
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-2003

Determining the effectiveness of deceptive honeynets Determining the effectiveness of deceptive honeynets

Nirbhay Gupta
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Gupta, N. (2003). Determining the effectiveness of deceptive honeynets. https://ro.ecu.edu.au/theses/
1303

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1303

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=ro.ecu.edu.au%2Ftheses%2F1303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1303
https://ro.ecu.edu.au/theses/1303

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Determining the Effectiveness of Deceptive

Honeynets

by

Nirbhay Gupta

BSc. (Hons.)

A dissertation submitted in partial fulfilment of

the requirements for the Award of

Masters of Science (Computer Security)

At the School of Computer and Information Science

Faculty of Computing, Health and Science

Ef)ITI-! C�C)WAN

UNIVERSITY

PERTH 11\'ESTERN AUSTRALIA

July 2003

Abstract

Over the last few years, incidents of network based intrusions have rapidly increased,
due to the increase and popularity of various attack tools easily available for download
from the Internet. Due to this increase in intrusions, the concept of a network defence
known as Honeypots developed. These honeypots are designed to ensnare attackers
and monitor their activities. Honeypots use the principles of deception such as
masking, mimicry, decoying, inventing, repackaging and dazzling to deceive
attackers.
Deception exists in various fonns. It is a tactic to survive and defeat the motives of
attackers. Due to its presence in the nature, deception has been widely used during
wars and now in lnfomiation Systems.
This thesis considers the current state of honeypot technology as well as describes the
framework of how to improve the effectiveness ofhoneypots through the effective use
of deception. In this research, a legitimate corporate deceptive network is created
using Honeyd (a type of honeypot) which is attacked and improved using empirical
learning approach. The data collected during the attacking exercise were analysed,
using various measures, to detennine the effectiveness of the deception in the
honcypot network created using honeyd. The results indicate that the attackers were
deceived into believing the honcynet was a real network which instead was a
deceptive network.

2

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief"

i. incorporate without acknowledgement any material previously submitted/or a

degree or diploma in any institution of higher education;

ii. co11tai11 any material previously published or written by another person except

where due reference is made in the text,· or

iii. colltain any defamatory material.

Signature

Date July 2003

3

Table of Contents

ABSTRACT ... 2

ACKNOWLEDGEl\tlENTS ... , 8

1, INTRODUCTION ... 9

2. LITERATURE REVIEW ... 11
2.1 DENIAL AND DECEPTION .. 11

2.1. I Defi11itio11s ... 11
2./.2 The Process ofDeceptton .. 12
2.1.3 Structure of Deception .. 14
2.1.4 Deception i11 Nature .. 16
2.1.5 Military Deception .. 17
2.1.6 Compute,· Deception ... 20

2.2 OVERVIEW OF NETWORK MODELS AND PROTOCOLS ••.•........••••••••..••.••...••••••••••.••••••...•••••.•••• 26
2.2. I ISO 7 Layer Network Model .. 26
2.2.2 TCP/IP Internet Layering Model .. 28
2.2.3 IP: Internet Protocol ... 31

2.2.3.1 IP Header ... 31
2.2.3.2 IP Routing .. 33

2.2.4 TCP: Transmission Control Protocol ... 35
2.2.4.J TCP Hcader .. 36
2.2.4.2 Connection and Tcrmination .. 37
2.2.4.3 TCP State Machine .. 39

2.2.5 Security Issues with TCP/IP .. 41
2.2.5.1 TCP Sequence Number Prediction ... 41
2.2.5.2 JCMP attack .. .42
22.5.J SMURF Attack .. 43

2.2.6 TCP/lP Fi11gerprinti11g .. 45
2.2.6. ! Classical Mcth9ds45
2.2.6.2 TCP/IP Fingerprinting with Nmap v 3.046

2.3 HONEYPOTS .. 50
2.3.I tt'hat are Honeypots and Honeynet? ... 50
2.3.2 Value ofHoneypots ... 52
2.3.3 Types oJHoneypots ... 55

2.3.3.1 BackOfficcr Friendly (BOF) 55
2.3.3.2 Specter•.....................•............................•..•..........................•.•...•...................•.....•.......... 55

2.3.3.J Homcrnade Honcypots ... 56
2.3.J.4 Honeyd ... 56
2.3.3.5 Mantrap57

2.3.4 Concept of Honeyd .. 59
2.3.4.1 Honeyd Architecture .. 60
2.3.4.2 Pcrsonalitics ... 61
2.3 .4.3 Libraries ... , 62

2.3.5 Methods for deployment of Honeypots .. 62
2.3.5.1 Deception Serviccs .. , ...•..•.. ,•......... , 62
2.3.5.2 Weakened Systcms ... 63
2.3.5.3 Hardened Systems .. 64
2.3.5.4 User Mode Servers .. , .. 65

2.3.6 How Honeynet is created? .. 66
2.3.6.1 Data Control .. , 66
2.3.6.2 Data Capture .•.. , •...................................... 67

2.3. 7 Co11c/11sion ... 68

3. METHODOLOGY ... ,, ... 69

3.1 INTRODUCTION .• , ... , .• , ... 69

3.2 LITERATURE REVIEW ON RESEARCH DESIGN ... 69

3.3 WHEN ARE LABORATORY EXPERIMENTS USED? .. 72

3.4 RESEARCH PROCESS ... , 7 4

3.5 ELEMENTS OF THE LABORATORY EXPERIMENTS ... 79

3.6 RA TIO NALE OF THE RESEARCH ... 80
3.7 EVALUATION OF RESEARCH METHODOLOGY ... 82
3.8 CONCLUSION .. 83

4, TOOLS FOR DAT A COLLECTION AND ANALYSIS ... 85

4.1 SNORT ... 85
4.2 MYSQL .. 87
4.3 WEBMIN , , , ... ,, .. 88
4.4 ACID (ANALYSIS CONSOLE FOR INTRUSION DATABASES) ... 89
4.5 SYSLOG-NG ... 90
4.6 ETHEREAL .. 91
4.7 TCPDUMP .. 92
4.8 NMAP .. 92
4.9 GFI LAN GUARD NETWORK SECURITY SCANNER ... 93
4.10 ANALYST NOTEBOOK 6 .. 94
4.11 CONCLUSION .. 95

5. OPERA TING SYSTEM (OS) FINGERPRINTING .. 96

5.1 OVERVIEW .. 96
5.2 METHODOLOGY .. 96
5.3 HONEYD CONFIGURATION .. 98
5.4 TEST RESULTS .. 100
5.5 DlSCUSSION .. 101
5.6 CONCLUSION .. 102

6, THE HONEYPOT IMPLEMENTATION .. 103

6.1 GOALS .. 103
6,2 SELECTING A HONEYPOT 105

6.2.J Interaction Level ... 105
6.2.2 Commercial versus Homemade or fi"eeware Soflltions ... 108
6.2.3 Operating/System Platform ... 109

6.3 DETERMINING THE NUMBER AND LOCATION OF HONEYPOTS .. 110
6.4 CONCLUSION .. 116

7. FIRST TEST RESULTS ON HONEYD 0.4A ... 117

7.1 OVERVIEW .. 117
7.2 ACIDANALYSIS ... 117
7.3 ETHEREAL ANALYSIS ... 126
7.4 NESSUSANALYSIS .. 128
7.5 FEEDBACK FROM ATTACKERS ... 132
7.6 IMPLICATIONS ... 133
7.7 CONCLUSION .. 134

8. SECOND TEST RESULTS ON HONEYD 0.5 ... 135

8.1 OVERVIEW FROM FIRST TEST RESULTS .. 135
8.2 SECOND TEST RESULTS .. 138
8.3 FINDINGS FROM LOG FILES .. 147
8.4 ETHEREALANALYSIS ... 148
8.5 ANALYST NOTEBOOK 6GRAPHS ... 151
8.6 FEEDBACK FROM ATTACKERS .. 152
8.7 IMPLICATIONS ... ,. 152

9. THIRD TEST RESULTS ON HONEYD 0.5 .. 154

9.1 OVERVIEW FROM SECOND TEST RESULTS .. 154
9.2 THIRD TEST RESULTS ... 154
9.3 FINDINGS FROM LOG FILES .. , ... 162

9.4 ETHEREAL ANALYSIS ... 162

9.5 ANALYSTNOTEBOOK6GRAPliS ... l66

9.6 IMPLICATIONS ... 166

5

10. DISCUSSION AND CONCLUSIONS .. 167

11. REFERENCES ... ,, .. 172

APPENDIX A .. 181

SCREENS HOTS ... 181
A.l ACJD ... 181
A.2 Analyst Notebook 6 ... 182
A.3 GFI LANguard .. 182
A.4 Ethereal ... /83
A.5 Webmi11 .. /83
A.6 Nmap 184

APPENDIX B ,,,,, ... ,,,,,,, 185

GNU GENERAL PUBLIC LICE N SE .. 185

APPENDIX C .. 194

SCRI PTS ... 194
C./ honeyd.co11j(version Honeyd0.4a, usedfor 1'1 Test) ... 194
C.2 honeyd.conf(version lwneyd05a, usedfor 2"'1 and 3"1 Tests) .. 195
C.3 web.sh .. 197
C.4 web98.sh .. 198
C.5 SIIOl't.co11f .. 199
C.6 flp.sh .. 21 l
C.7 create_db.sq/ ... 214
C.B router-telnet.pf .. 217

APPENDIX D ,,,,, ,,, ... 219

PAPER PUBLISHED ... 219

APPENDIX E ,,,,,,, ... ,,,,, ... 220

CONT ENTS O F CD ... 220

List of Figures

F !GU RE2.1: THE DECEPTION PLANNING PRO CESS .. 13
F IGURE 2.2: ST RU CTURE O F DECEPTION ... 14
FIGURE 2.3: THE ISO 7- LA YER REFERENCE MODEL FO R PROTOCOL Sonw ARE 26
FIGURE 2.4: T CP/IP PROTOCOL STACK ... 29
FIGURE 2.5: IP H EADER ST RU CTURE ... 32
F IGURE2.6: T CP HEADER ... 36
F !GU RE2.7: T CP CONNECTION ... 38
FIGURE 2.8: T CP CONNECTION TERMINATION PRO CESS ... 39
FIGURE 2.9: TCP STAT E MACHINE ... 40
FIGURE 2.10: SMURF A TT ACK 43
F IGURE 2.11: NETWORK DIA GRAM O F A IIONEYPOT DEPLOYED ON A DMZ TO DET ECT AI TACKS 51
FIGURE 2.12: TH E HONEYNET ... 52
FIGURE 2.13: COMPLEXIT Y VS. PERFO RMANCE GRAPH O F VARIOUS HO NEYPOTS 58
FIGURE 2.14: TRAFFIC TO HON EYD AND ITS V I RTUAL HON EYPOTS ... 59
FIGUR E 2.15: HONEYD ARCHITECTURE ... 61
F IGURE2.16: USER MODE SERVERS 65
FIGURE 3.1: THEO RETICAL FRAMEWORK: STAGES OF RES EARCH PRO CESS .. 74
F IGURE 4.1: TOOLS FO R DATA COLL ECTION AND ANALYSIS .. 85
FIGURE 4.2: SNO RT OVERVIEW ... 86
FIGURE5.1: T CP/IP F ING ERPRINTING RESULTS USING NMAP ... 101
F IGURE 6.1: DEPLOYMENT O F HONEYPOT IN A LA BORATORY NETWORK STRUCTURE 112

FIGURE 6.2: THE VIRTUAL HO NEYNET ... 113
FIGURE 6.3: ARCHIT ECTU RE OF DATA COLL ECTION MACHINE ... 116
FIGURE 7.1: ACID A NALYSIS .. 117

6

FIGURE 7.2: TRAFFIC PROFILE DY PROTOCOL USING ACID .. 125
FIGURE 7 .3: PROTOCOL HIERARCHY STATISTIC OF TCPDUMP.LOG.1045547976 126
FIGURE 7.4: MOST DANGEROUS SERVICES ON THE NETWORK ... 129
FIGURE 7 .5: SERVICES THAT ARE THE MOST PRESENT ON THE NETWORK .. 129
FIGURE 7 .6: MOST DANGEROUS HOST ON TO THE NETWORK ... 131
FIGURE 8.1: IMPROVED HONEYNET ARCHITECTURE ... 137
FIGURE 8.2: ACID ANALYSIS ... 138
FIGURE 8.3: TRAFFIC PROFILE BY PROTOCOL USING ACID .. 146
FIGURE 8.4: PROTOCOL HIERARCHY STATISTICS OF TCPDUMP,LOG.1048208266 148
FIGURE 8.5: PROTOCOL HIERARCHY STATISTICS OF TCPDUMP.LOG.1048298249 150
FIGURE 9.1: ACID ANALYSIS ... 154
FIGURE 9.2: TRAFFIC PROFILE BY PROTOCOL USING ACID .. 160
FIGURE 9.3: PROTOCOL HIERARCHY STATISTICS OFTCPDUMP.LOG.1053944062 163
FIGURE 9.4: UDP PACKET ... 164
FIGURE 9.5: PACKET CAPTURED SHOWING SCRIPT COMMAND USED TO RETRIEVE INFORMATION 164
FIGURE 9.6: PROTOCOL HIERARCHY STATISTICS OFTCPDUMP.LOG. 1054023963 165

List of Tables

TABLE 2.1: SUMMARY OF DIFFERENT TYPES OF HONEYPOTS .. 58
TABLE 3.1: RESEARCH METHODOLOGIES .. 71
TABLE 3.2: RESEARCH METHODS ... 71
TABLE 5.1: NMAP SCANNING RESULTS ... 100
TABLE 6.1: HONEYPOT LEVEL OF INTERACTION ... 108
TABLE 6.2: THE HONEYPOTSYSTEM CONFIGURAT!ON ... 112
TABLE 6.3: SUMMARY OFIP ADDRESSES ALLOCATED ON CORPORATE NETWORK 114
TABLE 6.4: DATA COLLECTION MACHINE SPECIFICATION .. 115
TABLE7.1: 11 ALERTCATEGORlES .. 118
TABLE 7.2: MOST 5 FREQUENT ALERTS ... 124
TABLE 7.3: LIST OF PORT NUMBERS WITH OCCURRENCE OF ALERTS ... 125
TABLE 7.4: LlSTOF HOSTS WIT!! COMMON SECURITY HOLE ON PORT 80 .. 131
TABLE 8.1: SUMMARY OF IP ADDRESSES ALLOCATED ON CORPORATE NETWORK 137
TABLE 8.2: 14 ALERT CATEGORIES ... 139
TABLE 8.3: MOST 5 FREQUENT ALERTS ... 146
TABLE 8.4: L!STOF POPULAR DESTINA T!ON PORT NUMBERS W!Tli OCCURRENCE OF ALERTS 147
TABLE 9.I: 1 2ALERTCATEGORIES ... 155
TABLE 9.2: MOST 5 FREQUENT ALERTS ... 159
TABLE 9.3: LIST OF POPULAR DESTINATION PORT NUMBERS WITH OCCURRENCE OF ALERTS 161

7

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor Mr. Craig
Valli for his continuous guidance and support during the research and preparation of
this dissertation. His inspiring and encouraging supervision has guided me to a deeper
understanding of research work. Also, his valuable comments during the entire work
have made this dissertation possible.
I am grateful to Assoc. Prof. William Hutchinson for his expert comments on
methodological and philosophical aspects of this dissertation. I would also like to
thank Lecturer Justin Brown for reviewing my thesis before the submission. I also
want to thank rest of the Computer Security Research Group members who time to
time provided me with their valuable feedback and suggestions during the weekly
meetings.
Special thanks to all the participants who participated in this research. Their support
and cooperation made this research a success.
Finally, I would like to thank my parents and friends for their continuos support and
encouragement during the entire course of my study in Australia.

1. Introduction

In the last few years, the networking revolution has finally come of age. The Internet
is purported to provide limitless possibilities and opportunities but on the other side
also increases the risks of malicious intrusions by hackers or malicious attackers
community (Sundaram, 2001). In the rest of the thesis, the tenn 'hackers' will be used
to refer to malicious attackers.
It is very important to understand, design and implement some fonn of security
mechanism to prevent or detect unauthorised users. These intrusions can be detected.
Due to the increased attempts of intrusion into systems, the concept of 'honeypot'
systems was developed (Spitzner, 2002). Honeypots are used to trap and decode
attack methods used by the hackers (Brenton, n.d; Klug, 2000; Spitzner, 2002).
Honeypots can provide a deceptive defence mechanism in which the attackers are
deceived into believing they are intruding into a real production system. The correct
deployment, monitoring and analysis of honeypots help in increasing our
understanding of attackers' modes of operations and tools in details.
Deception can be referred as the state of being deceived or misled (Webster's Revised
Unabridged Dictionary, 1998). It can be considered as creation of false environment
to fool or deceive people. Honeypot systems are meant to create a false computing
environment in order to keep away the attackers from the real network environment
dnd entrap them in a false system. Honeypots are designed to audit the activity of
intruder, save log files and record events like processes started, changes or deletion of
files and key strokes.
The significance of this research is to improve the defensive capability of Honeynet
networks. This research is significant to universities, government organisations,
educational institutions who will be able to use the data generated from this research
as a platfonn to continue with further research into computer and network security.
Private organisations or individuals can use this research for deploying this or similar
network architecture into their networks with the aim of making it more secure. The
outcomes of this research will allow the organisations and individuals to understand

9

and learn about various, unfamiliar attacks which may be captured on the
implemented honeynet.
The purpose of this research is to improve the level of deception presented to
attackers in a honeypot design. To achieve a higher level of deception the designed
deception should be regularly improved or updated with new deceptive services. This
can be achieved by hardening the deceptive honeypots and testing the effectiveness of
the deception using empirical learning approach. The empirical learning approach
means by testing the systems in a cyclic manner where results of each tests depends
on the other. This will help us in improving the ability of the deceptive honeypots to
gather attack intelligence while the network is being probed or attacked.
Following are the two mam research questions outlined to achieve the desired
purpose of the research:

1. What factors af fect the effectiveness of deception in network environments
when using honeypot systems?

2. How can these factors be enhanced to perfonn a more effective level of
deception?

This thesis starts with a detailed literature review in chapter 2. This literature review
includes the concepts of deception in everyday life to cyberspace, detailed description
about TCP/IP and its security issues and the concept ofhoneypots. Chapter 3 presents
the detailed methodology adopted by the researcher. Chapter 4 discusses various tools
used for data collection and analysis purpose. Operating system fingerprinting results
are discussed in chapter 5.

The honeypot implementation is explained in chapter 6. Chapter 7-9 discusses the
analysis of results obtained in first, second and third testing respectively. Chapter 10
presents the final discussion and conclusions. The included CD with the thesis
contains the charts generated by Analyst Notebook 6 from using the data from honeyd
log files.

10

, '

2. Literature Review

2.1 Denial and Deception

This section of the chapter discusses the role of denial and deception in various fonns.

Section 2. 1 . 1 defines the tenns "denial" and "deception". Section 2.1.2 describes the

process of deception used for implementing a successful deception. Section 2. l.3

discusses the structure of deception. Section 2.1.4 describes how deception exists in

various fom1s in nature. Section 2.1.5 describes the role of deception in military.

Finally, section 2.l.6 describes the role of deception in infomrntion sy5tems or

computers.

2.1.1 Definitions

There are many different ways by which "denial" can be defined. According to

Shulsky (Godson & Wirtz, 2002, p 15), "denial" refers to the attempt to block all

infonnation channels by which an enemy could learn some truth, thus preventing him

or her from reacting in a timely manner. For our purposes, it can be referred as

safeguarding the infonnation (digital infonnation) from an adversary.

"Deception" by contrast is defined as the deliberate alteration of data or a situation's

context to promote a desired outcome (Hutchinson & Warren, 2002). It is an attempt

to cause the person to believe something which is not true.

As reported by Gerwehr and Glenn (2000), Whaley (1 969) has defined deception as

"infonnation designed to manipulate the behaviour of others by inducing them to

accept a false or distorted presentation of their environment - physical, social or

political." Deception exists not only among humans but also in animals and plants. In

the animal and plant kingdoms, deception is among the most effective and widespread

tools for survival. For example, when confronted by a predator, the Sepiola squid

inserts a cloud of ink, which is colored and shaped just like the squid, between itself

and the predator. The squid then changes color and darts away, leaving a confused

predator in its wake (Gerwehr & Glenn, 2000).

1 1

Deception is a tactic to survive and lo defeat the motives of attackers. Cohen, et al.
(2001) quotes from Sun Tzu lhal ""A/1 wmfare is based 011 deception", which means
that all warfare should be based on deception. Deception is not new to warfare. Even
the great epics describe deception having been used in wars. Mythology talks about it
every time. From the death of Hercules to the defeat of the Spanish Armada to World
War II to Operation Desert Stonn, deception has been used widely.
2.1.2 The Process of Deception

The process of deception is in many ways, like a chess game. If the person doing the
deceiving is more skilled (or simply docs a better job) than the person being deceived,
then the deception will be successful. In deception, Uust as in chess), some encounters
will end in "stalemate" in that the person being deceived did not get enough
information to really determine that a deception had occurred.
The actual deception process requires 3 main elements as defined by Gerwehr &
Glenn (2000):

• Objective
• Target
• Story

Initially to have a successful deception, the objective to create that deception should
be very clear in mind. This could range from simple survival to gaining strategic
surprise. The next step should be to have an idea of what the deceiver wants the
enemy to do in order to achieve that objective. This could be us simple as gelling the
enemy to focus on location A instead of location B. For instance, in a Honeypol
(Spitzner, 2003) environment the objective of the deceiver is to create a deceptive
network so that the malicious attacker is kept away from the main produclion
network.
Aller identifying the objective for creating the deception, the next step is to identify
the target of the deception. Aller the target is identified, the deceiver parlays
intelligence about the target into a profile of that person's beliefs, intentions and

12

capabilities. A wel\-conslrucled deception is built around that intelligence and

exploits it. In a Honeypot environment, the network should resemble a nonnal

corporate network with some common vulnerabilities in order to attract the malicious

attackers. The objective of implementing a honeypot is to identify the intentions of the

malicious attackers for example, what they intend lo do once having an access to the

network. Also it helps in understanding what their capabilities are, in tenns of

accessing and attacking the networks or hosts on the network, what type of attacks

they are capable of pcrfonning such as, denial of service attacks or password cracking

ctc (Spitzner, 2003).

Knowing the objective and the target of deception, the deceiver should fonnulate a

stOIJ' that must be told to the target to produce some misperceptions. The story is told

through means of deception, such as camouDage or disinfomrntion. In a Honeypot,

deceptive services and operating systems arc implemented to create the misperception

in the mind of the attacker and keep him or her busy in the deceptive network to

safeguard the main production network (Spitzncr, 2003). This network may be

equipped with various hosts running multiple operating systems with some open

vulnerabilities and services to attract auackcrs. Such deceptions need to be carefully

designed so that the total deception created to attract auackers does not look

suspicious. If the attackers become suspicious then lhcy may leave the honeypol

immediately and this may not resolve the purpose of the research. The complete

Deception planning process is illustrated in Figure 2.1 below:

Deception planning process

• • •
Objective : Target Story •

Means ofDeecption
• Camouflage/Concealment/cover
• Demonstration/feint/divrrsion
• Display/decoy/dummy
• Mimicry/spoofing
• Dazzling/sensory saturation
• Disinformation/ruse

Figure 2.1 : The Deception Planning Process

(Adopted from C.,rwehr & Glenn, 2000, p. 28)

1 3

The actual execution of the deception planning process moves in the reverse direction:
infomrntional elements being manipulated are transmitted, creating the story, in the
mind of target, to achieve the objective.

2.1.3 Structure of Deception

Deception can be categorised in two types: hiding the real and showing the false

(Bowyer, 1 982). Hiding can be further divided into masking, repackaging and
dazzling. Showing can be further divided into mimicking, inventing and decoying.
The figure 2.2 below illustrates the structure of deception:

DECEPTION

•
HIDING SHOWING

• • • • • • •
MASKING REPACKAGING DAZZLING MIMICKING INVENTING DECOYING

Figure 2.2: Structure of Deception
(Adopted from Bowyer, 1982)

Masking occurs when the real is hidden by blending with a background, integrating
itself with surroundings. It is a type of camouflage: battleships painted grey to blend
with the ocean. Steganography is a good example of masking in relation to computer
and network security. Messages are embedded and hidden inside an image and it is
very hard to identify if the image is encrypted with some hidden message.
Repackaging occurs when the real is hidden by a new wrapping. The concept of
repackaging does exist over the web (Hutchinson and Warren, 2002). Users are
mislead to believe which is not true. For example, most of the computer viruses are
packaged into emails which appears to be genuine or with desirable contents. Like I

14

LOVE YOU virus which spread using the address book of the affected computer with
a false love letter along with it. Such disinfonnation can be very destructive as
Internet has become the important part of the corporate networks. Therefore it is very
important to be aware and be prepared to avoid such deceptions in a network
environment.
Dazzling occurs when an object can neither"blend in the background by some fonn of
masking nor be repackaged effectively then the qualities of the object may be changed
in such a way as to mystify. All military and diplomatic codes and ciphers are a fonn
of dazzling (Bowyer, 1982). Dazzling over the internet can be co-related with causing
denial of service attack over a network. The victims' network resources are mainly
used in coping with the attack rather than its nonnal operation. Dazzling can also be
used for sending Trojans while causing a dazzling DoS attack.
Mimicking involves creation of a replica of reality with one or more characteristics of
the real. It is similar to masking but nothing is hidden,just to hide the reality of what
is there. The most famous example of mimicking occurred in Canada when an
illiterate pensioner died in Toronto several years ago. His family cut off his thumb
and preserved it in formaldehyde, and settled down to some years of monthly checks
endorsed as usual with his thumb print. In inventing, false is displayed by creating an
alternative reality. A false document appears real but it is not. Decoying openly shows
something, which is not true. For example, dummy tanks used successfully by the
Serbs in the recent Balkans' conflict to confuse the attack aircraft. (Bowyer, 1982;
Hutchinson and Warren, 2002). All the above three, mimicking, inventing and
decoying, can be extensively used in honeypots/Honeynets. As in Honeynets, a
replica of real network is created and a false network environment is created which
looks very real to the intruder. This network emulates various services and operating
systems which resembles to the real services and operating systems.
Deception has been in existence not only among humans but also in plants and
animals. In order to understand the phenomenon of deception among the Infonnation
Systems or computers, it is important to understand the origin of deception from
nature which is adopted into the military and computer systems deception.

15

2.1.4 Deception in Nature

Every species' in the environment has its predators and its prey. They all use

deception in one form or another, either to protect themselves from the predator or in

search of their prey for their living. According to Bowyer (1 982), deceptive behaviour

and physical distortion in various species are determined by physical structure and

genetic makeup that has emerged from a process of selection over the course of

evolution or possibly a single moment of mutation.

Many types of deception are employed in nature such as masking, repackaging,

dazzling, mimicking, inventing and decoying as illustrated in Figure 2.2.

Biological Examples of deception in nature

Masking

Certain animals have characteristic to blend in the surrounding to 'hide' them. As in

case of polar bear, whose fur creates an illusion to appear white, due to the nature of

reflection, to masks its presence by blending with its surrounding environment, snow

(Polar Bear International, 2002)

Repackaging

Hiding from real by repackaging can be perceived in various ways and can be either

dangerous or harmless. Chameleons have characteristic of changing colours of their

skin surface according to the surrounding background (Carthy, 1972).

Dazzling

There are situations when masking and repackaging does not help the victims to hide

themselves from the predator. In such situations, dazzling is a mode of deception

which protects the victim from the attacker or predator. A good example of dazzling

could be when a predator attacks an octopus. Under attack the octopus shoots out ink

that dazzles the attacker and the octopus's withdraws to safety. Since the blue ink is

not venomous, it temporarily impairs the smell senses of the attacker while the

octopus flees to safety (Haveeru Daily, 2003).

16

Mimicking

Mimicking is used by animals not only to hide them but also for their own advantages
as well. For example, an anglerfish looks like a rock except for a long filament
waving before its mouth. The prey may lure close to the fish to investigate about the
.filament and assume that there is nothing but a piece of rock (Bowyer, 1982, p51).
The cuckoo bird abandons its eggs in the nests of other birds. These eggs are small in
size and mimic the colour of the nested bird. Therefore, the cuckoo bird's eggs are
fledged by the nesting bird rather than the real biological parent and the host is
deceived.
Inventing

Inventing is used by animals when mimicking is not sufficient to protect them or hide
them. Further from the previous example, anglerfish also invents a new reality. Other
than having a body like rock and a long filament, anglerfish simulates a small fish
from a long appendage on the forehead of the female anglerfish acting as bait,
motioning back and forth, and glowing from the reflection of millions of light
producing bacteria (Bowyer, 1982; Doran, 2000; Monterey Bay Aquarium, 2003).
Decoying

A decoyed deception is used to distract predators from the discovered real. For
example, when a bird fears for her brood, she confuses by fluttering away or decoying
by looking left and running towards right, misdirecting the predator away from the
nest. Once the decoy is successful in distracting the predator away from the siblings,
the mother bird takes flight leaving predator away from the siblings.

2.1.5 Military Deception

Like animals, humans do need to make decisions to survive. In the realm of conflict
and war, deception is both applicable and valuable. It supports in developing decoys
to deflect the enemy attention away from major attacks. Military deception aims to
deliberately induce misperception in another for tactical, operational, or strategic

17

advantage (Gerwehr & Glen, 2000). According to Joint Chiefs of Staff (JCS)

Memorandum of Policy (MOP) 1 16 mentioned in Cohen (2001):

"Historically, military deception has proven to be of considerable value in the

attainment of national security objectives, and a fundamental consideration in the

development and implementation of military strategy and tactics. Deception has been

used to enhance, exaggerate, minimize, or distort capabilities and intentions,· to mask

deficiencies; and to otherwise cause desired appreciations where conventional

military activities and security measures were unable to achieve the desired result.

The development of a deception organization and the exploitation of deception

opportunities are considered to be vital to national security. To develop deception

capabilities, including procedures and techniques for deception staff components, it is

essential that deception receives continuous command emphasis in military exercises,

command post exercises, and in training operations. "

Deception is used to adversely affect an opponent's decision-making process. It can

be employed against an entire enemy anny or alternatively could be applied against
anyone at aII unfriendly to the deceiver.

There are many collections of information on deception in war. As mentioned by
Cohen (2001) the work of Whaley (1969), which includes details of 67 military

deception operations between 1914 and 1 968. Dunnigan and Nofi (1995) also

reviewed the history of deception in warfare and categorised them as concealment,

camouflage, false and planted infonnation, ruses, displays, demonstrations, feints,

lies, and insight.

According to Fowler and Nesbitt (1995), there are six general principles for effective

tactical deception in warfare (Rowe & Rothstein, 2003):

1 . Deception should reinforce enemy expectations.
2. Deception should have realistic timing and duration.
3. Deception should be integrated with operations

4. Deception should be coordinated with concealment of true intentions

5. Deception realism should be tailored to needs of the settings.

1 8

6. Deception should be imaginative and creative.
Applying these principles to infonnation systems:
Principle 1: In infonnation systems, systems should be designed in a controlled
manner with collecting intelligence about information resources and propagating the
attacks to neighbouring systems. The deception should be designed in order to pretend
to aid the attackers.
In infonnation systems, honeypots are deployed to deceive the attackers and keep
them busy in honeypot (Spitzner, 2003). Therefore, honeypots should be able to
provide the attacker with the necessary services and features which could reflect to
them as a legitimate network and thus they are able to attack this network successfully
without getting suspicious.
Principle 2: Deceptions should not be too slow or too fast in compare to the activities
they are suppose to stimulate. For example, in honeypots there could be some delay in
data transfer from one system to another in a network environment but it should not
take too much time too so that an attacker becomes suspicious or gets discouraged in
accessing the system.
Principle 3: This principle states that deception should be integrated with operations.
When deploying honeypots, the main operation in this context is to gather infonnation
regarding the hackers (ibid, 2003). Therefore, honeypots should not serve to nonnal
genuine users but malicious attackers by encouraging them to log in and divert their
resources. Recording such activities could provide intelligence about attack methods.
Principle 4: Deception should be coordinated in a careful manner. It should not give
the attacker any suspicion that he or she has been deceived. For example, if from the
honeypot the attacker downloads any file then all the properties of file download
should be maintained in the complete file system such as directoryMlisting utility, file
editors, file backup routines, web browser and execution monitor. This will reduce the
chances of attacker getting suspicious and thus honeypot will be able to serve its
purpose.

19

Pril,ciple 5: It is always not necessary to create or develop a complete detailed
deception. For example, most of the attackers may just be interested in downloading
their programs or scripts used for attacking systems and installing them, therefore it
will be important to have a deceptive file-download utility such as FTP. But it may be
unlikely for an attacker to archive his or her files so the archive utility need not be
deceptive in nature. This may provide the simplicity to the honeypots without
crowding them with unnecessary services and features. Such simplistic honeypots are
also easy to maintain.
Pri11ciple 6: This principle is not very easy to implement in infonnation systems as
responses to most of the techniques used in infonnation systems are predictable.
Methods from artificial intelligence may suggest few ways to produce convincing
simulated activity in creative ways.
The layers of deception are implemented with careful consideration of the adversary.
Different adversaries penetrate and fall prey to deceptions in numerous ways
depending upon their knowledge, experience, capabilities, detennination, and
resources (Gerwehr & Anderson, 2000).

2.1.6 Computer Deception

Since early 90's the use of deception in infonnation systems have come to the main
stream. Following are the few studies conducted during that period are (Cohen, 2001):

• In 1 991 , paper published by researchers of AT&T about creation of 'Jail' to
track an attacker to observe their actions (Cheswick, n.d).

• An approach to using deceptions for defence by customizing every system to
defeat automated attacks was published in 1992 (Cohen, 1 992);

• Descriptions of Internet Lightning Rods in 1996. (Cohen, 1996)
Since then deception has increasingly been explored as a key technology area for
innovation in information protection. There has been some follow-on-studies,

20

technologies and increasing adoption of technical deceptions for defence of
information systems. This includes:
• Commercial and Rion-commercial Deception Products: Development of

various deception products like Deception Tool Kit (DTK), Honeyd, Mantrap and
Spector.

• The HoneyNet Project: The Honeynet Project (Anonymous, 2002b, Spitzner,
2002) is a non-profit research organization of security professionals dedicated to
information security. Its goal is to learn the tools, tactics, and motives of the
blackhat community and share these lessons learned.

• The RIDLR: The Re-configurable Intrusion Detection Laboratory Research
(RIDLR) is a project launched from Naval Post Graduate School designed to test
out the value of deception for detecting and defending against attacks on military
information systems

• RAND studies: In 1999, RAND completed an initial survey of deceptions in an
attempt to understand the issues underlying deceptions for information protection.

Computers are automated machines created by humans and cannot really be called
'aware' in the sense of people. Therefore, when deception is used against computers,
it is actually used against the skills of human(s) that design, program and use the
computer. Computers are better in detecting the deception than people because they
posses extraordinary analysis capability and the logical processes used by computers
are normally quite different than the processes used by people. This provides some
level ofredundancy into the system.
Cohen (2001) model of computer deception is based on Cohen's "Structure of
Intrusion and Intrusion Detection" (Cohen, 2000b). In this model, a computer system
and its vulnerabilities are described in terms of intrusions at the hardware, device
driver, protocol, operating system, library and support function, application, recursive
language and meaning vs. content levels. The levels are all able to interact, but they
usually interact hierarchically with each level interacting with the ones just above and
below it.

21

This model is based on the notion that at every level of the computer's cognitive
hierarchy signals can either be induced or inhibited. Deception detection and response
capabilities are key issues in the ability to defend against deceptions.
Hardware Level Deceptions
The hardware of the system can be easily altered which may result in arbitrarily
different behaviour than expected. Intrusion detection systems can be used to
determine the improper modifications to hardware which are primarily based on built­
in self-test mechanisms such as the power on self test (POST) routine in a typical
personal computer. These mechanisms are designed to detect fault types in hardware
not the malicious alterations. Thus deception of these mechanisms is easy to do
without altering their value in detection fault type.
Intrusions can also be the result of the interaction of hardware of different sorts rather
than the specific use of a particular type of hardware. Hardware-level deceptions
designed to induce desired observables are relatively easy to create and hard to detect.
The problem with using hardware level deception for defence against serious threat
types is that it requires physical access to the target system or logical access with
capabilities to alter hardware level functions.
Driver Level Deceptions
Drivers who usually have unlimited hardware access and can be installed from or by
applications are nonnally ignored by intrusion detection and other security systems. A
driver level of deception is capable of causing the driver to process items of interest
without passing any information to other parts of the operating environment (Cohen,
2001).

From a defensive point of view, drivers are good targets. For example, a driver may
be required to be installed to gain access to defended sites. Applications like
RealAudio, QuickTime, HotBar require their individual drivers to be installed before
anyone can access these programs. Once the target loads the required driver, hardware
access is gained and exploits can be launched. This technique is offensive in nature.

22

Protocol Level Deceptions
Various flaws in the IP protocol and in cryptographic protocols can be exploited for
intrusion purposes. For example, TCP/IP protocol is widely used for data
communication therefore is most prone for attack. It carries data from one host to
another so an intruder may try to exploit the vulnerabilities associated with this
protocol which may give access to the victims machine or alter the data. Other than
few known flaws that are part of active exploitations, most current intrusion detection
systems do not detect such vulnerabilities. Therefore, the more feasible approach is to
differentiate between protocols that are allowed and those that are not. This can be
further improved by differentiating based on location, time, protocol type, packet size
and makeup and other protocol level information. There are also interactions between
hardware and protocols, therefore an exploit in hardware device may result in
arbitrary behaviour of a particular protocol.
Defensive protocol level deceptions are easy to develop and hard to defeat. Deception
Tool Kit (DTK) (http://www.all.net/dtk) and D-WALL both use protocol level of

deceptions to great effect and are simple to implement. Most intelligence gathering
starts at protocol level.
Operating System Level Deceptions
Since operating systems protection can be circumvented in a number of ways,
therefore there are various intrusions possible at operating system (OS) level.
Operating systems can have complex interactions with other operating systems in the
network or environment as well as with different programs operating within OS. It
may also have some complex interactions with protocols with hardware conditions,
and these interactions are extremely complex to analyse. Thus deceptions based on
mixed levels including the OS are likely to be undetected as deceptions (ibid, 2001).
Operating systems are the most common point of attack against systems today as they
possess tremendous amount of cover and capability. They have unlimited access
within the system and the ability to control the hardware so as to yield arbitrary
external effects and observables. For example, with the knowledge of the operating
system type and version, it becomes an easy target for the attacker to attack the
machines using the exploits associated with that type of operating system. If an

23

attacker knows that the victim machine is running on Windows operating system, he
or she can narrow down their attacks which are only associated with windows based
machines. To have a defensive deception at the target's operating system level
requires offensive action on the part of the deceiver. Thus other level of deceptions
needs to be exploited to have a defensive deception on OS.
Library and Support Function Level Deception

Libraries and support functions are often embedded within a system and are largely
hidden from the programmer so that their role is not as apparent as either operating
system calls or application level programs. For example, programs written in C
language has embedded sets of functions that automate various other functions. The
high level of interaction of libraries is a symptom of the general intrusion detection
problem. Many current operating systems have the ability of loading libraries as
device drivers which may provide hardware controls.
Libraries functions as defensive deceptions can be of big help but due to the limitation
of libraries in tenns of their effectiveness they may not be able to provide a secure
level of defensive deception.
Application Level Deceptions
Applications provide many new opportunities for deceptions. They always trust the
data they receive so false content can be easily generated. Known attack detection
tools and anomaly detection have been applied at the application level with limited
success (ibid, 2001).
The interaction of an application level with any library level may allow remote user to
cause any unexpected malicious behaviour within the system. It is common for many
programmers to miss the error detection and implementations at system and library
call level. This may result in unexpected halt of the application or may pass wrong
values to another application. Therefore, application level defensive deceptions are
major area of interest because applications tend to directly influence the decision
processes made by attackers. An Application level deception might be used to cause a
system that is overrun to act on the wrong data.

