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ABSTRACT 

 

Stochastic simulation of rocktypes, or the geometry of the geology, is a major area of 

continuing research as earth scientists seek a better understanding of an orebody as a 

precursor to the assignment of continuous rock properties, allowing more economically 

appropriate decisions regarding mine planning. This thesis  analyses the suitability of 

particular geostatistical rock type modelling algorithms when applied to the five 

rocktypes evident in drill hole data from the Big Bell gold mine near Cue, Western 

Australia. The background of the geostatistical theory is considered, in particular the 

concept of the random function model and the link between the categorical statistics 

determined from the drill hole data and the three models used for estimation and 

simulation. The commonly applied indicator kriging (IK) and sequential indicator 

simulation (SIS) algorithms are compared in a non-sedimentary gold deposit 

environment to the more computationally demanding and more complex plurigaussian 

simulation (PGS). Comparisons between the three models are made by examining 

global and regional rocktype (lithotype) proportions of the outputs of the models, both 

visually and empirically. The models are validated by considering the contacts which 

occur in reality between different lithotypes and the proportion of contacts which do not 

conform to this reality in each of the models. This „inadmissible contact‟ ratio measures 

the short range validity of the estimation and simulation techniques. Finally, cores taken 

from the output of the models are compared to the drill hole data in terms of transition 

proportions between the twenty five possible transitions for the five lithotypes. 

Inadmissible contacts were at a minimum with PGS, and the visual and empirical 

natures of the PGS output were closely linked to the reality of the drill hole data. Whilst 

each model produced similar 3D images, PGS was a realistic balance between the 

clustering effect produced by IK and the fine mosaic effect from SIS. The PGS output 

numerically outperformed the other two models in terms of admissible contacts and 

connectivity, most closely matching the drill hole data. All results indicate that, whilst 

demanding to implement, PGS produces the most adequate model of the study region. 
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Chapter 1: Introduction 

1.1 Background and significance 

 

Geostatistics is a well-established suite of mathematical and probabilistic techniques 

developed in the 1960s in response to the need for mathematical techniques that would 

enable evaluation of the recoverable reserves in ore deposits. It can be defined as a set 

of statistical tools that allows description, interpretation and modelling of the spatial 

continuity that is a fundamental feature of many naturally occurring phenomena, taking 

into account both the structure and randomness of such phenomena. The techniques 

developed have found application in areas such as petroleum, soil sciences and 

hydrogeology, where there is a need for interpretation of spatially correlated data and 

subsequent reservoir modelling. Modelling of spatial categorical data (in this thesis: 

rock types) is an important, initial step in such areas as mining viability or regional 

hydrology. In the mining context, once a three dimensional simulation model of the 

rock types has been produced the different continuous variables within those rock types 

can be calculated. 

 

Plurigaussian simulation (PGS) is computationally demanding and there are a number 

of sequenced steps needed before the simulation can be produced, however it is the 

incorporation of spatial variability measures in PGS that will, it is surmised, produce a 

more accurate simulation of the study region. PGS models provide more straightforward 

and realistic transitions between categories than sequential indicator simulation (SIS) 

(Galli et al, 1994). There are inherent smoothing issues in indicator kriging (IK) that 

post processing algorithms have attempted to address. It is economically important to 

produce realistic models that honour both the original categorical transitions and 

proportions. PGS employs a constraint on allowable contacts between rock types that is 

initially defined by the drill hole data set. Neither IK nor SIS has such a constraint and 

an important comparison to PGS is the proportion of IK and SIS models that have so 

called illegal contacts between rock types in their output, indicating that the geometry 

found in the initial exploration has not been honored.  
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1.2 Early techniques in geostatistics 

 

The linear least squares regression algorithms introduced by Danie Krige (1951) were 

an initial effort at estimation of attributes of interest at unknown locations. Krige‟s 

empirical work to evaluate mineral resources was formalised in the 1960s by French 

engineer Georges Matheron, who subsequently contributed significantly to the 

discipline by the introduction of the concept of a regionalised variable (ReV). Initial 

techniques in geostatistics were concerned with describing the spatial variability of 

earth science data and estimating attribute values at unsampled locations (kriging). A 

well-researched account of the history and origins of kriging can be found in Cressie 

(1990). The process of kriging gives an accurate least squares regression value and is 

convenient in obtaining the conditional cumulative distribution function (ccdf). It 

therefore is commonly used to estimate the probability of distribution, or single location 

uncertainty. Three common versions of kriging are Simple Kriging (SK), where the 

mean of the attribute in question is considered to be constant over a study region, 

Ordinary Kriging (OK), where local variation in the mean of the attribute in question is 

accounted for, and Indicator Kriging (IK) where the attribute in question is apportioned 

by a series of thresholds into classes. Kriging is used both for continuous data (attributes 

such as mineral grades) and, in this thesis, categorical data such as rock types. 

Drawbacks of kriging are that the single realisation of an attribute does not reflect the 

full spatial and statistical variability of the sample data, there being a smoothing effect 

inherent in the process. This smoothing effect is minimal when the locations to be 

estimated are nearby the observed data but increases as the distance from the location to 

be estimated to the observed data increases.  

 

 The development of geostatistical simulation techniques was a necessary step in 

overcoming the perceived shortcomings of the estimation algorithms, and began with 

the work of Matheron (cited in Chiles& Delfiner, 1999, p.472) and Journel (1974). 

Compared to kriging, conditional simulation is an advance in characterising the spatial 

variation of earth variables such as rock types. The simulation approach takes into 

account not only the spatial variation of observed data at sample locations but also the 

variation in estimates at unsampled locations (Deutsch, 2006). Vann, Bertoli and 
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Jackson (2002) provide a summary of the development of these techniques. Numerous 

simulation techniques have been developed over the years and as they are 

computationally demanding their growth can be aligned with the increased availability 

and power of computers, beginning in the 1980s. Many are based on the assumption 

that the random function(s) is multiGaussian and include methods such as covariance 

matrix (LU) decomposition, turning bands, sequential indicator simulation (SIS), 

sequential Gaussian simulation (sGs), truncated Gaussian and the more complex 

PluriGaussian simulation.  

 

Categorical data, such as rock types (lithotypes), can be modelled using a variety of 

algorithms. Indicator kriging (IK) was introduced by Journel (1983) and for a 

considerable time was one of the most widely applied grade estimation techniques in the 

mining industry. The original appeal of IK was that it was non-parametric- it made no 

assumptions about the distribution underlying the sample data. The basis of the 

indicator approach is the binomial coding of data into either 1 or 0 depending upon its 

relationship to a cut-off value, resulting in a non-linear transformation of the data 

values. A benefit for continuous data is that values much greater than the cut-off value 

will receive the same indicator value as data close to the cut-off, thus limiting the effect 

of very high values in the kriging process. The outcome of IK is a conditional 

cumulative distribution function (ccdf) which is a distribution of local uncertainty or 

possible values conditional to data in the neighbourhood of the block or cell to be 

estimated. This cumulative distribution at a block or cell should be non-decreasing and 

valued between 0 and 1. These two requirements are sometimes not met, leading to 

order relations violations. Many methods have been proposed to overcome this issue, 

including direct correction of the indicator values (eg. Deutsch and Journel, 1998), 

using nested indicator variables (Dagbert and Dimitrakopoulos (1992) and probability 

kriging (Isaaks, 1984) which is indicator co-kriging between the indicator-transformed 

data and a uniform transform of the sample data.  A criticism of IK is the need to 

calculate a variogram and develop a model for each cut-off value, which for multiple 

cut-offs was initially a major issue, however computer speed and memory capacity have 

removed this problem. The indicator transform lends itself to the estimation of 

categorical data such as rock types. In this case, instead of kriging indicators at a set of 

thresholds, categorical IK will produce the probability of a given rock type at a given 

location producing probability maps of given rock types. This may be combined with 



4 

 

indicator estimation or simulation of grade data, as described in Dowd (1996). Lloyd 

and Atkinson (2001) suggest that adaptation of the variogram for IK to local variation 

would increase the accuracy of the estimations by resolving the problem of changing 

means and variograms across the study region, and this approach has been formalized 

by the conditional simulation paradigm. 

 

Sequential indicator simulation (SIS) is a non-parametric algorithm that, as for IK, 

requires the binary transformation of continuous (eg. porosity or permeability) or 

categorical (eg. rock type) data into a series of indicator variables (Goovaerts, 1997, 

Deutsch and Journel, 1998). It applies IK in a sequential fashion where a precise 

category is drawn by Monte Carlo simulation at each location following a random path 

through the three dimensional grid. Individual grid nodes are simulated, one after the 

other, using continually updated (and increasing-sized) conditioning data sets, the 

conditioning data set including the original data set and all previously simulated values 

within a specified neighbourhood. This ensures that closely spaced values have the 

correct short scale correlation. This algorithm has been employed in such varied studies 

as categorical soil variable simulation (Li, Zhang, 2007), simulation of facies for 

groundwater flow (Moysey et al, 2003), reservoir fluid flows (Seifert and Jensen (1999) 

and uncertainty assessment of the spatial distribution of soil organic carbon (Delbari et 

al (2010). It has been described in detail by Deutsch and Journel (1992) and Srivastava 

(1994). Deutsch (1996) uses SIS in a categorical context and compares a number of SIS 

algorithms, but notes two common criticisms of the technique: the models produced can 

appear very patch and unstructured, and SIS often leads to uncontrolled and unrealistic 

transitions between categories. Li and Zhang (2007) also found that SIS models (using 

simple or ordinary kriging) do not obey interclass relationships in simulation maps. A 

number of SIS variations have evolved over the years (Gomez-Hernandez and 

Srivastava, 1990; Goovaerts, 1994; Goovaerts, 1997), mostly relating to the use of soft 

secondary data arising from geological interpretation or geophysical measurements.  

 

The above models of IK and SIS are both non-parametric, in that they have no 

predetermined underlying model. Many simulation algorithms make the purely 

mathematical assumption that such an underlying model theoretically exists, and a 

popular set of these models use the Gaussian function as its basis. Two algorithms 

which use this assumption are truncated Gaussian simulation (TGS) and plurigaussian 
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simulation (PGS) Both TGS and PGS  were initially developed in the 1980s to model 

oil reservoirs in sedimentary geological environments, where different rock types 

typically occur in a defined sequential order. A two-step approach was developed to 

model quantities such as porosity and permeability in reservoirs: firstly a model of the 

geometry of rock types in the reservoir was done and then this model was used to 

generate values of porosity.  

 

The truncated Gaussian method is based on the notion of association of a region under 

the normal curve to a category proportion. The truncation of a standard Gaussian 

random function by different thresholds calculated from experimental set proportions  

was first applied to model the lithotype in deltaic reservoirs by Matheron et al. (1987). 

The covariance model of the underlying Gaussian function is obtained by an iterative 

process of inversion of the covariance model of the experimental indicator variables of 

the sets. Once this Gaussian semivariogram is known, kriging weights are available and 

further work is possible. If the categorical data are sequential in their contacts then 

truncation of one Gaussian RF is required (TGS), however PGS is an extension to the 

algorithm that allows for more complex patterns and different types of contacts between 

rock types to be modeled. 

 

Few texts, with the exception of Armstrong et al. (2003), are solely concerned with a 

succinct explanation of the basis of the recent development of plurigaussian simulation 

techniques, although numerous theses, journal articles, course notes and conference 

proceedings are available. The truncated Gaussian and plurigaussian simulation 

algorithms have been investigated by Dowd (2003), Le Loc‟h and Galli (1996) and 

Lantuéjoul (1994, 1997). Remacre and Zapparolli (2003) employ plurigaussian 

techniques to model the reservoir characteristics of an oilfield enabling the practitioners 

to accurately predict oil production forecasts. Deutsch (1996) suggests that PGS is a 

more straightforward approach than SIS when handling multiple category interactions 
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1.3  Objectives  
 

The objective of this research is to explore the theory underpinning the computationally 

expensive plurigaussian simulation (PGS) technique and compare the output from PGS 

with the previously developed and more simplistic models of indicator kriging (IK) and 

sequential indicator simulation (SIS), with a view to assessing overall performance of 

the three models.  Comparisons will be undertaken in three areas: 

1. Visual inspection and empirical analysis of output models. Particular emphasis 

will be made of global and regional proportions of the five rocktypes present in 

the data set and by consideration of the regional spatial variability displayed in 

each model with comparison to the data set.  

2. Analysis of the four non-bounding rocktypes within the study region.  

3. Calculation of the degree to which the three models honour the specific 

rocktypes that appear in the data set in terms of contact admissibility and 

continuity.  

1.4 Outline of Thesis 
 

In this thesis Chapter 2 will provide a theoretical background for the basic geostatistical 

measures associated with the random function (RF),  the measures associated with 

categorical data, the kriging paradigm, its variant indicator kriging (IK), the sequential 

indicator simulation (SIS) algorithm, the Gaussian function as a model for simulations, 

the turning band algorithm, truncated Gaussian and PGS model overview and lastly the 

link between the indicator semivariogrmas and the underlying Gaussian 

semivariograms. An extensive discussion of aspects of the workflow of the 

plurigaussian algorithm follows in chapter 3, including the Gibbs sampler conditioning 

algorithm and the turning bands simulation method. Chapter 4 explores the Big Bell 

gold mine data set used in the modelling processes. Chapter 5 details the steps of the 

plurigaussian algorithm as run on the platform of the geostatistical programme Isatis, 

developed by Geovariances. Chapter 6 provides pictorial and statistical analysis of the 

output generated from the three algorithms considered in this thesis, with particular 

attention on the adequacy of the models to reproduce the initial global proportions of 

the data set and the identification of important differences in the output of the three 

algorithms. 
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1.5 Common Notation 

 

The notation used throughout this document is a combination of that used by Goovaerts 

(1997) and Armstrong et al. (2003). 

 

 

A   study area 

:   covariance value at separation distance  

   
C

ij
(h) :  stationary cross covariance between the two RFs 

   
Z

i
(u) and 

 

:  stationary covariance of the random function 

     :   expected value       

   E{(Z(u);: z | (n)} : conditional expectation of the RV given the realisations of 

 other neighboring RVs (called data) 

):(F zu  non-stationary cumulative distribution function of the RV  

   F(u : z | (n)) : non-stationary conditional cumulative distribution function of the 

continuous RV given neighboring information, such as 

realisations of other RVs (called data). 

   F(u, u : z, z ) : non-stationary “two point” cumulative distribution function of the 

RV  

  G( y) :  standard normal cumulative distribution function 

  G
1( y) : standard normal quantile function such that 

  G(G1( p))  p[0,1]  

   (u, u ) : non-stationary semivariogram between the two RVs and 

   Z( u )  

 h :  separation or lag vector 

   
I(u;s

k
) :  binary indicator RF at location  u  and for threshold 

 
s

k
 

   
i(u;s

k
) :  binary indicator value at location  u  and for threshold 

 
s

k
 

   



SK (u) : simple kriging weight associated to  z -datum at location 
 
u


for 

estimation of the attribute  z at location  u . The same type of 

notation applies to other algorithms, such as OK. 

 m :  stationary mean of the RF  

  N(h) :  number of pairs of data values available at lag vector  h  

 n : number of data values 
   
s(u


) or 

   
z(u


) available over the study 

area 

   n(u) : number of data values 
   
z(u


) used for estimation of the attribute 

 z  at location  u  

   
p(u : s

k
) :  probability for the category 

 
s

k
to prevail at location  u  

   
p(u : s

k
| (n)) : conditional probability for the category 

 
s

k
to prevail at location  u  

given the neighboring information   (n)  

 
p

k
:  global proportion of category 

 
s

k
within the area A 

 C(0)
  
h  0

   
Z

j
(u)

  
C

Z
(h)

   Z(u)

 n

   Z(u)

   Z(u)

 n

   Z(u)

   Z(u)

   Z(u)
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  R(u) : residual component model in the decomposition 

  Z(u)  R(u)m(u) where   m(u) represents the trend component 

model 

  (h) :   stationary correlogram of the RF   Z(u)  for lag vector  h  

  S(u) : generic categorical RV at location u  or a generic categorical RF 

at location  u  

   
s(u


) :  s -datum value at location u α 

 
2
:   variance of the RV  Z     

   


SK

2 (u) : simple kriging variance associated with the simple kriging 

estimate 
   
Z

SK

* (u)  at location u . The same type of notation applies 

to other algorithms, such as OK 

 u :   coordinate vector 

 
u


:   datum location 

 Var{}:  variance 

  Z(u) : generic continuous RV at location u , or a generic continuous RF 

at location u  

   
Z

SK

* (u) : simple kriging estimator of   Z(u)  

 z :   continuous attribute 

   z(u) :   true value at unsampled location u  

   
z(u


) :    z -datum value at location u α 

   z
*(u) :   an estimate of value   z(u)  
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Chapter 2: Theoretical Framework 

2.1 Random Variable and Random Function 
 

Before consideration of the mathematics associated with the plurigaussian technique, a 

number of mathematical and geostatistical concepts must be discussed, such as random 

variables, the concept of a random function, the Gaussian function and the kriging 

paradigm. 

