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ABSTRACT

An Analysis and Implementation of Linear Derivation Strategies
by
Winston Membrebe Tabada

This study examines the efficacy of six linear derivation strategies : (i) s-linear
resolution, (ii) the ME procedure, (iii) t-linear resolution, (iv) SL-resolution, (v) the GC
procedure, and (vi) SLM. The analysis is focused on the different restrictions and
operations employed in each derivation strategy. The selection function, restrictive ancestor
resolution, compulsory ancestor resolution on literals having atoms which are or become
identical, compulsory merging operation, reuse of truncated literals, spreading of FALSE
literals, no-tautologies restriction, no two non-B-literals having identical atoms restriction,
and the use of semantic information to trim irrelevant derivations from the search tree are the
major features found in these six derivation strategies. Detecting loops and minimising
irrelevant derivations are the identified weak points of SLM. Two variations of SLM are

suggested to rectify these problems.

The ME procedure, SL-resolution, the GC procedure, SLM and one of the
suggested variations of SLM were implemented using the Arity/Prolog compiler to produce
the ME-TP, SL-TP, GC-TP, SLM-TP and SLMS5-TP theorem provers respectively. In
addition to the original features of each derivation strategy, the following search strategies
were included in the implementations : the modified consecutively bounded depth-first
search, unit preference strategy, set of support strategy, pure literal elimination, tautologous

clause elimination, selection function based on the computed weight of a literal, and a match



check. The extension operation used by each theorem prover was extended to include

subsumed unit extension and paramodulation.

The performance of each theorem prover was determined. Experimental results
were obtained using twenty four selected problems. The performance was measured in
terms of the memory use and the execution time. A comparison of results between the five
theorem provers using the ME-TP as the basis, was done. The results show that none of the
theorem provers consistently performs better than the others. Two of the selected problems
were not proved by SL-TP and one problem was not proved by SLM-TP due to memory
problems. The ME-TP, GC-TP and SLMS-TP proved all the selected problems. In some
problems, the ME-TP and GC-TP performed better than SLMS5-TP. However, the ME-TP
and GC-TP had difficulties in some problems in which SLM5-TP performed well.
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Chapter 1

INTRODUCTION AND OVERVIEW

1.1. Rationale

Mechanising theorem proving is a major field of endeavor in Artificial
Intelligence. The interest in theorem proving stems from the ability of theorem provers to
emulate many tasks associated with human intellect. Tasks that require human intuition
such as question answering, general problem solving, writing programs and some robotic
applications can now be automated using a theorem prover (Green 1981). Theorem
provers may play a vital role in the fields of mathematics and mathematical logic. In
mathematical logic, one can express conveniently almost all kinds of deductive arguments,
and this allows mechanical manipulation by a theorem prover. Mathematicians can now
study deduction in its purest form with the aid of an automatic theorem prover. The
realisation that powerful theorem proving techniques could provide a key component of
many "intelligent machines" has drawn many computer scientists and mathematicians to

the computer rooms to implement theorem provers.

An important milestone in automatic theorem proving research was the
introduction of the resolution principle by Robinson (1965). Green (1981, p. 202)
asserted that "automatic theorem proving using the resolution proof procedure represents
perhaps the most powerful known method for automatically determining the validity of a
statement of first-order logic". The resolution proof procedure is complete, that is, it is
able to prove everything that is actually true, and can be easily mechanised. However, the
cost of completeness is a combinatorially large search space. One of the disadvantages of
using the resolution principle in an unrestricted manner is that it leads to many redundant
and irrelevant inferences. An inference is redundant when the result of the inference can be

derived in other ways while an inference is irrelevant when the result of the inference does



not lead to a derivation of the desired goal. The vast number of clauses generated before a
proof is found is one of the outstanding problems in theorem proving using the resolution
principle. The completeness property of the resolution principle is only of theoretical
interest if the search problems are not solved. Hence, considerable research effort has
gone into refinements of the resolution proof procedure. Some of these research efforts

have been directed to the linearisation of the resolution proof procedure.

The resolution proof procedure repeatedly selects pairs of clauses which can
be resolved and derives new clauses by the resolution rule until the empty clause is
derived. The derived non-empty clauses, called intermediate clauses, are added to the
original set of clauses. An unrestricted resolution proof procedure derives much of the
redundancy in its search space from the resolution of intermediate clauses with other
intermediate clauses, which causes the combinatorial explosion of the search space.
Linear resolution minimises this redundancy by restricting the selection of pair of clauses
for resolution. Linear resolution requires that one of the selected pair of clauses must be
the most recently derived clause (starts with a top clause which can be any of the input
clauses), and the other clause must be an input clause or an ancestor of the first parent.
The most recently derived clause is referred as the center clause while the other parent
clause is referred as the side clause. Linear resolution has a relatively uncomplicated
structure of its search space which makes a heuristic search easy to apply. Linear
resolution also suits question-answering applications better than unconstrained resolution

(Brown 1974).

To restrict derivations to be linear, however, has been found to be insufficient
to control the size of the search space. Much work has been done to produce a restricted
linear derivation strategy. Loveland (1968) formalised two restricted linear derivation
strategies : s-linear resolution and the Model Elimination (ME) procedure. Kowalski and
Kuehner (1971) built on the work of Loveland by adding more restrictions and the
factoring operation. These refinements were formalised as t-linear resolution and SL.-

resolution. Shostak (1976) refined the ME procedure by devising the C-literal mechanism



as a substitute for the lemma scheme of the ME procedure. This work is formalised as the
Graph Construction (GC) procedure. Brown (1974) argued that the ability to select
dynamically a literal to resolve on is critical in obtaining a refutation as well as controlling
the size of the search space. The ME procedure, SL-resolution and the GC procedure
have limited choices of literal to resolve upon. In view of this, Brown formulated the
Selective Linear Model (SLM) linear inference system which he claimed to be superior
than the other derivation strategies in terms of its flexibility in the choice of literal to
resolve on. Each of these works has features distinct from the others. However, it is not
known, which of these derivation strategies presents a better and more efficient theorem
prover in terms of memory use and speed. To know this, a comparison of the efficacy of
each derivation strategy needs to be done. In addition, there is a need to analyse their

different features, and to implement and test them as theorem provers. Hence, this study

has been conducted.
1.2, Obijectives of the Study

This study aims to attain the following objectives :

1.  To provide an insight into the features of the following linear derivation
strategies, through analysis of:
a. s-linear resolution
b.  the ME procedure
¢.  t-linear resolution
d.  SL-resolution
e.  the GC procedure
f. SLM

2. To formulate possible extensions to the SLM derivation strategy



3. To implement theorem provers based on the following linear derivation
strategies:
a. the ME procedure
b.  SL-resolution
c.  the GC procedure
d SLM

e.  SLM with any extensions formulated.

4.  To compare the efficacy of the implemented theorem provers.

1.3. Overview of Automated Reasoning Strategies

Griffiths and Palissier (1987) describe, in brief, the basis of automatic theorem

proving as follows :

Automatic theorem proving follows research on logic and the validity of
proofs, which is particularly ancient. At the end of the seventeenth century,
Leibniz was already looking for an algorithm to prove or refute formulae. The
modern era dates from Herbrand (1930), who gives an algorithm of this kind
for formulae in first order logic. It is this logic, called predicate calculus if it
contains no additional specific axioms, that is the basis of today's theorem

provers. (p. 63)

Earlier works by Newell, Simon, Shaw and Gelernter in the middle and late 1950s
emphasized the heuristic approach to problem solving, but soon shifted to various
syntactic methods culminating in increased research on resolution type systems (Bledsoe
% 1981). Since the development of resolution, many refinements have improved its
efficiency. The following are reviews of some of the major works on the refinements of

resolution, which relate to linear derivation strategies:




1.3.1.

P; and N Resolution (Meltzer 1966, Robinson 1979)

P, resolution, as described by Stickel (1986, p. 86), is a restricted application

of resolution which requires that one of the parent clauses must be a positive clause. N

resolution requires that one of the parent clauses must be a negative clause, which is the

inverse of P;. These two resolution proof procedures are closely related to the set of

support strategy (described in the next section). In fact, Stickel viewed P, resolution as an

extension of the set of support strategy. He supported this view by the following

arguments :

Using the set of support restriction, it is legitimate to designate the set of all
positive clauses as the set of support. Resolution operations between input
clauses will then require one parent to be a positive clause as desired.
However, with just the set of support restriction, any derived clause can be
resolved with any other clause and the intended restriction that one of the
parent clauses to each resolution operation must be positive will not be obeyed.
After each resolution operation, the resulting set of clauses is unsatisfiable
provided the initial set of clauses is unsatisfiable. Thus, the set of support
restriction (with the set of all positive clauses designated as the set of support)
can be applied to each set of clauses resulting after performing a resolution
operation and not just to the initial set of clauses, effectively imposing the
desired restriction that one parent clause of each resolution operation be a

positive clause. (p. 86)

N; resolution is closely related to the linear input resolution. Given a set of

Horn clauses, a linear input derivation which starts with a negative top clause is also an N

derivation.



1.3.2. Hyper-resolution (Robinson 1965)

Unlike ordinary resolution that requires two clauses for each application,
hyperresolution uses an arbitrary number of clauses in each inference step. Each
hyperresolution operation takes a single mixed or negative clause, referred to as the
nucleus, and a number of positive clauses, referred to as electrons, which correspond to
the number of negative literals in the nucleus. To produce a positive clause, each negative
literal of the nucleus is resolved with a literal in one of the electrons. The derived clause,
referred to as the hyperresolvent, consists of all the positive literals of the nucleus and the
unresolved on literals of the electrons (Stickel 1986, Wos et al. 1984). Hyperresolution is
a generalisation of the Pj resolution. Negative hyperresolution interchanges the roles of

positive and negative clauses in hyperresolution (Wos et al. 1984, p. 168).

A successful application of hyperresolution can be viewed as applying linear
resolution with the nucleus as the top clause, until the derived clause is positive. However,

the entire process does not yield intermediate clauses.

1.3.3. Linear Input and Unit resolution (Chang 1970)

Linear input resolution is a restricted resolution proof procedure which
requires that for every resolution, one of the parent clauses is the most recently derived
clause, and the other is an input clause. If clauses are viewed as lists (not sets) of literals,
every resolution involves binary resolution and merging operation. Chang (1970, p. 703)
noted that a linear input derivation involves binary resolution and merging (Andrews
1968). Linear input resolution is only complete for sets of Horn clauses. The
completeness of linear input resolution for Horn clauses shows that it is unnecessary to
resolve arbitrary pairs of input clauses with each other, because it is sufficient to take only
those pairs of clauses that include a negative clause. A restricted form of linear input
resolution, called ordered input resolution is the basis of PROLOG. Ordered input
resolution requires that literals be resolved away in some fixed order such as strictly left to

right, as used in PROLOG. In ordinary linear input resolution, the literals of the top



clause can be resolved away in any order to obtain an empty clause. If there are N
literals in the top clause then there would be N! derivations of the empty clause. This
inefficiency is eliminated in ordered input resolution. This technique is used in the ME

procedure, SL-resolution, the GC procedure and SLM derivations.

Unit resolution is a resolution proof procedure which requires that at least one
of the parent clauses is a unit clause. A unit clause is a clause that contains one literal
only. Chang has shown that if a theorem has a linear input proof then it also has a unit
proof. Henschen and Wos (1974, p. 590) pointed out that "many in the field of
automated theorem proving have devoted much effort and interest to the advantages,
properties, and implementation of techniques which give preference and often exclusion to
unit inference." The advantage of this derivation strategy is that whenever a clause is
resolved with a unit clause, the result has fewer literals than the parent does. This helps to
focus the search toward obtaining a refutation and thereby improves efficiency. However,

like linear input resolution, unit resolution is only complete for sets of Horn clauses.

1.34. UR-resolution (McCharen et al. 1976)

McCharen et al. (1976) formulated an inference system known as Unit-
Resulting (UR) resolution, which they claimed to be an improved version of unit
resolution. UR-resolution is an inference rule, similar to hyperresolution, which combines
a series of binary resolution steps into one step. Where hyperresolution requires a single
mixed or negative clause and a set of positive clauses, UR resolution requires a nonunit
clause and a set of unit clauses to produce a unit clause or an empty clause. Unit
resolution produces an intermediate clause for every successful resolution and some of
these intermediate clauses may pollute the search space. UR-resolution minimises this
problem by combining a series of unit resolution steps into one step, thus, yielding no

intermediate clauses. However, UR-resolution is only complete for Horn clauses.



A successful UR-resolution can be viewed as applying linear input resolution
with the non-unit clause as the top clause, and each step uses a unit clause as the other

parent. The entire process, however, does not yield intermediate clauses.

1.3.5. Connection Graphs (Kowalski 1975)

Connection graphs were first proposed by Kowalski (1975). Other authors
who have used different forms of connection graphs are Sickel (1976), Chang and Slagle
(1979), and Stickel (1982) as cited by Genesereth and Nilsson (1987). In brief, Amble
(1987, p. 42) describes a connection graph as an - "implementation strategy for resolution,
using a network of links between resolvable clauses. Links are selected for resolution and
deleted afterwards; new clauses are linked into the graph; and clauses with no links are
deleted." He added that connection graphs allow any search strategy to be implemented
and their application in expert systems and parallel inference machines is a promising
research topic. Ramsay (1988, p‘. 102) conjectured that "connection graphs seem in some
sense to be the last word in resolution theorem proving". However, he mentioned that
connection graph resolution is unnatural. Traces of connection graph theorem provers at

work are almost impossible to follow, unlike the linear type of derivation.

There is some similarity between the Connection Graph with the Graph
Construction of Shostak. In Graph Construction, clauses are linked with other clauses to
form the refutation graph. However, its main purpose is to be able to analyse pictorially
various resolution strategies. In the case of the Connection Graph, clauses are linked to
form a connection graph which is a data structure to facilitate the encoding of inference

operations.



14. Overview of General Search Space Restrictions

Most research works on theorem provers based on the resolution principle are
concerned with devising good search strategies. However, Ramsay (1988, p. 86) asserted
that "there is no universal agreement as to which are the best strategies ... the choice will
depend on characteristics of the kind of problem being solved as much as on the general
properties of resolution.” Resolution has no inherent search strategy that can be fixed
independently. Experimental evidence, as described by Wos (1988), has shown that
automating a resolution proof procedure without good search strategy has problems in
terms of computer memory requirements and time to obtain a proof. To solve these
problems, one should understand their causes. Wos (1988, pp. 21-43) describes major
obstacles in the automation of theorem proving which are the main focus of most research
on theorem proving. Some of them are summarised as follows (those not included are

beyond the scope of this study):

1. Clause retention. The reasoning program (theorem prover) keeps too many
deduced clauses (too many conclusions) in its database of information.
Retention of so much unneeded information is harmful to the effectiveness of
an automated reasoning program. When a reasoning program retains a large
number of unneeded clauses, this extra information interferes markedly with

the program's effectiveness by causing the program to waste too much time.

2.  Inadequate focus. The program's reasoning is not sufficiently well directed.
When a reasoning program is asked to complete some given assignment, it
immediately begins drawing conclusions. Unfortunately, the program too
easily gets lost, pursuing one unprofitable path after another. A reasoning
program could provide even greater assistance if it could choose wisely the

clauses from which to draw conclusions.
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3. Redundant information. The reasoning program generates the same
clause (or proper instances of clauses already generated) over and over again.
A clause is redundant if it is a copy of a second clause, or if it is a proper
instance of a second clause, that is obtainable from a second clause by
substituting appropriate terms for variables. Deducing a clause of either type

Serves no purpose.

4.  Clause generation. The program draws too many conclusions, many of
which are redundant and many of which are irrelevant even though they are

not redundant.

5.  Size of the deduction steps. The inference rules do not take deduction
steps (inference steps to obtain refutation) of the appropriate size. If the steps
are too small, then the program can generate too many clauses, and, most
likely, the program will retain, too many in its database. The result can be an
inordinate waste of computer time to complete a given assignment. To always
obtain a proof with a minimum number of inference steps, one has to use a
breadth-first search strategy which requires a lot of memory and computation
time. If the size of the deduction step is too large, then the program can

bypass the needed information and, therefore, fail to complete the assignment.

With all the research works done on devising good search strategies, different
types of search strategies have evolved that can be applied to control the search space of
derivation strategies that use the resolution principle. Wos et al. (1984) categorises the
different search strategies into groups : the ordering, restriction and pruning strategies. A
search strategy is classified as an ordering strategy if the inference steps are directed in
their choice of which clause to focus on next. When a derivation is prevented from using
certain combinations of clauses, then the search strategy used is classifed as a restriction
strategy. A pruning strategy is a strategy to remove redundant clauses. The following are

reviews of some known search strategies which are used with linear derivation strategies:
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1.4.1. Unit Preference Strategy (Wos et al. 1964)

The unit preference strategy tries to deduce clauses with as few literals as
possible. The point of this strategy is that short clauses are easier to work with. A clause is
a unit if it contains a single literal. The unit preference strategy, as the name implies, gives
more priority to a resolution involving a unit. The goal of theorem proving is to derive the
empty clause, hence, clauses with fewer literals are closer to the goal than clauses with
more literals. The unit preference strategy loosens the restriction of unit resolution to
allow non-unit clauses be selected, but shorter clauses are used first. The advantages of
unit resolution also apply to the unit preference strategy. The unit preference strategy may

have a larger search space than unit resolution, however, it is complete for general clauses.

The unit preference strategy plays an important role in the implementation of

the ME procedure, SL-resolution, the GC procedure, SLM and its extension.

1.4.2. Set of Support Strategy (Wos et al. 1965)

An unsatisfiable set of clauses S can be subdivided into two subsets : a
satisfiable set of clauses (S-T) and the set of support (T). Wos et al. (1965) have proven
that if S is unsatisfiable, then a refutation can be derived by a sequence of resolutions in
which at least one of the parent clauses of each resolution is a member of the set of
support. The derived clause of each resolution is placed in the set of support. This
strategy is known as the set of support strategy. Kowalski and Kuehner (1971, p. 232)
described possible sets of support as the set of all positive clauses, the set of all negative
clauses, or the set of all clauses that were derived from the negation of the conclusion of
the theorem. The advantageous effect of the set of support strategy is that it avoids
resolutions between parent clauses which both belong to a set of satisfiable clauses. This
restriction can reduce the size of the search space significantly. Wos (1988, p. 52)
claimed that the set of support strategy "is currently considered the most powerful

restriction strategy available”. Wos et al. (1965) have also shown that a strategy which
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combines the set of support strategy and the unit preference strategy is often much more

efficient than the unit-preference strategy alone, as cited by Slagle (1971).

Supposing the selected top clause C; of a linear derivation is a member of the
set of support, then the resolvant of a resolution step between C; and a side clause is
placed in the set of support. Since one of the parent clauses in each step of linear
derivation is the previously derived clause, every derived clause is placed in the set of
support. Thus, each step of a linear derivation satisfies the restriction of the set of support
strategy. Hence, a linear derivation strategy is a special case of the set of support strategy.
Loveland (1968, p. 161) showed that there always exists an s-linear refutation with the top
clause chosen from the set of support. Restricting the selection of the top clause to be
always from the set of support is advantageous because it will limit the number of search

trees which need to be investigated in the course of searching for a refutation.

The SL-resolution, GC procedure and SLM explicitly require the set of
support in the definition of their derivations. The ME procedure also satisfies the set of
support strategy (Loveland 1969a), thus, the set of support strategy can be incorporated in

the implementation of the ME procedure.

1.4.3. Purity Elimination

A literal is called a pure literal if its complement (subject to unification) does
not appear in a set of clauses. A clause that contains a pure literal is useless for the
purpose of refutation since the literal can never be resolved away. Hence, such a clause
may be removed from a set of clauses. To remove such a clause is called pure-literal
elimination. This strategy is used in the implementations of the ME procedure, SL-

resolution, the GC procedure, SLM and its extension.
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1.44. Elimination of Tautologies

A clause which contains a pair of exactly complementary literals is a
tautology. The presence or absence of tautologies in a set of clauses has no effect on the
unsatisfiability of the set. Hence, they may be removed from the set of clauses. The ME
procedure, SL-resolution, the GC procedure and SLM provide restrictions that in effect
prevent the use of tautologous input clauses. These restrictions are included in the

implementations.

1.4.5. Subsumption

"Subsumption is the process for discarding a clause that duplicates or is less
general than another clause available” (Wos et al. 1984, p. 171). A clause A subsumes a
clause B if there exists a substitution 0 such that A is a subset of B. If a clause in a set
of clauses is subsumed by another clause in the set, then the set remaining after
eliminating the subsumed clause is unsatisfiable if and only if the original set of clauses is
unsatisfiable (Genesereth and Nilsson 1988). There are two forms of subsumption that
can be employed. The elimination of a newly derived clause that is subsumed by a clause
that is already present is called forward subsumption. Discarding of clauses already
present that are subsumed by a newly derived clause is called backward subsumption
(Stickel 1987, p. 84). The idea of subsumption is to prevent the use of subsumed clauses
in the selection of pairs of clauses for resolution because they will only expand the search
space unnecessarily. Subsumption is used in a different way in the subsumed unit
extension operation (Sutcliffe 1989). Subsumed unit extension is included in the
implementations of the ME procedure, SL-resolution, the GC procedure, SLM and its

extension.

1.4.6. Weighting (Wos et al. 1984)

Wos et al. (1984) describe weighting as -"the process for assigning priorities

to terms, clauses, and concepts”. It can be used to reflect knowledge and intuition about
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how a derivation should proceed. Weighting is both an ordering and a restriction strategy.
A weighting strategy is used in the selection of literals to resolve on in the
implementations of the ME procedure, SL-resolution, the GC procedure, SLM and its

extension.

1.4.7. Consecutively Bounded Depth-first Search

Stickel (1986) pointed out that the use of an unbounded depth-first search
strategy is incomplete as a search strategy for theorem proving. Breadth-first search and
the A* algorithm (Nilsson 1980) are some of the suggested complete search strategies for
theorem proving. However, the use of such search strategies for theorem proving have
disadvantages. One of these disadvantages is the increase in memory requirements. A
derivation strategy using these search strategies would have to represent and retain more
than one derived clause at once. An alternative complete search strategy known as the
consecutively bounded depth-first (Stickel and Tyson 1985) also known as depth-first
iterative-deepening search (Korf 1985), has been suggested for automated theorem
proving. Consecutively bounded depth-first search strategy involves repeatedly
performing an exhaustive bounded depth-first search, with increasing depth bounds. This
search strategy has minimal memory requirements and finds optimal solutions as
efficiently as breadth-first or A* search, in spite of the effort spent on repeated search
(Nie and Plaisted 1989). A modified version of consecutively bounded depth-first search
is used in the implementations of the ME procedure, SL-resolution, the GC procedure,

SLM and its extension.
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Thesis Structure
The rest of this thesis is arranged as follows:
Chapter 2 investigates the inference operations and different restrictions imposed
in s-linear resolution, the ME procedure, t-linear resolution, SL-resolution, the
GC procedure and SL, and proposes two possible extensions to SLM;
Chapter 3 describes the data structures, self-configuration, search strategies used,
and algorithms in the implementations of the ME procedure, SL-resolution,
the GC procedure, SLM and SLM-5. Descriptions of each program and its

user-interface are also presented;

Chapter 4 presents a comparison of experimental results from the implemented

theorem provers;

Chapter 5 presents conclusions with suggestions for future work;

Appendix A contains the general algorithms of the implemented derivation
strategies;

Appendix B contains the source codes of the programs with comments;

Appendic C contains the description of how to operate the theorem provers; and

Appendix D contains the example theorems used to test the theorem provers.
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Chapter 2
ANALYSIS

2.1, Introduction

Robinson (1965) proved that a method of inference called resolution is a
complete strategy for proving the unsatisfiability of a set of first order clauses. Since the
introduction of the resolution principle, many researchers have attempted to mechanise
theorem proving. However, although resolution has reduced the number of inference
rules, the combinatorial explosion of the search space caused by the unrestricted
application of resolution is a great hindrance. There is a great need to prune the search
space of derivations for resolution to be practical. Hence algorithms that selectively
choose resolutions, known as refinement strategies , have been formulated. Refinement
strategies serve as guides for automated theorem provers that compute only a restricted set
of all possible resolutions. Hunt (1975, p. 303-304) classifies three general classes of
refinement strategies: syntactic, semantic and ancestory strategies. A syntactic strategy
chooses clauses for resolution based on the structural properties of the clauses themselves,
without regard to the interpretation of the atoms in the clause. These strategies are
relatively easy to implement because they depend only on a structural examination of the
clauses potentially involved in a resolution. However, syntactic strategies do not eliminate
any redundant derivations from the search space. In contrast, semantic strategies select
clauses which are known to have a certain truth value under a certain interpretation. These
strategies are selective in applying resolution to clauses, which will result to the reduction
of the search space. Ancestory strategies select clauses for further resolution based upon
the history of the derivation of the clauses so selected. Ancestory strategies permit
savings in both the number of resolutions to be considered and the amount of computer
storage required for recording clauses that have been inferred (Hunt 1975, p. 308).

Linear derivation strategies fall into this category.
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2.1.1. Definition of Linear Resolution

Linear derivation strategies were independently formulated by Loveland
(1970), Luckham (1970), and Zamov and Sharonov (1969). Kowalski and Kuehner
(1971, p. 231) contend that a linear derivation strategy is a refinement of unrestricted

resolution which reduces significantly the number of redundancies derivable.

In general, a linear derivation D from a set of clauses S is a sequence of
clauses Cy, ..., Cp such that each C;,;, 1 <i<n-1, is a resolvant of C; (center parent
clause) and B (far parent clause ) where either (a) B € S (input parent ), or (b) Bis
some ancestor C; of G;, j <i (ancestor parent). C; € Sis the top clause of D and Cp
is the clause derived by D. If Cj is the null clause then D is a linear refutation of S.

C;,1 is obtained in case (a) by input resolution while case (b) is by ancestor resolution.

A linear derivation strategy known as input derivation restricts the far parent
to be always from the set of clauses S. This strategy has been proven complete for Horn-
clauses, but is incomplete for non-Horn-clauses (Henchen 1976). The linear derivation
strategies presented in this study allow ancestor resolution and have all been proven sound

and complete for general clauses.

The following six linear derivation strategies were analysed :

1. s-linear resolution (1968)
2. Model Elimination (ME) procedure (1969)
3. t-linear resolution (1971
4, SL-resolution (1971)
5. Graph Construction (GC) procedure (1976)
6. Selective Linear Model (SLM) (1974)
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The different restrictions imposed by these linear derivation strategies were
investigated. The relationships between the strategies and their relative efficacies were also

examined.

2.1.2. Representation of Clauses and Input Set Manipulation

A clause is a disjunction of literals and a set of clauses S is interpreted as a
single statement which is the conjunction of all its clauses. The equality axiom of
symmetry, for instance, is expressed in clausal form as equal(X,Y) v ~equal(Y,X), where
"v" indicates disjunction and "~" indicates negation. The linear derivation strategies

presented here use two different formats for representing a clause.

The s-linear and t-linear strategies represent a clause as a set of literals. Thus,
the clause P v ~Q v ~R is represented as {P,~Q,~R}. In this representation scheme,
when resolution is applied between two clauses, the resolvant clause must contain distinct
literals. To satisfy this set constraint, a merging operation must be done implicitly
together with the resolution. Thus, the resolvant of {P,Q,R} and {P,Q,~R} is {P,Q} asa

result of one resolution and two merging operations.

The ME, SL-resolution, GC procedures and SLLM represent a clause in chain
format. A chain is a sequence of literals, which are not necessarily distinct. There are
three classes of literals that may occur in a chain : (i) B-literals, (ii) A-literals which are
denoted by boxed literals or literals embedded in [] brackets, and (iii) C-literals denoted by
circled literals. B-literals are derived from the literals in input clauses. The most basic
chain structure is the elementary chain. An elementary chain is a sequence of B-literals,
determined by assigning an ordering to the literals of a clause. In the ME procedure, SL-
resolution and GC procedure, an A-literal is derived from the resolved upon B-literal of a

center parent chain after an input resolution. A C-literal, which is only used in the GC
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procedure, is the complement of a deleted A-literal. A cell is defined such that two

B-literals belong to the same cell iff they are not separated by an A-literal.
The ME procedure generates matrix chains from an input clause. Matrix

chains (which are also elementary chains) are formed by ordering the set of literals of a
clause in such a way that each literal of the clause is the first literal of a chain, and the
remaining literals are ordered according to some convenient rule. Hence, the clause :

C=Pv~QvVvR
will form the matrix chains :

m, = P ~Q R

m,=~Q0 R P

m, = R P ~Q

All literals in the matrix chain are classified as B-literals.

In SL-resolution, each input clause is factored. For each factor produced a

chain is formed in the same manner as ME's matrix chains. For example, the clause :

C = ~p(X) v ~p(a)

has two factors :

Ci = ~p(X) v ~p(a)

Co = ~p(a)
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The first factor will generate two matrix chains :

m, = ~p(X) ~pl(a)

~p(a) ~p(X)

3
SN ]
I

and the second factor will generate one matrix chain :

In the GC procedure, each input clause is only converted to a sequence of

literals to form an elementary chain.

In SLM, an input clause is converted into a sequence of B-literals to form a
chain. Furthermore, each B-literal of the input chain has an assocaited truth index whose
value is either O or 1 (representing false and true respectively), as determined by a given
interpretation. A center chain of an SLM derivation is composed of a root node followed
by zero or more subnodes. A subnode may also contain subnodes. To illustrate, consider

the following figure of an SLM center chain :

..Qo
EI<
0o 0
~P

The rootnode of the center chain is null. There are two subnodes of the root node. The
upper subnode, whose contents are [~Rg] [S1], also has two subnodes. A subnode is
said to be a tip node iff it has no subnodes. Subnodes ~Qq, ~Pg and [~T] S are tip
nodes. A branch of a center chain is a sequence of nodes from the root node to a tip node.

The subscript of each literal in the center chain represents the truth index of the literal.
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The line connecting the A-literal [S;] and the root node represents the depth associated
with the A-literal [S;]. A depth is a position within the center chain which is to the left of
the associated A-literal, and must be in the same branch. Only A-literals indexed by 1 have

an assocaited depth.

2.2, s-linear Resolution

Loveland (1968a) formulated a restricted linear derivation strategy called the s-
linear strategy. The s-linear strategy does not only allow ancestor resolutions but also
restricts the selection of ancestor clause to be used in ancestor resolution. The strategy
ensures that the resolvant of an ancestor resolution always subsumes an instance of the
ancestor parent clause. This restriction reduces the search space and simplifies the
derivation. The strategy also eliminate redundant derivations by implementing a no-

tautologies restriction.

2.2.1. Formal Definition

A derivation Cy, ..., C,, from the set of clauses S is an s-linear derivation iff

restrictions 1), ii) and iii) are satisfied.

1)  Thesequence Cy, ..., Cy is a linear derivation.
i)  Cj;qis obtained from C; by applying resolution with either :
(@) aclause from S, or
(b) aclause Cj, j <1, chosen so that the resolvant C;,; subsumes an instance
of C;.

iil) No tautology occurs in the derivation.

If C,, is the null clause then the derivation is an s-linear refutation.
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2.2.2. Example Problem

To demonstrate how s-linear resolution works, consider the propositional
problem found in Kalish and Montague (1964) as cited by Pelletier (1982). The set of
clauses s = { {p, Q, R}, {P,Q, ~R}, {P,~Q,R}, {~P,Q,R},
{p,~Q,~R}, {~P,~Q,R}, {~P,Q,~R}, {~P,~Q,~R} } represents the
problem. Using the set of support strategy, the clause that contains all positive literals is
chosen as top clause. The search tree of the s-linear refutation of S with {P,Q,R} as the
top clause is shown in Figure 1. The circled clauses are the permissible clauses, others
being rejected as tautologies. The double arcs drawn below a center chain represent the
different inference options. The ancestor parent clauses are highlighted to distinguish

them from the input parent clauses.

2.2.3. Effects of the Restrictions

It is known that ancestor resolution is required for the completeness of linear
derivation strategies. However, allowing ancestor resolution also expands the search tree
due to the increased number of possible parent clauses. The s-linear derivation strategy
minimises this effect by imposing the restriction (ii.b) which restricts the selection of an
ancestor parent clause for ancestor resolution. This restriction reduces the number of
inference steps in a refutation since every ancestor resolution produces a resolvant with
fewer literals than its center parent clause. Thus, this restriction has increased the efficacy

of the derivation strategy.

As shown in Figure 1, there are twelve possible resolvants that can be derived
from the top clause {P,Q,R}. With the imposition of restriction (iii) , the permissible
resolvants are reduced to three. This is a significant reduction of the search space. A

refutation can of course be derived even if tautologous resolvants are allowed. However,
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derivations containing tautologous clauses will tend to be longer and in the extreme are
redundant. Loveland (1968a, p. 156) has proven that a minimal refutation of S contains
no tautologies. Allowing tautologies, though, will lessen the constraints in selecting a top
clause from the set of clauses. Take, for instance, the set of clauses S = { {P,Q},
{~P,~Q}, {P}, {Q} }. With the "no-tautologies" restriction, no s-linear refutation exists

when {P,Q} is chosen as the top clause although a refutation exists if tautologies are

allowed.

2.3. Model Elimination Procedure

In 1968, Loveland introduced a new proof procedure which is a Herbrand-
type procedure, and uses the matching technique employed by Prawitz (1960) in his
mechanical theorem proving. This new procedure was labelled Model Elimination
(Loveland, 1968b, p. 236). The procedure seeks the truth-functionally contradictory
clause associated with the Herbrand procedures by developing clauses which contradict
the assigned truth values over its atomic components (Loveland 1968b, p. 236). A TRUE
value is assigned to every resolved-upon literal of the center clause. A number of these
truth-assigned literals represent a model. If this model contradicts an instance of one of
the input clauses, then this model will be eliminated by removing the literals that define the

model. (See section 2.3.3 for details.) Hence the name, "Model Elimination".

Loveland realised that the original Model Elimination procedure he developed
was too complex from a data-handling viewpoint, and somewhat cumbersome. In view of
this, he made some modifications to the procedure that led to the formulation of a
simplified version of the Model Elimination procedure (Loveland 1969b). This new
version of the Model Elimination procedure extends the original version by the production
of new clauses, called lemmas , during the derivations. These lemmas may be added to the
original set of matrix chains. It is this simplified version of Model Elimination that this

study discusses.
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Formal Definition

For a given set of clauses S, a set of matrix chains M is derived. A derivation

C;s...» C, is said to be a Model Elimination procedure derivation if restrictions i), ii) and

iii) are satisfied.

1)

Cy, ..., C is a linear derivation and C, € M.

Each C; is a preadmissible chain. A chain is preadmissible if :

a)  two B-literals are complementary they must be separated by an A-literal,

b)  a B-literal is identical to an A-literal, the B-literal must precede the A-
literal in the chain, and

¢)  notwo A-literals have identical atoms.

An admissible chain is a preadmissible chain whose last literal is a B-literal.

An empty chain is an admissible chain.

C,, is obtained from C, by :
a) extension

b) reduction, or

c) contraction

C; 4, is obtained from C; by extension with an elementary chain B iff :

b)

C; is an admissible chain.
C; and B share no variables. This can be achieved by a simultaneous
replacement of all n variables of C; by the variables x1, ..., X, and of all m

variables of B by the variables yq, ..., Ym
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d)
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the last literal L of C; and the complement of the first literal K of B are
unifiable with the most general unifier mgu 6. That is LO = ~K6.

0 is applied to the result of concatenating C; and B minus K,

L0 is designated an A-literal with scope 0. Every other literal in C;4, has the
same classification as the literal from which it descends in C; or B. The scope
is a non-negative integer associated with A-literals, and is used as an aid in the

production of lemmas.

C;+, is obtained from C; by reduction iff :

a)
b)

)]

C; is an admissible chain.

there exists an A-literal ~K which preceeds a B-literal L where L and K are
unifiable with mgu 6.

