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ABSTRACT 

 It is well known that maximal eccentric exercise induces muscle damage, especially 

when it is performed for the first time. However, muscle damage is attenuated in subsequent 

bouts of the same or similar exercise, which is known as the repeated bout effect. One of the 

factors affecting the magnitude of muscle damage and the repeated bout effect is the number 

of eccentric contractions; however, it is unknown if different set-repetition configurations 

with the same number of eccentric contractions would result in different magnitudes of 

muscle damage and adaptation. This study investigated changes in muscle strength, range of 

motion (ROM), muscle cross sectional area (CSA), muscle soreness and plasma creatine 

kinase (CK) activity following an initial bout of maximal eccentric contractions with the 

same total number of contractions but different set-repetition configurations (e.g. 3 sets of 10 

reps vs. 10 sets of 3 reps) and a second bout (20 sets of 3 repetitions) separated by four weeks. 

Since the present study was the first to use the ultrasound extended field of view (EFOV) 

technique to quantify bicep brachii CSA for an indication of muscle swelling, the reliability 

and validity of the technique were assessed in a separate study using 6 men (27.5 ± 1.9 y). In 

the main study, 10 non-resistance trained men (26.1 ± 4.1 y) performed two bouts of 

eccentric exercise of the elbow flexors for each arm (4 bouts in total). One arm performed 3 

sets of 10 maximal eccentric contractions (3x10) followed 4 weeks later by 20 sets of 3 

maximal eccentric contractions (20x3). The contralateral arm performed 10 sets of 3 maximal 

eccentric contractions (10x3) followed 4 weeks later by 20x3. The order of the exercise (3x10, 

10x3) and the use of arm (dominant, non-dominant) were counterbalanced amongst subjects. 

Changes in the criterion measures over time and peak torque were compared among the 

initial bouts (3x10 vs. 10x3) and the repeated bouts (20x3 vs. 20x3) by a factorial repeated-

measures analysis of variance (ANOVA) with two factors. Significance level was set at 

P<0.05 for all statistical analyses. In the study to investigate the validity against magnetic 
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resonance imaging (MRI) and test-retest reliability, the results showed that EFOV was valid 

to measure biceps brachii CSA and could detect approximately 1% change in the CSA 

reliably. In the main study, the torque produced over 30 eccentric contractions was similar 

between 3x10 and 10x3, and the changes in torque during both 20x3 exercises were similar 

between arms. Maximal voluntary contraction strength, ROM, biceps brachii CSA, muscle 

soreness and plasma CK activity changed significantly after the first bouts without significant 

differences between 3x10 and 10x3, and changes in the measures following 20x3 were 

similar between arms. No significant differences in the changes of the criterion measures 

were evident between bouts. These results showed that the set-repetition configuration had 

little effect on muscle damage, which was likely to be due to similar peak torques produced 

during exercise between the 3x10 and 10x3 bouts. The repeated bout effect was similar 

between arms, suggesting that the set-repetition configuration in the first bouts did not affect 

the second bout. The similar changes in criterion measures between the first and second bouts 

showed that the repeated bout effect was attenuated by increasing the number of contractions. 

It is concluded that the number of contractions rather than the set-repetition configuration 

affects the magnitude of muscle damage and repeated bout effect. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

 Strenuous unaccustomed eccentric exercise induces muscle damage that is 

characterised by a prolonged impairment of muscle function, delayed onset muscle soreness 

(DOMS), muscle swelling and increases in muscle proteins in the circulation (Clarkson & 

Sayers, 1999). Previous studies (Clarkson & Tremblay, 1988; Howatson, Van Someren, & 

Hortobagyi, 2007; Nosaka, Sakamoto, Newton, & Sacco, 2001) have reported that the 

magnitude of muscle damage is affected by the number of eccentric contractions. Clarkson 

and Tremblay (1988) showed significantly greater muscle strength loss, decreases in range of 

motion (ROM), increases in muscle soreness and serum creatine kinase (CK) activity 

following 70 maximal eccentric contractions when compared with 24 maximal eccentric 

contractions of the elbow flexors. Similarly, Howatson et al. (2007) reported that changes in 

ROM, muscle soreness and serum CK activity were significantly greater following 45 than 10 

maximal eccentric contractions of the elbow flexors, and the decreases in isometric muscle 

strength were four times greater after 45 than 10 maximal eccentric contractions. 

 When eccentric contractions are performed in training, they are generally configured 

as sets and repetitions. For example, 30 repetitions can be performed in different 

configurations such as 3 sets of 10 repetitions (3x10), 6 sets of 5 repetitions (6x5), or 10 sets 

of 3 repetitions (10x3). Even if the number of total eccentric contractions is the same, it is 

possible that the magnitude of muscle damage is different among the different configurations. 

However, it is not known if altering the configurations with the same total number of 

repetitions (e.g. 3x10 vs. 10x3) would result in a different magnitude of muscle damage. It is 

known that the greater the forces generated during eccentric contractions, the greater the 
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magnitude of muscle damage (Chen & Nosaka, 2006). Assuming that the decreases in force 

are smaller for a smaller number of repetitions (e.g. 3 maximal eccentric contractions) in a set 

than a greater number of repetitions (e.g. 10 maximal eccentric contractions) in a set, it could 

be due to greater mechanical stress imposed on the exercised muscle in performing a small 

number of repetitions with a large number of sets (e.g. 10 sets of 3 contractions; 10x3) 

compared with performing a large number of repetitions with a small number of sets (e.g. 3 

sets of 10 contractions; 3x10). If so, it seems that the magnitude of muscle damage induced 

by eccentric exercise would be greater for 10x3 than 3x10. 

 It is well documented that when a bout of eccentric exercise is repeated after the 

initial exercise bout within several weeks, impairment of muscle function, DOMS, muscle 

swelling and increases of muscle proteins in circulation are attenuated, and this protective 

adaptation is termed as the repeated bout effect (Howatson et al., 2007; McHugh, 2003). 

Several studies have investigated the effect of the number of eccentric contractions on the 

repeated bout effect (Chen & Nosaka, 2006; Howatson et al., 2007; Nosaka et al., 2001). 

Nosaka et al. (2001) examined whether 2 or 6 maximal eccentric contractions would induce 

protective effect against 24 maximal eccentric contractions performed 2 weeks later. They 

showed that recovery of muscle strength and ROM was enhanced, and increases in upper arm 

circumference, muscle soreness, and plasma CK activity and myoglobin (Mb) concentration 

were reduced following 24 maximal eccentric contractions when 2 or 6 maximal eccentric 

contractions were performed prior to 24 maximal eccentric contractions, but such effects 

were greater for 6 than 2 maximal eccentric contractions (Nosaka et al., 2001). Howatson et 

al. (2007) compared the protective effect conferred by 10 and 45 maximal eccentric 

contractions against 45 maximal eccentric contractions of the elbow flexors performed 2 

weeks later. They found no significant differences in the magnitude of the protective effect 

between 10 and 45 maximal eccentric contractions, and concluded that 10 maximal eccentric 



3 

 

contractions conferred the same protective effect as 45 maximal eccentric contractions 

(Howatson et al., 2007). No previous study has investigated the effect of set-repetition 

configuration on the repeated bout effect. It may be that a greater change in the set-repetition 

configuration from the first eccentric exercise bout (e.g. 3x10) to the second bout (e.g. 20 sets 

of 3 maximal eccentric contractions, 20x3) would confer less protective effect when 

compared with the condition that the number of sets is increased from the first (e.g. 10x3) to 

the second bout (e.g. 20x3) without changing the number of repetitions. 

In order to evaluate the effect of eccentric exercise on muscle swelling, which has 

been accepted as one of the indications of muscle damage (Chleboun, Howell, Conatser, & 

Giesey, 1998; Clarkson, Nosaka, & Braun, 1992; Foley, Jayaraman, Prior, Pivarnik, & 

Meyer, 1999), previous studies have measured limb circumference using a tape measure (e.g.  

Paddon-Jones & Abernethy, 2001) and/or muscle thickness using B-mode ultrasound images 

after eccentric exercise (e.g. Nosaka & Newton, 2002b). However, to evaluate muscle 

swelling more accurately, it is better to measure muscle CSA. Ultrasound extended-field-of-

view (EFOV) is a relatively new technique and can form a panoramic image over an area 

larger than what the traditional ultrasound window can contain. With this technique, as the 

ultrasound transducer is moved along the region of interest, new imaging frames are 

combined with previous frames (Weng et al., 1997). 

