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ABSTRACT 

An Analysis and Implementation of Linear Derivation Strategies 

by 

Winston Membrebe Tabada 

iv 

This study examines the efficacy of six linear derivation strategies : (i) s-linear 

resolution, (ii) the ME procedure, (iii) t-linear resolution, (iv) SL-resolution, (v) the GC 

procedure, and (vi) SLM. The analysis is focused on the different restrictions and 

operations employed in each derivation strategy. The selection function, restrictive ancestor 

resolution, compulsory ancestor resolution on literals having atoms which are or become 

identical, compulsory merging operation, reuse of truncated literals, spreading of FALSE 

literals, no-tautologies restriction, no two non-B-literals having identical atoms restriction, 

and the use of semantic information to trim irrelevant derivations from the search tree are the 

major features found in these six derivation strategies. Detecting loops and minimising 

irrelevant derivations are the identified weak points of SLM. Two variations of SLM are 

suggested to rectify these problems. 

The ME procedure, SL-resolution, the GC procedure, SLM and one of the 

suggested variations of SLM were implemented using the Arity/Prolog compiler to produce 

the ME-TP, SL-TP, GC-TP, SLM-TP and SLM5-TP theorem provers respectively. In 

addition to the original features of each derivation strategy, the following search strategies 

were included in the implementations : the modified consecutively bounded depth-first 

search, unit preference strategy, set of support strategy, pure literal elimination, tautologous 

clause elimination, selection function based on the computed weight of a literal, and a match 
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check. The extension operation used by each theorem prover was extended to include 

subsumed unit extension and paramcx:lulation. 

The performance of each theorem prover was determined. Experimental results 

were obtained using twenty four selected problems. The performance was measured in 

tenns of the memory use and the execution time. A comparison of results between the five 

theorem provers using the ME-TP as the basis, was done. The results show that none of the 

theorem provers consistently performs better than the others. Two of the selected problems 

were not proved by SL-TP and one problem was not proved by SLM-TP due to memory 

problems. The ME-TP, GC-TP and SLM5-TP proved all the selected problems. In some 

problems, the ME-TP and GC-TP performed better than SLM5-TP. However, the ME-TP 

and GC-TP had difficulties in some problems in which SLM5-TP performed well. 
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Chapter 1 

INTRODUCTION AND OVERVIEW 

Rationale 

Mechanising theorem proving is a major field of endeavor in Artificial 

Intelligence. The interest in theorem proving stems from the ability of theorem provers to 

emulate many tasks associated with human intellect. Tasks that require human intuition 

such as question answering, general problem solving, writing programs and some robotic 

applications can now be automated using a theorem prover (Green 1981). Theorem 

provers may play a vital role in the fields of mathematics and mathematical logic. In 

mathematical logic, one can express conveniently almost all kinds of deductive arguments, 

and this allows mechanical manipulation by a theorem prover. Mathematicians can now 

study deduction in its purest form with the aid of an automatic theorem prover. The 

realisation that powerful theorem proving techniques could provide a key component of 

many "intelligent machines" has drawn many computer scientists and mathematicians to 

the computer rooms to implement theorem provers. 

An important milestone in automatic theorem proving research was the 

introduction of the resolution principle by Robinson ( 1965). Green (1981, p. 202) 

asserted that "automatic theorem proving using the resolution proof procedure represents 

perhaps the most powerful known method for automatically determining the validity of a 

statement of first-order logic". The resolution proof procedure is complete, that is, it is 

able to prove everything that is actually true, and can be easily mechanised. However, the 

cost of completeness is a combinatorially large search space. One of the disadvantages of 

using the resolution principle in an unrestricted manner is that it leads to many redundant 

and irrelevant inferences. An inference is redundant when the result of the inference can be 

derived in other ways while an inference is irrelevant when the result of the inference does 
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not lead to a derivation of the desired goal. The vast number of clauses generated before a 

proof is found is one of the outstanding problems in theorem proving using the resolution 

principle. The completeness property of the resolution principle is only of theoretical 

interest if the search problems are not solved. Hence, considerable research effort has 

gone into refinements of the resolution proof procedure. Some of these research efforts 

have been directed to the linearisation of the resolution proof procedure. 

