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Abstract 
 

PowerCranks™ are claimed to increase economy of motion and cycling efficiency by 

reducing the muscular recruitment patterns that contribute to the resistive forces occurring 

during the recovery phase of the pedal stroke. However, scientific research examining the 

efficacy of training with PowerCranks™ is lacking. Therefore, the purpose of this study was 

to determine if five weeks of training with PowerCranks™ improves economy of motion 

(EOM), gross efficiency (GE), oxygen uptake (Error! Bookmark not defined.V
.
O2) and 

muscle activation patterns in trained cyclists. Sixteen trained cyclists were matched and 

paired into either a PowerCranks™ (PC) or Normal Cranks (NC) training group. Prior to 

training, all subjects completed a graded exercise test (GXT) using normal bicycle cranks. 

Additionally, on a separate day the PC group performed a modified GXT using 

PowerCranks™ and cycled only until the end of the 200W stage (PCT). During the GXT and 

PCT, FeO2, FeCO2 and V
.

E were measured to determine EOM, GE and V
.
O2max. Integrated 

electromyography (iEMG) was also used to examine selected muscular activation patterns. 

Subjects then repeated the tests following the completion of training on their assigned cranks. 

No significant improvements were observed for EOM, GE, V
.
O2max or iEMG in either the 

PC or NC group when subjects were cycling with normal cranks during the GXT. Likewise, 

no significant training effects were observed when PC subjects cycled with PowerCranks™ 

during the PCT. PC group subjects were significantly less efficient and economical, before 

and after training when cycling with PowerCranks™ compared to cycling with normal 

cranks. The results from this study do not support benefits claimed by PowerCranks™, 

however further research is needed to examine the influence of training with PowerCranks™ 

on various physiological variables over a more prolonged training duration.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

Since the introduction of the safety bicycle over one hundred years ago, the modern 

bicycle has developed into a strong, lightweight, aerodynamic machine that has allowed 

cyclists to travel at over 50km⋅h-1 for prolonged durations (Lafortune & McLean, 1989a; 

Padilla, Mujika, Angulo, & Goirena, 2000). In addition to these successful technological 

advances, research in the fields of exercise physiology, nutrition and biomechanics have 

helped to advance our understanding of ways in which cyclists can improve their 

performance (Minetti, Pinkerton, & Zamparo, 2001).  

One factor that might influence cycling performance is the distribution of the force that a 

cyclist’s foot applies to the pedals throughout the entire pedal stroke (Kyle, 1996, p. 2).  

Traditionally, cyclists push down from top dead centre to bottom dead centre and then relax 

for the recovery portion of the stroke (Lafortune & McLean, 1989b).  Lafortune and Mclean 

(1989a) have suggested how this pedalling technique may be difficult to improve due to 

certain anatomical, physiological and biomechanical restrictions in the human body, coupled 

with ingrained motor patterns present from childhood (Schmidt & Wrisberg, 2000, p. 124). 

Indeed, resistive forces are created when cyclists do not pull up sufficiently, which causes 

downward pressure to be applied during the recovery stroke (Hoes, Binkhorst, Smeekes-

Kuyl, & Vissers, 1968). It has been suggested that this inherent lack of force applied 

throughout the entire 360° of the pedal stroke may be a major contributor to a lack of 

efficiency during cycling (Lafortune & McLean, 1989b). Pedal clips and then cleats (clipless 

pedals) were invented to remedy this problem by attaching the cyclists’ feet to the pedals, 

thereby enabling the cyclist to pull up during the recovery portion of the pedal stroke 

(Capmal & Vandewalle, 1997). However even with clipless pedals, the distribution of force 

displayed by the most elite of cyclists was still relatively inefficient as they did not appear to 

significantly increase the upward force (Faria, 1992).  
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To further identify and implement better cycling techniques, a significant amount of 

research has continued to investigate the interaction between the rider and the pedal stroke 

(Lafortune & McLean, 1989b). Little research is available, however, investigating pedal 

crank interventions that enforce 360° of force throughout the pedal stroke. It is possible that 

by altering the biomechanics of the pedal stroke in this way, that both the cycling efficiency 

and economy could be improved through adaptations to the neuromuscular and 

cardiovascular systems (Luttrell & Potteiger, 2003). Zamparo, Minetti and Prampero (2002) 

investigated a pedal crank arm that changed length at different crank angles. The design 

meant that the pedal crank was longest at 90°, when the leg was pushing down, and shortest 

at 270° when the leg was pulling up. This intervention elicited significantly lower values for 

oxygen uptake and corresponding increases in efficiency at higher power outputs with the 

modified crank prototype compared with a regular crank. The authors attributed this finding 

to the more effective transfer of energy between the subject and bicycle taking place during 

the cycling motion (Zamparo et al., 2002). Another study by  Ratel, Duche, Hautier, Williams 

and Bedu (2004) examined the effects of cycling with a noncircular chain ring in thirteen 

male cyclists. The authors noted that although the design of the chainring was based on 

optimisation analysis, it did not translate into physiological benefits. 

Another idea has been to use a pedal design that has the potential to improve the 

distribution of force applied throughout the entire 360° of the pedal stroke. PowerCranks™ 

(PowerCranks, CA, USA) use a patented clutch design that produce simultaneous one-legged 

cycling, with both legs, to drive the bicycle. This creates a situation by which the cyclist must 

pull up with each leg on every pedal stroke or the crank will simply remain at bottom dead 

centre of the pedal stroke and force will not be applied to the pedals. In theory, 

PowerCranks™ encourage a smoother pedal stroke by altering normal muscle recruitment 

patterns, therefore stimulating the adaptive processes in those muscles not commonly 

involved in cycling (Luttrell & Potteiger, 2003). The recruitment of new muscle fibres could 

in turn could produce an increase in cycling economy and efficiency by lowering the energy 

expenditure (i.e., through less wasted energy) and producing increases in oxygen utilization. 

Ultimately, an improvement in cycling performance may be possible with such an 
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intervention. In a study by Luttrell and Potteiger (2003), it was found that training with 

PowerCranks™ resulted in lower heart rates and a higher gross efficiency during a 1-h 

submaximal bout of cycling. However, no group differences were found for maximum 

oxygen consumption (V
.
O2max) and markers of the anaerobic threshold. As there are limited 

published studies examining the influence of training with PowerCranks™, further studies 

are required. 

 

1.2 Significance of the study 

 

Cycling is a competitive sport and researchers are continually striving to find new ways 

to enhance cycling performance. While research examining the influence of pedal clips and 

cleats has shown limited promise in providing full application of force throughout 360° of the 

pedal stroke, one promising area that has received little attention is the modification of the 

crank itself. It is possible that a modified crank arm system (PowerCranks™) will enable 

cyclists to adapt a more efficient and economical pedal stroke via improvements in various 

physiological and biomechanical processes, and ultimately lead to improvements in cycling 

performance.  Thus, further research in this area is necessary to determine the influence that 

PowerCranks™ may have on cycling performance and related physiological and 

biomechanical measures. 

 

 

1.3 Purpose of the study 

 

The primary purpose of this study was to determine if outdoor (field) training with 

PowerCranks™ would result in changes in gross efficiency and economy of motion. A 

secondary purpose was to examine whether or not training with the modified crank design 
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resulted in changes in oxygen uptake, ventilatory thresholds as well as changes in muscle 

activation patterns during cycling.  

 

1.4 Research Questions 

 

I. Does training with a modified crank design (PowerCranksTM) alter economy of motion 

and cycling efficiency when subjects return to cycling with regular cranks? 

II. Does oxygen uptake and power output at the respective ventilatory thresholds change 

while cycling on regular cranks after training with PowerCranks™? 

III. Does training with PowerCranks™ alter muscle activation patterns once the subject 

returns to cycling on regular cranks? 

 

1.5 Hypotheses 

 

I. Training on PowerCranks™ will improve economy of motion and efficiency 

when cyclists return to using regular cranks.   

II. Training on PowerCranks™ will improve oxygen uptake and power output at the 

ventilatory thresholds when cyclists return to using their regular cranks.   

III. Upon returning to regular cranks, certain muscles will increase their activation 

rates, such as biceps femoris and gastrocnemius, whilst other muscles more 

commonly used during cycling, such as vastus lateralis, will have slightly reduced 

activation rates due to the new motor patterns evoked through training with 

PowerCranks™.  
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1.6 Definitions of Selected Terms 

 
Variable  Abbreviation Definition 
 
Bottom Dead Centre  

 
BDC 

 
The point at which the crank arm is positioned so as 
to point directly downwards.  

 
Crank/Crank arm 

   
The arm that joins the pedal to the bottom bracket 
axle.  

 
Economy of Motion or 
Cycling Economy 

 
EOM 

 
The mean oxygen cost per unit of power output 
applied to the cycle ergometer (Faria, Parker, & 
Faria, 2005). 

 
(Mechanical) Gross 
Efficiency 

 
GE 

 
The ratio of work rate to the rate of energy 
expenditure (Sidossis, Horowitz, & Coyle, 1992).  

 
PowerCranks™ 

 
PC 

 
A modified crank design, which integrates a one-
way clutch on each crank arm (see 
http://www.powercranks.com).  

 
Peak Power Output 

 
PPO 

 
Recorded as the highest power output completed 
during a graded exercise test plus the fraction of the 
uncompleted stage (Hawley & Noakes, 1992).  

 
Top Dead Centre 

 
TDC  

 
The point at which the crank arm is positioned so as 
to point directly upwards. 

 
Volume of Oxygen 
Uptake 

V
.
O2  

 
The volume of oxygen consumed by a subject       
(in L·min-1 or ml-1·kg-1·min).  

 
Maximal Oxygen 
Uptake 

V
.
O2max 

 
The maximum amount of oxygen a subject 
consumes before volitional exhaustion occurs        
(in L·min-1 or ml-1·kg-1·min).  

 
Ventilatory Threshold 1 V

.
T1 The point at which there is an increase in V

.
E/ V

.
O2 

with no concurrent increase in V
.
E/ V

.
CO2 (Lucia, 

Hoyos, Perez, & Chicharro, 2000).   
 
Ventilatory Threshold 2 
 
 
Resistive Forces 

V
.
T2 

 

 
 

A marked increase in both V
.
E/ V

.
O2 and V

.
E/ V

.
CO2 

(Lucia, Hoyos, Perez, & Chicharro, 2000). 
 
The forces evident when cycling with normal cranks 
due to the opposite leg (performing the down stroke) 
being able to lift the other leg (performing the 
recovery or up stroke) at a faster rate than the 
recovery leg can perform.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

 

This literature review will examine the available literature that has investigated the 

foot/pedal interface. Beginning with a brief history of the bicycle and how it has advanced 

since its introduction, the review discusses the foot/pedal interface, with particular attention 

given to the forces applied to the pedals during cycling, and how this has advanced pedalling 

technique. Next, the physiological adaptations needed for successful cycling performance are 

discussed. Lastly, the review examines an area not extensively researched with regards to the 

foot/pedal interface; the pedal crank, and how training with a modified pedal crank might 

function to improve cycling performance.  