Noorkoiv et al. (2010) assessed the reliability and validity of EFOV against CT for 

quadriceps muscle CSA at 10, 20, 30, 40 and 50% between the central point of the patella and 

the medial aspect of the anterior superior iliac spine. They reported that the differences in 

CSA between EFOV and CT were 0.6-4.3% depending on the sites (greater differences for 

smaller CSAs), intra- and inter-experimenter reliability ranged 0.6-2.7%. They concluded that 

EFOV was a valid and reliable tool for assessing quadriceps muscle CSA, and noted that 

EFOV could provide even more accurate estimates of anatomical CSA of muscles than CT. 
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Ahtiainen et al. (2010) used the EFOV technique to assess vastus lateralis muscle CSA 

changes after 21-weeks of resistance training and compared those with MRI, reporting high 

correlation (R=0.997) between the two measures. They stated that the EFOV technique could 

provide information on muscle CSA in response to training, immobilisation or sarcopenia. 

 It seems reasonable to assume that the EFOV technique can be used to assess CSA 

of other muscles, but to the best of our knowledge, only the knee extensors have been 

examined. Noorkoiv et al. (2010) stated that it was difficult to keep the whole transducer 

sensor area in contact with the skin without deviating from the original plane or without 

applying pressure on the tissue where the surface was curvy. Since the surface of the elbow 

flexors is curvier than the knee extensors, it was assumed that obtaining good EFOV images 

might be challenging. Thus, if EFOV can be used to reliably measure CSA of the elbow 

flexors, it is possible to assess muscle swelling more precisely. 

 

1.2 Purposes of the study 

 The purposes of this study were 1) to evaluate the EFOV technique for the 

measurement of CSA of elbow flexor muscles in the upper arm for its validity against MRI 

measures and intra-experimenter reliability (STUDY 1), 2) to investigate if 10x3 would 

induce greater muscle damage than 3x10, and 3) to examine whether a greater difference in 

the set-repetition configuration from the first bout to the second bout (3x10 for the first bout, 

20x3 for the second bout) would attenuate the repeated bout effect in comparison to the 

condition that only the number of sets is increased in the second bout (10x3 for the first bout, 

20x3 for the second bout) (STUDY 2). 
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1.3 Significance of the study 

No previous studies have examined the validity and reliability of EFOV ultrasound 

techniques to assess biceps brachii CSA. The present study will determine whether the EFOV 

technique is valid and reliable for biceps brachii CSA measures, and whether the changes in 

the CSA correspond to the changes in upper arm circumference measures that are often used 

in previous studies (Chleboun et al., 1998; Nosaka, Newton, & Sacco, 2002) to assess muscle 

swelling after eccentric exercise of the elbow flexors. 

 Numerous studies have investigated the importance of eccentric contractions over 

concentric and isometric contractions in inducing muscle damage (Clarkson et al., 1992; 

Gibala et al., 2000; Hortobagyi et al., 1996; Nosaka & Clarkson, 1996) and muscle 

hypertrophy (Barroso et al., 2010; Farthing & Chilibeck, 2003; Higbie, Cureton, Warren, & 

Prior, 1996). However, no study has investigated how different set and repetition 

configurations with identical number of contractions could affect the magnitude of muscle 

damage. Therefore, this study will be the first to investigate if different configurations with 

the same total number of contractions have different magnitudes of muscle damage. 

Several studies have shown that after performing a bout of unaccustomed exercise, a 

protective effect known as the repeated bout effect would be conferred on subsequent bouts 

of similar exercise (Chen & Nosaka, 2006; Howatson et al., 2007; Nosaka et al., 2001). 

However, no study has examined how much would the magnitude of the repeated bout effect 

be affected when different set-repetition configurations were performed in the first and 

second bouts. Therefore, this study is the first to examine how much difference would a 

greater change in set-repetition configuration administered in the second bout (3x10 to 20x3) 

compared to only an increase in the set configuration (10x3 to 20x3) affect the magnitude of 

the repeated bout effect. 
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1.4 Research Questions 

1. Is the EFOV technique valid when compared with the gold standard of CSA 

measurement and reliable when repeated on several occasions? <STUDY 1> 

2. Does a bout of 10 sets of 3 repetitions (10x3) induce greater muscle damage 

compared with a bout of 3 sets of 10 repetitions (3x10)? <STUDY 2> 

3. Does a greater difference in the set-repetition configuration from the first bout to the 

second bout (3x10 for the first bout to 20x3 for the second bout) attenuate the 

repeated bout effect in comparison to the condition that only the number of sets is 

increased in the second bout (10x3 for the first bout to 20x3 for the second bout)? 

<STUDY 2> 

 

1.5 Hypotheses 

1. Yes, the EFOV technique will be valid when compared with MRI and reliable when 

repeated on several occasions by the same researcher. 

2. Yes, 10x3 will induce greater muscle damage compared with 3x10. 

3. Yes, a greater change in set-repetition configurations (3x10 to 20x3) will result in the 

attenuation of the repeated bout effect compared with only increasing the number of 

sets (10x3 to 20x3). 
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CHAPTER 2 

METHODS 

2.1 STUDY 1 

2.1.1 Subjects 

Six healthy men (age = 27.5 ± 1.9 yr, height = 170.0 ± 10.0 cm, weight = 74.0 ± 

12.5 kg) were recruited for the study. Subjects were screened with a medical questionnaire to 

affirm that they had not suffered from any musculoskeletal injury of the upper extremities. 

Resistance-trained individuals were excluded from the study. Subjects were requested to 

abstain from consuming any anti-inflammatory drugs, nutritional supplements, and/or any 

therapeutic and prophylactic interventions, and to avoid performing any unaccustomed or 

vigorous physical activities during the experimental period. Potential risks and requirements 

of this study were outlined in an information letter and a written consent was obtained from 

the subjects before their participation in the study. The study was approved by the Human 

Research Ethics committee at Edith Cowan University. 

 

2.1.2 Study design 

2.1.2.1 Extended-field-of-view imaging 

Prior to data collection, the investigator practiced the EFOV technique on several 

individuals on many occasions until the image was deemed to be acceptable “(i.e., whole 

biceps brachii muscle could be seen with a complete border of the humerus bone)”. It was 

found that the entire brachialis muscle image by this technique was not possible to obtain 

because the investigator was unable to move the ultrasound probe around the upper arm of a 

subject due to a limited range of rotation of the wrist joint. However, it was possible to trace 
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the whole biceps brachii muscle (see Figure 1 as examples). Thus, decision was made to 

focus on the CSA of the biceps brachii for the present study. 

Two regions, 0 cm and 3 cm below mid-point of upper arm were marked on both 

arms. The length of the upper arm was determined to be from the acromion process of the 

clavicle to the lateral epicondyle of the humerus (Figure 2A). These two regions were chosen 

because the largest biceps brachii CSA generally coincides within the 0-cm and 3-cm region. 

Subjects were seated in a comfortable position with arms resting at 90º of shoulder flexion 

and 0º elbow angle (i.e., straight arm) on a padded arm chair. Pressure was applied minimally 

but consistently, avoiding compression of the muscle and transmission gel was applied to aid 

in acoustic coupling. EFOV scans were obtained using an Aloka SSD–α10 (Aloka Co. Ltd., 

Tokyo, Japan) with a 7.5 MHz 4.0 cm probe (UST-5412, Aloka Co. Ltd, Japan) by moving 

the probe along the marked lines axially from the medial aspect to the lateral aspect of the 

upper arm in a continuous single view (Figure 2B). Scanning velocity was controlled to allow 

clear EFOV images and care was taken to avoid exerting too much pressure on the skin 

surface. Three scans were taken from each region, and the biceps brachii muscle was traced 

to calculate its CSA using a computer software program (Image J, version 0.0, National 

Institute of Health, USA). 
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Figure 1: Corresponding axial plane images of the elbow flexors measured at 3 cm below the 

mid-point of the upper arm by MRI (A, C) and EFOV (B, D). Images A and B were from the 

right arm of one subject, and images C and D were from the left arm of another subject. 

Major anatomical landmarks are identified; BB – biceps brachii, Br – brachialis, H – humerus, 

Tri –triceps brachii. 
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Figure 2: Ultrasound scanning procedure for extended field of view images of the upper arm 

at two different sites (mid-point of the upper arm: 0 cm, 3 cm below the mid-point: 3 cm) 

<A>. The arrow indicates the direction of the transducer movement for scanning and the 

dotted lines indicate the scanning distance <B>. 

 

2.1.2.2 Magnetic resonance (MR) imaging 

Multiple MR T1-weighted images were taken on the same day as the EFOV imaging 

using a Siemens Magnetom Espree 1.5T (Siemens AG, Erlangen, Germany). Subjects were 

laid down with a magnetic coil wrapped around the body and the arm of interest. After the 

first scan, the magnetic coil was wrapped around the body and the contralateral arm. Using 

fish oil pills to demarcate the corresponding sites at 3 cm below the mid-point of the upper 

arm that was used for the EFOV scanning, MR images (Figures 1A and 1C) were taken with 

a scan slice thickness of 4 mm and an inter-slice gap of 0 mm (contiguous images). The 

biceps brachii muscle CSA was measured using the same software as that used for the EFOV 

images. 

