine the physiological 

demands of sprinting in the highly trained endurance road cyclist. A secondary aim 

was to better understand technical and tactical factors influencing road sprint 

performance. By increasing our knowledge concerning these themes this research 

aids in providing greater insight into optimal sprint performance. The major findings 

from this thesis were that: i) when approaching the finish line the race intensity 

gradually increased, with a mean power output of 487 W, heart rates of 95% HRmax 

and cadence of 102 rpm in the last minute prior to the sprint; the last 10 min of 

racing were stochastic in nature with approximately twice as many short, high 

intensity efforts in the last 5 min when compared with the penultimate 5 min; during 

the final sprint the peak power was ~17.5 W∙kg
-1

, with a peak cadence of ~115 rpm 

and a peak speed of ~66 km∙h
-1

; ii) the power output and total work recorded in 

successful PRO sprints were similar to the one recorded in successful U23 sprints; 

however, the race intensity in the 10 min leading into the sprint was higher in PRO 

compared with U23 races; iii) ten min of cycling designed to simulate the lead up 

phase prior to the final sprint did not impair the sprint performance of elite cyclists 

and there were no differences in the sprint power output after an either variable or 
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non-variable 10 min lead up effort; iv) elevation gain data measured with 

commercial devices could be relatively consistent; however, measurements differ 

considerably among devices of different brands, or with different settings; v) the 

position in the bunch and the number of teammates in the final 10 min of races are 

important factors for road sprint performances and sprinters with good climbing 

ability have more opportunities to sprint against a less competitive field than 

sprinters with relatively poor climbing ability. 

Understanding the physiological demands of competition is a key factor in 

the development of training and competition strategies that would potentially 

produce optimal performances. Due to the lack of research related to road cycling 

sprints, Study 1 and 2 of this thesis were descriptive studies aiming at showing both 

the final sprint characteristics, and the characteristics of the part of competition 

preceding the actual sprint. Study 1 confirmed the hypothesis that professional 

sprinters produce high power outputs during the sprint finish. In particular, the mean 

and peak powers observed during the sprints were 1020 ± 77 W and 1248 ± 122 W, 

respectively. These data, similarly to sprint data from Study 2 of this thesis, were 

comparable to those previously published by Martin and colleagues in a case study 

on a professional sprinter, who produced a mean power of 926 W and a peak power 

of 1097 W (69). Also the sprint duration (13.2 ± 2.3 s) and the peak speed (66.1 ± 3.4 

km∙h
-1

) observed in Study 1 were similar to the 14 s and 65 km∙h
-1

 previously 

reported (69). Interestingly, within Study 2, it was also found that the professional 

cyclist did not produce a higher sprint power output when compared to a U23 cyclist. 

Noteworthy, producing a power output > 2500 W·Ap
-1

 (or > 15.5 W·kg
-1

) for 

approximately 14 s, with a peak power output > 3100 W·Ap
-1

 (or > 19 W·kg
-1

) led to 

successful sprints in both the categories. Despite the high power outputs reported in 

Study 1 and 2, the sprint capacity of road sprinters is considerably lower when 

compared to track sprinters (i.e. peak power: < 1300 W and > 1600 W, respectively) 

(40). The difference in the power output necessary to be a high level track or road 

sprinter is explicable due to the different characteristics of road and track sprint 

races. Indeed, road cyclists are required to race for prolonged periods (i.e. > 4 hours) 

at moderate intensity, and what’s more they have to ride at high and highly variable 

intensity in the very last part of the competition prior to the sprint; conversely, track 

sprinters’ races only last few seconds. In particular, Study 1 showed that both 

external (i.e. power output) and internal (i.e. heart rate) load were 10% higher in the 
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last 60 min of race when compared with the average intensity over the entire race. 