24

While "denial" and "deception" are separate terms that can be distinguished

conceptually they are however closely intertwined in practice. For a successful

deception to occur, it must include denial. To make an enemy believe in the cover

story placed infront of him or her, infonnation that would reveal the truth must be

denied to him or her. It is may be impossible to imagine a deception effort that does

not involve denial (Godson & Wirtz, 2002).

25

2.2 Overview of Network Models and Protocols

This section of the chapter discusses the structure of TCP/IP protocol and how the

TCP/IP connection and termination is implemented. Also it discusses various
vulnerabilities associated with the TCP/IP protocol.
2.2.1 ISO 7 Layer Network Model

The standard model for networking protocols and distributed applications is the

International Standard Organization's Open ��'stem Interconnect (ISO/OSI) model.

The model is generic and applies to all network types, not just TCP/ IP, and all media
types, not just Ethernet. It defines seven network layers as shown below.

7

6

5
4

3

2

Application

Presentation

Session
Transport

Network

Data Link

Physical

Figure 2.3: The ISO 7-Layer Reference Model for Protocol Software

(Parker, 2000; Comer, 1995)
Layer 1 w Physical

Physical layer defines the cable or physical medium itself, e.g., Thinnet,

Thicknet, unshielded twisted pairs (UTP). All media arc functionally
equivalent. The main difference is in convenience and cost of installation and
maintenance. Converters from one media to another operate at this level.

26

Layer 2 - Data Link
Data Link layer defines the fonnat of data on the network. A network data
frame, aka packet, includes checksum, source and destination address, and
data. The largest packet that can be sent through a data link layer defines the
Maximum Transmission Unit (MTU). The data link layer handles the physical
and logical connections to the packet's destination, using a network interface.
A host connected to an Ethernet would have an Ethernet interface to handle
connections to the outside world, and a Joopback interface to send packets to
itself.

Layer 3 - Network
It provides a means for communicating open systems to establish, maintain
and tcnninate network connections. The IP protocol lives at this layer, and so
do some routing protocols such as Address Resolution Protocol (ARP). ARP
is used to map the IP address to its hardware address. All the routers in a
network arc operating at this layer. IP is responsible for routing packets from
one network to another. Network layer may have to break large packets, which
arc larger then their MTU, into smaller packets and the host receiving the
packets may have to reassemble the fragmented packet (Comer, 1995; Parker,
2000).

Layer 4 - Transport
The transport layer is responsible for the end-to-end integrity of transmissions.
Unlike the Data Link Layer, the transport layer is capable of providing this
function beyond the local LAN segment. It can detect packets that are
discarded by routers and automatically generate a retransmit request (Comer,
1995; Rodriguez, 2001).
Transport layer is also capable of re-sequencing of packets that may have
arrived out of order. This can happen for a variety of reasons. For examples,
the packets may have taken different paths through the network, or some may

27

have been damaged in transit. In any case, the transport layer is capable of
identifying the original sequence of packets, and must put them back into that
sequence before passing their contents up to the Session Layer (Comer, 1995).

Layer 5 - Session
It provides for two communicating presentation entities to exchange data with
each other. Another service that is offered as a part of the Session Layer might
include data synchronization. Checksums may also be included at the Session
Layer as a part of data synchronization

Layer 6 - Presentation

This is where application data is packed or unpacked, ready for use by the
running application. Protocol conversions, encryption/ decryption and
graphics expansion all takes place here.

Layer 7 - Application

Application Layer provides the interface between those applications and the
network's services. This layer can be thought of as the reason for initiating the
communications session. For example, an email client might generate a
request to retrieve new messages from the email server. This client application
automatically generates a request to the appropriate Layer 7 protocol(s) and
launches a communications session to get the needed files (Comer, 1995,
Parker, 2000).

2.2.2 TCP/IP Internet Layering Model

Like most networking software, TCP/IP is modelled in layers. This layered
representation leads to the tenn protocol stack, which refers to the stack of layers in
the protocol suite. (Rodriguez, 2001)

28

By dividing the communication software into layers, the protocol stack allows for
division of labour, ease of implementation and code testing, and the ability to develop
alternative layer implementations. Layers communicate with those above and below
via concise interfaces. In this regard, a layer provides a service for the layer directly
above it and makes use of services provided by the layer directly below it. For
example, the IP layer provides the ability to transfer data from one host to another
without any guarantee to reliable delivery or duplicate suppression. Transport
protocols such as TCP make use of this service to provide applications with reliable,
in-order, data stream delivery. The below figure 2.4 shows how TCP/IP protocols are
modelled in four layers (Rodriguez, 2001):

Applications Applications

Transport TCP/UDP

� i. ICMP
Internetwork IP

ARP/RAAP

Network Interface
and Network Interface

Harchvare and Hardware

Figure 2.4: TCP/IP Protocol Stack
(Rodriguez, 200 I)

Application Layer

The application layer is provided by the program that uses TCP/IP for
communication. An application interacts with one of the transport level
protocols to send or receive data. Each application program chooses a style of
transport needed, which can be either a sequence of individual messages or a
continuous stream of bytes. The application program passes data in the
required fonn to the transport level for delivery (ibid, 2001).

29

Transport Layer

The primary duty of transport layer is to provide communication from one
application program to another. Such communication is often called end-to­
end. The transport layer may regulate flow of infonnation. It may also provide
reliable transport, ensuring that data arrives without error and in sequence.
Multiple applications can be supported simultaneously. The transport layer
must accept data from several user programs and send it to the next lower
layer. Therefore, it adds additional information to each packet, including codes
that identify which application program sent it and which application program
should receive it, as well as a checksum (ibid, 2001).

Internetwork Layer

The internet layer handles communication from one machine to another. It
accepts a request to send a packet fonn the transport layer along with an
identification of the machine to which the packet should be sent. It also
handles incoming datagrams, checking their validity, and uses the routing
algorithm to decide whether the datagram should be processed locally or
forwarded. Finally the internet layer sends ICMP error and control messages
as needed and handles all incoming ICMP messages (ibid, 2001).

Network Interface Layer

The network interface layer, also called the link layer or the data- l ink layer, is
the interface to the actual network hardware. This interface may or may not
provide reliable delivery, and may be packet or stream oriented. In fact,
TCP/IP does not specify any protocol here, but can use almost any network
interface available, which illustrates the flexibility of the IP layer (ibid, 2001).

30

2.2.3 IP: Internet Protocol

IP is the protocol that hides the underlying physical network by creating a virtual
network view. It is an unreliable, best-effort, and connectionless packet delivery
protocol. There is no guarantee that an IP packet successfully gets to its destination.
IP is considered as best effort service because when something goes wrong, IP has a
simple error handling algorithm which throws away the packet and try to send an
ICMP message back to source (Steven, 1994).
IP does not maintain any state information about successive packets. Each packet is
handled independently from all other packets. The delivery of packets may not be in
order.

2.2.3.1 IP Header

The IP packet header consists of 20 bytes of data. An option exists within the header
which allows further optional bytes to be added, but this is not nonnally used. The full
header is shown below:

31

0 15 16 31

4-bit hcade 8-bit type or service 16-bit total length (in bytes)
length (TOS)

16-bit identification 3-bit 13-bit fragment offset
flags

8-bit time to live 8-bit protocol 16-bit header checksum
(TTL) 20

ytes

32-bit source IP address

32-bit destination IP address

Options (ifany)

data

(Steven, 1994, p34)
Figure 2.5: IP Header Structure

The following paragraph explains the structure of IP Header as explained by Steven
(1994). The header length is the number of32 bit words in the header, including any
options. Since it is a 4-bit field, it limits the header to 60 bytes. The type of service

field (TOS) is composed of a 3-bit precedence field, 4 TOS bits are unused bit that
must be 0. The 4 TOS bits are: minimize delay, maximize throughput, maximize
reliability and minimize monetary cost. Only 1 of these 4 bits can be turned on. If all
4 bits are O it implies normal service.
The total length field is the total length of the IP packet in bytes. Using this field and
the header length field, we know where the data portion of the IP packet starts and its
length. Since this is a 16-bit field, the maximum size of an IP packet is 65535 bytes.
This field also changes when the packet is fragmentised.
The identification field uniquely identifies each packet sent by a host. It normally
increments by one each time a packet is sent. It is also used during reassembly of

32

fragmented packets. The flag field is composed of a sequence of 3 flags used to
control whether routers are allowed to fragment a packet and to indicate the parts of a
packet to the receiver. The 1 3-bitfragmelll offset consist of a byte count from the start
of the original sent packet, set by any router which performs IP router fragmentation
(Steven, 1994; Comer, 1999; Parker, 2000).
The time-to-live field, or TTL, sets an upper limit on the number of routers through
which a packet can pass. It limits the lifetime of the packet. It is initialised by the
sender to some value and decremented by one by every router that handles the packet.
When this field reaches 0, the packet is dropped and the sender is notified with an
ICMP message.
The protocol identifies which protocol gave the data for IP to send.
The header checksum is calculated over the IP header only. It does not cover any data
that follows the header. A 2's complement checksum inserted by the sender and
updated whenever the packet header is modified by a router. Used to detect
processing errors introduced into the packet inside a router or bridge where the packet
is not protected by a link layer cyclic redundancy check. Packets with an invalid
checksum are discarded by all nodes in an IP network (Steven, 1994; Comer, 1999)
Every IP packet contains the source IP address and the destination IP address.

2.2.3.2 IP Routing

An important function of the IP layer is IP routing. An internet is composed of
multiple physical networks interconnected by computers called routers. Each router
has direct connections to two or more networks. A host computer usually connects
directly to one physical network. The router only has infonnation about four kinds of
destinations:

• Hosts that are directly attached to one of the physical networks to which the
router is attached.

33

- -- - --------

• Hosts or networks for which the router has been given explicit definitions.
• Hosts or networks for which the router has received an ICMP redirect

message.
• A default for all other destinations.

(Steven, 1994)
If the destination is directly connected to the host or on a shared network then the IP
packet is sent directly to the destination. Otherwise the host sends the packet to a

default router to deliver the packet to the destination.
Direct and Indirect Routing

IP routing can be divided into two fonns: Direct routing and Indirect routing

(Rodriguez, 2001). In direct routing, packets are transmitted between two machines
which are on a single physical network and also do not involve routers. The sender
encapsulates the packet in a physical frame, binds the destination IP address to a
physical hardware address, and sends the resulting frame directly to the destination.
Indirect routing occurs when the destination host is not connected to a network
directly attached to the source host.
Indirect routing is more difficult than direct routing because the sender must identify a
router to which the packet can be sent. When one host tries to send an IP packet to
other host, it encapsulates the packet and sends it to the nearest router. Once reaching
to the router, the IP software selects the next router along the path towards the
destination. The packet is again passed on to the next physical network and the
process continues until the packet reaches its destination.
IP routing table

The IP layer has a routing table in memory that it searches each time it receives a
packet to send. It consists of a list of local networks and indirect routes. Three types
of mappings are found in this table (Rodriguez, 2001):

1 . The direct routes describing locally attached networks.
2. The indirect routes describing networks reachable via one or more gateways.

34

3. The default route which contains the (direct or indirect) route used when the
destination IP network is not found in the mappings of type 1 and 2 above.

When a packet is received from a network interface, IP first checks if the destination
address is one of its own IP addresses. If so, the packet is delivered to the destination
on the local network. If the packet's destination address is not of this IP layer, it is
forwarded to the destination IP network via one or more gateways else the packet is
forwarded to the default route. If none of the above steps works, the packet is
undeliverable. At this stage, a "host unreachable" or "network unreachable" message
is returned to the source address from where the packet was originated.

2.2.4 TCP: Transmission Control Protocol

TCP is a communication protocol which provides a connection oriented, reliable, byte
stream service. The two machines need to make a TCP connection before exchanging
any data between them. TCP provides reliability by doing the following:

• TCP breaks down big packets into small size packets called segments.
• After sending the segment across the network, it waits for an

acknowledgement. If an acknowledgement is not received in time, the segment
is retransmitted.

• Acknowledges the receipt of packet from other end.
• Maintains a checksum on its header and data to detect any modification of the

data in transit.
• IP packets may not arrive in sequence, so TCP re-sequence them and pass to

the recipient in correct order.
• IP packets may be duplicated, so it discards duplicate data.
• TCP also provides flow control. Each end of TCP connection has a finite

amount of buffer space.
(Steven, 1994)

35

2.2.4.1 TCP Header

The TCP packet header consists of 20 bytes of data. An option exists within the
header which allows funher optional bytes to be added, but this is not nonnally used.
The full header is shown below:

0 IS 16 3 1

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgment number 20

4-bit Reserved u A p R s
header (6 bits) R c s s y I 16-bit window size
lenirth G K H T N N

16-bit TCP checksum 16-bit urgent pointer

Options (if any)

data

Figure 2.6: TCP Header
(Steven, 1994, 225)

Each TCP segment contains the source and destination port number to identify the
sending and receiving application. These two values along with the source and
destination IP address in the IP header uniquely identify each connection. The
sequence number identifies the byte in the stream of data from the sending TCP to the
receiving TCP that the first byte of data in this segment represents. Since every byte
that is exchanged is numbered, the acknowledgement number contains the next
sequence number that the sender of the acknowledgement expects to receive. This is
therefore, the sequence number plus 1 of the last successfully received byte of data.
The header length gives the length of the header in 32-bit words.

36

b ytes

There are six flag bits in the TCP header. One or more can be turned on at the same

time. These flags are briefly described below (Steven, 1994):

• URG The urgent poilller is valid

• ACK The ,1cknowledg,m1e11t number is valid

• PSH The receiver should pass this data to the application as soon as
possible.

• RST Reset the connection

• SYN Synchronize sequence numbers to initiate a connection.
• FIN The sender is finished sending data.

The 16-bit window size provides flow control in TCP. The checksum covers the TCP
segment. It is a compulsory field that must be calculated and stored by the sender, and
then verified by the receiver. The urgent pointer is valid only if the URG flag is set.

This pointer is a positive offset that must be added to the sequence number field of the
segment to yield the sequence number of the last byte of urgent data. TCP's urgent
mode is a way for the sender to transmit emergency data to the other end.

The most common option field is the maximum segment size option, called the MSS.

Each end of a connection normally specifies this option on the first segment

exchanged. It specifies the maximum sized segment that the sender wants to receive

(ibid, 1994).

2.2.4.2 Connection and Termination

A successful TCP connection involves a three-way handshake. The figure 2.7 shows

the proceeding of handshake.

37

Events At Site 1 Network Messages

Send SYN seq:K

Receive SYN + ACK segment I --­
Send ACK y+1

Events At Site 2

Receive SVN segment
Send SYN seq=y, ACK x+ 1

Receive ACK segment

Figure 2.7: TCP Connection

(Comer, 1995, p216)
To establish a TCP connection:

• The requesting host sends a SYN segment specifying the port number of the
server that the client wants to connect to, and the client's initial sequence
number.

• The server responds with its own SYN segment containing the server's initial
sequence number. The server also acknowledges the client's SYN by sending
its acknowledgement, ACK, which is clients initial sequence number plus one.

• The client must acknowledge this SYN from the server by sending its ACK,
which is server's initial sequence number plus one.

(ibid, 1995)

This 3-way handshake completes the connection establishment.
It is a four segment process to terminate an established TCP connection. Since TCP is
a full duplex (that is, data can be flowing in each direction independently of the other
direction.), each direction must be shut down independently. The termination process
of a TCP connection between server and client is shown below:

38

Events At Site 1 Network Messages Evf'nts At Site 2

(appllcallon closes connection)
Send FIN saq:I(,-------J - Receive FlN sogment

Sond ACK 1(+1 L------- , (lnlorm appllcatlon)
Receive ACK segment

{11ppllcallon closes connection)

L-------, Send FIN seq=y, ACK x+l

Receive FIN + ACK segment r-
Send ACK y+ 1 1 _______ J

- Receive ACK segment

Figure 2.8: TCP Connection Termination Process
(Comer, 1995, p218)

Either end can send a FIN when they are done sending data. When TCP receives a
FIN, it must notify the application that the other end has tenninated that direction of
data flow. Sending a FIN nonnally means that application issuing a close. The receipt
of a FIN means that there will be no longer flow of data in that direction. A TCP can
still send data after receiving a FIN. When the server receives the FIN it sends back
an ACK of the received sequence number plus one. At this stage, server's TCP also
delivers an end-of-file to the application. The server then closes its connection,
causing its TCP to send a FIN which the client TCP must ACK by incrementing the
received sequence number by one (ibid, 1995).

2.2.4.3 TCP State Machine

TCP finite state machine is a theoretical model which explains the operation of TCP
at its best. The figure below shows the TCP finite state machine, with circles
representing states and arrows representing transitions between them. The label on
each transition shows what TCP receives to cause the transition and what it sends in
response.

39

dow/Jill

,111y1!1111.c I rc��· t

lw.ci11 - -�-I CLOSED �-- - - ----- - ----._

/l<1J.1frr 11/lt'IJ fill.It'

LISTEN 11flfri• "fw11 /syn

.WI/ii I �)'II

.\ ·n/svn + ack

ESTAB· lill/iwk
LISHEO f---�==--+i

SYN do.rt'!
SENT fillll'Olt/ {

l'CSCI

CLOSE

<'111.1·1· / lin

fin/nck

fin/nck
WAIT-2 }----==�-,

LAST
ACK

ack/
�

ti1111•u111 uf11·r 2 .�,·.�1,w111 li/i'ti1111·.1·

TIMED f
WAIT f--- --- --- '---- __,

Figure 2.9: TCP State Machine

(Comer, 1995, p220)
The TCP software at each endpoint begins in the CLOSED state. Application
programs can either have an active open (to initiate a connection) or a passive open

(to wait for the connection from other machine). In an active open situation, the
transition changes from CLOSED state to SYN SENT state with the emission of SYN

segment. After receiving a SYN segment, the other end of the connection a segment
with both SYN and ACK and moves the transition to ESTABLISHED state and begins
data transfer (ibid, 1995).

The TIMED WAIT state in the above figure reveals how TCP handles the problems
incurred with unreliable delivery. TCP keeps track of maximum segment lifetime, the

40

maximum time an old segment can remain alive in the network. When a request of
closing a connection is received, TCP moves to the TJMED WAIT state in order to
avoid any interference between previous connection and the current one. TCP rejects
any duplicate segments received during the time out interval but however accepts the
valid segments and restart the timer. The timer allows TCP to distinguish old
connections from new ones; it prevents TCP from responding with RST (reset) if the
other end retransmits a FIN request (ibid 1995).

2.2.5 Security Issues with TCP/IP

This section gives an overview of some of the most common attacks on TCP stack
level and also their defences (Bellovin, n.d; NORMAN, 2003).

2.2.5.1 TCP Sequence Number Prediction

A TCP connection establishment requires a 3-way handshake. As described in section
4.4.2, the client transmits an initial sequence number !SN C, the server acknowledges
it and sends its own sequence number !SN S and the client acknowledges. Once this 3
way handshake completes, the data transmission begins. This exchange may be shown
schematically as follows:

C -> S:SYN(ISN C)

S-> C:SYN(JSN S), ACK(ISN C)

C-> S:ACK(ISN S)

C-> S:data

And I or

S-> C:data

Many TCP connections use predictable ISNs for the above purpose. As a result, the
malicious attacker could guess the server's ISN used during the connection
establishment procedure and trick the server into believing that itself is the client or
the trusted machine. JSNs are easy to guess because they are incremented by a

41

constant amount each second or half that amount each time a connection is initiated.
This may be shown schematically as follows:

X -> S:SYN(ISN X), SRC = T

S -> T:SYN(ISN S), ACK(ISN X)

X -> S:ACK(ISN S), SRC = T

X -> S:ACK(ISN S), SRC = T, nasty - data

Even the message S -> T does not go to }(, X was able to know its contents, and hence
could send the data.
Defence

According to Bellovin (n.d), the best way to prevent such attacks is to make the ISNs
more difficult to predict. Making use of cryptographic algorithms such as DES for
random ISN generation can make the ISNs hard to guess.

2.2.5.2 ICMP attack

The Internet Control Message Protocol (ICMP) is the basic management tool of the
TCP/IP protocol suite. It is an error reporting protocol. There are various security
holes in ICMP which may be exploited (Low, 2001).
Firstly, is the ICMP Redirect Message which is used to advice hosts for better routes
on a network. The redirect message can be used to create false routes to a trusted host
through a compromised router or gateway. Suppose an intruder setup a false route to a
trusted host from a compromised gateway. The following sequence of events may
occur. Send a false TCP open packet to the target host, claiming to be from a trusted
host T. The target will respond with its own open packet, routing it through the secure
primary gateway. While this packet is on its way to trusted host, a false redirect may
be sent claiming to be from the primary gateway but referring to the false connection.
Since the packet will be assumed to be coming from a legitimate source, the routing
change will be readily accepted as hosts do not perform enough validity checks on

42

ICMP redirect messages. As a result, the intruder may be able to establish a
connection and spoof the trusted host T (Bellovin, n.d; Low, 2001).
ICMP may also be used lo carry out Denial of Service (DoS) attacks by resetting
connections using error messages such as Destination Unreachable or Time-to-Live

(TTL) exceeded (Low, 2001).
Defences
Strict validity checks need to be done on ICMP packets thereby preventing forging of
connections. The ICMP redirect messages can also be restricted to a connection rather
than to the global routing table.

2.2.5.3 SMURF Attack

The Smurf attack is not intended to halt a computer but a network of computers. This
is a type of network security breach in which a network connected to the Internet is
swamped with replies to ICMP echo (PING) requests.

storm
of

IChOtl

broadcast echo

source addrtH checks

Figure 2.10: Smurf Attack
(Low, 2001)

43

A smurfattack is illustrated below (Low, 2001):
Step 1 . Attacker finds some intennediary network that will respond to the network's
broadcast address.
Step 2. Attacker spoofs the IP address of the victim host and sends a great number of
ICMP echo request packets to the broadcast address of the above intennediary
networks.
Step 3. Now all the hosts on that network will respond to that ICMP echo request with
a corresponding ICMP reply request back to the spoofed IP address (the victim).
Step 4. This will send a large amount of ICMP echo replies to the victim and its
network thus causing network degradation or a total denial of service.
Defences

Following defensive measures can be used to protect a network from smurf attacks
(Hirani, et. al, n.d):

• Disabling broadcast messages
• Upstream firewalls should be configured to either filter ICMP echo responses

or limit echo traffic.
• In order for these attacks to take place a router must be configured to allow

packets to exit the network with a source address that does not originate from
the internal address. It is possible to configure your router to enable network
egress filtering.

Network egressing is when a router is configured to filter out packets that do not
originate from the internal network.
ISPs can also employ network ingress filtering to drop packets that do not
originate from a known range of IP address, which is effective not only for
preventing local origination of SMURF attacks but also for ease in tracking
attacks.

44

2.2.6 TCP/IP Fingerprinting

To attack any system, i t is very important to gather infonnation about the target
machine. There can be various ways which can be used to gather information about
the target machine. One of the most important pieces of information that an attacker
or hacker would like to know about the target machine is the type and version of
Operating System (OS) running on it. Knowing the version and type of OS can help
an attacker to gather infonnation regarding the vulnerabilities related to that OS.
There are various tools available on the Internet which can help in detennining the
operating system of a host by examining details in the way the TCP/IP stack was
implemented within that operating system. This method i s called TCP/IP
fingerprinting (Fyodor, 1998).

2.2.6.1 Classical Methods

The easiest method to identify the operating system is to contact i t by its open port.
Most telnet, FTP and web servers will not only identify themselves but will also give
information about the operating system running on them. For example (ibid, 1998):
root%> telnet hpux.u-aizu .ac.jp

Trying 163 . 1 4 3 , 103 , 12 ...

Connected to hpux .u-aizu.ac . j p

Escape character is • A] '

HP-UX hpux 8 . 10 . 01 A 9000/715 (ttyp2)

Login:

In the above example, the machine itself explains what it is running. Such methods
are sometime enough to determine information about the operating system running on
the target machines.

45

Another classic technique for identifying the operating systems includes port sweeps
and grabbing email headers. Port sweeps identify open ports, and on a system that has
not been hardened, this list of open ports is often enough to identify most operating
systems. E-mail headers can identify mail user agents, the user's operating system, the
mail senrer and sometimes even the firewall that the mail passed through.

2.2.6.2 TCP/IP Fingerprinting with Nmap v 3.0

Utilities such as Nmap are designed to allow system administrators and curious
individuals to scan large networks to detennine which hosts are up and what services
they are offering. Nmap supports a large number of scanning techniques such as:
UDP, TCP connect(), TCP SYN (half open), ftp proxy (bounce attack), Reverse-ident,
ICMP (ping sweep), FIN, ACK sweep, SYN sweep 1P protocol and Null scan. These
techniques are briefly described below (Fyodor, 1 998; Glaser, 2000):
•!• UDP and TCP connectO: This type of scan method involves opening a full

connection to a remote host using a typical three-way TCP/1P handshake. For
example,

Client -> SYN
Server -> SYNIACK
Client -> ACK

The above example shows a port answering our initial connection request with a
SYN\ACK. Therefore the port is in the open state. Once the full handshake is
taken place, the connection will be tenninated by the client. If the port is in the
closed state then the response will be:

Client -> SYN
Server -> RSTIACK
Client -> RST

The RSTIACK flags returned by the server shows that the port is not in the
listening state thus is closed.

•:• Half open scan: The tenn 'half open' applies to the way the client tenninates the
connection before the three-way handshake is completed. This scan method often

46

goes unlogged by IDS and also returns fairly positive results (Fyodor, 1998;
Glaser, 2000).

•!• FTP server bounce attack: Under this attack, a host is able to determine the status
of a port by issuing an IP and port as arbitrary parameters to connect to. If a
connection is established as a means of active data transfer processing, the client
knows a port is open otherwise a 425 error message will be generated (Fyodor,
1998).

•!• Reverse-Iden!: This technique involves issuing a response to the idnet/auth server,
usually port l l 3 to query the service for the owner of the running process. Ident
could release miscellaneous private information such as(Ibid, 1998):

• user info
• entities
• objects
• processes

•:• ICMP ping sweep: An ICMP ping sweep is a basic network scanning technique
used to determine which of a range of IP addresses map to live hosts (computers).
Whereas a single ping will tell you whether one specified host computer exists on
the network, a ping sweep consists of ICMP (Internet Control Message Protocol)
ECHO requests sent to multiple hosts. If a given address is live, it will return an
ICMP ECHO reply (Anonymous, n.d).

•!• FIN scanning: The FIN scan method uses inverse mapping to discover closed
ports. Once a Flli' flagged packet is sent, a closed port will respond with an RST
bit. Open ports will not send a packet back (Fyodor, 1998).

•!• ACK scanning: This technique is used to identify open TCP ports by sending
probe TCP packets with the flag ACK set, and then analysing the header
information of the RST packets received from the target host. This technique
exploits vulnerabilities within the BSD derived TCP/JP stack, and is therefore

47

only effective against certain operating systems and platforms. There are two main
ACK scanning methods (ibid, 1998):

• Assessment of the TTL field
• Analysing the Window field

•:• Null Scan: The Null scan unsets ALL flags available in the TCP header. ACK,
FIN, RST, SYN, URG, PSH all become unassigned. If the port is open then the
incoming packet is dropped otherwise an RST packet will be returned if a closed
port has been reached.

Nmap also offers a number of advanced features such as remote OS detection via
TCP/IP fingerprinting, stealth scanning, dynamic delay and retransmission
calculations, parallel scanning, detection of down hosts via parallel pings, decoy
scanning, port filtering detection, direct (non-port mapper) RPC scanning,
fragmentation scanning and flexible target and port specification.
Every operating system has different TCP/IP stack's in compare to other operating
systems; therefore each one has a different response in a TCP/IP conversation. This is
because each TCP/IP stack has different sequencing of the packet and will have
different flags set due to implementation. Nmap interrogates the target machine's
TCP/IP stack by sending it eight different packets and observing the response. Nmap
interrogates the target machine's TCP/IP stack by sending it eight different packets
and observing the response. The packets are

"Tseq is the TCP se.quenceability test TI is a SYN packet with a bunch of TCP options to open port T2 is a NULL packet w/options to open port T3 i s a SYNIFINIURGIPSH packet w/options to open port T4 i s an ACK to open port w/options T5 is a SYN to closed port w/options T6 is an ACK to closed port w/options T7 is a FINIPSH]URG to a closed port w/options PU is a UDP packet to a closed port" (Fyodor, 1998)
The test is specifically crafted to put the target machine in a position where there is a
high probability that two things will happen. Firstly that the target operating system's
TCP/IP stack will respond unique in comparison to another operating system's

48

TCP/IP stack. Secondly that the target operating system's TCP/IP stack will respond
in a consistent manner.
The granularity of this is reasonably high for example here are 2 fingerprints both of
NT4 machines talce from the NMAP fingerprint files of varying Service Pack Levels

Fingerprint Windows NT 4 SP3
TSeq(Class=TDIRI%gcd=<I 8%SI=<2AOODA&>6B 73)
Tl(DF=Y%W=7FFF12017%ACK=S++%Flags=AS%0ps=MIMNWNNT)
T2(Resp=Y%DF=N%W=O%ACK=S%Flags=AR%0ps:::)
T3(Resp=Y%DF=Y%W=7FFF12017%ACK=S++JO%Flags=ASIA%0ps=MjNNT)
T4(DF=N%W=O%ACK=OIS%Flags=R%0ps"')
T5(DF=N%W=O%ACK=S++%Flags=AR%0ps=)
T6(DF=N%W=O%ACK=OIS++%Flags=R%0ps=)
T7(DF=N%W=O%ACK=S++%Flags=AR%0ps=)
PU(TOS=O%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=l34%DAT=E
)

Fingerprint Windows NT 4.0 SP 6a + botfixes
TSeq(Class"'RI%gcd=<6%SI=<40132&>290%IPID=BIIRPI%TS=U)
Tl(DF=Y%W=2017%ACK"'S++%Flags=AS%0ps=M)
T2(Resp=Y%DF=N%W=O%ACK=S%Flags=AR%0ps=)
T3(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%0ps=M)
T4(DF=N%W=0%ACK=O%Flags=R%0ps=)
T5(DF=N%W=C00[800%ACK=S++%Flags=AR%0ps=WNMETL)
T6(DF=N%W=O%ACK=O%Flags=R%0ps=WNMETL)
T7(DF=N%W=O%ACK=O%Flags=R%0ps:::WNMETL)
PU(Resp=NIY)

This attack intelligence allows an attacker to quickly narrow the choices of attack
dependent upon the information that NMAP reports back. This attack intelligence
gives an attacker several advantages. Firstly, they can use a few attacks or probes on
the system as they now have a reasonable idea of installed operating system.
Secondly, as a result of having knowledge of the operating system by using a few
attacks may reduce the probability of detection by defensive systems.

49

2.3 Honeypots

This section of the chapter initially defines what are honeypots and honeynet. Later it
outlines various advantages and disadvantages of honeypots. Section 2.3.3 outlines
various types of honeypots available. Section 2.3.4 explains the architecture of
honeyd - an open source honeypot. Section 2.3.5 discusses the various methods of
deploying the honeypots.
2.3.1 What are Honeypots and Honeynet?

According to Spitzner (2003), "A honeypot is a security resource whose value lies in
being probed, attacked or compromised." These systems are specially designed to
attract attackers. Their purpose is to capture all activities and any changes made in the
system by attackers' who would have gained unauthorised access. Honeypots are seen
as research tools which allow learning from attackers' skills and knowledge. They can
be used for attack intelligence gathering about various attacks and exploits explored
by attackers. Honeypots can be used to achieve various goals. They can be used to
deter attacks, to detect attacks and also to capture and analyse attacks. They can be
used as a learning tool to l�am and understand about various attacks and attacking
tools used by attackers. (Brenton, n.d; Klug, 2000; Spitzner, 2002). Various network
services are emulated on the honeypot network which is attractive targets for the
attackers. Services like http (port 80), provides access to the web-based systems such
as web servers which may be the prime target for attacking any network. If the web­
server is compromised, the attacker is capable of posting their own web pages or any
web related exploits on the network such as any back doors or Trojans. Also services
like ftp (port 21), if compromised may allow the attackers to upload their own
malware programs and utilities which may be used for compromising the whole
network.
Example of Honeypot

To understand the concept of a honeypot and how they work let us consider an
example. Assume that an organisation is interested in upgrading their old servers such
as mail server, web servers etc. which have been currently in use. Before upgrading,
these main production systems were used for providing services to the organisation.

50

These old servers can be readily utilised as a honeypot servers which can be left
within the organisation's DMZ (Demilitarised Zone) (Figure 2.1 1 , p50). Any
connections made to the old server machines, now honeypots, could be reasonably
assumed to be suspicious in nature. This possibly means that someone is trying to
probe or attack the servers or the organisation as a whole.
Ifit is found that connections are from the honeypot to the main internal network that
would indicate the honeypot is compromised.

G I

DMZ network � --,- ·-- -- ----1 -- -

Internal network

Q m
Mail server Horieypo1

,- ,..--- ·-

g I .
Web se1ver

Figure 2.11: Network diagram of a boneypot deployed on a DMZ to detect attacks
(Spitzner, 2003, p63)

According to Spitzner (2003), a honeynet is a high interaction honeypot designed
particularly for research, to gather information on the attackers. It i s a network of
multiple honeypots which are probed and attacked by attackers. This could be a
complete separate network segment within the network architecture of any
organisation. In a honeynet, there can be various types of systems such as Windows,
Linux, etc . . . which can be configured as honeypots. This creates a network
environment that has a more realistic approach to it for the attacker. All systems

5 1

placed within the Honeynet are the mirror images of the standard systems placed
within the internal network of any organisation (Anonymous, 2002a). Therefore,
honeynet are high interaction honeypots designed to gather infonnation about
attackers.
According to the Deception planning process, as discussed in section 2.2 (p. 12), the
objective of deploying the honeynet is to create a deceptive network to deceive the
attackers and deterring them from causing hann to the real production systems.
Another important objective of the honeynet is to gather attack intelligence about
various attacks carried out by attackers (targets). To attract these targets, a deceptive
network is created with various hosts with number of operating systems and services
configured over them. These systems are configured with some known vulnerabilities
to attract the attackers.

e
Honeynet

1!,zz \I
-··- I -··----- /-----

I
: Firewal;

' �· · . • ,
Log server Llnu11

Rod Hat 6.2

Figure 2.12: The Honeynet

2.3.2 Value of Honeypots

(Spitzner, 2003, p266)

Honeypots can be of great value for an organisation as they may help in protecting an
organisation b y preventing, detecting or responding to an attack. Honeypots can be
used for prevention purposes in various ways. They can be used against the automated
attacks such as auto-rooter or wonns. These are programs or algorithms that search

52

for vulnerable systems over the computer network and replicate it and usually perform

malicious actions, such as using up the computer's resources and possibly shutting the

system down (Anonymous, n.d(c)). Honeypots can be of help in defending against

such attacks by slowing down attackers' access to the systems, i.e. by taking extra

time in processing attackers' requests or also by completely shutting down the system.

The idea here is to distract or fool the attacker to make him or her wastes their

resources and time while interacting with honeypots. This provides deterrence which

may prevent attacks on production systems.

The second level of security is detection. The purpose of detection is to identify

failures and unauthorised activities within the honeypot. If someone has to secure

their house, the detection would be possible by installing burglar alatms or motion

detectors. Similarly there are various technologies which can be used for detection in

a network environment. For example, Network Intrusion Detection Systems which are

developed to monitor networks and identify malicious activity. There are also

programs that monitor system logs and identify any unauthorised activity. But these

technologies have their own limitations. They generate large amounts of data such as

false positives and false negatives. Honeypots can be very efficient in overcoming

these limitations of the traditional method of detections. They can reduce false

positives by capturing small data sets of high value which may contain new attacks or

rootkits or encrypted packets. Since honeypots are meant to be probed and attacked,

so any traffic is suspicious in nature therefore there are very less chances of having

any false positives. Honeypots are also very effective in capturing new exploits as

they can detect the attacks according to system activity, not signatures. This helps in

reducing the false negatives by honeypots (Anonymous, 2002(a); Spitzner, 2003).

Once the organisation has detected any attack, now they need to respond to it. Before

responding to any attack, it is essential for any organisation to collect all the evidence

related to the attack such as who the attacker is, how they entered into the network,

what damage did they caused. It is a challenge to collect all the infonnation related to

the incident from the compromised systems (Spitzner, 2003). For example, production

systems are very critical for any organisation such as their mail server. It will not be

possible for them to take the server offline for conducting forensic analysis. When the

system is brought offline, a major problem of data pollution arises for organisations.

53

There are various activities which occur in the system. For example, files written to

the hard drive, processes execution and tennination, user login details etc., then.:fore it

may not be easy to detennine what the everyday activity was and what the attacker

was trying to implement or access in the systems. Honeypots can be of great value in

such situations. They can be easily taken offline without hindering any everyday

activity and can be used for complete forensic analysis. Honeypots can be setup to

only collect unauthorised or malicious activity so this makes data analysis much

easier. In order to respond to an attacker's activity, it is essential to understand about

what they did, how they did and what damage was done.

Any traffic, inbound or outbound, to honeypot is considered to be suspicious by

nature. Because of the design assumptions of honeypots they have certain inherent

advantages and disadvantages (Anonymous, 2000; Sink, 2001; Spitzner, 2002) which

are outlined below:

Advantages

•!• Data Collection: Honeypots collect normally data of very high value. Honeypots

can collect small data sets. These data sets may be tools, rootkits or scripts used

by the attackers. Such forensic evidence provides a lot of useful information on

attacker's movement within the system and their (attackers) interaction with the

system in a consistent format from a variety of sources. Such data is of high value

as it only provides information about the malicious attacks. (Spitzner, 2002).

•!• Allows security researchers and security practioners to study exactly what

attackers are doing to compromise or probe systems. This is attempted to be done

without exposing systems and networks to the additional risk that results from

compromised systems (Anonymous, 2000).

•!• Honeypots provide delay (Sink, 2001). As a result of ruse, camouflage or false

information honeypots consume attackers' time and resources. This helps in

delaying them in attacking the real servers in the network. Methods such as

network delays and response time while establishing any network connection or

causing time delays while an attacker is trying to download may sometime

frustrate an attacker. This may provide enough time to an organisation to detect

such activity and respond to them.

54

Disadvantages
•!• They are worthless if no one attacks them. Honeypots are useful when someone

attacks or probe them. They may not be of any use if nobody interacts with these
systems (Spitzner, 2002).

•!• Honeypots can be used as a launching platform to attack other machines on
different network and hence need sophisticated protection mechanisms and
controls (Sink, 2001; Spitzner, 2002).

2.3.3 Types of Honeypots

There are various types of honeypots available each with their own distinct features.
Some of the honeypots are discussed below (Spitzner, 2002; Scottberg, 2002):

2.3.3.1 BackOfficer Friendly (BOF) BOF is a very simple honeypot developed by Marcus Ranum and his colleagues at
NFR (Network Flight Recorder). It is a low interaction honeypot. BOF is a program
that runs on most Windows based operating system. It can emulate basic services,
such as ftp, http, telnet, mail or BackOrrifce. When someone tries to connect to BOF,
it can log the attempt and an alert is generated. It also provides the feature of sending
''pre-defined replies" as well to attackers to keep them busy. It can only monitor a
limited number of ports, but these ports represent the most commonly scanned and
targeted services. None of the services emulated by BOF are based applications or
version, only the functionality of the service is emulated. For example, it can emulate
a web server but it does not emulate specific web server like Apache or Microsoft IIS.
Therefore, it is difficult to use BOF as a prevention tool as it offers very little
interaction with the attacker.