 

A B 
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2.1.2.3 Changes in biceps brachii CSA following eccentric exercise 

Ten healthy men (age = 26.1 ± 4.1 yr, height =173.1 ± 6.1 cm, weight = 72.4 ± 9.1 

kg) performed 3 sets of 10 maximal eccentric contractions of the elbow flexors on an 

isokinetic dynamometer (Cybex 6000, Lumex Inc. Runkonkoma, USA) with a HUMAC 

system (CSMI Medical Solutions, Massachusetts, USA) installed in a computer (Lenovo 

Think Center, IBM, New York, USA). Each subject was seated on a preacher curl bench that 

secured shoulder flexion angle at 45º and performed the eccentric exercise on an isokinetic 

dynamometer set to allow arm movements from full extension to full flexion while recording 

the force generation at the wrist during the contraction. During each eccentric contraction, the 

elbow joint was extended under maximal resistance from an elbow flexed (90º) to a full-

extended position (0º) at an angular velocity of 30°⋅s-1. Between each contraction, a 9-s rest 

was provided during which the elbow joint was passively returned to the flexed position at a 

velocity of 10º·s-1. A 228-s passive rest interval occurred between sets. The procedures for 

obtaining EFOV images were the same as those described above. The EFOV images were 

collected before, immediately after (within 10 min post-exercise) and 1 to 4 days following 

eccentric exercise to obtain biceps brachii CSA at the 0 and 3 cm regions. Two EFOV scans 

were taken from each site and the average of the two measures was used for further analysis.  

 

2.1.2.4 Upper arm circumference 

Upper arm circumference was measured twice for each site by a constant tension 

tape measure (Gulick Anthropometric Tape, North Coast Medical, USA) when the subjects 

were standing with arms relaxed at their side in a neutral position (palms facing the thighs), 

and measurements were taken at the same sites as those used for the CSA measures. The 

average of the two measures was used for further analysis. The measurements of CSA and 
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upper arm circumference were taken before, immediately after, and 1-4 days following 

exercise. 

 

2.1.3 Statistical analyses 

Four subjects were used for the validity test to compare the CSA obtained by EFOV 

and MR images. The MR images were taken approximately 2 hours after the EFOV images.  

Both EFOV and MR images were taken from both arms, resulting in a sample size of 8 for 

validity analysis using a Pearson product-moment correlation coefficient and a paired t-test. 

For the reliability assessment, six subjects underwent two sessions of EFOV scans separated 

by one hour. For each EFOV session, three scans were taken from the 0 cm and 3 cm regions 

from each arm and the two closest CSA results were used for further analysis. The intra-tester 

reliability of the EFOV technique was assessed in two ways; using the same scan image and 

tracing it twice (between-traces) and scanning two images from the same site (between-scans). 

The test-retest reliability was also assessed using the images taken from the same site one 

hour apart. Coefficient of variation (CV) and Intra-class correlation (ICC) were used to 

determine the between-trace, between-scan and between-time reliability. ICC values within 

the range of 0.8 – 1.0 were considered as “good” reliability (Zwinderman & Cleophas, 2009).  

Changes in the CSA and upper arm circumference following eccentric exercise were 

analysed by a one-way repeated-measures analysis of variance (ANOVA). When the 

ANOVA showed a significant time effect, a Tukey’s post hoc test was applied to compare the 

values between time points. The correlation between the relative changes in CSA and upper 

arm circumference from pre-exercise values was analysed by a Pearson product-moment 

correlation coefficient using the data from all time points (i.e., immediately post, 1-4 days 

post). Significance level was set at P<0.05. The results are shown in mean ± SD, unless 

otherwise stated. 
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2.2 STUDY 2  

2.2.1 Subjects 

Ten healthy men (mean ± SD age: 26.1 ± 4.1 y, height: 173.1 ± 6.1 cm, body weight: 

72.4 ± 9.1 kg) participated in this study. Subjects were screened with a medical questionnaire 

to affirm that they did not have any musculoskeletal injury of the upper extremities and other 

contraindications that would affect their participation in the study. Resistance-trained 

individuals were excluded from the study. Subjects were requested to abstain from 

consuming any anti-inflammatory drugs, nutritional supplements, and/or any therapeutic and 

prophylactic interventions, and to avoid performing any unaccustomed or vigorous physical 

activities during the experimental period. Potential risks and requirements of this study were 

explained in an information letter and a written consent was obtained from the subjects before 

their participation in the study. This study was approved by the Human Research Ethics 

committee at Edith Cowan University. 

 

2.2.2 Study design 

All subjects performed two bouts of eccentric exercise for each arm separated by 

two weeks, with 4 weeks between bouts for the same arm (Table 1). One arm performed 3 

sets of 10 maximal eccentric contractions (3x10) of the elbow flexors in the first week (Week 

1) and the contralateral arm performed 10 sets of 3 maximal eccentric contractions of the 

elbow flexors (10x3) two weeks later (Week 3). The second exercise bout consisted of 20 sets 

of 3 maximal eccentric contractions (20x3) for both arms, and was performed four weeks 

after the first exercise bout for each arm (Week 5 for the arm that was used first, Week 7 for 

the contralateral arm). The order of the first exercise bout (3x10, 10x3) and the use of arms 

(dominant and non-dominant) were randomised and counter-balanced amongst subjects. The 
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dependent variables consisted of muscle strength, ROM, biceps brachii cross sectional area 

using B-mode ultrasound, muscle soreness by visual analogue scale (VAS) and pressure pain 

threshold of the elbow flexors, and plasma CK activity. These measures were taken before, 

immediately after and 1 – 4 days following each exercise bout except plasma CK activity, 

which was measured before, 2 and 4 days following each exercise bout. Changes in these 

variables over time were compared between 3x10 and 10x3 bouts, between arms following 

the second bout (20x3), and between the first and second bouts for each arm. 

 

Table 1: Study design. Each subject performed four eccentric exercise bouts over the 7 week 

period.  One arm (Arm 1) performed 3 sets of 10 eccentric contractions (3x10) or 10 sets of 3 

eccentric contractions (10x3) for the first bout (Week 1) and 20 sets of 3 eccentric 

contractions (20x3) for the second bout 4 weeks later (Week 5). The contralateral arm (Arm 2) 

performed 10 sets of 3 eccentric contractions (10x3) or 3 sets of 10 eccentric contractions 

(3x10) for the first bout (Week 3) and 20 sets of 3 eccentric contractions (20x3) for the 

second bout 4 weeks later (Week 7).  The first bout exercise (3x10 or 10x3) was different 

between arms (if Arm 1 performed 3x10 at Week 1, Arm 2 performed 10x3 at Week 3), and 

the choice of dominant or non-dominant arm was randomised and counterbalanced among the 

subjects.  For convenience, the condition that the arm performed 3x10 for the first bout is 

referred to as Group A, and the condition that the arm performed 10x3 for the first bout is 

referred to as Groups B. 

Week 1 2 3 4 5 6 7 
Arm 1 3x10 or10x3 - - - 20x3 - - 

Arm 2 - - 10x3 or 3x10 - - - 20x3 
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2.2.3 Familiarisation session 

Subjects performed a familiarisation session at least one week before the first 

exercise bout. In the session, subjects performed maximal isometric contractions at 60º 

flexion (0º is an extended elbow joint angle) and maximal concentric contractions at 210º·s-1 

twice for each measure using an isokinetic dynamometer described below. No eccentric 

contraction was performed; however the subjects were briefed on eccentric exercise protocols. 

Other measurements such as plasma CK activity, muscle soreness, ultrasound measures were 

also demonstrated. 

 

2.2.4 Exercise protocol 

Each subject was seated on a preacher curl bench, securing the shoulder flexion 

angle at 45º and performed eccentric contractions of the elbow flexors while keeping the 

forearm in a supinated position, using an isokinetic dynamometer (Cybex 6000, Lumex Inc. 

Runkonkoma, USA) operated by a HUMAC system (CSMI Medical Solutions, 

Massachusetts, USA) installed in a computer (Lenovo Think Center, IBM, New York, USA) 

(Figure 3). Subjects were asked to maximally resist the lengthening motion of the 

dynamometer and verbal encouragement was provided to the subjects during each eccentric 

contraction. In each eccentric contraction, the elbow joint was forcibly extended under 

maximal resistance from a flexed (90º) to a fully extended position (0º) at an angular velocity 

of 30°⋅s-1. After each contraction, the elbow joint was passively returned to the flexed 

position at a velocity of 10º·s-1, allowing approximately a 9-s rest between contractions. 