The race intensity continued to increase in the final 10 min of race and in the 5 min 

prior to the sprint the heart rate was 91% of HRmax, indicating that the sprinters 

were riding at intensity close to their lactate threshold (28). Interestingly, the highest 

5 min power to mass ratio observed in Study 1 corresponds to 6.1 W∙kg
-1

, which is 

only 8% lower than the estimated  6.6 W∙kg
-1

 required for a 4 min (20% shorter in 

duration) team pursuit performance (111). Study 2 also focused on the differences 

between races’ intensities in professional and U23 cycling. As hypothesized, the 

relative intensities in the final part of competitions were higher in the professional 

races, when compared to the U23 races. It should be noted that numerous factors 

may influence a cyclists’ power output prior to and during a sprint, including 

physiological characteristics, race dynamics, gradient of the road, wind speed, team 

support and the ability of the cyclists to appropriately position themselves within the 

bunch. As such, it is unclear if technical and tactical factors influenced the power 

output in Study 2. Irrespectively, the overall intensity of the events analysed in the 

study (3.0 ± 0.4 W·kg
-1

 and 2.9 ± 0.2 W·kg
-1

 for PRO and U23, respectively) were 

higher than those recorded in professional flat races (2.0 ± 0.4 W·kg
-1

) (125) but 

similar to the one previously reported in a professional road stage race with both flat 

and mountainous stages (3.1 ± 0.2 W·kg
-1

) (123). Finally, the variability of power 

output within the final 10 min of races was analysed using the EVA technique. The 

results showed that twice as many high intensity and short duration efforts were 

ridden in the last 5 min, compared with the penultimate 5 min (Fig. 3.1, black bars). 

Finally, Study 2 and 5 of this thesis highlighted how the amount of climbing ridden 

during races could be another factor contributing to increase the fatigue prior to the 

final sprint. In this regard it is noteworthy to consider that the distribution of the 

elevation gain along the race course is likely to be of great importance to the race 

outcomes. Describing and understanding the characteristics important to successful 

road sprinting can assist researchers and coaches in training planning, talent 

identification and physical load monitoring. Examining the physical requirements of 

sprinters in the final kilometres prior to the race finish helps to gain a better 

understanding of the physiological characteristics important to successful cycling 

performance. Awareness that a given rider has the physiological capability to win a 

road sprint could potentially allow him (or his team) to focus on other aspects that 

may be important to success, such as the technical and tactical aspects of road 
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sprinting, or improving the climbing ability to ensure that the sprinter can reach the 

finish line with the main group.  

After having reported some factors that can cause fatigue prior to the final 

sprint (i.e. race intensity, power output variability, amount of climbing) and 

considering that fatigue resulting from intense exercise could influence sprint 

capacity, Study 3 was designed to assess this specific aspect. In the development of 

the exercise protocols for Study 3 the race intensities reported in Studies 1 and 2 

were used. In brief, Study 3 was a laboratory experimental design aimed at 

understanding the effects of variable and non-variable exercises that replicate the 

intensity of the final part of road competitions on maximal sprint performance (78). 

Despite the moderate to high intensity of the variable and non-variable cycling 

exercises in the study, neither condition had a negative effect on the cycling sprint 

power. The results were somehow surprising and in contrast with some previously 

published studies which have reported the detrimental effects of intense exercise on 

maximal cycling sprint performance (67, 73, 117); however, the literature there are 

also studies showing a conservation of sprint power after cycling exercise (25, 55). 

One of the differences between Study 3 of this thesis and other researches is the 

performance level of the recruited participants. In fact, the participants of Study 3 

were highly trained internationally competitive cyclists while the subjects of the 

studies in which sprint performances decreased were active male cyclists or rugby 

players with a mean VO2peak below 56 mL∙kg
-1

∙min
-1

. Considering the importance of 

aerobic fitness (i.e. high VO2max) to high intensity cycling exercises (38, 42, 97) it’s 

possible that the conservation of the sprint ability in Study 3 was partially due to the 

very high aerobic fitness level of the participants. Furthermore, the exercise protocol 

(i.e. intensity and duration) used in Study 3 differed from the ones used in previous 

researches thereby impacting on the comparability of results. As a matter of fact, the 

exercise protocols used in studies reporting a decline in maximal sprint performance 

were rides longer than 40 minutes at intensity above 75% of the VO2max, or time to 

exhaustion exercises (67, 73, 117). Actually, a few researches focusing on the time 

course of fatigue, despite adopting diverse exercises modalities, showed unchanged 

maximal short term power output after prolonged cycling exercise (25, 55, 67, 73). 