L0 is deleted from C;0, C;4,=(C; - L)0. All literals of C;; have their parent
classification except ~K6. Let m be the scope of ~K in Cj. If the number of
A-literals n between ~K and L is greater than m, then the scope of ~K0 in

C;+1 is n, otherwise the scope is m.

C;+1 is obtained from C; by contraction iff:

b)

C, is a pre-admissible chain and not an admissible chain.

all A-literals beyond the last B-literal are deleted. A-literals are removed one
at atime. As an A-literal L is removed, a lemma is formed consisting of the
complement of L plus the complements of any preceeding A-literal K of C;
such that the number of A-literals (strictly) between K and L is less than the
scope of K. The lemma is added to M unless subsumed by a member of M.

(Subsumption was only mentioned on Loveland's (1969a, p. 75) second paper

on the ME procedure.) Each A-literal L in C;4; has the same scope as its

parent A-literal in C; unless the scope of an A-literal L exceeds the number of
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A-literals n beyond A-literal L in Cj4,. If this occurs, the scope is reduced to

n.

Loveland has proven that each lemma produced by the ME procedure is a
clause deducible by the resolution procedure from the same input clauses. Robinson's
theory of resolution as cited by Loveland (1969a, p. 77), has established that the set
produced by adding a resolvant clause to the original input set is unsatisfiable iff the
original is unsatisfiable. Hence, the soundness of the ME procedure is unaffected by the

addition of lemmas to the initial set of matrix chains.

2.3.2. Example Problem

Consider the example problem described in s-linear resolution. The given set

of clauses S is transformed into an initial set of matrix chains Mo as follows:

Input Clauses Matrix Chains

PvQVvR — PQR, QRP, RPQ
PvQv~R — PQ~R, Q~RP, ~RPQ
Pv~QVvR — P~QR, ~QRP, RP~Q
~PvQvR — ~PQR, QR~P, R~PQ
Pv~Qv~R — P~Q~R, ~Q~RP, ~RP~Q
~Pv~QvR — ~P~QR, ~QR~P, R~P~Q
~PvQv~R — ~PQ~R, Q-R~P, ~R~PQ
~Pv~Qv~R — ~P~Q-~R, ~Q~R~P, ~R~P~Q
PvQVR — PQR, QRP, RPQ

Figure 2 shows the search tree for the given set of clauses using the ME
procedure. Those chains that are not circled are non-preadmissible and are therefore

pruned from the search tree (they did not meet the last two restrictions of
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preadmissibility). The lemmas used as input chains in extension are highlighted to
distinguish them from the original input chain. The scope associated with each A-literal

is shown above the boxed A-literal.

2.3.3. Elimination of Models

In the definition of the extension operation, restriction (c) specifies that the last
literal of the center chain is to be resolved-upon with the first literal of the input chain.
This process links the center chain with the input chain by their complementary literals. A
truth value of TRUE is then assigned to the resolved-upon literal which becomes an A-
literal. The sequence of A-literals in the center chain represents a "model” (partial
interpretation). If the interpretation contradicts an instance of one of the matrix chains
then this interpretation cannot satisfy the given set of input clauses, and is hence not a
model. Interpretations that are not models are implicitly eliminated. If the given set of
input clauses is unsatisfiable then all interpretations developed in this strategy will be
eliminated by the time an empty center chain is obtained. Take, for example, the fifth
center chain of Figure 2. This center chain was obtained after three extension and two
reduction operations. The three A-literals R, Q and P represent a partial interpretation.
Examining the set of matrix chains, the interpretation that R, Q and P are all true
contradicts the chain ~P~Q~R (i.e., the clause ~P v ~Q v ~R is false) which was the input
chain used at the last extension operation. This implies that this partial interpretation is

"not a model" and should be eliminated.

2.3.4. Creation of Lemmas

The process of eliminating an interpretation is done by the contraction
operation. During the contraction operation, new chains called lemmas are formed, and

may be added to the original set of matrix chains. The rationale of this scheme is that if
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Figure 2. The search tree for s = {PQR, PQ~R, P~QR, ~PQR, P~Q~R, ~P~QR
~PQ~R, ~P~Q~R} using the ME procedure.
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the interpretation formed by the sequence of A-literals contradicts an instance of one of
the matrix chains, then the chain obtained by combining the complement of each A-literal
of the center chain (as bounded by the scope associated to each A-literal) can be
interpreted as true. In Figure 2, when the contraction operation is applied to the fifth
center chain the lemma ~P~Q~R is produced but cannot be added to the set of matrix
chains because it is subsumed by one of the matrix chains. At the seventh center chain,
the contraction operation produced the lemma ~Q~R, which is added to the set of matrix
chains. There are two possible effects in the addition of lemmas to the original set of
matrix chains. Firstly, it may reduce the number of inference steps required for a
refutation. Most of the lemmas added to the original set of matrix chains have lesser
number of literals than the original matrix chains. When these lemmas are used as input
chains, the extension operation will produce a resolvant with a lesser number of literals.
The lesser the number of literals in the center chain, the lesser also the number of
inference steps required to obtain a refutation. The second effect is that the addition of
lemmas expands the search space as there are more possible input chains. In Figure 2, the
extension operation produces four resolvants when the B-literal Q of the second center
chain was resolved. In the thirteenth and the eighteenth center chains the operation
produces seven resolvants each as a consequence of the addition of lemmas to the set of

matrix chains.

2.3.5 Effects of the Restrictions

The pruning effect of the derivation strategy can be attributed to the two
restrictions imposed : (a) resolving only the last literal of the center chain (restriction ¢ of
the extension operation) and (b) the preadmissibility restrictions. In the s-linear derivation
strategy, all the literals of the center clause are available for resolution. This scheme
produces many resolvants at each step and therefore creates a large search tree. The ME
procedure avoids this problem by resolving only on the last literal of a center chain which

significantly reduces the size of search tree. In the preadmissibility restrictions, restriction
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(a) prunes resolvants obtained from extensions with a tautologous input chain. In this
way, tautologous input chains can never be used as input parent during the extension
operation. Loveland (1969a, p. 362) has pointed out that tautological input clause is not
needed to prove the unsatisfiability of a set of clauses. Although, the ME procedure
prevents tautologous input chains, tautologous center chains may exist in the derivation.
The fourth center chain of Figure 2, which is the only preadmissible resolvant of the
previous center, contains tautologous literals Q and ~Q. This is because the ME
procedure does not implement the merging operation unlike with the s-linear resolution

which has an implicit merging operation.

Restrictions (b) and (c) trim the search tree by ensuring that truth values are
consistently and non-redundantly assigned to literals of the center chain. Restriction (b)
eliminates resolvants that contain B-literals identical to any of the preceeding A-literals to
avoid resolving a literal more than once and thereby catches loops. It is redundant to
assign a truth value to a literal which had been previously assigned and still existing in the
center chain. Stickel (1984, p. 215) justifies this restriction that - "it is unnecessary to
attempt to solve a goal (B-literal) while in the process of attempting to solve that same
goal". In Figure 2, the application of the extension operations on the third center chain
produces two resolvant chains which are non-preadmissible. They are non-preadmissible
because a B-literal R is identical to the first A-literal. Restriction (c) has two pruning
effects. Firstly, it prunes resolvants which restriction (b) cannot detect. Loops that are
detected later due to instantiation are therefore prevented by restriction (c). Take, for

instance, the following derivation:
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p(b) q(c) (~P(a) qa(b) ~p(X))
p(a) qg(c) p(a)q(b)

~p(a) | a)| ~p(a)|a(e) (~p(a) q(b) ~p(b1q(ca ~p(a) | a)| ~p(a)| a(b)

1 2 3

Resolvant 1 is pruned from the search tree by restriction (c) because of the redundancy of
assigning truth value to the literal ~p(a) twice. Secondly, restriction (¢) prunes resolvants
that have inconsistent assignment of truth values which forces the application of the
reduction operation. This implies that reduction of literals having identical atoms is
compulsory in the ME procedure. This is an improvement on s-linear resolution because
a compulsory ancestor resolution reduces the size of the search tree. Looking at the non-
preadmissible resolvants obtained by applying the extension operation to the fourth center
of Figure 2, the existence of A-literals R and ~R is logically inconsistent because R will
be interpreted as true and false at the same time. Since A-literals R and ~R cannot be
allowed to exist at the same time, the extension operation will fail after exhausting all

possible input chains and thereby forcing the reduction operation to be performed.

2.4, t-linear Resolution

Kowalski and Kuehner (1971) formalised the t-linear and SL-resolution
derivation strategies. They claimed that these two strategies are both refinements of the s-
linear derivation strategy. The formulation of t-linear resolution is intended to clarify the
definition of SL-resolution, simplify the comparison with other linear resolution systems,
and is only defined for ground derivations. A ground derivation is a derivation consisting

of ground clauses. A ground clause is a clause of which no literal contains a variable.
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24.1 Formal Definition

Let Cy, ..., C;, be a ground linear derivation from a set of input clauses S. A
literal L in C; is said to be a descendant of aliteral L in ancestor clause C; iff L occurs in

every intermediate clause Cy, j <k <i. G; is an A-ancestor of C; iff :

1) j<i,
ii) Cj+1 has an input parent, and
iii)  all literals in Cj, except for the cancelled literal K in obtaining Cj+1, have

descendants in C;, that is (Cj -{K}) =G,

The cancelled literal K is called the A-literal of C; from the A-ancestor Cj. To
illustrate these, consider the sequence of clauses ({P,Q,R}, {P,Q}, {P,R},
{p,~Q}, {P}, {Q,R}, {~P,Q}, {Q}) in Figure 3. The A-ancestors of {Q}
are {P} and {Q, R} with A-literals P and R respectively. {P,~Q} and {~P,Q} do not
qualify as A-ancestors because their successors are not derived by input resolution.
{P,Q} does not qualify because Q does not appear in every intermediate clause between

{P,Q} and {Q}.
A linear derivation is said to be t-linear if restrictions 1), ii) and 1iii) are satisfied.

i) If Cj41 is obtained by ancestor resolution, then it is obtained by resolution

with an A-ancestor of C;.
i)  If Cj contains a literal complementary to one of its A-literals, then Cj,.1 is

obtained by ancestor resolution.

i)  A-literals of C; from distinct A-ancestors have distinct atoms.

Kowalski and Kuehner pointed out that the t-linear derivation strategy is

compatible with the no-tautologies restriction.
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2.4.2 Example Problems

Figure 3 shows the search tree for the example problem introduced in s-linear
resolution, using the t-linear derivation strategy with the no-tautologies restriction. Figure
4 illustrates the search tree for a given set of clauses,S = { {~P,~R}, {~Q,~R},
{Q,R}, (P}, {R} 1}, using the t-linear derivation strategy. As in Figure 1,
permissible clauses are circled to distinguish them from the tautologous clauses which are
pruned from the search tree. Ancestor parent clauses (A-ancestors) are highlighted to

differentiate them from the input parent clauses.

2.4.3. Effects of the Restrictions

Restriction (i) makes sure that the resolvant clause Cj4 ] always subsumes the
center clause C;. During an ancestor resolution of the t-linear derivation strategy, an A-
literal from an A-ancestor clause is being used to resolve with one of the literals of the
center clause. Since all the other literals of an A-ancestor have descendants in the center
clause , then it follows that the resolvant of an ancestor resolution always subsumes the
center clause. Take, for instance, the ancestor resolution of the fourth center chain of
Figure 3. The center clause {P, ~Q} has an A-literal Q from the A-ancestor {P, Q}. The
resolvant {P }, after applying resolution and an implicit merging operation, subsumes the
center clause {P, ~Q}. Obviously, this restriction has similarity with restriction (ii b) of
the s-linear derivation strategy. However, restriction (i) of t-linear resolution is more
effecient than restriction (ii b) of s-linear resolution since the former can immediately
select an appropriate ancestor clause for ancestor resolution. In s-linear's ancestor
resolution, the resolvant is generated first, and then tested to find out if it subsumes its
center parent clause, which is a time consuming process. In t-linear resolution, only A-
ancestors are tried in ancestor resolution which makes the subsumption test unnecessary.

This restriction also produces a narrower search tree because only A-ancestors are
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Figure 3. The search tree for s = { {P, Q, R}, {P,Q, ~R}, {P,~Q,R}, {~P,Q,R},
{P,~Q,~R}, {~P,~Q,R}, {~P,Q,~R}, {~P,~Q,~R} } using t-linear resolution.
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Figure 4. The search tree for s = {{~P, ~R}, {~R, ~Q}, {Q,R}, {R}, {P}} using t-

linear resolution.



37

considered for ancestor resolution. In Figure 3, the center clause {~P, Q} is only
ancestor resolved with its A-ancestor {P} to obtain a new center clause {Q}. In s-linear,
there are two ancestor clauses considered for ancestor resolution with the same center

clause, the ancestor clauses {P, Q} and {P} (see Figure 1).

Restriction (ii) makes the t-linear derivation strategy a refinement of the s-
linear derivation strategy. In s-linear derivation strategy, ancestor and input resolution are
both applied whenever possible, as observed in Figure 1. In t-linear resolution, an input
resolution is disregarded whenever ancestor resolution is possible. This restriction is a
preemptive version of the third preadmissibility restriction of the ME procedure. This
implies that if a B-literal can be resolved on with an A-literal, it is immediately removed
rather than applying an extension operation which will be failed eventually by the third
preadmissibility restriction. The practical effect of this restriction is the significant
pruning of the search tree. However, compulsory ancestor resolution does not always
produce a refutation as short as a minimal s-linear refutation, since it may prevent an input
resolution which derives a resolvant clause that can be easily refuted. Take, for instance,
the sequence of clauses starting from clause {~P,R} in Figures 1 and 3. Figure 1 has the
derivation ..., {~P,R}, {~P~Q}, {~Q}, {} while Figure 3 has .. .,
{~P,R}, {R}, {~P~Q}, {~Q}, {}. Figure 3 has alonger derivation than Figure
1 as a result of the compulsory ancestor resolution of the center clause {~P,R} with its A-

ancestor {P}.

Restriction (iii) prevents loops in derivations. Figure 4 illustrates an example
how restriction (iii) prevents loops. When the clause {Q, R} is chosen as input parent in
applying resolution to the the third center clause, the resolution produces a redundant
resolvant. The resolvant {~P, Q} has A-literal ~R from the first and the third center
clause which make the resolvant redundant. Obviously, this resolvant is a repetition of the
second center clause. This will cause loops in the derivation if this is allowed. However,
it is possible that some of the resolvants trimmed by restriction (iii) are not redundant.

The trimmed resolvant {~P} is not redundant because a refutation can still be obtained.
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It is obvious that restrictions of t-linear resolution are difficult to implement in
the set representation of clauses. There is a need to change the representation in order to
associate A-literals and A-ancestors of a clause. This leads to the formulation of SL-

resolution.

2.5. §‘ L-resolution

SL-resolution combines all the restrictions of the t-linear derivation strategy
with the no-tautologies restriction. It has also a selection function that calls for a single
literal to be selected from the most recently introduced literals of the center parent chain
for use in input resolution. Ringwood (1988, p. 6) defines a selection function as a
function from a set of atoms to atoms such that an image atom is an element of the
preimage set. Kowalski and Kuehner (1971 : p. 233) implement two versions of
SL-resolution, denored as SL(1) and SL(2), with different selection functions. SL(1) has a
selection function which chooses and resolves upon the alphabetically least atom, while
SL(2) chooses the alphabetically greatest atom. SL-resolution uses the chain format for
the representation of clauses. In this format, restrictions (i) and (ii) of the t-linear
derivation strategy can be simply implemented by immediately deleting any of the most
recently introduced literals which are complementary to an associated A-literal. SL-
resolution does not only allow ancestor resolution but also includes factoring as
suboperation of the reduction operation. Factoring corresponds to the implicit merging
operation of s-linear and t-linear derivation strategies. The other operations used are the
extension operation, which is equivalent to input resolution, and the truncation operation,

which removes A-literals from the center chain.
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Formal Definition

Given a set of clauses,S, which is converted into a set of chains, M, a set of

support, So, which is also converted to another set of chains Mr, and a selection function

Q, a sequence of chains C;, ..., C; is an SL-derivation if restrictions 1), ii) and iii) are

satisfied.

C;, ..., Cp is a linear derivation and C; € My.

Each C;4, is obtained from C; by

a) extension, or
b) reduction, or
c) truncation

Unless Cj4, is obtained from C; by reduction, then no two literals occuring at

distinct positions in C; have the same atom (admissibility restriction ).

C,+, is obtained from C; by extension with a chain B iff :

d)

The rightmost literal L in £(C;) is a B-literal.

C; and B share no variables.

The selected B-literal L in Q(C;) and the complement of the leftmost literal K
in B are unifiable with mgu 0.

0 is applied to the result of concatenating Q(C;) and B minus K in that order.
The literal L6 in Cj;1 descending from the rightmost literal of Q( C;)
becomes an A-literal in Cj4;. The rest of the literals in Cjy; have the same

classification as in C; or B.

C;+1 is obtained from C; by reduction iff :

a)

b)

The rightmost literal in C; is a B-literal.

C; is not obtained from C; _; by truncation.
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¢)  The rightmost cell of C; contains a B-literal L and either
1) G contains a B-literal K, which is not in the rightmost cell of C; (basic
factoring), or
2)  C; contains an A-literal ~K, which is not the rightmost A-literal of C;
(ancestor resolution).
d) L andK are unifiable with mgu 0.
e) LOis deleted from C;0. The classification of every literal in Cj+1 is the same

as it wasin Cj.
C;+1 is obtained from Cj by truncation iff :

a)  The rightmost literal in C; is an A-literal.
b)  All rightmost A-literals are deleted from C;. The classification of every literal

in Cj41 is the same as it was in C;.

2.5.2. Example Problems

Figure 5 shows the search tree for the previous example using SL-resolution.
To illutrate the incompleteness of compulsory factoring, a search tree of the set of clauses
S= { ~r, r~qg(b)~m, m~p(X)~qg(X), g(a), g(b), pl(a) } ispresentedin
Figure 6. The search tree shown in Figure 7 depicts the effect of the admissibility
restriction in enforcing reduction to reducible literals which have identical atoms or atoms
which become identical later in the derivation. The admissible resolvants are circled to
distinguish them from the inadmissible resolvants. These resolvants are declared non-

admissible because they contain literals having the same atoms and are not reduceable.
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2.5.3. Effects of the Restrictions

It is clear that the search tree of SL-resolution (Figure 5 ) is not as complex
as the search trees produced by the derivation strategies discussed earlier. This pruning
effect can be attributed mainly to two of the restrictions: (i) the restriction which only
selects a single literal from each center parent chain for extension operation (selection

function ), and (ii) the admissibility restriction.

The selection function of SL-resolution has similar effect to the ME procedure
scheme of resolving only the last literal of the center parent chain. It reduces the size of
the search tree significantly. However, the two schemes are different. The ME procedure
method of selecting a literal to be resolved on can be categorised as a selection rule. "A
selection rule is a decision procedure for choosing an atom to resolve on each resolution
step and as such it may depend on the history of the derivation." (Ringwood 1988, p. 6).
This differs from a selection function because it can select a literal based on a desired
ordering which may not depend on the history of the derivation. However, the
compatibility of a more liberal employment of selection function can be established for the

ME procedure (Kowalski and Kuehner, 1971, p. 240).

The admissibility restriction encompasses the three t-linear restrictions and the
no-tautologies restriction. It ensures compulsory merging operation, compulsory ancestor
resolution on literals having identical atoms, and no tautologous resolvants. The
importance of having no-tautologies has already been discussed in s-linear resolution.
The no-tautologies restriction has contributed much in narrowing the search tree.
Kowalski and Kuehner (1971, p. 238) had mentioned that if a literal can be removed by
reduction then this is done before any extension operations are performed. This is
misleading because this can be interpreted that an extension operation cannot be
performed when the chain is reducible. Figure 6 illustrates an example where a
compulsory reduction causes incompleteness of the derivation strategy. When the literal

~q(X) of the third center chain is removed by factoring with ~q(b), the resulting fourth
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Figure 5. The search tree for S = {PQR, PQ~R, P~QR, ~PQR, P~Q~R, ~P~QR,

~PQ~R, ~P~Q~R} using SL-resolution.
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center chain is unresolvable and thus, refutation cannot be obtained if reduction is
compulsory. The admissibility restriction only ensures that a reduction operation is
performed when two reducible literals have identical atoms or atoms which become
identical later in the derivation. Figure 7 illustrates this point. When an extension
operation is applied on the second center chain, after two more extension operations a
resolvant having two identical B-literals is obtained. This resolvant is then rejected by the
admissibility restriction and the derivation backtracks to the second center chain to enforce

the reduction operation.

Based on the definition of the admissibility restriction, a chain which is non-

reduceable is declared non-admissible if it contains ;

i) two B-literals having identical atoms,
i)  aB-literal and an A-literal having identical atoms, or

ili)  two A-literals having identical atoms.

Restriction (i) enforces factoring and applies the no-tautologies restriction.
This restriction is more strict than the first restriction of the ME procedure's
preadmissibility restrictions. SL-resolution does not only eliminate tautologous resolvants
derived from tautologous input chains but at all instances. Factoring shortens and
simplifies the derivation by maintaining only distinct literals in the center chain.
Restriction (ii) is an extended version of the second preadmissibility restriction of the ME
procedure. The ME procedure catches redundant resolvants only when an A-literal
preceeds an identical B-literal. SL-resolution rejects resolvants that contain A- and B-
literals with identical atoms (regardless of their order in the chain), unless the next
operation is reduction. The purpose of this restriction is to enforce factoring in the case of
identical B- and A-literals, to enforce ancestor resolution in the case of complementary A-
and B-literals and to prevent tautologies in the case of complementary B- and A-literals.
In the ME procedure, both reduction and extension operations can be applied to a center

chain [P][~R] ~PQ (literals enclosed by [] are A-literals). This means that there will be a
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derivation obtained by reducing first the B-literal ~P and then an extension operation to
resolve on the B-literal Q, and another derivation by applying first an extension operation
to Q and reduce the B-literal ~P later. In SL-resolution, only the reduction operation can
be applied because restriction (ii) will ensure that an extension operation cannot be applied
due to the presence of identical atom P. Restriction (iii) is exactly the same to the third

preadmissibility restriction of the ME procedure.

In the definition of the reduction operation, restriction (b) requires that the
parent chain to be reduced is not obtained from a truncation operation. This is because the
admissibility restriction will ensure that the chain to be truncated is already cleared of any
B-literals that could be removed by reduction. Hence, a chain obtained after truncation is

already unreduceable.

Restriction (c) of the reduction operation is required to deal with redundancies
introduced in the conversion of clauses to matrix chains. Take, for instance, the input

clause

p(X) v ~£(X) v ~f(a)

which is converted into 5 matrix chains ;

p(X) ~f£(X) ~f(a)
~E(X) ~f(a) p(X)
~f(a) p(X) ~£(X)
p(a) ~f(a)

~f(a) pl(a)

When an extension operation is applied to a center parent chain, ~p (a) , two of the above

chains will qualify to be input parent chains. The two resolvants obtained are :
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~p(a) | ~f(a) ~f(a)

~p(a)| ~H(a)

Obviously, the first resolvant is redundant since after a reduction operation (without

restriction (c)) the chain will become similar to the second resolvant.

A second case is the clause ~p (a) v ~p (X) which will generate three

matrix chains during conversion :

~p(a) ~p(X)
~p(X) ~p(a)

~p(a)
An extension operation of the center parent chain p (a) will produce three resolvants.
The resolvant obtained from the second matrix chain is redundant, since after a reduction

operation (without restriction (c)) the chain will become the same as the other resolvant.

Hence, to avoid this redundancy, restriction (c) is imposed on the reduction operation.

The inclusion of factoring into the SL-resolution has a drawback at the first-

order level. Take, for instance, the clause that represents the transitivity of equality
equal (X,Y) v ~equal(X,U) v ~equal(U,Y)
which will produce two factors :

equal (X,Y) v ~equal(X,U) v ~equal(U,Y)

equal(Y,Y) v ~equal(Y,Y)
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The second factor has lost the meaning of the original clause. In fact, the second factor
can never be used at all because of restriction (c) imposed in the reduction operation. This

means that keeping the second factor is just a waste of memory space.

2.6. Graph Construction

The added selection function of the SL-resolution and the selection rule used
in the ME procedure have reduced enormously the search space of linear derivations.
However, Shostak (1976, p. 59) found out that the added selectivity of these two
derivation strategies may produce longer derivation as a result of "repeated computation".
The added selectivity of SL-resolution and the ME procedure limits the selection of a
literal within the most recently introduced literals of the chain. It is not difficult to show
that selecting a literal outside from the most recently introduced literals may obtain a
simpler refutation. Shostak proved this by presenting a simplified version of t-linear
resolution called st-linear resolution. The st-linear resolution is basically the same as the
t-linear resolution except for the absence of the third restriction of t-linear resolution in st-
linear resolution. Shostak used st-linear resolution to show that unnecessary repeated
refutation of the same literal can be avoided. Unnecessary repeated refutation means a
repeated use of a certain set of input clauses to refute the same literal. To illustrate this
point, consider Figure 11 (p. 56). The input chains ~L~P, PRN and ~R~L were used in
that order by SL-resolution twice to refute the literal L. st-linear resolution avoids this
unnecessary repeated refutation by allowing the selection of literal to be resolved on from
any of the literals of the center clause. Looking at Figure 10 (p. 55), st-linear resolution is
capable of selecting the literal Q instead of L from the third center clause, resulting in a
simpler refutation. The ME procedure and SL-resolution cannot select the literal Q from
the third center chain because of the constraints of the added selectivity. Allowing flexible
selection of the literal to be resolved on, however, produces a larger search space. In view
of this, Shostak devised a new derivation strategy, called the Graph Construction (GC)
procedure. The GC procedure alleviates the unnecessary repeated refutation problem and

at the same time minimises the size of the search space by retaining the added selectivity



49

of SL-resolution. The GC procedure has an additional mechanism that converts truncated
A-literals into C-literals. A C-literal is inserted at a specific position called the C-point,
which is associated to the truncated A-literal. Any B-literal whose complement is unifiable
with any preceeding C-literal is deleted from the center chain (C-reduction). In this

scheme, unnecessary repeated refutation of a B-literal is avoided.

2.6.1. Formal Definition

Let E and E be the sets of elementary chains derived from a given set of
input clauses S and set of support S, respectively. With a given selection function €2, a
sequence of chains C, ..., Cy is a GC procedure derivation if restrictions 1), ii), iii), and iv)

are satisfied.

i) Gy ..., Cpisalinear derivation and C, € E,.
ii)  Each Ci,, is obtained from C; either by
a)  extension,
b)  reduction or
c) truncation
iii) G;,; must be obtained by reduction if it is possible (compulsory reduction).

iv)  C; must not contain two non-B-literals having identical atoms.
C;,, is obtained by extension with input chain B from E iff :

a)  The rightmost literal L in €(C;) is a B-literal.

b)  The selected B-literal L in £(C;) and the complement of a literal K in B are
unifiable with mgu 6.

c)  Oisapplied to the result of concatenating Q(C;) and B minus K, in that order.
The literal LO in Cj41 descending from the rightmost literal of Q( C;)

becomes an A-literal in Cj4,. The C-point associated with the A-literal L is
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set to the left of the leftmost literal of C;,;. The rest of the literals in Cj4+,

have the same classification as in C; or B.

Cj.; is obtained by reduction iff :

a) a B-literal L in the rightmost cell of Cj, and an A- or C-literal K to the left of
L, are complementary with mgu .

b) L6 isdeleted from C;6. The C-point associated with each A-literal to the
right of K is set just to the right of K if the C-point at C; is to the left of K.

All other literals descending from C; retain their classification.

C;., is obtained by truncation iff :

a)  the rightmost literal L in Cj is a non-B-literal.

b)  Lisdeleted from C;. If L is an A-literal, the complement of L is inserted at
the C-point associated with L. The classification of the inserted literal is a C-
literal. The classification of all the other literals in the chains remains

unchanged.

2.6.2. Example Problems

The search tree, using the GC procedure for the set of clauses described in the
previous derivation strategies is shown in Figure 8 (p.53). Chains that are not encircled are
declared inadmissible because they will eventually violate restriction (iv) after applying an

extension, or a reduction and an extension operation to the chain.

The set of clauses S = { ~T~N, RPN, L~Q, ~R~L, MQN, L~M,
~P~L, T 1} is presented to point out the disadvantage of the added selectivity of SL-

resolution and the ME procedure. Figures 9, 10, 11 and 12 are the search trees for this
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given set of clauses using the ME procedure, st-linear resolution, SL-resolution and the
GC procedure respectively. Another set of clauses S = { ~p (X) ~q(X)~r, q(b),
q(a), r~qg(b), p(a)}, which was defined by Sutcliffe (1989, p. 17), is also
presented to demonstrate the problem of compulsory C-reduction. Figure 13 shows the

search tree of this given set of clauses with ~p (X) ~g (X) ~r as the chosen top clause.

2.6.3. Effects of the Restrictions

One distinguishable similarity between Figure 4 of SL-resolution and Figure
8 of the GC procedure is that they have the same number of extension operations applied.
Although the GC procedure does not impose factoring, it has minimised the application of
extension operations by "recycling"” truncated A-literals and imposes a reduction operation

using the recycled A-literals.

In the first example, the GC procedure and SL-resolution seem to have the
same effect as manifested by the same number of extension and reduction operations
applied. However, in the second example, the GC procedure obtained a simpler refutation
than SL-resolution. The GC procedure has a simpler refutation than SL-resolution
because unnecessary repeated refutation is avoided in the GC procedure by reducing a B-
literal with a conditionally proven C-literal. Truncated A-literals are wasted in SL-

resolution while the GC procedure has a mechanism that "recycles” truncated A-literals.

Reduction with C-literals may have the same effect as factoring in SL-
resolution. The role of these two operations in the derivation strategy is to simplify the
derivation by minimising the application of extension operations. However, C-reduction is
more effective than factoring in most cases. One case of this is shown in Figures 11 and
12. SL-resolution has resolved on the literal L twice by extension (at the third and tenth
center chains of Figure 11). The GC procedure resolved on the literal L once by

extension at the third center chain and once by C-reduction at the eleventh center chain of
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Figure 12. C-reduction removed the B-literal L immediately while in SL-resolution, the
process of refuting L at the third center chain, which involves a series of extension
operations, is repeated in refuting L at the tenth center chain. Analysing the search tree of
Figure 12, the first refutation of L tells that L cannot be TRUE, the GC procedure "learns”
this by inserting a C-literal which is a contradiction of the previous truth assignment of L.
Hence, when the B-literal L is introduced again to the chain it is immediately removed
from the center chain by C-reduction to avoid inconsistency. The idea of factoring is to
maintain distinct B-literals on the center chain to avoid redundancy. However, this is only
effective at the early stage of the derivation when there are still B-literals at the left side of
the center chain. But once these B-literals become A-literals, the factoring operation
becomes less effective. In contrast, the C-reduction of the GC procedure will become
more effective as the derivation go deeper because there will be more C-literals inserted at

the left side of the center chain.

The GC procedure has a narrower search tree than the ME procedure because
the ME procedure produces lemmas which increase the number of possible input parent
chains during an extension operation. The creation of C-literals in the GC procedure does
not affect the number of input chains. In fact, the insertion of C-literals makes restriction
(iv) more effective in cutting down redundant resolvants. In Figure 8, when the extension
operation is applied to the tenth center chain, two resolvants are inadmissible because of
the presence of C-literal ~R at the left side of the resolvants. Hence, the creation of C-
literals has a better effect than the addition of lemmas in the ME procedure. Shostak
(1976, p. 63) has pointed out that "ME lemmas tend to be highly redundant” and have
limited value in application.

Restriction (iii) (compulsory reduction) has narrowed down the search tree
and simplify the derivation significantly. However, compulsory reduction with C-literals
at the first-order level is incomplete, as is shown in (Sutcliffe and Tabada, 1989, pp.17-
18). As shown in Figure 13, compulsory C-reduction is incomplete at the first order level.

He suggested that this problem can be overcame by slightly modifying the compulsory
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reduction restriction, ie., by allowing an extension operation as an alternative for C-

reduction. Figure 13 demonstrates this modification.

Restriction (b), in the definition of the extension operation, specifies that the
literal to be resolved with the selected literal of the center chain can be any literal of the
input parent chain. This is different from SL-resolution and the ME procedure which
always select the first literal of the input parent chain during an extension operation. The
significant contribution of restriction (b) is that the generation of matrix chains for each

input clauses is unnecessary which means a saving of memory.

Restriction (iv) of the GC procedure prunes redundant derivations from the
search tree. However, it may take one or two inference steps first before a resolvant is
found to be redundant. Take, for instance, the resolvant to the left of the fifth center chain
in Figure 8. This resolvant chain is actually admissible at this state. It will become
inadmissible only after reducing ~Q and applying an extension to resolve on the B-literal
R. This slows down the derivation. This can be improved by imposing the second
preadmissibility restriction of the ME procedure with slight modification. The additional
restriction can be stated this way - "A chain should not contain any B-literal which is
identical to any of the preceeding non-B-literals". This additional restriction may serve as

a preemptive version of restriction (iv).

2.7, Selective Linear Model (SLM) Inference System

Shostak (1976) noted that the added selectivity of the ME procedure
(Loveland 1969) and SL-resolution (Kowalski and Kuehner 1971) may cause repeated
refutations of the same literal. This problem was alleviated in the GC procedure (Shostak
1976) by recycling truncated A-literals as C-literals. This solution, however, does not
solve the problem of producing certain irrelevant branches of the search tree which can be

detected only at a later part of the derivation. Take, for instance, the search tree depicted in
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Figure 14(i). There are three resolvants produced by extending on ~p (X) of the second
center chain. Two of these resolvants are redundant. This redundancy is only detected
later in the derivation by the GC procedure. Had the literal ~r (X) been resolved on
before ~p (X), the generation of these two redundant resolvants would have been avoided.
The ME procedure, SL-resolution and the GC procedure have this problem because the
selection function must select a literal from the rightmost cell. Brown (1974) developed a
linear derivation strategy, called the Selective Linear Model (SLM), that solves this

problem.

The SLM derivation strategy has an additional operation, aside from the
extension, reduction and truncation operations used in the ME procedure, SL-resolution
and the GC procedure, which spreads B-literals whose indices are 0 onto different
branches of the center chain. This scheme allows each spread literal to be refuted
concurrently with the others, by interleaving the operations on the branches. This makes
the selection of literal to be resolved on during an extension operation more flexible
because it is not necessary to completely resolve away one literal before considering of
another. Figure 14 (ii) shows that the spreading and the concurrent consideration of the

branches can prevent redundant resolvants.

Truncated A-literals indexed by 1 are recycled in the SLM derivation strategy
in the same manner as C-literals in the GC procedure. When such an A-literal is
truncated, the negation of this A-literal (with index changed to 0) is inserted at its depth.
This inserted literal is still classified as an A-literal and can be used later in a reduction

operation.

A distinguishing feature of SLM is the use of semantic information in
derivations. The general advantage of using semantic information is that it will restrict the
generation of resolvants to those that are highly likely to be relevant by taking into account
the intended meaning of the literals. SLM differs from the GC procedure because it does

not recycle truncated A-literals indexed by 0. This is done to prevent applying ancestor
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resolution to B-literals indexed by 0 with recycled A-literals which were originally indexed
by 0. It should be pointed out that this type of ancestor resolution has similarity to
factoring of B-literals indexed by 0. Brown (1974, p. 4) cited that no generally used
programming language factors its procedure invocations (a B-literal indexed by 0 is
regarded as procedure invocation). Henschen (1974) has also shown that factoring is not
necessary in obtaining a refutation for a set of Horn clauses. This principle is generalised
in SLM in the case of a set of clauses which has a Horn model and the top clause is false
in the model. The reduction operation is dropped in this situation, thereby reducing the
size of the search tree. Recently, Plaisted (1989) proposed a positive refinement of the
ME procedure, as cited by Nie (1990, p. 2). The basic idea of the refinement is to perform
reduction operation only on negative subgoals. A negative subgoal is equivalent to a B-
literal indexed by O in SLM using the I, interpretation (see section 3 for a detailed
description of the I, interpretation). Nie (1990, p. 2), who implemented the refinement,

has shown that selective reduction of subgoals performs better.