 

In this section the concept of a continuous random function (RF) is discussed.  

Informally, a RF is a collection of random variables defined at each of the locations that 

comprise the study area of interest. 

 

A random variable (RV) is a variable, denoted by )(Z u , that can take a series of 

outcome values according to some probability distribution. For the purposes of 

simulation of rock types, the random variable is a discrete (categorical) variable, 

however in the processes of simulation to be considered in this thesis, these categorical 

variables are converted into continuous (Gaussian) variables for the modelling process 

and then back-transformed to categorical. The following refers to continuous RVs, and 

when categorical attributes will be considered at a later time, specific notation will be 

introduced. 

 

A random variable is characterised by its cumulative distribution function (cdf) which 

indicates the probability that the variable Z  at location u  is no greater than a given 

threshold z : 

 

  }){Z();F( zpz  uu        (1) 

 

A random function (RF) is defined as a set }  ){Z(, Auu of (usually dependent) random 

variables )Z(u , one for each location u in the study region  A. The basic paradigm of 

the probabilistic approach is to model a value )(uz  at an unsampled location 



u as a 

realisation drawn from a random variable )(Z u . The problem of assessing the 
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uncertainty about an attribute value at 



u thus reduces to that of modelling the 

probability distribution of the random variable Z  at that location. The uncertainty at 



u 

can be reduced by accounting for (conditioning on) neighbouring sample data values 

nz α 1,...,),( u . 

In practice the distinction between )Z(u  and )(uz  reduces to one of context, with 

)( αz u  indicating a (known) sample value and )(*
uz  an estimate of Z  at location



u. 

The univariate cumulative distribution function (cdf) (1) can be extended to the 

multivariate or n point (cdf ) where: 

 

})(,........Z)(Z{),........;,.......,F( 1111 nnnn zzpzz  uuuu     (2) 

 

The spatial law of the RF )(Z u  is defined by the joint uncertainty shown in (2). 

Generally only the univariate and bivariate cdfs are considered when defining the 

moments of interest. These are: 

 the one point cdf  

z})P{Z(=z);F( uu        (3) 

 the expected value 

)}E{Z()m( uu         (4) 

 the two point cdf 

}z)Z(z,)P{Z()zz,;,F(  uuuu      (5) 

 the variance  

2)}]E{Z(-)E[Z()}Var{Z( uuu       (6) 

 the two point covariance 

 )}E{Z()}E{Z(-)}'Z()E{Z()}C{ u'uuuu'u,      (7) 

 the two point correlogram 

),(),(

)',(
),(

u'u'uu

uu
uu

CC

C
ρ


      (8) 

 the semivariogram 

)}Z()Var{Z(
2

1
),( uuuu γ      (9)
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The term two point refers to the value of the same attribute at two different locations as 

opposed to the term bivariate, which may refer to two different attributes measured at 

the same location. 

 

An important statistic is the conditional cdf (ccdf) ))Z(|;F( zz uu  of the cdf of )(Z u  

where the cdf at location 



u is calculated with reference to (conditioned on) the statistics 

associated with the neighbouring data, specifically that z)(Z u . Using (3) and (5); 

 

 })(Z|)(ZP{))(Z|z;(F zzz  uuuu  

 

         
})(ZP{

})(Z,)(ZP{

z

zz






u

uu
 

 

         
);F(

),;,F(

z

zz






u

uu
      (10) 

 

A random function is strictly stationary if its distributions are invariant under translation 

of the points by an arbitrary vector 



h; (for all nii ,...,1, u and nii 1,...,,z  ) 

 

 })(Z,.......)(ZP{})(Z,.......)(ZP{ 1111 nnnn zzzz  huhuuu  (11) 

 

In physical terms this means that the phenomenon is homogenous in space. When a 

random function is stationary its moments are invariant under translation. In practice the 

analysis is limited to cdfs involving no more than two locations at a time and their 

corresponding moments. The two moments (4) and (8) depend on the separation vector 



h: 

  )}(Z{Em u         (12) 

and 

  )}(Z{E)}(Z{E)}(Z)(Z{E)(C huuhuuh     (13) 

A random function with these two properties is said to be second order or weakly 

stationary. 
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Stationarity is not necessarily a property of the underlying characteristic of the 

phenomenon under study, rather it is a decision made by analysts to facilitate inference 

and modelling. It may well be that non-stationarity (where the moments of the 

distribution vary across the study region) is a factor to be taken into account in the 

modelling process. 

2.2 The geostatistics of categorical data 

 

The models considered so far relate largely to a continuous random variable. The 

categorical  data to be considered in the simulation process need to be defined, and then 

the link between these variables and the continuous variables  Z(u)  can be made. For 

the purposes of explanation at a generic categorical level, sample data will be 

categorised into k  categories 
  
S

i
, 



i 1,....,k, .  

 . 

   

Figure 1 Categorical data contacts in a 2D region. 

 

Figure 1 showing three categories in A with an important feature being which categories 

are neighbours for others. Category 
 
S

1  is in contact solely with 
 
S

2  whereas 
 
S

2
 is in 

contact with both 
 
S

1
 and 

 
S

3
. This sequential nature of contacts between categories may 

be represented pictorially by partitioning a rectangle, as in Figure 2. 

 

 

 

 

S1 

S2 S3 

S2 
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Figure 2 Representation of nature of category contacts from Figure 1. 

 

Suppose that there are k mutually exclusive categories ks,...,s1 . For each category we 

will define an indicator function by putting  

       

i(u;s
k
) 

1 if s(u)  s
k

0 otherwise  





   (14)

 

The associated indicator RV will be denoted by 

   

I(u;s
k
) 

1 if s(u)  s
k

0 otherwise  





  

             (15) 

   

 

The proportion of the study region that a category occupies will be denoted by   

)}s;E{I()s;p( kk uu   with 1)p(0  ks u;    (16) 

 

Since 
   

I(u;s
k
) 

2

 I(u;s
k
) the variance of the indicator function is given by    

   
Var[I(u;s

k
)]  E[{I(u;s

k
) - E[I(u;s

k
)]}2]  

   (17) 

 

Given any two locations u and  u h the non-centred covariance 
   
C

S
k

(u,u  h)   

is defined as 

 

   
C

S
k

(u,u h)  E[I(u;s
k
),I(u h;s

k
)]=P[I(u;s

k
)=1,I(u h;s

k
)=1]  (18) 

S1 S2 S3 
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and measures the probability that the category at locations u and  u h  is 
  
s

k
. 

 

The centred covariance 
   


S
k

(h)  and centred cross-covariance 
   


S
k
S

j

(h)  between 
  
S

k
 and 

  
S

j
are defined as 

   


S
k

(u,u h)  E{[I(u;s
k
)  P(I(u;s

k
))][I(u h;s

k
)  P(I(u h;s

k
))]}

      
 

            
   
 C

S
k

(h)  P(I(u;s
k
)P(I(u h;s

k
)

    (19)
 

and  

   


S
k
S

j

(u,u h)  E{[I(u;s
k
)  P(I(u;s

k
))][I(u  h;s

j
)  P(I(u h;s

j
))]} (20) 

 

The indicator semivariogram 
   


S
k

(u,u  h)  of 
  
S

k
 (the indicator version of (9)) is 

defined as 

   


S
k

(u,u  h) 
1

2
{E[I(u;s

k
)  I(u  h;s

k
)]2  (E[I(u;s

k
)  I(u  h;s

k
)])2}   (21) 

and measures how often one of the locations separated by a vector  h  belongs to the 

distinct category 
  
s

k
  

The cross semivariogram 
   


S
i
S

j

(u,u  h) between iS and jS  is defined as 

 
   


S
i
S

j

(u,u  h) 
1

2
{E[I(u;s

i
)  I((u  h);s

i
)][I(u;s

j
)  I((u  h);s

j
)]}  (22) 

and measures how often two locations separated by a vector h belong to the different 

categories 
  
s

i
 and 

  
s

j
. 

 

In reality the theoretical models shown above are unknown and need to be inferred from 

the experimental semivariogram and cross semivariogram using the data points 

  
{u


,  1,...,N} 

 

The experimental semivariogram for the category iS  is: 

   


S

i

* (h) 
1

2N
[i(

u

u


h

 u

;s

i
)  i(u


;s

i
)]2

                                            (23) 
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where the data locations 



u  and 



u  are separated by the vector h , and N  denotes the 

number of pairs of data that are separated by each vector 



h. 

 

Similarly, the formula for the experimental cross semivariogram is given by 

 

 

   


S

i
S

j

* (h) 
1

2N
[i(

u

u


h

 u

;s

i
)  i(u


;s

i
)][i(u


;s

j
)  i(u


;s

j
)]  (24)          

2.3  Variogram models 

For estimation and simulation semivariogram values need to be computed at separation 

distances other than those available experimentally. To facilitate this, semivariogram 

models are inferred from the experiment semivariogram. In this thesis, models for 

indicator semivariograms as well as semivariograms of continuous variables are 

required. The following models defined in their isotropic form will be used. 

The nugget effect model is defined as 

  

g
0
(h) 

0            if h=0

1       otherwise





        (25)

 

And the spherical model (with a sill value of 1 reached at range a) is defined as 

  

Sph
a
(h) 

0                   h=0

3

2

h

a


1

2

h

a








3

 h  a

1                     h  a













      (26)

 

2.4 Kriging 
 

Kriging is a generic term for a family of generalised least squares regression algorithms 

named after Danie Krige‟s pioneering work in the field of geostatistics. The basic linear 

regression estimator )(Z*
u  is defined as  





)(

1

* )]m())[Z((λ)m()(Z
u

uuuuu
n

α

ααα

    (27)
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where )(λ uα  is the weight assigned to datum )z( αu  interpreted as a realisation of the 

RV )Z( αu . The quantities )m(u  and )m( αu  are the expected values of the RVs )Z(u  

and )(Z*
u .   Z(u) is treated as a random function with a trend component,    m(u) , and a 

residual component     R(u)  Z(u) m(u) . Kriging estimates the residual at  u  as a 

weighed sum of residuals at neighborhood data points. The goal is to determine the 

kriging weights, 


, which are derived from covariance function or semivariogram 

function, and which minimize the variance of the estimator 
  


E

2 (u) = Var{Z*(u) - Z(u)} 

under the unbiasedness constraint   E{Z*(u)  Z(u)} 0 . The random function (RF) 

  Z(u) is decomposed into residual and trend components,    Z(u)  R(u) m(u) , with the 

residual component treated as an RF with stationary mean of 0 and a stationary 

covariance: 

  E{R(u)} 0  

  
Cov{R(u),R(u h)} E{R(u),R(u h)} C

R
(h)  

The residual covariance function is generally derived from the input semivariogram 

model,  

   
C

R
(h)  C

R
(0)  (h)  Sill   (h)

                                          

                   (28)
 

 

In Simple Kriging (SK) the expected value  m  is known and constant, and the simple 

kriging estimate at a location u is given by  

   

Z
SK

* (u)  m 


SK (u)[Z(u


)  m]
1

n(u)


 

                   (29) 

This is an unbiased estimator since
   
E[Z(u


)  m]  0 . The estimation error 

   
Z

SK

* (u)  Z(u) is a linear combination of random variables representing residuals at data 

points, 
 
u


, and the estimation point, u : 

   
Z

SK

* (u)  Z(u)  [Z
SK

* (u)  m] [Z(u) m]
 

  =

   




SK

1

n(u)

 (u)R(u


)  R(u)  R
SK

* (u)  R(u)

  

           (30) 
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Using the rules for the variance of a linear combination of random variables, the error 

variance is then given by  

 

   


E

2 (u)  Var{R
SK

* (u)} Var{R
SK

(u)} 2Cov{R
SK

* (u),R
SK

(u)}
 

     
   


1

n(u)

 


SK

1

n(u)

 (u)


SK (u)C
R

(u

 u


) C

R
(0)  2 



SK (u)C
R

(u

 u)

1

n(u)

  

                (31) 

 

To minimise the error variance, the derivative of the above expression is taken with 

respect to each of the kriging weights and then equated to zero. This leads to the system 

of equations: 

 

   1

n(u)

 


SK (u)C
R

(u

 u


)  C

R
(u


 u)                  1,...,n(u)         (32) 

For SK the mean is constant so the covariance function for   Z(u) is the same as that for 

the residual component, 
  
C(h) = C

R
(h)  so the kriging system can be written in terms of 

  C(h) : 

                   1

n(u)

 


SK (u)C(u

 u


)  C(u


 u)           1,...,n(u)                   (33) 
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This can be written in matrix form as  

   
K

SK
(u)  k

       (34)
 

where 
  
K

SK
is the matrix of covariances between data points, with elements 

   
K

i, j
 C(u

i
 u

j
) ,  k is the vector of covariances between the data points and the 

estimation point, with elements given by 
   
k

i
 C(u

i
 u) , and 

   


SK
(u) is the vector of 

simple kriging weights for the surrounding data points. If the covariance model is 

permitted and no two data points are co-located, then the data covariance matrix is 

positive definite and kriging weights can be determined from the equation: 

   


SK
 K

1
k

       (35)
 

Once the kriging weights are established, both the kriging estimate and the kriging 

variance can be calculated. 

In Ordinary Kriging (OK) the expected value    m(u) is considered to fluctuate over the 

study region and is calculated by limiting the domain of stationarity of the mean to the 

local neighbourhood centred on the location  u  being estimated. In this case the linear 

estimator (29) is determined as a linear combination of the    n(u)  RVs 
  
Z(u


)  plus the 

constant but unknown local mean
   m(u)=m. 

   

Z*(u)  


1

n(u)

 (u)Z(u


)  1 


1

n(u)

 (u)








m(u)

   (36)

 

The unknown local mean 
   m(u)  is filtered from the linear estimator by forcing the 

kriging weights to sum to 1. The ordinary kriging estimator 
   
Z

OK

* (u)
 
is thus written as a 

linear combination of the    n(u)  RVs 
  
Z(u


) : 

 

   

Z
OK

* (u)  


OK

1

n(u)

 (u)Z(u


)  with 

   




OK

1

n(u)

 (u) 1
    (37)

 

In order to minimize the error variance subject to this unit-sum constraint on the kriging 

weights, a system is set up which involves the error variance plus an additional term 

involving a Lagrange parameter 
   


OK
(u) : 

   

L  
E

2 (u)  2
OK

(u)[1 


OK (u)
1

n(u)

 ]

      (38)
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so that minimization with respect to the Lagrange parameter forces the constraint to be 

obeyed: 

   

1

2

L


 1 



OK (u)
1

n(u)

  0

     (39)

 

In this case, the system of equations for the kriging weights is 

   

1

n(u)

 


OK (u)C
R

(u

 u


)  

OK
(u)  C

R
(u


 u)             1,....,n(u)

1

n(u)

 


OK (u)  1













(40)

 

where 
  
C

R
(h) is the covariance function for the residual component of the variable. 

When dealing with Simple Kriging, 
  
C

R
(h)  C(h)

 
due to the stationarity of the mean, 

and although that equality does not strictly hold here, in practice this substitution is 

often made on the assumption that the semivariogram, from which   C(h) is derived, 

effectively filters the influence of large-scale trends in the mean. 

 

This OK method is used in an indicator context with the categorical variables in the 

following section. 

2.4  Indicator kriging of categorical variables. 

 

Indicator kriging (IK) uses the basic kriging paradigm but in the context of an indicator 

variable. In this thesis, indicators are interpreted as hard categories. The first step in 

indicator kriging is to model the uncertainty about a category 
  
s

k
, k  1,...N  of the 

categorical variable s  at the unsampled location



u. This uncertainty is modelled by the 

conditional probability distribution function (cpdf) of the discrete RV )S(u : 

)}(|s=)p{S())(|s;p( nn kk uu 
    (41)

 

where the conditioning information consists of 



n neighbourhood categorical data )s( αu . 

Each conditional probability ))(|s;p( nku  is also the conditional expectation of the 

class-indicator RV )s;I( ku : 

 

)}(|)s;E{I())(|s;p( nn kk uu       (42) 
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The kriging estimator for the indicator RV is defined as 





)(

1

* )}]s;E{I()s;)[I(s;(λ)}s;E{I()]s;[I(
u

uuuuu
n

α

kαkαkαkk

   (43)

 

where )s;(λ kα u  is the weight assigned to the indicator datum )s;i( kαu  interpreted as a 

realization of the indicator RV )s;I( kαu .  