2.3.3.2 Specter Specter is a commercial honeypot created and supported by NetSec, a network
security company based in Switzerland. It is similar to BOF but has greater
functionality. It is a Windows based honeypot and can emulate various services an
attacker can interact with. Specter does not have any real applications installed on it

55

instead some limited emulated functionality so there is not much for attackers to do on
the system. Specter is equipped with seven fully emulated services, six traps and one
customizable trap. This provides enough flexibility to detect attacks on 13 predefined
ports and I configurable port. One of the unique features of Specter is that it not only
can emulate services but also vulnerabilities as well. An attacker may launch an attack
on Specter and may believe it to be successful but it may not be (Spitzner, 2003). It
supports various logging and alerting mechanisms, which in tum helps in learning the
attacker's moves. Specter also allows information gathering but this is at a very low
level. Some of the information gathering is relatively passive, such as Who is or ONS
lookup, which may just provide information about the attackers location and system
but it does not capture or provide information regarding any tools or scripts used by
the attacker.
Specter emulates operating systems only at an application level; there is no emulation
with the underlying IP stack. Therefore, the emulated operating system may not match
with the IP stack may identify the true purpose of the honeypot (Anonymous, n.d(e)).

2.3.3.3 Homemade Honeypots

These honeypots are mainly used to capture malicious codes such as worms or viruses
and scanning activities. Homemade honeypots may have variety of possible uses
depending on the developer's requirement and creativity. They can be used for just
detecting port scans or any specific probe thus providing a low level of interaction to
the attackers. They can also be designed and developed to emulate a complete
operating system and allowing attackers to probe and execute their programs. This
will provide greater level of interaction. Some common examples of homemade
honcypots arc (Spitzner, 2003):

• Windows Inetd emulator for Windows NT and Win2000.
• Sendmail Honcypots , used to identify sendmail spammers.

2.3.3.4 Honeyd

Honeyd was created and developed by Nicls Provos of University of Michigan in
April 2002. It is an open source honeypot which runs on UNIX platform and can
emulate over 400 operating systems or network devices. It can potentially simulate

56

networks of thousands of computers. Unlike Specter, it emulates the operating system
at IP stack level as well. This means that when an attacker tries to probe or scan the
network or honeypot using network scanning tools, such as Nmap, both the service
and IP stack behave as the emulated operating system.
Honeyd is primarily used for detecting attacks. It works by monitoring IP addresses
that are unused, that have no device assigned to them. Services emulated using
Honeyd can be simple scripts to full interaction on the native operating system via
port redirection that react to predetermined actions. Honeyd can not only dynamically
interact with attackers, but it can detect activity on any port. It detects and logs
connections made to any port, regardless if there is a service listening. It is capable of
emulating different operating systems or network devices at the same time. The
combined capabilities of assuming the identity of non-existent systems, and the ability
to detect activity on any port, give Honeyd incredible value as a tool to detect
unauthorised activity.

2.3.3.5 Mantrap It is a commercial honeypot produced by Resource Mantrap. Instead of emulating
services, it creates 4 sub-systems called 'jails'. These 'jails' can be configured by
system administrator as they want. It is much more flexible in compare to other
honeypots. It not only detects attacks, port scans but also helps in capturing rootkits,
IRC chat sessions as well. As it is a commercial honeypot and depends on vendor
specification, it has a limited use. At present, it is available on Solaris operating
system only.
The above mentioned types of honeypots can be summarised m the table below
(Adapted from Baumann, 2002):

57

ManTrap Specter BOF Honeyd Home made

Degree of High Low Low Middle Low- high

Involvement

Expandable ,/ - - ,/ ,/

Open Source - - - ,/ NIA

Freely available - - ,/ ,/ ,/

Log file support ,/ ,/ - ,/ NIA

Notification ,/ ,/ - ,/ NIA

mechanisms

Supported services Unlimited 13 7 Over 400 NIA

Configuration High Low Low Medium NIA

complexity

GUI for Control and ,/ ,/ ,/ - NIA

Logging

Table 2.1: Summary of Different types of Honeypots

On the basis of the above discussion about various honeypots and their features and

performance, a following graph can be plotted regarding their performance and

complexity in use in a network environment (Developed by researcher):

Complexity
M

S D

Performance

B - BOF
S - Specter
M - ManTrap
D - DTK
H - HoneyD

Figure 2.13: Complexity vs. Performance Graph of various Honeypots

From the above graph 2.13, it can be interpreted that Honeyd is the only honeypot

which provide high performance with higher complexity. Therefore, i t may be noted

that Honeyd may suit best to the researcher's requirement. The detail concept of

honeyd is explained in the below section.

58

2.3.4 Concept of Honeyd

Honeyd is a low interaction virtual honeypot. It can simulate arbitrary TCP services
and supports multiple IP addresses. It can adopt different operating system
personalities. Honeyd can read nmap fingerprint file and can fool nmap. It also
supports FIN scan policy. It is fairly portable and can compile and run on BSD, Linux
or Solaris. Honeyd is mainly depended on 2 libraries: libevent and libdnet. Honeyd
never intercepts the network traffic. All the traffic needs to be directed towards
honeyd. With the use of Arpd, honeyd can use IP addresses on the existing network.
Arpd is also capable of detennining all the unallocated IP addresses (Provos, 2003).

Router
1 0 . 0 . 0 . l

l•l . 0 . 0 .2

---� Virtual 1-bneypol&

I. ·-;- · . ,, 1·· •' . '· ·1 -- ,. . . :·g-,
. . . . ' ' \ ,,
�· . Iii;.. ' �. ' 1 ' , ' :' �. :

�
. . • • ,t . J

LinUK 1 .0.9 Fre-6BSD 3.2 • 4.0 Wincb\\'6 NT 4 NelBSD 1.6H
10. ,J .0 . 101 1c.o.o.102 1 0 . 0 . ,J . lOJ 10 .0 .0 .104

Figure 2.14: Traffic to Honeyd and its virtual honeypots
(Proves, 2003)

The address resolution protocol (ARP) is a protocol used by the Internet Protocol (IP)
network layer protocol to map IP network addresses to the hardware addresses used
by a data link protocol. The term address resolution refers to the process of finding an
address of a computer in a network. Therefore, ARP is provided that will translate the
IP address to the physical address of the destination host. It uses a lookup table or
ARP cache to perfonn this translation. When the address is not found in the ARP
cache, a broadcast is sent out on the network, with a special format called the ARP

request. If one of the machines on the network recognizes its own IP address in the
request, it will send an ARP reply back to the requesting host. The reply will contain
the physical hardware address of the host and source route infonnation (if the packet
has crossed bridges on its path). Both this address and the source route infonnation
are stored in the ARP cache of the requesting host. All subsequent packets to this

59

destination IP address can now be translated to a physical address, which is used by
the device driver to send out. the packet on the network. (Comer, 1995, p73-81)
Instead of simulating flat networks, honeyd supports the creation of virtual topologies:
route entry 10 . 0 . 0 . 1
route 10 . 0 . 0 . 1 link 10 . 2 . 0 . 0/24
route 10 . 0 . 0 . 1 add net 10 . 3 . 0 . 0/16 10 . 3 . 0 . 1 latency Sms loss 1 . 5
route 10 . 3 . 0 . 1 link 10 . 3 . 0 .0/24
route 10 . 3 . 0 . l add net 10 . 3 . 1. 0/24 10 . 3 . 1 . 1 latency 7ms loss 0 . 5
route 10 . 3 . 1 . 1 link 10 . 3 . 1 . 0/24

With packet delay and Joss it is possible to create network topology that seems real.

2.3.4.1 Honeyd Architecture

This section will give an overview of Honeyd's (Provos, 2003) architecture; see
figure 4.10. The central dispatcher gets all packets which callbacks for TCP, ICMP or
UDP. Other protocols cause packet to be dropped silently. The dispatcher checks the
length of the IP packet and verifies its checksum. The dispatcher queries the
configuration database for a honeypot configuration that corresponds to the
destination IP address. If no such configuration exists, the default template is used.
All output packets passes through the personality engine, where various personalities
are for various operating systems. Packets are adjusted according to configured
personalities. ICMP and UDP handlers are very simple in compare to TCP handler.
The ICMP handler replies to Echo Request only and UDP handler knows closed and
open status. Closed UDP port generates ICMP Port Unreachable message. The TCP
handler requires complete TCP state machine. The State machine tries to be as correct
as possible. Initially ports may be in Listen or Closed state. Listen state causes three
way handshake and all the other required TCP states whereas closed state causes a
TCP Reset to be sent (ibid, 2003).

60

Network

ConHiluraUii'n

Pflr1ii�lit:f _,
.. ---···-···- -···-·--....... _ --,�-��,.� Engine

••• Lookup �- ---"- -
\ '•···..,-·-· Paoket Dispalcl"Ef

\\ ICMP TCP UDP

',,.· .. -.�� '-==.-=�� ...
-..._ SeivbH

Figure 2.15: Honeyd Architecture

TCP ports may be connected to an arbitrary service:

add template tcp port 80 "sh scripts/web . ah"

(Provos, 2003)

Honeyd forks child process to execute service applications. Stdin/out is connected via
socket pair to TCP stream. Stderr is just a pipe and used for service syslog. Libevent
handles incoming and outgoing data. New 1/0 channels just get added without extra

complication for the application. While implementing honeyd, TCP ports may be

proxy connected to another machine

add template tcp port 23 proxy 1 0 . 23 , 1 . 2 :23

This allows the honeyd administrator to simulate services for a given personality via
proxy redirection. In this honeyd opens a regular TCP connection, Stdin/out of that

socket is connected to honeyd TCP stream and Libevent takes care of the rest.

2.3.4.2 Personalities

Every packet generated by honeyd passes through the personality engine which

introduces operating system specific quirks into the packets for nmap identification.
Personalities are defined via nmap fingerprint file (nmap.prints).

61

2.3.4.3 Libraries

Honeyd is mainly supported by various libraries (Provos, 2002):
•!• Dug Song's libdnet - dumb network library (Snog, n.d)

Provides a simplified, portable interface to several low-level networking
routines, including network address manipulation, kernel arp(4) cache and
route (4) table lookup and manipulation, network firewall implementation,
network interface lookup and manipulation and raw IP packet and Ethernet
frame transmission.

•!• Libevent - event notifications on file descriptors (Provos, 2002 (a))
The event API provides a mechanism to execute a function when a specific
even on a file descriptor occurs or after at a given time has passed. libevent is
meant to replace the asynchronous event loop found in event driven network
servers. An application just needs to call event_dispatchO and can then add or
remove events dynamically without having to change the event loop.

2.3.5 Methods for deployment of Honeypots

There are four different methods of honeypot deployment. These include Deception
Services, Weakened Systems, Hardened Systems and User Mode Servers. Each of
these methods are described below (Brenton, n.d):
2.3.5.1 Deception Services

Deception Services are specially designed to listen on a IP service port and respond to
inbound network requests. They can be used to emulate common TCP/UDP services
for example, Sendmail an SMTP mailer used primarily on the UNIX platfonn. When
an attacker connects to the honeypot, he or she may receive a banner, a small piece of
infonnation displayed regarding the information of the application, which identifies
the service as being some version of Sendmail. This piece of infonnation could be
about the developer and version of the particular application. If the attacker is fooled
by the deception, he or she may try to gain access to the system. This may allow the
administrator to log the efforts of the attacker and safeguard the real production
systems who may be running Sendmail (Brenton, n.d).

62

Deception Services too have some problems. Firstly, it is often difficult to emulate a
service that can consistently fool the attacker. For example, the attacker may try
various control commands to check for expected responses an attacker will often use

lesser known or more esoteric commands to probe systems based on intelligence

gathered by initial scans. Unless the deception service is capable of handling such

testing, the attacker may become aware of deception and never carry out any attack on

the system.

Secondly, deception services can only collect a limited amount of information. It
records the initial attempt of attack, but nothing more than that. It may have been

useful if it could record the successful attack information, such as other systems

compromised using honeypot, or attacker's identity or tools. Since the deception

service should not provide any additional access to the machine, additional forensic

information cannot be collected (ibid, 11.d).

Finally, on a theoretical basis, deception services may have some form of
vulnerability that could give attacker unexpected access to the system. For example, if

the honeypot is compromised, the attacker may be able to remove all the evidence of

their attack such as log files. If the honeypot is compromised it may be used as a

launching pad to attack other machines or networks.

2.3.5.2 Weakened Systems

The weakened system deployment involves installation of an operating system with
some known vulnerabilities. This makes it easier for the attacker to penetrate into the

system and thus helps in collecting data about the attacks carried by the attacker. Logs

are normally saved on a remote system, in case the attacker erases the hard disk
before leaving the system. There are also memory dumps stored on the system. These
memory dumps stores information about the system and applications used. These can
be retrieved and stored remotely by taking a memory dump of the system using some

automated executable scripts (ibid, n.d).

63

------ ----

One of the benefit of this approach is that the actual services may be used which an
attacker may try to exploit. Weakened systems provide a lot ofinfonnation about the
attack as the actual vulnerability is exploited by the attacker. This may provide
information about the attacker or their tools used to exploit the services. Such
information may be used to check the main production servers or systems to
determine the vulnerabilities exploited by the attacker on a weakened system.
Weakened systems require very high maintenance and with very little return (Brenton,
n.d). If the vulnerability has been on the operating system for quite a long time and
the administrator knows about it and its patches, then it is not of much help in data
collection. Also an attacker may become suspicious seeing a very obvious
vulnerability not patched on the network. Hence, weakened systems can be of little
value for data collection and analysis as it is depended on known security exploits and
their patches (ibid, n.d).

2.3.5.3 Hardened Systems

In a hardened system deployment, the base operating system is patched for all of the
known vulnerabilities. These vulnerabilities are published on various security related
web portals and also alerts are released by various vendors about the vulnerabilities
associated with their products as they are identified. The system is made secure from
the known vulnerabilities and then left for the attackers to attack. If an attacker is able
to compromise such hardened systems then forensic evidence coUected from the
attack may be useful for further improving the systems security and also can be used
for law enforcement purposes. Such method reduces the maintenance time and
increases the data collection from the system. It also is a good method for providing
new attack intelligence on unknown attacks as the system is hardened against known
vulnerabilities (Brenton, n.d).
Such hardened systems do have a weakness. These systems rely on the system
administrator skills. If the attacker possesses greater and more efficient skills than the
system administrator, then it will be easier for him to compromise the system and may
also remove their traces from the systems which could lead to them. The
compromised honeypot may also be used as a launching pad for carrying attacks on

64

various other systems within the same network as well other networks over the
Internet.

2.3.5.4 User Mode Servers

User Mode servers are fully functional servers that have been nested within the
application space of the host operating system. When an Internet user transmits a

request to the IP address of one of the user mode servers such as Windows NT, the
host accepts the request and routes it to the proper user mode instance such as word

processor, excel spreadsheet, email program, etc ... For a user on the Internet, user
mode host would appear like a router or firewall. This could fool the attacker as it

would pretend to be a main network of the organisation. User mode servers are not

available for every operating system. To create a user mode server you must start with

a regular operating system and port it so that it can be run as a user application. They
are mainly available for operating systems like Linux and NT, so it limits the choice

of operating system when deploying the honeypot. But Windows NT and Linux are
the most widely used operating systems so this may be an advantage of using User

mode servers for deploying honeypots.

Ro ter

D
Regular Sar'\far

D

User Mod9 Server

D

Unr Moci11 Server

Figure 2.16: User Mode Servers
(Brenton, n.d)

65

Figure 2.16 shows a user mode server in a network environment. For any user over
the internet, user mode host will appear as a router or firewall while other user mode
servers will appear to be individual hosts connected on a subnet. This seems to be a
legitimate network structure as it is common that individual hosts are protected by the
firewall or router in a subnet. It is also possible to use proxy ARP to connect user
mode servers with the same logical network segment. This may provide opportunity
to hide the honeypots on a network (ibid, n.d).

2.3.6 How Honeynet is created?

A highly controlled network using appropriate security perimeters such as firewalls,
routers, intrusion detection systems, etc . . . is created. Within this network honeypots
are placed and then the activities of attackers are monitored, captured and analysed.
Any traffic to honeypots is suspicious by nature. Such traffic to honeypots could be
stealthy port scan of a single service or brute force probe of the entire network.
"Creating and maintaining a successful Honeynet depends on two critical elements:
data control and data capture." [Anonymous, 2002a, p20]
2.3.6.1 Data Control

Data Control is the inbound and outbound control of data flowing through a network

to the system. Once the honeypot within the Honeynet is compromised, the
administrators have a responsibility to ensure that the honeypots are not used to
compromise other systems within the network or other outside networks. A firewall
can act as a suitable access control device for data control on a honeypot. A firewall
can be used to separate the Honeynet from rest of the network or Internet (see Figure
2.12). All inbound and outbound data should flow through the firewall. All inbound

and outbound traffic must be controlled in an automated fashion, without the attacker
getting suspicious. Therefore, a transparent firewall can be used.
It is very important that all traffic should go through firewall. The firewall controls
the flow of traffic by defining three main rules (Anonymous, 2002a):

66

1 . Anyone can initiate a connection from the Internet to the Honeynet. This will
allow the attackers to scan, probe and exploit systems on the Honeynet.

2. The firewall controls how the honeypots can initiate connections to the Internet. If

no outbound traffic is allowed from the compromised Honeypot to the Internet,
the attacker will become suspicious and may leave the network. Therefore, some
limited outbound connections should be allowed. The Honeynet Project found that
five to ten outbound connections within a 24-hour period should be sufficient
(Anonymous, 2002b). This will give enough connections to the attackers to
download their tools, connect to IRC or whatever activity they require to do. This
will give more opportunity to lear- 'Tom attacker's activities but goal should be to
contain the traffic initiated from the Honeynet to the Internet or other networks as
Honeynet can be used as a launching pad for attacks on other networks.

3. The Honeynet and the internal network should not have any direct
communication. The internal network is used for critical data collection for all
data generated by the attacker's activity. If the Honeynet is compromised, it will
prevent to communicate with the internal network and modify or delete any data
collected.

There are other access control systems which can be used for the secure means of data
flow over the network. For example, use of Virtual Private Networks (VPN), Routing
table configuration over the router for data flow can be used to ensure secure data
flow. Therefore, to control and contain data flow to and from the Honeynet, access
control must be wisely used to separate Honeynet from other networks.

2.3.6.2 Data Capture

Data capture is the collecting of all activity that occurs within the Honeynet, including
both at the network, for example with the use of intrusion detection systems, and
system levels using log files, keystroke loggers, etc Data capture is critical for the
success of a project. According to the Honeynet project (Anonymous, 2002b), it is
ideal and useful to capture data in multiple layers within a honeynet design. It is a
challenge to capture the maximum data possible without the attacker getting alerted of
his or her actions. To have an efficient data capture mechanism multiple data capture

67

methods should be deployed within the network. If a single layer of data capture fails,
there is always a backup layer available to alert the administrator about the fact that a
system was compromised. As discussed _in previous section 2.3.6.1 , how firewall can
be used for data control, firewall can also be used to capture data. Firewall can be an
excellent data capture layer as all the network traffic must flow through it. Although
infonnation captured by firewall is very limited as it cannot capture any keystrokes or
packet payloads but it is capable of logging the attack timestamps, source and
destination IP addresses and also source and destination port numbers. Another good
example for capturing data could be the use of IDS systems. It is always useful to use
multiple layers for capturing data. In case the honeypot is compromised by the
attacker and he or she gain access to one of the data capturing mechanism then there
are always other sources to look back for data analysis purpose (Spitzner, 2003).
It is essential to note that none of the captured data is stored on the honeypot locally.
Any infonnation stored locally can potentially be detected by the attacker. All data
captured on the honeypot should be transferred to a secure location on the network
where no other communication is allowed with the Honeynet. Methods such as use of
virtual private networks (VPNs) or IDS systems can be used for remote logging of the
data captured. If the honeypot is detected, data stored locally on the Honeynet can be
modified or destroyed by attackers. This may result in the failure of deploying
Honeynet in a network and may not fulfil the actual purpose of deploying them.
Therefore, securing the stored data is very important in a successful Honeynet.

2.3. 7 Conclusion

The chapter outlined the TCP/IP protocol and security weaknesses thereof. It is
important that these principles and protocols are understood so that effective honeypot
design can be undertaken.
Honeypots are unique security tool which are intended to be probed, attacked or
compromised. Their purpose is to protect the main production network against the
attackers. This chapter provided with solid definition of honeypot, types ofhoneypots,
their advantages and disadvantages and methods of deployment ofhoneypots.
In the next chapter, the researcher describes the methodology used for the research.

68

3. Methodology

3.1 Introduction

This chapter discusses the overall research framework adopted for this research.
Section 3.2 presents a brief literature review on various research designs. Section 3.3
discusses situations in which laboratory experiments can be an appropriate method of
research. Section 3.4 explains the complete research process adopted by the
researcher detailing each stage of the research. Section 3.5 illustrates various elements
of the laboratory study for the purpose of this research. Section 3.6 justifies why this
particular research method was adopted. Section 3.7 evaluates the overall research
methodologies by presenting the advantages and disadvantages. Finally, section 3.8
concludes the chapter.

3.2 Literature review on research design

There are various issues which need to be discussed before designing a research
methodology:
• What is the Philosophical perspective of the underlying research (e.g., Positivist,

Interpretive and Critical)?
• What methodology or strategy should be adopted to link various research methods

(e.g., experimental research, survey research, ethnography, etc.)?
• What methods - techniques and procedures - should be used (e.g., questionnaire,

interviews, observations, etc.)?
Philosophical perspective of the research
Research is always based on some underlying assumptions about the validity of
research and appropriateness of the research method m:ed. Therefore it is very
important to know these assumptions while conducting or evaluating research. The

69

most relevant philosophical assumptions arc those which relate to knowledge and how
it is being obtained, tcnncd as epistemology (Myers, 1 997).
Orilikowski and Baroudi (1 991), following Cima (1 986), suggested three categories,
based on the underlying research epistemology: Positivist, Interpretive and Critical.
Positivist takes the fonn of theoretical propositions, which can be stated
mathematically or verbally. Positivist research generally attempts to test theory in an
attempt to increase the predictive understanding or phenomenon. Orlikowski and
Baroudi (1 99 1 , p5) classified infom1ation science research as positivist if there was
evidence of fomrnl propositions, quantifiable measures of variables, hypothesis
testing and drawing of inferences about a phenomenon. Positivist also involves
empirical observation and measurement of data for theory verification (Creswell,
2003). Interpretive research helps in understanding human thought and action in
social and organisational context. It attempts to understand phenomena through the
meanings that people assign to them and interpretive methods are aimed at producing
an understanding of the context of the infomrntion science. Interpretive study does not
predefine depended and independent variables but focuses as the research progresses
(Galliers, 1 987). It does not have to be limited by hypothesis testing and tight
experimental control. Instead, the external validity of the actual research question and
its relevance to practice is emphasized, rather than restricting the focus to what is
researchable by rigorous methods. Critical research focuses on the oppositions,
conflicts and contradictions in contemporary society (Myers, 1 997). It denotes a
critical process of inquiry that seeks to achieve emancipatory social change by going
beyond the apparent to reveal hidden agendas, concealed inequalities and tacit
manipulation involved in a complex relationship between IS and their social, political
and organisational contexts. It aim to reveal interests and agendas of privileged
groups and the way they arc supported or prolcctcd by a particular infonnation system
design or use.

70

Types of Research Methodologies

Research methodology can be classified in various ways. However, it is common to
classi.�¥ them into qualitative, quantitative and mixed methods.

Quantitative Oualitatlve Mixed Methods • Experimental design • Narrative • Sequential • Non-experimental designs • Phenomenology • Concurrent
e.g., surveys • Ethnography • Transformative

• Grounded theory • Case studies

Table 3.1: Research Methodologies

(Creswell, 2003)

Types of Research Methods of data collection and analysis

Quantitative Research Methods Qualitative Research Methods Mixed Methods
Research Methods • Predetennined • Emerging methods • Both prcdetennined and • Instrument based questions • Open-ended questions emerging methods • Performance data, attitude • Interview data, observation • Doth open- and closed-

data, observational data and data, document data ,nd ended questions
census data audio visual data • Multiple forms of data • Statistical analysis • Text and image analysis drawing on ,n

possibilities • Statistical ,nd text
analvsis

Table 3.2: Research Methods

(Creswell, 2003)

Creswell (2003) suggests that the philosophical view, methodologies or strategies and
methods all contribute together to the research approach. On the basis of the above
information, the three research methodologies may be defined as (Gupta, 2003):

• A quantitative approach is one in which the investigator primarily uses
positivist claims for developing research, employs strategies of inquiry such as
experiments and surveys and collects data on predetermined instruments that
yield statistical data.

• A qualitative approach 1s one in which the research oflen makes research
claims based primarily on constructivist perspectives employs strategies of

71

inquiry such as ethnographies, grounded theory studies, or case studies and
collects open-ended, emerging data with the primary intent of developing
themes from the data.

• A mixed approach is one in which the researcher tends to base research claims
on pragmatic grounds, employs strategies of researc h that involve collecting
data either simultaneously or sequentially to best understand research
problems and data collection represents both quantitative and qualitative
infomrntion.

For the purpose of this research, the researcher has adopted a mixed-method approach
which was empirical in nature. In a mixed method approach each technique produces
different empirical data which can complement data collected from another technique.
A large amount of quantitative data (such as total number of alerts, various source and
destination IP addresses, frequency of port numbers probed, etc . . .) was collected
using the laboratory experimental method which was analysed and interpreted using
appropriate qualitative and quantitative methods. Concepts and understanding of the
problem situation was developed from the observations and patterns noticed in the
data collected. Therefore the research is best described as empirical learning approach
using laboratory experiments for observing data patterns.

3.3 When are laboratory experiments used?

Universalistic versus Particularistic research goals

Universalistic research (Kruglanski, 1975, p. 1 05) is used to investigate theoretically
predicted relationships between abstractly specified variables, for example:
pornography and sex crimes. It is important to conduct tests on such hypotheses as
they provide light on the validity of the theory from which the hypothesis was
derived. On the other hand, particularistic research involves various quantitative
questions such as, how much, how often or how many. Such particular questions
presuppose a population, setting and other conditions in regard to the applicability of
the research findings.

72

When the research goals are universalistic, since a particular setting and population of
participants are not crucial aspects of the hypothesis under study, a laboratory study
may be appropriate. When the research goals are particularistic a laboratory study is
less suitable as it will be difficult to answer questions about the impact of a program
in a specific setting with specific people unless the research is conducted under those
same conditions.
For the purpose of this research, it can be classified under particularistic research as
similar network architecture was implemented at each iteration of the research and
was tested by various attackers. These attackers were anonymously chosen as
described in later section.
Examining what does happen versus what can happen
Sometimes the goal of the research is to detennine what can happen under such
situations or circumstances (Judd, 1991). For example, in theoretical based hypothesis
a set of circumstances are specified and the goal is to create those circumstances in
order to detennine if the predicted phenomenon can be observed. Results for such
hypothesis are already predicted but it is the validity of such predictions that needs to
be proved by constructing such circumstances, which may be possible to do in a
laboratory environment.
With regard to this research, the theory of deception was already applied by various
deceptive techniques and tools. What needed to be detennined was the effectiveness
of the actual deception by using such tools and techniques in a virtual networked
environment. It was not possible to do this network testing in a real world by
connecting it to the external networks for several reasons. Firstly, it was essential to
detennine if the designed network is capable of deceiving attackers. Secondly, if the
designed network is also secure enough to handle the attacks otherwise it could have
been used as a launching pad for carrying out attacks on other networks if it was done
in an open network or laboratory situation. Therefore, laboratory research method
seemed to be more appropriate as it provided a controlled environment to protect the
external networks and also provided the author with valuable and controlled results.

73

3.4 Research Process

The research process has been divided . .-1 various stages where results of each stage
depend on the previous stage. The figure 3.1 below explains each stage of the research
process.

Using Automated
Tools

Testing ofBaseline
by verifying the

signatures

Questionnaire with
scrs students

Network Penetration
Tests by 6 students

............................

Log File Analysis
using analysis tools

·- ·- ·- · - ·- ·-

System Hardening
based on analysis

results

I
Network

Penetration Tests

... ,

r •••• ••• - · - · · · - · · ' • • • ' • ••• ' . ' ! Result comparison ;
- · • � from previous analysis !

i,_. - . -· - . - ·- . -·-·-·-·-·-·-'

-----"'Empirical Cycle

Figure 3.1: Theoretical Framework: Stages of Research Process

Stage 1 : Verification of Signatures
In the initial stage of the research, a baseline system was created using the Honeyd, an
open source honeypot. Honeyd is provided with the list of TCP/IP signatures of
various operating systems and networking devices (around more than 400) which can
be used for configuring the honeynet. But it was not known that the signatures

74

provided with the honeyd can be successfully used. Therefore, before implementing

the honeypot for the data collection it was necessary to verify these signatures using

honeyd. Each individual signature was implemented in the honeyd configuration file

and Nmap (a network scanning tool) was used to test them. All the successful

signatures (nearly 50% of the total signatures) were listed separately and were then

used for baseline the honeypot. Once the baseline signatures were achieved, the

researcher moved to the next stage of the research.

Stage2: Questionnaire

Selected attackers were required to attack the system on which Honeyd was installed,

in order to test its effectiveness. A Questionnaire, a type of survey method, was

chosen for selecting the attackers. A preset questionnaire was prepared with 20

questions related to computer security. The primary aim of this questionnaire was to

select students for network penetration testing. It was conducted among the students

of School of Computer and Information Science (SCIS) of Edith Cowan University,

Perth. These students were chosen primarily because they were easy sample group to

approach within the computer science school and were computer literate. So there was

high possibility among these students having some knowledge of operating systems

and computer systems which was essential for participating into such exercise.

Students who attempted the questionnaire were not made aware of the real nature of

the project. They were informed only about the hacking exercise. They were told that

the exercise was only to determine their hacking skills. It was purely to preserve the

nature of the project whose main aim was to disguise attackers. The effectiveness of

hackers was unknown until they perfonned the network penetration tests. They were

purely selected on the basis of their performance in computer security literacy test.

Due to the lack of resources and time it was not possible for conducting any such

practical exercise which could help in detennining the effectiveness of the hackers.

This would have been an advantage to the research results but unfortunately was not

possible. The prototype of the computer security literacy test was also approved and

validated by two network consultants. The two network consultants were Craig Valli,

Edith Cowan University, Australia and Andrew Dawson, British Petroleum, London.

None of the students, who attempted the questionnaire, were identified by their names

or anything else that could identify them. They were assigned a subject number in

order to preserve their anonymity.

75

The designed questionnaire was attempted by 10 students, from which top 6 were
selected for the next stage of the project i.e. for network penetration exercise. These
students were selected primarily because of their excellent performance in the
questionnaire in which they scored 100%. The total number of students selected was
restricted because of limited resources in terms of availability of computer systems,
availability of appropriate laboratory, and also time constraints.
Stage 3: Network Penetration Tests by selected students
The selected students conducted the network penetration tests for the configured
Honeynet. These tests were conducted to probe the network for exploitable
vulnerabilities. As mentioned earlier, these students were not aware of the actual
Honeynet in the network structure. These students were allowed to bring in their own
laptops and programs required by them for network testing. This provided an
opportunity for the students to use their own desirable tools to do the exercise. Also it
was beneficial for the purpose of research to learn about various attacking tools which
can be used against such network environment. All the results obtained during the
testing were kept completely anonymous. The Network Penetration exercise was
conducted continuous for several days to provide enough time to participants to probe
the network.
There was only one single laboratory available for the purpose of the network
penetration exercise, therefore all the selected students were asked to take their places
within that laboratory. All of them had their own laptops with them so it was not
required to provide them with separate machines. Only a couple of them requested for
access to an extra machine, which was provided to them.
Once the network penetration exercise was completed by the participants, they
voluntarily provided their anonymous reports to the researcher. These reports outlined
their point of views regarding the network architecture and their findings during the
exercise.

76

Stage 4: Log files Analysis
Logs generated during the above network penetration exercises were stored securely
on the server and also appropriate backup measures were adopted, such as storage on
zip disks, database backup on remote system. Various analysis tools were used to
carefully analyse these log files. The tools used were:

• ACID (Analysis Console oflntrusion Databases)
ACID was primarily used in conducting statistical analysis of the log files. This
tool helped in classifying the security alerts generated during the network
penetration tests conducted by the participants. ACID allowed the researcher to
analyse the data using options such as most frequent alerts, top 10 source IP
addresses, top 1 0 destination IP addresses, alerts related to individual port
numbers, etc.
• Ethereal and tcpdump
Log analysis also involved study of all malicious packets that came through the

system. Their structure and their potential threats were carefully analysed. The
malicious packets were analysed using Ethereal Packet analysing tool and
tcpdump. Ethereal was mainly used as it has the ability to (Anonymous, n.d(f)):

• Examine data from a live network or from a capture file on disk • View the reconstructed stream of TCP session
• Can be used for both Windows and Unix machines
• Dissect 280 protocols
• Selectively highlight and colour packet summary infonnation
• Save all our parts of captured network trace to disk

Ethereal allowed the researcher to generate the hierarchical statistic of the
protocols. Using ethereal researcher was able to analyse each individual captured
packet separately.
• Analyst Notebook 6
Analyst Notebook 6 was a commercial analysing tool which helped in generating
visual diagrams of the network traffic captured in the log files. It helped in

77

interpreting complex information through visual diagrams, which was not possible
doing manually. The results generated by Analyst were easy to understand and
accessible.

Also some of the log files were analysed manually. During the analysis, frequencies
of various types of attacks and their effects over the network were identified. These
tools were selected because they were easily available as freeware (except Analyst)
over the internet and were also open source programs. This provided enough
flexibility in their configuration according to the research requirement. From the
collective combination ofresults obtained from these analysing tools, various network
configuration weaknesses were identified. These weaknesses were identified by
observing the data patterns within the log files and also by understanding the tools or
programs used by the participants for attacking the network. The information about
these tools or programs was captured within the logs. From the detailed analysis of
the logs and captured packets, it was identified that there were few configuration
problems in mimicking the Honeynet. It was also found that some services, which
were prone for attack, were also not configured properly. Such weaknesses were
identified with the help of using various analysing tools described above.
Stage 5: System Hardening
Based on the results obtained m the above analysis stage, system and network
configuration was improved and hardened for further testing and data collection.
System hardening was done by improving the configuration file of the honeypot using
more specific signatures and also by improving the configuration files of the services
emulated on various ports.
Stage 6: Network Penetration tests using Tools
Once the hardening of network and system was completed, further network
penetration testing was conducted using some automated security tools available
freely over the internet. These tools were mainly used because they were freeware.
These testings were conducted by the researcher using various hacking tools. This
testing was done to determine if the behaviour of the network has improved after the
system hardening based on the weaknesses identified in previous analysis. After the
completion of testing, steps in stage 4, 5 and 6 further followed in order to determine

78

if the level of deception in the Honeynet has improved or not. Results obtained from
each analysis stage were compared with the previous analysis results. This
comparison of results helped in detennining the level of deception. This was
determined by studying the various successful hacking techniques, identified in the
log files, which were lower in number and less effective then in comparison to the
first analysis conducted after the initial penetration tests. Steps in stage 4, 5 and 6
were empirically continued until it provided minimal opportunity to the attackers to
determine security holes in the network. With the continuous improvement in the
Honeynet, it may be considered that a successful level of deception was achieved
which was effectively able to deceit the attackers.

3.5 Elements of the laboratory experiments

This research is based on the findings during the experiments conducted in a closed
laboratory environment. The uniqueness of laboratory research lies in its flexibility. It
gives the researcher the ability to construct physical settings, tasks, social
environments, and many other factors that influence human behaviour. But also
laboratory research has drawbacks. One of the drawbacks oflaboratory research is its
artificial nature. Laboratory research is artificial in nature as it permits the creation of
settings or tasks and manipulations which assists in achieving the required research
goals. The reliability of the results may depend on various factors, such as sample
size, depending on the type of any research (Judd, 1991; Agassi, 1992; Fujita, 1996).
In this research, the sample size used, in terms of number of participants, was small.
The sample size constraint was difficult to overcome for several reasons. Firstly, it
was difficult to find people with an appropriate amount of computer security
knowledge to participate in this type of research. But this does not imply that the
results obtained in a laboratory research are wrong or incorrect. Those results are
valid under the created situation within the laboratory and from which various
assumptions may be made but it may not be applied to large population due to the
small sample size reducing reliability of results.

79

Participants' awareness of the research was very important for the purpose of this
research. In a laboratory research method, it is sometimes difficult to keep people
unaware of the fact that they are participating in research. This may sometimes create
problems for the validity of the research (Judd, 1991). The participants were selected
for conducting the penetration tests in the laboratory were unaware of the true nature
of the research. They were selected through a computer literacy test to conduct the
hacking exercise in a closed laboratory environment. They were not infonned about
the deception implemented in the network and this was the main focus of the research.
These participants, while they were conducting penetration tests, were remotely
monitored by the researcher. Their moves, tactics and also their personal expressions
while doing the exercise were monitored by the researcher in the laboratory.
In a laboratory research methodology, one of the main goals of the research is
Control. Control or the minimization of irrelevant influences on whatever the research
is designed to investigate, is made possible by the laboratory's isolation from external
influences (Judd, 1991). For the purpose of this research, a closed laboratory
environment was adopted, isolated not only physically but also electronically. This
laboratory research was carried out in an isolated network environment with no
communication with any other network. This control environment was beneficial for
the purpose of the research because it prevented from distractions and influences
caused by external sources. By removing external variables and their impacts by using
the closed laboratory the possibility of participants having their work affected in
direct or indirect manner was greatly reduced. Also having a control isolated network
environment gave a sense of security while carrying out this research to the attackers.

3.6 Rationale of the Research

This section of the chapter provides the justification of the research process adopted.
The researcher justifies why he chose Mixed-method positivist approach towards
undertaking a survey method (e.g. Questionnaire) and observational study
respectively.

80

Philosophical View - Positivist

This research depends on the tests and statistical conclusions drawn from the tests
conducted within the laboratory. There was no previous data from any other research
which was being interpreted or critically analysed or used in anyway.
Research Methodology- Mixed Method

Both quantitative (e.g. experiments, questionnaire) and qualitative (e.g. observational
study) methods were adopted. Mixed Method approach was mainly used:

• To achieve a higher degree of validity and reliability
• To overcome the deficiencies of single method studies
• To help in explaining the findings of another method.

Research Methods

• Laboratory Experiments

This research was being particularistic in nature as a particular network was
probed and attacked by selected attackers. Also it provided a control and flexible
environment for the purpose of the research. According to the researcher, this was
the only possible method to adopt which could have justified the nature of the
underlying research.
• Questionnaire

The Questionnaire was primarily chosen because of following reason:
• Offers greater assurance of anonymity
• Could be completed at the respondent's convenience
• Questionnaire are stable, consistent and uniform measure, without

variation
• Helps in avoiding bias selection of participants

• Observational Study

According to the researcher, this research was an observatory study. Participants
were not made aware of the deceptive network created by the researcher. They
were just asked to test their hacking skills over a local network. This exercise may
have just a minimal impact over the participants. From the data collected, the

81

researcher tried to observe various data patterns and tools and tactics used by
participants.