Brown (1974, p. 10) claimed that the complexity of SLM refutation is
bounded by the complexity of the simplest hyper-minimal M-clash refutation (h M-clash
refutation). He defines hyper-minimal M-clash refutations are those refutations which are
obtainable from M-clash semantic trees. The M-clash semantic tree is defined in

(Kowalski and Hayes 1969).

2.7.1. Formal Definition

2.7.1.1, Input Clauses Conversion

A set of input chains M is derived from the given set of input clauses S by
indexing each literal of each clause, using a given interpretation, I, and by choosing exactly
one sequence of literals in the clause. Each literal in the chain is classified as B-literal. A
literal L has an index O if for all substitutions 0, L9 is false in the given interpretation I. If

all instances L0 are true in I, then the index value is 1. Otherwise the index of L is 2 (i.e.
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if neither of the two tests terminate within a specified time). For each clause that contains
a literal L indexed by 2, new clauses are created, which will replace the previous clause, by
changing the index of L to 1 if there exists a ground substitution 0 such that L8 is TRUE
in I and to O if there exists a ground substitution 6 such that L0 is FALSE in 1. If there
exist both TRUE and FALSE instances of L, then both indices are used. A clause is
created for each possible index of L together with the other literals of the original clause.
Take, for example, the clause p(X),q(X), (the truth values of literals p(X) and q(X) cannot
be determined yet, hence the subscript 2). If there exist two substitutions 6, and 6, such
that p(X)8, and q(X)6, are TRUE, and p(X)6, and q(X)8, are FALSE in I, then the four
clauses; p(X);q(X);, p(X)q(X);, p(X)19(X)g and p(X)q(X), will replace the original

clause.

2.7.1.2. Derivation Definition

A selection function of SLM is a function which chooses a tip node of some
branch in a center chain, extracts the rightmost cell of the selected tip node and selects a
permutation of that cell. The rightmost literal of the selected permutation is the selected

literal.

Given a set of input clauses S converted into set of input chains M, a support
set T (a subset of M), an interpretation I and a selection function ¢, a sequence of chains

Cis Gy is an SLM derivation if restrictions 1), ii), iii), and iv) are satisfied.

1) Cl,..., C,,1s a linear derivation and C1 eT.
i)  Each C;,, is obtained from C, by either

a)  spreading,

b) extension,

¢) reduction, or

d) truncation,
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iii) No two A-literals indexed by 0 on any branch of any chain have identical
atoms unless an A-literal indexed by 1 occurs between them (Hyper
Minimality).

iv)  C,,; must be obtained from C; by reduction if restrictions a), b), anc c) are
satisfied.

a) Reduction is possible.
b) The A-literal L and the B-literal K used in the reduction have identical
atoms.

¢) No A-literal indexed by 1 occurs between L and K.

C;, is obtained from C; by spreading only if :

a)  Truncation is not possible

b)  There is more than one B-literal indexed by 0 in ¢(C,). Let the B-literals
indexed by 0 in ¢(C;)) be L;...., L. LetD be obtained by deleting L,,..., L
from ¢(C,). The cell is then replaced by the tree:

Ly

and combined with the other nodes to obtain C, ;.
¢)  The classifications and indices of every literal in C,; remain as they were in
C.

1

C,,1 is obtained from C; by extension with an input chain B only if :

a)  Truncation is not possible

b)  Spreading is not possible.



c)
d)

e)

g)

h)

1)
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Ci and B share no variables.

There exists a literal K in B such that the selected B-literal from ¢(C; ) and K
are complementary by unification with mgu 6. Let the selected B-literal from
¢(C;) be L.

The sum of the indices of the two literals must equal 1.

The literal K is deleted from B and the remaining literals of B are appended to
the right of ¢(C; ). The substitution 0 is applied to the result in obtaining

C

i+1-

There exists a ground substitution ¢ such that for each literal J in G, b if Jis

indexed by O then Jo is FALSE in I and if J is indexed by 1 then Jo is TRUE
inL

L6 in Ci +1 18 classified as an A-literal. The classification of all other literals,
and indices of all literals remain as they were in C; and B.

If L is indexed by 1 then a depth is associated with the new A-literal, set to the

left of the leftmost literal in the root of C; ;.1

C,;, is obtained from C; by truncation only if :

b)

C)

d)

Reduction is not possible

The rightmost literal of the rightmost node of some branch of C; is an A-literal
L.

L is deleted from C;. If there are no more literals in the node then the node is
automatically deleted.

If the A-literal L was indexed by 1 then the complement of L classified as an
A-literal is inserted either :

1) atitsdepth, or

1

In Brown's paper, it is the literal K which is associated with the depth. This is

wrongly stated because a depth is associated with an A-literal. Since the newly created A-

literal is L0, the depth should be associated with L.
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2) immediately to the right of any A-literal indexed by 0 occurring between
the position of L and the depth of L.

The classification of every literal in C, | remains as it was in C;. In the case of

an insertion of new A-literal, the index of the inserted A-literal is 0. The

indices of all other literals remain as they were in C;.

C,, is obtained from C; by reduction only if either I or II is satisfied.

Y,

1)

The last non-reduction operation was a truncation operation of an A-literal whose

index was 1. Let L be the inserted A-literal of the last truncation operation. Then

restrictions a) to €) must be satisfied.

a)

b)
c)
d)

There exists a B-literal K to the right of L in C; such that L. and K are
complementary by unification with mgu ©.

The sum of the indices of L and K is equal to 1.

The B-literal K is deleted from C; and the substitution 6 applied to the result.
Same as (g) of the extension operation.

The classifications and indices of every literal in C, ; remain as they were in
C;.
The depth of every A-literal indexed by 1 occurring to the right of A-literal L

is set immediately to the right of L iff the current depth is to the left of L.

The last non-reduction operation was an extension operation. Let D denote the new

cell introduced by this extension operation. The restrictions a) to €) must be

satisfied.

a)

There exists a B-literal K in D and an A-literal L anywhere to the left of K and
in the same branch such that L. and K are complementary by unification with

mgu 6.

b) - f) are as in (I) above.
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2.7.2. Semantic Checking

Restriction (f) of the extension operation, which is also used in the reduction
operation, applies semantic checking to each literal in the center chain using the given
interpretation. The semantic checking ensures that there exists a ground instance

consistent with the index of the literal.

SLM can use the trivial interpretation which interprets all positive literals as
true and all negative literals as false. This interpretation will be referred as I, hereafter. It
must be noted that the restriction - "the sum of indices must equal 1", used in the
extension and reduction operations will lose its effect, as the restriction will necessarily be

satisfied.

Semantic checking can narrow down the search tree more if a non-trivial
interpretation is available. However, to establish a non-trivial interpretation for a given set
of clauses is not an easy task. Henschen (1976, p. 820) presented two reasons why
semantic information is not widely used in theorem provers. Firstly, it is difficult to
determine whether or not a clause containing variables is falsified, especially for
interpretations whose domains are not fairly small. The second reason is the problem of
finding a general representation of an interpretation with reasonable storage requirements.

The interpretation I, has neither of these problems and is easy to specify.

2.7.3. Example Problems

Figure 14 (p. 61) shows the search trees for the set of clauses S =
{ ~r(X)~g(X), g(X)~p(X), p(a), p(b), p(c), r(c) } using(i) the GC
procedure and (ii) the SLM derivation strategy with the interpretation Iy. This problem
gives evidence of the advantage of spreading the center chain into subchains and

interleaving the refutation between subchains. Figure 15 demonstrates the inadequacy of
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SLM in detecting endless loops that may occur in a derivation. The set of clauses is
S={~P~Q,PQ,P,Q}, with the top clause ~P~Q and using the interpretation I .
Figures 16 and 17 present the search trees for the set of clauses S = { ~A, ~D-~E,
~C~P, AD~C, CD, E~F~G, FC, GC~Q, QC, P} using SLM with the
interpretation I, and the GC procedure respectively. Figure 18 presents the search tree of
the set of clauses S={~p(a), g(a), =r(b), t(b), s(X)~g(X),
s(Y)~r(Y), p(X)~s(X)~t(¥Y)~s(Y)} using SLM with the non-trivial
interpretation that each predicate of the set {p (a) ,q(a) ,r (b),t (b),s(a),~s(b)}

is TRUE and all others are FALSE.

2.7.4. Effects of the Restrictions

The hyper minimality restriction (iii) has three effects on derivations. Firstly, it

prevents some loops in derivations. Take, for instance, the following derivation from the

set of clauses S = {~P,, P;~Q, ~P,Q;, P;}, with the chosen top clause ~P, :

Q~P
10

= R l
0

NG

[~p[-0]~P] -0 | -p] ~o[~P]
0 0 0 0 0 0 o

The hyper minimality restriction will declare the fourth center chain inadmissible, thus
preventing a loop. This causes the derivation to backtrack and try other possible

resolvants of the previous extension operations. The derivation has to backtrack to the
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spread

INFINITE LOOP
occurs in the derivation.

Figure 15. The search tree for S = {~P~Q, PQ, P, 0} using SLM with the

interpretation I
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third center chain and apply the extension operation using the input chain P;. Again, the
resolvant obtained is still inadmissible. It then backtracks to the first center chain (there is
no alternative for the second center chain) and applies the extension operation using the
input chain Pj. This time the resolvant is admissible and it leads to a minimal refutation.
The hyper minimality restriction, however, does not trap all possible causes of loops. Itis
insufficient in detecting loops, especially for sets of clauses that contain clauses which
have more than one literal indexed by 1. Take, for instance, the set of clauses S =
{~Po~Qo, P1Q1, P1, Q1} whose search tree is shown in Figure 15. SLM cannot detect
that the sixth center chain will lead to an endless loop. Without the aid of a good search
strategy, SLM would not obtain a refutation from this set of clauses. The ME procedure,
SL-resolution and the GC procedure can easily detect loops in such a derivation because
they restrict the occurrence of two non-B-literals having identical atoms. This restriction
is not imposed in SLM because it is in conflict with the hyper minimality restriction. To
illustrate this conflict, consider the search tree shown in Figure 16. If two A-literals
having identical atoms are not allowed to exist in the same branch, the eighth center chain,
which is the resolvant of applying the extension operation on the seventh center chain, is
inadmissible. This forces the reduction of the B-literal C with the A-literal ~C. By doing
so, the depth associated with the A-literal D will be moved to the right of A-literal ~C. The

remaining B-literal D then has to be resolved on the same way as the previous B-literal D.

The second effect of the hyper minimality restriction is that it reduces some of
the irrelevant derivations obtained by the indeterminancy of inserting a truncated A-literal
indexed by 1, during a truncation operation. An example of this is the truncation of A-
literal C at the eleventh center chain of Figure 16. Three of the chains obtained by the

truncation are declared inadmissible by the restriction.

The third effect of the hyper minimality restriction is to ensure that the
insertion of an A-literal, which is the complement of a truncated A-literal indexed by 1,
has maximum effect in an SLM derivation in terms of compulsory reductions. To

illustrate this effect, consider the truncation of the A-literal C of the eleventh center chain
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of Figure 16. The hyper minimality restriction will not allow the insertion of A-literal ~C
at the depth position of the truncated A-literal C nor in any position to the left of A-literal
~E. The truncation operation will then insert the A-literal ~C to the right of the A-literal
~E. The insertion of A-literal ~C at this position will then satisfy the third restriction of a
compulsory reduction. Consequently, all B-literals C on the right side of A-literal ~E must
be removed by reduction.

Restriction (iv) defines the restrictions of a compulsory reduction. Restriction
(iv.b) specifies that the literals involved in the reduction should have identical atoms.
Compulsory reduction of literals having non-identical atoms is an incomplete derivation
strategy. The ME procedure, SL-resolution and the GC procedure also force a reduction
on literals having identical atoms. However, there is a difference between SLM and these
three derivation strategies, in the sense that the ME procedure, SL-resolution and the GC
procedure can retrospectively check if a literal should have been reduced. Consider the
center chain [~r (a) ] [t (D) 1] [~p(a) (] [g(X)1]p (X)q (the subscript associated
with each literal is the truth index of the literal) with the only possible input chain
~t (b) g~p (a) g. The ME procedure, SL-resolution and the GC procedure will force a
reduction operation on the B-literal p(X), with the A-literal [~p(a),] because the resolvant
obtained from the extension operation is inadmissible to the restrictions imposed in the
three derivation strategies. On the other hand, the resolvant of applying an extension

operation to the center chain is still admissible in SLM.

Restriction (iv.c) of compulsory reduction requires that there must not be an
A-literal indexed by 1 in between the two literals. The purpose of this restriction is to
preserve as much as possible the depth associated with a TRUE A-literal. The advantage
of this is to maximise the usefulness of an inserted A-literal after truncating a TRUE A-
literal. To demonstrate this effect, consider the search tree shown in Figure 16. Had the
B-literal C of the sixth center chain been reduced, the depth associated with the A-literal D
would have been moved to the right of A-literal ~C. Obviously, the creation of A-literal

~D after truncating the A-literal D is useless since it will be inserted at the right of A-



75

literal ~C and truncated without serving its purpose. As shown in the example, by keeping
the depth of D at its original position the B-literal D of the fifteenth center chain is
removed by compulsory reduction instead of resolving away the literal the same way as
the previous B-literal D. Comparing the result with the GC procedure shown in Figure 17
(1), resolving away the literal D is repeated by the GC procedure because the C-point
associated with the A-literal D is moved to the right of A-literal ~C during the reduction
operation at the sixth center chain. In this example, the GC procedure will fail to obtain a
refutation from the chosen top clause ~A. It will then choose another top clause from the
set of support, as shown in search tree (ii) of Figure 17. As shown, using the top clause
~D~E leads to a minimal refutation. This is advantageous if the objective is to obtain a
minimal refutation. However, it may take more time to obtain a minimal refutation because
some of the inference steps may be wasted in the process of searching for a minimal
refutation, similar to what happen in Figure 17 (i). Another issue to consider is the ability
to obtain a refutation using a specific top clause. The example shows that SLM can obtain
a refutation using more of the top clauses from the set of support than the GC procedure.
This partly justifies the claim of Brown (1974, p. 1) that SLM has more desirable
properties for certain applications of the predicate calculus than the other derivation
strategies. One specific application which requires the ability to obtain a refutation for a

specific top clause is a deductive question-answering system.

Restriction (g) of the extension operation definition, using a non-trivial
interpretation, can detect some redundant resolvants. This effect is demonstrated in Figure
18. When the input chain s(Y);~r(Y), is used in the extension of the third center chain,
the resolvant is immediately pruned from the search tree because the truth index of ~1(Y)
was changed. The resolvant obtained by extending the fifth center chain (on the right
branch of the search tree) with the input chain t(b),, is also rejected because the truth
index of ~q(Y), was changed after the instantiation. The ME procedure, SL-resolution

and the GC procedure do not provide semantic checks.



76

The selection functions used by the ME procedure, SL-resolution and the GC
procedure add more problems to early detection of redundancy because only the literals of
the rightmost cell are considered in the selection. If a literal is not in the rightmost cell and
cannot be resolved away, possibly as a result of instantiation, the detection of this problem
has to wait until all literals to the right of that literal are resolved away. SLM partially
alleviates the problem brought about by the added selectivity of these three derivation
strategies by spreading false B-literals onto different branches and concurrently resolving
them away. Hence, SLM may be able to detect the problem earlier than the ME procedure,
SL-resolution and the GC procedure. This effect is demonstrated in Figure 14 (p. 61).

Brown (1974, p. 23) pointed out that for a set of clauses with a Horn model
and a derivation with a FALSE top clause, the reduction operation and restriction (d) of
the truncation operation can never be used because all the literals in the center chains are
FALSE (indexed by 0) in the interpretation. However, for a set of general clauses,
restriction (d) of the truncation operation may produce many irrelevant derivations. Take,

for instance, the truncation of the A-literal S, ] in the following derivation:

' Eel ol =’ M[s]
0 0 0 1 1

-s{~Pl ~Ql ~RIM [~P[~S[-Q[~RlM [~P[~QI~S[-RIM [P[~g[~R[=S]M
0 0 0 1 0

0 0 o o0 1 0 o o 1 0 O 0 0 o0 1

Three of these chains are irrelevant since they all have the same effect. The hyper
minimality restriction is not adequate to prevent the indeterminancy of inserting A-literals
created by truncation. In view of this, Brown suggested three methods to reduce this

redundancy. These three methods are denoted SLM-1, SLM-2 and SLM-3.
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2.7.5. SI.M Variations

SLM-1 is obtained from SLM by modifying the truncation operation. The
modification is to insert the truncated A-literal into a position only if that position is not
equivalent to a position at which the truncated A-literal has already been inserted. Two
positions are said to be equivalent if no B-literals occurs between the two positions. This
method reduces some of the redundant derivations obtained from truncation without
affecting the effectiveness of the hyper minimality and compulsory reduction restrictions.
However, SLM-1 has a drawback. The example shown in Figure 19 (p. 79) demonstrates
that SLM-1 will fail to obtain a refutation if the chosen top clause is ~Q~R. SLM does
not have problem in obtaining a refutation of the chosen top clause, as shown in Figure
20. Brown, however, pointed out that the complexity of SLM-1 refutations remain

bounded by the complexity of the simplest h M-clash refutations.

SLM-2 is obtained from SLM by omitting the hyper minimality and
compulsory reduction restrictions, and by always placing an A-literal created by truncating
an A-literal indexed by 1, at its depth. This method solves the indeterminancy problem of
inserting an A-literal created from a truncated A-literal. However, the advantages of this
modification are bought at the expense of the effects of the hyper minimality and the
compulsory reduction restrictions. One disadvantage of imposing the hyper minimality
restriction in SLM-2 is that it may prevent SLM-2 from obtaining a refutation using some
top clauses, which could be used in an SLM derivation. To illustrate this point, consider
the search tree shown in Figure 21. The tenth center chain would be inadmissible had the
hyper minimality restriction been imposed in SLM-2. Obviously, all the efforts to obtain
the derivation are wasted since no other alternatives are available. One negative effect of
imposing the compulsory reduction restriction in SLM-2 is demonstrated in Figure 22.
The reduction of B-literal G at the eleventh center chain (the resolvant obtained by
extending the center chain using the input chain ~G~P will not lead to minimal refutation
since the B-literal ~P is introduced) has moved the depth of the A-literal D to the right of

A-literal ~G. The insertion of A-literal ~D to the right of A-literal ~G when the A-literal
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D is truncated from the twelfth center chain, has forced the reduction of B-literal D at the
thirteenth center chain. This reduction has moved also the depth of A-literal A to the right
of A-literal ~D. Thus, the B-literal A is removed by reduction when the A-literal ~A is
inserted at its depth after truncating the A-literal A from the fifteenth center chain. This
causes the transfer of the depth of A-literal Q to the right of A-literal ~A. Consequently,
the insertion of A-literal ~Q after truncating the A-literal Q from the eighteenth center
chain is useless. Had it been inserted to the left of A-literal ~P, the B-literal Q of the
twentieth center chain could have been resolved away by reduction. SLM-2 with non-
compulsory reduction may still obtain the shown derivation but it has other derivations
that may lead to minimal refutation such as applying extension operation to the sixteenth
center chain instead of applying the reduction operation. Dropping the compulsory
reduction restriction expands the search tree since an extension operation can still be
performed to resolve on a B-literal when it can be simply reduced. In fact, Brown
conjectured that the number of refutations in the SLM-1 search space is always fewer than
in SLM-2. SLM-2 also has no loop-check since the hyper minimality restriction is

omitted.

SLM-3 is obtained from SLM by deleting restriction (d) in the truncation
definition. Thus, the SLM-3 truncation operation simply deletes an A-literal in the same
manner as SL-resolution's truncation operation. This method still maintains the hyper
minimality and the compulsory reduction restrictions. However, resolving away of literals

are possibly repeated since truncated A-literals are not recycled.

2.7.6. New Variations of SLM
2.7.6.1 Transformation of non-Homn set to subsets of Horn clauses

The problems in SLM of detecting loops and the indeterminancy of inserting

A-literals created from truncated A-literals will only occur when the derivation, which
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one A-literal indexed by 1. This happens when some of the input chains have more than
one B-literal indexed by 1, i.e the interpretation used is not a Horn model of the input
clauses. To prevent the occurrence of A-literals indexed by 1 in any center chains of the
derivation, the set of clauses which has a non-Hom model may be broken down into
subsets of clauses such that each subset has a Horn model, using the splitting technique of

Chang (1972) .

The idea of splitting is to split the problem into subproblems and work on
each subproblem. The splitting technique starts with a set of clauses S U {C}, where C
is a clause to be split into two groups of literals: P and Q,i.e. C = P U Q. The splitting
technique will then produce the two sets S U {P} and S U {Q}. If consistent refutations
can be derived from both of these subsets then S U {C} is unsatisfiable. Consistent
refutations are obtained if the substitutions applied to the common variables of P and Q in
each refutation are compatible. Chang claimed that the splitting techniques can improve
the proof search efficiency both with respect of time and memory, as cited by Henschen
and Wos (1974, p. 591). Henschen (1976, p. 816) suggested that sets of non-Homn
clauses could be transformed to subsets of Horn clauses, in order to apply to sets of non-
Horn clauses a theory specifically designed for sets of Hom clauses. This technique can
be applied in SLM, by splitting the set of general clauses to subsets of Horn clauses and
using the interpretation I or splitting the set of clauses with a non-Horn model into

subsets of clauses such that each subset has a Horn model.

Once the set of clauses is broken down into subsets of clauses, a refutation for
each subset of clauses can be obtained using SLM. To increase the efficacy of SLM in
obtaining a refutation from a set of clauses with a Horn model, the following

modifications of SLM may be done :

a)  The reduction operation is removed. The reduction operation is not needed to

prove the unsatisfiability of a set of clauses having a Horn model.
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b)  The hyper minimality restriction will be changed to - "no two A-literals have
identical atoms". There is no need to categorise A-literals by truth index since
for a given set of clauses with a Horn model and a FALSE top clause, the
literals of the center chain are all indexed by 0.

c)  The truncation operation definition will be that of SLM-3.

These modifications of SLM constitute the new variation of SLM and will be called SLM-
4 hereafter.

SLM-4 solves the indeterminancy of inserting A-literals, and loop detection

problems of SLM. Figure 23 shows the search trees for S = {~p(X)g,
p(X)19(Y)1~c(X,Y,Z)g, ~p(X)ga(X)1> ~q(X)gP(X)1, €(a,a,c); }using SLM-4. The chain
p(X)1q(Y);~c(X,Y,Z);, which contains more than one literal indexed by 1, is selected to be
split. The chain is then split into p(X);~c(X,Y,Z); and q(Y);. The first subset S is then
formed by combining the first part of the split, p(X);~c(X,Y,Z), and the rest of the chains
of S. Figure 23(i) shows the search tree of the first subset of S. The refutation has

instantiated the variable Y with the constant a. To obtain a consistent refutation, the

second subset of S is formed by the subcase hypothesis q(a); which is the instance of
q(Y), derived after refuting the first subset, and the rest of the chains of S. The refutation
of S, is shown in Figure 23(ii). Since S; and S, have consistent refutations, S is then
unsatisfiable. Figure 24 shows the search tree for S using SLM. Clearly, in this example,
SLM-4 has no problem of detecting loops and preventing irrelevant derivations obtained

during a truncation operation.

2.7.6.2. Adding more restrictions to SLM

The problem with the splitting technique is the complexity of splitting a set of

clauses that contains many clauses which have more than one literal indexed by 1. The



85

’;XX);Q([X(;/‘EX) ’xX) e Z)
- oY c(aac)
0 0 0 /
~c(a,a,c)
Y 0
truncate all A-literals

0

(i) The search tree for S1 = {~p(X),p(X)~c(X,Y,2),~aq(X)p(X),~p(X)q(X), c(a,a,Cc)}

~p(X) "Q(X)D(X)
o/ 0
[0
Q(az 0 q(X) p(X)
[l P00
01 0 0 0 0
will become
Xﬂg?:sa" inadmissible
later

O

(ii} Thesearchtreefor S 2= {~p(X), @), ~qX)p(X), ~pX)x(X), c(a.ac)}

Figure 23. The search trees of the two subsets of S = {~p(X), p(X)q(Y)~c(X,Y,Z),
~q(X)p(X), ~p(X)q(X), c(a,a,c)} using SLM-4 with the interpretation I,.
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Figure 24. The search tree for S = {~p(X), p(X)q(Y)~c(X,Y,Z), ~q(X)p(X), ~p(X)q(X),

c(a,a,c)) using SLM with the interpretation I,
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difficulty of maintaining consistent refutations for numerous sets adds to the difficulty of

implementing such method. In view of this, an alternative variation of SLM is suggested.

The problem with SLM's truncation operation is that it allows alternative
points of inserting truncated A-literals, in order to get the maximum use of them.
However, this causes problems since it may produce many irrelevant derivations, thereby
expanding the search tree unnecessarily. Consider a branch of a center chain which
contains N consecutive A-literals indexed by O in between an A-literal L indexed by 1, and
its depth. If these N consecutive A-literals indexed by O are in the same node then N
irrelevant derivations are produced during the truncation of L since SLM inserts the
truncated A-literal at its depth or at the right of each A-literal indexed by 0 in between the
depth and L. They are irrelevant derivations since inserting the truncated A-literal at its
depth has the same effect as when it is inserted to the right of any of the A-literals indexed
by O in between the depth and L. There is, however, a different effect on the derivation if
the truncated A-literal is inserted at a position in one node and in another position in a
succeeding node although the literals between the two positions are all A-literals indexed

by 0. Consider the center chain

Obviously, there is a difference in inserting the A-literal ~S at its depth which is in the root
node or inserting it to the right of A-literal ~R 1in the tip node. The first insertion of A-
literal ~S will force the reduction of the B-literal S in the other tip node while the second
insertion of the A-literal ~S to the right of A-literal ~R has different effect in the
derivation. However, inserting A-literal ~S either at its depth or to the right of A-literal ~P
or ~Q has the same effect in the derivation. SLM-1 attempts to reduce these irrelevant

derivations by defining an equivalent position restriction. However, it was found out that
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the equivalent position restriction may cause also some problems as pointed out in section
2.7.5. In view of this, a modification of the equivalent position restriction is suggested as

follows :

Two positions P, and P,, where P is to the left of P, and are in the same

node, are equivalent if the literals in between P, and P, are all A-literals

indexed by 0.

The definition of the truncation operation of SLM may then be modified as in
SLM-1. In this scheme, the truncation of the A-literal S of the above center chain will
only produce two chains while SLM will produce 4 chains. Looking at Figure 19 (p. 79),
the suggested method can obtain a refutation of the chosen top clause ~R~Q because
when the A-literal P is truncated at the seventh center chain, there are two possible
positions that the A-literal ~P can be inserted. The first position is at its depth which is at
the root node and the second position is at the right of A-literal ~R which is on the next

node.

The loop detection problem of SLM is brought about by allowing two A-
literals having identical atoms to coexist in the center chain in order to preserve the depth
of A-literals in between them. This problem is complicated by the generalisation of
classifying non-B-literals. SLM has no distinction between an A-literal produced by an
extension operation and an A-literal created from a truncated A-literal. If there are
different classifications of these two types of A-literals, it is easier to detect that a certain
atom is repeatedly resolved on by extension operations, which is a distinguishing sign of
the occurrence of endless loops. The ME procedure, SL-resolution and the GC procedure
prevented this loop problem by not allowing two non-B-literals to have identical atoms.
This restriction also makes the reduction operation compulsory for literals having identical
atoms. However, SLM avoids such compulsory reduction in order to preserve the depths
of A-literals, and imposing such a restriction on SLM would negate this preservation.

However, if the restriction is loosened in such a way that it will prevent identical A-literals
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created by extension operations, but will allow complementary A-literals iff an A-literal

indexed by 1 is in between them, then the loop problem is prevented without hampering

the hyper minimality effects. Hence, the following modifications of SLM are suggested :

a)

b)

Restrictions (b), (d) and (e) of the truncation operation definition are modified

as follows:

For (b) :

The rightmost literal of the rightmost node of some branch of C; is a non-B-

literal. Let this literal be L.

For (d) :
If L is an A-literal indexed by 1 then the complement of L classified as C-
literal is inserted either :
1) atitsdepth,or
2) immediately to the right of an A-literal indexed by O iff that
position is not equivalent to a position at which the C-literal has
already been inserted, and occurs between the position of L and

the depth of L.

For (e)
The classification of every literal in C;,; remains as it was in C;. In the case
of an insertion of C-literal, the index of the inserted C-literal is 0. The indices

of all other literals remains as they were in C;.

Restriction (iv.b) of the compulsory reduction restriction definition is changed

to -

The non-B-literal L and the B-literal K used in the reduction have identical

atoms.
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¢)  The hyper minimality restriction is changed to :

There must be no two identical non-B-literals indexed by 0 on any branch of

any chain unless an A-literal indexed by 1 occurs between them.

This restriction is intended to insert the C-literal at a position where it has
maximum effect in the derivation in terms of compulsory reduction, and to minimise
irrelevant derivations which the equivalent position restriction cannot prevent. For
example, the truncation of A-literal C on the eleventh center chain of Figure 16 (p. 70).
The restriction will not permit the insertion of C-literal ~C either at its depth or to the

right of A-literal ~C.

d)  Restrictions that will detect loops will be added. They are as follows :

1)  No B-literal that is identical to any of the preceding A-literals should
occur on any branch of any chain.

2)  No two identical A-literals should occur on any branch of any chain.

Restriction (d.1) is similar to the second preadmissibility restriction of the ME
procedure. The purpose of this restriction is to prevent loops caused by adding a B-literal
which is identical to a preceding A-literal. Stickel (1984, p. 215) affirms that it is
unnecessary to attempt to solve a goal (B-literal) while in the process of attempting to

solve that same goal (A-literal). Restriction (d.2) is a retrospective check of the first

restriction.

Restriction (iv.c), as defined in section 2.7.1.2, only forces a reduction if the
literals involved in the reduction have identical atoms. However, this restriction is not
enforced retrospectively. Take, for instance, the center chain

[~p(a)gllg(a)1[~f(a)gl[~g(X)plf(X)y. SLM will still admit the resolvant which is
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obtained by resolving f(X); with an input chain ~f(a)g~q(a)g. The resolvant
[~p(a)pllq(a) 1[~f(a)gl[~g(a)gl[f(a){1~q(a)g may produce an expanded search tree and a
longer refutation than by simply reducing the B-literal f(X);. In the ME procedure, SL-
resolution and the GC procedure, the resolvant is inadmissible. It should be noted that
reducing the B-literal f(X); does not affect any depths. Hence, a retrospective check of

restriction (iv.c) is added to handle this situation.
e)  Aretrospective check of restriction (iv.c) is defined as follows :

No A- or C-literal which is exactly complementary to a following A-
literal may occur on any branch of any chain unless an A-literal indexed

by 1 exists between them.

In SLM, the reduction operation case (I) (after truncation of A-literal indexed
by 1) may reduce a B-literal which may precede some A-literals indexed by 1. This has
some negative effects since the reduction may move the depths of some A-literals
unnecessarily. As shown in Figure 22 (p. 82), reducing B-literals Which precede some A-
literals indexed by 1 has complicated the refutation. In view of this, the reduction
operation is redefined in such a way that it will not reduce B-literal until all the following

non-B-literals are removed.

f)  The reduction operation is redefined as follows:

C;4+1 1s obtained by reduction only if a) to f) are satisfied.

a) The last non-reduction operation is an extension operation or a
truncation of an A-literal indexed by 1.
b)  The rightmost cell of the selected branch contains a B-literal K and there

exists a non-B-literal L which is to the left of K and in the same branch.
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L and K are complementary by unification with mgu 0 and the sum of
their indices is equal to 1.

¢) - e) same as I ¢) - e) of SLM reduction definition.

f)  The depth of every A-literal indexed by 1 occurring to the right of the
non-B-literal L is set immediately to the right of L iff the depth is to the
left of L.

Another disadvantage of SLM is that it does not recycle all proved literals.
Sutcliffe (1989, p. 10) in his General Clause Theorem Prover (GCTP), defines a proved
literal as a logical consequence of the input clauses used thus far. If a C-literal is inserted
to the left of any A- or B-literal then the C-literal is a proved literal, otherwise, it is a
conditionally proved literal. SLM does not recycle truncated FALSE A-literals in order to
prevent reducing a FALSE B-literal with it. Brown (1974, p. 4) justifies this by pointing
out that factoring, in some cases, will add an irrelevancy to the search space. However, it
will not happen if the recycled literal is a proved literal. Reducing a B-literal with a proved
literal is like recalling that portion of the derivation that obtains the proved literal. Sutcliffe
extends the C-literal mechanism of the GC procedure by removing proved literals from the
center chain and adding them to the set of input clauses, as unit clauses. He argued that
the addition of proved literals as unit clauses to the set of clauses is particularly effective in
conjunction with the unit preference strategy. This has also an advantage in the
environment of a consecutively bounded search since the proofs of B-literals discovered
within one bound are carried over to the next bound. It is, therefore, suggested that a
proved literal be added to the set of input clauses as a unit clause iff it is not subsumed by
any unit clauses in the set. To maintain the effect of the hyper minimality restriction,
conditionally proved literals are treated as in SLM. The following restrictions are added to

the operations used in SLM to implement the suggested modifications:



93

f)  For the extension operation :
There exists an input chain B which is either
i)  aunit chain (unit preference strategy), or
ii)  any chain.
If the selected literal L is indexed by 0, a status flag of 1 is associated with the
new A-literal LO.

g)  For the reduction operation :
The status flag of each A-literal indexed by 0 occurring to the right of

the non-B-literal L is set to O.

h)  For the truncation operation:

If the A-literal L is indexed by O and the status flag is 1 then L is a
proved literal. If L is indexed by 1 and it is not preceded by any A- or
B-literal then L is a proved literal. If L is a proved literal then the
complement of L. with the corresponding change to its index and the
classification changed to a B-literal, will be added to the set of input

chains M iff it is not subsumed by any unit chains in M.

All these modifications and additional restrictions constitute a new variation of
SLM, which will be called SLM-5 hereafter. Figure 25 demonstrates the efficacy of
SLM-5. As shown, the resolvants obtained in applying extension operations to the fourth
center chain with the input chain ~Ry~Q and the fifth center chain with the input chain
~So~P( are inadmissible. They are inadmissible because loops will occur if the derivation
is continued from any of these resolvants. SLM would admit these resolvants as
admissible. Using the proved literal P, as the input chain during the extension operation
of the tenth center chain has simplified the refutation. In SLM, the B-literal ~P, of the
tenth center chain has to be resolved the same way as the previous B-literal ~P of the

third center chain.
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Figure 25. The search tree for S = {~P~Q, ~R~Q, ~S~P, QR, PS, ~R~T, T~P, ~S~M,
M} using SLM-5 with the interpretation I,



95

2.8. A Summary

An overview comparison of s-linear, ME procedure, t-linear, SL-resolution,

GC procedure, and the SLM derivation strategies, is tabulated in Table 1.