As for the previous section, there are two indicator kriging (IK) variants; simple 

indicator kriging (sIK) where the indicator mean )}s;E{I( kαu  is considered constant 

over the study region, and the version used in this thesis, ordinary indicator kriging 

(oIK), where local fluctuations of the indicator mean )}s;E{I( kαu  are taken into 

account.  

 

Effectively indicator kriging produces a conditional probability distribution for each 

category at each grid location in the study region. From this probability distribution a 

category needs to be derived and so there must be a post-processing classification 

algorithm applied to the output of IK.  There are a number of different post-processing 

classification algorithms, such as maximum likelihood. These algorithms tend to over-

represent the category (lithotype) with the greatest global proportion and under-

represent or ignore the category of least global proportion (Goovaerts, 1997 p.441) 

 

The classification method of the indicator kriging output that will be used for the 

purposes of comparison in this thesis is the algorithm developed by Soares (1992). In 

this algorithm each grid location is allocated a category under the constraint that the 

global proportions are reproduced. Initially the most frequently occurring category is 

allocated to those locations where it has greatest conditional probability until the global 

proportion of that category is met. This continues through the hierarchy of proportions 

of categories until all grid locations have been allocated a category. This algorithm 

allows for categories with small global proportions to be represented adequately and 

does not allow categories with large global proportions to dominate, which would occur 

in a classification algorithm such as maximum likelihood.  
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2.5 Sequential indicator simulation. 

 

The SIS method is commonly used for the stochastic modelling of categorical (e.g. rock 

types) and also continuous attributes (e.g. porosity and permeability). SIS simulates the 

spatial distribution of the mutually exclusive categories (lithotypes) ks conditional to the 

data set }........,1,){s( nu . A simplified work flow of the procedure, (Goovaerts, 

1997) is as follows: 

1. Define a random path visiting each node of the study area grid only once. 

2. At each node u : 

(a) Use ordinary indicator kriging to determine the conditional probability of 

occurrence of each category ks ,[ ))(|s;p( nku ]. The ( n ) conditioning 

information consists of the neighbourhood original indicator data and 

previously simulated indicator values.  

(b) Build a cdf-type function by adding the corresponding probabilities of 

occurrence of the categories 

(c) Draw a random number p uniformly distributed in [0,1]. The simulated 

category at location u  is the one corresponding to the probability interval 

that includes p. 

(d) Add the simulated value to the conditioning data set. 

(e) Proceed to the next node along the random path and repeat steps (a) to (d).  
 
 

Repeat the entire sequential procedure with a different random path to generate another 

realisation.  

2.6   The Gaussian function as a model for simulation 

 

The SIS method discussed above is a simulation method where no assumption about the 

prior distribution at a node is made. It is often the case that a model is assumed and in 

many cases this is a model where the spatial law (multivariate distribution) of the RV 

)Z(u is assumed to be Gaussian in nature. 

 

 

 



22 

 

A random variable Z  has a Gaussian distribution if its probability density function (pdf) 

is: 

 

2

σ

μ

2

1

e
2πσ

1
)f(








 




z

z         (44) 

where  μ is the mean and 2σ  the variance of the pdf.    

        

This distribution is fully characterized by μ and 2σ and so the problem of determining 

the ccdf at any point in A reduces to that of estimating these two parameters.  

 

If }),(Z{ Auu  is a standard multivariate Gaussian RF with covariance )(CZ h  then the 

following properties are true: 

  

1. All subsets of the RF Z  are also multivariate Gaussian. 

2. The two point distribution of any pairs of RVs )Z(u  and )+(Z hu  is normal 

and fully determined by the covariance function )(CZ h  

3. All conditional distributions of any subset of the RF )(Z u  are normal. In 

particular the conditional distribution of a single variable given the 



n(u)  data 

)( uz  is normal and fully characterised by its two parameters, mean and 

variance: 








 


)(|)(Zσ{

)(|)(ZE{
G))(|;G(

n

nz
nz

u

u
u      (45) 

where G  is the standard normal cdf. 

 

Under the multiGaussian model, the mean and variance of the ccdf at location 



u are 

equal to the simple kriging estimate and simple kriging variance. The ccdf (10) is then 

defined as 

     








 


)(σ

)(
G))(|:G(

u

u
u

SK

SK

SK

zz
nz      (46)

  

where )(uSKz and )(σ2
uSK  are the simple kriging mean and variance. 
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2.7  Turning Band method of non-conditional simulation. 

 

The turning band method is a non-conditional simulation algorithm that will allow the 

Gaussian variables to be simulated in a three dimensional space. It consists of taking the 

Gaussian covariance function )u(C3  determined from the variogram model of the 

underlying Gaussian random function in 3 dimensional space and determining the 

corresponding covariance function )u(C1  in one dimension (Armstrong et al., 2003). 

Next, a set of n lines with arbitrary directions in 3D space is determined.  Along each 

line a Gaussian random function with the determined 1D covariance function )u(C1  is 

simulated. The projections 



x i  at each of the n lines from any point 



x  in the 3D study 

region are determined and the n simulation values 



s(x i)  at 



x  are used to compute the 

grid value as  



s(x) =
1

n i=1

n

 s(x i)

      (47) 

Figure 3 shows 8 lines along which the 1D Gaussian covariance function has been 

simulated. The grid value for the point (7,5) shown on the plane will be determined as 

the sum of the simulated values obtained from the projections of this point onto the 

simulated values from the eight 1D lines.  

Once this unconditional simulation has been completed, the model is conditioned by the 

locations where data values occur. The error between the data value and the 

unconditional simulation value at those data locations is kriged using the same model 

used to generate the unconditional simulation.  
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Figure 3    Projections from a point 1D covariance functions 

   

2.8  The truncated Gaussian and Plurigaussian models 

 

The truncated Gaussian method has been widely used when data are required to be 

separated into a number of thresholds (indicator coding) and the Gaussian function is 

assumed to be a suitable modelling tool (see section 2.6) . In this thesis the truncated 

Gaussian method is used with reference to the allocation of categorical (rocktype) 

proportions. The method is based on the notion of truncation of a standard Gaussian 

random function by different thresholds calculated from experimental set proportions 

and was first applied to model the lithotype in deltaic reservoirs by Matheron et al. 

(1987). The covariance model of the underlying Gaussian function is obtained by an 

iterative process of inversion of the covariance model of the experimental indicator 

variables of the sets. If the categorical data are sequential in their contacts then 

truncation of one Gaussian RF is required, however if two Gaussian functions are 

required to be truncated then this is the plurigaussian case, discussed in the sections 

below. 
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In truncated Gaussian simulation, a Gaussian random function z  is simulated first and 

then it is transformed into the set of indicator variables by truncation. In the case of two 

sets, 1S  and 



S 2 , being simulated, a numerical threshold value 1t  is produced so that: 

 

 
   
P(z  t

1
)  P(S(u)  s

1
)   and  

   
P(z > t

1
)  P(S(u)  s

2
)
 

 

When N sets are being simulated, (N-1) thresholds are necessary. The set iS  is 

associated with a subinterval   [ti1,ti] 
of the domain of the Gaussian pdf such that 

 

   
P(t

i1
 z  t

i
)  P(S(u)  s

i
)        (48) 

 

It is important to have the thresholds reflect the ordering of the sets  

 

 ie.  kiii t...tttt 111    

 

From (16):  

u)(PSi
 = )}s;E{I(iu  and  1)s;I( iu   ii t)Z(t1  u

 

 

These two statements can be incorporated so that: 

 

    
)t)Z(P(t)(P 1S iii
uu        (49) 

               )t)Z(P()t)Z(P( 1 ii uu  

ie  )G(t)G(t)(P 1S  iii
u        (50)

  

where G(t)is the cdf of the standard normal distribution. As the proportion of each set 

is known experimentally, the thresholds can be deduced from the inversion of (1.34): 

 

 )]([PGt
1S

1

1 u
  

 )](P)([PGt
21 SS

1

2 uu  

 ])(P.....)(P)([PGt SSS

1

21
uuu
ii       (51) 


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If the categories under consideration are not sequential in their contacts but have a more 

complex relationship, the plurigaussian model may be employed. If there were a fourth 

category, S4, added to Figure 2 which contacted both S2 and S3 then the representation 

shown in Figure 2 would be modified as shown in Figure 4. This is further developed in 

section 3.1. 

 

 

 

 

 

 

Figure 4 Representation of four categories where contacts are non-sequential. 

 

The above model of category contacts would require the truncation of two Gaussian 

functions for modelling purposes, which is usual for the plurigaussian model, however 

the following considers the more general case where N Gaussian functions may be used.  

Where N Gaussian functions may be used in the simulation a space in N dimensions is 

being considered for simulating sets. At a location u  in this N-space the values of the N 

Gaussian functions 
 
Z

1
,Z

2
,....,Z

N
 define the co-ordinates of the simulated value. Let iQ  

be the subset of the Gaussian space corresponding to the category iS . Then  

 

 
   
ISi(u)1(Z1(u),Z2(u),.....,ZN(u))Qi     (52) 

 

From (1.20):  
   
PSi

(u)  E{I(u;si )} 
and (1.36): 

 

  }Q))(Z),.....,(Z),(P{(Z)(P N21S ii
 uuuu  

 

   

  

 g

(z

1
,z

2
,....,z

N
)

Q
i

 dz
1
,dz

2
,....dz

N
    (53) 

where  
  
g

(z

1
,z

2
,....,z

N
)  is the N-variate Gaussian density function with mean 0 and 

variance 1, and 



 is its correlation matrix.  

S1 S2 

S3 

S4 
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2.9  The link between the indicator semivariograms and the underlying 
Gaussian semivariograms 

 

The technique used in this thesis relies on a simulation of Gaussian values from the 

underlying Gaussian semivariogram model(s). A critical feature of this is the inference 

of these Gaussian semivariograms from the experimental indicator semivariograms and 

cross-semivariograms described in the previous section. The links between all these 

semivariograms are functions of the truncation process and of the conditioning to the set 

proportions. The semivariogram inference is based on a method described in Armstrong 

et al. (2003) in which the ranges of the underlying Gaussian semivariograms are 

adjusted iteratively. Firstly initial parameters of the underlying Gaussian models are 

defined and then these models are used to construct an unconditional simulation of the 

study area. From this simulation, indicator semivariograms of each of the sets are 

computed. A comparison of these computed semivariograms and the previously 

determined experimental semivariograms is undertaken and the parameters are adjusted 

iteratively until an acceptable match is obtained.  

 

In the truncated Gaussian case, if 1t i  and it  are the thresholds for the elements of set 

iS  then the semivariogram model is calculated using:  

t])Z(t,t)Z(P[t]}t)Z(P[t]t)Z({P[t
2

1
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    (54) 

 

where 
iSp is the proportion of the study region where set iS  exists and )(g hρ  is the 

bigaussian density function for the same set iS . The correlation between the two 

Gaussian variables a  and b  is )(hρ . A correlation value is determined by a trial and 

error process in order to improve the fitting of sample indicator variograms. 
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The plurigaussian case is a direct extension of this. Considering two Gaussians 
 
Z

1
(u)

and 
 
Z

2
(u)  initially, the semivariogram model is given by: 

 

2

DD

1212121ΣSS ddd)d,,,(gp),(γ bbaabbaa

ii

ii huu      (55) 

The two Gaussians give rise to four Gaussian variables,
  
Z

1
(u) , )(Z2 u, )+(Z1 hu  and 

)+(Z2 hu . Here  represents the matrix of correlations and covariances between the 

four variables.  

 

A covariance for a Gaussian is a fundamental parameter and can be found from the 

experimental data. The correlation between the two Gaussians (



 ) is a more arbitrary 

value. The larger the correlation value the greater the bordering effect apparent in the 

outputs of the simulations, and so choosing a zero correlation minimises artificially  

affecting the PGS output, and neither IK nor SIS consider this border effect issue. The 

link between the four variables depends on the choice of coregionalisation model 

between 
 
Z

1
(u)  and 

 
Z

2
(u) . A simple model is one where the two Gaussians RFs 

 
Z

1
 and 

2Z  are linear combinations of independent Gaussian RFs, say 
  
B

1
(u) and 

  
B

2
(u) , each 

with a N(0,1) distribution having covariances 
  


B
1

(h) and 
 


B
2

(h) respectively.  

So:  

  
Z

1
(u)  B

1
(u)     and     

 
  
Z

2
(u)  B

1
(u)  ( 1 2 )B

2
(u)  

where 
  


B
1

(h)  
Z

1

(h)    and 
  


B
2

(h)  2
Z

1

(h)  (1 2 )
Z

2

(h)  

The coregionalisation correlations and covariances are summarised in Table 1: 

Table 1: Correlations and covariances for RFs 1Z , 2Z  

 )(Z1u  )(Z2u )(Z1 hu  )(Z2 hu  
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This leads to the matrix 
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used in (55), 

which is a starting point for the iterative process of computation of the required 

indicator semivariograms. In Isatis the iterative process begins with selection of (in the 

plurigaussian case) two possible underlying Gaussian models. These models are then 

tested (and altered where necessary) so as to optimise the fits of the indicator 

variograms to the experimental data. 
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Chapter 3: Aspects of Plurigaussian Simulation 
 

The simulation of categorical (set) data outlined in the preceding sections is now 

applied to the simulation of rock types (lithotypes) in a geological setting. The initial 

application of this method was to simulate rock types in a sedimentary deposit 

(Armstrong, 2003)  

 

The fundamental concept of non-stationary proportion curves is central to the model, 

where the rock type rule plays an essential role in producing geologically realistic 

models that represents the transitions between the different lithotypes.  

 

The advantages of this model are theoretical consistency and the ability to incorporate 

external data such as vertical proportion curves. Truncated Gaussian simulation is an 

important theoretical starting point: pluriGaussian simulation is an extension of the 

truncated Gaussian model which allows the acquisition of two or more Gaussian 

variables, correlated or not, that describe different spatial behaviours of a lithotype or 

group of lithotypes as well as incorporating non-sequential contacts in the model. 

 

Depending on the number of lithotypes, there is a finite number of rectangular partitions 

that may represent the relationships between the Gaussian random functions and the 

different lithotypes. The most sensible geologically speaking is often evident from the 

vertical proportion curves in the layered nature of the lithotypes: one particular lithotype 

may only be seen to be in contact with another specific lithotype. As well as this 

information, global proportions of each lithotype give an indicator of proportion when 

selecting the rock type rule.  

3.1 The rock type rule. 
 

The rock type rule splits a rectangle into sub-rectangles and assigns a lithotype to each 

sub-rectangle, without reference to proportions. The sub-rectangles created determine 

allowable contacts between lithotypes. 

 

To illustrate the rock type rule we will consider the case where three lithotypes are to be 

simulated. The ordering of the lithotypes in the rock type rule must respect the 
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sedimentary or contact sequence in order to correctly reproduce the geology of the study 

area in terms of rock type. For truncated Gaussian simulation the single Gaussian 

function is partitioned into three regions consistent with the proportions calculated in 

the vertical proportion curve and the sequential nature of the lithotypes. For the case of 

truncated plurigaussian simulation non-sequential contacts of lithotypes are permitted 

and so a number of different possibilities exist, for example where both 



F2 and 



F3 are in 

contact with 



F1.  

These regions are diagrammatically represented by rectangles partitioned into 

proportions as shown in Figure 5. The case where truncated Gaussian simulation is 

appropriate is shown in (a), a scenario where PGS is appropriate is shown in (b).  

 

   

 

 

 

   (a)     (b) 

Figure 5 Possible contacts for three lithotypes 

 

In both cases the horizontal line on the bottom of the rectangle represents the axis for 

the first Gaussian variable 
  
z

1
 (G1) and for (b) in Figure 5 the vertical line on the left 

represents the second Gaussian variable 
  
z

2  
(G2). The three colours represent the 

different lithotypes, and the equal areas of the rectangles indicate that the three 

lithotypes have equal proportions, however proportions need not be equal. The 

plurigaussian case shown in Figure 5 is further detailed in Figure 6.  

        
  
t
1
 

 

        
  
t

2
    

    

                      

       

Figure 6       Plurigaussian case for three lithotypes. 
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In this case two thresholds, 
  
t
1
 for 

  
z

1
 and 

  
t

2
 for 

  
z

2
, are used. In Figure 6 the three 

lithotypes are defined within the rocktype rule by the following: 

  

Decreasing the value of the threshold 
  
t
1
 in the first Gaussian would reduce the 

proportion of lithotype  and increase the proportion of lithotype  and . Diagrams 

representing possible contacts for four lithotypes are shown below.  