Torque signals were recorded via a data acquisition system (Powerlab16, ADInstruments, 

Castle Hill, Australia) at a sampling rate of 2000 Hz, and real-time visual feedback of torque 

was displayed on a computer monitor. The peak torque value of each eccentric contraction 
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was recorded and used for subsequent analysis. The rest time between sets for 3x10, 10x3 

and 20x3 were 228 s, 60 s and 60 s respectively, so that the entire exercise duration including 

the rest time between repetitions and sets was similar between 3x10 and 10x3. 

 

Figure 3: Cybex isokinetic dynamometer set-up with a preacher curl bench 

 

2.2.5 Criterion measures 

2.2.5.1 Muscle strength 

Each subject was seated in a preacher curl bench in the same position as that of the 

exercise, and performed isometric and concentric contractions of the elbow flexors on the 

isokinetic dynamometer while keeping forearm supinated. Maximal voluntary isometric 

contraction torque (MVC-ISO) was measured at 90º and 60º (where 0º represents a fully 

extended elbow joint angle) in this order. The duration of each isometric contraction was 3 s 

with a 30-s rest between contractions at the same angle, and a 60-s rest between the different 

angles. After a 3-min rest, maximal isokinetic concentric contraction torque (MVC-CON) 

was measured at two different velocities (30º⋅s-1 and 210º⋅s-1) in this order for a range of 
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motion from 0º (extended) to 90º (flexed) with a 30-s rest between contractions at the same 

velocity and a 60-s of rest between the different velocities. Subjects were verbally 

encouraged to give their maximal effort during the muscle strength tests. The average value 

of the two measurements for each test was used for subsequent analysis. 

 

2.2.5.2 Range of motion (ROM) 

ROM of the exercised arm was determined by measuring flexed (FANG) and 

extended (EANG) elbow joint angles with a Lafayette Gollehon goniometer (Model 01135, 

Lafayette Instrument Co, Inc., Indianapolis, USA). Subjects were asked to fully flex the 

elbow joint without raising the elbow for the FANG measurements and to fully extend the 

elbow joint as much as possible for the EANG measurements. Reference points (styloid 

process of radius, lateral epicondyle of humerus and deltoid insertion) were marked with a 

semi-permanent marker. FANG and EANG were measured twice and ROM was obtained by 

subtracting the mean FANG from the mean EANG. 

 

2.2.5.3 Biceps brachii cross sectional area (CSA) by ultrasonography  

Two regions (0 cm and 3 cm below mid-point of upper arm respectively) were 

marked out on the exercise arm based on the length of the upper arm that was determined by 

the acromion process of the clavicle to the lateral epicondyle of the humerus. Each subject 

was seated with his exercised arm resting at 90º shoulder flexion angle and 0º elbow flexion 

on a padded arm chair. Extended-field-of-view (EFOV) scans were taken using an Aloka 

SSD–α10 (Aloka Co. Ltd., Tokyo, Japan) with a 7.5 MHz 4-cm probe (UST-5412, Aloka Co. 

Ltd, Japan) by moving the probe along the marked lines axially from the medial aspect to the 

lateral aspect of the upper arm in a continuous single view. For the probe movement, pressure 

was applied minimally but consistently, avoiding compression of the muscle, and 
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transmission gel was used to aid in acoustic coupling. Three scans were taken from each 

region, and the biceps brachii muscle was traced to calculate its CSA using a computer 

software program (Image J, version 0.0, National Institute of Health, USA). The average of 

the three scans was used for further analysis.  

 

2.2.5.4 Muscle soreness 

A VAS incorporating a 100-mm line, anchoring 0 for no soreness and 100 for 

maximally imaginable soreness, was used to assess muscle soreness. Subjects were asked to 

rate the soreness felt upon palpation by the investigator. The palpation was applied to 5 sites 

including the mid-point of the upper arm, 30 and 60 % of the distance from the elbow crease 

to mid-point of the upper arm, brachioradialis (5cm below the lateral epicondyle) and 

brachialis (half way between mid-point of the upper arm and lateral epicondyle). The mid-

point of the upper arm was determined as a half way between the anatomical landmarks (i.e., 

epicondyle and acromion) based on Deighan et al. (2006). Each site was palpated twice, 

slowly in circular movements 5 times by the same investigator using his index and middle 

fingers. The investigator paid attention to standardise the palpation pressure between 

measurements and among subjects. 

 

2.2.5.5 Pressure pain threshold 

Pressure pain threshold (PPT) was assessed for the same sites as those mentioned in 

muscle soreness section by an electronic algometer (Somedic AB, Sweden) with a probe area 

of 1.0 cm2 (Figure 4). The head of the probe was placed perpendicular to each of the 5 sites in 

the same order as mentioned in muscle soreness section. Force was gradually applied at 50 

kPa·s-1 until the subject reported his first feeling of pain at the site, and the value was 
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recorded. Two measurements were taken for each site with a 30-s interval between them. The 

average value of the two measurements was used for further analysis. 

 

 

Figure 4: An algometer to assess PPT 

 

2.2.5.6 Plasma CK activity 

Blood samples were collected before, 2 and 4 days after eccentric exercise, as it is 

known that CK activity generally peaks 3 – 5 days after performing maximal eccentric 

contractions of the elbow flexors (Nosaka & Clarkson, 1996).  A finger tip of the non-

exercised arm of the subjects was pricked with a spring-loaded lancet and 30 µl of blood was 

collected into a capillary tube. The blood were loaded onto a CK test strip (Reflotron CK, 

Inverness Medical, Cheshire, UK) and measured by a Reflotron (Boehringer Mannheim 

GmbH, W. Germany). The normal CK reference range was 24 – 195 IU·L-1 according to the 

information provided by the company of the CK strip. 
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Figure 5: Reflotron to assess plasma CK activity  

 

2.2.6 Statistical analyses 

 Changes in peak torque during the eccentric exercise and the criterion measures over 

time were compared between 3x10 and 10x3, between arms for the 20x3 bout, and between 

the first and second bouts for each arm by a two-way repeated measure of analysis of 

variance (ANOVA). When a significant interaction effect was returned, a Tukey’s post hoc 

test was applied to compare the values for each time point. Significance level was set at 

P<0.05 and the results are reported as mean ± standard error of measurement (SEM) unless 

otherwise stated. 
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CHAPTER 3 

RESULTS 

3.1 STUDY 1 

3.1.1 Validity 

The average (± SD) CSA obtained from the MR and EFOV images, and the absolute 

differences between the two techniques are shown in Table 2. The absolute difference in CSA 

between the two techniques was small (0.4 ± 0.3 cm2) but significant (P=0.004), and the CSA 

measured by MRI was greater at both 0 cm (5.1 ± 4.1 %) and 3 cm (4.5 ± 5 %) sites 

compared with the EFOV values. Pearson product-moment correlation coefficient indicated 

that CSA measured by EFOV was highly correlated with that by MRI (r=0.99). 

 

Table 2. Biceps brachii cross sectional area obtained from magnetic resonance image (MRI) 

and ultrasound extended field of view image (EFOV), and the absolute difference between 

the two measures for the mid-point of the right (R) and left (L) arms of 4 subjects and their 

mean (± SD) values. At the bottom of the table, the results of a paired t-test (P) and a Pearson 

product-moment correlation coefficient (r) between the two measures are shown. 

Subject-Arm MRI (cm2) EFOV (cm2) Absolute Difference (cm2) 

1-R 14.4 14.1 0.3 

1-L 14.9 14.6 0.3 

2-R 7.4 6.6 0.8 

2-L 7.1 6.7 0.4 

3-R 21.7 21.5 0.2 

3-L 21.3 21.2 0.1 

4-R 7.9 7.5 0.4 

4-L 8.8 7.8 1.0 

Mean (± SD) 12.9 (± 6.1) 12.5 (± 6.3) 0.4 (± 0.3) 

P 0.004  

r 0.999  
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3.1.2 Reliability 

Table 3 shows that the between-trace reliability was high as indicated by low CV 

and high ICC R-values for both 0 cm and 3 cm regions. This was also the case for the 

between-scan reliability (Table 4) and the test-retest reliability as shown in Table 5. 

 

Table 3. Biceps brachii cross sectional area (CSA) of 6 subjects (mean ± SD) measured by 

the ultrasound extended field of view images taken at the mid-point of the upper arm (0 cm) 

and 3 cm below mid-point of the upper arm (3 cm) from right and left arms of the subjects, 

giving a sample size of 12 for each site. Using the same image, the biceps brachii was traced 

on two separate occasions (Trace 1 and Trace 2) by the investigator. Coefficient of variation 

(CV) and Intra-class correlation (ICC) based on the two traces are shown. 