 

2.2 Background 

 

The bicycle has come a long way in its short history. Originating from the crude and 

dangerous designs of the velocipede and later the ordinary (or as it is more commonly known, 

the penny farthing), came a safer and more effective option, aptly named the safety bicycle 

(see Figure 1) (Sidewells, 2003, p. 11). Introduced by John Starley in the 1880’s and 

consisting of a rear driven, chain transmission, this design essentially became the basis for 

which all future bicycles would be based on (Wilson, 1988, p. 220).  
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Figure 1. The first version of the safety bicycle (In Wilson, 1988, p. 221). 

 

Sidwells (2003, p. 11) notes how the bicycle has been used in many aspects of life 

over the years, including transportation of items and the sending of messages in times of war, 

as well as an alternative form of transport. The main reason for the development of the 

bicycle into what it is today has come about largely because of the desire to go faster in a 

competitive surrounding (Wilson, 1988, p. 233). With its origins in Europe, bicycling as a 

recreational and competitive pastime quickly spread around the world, leading to well known 

events like the Tour de France (Sidewells, 2003, p. 11). The desire to race also produced a 

desire to find ways of finishing quicker. Over the early part of the 20th century, small but 

significant advancements were made in the field, including the tubular tyre invented by John 

Boyd Dunlop in 1888 (Wilson, 1988, p. 220) and the quick-release wheel invented by Tullio 

Campagnolo in 1927 (Sidewells, 2003, p. 11).  

The integration of science into cycling has resulted in a rapid advancement of 

knowledge and accompanying performance improvements (Minetti et al., 2001). The drive 

for a scientific understanding of cycling has lead to an explosion of information in areas such 

as technique, gearing, training and nutrition, all allowing cyclists to achieve progressively 

faster times (E  Faria, D Parker, & I Faria, 2005; Jeukendrup & Martin, 2001).  Lafourtune 

and McLean (1989a) noted that the advancements to the bicycle itself have lead to a refined 

and specialised machine that is stronger, lighter and more aerodynamic than its predecessors.  
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2.3 Foot/Pedal Interface 

 

One area of concentrated research, certainly in the field of biomechanics, has been the 

foot/pedal interface; the point at which the rider transfers energy to the bicycle (Broker & 

Gregor, 1996, p. 146). Efficient transfer of energy depends on the manner in which the 

power, including direction and application of force, is applied to the pedals (Kyle, 1996, p. 

2).  In addition, it has been suggested that the degree of success in cycling is ultimately 

determined by the ability of the coordinated movements of extension and flexion at the knee 

to transfer their energy to the bicycle (Pruitt, 1988, p. 20). Hence, if the flexors and extensors 

can work in unison, cycling performance will be improved. However, it is evident that this 

coordination between the flexors and extensors is not as effective as it could be (Faria, 1995). 

 

2.3.1 Early Advancements 

Initially it was coaches and cyclists, not scientists, who developed techniques to 

improve pedalling efficiency, based on their own reasoning and observations. One such 

approach came about when coaches realised how cyclists appeared to push and pull on the 

pedals rather than producing a fluent cycling motion. Consequently, cyclists were taught to 

“cycle (pedal) in circles” (Sidewells, 2003, p. 100) in order to increase pedalling efficiency. 

The use of verbal feedback played a vital role in teaching cyclists how they could improve on 

aspects of this technique (Schmidt & Wrisberg, 2000, p. 282).  However, it did not provide 

the detailed analysis that may aid in significantly improving cycling performance (Sanderson 

& Cavanagh, 1990). Recently, biomechanists have examined the science behind ‘cycling in 

circles’ and found that the technique teaches cyclists to pull up during the recovery stroke, 

hence reducing the resistive forces evident in this phase (Lafortune & McLean, 1989a). 

 

2.3.2 Verbal and Visual Feedback as a Mechanism of Improvement 

With the introduction of technical scientific interventions aimed at changing the way 

in which cyclists applied forces to the pedals, came large advancements in the area of the 
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foot/pedal interface. The use of amplified onscreen feedback of the forces that cyclists’ apply 

to the pedals (augmented visual feedback) has proven to be an effective way of improving 

pedalling technique in experienced recreational cyclists (Sanderson & Cavanagh, 1990). New 

complex computer analysis and representations of real-time feedback to the cyclist has taken 

improvements to another level (Lafortune & McLean, 1989b). However, computer-based 

feedback does not directly condition the muscles, as only the way upon which a cyclist 

interprets and acts on that feedback will determine its effectiveness. In addition, the prior 

engrained motor pattern often returns if the cyclist does not concentrate on the newly learned 

technique (Schmidt & Wrisberg, 2000, p. 124).  

 

2.3.3 Muscle Mapping in Cycling 

In light of the outlined shortcomings of visual and computer-based feedback, 

researchers have taken further steps in an attempt to improve pedal stroke efficiency. The 

mapping of muscular involvement during the pedal stroke (Figure 2) has provided useful 

information about muscle patterns that might benefit from training in order to enhance 

pedalling efficiency (Pruitt, 1988, p. 22). For example, Pruitt (1998, p. 22) has shown how 

the more powerful hip and knee flexors and extensors combine to provide a coordinated 

movement in which the hamstrings and quadriceps work in unison to produce the pedalling 

motion. However, as mentioned, coordination between the flexors and extensors is not as 

effective as it could be (Faria, 1995), likely due to the resistive, inefficient forces in the pedal 

stroke. Perhaps if certain muscles could be more activated at certain phases of the pedal 

stroke, namely during the recovery phase, then pedalling efficiency might be improved.    
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Figure 2. Diagrammatic interpretation of EMG studies examining the pedal stroke with toe 

clips in a seated position (from Pruitt, 1988, p. 23). 

 

2.3.4 Pedalling Symmetry   

Another potential contributor to pedalling inefficiency arises from the discrepancy in 

output that has been observed between the left and right limbs. For example, leg asymmetry 

can lead to differences in power output between the legs, causing reduced performance, 

increased knee loads, and eventually overuse injuries (Smak, Neptune, & Hull, 1999). 

Sargeant and Davies (1977) have shown that the mean peak force during the phases of leg 

flexion and extension (adjusted for the doubled output of two-legged exercise) was similar 

between one- and two-legged cycling. This indicates that single-leg pedalling may not 

condition the leg any more so than two-legged cycling. In contrast, Ting, Kautz, Brown and 

Zajac (2000) suggest that unilateral pedalling increases force output during the flexion phase 

due to its effect on the interlimb neural pathways through which both limbs communicate 
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during a normal pedal stroke. Thus, cyclists may pull up more on the recovery portion of the 

pedal stroke when performing one-legged cycling.  

 

2.3.5 Remediation of Problems in Bicycling Pedalling  

The first attempt to rectify pedalling inefficiencies and improve technique and 

performance involved attaching the cyclist’s shoes to the pedals with nails or screws (Broker 

& Gregor, 1996, p. 147). The introduction of pedal clips and later cleats, now standard 

accessories on most bicycles, provided a safer way to attach the shoes to the pedals (Faria, 

1992). Despite their acceptance by cycling enthusiasts, it has yet to be proven that pedal clips 

or cleats improve cycling performance (Capmal & Vandewalle, 1997), as cyclists still display 

some elements of resistive forces during the recovery phase of the pedal stroke when clips or 

cleats are used (Broker & Gregor, 1996, p. 150). The following section examines the rational 

and evidence for using clips and cleats for improved cycling performance.  

 

2.3.6 Toe Clips and Cleats (The case for and against) 

Ideally pedal (toe)-clips or cleats hold the ball of the foot over the centre of the pedal 

allowing the cyclist to push down more effectively and also to pull up in the recovery stroke 

(Visich, 1988, p. 122). Some authors have suggested that the use of toe-clips or cleats 

improves cycling form by allowing the cyclist to actually pull up during the recovery stroke 

(Faria, 1992).  This has not been shown scientifically however, because studies have not 

found any advantage of pedal-clips or cleats over regular unattached pedals (Capmal & 

Vandewalle, 1997; Evangelisti, Moser, Kuesel, Verde, & Miles, 1999) 

Some studies have suggested that pedalling with clips may increase V
.
O2max and 

mechanical efficiency (Visich, 1988, p. 122), however most of the evidence in support of 

using toe clips is largely anecdotal and there is no significant research suggesting such a 

benefit (Broker & Gregor, 1996, p. 147). In fact, Broker and Gregor (1996, p. 152) have 

suggested that the effective force patterns measured in experienced cyclists using floating 

pedals, toe clips and cleats were similar.  In opposition to this view however, more highly 

trained cyclists may apply less downward force (inefficient pressure) during the recovery 
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phase (see Figure 3). Nevertheless, Campmal and Vandewalle (1997) suggested that, as a 

result of regular crank training, the hamstrings become unable to lift the leg at a quicker rate 

than that of the quadriceps of the opposite leg. Hence, neither pedal clips nor cleats would 

appear to make a significant difference to the recovery of the pedal stroke. Ultimately the 

pedal rises at a rate that is faster than the leg can lift because of the force being applied 

through the other pedal. Therefore the pedal assists with the upwards lift of the leg during the 

recovery phase (Broker & Gregor, 1996, p. 150) and a resistive or negative force results.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Force effectiveness patterns versus crank angle for a U.S. national team cyclist 

pedalling at 350 W and 90 revs.min-1 (from Broker and Gregor, 1996, p. 151).  

Note. 0° on the horizontal axis represents top dead centre and 180° represents bottom dead 

centre.  

 

Other cycling scientists also maintain that pedal clips or cleats provide little or no 

benefit to the cyclist. For example, biomechanists Smak, Neptune and Hull (1999) suggested 

that cyclists who focus too much on aspects of the pedal stroke may inadvertently reduce the 

power of the down stroke, and that by changing their biomechanics, cyclists may possibly 

increase their chance of developing an injury (eg. knee pain and other overuse problems). 
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Coyle et al. (1991) have also shown that elite cyclists produce higher power outputs during 

the downstroke, in turn making it more difficult for the hamstrings to effectively carry out the 

recovery stroke. Hence, there is little evidence to suggest that significant performance 

benefits will be gained from using toe cleats or clipless pedals with regards to reducing force 

during the recovery portion of the pedal stroke. 

 Because using toe clips or cleats does not appear to improve cycling efficiency, 

further research is required to find alternative ways to increase efficiency at the foot/pedal 

interface.   

 

2.4 Physiological Adaptations to Endurance Exercise Training 

 

It is important to review the associated physiological processes involved with cycle 

training in order to examine ways in which cycling performance may be improved.  Cycling 

performance may be improved through the adoption of superior motor recruitment patterns 

that enable efficient cycling technique, improvements in economy of motion and 

enhancements in oxygen uptake.  