 

      

 

 

 

 

  (a)     (b) 

 

 

 

 

 

 

     (c) 

 

 

 

 

  (d)     (e) 

Figure 7 . Possible contacts for four lithotypes 

 

Truncated Gaussian simulation would be applied to a situation depicted in (a) but the 

other lithotype contacts would require a plurigaussian treatment. Rectangular divisions 

of the rocktype rule are preferred as they allow thresholds to be defined in the two 

Gaussian functions. For diagram (c) in Figure 7 the yellow region is not defined by 
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edges horizontally or vertically and while possible in terms of contacts is not physically 

able to be modelled. If lithotype proportions vary across the study region A then rock 

type rules can be calculated in a grid. This would assist in realistic simulation of a 

horizontally non-stationary situation. 

3.2  Vertical proportion curves and reference levels. 

 

A basic quantity that can be deduced from a data set is the proportion of this data set 

that is allocated to each of the categories of interest. It is uncommon for the proportions 

of these categories to be either vertically or horizontally constant in A. For example, 

petroleum reservoirs are not stationary in the vertical direction because of cyclic 

changes during their deposition and non-stationarity can also occur in mining deposits 

(Armstrong, et al., 2003). Vertical proportion curves (VPCs) were designed to quantify 

these changes and it is important to analyse this non-stationarity to enable an output 

model to reflect the differences in these proportions in a regionally sensitive manner.  

 

The first step is to simply count the number of occurrences of each category along lines 

parallel to the chosen reference level. The proportions are displayed as a graph showing 

the proportion of each category at each level. As it is likely that the VPCs vary 

horizontally depending on their location in the study region, a proportion map of VPCs 

is calculated over the entire study region. Initially, drill holes (wells) are grouped locally 

and a VPC is calculated for each set of wells. These VPCs are placed on a regular, 

coarse grid which covers the study region. At grid points where a VPC is not evident, an 

interpolation method (usually a kriging procedure) is used to generate a vertical 

proportion curve (with category proportions transformed where necessary so that they 

sum to 1). This proportion grid is used to identify local variations in category 

distributions.  

     

Determination of the vertical proportion curve from the sample data is highly dependent 

on the choice of a reference level. This level can be defined as a guide to the system of 

deposition of the different categories. The sample data will be transformed into a 

flattened space where the reference level represents the horizontal surface at zero 

elevation. The simulation will be done in this artificial volume and then the simulated 

values transferred to real stratigraphic space. 
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3.3 The Gibbs sampler  

 

This iterative algorithm (described in detail in Armstrong et al (2003) allows for local 

inequality constraints to be imposed on a simulation of a Gaussian random function. It 

is based on simulation of the underlying Gaussian function and not on the simulation of 

the indicator variables. Each sample data point in the study region must therefore have a 

Gaussian value within a predetermined area of the Gaussian function(s) that has been 

calculated from the lithotype proportions. Using the multivariate Gaussian approach, 

each lithotype data point is assigned an arbitrary starting value that is within its 

Gaussian thresholds. The Gibbs sampler is a process whereby these arbitrary values are 

then iteratively conditioned by all other regional (arbitrary) data values assigned to 

lithotypes until a steady state value is determined and the scores remain within their 

Gaussian threshold and also reflect the covariance model of the underlying Gaussian 

functions.  

Given vectors 
   
u

1
,.....,u

n
, and corresponding initial values 

  
z

1
,.....,z

n
: 

For    1  

1. Calculate the SK estimate 
   
z

SK

* (u


) and SK standard deviation 
   

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* (u

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{u

1
,.....,u

n
}\{u


} . 

2. Put 
   
z(u


)  z

SK

* (u


) 
SK

* (u


)r  where   r ~ N(0,1)   

3. If 
  
t
1

 z

 t


accept this value, otherwise draw a new  r value.  

Next  . 

 

This conditioning step is repeated until a steady state is reached for each of the Gaussian 

values. More than 5000 iterations may be needed for the updated data to reach a steady 

state (Walsh, 2004).  
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The key issue in the successful implementation of the Gibbs sampler is the number of 

iterations until the values each approach their own steady state, which is the length of 

the burn in period. Typically the first 1000 iterations are ignored and after this a test for 

convergence is used to see if a steady state has been reached. A poor choice of starting 

values and/or proposed distribution (as defined by the model) can greatly increase the 

burn in time. Starting values close to the centre (mode) of the proportion in question 

reduce the burn in time. Iterations are mixed poorly if the values stay in a small region 

of the proportion, and well-mixed iterations explore the proportion randomly before 

approaching the steady state (Walsh, 2004). 

 

3.4  Back-transforming the conditioned values 

 

When the sample categorical data have been given appropriate values within the 

Gaussian regions, the final stage of simulation is undertaken. The values are then back-

transformed into categorical data by consideration of their location within the thresholds 

of the Gaussian functions. This is a simple process in the case of truncated Gaussian 

simulation but for truncated plurigaussian simulation the values generated may fall into 

different regions of the Gaussians used for truncation and so the rock type rule diagram 

will allow back-transformation to categorical data.  

As a final step the data must be relocated from the reference level to their true location 

so that a true three-dimensional model simulation may be generated. 
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Chapter 4: Exploratory Data Analysis 

4.1 Background of Big Bell Gold Mine 

 

The Big Bell gold deposit lies in the Murchison mineral field, 30km WNW of the 

township of Cue, which is 650 km NNE of Perth, Western Australia. Gold was 

discovered at Big Bell in 1904. 

 

The Big Bell deposit is hosted by a regional volcanic (greenstone) and sedimentary 

sequence within the Murchison Province of the Archean Yilgarn cratonic block. At Big 

Bell the greenstone belt is narrow, steeply dipping, strongly attenuated and locally 

overturned. It forms the west limb of a north plunging structure. An open fold style is 

characteristic of the Big Bell regional structure. At least two generations of granitic 

intrusive activity are recognized in the region. 

 

In the region of the mine, there are three major subdivisions within the volcano-

sedimentary sequence: a lower mafic (rocks and minerals containing abundant 

magnesium and iron) sequence, a felsic (rocks and minerals rich in silica and other 

feldspar components such as sodium and potassium) volcanic sequence, and an upper 

mafic sequence.  

 

The Big Bell mine greenstone belt is bounded by granites. The broad subdivisions 

described above are recognized at the Big Bell mine, where the volcano-sedimentary 

sequence is 1500m wide, and are structurally overturned, so that the younger upper 

mafic sequence now lies on the footwall of the orebody. Almost all the gold 

mineralisation at Big Bell is confined to the quartz-muscovite- potassium feldspar rich 

rocks of the ore zone.  

 

The main orebody, mined underground and drill-indicated to a vertical depth of 1500m 

(Handley and Cary, 1990) forms part of a more than 1800m long and 30-70m wide zone 

of intensely altered amphibolite. This study will model the spatial distribution of the 

gold bearing altered rocks in the mined out open pit south of the main orebody, based 

on drill hole intersections below the base of weathering. The rock types indicated in the 

data are the boundary granodiorite gneiss (Lithotype 1), magnesium olivine-calcite 
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skarn (Lithotype 2), skarn-banded biotite (Lithotype 3), cordierite-bearing gneiss 

(Lithotype 4) and pyritic microcline gneiss (Lithotype 5) representing the southern tail 

of the main orebody.  

 

Initial geological reports were by Woodward (1914). The staff at Big Bell Mines 

Limited (1953) suggested that Big Bell was a replacement deposit. More recently 

Chown et al. (1984) highlighted the difficulty in determining the genesis, while Philips 

(1985) suggested a metamorphic replacement model. Further classification and 

description was undertaken by Mueller et al (1991).More recently,   Mueller et al (2002) 

modelled categorical data obtained from 42 drill holes using an ordinary indicator 

kriging algorithm and then a series of three different single step classification 

algorithms to model the rock types. 

 

Historically, most mining at Big Bell occurred between 1937 and 1955. During that 

time, 5.6 megatonnes of underground ore were milled at a rate of about 30,000  

tonnes/month for a recovered grade of 4 grams/tonne gold.  

 

Redrilling of the area commenced in 1980, and was increased over a two year period 

when core samples from 1974 drill holes were reassayed and found to contain ore 

grades. In 1982 Australian Consolidated Minerals Ltd established 100% ownership of 

the area and in 1983 began a shallow drilling programme for assessment of possible 

strike extensions of the deposit. A reserve amenable to open pit mining was outlined, 

and an assessment of the gold recoverable from the old tailings dump was carried out.  

 

The ACM – Placer joint venture began mine optimisation studies in 1984. A drilling 

programme more fully defined the deposit and tested for further reserves within the 

tenement. As a result of a feasibility study, the decision to reopen the mine was made in 

December 1987, and production commenced in February 1989.  Up to 1999, when the 

mine closed, the mine produced 27.8 million tonnes of ore at a recovered grade of 2.38 

grams/tonne from both open pit and underground mining (Mueller et al, 2002). 
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4.2 Data analysis 

 

The input data for this study consist of 1501 data from a total of 42 drill holes that have 

been classified according to the above five lithotypes. The data were rotated in space so 

that the dip plane coincides with the horizontal which will facilitate modelling.   

 

The purpose of this thesis is to simulate the five lithotypes over the study region. The 

motivation for consideration of lithotypes is a first step in analyzing mineral deposits in 

a geological region as these minerals vary greatly in grade from lithotype to lithotype. 

Once lithotypes are simulated mineral grades over the study region could be calculated, 

however this is not the basis of this thesis. Initial data analysis here simply consists of 

determining the positions and lithotypes associated with each of the core samples within 

the study region and proportions of each of the five lithotypes over the study region. 

 

The lithotype colour scale used in this study is shown in Figure 8. 

   

 

 

 

 

 

 

Figure 8 . Lithotype colour scale used in this study. 

 

Within the drill cores, the five defined lithotypes occur in the following proportions. 

 

Table 2  Lithotype percentages in raw data. 

Lithotype    Sample count    Percentage 

1 153 9.96% 

2 45 2.93% 

3 430 27.99% 

4 700 45.57% 

5 208 13.54% 

   

 L1  (granodiorite gneiss) 

 L2  (magnesium olivine-calcite skarn) 

 L3 ( skarn-banded biotite) 

 L4 ( cordierite-bearing gneiss) 

 L5 ( pyritic microcline gneiss) 
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Figure 9 . Proportions of lithotypes in the study region. 

 

When comparisons are made between the percentages of lithotypes present in the raw 

data and the subsequent plurigaussian simulation and ordinary kriging algorithms, 

lithotype 1 percentages will not be considered, as this lithotype envelops the study 

region, and will by necessity increase to fill the perimeter of the simulation grid.  

 

Truncation of                

drill holes  

 

 

 

 

 

 

Figure 10   Drill hole truncation. 

 

The data have been created using lithotype 1 as the bounding lithotype for the drill 

holes, that is each drill hole was truncated at both ends so that only one or two core 

measurements involving lithotype 1 were kept. 
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Figure 11. Proportions of lithotypes in the study region in the absence of L1. 

 

 

Figure 12 shows the lines of the core samples in both perspective and the three 

projections. The drill holes are not vertical, although they are parallel to the z axis in the 

y-z projection. The data may be rotated to make the drill holes vertical, although this is 

not necessary for successful simulation in this algorithm. 

 



41 

 

 

 

Figure 12   Projections and 3D image of data set. (Lithotype colours from Figure 8) 
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4.3 Variogram models for IK and SIS  
 

The variogram models for the five categories (lithotypes) used in this thesis for the IK 

estimations are summarised in Table 3. Each category was modelled with a nested 

structure consisting of a nugget effect model and two spherical models (Mueller, 2002), 

the parameters of which are listed in Table 3.

 
    

 

Table 3 Variogram parameters used in IK for categories (Mueller et. al, 2002)

  

Category 

 

Nugget 

Major 

Continuity 

Direction 

 

Sill1 

 

Ranges 1 

 

Sill 2 

 

Ranges 2 

1 

2 

3 

4 

5 

0.25 

0.40 

0.12 

0.25 

0.35 

0.00 

0.00 

0.00 

90.00 

90.00 

0.25 

0.30 

0.20 

0.40 

0.50 

(75,75,7) 

(150,75,3) 

(75,75,32) 

(50,50,20) 

(40,40,8) 

0.50 

0.30 

0.68 

0.35 

0.15 

(600,150,45) 

(500,100,15) 

(500,400,35) 

(600,150,30) 

(75,75,1000) 
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Figure 13  Variogram models for IK of the five lithotypes, L1 to L5, indicating down 

hole (left), major axis (middle) and minor axis (right). (Mueller, 2002). 
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The normalised variograms of the lithotypes L1 to L5, shown in Figure 13, all display a 

very good fit, especially for the first six lags, with the effective sill being modeled for 

those data that display this feature. The variogram model used in for SIS in this thesis is 

that of the category with the largest proportion in the data set: L4 (45.57% of data set). 

This model is a nested structure model consisting of a nugget and two spherical models 

defined in (54) and (55), with parameters listed in Table 3.   
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Chapter 5: PluriGaussian simulation 

 

5.1 Overview of the algorithm. 

 

Simulation of the drill hole data from the Big Bell gold mine will be conducted with 

reference to the gold and silver grade in each of the five lithotypes and also the 

distribution of lithotypes within the study region. Analysis and simulation of data are 

conducted using the geostatistical package Isatis, produced by the French company 

Geovariances. 

 

The plurigaussian algorithm requires a number of sequential steps to be performed. 

These steps are indicated in the flowchart shown in Figure 14. Detailed elaboration of 

each of the steps outlined will be done in the following chapter. 

 

Initially, the data set from the drill holes is loaded as a lines file, with a header file 

indicating the location and name of each drill hole. The drill holes are defined within a 

three dimensional structural grid of cells, and horizontal surfaces are defined as vertical 

boundaries of the structural grid. Each drill hole is discretised, or divided into equal 

length sections, within the structural grid, and the cells are referenced to the lower 

boundary surface. A number of the discretised lines of data may pass through a single 

structural grid cell, and so a single lithotype is assigned to each discretised cell within 

the grid.  (Isatis automatically converts the defined structural grid into a working grid 

for the purposes of calculation). The horizontal plane of the structural grid is divided 

into polygons and lithotype proportions in each of these polygons are calculated. 

Vertical proportion curves (VPCs) are also calculated within these polygons and these 

VPCs are extrapolated (completed to the bounding horizontal surfaces) and smoothed. 

These VPCs, together with the defined rocktype rule, allow the selection of underlying 

Gaussian random functions that will produce a model which will be used to simulate 

Gaussian values for lithotypes at unsampled locations.  As a final step, the simulated 

Gaussian values are back-transformed to the lithotypes to be displayed in the simulation 

within the structural grid. 
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Figure 14   A flowchart of the plurigaussian algorithm. 
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The first step in the plurigaussian algorithm is the creation of a 3D structural grid in the 

study region within which the simulation will be displayed. Secondly, the line style drill 

hole data are discretised along their lines and referenced to a plane. Next, an analysis of 

proportions of each lithotype in each cell in the 3D grid is undertaken using VPCs, 

alongside the creation of the rocktype rule.  

 

5.2 Defining the horizontal boundary surfaces of the structural grid. 

 

The ranges for the co-ordinates of the drill hole data are displayed below. As can be 

seen from Figure 12, a large proportion of the data lies within the x co-ordinate range 

570m – 650m. Upper and lower horizontal surfaces are defined as a first step towards 

defining a three dimensional grid which encapsulates a large proportion of the available 

data. The surfaces are at 40mz and at mz 210  and these surfaces bound 91.6% 

of the drill hole data set. Figure 15 displays these surface files with the line data. 

 

Figure 15   Lines and surfaces 

 

The structural grid is now defined. The horizontal characteristics of the grid (xo,dx, nx, 

yo, dy, ny) are the same as for the surfaces, with the vertical dimensions reaching from 

surface to surface with a mesh of 2 metres. This creates a grid with 168 000 cells, each 

of dimensions 4m by 10m by 2m. This structural grid will be transformed into a 

working grid for the simulation and then the simulation in this working grid will be 

back-transformed into the structural grid for the display of lithotypes. 
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5.3 Discretisation and Flattenning 

 

The drill hole data are not regular in their segmentation along each line and so each line 

is discretised into equal segments of 0.5m, which is appropriate as it is equal to the 

mesh of the structural grid. As the horizontal lag of the structural grid cells is greater 

than the vertical lag, a distortion ratio is applied to the cells. The distortion ratio is 

calculated by a division of the product of the horizontal extension values (dx,dy) by the 

vertical extension value (dz). Here, dx =dy =2 and dz = 0.5, thus the distortion ratio is 8. 

 

The working grid is now created and is the structure within which the analysis of 

lithotype proportions of the discretised data takes place. The working grid has the same 

characteristics as the structural grid. In this thesis the working grid has been 

transformed parallel to the lower surface and has a new proportions Macro variable in a 

new discretised well file in which the proportion of each lithotype within each cell of 

the structural grid is stored (and updated subsequently).  