Cycling exercise can cause fatigue; however, exercise can also elicit a phenomenon 

called post activation potentiation (PAP). PAP corresponds to an acute enhancement 

of the muscular performances due to the muscle contractile history (119). PAP is 
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generally induced by maximal or near maximal voluntary contractions and it’s 

particularly effective in endurance exercises involving speed and power (50, 102). As 

such, endurance sprint cycling performance could theoretically be positively 

influenced by potentiation-inducing exercises. Another possible explanation for the 

maintenance of maximal performances near the end of the exercise could be an 

increased voluntary activation (i.e. central drive) to contrast the rise of peripheral 

fatigue (24, 91). Results from Study 3 indicate that the variable distribution of power 

output during the 10 min before the sprint had little influence on sprint performance, 

at least in high level competitive cyclists and over duration/intensities that aimed to 

replicate the lead up phase typical of road races. Similar results were found by Del 

Coso and colleagues (25) who used maximal cycling sprints while comparing the 

effects of three differently variable exercises. The participants rode for 24 minutes at 

a set intensity but with three different power variation ranges. The maximal sprint 

power produced by the endurance trained cyclists was not impaired in any of the 

three conditions. Potentially the prolonged exercise duration of typical road cycling 

events (e.g. > 4 hours) has a greater influence on sprint performance than the 

physical demands of the lead up phase per se (e.g. ~10 minutes). Overall, it is 

possible to speculate that the 10 min exercise protocol used with highly competitive 

cyclists in Study 3 had a beneficial effect on the sprint peak power output, allowing 

them to maintain the sprint ability. The above mentioned studies confirm the 

plausibility of the present investigation’s findings: certain types of variable exercises, 

despite being intense, do not impair short term power output, especially in highly 

trained endurance cyclists. 

Study 2 took into account the elevation variable, reporting a large range of 

TEG in the analysed races (i.e. from 144 to 2397 m). Theoretically, the climbing 

ability of different sprinters could be diverse and, as such, the elevation change 

throughout a race is likely to have considerable influences on sprint performance. 

The influence of elevation on race dynamics is not only important to the sprinters but 

to the entire peloton. Indeed, a logarithmic correlation (R
2
: 0.53) was observed 

between the TEG of stages and the number of riders that reach the finish line in the 

first bunch (Fig. 8.1) (75).  
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Figure 8.1 Logarithmic correlation between the stages’ TEG and the bunch 

dimension. 

 

 

In Study 5 the TEG was calculated using altitude data presented in altimetric 

profile maps; however, alternative and valid methods to describe the elevation gain 

and the altimetric profile of road cycling events are of practical importance in order 

to collect valid training and races data on a daily basis. For this reason, Study 4 

evaluated several commercially available devices commonly used to measure altitude 

and elevation gain in cycling and outdoor sports in general. Results of the study 

indicated that while measurements of elevation were relatively consistent within each 

device, the measurements differed considerably between the different brands 

examined (SRM and Garmin). Within both Studies 4a and 4b a relatively small 

number of devices either over or under estimated the TEG. Indeed, the TEG 

measured by different Garmin 500 devices ranged by as much as 917 m during the 

138 km Maratona Dles Dolomites. Nevertheless, over the 4000 m of climbing during 

the cycling event the majority of values measured by each of the Garmin devices was 

within a range of approximately 150 m. While we observed similarities in TEG 

measurements between all Garmin devices with the same settings, the use of 
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elevation correction resulted in a 5 to 10% (50 to 80 m) increase in measurements of 

TEG over a 15.7 km climb (Tab. 7.1). Interestingly, this change resulted with the 

TEG measured with the Garmin devices being approximately 11% greater than the 

TEG measured with the SRM devices. Such differences may be relevant to the race 

results, in fact the TEG influences the size of the bunch reaching the final sprint (i.e. 

likelihood to have a sprint) as showed in Fig. 8.1. Also, differences in the TEG are 

likely to have a meaningful influence on the estimates of physiological load 

experienced by athletes, especially when exercising over longer mountainous course 

profiles. Thus, comparing the elevation gain measured using different devices or 

settings may result in unreliable measurements of physical load and must be avoided.   