3. 7 Evaluation of research methodology

However the researcher has justified his adopted methodology in the previous section,
but all these methodologies and methods do have some advantages and disadvantages.
These are briefly summarised below:
Advantages and Disadvantages of Questionnaires
Advantages
Questionnaire is a type of survey method which provides a type and amount of
infonnation that other methods cannot provide. There are various reasons that make
them one of the popular methods used in social science research. Questionnaires are
less expensive than other methods and also produce quick results. They are also very
convenient method as they ca11 be completed at the respondent's convenience and
offers greater assurance of anonymity. They promise a wider coverage of people,
since they can approach respondents more easily than other methods. They also help
in avoiding bias or errors caused by the presence or attitude of the researcher.
(Sarantakos, 1993)
Disadvantages
There are various limitations associated with the nature of the questionnaires. They do
now allow probing, prompting and clarification of questions. It is not possible for the
researcher to know whether �he right person has answered the questionnaire also if the
respondents have foilowed the right order of the questions. Due to lack of supervision,
partial response is quite possible. (Sarantakos, 1993)
Advantages and Disadvantages of Laboratory Experiments
Advantages
The laboratory is a unique setting for research in many ways. It provides a Control

environment which minimizes various external influences which could affect the
82

underlying investigation. Manipulation of independent variables is also facilitated by
the laboratory research settings. Laboratory experiments also allow the researcher to
setup various settings which may influence the research participants. The flexibility of
the laboratory research allows the researcher to attain control, implement a
manipulation and construct an appropriate setting in different ways depending on the
nature of the underlying research (Judd, 1991).
Disadvantages

Laboratory experiments also have various limitations which may affect the research.
In a laboratory settings there are chances of human errors. It is an artificial
environment created by the researcher so it is very prone of errors made by the
researcher. Also the sample used in the experiments too has a limitation. It may not be
a representative of the population (Judd, 1991; Anonymous, n.d.(d)).

Advantages and Disadvantages of Observational Study

Advantages

Observation provides infonnation when other methods are not effective. It offers
infonnation without relying on reports of others. Observation allows the collection of
a wide range of infonnation even when this infonnation is thought to be irrelevant at
the time of study. It is relatively inexpensive mode of study. (Sarantakos, 1 993)
Disadvantages

Observation study too has various limitations. They cannot be applied when large
group are studied. It is also exposed to the observer's bias, selective perception and
selective memory. Observation cannot offer quantitative generalisations on the
results. It is relatively laborious and time consuming method. (Sarantakos, 1 993)

3.8 Conclusion

On the basis of the literature reviewed on research design, the researcher had adopted
mixed�method positivist approach for the research. During the course of the research

83

laboratory experiments, questionnaire and observational research method were

conducted.

The nature of the research was evolutionary since the findings of one stage were the

basis of lhc focus of next stage of the research. This provided the higher level of

granularity among the results. Thus a mixed-method approach was more appropriate

as it provided flexibility to him in comparing the results of c;1ch stage, generated in

the experiment, and then designing the focus of next stage accordingly.

84

4. Tools for Data Collection and Analysis

There were various tools used for the data collection and analysis purpose. There were
tools which were used for collecting raw data and then with the help of some other
tools generated some meta data for analysis purpose. This can be summarised in the
Figure 4.1 below:

SNORT ETHEREAL SYSLOGS HONEYD DATA
GENERATORS

.

MYSQL TCPDUMP LOG FILES HONE YD LOGS

ACID ETHEREAL MANUAL ANALYST

Figure 4.1: Tools for data collection and analysis

4.1 Snort

Snort is a freely available intrusion detection system which can be distributed and
modified under the GNU General Public Licence (See Appendix B). It is freely
available from http://www.snort.org. According to the snort website, it is capable of
pcrfom1ing rcal�timc traffic analysis and packet logging on IP networks. It can
pcrfom1 protocol analysis, content searching/matching and can be used to detect a
variety or attacks and probes, such as buffer overflows, stealth port scans, COi
attacks, SMB probes, OS fingerprinting attempts, and much more. There are three
main modes in which Snort can be configured (Baumann, 2002; Roesch, n.d):

85

RAW

DATA

META

ANALYSIS

• Sniffer Mode: Snort is used as a packet sniffer and can be configured to show
only IP headers or the IP payload as well.

• Logger Mode: All packets can be logged to a file and inspected later using
various tools.

• Network Intrusion Detection Mode: All packets are compared to the rule type
defined in the configuration files. If any rule matches, the packet is logged and
an alert is senl. This is being illustrated in the figure 4.2 below:

- Logo

SnO<tOC,,,�- � I T""""' I TCP"'1Tp I
I - I Soo.141 I
I I I • ,,..,

SiiJ,,l1Rs f------l,,
� I �

T

Figure 4.2: Snort Overview
(Baumann, 2002)

Any incoming packet is checked for the rules defined in the snort configuration file
which further checks with the signature database to detennine the type of packet. If
the packet matches with the signature, request is sent to the snort sensor which logs
the details of the packet and generates an alert for the purpose of the administrator.
It has a real time alerting mechanism and can also log all the alerts to syslog or
various types of logging mechanism such as SQL databases. It features allow logging
discrete types of messages on separate log files.
Snort is running as a UNIX daemon and is configured through a common Unix .conf
file (see appendix C.5). It is connected to the MySql database where all the logs and
alerts are stored (see appendix C. 7 for MySql database format). Snort is a core IDS

86

engine. It does not contain any analysis tools or remote administration GUis. There
are few available front-ends and analysis tools. One of the best known is ACID
(Analysis Console for Intrusion Databases) (Danyliw, n.d.). It is a web based analysis
tool which is use<l t0 inspect Snort data stored into the database.
Snort is a notable IDS with an extensive list nf available signatures. It is easy to install
and also the database support is available. Snort has a fast and robust engine. When
compared to other commercial IDS, Snort is a better choice as it is available for free
and signature file can be updated quickly in compare to commercial IDS as those are
dependent on their vendor's supply (Roesch, 11.d).

4.2 MySQL

MySQL, the most popular Open Source SQL database, is developed and provided by
MySQL AB (Anonymous, n.d(b)). It can be downloaded by anyone from the internet
(http://www.mysql.com) for free. It is freely distributed and modified under GNU
General Public License (see appendix B). MySQL was originally developed to handle
large databases much faster than existing solutions and has been successfully used in
highly demanding production environments for several years. The connectivity,
speed, and security make MySQL highly suited for accessing databases on the
Internet (Anonymous, n.d(b)).
MySQL provides excellent connectivity with Snort IDS and ACID (see section 4.4 for
ACID) for analysis.
Due to its high degree of connectivity with Snort IDS and ACID (Section 4.4) and
also support for SSL connection between MySQL client and server which provides an
encrypted connection while transferring the data, it was an ideal choice to use this
database for this Honeynet project.

87

4.3 Webmin

Webmin is a web-based interface for system administration for UNIX. Using any
browser that supports tables and fonns (and Java for the File Manager module), you
can setup user accounts, Apache, DNS, file sharing as well as other services.
Webmin consists of a simple web server, and a number of CGI programs which
directly update system files like /etc/inetd. conf and /etc/passwd. The web server

and all CGI programs are written in Perl version 5, and use no non-standard Perl
modules.
Webmin is available under the BSD licence. This means that on Linux and other
platforms, Webmin may be freely distributed (http://www.webmin.com) and modified
for commercial and non-commercial use.
Webmin provides a one-to-one graphical interface to nearly every service and action
needed to maintain a UNIX system. It is universally accessible, because it only
requires a web browser. It can potentially be accessed from anywhere in the world via
a network connection. It is simple, ,concise, and consistent in its presentation across a
wide array of differing services, functions, and operating systems. It is predictable, in
that it does not modify files unnecessarily or in incompatible ways. Webmin is an
excellent tool for both novice and experienced system administrators. As a tool for
novices, it can provide a means of getting involved in system administration in a very
visual way. All of the options available are presented in a clear and complete fashion.
Webmin proved to be an excellent tool for the purpose of this research. It allowed the
researcher to keep a constant watch on the system changes while the honeynet was
probed. It also provided the option of disabling any service, such as database, log files
etc., remotely on the system, in case it is being exploited by the attackers. It was a
utility which provided the researcher to keep a constant watch over the data collected
from the honeynet. It also helped the researcher in administrating the systems, after
the honeynet was probed or attacked, for the purpose of tracking file changes and
backups. For screenshot see appendix A.5.

88

4.4 ACID (Analysis Console for Intrusion Databases)

Analysis Console for Intrusion Databases (ACID) is an analysis engine to search and
process a database of security events generated by various intrusion detection
systems. The Analysis Console for Intrusion Databases (ACID) is a PHP-based
analysis engine to search and process a database of security events generated by
various IDSes, firewalls, and network monitoring tools. The features currently
include:

• Query-builder and search interface for finding alerts matching on alert meta
infonnation (e.g. signature, detection time) as well as the underlying network
evidence (e.g. source/destination address, ports, payload, or flags).

• Packet viewer (decoder) will graphically display the layer-3 and layer-4
packet information of logged alerts

• Alert management by providing constructs to logically group alerts to create
incidents (alert groups), deleting the handled alerts or false positives,
exporting to email for collaboration, or archiving of alerts to transfer them
between alert databases.

• Chart and statistics generation based on time, sensor, signature, protocol, IP
address, TCP!UDP ports, or classification

ACID has the ability to analyse a wide variety of events which are post-processed into
its database. Tools exist for the following fonnats:

• using Snort (www.snort.org)
o Snort alerts
o tcpdump binary logs

• using logsnorter (www.snort.org/downloads/Iogsnorter-0.2.tar.gz)
o ipchains
o iptables
O ipf\v

Due to its compatibility with Snort and MySql , ACID was an appropriate analysis
utility for the purpose of this research. ACID has a remarkable feature of classifying

89

the data collected according to their occurrences, which resulted in better and in-depth
analysis of the data. It also had the compatibility of handling huge volume of data
while analysing and generating graphs and charts. Therefore, it was an ideal utility to
use for the analysis purpose of the data generated during this research. For screenshot
see appendix A. I .

4.5 Syslog-ng

One of the most neglected ru:-eas of UNIX is handling system events. A daily check for
system messages is crucial for the security and health conditions of a computer
system. System logs contain many messages which are of no importance but at the
same time they also contain many important messages which sometime get lost in the
load of messages. Therefore, filtering is not always the best option. The better and
consistent option would be having a logging service during runtime of all applications
(Scheidler, 1999).

Syslog-ng, as the name shows, is a syslogd replacement, but with new functionality
for the new generation. The original syslogd allows messages only to be sorted based
on priority/facility pairs; syslog-ng adds the possibility to filter based on message
contents using regular expressions. The new configuration scheme is intuitive and
powerful. Forwarding logs over TCP and remembering all forwarding hops makes it
ideal for firewall environments.
Syslog-ng is available free over the internet
(http://www.balabit.hu/en/downloads/syslog-ng/) which may be redistributed or
modified under the tenns of the GNU General Public License as published by the Free
Software Foundation.
Syslog-ng consists of message paths of one or more sources and also one or more
destinations. Syslog-ng can be configured for logging on a remote location as well
which can be useful in having a backup of logs. This method is very useful for
establishment of honeypots as it allows storing the logs on a remote secure location
other than storing on the Honeynet itself (which may get compromised).

90

In a honeypot, remote data storage is every essential to preserve the data from any
fabrication or deletion. For the purpose of this research, Syslog-ng proved to be an
excellent utility for transferring and storing the data generated in log files, while the
honeynet was probed and attacked, to a remotely connected system. This provided a
layer of security for preserving the data for this research.

4.6 Ethereal

Ethereal is a packet analyser (http://www.ethereal.com) released as Open Source
under the GNU General Pubiic Licence. Ethereal is available for almost every
platfonn. For capturing the network traffic, libpcap is used which is available for
nearly every known platfonn.
Ethereal has the feature of capturing live network traffic or to use a file as network
traffic source (which has to be in tcpdump file fonnat). All packet data is displayed in
a readable fonnat which makes it easy to analyse and is much simpler. It supports
more than 50 types of protocols. Ethereal does decode known protocols as much as
possible. For example, telnet traffic is shown in plain text.
Ethereal does also provide a feature of "Follow TCP Stream" which will present a
special view to the user, where a chosen TCP stream is decoded and displayed. It does
also provide the feature of filters both for display and capture packets. Limiting
complex capturing to interesting packets is possible and flexible.
Ethereal does also provide a feature of"Protocol Hierarchy Statistic" which generates
a hierarchical view of different packets captured. This provide a detail analysis of
packets in tenns of total percentage of each packet and also provides infonnation of
their start and end bytes.
Ethereal consumes a great amount of memory and affects the CPU perfonnance.
Depending on the packet sizes, it is a utility to decode and analyse packets which
went over the wire.

91

The reason researcher decided in choosing the utility for the purpose of this research
was purely because of its ability of analysing each individual packet separately. It was
also capable of generating a protocol hierarchy statistic of the packets sniffed while
the honeynet was probed. Ethereal was an excellent utility for analysing the malicious
packets captured from the honeynet. For screenshot see appendix A.4

4.7 TCPDump

TCPDump (http://www.tcpdump.org) is a tool which can be used to capture and
analyse network traffic. Its primary use is to record network traffic from a network
device to a file. A Boolean expression may be used to identify certain packets with
specific protocols, certain flags or packets destined to certain IP address. It also has
the capability to get the packet stream out of a file. It is possible to simulate incoming
packets by specifying a previously recorded session. This feature enables the user to
record all network traffic having the possibility to analyse the network flow at a later
time with the same tools which can be used in real time.
Snort is capable of writing the Jogs of all traffic in TCP Dump readable format. Snort
stores these logs in tcpdump.log.xxx file fonnat. These files then can be read and
analysed using Ethereal. These Jog files have been extensively analysed, in this
project, using Ethereal.

4.8 Nmap

Nmap ("Network Mapper") (Fyodor, n.d) is an open source utility for network
exploration or security auditirig. It was designed to rapidly scan large networks,
although it works equally well against single hosts. Nmap uses raw IP packets in
novel ways to detennine what hosts are available on the network, what services
(ports) they are offering, what operating system (and OS version) they are running,
what type of packet filters/firewalls are in use, and dozens of other characteristics.
Nmap runs on most types of computers, and both console and graphical versions arc

92

available. Nmap is free software, available with full source code under the terms of
theGNU GPL.

Following scanning techniques can be chosen by the user (Fyodor, n.d):
• UDP
• TCP connect and TCP SYN (half open)
• FTP proxy (bounce attack)
• Reverse-ident, ICMP (ping sweep), FIN, ACK sweep, Xmas Tree, SYN

sweep, IP Protocol and Null scan.
After scanning one or more machines nmap shows a list of interesting ports on the
target machines. It always gives the port's open, filtered or unfiltered. Open means
that the target machine will accept a connection on that specific port number. Filtered
means that a firewall or filter is protecting the port and nmap is unable to determine
its state. Unfiltered means that the port is closed and there is no firewall or filter
protecting the port.
The reason why Nmap was chosen was primarily because of its capability of scanning
large networks using various scanning techniques. The information provided by the
Nmap after the scan is completed is very useful in determining the features of the
scanned hosts or network, such as what Operating system is installed and which ports
are open with what services implemented on them. This allows more focused testing
on those hosts by only using related exploits on them. For screenshot see appendix
A.6.

4.9 GFI LANguard Network Security Scanner

GFI LANguard Network Security Scanner (N.S.S.) (http://www.gfi.com.languard) is

a tool that allows network administrators to quickly and easily perform a network
security audit. GFI LAN guard N.S.S. combines the functions of a port scanner and a
security scanner. It also creates reports that can be used to fix security issues on a
network.

93

Unlike other security scanners, GFI LANguard N.S.S. does not create a "barrage" of
information, which is virtually impossible to follow up. Rather, it helps highlight the
most important information. It also provides hyperlinks to security sites to find out
more about these vulnerabilities.
GFI LANguard N.S.S. is freeware for nonMcommercial use.
The researcher decided on using GFI LANguard as an other network scanning tool
along with Nmap because of its ability of generating detailed report with details about
various vulnerabilities outlined during network scan and also with the proposed
solutions. Secondly, this provided the chance of triangulating the results generated by
the Nmap to have the results more reliable by using multiple network scanning tools.
For screenshot see appendix A.3.
4.10 Analyst Notebook 6

Analyst 's Notebook 6, a commercial product developed by i2 Group
(http://www.i2group.com), provides the optimum environment for effective link and
timeline analysis. It is the de facto standard for this type of analysis worldwide and is
an essential visualisation application. Analyst's Notebook helps in:

• Swiftly identify the common elements and links hidden within your data
• Easily explore and interpret complex information
• Apply a comprehensive range of analytical techniques to develop your

intelligence
• Present the results of your analysis graphically, making them more accessible

and easy to understand
• Produce dynamic briefing charts by including photos, video clips and

documents
• Generate the analytical input that focuses an investigation and facilitates

effective decision making and resource allocation.
The Analyst's Notebook produces charts in a range of formats, each applicable to a
different technique. These typically include:

94

Link Analysis charts - present people, accounts, organisations and other entities
together with the relationships or flow of commodities between them, no matter how
complex the situation.
Network Analysis charts - extend the concept of link analysis to large datasets.
These are usually generated automatically and are especially useful for identifying the
key relations hips in telephone, account and internet transactions.
Sequence of Events charts - reveal how related events unfold over time.
Transaction Pattern Analysis charts - depict when exchanges occur or
commodities flow between entities.
Analyst proved to be excellent software for analysing the data generated in this
research. It has an ability of converting huge amount of data into simple graphical
pictures which are easy to understand and helps in analysing the various network
communications between the hosts. The honeynet generated enonnous amount of data
which would not have been possible to analyse without using such utility. For
screenshot see appendix A.2.

4.11 Conclusion

Honeypots gather a wide range of data from the environment and need a variety of
tools for effective analysis. Various specialist tools were required for the purpose of
the analysis of the collected data. An explanation of the various tools used for the
analysing different formats of data collected has been outlined in the chapter.
The use of the correct tools for analysis is important as it affects the richness and
reliability of the result.
In the next chapter, the researcher describes how the Operating System Fingerprinting
tests were conducted for the purpose of the research.

95

5. Operating System (OS) Fingerprinting

5.1 Overview

There are various fonns of infonnation which a skilled hacker would like to gather
before attacking any remote network or machine. One of the most important pieces of

infonnation is the type and version of operating system. With knowledge of the
operating system, a hacker can look for any number of possible vulnerabilities that are

specific to that operating system. There are various techniques by which infonnation
about the remote system can be identified. Apart from the classical techniques,
discussed in Chapter 2, there are also various tools such as Nmap, Ettercap, Xprobe,
which can be used in detecting the information about the remote operating system.

Honeyd, the virtual honeypot, is accompanied by a set of TCP/IP signature file
(explained in section 2.2.6), provided by Nmap, of various operating systems, routers,

switches, firewall, etc. It uses this signature file for emulating various hosts on to the
network. Before implementing a honeypot on to the network, it was essential to
detennine how accurate each signature was. Therefore, an experiment was conducted
to detennine how many signatures specified in the Nmap fingerprint file (Fyodor, n.d)
were successful in deceiving the attacker and the typical tools of trade.

5.2 Methodology

The purpose of this study was to investigate how different TCP/IP fingerprints could

be detected by using network scanning tool, Nmap. A deceptive environment was

setup on a machine (assume Ml) using a freely available program called Honeyd.
Honeyd is a small daemon that creates virtual hosts on a network. It is implemented as

a Unix daemon that runs on a workstation and listens to network traffic. The hosts can

be configured to run arbitrary services, and their TCP personality can be adapted so

that they·appear to be running certain versions of operating systems. Honeyd enables

a single host to claim multiple addresses. It was tested by setting up 3 different hosts
(10.21.19.102-104).

It is possible to perform standard network diagnostics such as ping the virtual
machines, or to traceroute them. Any type of service on the virtual machine can be
potentially simulated. Instead of simulating a service, it is also possible to proxy it to
another machine. Honeyd supports asymmetric routes and the integration of physical
machines into the virtual network topology (Provos, 2002). Therefore, it is capable of
re-routing the network traffic to any physical machine present on the network rather
than simulating any service or operating system. The different TCP personalities are
learned from reading an nmap fingerprint file. The configured personality is the
operating system that nmap or xprobe will return. These personalities emulate the
related operating system or network service but they do not exist in real. These are
bogus services which can be emulated using their TCP/IP fingerprint. Personalities
can be annotati d to detennine if they allow FIN-scans for open ports or to select the
preference in which they reassemble fragmented IP packets.
Honeyd can be used to create a virtual honeynet or for general network monitoring. It
supports the creation of a virtual network topology including dedicated routes and
routers (routing configuration described earlier in section 2.3.4). The routes can be
attributed with latency (the amount of time it takes a packet to travel from source to
destination) and packet loss (packets which are lost or dropped in between while
travelling from source to destination) to make the topology seem more realistic (ibid,

2002).

After the initial setup of Honeyd, arpd was configured. The ARP daemon moves the
management of the ARP (Address Resolution Protocol) table from kernel to user
space. It allows honeyd to use IP addresses on the existing network. Arpd can detect
all the unallocated IP addresses on the existing network. It is useful for sites with
large network segments (256+ systems per segment), because the kernel hash tables
are not optimized to handle this situation (Provos, 2002). On successful configuration
of both Honeyd and Arpd, a small configuration file was created which was mainly
used to create multiple deceptive hosts running virtual operating systems.

97

5.3 Honeyd Configuration

Below is an example configuration ofhoncyd. This example defines a template which

annotates a host running a web server.

annotate "AIX 4 . 0 - 4 . 2 " fragment old

Example of a simple host template and its binding

create template

set template personality "AIX 4 . 0 - 4 . 2 "

add template tcp port 8 0 "sh scripts/web , sh"

add template tcp port 22 ''sh scripts/test . sh $ipsrc $dport"

add template tcp pore 23 proxy 1 0 . 23 , 1 . 2 : 2 3

set template default tcp action reset

bind 10 . 21 . 1 9 . 102 template

Virtual honeypots are configured via templates. A template is a reference for a

completely configured computer system. New templates are created with the create

command.

The set and add commands change the configuration of a template. Using set

command we assign a fingerprint personality to the template. This personality

determines the behaviour of the network as discussed earlier. The set command is also

used to define the default behaviour of the supported network protocols. This default

behaviour can be one of the following: block, reset, or open. Block means that all

packets for the specified protocol are blocked by defaull, reset means that all ports are

closed and open means that all ports arc open by default for the specified protocol

(Provos, 2003).

The add command is used to specify the services which can be accessed remotely.

Beside the template name, we need to specify the protocol, port and the command to

execute for each service. Honeyd also recognises the keyword proxy that allows us to

for.vard network connections to a different host. The daemon expands the following

four variables for both the service and the proxy statement: $ipsrc, $ipdst, $sport and

$dport. This allows services to adapt their behaviour depending on the particular

98

nelwork connection they are handling. It is also possible to direct the network traffic
back to the host who is probing the honeypot (ibid, 2003).

The bind command is used to assign a template to an IP address. If no template has
been assigned to an IP address, the default template is used. The above mentioned
configuration example creates a template for a personality "AIX 4.0 -4.2" and adds
http, telnet and ssh ports. Finally it binds all this infonnation to a virtual IP address
10.21.19. 102. Similarly there were 2 more hosts were created.
After creating the configuration file, arpd was processed this was followed by honeyd.
This allowed arpd lo respond to any incoming network traffic directed towards the
honeyd. If the incoming IP address request docs not exist in the configured honeyd
configuration file, arpd simply drops that packet and processes another request.
Thereafter, from a different machine (say M2), nmap was used to carry out the scan
on those virtual hosts created in the configuration file. About 458 operating systems
signatures were used to scan from the fingerprint database file called 11map.pri11ts.

Since the task was to find out the details of operating systems running on the virtual
daemon - honeyd, nmap was used to carry out SYN Stealth attack with fast scanning
option along with Don't ping and OS detection options. The representation was

nmap -sS -F -0 -PO <ip address>

Scan Types
-sS
TCP SYN scan: This technique is often referred to as "half-open" scanning. A SYN
packet is send as if it is going to open a real connection and waits for the response. A
SYNIACK indicates that the port is listening. The primary advantage of this scanning
technique is that fewer sites will log it.
-F

Fasl Scan Mode: This specifies that the user only wishes to scan for ports listed in the
services file which comes with nmap or the configuration file created. This is
obviously much faster than scanning all 65535 ports on a host.

99

-PO
Don't Ping: Do not try and ping hosts at all before scanning them. This allows the
scanning of networks that don't allow ICMP echo requests (or responses) through
their firewall.
-0

This option activates remote host identification via TCP/IP fingerprinting. In other
words, it uses a bunch of techniques to detect subtleties in the underlying operating
system network stack of the computers which are scanned. It uses this information to
create a fingerprint which it compares with its database of known OS fingerprints (the
nmap.prints file) to decide what type of system is getting scanned.
The �O option also enables several other tests. One is the "Uptime" measurement,
which uses the TCP timestamp option to guess when a machine was last rebooted.
This is only reported for machines which provide this information.

5.4 Test Results

Total No. of Fine:emrints in nmap database 458 No. of Detected by nmap 231 No. of Undetected by nmap 227 Percentaee Detected 50.43%
No. of Parsing Error Configuration 5 No. of'NO' results (i.e. nmao ke�t scanning) 9
No. of Routers/Switches/Hubs signatures in nmap fingerprint database 70 (annrox. No. of Routers/Switches/Hubs detected bv nmao 39 (aonrox. PercentafJ'e Detected 55. 71 % (annx,)
No. of Printers/PrintServers signatures in nrnan fingemrint database 25 (annrox.) No. of Printers/Print Servers detected by nmap 14 (annrox.) Percentaee Detected 56.0% (annx.)

No. of Firewalls siJ,:natures in namp fin_gerprint database 14 (,nnrox.) No. of Firewalls detected bv nmap 6 (annrox.) Pereenta�e Detected 42.85% <aonx.)
Table 5.1: Nmap Scanning Results

100

5.5 Discussion

The purpose of this investigation was to detennine how many signatures of operating
systems, routers, switches, hubs or printers listed in nmap signature file can be
actually detected by nmap scanner. There were 458 signatures listed in the nmap
signature file. As the above results indicate only 231 signatures out of 458 were
actually detected by the nmap scanner. Only 50.43 percent signatures can be traced by

nmap scanner. There were 5 signatures in the signature database which were wrongly
parsed and about 9 signatures did not give any results. Nmap scanner just continued
scanning those 9 signatures for a long time and there were no results.

TCP/IP fingerprinting

80 70

I �� - ---1�----��---�t ��
� =-�-=

=

---- �o ______ -=-
� ��-----

� 50 - --39·--- -----··-------- - --·····---- · -- �5-V) 40 I . -
.---

- . -- - ·-- - -----·-··· --- - -· - -----· ..•

� 30 -··--;::---------- ---... - - ---- ---i 20 ---- 14-··- --14----·---�

10 - -- n- -n- -r'-i --
0

J

l
Figure 5.1: TCP/IP Fingerprinting Results using Nmap

The signature database file had approximately 70 signatures of Routers/switches/hubs
out of which only 39 were actually detected by nmap scanner. There were also
approximately 25 signatures of Printers/Print servers from which only 14 signatures
were detected. Out of approximately 1 4 signatures of firewalls, only 6 signatures were
detected by the nmap scanner. As only 42.85 per cent of the firewall signatures were

101

detected by nmap, it may be justified to say that nmap is not very effective m
determining the Firewalls on the network.

5.6 Conclusion

Honeyd as a defensive tool has a wide application, due to the fact that over 50% of the
signatures are usable in deploying a virtual honeypot network. By using the tested
and validated signatures it will allow any competent systems administrator to provide
front-line defensive deception honeypot network that will provide valuable attack
intelligence. Using these results the reliability of deception has increased as only
validated signatures can only be used for honeynet implementation. This provides an
advantage of maintaining a higher level of deception as we can now eliminate the use
of bogus signatures which otherwise could have identified the presence of deception
and made the attacker suspicious about the nature of the network.
Based on the deception created in the experiment, it can be classified as Mimicry. The
researcher created the replica of different types of hosts using the features of real-time
hosts using Honeyd. These hosts did not exist in reality but were virtually created
using their fingerprint features provided with Honeyd. Therefore, these hosts were
mimicked to pretend as real hosts with few characteristics of real hosts such as
running web severs, services like telnet, ftp, etc.
All the unsuccessful fingerprints could now be filtered from the signature file and
hence only the accurate signatures could be used for creating a successful deception
using Honeyd.
The next phase of this research was developing honeypot systems based on the
validated signatures and testing these configurations for the ability to deceive
operating system fingerprinting scanners and other network attack tools.

102

6. The Honeypot Implementation

After discussing what a honeypot is, its value and advantages & disadvantages in

chapter 2, the next step is to identify which honeypot will be effective for our

purpose. Incorrectly selected or implemented honeypots can be dangerous as they

may be compromised easily by attackers. These compromised honeypots then may be

used by attackers to carry out attacks on other hosts on different networks.

Before selecting any honeypot it is important to identify the goals for which the

honeypot is required and then selecting the appropriate honeypot to be implemented.

6.1 Goals

Honeypot solutions can be implemented for various purposes such as Spitzner (2002)

states:

• Preventing attacks through deception or deterrence.

• Detecting attacks.
• Responding to attacks, collecting data and evidence of attacker's activities.
• Researching attackers' tools, tactics and moves.

To detennine which of the above purpose would fulfil our requirement, the honeypots

can be categorised into two categories: production and research. The production

honeypots are used for the protection of any resource or organisation. On the other

hand, research honeypots are used for gathering infonnation on attackers.

Production honeypots help secure organizations in one of three ways- preventing,
detecting, or helping them respond to attacks while research honeypots helps in

learning about various attackers and their tools and tactics. Production honeypots are
generally highly secured in compare to research honeypots. They are normally used

by organisations as a layer of security architecture to protect their real legitimate
network. They are used for providing deterrence. On the other hand, research

103

honeypots are used as a learning tool. They are used to gather maximum amount of
attack infonnation, to understand and learn from various tools and tactics used by
attackers while probing and attacking the network. This attack intelligence is used to
harden the actual legitimate networks.
A research honeypot provides extensive value by information gathering {Spitzner,
2003). They can be used to capture automated threats, malicious programs or scripts
run by malicious attackers. By analysing this captured data it helps in by improving
the security of other legitimate networks. It allows us to learn more about advance
attacks.
The significance of this research was to improve the defensive capability of Honeynet
networks. This research is significant to:

1 . Universities, government organisations, educational institutions who will be
able to use the data generated from this research as a platfonn to continue with
further research into computer and network security.

2. Private organisations or individuals can use this research for deploying this
network architecture into their networks with the aim of making it more
secure.

Therefore, the main purpose of carrying out this research was:
I . To improve the level of Deception presented to attackers in Honeypot design.
2. To harden a deceptive honeypot and test its effectiveness using an empirical

learning approach.
3. To improve the ability of a deceptive honeypot to gather attack intelligence.

On the basis of above mentioned significance and purpose of research, the
researcher's purpose was to gather information about the attack intelligence in a
Honeynet environment. Therefore, a research honeypot was appropriate for this
research. Once the goal of the honeypot was identified, to gather attack infonnation,
the next step was to detennine which honeypot was to be used for infonnation
gathering (Spitzner, 2003).

104

6.2 Selecting a Honeypot

Once the goal is clearly defined, next step is to select the honeypot solution. Every
honeypot has its own strengths and weaknesses. When selecting any honeypot,

following criteria may be considered (ibid, 2002):

• Level of interaction. The level of interaction defines the type of functionality

the honeypot provides. The greater the interaction, the more can be learned

from the honeypot but it too increases the complexity of design and risk of

corporate network.

• Commercial versus homemade or freeware. Commercial honeypots are easy to

configure, manage and support but some of them cost more for such

functionality. Homemade or freeware can be customised solutions but may not

be effective a permanent basis on the organisational network.

• Platform. It is important to detennine on which platfonn the honeypot should
run. The baseline operating system impacts the perfonnance of the honeypot
and also how the organisation can manage it.

6.2.1 Interaction Level

Defining the level of interaction is a very critical issue when selecting the honeypot

type. The greater the interaction, the more an attacker can do and the higher

probability that more can be learned from it. However, the greater the interaction, the
more functionality is provided to the attacker, the greater the complexity of

configuration. With the high interaction honeypots attacker have more functionality in
tenns of real time operating systems, real services to probe and carry out attacks. But
the more the attacker is allowed to do, the more is the risk of honeypot becoming

105

compromised and used to attack other systems. There are 3 main type of level of
interactions as defined by Spitzner (2003), these are:
Low-Interaction Honeypots
These are typically easy to install, configure, deploy and manage because they are
simple in design and have basic functionality such as they may simulate simple logins
but nothing more which an attacker could do. In a low-level interaction, the attacker is
limited to interact with the predesignated services such as FTP, Telnet etc .. For
example, a low level interaction honeypot can emulate a standard UNIX server with
simple service like Telnet. Attackers could Telnet to the honeypot, and probably
obtain a login prompt. They could carry out a passwords brute force attack to gain
unauthorised login but there may not be a real operating system for them to log on to.
The primary value of low-level interaction honeypots is detection of any unauthorised
activity. Low-interaction honeypots has the limited functionality that they can only
emulate some services. Because they are simple in nature, they have the lowest level
of risk. These are easy to deploy and maintain because they have limited interaction
capabilities, which also reduces risk.
Medium-Interaction Honeypots
Medium-interaction honeypots offer attackers a greater ability to interact with the
honeypot. They are expected to give higher perfonnance than the low-interaction
honeypots. For example, in a real operating system, a partition may be created to
create a virtual operating system within the real operating system. The virtual
operating system can be controlled by the real operating system but will give the feel
of a real operating system to the attacker. Continuing with the Telnet example, in a
medium interaction honeypot, when an attacker tries to connect to the real network
using telnet, they would be allowed a successful login with a basic level of interaction
with the emulated file system. This will allow an attacker to interact with the file
system functionality as if it is a real file system. This level of interaction is greater
than the low level honeypot, which would have most likely presented a successful
login banner and nothing else.

106

High-Interaction Honeypots

High-interaction honeypots are at the highest level of honeypot technology. They
provide the user with a vast amount of information about attackers but also they are
highly time consuming and often difficult to maintain. High-interaction honeypots
does not emulate any operating system or service they instead present a real system to
the attackers. A high-interaction honeypot does not emulate FTP or Web services­
instead, it installs and uses a real FTP (such as wu-ftpd) or Web server (such as
Microsoft's US).
High-interaction honeypots are placed in a very highly controlled network
environment such as behind the firewalls and other security perimeters. The ability to
control the attacker's movement is not controlled directly by the honeypot but is done
through the use of perimeter countermeasures such as a firewall. The firewall allows
the attacker to probe or attack the honeypot but does not allow them to carry out
attacks using that honeypot once it is compromised. Such network architectures are
difficult to maintain, monitor and manage therefore, high-interaction honeypots are
difficult to configure and maintain.
Conclusion

With regard to this research, low interaction honeypots would have not been very
useful for data collection. Low interaction honeypots do not allow high level of
interaction between the emulated services and attackers. They are also not capable of
emulating enough services. For research based honeypots, the more the interaction the
better, to enable the gathering of attack intelligence. Therefore, low-interaction
honeypots do not provide much support for the purpose of this research.
However, medium-interaction honeypots are increasingly complex and so start to
possess a higher risk profile for compromise or discovery. The more realistic an
emulated service or operating system is given to the attacker, the more easier it may
become for an attacker to break the virtual environment and take control of the real
operating system. The higher functionality and complexity may make it easier for an
attacker to compromise it. These honeypots are more time consuming to install and
configure than low level honeypots. Deploying and maintaining medium-interaction

107

honeypots are more complicated than low-level honeypots therefore require higher
level of security. However these honeypots can gather a higher amount of information
than low-level and thus provides us with higher level of intelligence.
Since the purpose of this honeypot was to gather information about the attackers
movements and their activities onto the network, a medium-level of interaction
honeypot was a viable solution. It provided the basic functionality required by the
researcher such as emulated services, extensive data collection and high performance
in compare to low-interaction honeypots. High interaction honeypots were not
feasible for the purpose of this research. As the researcher had to deploy a research
honeypot and high interaction honeypots are more suitable for production honeypots,
therefore medium-level interaction honeypots were more suitable for the purpose of
this research.
Table 6.1 summarises the above mentioned level of interactions (Adopted from
Spitzner, 2003, p77):
Level of To Install To deploy Information Level Performance Interaction and and Gathering of Risk Confieure Maintain
Low Easy Easy Limited Low Low Medium Involved Involved Variable Medium Medium High Difficult Difficult Extensive High Medium-High

Table 6.1: Honeypot Level of Interaction

6,2,2 Commercial versus Homemade or freeware Solutions

A commercial honeypot is easier to install, configure, deploy and maintain. Most of
the commercial honeypots have a GUI interface, making it easier for the user to
understand the technology. Commercial honeypots also provide vendor based support
services to the end user. There is often a considerable amount of documentation and
training available from the developer of commercial honeypots which assists the
installation, configuration and maintenance of the honeypot.

108

Homemade honeypots arc developed by the users according to their need. It depends

on the resources and technology the user possess. Homemade honeypots can be used

for various purposes. They can be designed and developed according to the level of

interaction required. For example, if the user wants to detect the certain types of port

scans then he/she need nothing more than a simple program that emulates that

particular port or different ports and captures all the activity to that port.

Alternatively, homemade honeypots can be developed to emulate the whole operating

system, which may allow the attackers to attack the host using various tools and

tactics. This will provide a higher level of interaction and will help in gathering more

attack intelligence. Therefore, development of these types of honeypots purely

depends on the requirements and technical knowledge of the user (ibid, 2003).

Homemade or freeware honeypots are cheaper when compared to commercial

honeypots. Homemade honeypots may be customised according to the users'

requirements and thus provides better flexibility in use. Homemade honeypots can be

updated frequently while with commercial honeypots, the user has to wait for the

developer to provide with the update feature (ibid, 2003).

For the purpose of this research, developing a homemade honeypot from ground up

was not a viable solution as it would have taken lot of time and resources to develop.

As the honeypot suppose to be a research honeypot a commercial honeypot was also

not the best solution because of financial restriction to the researcher and the lack of

customisation. Therefore, a freeware honeypot was best suited to the task. Moreover,

an open source honeypot was more ideal for the research as it allowed the researcher

to configure the honeypot according to the need and requirement of the research.

Open source honeypot was more flexible to deploy as the researcher did not had to

depend on vendor for support and maintenance.

6.2.3 Operating/System Platform

The third criterion is selecting a platfonn for the honeypot. Several commercial

honeypots are based on Windows operating system which generally makes them

easier to install, configure and maintain when compared to command-line based

109

operating systems such as UNIX. UNIX being an open source operating system,
allows the user to configure and modiry the files according to the requirements or the
honeypot. Windows is a ·commercial operating system so a limited level or
modification and customisation is possible.
Conclusion

Since the researcher decided to choose a freewarc and open source honcypot, so there
was little choice in detem1ining the platfom1. Open source programs arc mainly
available in UNIX platfom1, so the researcher decided to implement the honeypot on a
UNIX platfonn.
On reviewing the above options, Honeyd (Provos, 2002) was the only honeypot which
suited the requirements for this research. Honeyd, an open source honeypot, is a
medium level honeypot which is implemented on UNIX platfom1. Also according to
the Figure 2.13, p57, honeyd has medium level complexity and high perforrnance in
detecting and gathering attack intelligence.