Kyle (1996, p. 3) notes how the types of muscle fibres a person naturally possesses 

(i.e., percentage of fast and slow twitch fibres), and the genetic capacity of one’s 

cardiovascular system to supply oxygenated blood to the working muscles, are key 

determinants of  potential to perform successfully in endurance events. However, adaptations 

still occur to both the cardiovascular and neuromuscular systems as a result of endurance 

exercise training (Jones & Carter, 2000). It is also apparent that factors such as cadence, 

posture, and technique can influence cardiovascular, neuromuscular and biomechanical 

aspects of cycling, which in turn should enhance both cycling efficiency and economy (Li, 

2004; Sarre, Lepers, Maffiuletti, Millet, & Martin, 2003). Improvements in economy of 

motion and efficiency correlate highly with increases in cardiovascular factors (O'Toole & 

Douglas, 1995) and neuromuscular adaptations, such as more efficient neural input to the 

available muscles (Lepers, Hausswirth, Maffiuletti, Brisswalter, & Van Hoecke, 2000). 
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Indeed, a more efficient muscle movement and coordination should lead to a decrease in 

oxygen uptake for a given amount of work (Luttrell & Potteiger, 2003).  Thus, it is pertinent 

to examine whether or not the muscular and cardiovascular adaptations that may occur as a 

result of training to improve cycling technique could benefit the cyclist.  

 

2.4.1 Electromyography and Muscular Adaptations 

Differences in performance amongst cyclists with the same level of V
.
O2max may be 

due to adaptations within the trained skeletal musculature that do not necessarily involve an 

increase in oxygen extraction (Coyle, Coggan, Hopper, & Walters, 1988). Surface 

electromyography (EMG) allows the measurement of the total electrical activity of a muscle 

(Duc, Betik, & Grappe, 2005).  As a result of training, muscle activation parameters are 

changed via central neural structures in response to the novel movements (Mileva & Turner, 

2003). Furthermore, the nervous system is readily able to adapt to these new mechanical 

actions very promptly (Dietz, 1997). As more powerful and coordinated muscle movements 

produce better cycling performance, it is important to consider how muscle recruitment 

patterns adapt to cycling, and how training and training devices may aid with these 

adaptations. 

The motor recruitment patterns of leg muscles have been studied during cycling using 

EMG (i.e., Figure 4). For example, Ryan and Gregor (1992) assessed the activation patterns 

of eight lower leg muscles at different phases of the crank cycle. The authors concluded that 

muscles crossing two joints (e.g. rectus femoris and gastrocnemius) were associated more 

highly with power distribution, thereby allowing the power generated to be spread across all 

the joints of the lower limb resulting in a greater ability to propel the bicycle forward. Whilst 

those muscles that only crossed one joint (e.g. vastus lateralis) were more highly associated 

with power generation (Ryan & Gregor, 1992).  
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Figure 4. Muscle activation patterns for eight muscles of the leg monitored during steady 

state cycling. Muscles indicated are tibialis anterior (TA), soleus (SOL), gastrocnemius 

(GAS), vastus lateralis (VL), rectus femoris (RF), semitendinous (ST), biceps femoris – long 

head (BF –LH), and gluteus maximus (GM) (data from Ryan & Gregor, 1992). 

 

Broker and Gregor (1996) measured joint powers (the amount of power generated at a 

particular joint) and showed that the hamstrings and quadriceps contribute to the majority of 

the power produced during cycling. Indeed, the knee joint in this study was shown to produce 

the highest peak power, a value more than twice that found at the hip or ankle joint (Broker & 

Gregor, 1996, p. 158). This finding confirms the powerful forces produced by the hamstrings 

and quadriceps during the pedal stroke. However, the quadriceps muscle activity tends to 

continue further into the crank cycle than ideal because its contraction/relaxation speed is not 

fast enough to keep up with typical pedalling cadences (Faria, 1995). Capmal and 

Vandewalle (1997) also suggest that the use of regular cranks does not allow the hamstrings 

to lift the leg at a quicker rate than that of the opposing quadriceps. Hence, neither pedal clips 

nor cleats would make a significant difference to the recovery stroke in the cycling action. 

Ultimately, the pedal rises at a rate that is faster than the leg can, so the pedal assists the leg 
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up (Broker & Gregor, 1996, p. 150). This would seem to be reflected by the fact that at faster 

pedal rates, the cycling action appears to be less efficient (Faria, 1995). Hence, interlimb 

biomechanics seem to be a limiting factor in the pedal cycle. Reducing the reliance of one leg 

on the other may produce improved economy and efficiency during cycling. This premise is 

supported by Ting, Raasch, Brown, Kautz and Zajac (1998) who suggest that cycling tasks, 

when performed unilaterally, do not use the same muscular coordination when compared 

with a bilateral action.   

Even though muscular involvement over the pedal stroke is similar between novice 

and elite cyclists, elite cyclists are more efficient than novice cyclists (Faria, 1992). Pruitt 

(1988, p. 22) suggested that the greater efficiency seen with elite cyclists occurs because their 

stimuli for muscle contraction are greater in duration and intensity. Thus, the level of 

activation of the muscles possibly explains differences in efficiency between novice and elite 

cyclists. This increased duration of activation may allow elite cyclists to apply more effective 

pressure to the pedals (Lepers et al., 2000) rather than just a quick push-pull type motion. 

Future research should establish whether elite cyclists actually learn to pedal more efficiently 

through their years of training, or whether they are just naturally very efficient. If efficiency 

can be learned, the question arises as to whether efficient cyclists might stimulate the main 

hip and knee flexors more, or whether they recruit other muscles of the lower leg better, or 

both?  

There is an increased energy cost and reduced mechanical efficiency and economy at 

the higher cadences, preferred by trained cyclists(Takaishi et al., 1998). If a cyclist cycled 

with a crank design that demanded more independent power production from each leg, it 

would be expected that their cadence would be reduced because of the increased demand on 

each individual leg. Thus, it would be expected that their mechanical efficiency, and perhaps 

performance, would increase as a result of neuromuscular adaptations to the crank. It is 

possible that the frequent use of such a crank could result in neuromuscular adaptations 

within approximately four weeks, assuming that neuromuscular adaptations to overload 

training are evident following only 4 weeks of training (Sale, 1988), even in cyclists (Creer, 

Ricard, Conlee, Hoyt, & Parcell, 2004). 
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A potential limitation of the use of such a modified crank is the increased muscle 

usage while pedalling, resulting in a greater demand from the muscles. However, this 

limitation may be corrected over time because it is noted that as muscles become better 

trained, there is reduction in the overall whole body oxygen demand, and hence an increase in 

efficiency (Luttrell & Potteiger, 2003). Coyle, Coggan, Hopper and Walters (1988) have 

suggested that because elite cyclists tend to pull up during the pedal stroke more than novice 

cyclists, the knee extensors of the opposite leg perform less work. Thus, there may be less of 

a reduction in muscle glycogen usage in the extensors due to a greater sharing of work by the 

muscle fibres during leg flexion and extension (Coyle et al., 1988). Coyle et al. (1988) also 

suggests that it is possible to dramatically reduce muscular stress by being better able to 

distribute muscular work of the lower leg muscles. Another possible explanation for the 

increased efficiency of the musculature may be that cyclists with a greater percentage of Type 

I fibres are more efficient (Jones & Carter, 2000). Takaishi et al. (1998) suggest that a greater 

recruitment of slow twitch muscle fibres with lower recruitment thresholds than fast twitch 

muscle fibres may increase mechanical efficiency despite their increased oxygen 

consumption. Therefore, some of the variability seen in efficiency in cyclists may be due to 

differences in the percentage of Type I muscle fibres (Coyle, Sidossis, Horowitz, & Beltz, 

1992). However, as pedal rate is also a significant factor affecting pedal efficiency (Faria, 

1995), muscular involvement (i.e. what muscles contribute in what capacity) throughout the 

pedal stroke might not be the main determinant of efficiency. While increases in pedal rate 

have been shown to lead to a decrease in economy and gross efficiency, higher cadences 

increase blood circulation and enhance venous return (E  Faria et al., 2005). 

 Regardless of the mechanisms involved, it has been concluded that cycle training 

leads to continued neurological and/or muscular adaptations that reduce the overall demands 

of those recruited muscles (Coyle et al., 1988). By improving muscle conditioning and the 

motor patterns associated with cycling motion, cycling performance may be increased 

through improvements in efficiency and economy of motion. It is also evident that cycling 

performance could benefit from a cycling motion with an increased time of force application 
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throughout the pedal stroke.  To date, however, interventions such as the clipless pedal have 

been unsuccessful at significantly modifying these recruitment patterns.  

 

2.4.2 Summary  

Muscular recruitment patterns that enhance efficiency and economy can have a large 

bearing on endurance cycling performance. Research to date has shown little-to-no benefits 

through the use of training with pedal clips and cleats on efficiency and economy of motion.  

As a result, researchers have looked at modifying other aspects of the foot/pedal interface, 

such as the pedal crank (Luttrell & Potteiger, 2003). The next section reviews the small 

number of studies that have used modified pedal cranks as a training tool to improve cycling 

performance. 

 

2.5 Pedal Crank Innovations 

 

Recent crank designs have attempted to enforce muscle recruitment patterns to 

encourage force throughout the entire 360° of the pedal revolution. One such design 

examined a crank prototype that involved a continuously changing crank circumference with 

regards to crank angle (Zamparo et al., 2002). The authors found significantly lower values 

for oxygen uptake and corresponding increases in efficiency at higher power outputs (250 W 

– 300 W) with the modified crank prototype compared with regular cranks (Zamparo et al., 

2002). Another example of an innovative crank design is the Rotor which ensures each pedal 

is independent from the other (i.e. the cranks are not fixed at 180 degrees) (Santalla, 

Manzano, Perez, & Lucia, 2002). The authors found that when subjects cycled on the rotor 

cranks, delta efficiency was significantly higher than when the subjects cycled on regular 

cranks (Santalla et al., 2002). A newer crank design now available, similar to the rotor, is 

called PowerCranks™.  
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2.5.1 PowerCranks™ 

The use of PowerCranks™ (PowerCranks™, CA, USA) is claimed by the company to 

fully train the hip and knee flexors to facilitate an alteration in neuromuscular recruitment by 

recruiting muscles not predominately used in cycling. In doing so it may be possible to 

improve the overall efficiency of the pedal stroke (Luttrell & Potteiger, 2003).   

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The PowerCranks™ device. 

 

When used during regular cycle training, PowerCranks™ ensure that each leg cycles 

in an i

eek training period with 

PowerCranks™ or normal cranks (n = 6 per group). Subjects trained on a stationary bicycle 

ndependent circle motion by integrating a one-way clutch in each cycle crank arm. 

Hence, each leg drives the bicycle and one leg cannot assist the other, as is the case with 

regular cranks. This patented device claims to eliminate problems of inefficient cycling by 

eliminating the resistive forces produced during the recovery portion of the pedal stroke by 

making the cyclist pull up. When cyclists do not pull up with PowerCranks™, the crank will 

simply drop back down to bottom dead centre. In carrying out this motion during regular 

cycle training, the cyclist must learn the motor patterns associated with the assumed ideal 

cycling action. As a result, the cyclist may learn to pedal in circles.  

 A study  by Luttrell and Potteiger (2003) compared a six w
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 a day, 3 days per week for 6 weeks. Testing took place before and after training and 

consisted of a graded exercise test and a 1-h submaximal ride. Measurements taken in the 

study included VO2max and ventilatory threshold during the graded exercise test, as well as 

heart rate, VO2, respiratory exchange ratio and gross efficiency during the 1-h submaximal 

ride. The authors found that training with PowerCranks™ resulted in a significantly lower 

heart rate and a significantly higher gross efficiency during the 1-h submaximal ride. 

However, no group differences were found for VO2max and ventilatory threshold.  