After having reported the consistency of devices used to measure the 

elevation gain in Study 4, Study 5 evaluated the importance of the elevation gain for 

sprint performances. Also, some technical and tactical aspects of road sprinting were 

analysed in Study 5 of this thesis. In fact, an important remark from Study 2 was that 

no significant relationships were observed between performance (i.e. race results) 

and sprint power outputs (i.e. mean or peak, absolute or relative). This observation is 

probably due to the many variables that actively contribute to sprint performance, 

such as aerodynamics, position in the bunch and tactics. For this reason, position in 

the bunch, number of teammates and total elevation gain of stages were evaluated to 

see if there were relationships between these variables and successful or unsuccessful 

competitions (75). Results of Study 5 revealed that the subject was significantly 

better placed 60 s before reaching the finish line in the stages that resulted in a win, 

compared to stages resulting in a loss. Furthermore, the subject rarely had teammates 

in front of him in the last 60 s of the race (i.e. approximately last km) in the stages 

that resulted in a loss. Similar to  Bullock and colleagues’ observations with skaters 

(17), it appears that position in the bunch over the final section of competition is 

relevant to sprint cycling performance. In fact, Study 5 clearly showed that if the 

sprinter was too far back (or too close to the front too early), the odds of winning 

were diminished. Considering the demonstrated positive effect of team support on 

successfulness of road sprints (Study 5), the results from Study 3 (i.e. intensity of the 

last 10 minutes did not impair sprint performance) might suggest that the team 

support during the lead up phase should be more focused on technical and tactical 

factors (e.g. good positioning) instead of on saving energy. As a practical 

application, coaches and professional cyclists could consider to use the team mainly 
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to better position their sprinter, rather than to protect him from speed variations. 

Road sprint cycling performance is a unique cycling discipline requiring cyclists to 

have high aerobic and anaerobic capacity (22, 34, 88). During some stages of Grand 

Tours sprinters are required to cycle over high mountain passes in order to reach the 

finish line (103). The ability to win such stages, some of which may last more than 7 

hours, requires high aerobic qualities (i.e. maximal oxygen uptake and metabolic 

thresholds). In Study 5 there was a significant difference in the TEG between stages 

in which the subject was dropped during the race (1089 ± 465 m) and stages in which 

the cyclist was in contention for the sprint (582 ± 397 m). Thus, data collected in 

Study 5 indicated that in addition to team support and position in the bunch, stage 

characteristics can influence the sprinter’s performance. Moreover, sprinters with 

good climbing ability could have more opportunities to sprint, compared to relatively 

poor climbers, and possibly get a chance to sprint against a less competitive field 

because other sprinters are dropped prior to the finish. However, training choice (i.e. 

to improve climbing ability vs sprinting ability) should be guided by a careful 

evaluation of the characteristics (sprint chances and win ability) of both the cyclist 

and the cyclist’s competitors.  

 

8.1 Directions for Future Research 

The general findings from the studies conducted in this thesis are as follows: 

i) exercise intensity significantly increased in the last 10 min of road races; sprint 

duration was 13.2 ± 2.3 s and peak power was 17.4 ± 1.7 W∙kg
-1

; there was a 

significantly greater number of short duration and high intensity efforts in the final 5 

min of the race, compared with the penultimate 5 min; ii) the physiological demands 

of competitions were higher in PRO compared to U23 races, despite a similar sprint 

duration and power output in the two categories; iii) neither the variable nor the non-

variable 10 min lead up efforts impaired the sprint performance in elite competitive 

cyclists; iv) measurements of elevation gain were consistent within devices of the 

same brand, but differed between brands or when different settings were used; v) 

technical and tactical aspects of road sprinting are related to performance outcomes.  

While these novel findings make a significant contribution to the current 

body of literature, the results of this thesis also highlight potential areas for future 
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research. Studies 1 and 2 of this thesis showed similar sprint data, with regard to 

sprint duration and power output. Data were also consistent with the only previously 

published case study (69). However, when compared to other specialties such as time 

trialing, or riding uphill, the sample was still limited to a relatively small number of 

cyclists. Furthermore, all the sprinters involved in these studies were of relatively 

similar body sizes. For these reasons further research examining successful road 

sprints is warranted in order to confirm the results from these studies with a bigger 

sample size.  