‘1able 1 - s1muariues and WAIICrences O1 tHic SiX Lincal 1 XTvation oS atCgles

Features Derivation Strategies
s-linear ME procedure t-linear SL-resolution GC procedure SLM
Clauses | Set of literals Chain format Set of literals Chain format Chain format Chain format
Selection | Any literal in the|Rightmost B-literal in| Any literal in the} Use a selectionjUse a selection|{Use a selection
center clause. the center chain. center clause. function to select a| function to select a| function to select a tip
literal from the most| literal from the most | node of some branch
recently introduced| recently introduced| in a center chain, and
literals in the center| literals in the center| select a B-literal from
chain. chain. the rightmost cell of
the tip node.
Factoring | No, but apply|No. No, but apply| Yes No, but reduction of | No, but reduction of
merging on identical merging on identical an A-literal witha C-|an A-literal with a
literals. literals. literal can be viewed | recycled A-literal can
as delayed factoring. | be viewed as delayed
factoring.
Ancestor | Yes. A restrictive| Yes, viareduction. Yes. A compulsory| Yes, via reduction. Yes, via reduction. Yes, via reduction.
Resol'n | ancestor resolution. ancestor resolution.
Spreading | No. No. No. No. No. Yes.
Recyle No. Yes, in the form of| No. No. Yes, in the form of C- | Partly. Only A-literals
Truncated lemmas. literals. indexed by 1 are
A-literals recycled, as A-literals
indexed by 0.
Semantics | No. No. No. No. No. Yes.
No Yes. Partly. Tautologous| No, but is compatible| Yes. No. No.
Taut's center chains are not| with that restriction.
allowed if the
complementary B-
literals are not
separated by an A-
literal.
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Chapter 3

IMPLEMENTATION

3.1. Introduction

The ME procedure, SL-resolution, the GC procedure, SLM and SLM-5 have
been implemented using the PROLOG language. (The s-linear and t-linear derivation
strategies are not included in the implementation because of their limitations. The t-linear
derivation strategy is only defined for ground derivations. In the case of the s-linear
derivation strategy, it is already known that it produces bigger search trees than the other
strategies.) Writing theorem provers in PROLOG is not new. Other theorem provers
implemented in PROLOG language are (Santane-Toth and Szeride, 1982), (Brown, 1984),
(Satz, 1988) and (Sutcliffe, 1989).

PROLOG is a special case of a theorem prover (Bratko 1986, p. 397). Itisa
programming language based on a specialised version of linear input resolution for Horn
clauses (Clocksin and Mellish 1987). PROLOG implements the ideas of the predicate
logic as a programming language (Amble 1987, p. 44), which simplifies the development
of a theorem prover for first order predicate logic. Unification plays a vital role in theorem
proving. However, PROLOG implements a unification algorithm without an occurs
check. An occurs check is a check for an occurence of the same variable in expressions
being unified, that may cause a looping substitution, i.e. a variable is repeatedly bound to a
term containing the variable. This type of unification is unsound for theorem proving.
Thus, there is a need to write a PROLOG procedure to handle the occurs check problem.
There is also a need to modify the search strategy of PROLOG because a depth-first
strategy is not an appropriate search strategy for theorem proving. Implementations of
PROLOG on conventional computer architectures have achieved efficiency comparable

with pure LISP (Warren et al. 1977) as cited by Kowalski (1982, p. 3). However, Stickel
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(1984, p. 211) argued that writing a theorem prover in PROLOG offers uncertain
advantages in comparison with writing a theorem prover in any other language, such as
LISP. He pointed out that theorem prover written in PROLOG would perform slower
than the speed of PROLOG, because several PROLOG inference operations would have
to be performed for each theorem-proving inference operation. This is true if a theorem
prover is executed using a PROLOG interpreter. With the advent of PROLOG compilers
such as the Arity PROLOG compiler (Arity Corporation 1988), the speed of a compiled

theorem prover is comparable to that of PROLOG.

The implementations of the five derivation strategies include the following:

1. A self configuration facility.

2.  Inference operations used by each derivation strategy such as

i) an extended extension operation which includes paramodulation (Wos
and Robinson 1968)

il)  reduction

ili)  truncation

iv)  spreading (for SLM and SLM-5 only)

The unit preference strategy

Pure literal elimination

The elimination of tautologies

A I

Syntactic checking based on the restrictions imposed in each derivation
strategy

7. A check if literals can be extended upon

8. A selection function to select the literal from the center chain to be resolved on
during an extension operation.

9. A modified consecutively bounded depth-first search strategy.

Some of these features are not in the original definitions of the derivation strategies. In the

implementations, the effects of adding extra features to a derivation strategy is to increase
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the efficacy of the resultant system, without losing the basic structure of the original

strategy.

32. Data Structures

Input clauses are represented by facts in the PROLOG database. Each fact has

the following format :

a_clause (Clause)
where :
Clause = [L;, L,,..., L]
L, = aliteral consisting of a sign and its atom. An atom preceded by the "++
(defined as an operator) sign denotes a positive literal and the '--' sign
denotes a negative literal. (Literals are represented in this manner

throughout the implementations.)

Input clauses are converted to input chains of B-literals before using them in
derivations. The data structure of a B-literal in the ME procedure, SL-resolution and the

GC procedure is in the following format :

B_I.iteralME/SL/GC = [b, Literal]

In the ME procedure, an input clause should generate N matrix chains where N is the
number of literals in the clause. To save memory space, only one chain is formed for
every input clause. The extension operation of the ME procedure, however, is modified in
such a way that any of the literals of the input clause can be selected. Thus, an input chain
is formed by converting all the literals of the input clause to B-literal form in the ME and
GC procedures. Input clauses to SL-resolution are factored and each factor is converted to
an input chain. In all cases, a unique index is assigned to each input chain formed. The

input chain and index are asserted into the PROLOG database as a two-argument fact :
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input_chain (Index, Chain)
where :
Index = an integer greater than 0.

Chain = [ B_Literal,, B_Literal,, ..., B_Literal ]

SLM and SLM-5 convert input clauses to input chains in a similar manner,
but additionally assign a truth index to each literal in the clause. The data structure of a

B-literal in SLM and SLM-5 is the following :

B_L:'Lt:er:alsm,l/SLM_5 = [b, Truth Index, Literal]
where :

Truth_Index = an integer 0 or 1 which denotes FALSE or TRUE respectively.

Only the trivial interpretation I, has been implemented to assign a truth index to each

literal.

The data structure of a center chain in ME procedure, SL-resolution and GC
procedure is a list. The term 'rightmost literal of the chain' in the formal definitions is
actually the first literal of the center chain list in the implementations. A center chain in
ME procedure and SL-resolution derivations is a list of B-literals and A-literals. The data

structure of an A-literal in the ME procedure is a three-element list :

A Literal, = [a, Scope, Literal]
where :

Scope = an integer which represents the scope associated with the A-literal.

An A-literal in SL-resolution is represented by a two-element list :

A Literaly; = [a, Literal]
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A center chain in a GC procedure derivation is a list of B-literals, A-literals, C-
literals and C-point atoms. The data structure of an A-literal in the GC procedure is a

three-element list :

A_Literach = [a, c_N, Literal]

where :

¢_N = an atom that represents the C-point associated with the A-literal

N = an integer

The position of a C-point atom in the center chain is the C-point of the A-literal containing

that C-point atom. A C-literal is represented by a two-element list :

C_Literal . = [c, Literal]

A center chain in SLM and SLM-5 is in the following format :

Center_ Chain = [Node,, ..., Node,]

where :

N()del = [L,R,SubchalnSLMBLMé]
L = an integer which serves as a link to the previous node.

R = an integer which serves as a link to the next node.

Subchaing; 5, = a list of B-literals, A-literals and depth atoms.

SubchainSLM_5 = a list of B-literals, A-literals, C-literals and depth atoms.

In SLM, A-literals have the following two formats :

(i)  A-literals indexed by 0

A Literalg; y = [a, 0, Literal]
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(i) A-literal indexed by 1

A Literalg, , = [a, 1, d N, Literal]
where :

d_N = an atom that represents the depth associated with the A-literal

N = an integer

In SLM-5, A-literals have the following format :

(1)  A-literals indexed by 0

A Literalgy,, s = [a, 0, Status, Literal]

(ii) A-literal indexed by 1

A Literalg y - = [a, 1, d N, Literal]
where :
Status = an integer O or 1 which represents the status flag associated with the
A-literal.
d_N = an atom that represents the depth associated with the A-literal

N = an integer

The position of the depth atom in the branch is the depth of the A-literal. A C-literal of

SLM-5 is represented in the following format :

C Literalg , - = [c, 0, Literal]

A branch can be extracted from a center chain by getting first the root node
(the root node is the node whose first two elements are 0,0) from the center chain and

extracting the succeeding nodes from the rest of the center chain. The succeeding nodes
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are obtained by repeatedly matching the second element of the current node to the first
element of any of the remaining nodes in the center chain, until a tip node is obtained. A
tip node is obtained if its second element cannot be matched with the first element of any

of the remaining nodes in the center chain.

3.3, Self Configuration

Each of the theorem provers implemented configures itself to a certain extent.
Before any derivations begin, an examination of the input clauses is done to determine the

following :

1.  the occurence of equality literals.
the occurence of pure literals.

the occurence of tautologous clauses.

Eal S

whether the set of clauses is a set of Horn clauses or a set of non-Horn

clauses.

5. whether the set of clauses is written in a propositional or a first order
predicate logic.

6.  the minimum and maximum number of literals in a clause (the size of the

clause).

If an equality literal exists (i.e. a literal with an equal (L,R) atom), the
reflexive axiom of equality is added to the input chains by asserting the input chain whose
single B-literal is ++equal (X, X). The predicate equal exist is also asserted into

the PROLOG database to indicate that an equality literal exists.

A check for pure literals is also done during the self configuration. If such a

literal exists, the clause containing the pure literal is removed from the database because it
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can only pollute the derivation search space. Tautologous input chains are also removed

from the database.

If the input clauses are all Horn clauses, a PROLOG fact
clause_type(horn) is asserted into the database; otherwise, the fact
clause type(general) is asserted. If the clause type (horn) exists, the
reduction operation is suppressed in the ME procedure, SLM and SLM-5. The basis for
suppressing the reduction operation is the completeness of input resolution for Horn
clauses (Henschen 1974). However, the effects of the restrictions imposed in the ME
procedure, SL-resolution, the GC procedure, SLM and SLM-5 systems need to be
considered. In the case of the ME procedure whose reduction operation is equivalent to
ancestor resolution, the reduction operation is not necessary for a given set of Horn
clauses. In SLM and SLM-5 using the trivial interpretation I, the reduction operation is
not also necessary for a set of Horn clauses. Although the reduction operation of SLM
and SLM-5 is not purely ancestor resolution (because they reuse truncated A-literals
indexed by 1), it is still safe to suppress the reduction operation because no A-literal
indexed by 1 can occur in any center chains of the derivation. In SL-resolution whose
reduction operation involves factoring and ancestor resolution, reduction cannot be
suppressed. This is because SL-resolution imposes the admissibilty restriction which
constrains the derivation not to produce center chains that contain two literals having
identical atoms. Consider the derivation from the set of Horn clauses

S={~P~Q,Q~P,P}.

+[(l»

The last center chain will be inadmissible if the reduction operation is suppressed. Thus,

SL-resolution is incomplete if the reduction operation is suppressed. In the case of the




105

GC procedure, its reduction operation involves ancestor resolution and C-reduction which
has similar effect to factoring. Again, reduction cannot be suppressed because of the C-
literal mechanism and the imposed restriction. Consider the following GC procedure

derivation of the given set of clauses :

truncate all A-literals

Q@®-p

The last center chain will become inadmissible if an extension is performed. Thus, the GC

procedure is incomplete if the reduction operation is suppressed.

The minimum and maximum sizes of the input clauses are determined. This
information is stored in an asserted fact clause_size (Min, Max). This information
is used to order the input clauses from the clause with the minimum number of literals to
the clause with the maximum number of literals. This information is also used in the ME
procedure for suppressing long lemmas generated in the derivations. Lemmas whose

sizes are greater than the maximum size of the original input clauses are not added to the

input set.
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34. Extending the Extension Operation

The extension operation defined by each derivation strategy is extended to
include a special case of binary resolution (referred to as subsumed unit extension by
Sutcliffe (1989, p. 9)) and paramodulation. A subsumed unit extension is a binary
resolution whose input parent chain is a unit chain and whose literal subsumes the
negation of the selected B-literal of the center chain. After a subsumed unit extension no
backtracking is permitted. The Prolog technology theorem prover (Stickel 1986) and the

GCTP (Sutcliffe 1989) include the subsumed unit extension as an inference operation.

The equality axioms which establish that equality is reflexive, symmetric,
transitive and allow equal terms to be substituted in any expression (substitution) are
common in mathematical theories. The basic resolution principle, however, makes no
special provision for the use of these axioms. To introduce equality into a resolution
based theorem prover, it is necessary to include clauses that specify the equality axioms in
the input set. However, the inclusion of the equality axioms to the set of clauses "is a
source of many difficulties" as pointed out by Bundy (1983, p. 62). The alternative is to
build into the theorem prover the knowledge required to handle equality appropriately. An
inference rule called paramodulation is used for this purpose, whenever the
equal_ exist predicate exists in the datbase. It combines into a single step the
0perations of instantiation and replacement of (equal) terms (Wos 1984, p. 121).
Moreover, Brown (1984, p. 38) asserted that - "adding paramodulation to a resolution
theorem prover results in an ability to prove theorems about systems that contain equality

in a natural, efficient way."

Paramodulation is added to the extension operation as it is viewed as a
sequence of binary resolution steps put into one step. The equality axioms of symmetry,
transitivity and substitution are not needed in the input clauses with the inclusion of the

paramodulation in the extension operation. The only equality axiom necessary to obtain
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completeness, is the reflexivity axiom. The algorithm for deciding which suboperation of

extension is attempted first during an extension operation is described in the next section.

3.5. Search Strategy

Syntactic restrictions imposed in each derivation strategy reduce the size of the
search space. These restrictions are invoked after every inference step which involves
substitution of variables or the addition of new B-literals to the center chain. Two new
syntactic restrictions have been added to the GC procedure in the implementation. The
first one is not to allow a B-literal which is identical to any preceding non-B-literals (a
modified version of the second preadmissibility restriction of the ME procedure). This
restriction is a preemptive check of the no two non-B-literals with identical atoms
restriction. The second additional restriction is not to allow complementary B-literals
unless they are separated by an A-literal (first preadmissibility restriction of the ME
procedure). This restriction prevents the use of a tautologous instance of an input chain.
Tautologous input chains are not needed to prove the unsatisfiability of the input chains
(Loveland 1969a). To illustrate the effect of these two restrictions on GC procedure
derivations, consider the example shown in Figure 26. The ninth center chain of the right
branch of the search tree is inadmissible if the first restriction is imposed. The restriction
detects the redundancy one step earlier than the restriction imposed by the GC procedure.
Imposing the second additional restriction on GC procedure derivations would detect the
redundancy of the sixth center chain of the right branch of the search tree, three steps

before the GC procedure detects the redundancy.

The set of support strategy is used in all implementations. The set of support
strategy limits the number of search trees which need to be investigated in the course of
searching for a refutation. Kowalski and Kuehner (1971 , p. 232) identified the set of all

negative clauses or the set of all positive clauses as possible sets of support. In the
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Figure 26. The search tree for S = {~p(X,Y), p(X,Y)~s(X)~q(X)q(Y)~r(X,Y),

X, Y)~f(X)~g(Y), g(a), f(a), f(b), q(a), q(b), s(b), ~q(X)} with the top clause ~p(X,Y),
using the GC procedure.
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implementations, the set of negative clauses is the default support set. Sutcliffe (1989,

p. 8) argued that using such a negative clause as the top clause leads to 'natural' proofs.

The search trees shown in Figures 27 and 28 demonstrate the effect of the
choice of literal to resolve upon, on the size of the search tree. The size of the search tree
in Figure 27 is larger than that of the search tree shown in Figure 28. This disparity is
caused by the choice of which literal to resolve on first. Resolving on ~q(X) first will
cause the substitution of the variable X immediately, while resolving ~p(X) first will delay
the substitution of the variable X. Instantiation of variables at an early stage is
advantageous because there are typically a lesser number of possible input chains that can
be matched with a sufficiently instantiated literal, thereby reducing the number of
resolvants. In view of this, a literal with a lesser number of matching clauses will be given
higher priority in the selection of literals to be resolved on. Naish (1985, p. 61) suggested
that the literal with the lowest number of matching clauses should be selected first to
restrict early expansion of the search tree. Moreover, a literal which can be resolved on by
an input chain which may introduce more B-literals to the center chain should have lower
priority in the selection. Adding more B-literals to the center chains may produce longer
refutations. Giving preference to literals which can be resolved on by clauses with fewer

literals is in line with the unit preference strategy.

The selection function of the implementations considers all the points
mentioned in the previous paragraph. To do this, the extension operation is performed on
each candidate literal (but not allowing the binding of variables) and the number of new B-
literals for each successful extension is accumulated. Preference is given to literals which
accumulate the lowest total. To break ties, literals which can be resolved on by a unit chain
and/or have lesser number of variables are preferred. Thus, the following formula is used
to compute the weight of each candidate literal, and the literal with the minimum weight is

the selected literal :
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Figure 27. The search tree for S = {~q(X)~p(X), p(X)~q(X), p(X)~1(X), q(a), q(b),
r(c), r(d), r(e), r(f) } with the top clause ~q(X)~p(X), using the GC procedure.
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Figure 28. The search tree for S = {~p(X)~q(X), p(X)~q(X), p(X)~1r(X), q(a), q(b),
1(c), r(d), r(e), r(f) } with the top clause ~p(X)~q(X), using the GC procedure.
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m

Weight = [ZNi] - Unit + Var
i=1

where :

N;j = the size of the input parent chain to resolve on the literal.

m = the number of possible input parent chains.

Unit = 0 if the center chain literal can be resolved on by a unit chain, otherwise
1.

Var = the number of variables in the center chain literal.

In the ME procedure, SL-resolution and the GC procedure, the implemented
selection function extracts the rightmost cell of the center chain, computes the weight for
each B-literal of the rightmost cell and selects the literal with the minimum weight. In the
case of SLM and SLM-5, the implemented selection function first extracts all the tip
nodes of the center chain. The B-literals of the rightmost cell of each tip node are then
collected. B-literals which are identical to any A-literals are removed from the collected B-
literals. This is done to prevent resolving away the same literal concurrently as much as
possible. The remaining B-literals become the candidate literals. If all the collected B-
literals have identical A-literals then all are used as candidate literals. The weight of each
B-literal from the list of candidate literals is computed using the above formula. The B-
literal with the minimum weight is the selected literal. The selection function returns the

selected B-literal and the tip node where the literal belongs.

In the implementation of SLM-5, the part of truncation operation which adds
proved literals to the input chain database is suppressed if the given set of clauses is a set
of Horn clauses. This is because linear input resolution is already complete for set of
Horn clauses, hence, adding more clauses to it may only expand the search tree. In the
implementation of the spreading operation of SLM-35, the operation is suppressed if the
given set of clauses is written at propositional level. The main objective of the spreading

operation is to have more choices of B-literals to resolve on in order for the selection
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function to select a B-literal which is most likely to fail or succeed. This is significantly
effective on clauses with variables because the derivation may be able to detect irrelevant
substitution of variables on previous unifications sooner. However, with ground clauses,
the effect of the spreading operation is insignificant. It is rather more advantageous to
concentrate the effort on one branch. In this scheme, proved literals are more likely
obtained earlier in the derivation, and having such literals in the input set is favorable,

particularly in conjunction with the subsumed unit extension.

During the self configuration, the input chains are ordered within the Prolog
database from the input chain with the minimum number of literals to the input chain with
the maximum number of literals. This is to make sure that extension using clauses with
fewer literals is attempted first. This search strategy is in line with the unit preference
strategy because unit input chains are tried first. The effect of this search strategy,
however, is less effective in the ME procedure because the lemmas generated during the
derivations are added before the original input chains, to make sure that they are used
before the original input chains. The preference of lemmas over the original input clauses
is based on the reason that the literals of the lemmas are typically more instantiated than
the input clauses. Using a lemma as an input parent chain during an extension operation
would most likely provide conditions which would require that more compulsory

reductions be performed.

A check whether each B-literal of a center chain can be extended upon is done
after every inference step where substitutions of variables occur. The purpose of this
check is to detect redundant derivations immediately after the substitution of variables
instead of waiting until such a literal, which cannot be extended upon, is selected for
extension. Take, for instance, the extension of the center chain ~q(X)[~p(X)]~r(X) shown
in Figure 27. The check will immediately reject any resolvants obtained from the said
center chain immediately after the substitution of the variable X. This check saves the time
taken in truncating first the succeeding A-literals before finding that the resolvant of the

previous extension operation is redundant. This check may use much time especially if
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there are still many B-literals in the center chain. In view of this, only B-literals which are
sufficiently instantiated are subjected to the check. A literal is sufficiently instantiated if
its number of non-variable terms is at least half its total number of terms. The algorithm
for this check is described in the next section. As described in the algorithm, two types of
information may be added to the database : valid literal (Atom) and
redundant literal (Atom), where Atom is the literal's atom. The
valid literal (Atom) factis used to identify a B-literal, whose atom is subsumed
by the Atom, that can be extended upon. The redundant_literal (Atom) factis
used to identify a B-literal , whose atom subsumed the Atom, that cannot be extended
upon. These two facts could possibly be provided by the user (if they are known)
together with the set of clauses to accelerate the derivations. However, this should be done
with caution since they may affect the completeness of the system. It must be pointed out
that the check is suppressed if the given set of clauses is written in propositional logic (i.e.,
literals are all ground). The reason of this is that all clauses that contain pure literals are
removed during self configuration. Since the literals of the input clauses are all ground

then there can be no instance that a pure literal may occur in a derivation.

Sutcliffe (1989) modified the standard consecutively bounded depth first
search implemented in the Prolog technology theorem prover by Stickel (1985). The
modified consecutively bounded depth first search used by Sutcliffe places a bound on the
number of A- and B-literals in the current center chain. This version of the consecutively
bounded depth first search is used in the implementations of the five derivation strategies.
At the beginning of a search, the initial depth bound is either set to a user specified value
or (if not specified) the size of the chosen top clause is used. The number of A- and B-
literals in the center chain is always monitored after every extension operation. If a
refutation is not obtained and the number of A- and B-literals in the center chain exceeds
the depth bound, backtracking occurs. The minimum amount by which the depth bound is
exceeded is monitored (asserted as exceed (N) in the Prolog database where N is the
difference after subtracting the depth bound from the number of A- and B-literals in the

center chain). If the bounded search fails to find a refutation and the fact exceed (N)
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exists, the depth bound is incremented by N and the derivation is re-started. If a search
fails and exceed (N) does not exist, the search is terminated in failure. If at any stage of

the search the center chain is empty, the search is stopped and the refutation is completed.

The general algorithms of the five implemented theorem provers are described
in Appendix A. The algorithms have been implemenetd using the ARITY Prolog compiler.
The source codes of the programs are listed in Appendix B.

3.6. Theorem Prover Description

The implementations of the ME procedure, SL-resolution, the GC procedure,
SLM and SLM-5 produce the ME-TP, SL-TP, GC-TP, SLM-TP, SLMS5-TP theorem
provers respectively. Figure 29 shows the general system diagram of each theorem
prover. Each theorem prover involves five files. The executable file which serves as the
inference engine, the application database which handles the storage of information
generated during runtime, the program description file which contains the description of
the theorem prover, the commands description file which contains all the syntax of
commands used and their descriptions, the problem files where each file contains a
theorem to prove, and the output device where the output of the theorem prover is sent.
The output device can be the console, printer or a text file. The five theorem provers are all

command-driven.

Appendix C describes how to run each theorem prover in DOS; the format of the theorem
to be proven (a set of clauses); how to load the set of clauses into the theorem prover; how
to start the derivation; and how to direct the output of the derivation. The three types of

output produced during and after the derivation are also described.
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Chapter 4

COMPARISON

4.1. Introduction

The five theorem provers developed were tested with 13 problems taken from
Pelletier (1986), 10 problems from Chang (1970), and the Schubert's Steamroller problem
as presented in Stickel (1986). These 24 selected problems are listed in Appendix D.
They were run on an IBM compatible machine which has a 16 MHz clockspeed with a 20
MB hard disk. The speed of the system was measured in terms of logic inference per
second (LIPS) using the naive reverse program, which is commonly used as a benchmark
test for PROLOG systems (Amble 1987, Tarnlund 1988). The naive reverse program is

as follows :

reverse([], [1).
reverse([E|List], Result) :-
reverse(List, Partial),

append (Partial, [E], Result).

append((], L, L).
append([H|Listl, List2, [H|List3]) :-

append(Listl, List2, List3).

The naive reverse program was compiled using the Arity/Prolog compiler. It was run to
reverse a list of 200 integers, giving the result of 1.38 seconds execution time, which is
equivalent to 14,711 LIPS. The number of logical inferences (the number of PROLOG
calls) is computed using the formula LT = (N+1)* (N+2) /2 where N is the size of the

list to reverse. During the testing, it was found that the LIPS value changes as the size of
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the list is varied. The inconsistency of LIPS value can be attributed to the virtual memory
use which is inherent to Arity/Prolog. For comparison purposes, the LIPS value of a
system should be obtained by reversing a list of 200 integers. It must be pointed out,
however, that "timing results are especially difficult to compare, influenced as they are by
so many variables that are independent of the theorem-proving itself" (Stickel 1986,

p- 93).

4.2, Comparison of Results

The results of proving the selected 24 problems are shown in Table 1. The
proof search bound column of the table contains the search bound which produces the
proof. The number of center chains in the derivation are the center chains generated by
extension and reduction operations within the proof search bound (i.e., center chains
generated before the proof search bound was reached are excluded in the count). The
number of inadmissible center chains within the proof search bound were also recorded.
The number of center chains in the proof represents the size of the refutation. In the case
of the ME-TP and SLMS5-TP, the number of center chains in the proof may not represent
the actual size of the refutation. The proofs of lemmas or proved literals were not
recorded. Hence, it is difficult to determine the actual size of a refutation which uses a
lemma or a proved literal generated in previous search bounds, as input parent chain. The
derivation duration is the time from the start of the search for the search bound in which
the refutation was obtained, until the time when the empty center chain is obtained. The

search duration is the total time duration for obtaining the proof.

The space efficiency of each theorem prover has been computed in terms of
the number of center chains. This value is referred to as the memory use efficiency
(MUE) and it uses the result of the ME-TP as the basis of comparison. The MUE is

computed using the following formula :
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(RCpp — RCyg_rp)
MUEqp, = * 100
RC

ME-TP

where :

RC TC - IC
= the number of retained center chains

TC = the number of center chains generated in the derivation by

extension and reduction operations
I1C = the number of inadmissible center chains generated in the
derivation by extension and reduction operations

TP = the SL-TP, GC-TP, SLM-TP or SLM5-TP

A positive MUE implies that the theorem prover uses more memory than the ME-TP and

a negative MUE means that the theorem prover uses less memory than the ME-TP.
The execution time efficiency (ETE) of each theorem prover has also been

computed. It is used to determine how fast the theorem prover solves each problem

compared to the ME-TP. The efficiency was computed using the following formula :

SD = the search duration

A positive ETE implies that the theorem prover is slower than the ME-TP while a negative

value means that the theorem prover is faster than the ME-TP.
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Table 2 - Experimental Results of the Five Theorem Provers with the Size of the Top

Clause as the Initial Search Bound.

Center chams Inadmissible Center chains
Proof in the derivation center chams in the proof Duration (sec) Effciency (%)
Theorem Search
Prover bound Extn. Red'n. Extn. Redn Extn Redn Derivation  Search MUE? ETEY

1. Selected problems taken from Pelletier (1986)

Pel- 10 with (5) as the top clause
METP 5 8 3 2 0 6 3 0.55 1.65
SL-TP 4 7 3 2 0 5 3 0.22 0.77 -11.11 -§333
GC-TP 5 7 3 2 0 5 3 0.38 1.59 1111 -3.64
SIM-TP 5 9 3 3 0 6 3 0.66 247 0.00 49.70
SIMS-TP 5 8 2 2 0 6 2 0.55 2.03 1111 23.03
Pel- 12 with (8) as the top clause
ME-TP 8 26 13 11 0 15 13 237 5.65
SL-TP 5 16 12 5 0 7 10 1.21 1.81 -17.86 -67.96
GC-TP 8 17 10 10 0 7 10 1.10 472 -3929  -16.46
SIM-TP 10 172 73 67 0 14 17 43.12 138.53 53571 235186
SLMS-TP 8 25 12 10 0 15 12 219 7.86 -3.57 39.12

Pel-14 with (3) as the top clause

ME-TP 4 5 1 1 0 4 1 0.27 0.99

SL-TP 3 4 2 1 0 3 2 0.17 0.60 0.00 -39.39
GC-TP 4 4 2 1 0 3 2 0.22 0.94 0.00 -5.05
SLM-TP 4 6 2 2 0 4 2 0.44 1.32 20.00 3333
SIMS-TP 4 5 1 1 0 4 1 0.33 1.16 0.00 1717

Pel-17 with (5) as the top clause

ME-TP S 5 1 0 0 5 1 039 1.21

SL-TP S ] 1 0 0 5 1 0.17 0.66 0.00 -45.45
GC-TP 5 4 2 0 0 4 2 033 1.21 0.00 0.00
SLM-TP 5 5 1 0 0 5 1 0.3% 143 0.00 18.1%
SLMS-TP 5 5 1 0 [} 5 | 0.49 1.53 0.00 2645

cont'd. over



Table 2 (cont'd.)
Center chains Imadmissible Center chains .
Proof n the derivation center chams m the proof Duration {sev) Efficiency (%)
Theorem Search
Prover bound Extn. Redn. Extn. Redn Ext'n. Redn. Derivation ~ Search MUE® ETEY
Pel-20 with (5) as the top clause
ME-TP 3 3 0 0 0 3 0 022 0.66
SL-TP 3 3 0 0 0 3 0 022 055 0.00 -16.67
GC-TP 3 3 0 0 0 3 0 022 0.66 0.00 0.00
SLM-TP 3 3 0 0 0 3 0 027 0.77 0.00 16.67
SLMS-TP 3 3 0 0 0 3 0 027 0.77 0.00 16.67
Pel-21 with (4) as the top clause
ME-TP 4 4 1 0 0 4 1 033 1.04
SL-TP 4 4 2 0 0 4 2 028 1.16 20.00 11.54
GC-TP 4 3 2 0 0 3 2 0.22 0.99 0.00 -4.81
SLM-TP 4 5 2 0 0 4 2 0.49 1.54 40.00 4%.08
SLMS-TP 4 4 1 0 0 4 1 0.49 1.54 2.00 48.08
Pel-23 with (4) as the top clause
ME-TP 5 7 3 1 0 4 3 0.55 242
SL-TP 4 3 1 0 0 3 ! 0.16 1.76 -55.56 -27.27
GC-TP 5 6 3 1 0 3 3 0.55 247 -11.11 207
SIM-TP 6 21 7 13 0 4 2 1.59 599 66.67 147.52
SLMS-TP 5 S 4 2 0 5 4 1.04 3.46 2222 4298
Pel-24 with (6) as the top clause
ME-TP 5 7 2 0 0 7 2 0.77 1.98
SL-TP 6 9 3 0 0 9 3 0.61 3.02 33.33 52.53
GC-TP 5 6 3 0 0 6 3 0.61 1.87 0.00 -5.56
SLM-TP 7 7 3 0 0 7 3 1.16 374 11.11 88.89
SLMS5-TP 7 7 2 0 0 7 2 1.10 3.84 0.00 93 .94
Pel-25 with (7) as the top clause
ME-TP 5 30 2 3 0 11 0 258 533
SL-TP 6 8 3 0 0 R 3 0.66 5.33 -62.07 0.00
GC-TP 5 24 X 3 0 7 4 2.69 5.50 0.00 39
SLM-TP 6 % 3 0 0 3 3 1.20 .46 -62.07 58.72
SIMS-TP 5 30 2 3 0 il 0 418 791 0.00 48 41

cont'd. over

121
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Table 2 (cont'd.)

Center chams Inadmissible Center chams
Proof in the derivation center chams 1n the proof Duration (sec) Efficiency (%)
Theorem Search
Prover bound Extn. Redn. Extn. Red'n Extn. Redn. Derivation ~ Search MUE? ETEP
Pel-27 with (2) as the top clause
ME-TP 5 7 0 0 0 7 0 0.72 1.81
SL-TP 5 8 0 0 0 8 0 0.54 1.65 14.29 -8.84
GC-TP 5 7 1 0 0 7 1 0.83 2.09 1429 15.47
SIM-TP 5 8 0 0 0 8 0 0.83 2.25 14.29 2431
SLMS-TP 5 8 0 0 0 8 0 087 236 14.29 30.39
Petl-30 with (7) as the top clause
ME-TP 4 4 1 0 0 3 1 038 1.60
SL-TP 4 4 1 0 0 3 1 0.27 1.42 0.00 -11.28
GC-TP 4 4 1 0 0 3 1 0.33 1.53 0.00 -4.38
SLM-TP 4 4 1 0 0 3 1 038 1.86 0.00 16.25
SLMS-TP 4 4 1 0 0 3 1 0.44 1.98 0.00 23.75

Pel-31 with (6) as the top clause

ME-TP 3 4 0 0 0 4 0 033 0.8%
SL-TP 3 4 0 0 J 4 0 0.22 0.76 0.00 -13.64
GC-TP 3 4 0 0 0 4 0 0.32 0.88 0.00 0.00
SLM-TP 3 4 0 0 0 4 0 0.38 1.10 0.00 25.00
SLMS-TP 3 4 0 0 0 4 0 044 1.16 0.00 31.82
Pel-32 with (7) as the top clause
ME-TP 4 6 0 0 0 6 0 0.44 1.15
SL-TP 4 7 0 0 0 7 0 039 1.10 16.67 -4.35
GC-TP 4 S 1 0 0 5 1 0.50 1.21 0.00 522
SLM-TP 4 7 0 0 0 7 0 0.66 1.49 16.67 2957
SLMS-TP 4 7 0 0 0 7 0 0.66 1.54 16.67 3391
2. Problems taken from Chang (1970).
Chang-| with (4) as the top clause
ME-TP 4 5 0 0 0 4 0 0.87 .26
SL-TP 3 4 0 0 0 3 0 0.60 1.03 -20.00 -16.67
GC-TP 4 3 1 0 0 3 1 039 082 -20.00 -3492
SLM-TP 4 5 0 0 0 4 0 0.99 {49 (.00 %25
SLMS-TP 4 5 0 0 o 4 0 1.04 [ .00 17 46

cont'd. over
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Table 2 (cont'd.)

Center chams Inadmissible Center chamns
Proof in the derivation center chams in the proof Duration (sec) Efficiency (%)
Theorem Search
Prover bound Extn. Redn. Extn. Redn Extn. Red'n. Derivation ~ Search MUE* ETEP

Cheng-2 with (7) as the top clause

ME-TP 8 1344 0 587 0 10 0 22596 475.82

SL-TP . _ - - - - - - - - S
GC-TP 7 743 662 444 252 11 5 262.38 281.16 -6.34 -40.91
SIM-TP 8 76 0 16 0 10 0 2587 57.84 -92.07 -87.84

(=]

SLMS-TP 8 76 0 16 0 10 26.36 58.66 -92.07 -87.67

Chang-3 with (5) as the top clavse

ME-TP 7 15 0 0 0 7 0 2.52 494

SL-TP 5 4 2 12 2 6 0 8.30 13.51 106.67 173.48
GC-TP 7 42 52 12 18 6 1 18.24 20.65 326.67  318.02
SIM-TP 8 75 0 6 0 10 0 2186 48.78 36000 88745
SIMS-TP 8 75 0 6 0 10 0 22.63 50.21 360.00  916.40

Chang-4 with (5) as the top clause

ME-TP 7 181 0 6l 0 7 0 2455 2757
SL-TP - - _ _ - - - - - - =
GC-TP 7 4 52 2 18 6 1 18.24 2093 -4667  -24.08
SLM-TP 7 15 0 1 0 7 0 379 659 8833  -76.10
SLMS5-TP 7 15 0 1 0 7 0 384 665 8833 7538

Chang-5 with (9} as the top clause

ME-TP 4 4 0 0 0 4 0 0.71 [.10

SL-TP 3 3 0 0 0 3 0 027 0.72 -25.00 -34.55
GC-TP 4 3 1 0 0 3 1 0.54 0.93 0.00 -15.45
SLM-TP 4 4 0 0 0 4 0 0.77 121 0.00 10.00
SLMS-TP 4 4 0 0 0 4 0 0.72 1.21 0.00 10.00

Chang-6 with (9) as the top clause

ME-TP 7 4 0 0 0 4 0 0.61 16.75

SL-TP 6 1254 33 255 20 5 1 444 .02 431.32 2520000 277355
GC-TP 7 2827 208§ 1417 578 5 2 2068.71 209096 9532500 1234334
SIM-TP 7 350 0 38 0 7 0 106.22 12308 7700.00 634 %1
SEMO-1P 7 350 0 38 0 7 0 10991 12694 7700.00 657 %5

cont'd. over
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Table 2 (cont'd.)