 

 CSA (cm2) CV ICC 

Site Trace 1 Trace 2 % R 

0 cm 11.5 ± 2.9 11.5 ± 2.9 0.08 1 

3 cm 12.5 ± 3.2 12.5 ± 3.2 0.07 1 

 

Table 4. Biceps brachii cross sectional area (CSA) of 6 subjects (mean ± SD) measured by 

the ultrasound extended field of view images taken at the mid-point of the upper arm (0 cm) 

and 3 cm below mid-point of the upper arm (3 cm) from right and left arms of the subjects, 

giving a sample size of 12 for each site. The images were taken from the same site twice 

(Scan 1 and Scan 2) and the biceps brachii for each image was traced to measure the CSA by 

the same investigator.  Coefficient of variation (CV) and Intra-class correlation (ICC) based 

on the two scans are shown. 

 CSA (cm2) CV ICC 

Site Scan 1 Scan 2 % R 

 0 cm 11.5 ± 2.8 11.5  ± 2.8 0.1 1 

3 cm 12.5 ± 3.1 12.5  ± 3.1 0.1 1 
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Table 5. Biceps brachii cross sectional area (CSA) of 6 subjects (mean ± SD) measured by 

the ultrasound extended field of view images taken at the mid-point of the upper arm (0 cm) 

and 3 cm below mid-point of the upper arm (3 cm) from right and left arms of the subjects, 

giving a sample size of 12 for each site. The images were taken from the same site at two 

different occasions separated by a one-hour interval (Time 1 and Time 2) and the biceps 

brachii for each image was traced to measure the CSA by the investigator. Coefficient of 

variation (CV) and Intra-class correlation (ICC) based on the two time points are shown. 

 

 CSA (cm2) CV ICC 

Site Time 1 Time 2 % R 

0 cm 11.6 ± 2.6 11.6  ± 2.7 0.7 0.99 

3 cm 12.4 ± 3.3 12.3  ± 3.3 0.6 0.99 

 

3.1.3 Changes in biceps brachii CSA and upper arm circumference following eccentric 

exercise 

Changes in the average CSA obtained from the 0 cm and 3 cm sites before, 

immediately after and 1-4 days following eccentric exercise are shown in Figure 6A. Both 

sites showed significant increases in CSA compared with the baseline values. The largest 

increase in CSA was found at 1 day post-exercise (12.6 ± 7.5 %) for the 0-cm site, and 

immediately post-exercise (9.2 ± 5.9 %) for the 3-cm site. The largest increase in 

circumference was observed immediately after exercise for the 0-cm site (1.3 ± 1.3 %) and 

day 2 after for the 3-cm site (1.9 ± 1.3 %), and remained greater than the baseline values for 4 

days post-exercise (Figure 6B). 
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Figure 6: Changes (mean ± SEM, n=10) in biceps brachii cross-sectional area (A) and upper 

arm circumference (B) at the mid-point (0 cm) and 3 cm below the mid-point (3 cm) before 

(pre), immediately after (0) and 1-4 days following 3 sets of 10 maximal eccentric 

contractions of the elbow flexors. * indicates a significant (P<0.05) difference from the pre-

values. 

 

3.1.4 Correlation between biceps brachii CSA and upper arm circumference changes 

As shown in Figure 7, the relative changes in CSA and upper arm circumference 

from baseline were significantly (P=0.000) but poorly correlated (r=0.428). This was also the 

case for the analysis for each site separately (0 cm: r=0.43, 3 cm: r=0.50, P<0.001). An 

increase in CSA did not necessarily correspond to an increase in upper arm circumference, 

and vice versa. 
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Figure 7: Correlation between biceps brachii cross-sectional area (CSA) and upper arm 

circumference changes following eccentric contractions of the elbow flexors (0 and 3 cm 

regions, immediately post and 1-4 days post exercise, 10 subjects: 2 x 5 x 10 = 100 pair 

samples). 

 

3.2. STUDY 2 

3.2.1 Eccentric exercise performance 

 Figure 8 shows the changes in peak torque over 30 eccentric contractions for the 

3x10 and 10x3 bouts, and over 20 sets (average of 3 eccentric contractions) for each arm in 

the 20x3 bout. No significant difference in the peak torque changes was observed between 

3x10 and 10x3, and between arms for the 20x3 bout. When comparing the magnitude of 

decrease in peak torque from the first three to the last three contractions of 3x10 or 10x3 and 
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20x3 bouts, the average peak torque of the first three contractions was 50.4 ± 1.6 Nm for the 

10x3/3x10 and 48.4 ± 1.5 Nm for 20x3, and the average peak torque of the last three 

contractions was 36.3 ± 1.0 for 10x3/3x10 and 32.7 ± 0.9 Nm for 20x3. The decreases in 

peak torque were significantly smaller for 20x3 (31.7 ± 2.2 %) compared with 3x10/10x3 

bout (35.9 ± 1.7%). 

 

 

Figure 8: Changes (mean ± SEM) in peak torque over 30 eccentric contractions (3 sets of 10 

repetitions: 3x10 – Group A, 10 sets of 3 repetitions: 10x3 – Group B) in the first bout and 

over 60 eccentric contractions (20 sets of 3 repetitions: 20x3) in the second bout (2nd bout) for 

each group (Group A and Group B).  n.s. indicates not significantly different between groups. 
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3.2.2 Muscle Strength 

 Baseline values were not significantly different among the four exercise bouts; 

however, significantly different values were evident amongst MVC-ISO at 60° (49.3 ± 1.8 

Nm), 90° (57.7 ± 2.0 Nm), MVC-CON at 30°/s (39.5 ± 1.6 Nm) and 210°/s (48.0 ± 1.5 Nm). 

Figure 9 shows the changes in MVC-ISO at 60° and 90° before, immediately after and 1-4 

days following eccentric exercise. Figure 10 shows the changes in MVC-CON at 30°/s and 

210°/s before, immediately after and 1-4 days following eccentric exercise. For MVC-ISO at 

90°, muscle strength decreased significantly immediately after exercise by 38.2 ± 2.1% and 

gradually recovered to the baseline by 3 days post-exercise. No significant difference in the 

changes was observed between 3x10 and 10x3, between arms for the 20x3 bouts, and 

between the first and second bouts for each arm. This was also the case for other muscle 

strength measures, although the magnitude of changes in MVC was different amongst the 

measures. 
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Figure 9: Changes (mean ± SEM) in maximal voluntary isometric contraction strength at 60° 

(A) and 90° (B) before (Pre), immediately after (0), and 1 – 4 days following 3 sets of 10 

maximal eccentric contractions (3x10, Groups A), 10 sets of 3 maximal eccentric 

contractions (10x3, Group B), and 20 sets of 3 maximal eccentric contractions (20x3, Groups 

A & B). The results of comparison between groups are shown on the top of the graphs. n.s. 

indicates not significantly different and * indicates significantly (P<0.05) different from the 

pre-value. 
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Figure 10: Changes (mean ± SEM) in maximal voluntary isokinetic concentric contraction 

strength at 30°/s (A) and 210°/s (B) before (Pre), immediately after (0), and 1 – 4 days 

following 3 sets of 10 maximal eccentric contractions (3x10, Groups A), 10 sets of 3 

maximal eccentric contractions (10x3, Group B), and 20 sets of 3 maximal eccentric 

contractions (20x3, Groups A & B). The results of comparison between groups are shown on 

the top of the graphs. n.s. indicates not significantly different and * indicates significantly 

(P<0.05) different from the pre-value. 
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3.2.3 ROM 

 As shown in Figure 11, ROM was similar for both arms before each exercise bout 

(average: 130.9 ± 0.9°). ROM decreased significantly immediately after eccentric exercise 

and did not recover to baseline by 4 days post-exercise. No significant difference in the 

changes was observed between 3x10 and 10x3. However, significant differences were 

observed when comparing between arms for the 20x3 bout, between 3x10 and 20x3, and 

between 10x3 and 20x3. When comparing between arms for the changes following 20x3, the 

magnitude of decrease in ROM was significantly greater for the arm that performed 3x10 for 

the first bout compared to the arm that performed 10x3 for the first bout. The magnitude of 

decrease in ROM immediately after to 2 days following 3x10 was significantly smaller than 

that after 20x3, but the magnitude of decrease in ROM immediately after to 3 days following 

10x3 was significantly greater than that after 20x3. 
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Figure 11: Changes (mean ± SEM) in range of motion (ROM) before (Pre), immediately after 

(0), 1 – 4 days following 3 sets of 10 maximal eccentric contractions (3x10, Groups A), 10 

sets of 3 maximal eccentric contractions (10x3, Group B), and 20 sets of 3 maximal eccentric 

contractions (20x3, Groups A & B). The results of comparison between groups are shown on 

the top of the graphs. n.s. indicates not significant different between bouts, * indicates 

significance (P<0.05) difference from pre-values. 