 

The next step is to choose a method of assigning a single lithotype to each cell of the 

(discretised) working grid. There are three choices available in Isatis, central (the 

lithotype in the middle of the discretized core), most representative (the lithotype with 

the greatest proportion within the core) and random (a lithotype is randomly assigned 

from those present in the discretised core). In this study the central method has been 

used.  
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5.4 Analysis and estimation of lithotypes 
 

The proportions of lithotypes in each drill hole can be displayed in pie graphs as shown 

in Figure 16. Broadly, it is clear lithotypes 4 and 5 occur in larger proportions in the 

North of the study region (  y  3000m ) and lithotype 3 occurs in larger proportions in 

the South of the study region (  y  2900m ) where lithotype 5 is absent. 

 

 

Figure 16    Pie charts indicating regional lithotype proportions. 
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In the analysis of the data displayed in the working grid in Figure 16, two processes 

require consideration: polygon definition and creation of proportion curves. 

 

Polygon definition allows the working grid to be sectioned into a number of polygons 

that are 3D sections of the structural grid much larger than the horizontal mesh. The 

balance here is to form enough polygons within the study region so that regional 

sensitivity of lithotype proportions can be assessed whilst not dividing the 42 drill holes 

into polygons where similar VPCs are calculated.   The longest axis for the data is the in 

the y direction, and so five polygons were created, splitting this axis into four equal 

areas in the north and one larger area the more sparsely populated south                          

(  y  2650m ), allowing each polygon to be populated with at least five drill hole cores. 

The  Proportions of lithotypes can be calculated from VPCs within each of the (five) 

polygons defined, allowing for the indication of specific lithotypes in particular areas of 

the working grid and also to update the lithotype Proportions Macro file in a regionally 

sensitive manner. 

 

The next step in analysis of the lithotype proportions is to consider the VPC that can be 

generated in each defined polygon of the study region. Each VPC is calculated from 

surface to surface in the structural grid, so it needs to be completed using a linear 

extrapolation of the top and/or bottom informed layers.  

 

Once completed, the VPCs are normalised at each layer and also smoothed by running a 

filtering algorithm a number of times through the data. Five passes of the filter have 

been run in the examples shown. Figure 17 shows the working grid split into the five 

polygons, each with its normalised, completed and smoothed VPC, with the global VPC 

in the bottom right corner. Five polygons were defined to cater for the different lengths 

and starting heights of the drill holes in the study region. 

 

The individual VPCs are shown in Figure 18. Each VPC is reproduced with raw 

proportions on the right and with normalised, completed and smoothed proportions on 

the left. Areas above and below each raw VPC are generally completed with lithotype 1, 

the bounding lithotype of the study region. This will allow for the production of more 

realistic simulations.  
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Figure 17  Five polygons and their completed VPCs in the study region. 
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Figure 18   Raw (right) and completed (left) VPCs. 
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Once the VPCs from each polygon are completed, normalised and smoothed, they can 

be used in the subsequent interpolation procedures. It should be noted that normalising 

of the VPCs has caused possible artefacts in diagrams two and four in Figure 18, where 

the bordering lithotype L1 is not the only lithotype at the top of the completed VPC. 

This may be the cause of inadmissible contacts occurring in some of the simulations 

(section 6.3). 

 

An interim step is to calculate the 3D lithotype proportions on the working grid. 

Initially, these proportions were set to the global proportions. They are now calculated 

more accurately in the working grid using the inverse squared distance interpolation, 

using the VPCs as constraining data. For each cell at a particular level in the working 

grid, the proportion of each lithotype is a linear combination of the proportions in all the 

VPCs, with the weights of the combination being proportional to the inverse squared 

distance between each VPC and the target cell. Other possible procedures for the 

interpolation are a user defined 2D kriging model or a layer-by-layer global proportion 

calculation. 

 

Displaying each VPC over the entire working grid is difficult, so a horizontal projection 

(3D proportion map) of a coarse grid of these VPCs is shown. The VPCs are averaged 

layer by layer in moving windows, with extension for this moving window of 2 units. 

Each VPC in this grid is an average of 10 VPCs in the x direction with the origin of this 

axis at rank 5, and an average of 20 VPCs in the y direction with the origin for this axis 

at rank 10. Figure 19 displays the 3D proportion map, which again shows the absence of 

lithotype 3 in the North and its appearance in the South, together with the emergence of 

lithotype 2.  
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Figure 19   3D proportion map 
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5.5 Rocktype rule and Gaussian random functions. 

 

Once lithotype proportions in each cell have been calculated, determination of the 

underlying Gaussian random functions and also the allowable transitions between 

lithotypes must be defined. 

 

If the lithotype contacts are purely sequential, then only one Gaussian random function 

needs to be truncated to simulate the lithotypes. In this study, whilst lithotypes 2,3, 4 

and 5 are generally sequential in their contacts ( L2 contacts L3 but not L4 or L5 for 

example), they also all contact lithotype 1. 

 

Transition matrices (Table 4 and Table 5) indicate the proportions of contacts between 

the five lithotypes along the drill cores. They assist in the development of the rocktype 

rule. The indicator variograms between lithotypes are analysed and this information 

allows for the underlying Gaussian random functions to be modeled subsequently. 

When all the parameters have been defined, conditional plurigaussian simulations can 

be run. 

 

Table 4 . Downward matrix of transition proportions. 

 

 Number L1 L2 L3 L4 L5 

L1 158 0.753 0.025 0.120 0.089 0.013 

L2 59 0.000 0.542 0.458 0.000 0.000 

L3 519 0.000 0.044 0.906 0.050 0.000 

L4 781 0.045 0.000 0.004 0.880 0.736 

L5 220 0.023 0.000 0.000 0.241 0.736 

 

 

Table 5    Upward matrix of transition proportions. 

 

  Number L1 L2 L3 L4 L5 

L1 159 0.748 0.000 0.000 0.220 0.031 

L2 59 0.068 0.542 0.390 0.000 0.000 

L3 519 0.037 0.052 0.906 0.006 0.000 

L4 780 0.018 0.000 0.033 0.881 0.068 

L5 220 0.009 0.000 0.000 0.255 0.736 
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Figure 20 Lithotype contact map  

 

The contact proportions indicatd in the above matrices and the lithotype contact map are 

summarised in the rock type rule shown in Figure 21 both in terms of relative 

proportion and physically allowable contacts. The rock type rule has three sections: 

contacts between lithotypes on the left, the five lithotypes in the centre and their 

associated summary contact histograms on the right. It can be seen from the matrices 

that L1 has contact with all other lithotypes and this is indicated as proportions in the 

bottom right histogram and also in the left hand panel of Figure 21, where L1 (red) is in 

contact with the other four lithoptypes. L2 (orange) only contacts L1 (red) and L3 

(blue), L3 only contacts  L1, L2 and L4 (green), L4  only contacts L1, L3 and L5 (pink), 

and L5 only contacts only L1 and L4.  

 

 

Figure 21   The rocktype rule definition panel 
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The horizontal axis is modelled by one Gaussian random function (G1) and is truncated 

once to model L1 against the combined proportion of the other four lithotypes, whereas 

the vertical axis defines the second Gaussian random function (G2), which is truncated 

at three points to model proportions of L2, L3, L4 and L5.  

 

The model for each underlying Gaussian random functions is determined by an iterative 

process described in section 2.7.  Variogram fitting for the lithotypes in the Isatis 

software is an indirect, iterative process. Underlying Gaussian function models are 

defined and, together with the rocktype rule and the threshold parameters, theoretical 

variograms are tested against the experimental lithotype variograms until an appropriate 

fit for all experimental lithotype variograms is produced. The outcome of the iterative 

process is shown in Fgures 23, 24 and 25,  where the indicator variograms (lines) for the 

unconditional simulation are compared to the experimental indicator variograms (dotted 

line) for each lithotype. The two underlying Gaussian models, G1 (horizontal axis) and 

G2 (vertical axis), are defined in Figure 22, where one threshold (t1) is required for G1 

between lithotype L1 and the other four lithoptyes combined, and three thresholds (t2, t3 

and t4) are required for G2 between lithotypes L2, L3, L4 and L5. 

 

 

Figure 22 Underlying Gaussians and associated thresholds for PGS simulation. 
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Table 6 describes the Gaussian model parameters used in the PGS process. Each 

Gaussian is defined using the spherical model defined in (26). The fit of the 

experimental variogram models is satisfactory with the exception of L4 (green) in 

Figure 25. This is the least adequate variogram model of all lithotypes, with the short 

lag fit being overestimated and the longer range lags being underestimated, however the 

iterative process demands that a balance be reached in all variograms, and the 

underlying model parameters (Table 6) allowed a good fit for the remaining lithotype 

variograms. 

 

Table 6 Parameters for underlying Gaussian models. 

 

 

Gaussian model 

 

Model 

 

Sill 

 

Range 

Anisotropic 

Scale 

Factors 

G1  Spherical 3.1 110 (7.8,110,20) 

G2 Spherical 1.2 8 (7.8,50,16) 
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Figure 23  Experimental (dashed) and model (solid) horizontal variograms for 

lithotypes for L1 (top), L2 (middle) and L3 (bottom). 
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Figure 24   Experimental (dashed) and model (solid) horizontal variograms for 

lithotypes L4 (top) and L5 (bottom) 
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Figure 25 . Experimental (dashed) and model (solid) vertical variograms for lithotypes 

1, 2and 3 (top) and lithotypes 4 and 5 (bottom). 
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5.6 Conditional plurigaussian simulation 

 

Once the rocktype rule and the variogram models have been defined, simulations 

conditioned on drill hole data can now be performed. The moving neighbourhood 

search ellipsoid is defined at this stage. This defines the region used for selection of 

neighbourhood samples used for the kriging step. The Gibbs Sampler has been 

employed to allocate normal score values for the lithotypes at data points. A turning 

bands algorithm with 100 bands is employed to initially determine an unconditional 

simulation from the underlying covariance function and then to a conditional simulation 

is determined from a kriging of the error between the conditioning data at known 

locations and the unconditional simulation. These simulated Gaussian values are finally 

back-transformed to lithotypes. A cutaway 3D grid representation is shown in Figure 

26, followed by horizontal slices at 10m depth intervals through the study region, 

beginning from mz 110 (top left) through to mz 30 (bottom right). These slices 

will be used as a basis for the physical comparison with both the IK and SIS models.  

 

 

 

Figure 26    3D cutaway representation of the conditional PGS over the study region. 

 L1 

 L2 

 L3 

 L4 

 L5 
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Figure 27 . Horizontal slices at 10m intervals of PGS output in the study region from 

mz 110  (top left) to mz 30  (bottom right) 

The above figure reflects a number of features seen in the original data as displayed in 

Figure 12. Lithotype 4 (green) predominates in the north (high y values) and in the 

south lithotype 3 (blue) is more evident at high z values transitioning to lithotype 4 at 

lower z levels in this region. Lithotype 2 (orange) has the least global proportion 

(2.93%) in the raw data and importantly it has not been removed from the simulation 

through under-estimation. 
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Figure 28 displays the variations inherent in the simulation process. The six diagrams 

show a horizontal slice at mz 110  from the output of six different simulation runs of 

the plurigaussian algorithm. There is a consistency in both the proportions of lithotypes 

present and their relative positions within the slice.  

 

F 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 . Six different realisations of PGS at depth mz 110  
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Chapter 6: Comparison of output of models 
 

In order to assess the differences between the three models in this study, three 

comparisons will be made: visual inspection, regional rock type proportions and a 

calculation of the numbers of lithotype contacts violating the rocktype rule (a reflection 

of lithotype contacts in the experimental data).   

6.1  Visual comparison between simulations  and estimation. 

 

 

 
 

 

Figure 29 Excavated 3D projections of IK (top left), SIS (top right) and PGS (bottom) 

 

The three models shown in Figure 29 display regionally similar lithotype distributions, 

with PGS having less of the lithotype clustering effect evident in IK yet also a less fine 

 L1 

 L2 

 L3 

 L4 

 L5 
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mosaic effect evident in SIS. This suggests a more balanced and regionally sensitive 

output on a global scale for PGS although it is clear that IK and PGS have particularly 

similar spatial distributions of L5 (pink) and L3 (blue). Whilst L2 occurs in the same 

thin mid-level band in all models, the PGS model places L2 within one distinct upper 

region of the study area whereas SIS and IK models spread very small pockets of L2 

through the entire the study region.  

 

Figures 30 and 31 clearly show the unrealistic clustering of lithotypes from the IK 

model as well as random allocations of L1 over the study region. The SIS slices show a 

gradual change of character as z values increase whilst the PGS outputs are more 

definite in displaying the regional lithotype proportions seen in Figure 12 (lower panel). 

All models display varying degrees of so-called inadmissible lithotype contacts 

(contrary to the contacts appearing in the sample data and defined in the rock type rule), 

generally when lithotype 2 (orange) contacts either lithotype 4 (green) or 5 (pink).  

 

  



67 

 

   

 

Figure 30. IK (left), SIS (middle) and PGS (right) horizontal slices at mz 110  

(top), mz 100  (middle) and mz 90  (bottom). 
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Figure 31. IK (left), SIS (middle) and PGS (right) horizontal slices at mz 80  (top), 

mz 70  (middle) and mz 60  (bottom). 
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6.2  Global and regional rock type proportions 

 

Table 7 displays global proportions for the drill-hole data set and the three models 

considered. The IK model has, as expected, reproduced the global lithotype proportions 

very closely. Both SIS and PGS have much higher proportions of the boundary 

lithotype L1 and compensatory lower proportions of the other lithotypes. The variation 

within each of the lithotype proportions for SIS is far greater than for PGS, shown both 

in summary in Table 7 and over the 100 simulations in Figure 32.  

Table 7   Summary lithotype percentage statistics for Data set, IK,  

   SIS (100 realisations) and PGS (100 realisations). 

 

 Data Set IK  SIS    PGS   

   min mean max st. dev min mean max st. dev 

           

L1 9.96 9.97 18.19 21.622 28.81 1.73 27.35 28.573 28.59 0.46 

L2 2.93 2.4 1.24 2.644 4.45 0.67 1.48 1.875 2.29 0.15 

L3 27.99 27.99 22.25 25.348 28.65 1.41 22.78 23.85 24.74 0.43 

L4 45.57 46.1 33.05 38.85 44.19 2 33.75 34.77 35.98 0.51 

L5 13.54 13.54 8.5 11.536 14.74 1.45 10.28 10.925 11.71 0.33 
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Figure 32    Lithotype proportions for 100 simulations of SIS (top) and PGS (bottom) 

 

The use of the Soares classification algorithm has enforced the proportions from the 

data set to be reproduced in the IK model (Table 7) . For SIS the relative magnitude of 

proportions is the same as for IK and the data set.  Figure 32 indicates that for SIS 

(generally) the proportion of L1 (red) is lower than L3 (blue), however for PGS it 

appears to be different: there appears to be a greater proportion of locations where L1 is 

allocated rather than L3. The concern that the compensatory balancing required due to 

the higher proportion of the boundary category L1 has lowered the validity of the PGS 

output is unfounded. Figure 33 shows the relative proportions of each of L2, L3, L4 and 

L5 within the SIS and PGS models when removing the L1 proportion from the 
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calculation. The effect of the variation in the proportions of the boundary lithotype L1 

has had little effect with respect to the other lithotypes within each model. Relative 

proportions are not only very similar in each of the simulations they are also similar to 

the drill-hole data set and IK proportions, shown in Table 8. Whilst the PGS model has 

the underlying goal of matching global experimental lithotype proportions, the „filling 

in‟ of the boundary lithotype has had little effect on the consistency of the PGS model 

in terms of validity of lithotype proportions modelled in the body of the study region.  

 

 

 
 

Figure 33 Relative proportions of L2, L3, L4 and L5 with L1 removed for SIS (top) 

and PGS (bottom). 
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In Figure 33 variation in SIS output for the four lithotypes is evident, contrasted against 

the consistent nature of the lithotype outputs of PGS. Table 8 confirms that SIS has 

between 3 and 4 times the variation of each lithotype proportion than PGS however 

mean proportions of L2, L3 and L4 for SIS are closer to the data set proportions than for 

PGS. In all 100 PGS simulations the proportions of L4 and L2 are below that of the data 

set whilst the L3 proportion is above the data set.  

 

Table 8  Summary data of category percentages from SIS (top) and PGS (middle) 

and IK and Data Set (bottom) in the absence of L1. 