Center chains Inadmissible Center chains
Proof in the derivation center chams in the proof Duration (sec) Efficiency (%)
Theorem Scarch
Prover bound ~ Extn. Redn.  Extn. Redn Exta. Red'n.  Derivaton Search MUE* ETE®
Chang-7 with(7) as the top clause
METP 5 L} { I 0 5 1 093 231
SL-TP 4 3 0 1 0 5 0 0.77 1.87 -12.50 -19.05
GC-TP 5 8 1 I 0 5 I 0.94 236 0.00 2.16
SLM-TP 5 8 I 1 0 5 1 1.04 2.69 0.00 16.45
SLMS-TP 5 3 t 1 0 5 1 1.15 297 0.00 28.57
Chang-8 with (9) as the top clause
ME-TP 5 17 0 4 0 12 0 247 373
SL-TP 7 37 2 10 0 18 0 423 16.25 123.08  335.66
GC-TP 5 13 4 4 0 8 4 236 351 0.00 -5.90
SLM-TP 7 19 6 5 0 10 4 3.46 26.81 53.85 618.77
SLMS-TP 6 21 2 5 0 12 0 428 6.42 38.46 72.12
Chang-9 with (8) as the top clause
ME-TP 6 16 2 3 0 8 2 1.92 6.70
SL-TP 6 16 2 3 0 8 2 1.48 6.10 0.00 -8.96
GC-TP 6 16 2 3 0 8 2 2.26 8.18 0.00 22.09
SLM-TP 7 16 2 3 0 8 2 225 9.84 0.00 46 .87
SLMS-TP 7 16 2 3 0 8 2 2.69 10.99 0.00 64.03
Chang-10 with (12) as the top clause
ME-TP 5 48 0 9 0 7 0 21.31 36.64
SL-TP 5 69 0 8 0 7 0 29.61 52.46 56.41 43.18
GC-TP 5 43 4 9 0 7 0 26.80 43.61 10.26 19.02
SLM-TP 5 46 0 11 0 7 0 19.67 35.87 -10.26 -2.10
SLMS-TP 5 46 0 11 0 7 0 19.94 36.14 -10.26 -1.36
Chang- 10 with (13) as the top clause
ME-TP 5 P23 [t} 6 0 7 0 11.65 31.75
SL-TP 5 21 0 3 0 7 0 10.54 28.90 0.00 -8.98
GC-TP 5 24 2 6 0 7 0 13.68 3493 11.11 10.02
SLM-TP 5 24 0 6 0 7 0 1032 28.51 0.00 -10.20
SLMS-TP 5 24 0 6 0 7 )] 10.44 28.72 0.00 -9.54

cont'd. over



Table 2 (cont'd.)
Center chains Inadmissible Center chains
Proof in the derivation center chams in the proof Duration (sec) Efficiency (%)
Theorem Scarch
Prover bound Extn. Redn. Extn. Redn  Extn. Redn. Derivation  Search MUE® ETE?
Chang-10 with (14) as the lop clause
ME-TP 5 48 0 9 0 7 0 31.52 56.30
SL-TP 5 3 0 10 0 7 0 61.03 8233 112.82 46.23
GC-TP 5 48 4 9 0 7 0 29.66 49.32 10.26 -12.40
SLM-TP 5 46 0 11 0 7 0 22.57 4235 -10.26 -24.78
SLMS-TP 5 46 0 11 0 7 0 2280 42.67 -10.26 -24.21
Chang- 10 with (15) as the top clause
ME-TP 4 16 0 3 0 5 0 10.49 17.52
SL-TP 4 161 1 19 1 9 0 121.44 143.52 99231 719.18
GC-TP 4 16 0 3 0 5 0 7.53 12.91 0.00 -26.31
SLM-TP 4 17 0 4 0 5 0 736 12.63 0.00 -2791
SLMS5-TP 4 17 0 4 0 5 0 736 12.74 000 -2728
3. Schuberts steamroller problem with (26) as the top clause

ME-TP 11 35741 6282 18372 2470 39 1 1565793  21150.93
SL-TP 11 442 3 253 1 51 0 133.80 886.61 9910  -95.81
GC-TP 11 122 n 70 26 21 26 77.66 859.15 -99.54 -95.94
SLM-TP i - i} L - - - - d
SLMS-TP 11 1047 19 50t 19 31 0 640.00 884.00 -97.42 -95.82
Note : 2 MUE is the memory use efficiency of each theorem prover relative to the ME-TP result.

b ETE is the execution time efficiency of each theorem prover relative to the ME-TP result.

¢ Runout of disk space (10 MB) after running more than 24 hours.

d

The derivation was aborted due to 2 ‘not enough global stack’ error.

125



126

4.2.1. Memory Use Efficiency Comparison

As shown in Table 1, none of the five theorem provers consistently used the
least amount of memory in solving the selected problems. This shows that the space

efficiency of a theorem prover is dependent on the properties of the problems.

The ME-TP required less memory than the others for problems PEL-27,
CHANG-3, CHANG-6 and CHANG-8. The ME-TP obtained a smaller search space in
these problems because unit lemmas, which were generated in previous search bounds,
were used as input chains during extension operations. These results gave evidence that
adding lemmas, especially unit lemmas, is effective in conjunction with subsumed unit
extension and the unit preference strategy. It also has a positive effect in a consecutively
bounded depth-first search environment because lemmas generated in one search bound
are carried over to the next search bound The other theorem provers, especially the SL-
TP, used a great deal of memory in finding a proof for the CHANG-3 problem. This
problem of SL-TP is mainly caused by the excessive application of the factoring
operation. The GC-TP had difficulty in solving the CHANG-6 problem. As shown in the
results, the GC-TP performed too many C-reductions (no A-reduction was performed
because CHANG-6 is a set of Horn clauses). However, lemma generation does not
always have positive effects. The negative effect of lemma generation in the ME-TP is
shown in the results for the Schubert's steamroller problem. The results show that the
ME-TP used more memory than SL-TP, GC-TP and SLMS5-TP. This was because the
ME-TP generated many lemmas of which some were non-unit lemmas. The addition of
these lemmas increases the number of possible input parent chains, which caused
expansion of the search tree. The negative effect of generating non-unit lemmas is also

obvious in the results for PEL-12.

The SL-TP required less memory than the other theorem provers in solving
problems CHANG-5 and CHANG-7. This efficiency of SL-TP compared to the others

was due mainly to the initial factoring of the input clauses prior to the derivation.
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Examining problem CHANG-5 (in Appendix A), the SL-TP converts clause (6) into two
chains, one chain for the original clause and another chain for the factor of the clause. The
application of factoring to each input clause prior to the derivation is particularly effective
in conjunction with the unit preference strategy because input chains with fewer literals are
tried first in extension operations. However, SL-TP used more memory than the other
theorem provers in. solving problems CHANG-1, CHANG-3, and CHANG-10(12)
(XXXX(N) means problem XXXX with clause (N) as the top clause). The expanded
search trees of SL-TP in these three problems are caused by the indiscriminate application
of factoring. The search trees obtained by SL-TP in solving problems CHANG-2 and
CHANG-4 were too large for the computer to handle. The expanded search trees in these
problems are caused by the factoring of input clauses during the conversion of input
clauses to input chains, and the factoring operations applied during the derivation. This
confirms the argument of Brown (1974, p. 4) that factoring may add an irrelevancy to the
search space. It is notable that SL-TP obtains good results in problems written at the
propositional level, such as PEL-10, PEL-12, PEL-14 and PEL-17. This is because
factoring operations performed in these problems are all compulsory. However, in first
order predicate calculus problems, especially those recursive type problems such as
CHANG-2, CHANG-3, CHANG-4 and CHANG-10, the factoring operation does cause

some problems.

The GC-TP required less memory than the other theorem provers in solving
problems PEL-12, CHANG-1 and the Schubert's steamroller. As shown in the results of
solving the Schubert's steamroller problem, the GC-TP performed a lot better than the
ME-TP. This efficiency of the GC-TP compared to the ME-TP is due to the effects of the
C-literal mechanism. The C-literal mechanism has two positive effects. The first effect is
that it may help narrow down the search tree because the admissibility restrictions do not
allow any A- or B-literals which are or become identical to any of the inserted C-literals.
In the ME-TP derivation, the preadmissibility restriction does not consider the recycled
literals (in the form of lemma literals) in assessing the admissibility of a center chain. The

second advantage of the C-literal mechanism over the lemma generation of the ME-TP is
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that it may simplify the refutation because one C-reduction of the GC-TP is equivalent to
one ME-TP extension using a lemma, removal of other B-literals from the lemma by
reduction, and a truncation. A shorter refutation is advantageous because less memory is
used. However, in a consecutively bounded depth-first search environment, lemmas
generated by the ME-TP have more lasting effects than the C-literals of the GC-TP,

because C-literals produced within one search bound are not carried over to the next

search bound.

The C-reduction of the GC-TP can be viewed as delayed factoring in the sense
that the leftmost of two unifiable B-literals in a center chain may be removed by reduction
after the other is resolved away and inserted as a C-literal at a position preceding the first
B-literal. The results of solving PEL-12 show that C-reduction has a better effect than the
factoring operation. The GC-TP uses less extension operations than the SL-TP because
of the use of recycled literals. However, in some cases the GC-TP produces larger search
trees as demonstrated in the results of solving CHANG-6, CHANG-10(13) and CHANG-
10(14). This negative effect of the GC-TP can be attributed to the insertion of C-literals
which give more choices in the selection of non-B-literals during reduction operations. As
shown in the results for CHANG-6, the GC-TP performed more reduction operations
than SL-TP. Although the C-literal mechanism is similar in effect to the lemma generation
of the ME-TP, the ME-TP performed better than the GC-TP in these problems. The
reason is that the C-literal mechanism of the GC-TP always converts a truncated A-literal
to a C-literal, even if its atom is subsumed by the atom of a unit chain. This causes
problems because a B-literal can either be reduced or resolved away by extension, thereby
expanding the search tree. In the case of the ME-TP, a formed lemma is only added if it is

not subsumed by any input chains.

SLM-TP and SLMS5-TP produce smaller search trees in solving CHANG-2,
CHANG-4, CHANG-10(12) and CHANG-10(14). This is due to the spreading
operation which provides more flexibility in the selection of literal to be resolved on.

Having more choices of literals to resolve on will give more chances for the selection



129

function to select a literal which leads to the detection of failure or to a successful
refutation. The spreading operation, however, is less effective in problems written at
propositional level. The results in problems PEL-12 and PEL-14 demonstrate this effect.
This is because the selection function alternately selects B-literals from different branches
of the center chain, which results in less opportunities to apply reduction. Hence, the
spreading operation is suppressed in the implementation of SLM-S5 if the set of clauses is
at propositional level. As demonstrated in the results, SLMS5-TP uses less memory than
the SLM-TP in problems written at propositional level. Generally, the overall results

showed that SLMS5-TP has better memory use efficiency than SLM-TP.

For sets of Horn clauses written at first order level, the results for SLMS-TP
are the same as for SLM-TP. However, the results of the two theorem provers differ for
sets of non-Horn clauses. The results of solving the Schubert's steamroller problem show
that SLMS-TP performed a lot better than SLM-TP and ME-TP. SLMS-TP performed
better than SLM-TP because SLMS-TP added proved literals to the set of input chains
which is favorable in conjunction with subsumed unit extension and the unit preference
strategy. The addition of proved literals also has positive effects in a consecutively
bounded depth-first search environment. SLMS5-TP also performed better than the ME-
TP in solving the Schubert's steamroller problem because of the spreading operation and

because all the added chains from proved literals areunit chains.

4272, Execution Time Efficiency Comparison

In most cases, when a theorem prover produces the least number of center
chains the execution time is also the least. Obviously, lesser efforts are required when

fewer center chains are produced, thereby requiring less execution time.

There are some cases, however, when a theorem prover has a low execution

time although it has the same or slightly larger number of center chains produced than the
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others. Take, for instance, the results in problems PEL-12, PEL-27, PEL-31, PEL-32 and
CHANG-9. Although the memory use efficiency of SL-TP in these problems is similar
to those of the other theorem provers, its execution time is less than that of the others. The
reason for this difference is the simplicity of the operations used in SL-TP. The
truncation operation of SL-TP simply removes A-literals. The ME-TP truncation
operation involves lemma formation, updating of scopes and a subsumption test to check
if the lemma has to be added to the input chains. These require great effort which slows
down the derivation. In the case of GC-TP, the updating of the C-point of A-literals
affected by each reduction operation is an additional effort which also slows down the
derivation. The complexity of the data structure of SLM-TP and SLMS5-TP, in addition to
the extra effort required to update depths of A-literals affected by reduction operations,

increases the execution time.

4.2. Overall Performance Comparison

The over-all performance of the five theorem provers was measured in terms
of the speed (execution time) difference between each theorem prover in solving non-
trivial problems. Non-trivial problems are identified as those problems which require
more than 60 seconds to solve by at least one theorem prover. Table 3 presents the speed
differences between each of the theorem provers in non-trivial problems. The speed

difference, SPD, is computed using the following formula :

SDpax ~— SDrp
S PD TP = === * l O O
S Dma X SD min
where :
SPDpp = the speed difference of a theorem prover

SDpax = the maximum search duration to prove the problem
SDin = the minimum search duration to prove the problem

SD1p = the search duration of a theorem prover



131

Table 3. - Speed Difference of the five Theorem Provers in Problems which require more

than 60 seconds to obtain a Refutation.

Speed Difference (%) Maximum
Search  Level of

Problem ME-TP SL-TP GC-TP SLM-TP SLMS-TP Duration Difficulty
PEL-12 97.20 100.00 97.87 0.00 95.57 138.53 2
CHANG-2 0.00 _ 46.57 100.00 99.80 475.828 6
CHANGH4 0.00 _ 31.65 100.00 99.71 27.578 5
CHANG-6 100.00 77.89 0.00 94.87 94.69 2090.96 4
CHANG-10(14) 65.11 0.00 82.57 100.00 99.20 82.33 1
CHANG-10(15) 96.26 0.00 99.79 100.00 99.92 143.52 3
SCHUBERT 000  99.86 100.00 _ 9988  21150.93b 7
Mean® 33.87 _ 61.26 _ 98.76

Meand 5578 7121 7516 _ 98.12

Mean® 45.16 _ 48.35 89.50 98.39

Meanf 9483 5116  57.77 71.95 96.87

Note: @ : SL-TP was not able to obtain result on this problem. The shown maximum search

duration is taken from the result of the ME-TP.
b . SLM-TP was not able to obtain result on this problem. The shown maximum search

duration is taken from the result of the ME-TP.

€ : Disregarding the results of SL-TP and SLM-TP.

d . Disregarding the results in CHANG-2 and CHANG+4 problems.
¢ Disregarding the results in the SCHUBERT problem.

f

Disregarding the results in CHANG-2, CHANG-4 and SCHUBERT problems.
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The theorem prover that has bigger SPD value indicates that it performs better
than the others in terms of execution time. The maximum search duration of a problem is
the maximum execution time required to solve the problem by one of the theorem provers.
Each non-trivial problem has a designated level of difficulty. The designation of level of
difficulty to each problem is based on the maximum search duration. Problems in which
one of the theorem provers did not produce results have a higher level of difficulty than
the others. That is why CHANG-4, in which SL-TP did not produce a result, has a higher
level of difficulty than CHANG-6 although CHANG-6 has a greater maximum search
duration than CHANG-4.

A weighted mean for each theorem prover is computed to obtain an overall

performance comparison. The weighted mean of a theorem prover is computed using the

following formula :
m
2 ( SPDyp; * LD;)
i=1
Meanpp = ———————————m—m—————
m
Y, p,
i=1
where :

LD; =the level of difficulty of problem i

m = the number of problems considered

As shown in Table 3, there are four rows of weighted means. The first row is
the weighted means for ME-TP, GC-TP and SLMS5-TP only. The weighted means of SL-
TP and SLM-TP were not included in this row because SL-TP did not produce results in
CHANG-2 and CHANG-4 while SLM-TP did not produce a result in the SCHUBERT
problem. The weighted means in this row show that SLMS5-TP performed significantly
better than the ME-TP and GC-TP in all the non-trivial problems. The second row of

weighted means provides an overall comparison between ME-TP, SL-TP, GC-TP and
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weighted mean of SLM-TP is not included in this row because it gave no result in the
SCHUBERT problem. This row also shows the superiority of SLMS-TP over the others
in solving the non-trivial problems considered. The third row of weighted means shows

the overall performance of ME-TP, GC-TP, SLM-TP and SLMS5-TP in solving the non-
| trivial problems except the SCHUBERT problem. SL-TP is not included because it has
no results in CHANG-2 and CHANG-4. It is notable that SLM-TP performed better than
the ME-TP and GC-TP in solving the non-trivial problems considered. SLMS5-TP still
came out as the best. In the last row, the computed weighted means exclude the results
obtained in problems CHANG-2, CHANG-4 and SCHUBERT. The results show that
SLMS5-TP performed better than the others in solving the considered problems. The
results of ME-TP in these problems are closely comparable to the results of SLMS-TP.
Overall, the SLMS5-TP performed better than the other theorem provers in solving the non-

trivial problems.
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Chapter 5

CONCLUSION

5.1, Summary of Features

In the analysis of s-linear resolution, ME procedure, t-linear resolution, SL-
resolution, GC procedure and SLM derivation strategies, the following major features

were found :

i)  Extension operation
a) selection function
b)  resolvants of ancestor resolution subsume the center clause.
i)  Reduction operation
a)  compulsory ancestor resolution on literals having atoms which are or
become identical.
b)  compulsory merging operation.
¢)  compulsory C-reduction.
d) compulsory reduction when the literals involved have identical atoms
and no A-literal indexed by 1 is between them
ii)  Truncation operation
a)  production of lemmas
b)  creation of C-literals
¢) insertion of A-literals created from truncated A-literals at more than one
position
iv)  Spreading operation
v)  Syntactic checks
a)  Admissibility restrictions

b)  Hyperminimality restriction



135

vi)  Semantic check

In s-linear and t-linear resolutions, the literals of the center clause are resolved
away in any order. This means that even if each literal of the center clause can be resolved
away in one way, there would still be N! derivations where N is the number of literals in
the center clause. Hence, s-linear and t-linear derivations have large search trees. This
inefficiency of s-linear and t-linear resolutions was eliminated by the ME procedure, SL.-
resolution, GC procedure and SLM by using a selection function which only selects one
literal from a center chain to resolve upon. Consequently, the search trees of the ME
procedure, SL-resolution, GC procedure and SLM are smaller compared to s-linear and t-
linear search trees. The selection function is in effect similar to the strategy used in
ordered input resolution. The restriction that the resolvants of ancestor resolution must
subsume the previous center clause is imposed in different ways by the six derivation
strategies. This restriction makes sure that newly introduced literals can factor with

existing literals in the center clause.

The reduction operation is an inference rule used in the ME procedure, SL-
resolution, the GC procedure and SLM. The reduction operations of the ME procedure,
SL-resolution, the GC procedure and SLM are partly implementing the implicit merging
operations of s-linear and t-linear resolutions. The reduction operation of SL-resolution is
more powerful than that of the ME procedure because it includes ancestor resolution and
explicit factoring. The compulsory reduction operation of the GC procedure is a more
strict application than SL-resolution because it does not require that the literals involved
have atoms that are, or become identical. SLM imposes compulsory reduction only if the
literals involved have identical atoms and no A-literal indexed by 1 is between them. It has
been shown that this restriction, together with the hyper minimality restriction, maximises

the use of recycled A-literals.

The truncation operation is employed in the ME procedure, SL-resolution, the

GC procedure and SLM. The truncation operation of SL-resolution only removes A-
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literals from the center chain. The ME and GC procedures make use of all truncated A-
literals. SLM reuses truncated A-literals indexed by 1. The ME procedure recycles
truncated A-literals in the form of lemmas. The GC procedure implements the recycling
of truncated A-literals via C-literals. This is more efficient than the lemma mechanism of
the ME-TP because a C-reduction of the GC-procedure is equivalent to one extension
using a lemma, removal of other B-literals from the lemma by reduction and a truncation.
SLM reuses truncated A-literals indexed by 1, by inserting them as A-literals indexed by
0, at possibly more than one position in the center chain. Allowing the insertion of
recycled A-literals at more than one position, however, produces irrelevant derivations

which expand the search tree.

The spreading operation used in SLM allows each spread literal to be resolved
away concurrently with the others, by interleaving the operations on the branches. In the
ME procedure, SL-resolution and the GC procedure, the selection function has limited
choice of literals because only B-literals in the rightmost cell of a one 'branch’ center chain,
are considered. If a literal is not in the rightmost cell cannot be resolved away, possibly as
a result of instantiation, the detection of this problem has to wait until all literals to the
right of that literal are resolved away. Spreading partially alleviates this problem by
allowing the selection function to choose a B-literal to resolve on from any of the center

chain branches.

The six derivation strategies impose syntactic checking to trim redundant
derivations. Loveland proved that a refutation as small as a minimal non-linear resolution
does not contain tautologous clauses, and a restriction to ensure this is imposed in the
s-linear and SL-reslution strategies. The ME and the GC procedures are not compatible
with the no-tautologies restriction. The ME procedure imposes three preadmissibility
restrictions. The first one prevents using tautologous input chains during extension
operations. The second preadmissibility restriction prevents the occurence of endless
loops in a derivation. The third preadmissibility restriction enforces compulsory reduction

on B-literals which have identical atoms with preceding A-literals. It also serves as a
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retrospective check of the second preadmissibility restriction. SL-resolution imposes a
more restrictive syntactic restriction than the ME procedure, which reject tautoilogies and
enforce factoring of B-literals that are or become identical. In the GC procedure, an
extended implementation of the first two preadmissibility restrictions of the ME procedure
is imposed. SLM's hyper minimality restriction and the restrictions that satisfy the
application of compulsory reduction, maximise the use of recycled A-literals. The hyper

minimality restriction also partly prevents the occcurence of loops in the derivation.

SLM applies semantic checking to each literal in the center chain using a given
interpretation, during extension and reduction operations. The practical effect of semantic
checking is the pruning of some irrelevant derivations from the search tree. However,
there is difficulty in implementing a non-trivial interpretation. Two problems were
identified by Heschen (1976) in the implementation of a non-trivial interpretation. First, it
is difficult to determine whether or not a clause containing variables is falsified, especially
for interpretations whose domains are not fairly small. The second problem is the
difficulty of finding a general representation of an interpretation with a reasonable storage

requirements.

5.2. Systems' Performance

SLM may have longer refutations than those obtained by the ME procedure,
SL-resolution or the GC procedure because it does not factor nor ancestor resolve B-
literals indexed by 0. However, SLM produces a narrower search tree than those obtained
by the other three derivation strategies because it has a lesser number of reductions. It has
also been shown that SLM can obtain a refutation using more of the top clauses from the
set of support than the GC procedure. This feature is desirable in certain applications

which require the ability to obtain a refutation from a specific top clause.
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SLM-1, SLM-2 and SLM-3 are variations of SLM designed to reduce the
number of irrelevant derivations caused by the indeterminancy of inserting A-literals
created from truncated A-literals. SLM-1 minimises the number of irrelevant derivations
by only inserting the A-literal in a position that is not equivalent to a previous position.
However, this has a negative effect because the restriction may prevent a refutation for a
certain top clause. SLM-2 always inserts the A-literal created from a truncated A-literal at
its depth. This solves the indeterminancy problem, but its effect is bought at the expense
of omitting the hyper minimality and compulsory reduction restrictions. SLM-3 solves
the indeterminancy problem by not recycling A-literals. Obviously, SLM-3 may obtain
longer refutations because some literals will be repeatedly resolved away when they could
be simply reduced using a recycled A-literal. SLM-4 and SLM-5 are new variations of
SLM which are intended to alleviate the problems of SLM. SLM-4 requires a set of
clauses which has a non-Horn model to be broken down into subsets of clauses such that
each subset has a Horn model. Each subset has to be refuted using SLM-4. SLM-4 traps
loops by not allowing identical A-literals to coexist in any center chain. A-literals are
simply deleted during truncation which solves the indeterminancy problem. The problem
with this variation of SLM lies in the difficulty of splitting a set of clauses that contains
many clauses which have more than one literal indexed by 1. SLM-5 is formulated based
on the problems encountered in SLM and SLM-1. It maintains the main features of SLM
but modifies the equivalent position restriction of SLM-1, adds more restrictions to detect
loops, modifies the extension operation such that a unit chain is selected first as input
parent chain, and modifies the reduction operation definition by always selecting the B-
literals to be reduced from the rightmost cell. SLM-5 suppresses the spreading operation
if the set of clauses is written at propositional level. The reduction operation is also
suppressed in refuting a set of Horn clauses. SLM-5 makes use of proved literals which
are not subsumed by any unit chains, by adding them to the input chain database as unit
chains. However, the addition of proved literals is only done when refuting a set of non-
Horn clauses. This restriction is based on the idea that linear input resolution is complete
for sets of Horn clauses, thus, the addition of more clauses to the original set of Homn

clauses may only expand the search tree.
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It is conjectured that SLM-5 answers the question posed by Brown (1974, p.
32) - "is there an interesting linear inference system whose refutations are bounded by the
complexity of some hyper minimal refutations 7" He suggested that by always placing
"an A-literal created by truncation, at its depth and no where else, leads to such a system".
Although SLM-5 does not follow this suggestion precisely, SLM-5 produces shorter
refutations and smaller search trees than SLM. SLM-5 minimises the repetitive resolving
away of literals because it reuses more truncated A-literals than SLM. The addition of
proved literals to the input chain database partly solves the indeterminancy problem of
SLM in inserting truncated A-literals. SLM-5 has better restrictions than SLM for

detecting loops and pruning irrelevant derivations from the search tree.

The ME procedure, SL-resolution, GC procedure, SLM and SLM-5 were
implemented in PROLOG. The Arity/PROLOG compiler was used to compile the
implemented theorem provers. The unit preference strategy, set of support strategy, pure
literal elimination, elimination of tautologies, match check, selection function based on a
computed weight of B-literals, and a modified consecutively bounded depth first search
strategy were included in the implementations. The extension operation was also extended

to include subsumed unit extension and paramodulation.

The implemented theorem provers were tested using twenty four selected
problems. The results show that none of the theorem provers consistently perform better
than the others. The effects of the lemma generation in the ME-TP, the initial factoring of
input clauses and factoring operation during derivations used in SL-TP, the C-literal
mechanism of GC-TP, the spreading operation of SLM-TP and SLMS5-TP, and the

generation of proved literals in SLM5-TP were compared.

In some problems, the addition of lemmas to the input chain database has
positive effects on the derivation. However, the addition of lemmas to the input chain

database also increases the number of possible input chains. As a result, the ME-TP
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produces larger search trees in some of the problems, compared to the other theorem

provers.

The results show that the factoring of input clauses before converting them to
input chains has a positive effect in SL-TP derivations, particularly in conjunction with the
unit preference strategy. The results show that SL-TP produced shorter refutations than
the other theorem provers for some problems. This is because some input clauses were
factored prior to the derivation and these factors were used as input parent chains during
extension operations, thus, minimising the number of factoring operations applied.
However, this initial factoring also causes problems in SL-TP derivations, especially on
recursive type problems such as those presented in Chang (1970). This is because some
of the factors cause irrelevancy in the search space. The initial factoring of the input
clauses also increases the number of input clauses, because a clause may produce more

than one factor.

In the experimentation, the GC-TP produced better results than the other
theorem provers for some problems. This efficiency of GC-TP is brought about by its C-
literal mechanism. Two positive effects of C-literal mechanism were observed. Firstly, the
C-literal mechanism in conjunction with the syntactic restrictions of GC-TP helps trim the
search space of some redundant derivations. Secondly, reducing a B-literal with a C-literal
reduces the length of a refutation because repeated resolving away of B-literals is
minimised. These effects were shown in the results of some problems. However, in a
consecutively bounded depth-first search environment where more than one search bound
is required, the lemma generation of the ME-TP appears to be better than C-reduction
because lemmas generated in one search bound are carried over to the next search bound.
An examination of results also revealed that the insertion of C-literals may expand the
search tree, particularly in sets of Horn clauses where C-literals are all proved literals.
This may expand the search tree because some of these C-literals may subsume some unit
input chains. Thus, a B-literal of the center chain may be reduced by a C-literal or be

resolved upon by a unit chain.
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The results of some of the problems show the positive effect of the spreading
operation used in SLM-TP and SLMS-TP. These results confirm Brown's arguments
which point out that having more flexibility in the selection of literal to resolve on is
critical for the performance of a derivation strategy. However, it was discovered that the
spreading operation is less effective in problems written at propositional level. The results
show that SLMS5-TP, which suppresses the spreading operation for problems written at

propositional level, performs better than SLM-TP.

Based on the overall results, SLMS-TP performed consistently well. It solved
all the 24 selected problems within a reasonable memory use and execution time, and

never produced the worst result on difficult problems.

5.3. Future Directions

A number of problems which are worthy of further investigation are

suggested.

5.3.1. Improving the consecutively bounded depth first search strategy.

Early version of each theorem provers placed the bound on the number of
inferences. The early version produced different results than when the bound is placed on
the number of A- and B-literals in the center chain. In some cases the earlier version gave
better results than the second version but in some problems it also gave poor results. The
question is - are there better ways of implementing the consecutively bounded depth-first
search strategy that give better and more stable results? The works of Nie and Plaisted

(1989) on the refinements of this search strategy may provide the answer to this question.
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5.3.2. Improving the selection function.

It was found in the experimentation that the implemented selection function
significantly improved the performance of the six derivation strategies. Although it
requires great effort to compute the weight of each candidate literal to be resolved on,
using the selection function still gives better results compared to simply selecting the
rightmost literal. This indicates the importance of the selection function to a theorem
prover. Hence, it is worth investigating whether a better way of implementing a selection
function can be found that requires less effort but is as effective or more effective than the

selection function used in this study.

5.3.3. Implementing a more complex interpretation.

The implemented interpretation for SLM-TP and SLMS-TP is the trivial
interpretation which interprets all positive literals as TRUE and all negative literals as
FALSE. It would be worth an investigation to find a general representation of a non-trivial

interpretation which can be implemented.
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Appendix A

ALGORITHMS

Al Derivation Algorithm

The general algorithm in obtaining a derivation is as follows :

DO WHILE the current center chain is not an empty list
Apply the inference rules to the current center chain to
obtain a new center chain
IF the new center chain satisfies the restrictions then
Let the new center chain be the current center chain
ELSE
Backtrack and find another possible solution
END-TIF

END-DO

A2, Inference Operation Selection Algorithm

A2.1. For the ME procedure, SL-resolution and the GC procedure.

IF the first element of the current center chain is a non-B-
literal then
Apply the truncation operation to the current center
chain to obtain new center chain (no backtracking
allowed)

ELSE
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IF reduction of 1literals with identical atoms 1is
possible then
Apply compulsory reduction {(no backtracking allowed)
ELSE
Apply the reduction operation OR the extension
operation to obtain a new center chain
END-IF

END-IF

A22. For SLM and SLM-5.

IF the last non-reduction operation was a trg?cation of an
A-literal indexed by 1 then
Select the branch where the A- or C-literal generated
frem truncated A-literal is inserted
IF the compulsory reduction restriction 1s satisfied
then
Apply compulsory reduction
ELSE
Apply reduction to the branch OR the extension
operation to the center chain
END-IF
ELSE
IF the last non-reduction operation was the spreading
operation then
Apply the extension operation

ELSE

IF a branch of the center chain 1s truncatable then
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Apply the truncation operation (no backtracking
allowed if the truncated A-literal is indexed by
0)
ELSE
IF the rightmost cell of the newly inferred
branch of the center chain contains more than
one B-literal indexed by 0 then
Appiy the spreading operation
ELSE
IF the compulsory reduction restriction is
satisfied then
Apply compulsory reduction
ELSE
Apply reduction to the branch OR the

extension operation to the center chain

END-IF
END-IF
END-IF
END-IF
END-IF
A3 Selection Function Algorithm

A selection function is used to select a B-literal from the center chain to

resolve on during an extension operation.
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A3l Selection function algorithm for the ME procedure, SL-resolution and the GC

procedure.

Extract the rightmost cell from the center chain.
IF the rightmost cell contains only one literal then
Let the literal be the selected literal.
ELSE
Compute the weight for each literal of the rightmost
cell.
Let the literal with the minimum weight be the selected
literal.

END-IF

A32, Selection function algorithm for SLM and SLM-S5.