 

3.2.4 Biceps brachii CSA 

 Biceps brachii CSA was greater for the 3 cm region (9.6 ± 0.3 cm2) when compared 

with the 0 cm region (7.7 ± 0.4 cm2); however, the changes in CSA were similar between the 

two regions. Figure 12 shows the biceps brachii CSA at the 3cm region. The CSA increased 

significantly immediately after exercise and remained elevated for 4 days post-exercise. No 

significant difference in the CSA changes was observed between 3x10 and 10x3, between 

arms for the 20x3 bouts, and between the first and second bouts for each arm.  
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Figure 12: Changes in (mean ± SEM) biceps brachii cross-sectional area (CSA) at 3 cm 

below mid-point of upper arm before (Pre), immediately after (0), 1 – 4 days following 3 sets 

of 10 maximal eccentric contractions (3x10, Groups A), 10 sets of 3 maximal eccentric 

contractions (10x3, Group B), and 20 sets of 3 maximal eccentric contractions (20x3, Groups 

A & B). The results of comparison between groups are shown on the top of the graphs. n.s. 

indicates not significantly different between bouts and * indicates significantly (P<0.05) 

different from pre-values. 

 

3.2.5 Muscle soreness and PPT 

 The palpation measures from the five different sites were summed (i.e., maximal 

value of 500 mm) to represent muscle soreness of whole elbow flexors (Figure 13). The 

soreness rating increased on day 1 and peaked on day 2 after exercise. No significant 

difference was observed between 3x10 and 10x3, between arms for the 20x3 bouts, and 

between the first and second bouts for each arm. 
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 All PPT measures were summed in the same manner as the muscle soreness VAS. 

The baseline PPT values were not significantly different amongst the four exercise bouts 

(average between 1345.1 ± 124.1 kPa and 1491.7 ± 231.8 kPa). PPT decreased immediately 

after exercise, with a largest decrease was observed on day 1 post-exercise (average between 

1070.6 ± 130.5 kPa and 1212.2 ± 136.0 kPa), and gradually return to the baseline in the next 

three days; however, it was still 5.2 % – 16.2 % lower than the baseline at 4 days post-

exercise. No significant difference was observed between 3x10 and 10x3, between arms for 

the 20x3 bouts, and between the first and second bouts for each arm. 

 

Figure 13: Changes in (mean ± SEM) muscle soreness upon palpation (sum of the five 

different sites: 500 mm is the potential maximal value) assessed by visual analogue scale 

before (Pre), immediately after (0), 1 – 4 days following 3 sets of 10 maximal eccentric 

contractions (3x10, Groups A), 10 sets of 3 maximal eccentric contractions (10x3, Group B), 

and 20 sets of 3 maximal eccentric contractions (20x3, Groups A & B). The results of 

comparison between groups are shown on the top of the graphs. n.s. indicates not significant 

different between bouts and * indicates significantly (P<0.05) different from pre-values. 
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3.2.6 Plasma CK activity 

 No significant difference in the changes in plasma CK activity were observed between 

3x10 and 10x3, between arms for the 20x3 bouts, and between the first and second bouts for 

each arm. Plasma CK activity increased significantly at 4 days post-exercise (average of 4 

bouts: 181.7 ± 19.5 IU·L-1) from the baseline (average of 4 bouts: 134.9 ± 7.3 IU·L-1), but the 

magnitude of decrease was small (Figure 14). 

 

Figure 14: Changes in (mean ± SEM) serum CK activity levels before (Pre) and day 4 

following 3 sets of 10 maximal eccentric contractions (3x10, Groups A), 10 sets of 3 

maximal eccentric contractions (10x3, Group B), and 20 sets of 3 maximal eccentric 

contractions (20x3, Groups A & B). The results of comparison between groups are shown on 

the top of the graphs. n.s. indicates not significant different between bouts and * indicates 

significantly (P<0.05) different from pre-values. 
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CHAPTER 4 

DISCUSSION 

The present study tested three hypotheses that 1) EFOV would be valid and reliable 

to measure bicep brachii CSA, 2) 10x3 would induce greater magnitude of muscle damage 

than 3x10, and 3) the magnitude of the repeated bout effect would be smaller for the 

condition that 20x3 was performed after 3x10 compared with 20x3 performed after 10x3 

(Figures 9-14).The results of this study supported the hypothesis that 1) the EFOV technique 

was valid and reliable for measuring biceps brachii CSA at the mid-arm regions (Tables 2-5). 

However, in contrast to the hypotheses, the results showed 2) no significant differences in the 

changes in peak torque during eccentric exercise and criterion measures following exercise 

between 3x10 and 10x3 (Figure 8), and 3) no significant differences in the changes in 

criterion measures after 20x3 between arms (Figures 9-14); suggesting no effect of the 

different set-repetition configuration on muscle damage and the repeated bout effect. The 

results also revealed that the changes in the criterion measures were similar between the first 

and second bouts, regardless of the difference in the set-repetition configuration in the first 

exercise bout. 

 

4.1 STUDY 1 

The results of this study showed that the EFOV technique was valid and reliable for 

measuring biceps brachii CSA at the mid-arm regions. Although the difference was small, the 

CSA obtained from the EFOV was approximately 1 % smaller than that assessed by MRI 

(Table 1). When the EFOV technique was applied to assess changes in biceps brachii CSA 
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following eccentric exercise of the elbow flexors, increases in the CSA were found; however, 

the changes in CSA were poorly correlated with the changes in upper arm circumference.  

It should be noted that the EFOV technique was unable to capture the whole 

brachialis muscle and measure its CSA in the present study. In order to obtain the whole 

brachialis muscle image, the transducer has to be moved from the medial to lateral aspect of 

the upper arm, which we found was not possible. In the present study, the transducer (3.6 cm 

in width) did not allow us to obtain images from subjects with small upper arms, because the 

transducer would produce overlap between successive images and was unable to glide 

through the cross section of the arm without deviating from the scanning plane. A smaller 

transducer (e.g. 2 cm) may be able to overcome this shortcoming; however such transducer is 

not currently available. This is a limitation for using the EFOV technique to assess entire 

elbow flexor muscle CSA, since most studies utilising MRI or CT techniques to assess CSA 

of the upper arm include brachialis or the anterior compartment instead of focusing on biceps 

brachii muscle (Deighan et al., 2006; Housh et al., 1992; Kanehisa et al., 1994; Vikne et al., 

2006). However, identifying the biceps brachii CSA may be useful. The average biceps 

brachii CSA value measured at 3 cm (∼12.5 cm2) in the present study was similar to that 

reported by Kanehisa et al. (1994) who used a specially designed ultrasonic system. McCall 

et al. (1996) also found similar biceps brachii CSA (11.8 ± 2.7 cm2) to that of the present 

study using MRI for men prior to commencing a resistance training program. 

                 The present study found that the biceps brachii CSA assessed by EFOV was 

smaller than by MRI (Table 1). Noorkoiv et al. (2010) compared the CSA of quadriceps 

muscles at 10, 20, 30, 40 and 50 % of the length between the centre of the patella and the 

medial aspect of the anterior superior iliac spine using EFOV and CT, and found that EFOV 

showed smaller CSA when compared to CT technique at the 10 and 20 % regions. They 
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stated that the reason for the difference between the techniques was due to the different 

measuring planes used such that the CT measures perpendicular to the measurement table 

while the EFOV measures perpendicular to the muscle. Ahtiainen et al. (2010) reported that 

EFOV technique systematically underestimated the CSA of vastus lateralis muscle compared 

with MRI, as MRI measures in the vertical axis and perpendicularly to the measurement table 

but EFOV measures perpendicular to the skin.  In the present study, it was noted that subjects 

with smaller biceps brachii CSA had curvier surfaces. In these instances, the EFOV technique 

was probably more appropriate as the biceps brachii had to be scanned at a slight angle 

perpendicular to the skin in contrast to the vertically scanned MR images. This could possibly 

explain why subjects with smaller biceps brachii CSAs had larger absolute CSA differences 

with the MRI technique (Table 1). Thus, in consideration of the suggestion by Noorkoiv et al. 

(2010) and the curved nature of the upper arm in the present study, EFOV would be 

considered as a more accurate estimate of CSA. 

The present study showed that the biceps brachii CSA assessed by the EFOV 

technique was reliable between-traces, between-scans, and between-measures (Tables 2-4). 

However, it is important to note that measurement errors could easily occur when scanning 

EFOV images and tracing a biceps brachii muscle on an EFOV image. In the present study, 

the investigator practiced EFOV scanning technique many times before actually taking 

images for the present study. It is also important to know how an EFOV image shows a target 

muscle to be examined. As shown in Figure 2, the shape of muscles shown in the EFOV 

images is not the same as that shown in the MR images. EFOV uses image registration 

between sequentially acquired images for motion estimation and constructs a large panoramic 

image in real time (Weng et al., 1997). The images obtained using EFOV are not as detailed 

as those taken using MRI or CT, showing only elbow flexor muscle compartment compared 

to the full cross-sectional images of the upper arm, showing the entire elbow flexors and 
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extensors muscle compartments in MRI and CT slices. Tracing a muscle accurately also 

requires practice, however, once the technique is established, the error involved in the tracing 

procedure is small as shown in Table 2. Once scanning technique is established, variation in 

the CSA between different images from the same site is also minimal as shown in Table 3. 