SIS L2 L3 L4 L5 

min 1.55 28.48 43.50 10.81 

max 5.78 36.30 55.95 18.71 

mean 3.37 32.34 49.57 14.72 

st dev 0.86 1.65 2.34 1.80 

 

PGS L2 L3 L4 L5 

min 2.08 32.04 47.22 14.39 

max 3.18 34.57 50.44 16.38 

mean 2.62 33.39 48.69 15.30 

st dev 0.21 0.57 0.64 0.46 

 

  L2 L3 L4 L5 

Data Set 

 

3.25 

 

31.09 

 

50.62 

 

15.04 

IK 

 

2.67 

 

30.99 

 

51.21 

 

15.04 

 

The 3D PGS excavation box perspective shown in Figure 29 (lower) indicates that the 

L1 output is concentrated, as expected, at the top and bottom boundaries of the study 

region. This is confirmed by the histograms of lithotype proportions for PGS, IK and 

SIS shown in Figures 34 and 35 taken at 10m depth intervals. These histograms are 

compared to histograms of lithotype proportions of 10m wide sections (in the vertical 

direction) of the data set (in red), the width of the sections allowing meaningful 

numbers of data points to be included in each histogram. These data set histograms give 

a regional lithotype proportion and so allow comparison to the model histograms. The 

relative proportions of all models correlate with the data set, with the lithotype of 

greatest frequency matching in each case, with the only exception being the PGS model 

at   z  60m in Figure 35, where the proportion of L1 is greater than L3, possibly a 
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result of the completion of the VPCs with L1 in PGS. The histograms also indicate that 

SIS has less regional variation in terms of the proportions of the five lithotypes. This is 

of concern when it is clear that such variation does exist in the experimental data 

(Figure 12). 

 

  

  

  
 

Figure 34 Lithotype proportions at   z  110m  (top),   z  100m  (middle) and  

  z  90m (bottom) for (from left to right) IK, SIS, PGS and the data set. 
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Figure 35    Lithotype proportions at    z  80m (top),   z  70m  (middle) and  

  z  60m (bottom) for (from left to right) IK, SIS, PGS and the data set. 
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As well as comparison of lithotype proportions over horizontal slices of the study 

region, it is useful to consider individual grid node lithotype proportions for PGS and 

SIS over the 100 simulations of each model. For four grid nodes in the study area 

frequencies of lithotype allocations over the 100 simulations for each model have been 

calculated and Figure 36 displays the output histograms. PGS usually has a better 

defined output mode than SIS. 

 
 

 Location (606m,3250m,-160m) Location (606m,2750m,-120m) 

 

 
 

 Location (622m,2950m, -140m) Location (622m,2550m,-180m) 

 

Figure 36 Lithotype proportions at four grid locations in the study region for 100 

simulations of PGS (red) and SIS (blue). 
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L3 

6.3 Inadmissible contact numbers for IK, SIS and PGS.  

 

A test of the effectiveness of the PGS output over the IK and SIS output is to count the 

number of contacts between adjacent cells from each output model that do not match 

those found in the data set, allowing a quantitative comparison of the three models in 

terms of their relationship with the reality of lithotype contacts displayed in the reality 

of the data set. This concept is an adjunct to the concept of connectivity. 

 

 
 
 
 
 
    
       
 
 
 

 

 
 
 
 
 
 
 

Figure 37.  Cells considered for inadmissible contact numbers. 

 

Figure 37 illustrates the process to be considered. For each of the three models the 

lithotype allocated to a particular cell is compared. A study region grid cell lithotype 

from all three models is compared to the lithotypes in all cells immediately adjacent. 

From the rocktype rule, shown in Figure 21, the contact between L4 and L2 in Figure 

37 is inadmissible and the inadmissible contact count will be increased by one.  

 

The inadmissible contact process count is carried out by code shown in Appendix 1 

 

The percentages of inadmissible contacts for each simulation are plotted in Figure 38. 

The realisations of SIS have a greater number of inadmissible contacts (up to 13.624%) 

L4 

 

L 2  

 

 

L5 
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and although PGS has the constraining rocktype rule, the nature of the simulation leads 

to a small percentage (on average 1.869%) of inadmissible contacts. The IK model 

(3.364%) has nearly twice the number of inadmissible contacts as PGS on average. 

 

 

Figure 38      Inadmissible contact percentages for SIS and PGS over 100 simulations. 

 

Table 9 Summary inadmissible contact percentages for IK, SIS and PGS  

 Mean St Dev Min Median Max 

IK 3.364 0    

SIS 10.132 1.410 7.183 10.010 13.624 

PGS 1.869 0.122 1.610 1.868 2.127 
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6.4    Transition matrices for IK, SIS and PGS output. 
 

The geostatistical package Isatis provides drill hole transition proportion matrices 

(downward and upward) for lithotype contacts (Tables 4 and 5). The figures in the 

matrix are the numerical equivalent of the rocktype rule, where the lithotype occurring 

in each cell of a discretised core is compared to the adjacent downward or upward cell, 

and the proportions of transitions between the five lithotypes are calculated. As the 

downward and upward transition proportion tables are not significantly different, a 

comparison of transition proportions from cores taken from the three models will be 

made only with the downward transition proportions from Table 4. Eighteen cores from 

the output of each model have been taken, with the 100 simulations generated from SIS 

and PGS all considered. The cores were taken from two central lines in the study region 

that closely match the drill hole data positions shown in Figure 16. The 18 vertical cores 

were taken along the two lines   x  606m  and   x  622m  for y values from   y  2550m  

to   y  3350m  in 100m increments for y, as indicated in Figure 39. 

 

 

Figure 39     Positions of 18 cores taken from IK, SIS and PGS outputs. 

 

 

Summary data for each of the 25 possible transitions (L1->L1 to L5->L5) for the 100 

simulations of both SIS and PGS have been calculated. Table 10 displays the data 

downward transition proportions, the IK transition proportions and the average 

transition proportions for the 100 simulations of both SIS and PGS. Of significance is 

the mean of the absolute differences for the respective (mean) transitions of each model 

from the data. PGS differed from the data by an average of 6.9%, compared to IK at 
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10.8% and SIS 11.8%. Each model performed poorly in matching the data L4->L5 

transition, and if this figure is removed, PGS performs at a 4.4% average difference for 

the other 24 comparisons compared to IK at 8.4% and SIS 9.6%.  For the inadmissible 

transitions (l2->L4, L2->L5, L3->L1, L3->L5, L4->L2, L5->L2, L5->L3) PGS averages 

1.2% contact, IK 8.1% and SIS 6.0%. These comparisons lend weight to the 

acceptability of PGS over the other two models.  

 

Table 10    Downward transition matrices for (top to bottom); experimental data, IK, 

SIS (average of 100 realisations) and PGS (average of 100 realisations). 

 

Data L1 L2 L3 L4 L5 

L1 0.753 0.025 0.120 0.089 0.013 

L2 0.000 0.542 0.458 0.000 0.000 

L3 0.000 0.044 0.906 0.050 0.000 

L4 0.045 0.000 0.004 0.880 0.736 

L5 0.023 0.000 0.000 0.241 0.736 

 

IK L1 L2 L3 L4 L5 

L1 0.841 0.000 0.012 0.059 0.088 

L2 0.222 0.185 0.074 0.296 0.222 

L3 0.012 0.024 0.925 0.039 0.000 

L4 0.023 0.010 0.036 0.888 0.043 

L5 0.034 0.028 0.000 0.225 0.713 
 

SIS L1 L2 L3 L4 L5 

L1 0.598 0.009 0.093 0.209 0.090 

L2 0.107 0.424 0.286 0.148 0.034 

L3 0.099 0.033 0.668 0.159 0.041 

L4 0.113 0.009 0.104 0.700 0.074 

L5 0.129 0.009 0.078 0.282 0.502 

 

PGS L1 L2 L3 L4 L5 

L1 0.813 0.002 0.027 0.104 0.054 

L2 0.055 0.539 0.386 0.019 0.000 

L3 0.055 0.036 0.799 0.104 0.006 

L4 0.079 0.000 0.084 0.764 0.072 

L5 0.063 0.000 0.006 0.312 0.618 
 

 

 

 

 

 



80 

 

The associated boxplots for the transition proportions of the twenty five transitions for 

SIS and PGS are shown in Figures 40 and 41, together with the experimental drill hole 

data transitions (red line) and the mean value for the respective model‟s average 

transition proportion (blue line). Figure 42 compares the IK transition values with the 

experimental drill hole data transition values. All models significantly underestimate the 

L4->L5 transition proportion and both the PGS and SIS models display wide ranges of 

transition proportions for the L2->L2 and L2->L3 transitions. The IK model displays 

significant variation from the data transition proportions for L1->L2 through to L2->L5. 

Of particular interest from the models are two statistics: inadmissible contact transition 

proportions and internal transitions (downward connectivity of lithotypes). 

 

The inadmissible contacts (0% transition proportion) from the previous section are for 

the six transitions L2->L4, L2->L5, L3->L5, L4->L2, L5->L2 and L5->L3. Table 10 

indicates that the IK model honours two of these (L3->L5 and L5->L3), the PGS model 

honours three (L4->L2,L5->L2 and L2->L5) while the SIS model has no 0% transitions. 

For the 6 transitions listed above, PGS performs very well, averaging 1.2% contact, 

while SIS averages 5.9% and IK 8.1%. Whilst the rocktype rule in PGS should prohibit 

any inadmissible contacts from occurring, Armstrong et al. (2003) notes that vertical 

non-stationarity of lithotype proportions, especially in the PGS case, can lead to such 

anomalies.  

 

For the five within lithotype transitions (L1->L1 for example) the PGS model averages 

an 8% difference from the downward data transition proportions and the IK model 

generally performs well, at 9.9% difference, however for L2, the lithotype with the 

smallest proportion in the study, IK is poorly matched to the data in terms of 

connectivity. The SIS model matches the downward internal data transition proportions 

poorly, averaging 18.5% difference. 
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Figure 40    Boxplots of transition proportions for (left to right) L1->L1 to L5->L5 with 

SIS transition averages ( blue) and experimental proportions (red). 

 

 

 
 

Figure 41     Boxplots of transition proportions for (left to right) L1->L1 to L5->L5 

with PGS transition averages ( blue) and experimental proportions (red). 
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Figure 42     Transition proportions for (left to right) L1->L1 to L5->L5 from IK (blue) 

and experimental data (red)  
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6.5 Discussion and conclusion 
 

This thesis sought to explore the PGS algorithm and evaluate its performance against 

SIS and IK. An exponential increase in computing power over the 25 years since IK 

was introduced by Journel in 1983 has allowed practitioners access to models of 

increasing complexity. Do the new models display outputs which have significant 

advantages over the original, simplistic IK? The evidence in this thesis is that, just as 

PGS has been developed as computing power has allowed, so the model that this 

technique produces has measurable advantages over IK and SIS.   

 

As a technique in resource estimation, IK is over 25 years old. The original intention of 

IK was the estimation of local uncertainty by the process of derivation of a local ccdf 

and the appeal was that this technique is non-parametric − it does not rely on the 

assumption of an underlying model for its implementation.  Goovaerts (2001) notes that 

a ccdf obtained by IK provides a measure of uncertainty related to a single location 

only, and that a series of these single-point ccdfs does not provide a sense of spatial 

uncertainty. There are a number of downfalls of IK in terms producing a model of 

categorical data. The first is that the variations in IK estimations are based on the spatial 

variation of data at sampled locations only, and variations in estimations at unsampled 

locations are not taken into account. This important factor is remedied in the simulation 

algorithms. 

 

IK produces output with unrealistic clustering and distribution of lithotypes. This is also 

noted by Juang et al (2003) with the contention that kriging estimations present only 

simplistic spatial patterns and do not catch the detail. An underlying issue with IK is 

that it usually underestimates those categories with very small proportions (in this 

thesis, L2). Whilst this has been attended to by the implementation of Soares‟ post-

processing algorithm (which ensures that the proportions of the five categories in the 

output match those of the data set), L2 has been allocated in an unrealistic manner. 

Figure 22 shows the mid level band of L2 matching its position in the data set shown in 

Figure 9 however L2 also appears in a good number of small patches in the centre of the 

study region, positions not justified when considering the data set. It is however fair to 

say that with respect to all five lithotypes, IK gives a simplistic model of the lithotype 

distribution, with the overall picture being consistent with the data set and the output of 
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the other models. Even with the clustering of lithotypes, IK has managed to be 

regionally sensitive to lithotype proportions. The regional lithotype values (shown in 

figures 28 and 29) are similar to SIS but have an even greater degree of similarity to 

PGS.  

 

A drawback of IK, in terms of this data set, is that it is not sensitive to allowable 

lithotype contacts. Table 9 indicates that 3.4% of the contacts in the IK output model do 

not conform to the reality of the data set. Whilst this is surprisingly low considering 

there is no restriction with IK on the types of contacts that can be produced and also the 

nature of lithotype allocations from the Soares post-processing algorithm, it is nearly 

twice the percentage of that produced by PGS.  

 

SIS is an improvement over IK due to the variation in estimations at unsampled 

locations being taken into account, It is a model which offers some improvements on IK 

yet it lacks the refinement and balance of PGS. In its favour, it is quick in its 

implementation and, as for IK, non-parametric.  Figure 29 shows that SIS displays a 

greater degree of global spatial variability (less clustering) over IK, however this global 

variability is at the expense of regional sensitivity of lithotype proportions. Figures 34 

and 35 indicate that a SIS realization displays little variation regionally, as the six SIS 

histograms of lithotype proportion at the slice levels vary least among the three models 

(for example the proportion values for L1 varying between 0.24 and 0.37 for SIS 

whereas for IK the variation is between 0.01 and 0.25, and for PGS between 0.1 and 

0.46).  

 

SIS has far greater variation in proportions of all lithotypes over the 100 realizations 

than PGS, both with L1 present (Figure 32) and L1 absent (Figure 33). Interestingly, 

SIS and PGS have varied most in their proportional allocation of L1 and L3 when L1 is 

present although this is rectified when L1 is removed from the calculation. The high 

proportion of inadmissible lithotype contacts for SIS (10.1%) was more than five times 

that of PGS (1.9%) and also the degree of variation in this proportion (more than ten 

times greater than PGS) indicated in Table 9 are evidence towards the strength of PGS 

over SIS in terms of consistency of results. 
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In all areas of model output PGS stands as the model of choice for this data set. It is 

initially a time consuming algorithm in terms of variography, definition of polygons and 

the subsequent completion and smoothing of the VPCs, the rocktype rule and the 

implementation of the non-conditional and then conditional simulations. Unlike PGS, 

neither IK nor SIS consider the cross correlations between indicators.  All evidence 

leans towards this effort being of great value. The PGS realizations honour the 

topological constraint of allowable contacts between lithotypes to a far greater extent 

than either of the other two models considered, they honour the spatial continuity 

(indicator variograms) of the data set, and the non-stationarity of category proportions 

with respect to depth (VPCs). Figures 34 and 35 reflect the sensitivity of the PGS 

models to regional lithotype proportions whilst figure 36 indicates that the output 

models of PGS also display a remarkable consistency of lithotype proportions over the 

100 simulations.  

 

Table 7 indicates that PGS allocates L1 at 28.57% on average against the data set figure 

of 9.96% and this is most probably as a result of completion of the study region with the 

L1 bounding lithotype and there is a subsequent under-allocation of other lithotypes in 

the study region. When L1 is removed from the calculation (Table 8) PGS does 

adequately mirror the data set percentages for the other four lithotypes.  

 

IK and SIS offer some advantages: they are easily computed, they reflects the global 

proportions of the data set (although SIS also has great variation in lithotype 

proportions) and provide visually appropriate global models, although IK lacks the fine 

detail and SIS produces too patchy a model, and both have relatively high inadmissible 

lithotype contact percentages. Evidence is strong that the computation time required for 

PGS is more than adequately compensated for by a number of spatial advantages. 

Global and regional lithotype proportions are well matched to the data set, spatial 

variability is well presented and admissible lithotype contacts are minimized. The PGS 

simulations also display a consistency of lithotype allocation.  

 

PGS is a model worthy of consideration in this non-sedimentary environment. It 

outperforms both IK and SIS in many key areas of comparison. Table 8 summarises the 

advantages and disadvantages of each model.  
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Table 11 Advantages and disadvantages of the three algorithms 

 

Algorithm Major Advantages Disadvantages 

IK  Implementation is 

inexpensive 

 Matches initial 

lithotype 

proportions (with 

Soares post-

processing) 

 Unrealistic 

clustering of 

lithotypes 

 Not sensitive to 

allowable lithotype 

contacts 

 

 

 

SIS  Implementation is 

inexpensive 

 

 

 

 Simulations highly 

variable 

 Not sensitive to 

allowable lithotype 

contacts  

 Not as regionally 

sensitive as PGS to 

lithotype 

proportion non-

stationarity 

 Simplistic 

variography 

 

PGS  Sensitive to 

allowable lithotype 

contacts  

 Consistency of 

lithotype 

allocations across 

100  simulations 

 Regionally 

sensitive to 

lithotype 

proportion non-

stationarity 

 Balanced output of 

model: greater 

detail than IK but 

less mosaic than 

SIS. 