Extract all tip nodes from the center chain
Extract the rightmost cell for each tip node
Collect all B-literals from the rightmost cells
Remove all B-literals which are identical to any A-literals
of the center chain
IF all B-literals have identical A-literals then
Let the collected B-literals be the list of literals to
be considered for selection (candidate‘list)
ELSE
Let the rest of the collected B-literals be the
candidate list
END-IF
IF the candidate list contains a single literal then
Let the single literal be the selected literal

ELSE
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Compute the weight for each B-literal of the candidate
list
Let the B-literal with the minimum weight be the
selected literal

END-IF

Find the tip node where the selected B-literal belongs

A4 Extension Operation Algorithm

Generally, the extension operation is implemented using the following

algorithm:

Select a B-literal L to resolve on from the center chain
using the selection function.
IF a unit chain is available and its literal K subsumes the
negation of L then
Apply binary resolution using the unit chain as the
input parent chain (no backtracking allowed).
ELSE
IF an input chain C has a B-literal K which 1is
complementary unifiable with L then
Apply binary resolution to L using C as the input
parent chain (allow backtracking to select another
literal from C or get another input chain)
OR
IF an equality literal exists then
Apply paramodulation to L
END-IF ’
END-IF

END-TIF
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AS Match Check Algorithm

The algorithm for checking whether a center chain contains a literal which

cannot be extended upon is as follows:

IF a B-literal L which is sufficiently instantiated can be
selected from the center chain then
IF the atom of L subsumes a valid literal atom
Select another B-literal from the center chain and
check
ELSE
IF the atom of L is subsumed by one of the redundant
literal atom then
The check fails
ELSE
IF L can be extended upon with an input chain C
then
IF all the other 1literals of C can be
extended then
Assert the atom of L as wvalid literal
atom, select another B-literal from the
center chain and check
ELSE
Assert the atom of L as redundant
literal atom and the check fails
END-IF

ELSE
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Assert the atom of L as redundant literal
atom and the check.fails
END-IF
END-IF
END-IF
ELSE
The check succeeds

END-IF
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Appendix B

LISTING OF PROGRAM'S SOURCE CODE

/*
Module:  METP.ARI
Purpose:  Main program of the ME-TP theorem prover
Required Modules :
INTERPRE.ARI
DRIVER.ARI
SET_MAN.ARI
ME_RULES.ARI
SUPPORT.ARI
=== */
7
% Invoke when CTRL BRK is pressed
G = e e e e
restart :-
what_to_do.

what_to_do :-
print(1,[nl,$The CTRL-BRK was pressed. Exit to DOS (Y/N) ? $]),
get0(X),
member(X,"Yy"),

halt.
what_to_do :-
main
72
% The main procedure of the theorem prover
72O
main :-
cls,
fileerrors(_, off),
asserta(ds(me)),
introduction,
repeat,
print(1,[nl,n, $ME-TP :- $]),
ratom(Command),

interpreter(Command).
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Module:  SLTP.ARI
Purpose:  Main program of the SL-TP theorem prover
Required Modules :

INTERPRE.ARI

DRIVER.ARI

SET_MAN.ARI

SL_RULES.ARI

SUPPORT.ARI
/2O
% Invoke when CTRL BRK is pressed
O = e e e e e m e e e e e
restart :-

what_to_do.

what_to_do :-
print(1,[nl,$The CTRL-BRK was pressed. Exit to DOS (Y/N) ? $)),

get0(X),
member(X,"Yy"),
halt.
what_to_do :-
main
Gy e e e e e e e e o e
% The main procedure of the theorem prover
G e e e e e e o e mm
main :-
cls,
fileerrors(_, off),
asserta(ds(sl)),
introduction,
repeat,
print(1,{nl,nl,$SL-TP :- $]),
ratom(Command),

interpreter(Command).
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/*
Module:  GCTP.ARI
Purpose:  Main program of the GC-TP theorem prover
Required Modules :
INTERPRE.ARI
DRIVER.ARI
SET_MAN.ARI
GC_RULES.ARI
SUPPORT.ARI
= _ e — %
o e
% Invoke when CTRL BRK 1is pressed
O e e
restart :-
what to_do.

what_to_do :-
print(1,[nl,$The CTRL-BRK was pressed. Exit to DOS (Y/N) ? $]),
get0(X),
member(X,"Yy"),

halt,
what_to_do :-
main
O e e e e e e ___
% The main procedure of the theorem prover
o/
main :-
cls,
fileerrors(_, off),
asserta(ds(gc)),
introduction,
repeat,
print(1,[nl,nl,$GC-TP :- $)),
ratom(Command),

interpreter(Command).
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/*
Module:  SLM.ARI
Purpose:  Main program of the SLM-TP theorem prover
Required Modules :
INTERPRE.ARI
SLM_DRV.ARI
SLM_SEL.ARI
SLM_SUP.ARI
SLM_RULE.ARI
SLM_REST.ARI
SUPPORT.ARI
*/
D - e s
% Invoke when CTRL BRK is pressed
O = e e
restart :-

what_to_do.
what_to_do :-
print(1,[nl,$The CTRL-BRK was pressed. Exit to DOS (Y/N) ? $)),
get0(X), »
member(X,"Yy"),
halt.
what_to_do :-

% The main procedure of the theorem prover

G = e e e e e e e e e e o
main :-
cls,
fileerrors(_, off),
asserta(slm_version(1)),
introduction,
repeat,
print(1,[nl,n,$SLM-TP :- $]),
ratom(Command),
interpreter(Command).
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/*
Module:  SLMS5.ARI
Purpose:  Main program of the SLMS5-TP theorem prover
Required Modules :
INTERPRE.ARI
SLM_DRV.ARI
SLM_SEL.ARI
SLM_SUP.ARI
SIM5_RUL.ARI
SLM5_RES.ARI
SUPPORT.ARI
= */
20 === s
% Invoke when CTRL BRK is pressed
G = e e e e e e e e e
restart :-

what_to_do.

what_to_do :- ~
print(1,[n,$The CTRL-BRK was pressed. Exit to DOS (Y/N) ? $]),
get0(X),
member(X,"Yy"),

halt.
what_to_do :-

main
G = e e e e e e e e o e
% The main procedure of the theorem prover
Gy — e e e e e e e m e e o mmn e
main :-

cls,

fileerrors(_, off),
asserta(slm_version(5)),
introduction,
repeat,
print(1,[nl,nl, $SLM5-TP :- $]),
ratom(Command),
interpreter(Command).
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I —=—m—=s=mmeee
Module: ME_RULES.ARI

Purpose:  Contains the operation and syntactic restrictions
=== */

/O
% Reduction operation for the ME procedure

Oy mmmmmmm e o e S DD e
reduce(Chain, Resolvant, _, _) :-

clause_type(horn), !, fail.
reduce(Chain, Resolvant, [b,L], Type) :-

clause_type(general), % No reduction for Horn clauses

choose([a,S,K], Prec, Succ, Chain),

[! select([b,L], Others, Prec),

reducible(L, K, Type),

count_A(NS, Prec),

append(Others, [ [a,NS,K]ISucc] , Resolvant) !].

% Check if the two literals are reducible

1educ1ble(L K, Type) :-
complementary(L,K, L_A K_A),

match(L_A, K_A, Type).
72U
% Find if the two Atoms are identical or unifiable
G e e e e e

match(Al, A2, id) :-
identical_atom(A1,A2), !.

match(A1l, A2, unify) :-
unify(Al, A2).

count _A@O,[D :-

count_A(N, [ L1te1a1IChain D:-
count_A(N1, Chain),
increment_A_ctr(Literal, N1, N).

7
% Increment the A-ctr if the literal is an A-literal
O mmmmm e —- e e e e e e e

increment_A_ctr([al_],N1, N) :-
Nis N1+1, 1.
increment_A_ctr(_, N, N).

72U
%0 ME Truncation operation

7
truncate([ [a,S,L] | Rest_Chain ], Lemma, Resolvant) :-
truncate_all([ [a,S,L] | Rest_Chain ], Lemma, Resolvant).



Lo/
truncate_all([ [b,L] | Rest_Chain ], [], [ [b,L] | Rest_Chain ]) :- !.
truncate_all((], [1, []) :- .
truncate_all([ [a,S,L] | Rest_Chain ], [Index|lLemma_Ndx], Result) :-
form_a_lemma(0,Lemma, Rest_Chain),
update_scopes(Rest_Chain, Updated),
negate(L.K),
insert_lemma(Index, [KILemma]),
truncate_all(Updated, Lemma_Ndx, Result).

7
% Form a lemma
% Algorithm:

%o Pick up an A-literal and evaluate if its scope exceeds then number of A-

%o literals (A_Ctr) preceeding it. Increment the counter and pick up again

% another A-literal from the rest of the chain until no more A-literals.
/2

form_a_lemma(A_Ctr, Lemma, Chain) :-
pick_suc([a,Scope,L], Succ, Chain),
evaluate(A_Ctr, Scope, L, Lemma, Lemma_Rest),
inc(A_Ctr, N),
form_a_lemma(N, Lemma_Rest, Succ), !.
form_a_lemma(_, [], Rest).

% Evaluate if the scope of an A-literal exceeds the number of preceding literal

O = e m e e e e e e e e e o e e e e o
evaluate(A_Ctr, Scope, L, [KILemma], Lemma) :-

Scope > A_Ctr,
negate(L,K), !.

evaluate(A_Ctr, Scope, L, Lemma, Lemma).

/* Update the Scopes of the following A-literals
Algorithm:
(1) If the rest of center chain is empty then the update is also
empty and stop the recursion.
else
(2) if the first element of center chain is an A-literal then
insert this A-literal at the update with N as the scope
Increment the scope by 1
Continue the update of the rest of center chain
else
(3) - Insert the first literal of the center chain and insert
1t as it is at the update
Continue the update of the rest of center chain */
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update_scopes(Chain, Updated) :-
choose([a,Scope,L], Prec, Succ, Chain),
count_A(N, Prec),
Scope > N,
append(Prec, [[a,N,L]ISucc], New_Chain),
update_scopes(New_Chain, Updated), !.

update_scopes(Updated, Updated).

72
% Insert a lemma if it is not subsumed by a chain
72
insert_lemma(0, Lemma) :- /* -- Disregard if the # of literals is --- */
clause_size(_,Max), /* -- greater than or equal the maximum --- */
length(Lemma, N),  /* -- size of the input clauses ----------- */

N >= Max, !.
insert_lemma(Index, Lemma) :-
not subsumed_input(Lemma),
form_a_chain(Lemma, Input),
get_chain_ndx(Index),
store_fact(a, input_chain(Index, Input)).
insert_lemma(0, Lemma).

72N
% Find an input chain which is subsumed by the lemma

7
subsumed_input(Lemma) :-

input_chain(_, Chain),

equivalent(Lemma, Chain), !.

/2
% Determine if the lemma is equivalent to the chain

O = e e
equivalent([],[]) :- !
equivalent([LILemma], Chain) :-

select([b,K],Rest, Chain),

unify(K,L),

equivalent(Lemma, Rest).

72
extend(Chain, Resolvant, Input, Type) :-

selection_function([b, Literal_L], Others, Chain),

resolve(Literal_L, Right_Cell, Input, Type),

append(Right_Cell, [ [a,0,Literal_L]IOthers ], Resolvant).

Preadmissibility Restriction
The chain is not preadmissible iff:
(i) the rightmost cell contains tautology literals
(i) the chain contains an A-literal identical to a following B-literal



(iii) the chain contains A-literals with identical atoms.*/

Gl = e e e e m

syntax_check(d, _) :- I.

syntax_check(unify, Chain) :-
pick_suc(L, Others, Chain),
pick_pre(K, Prec, Others),
inadmissible(L, K, Prec), !, fail.

syntax_check(unify,_).

Ol e e e e

% Check if the two literals are inadmissible

Gl e e e e e e e e

inadmissible([b, K], [b,L], In_Between) :- /* preadmissibility I */
tautology(L,K),
all_B_(In_Between), !.

inadmissible([b, K], [a,_,L], ) :- /* preadmissibility II */
literal_atom(K, Sign, Atom1),
literal_atom(L., Sign, Atom?2),
identical_atom(Atom1, Atom2), !.

inadmissible([a,_, K], [a,_,L], _) :- /* preadmissibility III */
identical_atom(L,K), !.

% Determine if the list contains all B-literals

Gl = e e e e e e e e e e

all_B_([]) :- .
all_B_([[b,_]lIn_Between]) :-

all. B_(In_Between).

165
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/* =

Module:  SL_RULES.ARI
Purpose:  Contains the operations and the syntactic restrictions employed by SL-

Gl e e e e e e e mm
reduce(Chain, Resolvant, B_Literal, Type) :-
extract_right_most_cell(Right_Most_Cell, [A_LiterallLeft_Cells], Chain),
member(Any_Literal, Left_Cells),
[! select(B_Literal, Rest RMC, Right_Most_Cell),
can_be_reduce(B_Literal, Any_Literal, Type),
append(Rest_RMC, [A_LiterallLeft_Cells], Resolvant) !].

Gy e e e e e e e e e e 2 e e e
Determines if the two literals can be factored or ancestor-resolved

7 U

can_be_reduce([b,L], [a,K], Type) :- % --- ancestor resolution ---

complementary(L, K, LA K_A),
match(L_A, K_A, Type), !.
can_be_reduce([b,L], [b,K], Type) :- % --- factoring ------------
literal_atom(L,Sign, L_A),
literal_atom(K,Sign, K_A),

match(L_A, K_A, Type).
O o e e e e e e m e e
% Match the two atoms and return id if they are identical
% or unify if variables were instantiated

G = e e e e e oo m e e mm e e e e m e e m e
match(Al, A2,id) :-

identical_atom(A1,A2), !.
match(A1, A2, unify) :-

unify(Al, A2).

7
% SL truncation operation

G = e e e e e e e e e e e m e e e
uncate([ {a,_] | Resolvant ], No_Trunc, Resolvant2) :-
strip_a_literals(Resolvant, Resolvant2, No_Trunc).

O e e e e e e e m e e e e e e e e e

% Strip the chain from all A-literals preceeding the
% leftmost B-literal
7

strip_a_literals([], [1, []) :- !

strip_a_literals([ [b,X]IRest], [ [b,X]IRest],[] ) :- !.

strip_a_literals([ [a,_]/Rest], Resolvant, [0ITrunc]) :-
strip_a_literals(Rest, Resolvant, Trunc).

% SL Extension operation



o/
extend(Chain, Resolvant, Input, Type) :-

selection_function([b, Literal_L], Others, Chain),

resolve(Literal_L, Right_Cell, Input, Type),

append(Right_Cell, [ [a, Literal_L]lOthers ], Resolvant).

/* Admissibility Restriction
(1) The chain is not admissible if the left cells contain
identical atoms.
(2) The chain is not admissible if the rightmost cell
contains B-literal which is tautologous (identical atom) to
any of the B-literals in the left cells, OR
the rightmost cell contains literal which is identical to
any of the A-literals in the left cells
(3) The input chain is not admissible because the unification find
it to be tautologous (restriction c.ii of reduction definition).
(4) The input chain is not admissible because the unification find
that it contains factorable literals or tautologous literals
(restriction c.1i of reduction definition). */

L/
syntax_check(id, _) :- !.
syntax_check(Type, Chain) :-
extract_right_most_cel(RMC, LC, Chain),
inadmissible(RMC, LC),
!, fail.
syntax_check(_, ).

7
% Check if the chain is admissible by checking
% (1) If the rightmost cell does not contain a B-literal which is
% (a) tautologous to one of the B-literals in the left cells
%o (b) identical to one of the A-literals in the left cells
% (2) If the left cells does not contain two literals having identical atoms
o/
inadmissible(RMC, LC) :- % *** RMC should not contain identical atoms
pick_suc([b,L], Succ, RMC),
member([b,K], Succ),
identical_atom(L,K), !.
inadmissible(RMC, [AILC]) :- % *** RMC should not contain B-literal which
class(A,a,L), %***has identical atom with rightmost A-literal
member([b,K], RMC),
identical_atom(L,K), !.
inadmissible(RMC, [_ILC])) :- % *** RMC should not contain a B-literal which is
member([a,L], LC), % *** identical to an A-literal in the left cell
member([b,K], RMC),
identical(L.K), !.
inadmissible(_, LC) :- % *** LC should not contain any two literals

pick_suc([_,L],Succ, LC), % *** having identical atoms -
member([_,K], Succ),
identical_atom(L,K),!.
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J* ==
Module: GC_RULES.ARI
Purpose:  Contains the operations and the syntactic restrictions employed by GC-

TP
===== == */
/U
% GC procedure Reduction operation
7

reduce(Chain, Reductant, [b,L], Type) :-
extract_right_most_cell(Right_Most_Cell, Left_Cells, Chain),
choose(Non_B, LS, RS, Left_Cells),
not class(Non_B, b, _),
[! select([b,L], Rest, Right_Most_Cell),
reducible(Non_B, L, Type),
collect_C_point(LS, [], Depth_List),
remove_C_point(Depth_List, RS, Remove_Cpoints, New_RS),
mega_append([Rest,LS,Remove_Cpoints,[Non_BINew_RS] ], Reductant) !].

% Apply the reduction by selecting a B-literal from the rightmost cell
% of the chain to match with a non-B-literal

) = e e e e e e e e e e e
apply_reduction(Non_B, [b,L], Right_Most_Cell, Rest, Type) :-

select([b,L], Rest, Right_Most_Cell),

reducible(Non_B, L, Type), !.

G e e e e e e e e e e i e o e e e
remove_C_point(Depths, LC, [DIRest_Cpoints], Left_Cells) :-

select(D, Other_Cpoints, Depths),

select(D, Other_LC, LC),

remove_C_point(Other_Cpoints, Other_LC, Rest_Cpoints, Left_Cells), !.
remove_C_point(Depths, LC, [], LC).

G = e e e e e e e e e e e e e
% Find if the two literals are reducible

Gy = e e e oo e e e e m e e e
reducible(Non_B, K, Type) :-

non_B_atom(Non_B, L),

complementary(L, K, L_A, K_A),

match(L_A,K_A, Type).
O = e mm e memm e m e mem e mmmmm e mmm e mm o mm o mm e em e m e mmm
% Matching two atoms based on mode (compulsory or non-compulsory)
/S

match(Atom1, Atom2, id) :-
identical_atom(Atom1,Atom2), !.

match(Atoml, Atom2, unify) :-
unify(Atom1, Atom2).

%o Collect the C-points associated with A-literals



) m e e e e mmmmmm e
collect_C_point([}, L,L) :- !.
collect_C_point([ LiterallLS], Initial, Depth_List) :-

extract_C_point(Literal, Initial, Depths),

collect_C_point(LS, Depths, Depth_List).

Ol —mmmmmme e e e e e e e e e e e
% Extract the C-point if the literal is an A-literal

7
extract_C_point([a,D,_], Initial, [DlInitial]) :- !.
extract_C_point( _, L,L).

72
% GC Truncation operation

72
truncate((L 1 _ 1], _, ) :-
class(L,b,_), !, fail.
truncate(Chain, Times, Resolvant) :-
truncate_all(Chain, Times, Resolvant).

7O
% Truncate all non-B-literals

72
truncate_all([],[], [D :- I
truncate_all([ [b.L]IRest ], [], [ [b,.L]IRest ]) :- !.
truncate_all([ LiterallRest ], Times, Result) :- % truncate an A-literal
remove(Literal, Rest, New_Rest, Times, Rest_Times),
truncate_all(New_Rest, Rest_Times, Result).

7S
% Remove the A-literal and insert C-literal at its depth OR remove the C-literal.

7
remove([a,D,L], Rest, New_Rest, [0ITimes], Times) :-

choose(D, Prec, Succ, Rest),

insert_C(L, Prec,Succ, New_Rest), !.
remove([c,L], Rest, Rest, Times, Times).

7
% Insert a C-literal
72
insert_C(L, Prec,Succ, New_Rest) :-

negate(L.K),

append(Prec, [[c,K]ISucc], New_Rest).
7
% GC Extension operation
7O

extend(Chain, Resolvant, Input, unify) :-
[! selection_function([b, Literal_L], Others, Chain),
gen_symbol(D) !],
resolve(Literal_L, RMC, Input, Type),
[! append(RMC, [ [a,D,Literal_L]IOthers], Right),
append(Right, [D], Resolvant) !].



/2O
% Generate the C-point symbol
Gl = e e e e e e e e e e e e e o e
gen_symbol(Symbol) :-

ctr_inc(0,Ctr),

name(Ctr,N),

append("c_",N,List),

name(Symbol,List). % counter 0 is reserved for C-ptr
Gl mmm e e e e e e e e e e o e e e mmm
% Admissibility Restriction
G = e e e e e e e

syntax_check(id, Chain) :- 1.

syntax_check(unify, Chain) :-
pick_suc(Literall, Succ_Literals, Chain),
pick_pre(Literal2, In_Between, Succ_Literals),
inadmissible(Literall, Literal2, In_Between),
!, fail.

syntax_check(_, _).

/* Check if the two literals are inadmissible
(1) If the first literal is a B- and the second is an A-literal and
they are identical then they are inadmissible.
else
(2) if the two literals are non-B-literals and they
have identical atoms then they are inadmissible
else
(3) No tautologous literals unless an A-literal exists between them. This
implies that no tautologous input chain should be used.
(First preadmissibility restriction of the ME procedure) */

/O
inadmissible([b,K], Non_B, ) :-
non_B_atom(Non_B, L),
literal_atom(K, Sign, A1),
literal_atom(L, Sign, A2),
identical_atom(A1l, A2), !.
inadmissible(Literall, Literal2, _) :-
non_B_atom(Literall, Al),
non_B_atom(Literal2, A2),
identical_atom(A1, A2), !
inadmissible([b,K], [b,L], In_Between) :-
tautology(L.,K),
all_B_(In_Between).

Gl = m e e e e e e o e e e i o mm
% Extract the literal atom (with sign) of a non-B-literal

Gy e e e e e e e e e e e e e e e e e e e e
non_B_atom(L, A) :-

class(L,C, A),

C\==b.

% Check if the list contain all B-literals



Gy m e e e e e e e e S e e e
all_B_([] - .
all_B_([[b,_]IRest]) :-

all_B_(Rest).
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/*
Module: SET_MAN.ARI
Purpose: Load the set of clauses and contain the procedures used in self-
configuration facility of ME-TP, SL-TP and GC-TP.
*/
Ol == e e e e e e e e e e e e

% Compile the file by asserting the set of clauses and
% apply the self configuration facility

7
compile(File) :-

ds(DS),

[-File], !,

check_format,

assertz(clause_file(File) ),

factor_clauses(DS),

find_configuration,

generate_matrix_chains(DS), % modify this for SL-resolution

tautology_elimination,

pure_literal_elimination,

abolish(a_clause/1),

expunge. % equivalent to purging the deleted fact permanently
compile(File) :-

print(1,[nl,$***This file is not available...$,nl,$***Try another one...$]).

Ol == m e e e e e e e e e e e
% Factor the set of clauses if the derivation strategy used is SL-TP

7O
factor_clauses(sl) :-
a_clause(Clause),
generate_factors(Clause),
fail.
factor_clauses(sl) :-
abolish(a_clause/1),
retract(factored(Clause)),
store_fact(a,a_clause(Clause)), % Store factors as input clause
fail.
factor_clauses( ).

G e m e e e e e e e e e e e e e e
% Generate factors of the list

generate_factors(List) :-
factor(List, Factor),
store_as_factor(Factor),
fail.

generate_factors(List).

O e e e e e o e e e
% Factor a given list

Gl —mmmem e e e e e e
factor(List, Factor) :-

select(L, Partial, List),

member(K, Partial),

unify(L,K),

factor(Partial, Factor).
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factor(Factor, Factor).

% Store the factor if it is not subsumed by any of the factors

G == m o e o o o ot e e o
store_as_factor(Factor) :-

[! length(Factor, N),

convert_to_predicate(Factor, Term1) !],

factored(List2),

length(List2, N),

convert_to_predicate(List2, Term2),

subsumes(Term1, Term2),!.
store_as_factor(Factor) :-

store_fact(a, factored(Factor) ).

Gl ==m e e e e e e
% Convert the list into a temporary predicate with the element of the list as arguments

Gl == m e e e e e e e e e e e e
convert_to_predicate(List, Term) :-

get_combination(List, List2),

Term =.. [templList2].

7
% Get a combination with backtracking allowed to extract all
% possible combination

S
get_combination((E], [E]) :- !.
get_combination(List, [ElPartial]) :-

select(E, Rest, List),

get_combination(Rest, Partial).

G — e e S e
% Check if the asserted file is in the right format

Gl e e e e e e e e e e e e e e
check_format :-

a_clause( ), !.
check_format :-

print(1,[n],$***The consulted file is not in the right format$]),

print(1,[nl,$ Format a_clause([Literall,.... Literaln]). $]), !, fail.

G = mm e e e e e
% Find the configuration of the set of clauses

G == e m e e e e e e
find_configuration :-
print(1,[nl,$Wait... Configuring the set of Clauses$]),
a_clause(Clause),
[! write($.9),
length(Clause, N),
min_max(N), /* determine the minimum and maximum size of clause */
determine_order(Clause),
determine_type(Clause),
determine_equal(Clause) !], fail.
find_configuration.



7

% Determine the order of the set of clauses

L2 e U

determine_order(Clause) :-
order(1), !.
determine_order(Clause) :-
member(L, Clause),
count_var(L, N),
N >0,
abolish(order/1),
asserta(order(1)), !.
determine_order(Clause) :-
order(0), !.
determine_order(Clause) :-
asserta(order(0)), !.

72

% Determine the type of the set of clauses

Gy e e e e e e

determine_type(Clause) :-
clause_type(general), !.
determine_type(Clause) :-
select(++ L, Others, Clause),
member(++ K, Others),
abolish(clause_type/1),
asserta(clause_type(general)), !.
determine_type(Clause) :-
clause_type(horn), !.
determine_type(Clause) :-
asserta(clause_type(horn)).

72

% Determine if an equal literal exist

7

determine_equal(Clause) :-
equal_exist, !.
determine_equal(Clause) :-
member(Literal, Clause),
literal_atom(Literal, _, equal(_,_)),
asserta(equal_exist), !.
determine_equal(_).

% Eliminate tautologous chain

7S

tautology_elimination :-
print(1,[nl,$Tautology elimination in action...$}]),
input_chain(N,Chain),
[! select([b,L], Others, Chain),
member([b,K], Others),
tautology(L,K),
retract(input_chain(N,Chain)),
print(1,[nl,$***Input chain $,Chain,$ is a tautology.$]) !],
fail.
tautology_elimination.



7O

% Remove a chain which contain a pure literal

pure_literal_elimination :-
print(1,[n],$Pure literal elimination in action...$]),
input_chain(N,Chain),
[!

h.as_pure_literal(Chain),
retract(input_chain(N,Chain)),
print(1,[nl,$***Input chain $,Chain,$ has a pure literal.$])
1, fail.
pure_literal elimination.

A

% Determine if the chain is resolvable

7

has_pure_literal(Chain) :-
all_resolvable(Chain), !, fail.
has_pure_literal(Chain).

7

update_fact(Factl, Fact2) :-
retract(Factl),
store_fact(a, Fact2), !.

update_fact( _, Fact2) :-
store_fact(a, Fact2).

min_max(N) :-

clause_size(Min,Max),

update_size(N, Min, Max), !.
min_max(N) :-

store_fact(a, clause_size(N,N)).
update_size(N, Min, Max) :-

N < Min,

update_fact(clause_size(Min, Max), clause_size(N,Max) ), !.

update_size(N, Min, Max) :-
N > Max,

update_fact(clause_size(Min, Max), clause_size(Min,N) ), !.

update_size( _, _, _).

7

% Concatenate a list of lists into a list

7

mega_append([], []) :- !.
mega_append([H], H) :- .
mega_append([HIRest], Result) :-
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mega_append(Rest, Last_Result),
append( H, Last_Result, Result).

G — e e e e e e e e e e e e e
%o Generate matrix chains for each clause of the input clauses

Oy e e e e e e e e e e e e m e e
generate_matrix_chains(DS) :-

clause_size(Min, Max),

chain_ndx_set,

get_a_clause(Clause, Min, Max),

write($*$),

convert_to_chain(DS, Clause), fail.
generate_matrix_chains(_) :-

add_reflexive_equality.
G e e e e e e e m e e e
%o Add the reflexive axiom of equality as a unit input chain if the set
O = e e e e e e e e e e e e e e
add_reflexive_equality :-

equal_exist,

store_as_chain(a, [++ equal(X,X)]), !.
add_reflexive_equality.

7
% Convert a clause to chain depending on the derivation strategy

% requirement. :
7

convert_to_chain(_, Clause) :-
store_as_chain(z, Clause).

O — e e e e e e e
% Get a clause from the least to maximum number of literals
Oy e e e e e e e e e e e
get_a_clause(Clause,Min, Max) :-

a_clause(Clause),

length(Clause, Min).
get_a_clause(Clause,Min, Max) :-

Min < Max,

N is Min+1,

get_a_clause(Clause, N, Max).
Oy e e e e e e e e e e e o e
% Store a clause as input chain
Oy e e e e e e o e e e e

store_as_chain(Pos, Clause) :-
form_a_chain(Clause, Chain),
get_chain_ndx(N),
store_fact(Pos, input_chain(N,Chain)).

% Form a chain



Ol e e e e
form_a_chain([], []) :- !.
form_a_chain([LiterallOthers], [ [b,Literal}IChain]) :-

form_a_chain(Others, Chain).

Gl = e e e e
% Initialise the chain index

7
chain_ndx_set :-
ctr_set(30,1). % Counter 30 is set as chain index counter

Gy e e e e e e e e e e e e e e e mem
% Get the current chain index and increment it
72
get_chain_ndx(N) :-

ctr_inc(30,N).
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/* —_—= [ ——

Module:  INTERPRE.ARI o
Purpose:  Serves as user command interpreter. This used by all the implemented
theorem provers
=== === */

Gy e e e e e e e e e e e emm
introduction :-

display_screen('intro.scr'),

cls,

abolish([output_device/1, sos/1, derivation_/0, refutation_/0, statistics_/0]),

asserta(match_check),

asserta(occurs_check_),

asserta(sos(-)),

asserta(refutation_),

asserta(statistics_),

asserta(output_device(1)).

/U
% Display the help options
Ol = e e e e e e m e o e e e e e
display_help :-

cls,

display_screen(‘help.scr’).
72
% Display the screen file to the screen
G = m e e e e e e e e e e e e e e e e

display_screen(Scrn_File) :-
p_open(H,Scrn_File,r),

repeat,
read_line(H,String),
full_screen(String),
close(H), !.
Qo ====== === e o
% Display the string if it is not an assigned flag such as stop and end
7

full_screen($stop$) :-

!, hit_key.
full_screen($end$) :-

get0(X), cls, 1.
full_screen(String) :-

print(1,[nl,String]), fail.

7
% Hit an ESC key
Gl e e e e e e e e m e e e e e
hit_key :-

get0(27), !
hit_key :-

cls, fail.



/2

% Pause until a key is pressed

pause_ :-
print(1,[n],$Hit any key...$]),
get0( ).

O e e e

% Interpret the entered command

72

interpreter(stop) :- !.
interpreter(dir) :- !,
directory(*.art',File,_,_,date(Yr,Mm,Dd),Size),
print(1,[nl,File,$ | $,Yr,$-$,Mm,$-$,Dd,$ | $,Size,$ bytes$)),
fail.
interpreter(cls) :- !,
cls, fail.
interpreter(?) :- !,
display_help, fail.
interpreter(help) :- !,
display_help, fail.
interpreter(check) :- !,
abolish(match_check/0),
asserta(match_check),
fail.
interpreter(nocheck) :- !,
abolish(match_check/0),

fail.
interpreter(trace) :- !,
abolish(derivation_/(),

asserta(derivation_), fail.
interpreter(notrace) :- !,
abolish(derivation_/0), fail.
interpreter(proof) :- !,
abolish(refutation_/0),
asserta(refutation_), fail.
interpreter(noproof) :-!,
abolish(refutation_/0), fail.
interpreter(stat) :- !,
abolish(statistics_/0),
asserta(statistics_), fail.
interpreter(nostat) :- !,
abolish(statistics_/0), fail.
interpreter(list) :- !,
display_chains, fail.
interpreter(input) :- !,
display_chains, fail.
interpreter(sos) :- !,
display_sos, fail.
interpreter(occur) :- !,
abolish(occurs_check_/0),
asserta(occurs_check_), fail.
interpreter(nooccur) :- !,
abolish(occurs_check_/0), !, fail.
interpreter(valid) :- !,
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show_valid_literals, fail.
interpreter(redundant) :- !,

show_redundant_literals, fail.
interpreter(default) :- !,

show_current_flags, fail.
interpreter(prove) :- !,

prove_theorem(0),

!, fail.

interpreter(X) :-
name(X,List),
extract_pred(List, Pred, Term), !,
find_command(Pred, Term),
fail.
interpreter(X) :-
syntax_error__,
fail.
syntax_error__ :-
print(1,[nl,$Wrong syntax or unknown command <<<$,X,$>>>$]),
fail.

Ofp e e e e e e e 2 2 2 e e e mem
% Show valid literals if any

L
show_valid_literals :-
not valid_literal(_),
printf([nl,$No information of valid literals yet...$]), !.
show_valid_literals :-
valid_literal(Atom),
printf([nl,tab(7),Atom]),
fail.
show_valid_literals.

Gy e e e e e e e e
% Show redundant literals if any

Y --- - e e e e e e e e
show_redundant_literals :-

not redundant_literal(_),

printf([nl,$No information of redundant literals yet...$]), !.
show_redundant_literals :-

redundant_literal(Atom),

printf([nl,tab(7),Atom]),

fail.
show_redundant_literals.

Ol —mmmmm e o e e e e e 2 e e e e o e e
% Display all the indicators flag

L S O
show_current_flags :-

display_flag($trace$,derivation_),

display_flag($proof$ refutation_),

display_flag($check$,match_check),

display_flag($occurs check$, occurs_check_),

current_sos,

current_bound.
display_flag(Text, Flag) :-
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Flag,

print(1,[nl,$### The $,Text,$ flag is ON.$}]), !.
display_flag(Text, Flag) :-

print(1,[nl,$@@@ The $,Text,$ flag is OFE.$)), !.

current_sos :-

sos(Sign),

print(1,[nl,$The selected polarity of the SOS is [ $,Sign,$ 1$]), !.
current_sos.

7
% Display the current search bound
7
current_bound :-

bound(N),
print(1,[nl,$The current search bound used is $,NJ), !.
current_bound :-
print(1,[nl,$The current search bound used is the size of the top clause$]).

7
% Determine appropriate command

find_command(prove,N) :-

integer(N),

prove_theorem(N),!.
find_command(bound,N) :- !,

integer(N),

abolish(bound/1),

asserta(bound(N)), !.
find_command(consult,File) :- !,

clear_all,

print(1,[nl,$Consult file $, File]),

compile(File).
find_command(sos,Sign) :-

abolish(sos/1),

asserta(sos(Sign)), !.
find_command(cd,Path) :-

chdir(Path), !.
find_command(cd,Path) :-

print(1,[nl,$*** Invalid directory path $J), !.
find_command(output,File) :-

open_device(File), !.
find_command(input,_) :- !,

display_chains.
find_command(redundant,Atom_Image) :- !,

add_redundant(Atom_Image).



find_command(show, Arg) :- !,
interpreter(Arg).
find_command(show, Arg) :-
syntax_error__, fail.

O e e e e

% Add a redundant atom

G e e s e

add_redundant(Atom_Image) :-

atom_string(Atom_Image, String),

string_term(String, Atom), asserta(redundant_literal(Atom) ), !.
add_redundant(Atom_Image) :-

print(1,[nl,$*** Wrong syntax of atom $,Atom_Image]).

G e e e e e e e e e e
% Extract the predicate name and the argument

% '("-40 ")'-41 'T-91 7-93 {'-123 '}'-125

G = e e e e e e e e e e e e

extract_pred(List, Pred, Term) :-
choose(40, Prec, Succ, List),
reverse(Succ, [], Rev_List),
pick_suc(41, Rev_Arg, Rev_List),
reverse(Rev_Arg, [], Arg),
name(Pred, Prec),
name(Term, Arg), !.
extract_pred([91IList], consult, File) :-
pick_pre(93,Arg,List),
form_a_prolog_file(Arg,File), !.
extract_pred([ 123IList], output, File) :-
pick_pre(125,Arg,List),
name(File, Arg), !.
extract_pred(List, cd, Path) :-
choose(32, Prec, Succ, List),
name(Path,Succ), !.

G = e e e e e e e e e

% Form a proper arity prolog file if a file extension is not specified
% ''-46 ‘ari'-97,114,105

G e e e e e e e e e e

form_a_prolog_file(Arg,File) :-
not member(46,Arg),
append(Arg, ".ar1", List),
name(File, List), !.

form_a_prolog_file(Arg,File) :-
name(File, Arg).

G = e e e e e e e e

% Display the chains of the set of support

Gl e e e e e

display_sos :-
not clause_file(),
print(1,[n],$*** There is nothing to display...$)), !.
display_sos :-
print(1,[nl,$>>>> List of clauses in the Set of Support$]),
set_of_support(Chain),
input_chain(N,Chain),
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print(1,[nl,$[$,N,$] $,Chain]),

fail.
display_sos.

Gl = mmm e e e e

% Get the initial search bound

7 —

get_search_bound(_, Bound) :-
bound(Bound), !.

get_search_bound(Chain, Bound) :-
length(Chain,Bound).

A,

% Prove the theorem

A

prove_theorem(N) :-
not clause_file(),

print(1,[n],$*** There is nothing to prove...$]), !.

prove_theorem(N) :-
init_search_space,
record_event(derivation_start),
[! obtain_(N, Chain, Bound),
search(Chain, Bound,Status),
record_event(derivation_end),
event_duration(derivation),
Status == true,
print(1,[n],$Goal : $,Chain]),
pause_ !],
display_statistics(Chain), !.

prove_theorem(0) :-

print(1,[nl,$*** The theorem is unsatisfiable...$]), !.

prove_theorem(N) :-

print(1,[nl,$*** The chosen top chain is unrefutable...