The present study showed that the test-retest reliability is high for the measurements taken 1 

hour apart, with a CV of only 0.6-0.7 %. Thus, this technique could detect as small as a 1 % 

change in biceps brachii CSA.  

As shown in Figure 6, the biceps brachii CSA increased approximately 10 % 

immediately after to 4 days following eccentric exercise of the elbow flexors. This is the first 

study reporting biceps brachii CSA changes using EFOV technique after eccentric exercise.  

It has been well documented that muscle swelling is induced by eccentric exercise of the 

elbow flexors, however, previous studies used upper arm circumference measures (Chleboun 

et al., 1998; Nosaka & Clarkson, 1996; Nosaka & Newton, 2002a) and/or elbow flexors 

muscle thickness measures by B-mode ultrasound (Nosaka & Newton, 2002a; Nosaka et al., 

2002) to quantify the magnitude of swelling. For example, Nosaka et al. (2002) found that 

upper arm circumference increased by 8.3 mm immediately after 24 repetitions of maximal 

eccentric exercise, with further increments of up to 14 mm four days after performing the 

exercise. In contrast, upper arm circumference in the present study showed 4-5 mm (1.3-1.7 

%) increase immediately after eccentric exercise, but no continuous increase was recorded as 

circumference recovered to baseline values at day 4 following exercise. It should be noted 

that CSA was greater at 3 cm compared with 0 cm site, but it was the opposite for the upper 

arm circumference. The greater upper arm circumference at the 0 cm site is likely due to the 

greater inclusion of the triceps brachii. The similar time course in the changes suggests that 

the cause of the increase is the same, but it should be noted that the magnitude of change was 

much greater for the CSA (average: 9.1 %) than upper arm circumference (average: 1.1 %). 
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This may be partially due to the difference in the area change versus length change such that 

a 10 % change in length could result in a 21 % change in area (e.g. 5.52
π/52

π=1.21). It is 

important to note that the changes in CSA and upper arm circumference were poorly 

correlated. As shown in Figure 7, there are many cases showing no increases in upper arm 

circumference, even when increases in CSA were evident. It could be that the circumference 

measure could not detect possible swelling as accurately as CSA. Although limb 

circumference is generally used to estimate muscle swelling, it cannot discriminate swelling 

in different muscle compartments within the same limb (Howell et al., 1993; Nosaka & 

Clarkson, 1996). Imaging of the muscle compartment by MRI, CT or ultrasound could 

provide a more direct way of assessing muscle swelling (Chleboun et al., 1998). Further 

study is necessary to investigate the relationship between limb circumference and CSA. 

It is concluded that the EFOV technique is a valid and reliable method to measure 

biceps brachii CSA, and it is possible to detect 1 % CSA change, thus it can be employed in 

studies examining changes in CSA over time. However, ample practise with scanning and 

tracing techniques are necessary to obtain accurate results. Muscle swelling after eccentric 

exercise of the elbow flexors was detected by increases in biceps brachii CSA using EFOV, 

however CSA changes were not highly correlated with the upper circumference changes. 

Therefore, to quantify muscle swelling after eccentric exercise it may be better to measure 

CSA than circumference, as the circumference measure has a greater possible margin of 

errors and the magnitude of change in upper arm circumference is smaller than that of CSA. 

 

4.2 STUDY 2 

The present study tested two hypotheses that 1) 10x3 would induce greater 

magnitude of muscle damage than 3x10, and 2) the magnitude of the repeated bout effect 

would be smaller for the condition that 20x3 was performed after 3x10 compared with 20x3 
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performed after 10x3 (Figure 8). Contrary to the hypotheses, the results showed that 1) no 

significant differences in the changes in peak torque during eccentric exercise and criterion 

measures following exercise between 3x10 and 10x3, and 2) no significant difference in the 

changes in criterion measures after 20x3 between arms (Figure 9-14); suggesting no effect of 

the different set-repetition configuration on muscle damage and the repeated bout effect. The 

results also revealed that the changes in the criterion measures were similar between the first 

and second bouts, regardless of the difference in the set-repetition configuration in the first 

exercise bout.  

All criterion measures returned to baseline before performing the second exercise 

bout for both arms, showing that four weeks were sufficient for full recovery from the 

previous eccentric exercise bout. No significant differences in peak torque over 30 eccentric 

contractions were evident between 3x10 and 10x3 (Figure 1), suggesting that the exercise 

were performed similarly between 3x10 and 10x3, despite the different set-repetition 

configurations. The assumption that decreases in force would be smaller for a smaller number 

of repetitions (i.e., 10x3) compared with a larger number of repetitions in a set (i.e., 3x10) 

was not supported by the results of the present study. Although the set-repetition 

configurations were different, the rest period between contractions in a set was the same (9 s) 

for 3x10 and 10x3. Although the rest period between sets was longer for 3x10 (228s) 

compared with 10x3 (60 s), it appears that the difference in the duration had limited effect on 

the torque production, probably because no additional effect of rest between sets was 

provided by increasing the rest time from 60 s to 228 s. 

Changes in any of the muscle strength measures were not significantly different 

between 3x10 and 10x3 (Figures 9 – 10). This indicates that both bouts of 30 maximal 

eccentric contractions resulted in similar magnitude muscle damage. Previous studies (Chen 

et al., 2009; Chen & Hsieh, 2001) reported approximately 40 % decrease in MVC-ISO 
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measured at 90° elbow flexion immediately after performing 3 sets of 10 maximal eccentric 

contractions for the range of motion from 50° to 180°. The present study also found a 

comparable decrease in strength loss immediately after 3x10 or 10x3; however, the decrease 

in MVC-ISO at 4 days post-exercise was smaller for the present study (3x10: 13.8 ± 4.9 %, 

10x3: 9.9 ± 3.8 % lower than baseline) compared with previous studies (Chen et al., 2009; 

Chen & Hsieh, 2001) reporting that MVC-ISO was still 24-37 % lower than baseline. 

Compared with the previous studies (Chen et al., 2009; Chen & Hsieh, 2001), the decreases 

in ROM and increases in serum CK activity following 30 maximal eccentric contractions 

were much smaller in the present study. It is not clear why the 30 maximal eccentric 

contractions in the present study did not induce as much changes in the criterion measures as 

those shown in the previous studies, since the eccentric exercise protocols were comparable 

between the studies. It may be that the subjects recruited in the present study were less 

susceptible to muscle damage than those recruited in the previous studies (Chen et al., 2009; 

Chen & Hsieh, 2001), although the present study also recruited “non resistance-trained” men 

as the previous studies did. It has been shown that “resistance-trained” men show smaller 

decrease and faster recovery of muscle strength and ROM, and no increases in CK activity in 

the blood (Newton et al., 2008). A large variability among subjects for their responses to 

eccentric exercise has been reported, even for “untrained” individuals (Chen, 2006; Chen et 

al., 2011; Hubal et al., 2005). It might be that the subjects who participated in the present 

study were more “accustomed” to the eccentric exercise than those in the previous studies. 

This is the first study to compare 3x10 and 10x3 for changes in criterion measures 

with the assumption that a difference in the set-repetition configuration would exist. Contrary 

to the hypothesis, the present results did not show significant differences in the changes in 

any of the criterion measures between 3x10 and 10x3. As shown above, peak torque 

generated over 30 eccentric contractions was similar between 3x10 and 10x3. This seems 
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likely to be a reason for the similar changes in the criterion measures between 3x10 and 10x3. 

We assumed that less fatigue would be induced when the subjects performed a small number 

of repetitions in a set (i.e., 10x3) than a large number of repetitions (i.e., 3x10), thus a greater 

torque production for the former than the later. However, this was not the case for the present 

study, and no significant difference in the changes of peak torque over 30 contractions was 

found. The force production during eccentric contractions is the main factor determining the 

magnitude of muscle damage (Lavender & Nosaka, 2006; Raastad et al., 2010; Smith & 

Newham, 2007). The similar peak torque output during the exercise between 3x10 and 10x3 

(Figure 1) suggests that mechanical stress to the exercised muscles was similar between the 

two conditions, resulting in a similar magnitude of muscle damage.   

When a second bout of 20x3 was repeated 4 weeks after the first bout, no significant 

differences in most of the criterion measures were found between arms (Figures 9-10 and 12-

14) regardless of the difference in the set-repetition configuration in the first bout (3x10 vs. 