Study 2 of this thesis examined the power output in relation to body shape. In 

particular, as previously done in track cycling sprint, the ratio between power output 

and frontal area (27). However, the best indicator of the aerodynamic characteristics 

of a cyclist is the aerodynamic drag area (CdA). Thus, future research is needed to 

better understand the real contribution of all the variable that contribute to the 

cyclist’s speed; realistically, a combination of extremely high power and efficient 

aerodynamic position on the bike. Ideally, this research will be an integration of 

laboratory data (e.g. from wind tunnel testing) and field data (i.e. calculated 

considering air density, wind speed and direction). 

In Study 1 no correlations were found between power data and race results. 

One of the reasons could be the fact that all the analysed files were recorded in 

different competitions. In order to better understand tactical and technical factors that 

influence the relationship between sprint power output and performance, further 

research examining multiple riders with similar sprint ability and competing in the 

same race would be recommended.  

Study 3 evaluated the effect of different exercises on the sprint ability. 

Results indicate that neither the variable nor the non-variable exercise significantly 

impaired the sprint performance. Although the results of Study 3 are partially 

supported by some previous research, they were unexpected, in particular due to the 

intensity and the specificity of the exercise modality. Further research should 

therefore examine the effect of fatiguing exercise with a different magnitude of 

power variability, and with shorter recovery periods in between high intensity 

accelerations. Furthermore, the Critical Power and W’ model (113) could be applied 

in order to better understand what kind of exercise impairs the road sprint 

performance. Finally, the laboratory efforts used in Study 3 only lasted 10 minutes. 
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Whether similar results would have be observed following 4 to 6 hours of road 

cycling remains to be established, and may be the subject of future studies.  

Due to the relevance of elevation gain measurements, Study 4 of this thesis 

evaluated the consistency of commonly used devices that measure altitude and 

elevation gain. Results showed that elevation correction (i.e. cross-referencing 

elevation based on the position of the GPS to improve the validity of measurements 

of altitude) did not decrease the within devices variability in relative measurements 

of the TEG. So, while Study 4 has provided initial insight into the consistency of 

these devices, future research should further investigate the accuracy of 

commercially available devices and the effect of elevation correction on the validity 

of the measure. 

In this thesis, Study 5 analysed some key technical and tactical variables 

affecting road sprint results. The results highlighted the significant importance of 

team tactics and team support for successful road sprint performance. However, the 

study was done on a single subject. Further research adopting the novel methodology 

presented in Study 5 is recommended in order to confirm the importance of team 

tactics to other professional sprint cyclists, and possibly in other aspects of road 

cycling (i.e. hill climbing). Indeed, these further studies might reveal that some 

professional sprinters may have the ability to excel in road cycling sprints with little, 

or potentially without, team support. In this case, studies investigating in depth other 

characteristics (e.g. skills acquisition, cognitive traits, etc) of the sprinters would be 

warranted.  

Both Study 2 and 5 of this thesis described the TEG of stages. As expected, 

results suggested that different sprinters have different climbing abilities. Future 

researches aiming at classifying and describing different kind of sprinters (e.g. flat- 

or hilly- terrain sprinters, long- or short- sprint sprinters) is recommended. Knowing 

the sprinters’ climbing ability (sprint chances) and their likelihood to succeed in the 

sprint (win ability), together with a careful evaluation of the rivals’ characteristics, 

may be important in development of specific training programs, or in the selection of 

events that may best suit certain athletes.  
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8.2 Conclusion 

The main findings from the studies of this thesis were that: i) exercise 

intensity significantly increased to a highly variable high intensity in the last part of 

road competitions; sprint duration was 13.2 ± 2.3 s and mean sprint power was 14.2 

± 1.1 W∙kg
-1

; ii) the physiological demands of competitions were higher in PRO 

compared to U23 races, despite similar sprint characteristics in the two categories; 

iii) neither the variable nor the non-variable 10 min efforts impaired the sprint 

performance in elite competitive cyclists; iv) measurements of elevation gain were 

consistent within devices of the same brand used with the same settings; v) technical 

and tactical aspects of road sprinting are related to performance outcomes. 

Collectively then, the studies of this thesis have shown that road sprint 

performances depend on the ability to produce a high power output for a duration of 

approximately 10-15 s. Interestingly, in high level cyclists an intense 10 minute 

effort itself (either with variable and non-variable power output) does not impair 

sprint performance. To be successful in the professional category it’s fundamental to 

have high fitness level in order to be able to sustain the significant increase in race 

intensity that occurs when approaching the finish line, after several hours of exercise. 