While the study by Luttrell and Potteiger provides evidence to suggest that training 

with PowerCranks™ may increase gross efficiency, the sample size was smal

 used only a limited number of physiological measurements.  Although the authors 

suggested many adaptations and characteristics may have caused the observed increase in 

gross efficiency, they could not present firm conclusions due to methodological limitations. 

Moreover, EMG data were not measured in this study, so it is uncertain as to whether or not 

neuromuscular adaptations occurred. A study by Nuckles et al. (2007) examined the effects 

of 6-wks of PowerCranks™ training (consisting of randomly performed 5-min exercise bouts 

using PowerCranksTM and normal cranks) on the hip and knee flexors of eight subjects. The 

author’s found that the iliopsoas and rectus femoris muscles displayed more activity (31% 

and 35% respectively) during the PowerCranks™ condition. However, the biceps femoris 

and gastrocnemius displayed no difference between conditions (Nuckles et al., 2007). 

Nevertheless, given the limited amount of studies examining the effectiveness of 

PowerCranks™ further research is required to examine how training with PowerCranksTM 

may induce positive cycle training adaptations that may lead to improvements in cycling 

performance.   
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2.6 Conclusion 

 

Although the bicycle has developed from crude and dangerous origins to the sleekly 

designed machine that it is today, it is possible that aspects of the human-machine interaction 

are not as efficient as they possibly could be. Attempts to rectify this led to the introduction 

of toe clips and later pedal cleats. However, very little research has been published to show 

any benefits of improved cycling efficiency with clipless pedals. Despite the popularity of 

these devices, they appear to have little success at improving athlete’s performances by 

reducing the resistive forces that occur during the recovery portion of the pedal stroke.  

A device that could increase the efficiency of typical cycling technique may be of 

benefit to the competitive cyclist. In the pursuit of such a device, some inventors have more 

recently looked to the crank as a possible mechanism to increase the efficiency and economy 

of the cycling motion. One such device is called PowerCranks™. As of yet, there has been 

little research carried out on this device, making further research in this area necessary to 

determine whether training using an altered crank design can produce significant benefits to 

cyclist, particularly in the areas of muscular adaptations, economy of motion and cycling 

efficiency.  

The purpose of this thesis, therefore, is to determine if training on PowerCranks™ 

will a) improve economy of motion, efficiency, oxygen uptake and power output at the 

ventilatory thresholds, and b) alter the activation rates of the lower limb muscles. 
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CHAPTER 3: METHODS 

 

3.1 Participants 

 

Sixteen trained male cyclists and triathletes were recruited for this study. They were 

required to have at least 3 years of cycling experience and a V
.
O2max of at least 55 ml-1·kg-

1·min.  Additionally, subjects were excluded from the study if they had any prior experience 

training with PowerCranks™. Subjects completed a medical and training history 

questionnaire prior to commencement of the study and were disqualified from the study if 

they were taking prescribed medications or suffering from a pre-existing injury. Subjects 

were asked to maintain a similar diet throughout the study and asked to avoid substances such 

as alcohol or caffeine in the 24-h period prior to testing. As well they were also given a food 

and drink questionnaire to ensure compliance of this request. All risks and benefits of 

participating in the study were clearly explained to the subjects, and written informed consent 

was obtained prior to participation. Prior to data collection, ethical approval was attained 

through the Human Research Ethics Committee of Edith Cowan University. 

 

3.2 Design 

 

The study consisted of a matched-group counterbalanced design, whereby subjects 

were allocated into one of two groups so that age, body mass and V
.
O2max levels were equally 

matched; that is, the aim was to have no significant differences in these variables between the 

groups prior to the start of the training interventions. The first group (PC; n = 8) trained with 

PowerCranks™ while the second group (NC; n = 8) trained with their normal bicycle crank 

arms.  

Subjects first came into the laboratory to carry out a familiarisation session, which 

included an introduction to the equipment and a brief run-through of all testing and training 
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procedures. Subjects in the PC group then partook in pre-training testing on separate days, 

which included, 1) a graded exercise test, in which V
.
O2max, ventilatory thresholds (V

.
T1 and 

V
.
T2), gross efficiency (GE) and economy of motion (EM) were determined; and 2) a 

PowerCranks™ efficiency and economy test (PowerCranks™ test, PCT). NC group subjects 

only completed the graded exercise test. 

Subjects were allocated to the PC or NC training groups based on results from the 

preliminary testing sessions. Subjects assigned to the PC group participated in three 

familiarisation sessions using the PowerCranks™. Following this, all subjects began their 

training sessions using either PowerCranks™ or normal crank arms.  The training portion of 

the study consisted of the subject’s regular training program for a period of 5-wks. The 

number of training hours of the PC and NC groups was matched by asking NC group subjects 

to replicate the training hours of their equal in the PC group. The training was matched in 

terms of total hours, rather than kilometres, as total kilometres were expected to drop whilst 

subjects became accustomed to the new cranks.  

Testing, identical to the pre-training tests, then followed in the week immediately 

after the 5-wk training intervention (see Figure 6). Prior to all testing sessions, subjects were 

asked to assess their recovery from the previous session on a scale and to also provide 

comments regarding their perception of their recovery. Likewise, at the end of each testing 

session, subjects were asked to assess the difficulty of their session on an RPE scale 

(sessional RPE) and to provide comments regarding their perception of the session (Day, 

McGuigan, Brice, & Foster, 2004). Subjects were tested in the 3-h post absorptive state (i.e. 

subjects had not eaten anything for the 3-h prior to testing) to ensure that values of efficiency 

and economy were not tainted (Spriet & Peters, 1998) and also to ensure that the subject’s 

performance was not restricted by digestive processes. During all training and testing 

sessions, subjects were allowed to drink water ad libitum.  
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Figure 6. Study design.  
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3.3 Procedure 

 

After subject screening and signing of the informed consent document, 

subjects reported to the laboratory for a familiarisation session in order to become 

further informed regarding specifics of the study’s protocol, procedures and relevant 

equipment. Subjects also completed a 15-min cycling session so as to become 

accustomed to the Velotron cycle ergometer. Subsequent sessions consisted of a pre-

training testing week that took place on one of two identically calibrated 

magnetically-braked cycle ergometers (Velotron, Elite, RacerMate, Seattle, WA, 

USA); one equipped with PowerCranks™ and one with normal crank arms. The 

length of both crank arm sets was 172.5 mm. Throughout all testing conditions, 

subjects were allowed to use their own pedals and cycling shoes.  Testing occurred 

on two separate days, separated by at least 48-h, and consisted of 1) a graded 

exercise test, and 2) an efficiency and economy test (as described below).  

Subjects allocated to the PC group then carried out three PowerCranks™ 

familiarisation sessions; one immediately before the efficiency and economy test, 

and the other two separated by at least 48-h each. These sessions, along with practice 

sessions on both a stationary bicycle and the subjects’ own bicycle, consisted of 

verbal and written information about the technique required to pedal using the 

cranks. Subjects in both groups then began the training intervention using their 

allocated cranks and the subject’s regular training program. Following the five 

weeks of training, post training testing took place, consisting of the graded exercise 

test, selected muscle measurements and for the PC group, the efficiency and 

economy test, as previously described.  
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3.3.1 Maximum Voluntary Isometric Contractions 

Prior to the graded exercise test, the subject’s maximal isometric strength of 

the hamstrings and quadriceps was determined using the Biodex System 3 (Biodex 

Medical Systems, Inc., New York, USA). To obtain measurements for the 

hamstrings and quadriceps, the subject’s upper body was firmly strapped to the seat 

during testing whilst the left limb was attached to the arm of the dynamometer. 

Strength measurements were taken at 60o for the hamstrings and quadriceps with the 

reference point being full extension, as adapted from previous studies (Hunter, 

Gibson, Lambert, & Noakes, 2002). The maximal isometric strength for the 

gastrocnemius was determined by sitting the subject in a calf raise machine with a 

block of wood under their feet to bring the angle of their ankle up to 90o. At this 

stage, two muscle girth measurements were also taken. The first of these was the 

upper leg at the level of the rectus femoris electrode placement and the second was 

the lower leg at the level of the gastrocnemius electrode placement.  

 

3.3.2 Graded Exercise Test 

The graded exercise test (GXT) was conducted on a cycle ergometer and 

consisted of a slow ramp protocol whereby subjects began pedalling at 50 W, and 

increases of 50 W occurred every 4 min. Subjects cycled at a freely chosen cadence 

until volitional exhaustion or until they could not consistently maintain 60 revs.min-1, 

at which point the test was terminated.  

Oxygen uptake, carbon dioxide production and minute ventilation were 

measured via a ParvoMedics metabolic cart (ParvoMedics, Salt Lake City, UT, 

USA). Prior to testing, the gas analysers were calibrated using gases of known 

concentrations, while the flow meter was calibrated using a Hans Ruldoph 3 L 

syringe over a range of flow rates. V
.
O2max was determined as the average of the 

highest 4 values. Ventilatory thresholds were determined using the methods of Lucia 
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et al. (2000) by which V
.
T1 is defined as an increase in V

.
E/ V

.
O2 with no concomitant 

increase in V
.
E/ V

.
CO2 and V

.
T2 is defined as an increase in both V

.
E/ V

.
O2 and V

.
E/ 

V
.
CO2.   

Electromyography (EMG) was measured halfway through the 200 W stage 

of the GXT using the Data Logger ME3000 (Mega Electronics Ltd., Kuopio, 

Finland). For the measurement of EMG, silver/silver chloride surface electrodes of 

20 mm in diameter were fixed to the belly of each of the three selected muscles of 

the left leg (identified below). Electrodes were placed 20 mm apart with all 

electrodes being positioned and aligned as suggested by the European 

Recommendations for Surface EMG (Hermens et al., 1999).  

The selected muscles were the vastus lateralis, biceps femoris, and 

gastrocnemius (medialis). These muscles were chosen as they represented the 

predominant muscle used during typical cycling action (vastus lateralis) and two that 

may increase in activation as a result of the training intervention (biceps femoris and 

gastrocnemius). Preparation of the skin prior to electrode placement consisted of 

shaving the area, followed by light abrasion and wiping the area with an alcohol 

wipe. Following this, electrodes were placed and a reading of less than 5 kΩ 

achievable through skin impedance was deemed as acceptable. Electrodes were held 

in place using a hypoallergenic polyacrylate adhesive tape (Fixomull) to ensure 

minimal movement throughout testing (Lepers, Maffiuletti, Rochette, Brugniaux, & 

Millet, 2002).  

A digital electromagnetic switch was securely fitted to the bicycle frame at 

top dead centre and a magnetic sensor was also fitted to the crank arm for 

standardisation of the EMG data. The switch produced a digital signal (± 10 V) 

when the crank arm reached top dead centre.  