10 x3). It seems likely that no significant differences in the changes in criterion measures 

after the first exercise bouts between 3x10 and 10x3 were the reason for no significant 

differences in the changes in criterion measures after the second bout (20x3) between arms. It 

is interesting to note that ROM showed a significantly greater decrease immediately after 

20x3 for the arm that performed 3x10 for the first bout compared with the arm that performed 

10x3 for the first bout (Figure 11). However, the differences were small, and considering the 

fact that no significant differences between arms were found for other variables, the 

difference in ROM does not appear to be physiologically significant. It is well documented 

that when the same or similar eccentric exercise is repeated within a certain period (e.g. 8 

weeks), changes in muscle damage markers following the second bout are significantly 

smaller and recovery is significantly faster compared with the first bout (Lavender & Nosaka, 

2008; Nosaka et al., 2005). It should be noted that this was not the case for the present study, 
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and the responses of all criterion measures except ROM were similar between the first (3x10 

or 10x3) and second (20x3) bouts. Since the present study did not have an additional group 

performing 20x3 in the first bout, it is not known how the criterion measures respond 

following 20x3 when it is performed without the previous exercise bout (i.e., 3x10 or 10x3). 

Howatson et al. (2007) reported that 10 maximal eccentric contractions of the elbow flexors 

conferred the same magnitude of protective effect as 45 maximal eccentric contractions 

against 45 maximal eccentric contractions performed 2 weeks later. If this could have 

occurred in the present study, we should have seen attenuated changes in the criterion 

measures following the second bout (60 maximal eccentric contractions; 20x3) compared 

with the first bout (30 maximal eccentric contractions; 3x10 or 10x3). However, the changes 

in the dependent variables were similar between the first and second bouts (Figures 2-5).  

Thus, it appears that the magnitude of repeated bout effect conferred by the first eccentric 

exercise bout consisting of 30 maximal eccentric contractions against the second eccentric 

exercise bout consisting of 60 maximal eccentric contractions was not as great as those 

reported in the previous studies.  The reason for this is not clear, but it might be that the 

relatively small responses to the first bout are associated with the attenuated repeated bout 

effect as discussed below. 

Falvo et al. (2007) investigated the responses of resistance-trained subjects to 

repeated bouts of a bench press exercise (10 sets of 10 repetitions using a load of 70 % of 

concentric one repetition maximum) separated by 2 weeks. They reported that muscle 

soreness was reduced in the second bout; however, no significant differences in the changes 

in maximal isometric strength, rate of force development and dynamic bench press throw 

performance were observed between bouts, suggesting that the magnitude of repeated bout 

effect in resistance-trained individuals is limited. In the following study, Falvo et al. (2009) 

found similar results to the first study using the same exercise performed by resistance-
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trained subjects, and also showed that changes in serum CK activity were similar between 

bouts. Although the present study used non resistance-trained men as subjects, the changes in 

the criterion measures following the first eccentric exercise bout were relatively smaller 

compared with those shown in the previous studies as discussed above. Thus, it might be that 

the responses of the subjects in the present study to the repeated bouts of eccentric exercise 

were similar to those shown in the studies by Falvo et al. (2009). It is interesting to 

investigate further how “resistance-trained” individuals respond to the repeated bout protocol 

that was used in the present study (i.e., 3x10 or 10x3 for the first bout followed by 20x3).  

The present study utilised a new method to assess muscle swelling by measuring 

muscle CSA using B-mode ultrasonography with EFOV imaging. Previous studies reported 

greater increases in upper arm circumference 3 to 4 days than 1 to 2 days following eccentric 

exercise of the elbow flexors (Chen & Nosaka, 2006; Chleboun et al., 1998; Nosaka et al., 

2001). However, further increases in CSA were not observed 2-4 days post-exercise in the 

present study. It should be noted that other muscle groups such as brachialis and triceps 

brachii were included in the circumference measures of the previous studies (Chen & Nosaka, 

2006; Chleboun et al., 1998; Nosaka et al., 2001), but the swelling information was solely 

based on biceps brachii CSA in the present study, because of the difficulty in obtaining whole 

cross section images of the brachialis and triceps brachii by the EFOV method. Thus, it is 

possible that muscle swelling information is different between biceps brachii CSA and upper 

arm circumference measures. As discussed above, the magnitude of muscle damage in the 

present study was smaller than that of the previous studies (Chen & Nosaka, 2006; Nosaka et 

al., 2001). Further studies are necessary to assess biceps brachii CSA changes following 

eccentric exercise that results in greater muscle damage than that of the present study. 

In resistance training, the number of repetitions can be classified into 3 ranges, low 

(1-5), moderate (6-12) and high (15+) (Baechle et al., 2008). Low repetitions with high loads 
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are generally prescribed to increase strength and power, and moderate repetitions with high 

loads are used to increase muscle size (Baechle et al., 2008; Ratamess et al., 2009; 

Schoenfeld, 2010). Regarding set-repetition configurations, multiple sets were shown to be 

more superior in inducing muscle strength and hypertrophy to single-set configurations 

(Baechle et al., 2008). However, it does not appear that set-repetition configurations with a 

very large number of sets and a small number of contractions that was used in the present 

study (e.g. 10x3, 20x3) are seldom used in an actual training.  Thus, the alteration of the set-

repetition configuration from the first to the second bout in the present study is considered as 

an extreme case. Since the extreme case did not show any significant effect on muscle 

damage profile, it does not appear that changing set-repetition configuration is not a way to 

minimise the repeated bout effect, if muscle damage should be maximised in training. 

Muscle damage is anecdotally documented to be necessary for muscle hypertrophy. 

Several studies have reported the superiority of eccentric training to concentric training for 

muscle hypertrophy (Farthing & Chilibeck, 2003; Hortobagyi et al., 2000; Vikne et al., 2006). 

For example, Farthing and Chilibeck (2003) demonstrated that eccentric training of elbow 

flexors at fast (180º·s-1) and slow (30º·s-1) velocity resulted in significant increases in muscle 

thickness (13 % and 7.8 %, respectively) compared to concentric training at fast (180º·s-1) 

and slow (30º·s-1) velocities (5.3 % and 2.6 %, respectively). Vikne et al. (2006) showed that 

eccentric training (2-3 times a week over 12 weeks) increased cross sectional area of the 

elbow flexors (11 %) and their muscle fibre areas (41 %) significantly more than concentric 

training (3 % and 4 %, respectively). It is widely accepted that higher forces associated with 

eccentric training could have greater potential to induce muscle hypertrophy compared with 

other contractions modes (Adams et al., 2004; Farthing & Chilibeck, 2003). Martineau and 

Gardiner (2001) demonstrated that the increases in mitogen-activated protein kinase (MAPK), 

and p54 c-Jun NH2-terminal kinase and p44 extracellular regulated kinase phosphorylation 
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were greater after eccentric contractions compared with isometric and concentric contractions. 

The rate of protein synthesis mediated by activations of protein kinase B (Akt), mammalian 

target of rapamycin (mTOR), and p70 S6 kinase (p70s6k), and the Akt/mTOR/p70s6k pathway 

are known to be involved in exercise-induced muscle hypertrophy (Atherton et al., 2005; 

Bolster et al., 2003). Eliasson et al. (2006) reported that maximal eccentric contractions of the 

knee extensors activated p70s6k in the vastus lateralis, but maximal concentric contractions 

did not, suggesting that maximal eccentric contractions were more effective than maximal 

concentric contractions in stimulating protein synthesis. Thus, it is possible that muscle 

damage induced by maximal eccentric contractions could also contribute to the greater 

muscle hypertrophy induced by eccentric training compared with concentric training. It is 

also known that satellite cell activation and proliferation are necessary for muscle 

hypertrophy (Charge & Rudnicki, 2004), and muscle damage activates satellite cells (Crameri 

et al., 2004; Toth et al., 2011). However, these do not necessary mean that muscle damage is 

necessary for muscle hypertrophy (Nosaka et al., 2003). It is important to note that although 

muscle damage is attenuated in progressive training, muscle hypertrophy is being induced. 

There is no doubt that eccentric contractions could stimulate muscle hypertrophic responses, 

but it is necessary to distinguish the superiority of eccentric contractions on muscle 

hypertrophy from muscle damage. Further research is required to investigate whether muscle 

damage is necessary for muscle hypertrophy. 

In conclusion, the present study showed that manipulating the set-repetition 

configuration of a single bout of maximal eccentric exercise of the elbow flexors (3x10 and 

10x3) did not affect the changes in indirect muscle damage markers and protective effect. 

However, most of the criterion measures except ROM showed no significant differences 

between the first and second bouts, implying that the repeated bout effect was attenuated by 

increasing the number of maximal eccentric contractions from the first to the second bout. 
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Future studies should investigate whether altering the set-repetition configuration over a 

longer period of time (e.g. > 8 weeks) would result in greater increases in muscle function 

and size compared with a monotonous training scheme (repeating the same exercise over a 

period of time), how it is possible to induce greater muscle damage by attenuating the 

repeated bout effect, and whether such strategy if any could produce better outcomes in 

resistance training.  
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