O = mmm mmm e e e e e e e e mem

72

O wemem e
% Initialise the derivation search space
init_search_space :-
abolish(event/2),
abolish(exceed/1),
abolish(op_ct1/2),
abolish(path/1),
abolish(err/3),
store_fact(a, path([])).
% Obtain the top clause and the search bound

O e e e e e e e

obtain_(N, Chain, Bound) :-
N >0,
input_chain(N, Chain),

get_search_bound(Chain, Bound), !.

obtain_(0, Chain, Bound) :-
set_of_support(Chain),

get_search_bound(Chain, Bound).
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/* ===
MODULE : SUPPORT.ARI
PURPOSE: Contains utility procedures used in ME-TP, SL-TP, GC-TP,
SLM-TP, and SLM5-TP.

append([], L,L) :- !.
append(L1, L2, L3) :-
insert(L1,L11, L3,L33),

append(L11,1.2,L.33).
G e e e e e e e e e e e e e e
% Insert elements of the first list to the second list or vice versa
7

insert((H1,H2,H3,H4,H5,H6,H7 H8IT], T, [H1,H2, H3,H4,H5H6,H7 HS8IR],R) :- !.
insert((H1,H2,H3,H4IT], T, [H1,H2,H3,H4IR],R) :- !
insert((H1,H2IT], T, [H1,H2IR],R) :- !.
insert((H1IT], T, [H1IR],R).
% Find if the element is member of the list
Ofp = e e e e e e e e e e e e
member(E, [El_], 1).
member(E,[_IRest],N) :-
member(E,Rest,N1),
N is Ni1+1.
member(E,List) :-
member(E,List, _).
g; Recursive selection of element from a list starting from the first element
/2
select(X, T, [XIT]).
select(X, [YIT], [YIR]) :-
select(X,T,R).

Select starting from the last element of the list



select_last(E, [XIPrev], Succ, [XIList]) :-
select_last(E, Prev, Succ, List).

select_last(E, [], Succ, [ElSucc]).
Gy e e e e e e e e e e e e e e e

Yo Pick an element and return the other succeeding elements
G = e e e e e e e e e e e e e mm

pick_suc(E,Succ, [ElSucc)).
pick_suc(E,Succ, [XIRest]) :-
pick_suc(E,Succ, Rest).
% Pick an element and return the other preceding elements
G e e e e e e e e e e e
pick_pre(E,[], [ElSucc]).
pick_pre(E,[XIPrec], [XIRest]) :-

pick_pre(E,Prec, Rest).

reverse([], Result, Result) :- !.
reverse([HIRest], Initial, Result) :-

reverse(Rest, [HlInitial], Result).

choose(E, [], After, [ElAfter]).
choose(E, [BIBefore], After,[BIList]) :-

choose(E, Before, After, List).

Gy e e e e e e e e e e e e e e e e m e
% Delete the occurence of element E in the list L1
9 - R e e e e e e e

delete(E, [XIL1], L1) :-
X==E,LL

delete(E, [HIL1], [HIL2]) :-
delete(E, L1, L2).
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Y0 Delete all the occurence of the specified element
G = e e e e e e e e e e e em

delete_all(E,List, Result) :-
delete(E,List,Rest),
delete_all(E, Rest, Result), !.

delete_all(E,List, List).

72
% Unification algorithm with occur check
% Occur check is only done if it is sure that they are PROLOG unifiable.
Zo Instantiation will only takes place if occur-check is satisfied
72

unify(L,K) :-

nonvar(L),

nonvar(K),

equal_unify(L,K), !. % ------- Try equal symmetry axiom

unify(L,K) :- % The occurs check is disabled
not occurs_check_,
I,L=K.
unify(L, K) :- % variable vs variable
var(L),
var(K),
L=K, .
unify(L, K) :- % atomic Vs atomic
atomic(L),
atomic(K), !,
L=K, !
unify(L, K) :-
var(L), !,
occur_check(L,K), !.
unify(L, K) :-
var(K), !,

occur_check(K,L), !.



unify(L, K) :-
L =.. [FunctorlTerms1],
K =.. [FunctorlTerms2],

unify_list(Terms1,Terms2).

7
% Unify each corresponding element of the list
Ofp =mmmmmmmm e e e e e

unify_list([], []) :- !
unify_list([E1IRest1], [E2IRest2]) :-
unify(E1, E2),

unify_list(Rest1, Rest2).

occur_check(L K) :-
atom_to_list(K, K_List),

member(K2, K_List), L == K2, !, fail.

occur_check(L,L).

Gl —mm e e e e e e e
% Convert atom to list

O e e e e e e e e e

atom_to_list(K, {K]) :-
var(K), !.
atom_to_list(K, [K]) :-
atomic(K), !.
atom_to_list(K,[PIArgs_List]) :-
K =.. [PlArgs],

flatten_list(Args, Args_List).

flatten_list([], (D) :- !.
flatten_list([AlArgs], Args_List) :-
atom_to_list(A, List),

flatten_list(Args, Args_List2),
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append(List, Args_List2, Args_List).
%  Unification based on the equality symmetry axiom
/S
equal_unify(Equal_L, Equal_K) :-

literal _atom(Equal_L, Sign, L),

literal_atom(Equal_K, Sign, K),

equal_unify(L,K), !.
equal_unify(equal(LS1,RS1), equal(L.S2,RS2)) :-

unify(L.S1,RS2),

unify(RS1,LS2).
o/
% Count the number of variables in an atom
o/

count_var(Atom, 1) :- var(Atom), !.
count_var(Atom, 0) :-
atomic(Atom), !.
count_var(Atom, N) :-
Atom =.. [_|Args],

count_var_list(Args, N).

count_var_list([], 0) :- !.
count_var_list([ElArgs], N) :-
count_var(E, M),

count_var_list(Args, K),

N is M+K.
) = e e e e e e
% Check if General subsumes Specific
7

subsumes(General,Specific) :-
disagree_pairs(General,Specific, Gen_List, Spec_List),
is_general(Gen_List, Spec_L.ist).
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To Determine the disagreeing pairs of the two unifiable atoms
%o at the lowest level.
/2

disagree_pairs(General, Specific, [1,[]) :-
General == Specific, !. % if they are identical (variable or atomic)
disagree_pairs(General, Specific, _, ) :-
atomic(General),
atomic(Specific), !, fail.
disagree_pairs(General,Specific, [General],[Specific]) :-
var(General),!.
disagree_pairs(General,Specific, Gen_List, Spec_List) :-
nonvar(General),
nonvar(Specific),
General =.. [PITerms_G],
Specific =.. [PITerms_S],

disagree_list(Terms_G, Terms_S, Gen_List, Spec_List).

disagree_list(Terms_G, Terms_S, (1, []) :-
Terms_G == Terms_S, !.

disagree_list([GenerallTerms_G], [SpecificlTerms_S], Gen_List, Spec_List) :-
disagree_pairs(General,Specific, Sub_Gen_List, Sub_Spec_List),
disagree_list(Terms_G, Terms_S, Accu_Gen, Accu_Spec),
append(Sub_Gen_List, Accu_Gen, Gen_List),
append(Sub_Spec_List, Accu_Spec, Spec_List).

% Check if the first list is more general than the second list by checking if the #

%o of distinct variables in the first is greater than the second, otherwise,

% check if one of the variables in the first list when substituted by its corresponding
% non-variable term in the second list, the rest of the first list is still general than the

%% second (This is assuming that in the extraction of the two lists, there is no



R 30 TR RN T e Cor

190

% instance that a non-variable element in the first list is paired
% with a variable term in the second list)
Gl e e e e e e e e

is_general(Gen_List, Spec_List) :-
unify_var_nonvar(Gen_List, Spec_List),

subsume_list(Gen_List, Spec_List).

% Check if the first list subsume the second list by checking if there is no pair
% where the first element is subsumed by the second element, OR

% checking if the number of distinct variables in the first is not less than the second list
Gl e e e e A e e e e e

subsume_list(Gen_List, Spec_List) :-
more_general(Gen_List, Spec_List),
count_distinct_var(Spec_List, N),
rename_vars(Gen_List, Spec_List, [], Gen_Vars),

count_distinct_var(Gen_Vars,M),

% Rename/substitute the general variables by the specific variables
O e e e e e e e

:rename_vars(Gen_List, Spec_List, Result, Result) :-
Gen_List == Spec_List, !.
rename_vars({GenerallGen_List], [SpecificlSpec_List], Initial, Gen_Vars) :-
check_var(General, Specific, Initial, Result),
rename_vars(Gen_List, Spec_L.ist, Result, Gen_Vars).
Zo Check if the general variable was already substituted before
== e e e e e e e e
check_var(General, Specific, Initial, [Generalllnitial]) :-
var(General),
var(Specific),
not exact_element(General, Initial),
General = Specific, !.

check_var(General, Specific, Initial, Initial) :-



var(General),

var(Specific),
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exact_element(General, Initial), % for p(X,X,Y) vs p(A,B,B)

General = Specific, !.

check_var(_, _, Initial, Initial).

G~ e e e e e —

% Count the number of distinct variables in the list

G < e e e

count_distinct_var(List, N) :-
distinct_var(List, [], Var_List),

length(Var_List, N).

% Extract distinct variables from the list

A

distinct_var([ElList], Initial, Var_List) :-
unique_var(E, Initial, Result),
distinct_var(List, Result, Var_List), !.

distinct_var(_, Result, Result).

% Find if E is a variable and distinct from the rest

Qfp = mmm e e e e e e e e e e

unique_var(E, Initial, [Ellnitial]) :-
var(E),
not exact_element(E,Initial), !.

unique_var(_, LI).

/A e e e e e e e e e e e e e e e e e e e e
% An element is identical to one of the elements in the list
Gy = e e e e e e 2 e

exact_element(E,[Fl_]) :-
E==F,!.
exact_element(E,[_IList]) :-

exact_element(E, List).




more_general(Gen_List, Spec_List) :-
Gen_List == Spec_List, !.

more_general((GIGen_List], [SISpec_List]) :-

subsume_test(G,S),

more_general(Gen_List, Spec_List).
) = e m e e e e e m e
Yo Test if two terms subsume each othert
D) e e e e e e e e e

subsume_test(G,S) :-
nonvar(G),
var(S), !, fail.

subsume _test(G,S) :-
not unify(G.,S),
! fail.

subsume_test(G,S).

Gy e e e e m e e e e

% Unify a variable of the general list with a non-variable element in

% the second list

Gy = e e e oo m e m e m e e e mmmn e

unify_var_nonvar(Gen_List, Spec_List) :-
Gen_List == Spec_List, !.
unify_var_nonvar([GenerallGen_list], [SpecificlSpec_List}) :-
unify_subsume(General, Specific),

unify_var_nonvar(Gen_list, Spec_List).

unify_subsume(General, Specific) :-
var(General),
nonvar(Specific),
unify(General,Specific), !.

unify_subsume(General, Specific).

Gy e e e e e

% Read an atomic data from the keyboard

Gy - e e e e e mm e
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ratom(Text) :-
get_string((], List),
trailing_space(List, Listl),
reverse(Listl, [], List2),
trailing_space(List2, Net),

name(Text,Net).

% Remove any preceding spaces

Gl e e e e e

trailing_space([32IRest], Result) :-

trailing_space(Rest, Result), !.

trailing_space(Result, Result).

A

% Read a series of characters
Gy e e e e mmm

get_string(Initial,Result) :-
get0(X),
X\==13,
valid_char(X,Initial, Update),
get_string(Update,Result), !

get_string(Result, Result).

% Check if valid character

O e e e e

valid_char(8, [], []) :-
put(7), put(32), .
valid_char(8,[_IResult], Result) :-
put(32),
put(8), !.
valid_char(X,Initial, [X/Initial]) :-
X >= 32,
X =< 136, !.

valid_char(_, Initial, Initial) :-
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put(7),

put(8),

put(32),

put(8).
Oy e —- e e e e e e e e
% Record an event
Oy e — e e e e e e e e e e

record_event(Event) :-
get_time(Time),
display_time(Time, Event),

asserta(event(Event,Time)).

event_duration(refutation) :-
retract(event($refutation_start$,T1)),
retract(event($refutation_end$,T2)), !,
compute_duration(T2,T1,$Refutation$), !.

event_duration(derivation) :-
retract(event(derivation_start,T1)),
retract(event(derivation_end, T2)), !,

compute_duration(T2,T1,$Derivation$).

compute_duration(T2,T1,Event) :-
time_lapse(T2,T1,Lapse),
concat(Event,$ duration$,Message),

display_time(Lapse, Message).

% Get the system time and display with a prompt When

G < e e et e et

get_time(s_time(Hr,Min, Se.c, Hundredth)) :-
time(time(Hr,Min,Sec,Hundredth)).
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% Display the time
Gl = o e e e e e e e e e e e e

display_time(s_time(Hr,Min,Sec,Hd), Prompt) :-
printf([nl, Prompt,$ time = $,Hr,$ : $,Min,$ : $, Sec,$ : $,Hd, nl]).

Gl = e m e e e e o e o e e
% Compute the time lapse Time2 - Timel.

% Time = s_time(Hr, Mn,Sc,Ht)
2

time_lapse(Time2, Timel, Lapse) :-
convert_to_seconds(Time2, Seconds2),
convert_to_seconds(Timel, Secondsl),
sec_diff(Seconds2, Secondsl, Lapse_in_Seconds),
standard_time(Lapse_in_Seconds, Lapse).
Zy Compute the time difference in seconds
b e e e e o o e
sec_diff(Seconds2, Seconds1, Lapse_in_Seconds) :-
Seconds2 < Secondsl,
Lapse_in_Seconds is 24*60*60 + Seconds2 - Secondsl, !.
sec_diff(Seconds2, Seconds1, Lapse_in_Seconds) :-

Lapse_in_Seconds is Seconds2 - Secondsl.

convert_to_seconds(s_time(Hr, Mn, Sc, Hd), Seconds) :-

Seconds is Hr*3600 + Mn*60 + Sc + Hd/100.

% Convert from seconds to standard time format
G = e e e e e e e e e o e e e e 2 e e e e e

standard_time(Seconds, s_time(Hr,Mn,Sc,Hd) ) :-
Sec is integer(Seconds),
Hr is Sec//3600,
Mn is (Sec//60 - Hr*60),
Sc is Sec - Mn*60 - Hr*3600,
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Hd is (Seconds - Sec)*100.

print(Handle, List) :-
member(Item, List),
printing(Handle,Item), fail.
print(_, ).
printing(H,nl) :-
nl(H), !.
printing(H,tab(T)) :-
tab(H,T), !.

printing(H,Item) :-

write(H,Item).
) = e e e e e e e e e e o e o e e m
% Get the handler of the default output device and print the contents of the list
7

printf(List) :-

output_device(Handle),

print(Handle, List).
Gl e e e e e e 2 2 e
% Determine if the two atoms are identical
Gl e e e e e e e e e e

identical_atom(A1,A2) :- Al == A2, !.
identical_atom(equal(A1,A2), equal(B1,B2)) :-
Al ==B2, A2 ==Bl, .
identical_atom(L, K) :-
literal_atom(L, _, Atoml),
literal_atom(K, _, Atom2),

identical_atom(Atom1, Atom?2).

literal_atom(Literal, Sign, Atom) :-



Literal =.. [Sign, Atom],

opposite(Sign,_), !.

complementary(L, K,L_A,K_A) :-
literal_atom(L, Signl, L_A),
literal_atom(K, Sign2, K_A),

opposite(Signl, Sign2).

% Determine if the two literal are identical

O - e e e e e e ee

identical(L.K) :-
literal_atom(L, Sign, L_A),
literal_atom(K, Sign, K_A),
identical_atom(L_A,K_A).

% The two literals are tautologous

G e e e e

tautology(L, K) :-
complementary(L, K, L_A K_A),
identical_atom(L_A, K_A).

O o e e
% Check if two atoms are opposite
O e e e e e e

opposite(L,K) :-
negate(L,K).
negate(-- , ++ ) :- .
negate(++,-- ) :- .
negate(++ A, -- A) :- L.
negate(-- A, ++ A) :- |
negate(0,1) :- 1.
negate(1,0).

% Open a device if it is not the console
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open_device(Device) :-
output_device(Handle),
abolish(output_device/1),
Handle \== 1,
close(Handle), fail.

open_device(console) :-
asserta(output_device(1)), !.

open_device(Device) :-
create(Handle,Device),

asserta(output_device(Handle)), !.

store_fact(z, Fact) :-
assertz(Fact ), !.
store_fact(a, Fact) :-

asserta(Fact ).

O === e e
% Delete a fact from the database without backtracking
Gfp == m e e e e e e

delete_fact(Fact) :-

retract(Fact), !.
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Module: DRIVER.ARI
Purpose :  Search control of the derivation for the ME-TP, SL-TP and GC-TP.

*/

Control the search for a refutation using the consecutively bounded depth-first
search strategy. The bound is the number of A- and B-literals in the center chain.

search(Goal, Limit, true) :-

increment_bound(Limit,Bound),

abolish(op_ctr/2), % erase the operation counter of the previous search tree
abolish(err/3), % erase the error counter of the previous search tree
ctr_set(0,0), % set the GC C-point counter to 0

refute(Goal, start, Bound), !.

search(Goal, _, fail) :- % --- Failure caused by unrefutable goal ---

printf([nl,$**** Unrefutable Goal : $, Goal, $****§,nl]).

increment_bound(Bound,Bound) :-

new_search(Bound),

reset_refutation_start.

increment_bound(Limit,Bound) :-

ne

delete_fact(exceed(Increment)),
New_Limit is Limit + Increment,
print(1,[nl,$New Limit $, New_Limit,nl]),
increment_bound(New_Limit,Bound).

w_search(Bound) :-

abolish(search_bound/1),



store_fact(a,search_bound(Bound)), !.

reset_refutaton_start :-
delete_fact(event($refutation_start$, )),
record_event($refutation_start$), !.
reset_refutation_start :-

record_event($refutation_start$).

refute([], _, ) :-
display_success,!.

refute(Chain, Prev_Operation, Depth) :-

infer(Chain, Resolvant, Prev_Operation, Operation, Side_C, Type),

assess_depth(Operation, Resolvant),
[! inc(Depth, New_Depth),

update _ctr(Operation, 1),

admissibility_check(Type, Operation, Resolvant),
disp_center_chain(Resolvant, Operation, New_Depth, Side_C, derivation_) !],
refute(Resolvant, Operation, New_Depth),

disp_center_chain(Resolvant, Operation, New_Depth, Side_C, refutation_),

update_path(|Operation]).

200

%o Check the admissibility of a center chain using the syntactic and match checks

admissibility_check(id, _, ) :-!. % No need to check (no substitution of variables)
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admissibility_check(Type, Operation, Resolvant) :-
err_ctr(syn,Operation),
syntax_check(Type, Resolvant), !,
err_ctr(sem,Operation),

all_have_matches(Resolvant), !.

infer(Chain, Resolvent, _‘, t, Lemma, id) :-
truncate(Chain, Lemma, Resolvent), !.
infer(Chain, Resolvent, Op, r, [B_Literal], id) :-
is_reducible(Op),
reduce(Chain, Resolvent, B_Literal, id), !. % Compulsory reduction
infer(Chain, Resolvent, Op, r, [B_Literal], Type) :-
is_reducible(Op),
reduce(Chain, Resolvent, B_Literal, Type).
infer(Chain, Resolvent, _, x, Index, Type) :-

extend(Chain, Resolvent, Index, Type).

is_reducible(t) :-
ds(sl), !, fail.

1s_reducible( ).

assess_depth(x, Derived_Chain) :-
search_bound(Bound),

count_AB_(Derived_Chain, 0, N),
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N > Bound,
Excess is N - Bound,
exceeded(Excess), !, fail.

assess_depth(_, _).

count_AB_(Chain, Initial, Result) :-
[! pick_suc(L, Succ, Chain),
class(L.,Class, _),
Class\==c,
inc(Initial, Partial) !],
count_AB_(Succ, Partial, Result), !.

count_AB_(_, Result, Result).

exceeded(C) :-
exceed(P),
P<C, L

exceeded(C) :-
abolish(exceed/1),

store_fact(a, exceed(C)).

% Display the center chain and the operation applied

disp_center_chain(Chain, Op, Depth, Side_C, Check) :-

Check,

operation(Op,Operation),
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printf([nl,$Inference rule applied : $,0Operation]),
disp_rule(Op,Side_C),

printf([nl,$Derivant at depth : $,Depth,nl}),
print_chain(Chain),

fail.

disp_center_chain(_, _, _, _,_).

disp_rule(x, Index) :-

input_chain(Index, Chain),

printf([nl,$Input Chain $, Chain}), !.
disp_rule(r, B_Literal) :-

printf([nl,$Selected B-literal $, B_Literal]), !.

disp_rule(t, Lemma) :-

disp_lemma(Lemma).
72
% Display the lemma
G e e e e e e e e e

disp_lemma(Lemma) :-
ds(me),
printf([nl,$Lemma $]),
member(X, Lemma),
input_chain(X, Chain),
printf([nL,$ $, Chain]),
fail.

disp_lemma(_) :-

printf([nl]).

% Display the elements of the center chain



print_chain([ LitIChain]) :-
print_chain(Chain),

printf([$ $,Lit]), !.

print_chain(_).

Ol < e e e e e e e e e

% Select an input chain from the set of support .
S S

set_of_support(Chain) :-
sos(Sign), %+++ Obtain the assigned polarity of the support set
input_chain(_, Chain),

same_sign(Chain, Sign).

same_sign([], Polarity) :- !.

same_sign([BIChain], Polarity) :-
class(B,b,Literal),
literal_atom(Literal,Sign,_),
polarity(Sign, Polarity),

same_sign(Chain, Polarity).

polarity(++, +) :- L.

polarity(--, -).
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display_success :-
record_event($refutation_end$),

printf([nl,$SUCCESSFULL REFUTATIONS,nl]).

7
% Update the operation counter
7,
update_ctr(Op, Val) :-

retract(op_ctr(Op, Ctr)),
N is Ctr+Val,
store_fact(a, op_ctr(Op, N)), !.

update_ctr(Op, Val) :-
store_fact(a, op_ctr(Op, Val)).

Gl = m e e e e e e e e e e 2 e

% Clear all the derivation predicates from the database prior to the start of the %
derivation

7

clear_all :-
abolish([exceed/1, op_ctr/2, path/1,err/3, redundant_literal/1, valid_literal/1,
input_chain/2, order/1, clause_type/l, equal_exist/0, clause_file/1,
search_bound/1]),
expunge,

store_fact(a, path([])).

display_chains :-

not clause_file( ),

print(1,[nl,$*** There is nothing to display...$]), !.
display_chains :-

clause_file(Source),



printf([nl,$Theorem source file : <<< $,Source,$ >>>8]),
printf([nl,$The matrix chains with the generated lemma$,nl]),
input_chain(X, Chain),

printf([nl,$[$,X.$] $1),

print_input_chain(Chain),

fail.

display_chains :-

ordef(L),

clause_type(Type),

clause_size(Min,Max),

member([L,Order], [[0,$propositional$],[1,$first order$]]),
printf([nl,nl,$The problem is a set of $,Type,$ clauses$]),
printf([nl,$Written in $,0rder,$ logic.$]),
printf([nl,$Minimum clause size : $,Min]),

printf([nl,$Maximum clause size : $,Max]), !.

display_chains.

print_input_chain([]) :- !.

print_input_chain({[b,L][Rest]) :-

printf(($ $,L1),

print_input_chain(Rest).

206
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display_statistics(_) :-
not statistics_, !.
display_statistics(Goal) :-
search_bound(Bound),

printf([nl,$Top clause : $,Goal,nl,$Derivation Search bound : $,Bound]),

refutation_stat,

search_tree_stat,

error_stat.
G = e e e e e e e e e mmm
% Display the number of inadmissible center chains
/U

error_stat :-
gather_err(syn,Resultl),
gather_err(sem,Result2),
printf([nl,n,$ Failed by Restrictions Statistics :$]),
disp_err($syntactic check$,Resultl),

disp_err($extendable check$,Result2).

G = e e e e e e e e e e e e e e e e e e mm
%o Gather the asserted operation counter which inadmissible center chains was
% inferred
7,

gather_err(Err,[[Op,Ctr]IRest]) :-
retract(err(Err,Op, Ctr)),

gather_err(Err,Rest), !.

gather_err(_,[]).
7O
%o Display the check where inadmissible center chains were detected

Gy = e e e e e e e e o m o mm e e e mem

disp_err( _, []) :- !
disp_err( Type, List) :-
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printf([nl,$On $,Type,$ restrictions$]),

display_ops(List, 0).
Gy = e e e e e e e e e e e e e e e e
% Display the first refutation statistics
Gy e e e e e e e e e e

refutation_stat :-
event_duration(refutation),
path(Path),
count(Path, Results),
printf([nl,$Refutation path : $,Path,nl,$Refutation Statistics :$]),

display_ops(Results, 0).

/O
% Display the search tree statistics
Gfp =mmmmmm e e

search_tree_stat :-
printf([nl,nl,$Search tree Statistics : $] ),
gather_ops([x.r,t], Result),

display_ops(Result, 0).

gather_ops([], []) :- !.

gather_ops([OlTail], [[O,N]IRest]) :-
op_ctr(O,N),
gather_ops(Tail, Rest), !.

gather_ops([OITail], Rest) :-

gather_ops(Tail, Rest).

% Count the number of occurence of each distinct element of the list
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count([], [] :- !

count([HiRest], [[H,F]iResult]) :-
length(Rest, M),
delete_all(H,Rest,Others),
length(Others, N),
F is M-N+1,

count(Others,Result).

display_ops([[Op,C]IRest], N) :-
T is N+C,
disp_op(Op,C),,
display_ops(Rest, T), !.
display_ops(_.Total) :-
printf([nl, $Total No. of Inference Steps : $, Total]).

7 e e
% Display the number of times an operation is applied
G e e e e e e e e e e e e e e

disp_op(Op, O) :-
operation(Op,Operation),
printf([n,$ No. of $,0Operation,$ = $,C]), !.

operation(x,$extension$):- !.
operation(r,$reduction$):- !.

operation(t,$truncation$).

%  Update the operation collector which collect the operation applied in the search path



update_path(Times) :-
delete_fact(path(Current)),
append(Times, Current, New),
store_fact(a, path(New)).

update_path(Times) :-
delete_fact(path(Current)),
append(Times, New, Current),

store_fact(a, path(New)), !, fail.

Gl = mmmm e e o i o
% Count the error detected
Gl mmmmm e e i 2 e e
err_ctr(_,_)
err_ctr(Type, Op):-

get_prev(Type, Op, Ctr),

N is Ctr+1,

store_fact(a, err(Type, Op, N)), !, fail.
7
% Get the current error type counter
7

get_prev(Type, Op, Ctr) :-
delete_fact(err(Type, Op, Ctr)), !.

get_prev(Type, Op, 0).

S —
% Resolve on the literal either by
( % (1) a unit input chain (subsumed unit extension)

% (1) any input chain, or

Yo (ii1) paramodulate




resolve(Literal _L, [], Input, id) :-
unit_subsume(Literal_L, Input), !.

resolve(Literal_L, Input, N, unify) :-
binary_resolution(Literal_L, Input, N).

resolve(Literal_L, Input, N, unify) :-
equal_exist,

paramodulate(Literal _L, Input, N).

binary_resolution(Literal L, Input, N) :-
input_chain(N, Input_Chain),
select( [b,Literal_K], Input, Input_Chain),

right_match(Literal_L, Literal K).

Gl e e e e e e e 2 2 e e
% Apply paramodulation to the Literal.
Gl e e e e e e 2 e

paramodulate(Literal, [[b,New_Literal]IRest_Input], Index) :-
extract_predicate_symbol(Literal, Symbol, Terms),
find_equal_chain(LS, RS, Rest_Input, Index),
substitute(L.S, RS, Terms, New_Terms),

extract_predicate_symbol(New_Literal, Symbol, New_Terms).

G e e e e e e e
% Find an input chain which contain a positive equal literal. It has

% to be checked if it did not pick up the reflexive equality axiom.
7

find_equal_chain(LS, RS, Rest_Input, Index) :-
input_chain(Index, Chain),

select([b, ++ equal(LS, RS)], Rest_Input, Chain),
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LS\==RS. % make sure that it is not the reflexive axiom

G = e e e e e e e e e e e m
% Substitute a term which is unifiable to any of the terms of the

% equal literal LS and RS.

O = e e e e e e e e e e e e e 2 e e

substitute(LS, RS, [EITerms], [New_ElITerms]) :-
nonvar(E), % Do not paramodulate an into variable
find_unifiable(LS, RS, E, New_E).

substitute(LS, RS, [EITerms], [EINew_Terms]) :-

substitute(LS, RS, Terms, New_Terms).

G = e e e e e e 2 A e e 2 2
% Determine which term of the equal literal is unifiable with the

% given term E of the paramodulated literal

G = e e e e e o e e o e mmm

find_unifiable(LS, RS, E, New_E) :-
replace(LS, RS, E, New_E), !.
find_unifiable(LS, RS, E, New_E) :-
E =.. [PrediTerms],
substitute(LS,RS, Terms, New_Terms),

New_E =.. [PredINew_Terms].

replace(LS, RS, E, RS) :-
identical_atom(LS,E), !.
replace(LS, RS, E, LS) :-
identical_atom(RS,E), !.
replace(LS, RS, E, RS) :-
var(RS),
unify(LS,E), .
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replace(LS, RS, E, RS) :-
unify(LS,E).
replace(LS, RS, E, LS) :-

unify(RS,E).
/O
%o Extract the sign, predicate symbol, arity and term of a literal
/O

extract_predicate_symbol(Literal, symbol(Sign, Predicate, Arity), Terms) :-
literal_atom(Literal, Sign, Atom),
Atom =.. [PredicatelTerms],

length(Terms, Arity).

unit_subsume(Literal_L, Index ) :-
input_chain(Index, [ [b,Literal_K] ]),
complementary(Literal_L, Literal_K, L_A, K_A),
subsumes(K_A, L_A), .

right_match( Literal_L, Literal K) :-
complementary(Literal _L, Literal_K, A1,A2),
unify(A1,A2), !.

selection_function(Literal, Left_Cells, Chain) :-

get_rightmost_cell(Right_Cell, LeftCell, Chain),



choose_literal(Literal, Right_Cell, LeftCell, Left_Cells), !.

choose_literal(Literal, [Literal], LeftCell, LeftCell) :- !.

choose_literal(Literal, Right_Cell, LeftCell, Left_Cells) :-
compute_weights(Right_Cell, Weights, LeftCell),
select_literal(Literal, Rest, Right_Cell, Weights),
append(Rest, LeftCell, Left_Cells).

O —mmmmeme - e e e
% Select a literal which has the minimum weights
Oy e e e e e e

select_literal(Literal, Rest, Right_Cell, Weights) :-
minimum(Val, Weights),
member(Val, Weights, Pos),

nth_element(Pos, Literal, Rest, Right_Cell), !.

nth_element(1, E, Rest, [EIRest]) :- !.
nth_element(Pos, E, [XIRest], [XITail)) :-
dec(Pos,Next),

nth_element(Next, E, Rest, Tail).

minimum(Val, List) :-

pick_suc(N, Succ, List),

214



minimum(N, Val, Succ), !.

minimum(Initial, Val, List) :-
pick_suc(N, Succ, List),
N < Initial,
minimum(N, Val, List), !.

minimum(Val, Val, _).

compute_weights({], [], ) :- I.

compute_weights([ [b,L] IRest], [ColOthers], LC) :-
match_count(L M),
has_identical([b,L], I, LO),
CoisI+M,

compute_weights(Rest, Others, LC).

/2
% Determine the weight of the literal by accumulating the size of the

% input chain in every possible extension
72

match_count(L,_) :-
ctr_set(16,0), % Initialise the accumulator
ctr_set(17,0), % Initialise the unit input flag
resolve(L, Input, _, ),
[! length(Input, N),
sum_weight(N) !], fail.
match_count(L,Weight) :-
literal_atom(L, _, Atom),
count_var(Atom,Var),

ctr_i1s(16,W),

215



Weight is W+Var.
/O
% Accumulate the weight of the literal. If the side chain is a unit
%o then do not accumulate for the first time and set the unit flag to 1
G e e e e e 2 e o

sum_weight(0) :-
ctr_is(17,0),

ctr_set(17,1),!.

sum_weight(N) :-
ctr_is(16,Current),

Weight is Current+N+1,

ctr_set(16,Weight).
/O
%o Find if the literal is preceded by an identical literal
/O

has_identical(L, 0, LC) :-
member(K, LC),
L==K,!

has_identical(L., 1, LC).

get_rightmost_cell( _, _, {{SI_]I_]) -
S\==0b, !, fail. /*--—--- first literal is non-B-literal ----- #/
get_rightmost_cell(Right_Cell, [[SIT]ILeftCell], Chain) :-
choose([SIT], Right_Cell, LeftCell, Chain),
S\==>0b, .

get_rightmost_cell(Chain, [], Chain).

216
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% Match check. Check if one of the B-literal of the chain cannot be extended upon

all_have_matches(_) :-
not match_check, !.
all_have_matches(_) :-
order(0), !.
all_have_matches(Chain) :-
member([b,L], Chain),
sufficiently_instantiated(L),
unextendable(L), !, fail.

all_have_matches(_).

G = e e e e e e e e e m o e e
% Determine if the literal is sufficiently instantiated, that is

Yo half of its terms are at least not variables

Gl = m e e e e 2 2 2 2 e e e e

sufficiently_instantiated(Literal) :-
literal_atom(Literal, Sign, Atom),
Atom =.. [_ITerms],

length(Terms, N),

M is (N+1)//2,

check_var(Terms,M).
/S
% Check if the number of nonvariable terms does not exceed the allowed
Oy —mmmm e e e e e e e e e e m e

check_var(Terms,0) :- !
check_var(Terms,M) :-
[! select(E,Rest, Terms),
nonvar(E),
dec(M,N) ],

check_var(Rest,N).



unextendable(L) :-

literal_atom(L, , A1),

valid_literal(A2),

subsumes(Al1,A2), !, fail.
unextendable(L) :-

literal_atom(L,_, L_A),

redundant_literal(K_A),

subsu|mes(K_A, L_A),!. % K_A subsumes L_A
unextendable(L) :-

unresolvable(L),

literal_atom(L,_,A),

store_fact(a, redundant_literal(A) ), !.
unextendable(L) :-

literal_atom(L,_,A),

store_fact(a, valid_literal(A) ), !, fail.

unresolvable(L) :-
resolve(L, Input, _,_),

all_resolvable(Input),!, fail.

unresolvable(L).
/A
Yo Check if the introduced literals are resolvable
7

all_resolvable([]) :- !.
all_resolvable([[b,L]!Input]) :-



resolve(L, _, _, ),

all_resolvable(Input).

unresolvable(L) :-

resolve(L., _, _, ), !, fail.

unresolvable( ).

Oy e e e e e e e
% Extract the rightmost cell of the chain
7

extract_right_most_cell([], [ LIChain], [ LIChain] ) :-

not class(L.,b,_), !.

extract_right_most_cell([LIRight_Most_Cell], Left_Cells, [LIChain]) :-

extract_right_most_cell(Right_Most_Cell, Left_Cells, Chain).

class({C,L.], C, L) :- L.
class({C,S,L},C,L) :- !.
class({C,_,_,L],C,L).
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/* J—
Module:  SLM_DRV.ARI
Purpose:  Contains the search control for SLM and SLM-5 derivations

====== ¥/

G m e e e e e e e e
% Derivation Search Control (bounded depth-first search)
Gy = e e e e e e e e e e e e e e e e
search(Goal_Chain, Depth, true) :-

increment_bound(Depth,Bound),

ctr_set(1,1), % This counter is reserved for node link counter

ctr_set(2,0), % This counter is reserved for depth counter

start_refutation,

reset_ctr,

refute([ [0,0,Goal_Chain] ], [0,0,x], 0),
abolish(unit_subsume_fail/0), !.
search(Goal_Chain, Depth, fail).

G e e e e e e e e e e e
% Reset the refutation start time

G e e e e e e
start_refutation :-

retract(event($refutation_start$, )),

record_event($refutation_start$), !.
start_refutation :-

record_event($refutation_start$).

G = e e e e e e e e e e e e e e
%  Increment the search bound if the failure is caused by reaching the bound limit

) = e e e e e e e e e e e —
increment_bound(Depth,Depth) :-

new_search(Depth).
increment_bound(Depth,New_Depth) :-

find_excess(Excess),

Depth2 is Depth + Excess,

increment_bound(Depth2,New_Depth).