EMG data were collected from the subjects in the seated position for ten 

seconds mid-way through the 200W stage. EMG data from five continuous crank 
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revolutions was used to calculate integrated EMG (iEMG). With the use of 

LabVIEW graphical development software (version 6.1; National Instruments 

Corporation, Austin, TX), raw EMG data were full-wave rectified, and passed 

through a high-pass fourth order Butterworth filter (cut-off frequency of 15 Hz) to 

remove movement artefact. EMG data were then smoothed with a low-pass fourth 

order Butterworth filter (cut-off frequency of 5 Hz) to produce a linear envelope 

(Lepers et al., 2002; Tucker, Raunch, Harley, & Noakes, 2004). An ensemble 

average was generated from the five crank revolutions taken from time normalised 

data (0-1000 points for BDC to BDC) to reduce within subject variability. EMG data 

were amplitude normalised using the MVICs. The MVIC value was determined as 

the greatest value for an averaged 200-ms window of the linear envelope. The 

greatest EMG value for any of the three MVIC trials was used for normalisation 

purposes. An iEMG value at each data point was taken as the average of all time-

series values in the ensemble average.   

Ratings of perceived exertion were also taken following the completion of 

each stage using a 15 (6-20) point Borg scale (Borg, 1970). Heart rate was measured 

using a Polar heart rate monitor (Polar Electro, Kempele, Finland) with data being 

recorded and averaged over 15 s increments.  

Economy of motion (EOM) was calculated by averaging the last two minutes 

of the 200 W stage and applying the following formula (Moseley & Jeukendrup, 

2001) to each:  

 

EOM (W/L) = power output / V
.
O2  

 

 Gross efficiency (GE) was determined by averaging the data collected over 

the last two minutes of the 200 W workload (i.e. RER <1.00), and applying the 

following formula (Moseley & Jeukendrup, 2001): 
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GE (%) = [work rate (W) / energy expended (J.s-1)] x 100  

 

Energy expenditure was determined by the following formula (Moseley & 

Jeukendrup, 2001): 

 

Energy Expenditure (J·s-1) = [(3.869 x V
.
O2) + (1.195 x V

.
CO2)] x (4.186/60) x 1000 

 

Peak power output (PPO) was recorded as the highest power output 

completed during the GXT.  If a subject finished part way through a 4-min stage, 

PPO was calculated in a pro-rata manner using the following equation: 

 

PPO = Wcom + [(t/4) x 50] 

 

where Wcom is the power corresponding to the highest stage completed and t 

refers to the amount of time (min) completed during the unfinished stage (Hawley & 

Noakes, 1992).  

 

3.3.3 PowerCranks™ Test  

Gross Efficiency and Economy on the PowerCranks™ was measured (for PC 

group only) using the PowerCranks™ equipped Velotron. Subjects commenced 

pedalling at 50 W, and 50 W increases in power output occurred every 4 minutes 

until 4 stages were completed. Throughout this process, V
.
O2, V

.
CO2 and V

.
E were 

measured using a Parvomedics metabolic cart (ParvoMedics, Salt Lake City, UT, 

USA). Heart rate and EMG were also measured as during the GXT.  
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3.3.4 Training Programme 

The training programs of each subject were kept as similar as possible to 

their regular training volume and intensity so as to obtain an accurate gauge as to the 

effectiveness of training with PowerCranks™ in a realistic training situation. To 

ensure no significant changes in volume and intensity occurred between the two 

groups, each PC group cyclist was matched with a normal crank group subject that 

cycled a similar weekly distance and had a similar fitness level (V
.
O2max). The PC 

group subject then commenced training at least 3-wks before their matched normal 

crank subject counterpart. Regular contact, in the form of phone calls and a detailed 

training diary between the investigator and PowerCranks™ subject was then carried 

out. The normal crank subject then received information about the matched PC 

group subject’s training and was given instructions with regards to how much 

training they would do. This was based on a percentage of their regular training 

depending on what their matched PC group subject carried out for their training in 

that given week. Hence irrespective of group, each subject maintained similar 

training loads relative to their normal training programme and also in relation to 

their matched subject.  
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3.4 Statistical Analysis 

 

A two-way repeated measures ANOVA (group x time) was used to contrast 

the groups over time, whilst a one-way ANOVA was used to compare dependant 

measures for within group comparison. All data are presented as means and standard 

deviations and significance was accepted at an alpha level of 0.05 for all tests.  

 Effect Size calculations were also used for selected measures to compare 

changes in dependent measures for within trial comparisons. All data was then given 

a magnitude derived from Table 1 with subjects classed as being recreationally 

trained. 

 

Table 1. Scale for determining the magnitude of effect sizes in strength training 

research (adapted from Rhea, 2004).  

Magnitude Untrained Recreationally 

Trained 

Highly 

Trained 

Trivial  

Small 

Moderate 

Large 

<0.50 

0.50-1.25 

1.25-1.9 

>2.0 

<0.35 

0.35-0.80 

0.80-1.50 

>1.5 

<0.25 

0.25-0.50 

0.50-1.0 

>1.0 
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CHAPTER 4: LIMITATIONS AND DELIMITATIONS 

4.1 Limitations 

 

The apparent limitations of the study were as follows:  

I. Cycling out of laboratory settings made the matching of individual subject 

training not as precise as was desired, as factors such as weather conditions 

may have altered training practices.  

II. Subjects do not train consistently from week-to-week.    

III. Cyclists by nature respond to training at different rates.  

IV. The PowerCranks™ were attached to the subjects’ own bicycle, hence the 

exact tracking of training outputs was difficult.  

 

4.2 Delimitations 

 

The imposed delimitations of this study were as follows:  

I. Subjects only used the PowerCranks™ for a period of five weeks and therefore 

were not exposed to the training stimulus for a prolonged duration.  

II. Subjects were only moderately-trained and well-trained, not elite cyclists 

therefore the findings of this study cannot be translated to elite cyclists.  

III. Only Male subjects were accepted therefore the findings of this study may not 

translate to female cyclists.  
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CHAPTER 5: RESULTS 

5.1 Subject Characteristics  
 

The subject characteristics of each group are presented in Table 2 and 

indicate that individuals were trained cyclists as per Jeukendrup, Craig and Hawley’s 

(2000) classifications.  The groups were equally matched for age, height, body mass, 

fitness and training volume, as demonstrated by the fact that there were no 

significant differences in these variables between the groups.  

 
 
Table 2. Subject characteristics 

 Normal Cranks (n = 8) PowerCranks™ (n = 8) 

 Mean SD Mean SD 

Age (years) 

Height (cm) 

Body Mass (kg) 

V
.
O2max (ml-1·kg-1·min) 

Distance cycled per week (km) 

Duration of cycling per week (h) 

32.8 

181.8 

77.4 

57.2 

217 

7.1 

7.1 

7.0 

6.7 

3.6 

66 

2.7 

32.3 

176.1 

75.1 

59.4 

204 

6.8 

7.8 

7.8 

6.1 

3.7 

57 

2.3 
  

Note. There were no significant differences between groups in these variables.  

 

P values for all data are reported in a summary table in the appendix.  
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5.2 Economy and Efficiency for PowerCranksTM Group vs. Normal Cranks 

Group on Normal Cranks 

 

There were no significant differences (i.e. p >0.5) in the variables of cycling 

economy and efficiency between the pre- and post-training time points for the PC 

group on normal cranks. However, following training there was a moderate effect 

size for both economy (0.93) and efficiency (0.90) in the PC group. In the NC group, 

economy and efficiency significantly decreased from pre- to post-testing using 

normal cranks, with a large effect size for economy (-1.59) and a moderate effect 

size for efficiency (-1.36). Furthermore, the NC group possessed significantly higher 

cycling economy and efficiency values than the PC group at the pre-testing time 

point. However, there were no differences between the PC and NC group in terms of 

the absolute values of these variables at the post-testing time point. This resulted in a 

significant interaction between the groups over time (Mean ± SD values can be seen 

in Figure 7).  

 

5.2.1 Economy and Efficiency for PowerCranksTM Group on Normal Cranks 

vs. PowerCranksTM Group on PowerCranksTM  

Subjects in the PC group cycling on normal cranks (PC on Normal Cranks) 

had significantly higher values of economy and efficiency at the pre-testing time 

point compared to when they were cycling on PowerCranks™ (PC on 

PowerCranks™).  However, no significant differences in these variables were found 

between the pre- and post-testing time points in the PC group. The difference in 

these variables between PC on Normal Cranks and PC on PowerCranks™ remained 

consistent following the 5-wk training period (Mean ± SD values can be seen in 

Figure 7).  
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Figure 7. Pre- and post-study variables of gross efficiency and economy for the 
normal cranks and PowerCranks™ groups for the graded exercise test and 
PowerCranks™ test at 200W.  
 
Note. Values are means ± standard deviations (error bars); * denotes significance 
(pre to post; one-way ANOVA, p <0.05) and † denotes significance (treatment by 
time; two-way ANOVA, p <0.05). ES = Effect Size.  
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5.3 Integrated Electromyography and Muscle Circumference  

 

5.3.1 Integrated Electromyography  

There were no significant changes in the iEMG of the Vastus Lateralis, 

Biceps Femoris and Gastrocnemius from the pre- to post-testing time points for 

either the NC or PC groups during the GXT. Neither were there any significant 

changes between pre- and post-testing values for PC group subjects cycling on 

PowerCranks™ during the PCT (Mean ± SD values can be are presented in Table 3).   
 

Table 3. Pre- and post-study variables of muscle activation for the normal cranks 
and PowerCranks™ groups during the graded exercise test and PowerCranks™  
group during the PowerCranks™ test.   

 
Normal Cranks group 

(GXT) 

PowerCranks™ group 

(GXT) 

PowerCranks™ group 

(PCT) 

Location of iEMG Pre Post Pre Post Pre Post 

VL (%MVIC) 

BF (%MVIC) 

GAS (%MVIC) 

11.3 ± 3.3 

9.9 ± 4.8 

23.1 ± 10.1 

12.5 ± 3.8 

11.0 ± 3.1 

21.4 ± 7.7 

11.6 ± 2.7 

10.8 ± 6.1 

26.5 ± 7.6 

12.7 ± 5.8 

9.4 ± 3.4 

21.8 ± 6.3 

9.8 ± 3.3 

16.1 ± 6.3 

29.3 ± 9.6 

12.4 ± 6.1 

13.8 ± 7.7  

28.0 ± 6.0 
  

Note. Values are means ± standard deviations. iEMG = Integrated Electromyography, VL = 
Vastus Lateralis, BF = Biceps Femoris, GAS = Gastrocnemius, MVIC = maximum 
voluntary isometric contraction. GXT = graded exercise test, PCT = PowerCranks™ Test. 
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5.3.2 Muscle Circumference  

There was no significant change in the upper and lower muscle girths for 

either group from pre- to post-testing (Mean ± SD values can be seen in Table 4).  

 
Table 4. Pre- and post-study variables of upper and lower leg muscle girths for the 
normal cranks and PowerCranks™ groups.  

 Normal Cranks group (GXT) PowerCranks™ group (GXT) 

Location of Girth 
Measurement 

Pre Post Pre Post 

Upper leg (cm) 

Lower leg (cm) 

56.1 ± 1.5 

38.0 ± 2.2 

56.0 ± 1.8 

37.6 ± 2.1 

56.0 ± 2.0 

36.8 ± 1.8 

56.3 ± 1.8 

36.9 ± 1.4 
  

Note. Values are means ± standard deviations. Upper = upper leg circumference at 50% of 
thigh length, Lower = lower leg circumference at the point of maximum girth, cm = 
centimeters. GXT = graded exercise test, PCT = PowerCranks™ Test. 