6.3 Determining the number and location of Honeypots

It is essential to determine the location or the deployment or a honeypot on any
network. Most of the production honeypots arc placed behind the organisation's
security perimeter. Production honeypots arc mainly used for protection and
detection; therefore if any malicious attack has passed through the initial security
perimeter of the organisation such as firewall then it is necessary to detect such
attacks within the network before they do anything malicious within the network.
Such honeypots are placed where there is high degree of risks involved such as
internal network, DMZ. These honeypots are always behind the firewall perimeter
thus helps in determining if anything has passed the .firewall security (Spitzner, 2003).
Research honeypots arc used to gain infonnation on threats. If the researcher is
concerned with the internal threats then the honeypot may be deployed in the internal
network of the organisation. Research honeypots may also be deployed outside the

I I O

firewall perimeter as well. This will ensure that honeypot is open to potential attacks.
But this possesses a great risk too. If the honcypot is compromised at this location
then it may be easier for the attacker to attack various systems using the organisation
as a launching platfonn to carry out the various attacks
This research was artificial in nature as it was conducted in a controlled laboratory
environment. The honcypot was implemented inside a controlled laboratory network
which did not have any connection lo any other network.
After detcm1ining the location and type of honeypot required, it was important to
know how many of those honeypots were required to implement in the network
architecture. The number of honcypots depends on the size of the network as well as
on the available resources. For large organisations with various networks, one or two
honeypots may not be sufficient for effective deployment.
The goals specified for the honeypots plays an important role in determining the
number of honeypols. For production honeypots, several honeypots may be required
to secure the environment. For research honeypots, one or two honeypots may be
deployed on different location of the network (Spitzner, 2002). Deploying numerous
research honeypots has limited value as it is more likely to gain same information
with only one or two honeypots, while having various production honeypots provides
with greater value. For example, if the honeypot has been deployed on the
organisation external network to detect attacks, it will not be able to detect any
internal attacks. Therefore, for full network attack detection purpose, the honeypots
should be deployed on various location of the network.
However, it should be noted that honcypots do not solve any security problem; they
only contribute to the overall security architecture. Therefore, enough honeypots
should be selected which could contribute to organisation security but should not
consume lot of extra resources which could have been used by other security
mechanism.
After deciding on the type of honcypot required for data gathering, the next step was
to identify the number ofhoneypots required and the location for deploying it. Since it

1 1 1

was a closed laboratory experiment for research purpose therefore a single honeypot
was sufficient to gather attack information within a closed laboratory perimeter. The
figure 6.1 below illustrates the laboratory network structure with the honeypot and a
sniffer deployment for data gathering purpose:

lnlml<l

Notse<02

IIONEYl'OT G11p1t1.n11

0

Nol.Soo I

Nol!oc5

N<lsoc4 Ncacc6

Nolscc8
SNIFFER

Figure 6.1: Deployment of Honeypot in a Laboratory Network Structure
In the above network, there are 8 hosts (named Netsecl . . .8) which are connected to a
hub. A hub was used because it was possible to sniff the network traffic as all the
ports were on the same collision domain whereas on switch sniffing is not possible as
each port is on a different collision domain. The hub is connected to a bastion host
which connects to the Internet. The bastion host acts as a server for the network
connected to the hub and also acts as a firewall to protect the network from external
attacks. Host Netsec2 was used to deploy a Honeyd honeypot, Gupta.au, and NetsecB

was used to install a sniffer Snort to gather attack infonnation over the network.
Gupta.au consisted of RedHat Linux 7.3 running on a computer with following
configuration:
CPU Pentium 3, 450MHz Memorv 256Mb Hard disk 6 GB OneratinP Svstem RedHat Linux 7 .3 Installed Softwares HonevD 0.4, Sys\og-ne

Table 6.2: The Honeypot System Configuration

1 1 2

In the above configuration, only one interface card was used for the honeypot
implementation.
The Honeyd honeypot was configured with unused IP address to create a virtual
Honeynet network. The figure 6.2 below illustrates the virtual network structure
created within the Honeyd honeypot

Windows 2000
10.11 .69.1

AIX 3.2
10.11.69.2

·= -=-

isco Routcr/Switc
10.1 1.68. 18

Solar is
10. 1 1 .69.J

Free BSD
10. 1 1 .69.4

Novell Netware
10.1 1.68.10

·= -=-

Cisco 760 Series
10.11.68.19

Windows 98
10.11.68. 1 1

Figure 6.2: The Virtual Honeynet

Honeyd has a feature of creating virtual IP addresses and services. There were two
internal networks created (10.11 .68.0/24 and 10.1 1 .69.0/24) both connected to each
other using Cisco routers. The table 6.3 below summarises the allocated IP addresses
and services on the Honeyd virtual network:

1 1 3

I P ..\ddrl'SSl'S Signat

10. 1 1 .69.1 Windows 2000 Professional, Build 2218 Http - port 80
10. 1 1 .69.2 A1X 3.2 Http - port 80
10.1 1 .69.3 Solaris 2.3 - 2.4 Http - port 80
10. 1 1 .69.4 FrccBSD 3.2 - 4.0 Http - port 80
10.1 1.68.10 Novell Netware 3 .12 or 386 TCP/IP Http - port 80
10.11.68.11 Windows 98 Http - port 80
10. 1 1 .68.18 Cisco Router/Switch with IOS 1 1 .2 Http - port 80
10.11 .68.19 Cisco 760 Series (non !OS) or IBM Stackable Http - port RO

Hub
Defim!t Windows 98 Http - port 80

Netbios -port 139
Table 6.3: Summary of IP addresses allocated on corporate network

The I 0.1 1 .69.0/24 network was running Windows 2000 Professional server
(10.11 .69.1), AlX 3.2 server (10. 1 1 .69.2), Solaris 2.3-2.4 server (10. 1 1 .69.4), Free
BSD 3.2 - 4.0 server (10.11 .69.4) and Windows 98 (as default) on rest of the
remaining hosts of the I 0. 11 .69.0/24 network. Hosts with IP address from I 0.1 1 .69. l
- 10.1 1 .69.4 were running only http (port 80) service with a default script (filename
web.sh). The http service was emulated on the network because it has been always an
attractive target for the hackers. Using the http port, hackers may be able to
compromise the web-servers which may eventually give them access to the operating
system and also if the http port is compromised then the attackers can defaced the
websites which may have a lot of impact on the organisation depending on the nature
of the organisation. All the other remaining hosts of the 10. 1 1 .69.0/24 network were
running Windows 98 as default with services open on port 80 (http) and port 139
(netbios). The reason Windows 98 was setup as a default operating system on the
network was to resemble the network as much as possible close to the architecture of
corporate network.
The 10.11 .68.0/24 network was connected to the I 0. 1 1 .69.0/24 network using Cisco
Router/Switch with IOS 1 1 .2 (IP address 10. 1 1 .68.18) which inturn is connected to
another Cisco 760 Series (non !OS) or IBM Stackable Hub (IP address 10.1 1.68.19).

1 14

The 10. 1 1 .68.0/24 network was running Novell Netware 3.12 or 386 TCP/IP server
(IP address 10.11.68.10), Windows 98 (IP address 10.1 1 .68.11). Also Windows 98
was implemented as default on all the other remaining clients of the network.
This complete network structure was configured over the RedHat Linux 7.3 using
Honeyd 0.4. For configuration file (honeyd.conf) refer to Appendix C. I .
Data Collection was the main aspect o f a honeypot and to store the data collected
securely. Therefore, a separate machine was setup for sniffing and storing the data.
This machine consisted of a RedHat Linux 7.3 running with following configuration:
CPU Pentium 3, 450MHz
Memory 256Mb
Hard disk 6 GB
Operating System RedHat Linux 7.3
Installed Softwares MySql, ACID, Apache, Webmin, Snort, Syslog-ng

Table 6.4: Data Collection Machine Specification
Snort IDS was used as a sniffer to collect information about all inbound and outbound
traffic over the network. Snort seemed to be a good and cheap solution for this
purpose as it is freely available over the internet. Snort also has the capability of
connecting to a MySql database. All the data collected by snort was transferred to the
MySql database. The data stored in the database was used by ACID (Analysis Control
of Intrusion Databases) for making a complete analysis by generating graphs and
charts using the data stored in the database using Snort.

1 1 5

Monitored Connected Corporate by SNORT Logs MySql to ACID Network IDS Database

I r···········o:;�···········1 , Y • •

I
Data

I Storage I Analysis
................................... i ,

Figure 6.3: Architecture of Data Collection Machine
Another set of data was also logged using syslog-ng. This data was also stored
remotely on a different machine, so that in the event that the data collection machine
were to be compromised then there is another set of data available as a backup.
Webrnin was used for administering the honeypot remotely. As the researcher was
more interested in the tools and programs or scripts used by the attackers during the
network penetration exercise, therefore collecting the hardware information of the
attackers' machines was irrelevant for the purpose of this research.
6.4 Conclusion

A Honeypot is implemented based on the goals and level of interaction required for
the purpose of the research. This chapter described the various issues such as goals,
level of interaction, the operating platfonn which is necessary to consider before
implementing the honeypot.
Due to restrictions imposed by resourcing and the research model and addressing
these issues relating to honeypot design, it was determined that only single honeypot
would be deployed for the research. The design though singular fulfilled research
requirements and was able to accomplish with existing resources. The honeypot
design was constructed to allow complete and accurate collection of attack
intelligence that could be gathered from attackers' activities. While the use of
multiple honeypots would be an ideal situation it is beyond the scope and resources of
this thesis.

1 16

7. First Test results on Honeyd 0.4a

7.1 Overview

During the initial testing phase, a group of students were asked to probe the designed
network (10. 1 1 .68.0/24 and 10 . 1 1 .69.0/24, Figure 6.2, pi I 0). These students were
asked to take their places in one single laboratory. This was mainly done because only
one laboratory was available. All the selected students brought their own laptops and
used their own choice of programs and tools for conducting the exercise. This testing
phase existed between the time window of 17-02-2003 [1 1 :0028] to 18-02-2003
[17:58:01]. There were various attacks attempted by students which generated a
substantial amount of data on the machines monitoring the network. The intrusion
data generated during this period was stored on a database which was used by ACID
(Analysis Console for Intrusion Databases) for the analysis purpose. There were also
various log files such as syslog - Jogs generated by Linux operating system for all the
activity associated with the machine was analysed manually, tcpdump log file which
is a raw dump of network traffic was analysed using ethereal, and temporary system
Jogs. A few of the attackers also provided feedback and reports which assisted in
analysing the data.

7.2 ACID Analysis

From the initial testing the Snort IDS logged and recorded 19451 alerts into an SQL
database. The format of the SQL database (see Appendix C.7 for sql database script)
confinns that there are 498 unique alerts which were divided into 1 1 different
categories.

Total Alerts Out of which Unique Alerts Divided into 1 1 Categories 19451 498
Figure 7.1 Acid Analysis

1 17

assification Total Alerts Signatures

Unclassified 1032 (5%) 285

Misc-activity 494 (3%) 3

Bad-unknown 5764 (30%) 2

Attempted-recon 8369 (43%) 79

Web-application activity 2957 (15%) 90

Web-application attack 748 (4%) 30

Misc-attack 7 (0%) 1

Attempted-dos 56 (0%) 5

Protocol-command-decode 16 (0%) 1

Attempted users 3 (0%) 1

Successful admin 5 (0%) 1

Table 7.1: 1 1 Alert categories
The above classified alerts mentioned in table are described in detail below:
Unclassified
There were 285 signatures recorded under this classification. These signatures were
different port scans on various hosts and servers of the network. To identify various
exploits and in an attempt to fingerprint the network, attackers would perfonn
portscans. This would have provided them with details of various open and closed
TCP and UDP ports e.g. 21-FTP, 22-SSH, 23-Telnet, 25-SMTP, 80-HTTP. This
activity would indicate that the attackers tried retrieving information about various
hosts and servers like what operating system they are operating on and what port
numbers are available for remote access to gain access into the network.
Misc-activity
There were only 3 signatures which were identified under misc-activity. These
signatures were:

• Bad traffic udp port O traffic (Nessus). (CVE 1999-0675)

This is associated with Checkpoint Firewall-I vulnerability. CheckPoint
Firewall-I can be subjected to denial of service (DoS) via UDP packets that
are sent through VPN-1 to port O of a host. It seems that Nessus (a network
probing tool) tried to send large amount of udp traffic at port O to attempt a
denial of service attack. This attack would have disabled the CheckPoint

1 1 8

Firewall· l (if exist on the network) and all the incoming and outgoing network
traffic would have passed through without any check. Such attack could
facilitate full access to the network and could be extremely dangerous for the
entire network. It was identified that this attack originated from 2 source IP
addresses and was destined to 135 different hosts on the network. Out of the 2
source IP address, one of them was of the hacker (172.16.1.200) and the other
IP address was of a host (10.21.19.5) within the network. This could have
been as a result of traffic being redirected using the victim host to hide the
origin of the real attack.
This attack attempt indicates that the attacker tried causing a Denial of Service
attack on the CheckPoint firewall by sending large amount of UDP packets.
This could have disabled the firewall and all network traffic would have
entered into the network without any rule check specified by firewall.

• BAD TRAFFIC bad/rag bits

This is similar to the previously discussed signature. The attacker sends large
amount of UDP packets to flood the hosts or servers to attempt a denial of
service attack. This indicates that the attackers tried to disable the servers and
hosts from processing any network request and disrupt the normal services of
those hosts and servers.

• EXPERIMENTAL MISC AFS access (tlessus)
AFS is a distributed file system that enables sharing files across both local area
and wide area networks. There were miscellaneous attempts of accessing AFS
by attackers using Nessus. If such attempt is successful, then the attacker can
have full access to the filesystem of the hosts and can easily cause damage to
the system. It was identified that this attack originated from 2 sources and was
destined to 21 different hosts. The source IP addresses were the same as one of
them was of the attacker's (172.16.1 .200) and the other was of the victim
(10.21.19.5) on the network. Therefore, it is reasonable to conclude that host
10.21.19.5 was one of the compromised host which the attacker was using to
attempt his or her attacks.

1 19

The above discussed attack indicates that the attacker tried gaining access of
the file system to have access on the system. He or she also used one of the
compromised hosts to achieve its goal. If the attacker would have succeeded in
gaining the full access to the file system then it may have compromised the
whole honeynet and probably the system could be used as the launching pad
for att&cks on other networks.

Bad-unknown

There were 2 signatures which were identified under this category. They were:
• ICMP Redirect host

This comprised of 30% of the total number of alerts recorded over the
network. This may have occurred because all the network traffic was routed
through a gateway machine within the laboratory which further forwarded the
network traffic to their respective destinations. However it cannot be denied
that some of the attackers would have used this method as part of their
attacking tactics too. This type of attack is capable of crashing or locking up a
host machine.
Since the total number of ICMP alerts was very high, it appears that the
attackers tried flooding few hosts with ICMP messages using ICMP redirect.
This could have caused the hosts over flooded with ICMP requests and
therefore those hosts may not be able to respond to other network requests.
But since the researcher was routing all the network traffic through a gateway
machine it was not possible for him to block or drop such ICMP requests on
the network.

• MISC Large UDP packets

Large UDP packets were used by the attackers to flood some of the hosts with
UDP request to attempt a DoS type of attack on the particular hosts and
servers. This could be mainly to bring down the various servers and hosts on
the network which eventually would have collapsed the whole network.

120

Attempted-recon

There were 79 different signatures which were identified in this category. Some of the
most prominent were:

• SCAN SOCKS Proxy attempt

SOCKS is an IETF (Internet Engineering Task Force) approved standard
(RFC 1928) generic, proxy protocol for TCP/IP-based networking
applications. The SOCKS protocol provides a flexible framework for
developing secure communications by easily integrating other security
technologies. When an application client needs to connect to an application
server, the client connects to a SOCKS proxy server. The proxy server
connects to the application server on behalf of the client, and relays data
between the client and the application server. For the application server, the
proxy server is the client.
It was identified that there were SCAN SOCKS Proxy attempt on 183
destination hosts. It appears that some of the attackers tried to probe the
SOCKS proxy to connect to various servers available on the network.

• SNMP Request UDP (CAN 2002-0012)

Vulnerabilities in a large number of SNMP (Simple Network Management
Protocol) implementations allow remote attackers to cause a denial of service
or gain privileges via SNMPvl trap handling.
From the collected data it is believed that there were large amount of SNMP
requests (8% of alerts) were broadcasted on various hosts with the intention of
flooding those hosts with SNMP Request. It was identified that about 156
hosts were subject to this attack by various attackers. This could have caused
DoS attack on those hosts and would have made them unavailable for other
requests.

121

• ICMP Ping NMAP

It appears that Nmap (a network mapping tool) was used in sending ping
requests to the network to check whether a host is responsive or alive. This is

one of the basic starting strategies used before attempting any attacks on any
host or network.

• Large number of WEB-CGJ and WEB-MISC signatures. This illustrates that lot
of attempts were made on web based services and ports. This indicates that
web-based attacks were more common among attackers to exploit. Also the
network configuration too contained large number of hosts with only http port

80 active on them, so web-based attacks were expected by the research in high

number.

Web-application activity and Web-application attack
There were 90 and 30 unique signatures in both categories respectively. These
signatures were focused on either IIS Script access based attacks or CGI and MISC
web based attacks. On the basis of the data collected, it appears that web based attacks
were the most common fonn of attacks used by attackers. There were more than 120
signatures identified which were used for attacking web based services and port
numbers. Therefore, the researcher believes that the web based services are prone to

malicious attacks and hence have a high rate of scanning.
Misc-attack
There was only one signature identified under this category which was subject to
WEB-PHP directory.php access (CAN 2002-0434). It allows remote attackers to
execute arbitrary commands via shell meta characters in the dir parameter. It indicates
that the PHP based attacks were not so attractive for the attackers to probe. There was
hardly any type of probe or activity which tried to exploit any PHP vulnerability.
Attempted-dos
This category included 5 alert signatures each related to distributed denial of service
attack. These attacks were classified under CAN 2000-0138 for CVE. It states that "a
system has DDOS attack master, agent or zombie installed such as 1) TrinOO, 2) Tribe

122

Flood Network (TFN), 3) TFN2K, 4) stacheldraft 5) mstream, and 6) shaft." This
attack was destined to I O different hosts. It indicates that the attackers were very keen

on implementing distributed denial of service attacks on the network as previously
there were other occasions too where attackers tried to carry out DoS attacks on
various hosts and servers. If these attacks were successful, they may have brought
down the whole network and would have made it inaccessible for any user.

Protocol command decode
This was a single MISC IPSEC PGPNet connection attempt to connect to IPSec. It
indicates that attacks associated with the PGP (Pretty Good Privacy) were not too
popular among the attackers or they probably lagged the skills of conducting such
attacks.

Attempted users
This was a single alert to access the WEB CGI webspeed. The webspeed
configuration program does not properly disable access to the WSMAdmin utility,
which allow remote attackers to gain privileges.
Successful admin
This was a single attempt of retrieving Trivial File Transfer Protocol (TFTP) GET
password. It uses the User Datagram Protocol (UDP) and provides no security
features. It is often used by servers to boot diskless workstations, X-terminals, and
routers. This indicates that there was an attempt to gain administrative access to the
host or server by retrieving its password using TFTP GET command and thereafter
booting the tenninals to gain full access.
Conclusion
From the above discussion it is clear that attackers tried various types of attacks. Of
these attacks the most prominent were Web based attacks and probes. It seems that
the attackers were more inclined towards attempting web-based vulnerabilities. There
were also large numbers of port scans on various hosts. There was also evidence
which shows that the attackers tried to conduct some DDoS attacks on the network.
Some of the attackers tried flooding the hosts with large number ofSNMP requests to
carry out the DoS attacks on the servers. From the analysed data, it appears that the

123

attackers were more curious to attempt either DoS based attacks or exploit web based
vulnerabilities. Out or all the above discussed alerts, the most frequent 5 alerts were:
Signaturl' ("lassifo.•:tt ion Tot:11 '
ICMP redirect host Bad-unknown 5743 (30%)

SNMP request udp Attcmptcd-recon 1639 (8%)

SCAN Squid Proxy attempt Attcmptcd-rccon 1412 (7%)

SCAN Proxy (8080) attempt Attemptcd-recon 940 (5%)

WEB-IIS scripts access Web-application activity 775 (4%)

Table 7.2: Most 5 frequent alerts

ICMP redirect host attack constituted about 30% of the total number of alerts (i.e
1945 1 . The other most frequently occurred alert was SNMP request udp (8%) which
is classified under attempted recon. Vulnerabilities in the SNMPvl request handling
of a large number of SNMP implementations allow remote attackers to cause a denial
of service or gain privileges via (I) GetRequcst, (2) GetNextRequest, and (3)
SetRequest messages. This indicates that the attackers tried flooding the hosts and
servers with SNMP requests which could made them unavailable to response to other
requests prompted by various other hosts and servers on the network. It also appears
that the attackers tried to gain access to the hosts and servers by sending SNMP
requests to various clients on the network. This would have given them full privileges,
if the request is accepted by the particular client, over that particular host or server.
On profiling the network traffic based on each individual protocol, following results
were conclusive:

124

Traffic Profile by Protocol
TCP (50%)

Portscan Traffic (0%)

Figure 7.2: Traffic Profile by Protocol using ACID

As illustrated in figure 7. l that majority of the network traffic was targeted to TCP

(50%) and then ICMP (32%) and UDP (1 8%). There were also large numbers of port

scans on various hosts. These port numbers can be further detailed on the basis of the

occurrences of total alerts and unique alerts on them .

Porf T� pe 0ct'U1Tl'lll'l'S Unique Alerts

80 ltcp 5421 195
16 1 /tcp 2465 4
3128 ltcp 1412 1
8080 ltcp 943 3
1080 ltcp 5 1 9 1
162 ltcp 5 1 7 3
1 ltcp 345 3
O ludp 295 5
22 ltco 256 1 0
ludo 1 1 2 1
7001 ludo 93 1
10080 ludp 8 1 1
10081 ludp 73 1
3 1337 ludp 68 1
10 14 ltcp 67 7

Table 7.3: List of port numbers with occurrence of alerts

From the above table it appears that there were 3 ports which reported the maximum

number of unique alerts. Those were:

• 80 /tcp: It is an http port which reported the maximum number of alerts (5421)

as well 195 unique alerts. These unique alerts were mainly attack attempt of

125

exploiting WEB-MISC, WEB-CGI and WEB-US. These alerts occurred on 26

different hosts connected on the network.
• 22 ltcp: This is an SSH port used for secure and encrypted transmission of

data. This port reported the second most unique alerts i.e. 10. Those alerts
were mainly port scans and Nmap scans. These attack attempts were targeted
on 191 hosts on the network running port 22. It appears that the attacker tried
to exploit this port for gathering any infonnation travelling between the hosts.

• 1014 ltcp: This is a kernel port which is used to implement Ethernet. There
were 7 unique alerts reported on this port which were destined to 67 hosts on
the network. These alerts were mainly port scans.

7.3 Ethereal Analysis

A tcpdump log file tcpdump.log. /045547976 was generated during the first testing
phase, which was analysed using Ethereal Packet sniffer. Figure 7.2 shows the
Protocol Hierarchy statistic generated by Ethereal
� Etl\erea't: Protoco\HlerarchySlatfatic� · 1 • [:f][Q)�
rProtocol Hierarchy Statistics
.I Protocol

El Frame
El E!hernel

El Internet Protocol
Internet Con1rol Message Pro1ocol
Transmission Conlrnl Prolocol

El User Da1agram Protocol
Simple Network Management Pro1ocol

I % Packets! Packets! Bytesl End Packets!
100.00% 8717 690871 0
100 00% 8717 690871 0
100 00% 8717 690871 0
44.90% 3914 373649 3914
37.26% 3248 208632 3248
17.84% 1555 108590 0
14.56% 1269 91430 1269

End Bytesf
0 :
O i-

0
373649 i
208632 :·

O l
91430 i:

. ----·---· --- - ------- '"···· ---- ---- ��---·------ ---------'

Close I

Figure 7.3: Protocol Hierarchy Statistic of tcpdump.log.1045547976
As shown in the above figure 7 .2, there were 8717 packets reported in the tcpdump
log file out of which nearly 45% were JCMP packets and 37.26 % TCP packets. On

126

further analysing the log file, it was found that there were some frequent occurrences
of packets over some of the ports. Those results are listed below;

• Frequent occurrences of packets of TCP SYN from port 1060 to 8080
webcache

• Packets with ACK, FIN, PSH and URG flags to tcpmux
• ACK packets to port 22 of ssh
On co-relating the data using ACID on port 22 of ssh it was found that there were
total 256 alerts on this port out of which there were 10 unique alerts which can be
further broken down as below:

4 Alerts
I Alert

I Alert
I Alert
I Alert
I Alert
I Alert

:- Portscans
:- NMAP Fingerprint (stateful) detection
:- Stealth Activity (FIN Scan)
:- Stealth Activity (NULL Scan)
:- Stealth Activity (SYN FIN)
:- Stealth Activity (Vecna Scan)
:-SCAN nmap TCP. This indicates that a remote user has used
NMAP port scanning tool to probe the server. An NMAP TCP
Ping was sent to detennine if the host is reachable.

• SYN packets at port 705 for DNM
There were total 62 alerts on port 705 from which there was only one unique
alert. It is an SNMP AgentXI tcp request attack (CVE: CAN-2002-0012)

• SYN packets at port 162 for Solaris. It is a binding port for Solaris systems.
There were total 104 alerts on this port from which only 1 unique alert. This
alert was SNMP TRAP tcp which is mainly used for causing DoS attacks.
(CVE: CAN-2002-0013).

127

• There were some error messages too.
Error: Could11 't parse message header: wrong type for that item

• There were some UDP packets at TFTP whose infonnation was unknown.
From the above collected data it appears that the attackers tried to make TCP
connections with various hosts through number of port numbers. There were attempt
of accessing the webcache which, if successful, would have given information about
the accessed websites or information about any other web based services to the
attackers. Using this infonnation the attacker may be able to attempt few brute force
attacks on the network. There were also few attempts on exploiting ssh service. It
appears that the attackers tried to capture the encrypted data transferred between the
hosts on the network.
There were also attempt of exploiting the SNMP services. These were mainly to cause
denial of service attacks on various hosts.

7.4 Nessus Analysis

From the data files recovered from Nessus security tool (used by the attacker) various
outcomes were noticed. The Nessus Security Scanner was used to assess the security
of21 hosts

• 21 security hole� we.re found
• 0 security warning were found
• 79 security notes were found

From the scan of there 2 1 hosts it was identified that the most dangerous service on
the network was http (80/tcp).

128

21
20
19
18 -__
17 '
16
15

ii /
12 ---------- ·
11
10
9
8
7
6
5
4
3
2 I
1

,�- - --

Figure 7.4: Most dangerous services on the network

Services that are most presented on the network:

There were 5 main services noticed on to the network based on the scans of 2 1 hosts
by nessus. These services are graphically shown in the below figure on the basis of

their occurrences.
Services that ace the nost present on the network :

20
18
16 I 14 • 12 B c 10 • " 8 •

0
0 6 '
� 4

t_ '
" 2 • , -"' ' l} " - - fr • • •
z <', 0 Jl 0 " " " ' .; ' ;;; "' �

0 • " • M � " • v � •
c c • • � • � " c � � " " < " ' s :,; " •

c

Figure 7.5: Services that are the mo!ic present on the network

129

On co-relating the above results with ACID following results were noticed:

general/udp -: Total number of alerts occurred on this p011 were 1 1 2 out of which

there was only one unique alert, which was Datum length > packet length This

means that the data length transferred with the packet was more than the capacity of

the packet. This could result in flooding the servers with the large amount of data to
cause DoS attacks.

http (80/tcp) -: This port reported a very high number of alerts i.e. 5421 from which

195 were unique alerts. These unique alerts were mainly WEB-CGI and WEB IIS

based probes on to the network.

Netbios-ssn (139/tcp) -: There were only 7 alerts reported on this port from which 4

were reportedly unique alerts. These alerts were merely portscans only.

ssh (22/tcp) -: SSH reported a reasonable number of alerts, which were only 256 out
of which only I O alerts were unique. These alerts comprised of various types of port

scans and Nmap scans.

general/tcp -: This port just reported few Nmap based scans.

130

Most dangerous host on to the network:
Host dangerous host weight in the global insecurity

Others<9�:t>

Figure 7.6: Most dangerous host on to the network
The above pie chart shows that host I 0.11 .68.94 was being reported the most
dangerous host among the whole network.
There were also various hosts who reported a common security hole to the attacker.
These hosts IP addresses are listed in the table 7.4 below:
10.11.68.94 10.11.68.136 10.11.69.81 10.11.68.103 10.11.68.157
10.11.69.174 10.11.68.92 10.11.68.59 10.11.68.117 10.11.68.238
10.11.68.91 10.11.69.83 10.11.68.116 10.11.68.192 10.11.68.90
10.11.68.253 10.11.68.19 10.11.69.117 10.11.68.95 10.11.68.89
10.11.68.18

Table 7.4: List of Hosts with common security hole on Port 80

The above mentioned hosts reported one common security hole. The vulnerability
reported by Nessus to the attacker was reported for http port 80:

131

The d/1 'l_vti_binl_vti_autldvwssr.d/1' seems to be present.

This dll contains a bug which allows anyone with authoring web permissions on this

system to alter the files of other users.

In addition to this, this file is subject to a buffer overflow which allows anyone to

execute arbitrary commands on the server and/or disable it

Solution : delete l_vti_binl vti autldvwssr.dll

Risk factor : High

See also : http://www.wiretrip.net/rfplpldoc.asp?id=45&iface=J

CVE : CVE-2000-0260

7.5 Feedback from attackers

At the end of the network penetration exercise, participants were requested to
voluntarily provide their feedback about their experiences while probing the network.
Those feedbacks are summarised below:
Hacker I : "A basic network with majority of the hosts based on windows operating
system. The network structure seemed confusing as the network traffic was redirected
using a gateway, so there was no direct access to the routers."
Hacker2 : "A big network with large number of hosts but majority of the hosts
(which I scanned) were Windows 98 based. Seems like the organisation is lacking
behind the operating system upgrades as latest windows operating systems are
available which are more secure and reliable than Windows 98. No access of FTP and
Telnet."
Hacker 3: "Basic network architecture with Windows 98 as the primary operating
system on various hosts. On the AIX server, port 25 was prone to SPAM. Could not
find much detail about various other services on other hosts as hardly any open ports

132

Windows 98 hosts were only running http service while few other hosts had ssh and
netbios."

7.6 Implications

The initial network design was tested successfully by various attackers. There were
various types of attack attempts tried by these attackers on the hosts and servers of the
network. Web-based attacks were very prominent than any other type of attack. There
was also evidence of large number of port scans carried out on various hosts. After the
successful completion of the penetration exercise few of the attackers voluntarily
provided the feedback about their personal experience while doing the exercise.
According to these attackers, the network architecture appeared too simple as it
lacked any server architecture and they also suggested few changes to improve the
network architecture.
On the basis of above test results there were various implications identified which
needed to be changed or improved in order to enhance the deception. These
implications were based on the analysis of the above results and also on the general
feedback received from the attackers. These implications were:

• From the feedback report received from the attackers, it was identified that
on host 10.1 1.69.2, AIX 3.2, port 25 was not blocked. It was advised in the
report that this could be serious security concern as port 25 is mainly used
for SPAM.

• The network architecture lacked the server based architecture as the
network was mainly based on Windows 2000 Professional and Windows
98.

• There was no proper access provided to any host or network device. The
network architecture lacked access to services like FTP or Telnet.

133

Changes suggested in the feedback of the attackers as well various issues
identified after analysing the test data would assist in improving the created
deception and would create a much better network architecture for the attackers
for the purpose of second testing. Since this research is empirical in nature, the
data collected after each phase of the testing will assist in improving the network
for next phase of testing and analysing data.

7.7 Conclusion

On the basis of the analysis of the data obtained during the first testing and also from
the feedback received from the attackers, it was concluded the initial network required
various changes.
The level of deception appeared to be very low which raised suspicion among the
attackers. It was a very low level interaction network which provided very few
opportunities to the attackers. Also there were no remote login services available on
the network, which are typically expected on any corporate network.
There were issues which needed to be addressed for implementing a successful and
improved deception for the attackers. On the basis of the feedback of attackers
received and also according to the analysis of the results, it was found that the Cisco
routers did not have any remotely based console access. Also it was required to
provide a server type network architecture to the network. Therefore, Windows 2000
operating system was replaced with Windows NT operating system. Remote access
services like FTP and Telnet needed to be implemented in order to present a improved
deception to the attackers on the network by offering them more support for attack.

134

8. Second Test results on Honeyd 0.5

8.1 Overview from first test results

After the first testing phase, there were few security holes and alerts that potentially

were identified. Also on the basis of the general feedback received from the hackers

regarding the network architecture, it was found that it was a very low interaction

network which did not give many opportunities for interaction to attackers to interact

with. From the hackers' point of view, it was a secure network with limited level of

interaction. Therefore, the network configuration was improved based on the previous

data analysis. Following changes were made before the second test phase began:
• Honeyd0.4a was upgraded to Honeyd-0.5. This was mainly done because the

latest version of honeyd had some extra features such as separate logging

facility and also is capable of using fingerprint signatures of Xprobe

fingerprinting tool.

• ArpdO. l was upgraded to Arpd0.2
• Honeyd configuration file (Appendix C.2) was amended. Following changes

were made in the configuration file:

o Change in IP addresses from 1 O.x.x.x to 192.168.x.x. This was mainly

done because the existing 10.x.x.x network configuration was not

compatible with the new improved version of the Honeyd-0.5.

o Host with .. Windows 2000 Professional, Build 2128" was replaced by

"Windows NT 4.0 Server SP5-SP6". This was mainly done to provide

a server type of architecture to the network, which was previously

missing. Additionally, a per! script that emulated IIS server was

implemented on http port 80. There was also various ports left open on

this particular host, such as, tcp port 137, 139 and udp ports 137, 135.

135

These ports are used by Net-bias on the servers for network

connections for input-output services.

o Over the "AIX 3.2" host, port 25 was blocked. This is a standard

practice by various organisations and ISPs to block port 25 as this is

used to send emails. This helps in cutting down the SPAM emails. This

too enhanced the network architecture which resembles to a corporate

network. Alsn port 21 for FTP was opened with a shell script (flp.sh,

see Appendix C.6) running on this port. This script provided the

anonymous log in on the ftp server with restricted access as 'guest'.

FTP is an attractive service for the attackers as using ftp would allow

them to upload their programs and tools from remote locations on to

the network.

o Both a Cisco router and a switch were provided with telnet

connections. On telnet port 23, a "router-telnet.pl" script (see

Appendix C.8) was implemented which provided a telnet access to the

router. This would provide a console based access to the router using

telnet for the attackers.

a "Novell Netware 3.12 or 386 TCP/IP" was replaced with the latest

signature of"Novell Netware 5.0 SP5".

The above mentioned changes provided more realistic appearance to the network and

assisted in eliminating any type of suspicion, regarding the presence of deception,

which could arise in the minds of attackers while probing and attacking the network.

136

Windows NT4
192.168.2.101

AIX 3.2
192.168.2.102

·- -

Cisco Router/Switc
192.169.1.100

Solaris 2.3 FreeBSD 3.2
192. 168.2.103 192.168.2.104

Novell Netware 5.0
192.168, 1 . 1 15

·= -==-

Cisco 760 Switch
192.168.1.101

Windows 98
192.168.1 . 1 16

Figure 8.1: Improved Honeynet Architecture

The table 8 . 1 below summarises the allocated IP addresses and services on the new
improved Honeyd virtual network:
JI' AddrrsSrs . Signatures ... Ser{ ices 192.168.2.101 Windows NT 4.0 Server SP5-SP6 TCP - port 80, 137, 139 UDP port 135, 137 192.168.2.102 AIX 3.2 TCP -port 2 1 , 80 I 92. 168.2.103 Solaris 2.3 - 2.4 TCP - port 80 192.168.2.104 FreeBSD 3.2 - 4.0 TCP - port 80 192.168. 1 . 100 Cisco IOS 1 1 .3 - 12.0(1 1) TCP - port 23 192.168.1.101 Cisco Router/Switch with 108 1 1 .2 TCP - port 23 192.168 . 1 . 1 15 Novell Netware 5.0 SPS TCP -port 80 192.168. 1 . 1 1 6 Windows 98 TCP - oort 80

Default Windows 98 TCP - port 80, 22, 139
Table 8.1: Summary of IP addresses allocated on corporate network

The telnet service was only available on the Cisco routers (192.168. 1 . 100-101). This
was due to the fact that Cisco routers are accessible via console through telnet. This
may provide an opportunity for the attackers to exploit the telnet service to gain
access to the routers. The Default Windows 98 systems had port 22 open for ssh, to

137

communicate between other hosts and servers in a secure manner. The reason

researcher decided to have port 22 open on the network was mainly due to the fact

that the attackers may try to sniff the encrypted data (such as passwords)

communicating between the various hosts and servers of the network.

8.2 Second Test Results

During the second testing phase, a group of students (see section 3.4) were asked to

probe the improved network designed (192.168.1 .0/24 and 192.1 68.2.0/24, Figure

8.1) using the honcyd 0.5. Similar to previous testing, the attackers were asked to take

their places in one single laboratory and also they had their own laptops with their

own choice of programs and tools required for the penetration exercise. This testing

phase existed between the time window of 21-03-2003 (00:54:29] to 22-03-2003

[12:21 :55]. There were various mechanisms tried by students which generated a

substantial amount of data in the Jog files. The logs generated during this period were

also stored on a database which was used by ACID (Analysis Console for Intrusion

Databases) for the analysis purpose. There were also few tcpdump logs which were

analysed using Ethereal. The honeyd Jog files were analysed using Analyst, but the

charts generated by Analyst were too big to fit on paper therefore they have been

included on the provided CD.

ACID Analysis
From the initial testing the Snort IDS recorded 23500 alerts, out of which there were

554 unique alerts which were divided into 14 different categories.

Total Alerts out of which Unique Alerts divided into 14 Categories
23500 . 554

Figure 8.2 Acid Analysis

These 14 categories are given below:

138

Classifir:1tion Total Alerts Signatures
Unclassified 1486 (6%) 266

Bad-unknown 9466(40%) 5

Attempted-recon 5615 (24%) 89

Web-application activity 3914 (17%) 1 1 2

Web-application attack 2641 (1 1%) 60

Misc-activity 125 (1%) 2

Misc-attack 14 (0%) 1

Attempted-dos 106 (0%) 6

Protocol-command-decode 23 (0%) 1

Attempted users 21 (0%) 2

Successful admin 44(0%) 1

Attemptcd-admin 20 (0%) 3

Unknown 5 (0%) 1

Rpc-portmap-decode 20 (0%) 4

Table 8.2: 14 Alert Categories
The above classified alerts mentioned in table are described in detail below:
Unclassified
There were 266 signatures recorded under this classification. These signatures were
different port scans on various hosts and servers of the network. As described earlier
in the chapter 7, these scans can assist attackers in exploiting and probing the most
vulnerable ports and services which may provide them with access to the whole
network.
Bad-unknown

There were 5 signatures which were identified under this category. They were:
• !CMP Redirect host

This comprised of 36% of the total number of alerts recorded over the
network. This may have occurred because all the network traffic was routed
through a gateway machine within the laboratory which further forwarded the
network traffic to their respective destinations (explained in chapter 7).

139

• Attack Responses http dir listing

It is a type of snort alert which indicates that a web server is responding to the

probes with a reply. From the collected data, it is found that there were 6

source IP addresses which responded back to the single attacking IP

(1 72.16.255.253). Therefore, it seems that these hosts were responding back to

the attacker's machine about them being active on the network.

• Attack Responses id check retur11ed root

It is also a type of snort alert which is triggered when someone use a root as it

check the payload for word "root" from any network and that packet has the

ACK flag set. There was just a single attempt of this attack from one source

address to one destination address.

• MISC Tiny Fragments

There were few tiny fragments of packets transmitted from one source address

to 3 different destination addresses. This indicates that one of the attackers

tried to carry out a DoS attack by sending small fragments of packets to

different hosts. This could have made these hosts unavailable, if the attack was

successful, for any further network requests.

• MISC Large UDP packets

Large UDP packets were used by the attackers to flood some of the hosts with

UDP request to attempt a DoS type of attack on the particular hosts and

servers. This could be mainly to bring down the various servers and hosts on

the network which eventually would have collapsed the whole network.