 Models 

connectivity well 

 Models 

inadmissible 

transition 

proportions well  

  Implementation is 

time consuming 

 

 



87 

 

 

 References 

 

Armstrong, M., Galli, A., Le Loc‟h, G., Geffroy, F., and Eschard, R. (2003) 

Plurigaussian Simulations in Geosciences. Springer. 

 

Aniekwena, A. (2003). Integrated Characterisation of the thin-bedded 8 reservoir, 

Green Canyon 18, Gulf of Mexico.Retrieved 29
th

 April 2006 from 

http://www.earthdecision.com/news/white papers/spe84051.pdf 

 

Armando, Z., and Bardossy, A. (n.d.) Introduction to Geostatistics. Retrieved on 3
rd

 

May 2006 from 

http://www.warem.unistuttgart.de/study/program03/downloads/download702e/geostatis

tics_print.pdf 

 

Beucher,H. And  Renard, D. (2005). Reservoir characterisation. Retrieved 28
th

 January 

2006 from http://cg.ensmp.fr/bibliotheque/2005/BEUCHER/Rapport/DOC 

00318/BEUCHER_Rapport_00318.pdf 

 

Biver, P., Haas, A., and Bacquet, C. (2002). Efficient Techniques to include 

uncertainties on global parameters in a geostatistical procedure. Retrieved 17
th

 April 

2006 from http://web.fu-berlin.de/iamg2002/download/Biver Pierre.pdf. 

 

Brett, M., Penny, W., Kiebel, S. (2003). An introduction to random field theory. 

Retrieved on April 16 2006 from 

http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/Ch14.pdf 

 

Carrasco, P., Carrasco, P., Ibarra, F., Le loc‟h, G., Rojas, R., and Seguret, S. .(n.d.) 

Application of the truncated Gaussian Simulation Method to the MM deposit at Codelco 

Norte, Chile. Retrieved on 20
th

 March 2006 from 

http://www.geovariances.com/IMG/pdf/EAGE_Madrid Leloch.pdf 

 

Chiles, J.P. and Delfiner, P. (1999) Geostatistics: modelling spatial uncertainty. Wiley, 

New York. 

 

Chown, E.H., Hicks, J., Phillips, G.N.& Townend, R. (1984). The disseminated 

Archean Big Bell gold deposits, Murchison province, Western Australia: an example of 

premetamorphic hydrothermal alteration. In Proceedings of Gold ‟82: the Geology, 

Geochemistry and Genesis of Gold Deposits (R.P Foster, ed.) Geol. Surv. Zimbabwe, 

Spec. Publ. 1, p 305-324. 

Cressie, N. A. C. (1990), "The Origins of Kriging," Mathematical Geology, v. 22, p. 

239-252. 

Delbari, M., Loiskandl, W., and Afrasiab, P. (2010) Uncertainty assessment of soil 

organic carbon content spatial distribution using geostatistical stochastic simulation. 

Australian Journal of Soil Research, 48, 27-35 

http://www.geovariances.com/IMG/pdf/EAGE_Madrid%20Leloch.pdf


88 

 

De Marsily, G., (2005). Dealing with spatial heterogeneity. Retrieved 28
th

 April 2006 

from http://www.fast.u-psud.fr/~cargese/papers/marsily/marsily1.pdf. 

 

Deraisme, J and Farrow, D. (2004). Geostatistical simulation techniques applied to 

kimberlite orebodies and risk assessment of sampling strategies. Retrieved on 8
th

 

February 2006 from http://www.geovariances.com/IMG/pdf/Banff2004.pdf 

 

Deutsch, C.V, (1996) Hierarchical Object-Based Stochastic Modeling of Fluvial 

Reservoirs. Mathematical Geology, v.28, no.7, 857-880 

Deutsch, C.V., and Journel, A. G. (1998), GSLIB - Geostatistical Software Library and 

User's Guide. Oxford University Press, New York, 338 pp 

 

Dimitrkopoulos, R. and Dagbert, M. (1992) Sequential modelling of relative indicator 

variables: dealing with multiple lithology types. Geostatistics Troia ‟92, Soares, A. 

Editor. Kluwer 1993. 

 

Dowd, P.A. (1996) Structural controls in the geostatistical simulation of mineral 

deposits, in Baafi E.Y. and Schofield, N.A. (eds) Geostatistics Wollongong ‟96 pp647-

657. 

 

Dowd, P.A., Pardo-Iguzquiza, and E ,Xu, C. (2003) Plurigau: a computer program for 

simulating spatial lithotype using the truncated plurigaussian method. Computers and 

Geosciences, 29,123-141. 

 

Galli, A., Beucher, H., and Leloc‟h, G. (1994) The pros and cons of the truncated 

Gaussian method. M. Armstrong and P.A. Dowd (Eds), Geostatistical Simulation, 

Kluwer Academic Publishing: Netherlands, p 217-233. 

Girard, A. (2004) Approximate Methods for propagation of Uncertainty with Gaussian 

Process Models. Thesis submitted to University of Glasgow. Retrieved on April 16 

2006 from http://www.dcs.gla.ac.uk/~rod/publications/Gir04.pdf 

 

Gomez-Hernandez, J. and Srivastava, R.M., (1990) ISIM3D: an ANSI-C three 

dimensional multiple indicator conditional simulation program. Computers and 

Geosciences, v.16, no.4, p395-440 

 

Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. Oxford University 

Press. 

 

Goovaerts, P. (2001). Geostatistical modelling of uncertainty in soil science. Geoderma 

103 (2001) 3-26. 

 

Gringarten, E. and Deutsch, C.V (2001). Teacher‟s Aide Variogram Interpretation and 

Modeling.. Mathematical Geology, 33 (4) 507-534. 

 

http://www.geovariances.com/IMG/pdf/Banff2004.pdf
http://www.dcs.gla.ac.uk/~rod/publications/Gir04.pdf


89 

 

Handley, G.A and Cary, R. (1990) Big Bell Gold Deposit. Geology of the mineral 

deposits of Australia and Papua New Guinea. 211-218 

 

Isaaks, E.H. (1984) Indicator simulation:application to the simulation of a high grade 

mineralisation. Geostatistic for natural resources, Part2, D. Reidel Publishing 

Company, 1057-1069. 

 

Isaaks, E. H., and Srivastava, R. M. (1989), An Introduction to Applied Geostatistics, 

Oxford University Press, New York, 561 pp 

Journel, A.G. (1974). Geostatistics for conditional simulation of ore bodies. Economic 

Geology 69, p 673-687. 

Journel, A.G., and Huijbregts, C. (1978), Mining Geostatistics, Academic Press, 600 pp. 

Journel, A.G. (1983), Nonparametric estimation of spatial distributions, Mathematical 

Geology, 15(3) p445-468 

Journel, A.G. (1989), Fundamentals of Geostatistics in Five Lessons, American 

Geophysical Union, Washington D.C. 

Juang, K.W, Chen, Y,S. Lee, D,Y (2003) Using sequential indicator simulation to 

assess the uncertainty of delineating heavy-metal contaminated soils. Environmental 

Pollution 127 (2004) p 229-238. 

Krige, Danie G. (1951). "A statistical approach to some basic mine valuation problems 

on the Witwatersrand". J. of the Chem., Metal. and Mining Soc. of South Africa 52 (6): 

119-139 

Lantuéjoul C. (1994) Non Conditional Simulation of Stationary Isotropic Multigaussian 

Random Functions. In M. Armstrong & P.A. Dowd eds., Geostatistical Simulations. 

Dordrecht: Kluwer, 1994. pp.147-167 

Lantuéjoul C. (1996) Iterative Algorithms for Conditional Simulations. In E.Y Baafi & 

N.A. Schofield eds., Geostatistics Wollongong, vol.1. Dordrecht: Kluwer,. 1997 pp. 27-

40. 

Lantuejoul, C. (2002). Conditional simulation of spatial stochastic models. Retrieved on 

14
th

 March 2006 from http://www.cmis.csiro.au/ismm2002/proceedings/PDF/29 

lantuejoul.pdf. 

 

Le Loc'h, and G., Galli, A., (1996). Truncated plurigaussian method: theoretical and 

practical points of view. Proceedings of the Fifth International Geostatistics Congress, 

Wollongong '96. Australia, pp. 211-222. 

 

Le Ravalec-Dupin, and M., Roggero, F.. (2004) Conditioning truncated Gaussian 

Realisations to Static and Dynamic Data. SPE Journal. 9(4) 475-480 

 

http://www.cmis.csiro.au/ismm2002/proceedings/PDF/29%20lantuejoul.pdf
http://www.cmis.csiro.au/ismm2002/proceedings/PDF/29%20lantuejoul.pdf


90 

 

Li, W. and Zhang, C. (2007) Comparing a fixed-path markov chain geostatistical 

algorithm with sequential indicator simulation in categorical variable simulation from 

regular samples. Web of Science, 44(3) 251-266 

 

Lloyd, C.D. and Atkinson, P.M.(2001). Assessing uncertainty in estimates with ordinary 

and indicator kriging. Computers and Geosciences, 27(8), 929-937. 

Matheron, Georges (1962). Traité de géostatistique appliquée. Editions Technip 

Moysey, S., and R.J. Knight (2003), Full-inverse statistical calibration: A Monte Carlo 

approach to determining field-scale relationships between hydrologic and geophysical 

variables, Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract H21F-03. 

 

Mueller, A.G and Groves, D.L (1991) The classification of Western Australian 

greenstone-hosted gold deposits according to wall-rock alteration mineral assemblages. 

Ore Geology Reviews, Volume 6 issue 4, July 1991 pp. 291-331. 

 

 

Mueller, U.A, Goovaerts, P. and Mueller, A.G. (2002). Geostatistical Modelling of rock 

type: A Comparason of the Performance of Classification Schemes Based on Data from 

the Big Bell Gold Deposit, Western Australia. Proceedings of IAMG02, Berlin, 

September 15-29, 2002 

 

Pebesma, E.J., (2004). Multivariate geostatistics in S: the gstat package. Computers and 

Geosciences 30 (2004) 683-691. 

 

Phillips, G.N, Powell, R. (1985) Formation of gold deposits: Review and evaluation of 

the continuum model. Earth Science Reviews , V.94, p 1-21. 

 

Remacre, A.Z, & Zapparolli, L.H. (2003). Application of the plurigaussian simulation 

techniques in reproducing litholithotype with double anisotropy. Revista Brasileira de 

Geociencias, 33, 37-42.  

 

Seifert, D. And Jensen, J.L., (1999). Using sequential indicator simulation as a tool in 

reservoir description, issues and uncertainties. Mathematical Geology, 31 p527-550. 

 

Soares, A. (1992) Geostatistical Estimation of Multi-Phase Structures. Mathematical 

Geology, V. 24, No 2, p 149-160.  

 

Srivastava, R.M., (1994) Thoughts and comments on conditional simulation algorithms. 

Geostatistics, V.7, no. 2, p9-10. 

 

Walsh, B. (2004) Markov chain Monte Carlo and Gibbs Sampling. Retrieved 17
th

 April 

2006 from http://nitro.biosci.arizona.edu/courses/EEB581-2004/handouts/Gibbs.pdf 

 

Vann, J., Bertoli, O. and Jackson, S. (2002). An Overview of Geostastical Simulation for 

Quantifying Risk. Paper published at a Geostatistical Association of Australasia 

symposium “Quantifying Risk and Error‟. March 2002. Retrieved on 26
th

 January 2006 

from http://www.quantitativegeoscience.com/images/pdf/vann bertoli jackson 

simulation for risk distribution.pdf 

http://www.quantitativegeoscience.com/images/pdf/vann


91 

 

 

Woodward, H.P. 1914, 'A geological reconnaissance of a portion of the Murchison 

Goldfield', Geological Survey, Bulletin No. 57, Government Printer, Perth. 

 

 

Xu, C., Dowd, P.A., Mardia, K.V., Fowell, R.J. (2006) A flexible true plurigaussian 

code for spatial lithotype simulations. Computers and Geosciences, v.32 (10) 1629-

1645. 

 

Xu, C. And Dowd, P.A. (2008) Plurigaussian simulation of rock fractures. Proceedings 

of the VIII International Geostatistics Congress (pp 41-50). Santiago, Chile. 

 



92 

 

Appendix 
 

Indicator Kriging Parameter File 

 
                  Parameters for IK3D 

                  ******************* 

 

START OF PARAMETERS: 

0                                \1=continuous(cdf), 0=categorical(pdf) 

2                                \option: 0=grid, 1=cross, 2=jackknife 

gridbb1.dat                         \file with jackknife data 

4   5   6    0                   \   columns for X,Y,Z,vr 

5                                \number thresholds/categories 

1  2  3  4  5                    \   thresholds / categories 

0.11  0.03  0.28  0.45  0.13     \   global cdf / pdf 

BB3d.dat                         \file with data 

0  4   5   6    7                   \   columns for X,Y,Z and variable 

direct.ik                        \file with soft indicator input 

1   2   0    3  4  5  6          \ columns for DH X,Y,Z and indicators 

-1.0e21   1.0e21                 \trimming limits 

2                                \debugging level: 0,1,2,3 

ik3d.dbg                         \file for debugging output 

BBIKok1.out                       \file for kriging output 

50   570      2.0                \nx,xmn,xsiz 

40   2350    25.0                \ny,ymn,ysiz 

30  -200.0    5.0                 \nz,zmn,zsiz 

2    16                           \min, max data for kriging 

200.0  50.0  20.0                 \maximum search radii 

 0.0    0.0   0.0                  \angles for search ellipsoid 

0                                 \max per octant (0-> not used) 

0   2.5                           \0=full IK, 1=Median IK(threshold num) 

1                                \0=SK, 1=OK 

2    0.25                        \One   nst, nugget effect 

1    0.25 180.0    0.0   0.0     \      it,cc,ang1,ang2,ang3 

           75.0   75.0   7.0     \      a_hmax, a_hmin, a_vert 

1    0.50 180.0    0.0   0.0     \      it,cc,ang1,ang2,ang3 

          600.0  150.0  45.0     \      a_hmax, a_hmin, a_vert  

2    0.40                         \Two   nst, nugget effect 

1    0.30 180.0   0.0    0.0      \      it,cc,ang1,ang2,ang3 

          150.0  75.0    3.0      \      a_hmax, a_hmin, a_vert 

1    0.30 180.0   0.0    0.0      \      it,cc,ang1,ang2,ang3 

          500.0  100.0  15.0      \      a_hmax, a_hmin, a_vert  

2    0.12                        \Three nst, nugget effect 

1    0.2  180.0    0.0   0.0     \      it,cc,ang1,ang2,ang3 

           75.0  75.0   32.0     \      a_hmax, a_hmin, a_vert 

1    0.68  180.0   0.0   0.0     \      it,cc,ang1,ang2,ang3 

           500.0 400.0  32.0     \      a_hmax, a_hmin, a_vert 

2    0.25                        \Four  nst, nugget effect 

1    0.40   90.0    0.0     0.0  \      it,cc,ang1,ang2,ang3 

            50.0   50.0    20.0  \      a_hmax, a_hmin, a_vert 

1    0.35   90.0    0.0     0.0  \      it,cc,ang1,ang2,ang3 

           600.0  150.0    30.0  \      a_hmax, a_hmin, a_vert  

2    0.35                        \Five  nst, nugget effect 

1    0.50   90.0    0.0     0.0  \      it,cc,ang1,ang2,ang3 

            40.0   40.0     8.0  \      a_hmax, a_hmin, a_vert 

1    0.15   90.0    0.0     0.0  \      it,cc,ang1,ang2,ang3 

            75.0   75.0  1000.0  \      a_hmax, a_hmin, a_vert 
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IK post-processing parameter file 

 

 

 

 
c----------------------------------------------------------------------- 

c                   Amilcar Soares classification 
c                   **************************** 

c 

c Allocate each grid node to the category with the largest probability of 
c occurrence under the constraint of reproduction of marginal proportions   

c 

c INPUT/OUTPUT Parameters: 
c 

c   -  Name of a data file with probabilities of occurrence of categories 

c   -  number of categories 
c   -  marginal proportions to be reproduced 

c   -  An output file with classification statistics and results 

c      (may be overwritten) 
c 

c 

c 
c Original: P. GOOVAERTS                                Date: April 1997 

c----------------------------------------------------------------------- 
      program amilcar  

      parameter (MAXDAT=170000, MAXVAR=17,MAXPROB=9,MAXITER=40)  

      real      prob(MAXDAT,MAXVAR),num(MAXDAT,MAXVAR), 
     +          nbre(MAXVAR),sum, 