 

5.4 Oxygen Uptake, Thresholds, Cadence and Power Outputs 

No significant differences in V
.
O2max or Peak Power Output (PPO) existed 

between groups. Likewise there were no significant differences in V
.
O2max or PPO 

for either the NC or PC groups from pre- to post-testing. The V 
.
O2 and power output 

at V
.
T1 and V

.
T2, expressed both as an absolute value and as a percentage of its 

maximum, showed no significant change from the pre- to post-testing time points for 

either the NC or PC groups. As well, there were no significant differences in these 

variables between groups (Mean ± SD values can be seen in Table 5).  
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Table 5. Pre- and post-study variables of maximal oxygen uptake, peak power 
output as well as the first and second ventilatory thresholds for the normal cranks 
and PowerCranks™ groups during the graded exercise test.  

 Normal Cranks PowerCranks™ 

 Pre Post Pre Post 

V
.
O2max (ml-1·kg-1·min) 

PPO (W) 

V
.
T1  (%VO2max) 

V
.
T2  (%VO2max) 

V
.
T1 VO2 (L⋅min-1) 

V
.
T2 VO2 (L⋅min-1) 

V
.
T1 PO (%PPO) 

V
.
T2 PO (%PPO) 

V
.
T1 PO (W) 

V
.
T2 PO (W) 

 57.2 ± 3.6 

372 ± 31 

64 ± 8 

82 ± 8 

2.8 ± 0.5 

3.6 ± 0.6 

65 ± 8 

84 ± 6 

243 ± 37 

313 ± 35 

58.6 ± 3.1 

371 ± 35 

61 ± 10 

83 ± 9 

2.7 ± 0.5 

3.7 ± 0.4 

61 ± 9 

84 ± 7 

228 ± 37 

310 ± 37 

59.4 ± 3.7 

370 ± 26  

63 ± 5 

87 ± 5 

2.9 ± 0.3 

3.9 ± 0.4 

62 ± 5 

88 ± 2 

234 ± 26 

330 ± 24 

58.3 ± 5.8 

369 ± 34 

62 ± 6 

85 ± 5 

2.7 ± 0.2 

3.7 ± 0.5 

63 ± 4 

86 ± 3 

233 ± 24 

319 ± 37 
  

Note. Values are means ± standard deviations. V
.
O2 = oxygen consumption, PO = power 

output.  No differences between groups or over time. 
 

No significant differences in pedalling rate at 200 W were found from pre- to 

post-training in either group during the GXT (NC, Pre: 96 ± 3 revs.min-1, Post: 97 ± 

2 revs.min-1; PC, Pre: 94 ± 7 revs.min-1, Post: 90 ± 9 revs.min-1). However there was 

a significant difference in cadence found for the PC group during the PCT with PC 

group subjects displaying an increased cadence in the post PCT session (Pre: 79 ± 5 

revs.min-1, Post: 92 ± 9 revs.min-1). 
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5.5 Heart Rate and RPE 

 

There were no significant changes over time in the heart rate or RPE at 200 

W or the Sessional RPE for either the NC or PC groups (Mean ± SD values can be 

seen in Table 6). 

 
Table 6. Pre- and post-study variables of heart rate (200 W level), RPE (200 W 
level) and sessional RPE for the normal cranks and PowerCranks™ groups during 
the graded exercise test and PowerCranksTM test.  
 

 
Normal Cranks group 

(GXT) 

PowerCranks™ group 

(GXT) 

PowerCranks™ group 

(PCT) 

 Pre Post Pre Post Pre Post 

Heart Rate (bpm) 

RPE 

Sessional RPE  

140 ± 13 

10 ± 1 

17 ± 3 

141 ± 8 

10 ± 2 

16 ± 2 

143 ± 15 

10 ± 2 

15 ± 1 

143 ± 16 

12 ± 1 

16 ± 2 

151 ± 16.2 

N/A 

16 ± 1 

150 ± 13.1 

N/A 

16 ± 3 
  

Note. Values are means ± standard deviations. bpm = beats per minute, RPE = rating of 
perceived exertion; 6-20 scale (Borg, 1970).  
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CHAPTER 6: DISCUSSION 

The purpose of this study was to determine whether or not training with 

PowerCranks™ for 5 weeks would alter cycling economy and efficiency, V
.
O2max, 

ventilatory thresholds and/or muscle activation rates compared to a group that 

trained at a similar level using their regular cranks.  The main findings were that 

training on PowerCranks™ did not improve economy, efficiency or muscle 

activation patterns when cycling on both PowerCranks™ and regular cranks.   These 

findings will be elaborated on in the following section.  

 

6.1 Economy and Efficiency 

 

The most important finding of this study was that there was no significant 

improvement in economy or efficiency for the PC group on PowerCranks™ from 

pre- to post-training testing time points. Likewise, there was no significant 

improvement in economy or efficiency on normal cranks for either group from pre- 

to post-testing periods. PC group subjects cycling on PowerCranks™ were also less 

economical and efficient compared to when they were cycling on normal cranks. 

Only one other published study has examined the influence of PowerCranks™ 

training on cycling efficiency parameters (Luttrell & Potteiger, 2003). In this study, 

Luttrell and Potteiger (2003) examined the effects of training with PowerCranks™ 

for 6 weeks on cycling efficiency during a 60 min submaximal ride at the power 

output corresponding to 69% of pre-training V
.
O2max. Values of gross efficiency were 

significantly greater in the PowerCranks™ groups compared to the control group at 

the 45 min and 60 min time points. However, it is uncertain as to whether or not the 

improvement in efficiency shown with PC training would have translated into an 

improvement in endurance cycling performance. Nevertheless, the authors of this 
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study found that PowerCranks™ training induced physiological adaptations that 

reduced energy expenditure during a 60 min submaximal ride. In contrast, despite 

similar fitness levels and training time periods between our study and that of Luttrell 

and Potteiger’s (2003), results of the current study showed no such improvements in 

efficiency. One notable difference between the studies is the location of the training 

sessions.  Participants in Luttrell and Potteiger’s study trained on a stationary 

ergometer in the laboratory, whilst participants in the current study trained on the 

road. Perhaps these different training modes (i.e. stationary versus field bicycle 

training) may have contributed to the disparate study findings. Subjects training on 

their own bicycle may have experienced a reduction in training initially whilst they 

became accustomed to riding on their cranks, due to factors such as safety and 

stability. Nevertheless, there were no significant differences in total training time or 

total training kilometres between the NC and PC groups in the current study. Also, 

during testing sessional RPE measures showed that the subjects’ perceived the 

testing to be equally as difficult during both the pre- and post-testing time 

measurement points. Heart rate was not different between testing time-points. 

Hence, it is unlikely that training duration or intensity differences between groups 

would have impacted the results. While it is known that differences in cycling 

cadence can affect economy (Marsh, Martin, & Foley, 2000), the only significant 

change seen in cycling cadence in the current study was when the PowerCranks™ 

group cycling on PowerCranks™ achieved a significantly greater cadence during the 

PCT from pre- to post-testing time-points. Hence, we could not detect a change in 

cycling economy with PowerCranks™ training in the current study.   

The finding of a reduced cycling economy and efficiency in the normal crank 

training group (that resulted in a significant group interaction over time) is difficult 

to explain.  A possible reason for this could be participants not adhering to requests 

to be 3-hrs in the post absorptive state before testing, which would influence the 
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subjects respiratory exchange ratio and hence values of efficiency. The majority of 

testing for the NC group was also carried out in the winter months, which could have 

resulted in a reduced quality of training due to the higher frequency of inclement 

weather days that are more commonly experienced during this period. The majority 

of the PC group training program was carried out in the summer months, where 

athletes would have been more inclined to train. Nevertheless, the total cycle 

training distance and time spent cycling was the same for both groups, leaving 

explanations for this reduction in economy and efficiency unclear. Regardless, 

results from the present study suggest that it is unlikely that 5-wks of training with 

PowerCranks™ will positively alter cycling economy and/or efficiency.  

 

6.2 Muscle Activation 

 

As was the case for cycling economy and efficiency, there was no significant 

change from pre- to post-testing time measurement points for the level of muscle 

activation measured at each of the three sites for the PC group training on 

PowerCranks™. Likewise, even when groups were riding on normal cranks, there 

was no difference in the level of muscle activation at each of the three measurement 

sites between the pre- and post-testing time points (Table 3).  

Coyle, Coggan, Hopper and Walters (1988) suggest that in the absence of 

increases in V
.
O2max, improvements in performance may be related to neuromuscular 

adaptations in the trained skeletal muscle. These improvements may be things such 

as muscle fibre recruitment, firing rate, and motor unit synchronisation (Enoka, 

1997; Kraemer, Fleck, & Evans, 1996). Hence, even in the absence of significant 

changes to efficiency, economy and V
.
O2 inside of 5-wks, changes in muscle 

activation patterns and electromyography may still be detected (Creer et al., 2004; 
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Sale, 1988).  For example, Creer et al. (2004) demonstrated in a group of 17 trained 

cyclists that four weeks of sprint cycle training (carried out bi-weekly comprising a 

total of 28 min of the training period) was sufficient to increase motor unit 

activation, again suggesting that the 5-wk training block used in the present study 

should have elicited a response in this variable. However, this was not the case and 

may indicate that the PowerCranks™ do not change activation patterns when 

returning to regular cranks. Bertucci, Grappe and Groslambert (2007) showed that 

crank torque profiles of a laboratory-based ergometer were significantly different 

than field road cycling conditions. Thus, it is possible that changes found in 

laboratory-based tests with training may not be apparent in road cycling conditions, 

and vice versa. The principal of specificity states that in order to provoke adequate 

physiological adaptations, specific tasks need to be completed under specific 

conditions (Basset & Boulay, 2003). Therefore, it is possible that Luttrell and 

Potteiger’s (2003) findings resulted because of the fact that the training was 

specifically done in the laboratory, as was the testing.  In the current study, the 

training was completed on the subject’s own bicycle, with testing completed in the 

laboratory. Because differences may exist between indoor laboratory riding and 

outdoor field cycling (Bertucci et al., 2007), this could have altered learned muscle 

recruitment patterns and their associated testing response.  It is possible that had the 

training in the current study been completed specifically in the laboratory, that we 

may have found similar results to those found by Luttrell and Potteiger (2003). 

However, our findings could also suggest that training with PowerCranks™ may 

only be effective when the training is completed indoors.  Further, had we been able 

to test our subjects in the field, we again may have been able to detect the specific 

influence of the field PowerCranks™ training.  