Attempted-recon

There were 89 different signatures which were identified in this category. Some of the

most prominent were (discussed in detail in chapter 7):

140

• SNMP request UDP (CAN 2002-0012)

As explained in chapter 7, a large number of SNMP implementations allow
remote attackers to cause denial of service or gain privileges via SNMPvl trap
handling.
It was identified that about 17 hosts were subject to this attack by one single
attacker. It appears that the attacker made an attempt of implementing a DoS
&ttack on those hosts which would have made them unavailable for other
network requests.

• Large number of WEB-CG! and WEB-MISC alerts.

• SCAN Socks Proxy a/lempl

As described in chapter 7, SOCKS protocol provides a support for developing
secure communication using different security technologies. It acts like a
medium when a client tries to connect to any application server.
It was identified that there were SCAN SOCKS Proxy attempt on 17
destination hosts. It appears that the attackers tried to probe the SOCKS proxy
to connect to various servers available on the network.

Web-application activity and Web-application attacks
There were 1 12 and 60 unique signatures in both categories respectively. These
signatures were focused on either IIS Script access based attacks or CGI and MISC
web based attacks. On the basis of the data collected, it appears that web based attacks
were the most common form of attacks used by attackers. More than 180 signatures
were identified which were used or attacking or probing the web based services and
port numbers.
Misc-activity
There were only 2 signatures reported under this category:

141

• Experimental MISC AFS access

There were miscellaneous attempts of accessing AFS by attackers using
Nessus scanning tool. This type of attempt, if successful, can provide full
access to the filesystem of the hosts and can cause any damage to the system.
According to ACID, this attack was carried on 1 7 different destination hosts
from one single attacking IP.

• BAD traffic tcp port O tr1iffic (CVE 1999-0675)

This attack attempt is associated with Checkpoint Firewall-1 . It is an attempt
to carry out a Denial of Service (DoS) attack on the firewall via UDP packets.
This attack attempt was implemented using Nesssus scanning tool. This attack
was just attempted on 2 destination addresses in compare to 135 hosts in
previous testing.

Misc-attack

There was a single Experimental Web-PHP directory.php access attempt (CAN 2002-
0434) under this category. It allows remote attackers to execute arbitrary commands
via shell meta characters in the dir parameter. This attack was destined to 13 different
hosts on the network. This is also a type of attack which Nessus tries to execute on the
systems connected to the network.
Attempted-dos

There were a total of 6 signatures reported under this category from which 5

signatures were identified as DDoS attack signatures (explained in chapter 7). It was
identified that this distributed denial of service attack was attempted on 1 8 different
hosts on the network by 2 different source addresses. The remaining 61h signature was:

• DOS Bay/Nortel Nautica Marlin (CVE: 2000-0221)

The Nautica Marlin Bridge allows remote attackers to cause a DoS via a zero
length UDP packet to the SNMP zero. A DoS attack is attempted by
transmitting UDP packets to the systems.

142

Protocol command decode

There was a single Experimental MISC IPSec PGPNet connection attempt destined to
1 8 different hosts on the network. This attack is associated with Pretty Good Privacy
(PGP) program that provides electronic mails with Privacy by encrypting the contents
of the e-mails. From the above attack it appears that the attacker tried to connect to
the PGPNet to sniff the encrypted emails which may have provided him or her with
some infonnation. This is one of the probes which Nessus scanning tool explores
while scanning the network in order to exploit the PGPNet, ifit exist on the network.
Attempted users

There was 2 attack signatures reported under this category. They were:
• WEB-CGI webspeed access (CVE: 2000-0127)

The webspeed configuration program does not properly disable access to the
WSMAdmin (WebSpeed Messenger Administration tool) utility, which allow
remote attackers to gain privileges. It was identified that this attack attempt
was destined to 15 different hosts on the network.

• RSER VICES rsh bin

This event indicates that an attempt was made to login to an rshd server
(remote shell) using the bin account. This evr;nt occurred from 2 different
attacking IP addresses towards a single host IP 192.168.1. l

Successful admin

This category included only a single alert related to TFTP GET passwd. It uses UDP
which provides no security features (explained in chapter 7). It was reported from 2
source addresses to 17 other destination hosts on the network. It appears that the
attackers tried to retrieve the system passwords by connecting to TFTP using UDP
packets with GET command.

143

Attempted admin

There were 3 alert signatures reported under this category. These were:

• RSER VICES rsh root

This event indicates that an attempt was made to login to an rshd server

(remote shell) using the root account.

• RSERVICES rlogin root

This event is similar to the previous event which if successful, could indicate a

root compromise.

• RSERVICESrsh froot

This event may provide root access to any AIX 3.2.x system. Since there was

one AIX 3.2 server in the network architecture, it appears that the attackers

tried to probe the AIX system to gain root access on it.

Unknown
There was only one unknown signature based on Xl 1 xopen. This event indicates that

an external user has attempted to launch an Xl 1 application on an internal X server.

RPC portmap-decode

There was 4 signatures reported each related to different type ofRPC requests, which

are:

• RPC portmap listing

This event indicates that a query was sent to the rpcbind/portmap daemon on a

solaris machine, requesting port infonnation for rpc·services.

• RPC portmap request yppasswdd

The rpc.yppasswdd server is used to handle password changes request from

yppasswdd and modify the NIS (Network Information Service) password file.

A Buffer flow vulnerability exists in the rpc.yppasswdd utility. The problem

occurs due to insufficient bounds checking before copying remotely·supplied

144

user infonnation into a static memory buffer. As a result, a malicious user may
be capable of exploiting this issue to ovenvrite sensitive locations in memory
and thus execute arbitrary code with super user privileges.

• RPC portmap request rstatd

A query was sent to the portmap daemon, requesting port infonnation for the
rstatd service. The rstatd daemon can give detailed information about the host.

• RPC portmap request mountd

This event indicates that a query was sent to the portmap daemon, requesting
port inforn1ation for the rpc.mountd service. This query usually precedes
attempts to access mountd, access NFS, or to attack the rpc.mountd service
with protocol or buffer overflow conditions.

Conclusion

From the above discussions, it appears that the attackers tried various attacking
methods to attack the network. Similar to previous testing, there were high amount of
portscans as welI as lot web based attacks using CGI scripts and US access attempts.
There were also few occasions when remote login attempts were also noticed. There
was evidence which illustrates that the attackers tried gaining root access on some of
the hosts on the network. There was an event which indicated that a query was sent to
the rpcbind/portmap daemon on a solaris machine, requesting port information for rpc
services using RPC portmap listing. Most of the attacks were very similar to those
that were attempted in previous testing which indicates that the most of the attacks
were consistent on the network. Therefore, from the above discussion the most
frequent 5 alerts were:

145

Port Type Occurrences Uni<rue Alerts 80 ltcp 8633 255 161 ltcp 2950 5 ltco 960 1 162 ltcp 250 3 10080 ludp 1 14 1 177/udo 1 14 1 7001 ludo 1 14 1 10081 ludo 1 14 1 31337 ludp 96 1 22 /tco 84 26 1 /tco 62 4 69/tco 47 2 800/udp 39 1 3 128/tco 33 1 8080/tco 24 1
Table 8.4: List of popular destination port numbers with occurrence of alerts

From the above table 8.4 it appears that there were 2 ports which reported the
maximum number of unique alerts. Those were:

• 80 /tcp: It is an http port which reported the maximum number of alerts (8633)
as well as 255 unique alerts. These unique alerts were mainly attack attempt of
exploiting WEB-MISC, WEB-CGI and WEB-IIS. These alerts occurred on 24
different hosts connected on the network from various attacking IP

• 22 /tcp: This is an SSH port used for secure and encrypted transmission of
data. This port reported the second most unique alerts i.e. 26. Those alerts
were mainly port scans and Nmap scans. These attack attempts were targeted
on 36 hosts on the network running port 22. It appears that thi attacker tried to
exploit this port for gathering any information travelling between the hosts.

8.3 Findings from log files

From the study of log files, it was identified that most of the attackers used Nessus
(http://www.nessus.org) as the network scanning tool to identify the vulnerabilities in
the network. On the findings of the vulnerabilities most of them tried to conduct brute

147

force attack over the network. There were various probes for exploiting the
vulnerabilities in web based services and ports. Various CGI and perl scripts were
attempted in order to gain entry into web based services.
There were various attempts of exploiting vulnerabilities of SSH using Nessus and
Putty·Release·0.53b. PuTTY is a free SSH, Telnet and Rlogin client for 32·bit
Windows systems

8.4 Ethereal Analysis

There were two tcpdump log files generated during the second testing phase
(tcpdump.log.1048208266 [created on 21103/03} and tcpdump.log. 1048298249

{created on 22/03/03]), which was analysed using Ethereal Packet sniffer. Below are
the Protocol Hierarchy statistics generated by the Ethereal:
� tthr.real. PrnlncatHlerarchy Stott.ties : ' ' ,

.
r;:J��

rProtocol Hierarchy St;tistice
, Protocol I % P;ckelsl Packets! Bytes I End Packelsl

B Frame 100.00% 22146 2302332
8 Ethernet 100.00% 22146 2302332

B lntemel Prolocol 100.00% 22146 2302332
Internet Con!rol Message Pm!ocol 37.78%,

8 Transmission Control Prolocol 45.00% 10164 10087�9
Hype!\ex! Transfer Protocol 36.65% 8116 966663
Remole Shell 0.07% 16 1592
X11 0.02% ' 312
Rlagin Pmlocol 0.04% a �,

8 Re mole Procedu1e Call 0.02% 5 ,ro
Portmap 0.02% 5 550

Unraassembled Fragmented Packet 4.33% 961) """
Et Um Datagram Prolocol 16.33% 1616 "'1930

8 Simple Network Management Prolocol 13.04% ,,. 25800)
Malformed Packel 0.03% 6 160

RX Protocol 0.33% 72 5328
Data 1.17% 20] 25161
Internet Securily Associalion and Key Managemar.1 Prolocol O.O!l% 21 ""'
Trivial Fila Transfer P1olocol
X Display Manager Control P1olocol

B Remote Procedure Call
Yellow Pages Passwd

0.64% 112 8600
0.24% �
0.00% 1
0.00%

··------- ------ ---- -

J Close I

3240
B2

B2

0

0

0

8366
1055
6116

16
'
a
0

5
961)

0

""
6

72
260
21

112

�
0

1

End Elyles !
o I
o I

��I
61384 !
� I

312
·�

0

550
"""

0

-s,m
"'

5328
25161
""'
8600 �:!j

Figure 8.4: Protocol Hierarchy Statistics oftcpdump.log.1048208266

148

As shown in the above figure, there were 22146 packets reported in the tcpdump log
file tcpdump.log.1048208266 out of which nearly 37.78% were lCMP packets and
45.90 % TCP packets. Majority of the TCP packets were http packets i.e. 36.65% of
the total TCP packets. There was also evidence of Remote Shell and Rlogin protocol
packets. About 16.33% of total packets consist of UDP packets from which 1 3.84%
were SNMP packets. On further analysing the log file, it was found that there were
some frequent occurrences of packets over some of the ports. Those results are listed
below:

• There was an attempt of remote login as root from 172.16.253.253 (attacker's
or source IP address) to 192.168.1 . 1 (destination IP address)

• There was queries related to TFTP (Trivial File Transfer Protocol) from IP
address 172.16.253.253 to 192.168. 1 . 1 . There was also a read request from
TFTP for file !etc/passwd.

• Frequent occurrences of packets of TCP FIN, PSH and URG from port 42778
of 172.16.253.253 to various ports of 192.168.1.1

149

rro!ocol Hierarchv Stalistics
, Protocol I % Packets! Packelsl Sytesl End Packets! End Byles '
El Frame 100.00%

S Ethernet 100.00%
13 lnternel Prolocol 100.00%

Internet Conho\ Message Pro1ocol 14.61%
El Transmission Control Protocol 76.94%

El Remote Procedure Cal l 1.34%
Portmap 1.21%
RSTAT 0.13%

Rernole Shell 0.40%
XII 0.13%
Rlogin Protocol 0.27%
Hype1tex1 Transfer Protocol 69.71%

El User Datagram Protocol 8.45%

a Simple Nelwork Menagemen1 Protocol 1.07%
Malformed Packet 1.07%

Data 6.03%
El Remo1e Procedure Call 0.�4%

RSTAT 0.13%
Ml11W Pages Passwd 0.13%
Port map D.27%

lnteme1 Security Association and Key Mamigemenl Protocol 0.27%
Trivial File Transfor Pro1ocol 0.54%

746 363340
746 363340
746 363340
,� 34649

574 """
ID 1100
' ""
I 110
3 '"
I "
1 162

510 "''"
63 247716
' 490 ' 490

45 246264

4 ""
I 92
1 92
1 ,,.
1 351l

4 256

0
0
0

,�
�
0
'
1
3
I
1

520
0
0 '

45

0
I
I
2

2

4

0 :
0
0

34649
2756

0

""
110
244 I

1:I
76633 i

0 :
o ;

'"''
246264

0
92
92
"'
356

256

, 1 ,�- - -- - -- -- - -- -- - -----------�-----·-·-
Close I

Figure 8.5: Protocol Hierarchy Statistics of tcpdump.log.1048298249
As shown in the above figure 8.4, there were 746 packets reported in the tcpdurnp log
file tcpdump.log.1048298249 out of which nearly 14.61 % were ICMP packets and
76.94% TCP packets. Majority of the TCP packets were http packets i.e. 69. 71 % of
the total TCP packets. There was also evidence of Remote Shell and Rlogin protocol
packets in this log file too. About 8.45% of total packets consist of UDP packets. On
further analysing the log file, it was found that there were some frequent occum::nces
of packets over some of the ports. Those results are listed below:

• There was evidence of using program Portmap Version 2 with procedure
DUMP from source IP address 172.16.1.120 towards destination IP address
192.168. 1 .1 . These packets were sent from source port 624 towards
destination port sunrpc (port 1 1 1).

• There were few UDP packets from 172.16.0.1 source port nfsd towards
172.16.1.120 port 800 with large amount of data (around 4216 bytes).

150

• There were also few packets of Yellow Pages Password (YPPASSWD) of
program version 32803 using Remote Procedure Call (RPC) version 2

• There was an attempt of remote login as root from 172.16.1.120 (attacker's or
source IP address) to 192.168.1 . 1 (destination IP address)

• There were queries related to TFTP (Trivial File Transfer Protocol) from IP
address 172.16.1. 120 to 192.168. 1.1. There was also a read request from TFTP
for file /etc/passwd.

From the above results it appears that the attackers repeatedly tried to remotely login
on to the network to gain root access on the host machines. There were multiple
attempts for gaining passwords from the network as the attackers tried using Yellow
pages password programs and also tried TFTP which is not connection oriented and
uses UDP packets for sending packets. The attackers tried connecting to the password
files on the host machines to retrieve them. It appeared that host 192.168. 1 . 1 was the
prime target for the attackers as there were multiple attacks noticed on this particular
host. There were also evidence of one of the attackers connecting to 192.168. 1 . 1 host
on to the network but could not gain much access on it. This particular attacker tried
to exploit Network File System (NFS) of the host to connect to the host.

8.5 Analyst Notebook 6 graphs

The log files generated by honeyd were imported into the Analyst Notebook 6 to
generate the graph of relationship between various hosts on the network. The graph
displays various source hosts connecting t? destination hosts with linking them
according to their occurrences on the network. Since the generated graphs were large
in size therefore, they are included on the provided CD along with the chart viewer
program. See appendix E for chart file details

151

8.6 Feedback from Attackers

Similar to the previous penetration exercise, participants were asked to voluntarily
provide their personal feedback about the network and their findings. Below are the
feedback received from some of the attackers:
Hacker] : ''Created a footprint of the network and located few prime targets using
traceroute and pings. It appeared to be a very big network with large number of hosts
and few servers. There were lot of MAC address request on the network. From the
results of traceroute, it appeared that host 192.168. 1 . 1 was connecting to the subnet.
Therefore, I targeted my attacks mainly on host 192.168. 1 . 1 as it appeared to be in
good position to be a router. It was also sharing some NFS paths on to the subnet.
After some deep probing on host 192.168. 1 . 1 , the situation became a bit confusing. It
appeared that there were 2 hosts on same IP address 192.168.1.1 which put me on a
backfoot while probing the network. I also discovered a Cisco router on the network
which was vulnerable to DOS attacks."
Hacker2 -: "Large number of hosts with Windows 98 operating system which were
running SSH servers. It appeared that a vulnerable SSH versions were running on the
network. The entry point to the network was through the Cisco Router running on
192. 168.1.100. But when conducted few traceroutes on various other hosts, it
appeared to trace over 192.168.1 . 1 . It appeared that 192. 168.1.1 was acting as a
gateway machine which was redirecting the network traffic to the subnets. Overall it
appeared to be a large network with limited vulnerabilities to exploit."

8. 7 Implications

After the improvisation of the network, it presented various services to the attackers.
The data collected from the testing was of much higher value than the previous testing
as evidences of some new types of attack attempts made by the attackers were
recovered. Most of the attack attempts were similar to what was attempted in the
previous testing. There were again a high number of attempts on web-based services
and ports such as http port 80. It appears that the http port 80 is one of the most

152

prominent targets for the attackers. Also in the previous testing, Nessus reported that
http port 80 was the most dangerous service on the network therefore there was
slightly an increase of attack attempts on port 80 in the second tests. There were also
evidences of attempting remote login on the improved network which was hardly
attempted in the previous tests. The second tests were more focused on selected hosts
rather than the whole of network as was the case in the initial tests. During the second
tests, host 192.168.1.1 was one of the prime targets for the attackers as there was
various attack attempts noticed and alerted on this host.
Also during the second tests there were evidences of using third party programs such
as PuTTy and Portmap. PuTTy was mainly used in exploiting the SSH service at port
22 and Portrnap was used for mapping solaris system for requesting port information.
Use of third party programs was not noticed during the initial testing of the network.
Although the new network configuration provided a better network architecture and
higher level of deception as the attackers were successfully disguised with the
emulated services of fered on the network, so there was limited changes required in the
network for improving the level of deception. During the penetration exercise one of
the attacker (who did not provided any feedback) seemed to be growing suspicious
about one of the service offered on the network. It was noticed that hosts which were
operating on Windows 98 were running Microsoft IIS v.5, which is not possible.
Therefore it created some doubts among the attackers. Hence, the shell script which
was emulating IIS v.5 was needed to be changed to emulate IIS v.4 for more realistic
appearance of the hosts.

153

9. Third Test results on Honeyd 0.5

9.1 Overview from second test results

After the second testing phase, there were potential security holes and alerts that were
identified. On the basis of the general feedback received from the hackers regarding
the network architecture, it was found that the network defences were well in place
and did not provided much opportunity for an attacker to do over the network.
Therefore, it may not be wrong to assume that the created deception has been so far
successful in deceiving the attackers as they seemed to believe it to be a legitimate

organisational network. One important point noted by an attacker was that on
Windows 98 he found that Microsoft US v.5 was running which is not possible.
Therefore the only change made to the configuration file was changing the script for
Windows 98 operating system for Microsoft IIS v.4. (See Appendix C.4 for script)

9.2 Third Test Results

During the third testing phase, a group of students were asked to probe the improved
network designed (192.168.1.0/24 and 192.168.2.0/24) using the honeyd 0.5. This
testing phase existed during the time window from 26-05-2003 [14:09:16] to 27-05-
2003 [18: 14:50]. There were various mechanisms tried by students which generated a
substantial amount of data in the log files. The logs generated during this period were
also stored on a database which was used by ACID (Analysis Console for Intrusion
Databases) for the analysis purpose. There were also few tcpdump log files which
were analysed using Ethereal. Syslogs and temporary log files were analysed
manually while honeyd Jog fi1e was analysed using Analyst Notebook 6.
From the initial testing the Snort IDS recorded 19036 alerts, out of which there were
453 unique alerts which were divided into 12 different categories.

Total Alerts out of which Unique Alerts divided into 12 Categories 19036 453
Figure 9.1 Acid Analysis

154

These 12 categories are given below:
Classifiration Total Alrrts Signatures
Unclassified 342 (2%) 2 1 1

Bad-unknown 1 1 737(62%) 4

Attempted-recon 4814 (25%) 8 1

Web-application activity 1299 (7%) 104

Web-application attack 664 (3%) 40

Misc-activity 151 (1%) 3

Misc-attack 1 (0%) 1

Attempted-dos 15 (0%) 5

Protocol-command-decode 3 (0%) 1

Successful admin 6(0%) 1

Attempted-user 1 (0%) 1

Rpc-portmap-decode 3 (0%) 1

Table 9.1: 12 Alert Categories
The above classified alerts mentioned in table are described in detail below:
Unclassified
There were 21 1 signatures recorded under this category. These signatures were
mainly port scans on various ports of different hosts on the network. As described
previously in chapter 7 and 8, attackers perfonn port scans to identify various exploits
and fingerprint the network.
Bad-unknown
There were 4 alert signatures reported under this category. These signatures were:

• JCMP Redirect host

This comprised of 34% of the total number of alerts recorded over the
network. Since all the network traffic was routed through a gateway machine,
the total number of redirect alerts was high.

155

• TFTP Get

This event indicates that the attackers tried using TFTP to retrieve information
such as passwords using the GET command. Since TFTP uses UDP based
connections, it does not provide any security feature.

• MISC Large UDP packets

Large numbers of UDP packets were transmitted from one single host
(192.168.1 .28). This UDP traffic constituted about 28% of the total alerts
recorded on the network. Such attack was mainly attempted for a DoS attack
on that particular host. This may have resulted in the network traffic flow
delay or complete halt of the network traffic to this particular host.

• Attack Responses http dir listing

It is a type of snort alert which indicates that web server is responding to the
probes with a reply. From the collected data, it is found that there were 2
sources IP addresses which responded back to the 2 other destination IP
addresses.

Attempted·recon
This category consisted of 81 different signatures from which the most prominent
were:

• SNMP request udp (CAN 2002-0012)

Vulnerabilities in large number of SNMP implementations allow remote
attackers to cause denial of service attacks or gain privileges via SNMPvl trap
handling. This attack attempt consisted of 4% of the total number of alerts and
was destined to 219 dif ferent hosts on the network. There were large numbers
of SNMP requests which were flooded on these hosts which could have
caused DoS attack on these hosts and would have made them unavailable for
other requests.

156

• SCAN SOCKS Proxy attempt

As described in previous chapters 7 and 8, SOCKS provides support for
developing secure communications by integrating other security technologies.
It is a medium between the client and the application servers. It was identified
that there were SCAN SOCKS Proxy attempt on 129 different hosts from 3
different source IP addresses. It appears that the attackers tried to probe the
SOCKS proxy to connect to various servers available on the network.

• SCAN Squid Proxy attempt

Squid is full-featured Web proxy cache designed to run on UNIX systems.
About 6% of the total alerts were Squid proxy scans which were destined to
125 different hosts from 5 different source IP addresses. It indicates that the
attackers tried to gain access to the web cache in order to gain some valuable
information such as passwords stored in cache for gaining privileges over the
hosts.

• WEB-MISC and WEB-CGI alerts

A large number of alerts were reported based on web-based services and port
numbers.

Misc-activity
There were 3 signatures under this category:

• BAD TRAFFIC bad frag bits

The attacker tried to send large amount of UDP packets to flood the hosts and
servers to attempt a denial of service attack. This indicates that the attackers
tried to flood the servers and hosts to disrupt the network services and make
them unavailable for any further network service requests.

• BAD Traffic udp port O traffic (CVE 1999-0675)

As mentioned in chapter 7 and 8, this alert is associated with Checkpoint
Firewall-I vulnerability. It is subjected to DoS types of attacks via UDP
packets. This vulnerability is exploited using Nessus by sending large number

157

of UDP packets on the hosts. This alert originated from 3 different source
addresses and was destined to 68 different hosts on the network.

• EXPERIMENTAL MISC AFS access

As described in chapter 7 and 81 miscellaneous attempts of accessing AFS, a
distributed file system, was made using Nesssus. This would provide the
attacker full access to the file system of the host machine and can cause any
level of damage to the system. But in the 3rd testing it was not attempted
extensively on the network as it was just reported to one destination address
whereas in the first testing it was reported to 21 different hosts on the network.

Web-application activity and web application attacks

There were 104 and 40 unique signatures in both categories respectively. These
signatures were focused on either IIS Script access based attacks or CGI and MISC
web based attacks.
Attempted-dos
This category had 5 signatures associated with the attempt of DDoS attacks using
mstream, shaft or TrinOO. These attacks are classified under CAN 2000-0138 of CVE
which states that "a system has DDOS attack master, agent or zombie installed such
as I) TrinOO, 2) Tribe Flood Network (TFN), TFN2K, 4) stacheldraft 5) mstream and
6) shaft. If this attack was successful, it would have collapsed the whole network and
would have made it inaccessible for any user.
Protocol-command-decode

There was only one alert reported under this category which was Experimental MISC
IPSec PGPNet connection attempt.
Successful-admin

There was only one alert reported under this category which was TFTP GET passswd.
As described in chapter 7 and 8, it uses UDP connections to retrieve password files
from the servers or remotely boot the workstations.

158

Misc-attack
There was only one alert reported under this category which was Experimental WEB­
PHP directory.php access (CAN 2002-0434). It allows remote attackers to execute
arbitrary commands via shell meta characters in the dir parameter.
Attempted-user
There was only one alert reported under this category which was WEB-CGI webspeed
access. This attack does not disable the WebSpeed Messenger Administration
(WSMAdmin) utility properly thus allows remote attackers to gain privileges.
Conclusion
Similar to previous testings, there were high amount of port scans as well as lot web
based attacks using CGI scripts and IIS access attempts. From the above table we can
see that there were 104 signatures under web-application-activity and 40 signatures
under web-application-attack. Most of the attacks were very similar to previous
attacks conducted in last 2 network penetration exercise. There was large number of
UDP packets flooded on host 192. 1 68.1.28. This was mainly conducted to carry a
DoS attack on the host and make it unavailable for other network requests. One
another important point to note from the above data is that 62% of the total alerts were
under Bad-unknown classification. This means that most of the attack attempts were
either ICMP redirect request of Misc large UDP packets to carry out denial of service
attacks. Therefore, out of the total alerts, the most frequent 5 alerts were:
Signature Classification ' Total ICMP redirect host Bad-unknown 6478 (34%)

MISC large UDP packets Bad-unknown 5242 (28%)

Scan Squid Proxy Attempt Attempted-recon 1061 (6%)

Scan Proxy (8080) attempt Attempted-recon 730 (4%)

SNMP request udp Attempted-recon 690 (4%)

Table 9.2: Most 5 frequent alerts

159

ICMP redirect host attack constituted about 34% of the total number of alerts. This
type of attack is capable of crashing or locking up a host machine. The other most
frequently occurred alert was 'Misc Large UDP packets' which is also classified
under bad-unknown. This event indicates that an abnonnally large UDP packet was
sent to your server. This may indicate a denial of service attack or the use of a covert
channel. Since this event was caused by a UDP packet, the source IP address could be
easily forged. Also, it has been noted that the due to the nature of this event the
attacker does not nonnally require response traffic. In most cases this means that the
event should be analysed along with other supporting data before acting on the event.
The other three alerts were classified under attempted-recon. On comparing the
results of Table 12. l and 12.2, it can be noted that the majority of the network traffic
was classified under bad-unknown and attempted- recon.

On profiling the network traffic based on each individual protocol, following results
were conclusive:
Traffic Profile by Protoi;:ol
TCP (29%)

; ; -. _ _.' . . , ,:

UDP (37%)

ICMP (34%)

Portscan Traffic (0%)

Figure 9.2: Traffic Profile by Protocol using ACID
As illustrated in the figure 9.1 that majority of the network traffic was targeted to
UDP (37%) and then ICMP (34%) and TCP (29%). There was also large number of
port scans reported on the network. These port numbers can be further detailed on the
basis of the occurrences of total alerts and unique alerts on them

160

Port T) pc Ocr111Tl'IICCS lJnit111r Alerts •
80 ltco 7777 217 161 ltcp 1375 4 3128 ltcp 1062 2 8080 ltco 731 2 1080 ltco 463 I 162 /tcp 407 3 705 ltco 169 I Oludo 139 7 137 ludo 81 77 177 ludp 1 8 I 10080 ludo 1 7 I 10081 ludo 16 I 7001 ludo 16 I 22 ltcp 14 8 69 ludo 13 2

Table 9.3: List of popular destination port numbers with occurrence of alerts

From the above table 9.3 it appears that there were 3 ports which reported the
maximum number of unique alerts. Those were:

• 80 /tcp: It is an http port which reported the maximum number of alerts (7777)
as wcll 217 unique alerts. These unique alerts were mainly attack attempt of
exploiting WEB-MISC, WEB-CGI and WEB-IIS. These alerts occurred on 64
different hosts connected on the network.

• 137 ludp: This port number is associated with NetBIOS Name Service. There
were 77 unique alerts reported on this port which were mainly different port
scans. These attack attempts were targeted on 58 different hosts on the
network from 2 different attacking or source hosts. NetBIOS is mainly
associated with input and output services, therefore it appears that the
attackers tried to exploit such services using NetBIOS based vulnerabilities.

• 22 /tcp: This is an SSH port used for secure and encrypted transmission of
data. This port reported the second most unique alerts i.e. 10. Those alerts
were mainly port scans and Nmap scans. These attack attempts were targeted
on 191 hosts on the network running port 22. It appears that the attacker tried
to exploit this port for gathering any information travelling between the hosts.

161

9.3 Findings from log files

From the study of log file, it was identified that most of the attackers used Nessus
(http://www.nessus.org) as the network scanning tool to identify the vulnerabilities in

the network. On the findings of the vulnerabilities most of them tried to conduct brute

force attacks over the network. There were various probes for exploiting the

vulnerabilities in web based services and ports. There were evidence in the log files
which shows that the attackers tried to connect few machines to gain access to C: \>

drive:

GET /scripts/ . . t255c . , /winnt/system32/cmd. exe?/c+dir+c : HTTP/1 . 0
GET /scripts/ . . t255c . . /winnt/system32/cmd.exe?/c+dir+c : +/s HTTP/1 . 0

http ://192 . 16 8 . l , 28/scripts/ . . t255c . . /winnt/system32/cmd. exe?/c+dir+c
: +/s
bttp ://192 . 168 . 0 . 1/scripts/ . . %255c . . /winnt/system32/cmd.exe?/c+dir+c :
+I•
http : //192 . 168 . 1 . 28/scripts/ . . %255c . . /winnt/system32/cmd. exe?/c+dir+c
: +/s
GET /scripts/ . . %255c . . /winnt/system32/cmd.exe?/c+dir+c: +/s HTTP/1 . 0
GET /scripts/ . . %255c . . /winnt/system32/cmd.exe?/c+dir+c :wwwroot+/s
HTTP/1 . 0
GET /scripts/ . . %255c . . /winnt/system32/cmd. exe?/c+dir+c : wwwroot+/s
HTTP/1 . 0

The above log file entry indicates that the attackers tried to access the file system of
IIS server by executing scripts through console based commands. This attack attempt,
if successful, could have resulted in providing full access to the web-server to the
attackers. This may have resulted in complete compromise of the web-server as the
attackers could halt or disable all the web-based services which may have had a big
impact on the complete network.

9.4 Ethereal Analysis

There were two tcpdump log files generated during the second testing phase
(tcpdump.log.1053944062 ond tcpdump.log.1054023963), which was analysed using

162

Ethereal Packet sniffer. Below is the Protocol Hierarchy statistic generated by the
Ethereal:

© Ethereal: Protocol Hierarchy Statistics �(g]�
1Pmtocol Hiera�hy S\alislics '

jl Protocol I % Packets! Packets! Bytes! End Packets End Bytes!,
l'El Frame 100.00% 14419 41435094 0 0 ;

El Ethernet 100.00% 14419 41435094 0 0 ;
100.00% 14419 41435094 0 Q I El Internet Protocol

Internet Control Message Protocol 30.52% 4400 463069 4400 46ll69 l
El Transmission Control Protocol 25.36% 3656 267869 1922 119164 i

Hypertext Transfer Protocol 12.03% 1734 148705 1734 148705
El User Datagram Protocol 44.13% 6363 40704156 0 o i

! Simple Network Management Protocol 7.03% 1014 72236 1014 72236
Data 37.10% 6349 40031920 5349 40631920 I

· I Close I

Figure 9.3: Protocol Hierarchy Statistics of tcpdump.log.1053944062
As shown in the figure 9.2, there were 14419 packets reported in the tcpdump log file
tcpdump./og.1053944062 out of which nearly 30.52% were ICMP packets and 25.36
% TCP packets. Majority of the TCP packets were http packets i.e. 12.03% of the
total TCP packets. About 44.13% of total packets consist of UDP packets from which
37. 10% were Data packets. This suggests that there was huge amount of data flooded
over the network in terms of UDP packets. On further analysing the log file, it was
found that there were some frequent occurrences of packets over some of the ports.
Those results are listed below:

a A very large amount of UDP Data packets were transmitted on host
192.168.1.28 from source port number 3074 towards port 80 (http port).

163

.

0020 01 le Oc 02 00 50 le 24 94 e6 2a 2a 2a 2a 2a 20
0030 5 5 44 50 20 46 Ge Gf Gf 64 2 e 20 53 65 72 76 65
0040 72 20 73 74 72 65 73 73 20 74 65 73 74 20 2a 2a
0050 2a 2a 2a 2a 2a 2 a 2a 2a 20 55 44 50 20 46 6e 6f

060 6f 64 2e 20 53 65 72 76 65 72 20 73 74 72 65 73
070 73 20 74 65 73 74 20 2a 2a 2a 2a 2a 2a 2a 2a 2a
oso 2a 20 55 44 50 2 0 46 Ge 6f 6f 64 2e 20 53 65 72
090 76 65 72 20 73 74 72 65 73 73 20 74 65 73 74 20

Figure 9.4: UDP Packet

, , , • • p, $ 1t"l<IHHI

UDP Floo d. serve
r stress test -i,.,
"l<ft"l<ftft1t1t1t UDP Flo
od. serv er stres
s test -i, -i,-i,-i,.,.,.,"".,
"" UDP Fl ood. Ser
ver stre ss test

This resulted in the complete delay of the network traffic flow on this particular host

which as a whole degraded the perfonnance of network traffic flow on the entire

network.

uuou
0010
0020
0030
0040
0050
0060
0070
0080

o As mentioned in earlier section 9.3, Ethereal captured the following packet

which shows that the attacker ran a script command to retrieve the

directory level information:

UO YU U J.O Y4 ja UO 10 �t UY ej a� o� uu 4 � uu
00 74 2c Se 40 oo 80 06 sf 12 ac 10 01 of co as
01 le Oc ac oo so 80 ao 87 74 ad 62 la 88 50 18
40 ea 7b le oo 00 47 45 54 20 2f 73 63 72 69 70
74 73 2f 2e 2e 2 5 3 2 35 35 63 2e 2e 2f 77 69 Ge
Ge 74 2f 73 79 73 74 65 6d 33 32 2f 63 6d 64 2e
65 78 65 3f 2f 63 2b 64 69 72 2b 63 3a Sc 77 77
77 72 6f 6f 74 2b 2f 73 20 48 54 54 50 2f 31 2e
30 Oa

. . . "
• t , . ®. • • •
. . • , • P . .

, ' ' • , . E • -· · · · · · ·
. t . b • • P.

'1). { • • • GE T /scri p
ts/ . . %25 Sc.)c;win
nt/SY.Ste m32 cmd.
exe?/c+d ir+c:)ilWI
wroot+/s HTTP •
o.

Figure 9.5: Packet Captured showing script command used to retrieve
information

164

. • • r ';'" -� •

@ Ethereal: ProtOcOl Hierarchy S\a!Mics '· ' \\ ,I
. � ·.• "

Protocol Hierarchy Sta1istics

. ·- ,- - -

Protocol I % Packets! Packets! Byles I End Packets!
13 Frame 100.00% 4082 379623 0

13 Ethernet 100HJ% 4082 379623 0
El Internet Protocol 100.00% 4082 379623 0

Internet Control Message Protocol 49.73% mJ 185200 211ll
8 Transmission Control Protocol 35.96% 1466 145423 660 Hyperte�t Transfer Protocol 19.79% 800 97543 800
B User Dalagram Protocol 14.31% 584 49200 0

Simple Network Management Protocol 12.47% 509 42627 509
Data 1.03% 42 4212 42
Internet Security Association and Key Management Protocol 0.07% 3 537 3
X Display Manager Control Protocol 0.44% 18 1080 18
Trivial File Transfer Protocol 0.29% 12 744 12

_ ., . I Gloie I · -.-- . .

.

.

Figure 9.6: Protocol Hierarchy Statistics oftcpdump.log. 1054023963

As shown in the figure 9.5, there were 4082 packets reported in the tcpdurnp log file
tcpdump.log. 1054023963 out of which nearly 49.73% were ICMP packets and
35.96% TCP packets. Majority of the TCP packets were http packets i.e. 19.79% of
the total TCP packets. About 14.31 % of total packets consist of UDP packets out of
which 12.47% packets were of Simple Network Management Protocol (SNMP).
The above collected data confinns the findings of ACID as Ethereal was able to
capture the packets which clearly show the use of UDP Flooder to attempt a Denial of
Service (DoS) type of attack. It also captured the packets which illustrate the use of
command based script using GET method for retrieving directory level information
on the hosts. There were also a reduced number of any other kinds of probes or
network scans as in compared to the previous two testings conducted by the
participants. There was also no evidence of attempting any remote login access to the
network as compared to the previous testing.

165

r;Jig]�

End Bytes 0 0 0 185200 47800 i 9754:
42627 4212 5'JI 1000 744

9.5 Analyst Notebook 6 graphs

The log files generated by honeyd were imported into the Analyst Notebook 6 to
generate the graph of relationship between various hosts on the network. The graph
displays various source hosts connecting to destination hosts with linking them
according to their occurrences on the network. Since the generated graphs were large
in size therefore, they are included on the provided CD along with the chart viewer
program. See appendix E for chart file details.

9.6 Implications

After the improvisation of the network, it appears that the level of deception was
improved greatly as the level of attack attempts were reduced, especially the TCP
network traffic reduced to a considerable extent as compared to the first test results.
But one of the prominent attack attempt noticed during the final testing was the
attempt of flooding a host with UDP packets to cause DoS based attacks. Other than
UDP attack, web-based and ssh based attacks have been consistent on the network.
Therefore, it can be assume that the web-based attack attempts are more in use by
attackers to exploit vulnerabilities. This may be due to the reason that most of the
organisations these days are using web-based services for their day to day work
within the organisation.
The current network architecture was greatly improved since the previous 2 network
configurations. The only issue which needed attention for improvement was how to
tackle UDP based attacks which may be done by dropping the UDP packet requests
on the network. There was evidence in the results that one of the attackers tried to
carry out a Denial of Service attack by flooding the host with large amount of UDP
packets. Otherwise the network traffic behaviour was nonnal and no more major
improvements were required.
On the basis of the results obtained in the final testing, the research believes that the
level of deception has improved to the furthest extent as compared to the initial
network configuration. There was very little evidence found during the testing which
would have created any suspicion within the attackers while perfonning the
penetration exercise.