In particular, the ten minutes prior to the sprint appear to be of critical importance for 

a few reasons: i) increase in race intensity, ii) increase in power output variability, 

iii) technical and tactical variables. In fact, technical and tactical variables are 

significantly related with race results. Similarly, the amount of climbing 

characterising a cycling competition has an impact on the likelihood of a sprint 

finish, and on the individual chances that a sprinter will be in the main bunch to 

contest the final sprint. Researchers, coaches and athletes interested in the measure of 

elevation gain should avoid comparing data collected with devices of different 

brands, especially if the settings are not consistent. Research confirming and 

expanding some of the results of this thesis and further examining the mechanisms 

responsible for fatigue is necessary in order to gain a greater understanding of road 

sprint performances. 
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Appendix G 

Information Letter to Participants 
 
Title of the project 

“Anthropometric and physiological characteristics of road sprinters. Physiological demands of road 
sprints” 

Description of the research project 

This research study is being conducted as part of Paolo Menaspa’s PhD.  
The aim of this study is to describe the anthropometric and physiological characteristic of road 
sprinters and the physiological demands of road sprints. The parameters collected in the laboratory 
will describe the sprinter’s physiological and anthropometrical characteristics. The data recorded in 
the field will describe the demands of competitions. Length, duration and cumulative elevation gain 
of every race performed by each cyclist for the duration of the study will be monitored. Also, power 
output, cadence, heart rate and speed data will be collected over the last 30 km of each event, using 
SRM power meters, which will be fitted to each cyclist’s bike. 
 
You have been selected as a potential participant in this project because you are a healthy, male cyclist 
aged between 20 and 40 years old. You have been selected by way of personal contact with one of the 
investigators, because you are a professional cyclist. 

As a participant in this study, you will be involved in a number of laboratory testings, moreover 
monitoring of your performance (i.e. power output, speed and cadence) in professional cycling races 
will be conducted over the competitive season. All testing will be conducted under supervision at the 
exercise physiology laboratory of the Australian Institute of Sport (Canberra) or at the exercise 
physiology laboratory at the AIS European Training Centre (Gavirate, Italy). As a participant in this 
study, you will undergo a complete anthropometric assessment, perform an incremental cycle test 
to exhaustion, and perform a sprint test for the assessment of anaerobic physiological 
characteristics. These laboratory evaluations will be done in one single day. Testing sessions will last 
approximately 4 hours in duration. 

During this testing session you will have your body composition determined using dual energy x-ray 
absorption, have a 5 µl  blood sample taken from a fingertip. Blood samples will be conducted by a 
qualified researcher and will be used to determine your blood lactate concentrations during an 
incremental exercise. The incremental cycling tests will start at a relatively light intensity and every 5 
minutes the intensity will be increased until you have reached your maximal aerobic capacity. This test 
typically lasts 30-40 min with the total duration depending on your fitness. The testing session will last 
approximately 4 hours, from the very beginning to the end. 

During testing session: 

 Your heart rate will be monitored continuously with a personal heart rate monitor 

 Inspired and expired gases will be continuously monitored 

 You will be asked periodically about your perceived exertion  

 Blood samples will be taken from your fingertip: approximately 5 µl of blood will be collected from 
the finger tip, within each sample. The number of samples will be between 4 and 7, depending on the 
physiological characteristics of each subject. A trained and qualified technician will perform all blood 
collection procedures. 
 

During the maximal exercise tests and training it is possible that you may experience fatigue and muscle 
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soreness. 

You will benefit from participating in this study through a better understanding of your own fatigue during 
such exercises. Where possible you will also be provided with information regarding your physiology. 

The current study design has been approved by the ECU Human Research Ethics Committee. 

Confidentiality of information 

The information collected in this study will be used to prepare a scientific report to be published in an 
academic journal. The information will only be available to Dr. Paolo Menaspa’ and his team of 
researchers. Your personal data will be assigned an identification code, such that only those people 
directly involved in collecting information for the study will be able to recognise which person the 
information pertains to. The information collected in this study will be stored under file in the Australian 
Institute of Sport for a period of 5 years. After the study has finished the information collected during the 
course of the study will be destroyed. 