It is evident that a relationship exists between effective pedal force and cycling 

economy (Candotti et al., 2007). Thus, a device that can increase the effective force 
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applied to the pedals should in theory improve cycling economy. PowerCranks™ 

have been designed to train cyclists to apply more force during the upstroke of the 

pedal cycle because this is commonly where the least amount of force is generated 

during the pedalling action. Thus, PowerCranks™ may improve effective force and 

economy by increasing the force generated during the upstroke. A recently 

unpublished report (conference abstract) by Nuckles et al. (2007) found 31% and 

35% more activity in the iliopsoas muscle and rectus femoris muscles, respectively, 

after 6 weeks of training on PowerCranks™. The current study showed no such 

increase in rectus femoris activation.  The findings by Nuckles et al. (2007) are 

similar to the present study with respect to the fact that they found no change in 

biceps femoris and lateral gastrocnemius muscles activation following 

PowerCranks™ training. This finding is interesting, as the manufactures of 

PowerCranks™ claim that the hamstrings muscles will be the muscle group most 

influenced by training on PowerCranks™.  A problem with the Nuckles et al (2007) 

study design, however, was that it did not compare results to baseline training levels, 

but instead used a cross-sectional analysis examining each cyclist’s performance on 

PowerCranks™ and normal cranks. Hence, the authors could not confirm whether or 

not these increases in muscles activation rates actually lead to improvements in 

cycling performance. As noted by Broker and Gregor (1996), the “ineffective” force, 

as it is often called, could be misleading, as reducing the resistive forces associated 

with the downward phase of the pedal motion would more than likely require more 

muscular work without any concurrent increases in cycling power. Therefore, it is 

possible that the “normal’ cycling action is in fact the optimal technique given the 

biomechanical structure of the human body. Thus, no matter how much training a 

person does to change this, they may, more often than not, return to these “normal” 

patterns upon return to normal cranks. . This possibility was confirmed in a  recent 

study by Bohm, Siebert and Walsh (2008). They showed that although 5-wks of PC 
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training significantly reduced work completed in the downward sector of the pedal 

stroke, there was an increase in work in the other sectors of the pedalling cycle 

resulting in the same power output. This confirms the study by Broker and Gregor 

(1996), which found that there was significantly reduced work completed in the 

downward sector of the pedal stroke when compared to the control group subjects; 

however this was compensated for by the other sectors (i.e. the other sectors 

involved more work)  to obtain the same effect on power output.  

  One limitation to the findings of the current study is that EMG data were 

summed over the entire pedal stroke. Had we been able to complete a more thorough 

examination of the pedal stroke, using techniques such as quadrant analysis, we may 

have been able to see where the muscles were becoming more or less activated.  

Indeed, quadrant analysis can examine where force is being applied during the pedal 

stroke by breaking the pedal stroke into four equal independent quadrants (Eisner, 

Bode, Nyland, & Caborn, 1999). Such an analysis would have been able to indicate 

whether training with PowerCranks™ may have altered the activation during of 

certain quadrants of the pedal stroke, despite a similar level of summed muscle 

activation. In any case, it is important to note that reducing the resistive forces 

associated with the upward phase of the pedal motion may require more muscular 

work without a concurrent increase in cycling power output, hence negating the use 

of PowerCranks™ (Broker & Gregor, 1996).  

Another problem with the collection of the EMG data was that the maximal 

voluntary isometric contractions seemed to vary considerably for the calf muscle 

measurement. Hence, it is evident that even if there was no change in activation 

whilst cycling, the percentage of maximum may have been different. There is very 

little literature looking specifically at how iEMG is altered with exercise training 

(i.e. over a prolonged duration rather than just a single testing time point), so this 

variability makes it difficult to draw strong conclusions from the current data (Jones 
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& Polland, 2001, p. 59). Jones and Polland (2001, p. 59) note that in some cases, 

iEMG has been shown to increase significantly in response to strength training, 

particularly in the first 3-4 weeks. Furthermore Hakkinen and Komi (1983) found 

that changes in iEMG closely mimicked changes in force production over a 16 week 

training program and subsequent 8 week detraining program. It is however evident 

that EMG might not be altered with training due to technical problems involved with 

making repeated EMG measurements (Narici et al., 1996). Nevertheless, Laplaud, 

Hug, Grelot (2005) note there is a high level of reproducibility with regards to the 

EMG activity level of the lower limb muscles during a graded exercise test. Mirka 

(1991) suggests that inaccuracies will result when an unrestricted dynamic task, such 

as cycling, is normalised to a single MVIC performed at one reference point. Creer 

et al. (2004) adds to this by suggesting that the collection of EMG should be 

performed in a manner that specifically mimics the activity under analysis, in order 

to assess the adaptations that may take place. Whilst the current study attempted to 

do this, it may be that the calf MVIC measurement for which the value was 

compared to was not sufficient to produce a reliable value. Regardless, the other two 

muscles investigated also showed no significant improvements in muscle activation. 

As a result, we can only conclude that 5-wks of training with PowerCranks™ did not 

alter the level of activity of the muscles we measured.  

There is no doubt from the literature that improvements in cycling technique 

lead to improvements in cycling economy (Candotti et al., 2007). The conjecture lies 

in whether or not PowerCranks™ produce an improvement in cycling technique that 

is correlated to improvements in cycling economy and efficiency and hence cycling 

performance. If PowerCranks™ are expected to positively change muscle activation 

patterns, this must be done in such as way that produces a lower O2 cost at a given 

power output. Because neither of these changes occurred in the current study, we 

must conclude that PowerCranks™ did not provide any significant benefits to 
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cycling economy after 5-wks of training. If changes in muscle activation did not 

occur, and cycling economy was not altered, it is unlikely that neuromuscular 

adaptations occurred that would have improved cycling performance. However, the 

current study did not measure cycling performance, making it unclear as to whether 

any such improvements would have occurred. Future research should examine the 

influence of training with PowerCranks™ on cycling performance.  

 

6.3 Oxygen Consumption, Peak Power Output and Ventilatory Thresholds 

 

The current study also showed no significant changes in a range of other 

variables that are commonly associated with cycling performance (E Faria, D  

Parker, & I Faria, 2005). V
.
O2max, ventilatory thresholds and peak power output did 

not change over time in either group, nor were there differences between the groups 

in these variables (Table 5). These findings are similar to those of Luttrell and 

Potteiger (2003), who also found no change in V
.
O2max or the V

.
T (as measured by 

the V-slope method) and also Bohm et al. (2008) who found no significant 

difference for peak power and power output at V
.
T.  

V
.
O2max and peak power output are two common predictors of endurance 

performance. Mujika and Padilla (2001) state that it is sometimes hard to draw 

comparisons between differing protocols when using V
.
O2max, however when 

combined with power output data real performance improvements in either of these 

variables are meaningful and suggest that performance will be enhanced. Peak 

power output has been shown to be an accessible and valid predictor of completion 

time for 20 km time trials (Hawley & Noakes, 1992) and average power output 

performed during a 16.1 km time trial (Balmer, Davison, & Bird, 2000). Paton and 
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Hopkins (2001) also state that the peak power obtained during an incremental test 

has the lowest random error and provides a reliable measure of tracking 

performance. Given this, had training with PowerCranks™ elicited an improvement 

in cycling performance, these variables should have shown some noticeable increase 

over the 5-wk training duration in the current study. Again however, this was not the 

case, suggesting that training with PowerCranks™ in the field had little effect on the 

key parameters that influence cycling performance over a  5-wk period.   
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions and Practical Implications 

 

This study has shown that five weeks of training with PowerCranks™ produced 

no significant improvement in physiological and performance-related variables 

measured on both PowerCranks™ and on regular cranks, when compared to a 

control group measured on regular cranks. Training with PowerCranks™ elicited no 

significant improvements in cycling economy or efficiency, oxygen uptake, 

ventilatory thresholds, power outputs or levels of muscle activation compared to a 

control group training on normal cranks.  

The main limitation of this study was that it only examined the initial adaptations 

to PowerCranks™ training over a five week period. Indeed, this device has not been 

extensively researched thus far and further research is needed to determine if 

PowerCranks™ do provide a benefit to not only cyclists but also to runners and 

those involved in run-based based sports due to the focus on training of the hip 

flexor muscles. Further research is also needed to determine if the PowerCranks™ 

training is best completed in the field (i.e. mounted to the cyclists bicycle) or on 

stationary bicycles in controlled and structured technique sessions. Further studies 

should also examine the influence of PowerCranks™ training on cycling 

performance, using either a time trial or a time-to-exhaustion test. 

In conclusion, results from this study do not support benefits claimed by 

PowerCranks™. However, further research is needed to examine the influence of 

training with PowerCranks™ on various physiological variables and cycling 

performance over a more prolonged training duration.   
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7.2 Recommendations for Further Research 

 

PowerCranks™ only look at one aspect of cycling performance. Thus, it may be 

prudent to recommend that cyclists maintain training on regular cranks during 

outdoor training. However, when on an indoor stationary bicycle, using the cranks as 

additional training or as a substitute for weight training could be helpful. As noted 

earlier, other studies using structured lab-based training sessions have shown 

significant effects (Luttrell & Potteiger, 2003). Future studies are needed to further 

examine the implications of training with PowerCranks™ with regards to a longer 

training time frame, and possibly either longer, more frequent, or more intense 

training sessions. Other areas not yet explored with regards to the potential that 

PowerCranks™ training could have on athletic performance include the ability to 

run after the cycling leg of multi-sport events.  
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CHAPTER 9: APPENDIX 
 

9.1 Appendix A: Statistical Data 
 

Table 7. Two-way ANOVA (p <0.05) p-values for group x time comparison, pre- to 
post-training.  

  p value  

Variable Group  Time Group by Time 

V
.
O2 (ml-1·kg-1·min) 

PPO (W) 

V
.
T1 (%L⋅minmax-1) 

V
.
T2  (%L⋅minmax-1) 

V
.
T1 VO2 (L⋅min-1) 

V
.
T2 VO2 (L⋅min-1) 

V
.
T1 PO (%PPO)  

V
.
T2 PO (%PPO) 

V
.
T1 PO (W) 

V
.
T2 PO (Watts) 

Economy (W⋅L-1) 

Efficiency (%) 

iEMG -VL (%MVIC) 

iEMG - BF (%MVIC) 

iEMG - GAS  (%MVIC) 

0.512 

0.868 

0.868 

0.153 

0.933 

0.413 

0.769 

0.084 

0.883 

0.274 

0.411 

0.66 

0.87 

0.823 

0.506 

0.942 

0.912 

0.45 

0.823 

0.43 

0.81 

0.497 

0.474 

0.481 

0.591 

0.375 

0.265 

0.429 

0.927 

0.278 

0.386 

0.991 

0.791 

0.665 

0.773 

0.392 

0.409 

0.613 

0.544 

0.749 

0.002† 

0.005† 

0.988 

0.426 

0.605 
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Note. † denotes significance. V
.
O2MAX = maximal oxygen consumption, PPO = peak power 

output, V
.
T1 = 1st ventilatory threshold, V

.
T2 = 2nd ventilatory threshold, V

.
O2 = oxygen 

consumption,  PO = power output, PC = PowerCranks™ Test, iEMG = Integrated 

Electromyography, VL = Vastus Lateralis, BF = Biceps Femoris, GAS = Gastrocnemius, 

MVIC = maximum voluntary isometric contraction. 
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Table 8. One-way ANOVA (p <0.05) p-values for pre- to post-training comparison 
for normal cranks and PowerCranks™ groups. 

 p Value 

Variable Normal Cranks PowerCranks™ 

V
.
O2 (ml-1·kg-1·min) 

PPO (Watts) 

V
.
T1 (%L⋅minmax-1) 

V
.
T2 (%L⋅minmax-1) 

V
.
T1 O2 (L⋅min-1) 