166

10. Discussion and Conclusions

The purpose of this research was to enhance the level of deception presented to
attackers in honeynet network architecture. Hardening of deceptive honeypots was
required to test its effectiveness in gathering attack intelligence using empirical
learning approach. The hacking exercise conducted in this research was carried out by
6 out of 10 selected students of School of Computer and Information Science, Edith
Cowan University, Western Australia. These students were selected using a Computer
Security Literacy Test, a questionnaire with 20 questions related to computer security.
The network penetration exercise was conducted at three different occasions. Data
collected from each exercise was initially first analysed and the network configuration
was improved before the start of next penetration exercise for data collection purpose.
After the completion of each exercise, the participants voluntarily provided their
feedback report detailing their understanding of the designed network. This process
helped in determining the improvement in the level of deception presented to the
attackers which obviously was unknown to them.
This research can be divided into 3 different phases: Initial set-up phase, data
collection phase and data analysing and summarising phase. There were various
challenges and problems encountered during each of these phases.
During the start-up phase of this research, the researcher possessed little knowledge
about the honeypots and honeynet. Extensive literature review was conducted to
understand the underlying concept of deception and honeypots in today's computer
security environment. This research was started just 2 months after the Honeyd was
first released in April 2002. There was very little supportive literature available during
that period. Therefore, the researcher had to make an attempt to personally
communicate with the Honeyd developer, Neil Provos, through emails. Supportive
literature, provided by Provos, assisted in understanding the concept of Honeyd and
also suggestions made by him helped in installing and maintaining the program which
was another tedious task. There were various challenges faced while installing and
configuring the honeypot using honeyd in the laboratory network. Various file
dependencies were encountered while installing the programs and setting up the

167

network. Once the installation of honeyd was complete, the implementation of the
program using the signature file of various operating systems and network devices
(described in detail in Chapters 2 & 5) was required. This NMAP signature file was
provided with more than 400 TCP/IP stack fingerprints. There was no valid proof to
support that these fingerprints would definitely work with honeyd in emulating the
fingerprinted systems. Therefore, Operating system fingerprinting testing was
conducted by the researcher by scanning each individual signature, configured in
Honeyd, with a network scanning program called Nmap. The results from this testing
were that 50% of the total signatures were only valid and successful in emulating the
operating systems and network devices. These valid signatures were used as the
benchmark for the research. lf the researcher had simply assumed that the signatures
provided with the honeyd to be 100% valid than there could have been various
instances in which the designed honcypol may not have proved to be a success. A lot
of time and effort was invested before the actual data collection phase started in
establishing and testing the honcypol. Aside from all these obstacles faced during the
initial phase of the research, it was a continuous learning experience. By the time data
collection stage started, the researcher was well equipped with the greater
understanding and knowledge about honeypots and their implementations than had
previously been the case.
Data collection was conducted in 3 different stages. Vast amount of data were
collected from each stage and was securely stored on a database and also backup
stored on a remote machine. The amount of data was enom10us therefore it was
compressed and stored remotely.
From the data collected from first network penetration exercise it was found that 50%
of the network traffic was TCP traffic while UDP and ICMP constituted 18% and
32% respectively. The majority of attacks were targeted at TCP/IP based protocols for
example, on http port 80 or 8080 for web based attacks. There were lot of
miscellaneous web based attacks on the network out which the most prominent were
Proxy scan and WEB�IIS script access. These attacks were among the top 5 alerts
identified after the penetration exercise. Out of the 32% network traffic of JCMP,
30% of its traffic was based on ICMP redirect host attack. This was the topmost alert
among all the attacks. This type of attack can be very dangerous as it is capable of

1 68

bringing down a host machine. Although from the general feedback received from the

participants it was suggested that it was a very basic network architecture which

lacked the services like FTP or telnet for providing any remote access to the network.

According to the participants, remote access for organisational networks is sometime

essential as sometime any member of the organisation may not be physically present

at organisation but need to access the data remotely. Also according to them the

network lacked any server type architecture. Therefore, taking their recommendations

into consideration network architecture was improved with the emulated Windows

NT server architecture and also by providing remote access to hosts using ftp and

telnet scripts to emulate the respective services. These scripts were provided with the

honeyd.

Once the network was improved after amending the configuration scripts and

upgrading the honeyd with the latest version, the second round of penetration was

conducted. It was found that TCP traffic over the network dropped by 5% to 45%.

This suggested that the honeypot was more hardened than previous setting and

configuration as it allowed less and only legitimate TCP/IP traffic. There was also a

minor reduction in UDP traffic too. But the ICMP traffic rose by 4% to 38%. The

second network penetration test was more intensive than the previous testing as it

provided lot of opportunity for the attackers to explore. The implementation of

emulated remote access services like ftp and telnet proved to be successful as there

was evidence of attempt of login remotely on to the network. This network

penetration testing provided with much more data than before to analyse. There were

evidence of use of various tools such as Putty- Release-0.53b (SSH client). Among the

top 5 alerts, other than ICMP redirect host and SNMP request udp, there was alert

which illustrate that there were attempts of launching web based attacks at the

emulated Cisco IOS Router configuration. From the general feedback received from

the participants it was believed that other than a few small security risks, the network

was quite well designed and properly secured as it did not provide much of

opportunity for the attackers to do. According to them, there were only those services

running on the network which arc common on any network. The file access

permissions were properly allocated as the attackers had only read access but did not

have any write access to the file systems. The use or a second router provided a better

security architecture to the subnet of the network as it allowed only the legitimate

169

network traffic to the subnet. This router, in addition to its basic functionality of
routing the network traffic also did the job of a firewall by blocking malicious traffic.
However, from the researcher's point of view it provided large amount of;valuable
data to study and learn about various types of attacks. From the feedback reports there
was evidence that the attackers were confused within the network configuration. As
mentioned in one of the report, the attacker got confused with the network entry point
believing into that there were 2 hosts sharing the same IP address both located on
either side of the network gateway. Therefore, from all these evidences it may be
believed that the deceptive honeynet architecture was well appropriate and successful
in deceiving the attackers and was also successful in data collection and attack
intelligence gathering. Hence, to further verify these results the network configuration
was improved and a third and final network penetration exercise was conducted. From
the feedback of one of the attacker it was identified that hosts which were operating
on windows98 were running IISv5. This is not possible as IISv5 only works on
windows 2000, XP or NT platforms. Therefore the script which was emulating the
11Sv5 was modified to emulate IISv4 on Windows98. This was the only minor change
required in the honeypot configuration before the third and final network penetration
exercise began.
In the third network penetration test, the amount of TCP traffic was considerably
reduced. From the total network traffic, TCP only constituted 29% of the traffic,
dropped by 16%, while the UDP traffic increased by 20% to 37%. On analysing these
results it was found that this time the attackers tried to launch Denial of Service (DoS)
attack by using a Trojan called UDP Flooder to flood the host with large amount of
UDP packets. There was not much change in the ICMP traffic. There were also
attempts to connect to the emulated Microsoft IIS server using some GET script
commands. Such attempts illustrate that the attackers were forced to believe that they
were examining a legitimate network with legitimate real services. Therefore, it is
reasonable to conclude that the attempt to create network deception using Honeyd was
a successful attempt and was able to provide with lot of interesting facts and results
which assisted in improving the deception.
After the completion of data collection stage, all the data was securely stored on
backup devices like zip disks, eds, and was also stored remotely on a different server.

170

This data was then analysed using various tools such as ACID, Ethereal and Analyst.
There were quite a few problems faced by the researcher during the analysis process
of the data. The amount of data collected by honeyd was large. It would not have been
possible to analysing that data without the use of software tools such as Analyst.
Although Analyst did find it difficult to import that data into its allocated memory in
order to visualise the log files. There were several occasions when the machine
running Analyst crashed while handling the log files. Therefore, the system memory
was upgraded before carrying out any further analysis using Analyst. ACID was a
very effective analysing utility. It categorised all the data according to their identity
and sources. ACID proved to be a big time saver to researcher while analysing the
data.
However, there were few limitations with this honeynet implementation. Due to the
restricted nature of this research, it was not possible for the researcher to place this
honeynet live onto the internet for the purpose of being getting probed or attacked.
This would have provided with more legitimate data about various attacking
techniques and tools. This may have also allowed the researcher to explore some new
fronts in the honeynet implementation, such as more about data control and data
capture, which may be unknown to the researcher. Therefore, this could be one of the
tasks which can be carried forward for further research in future.
The configured honeynet was a well implemented network which was able to show
various things which a honeypot is capable of doing. With the use of various
analysing tools such as ACID, Ethereal and Snort it was possible to visualise this
huge amount of data and control the systems. Configuring and implementing a
honeynet is a very time consuming and risky task. A small mistake while configuring
and implementing a honeynet may cause a serious concern over the network. All the
data need to be analysed carefully and proper backup mechanism should be in place.
Therefore, a honeynet should be configured with proper guidance and supervision.
However, the honeynet configured for this research can be considered as a successful
honeynet as it was possible to successfully deceive the attackers and collect the useful
attack intelligence.

171

11. References

Agassi, J. B. (1992). "Change Research or Action Research: a Promising
Methodological Tool, that Combines Applied Sociology with Empirical Research in
Organizations." Methodology and Science 25(4): p 196-203.
Anonymous (1996). ISO/OSI Network Model. Available at URL:
http://www.uwsg.iu.edu/usail/network/nfs/network_layers.html. Accessed on l lth
November 2002.
Anonymous (2000). Honeypot Effectiveness Study, Global Integrity Corporation.
Available at URL: www.enetrex.eo.kr/support/file%5CHoneypot.pdf. Accessed on
22nd September 2002
Anonymous (2002a). Know Your Enemy, 151 Edition, Published by Addison Wesley.
Anonymous (2002b). Honeynet Project.
http://project.honeynet.org. Accessed on 15th June 2002.

Available at URL:

Anonymous (n.d). ICMP sweep - a whatis definition. Available at URL:
http://whatis.techtarget.com/definition/O,,sid9 _gci802721 ,00.html Accessed on 1 1 th
February 2003.
Anonymous (n.d(a)). Deception Tool Kit. Available at URL: http://www.all.neUdtk.
Accessed on 15th June 2002.
Anonymous (n.d(b)). MySOL Reference Manual, MySql AB. Available at URL:
http://www.mysql.com/documentation/mysql/bychapter/manual_Introduction.html.
Accessed on 1 Oth September 2002.
Anonymous (n.d(c)). Wonns, Webopedia. Available at URL:
http://www.webopedia.com/TERM/w/wonn.html. Accessed on lst June 2003.

172

Anonymous (n.d(d)). Advantages and Disadvantages of Experimental Research:
Discussion, Writing Center at Colorado State University. Available at URL:
http://writing.colostate.edu/references/research/experiment/pop5c.cfm. Accessed on
30th June 2003.
Anonymous (n.d(e)). SPECTER Intrustion Detection System. Available at URL:
http://www.specter.com/default50.htm Accessed on 1 1 th November 2002.

Anonymous (n.d(O). The Ethereal Network Analyzer. Available at URL:
http://www.ethereal.com Accessed on 1 1 th December 2002.

Baumann, R. and C. Plattner (2002). Honeypots. School of Computer Science,
Diploma Thesis, Swiss Federal Institute of Technology: 143.
Bellovin, S. M. (n.d). Security Problems in the TCP/IP Protocol Suite, AT & T Bell
Laboratories. Available at URL: http://wwwJa.net/CERT/Bellovin/TCP­
IP_Security_ Problems.html. Accessed on 1 1 th April 2003.

Bowyer, J. B. (1982). Cheating: deception in war & magin, games & sports, sex &

religion, business & con games, politics & espionage, art & science. 1 51 Edition. New
York, St. Martin's Press.
Brenton, C. (n.d). Honeynets, Dartmouth College Institute for Security Technology
Studies (ISTS). Available at URL:
http://www.ists.dartmouth.edu/IRIA!knowledge _ base/honeynets.htm, Accessed on 151

June 2002.
Carthy, R. (1972). Protective coloration and mimicry: nature's camouflage. Westover
Publishing Co., New York
Cavaye, A. L. M. (1996). "Case study research: a multi-faceted research approach for
IS." Information Systems Journal 6(3): 227-242.

173

Cecez-Kecmanovic, D. (2001). Doing Critical IS Research: The Question of
Methodology, Idea Group Publishing. Available at URL:
www.sistm.unsw.edu.au/people/DUBRAVK.N06dubrav.pdf. Accessed on 30th June
2003.
Cheswick, B. (n.d). An Evening with Berferd, AT & T Bell Laboratories. Available at
URL: http://cne.gnm.edu/modules/acmpkp/security/texts/CRACKER.PDF, Accessed
on 151 June 2002.
Chua, W. F. (1986). "Radical Developments in Accounting Thought. 11 The
Accounting Review 61(4): 601-632.
Cohen, F. (1992). Operating System Protection Through Program Evolution
Computers and Security. Available at URL: http://www.all.net/books/IP/evlove.html.
Accessed on 9th March 2003.
Cohen, F. (1996). "Internet Holes - Internet Lightning Rods." Available at URL:
http://www.all.net/joumal/netsec/1996-07-2.html, Accessed on 41h June 2002.
Cohen, F. (1998). "A note on the role of deception in information protection."
Computers & Security 17(6): 483.
Cohen, F. (2000a). "A mathematical structure of simple defensive network
deceptions." Computers & Security 19(6): 520.
Cohen, F. (2000b). "The Structure of Intrusion and Intrusion Detection." Available at
URL: http://www.all.net/joumal/ntb/IDSstructure.html, Accessed on 291h May 2002.
Cohen, F., D. Lambert, C. Preston, N. Berry, C. Stewart and E. Thomas. (2001). A
Framework for Deception. Available at URL:
http://www.all.net/joumal/deception/Framework/Framework.html. Accessed on 1 1 th
November 2002.

174

Comer, D. E. (1995). Internetworking with TCP/IP - Principles, Protocols and
Architecture. Volume 1 , 3rd Edition. New Jersey, Prentice Hall.
Comer, D. E. and D. L. Stevens (1999). Internetworking with TCP/IP - Design,
Implementation and Internals. Volume 2. 3rd Edition. New Jersey, Prentice Hall.
Creswell, J. W. (2003). Research design: qualitative, quantitative and mixed method
approaches. 2nd Edition, London, Sage Publications.
Daly, J., J. Miller, A. Brooks, M. Roper and M. Wood (1995). "A Multi-Method
Approach to Perfonning Empirical Research." Systems and Software.
Danyliw, R. (n.d). Analysis Console for Intrusion Databases (ACID). Available at
URL: http://www.andrew.cmu.edu/-rdanyliw/snort/snortacid.html Accessed on 181h

July 2002.
Doran, R. (2000). Deap sea anglerfish. Available at URL:
http://ramseydoran.com/anglerfish/deep_ sea.htm. Accessed on lOth April 2003.
Dunnigan, J. and A. A. Nofi (1995). Victory and Deceit - Dirty Tricks at War. New
York, Published by William Morrow and Co.
Fairhurst, G. (2001). Address Resolution Protocol (ARP). Available at URL:
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html. Accessed on 19th
September 2002.
Farrow, R. (2000). System Fingerprinting with Nmap, Network Magazine. November
Edition. Available at URL:
http://www.networkmagazine.com/article/NMG20001 102S0005. Accessed on 2nd
December 2002.
Fowler, C. A. and R. F. Nesbit (1995). "Tactical Deception in air-land warfare."
Journal of Electronic Defense 18(6): 37-44 & 76-79.

175

Fujita, F. (1996). The Big Five Taxonomy. Available at URL:
http://www.iusb.edu/-ffujita/Documents/ecology.html. Accessed on 4th April 2003.
Fyodor (n.d). Nmap -- Free Stealth Port Scanner for Network Exploitation & Security
Audits. Available at URL: http://www.insecure.org/nmap Accessed on l lth
December 2002.
Fyodor (1998). Remote OS detection via TCP/IP Stack Fingemrinting. Available at
URL: http://www.insecure.org/nmap/nmap-fingerprinting-article.txt. Accessed on
1 Sth March 2002.
Galliers, R. D. and F. E. Land (1987). Choosing an appropriate information systems
research methodologies. Communicaitons of the ACM. 30: 900-902.
Gerwehr, S. (n.d). National Security: Lessons from animal and plant deceptions.
Available at URL: http://www.rand.org/natsec_area/products/animal.html. Accessed
on l st September 2002.
Gerwehr, S. and R. H. Anderson (2000). Employing deception in INFOSEC.
Available at URL: http://www.cert.org/research/isw/isw2000/papers/26.pdf. Accessed
on I Ith April 2003.
Gerwehr, S. and R. W. Glenn (2000). The Art of Darkness: Deception and Urban
Operations, RAND Publication.
Glaser, T. (2000). TCP/IP Stack Fingemrinting Principles, SANS Institute resources.
Available at URL:
http://www.sans.org/newlook/resources/IDFAQ/TCP _fingerprinting.htm. Accessed
on 22nd August 2002.
Godson, R. and J. J. Wirtz (2002). Strategic Denial And Deception. New Jersey,
Transaction Publishers.

176

Greenhalgh, T. and R. Taylor (n.d). How to read a qualitiative research paper.
Available at URL: http://dse212.port5.com/qualitative_methods.htm. Accessed on 3rd
April 2003.

Gupta, A (2003). Knowledge share in high technology sectors with an aim to assess
the impact of decision making on the outcomes of New Product Development,
Unpublished doctoral thesis, University ofNottingham, UK.
Haveeru, D. (2003). The hunt for red octopus, Haveeru daily. Available at URL;
http://www.haveeru.com.mv/english/features/octopus.html. Accessed on 14th March
2003.

Hirani, S., M . Ali, B. Duenas, Y. Stryker and G. Chim. (n.d). Denial of Service, Royal
Holloway University of London: 25. Available at URL:
http://www.isg.rhul.ac.uk/msc/teaching/ic4/2002/groups/Group09.doc. Accessed in
2003

Holcroft, S. (2002). Design Of a Default RedHat Server 6.2 Honeypot. Available at
URL: http://www.lucidic.net/whitepapers/sholcroft�4�:2002.html. Accessed on 30th
May 2002.

Hutchinson, B. and M. Warren (2002). Deception in Cyberspace. Available at URL:
http://www.dlux.org.au/dataterra/deception _in_ cyberspace.html. Accessed on 16th
January 2003.

Judd, C. M., E. R. Smith and L. H. Kidder (1991). Research Methods in Social
Relations. Florida, Published by Harcourt Brace Jovanovich, Inc., USA.
Klug, D. (2000). Honey Pots and Intrusion Detection. Available at URL:
http://rr.sans.org/intrusion/honeypots.php. Accessed on 30th May 2002.

Kruglanski, A W. (1975). The human subject in the psychology experiment: Fact and
Artifact. In L. Berkowitz (Ed.) Advances in experimental social psychology. Vol. 8,
New York, Academic Press.

177

Lewis, M. and C. Saami (1993). Lying and Deception in Everyday Life. New York,
The Guilford Press.
Low, C. (2001). !CMP Attacks Illustrated. Available at URL:
http://www.sans.org/rrlthreats/ICMP _attacks.php. Accessed on 23rd April 2003.
Monterey Bay Aquarium (2003). Anglerfish: Melanocetus johnsoni, Available at
URL: http://www.mbayaq .ort/ efc/li ving_ species/default.asp ?hOri= 1 &inhab= 17 6.
Accessed on lOth April 2003.
Myers, M. D. (1997). Qualitative Research in Infonnation Systems. MIS Quarterly.
21 : pp 241-242.
NOR1v1AN (2003). Attacks against weaknesses in the TCP/IP protocol, Nonnan.
Available at URL: http://www.norman.com/documents/wp_ smurf.shtml. Accessed on
1 lth April 2003.
Orlikowski, W. J. and J. J. Baroudi (1991). "Studying Infonnation Technology in
Organizations: Research Approaches and Assumptions. 11 Infonnation Systems
Research 2(1): 1-28.
Parker, T. and M. Sportack (2000). TCP/IP Unleashed, Sams Publishing.
Provos, N. (2002). Honeyd - Network Rhapsody For You. Available at URL:
http://www.citi.umich.edu/u/provos/honeyd/. Accessed on 121h June 2002.
Provos, N. (2002 (a)). libevent - an event notification library. Available at URL:
http://www.monkey.org!-provos/libevent/ Accessed on gth December 2002.
Provos, N. (2003). Honeyd: A Virtual Honeypot Daemon. Available at URL:
http://www.citi.umich.edu/u/provos/honeyd/. Accessed on 3 l st March 2003.

178

Polar Bears International (2002). Polar bear fur. Available on
http://www.polarbearsalive.org/facts3.htm#768453, Accessed on 121h March 2003
Rodriguez, A., J. Gatrell, J. Karas and R. Peshcke (2001). TCP/IP Tutorial and
Technical Overview, ?1h Edition, IBM Corporation.
Roesch, M. (n.d). Snort - Lightweight Intrusion Detection for Networks. Available at
URL: http://www.snort.org/docs/lisapaper.txt Accessed on 28th November 2002.

Rose, G. (1982). Deciphering Sociological Research. 1st Edition, London, Macmillan.
Rowe, N. C. and H. Rothstein (2003). Deception for Defense ofinfonnation System:
Analogies from Conventional Warfare. Available at URL:

http;//www.cs.nps.navy.mil/people/faculty/rowe/mildec.htm. Accessed on lst May
2003.
Sarantakos, S. (1993). Social Research. 1 st Editon. Melbourne, Macmillan Education
Australia Pty Ltd.
Scharge, M. (1999). The tangled Web ofe-deception. Fortune. 140:6 (296).
Scheidler, B . (1999). Syslog-ng reference manual. Available at URL:
http://www.balabit.hu/static/syslog-ng/reference/bookl.html. Accessed on lst October
2002.
Scottberg, B., W. Yurcik, and D. Doss. (2002). Internet Honeypots: Protection or
Entrapment. IEEE International Symposium on Technology and Society (ISTAS),
Raleigh NC, USA, IEEE Service Center.
Sink, M. (2001). The use of Honeypots and Packet Sniffers for Intrusion Detection.
Available at URL: http://rr.sans.org/intrusion/honey_pack.php. Accessed on 29th May
2002.

179

Snag, D. (n.d). libdnet. Available at URL: http://libdnet.sourceforge.net/ Accessed on
91h December 2002.
Spitzner, L. (2002). Honeypots. Available at URL:

http:llwww.enteract.com/-lspitz/honeypot.html. Accessed on Sth June 2002.
Spitzner, L. (2003). Honeypots: Tracking Hackers. Boston, Addison Wesley.
Steven, W. R. (1994). TCP/IP Illustrated, Vol. I . Addison Wesley Publishing
Company.
Sundaram, A. (2001). 11An Introduction to Intrusion Detection." ACM Crossroads.
Available at URL: www.acm.org/crossroads/xrds2-4/intrus.html, Accessed on 151h

May 2002.
Webster's Revised Unabridged Dictionary. Dictionary.corn/deception, Available at
URL: http://www.dictionary.com/search?q=deception. Accessed on 23rd August 2002.
Whaley, B. (1969). Stratagem: Deception and Surprise in War, Cambridge: MIT
Center for International Studies.
Wood, M., J. Daly and M. Roper (1998). "Multi-Method Research: An Empirical
Investigation of Object-Oriented Technology." Systems and Software. Available at
URL: http://www.cis.strath.ac.uk/research/papers/EFoCS-12-95.Z, Accessed on 81h

January 2003

180

Appendix A

Screenshots

A.I ACID

Flo wt - ,...,.,.. '""'' Hell

l;n>ly11, Qoruol, for J,,tnmoo !;l:oi.bam

MJ,<l O alo'1(1)10 the Aleil each,

Qnoriod on: Thu Jon, 19. 2003 1343 23
Dotobuo: snorl@172 16.1. 108·3306 («homo version: 106)
Timnindaw: 12003-05-26 14.09.!6]. [200J.05-27 1814 50]

.s ,.., l
1Uniqu0Alorts:453 (gooteaoriu
Total Number of Alorts: 19036

Souro, IP addrmes: i!
Dost IP addreu" 1fil
Unique IP link< .Lill

Sourco Pons· 3565
o TCP (BW UDP [MR}

• D,st. Ports. 180
o TCP (@ ODP(ll)

Sn•pdiot

Tra01e l'rorde by Ptotocol
. TCP ..@fil

IUDP..am)

1PortmnTroffi< fQID
'

, Monm,ntAlmi:�.IQ.UID'.. , Monli;eguent5 Alm, ""'
, T<Xl.oy',: alert<�. lll!iM; IP !!! I !1!!

�C>a'lo ._,..,_..,
• •.

18 1

A.2 Analyst Notebook 6

A.3 GFI LAN guard

J;III W,,,.,�t<,I

�� ... ,,,,,,
- ""' ... _ T

f\<1'"� • • (< /j

0 0
-

- -

182

A.4 Ethereal

No • r.,,.

l !.001111
l 1.00)040

Sout<O o .. 1;n,t,on Ptolocol "'
111,H,1,1! IC"P ... 1 .. «
IU.16.l.1' ow ""fr•<t

• 0)<. 911990
\ 9-<1.118141
6 "'-l. lBOIOI
7 .. l. 1lll8J
Y !o<l. lB\HO
'I g.,.),)01801

10 <).<J. 1>1180
119-0•.n"n
11 0<11•9
)J .. 6.061>98
1' ',46. \HBJ•
11 ... ,.on,a1
16 9-18.061809

112.1'.l.l
171.10.1.1
n1.a.1.101
171.16.l.l
,n a.1.1
1?2 16.1.1
17' 16, 1.1
1>1 16.1.1
111.16.l.l
111.10.1.1
111.16.1.1
1>1.16.1,1
,n.10.1.1
111.16.1.1
172.16.l.l

111.10.1.1 '" 1111 > UIS (SY"] ,.q,'1081 .. 116 ,c;.o "1n.16JS.O 1•n·O
111.10.1.11 ,�, Oodt,O<t
171.16.I.ll ·�· •,otc,ct
17',16,1,11 ·�· •••fr•«
171.16.1.11 ·�· ,,01,oc,
191.108.).1 •= ••<Ikon
171,16,1.11 ·= ''"''"''
172.16.l.ll ·�· ,,01'0«
171.16,l, l\ ·�· oodlcott
191.IM.l.l ·�· ,,ofro<t
171, 16,l.1\ TC"P ,,01,,"
191.IM.l.\ ·�· o,otroc,
lU,16.1,B ·�· ... 1,00,

lllrr•�• I (l/6 byto, "" ..-1co, 1'6 byu, <•Ptor"")
illtthornn 11. src: oo:90:17:lb:9':H, ost: 00,10,01,0.,ol:,!
1111nurnot Proto<ol. src "<!..-, 171.16.1.l (Hl.16.1.l). OH •�dr: 11l,U,l,B (111.16.1.11)
El lntornot control �••u90 Pro<�<ol

rypt: I (•tolroct)
coao, l (ooa,,.ct for hoit) cnoc,,,..., O•l•" (<orroct)
� ,y '""""" l9l,161,0.l

lll !nt1rn•t >,otoco1, s,, •Oar, 1n.10.1 11 (l1l,16,l.ll), on •Odr: 191.HS.O.l (Hl.tea.O.l)
m '"'"""' con<rol �•u•g• ••otocol

0000 00 10 "' 00 01 ,1 00 90 l> lb 1-1 a o, 00 " co
0010 oo rn o� of oo oo ,o 01 19 ,. " 10 01 01 « 10
�O Ol � � Ol J1 11 co ,1 00 � ,1 � 00 M OO �
0010 •O 00 ,o 01 ec oo "' 10 01 Of co ,e 00 01 08 00
00.o 81 ol 111 <M O! oo l> •• dl lo g, oc Ob 00 08 09
00\o o, oo oc Odo� of 10 11 I> 11 1' 1' 16 17 18 19
0010 11 lb le Id lO H 10 21 22 13 1• 11 16 11 18 19
oo>o 1, 10 ,c 1<1 ,, ,r 10 n 11 u " 11 16 J>

A.5 Webmin

, .. EOI - '"""'" l<d< "ol>

�·,

.. , i,:::/ ::t::;: : o:c::. : :
. 7 . • ,
: : : : : : · , '#iii.'()
•,,-./01 1lA\61

�
ln!ro<lucoon 10 W,bmin $ugporte� Oper,,;ng Sy<1<m• Dow,,Jo,clyu, :u,d ln<tafurur

.. ••
Uod.i,., 10 W,bmlll Stor,d.,rd Modulef �

. l !& .··r.f

""' . ,

.lilb
�mecnhoi,

•
Thiid-PWYM•dulu

�
�'!!I.I1ockw St,t!ll[I Autl121'1 Wuhl,n !:;!!!l'l!!l W,bmin Dov•l•lllll•lll

'

'

183

A.6 Nmap

Fiie· 6'u1Puf " Help

scan. j '--� E,11 I Host(s):)xanadu vectra playground
Scan oet1ons:' General-oe0t01�0,0s,,_ �-�- -- -

.

' '_...;. conrlacfO ·
-.� sVN_stE!alth

_J Don� Resolye v·· TCP Pl�9': _J Fra:g·f!18ntatlon'
'

..J Fast Scan_ TCP&ICMP --� Get ldentd ·_lnfo .. _-
v Ping Sweep · -
v UDP �ort. sc·an ..J Range of PortS: v ICMP P1rig .J ResolYB.All.
v FIN Stealth I . v Don't Ping i": OS Detection.,

I · v BOunce Scan: r: Use Decoy(s): ..J Input Fiie: ·_J Send on Device:
I [ant1on11ne.com J I
utput from: nmap -sS -0 -Dantlonllne.com xanadu yectra playground

Interesting ports on vectra.'cju111a.net. (192.168.0,5):
Port State Protocol Service
13 open tcp da!::ltime
21 open tcp ftp
22 open tcp ssh
23 open top telnet.
37 open top t.iri,e
79 open top finger
111 open tcp sunrpc
113 open top aut.h
513 open t.cp login
514 open t.cp shell

TCP Sequence Predict.ion: Class=random positive increments
Difficult.\,1=14943 (Worth\:! challenge}

Remote operating S\:jst.em guess : OpenBSD 2.2 - 2.3

Interesting port.s on pla\:jground.\,luma,net. (192.168,0,1>:
Pnrt C:t,atp Prntn.-,nl c:;.,ru if""'

184

Appendix B

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free
675 Mass Ave, Cambridge,
Everyone is permitted to copy and distribute
document, but changing it is not allowed.
Preamble

Software Foundation, Inc.
MA 02139, USA

verbatim copies of this license

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software--to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation's
software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use pieces
ofit in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these tenns so
they know their rights.

185

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal pennission to copy, distribute and/or modify the
software.
Also, for each author1s protection and ours, we want to make certain that e�ryone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have is
not the original, so that any problems introduced by others will not reflect on the
original authors• reputations.
Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone's free use or not licensed at all.
The precise tenns and conditions for copying, distribution and modification follow.
GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the tenns of this General
Public License. The 11Program", below, refers to any such program or work, and a
11work based on the Program11 means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the tenn "modification".) Each licensee is
addressed as "you".
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

186

I. You may copy and distribute verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act oftransfening a copy, and you may at your
option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion of it, thus
fanning a work based on the Program, and copy and distribute such modifications or
work under the terms of Section I above, provided that you also meet all of these
conditions:
a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.
c) If the modified program nonnally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary way,
to print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exci:ption: if the Program itself is interactive but does
not nonnally print such an announcement, your work based on the Program is not
required to print an announcement.)
These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its tenns, do not
apply to those sections when you distribute them as separate works, But when you
distribute the same sections as part of a whole which is a work based on the Program,

187

the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it. Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on the
Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.
3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of Lhe following:
a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source code, to
be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,
c) Accompany it with the infonnation you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)
The source code for a work means the preferred fonn of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include

188

anything that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses'terminated so long as such parties
remain in full compliance.
5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its
derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this License to do so, and all its tenns
and conditions for co�ying, distributing or modifying the Program or works based on
it.
6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients' exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.
7. l f, as a consequence ofa court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any

189

other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not pennit royally�free redistribution of
the Program by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.
If any portion of this section is held invalid or unenforceable tmder any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what 1s believed to be a
consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is pennitted only in or among countries
not thus excluded. In such cr1se, this License incorporates the limitation as if written in
the body of this License.
9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you have

190

the option of following the tenns and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version numbe;- of this License, you may choose any version e:ver published by the
Free Software Foundation.
10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for pennission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.
NO WARRANTY

1 1 . BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS

NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM

"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,

YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED

TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY

WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS

PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING

ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY

191

OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
Appendix: How to Apply These Tenns to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the
public, the best way to achieve this is to make it free software which everyone can

redistribute and change under these tenns.
To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and

each file should have at least the "copyright" line and a pointer to where the full
notice is found.
<one line to give the program's name and a brief idea of what it does.> Copyright (C)
1 9yy <name of author>

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without ev�n the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

192

Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes
with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free
software, and you are welcome to redistribute it under certain conditions; type 'show
c' for details.
The hypothetical commands 'show wt and 'show et should show the appropriate parts
of the General Public License. Of course, the commands you use may be called
something other than 'show w' and 'show c1

; they could even be mouse-clicks or
menu itemsN-whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if
any, to sign a 11copyright disclaimer11 for the program, if necessary. Here is a sample;
alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program 'Gnomovision1

(which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>,
1 April 1989
Ty Coon, President of Vice
This General Public License does not pe1mit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to pennit linking proprietary applications with the library. If this is what
you want to do, use the GNU Library General Public License instead of this License.

193

Appendix C

Scripts

C.1 honeyd.conf(version Honeyd0.4a, used for 1'1 Test)

route entry 10 . 11 . 68 . 18
route 1 0 . 1 1 . 68 . 18 link 10 . 1 1 , 6 8 . 0/24
route 10 . 11 . 68 . 18 add net 10 . 11 . 6 9 . 0/24 10 . 1 1 . 6 8 . 1 latency SSms loss
0 . 1
route 10 . 1 1 . 6 8 . 1 link 10 . 11 . 69 . 0/24

create mars
set mars personality "Windows 2000 Professional, Build 2128"
add mars tcp port 80 "sh scripts/web . sh"
set mars default tcp action reset
bind 10 . 1 1 . 6 9 . l mars

create mercury
set mercury personality "AIX 3 . 2 "
add mercury tcp port 80 "sh scripts/web . sh"
set mercury default tcp action reset
bind 10 . 11 . 69 . 2 mercury

create earth
set earth personality "Solaria 2 . 3 - 2 . 4 "
add earth tcp port 8 0 "sh scripts/web . sh"
set earth default tcp action reset
bind 1 0 . 1 1 . 6 9 . 3 earth

create venus
set venus personality "FreeBSD 3 . 2 - 4 . 0 "
add venus tcp port 8 0 "sh scripts/web . sh"
set venus default tcp action reset
bind 10 . 1 1 . 6 9 . 4 venus

create jupiter
set jupiter personality "Cisco Router/Switch with IOS 1 1 . 2 "
add jupiter tcp port 80 " s h scripts/web . ah"
set jupiter default tcp action reset
bind 1 0 . 1 1 . 6 8 . 18 jupiter

create sun
set sun personality "Cisco 760 Series {non IOS) or IBM Stackable Hub"
add sun tcp port BO "sh scripts/web . sh 11

set sun default tcp action reset
bind 10 . 1 1 . 6 8 . 19 sun

create pluto
set pluto personality '1Novell NetWare 3 .12 or 386 TCP/IP"
add pluto tcp port 80 "sh scripts/web .sh"
set pluto default tcp action reset
bind 1 0 . 1 1 . 6 8 . 10 pluto

1 94

·create moon
set moon personality "Windows 98"
add moon tcp port 80 "sh scripts/web . ah"
set moon default tcp act.ion reset
bind 10 . 1 1 . 68 .11 moon

create default
set default peraonali ty "Windows 98"
set default default tcp action reset
add default tcp port 80 "ah scripts/web. ah"
add default tcp port 22 "sh scripts/test.ah"
add default tcp port 139 open

C.2 honeyd.conf (version honeydOSa, used for 2nd and 3rd Tests)

Honeyd configuration file ##

#######################################11#############################

############ ROUTING CONFIGURATION
###################################
##,t############################

route entry 192 . 168 . 1 . 100
route 192 , 168 . 1 . 100 link 192 . 168 . 1 . 0/24
route 192 . 168 . 1 . 100 add net 192 . 168 . 2 . 0/24 192 . 168 . 1 . l latency ssms
loss 0 . 1
route 192 . 168 . 1 . 1 link 192 . 168 . 2 . 0/24

########### SYSTEM CONFIGURATION
#####################################

Windows computers
create windows
set windows personality "Windows NT 4 . 0 Server SPS-SP6"
set windows default tcp action reset
set windows default udp action reset
add windows tcp port 80 "perl scripts/iis-0 . 95/iisemul 8 . p l "
add windows tcp port 139 open
add windows tcp port 137 open
add windows udp port 137 open
add windows udp port 135 open
set windows uptime 3284460
bind 192 . 16 8 . 2 . 101 windows

AIX computer
create aix
set aix personality "AIX 3 . 2 '1
set aix default tcp action reset
add aix tcp port 25 block

195

add aix tcp port 80 11 sh scripts/web . sh"
add aix tcp port 21 "sh scripts/ftp.ah"
set aix uptime 3284460
bind 192 . 168 . 2 . 102 aix

Solaria computers
create solaris
set solaris personality "Solaris 2 . 3 � 2 . 4 "
add solaria tcp port 8 0 "sh scripts/web . ah"
set solaria default tcp action reset
bind 192 . 16 8 . 2 . 103 solaria

FreeBSD computers
create bsd
set bsd personality "Free BSD 3 . 2-4 . O "
add bsd tcp port 80 "sh scripts/web . ah"
set bsd default tcp action reset
bind 192 . 168 . 2 . 104 bsd

Cisco router
create router
set router personality ''Cisco IOS 11 . 3 - 12 . 0 { 11) "
set router default tcp action reset
set router default udp action reset
add router tcp port 23 "/usr/bin/perl scripts/router-telnet . pl "
set router uid 32767 gid 32767
set router uptime 1327650
bind 192 . 168 . 1 . 100 router

Cisco hub
create hub
set hub personality "Cisco Router/Switch with IOS 1 1 . 2 "
set hub default tcp action reset
set hub default udp action reset
add hub tcp port 23 " /usr/bin/perl scripts/router-telnet.pl"
set hub uptime 1327650
bind 192 . 1 68 . 1 . 101 hub

Novell Computers
create novell
set novell personality "Novell Netware 5 . O SP5"
add novel! tcp port 80 "sh scripts/web . ah"
set novel! default tcp action reset
bind 192 . 16 8 . 1 . 115 novel!