72
% Find the excess by checking first if the failure was caused by the
% unit subsume check then there is no excess, otherwise, find the exceed(Excess).

G e e e e e e e e e e e e e
find_excess(Excess) :-
delete_fact(exceed(Excess)), !.
find_excess(0) :-
delete_fact(unit_subsume_fail).

O m e e e o e e
% New Search bound

% ____________________________________________________________________________________________________
new_search(Bound) :-
abolish(search_bound/1),
abolish(disproved/2),
print(1,[nl,nl,$New Search bound : $,Bound)),
asserta(search_bound(Bound)), !.



% Check if the chain is empty

G e e e e e e e e e e e e e e e e e
empty_chain({]) :- !.
empty_chain({[0,0,[1]]).

G oo e e e e e e e e e e e e
% Find a refutation

G e e e e e e e e e e e e
refute(Chain, _, _) :-

empty_chain(Chain),

display_success, !.
refute(Chain, Tip, Level) :-

infer(Chain, Derived_Chain, Tip, New_Tip, Op, Type, Desc),

[!

assess_depth(Op, Derived_Chain),

inc(Level, New_Level),

update_ctr(Op, 1),

apply_restrictions(Op, Type, Derived_Chain),

disp_center_chain(Derived_Chain, New_Tip, Desc, Op, New_Level,derivation_)
',

refute(Derived_Chain, New_Tip, New_Level),
disp_center_chain(Derived_Chain, New_Tip, Desc, Op, New_Level refutation_),

update_path([Op]).

Gy o e mnn
% Apply an inference operation to the center chain
G e e e e e e e e m e e e e em e

% #HHHHEHHERHH# Reduction after an extension operation
infer(Chain, Derived_Chain, Tip, Tip, r, Type, B_Literal) :-
[! untruncatable(Chain, Tip),
after_extension(Tip, L,R),
select_branch([[L,R,Subchain]|Branch], Other_Branches, Chain) !],
reduce(x, [[L,R,Subchain]|Branch], Reduced_Branch, B_Literal, Type),
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append(Other_Branches, Reduced_Branch, Derived_Chain).
Yo #HHHHHHEHHFH Reduction after a truncation operation
infer(Chain,Derived_Chain, Tip, [L,R,t_1,C_Literal], r, Type, B_Literal):-
after_truncation(Tip, _, C_Literal),
select_branch([[L,R,Subchain]Branch], Other_Branches, Chain),
reduce(C_Literal,[[L,R,Subchain]|Branch],Reduced_Branch, B_Literal, Type),
append(Other_Branches, Reduced_Branch, Derived_Chain).
% #HHHHAHFHARE Spread if the last operation is an extension operation
infer(Chain,Derived_Chain, Tip, [L1,R1,s], s, 1d, []) :-
spreadable,
[! after_extension(Tip, L, R),
untruncatable(Chain, Tip),
select([L,R,Subchain], Other_Nodes, Chain) !],
spread([L,R,Subchain], New_Nodes),
append(Other_Nodes, New_Nodes, Derived_Chain),
get_tip_node([L1,R1,_], Derived_Chain), !.
% #HHHHEHAHHEHA Truncate non-B-literals
infer(Chain,Derived_Chain,[L,R,Opl_], New_Tip, Tr, Type, {]) :-
[! Op\==s5,
select_branch([[L,R,Subchain]|Branch], Other_Branches, Chain) !],
truncate({[L,R,Subchain]!Branch], Truncated_Branch, [TrlC], Type),
- [! append(Truncated_Branch, Other_Branches, Derived_Chain),
find_tip({L,R], Derived_Chain, New_Tip, [TrlC]) !].
% HHHEHHEHEHH Apply the extension operation
infer(Chain, Extended_Chain, Old_Tip, New_Tip, x, Type,Input_Index) :-
untruncatable(Chain, Old_Tip),
extend(Chain, Extended_Chain, New_Tip, Type, Input_Index).

7
%  Determine if spreading can be applied. Spreading should be applied only if the
% set of clauses is in first order level. If is not in first order and the version of SLM

% is 5.then spreading is not applied.

7
spreadable :-
order(1), !.
spreadable :-
slm_version(95),
!, fail.
spreadable.

O e e e e e e e e e e e
% Getanew tip

7
get_new_tip([L,R,s], Chain) :-

select([L,R,S], Others, Chain),

not member([R,X,_], Others), !.

G m e e e e m e e e e e mmm
% Select a new tip node

select _node([L.R,s], [L,R,Subchain], Other_Nodes, Chain) :-
select([L,R,Subchain], Other_Nodes, Chain), !.
select_node(_, [L,R,Subchain], Other_Nodes, Chain) -
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select([L,R,Subchain}], Other_Nodes, Chain),
not member([R,X,_], Other_Nodes), !.

/O
% Check if the currently inferred branch is not truncatable

/2
untruncatable(Chain, [L,R, s]) :- .
untruncatable(Chain, [L,RI_]) :-
member([L,R,[Al_]], Chain),
member(A, [[al_], [¢l_]D, !, fail.
untruncatable( _, ).

/R
%  Check if the tip was inferred by truncation
/S
after_truncation([L,R,t_1,C_Literal], [L,R], C_Literal).
/U
%  Check if the tip was inferred by extension
/O
after_extension([L,R,x], L,R).
72
% Select a branch from the chain

Ol == e e e e e e e e e e oo e

select_branch(Branch, Other_Branches, Chain) :-
select([0,0,S], Other_Nodes, Chain),
find_next_nodes([{0,0,S]], Branch, Other_Branches, Other_Nodes).

/O
% Find next nodes

/R
find_next_nodes([[L.R,S]IRest], Branch, Other_Branches, Chain) :-

select(|R,RR,SS], Other_Nodes, Chain),

find_next_nodes([[R,RR,SS],[L,R,S]IRest], Branch, Other_Branches, Other_Nodes).
find next nodes(|[L,R,S]IRest], [[L,R,S]IRest}], Chain, Chain) :-

not member(|R,_,_], Chain).



J* == R —
Module: SLM_SUP.ARI

Purpose:  Contains most of the utilities procedures used in SLM-TP and SLMS5-
TP. This include the self configuration facilities, etc.

——ommm—m——— * /

Y - e e e e e e
% Update the operation counter
7
update_ctr(Op, Val) :-

delete_fact(op_ctr(Op, Ctr)),

N is Ctr+Val,

store_fact(a, op_ctr(Op, N)), !.
update_ctr(Op, Val) :-

store_fact(a, op_ctr(Op, Val)).
7
% Reset the operation used counter and the rejected operations counter
% e e e e e e m

reset_ctr :-
abolish([op_ctr/2,err/3]).

G e e e e e 2 e e e e e mm
% Assess the depth bound if it exceeded the search depth bound
7
assess_depth(x, Center_Chain) :-

search_bound(Bound),
count_A_and_B_(Center_Chain, Count),
Count > Bound,
New is Count - Bound,
exceeded(New), !, fail.

assess_depth(_, ).

O e e e e < < e e
% Count the A- and B-literals in the center chains

O
count_A_and_B_(Center_Chain, New_Level) :-

collect_subchain(Center_Chain, [],List),

count_AB_(List, 0, New_Level).

% e e e e e e e e e e e e e o e e e e e o e e 2 2 o 2 e e e e e e e e e
%  Count the A- and B-literals in the list of literals

Gl e e e = e
count_AB_([], N,N) :- L.
count_AB_([ElList], Initial, Count) :-

is_ AB_(E, Initial, Partial),

count_AB_(List, Partial, Count).

G e e e e e e e
%  Evaluate if the element is an A- or B-literals

7
is_AB_(E, Initial, Partial) :-
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class(E, Class,_,_),

member(Class, [a,b]),

inc(Initial, Partial), !.
is_AB_(E, Initial, Initial).

% Collect the subchains

72
collect_subchain([], L, L) :- !.
collect_subchain([[_,_,Sub]lCenter_Chain], Initial, List) :-

append(Sub, Initial, Partial),

collect_subchain(Center_Chain, Partial, List).

G e e e e e e e e e e e
% The search bound is exceeded. If the excess is >= to the previous
% excess then do nothing else store the current excess
G~ e e e e e e e e
exceeded(Excess) :-
exceed(Current),
Current < Excess, !. % Keep the minimum excess
exceeded(Excess) :- '
abolish(exceed/1),
store_fact(a,exceed(Excess)), !.
Gl = eem e e e e e e e e e e e e e
% Update a fact by replacing Factl by Fact2 in the memory
O e e e e e e o e o e A2 mem
update_fact(Factl, Fact2) :-

delete_fact(Factl),

store_fact(a, Fact2), !.
update_fact(Factl, Fact2) :-

store_fact(a, Fact2).

7
%  Update the refutation path which allow backtrackingif somewhere the proof failed

7
update_path(Times) :-

delete_fact( path(Current)),

append(Times, Current, New),

store_fact(a, path(New)).
update_path(Times) :-

delete_fact( path(Current)),

append(Times, New, Current),

store_fact(a, path(New)), !, fail.

2
% Select a top chain from the set of support.

% Choose a chain which contains literals having the same truth Index

Gy e

set_of_support(Chain) :-
sos(Sign),
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model(Sign, Index),
input_chain(_, Chain),
same_truth_value(Index, Chain).

Gl == e e e e e e e e e e e e e
% 'The sign indicates the truth index based on the trivial interpretation

/A e e e e e e e
model(+, 1) :- !
model(-, 0).

Gy e e e e e e e e
% Determine if a chain contains literals of the same truth value

G e e e e e e e e e e
same_truth_value(Index, []) :- !.
same_truth_value(Index, [LIChain]) :-

class(L,b,Index,_),

same_truth_value(Index, Chain).

G e e e e e e e e e e
% Compile the file by asserting the set of clauses and apply the self configuration facility

G e e e e e e e e e e e e e e e e e e e
compile(File) :-
abolish(valid_literal/1),
abolish(redundant_literal/1),
[-File], !,
abolish([ clause_file/1, equal_exist/2, input_chain/2, clause_size/2, clause_type/1,
order/1]),
assertz(clause_file(File) ),
check_format,
configurise_clauses,
convert_clause_to_chain,
tautology_elimination,
pure_literal_elimination,
abolish(a_clause/1),
expunge.
compile(File) :-
print(1,[nl,$***The file is not available in the current directory.$)),
print(1,[nl,$>>> Try another file... $]), fail.

% Check if the asserted file is in the right format

7
check_format :-

a_clause(), !.
check_format :-

print(1,[nl,$***The consulted file is not in the right format$]),

print(1,[nl,$ Format a_clause([Literall,.... Literaln]). $]),

!, fail.
/2
% Find the configuration of the set of clauses
G - e e e e e e e e e

configurise_clauses :-
print(1,[nl,$Wait... Configuring the set of Clauses$)),
a_clause(Clause),
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[l write($.9),
length(Clause, N),
min_max(N), /* determine the minimum and maximum size of clause */
determine_order(Clause),
determine_type(Clause),
determine_equal(Clause)!],
fail.
configurise_clauses.

D oo . e e e
% Determine the order of the set of clauses

determine_order(Clause) :-
order(1), !.

determine_order(Clause) :-
member(L, Clause),
count_var(L, N),
N> 0,
abolish(order/1),
asserta(order(1)), !.

determine_order(Clause) :-
abolish(order/1),
asserta(order(0)), !.

A e e e
% Determine the type of the set of clauses

O = mmmmmemmmm e e e e e
determine_type(Clause) :-
clause_type(general), !.
determine_type(Clause) :-
select(++ L., Others, Clause),
member(++ K, Others),
abolish(clause_type/1),
asserta(clause_type(general)), !.
determine_type(Clause) :-
abolish(clause_type/1),
asserta(clause_type(horn)).

7
% Determine if an equal literal exist

% - o e e e e e e e e
determine_equal(Clause) :-
equal_exist, !.
determine_equal(Clause) :-
member(Literal, Clause),
literal_atom(Literal, _, equal(_,_)),
asserta(equal_exist), !.
determine_equal(_).

7
% Eliminate tautologous chain

O ommemeeemem e e e e e e m e e
tautology_elimination :-

print(1,[nl,$Tautology elimination in action...$]),

input_chain(N,Chain),

[!
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select([b,L], Others, Chain),
member([b,K], Others),
tautology(L,K),
retract(input_chain(N,Chain)),
print(1,[nl,$***Input chain $,Chain,$ is a tautology.$])
',
fail.
tautology_elimination.

7
% Remove a chain which contain a pure literal

Gl = e e e
pure_literal_elimination :-
print(1,[nl,$Pure literal elimination in action...$]),
input_chain(N,Chain),
!
has_pure_literal(Chain),
print(1,[nl,$Input chain that contains pure literal : $,nl, tab(5), Chain]),
retract(input_chain(N,Chain))
',
fail.
pure_literal_elimination.

7
% Determine if the chain is resolvable

G = e e e o e e e mmm
has_pure_literal(Chain) :-

all_resolvable(Chain), !, fail.
has_pure_literal(Chain).

% Convert a clause to input chain

O e et e e e
convert_clause_to_chain :-

clause_size(Min, Max),

chain_ndx_set,

get_a_clause(Clause, Min, Max),

form_a_chain(Clause, Chain),

get_chain_ndx(N),

store_fact(z, input_chain(N, Chain)),

fail.
convert_clause_to_chain :-

add_reflexive_axiom.

Ol = e e e e 2 2 mm
% Add the equality reflexive axiom
Gl = e e e e e e e e
add_reflexive_axiom :-

equal_exist,

get_chain_ndx(N),

store_fact(a,input_chain(N,[[b,1,++ equal(X,X)]]) ), !.
add_reflexive_axiom.

A S e
% Get a clause starting from the minimum no. of literals




72

get_a_clause(Clause, N, Max) :-
a_clause(Clause),
length(Clause, N).

get_a_clause(Clause, N, Max) :-

N < Max,

inc(N,M),

get_a_clause(Clause, M, Max).
72
% Form a chain from a given clause
7

form_a_chain([], []) :- !
form_a_chain([LIRest], [[b,],L]IOthers]) :-
interpret(L, I),
form_a_chain(Rest, Others).

Ol — = e e o e e e e e e e
% Initialise the chain index counter
Gl e e e e m e e e e
chain_ndx_set :-

ctr_set(30,1).
72
% Get a chain index and update it
G = e e e e e e e e
get_chain_ndx(N) :-

ctr_inc(30,N).
G = e e e e e e e e mmmn
% Update the current minimum and maximum size of a clause in the set
Ol ~=mmmmm e e e e e e m e

min_max(N) :-
clause_size(Min, Max),
update_size(N, Min, Max), !.
min_max(N) :-
store_fact(a, clause_size(N,N)).

% Update the clause size

Qfp —mmmm e e e e e e

update_size(N, Min, Max) :-
N < Min,

update_fact(clause_size(Min,Max), clause_size(N, Max)), !.

update_size(N, Min, Max) :-
N > Max,

update_fact(clause_size(Min,Max), clause_size(Min, N)), !.

update_size(_, _, ).

Ol — e e e e m e e e e
%o Display successful refutation message
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display_success :-
record_event($refutation_end$),
printf([nl,$SUCCESSFULL REFUTATIONS nl}), !.

/O
% Display the set of input chain and some information about the input chains

7
display_chains :-
not input_chain(_,_),
print(1,[nl,$No input chains yet...$]), !.
display_chains :-
clause_file(File),
printf([nl,$Source File ***[$ File,$]$]),
printf([nl,$The set of input chains :$,nl]),
input_chain(N, Chain),
printf([nl,$[$,N,$] :8]),
print_input_chain(Chain),
fail.
display_chains :-
clause_type(Type),
order(N),
what_order(N,Logic),
clause_size(Min,Max),
printf([nl,$The problem is a set of $,Type,$ clauses$]),
printf([nl,$Written in $,Logic,$ logic.$]),
printf([nl,$Minimum number of literals $,Min]),
printf([nl,$Maximum number of literals $,Max]).

what_order(0,$propositional$) :- !.
what_order(1,$first order$) :- !.

7
% Display literals of input chain

O memeemee e e e e
print_input_chain([]) :- !.
print_input_chain([[b,I,L]IChain]) :-

printf([$ $,L]),

print_input_chain(Chain).

7
% Display the center chain

Gy = e e e e e e e e e e m
disp_center_chain(Chain, Tip, Desc, Op, Level, Check) :-

Check,

[! operation(Op, Operation),

printf([nl,nl,$Inference Rule Applied : $,0Operation,nl]),
disp_rule(Desc, Op),

printf([$-- : Center chain at Search Depth $,Level]) !],
get_branch(Branch, Chain),

disp_branch(Branch),

fail.
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%  Display a branch of the chain

Gl = e e e e e e e e e e e e
disp_branch(Branch) :-

branch_to_list(Branch, List),

separate_nodes(Nodes, Literals, List),

printf([nl,$Branch $)),

display_nodes(Nodes),

display_literals(Literals), !.

) e e e e e e e m
%  Separate the nodes from the literals

Gy e e e e e e e e e e
separate_nodes([], [], []) :- !.
separate_nodes(Nodes, Literals, [ElList]) :-
a_literal(E, Nodes, Nodes_Rest, Literals, Literals_Rest),
separate_nodes(Nodes_Rest, Literals_Rest, List).

Gl —mm e e e e e e e m
% Is it a literal or a node

7
a_literal([L,R], [RINodes], Nodes, Literals, Literals) :- !.
a_literal(E, Nodes, Nodes, [ElLiterals], Literals).

7
%  Display the nodes of the branch

G — e e e e e e e e e e e
display_nodes([]) :- !.
display_nodes([NINodes]) :-

display_nodes(Nodes),

printf([$->$,N]), !.

7
%  Display the literals of the branch

7,
display_literals([]) :-

printf([ni]), !.
display_literals([LILiterals]) :-

display_literals(Literals),

printf([$ $,L]), !.

% Determine the operation code

U,
operation(x, SEXTENSIONS) :- !.

operation(r, SREDUCTIONS) :- !.

operation(s,$SPREADINGS) :- !.

operation(t_0,$TRUNCATION A(0)$) :- !.

operation(t_1,$TRUNCATION A(1)$).

Gl == e e e e e e e e e e e e e
% Display the inference rule applied
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disp_rule(Index, x) :-

input_chain(Index, Chain),

printf([$Input Chain : $,Chain,nl]), !.
disp_rule(B_Literal, 1) :-

printf([$Reducing $, B_Literal,nl]), !.
disp_rule(_, _) :- !

/R
% Display a node
/U
disp_a node([L R,S)) :-

Ind is L mod 40,

printf([nl,tab(Ind), $Node($, L.$,$, R,$):$]),

Tab is Ind+35,

disp_subchain(Tab, S),

fail.
disp_a_node( ).
O —eeee e e e e e e e
% Display a subcham
72

disp_subchain(Tab,[]) :-
printf([nl,tab(Tab)]), !.

disp_subchain(Tab, [LiterallSubchain]) :-
disp_subchain(Tab, Subchain),
printf([$ $, Literal]).

Ol = e e e e e e e
% Clear all asserted facts and initialise the refutation path
O e e e e e e e e e e e m e e
clear_all :-

abolish(op_ctr/2),

abolish(node_ctr/1),

abolish(path/1),

abolish(err/3),

store_fact(a, path([])),

ctr_set(2,0).
72U
% Display the statistics of the derivations
O —emmmmmmmm e e m e e e o e mmm

dlsplay_statlsucs(Cham)
not statistics_, !.

display_statistics(Chain) :-
search_bound(Bound),
printf([nl,$Goal : $,Chain]),
printf([nl,$Derivation search bound $,Bound]),
event_duration(refutation),

- refutation_stat,
search_tree_stat,
error_stat.
I = e e e e e m e
% Display the statistics on errors



error_stat :-
gather_err(syn,Resultl),
gather_err(sem,Result2),
printf([nl,nl,$ Failed by Restrictions Statistics :$]),
disp_err(syntactic,Resultl),
disp_err(semantic,Result2).

% Gather the rejected operation counter

A

gather_err(Err,[[Op,Ctr]IRest]) :-
retract(err(Err,Op, Ctr)),
gather_err(Err,Rest), !.

gather_err(_,[]).

Gl o e e e e e e e e e e
% Display the number of inadmissible opefations
7

disp_err(_, []) :- .
disp_err(Type, List) :-
printf([n,$On $,Type,$ restrictions$]),

display_ops(List, 0).
O e e e e e e
% Display the first refutation statistics
Gl e e e e e e

refutation_stat :-
path(Path),
count(Path, Results),
printf([nl,$Refutation path : $,Path]),
printf([nl,$Refutation Statistics :$,nl]),
display_ops(Results, 0).

G e e e

search_tree_stat :-
printf([nl,nl, $Search tree Statistics : $]),
gather_ops([x.s.r,c,t_0,t_1], Result),
display_ops(Result, 0).

Ol = m e e e e e e -
% Gather all the applied operations that constitute the search tree
/O

gather_ops([], []) :- !

233
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gather_ops([OITail], [[O,N]IRest]) :-
op_ctr(O,N),
gather_ops(Tail, Rest), !.

gather_ops([OITail], Rest) :-
gather_ops(Tail, Rest).

G = e e e e e e e e e e o o e e emm
% Count the number of occurence of each distinct element of the list
G oo e e o e e e

count((], (1) :- !.

count([HIRest], [[H,F]IResult]) :-
length(Rest, M),
delete_all(H,Rest,Others),
length(Others, N),
F is M-N+1,
count(Others,Result).

G —mm e e m e e e e e e
% Display the statistics of each operation of the list
O - emmmmem e o e e 2 e mm
display_ops({[Op, C]IRest] N) :-

T is N+C,

disp_op(Op,0),

display_ops(Rest, T), !.
display_ops( _,Total) :- '
printf([nl,$Total No. of Inference Steps : $, Total]).

O e e e e e
% Display the number of times an operation is applied
7
disp_op(Op, C) :-

operation(Op, Operation),

printf([nL,$ No. of $,0Operation,$ = $,C]), !.
G = e e e e e e e e e S e e e
% Extract the rightmost cell of the branch
G = e e e e e e e e o 2 £ 2 e

extract_ RMC_([], [ElList], [ElList]) :-
not member( E, [[b,_,_], [_._], [b._,_,_1]), !.
extract RMC_([EIRMC], Left_Cells, [ElList]) :-
extract_RMC_(RMC, Left_Cells, List).

G oo e ea e

% Convert a branch of nodes into a linear list (node indicators are included as a
90 paired element)

Gl = e e e e e e e 2 e e mmm

branch_to_list([], []) :- !.

branch_to_list([[L,R,Subchain]|Branch], List) :-
branch_to_list(Branch, Others),
append([[L,R]ISubchain], Others, List).

% Convert a linear listed branch of nodes into a branch of nodes



Gl = e e e

list_to_branch({], []) :- !.

list_to_branch([NodelIList], [Node_SubchainlBranch]}) :-

is_node(Nodel),

form_subchain(List, Subchain, Others),

append(Nodel,[Subchain], Node Subchain),

list_to_branch(Others, Branch).
is_node([L,R]) :-

integer(L),

integer(R).
% —--- - e e e e
% Form a subchain of a node
7O

form_subchain({], [], [D) :- !

form_subchain([EIRest], [], [EIRest]) :-
is_node(E), !.

form_subchain([EIRest], [EISubchain], Others) :-
form_subchain(Rest, Subchain, Others).
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/*
Module : SLM_RULE.ARI
Purpose : Contains the operations used by SLM-TP.

*/
7
% EXTENSION OPERATION FOR SLM
/7

extend(Chain, Extended_Chain, [L,R,x], Type, Input_Index) :-
selection_function(B_Literal, [L,R,LC], Other_Nodes, Chain),
resolve(B_Literal, Input_Rest, Input_Index, Type),
[! convert_B_A(B_Literal, A_Literal, Depth),
append(Input_Rest, [A_LiterallLC], Extended),
insert_depth(Depth, [L,R,Extended], Other_Nodes, Extended_Chain) !].

% Insert the depth at the root node

msert _depth(Depth, Node, Other_Nodes, [[0,0,Root_Sub]iRest_Nodes]) :-
append(Other_Nodes, [Node], Chain),
select([0,0,Roo0t], Rest_Nodes, Chain),
append(Root, Depth, Root_Sub), !.

Gl = e e e e e 2 2 e
% Convert a B-literal to A-literal and return the depth symbol if the literal is indexed
% by 1, otherwise, return an empty list.

/U
convert_B_A([b,1,L], [a,1,Symbol,L], [Symbol]) :-

gen_sym("d_",Symbol), !.
convert_B_A([b,0,L], [a,0, L], {D).

%  Spreading operation

7
spread([L,R,Subchain], [[L,R,True_Literals]iNew_Nodes]) :-

classify(False_Literals, True_Literals, Subchain),

length(False_Literals, N), N > 1,

create_nodes(R, False_Literals, New_Nodes).

% Classify the subchain into two lists : FALSE and TRUE literals lists

Gl = mm e
classify([], (1, []) - !
classify([], [LIRest], [LIRest]) :-
non_B_literal(L), !.
classify(False_Literals, True_Literals, [LISubchain]) :-
assess_truth(L, False_Literals, FALSE, True_Literals, TRUE),
classify(FALSE, TRUE, Subchain).

7
% Assess the truth value of the B-literal. If it is indexed by O then it is added to the
% list of false literals, otherwise, to the list of true literals



Gl = e e e e e e e e e
assess_truth([b,0,L], [[b,0,L]IFalse], False, True, True) :- !.
assess_truth(L, False, False, [LITruel], True).

7
%  Create new tip nodes

G = e e et e
create_nodes(R, [], [D :- !
create_nodes(R, [LIFalse_Literals], [[R,C,[L]]INew_Nodes}) :-

ctr_inc(1, O),

create_nodes(R, False_Literals, New_Nodes).

% SLM reduction
% case (I) : Reduction after a truncation operation
% case (II) : Reduction after an extension operation

G = e e e e e e o e e e
reduce(_, Branch, Reduced_Branch, B_Literal, Type) :-

clause_type(horn), !, fail.
reduce({a,0,L], Branch, Reduced_Branch, B_Literal, Type) :-

[! branch_to_list(Branch, List),

choose([a,0,L], Prec, Succ, List) !},

extract_RMC_(RMC, Left, Prec),

apply_reduction(Left, [a,0,L], Succ, RMC, Reduced_Branch, B_Literal, Type), !.
reduce(x, Branch, Reduced_Branch, B_Literal, Type) :-

[! branch_to_list(Branch, List),

extract RMC_(RMC, Left_Cells, List) !],

remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, Type).

Ol = e e e e e e e e e e e
%  Remove a B-literal from the rightmost cell by reduction. First a B-literal which

% has identical atom with non-B-literal, otherwise, try by unification
7

remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, id) :-

choose(Non_B, Prec, Succ, Left_Cells),

non_B_literal(Non_B),

apply_reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B_Literal,id), !.
remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, Type) :-

order(1),

choose(Non_B, Prec, Succ, Left_Cells),

non_B_literal(Non_B),

apply_reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B_Literal, Type).

Gl e e e e e e
%  Check if the chosen literal is not a B-literal

O = m e e e e e m i m e
non_B_literal([bl_]) :- !, fail.

non_B_literal([_,_]) :- !, fail.

non_B_literal(Non_B).

Gl = e mmm e e e e e e e e e
%  Apply reduction using the chosen non-B-literal

7
apply_reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B_Literal, Type) :-
select(B_Literal, Rest RMC, RMO),



reducible(B_Literal, Non_B, Type),
move_depths(Prec, Non_B, Succ, New_Left_Cells),
append(Rest_ RMC, New_Left_Cells, Result),
list_to_branch(Result, Reduced_Branch), !.

G = emmm e e e e e e o et e

% Find if the two literals are reducible

G e e e e e e e e £ 2 2 2 e

reducible([b,I,L], Non_B, Type):-
class(Non_B, a, J, K),
opposite(J,I),
complementary(L, K, L_A, K_A),
match(L_A, K_A, Type).

O ommmmemmemeee e e o o o mm m e e em

match(L_A, K_A, id) :-
identical_atom(L_A, K_A), !

match(LL_A, K_A, true) :-
unify(L_A, K_A).

A

% Check if an A-literal indexed by 1 occurs between

7

no_A_1(Between) :-
member([a,1,_,K], Between), !, fail.
no_A_1(Between).

G = e e o e e

% Move the depths of A-literals indexed by 1 and change the status flags
% of A-literals indexed by 0 which are to the right' of the non-B-literal
% used in the reduction.

AU

move_depths(Preceeding, Non_B, Succeding, Result) :-
collect_depths(Depths, New_Prec, Preceeding),
remove_depths(Depths, Succeding, Common, Rest_Succ),
append(New_Prec, Common, Right_Non_B),
append(Right_Non_B, [Non_BIRest_Succ], Result).

G - e e e 2o e e e

%  Delete the depths from the 'left’ of the non-B-literal used in the reduction

O = e e e e e e e e et e

remove_depths(Depths, Succeding, [E1/Common], Rest_Succ) :-
select(E1, Others1, Depths),
select(E2, Others2, Succeding),
El == E2,
remove_depths(Others1, Others2, Common, Rest_Succ), !.
remove_depths(_, Rest, [], Rest).

) <o e e et e e e

% Collects all the depths associated for each A-literal indexed by 1

238
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collect_depths([], {1, []) :- !.

collect_depths(Depth, [E2IOthers], [E1Rest]) :-
extract_depth(Depth, Added_Depth, El, E2),
collect_depths(Added_Depth, Others, Rest).

Gl = mmmmm e e e e e e 2 e e e
%  Extract the depth of an A-literal indexed by 1

Gy e e e e e e o e o e e e mm
extract_depth([DIDepth], Depth, [a,1,D,L], [a,1,D,L]) :- 1.
extract_depth(Depth, Depth, E, E).

/O
%o Truncation operation for SLM

7
truncate([NodelBranch], Truncated Branch, Truncation, Type) :-

truncatable(Node, Ptr, Subchain),

[! strip_A_literal(Subchain, Subchain_Rest, Depth_Atom),

form_node(Ptr, Subchain_Rest, Formed_Node),

append(Formed_Node, Branch, Branch_Rest) !],

insert(Depth_Atom, Branch_Rest, Truncated_Branch, Truncation, Type).

% —--- — - e e e e e e e e e
% Determine if node is truncatable and extract the Node Ptr & the Subchain of the node

7
truncatable([L,R, [EISubchain]], [L,R], [EISubchain]) :-
non_B_literal(E).

Gl = e e e e e e e e e e e e e mem
% Form the node pointer and the subchain into node

7
strip_A_literal({], [, []) :- !.
strip_A_literal({LIRest], [LIRest], []) :-

examine(L, true), !.

strip_A_literal([LIRest], Rest, [D,A]) :-
examine(L, [D,A]), !.
strip_A_literal([LIRest], Subchain, Depth_Atom) :-
examine(L, []),
strip_A_literal( Rest, Subchain, Depth_Atom).

% Examine the literal if is a B-literal, an A-literal indexed by O or by 1

7
examine([b,I,A], true) :- !.

examine([a,0,A], [] :- .

examine([a,1,D,L], [D,L]).

7O
%  Form the node pointer and the subchain into node

7
form_node(_, [1, []) :- !
form_node([L,R], Subchain, [ [L,R,Subchain] ]).



/O
% Insert a C-literal if the stripped literal is an A-literal indexed by 1

O — e e e e e e e e 2 e o e e
insert([], Branch, Branch, [t_0], !) :- !.
insert([D,L], Branch, Truncated_Branch, [t_1,A_literal], true) :-

[! convert_to_A(L,A_literal),

branch_to_list(Branch, List),

choose(D, Prec, Succ, List) !],

insert_A_literal(A_literal, Prec, Inserted),

[! append(Inserted, Succ, Result),

list_to_branch(Result, Truncated_Branch) !].

G e e e e e e e
% Convert the literal to A-literal

7
convert_to_A(L, [a,0,K]) :-
negate(L,K), !.

D) = e e e e e e e e = 2 2
% Insert A-literal at its depth or to a position to the right of an A-literal indexed by 0
Oy e o e e e e e
insert_A_literal (A_literal, Prec, Inserted) :-

append(Prec, [A_literal], Inserted).
insert_A_literal(A_literal, Prec, Inserted) :-

select_last([a,0,Literal], Prec2, Succ2, Prec),

[ append(Prec2, [A_literal, [a,0,Literal}ISucc2], Inserted) !].
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/*
Module:  SLM_SEL.ARI
Purpose:  Contains the resolve and selection function used both by SLM-TP and
SLMS5-TP
*/
7
% Resolve upon a literal by subsumed unit chain, ELSE any input chain OR
% paramodulate the literal if equal exist
L/ e - S
resolve(L, [], N, id) :-
unit_subsume(L, N), !.
resolve([blL], RMC, N, true) :-
input_chain(N, Chain),
select([bIK], RMC, Chain),
right_match(L, K).
resolve([b,I,L], RMC, N, true) :-
equal_exist,
paramodulate([I,L], RMC, N).
7
% Apply paramodulation to the Literal.
7O
paramodulate([Truth Literal], [[b, Truth,New theral]IRest Input], Index) :-
extract_predicate_symbol(Literal, Symbol, Terms),
find_equal_chain(LS, RS, Rest_Input, Index),
substitute(LS, RS, Terms, New_Terms),
extract_predicate_symbol(New_Literal, Symbol, New_Terms).
O —mvmmmee - - e
% Find an input chain which contain a positive equal literal. It has
% to be checked if it did not pick up the reflexive equality axiom.
7O
find_equal_chain(LS, RS, Rest_Input, Index) :-
input_chain(Index, Chain),
select([b, 1, ++ equal(LS, RS)], Rest_Input, Chain),
LS \==RS. % make sure that it is not the reflexive axiom

7
%Substitute a term which is unifiable to any of the terms of the equal literal LS and RS.
% This procedure allows substitution first one term at a time until all terms are

% substituted.

L/ P e e e e e
substitute(LS, RS, [ElTerms], [New ElTerms]) :-

nonvar(E), % Do not paramodulate an into variable

find_unifiable(LS, RS, E, New_E). :
substitute(LS, RS, [ElTerms], [EINew_Terms]) :-

substitute(LS, RS, Terms, New_Terms).

72
% Determine which term of the equal literal is unifiable with the given term E of
% the paramodulated literal

Gl mmmmmmm e e e i e e

find_unifiable(LS, RS, E, New_E) :-
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replace(LS, RS, E, New_E), !.
find_unifiable(LS, RS, E, New_E) :-

E =.. [PrediTerms],

substitute(LL.S,RS, Terms, New_Terms),

New_E =.. [PredINew_Terms].

GJ mm e e e e
replace(LS, RS, E, RS) :-
identical_atom(LS,E), !.
replace(LS, RS, E, RS) :-
var(RS),
unify(LS,E), !.
replace(LS, RS, E, RS) :-

unify(LS,E).
replace(LS, RS, E, LS) :-

unify(RS.E).
7
% Extract the sign, predicate symbol, arity and term of a literal
G = e e e e e e e e e 2 e e e e e e e

extract_predicate_symbol(Literal, symbol(Sign, Predicate, Arity), Terms) :-
literal_atom(Literal, Sign, Atom),
Atom =.. [PredicatelTerms],

length(Terms, Arity).
Gl = e e e e e e e e e e e e e e e
% Find an input chain which is subsumed by L
O e e e e e e m

unit_subsume([b,I,L], N) :-
input_chain(N, [[b,J.K]]),

opposite(l,J),
complementary(L,K,L_A,K_A),
subsumes(K_A,L_A), !. % ***% K_A subsumes L_A
G - e e e e e e e
% Find out if the two literals are complementary unifiable
G = e e e e e e e e 2 m e mmm
right_match([I, L], [J, K]) :-
opposite(LJ),
complementary(L, K, L_A, K_A),
unify(L_A,K_A).
Ol e e e e e e e e 2 e e e e
Y Generate symbol with the given prefix
Op —memeee e e e
gen_sym(Prefix, Symbol) :