V
.
T2 O2 (L⋅min-1) 

V
.
T1 PO (%PPO) 

V
.
T2 PO (%PPO) 

V
.
T1 PO (Watts) 

V
.
T2 PO (Watts) 

Economy (W⋅L-1) 

Efficiency (%) 

Economy (PCT) - (W⋅L-1) 

Efficiency (PCT) – (%) 

Cadence (revs.min-1) 

Cadence (PCT) – (revs.min-1) 

iEMG – VL (%MVIC) 

iEMG – BF (%MVIC) 

iEMG – GAS (%MVIC) 

0.415 

0.935 

0.517 

0.905 

0.772 

0.678 

0.4 

0.909 

0.437 

0.886 

0.009* 

0.027* 

N/A 

N/A 

0.352 

N/A 

0.536 

0.58 

0.718 

0.632 

0.941 

0.709 

0.505 

0.301 

0.423 

0.877 

0.139 

0.929 

0.52 

0.083 

0.093 

0.173 

0.281 

0.305 

0.005* 

0.61 

0.571 

0.206 
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iEMG – VL (%MVIC) - PCT 

iEMG – BF (%MVIC) - PCT 

iEMG – GAS (%MVIC) - PCT 

Girth – Upper (cm) 

Girth – Lower (cm) 

Heart Rate 

Heart Rate (PCT) 

RPE 

Sessional RPE 

N/A 

N/A 

N/A 

0.836 

0.678 

0.885 

N/A 

0.865 

0.512 

0.619 

0.725 

0.795 

  0.77 

0.916 

0.989 

0.866 

0.055 

0.227 

Note. * denotes significance. V
.
O2MAX = maximal oxygen consumption, PPO = peak power 

output, V
.
T1 = 1st ventilatory threshold, V

.
T2 = 2nd ventilatory threshold, O2 = oxygen 

consumption,  PO = power output, PCT = PowerCranks™ Test, revs.min-1 = revolutions per 

minute, iEMG = Integrated Electromyography, VL = Vastus Lateralis, BF = Biceps 

Femoris, GAS = Gastrocnemius, MVIC = maximum voluntary isometric contraction, Upper 

= upper leg circumference, Lower = lower leg circumference, RPE = rating of perceived 

exertion.  
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9.2 Appendix B: Information Letter and Informed Consent Documents  
 

Information Letter to Participants 
 

For the study 
 

Does training with PowerCranks™ modify muscle activation patterns, economy 
of motion, cycling efficiency and cycling performance in trained cyclists? 

 
Thank you for expressing interest in this study. The following information is 
designed to inform you of the purpose and procedures involved in the study. 

 
Purpose of the Study 
This study aims to determine if a newly developed pedal crank has an effect on 
cycling performance.  
 
Why were you selected? 
You have been selected because you indicated that you have, to the best of your 
knowledge:   

• At least 3 years riding experience, 
• Not completed any previous training on Powercranks™,  
• Usually ride 200+ km per week and can do so for the duration of the study (7 

weeks). 
 
What will be asked of you? 
The study requires that you participate for seven weeks. During these seven weeks 
you will complete five training weeks, and two testing weeks as depicted in the 
timeline figure below. All testing sessions will occur indoors at ECU Joondalup, on 
a stationary cycle ergometer to which you can fit your own pedals. All training 
sessions will occur on your own bicycle to which the PowerCranks™ will be fitted.  
 
Timeline of events 
 
 

 
 
 
 
. 
 
 

Familiarisation 
& Testing: 
VO2max 
Efficiency 

 
2 x 2hr Sessions 

PowerCranks 
Familiarisation. 

 
2 x 1hr Sessions 

Testing: 
VO2max 
Efficiency 
Time-trial 

 
2 x 2hr Sessions  

Weeks 2 - 6 Week 1: Pre Training Week 7: Post Training 

 
Regular training on own bike 
(fitted with PowerCranks or 

your normal cranks) 
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During each testing week we will measure your endurance capacity 

(VO2max) on one day, and your cycling efficiency and economy two to four days 
later. Those allocated to the PowerCranks™ group will then partake in two 
additional familarisation sessions to become accustomed to the cranks.  

Based on the information from your first testing week, you will be allocated 
to one of two groups; these being a PowerCranks™ group or a control group.  

For the training weeks, the appropriate cranks will be fitted to your bike (i.e. 
PowerCranks for the PC group or your normal cranks for the control group) and you 
will be required to train as you would usually. You will be given a training diary for 
this five-week period that you will be asked to fill in with as much detail as possible.  
  
Will you experience any discomfort or inconvenience? What are the Potential 
risks?  
 

1. The Graded Exercise Tests (VO2max) are designed to elicit maximal effort 
and are therefore fatiguing and may cause some discomfort. During the test 
you will wear a mouthpiece, similar to a snorkel, so that we can analyze your 
expired gases. Some participants have found breathing through the 
mouthpiece is initially awkward; however this feeling disappeared after a 
few minutes.   

2. Hair will be shaved in certain places of the left leg to affix 2 by 2 cm EMG 
(Electromyography) electrodes. 

3. In each VO2max test several fingertip blood samples will be collected from 
you (the total amount of blood taken during the study will not exceed 15 ml). 
This involves the use of a small needle to pierce the skin. Usually after 
fingertip blood sampling fingertips are sensitive for a day or two. 
Additionally, these samples will only be used for obtaining blood lactate 
measurements and samples will be immediately disposed of once this has 
been carried out.  

4. When the PowerCranks™ are attached to the bicycle it is initially difficult to 
cycle and to clip in and out of the pedals. You will however be given 
familarisation sessions on the PowerCranks™ in a safe controlled 
environment to give you practice cycling with the cranks.  

5. Participants allocated to the PowerCranks™ group may experience some 
muscle soreness in the first few weeks - this is perfectly normal. However, 
we ask you to tell us if you experience any problems resulting from your 
participation.   

 
What are the benefits to you? 
You will receive information pertaining to your maximal endurance capacity 
(VO2max), cycling efficiency, cycling economy and other physiological values. You 
will also gain any benefits from the PowerCranks™ training and also receive a 
discount on the PowerCranks™ if you wish to purchase them after the study.  
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Confidentiality of information  
All information provided to the investigator will be used in a strictly professional 
and confidential manner. During the course of the study information will be stored 
either, in a locked drawer or a password-protected computer. Only people relevant 
to the study shall be able to view any data pertaining to your results and even then 
every attempt will be made to ensure the data is displayed in such a way as to make 
it untraceable to you.   
 
After the study has finished it is required that all data is kept for a minimum of 5 
years, during this time all information will be stored on a password protected 
computer and all original materials will be destroyed.  
 
Your information will be collated along with others in the study and conclusions 
drawn on the groups as a whole, no specific persons in the study will be individually 
scrutinized.  
 
Results of the research study  
Results of this study will be published in a variety of ways. First, they will comprise 
the investigators Masters Thesis. Second, they will be published in a journal, and 
third, they may be presented at a conference or research group in written or verbal 
form. Again this information will be group based and individuals will not be 
identifiable.   
If you wish to know any of your individual results from the testing sessions please 
feel free to ask the investigator at an appropriate time.  
  
Withdrawing consent to participate  
It is important for you to know that you are participating in a voluntary nature in all 
procedures and are free to withdraw your consent to further involvement in the 
research project at any time. You need not give any explanation or justification as to 
why you can no longer participate. If this should occur any information or material 
pertaining to your involvement will be withdrawn.  
 
Additional 
This research project is being undertaken as part of the requirements of a Masters 
Degree at Edith Cowan University and has been approved by the ECU Human 
Research Ethics Committee.



This project will use equipment supplied by PowerCranks, LLC. 
 
If you would still like to be a participant in this study, and you understand the 
commitment, risks and fit the criteria, then please respond to the primary investigator 
(Jack Burns) to set up a familiarisation meeting. Please also read the informed 
consent but do not sign it until you come into the laboratory for your familiarization 
meeting.  
 
If you have any questions or require any further information about the research 
project, please contact:  
 
Jack Burns (Masters Candidate)  
School of Exercise, Biomedical and Sports Science 
Edith Cowan University 
100 Joondalup Drive, Joondalup WA 6027  
Mobile:  
Email: jack.burns@ecu.edu.au 
 
If you have any concerns or complaints about the research project and wish to talk 
to an independent person, you may contact:  

 
Research Ethics Officer  
Edith Cowan University  
100 Joondalup Drive  
JOONDALUP WA 6027  
Phone: (08) 6304 2170  
Email: research.ethics@ecu.edu.au  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Informed Consent Document 
For the study 

Does training with PowerCranks™ modify muscle activation patterns, economy 

of motion, cycling efficiency and cycling performance in trained cyclists? 

 
This is to certify that I ____________________________ hereby agree to participate 
as a volunteer in a scientific investigation performed at Edith Cowan University. 
 
The investigation and my part in the investigation have been defined and fully 
explained to me and I understand the explanation. A copy of the procedures of this 
investigation and a description of any risks and discomforts has been provided to me 
and has been discussed in detail with me. 
• I have been given an opportunity to ask whatever questions I may have had and all such 

questions and inquiries have been answered to my satisfaction. 

• I understand that I am free to ask any questions and that they will be answered to my satisfaction.  

• I understand that as part of the testing I will be required to carry out maximal intensity exercise  
and have blood, electromyography (measure of muscle activity), gas analysis, ultrasonography, 
muscle girth, RPE and heart rate readings taken. I understand that I will be required to keep a 
training history and ride as per my regular training schedule. 

•  I also understand that the PowerCranks™ will be fitted to my bicycle and that riding on the 
PowerCranks™ presents an initial risk of injury and muscle soreness until I become accustom to 
the technique required.  

• I understand that I am free to withdraw consent and to discontinue participation in the project or 
activity at any time. 

• I understand that my data and answers to my questions will remain confidential with regard to my 
identity. 

• I certify to the best of my knowledge and belief, I have no physical condition that would increase 
the risk to me participating in this investigation. 

• I agree that the research data obtained from this study may be published, provided I am not 
identifiable in any way. 

Participant ________________________________ Date ______________________ 
 
I, the undersigned, was present when the study was explained to the subject in detail 
and to the best of my knowledge and belief it was understood. 
 
Investigator _______________________________ Date _____________________ 
 
Yours Sincerely,  
Jack Burns (Masters Candidate)  
School of Exercise, Biomedical and Sports Science 
Edith Cowan University 
100 Joondalup Drive, Joondalup WA 6027 
Mobile:  
Email: jack.burns@ecu.edu.au 
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9.3 Appendix C: Subject Advertisement 
 

The Exercise and Sport Science Research Group 
 

At 
 

Edith Cowan University, Joondalup 
 

Is seeking 
 

Cyclists or triathletes (18 to 45 years 
old) to participate in a five week 

training study examining the effects of 
training with PowerCranksTM on 

cycling performance. 
 
 

Eligibility for the study requires that you: 
 male 

 have no medical illnesses 
 regularly ride ≥200 km per week 

 
 

Full study participation entitles you to buy a set of PowerCranksTM at a 
heavily discounted price. 

 
 
 

To inquire about participating contact: 
 

Jack Burns, , jack.burns@ecu.edu.au 
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