Windows 98 computers
create win98
set win98 personality "Windows 98"
add win98 tcp port 80 "sh scripts/web98 . sh"
set win98 default tcp action reset
bind 192 . 168 . 1 . 1 16 win98

Default computers
create default
set default personality
set default default tcp
add default tcp port 80
add default tcp port 22

"Windows 98"
action reset
" ah scripte/web98 . eh"
"sh acripts/test . sh"

add default tcp port 139 open

196

C.3 web.sh

! /bin/sh
REQUEST= " "
while read name
do

LINE=�echo " $name" I egrep -i " [a-z : J ,,­
if [- z "$LINE"
then

break
fi
echo " $name" >> /tmp/log
NEWREQUEST= -echo " $name" I grep "GET . scripts . *cmd. exe. *dir. *

HTTP/ 1 . 0 " -

done

if [! -z "$NEWREQUEST"] ; then
REQUEST=$NEWREQUEST

fi

if { -z "$REQUEST" l then
cat << eof

HTTP/1 . 1 404 NOT FOUND
serve r : Microsoft-IIS/5 . 0
P3P: CP= ' ALL IND DSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo
OUR SAMO CNT COM INT NAV ONL PHY PRE PUR UNI '
Content -Location: http : / / cpmsftwbw27/defaul t . htm
Date: Thu, 04 Apr 2002 0 6 : 4 2 : 18 GMT
Content -Type : text/html
Accept-Ranges : bytes

<html><title>You are in Error</title>
<body>
<hl>You are in Error</hl>
O strang� and inconceivable thing! We did not really die, we were not
really buried, we were not really crucified and raised again, but our
imitation was but a figure, while our salvation is in reality. Christ
was actually crucified, and actually buried, and truly rose again;
and all these things have been vouchsafed to us, that we, by
imitation communicating in His sufferings, might gain salvation in
reality. O surpassing loving-kindness! Christ received the nails in
His undefiled hands and feet, and endured anguish; while to me
without suffering or toil , by the fellowship of His pain He
vouchsafed salvation .
<P>
S t . Cyril of Jerusalem, On the Christian Sacraments .
o::/body>
</html>

eof
exit O

fi

DATE='date•
cat << _eof_
HTTP/1 . 0 200 OK
Date : $DATE
Server: Microsoft -IIS/ 5 . 0
Connection: close

197

Content-Type: text/plain

Volume in drive C is Webserver
Volume Serial Number is 3421-07FS
Directory of C : \inetpub

01-20-02 3 :ssa <DIR>
08-21-01 9 : 12a <DIR>
08-21 -01 11 : 2 Sa <DIR>
08-21 -01 6 : 43p <DIR>
07- 09-00 12 : 04 a .::DIR>
0 7 - 03-00 2 : 0 9a <DIR>
07 - 16-0 0 3 : 4 9p <:DIR>
07-09-00 3 : lOp <DIR>
07- 16-00 4 : 43p <:DIR>

0 file (s) 0
20 dir{s) 290, 897, 920

eof -

C.4 web98.sh

! /bin/sh
REQUEST= " "
while read name
do

AdminScripts
ftp root
iissamples
mailroot
Scripts
webpub
wwwroot

bytes
bytes free

LINE='echo "$name" I egrep -i " [a-z :] 11 '

if [-z "$LINE"]
then

break
fi
echo "$name" >> /tmp/log
NEWREQUEST='echo "$name" I grep "GET . scripts . *cmd . exe . *di r . *

HTTP/1. 0 °'
if [l - z " $NEWREQUEST II J ; then

REQUEST=$NEWREQUEST
fi

done

if (-z " $REQUEST" J then
cat << eof_

HTTP/1 . 1 404 NOT FOUND
Server: Microsoft- IIS/4 . 0
P3P : CP= 'ALL IND OSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo
OUR SAMo CNT COM !NT NAV ONL PHY PRE PUR UNI '
Content-Location : http : //cpmsftwbw27/default .htm
Date : Thu, 04 Apr 2002 0 6 : 4 2 : 1 8 GMT
Content-Type: text/html
Accept-Ranges: bytes

<:html><title> Error.::/title>
.::body>

The parameter is incorrect .
.::/body>
</html>
eof

exit o

198

fi

DATE=�date�
cat << eof
HTTP/1 . Q 200 OK
Date : $DATE
server: Microsoft-IIS/4 . 0
Connection: close
Content-Type : text/plain

Volume in drive C is Webserver
Volume Serial Number is 2A24 -150C
Directory of C : \inetpub

01-20-02 1 : ooa <:DIR:,
08-21-01 11 : lSa <DIR>
08-21-01 11 : ssa <:DIR>
08-21-01 11 : 56a <:DIR>
08-21-01 11 : 56a <:DIR:,
08-21-01 11 : 56a .:::DIR>

0 file (s) 0
6 dir(s) 311 , 671 , 296

eof

C.5 snort.conf

wwwroot
iissamples
scripts
web pub

bytes
bytes free

- ·· - - -
http: //www. snort. org Snort 1 . 9 . 0 Ruleset
Contact : snort-sigs@lists. sourceforg� .net
-
NOTE :This ruleset only works for 1 . 9 . 0 and later
-
$Id: snort . conf , v 1 , 110 2002/08/14 0 3 : 1 7 : 5 8 chrisgreen Exp $

This file contains a sample snort configuration .
You can take the following steps to create your
own custom configuration:

1) Set the network variables for your network
2) Configure preprocessors
3) Configure output plugins
4) Customize your rule set

Step #1 : Set the network variables :

You must change the following variables to reflect
your local network. The variable is currently
setup for an RFC 1918 address space .

You can specify it explicitly as :

var HOME_NET 10 . 1 . 1 . 0/24

or use global variable $cinterfacename>_ADDRESS
which will be always initialized to IP address and

199

netmask of the network interface which you �un
snort at .

var HOME NET $eth0_ADDRESS

You can specify lists of IP addresses for HOME_NET
by separating the IPs with commas like this:

var HOME_NET [10 . l , l . 0/24 , 1 92 . 168 . 1 , 0/24]

MAKE SURE YOU DON' T PLACE ANY SPACES IN YOUR LIST!

or you can specify the variable to be any IP address
like this :

var HOME_NET any

Set up the external network addresses as well .
A good start may be "any"

var EXTERNAL NET any

Configure your server lists , This allows snort to only look for
attacks
to systnms that have a service up. Why look for HTTP attacks if
you are
not running a web server? This allows quick filtering based on IP
addresses
These configurations MUST follow the same configuration scheme as
defined
above for $HOME_NET.

List of DNS servers on your network
var DNS_SERVERS $HOME_NET

List of SMTP servers on your network
var SMTP_SERVERS $HOME_NET

List of web servers on your network
var HTTP_SERVERS $HOME_NET

List of sql servers on your network
var SQL_SERVERS $HOME_NET

List of telnet servers on your network
var TELNET_SERVERS $HOME_NET

Configure your service ports. This allows snort to look for
a-ctacks
destined to a specific application only on the ports that
application
runs on. For example, if you run a web server on port 8081, set
your
HTTP PORTS variable like this:

var HTTP_PORTS 8081

Port lists must either be continuous [eg 8 0 : 8080] , or a single port
(eg 80] .
We will adding support for a real list of ports in the future .

200

Ports you run web servers on
var HTTP PORTS 80

Ports you want to look for SHELLCODE on.
var SHELLCODE_PORTS ! 80

Ports you do oracle attacks on
var ORACLE PORTS 1521

other variables

AIM servers . AOL has a habit of adding new AIM servers, so instead
of
modifying the signatures when they do, we add them to this list of
servers.
var AIM SERVERS
[64 . 12 . 24 . 0/24 , 64 . 12 . 2 5 . 0/24 , 64 . 12 . 2 6 . 14/24 , 64 . 12 . 2 8 . 0/24 , 64 . 12 . 29 . 0/
24 , 64 . 12 , 16 1 . 0/24 , 64 . 12 , 163 . 0/24 , 205 . lBB . S . 0/24 , 20 5 . 188 . 9 . 0/24)

Path to your rules files (this can be a relative path)
var RULE_PATH /etc/snort

######################################,!############
Step # 2 : Configure preprocessors

General configuration for preprocessors is of
the form
preprocessor <name_of_processor> : �configuration_options>

frag2 : IP defragmentation support
-
This preprocessor performs I P defragmentation. This plugin will
also detect
people launching fragmentation attacks (usually DoS) against hosts.
No
arguments loads the default configuration of the preprocessor,
which is a
60 second timeout and a 4MB fragment buffer.

The following (comma
timeout [seconds)
unfinished

completion,

flushed
memcap [bytes] �

min_tt l [number)

delimited)
sets the

options are available for frag2
number of [seconds] than an

fragment will be kept around waiting for

if this time expires the fragment will be

limit frag2
(defaul t :

memory usage
4194304)

minimum ttl to accept

to [number) bytes

ttl_limit [number) difference of ttl to accept without
alerting
will cause false positves with router flap

Frag2 uses Generator ID
for that GID:

113 and uses the following SIDS

SID

1
2

Event description

Oversized fragment (reassembled
Teardrop-type attack

frag > 64k bytes)

201

preprocessor frag2

stream4 : stateful inspection/stream reassembly for Snort
-

Use i n concert with the - z [all l est] command line switch to defeat
stick/snot against TCP rules. Also performs full TCP stream
reassembly, stateful inspection of TCP streams, etc . Can
statefully
detect various portscan types, fingerprinting, ECN, etc .

stateful inspection directive
no arguments loads the defaults (timeout 3 0 ,
options (options are comma delimited) :

memcap 8388608)

detect scans stream4 will detect stealth portscans and generate
alerts
when it sees them when this option is set
detect_state_problems detect TCP state problems, this tends to
be very
noisy because there are a lot of crappy
ip stack
implementations out there

disable evasion_alerts turn off the possibly noisy mitigation
of

overlapping sequences.

min ttl [number]
to

set a minium ttl that snort will accept

ttl_limit [number]
session versus

stream reassembly

differential of the initial ttl on a

games .

the normal that someone may be playing

positives.

Routing flap may cause lots of false

keepstats [machinel binary] - keep session statistics, add
"machine" to

reading, add

output

noinspect - turn
timeout [number]

seconds,

get them in a flat format for machine

"binary" to get them in a unified binary

format
off stateful inspection only

oet the session timeout counter to [number]

default is 30 seconds
memcap [number) - limit stream4 memory usage to [number] bytes
log_ flushed_streams if an event is detected on a stream this
option will
cause all packets that are stored in the
stream4
packet buffers to be flushed to disk. This
only
works when logging in pcap mode 1

Stream4 uses Generator ID 111 and uses the following SIDS

202

for that GID:
SID Event description

1

2
3
4

5

6
7
' •
10
11

Stealth activity
Evasive RST packet
Evasive TCP packet retransmission
TCP Window violation
Data on SYN packet
Stealth scan: full XMAS
stealth
Stealth

scan:
scan:

SYN-ACK-PSH-URG
FIN scan

12
13

Stealth scan: NULL scan
Stealth scan: NMAP XMAS scan
Stealth scan: Vecna scan
Stealth scan: NMAP fingerprint
Stealth scan: SYN-FIN scan
TCP forward overlap

scan stateful detect

14

preprocessor stream4 : detect_scans, disable evasion alerts

tcp stream reassembly directive
no arguments loads the default configuration

Only reassemble the client,
Only reassemble the default list
Give alerts for "bad" streams

of parts (See below) ,

Available options (comma delimited) :
clientonly - reassemble traffic for the client aide of a
connection only
serveronly - reassemble traffic for the server side of a
connection only
both - reassemble both sides of a session
fl noalerts - turn off alerts from the stream reassembly stage of
stream4
ports [list] - use the space separated list of ports in [list] ,
"all"
will turn on reassembly for all ports,
will turn
on reassembly for ports 21, 23 , 2 5 ,
110, 111
and 513

preprocessor stream4 reassemble

http_decode : normalize HTTP requests

http_ decode normalizes HTTP requests from remote
machines by converting any txx character
substitutions to their ASCII equivalent. This is
very useful for doing things like defeating hostile
attackers trying to stealth themselves from IDSs by
mixing these substitutions in with the request.

5 3 ,

"default"

BO, 143,

Specify the port numbers you want it to analyze as arguments.

Major code cleanups thanks ta rfp

uni code
iia alt unicode
double_encode
iis_flip_ slaah
full_whitespace

normalize unicode
tu encoding from iis
alert on possible douole
normalize \ as I
treat \t as whitespace (

encodings

for apache

203

for that GID :
SID Event description

1

2

UNICODE attack
NULL byte attack

preprocessor http_decode: 80 unicode 11s_alt unicode double_encode
iis_flip_slash full_whitespace

rpc_decode : normalize RPC traffic
- -- - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -
RPC may be sent in alternate encodings besides the usual
4 -byte encoding that is used by defaul t . This preprocessor
normalized RPC traffic in much the same way as the http_decode
preprocessor. This plugin takes the ports numbers that RPC
services are running on as arguments .
The RPC decode preprocessor uses generator ID 106 and does not
generate any SIDS at this time.

preprocessor rpc_decode : 111 32771

bo: Back Orifice detector

Detects Back Orifice traffic on the network. This preprocessor
uses th-e Back Orifice "encryption" algorithm to search for
traffic conforming to the Back Orifice protocol (not B02K) .

This preprocessor can take two arguments . The first is " -nobrute"
which turns off the plugin ' s brute forcing routine (brute forces
the key space of the protocol to find BO traffic) . The second
argument that can be passed to the routine is a number to use
as the default key when trying to decrypt the traffic. The
default value is 31337 (just like 80) . Be aware that turning on
the brute forcing option runs the risk of impacting the overall
performance of Snort, you 've been warned . . .

The Back Orifice detector uses
following SIDS for that GID:

SID Event description

Generator ID 105 and uses the

1 Back Orifice traffic detected

preprocessor bo : -nobrute

telnet_decode : Telnet negotiation string normalizer
-- - - - - - - - - - - - -
This preprocessor "normalizes" telnet negotiation strings from
telnet and ftp traffic. It works in much the same way as the
http_decode preprocessor, searching for traffic that breaks up
the normal data stream of a protocol and replacing it with
a normalized representation of that traffic so that the "content"
pattern matching keyword can work without requiring modifications.
This preprocessor requires no arguments.
Portscan uses Generator ID 109 and does not generate any SID
currently.

preprocessor telnet_decode

Portscan : detect a variety of portscans
- - - ---- - - - ------------- - ---------------
portscan preprocessor by Patrick Mullen <p_mullen@linuxrc . net>

204

This preprocessor detects UDP packets or TCP SYN packets going to
four different ports in less than three seconds . "Stealth" TCP
packets are always detected, regardless of these settings.
Portscan uses Generator ID 100 and uses the following SIDS for that
GID:
SID

1
2
3

Event description

Portscan detect
Inter-scan info
Portscan End

preprocessor portscan: $HOME_NET 4 3 portscan . log

Use portscan-ignorehosts to ignore TCP SYN and UDP "scans" from
specific networks or hosts to reduce false alerts. It is typical
to see many false alerts from ONS servers so you may want to
add your ONS servers here. You can all multiple hosts/networks
in a whitespace-delimited list .

#preprocessor portscan-ignorehosts: 0 . 0 . 0 . 0

arpspoof
#- -
Experimental ARP detection code from Jeff Nathan, detects ARP
attacks,
unicast ARP requests, and specific ARP mapping monitoring. To make
use
of this preprocessor you must specify the IP and hardware address
of hosts on # the same layer 2 segment as you . Specify one host IP
MAC combo per line.
Also takes a "-unicast" option to turn on unicast ARP request
detection .
Arpspoof uses Generator ID 112 and uses the following SIDS for that
GID:
SID

1
2
3
4

Event description

Unicast ARP request
Etherframe ARP mismatch
Etherframe ARP mismatch

(srcl
(dst)

ARP cache overwrite attack

#preprocessor arpspoof
#preprocessor arpspoof_detect_host : 192 . 16 8 . 4 0 . 1 f O : O f : O O : fO : O f : 00

ASNl Decode
-
This i s an experimental preprocessor. ASN . l decoder and analysis
plug in
from Andrew R . Baker.
ASN . 1

This preprocessor will detect abuses of the

protocol that higher level protocols (like SSL, SNMP, x . 509, etc)
rely on.
The ASN. 1 decoder uses Generator ID 115 and uses the following SIDS
for
that GID:
SID Event description

1
2
3
4

Indefinite length
Invalid length
oversized item
ASN. 1 specification violation

205

5 Dataum bad length

preprocessor asnl_decode

Fnord
- - - - - - - - - -- - - - - - - - - -- - - - - - - - - - - -- - - - - - - - -
This is an experimental preprocessor. Polymorphic shellcode
analyzer and
detector by Dragos Ruiu. This preprocessor will watch traffic for
polymorphic NOP-type sleds to defeat tools like ADMutate. The
Fnord detector
uses Generator ID 114 and the following SIDS:
SID Event description
- - - - - - - - - - - - - - - - - - -
1 NOP-sled detected

preprocessor fnord

Conversation
-
This preprocessor tracks conversations for tcp, udp and icmp
traffic. It
is a prerequisite for running portscan2.

allowed_ip_protcols 1 6 17
list of allowed ip protcols (defaults to any

timeout [num]
conversation timeout (defaults to 60)

max_conversations [num)
number of conversations to support at once (defaults to 65335)

alert_odd_protocols
alert on protocols not listed in allowed_ip_protocols

preprocessor conversation: allowed_ip_protocols all, timeout 60 ,
max_conversations 32000

Portscan2
-
Portscan 2 1 detect portscans in a new and exciting way.

Available options :

scanners_max [num]
targets_max [num]
target limit [num]
port limit [num]
timeout [num]
log [logdir]

preprocessor portscan2: scanners_max 3200, targets_max 5000,
target_limit 5 , port_limit 20, timeout 60

Experimental Perf stats
-
No docs . Highly subject to change.

preprocessor perfmonitor: console flow events time 10

206

Step # 3 : Configure output plugins

Uncomment and configure the output plugins you decide to use.
General configuration for output plugins is of the form:

output <name_of_plugin>: <configuration_options>

#alert_syslog: log alerts to syslog
-
Use one or more syslog facilities as arguments

output alert_syslog: LOG_AUTH LOG_ALERT

log_tcpdump : log packets in binary tcpdump format
-
The only argument is the output file name .

output log_tcpdump : tcpdump . l og

database : log to a variety of databases
-
See the README .database file for more information about configuring
and using this plugin .

output database : alert, mysgl , user=snort password=03piggy03
dbname=snort host=localhost detail=full
output database : alert, postgresql , user=snort dbname=snort
output database : log, unixodbc, user=snort dbname=snort
output database : log, mssql , dbname=snort user=snort password=test

xml : xml logging
- - - - - - - - - - - - - - - -
see the README .xml file for more information about configuring
and using this plugin.

output xml : log, file=/var/log/snortxml

unified: Snort unified binary format alerting and logging
-
The unified output plugin provides two new formats for logging
and generating alerts from Snort, the "unified" format . The
unified format is a straight binary format for logging data
out of Snort that is designed to be fast and efficient. Used
with barnyard (the new alert/log processor) , most of the overhead
for logging and alerting to various slow storage mechanisms
such as databases or the network can now be avoided.

Check out the spo_unified . h file for the data formats.

Two arguments are supported.
filename base filename to write to (current time_t is
appended)
limit maximum size of spool file in MB (defaul t : 128)

output alert unified: filename snort .alert, limit 128
output log_ullified: filename snort . log, limit 128

trap_snmp : SNMP alerting for snort
-

207

Read the README . SNMP file for more information on enabling and
using this
plug-in.

#The trap snmp
[c] , [p !in l s l]
where,

plugin accepts the following notification options

c :

reset.
p
packe t .

m

'

Generate compact notifications. (Saves on bandwidth by
not reporting MOs for which values are unknown, not
available or, not applicable) . By default this option is

Generate a print of the invariant part of the offending

This can be used to track the packet across the Interne t .
By default this option is reset .
Use the MOS algorithm to generate the packet print.
By default this algorithm is used.
Use the SHAl algorithm to generate the packet print.

The trap_snmp plugin requires several parameters
The parameters depend on the Snmpversion that is used (specified)
For the SNMPv2c case the parameters will be as follows
alert, <sensorID>, [Notificat ionOptions]
{trapl inform} -v <SnmpVersion:. -p <portNumber> <hostName>
<community:,

For SNMPv2c traps with MOS digest based packetPrint generation

output trap_snmp : alert, 7 , cpm, trap -v 2c myTrapListener
myCommu11i ty

For SNMPv2c informs with the ' compact ' notification option

#output trap_snmp:
myCommunity

alert, 7 , c , inform -v 2c myTrapListener

For SNMPvJ traps with
security name = snortUser
security level = authentication and privacy
authentication parameters :

authentication protocol = SHA ,

privacy

authentication pass phrase = SnortAuthPassword
(encryption) parameters

privacy protocol = DES,
privacy pass phrase = SnortPrivPassword

#output trap_snmp: alert, 7 , trap -v 3 -u snortUser - 1 authPriv -a
SHA -A SnortAuthPassword -x DES -X SnortPrivPassword myTrapListener
#For SNMPv3 informs with authentication and encryption
#output trap_snmp: alert, 7 , inform -v 3 ·u snortUser -1 authPriv -a
SHA -A SnortAuthPassword -x DES -X SnortPrivPassword myTrapListener

You can optionally define new rule types and associate one or
more output plugins specifically to that type .

This example will create a type that will log to just tcpdump .
ruletype suspicious
{

208

• • • •
type log
output log_tcpdump: suspicious . log

EXAMPLE RULE fOR SUSPICIOUS RULETYPE:
suspicious $HOME_NET any · > $HOME_NET 6667 (msg : " Internal IRC
Server" ;)
•
This example will create a rule type that will log to syslog
and a mysql database.
ruletype redalert
. {
type alert
output alert_syslog: LOG_AUTH LOG_ALERT
output database : log, mysql, user=snort dbname=snort
host=localhost
• I •
EXAMPLE RULE POR REDALERT RULETYPE
redalert $HOME_NET any · > $EXTERNAL_NET 31337 (msg: "Someone is
being LEET " ; \
flags :A+ ; l

•
Include classification & priority settings •
include classification. config

•
Include reference systems •
include reference.config

••
Step #4 : Customize your rule set •
Up to date snort rules are available at http://www .snor t . org •
II The snort web site has documentation about i,ow to write your own
custom snort rules . •
The rules included with this distribution generate alerts based on
on suspicious activity. Depending on your network environment , your
security policies, and what you consider to be suspicious, some of
II these rules may either generate false positives ore may be
detecting
fl activity you consider to be acceptable; therefore, you are
II encouraged to comment out rules that are not applicable in your
environment . •
• • •

Note that using all of the rules at the
serious packet loss on slower machines.
standard disclaimers apply. : }

same time
YMMV, use

may lead to
with caution,

The following individuals contributed many of rules in this
distribution .

fl Credits :
II Ron Gula <rgula@securitywizards . com> of Network Security Wizards

209

Max Vision <Vision@whitehat s . com>
Martin Markgraf <martin@mail . du .gtn. com>
Fyodor Yarochkin <fygrave@tigerteam .net>
Nick Rogness <nick@rapidnet . com>
Jim Forster <jforster@rapidnet . com>
Scott Mcintyre <scott@who i . edu>
Tom Vandepoel <Tom. Vandepoel@ubizen. com>
Brian Caswell <bmc@snort . org>
Zeno <admin@cgisecurity. com>
Ryan Russell < ryan@securityfocus . com>

#···
Include all relevant rulesets here

shellcode, policy, info, backdoor, and virus rulesets are
disabled by default . These require tuning and maintance .
Please read the included specific file for more information.
#···

include $RULE_PATH/bad-traffic . rules
include $RULE_PATH/exploit . rules
include $RULE_PATH/scan. rules
include $RULE_PATH/finger. rules
include $RULE_PATH/ftp.rules
include $RULE_PATH/telnet . rules
include $RULE_PATH/rpc. rules
include $RULE __ PATH/rservices . rules
include $RULE_PATH/dos. rules
include $RULE_PATH/ddos . rules
include $RULE_PATH/dns . rules
include $RULE_PATP./tftp. rules

include $RULE_PATH/web-cgi . rules
include $RULE_PATH/web-coldfusion . rules
include $RULE_PATH/web-i i s . rules
include $RULE_PATH/web-frontpage. rules
include $RULE_PATH/web-misc. rules
include $RULE_PATH/web-client. rules
include $RULE_PATH/web-php. rules

include $RULE_PATH/sql. rules
include $RULE_PATH/x11. rules
include $RULE_PATH/icmp . rules
include $RULE_PATH/netbios . rules
include $RULE_PATH/misc. rules
include $RULE_PATH/attack-responses. rules
include $RULE_PATH/oracl e . rules
include $RULE PATH/mysql . rules
include $RULE-PATH/snmp . rules

include $RULE_PATH/smtp . rules
include $RULE_PATH/imap . rules
include $RULE_PATH/pop3 . rules

include $RULE_PATH/nntp. rules
include $RULE_PATH/other- ids . rules
include $RULE PATH/web-attacks . rules
include $RULE=PATH/backdoor. rules
include $RULE_PATH/shellcode . rules
include $RULE PATH/policy. rules
include $RULE-PATH/porn . rules

210

include $RULE_PATH/info.rules
include $RULE_PATH/icmp-info . rules
include $RULE_PATH/virus .rules
include $RULE_PATH/chat . rules
include $RULE_PATH/multimedia.rules
include $RULE_PATH/p2p. rules
include $RULE_PATH/experimental . rules
include $RULE_PATH/local . rules

C.6 ftp.sh

! /bin/sh

FTP (WU-FTPD) Honeypot-Script intended for use with
Honeyd from Niels Proves
-> http : //www.citi .umich. edu/u/provos/honeyd/

Author: Maik Ellinger
Last modified: 13/06/2002
Version: o . o . e

Changelog :
0 . 0 . 6 ; some ftp comamnds implemented (MKD)

0 . 0 . 4 ; some ftp comamnds implemented (CWD)

0 . 0 . 3 : some bugfixes/new commands implemented

0 . 0 . 1 : initial release

#set -x -v
DATE= ' date'
host='hostname'
domain='dnsdomainname'
log=/tmp/honeyd/ftp-$1. log
AUTH= "no"
PASS="no"
echo " $DATE : FTP started from $1 Port $2" >> $log
echo -e "220 $host . $domain FTP server (Version wu-2 . 6 . 0 (5) $DATE)
ready . \r"
while read incmd parml parm2 parm3 parm4 parmS
do

remove control-characters
incmd='echo $incmd I sed s/ [[: cntrl :]] //g'
parml='echo $parml I sed s/ [[:cntrl :]] //g'
parm2='echo $parm2 I sed s/ [[:cntrl :] l //g'
parm3 ='echo $parm3 I sed a/ [[: cntrl :]] //g'
parm4 ='echo $parm4 I sed s/ [[: cntrl : J J //g'
parmS='echo $parm5 j sed a/ [[: cntrl :] J //g'

convert to upper-case
incmd_nocase='echo $incmd I gawk ' {print toupper($0) ; } ' '
#echo $incrnd_nocase

if ["$AUTH" == "no"
then

if ["$incmd_nocase" ! = "USER"]

211

=> ' S

MKD

XMKD

RMD

XRMD

PWD

then
if ["$incmd_nocase" ! = "QUIT" l
then

echo -e "530 Please login with USER and PASS . \r"
continue

fi

fi
fi

case $incmd_nocase in

QUIT* l
echo -e "221 Goodbye. \r"

exit O ; ;
SYST*)

echo -e "215 UNIX Type : LB\r"
; ;

HELP*)
echo -e "214 ·The following commands

unimplemented) . \r"
echo -e USER PORT STOR

CDUP\r"
echo -e PASS PASV APPE

XCUP\r"
echo -e " ACCT* TYPE MLFL*

STOU\r"
echo -e " SMNT* STRU MAIL*

SIZE\r"
echo -e " REIN* MODE MSND*

MDTM\r"
echo -e " QUIT RETR MSOM*

are recognized (•

MSAM* RNTO NLST

MRSQ* ABOR SITE

MRCP* DELE SYST

ALLO CWD STAT

REST XCWD HELP

RNFR LIST NOOP
XPWD\r"

echo -e "214 Direct comments to ftp@$domain . \r"
I ;

USER*)
parml_nocase='echo $parml I gawk • {print toupper ($0) 1 } ' '
if ["$parml_nocase" == "ANONYMOUS"]
then

echo - e "331 Guest login ok, send your complete e-mail
address as a password. \r"

AUTH="ANONYMOUS"
else

echo -e "331 Password required for $parml\r"
AUTH=$parml

fi

1 1
PASS*

PASS=$parml
if ["$AUTH" == "ANONYMOUS"
then

echo -e "230 -Hello User at $1 , \r"
echo -e "230 -we have 911 users (max 1800) logged in

in your class at the moment. \r"
echo -e "230-Local time is : $DATE\r"
echo -e "230-All transfers are logged. If you don ' t

like this, disconnect now. \r"
cc�n -e ' '230-\r"
echo -e "230-tar-on-the-fly and gzip-on-the-fly are

implemented; to get a whole\r"
echo -e "230-directory \"foe\ " , \ "get foo. tar\" or

\ "get foo. tar. gz\" may be used. \r"

212

echo -e "230-Please use gzip-on-the-fly only if you
need it ; most files already\r"

echo -e "230 -are compressed, and I will kill your
processes i f you waste my\r"

echo -e "230-ressources . \r"
echo -e "230-\r"
echo -e "230 -The command \"site exec locate pattern\"

will create a list of all\r"

apply . \r"
else

echo -e "230-path names containing \ "pattern\ " . \r"
echo -e "230-\r''
echo -e "230 Guest login ok, access restrictions

echo -e "530 Login incorrect .\r"
fi
; ;

MKD•

choose
echo -e "257 \" $parml\" new directory created.\r"
#echo -e "550 $parml : Permission denied . \r"
; ;

CWD*)
choose
echo -e "250 CWD command successful . \r"
echo -e "550 $parml : No such file or directory, \r"
; ;

NOOP*)
echo -e "200 NOOP command successful . \r"
"

PASV*)
echo -e "227 Entering Passive Mode

(134 , 76 , 11 , 100, 165 , 53) \r"
I i

ACCT*)
echo -e "502 $incmd command not implemented.\r"
; i

SMNT*)
echo -e "502 $incmd command not implemented . \r"
i ;

REIN*)
echo -e "502 $incmd command not implemented.\r"
"

MLFL*)
echo -e "502 $incmd command not implemented. \r"
; ;

MAIL*)
echo -e "502 $incmd command not implemented.\r"
; i

MSND*)
echo -e "502 $incmd command not implemented. \r"
; ;

MSON*)
ec!-.o -e "502 $incmd command not implemented. \r"
I i

MSAM*)
echo -e "502 $incmd command not implemented . \r"
I i

MRSQ*)
echo -e "502 $incmd command not implemented .\r"
; ,·

MRCP*)

213

echo -e "502 $incmd command not implemented. \r"
i i

MLFL*)
echo -e "502 $incmd command not implemented. \r"
" •
echo -e "500 ' $incmd ' : command not understood. \r"
I i

esac
echo -e "$incmd $parml $parm2 $parm3 $parm4 $parm5" » $log

done

C.7 create_db.sql

Copyright (CJ 2000-2002 Carnegie Mellon University

Maintainer: Roman Oanyliw <rdd@cert .org>, <roman@danyliw. com>

Original Autho r (s) : Jed Pickel <jed@picke l . net>
Roman Danyliw <rdd@cert. org>
Todd Schrubb <tls@cert . org>

(2000-2001)

This program is free software; you can redistribute it and/or
modify

it under the terms of the GNU General Public License as published
by

the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; i f not, write to the Free Software
Foundation, Inc . , 59 Temple Place - Suite 330, Boston, MA 02111-

1307, USA.

CREATE TABLE schema (vseq INT4 NOT NULL,
DATETIME NOT NULL,
(vseq)) ;

ctime
PRIMARY KEY

INSERT INTO schema (vseq, ctime) VALUES (' 106 ' , now ()) ;

CREATE TABLE signature (sig_id SERIAL NOT NULL,
sig_name TEXT NOT NULL,
sig_class_id INTB,
sig_priority INTB,
sig_rev INTB,
sig _sid INTB,
PRIMARY KEY (sig_id)) ;

CREATE INDEX sig name idx ON signature (sig name) ;
CREATE INDEX sig=clas;_id ON signature (sig=class_id) ;

CREATE TABLE sig_reference (sig_id INT4
ref_seq INT4
ref id INT4

NOT NULL,
NOT NULL,
NOT NULL,

2 14

PRIMARY KEY (sig_id, ref_seq)) ;

CREATE TABLE reference (ref id SERIAL,
ref_system_id INT4 NOT NULL,
ref tag TEXT NOT NULL,
PRIMARY KEY (ref_id)) ;

CREATE TABLE reference system ref_system_id SERIAL,
ref_system_name TEXT,
PRIMARY KEY (ref_system_id)) ,·

CREATE TABLE sig_class sig_class_id SERIAL,
sig_class_name TEXT NOT NULL,
PRIMARY KEY (sig_class_id)) ,·

CREATE INDEX sig_ class_name_idx ON s ig _class (sig_ class_name) ;

CREATE TABLE event sid INT4 NOT NULL,
cid INTB NOT NULL,
signature INT4 NOT NULL,
timestamp DATETIME NOT NULL,
PRIMARY KEY (sid, cid}) ;

CREATE INDEX signature __ idx ON event (signature) ;
CREATE INDEX timestamp_idx ON event (timestamp) ;

- - s tore info about the sensor
CREATE TABLE sensor (sid

hostname
interface
filter
detail

supplying data
SERIAL,
TEXT,
TEXT,
TEXT,
INT2,

- - All
CREATE

INT2 , encoding
last_cid
PRIMARY KEY

INTB NOT NULL,
(sid)) ;

of the fields of an
TABLE iphdr (sid

cid

ip header
INT4
INTB

ip_src INTB
ip_dst INTB
ip_ver INT2 ,
ip_hlen INT2 ,
ip_tos INT2 ,
ip_len INT4 ,
ip_ id INT4,
ip_flags INT2 ,
ip_off INT4 ,
i p _ttl INT2 ,

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

ip_proto INT2 NOT NULL,
ip_csum INT4 ,
PRIMARY KEY (sid, cid)) i

CREATE INDEX ip src idx ON iphdr (ip_src) I
CREATE INDEX ip_dst_idx ON iphdr (ip_dst) i

- - All of the fields of a tcp header
CREATE TABLE tcphdr(sid INT4 NOT NULL,

cid INTB NOT NULL,
tcp_sport INT4 NOT NULL,
t c p _dport INT4 NOT NULL,
tcp_seq INTB ,
tcp __ ack INTB,
tcp_off INT2 ,

215

tcp_res
tcp_flags
tcp_win
tcp_csum
tcp_urp
PRIMARY

INT2,
INT2 NOT
INT4,
INT4,
INT4,

NULL,

CREATE INDEX
CREATE INDEX
CREATE INDEX

tcp_sport_idx ON
tcp_dport_idx ON
tcp_flags_idx ON

KEY (sid, cid) } ;
tcphdr (t c p _sport) ;
tcphdr (t c p _dport) ;
tcphdr (tcp_flags) ;

-- All
CREATE

of the fields
TABLE udphdr (

of a udp header
sid INT4 NOT NULL,
cid INTS NOT NULL,
udp_sport INT4 NOT NULL,
udp_dport INT4 NOT NULL,
udp_len INT4 ,
udp_csum INT4 ,
PRIMARY KEY {sid, cid)) ;

CREATE INDEX udp_sport_ idx ON udphdr (udp_sport) ;
CREATE INDEX udp_ dport_ idA ON udphdr (udp_dport) ;

-- All of the fields of an
CREATE TABLE icmphdr (sid

cid

icmp header
INT4 NOT NULL,
INTS NOT NULL,

icmp_ type INT2 NOT NULL,
icmp_code INT2 NOT NULL,
icmp_csum INT4,
icmp_id INT4 ,
icmp_seq INT4 ,
PRIMARY KEY (sid, cid)) ;

CREATE INDEX icmp_type_idx ON icmphdr (icmp_type) ;

-- Protocol options
CREATE TABLE opt

- - Packet payload
CREATE TABLE data

sid INT4 NOT NULL,
cid INTS NOT NULL,
opt id INT2 NOT NULL,
opt_proto INT2 NOT NULL,
opt_code INT2 NOT NULL,
opt_ len INT4,
opt_data TEXT,
PRIMARY KEY (aid, cid, optidl } ;

sid INT4 NOT NULL,
cid INTB NOT NULL,
data_payload TEXT,
PRIMARY KEY (sid,cid)) ;

- - encoding is a lookup table for storing encoding types
CREATE TABLE encoding (encoding_ type INT2 NOT NULL,

encoding_ text TEXT NOT NULL,
PRIMARY KEY {encoding_ type)) ;

INSERT INTO encoding (encoding_ type, encoding_text) VALUES (0 ,
'hex ') ;
INSERT INTO encoding (encoding_type, encoding_text) VALUES (1 ,
' base64 ') ;
INSERT INTO encoding (encoding_type, encoding_ text) VALUES (2 ,
' asci i ') ;

- - detail is a lookup table for storing different detail levels
CREATE TABLE detail (detail_type INT2 NOT NULL,

216

detail_text TEXT NOT NULL,
PRIMARY KEY (detail_type)) ;

INSERT INTO detail {detail_type , detail_text) VALUES (O , ' fast ') ;
INSERT INTO detail (detail_type, detail_text) VALUES (1 , ' full ') ;

be sure to also use the snortdb�extra tables if you want
mappings for tcp flags , protocols, and ports

C.8 router-telnet.pl

! /usr/bin/perl
Copyright 2002 Niels Proves <provos@citi .umich. edu>
All rights reserved.

For the license refer to the main source code of Honeyd .

Don ' t echo Will Echo Will Surpress Go Ahead
$return = pack ('ccccccccc ' , 255, 254, 1 , 255, 251, 1 , 255, 251, 3) ,·
syswrite STDOUT, $return, 9 ;

$string ::
"Users (authorized or unauthorized) have no explicit or\r
implicit expectation of privacy. Any or all uses of this\r
system may be intercepted, monitored, recorded, copied, \r
audited, inspected, and disclosed to authorized site , \ r
and law enforcement personnel, as well as to authorized\r
officials of other agencies, both domestic and foreign. \ r
By using this system, the user consents to such\r
interception, monitoring, recording, copying, auditing,\r
inspection, and disclosure at the discretion of authorized\r
site . \r
\r
Unauthorized or improper use of this system may result in\r
administrative disciplinary action and civil and criminal\r
penalties . By continuing to use this system you indicate\r
your awareness of and consent to these terms and conditions\r

of use. LOG OFF IMMEDIATELY if you do not agree to the\r
conditions stated in this warning .\r
\r
\r
\r
User Access Verification\r " . '
syswrite STDOUT, $string;

$count = O ;
while ($count < 3) {

do {
$count++;
syswrite STDOUT, "\r\n" ;
$word = read word ("Username: " , 1) ;

} while (! $word && $count < 3) ;
if ($count >= 3 && ! $word) {

exit;

$password = read_word ("Password: " 0) ;
if (! $password} {

217

syswrite STDOUT, " -% Login invalid\r\n";
else {
syswrite STDERR, "Attempted login: $word/$password" ;
syswrite STDOUT, " -% Access denied\r\n " ;

exit;

sub read_word {
local $prompt = shift;
local $echo = shift;
local $word;

syswrite STDOUT, "$prompt " ;

$word = " " ;
$alarmed = O;
eval {

I ,

local $SIG{ALRM} sub { $alarmed 1 ; die; } ;
alarm 30,·
$finished = O ;
do {

$nread = sysread STDIN, $buffer, 1 ;
die unless $nread;
if (ord($buffer) == O) {
; #ignore
} elsif (ord($buffer) == 255) {
sysread STDIN, $buffer, 2 ;
} elsif (ord($buffer) == 13 I I ord($buffer) == 10) {
syswrite STDOUT, "\r\n" if $echo;
$finished = 1 ;
} else {
syswrite STDOUT, $buffer, l if $echo;
$word = $word . $buffer;
I
while (! $finished) ;

alarm 0 ;

syswrite STDOUT, 11 \r\n" if $alarmed 1 1 l $echo;
if ($alarmed) {

}

syswrite STDOUT, " % $prompt timeout expired l \r\n";
return (O) ;

return ($word) ;

218

Appendix D

Paper Published

Gupta N (2002), Improving the Ef[(Jcliveness of Deceptive Honeynets through an
Empirical Learning Approach, Published in Proceedings of 3rd Australian Information
Warfare & Security Conference 2002, Perth, Australia

219

Appendix E

Contents of CD

• Analyst Notebook 6 Chat viewer
• Chart Files:

o Second Test TCP Traffic
o Second Test TCP Traffic Cluster
o Second Test UDP Traffic
o Second Test UDP Traffic Cluster
o Second Test ICMP Traffic
o Second Test ICMP Traffic Cluster
o Third Test TCP Traffic
o Third Test TCP Traffic Cluster
o Third Test UDP Traffic
o Third Test UDP Traffic Cluster
o Third Test ICMP Traffic
o Third Test ICMP Traffic Cluster

How to Install Chart Reader 6
To install Chart Reader 6:
1 . Close all applications that you may have open.
2. Insert the CD containing Chart Reader 6 into your computer's CD drive.
3. Browse to the CD, open the Chart Reader folder and run Setup.exe.

The Setup.exe is located at:
CD Drive:\Chart Reader

4. Follow the prompts to complete the installation.
5 . Run Chart Reader 6 from your Start menu: i2 > Chart Reader 6 > Chart Reader 6

220

	Determining the effectiveness of deceptive honeynets
	Recommended Citation

	Determining the effectiveness of deceptive honeynets