Results of the research study 

The data collected in this study will be summarised as average data for all participants. There will be 
no individual data presented, which means that your personal information cannot be identified. The 
data will be presented at conferences and as a scientific report to be published in an academic journal. 
If you request it, you will receive a summary of your own personal information and a group summary 
explaining the findings of the study. 
 

Voluntary participation 

Your participation in this study is entirely voluntary.  No explanation or justification is needed if you 
choose not to participate. 

 

Withdrawing consent to participate 

You are free to withdraw your consent to further involvement in the research project at any time. If 
you choose to withdraw, you have the right to request that any personal information collected up to 
that point in the study is returned to you without question.  
 

Questions and/or further information 

If you have any questions or require any further information about the research project, please contact 
Paolo Menaspa’ on +61 429 072885 or email: paolomenaspa@gmail.com  

 

Researchers and Contact details 

Paolo Menaspa’ 
School of Exercise, Biomedical and Health Sciences, Edith Cowan University 
Email: pmenaspa@our.ecu.uedu.au – Phone (+61) 429 072885; (+39) 347 5860053 
 
Supervisors 
Chris R Abbiss, School of Exercise and Health Sciences, Edith Cowan University 
Email: c.abbiss@ecu.edu.au - Phone 08 6304 5740 
 
Greg Haff, School of Exercise and Health Sciences, Edith Cowan University 
Email: g.haff@ecu.edu.au - Phone 08 6304 5416   
 
David T Martin, Department of Physiology, Australian Institute of Sport 
Email: david.martin@ausport.gov.au - Phone 0408 464759 
 
Franco M Impellizzeri, Research Department, Schulthess Clinic, Zurich 
Email: franco.impellizzeri@kws.ch - Phone (+39) 392 3549631 
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Independent contact person 

If you have any concerns or complaints about the research project and wish to talk to an independent 
person, you may contact: 

Research Ethics Officer 
Human Research Ethics Committee 
Edith Cowan University 
100 Joondalup Drive 
JOONDALUP WA 6027 
Phone: (08) 6304 2170 
Email: research.ethics@ecu.edu.au 
 

If you are interested in taking part in this study, then please read and sign the Informed Consent 
document and return it to Paolo Menaspa’ in person or by post at the address provided at the beginning 
of this letter. 
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Appendix H 

Informed Consent Document 
 

Title of the project 

“Anthropometric and physiological characteristics of road sprinters. Physiological demands of road sprints.” 

 

Researchers and Contact details 

 

Paolo Menaspa’ 

School of Exercise, Biomedical and Health Sciences 

Edith Cowan University 

School of Exercise, Biomedical and Health Sciences 

270 Joondalup Drive 

Joondalup WA, 6027 

Phone +61 429 072885 

 

Statement indicating consent to participate 

 

I confirm the following: 

 I have been provided with a copy of the Information Letter, explaining the research study 

 I have read and understood the information provided 

 I have been given the opportunity to ask questions and I have had any questions answered to my satisfaction 

 I am aware that if I have any additional questions I can contact the research team 

 I understand that participation in the research project will involve: 
– 1 day of laboratory testing (anthropometric, aerobic and anaerobic characteristics) 
– Maximal cycling tests performed on the laboratory 
– Blood samples taken from fingertip for lactate measurements 
– Measurements of heart rate, oxygen consumption and perceived exertion 

– Measurements of length, duration and cumulative elevation gain of every race performed 
for the duration of the study 

– Measurement of power output, cadence, heart rate and speed data using a SRM power 
meter, which will be fitted to my bicycle 

 

 I understand that my information provided will be kept confidential, and that my identity will not be disclosed without consent 

 I understand that the information provided will only be used for the purposes of this research project, and I understand how the 
information is to be used  

 I understands that I am free to withdraw from further participation at any time, without explanation or penalty 

 I freely agree to participate in the project 
 

 

Signed ……………………………………………… Name………………………………………. Date…………… 

 

Signed by member of research team ……………………………………………………. 
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127 

Appendix M 

 


	Analysis of road sprint cycling performance
	Recommended Citation

	Edith Cowan University
	Research Online
	2015

	Analysis of road sprint cycling performance
	Paolo Menaspa
	Recommended Citation


	Analysis of road sprint cycling performance