     +          tvec(MAXDAT),tnum(MAXDAT),count(MAXDAT), 

     +          emploi1, emploi2, emploi3, emploi4, emploi5, 

     +          margprob(MAXVAR),npcl(MAXVAR),iter(MAXVAR), 

     +          test(MAXVAR) 

      integer   amic(MAXDAT) 
      character outfl1*40,str*40,datafl*40, outfl2*40 

      logical   testfl 

      data      lin/1/,ncut/0/, lout/2/ 
 

 

      write(*,*) 'Which parameter file do you want to use?' 
      read (*,'(a40)') str 

      if(str(1:1).eq.' ')str='amilcar.par                         ' 

      inquire(file=str,exist=testfl) 
      if(.not.testfl) then 

            write(*,*) 'ERROR - the parameter file does not exist,' 

            write(*,*) '        check for the file and try again  ' 
            stop 

      endif 

 
      open(lin,file=str,status='OLD') 

 

c Find Start of Parameters: 
c 

 201    read(lin,'(a4)',end=198) str(1:4) 

      if(str(1:4).ne.'STAR') go to 201 
c 

c Read Input Parameters: 

c 
      read(lin,'(a40)') datafl 

      write(*,*) ' data file:         ',datafl 

      read(lin,'(a40)') outfl1 
      write(*,*) ' output file:         ',outfl1 

      read(lin,'(a40)') outfl2 

      write(*,*) ' output file:         ',outfl2 

      read(lin,*)       nv 

      write(*,*) ' number of category:      ',  nv 

      read(lin,*) (margprob(j), j=1,nv) 
      write(*,*) 'p_k :',(margprob(j), j=1,nv) 

      close(lin) 

 
c ********************************************************************** 

c 

c Check to make sure the data file exists, then either read in the 
c data or write an error message and stop: 
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c 

      inquire(file=datafl,exist=testfl) 
      if(.not.testfl) then 

         write(*,*) 'ERROR data file ',datafl,' does not exist!' 

         stop 
      endif 

c 

c Open the file with updated probabilities 
c 

      open(lin,file=datafl,status='OLD') 

      do 3 i=1,(nv+2) 
 3    read(lin,'(a40)',err=193) str 

 

c 
c Read the updated probabilities 

c 

 
      nd = 1.0 

 4      read(lin,*,end=5,err=193) (prob(nd,j),j=1,nv) 

      nd = nd + 1.0 
      if(nd.gt.MAXDAT) then 

            write(*,*) ' ERROR: Exceeded available memory for data' 

            stop 
      end if 

        go to 4 

 5    close(lin) 
        nd = nd -1  

        write(*,*) 'number of data readed', nd 
 

c 

c Correct for order relation deviations 
c 

      do i=1, nd  

         sum=0.0 
         do j=1, nv  

            if(prob(i,j).gt.1) prob(i,j)=1.0 

            if(prob(i,j).lt.0) prob(i,j)=0.0 
            sum = sum + prob(i,j) 

         end do 

         do j=1, nv  
            prob(i,j) = prob(i,j)/sum 

         end do 

      end do 
        

C ***************************************************************** 

C 
C      AMILCAR SOARES CLASSIFICATION 

C 

 

 

C 

C      Sort the vectors of probabilities and index vector accordingly 
c 

 

      do j=1, nv 
         do i=1, nd 

            tvec(i) = -prob(i,j)  

            tnum(i) = i 
         end do 

      call sortem(1,nd,tvec,1,tnum,c,d,e,f,g,h) 

         do i=1, nd 
            num(i,j)=tnum(i) 

         end do 

      end do 
 

C 

C     Check the proportion of double, triple... 
C     allocations of the same grid nodes 

C 

 
      do i=1, nd 

          count(i) = 0 

          amic(i)  = -1 
      end do 

      do j=1, nv 
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          nbre(j)=nd*margprob(j) 

          do i=1,nbre(j) 
             k=num(i,j) 

             count(k)=count(k)+1.0 

          end do 
      end do 

 

         emploi1=0.0 
         emploi2=0.0 

         emploi3=0.0 

         emploi4=0.0 
         emploi5=0.0 

      do i=1,nd 

         if(count(i).eq.0) emploi1=emploi1+1 
         if(count(i).eq.2) emploi2=emploi2+1 

         if(count(i).eq.3) emploi3=emploi3+1 

         if(count(i).eq.4) emploi4=emploi4+1 
         if(count(i).eq.5) emploi5=emploi5+1 

      end do 

         emploi1=emploi1*100/nd 
         emploi2=emploi2*100/nd 

         emploi3=emploi3*100/nd 

         emploi4=emploi4*100/nd 
         emploi5=emploi5*100/nd 

 

C 
C     Perform the classification 

C 
 

      do j=1, nv 

          npcl(j) = 0.0 
          iter(j) = 0.0 

          test(j) = 0.0 

      end do 
          nshift=0.0 

          nshift1=0.0 

      do 35 i=1,nd 
          do 36 j=1,nv 

              if(npcl(j).lt.nbre(j)) then 

                  iter(j)= iter(j)+1 
                  is=iter(j) 

                  k=num(is,j) 

                  if (amic(k).eq.-1) then 
                     amic(k)=j 

                     npcl(j)= npcl(j)+1 

                     go to 36 
                  endif 

                  if (amic(k).gt.-1) then 

                     nshift= nshift + 1.0 

                     jloc= amic(k) 

                     if (prob(k,jloc).ge.prob(k,j)) go to 36 

                     if (prob(k,jloc).lt.prob(k,j)) then 
                        nshift1= nshift1 + 1.0 

                        amic(k)=j 

                        npcl(j)= npcl(j)+1 
                        npcl(jloc)= npcl(jloc)-1 

                     endif 

                  endif 
              endif 

 36       continue 

 35   continue 
  

c 

c     Check the reproduction of target proportions 
C 

 

c      do i=1, nd 
c         j = amic(i) 

c         test(j) = test(j) + 1 

c      end do 
c      do j=1, nv 

c         test(j) = test(j)/nd 

c      end do 
c      write(*,*) 'p*_k :', (test(j), j=1,nv) 
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      open(lout,file=outfl1,status='UNKNOWN') 
C 

C     Write results to outputfile 

C 
    

      write(lout,*) 'Results for :', outfl 

      write(lout,*) '**************************' 
      write(lout,*) 'Statistics about the classification ' 

      write(lout,*) 'nber of samples considered :', nshift 

      write(lout,*) 'nber of samples actually shifted :', nshift1 
      write(lout,*) 'percentage of no classif:', emploi1 

      write(lout,*) 'percentage of double classif:', emploi2 

      write(lout,*) 'percentage of triple classif:', emploi3 
      write(lout,*) 'percentage of quadr. classif:', emploi4 

      write(lout,*) 'percentage of quint.. classif:', emploi5 

      write(lout,*) ' ' 
 close(lout) 

      open(lout,file=outfl2,status='UNKNOWN') 

      write(lout,*) 'Results for :', outfl 
      write(lout,*) '1' 

 write(lout,*) 'Unit' 

      do i=1, nd 
         write(lout,*) amic(i) 

      end do 

      stop  
 193   stop 'ERROR in data file!' 

 198   stop 'ERROR in parameter file!' 
      end 

 

      subroutine sortem(ib,ie,a,iperm,b,c,d,e,f,g,h) 
c----------------------------------------------------------------------- 

c 

c                      Quickersort Subroutine 
c                      ********************** 

c 

c This is a subroutine for sorting a real array in ascending order. This 
c is a Fortran translation of algorithm 271, quickersort, by R.S. Scowen 

c in collected algorithms of the ACM. 

c 
c The method used is that of continually splitting the array into parts 

c such that all elements of one part are less than all elements of the 

c other, with a third part in the middle consisting of one element.  An 
c element with value t is chosen arbitrarily (here we choose the middle 

c element). i and j give the lower and upper limits of the segment being 

c split.  After the split a value q will have been found such that  
c a(q)=t and a(l)<=t<=a(m) for all i<=l<q<m<=j.  The program then 

c performs operations on the two segments (i,q-1) and (q+1,j) as follows 

c The smaller segment is split and the position of the larger segment is 

c stored in the lt and ut arrays.  If the segment to be split contains 

c two or fewer elements, it is sorted and another segment is obtained 

c from the lt and ut arrays.  When no more segments remain, the array 
c is completely sorted. 

c 

c 
c INPUT PARAMETERS: 

c 

c   ib,ie        start and end index of the array to be sorteda 
c   a            array, a portion of which has to be sorted. 

c   iperm        0 no other array is permuted. 

c                1 array b is permuted according to array a 
c                2 arrays b,c are permuted. 

c                3 arrays b,c,d are permuted. 

c                4 arrays b,c,d,e are permuted. 
c                5 arrays b,c,d,e,f are permuted. 

c                6 arrays b,c,d,e,f,g are permuted. 

c                7 arrays b,c,d,e,f,g,h are permuted. 
c               >7 no other array is permuted. 

c 

c   b,c,d,e,f,g,h  arrays to be permuted according to array a. 
c 

c OUTPUT PARAMETERS: 

c 
c    a      = the array, a portion of which has been sorted. 

c 
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c    b,c,d,e,f,g,h  =arrays permuted according to array a (see iperm) 

c 
c NO EXTERNAL ROUTINES REQUIRED: 

c 

c----------------------------------------------------------------------- 
      dimension a(*),b(*),c(*),d(*),e(*),f(*),g(*),h(*) 

c 

c The dimensions for lt and ut have to be at least log (base 2) n 
c 

      integer   lt(64),ut(64),i,j,k,m,p,q 

c 
c Initialize: 

c 

      j     = ie 
      m     = 1 

      i     = ib 

      iring = iperm+1 
      if (iperm.gt.7) iring=1 

c 

c If this segment has more than two elements  we split it 
c 

 10   if (j-i-1) 100,90,15 

c 
c p is the position of an arbitrary element in the segment we choose the 

c middle element. Under certain circumstances it may be advantageous 

c to choose p at random. 
c 

 15   p    = (j+i)/2 
      ta   = a(p) 

      a(p) = a(i) 

      go to (21,19,18,17,16,161,162,163),iring 
 163     th   = h(p) 

         h(p) = h(i) 

 162     tg   = g(p) 
         g(p) = g(i) 

 161     tf   = f(p) 

         f(p) = f(i) 
 16      te   = e(p) 

         e(p) = e(i) 

 17      td   = d(p) 
         d(p) = d(i) 

 18      tc   = c(p) 

         c(p) = c(i) 
 19      tb   = b(p) 

         b(p) = b(i) 

 21   continue 
c 

c Start at the beginning of the segment, search for k such that a(k)>t 

c 

      q = j 

      k = i 

 20   k = k+1 
      if(k.gt.q)     go to 60 

      if(a(k).le.ta) go to 20 

c 
c Such an element has now been found now search for a q such that a(q)<t 

c starting at the end of the segment. 

c 
 30   continue 

      if(a(q).lt.ta) go to 40 

      q = q-1 
      if(q.gt.k)     go to 30 

      go to 50 

c 
c a(q) has now been found. we interchange a(q) and a(k) 

c 

 40   xa   = a(k) 
      a(k) = a(q) 

      a(q) = xa 

      go to (45,44,43,42,41,411,412,413),iring 
 413     xh   = h(k) 

         h(k) = h(q) 

         h(q) = xh 
 412     xg   = g(k) 

         g(k) = g(q) 
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         g(q) = xg 

 411     xf   = f(k) 
         f(k) = f(q) 

         f(q) = xf 

 41      xe   = e(k) 
         e(k) = e(q) 

         e(q) = xe 

 42      xd   = d(k) 
         d(k) = d(q) 

         d(q) = xd 

 43      xc   = c(k) 
         c(k) = c(q) 

         c(q) = xc 

 44      xb   = b(k) 
         b(k) = b(q) 

         b(q) = xb 

 45   continue 
c 

c Update q and search for another pair to interchange: 

c 
      q = q-1 

      go to 20 

 50   q = k-1 
 60   continue 

c 

c The upwards search has now met the downwards search: 
c 

      a(i)=a(q) 
      a(q)=ta 

      go to (65,64,63,62,61,611,612,613),iring 

 613     h(i) = h(q) 
         h(q) = th 

 612     g(i) = g(q) 

         g(q) = tg 
 611     f(i) = f(q) 

         f(q) = tf 

 61      e(i) = e(q) 
         e(q) = te 

 62      d(i) = d(q) 

         d(q) = td 
 63      c(i) = c(q) 

         c(q) = tc 

 64      b(i) = b(q) 
         b(q) = tb 

 65   continue 

c 
c The segment is now divided in three parts: (i,q-1),(q),(q+1,j) 

c store the position of the largest segment in lt and ut 

c 

      if (2*q.le.i+j) go to 70 

      lt(m) = i 

      ut(m) = q-1 
      i = q+1 

      go to 80 

 70   lt(m) = q+1 
      ut(m) = j 

      j = q-1 

c 
c Update m and split the new smaller segment 

c 

 80   m = m+1 
      go to 10 

c 

c We arrive here if the segment has  two elements we test to see if 
c the segment is properly ordered if not, we perform an interchange 

c 

 90   continue 
      if (a(i).le.a(j)) go to 100 

      xa=a(i) 

      a(i)=a(j) 
      a(j)=xa 

      go to (95,94,93,92,91,911,912,913),iring 

 913     xh   = h(i) 
         h(i) = h(j) 

         h(j) = xh 
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 912     xg   = g(i) 

         g(i) = g(j) 
         g(j) = xg 

 911     xf   = f(i) 

         f(i) = f(j) 
         f(j) = xf 

   91    xe   = e(i) 

         e(i) = e(j) 
         e(j) = xe 

   92    xd   = d(i) 

         d(i) = d(j) 
         d(j) = xd 

   93    xc   = c(i) 

         c(i) = c(j) 
         c(j) = xc 

   94    xb   = b(i) 

         b(i) = b(j) 
         b(j) = xb 

   95 continue 

c 
c If lt and ut contain more segments to be sorted repeat process: 

c 

 100  m = m-1 
      if (m.le.0) go to 110 

      i = lt(m) 

      j = ut(m) 
      go to 10 

 110  continue 
      return 

      end 

 
C*********************************************************************** 

C 

C     THIS SUBROUTINE EVALUATES THE CPU TIME IN SECONDS USED SO FAR 
C 

C*********************************************************************** 

C 
      SUBROUTINE GETCPU(CPUSEC) 

C 

C     OUTPUT: 
C             CPUSEC    CPU TIME USED SO FAR. 

C 

C     THIS SUBROUTINE WORKS ONLY ON ABQAIQ AND PANGEA. 
C 

      REAL*4 TARRAY(2),ETIME 

      REAL*8 CPUSEC 
C 

      CPUSEC = ETIME(TARRAY) 

C 

      RETURN 

      END 

 

 

 

 

 

The following code performs the inadmissible contact count in four steps: 

1) Determine the size and dimensions of the matrix. 
 

2) Perform misclassification procedure in the x direction: 
 

 # Do X 

 if (xsize > 0) 

  b = 0.*a;   Create a zero matrix b of size equal to a. 
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b(:,2:(xsize+1),:) = a; Import values from a into the 2
nd

 to                               

n+1th row of  b. 

  c = a; 

c(:,xsize+1,:) = a(:,xsize,:); Create a matrix c of size equal to b with 

entries from a with the final row of a 

repeated 

  d = (c-b)(:,2:xsize+1,:); Perform the subtraction 

e = (a != 1).*d;  Product of d and a where unit entries of a 

are set to 0 

xres = (abs((c(:,2:xsize+1,:) != 1).*e) > 1); Set values in e to 1 if 

greater than 1, else set to 0. 

xc = sum(xres);  Sum (unit) entries in matrix 
   

 endif 

 

3) Similarly for y and z directions: 
# Do Y 

 if (ysize > 0) 

  b = 0.*a; 

  b(2:(ysize+1),:,:) = a; 

  c = a; 

  c(ysize+1,:,:) = a(ysize,:,:); 

  d = (c-b)(2:ysize+1,:,:); 

  e = (a != 1).*d;  

  yres = (abs((c(2:ysize+1,:,:) != 1).*e) > 1); 

  yc = sum(yres); 

 endif 

  

 # Do Z 

 if (zsize > 0) 

  b = 0.*a; 

  b(:,:,2:(zsize+1)) = a; 

  c = a; 

  c(:,:,zsize+1) = a(:,:,zsize); 

  d = (c-b)(:,:,2:zsize+1); 

  e = (a != 1).*d;  

  zres = (abs((c(:,:,2:zsize+1) != 1).*e) > 1); 

  zc = sum(zres); 

 endif 

 

4) Summing the (three) directional misclassifications 

 
 if (zsize > 0) 

  ret = sum(sum(xc + yc + zc)); 

 else 

  ret = sum(xc + yc); 

 endif 

  

endfunction 
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