The resolution proof procedure repeatedly selects pairs of clauses which can 

be resolved and derives new clauses by the resolution rule until the empty clause is 

derived. The derived non-empty clauses, called intermediate clauses, are added to the 

original set of clauses. An unrestricted resolution proof procedure derives much of the 

redundancy in its search space from the resolution of intermediate clauses with other 

intermediate clauses, which causes the combinatorial explosion of the search space. 

Linear resolution minimises this redundancy by restricting the selection of pair of clauses 

for resolution. Linear resolution requires that one of the selected pair of clauses must be 

the most recently derived clause (starts with a top clause which can be any of the input 

clauses), and the other clause must be an input clause or an ancestor of the first parent. 

The most recently derived clause is referred as the center clause while the other parent 

clause is referred as the side clause. Linear resolution has a relatively uncomplicated 

structure of its search space which makes a heuristic search easy to apply. Linear 

resolution also suits question-answering applications better than unconstrained resolution 

(Brown 1974). 

To restrict derivations to be linear, however, has been found to be insufficient 

to control the size of the search space. Much work has been done to produce a restricted 

linear derivation strategy. Loveland ( 1968) formalised two restricted linear derivation 

strategies: s-linear resolution and the Model Elimination (ME) procedure. Kowalski and 

Kuehner (1971) built on the work of Loveland by adding more restrictions and the 

factoring operation. These refinements were formalised as t-linear resolution and SL­

resolution. Shostak (1976) refined the ME procedure by devising the C-literal mechanism 



3 

as a substitute for the lemma scheme of the ME procedure. This work is formalised as the 

Graph Construction (GC) procedure. Brown (1974) argued that the ability to select 

dynamically a literal to resolve on is critical in obtaining a refutation as well as controlling 

the size of the search space. The ME procedure, SL-resolution and the GC procedure 

have limited choices of literal to resolve upon. In view of this, Brown formulated the 

Selective Linear Model (SLM) linear inference system which he claimed to be superior 

than the other derivation strategies in terms of its flexibility in the choice of literal to 

resolve on. Each of these works has features distinct from the others. However, it is not 

known, which of these derivation strategies presents a better and more efficient theorem 

prover in terms of memory use and speed. To know this, a comparison of the efficacy of 

each derivation strategy needs to be done. In addition, there is a need to analyse their 

different features, and to implement and test them as theorem provers. Hence, this study 

has been conducted. 

Objectives of the Study 

This study aims to attain the following objectives : 

1. To provide an insight into the features of the following linear derivation 

strategies, through analysis of: 

a. s-linear resolution 

b. the ME procedure 

C. t-linear resolution 

d. SL-resolution 

e. the GC procedure 

f. SLM 

2. To formulate possible extensions to the SLM derivation strategy 
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3. To implement theorem provers based on the following linear derivation 

strategies: 

a. the ME procedure 

b. SL-resolution 

c. the GC procedure 

d. SLM 

e. SLM with any extensions formulated. 

4. To compare the efficacy of the implemented theorem provers. 

1.3. Overview of Automated Reasoning Strategies 

Griffiths and Palissier ( 1987) describe, in brief, the basis of automatic theorem 

proving as follows : 

Automatic theorem proving follows research on logic and the validity of 

proofs, which is particularly ancient. At the end of the seventeenth century, 

Leibniz was already looking for an algorithm to prove or refute formulae. The 

modem era dates from Herbrand (1930), who gives an algorithm of this kind 

for formulae in first order logic. It is this logic, called predicate calculus if it 

contains no additional specific axioms, that is the basis of today's theorem 

provers. (p. 63) 

Earlier works by Newell, Simon, Shaw and Gelemter in the middle and late 1950s 

emphasized the heuristic approach to problem solving, but soon shifted to various 

syntactic methods culminating in increased research on resolution type systems (Bledsoe 

1981). Since the development of resolution, many refinements have improved its 

efficiency. The following are reviews of some of the major works on the refinements of 

resolution, which relate to linear derivation strategies: 
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P1 and N1 Resolution (Meltzer 1966, Robinson 1979) 

P1 resolution, as described by Stickel (1986, p. 86), is a restricted application 

of resolution which requires that one of the parent clauses must be a positive clause. N 1 

resolution requires that one of the parent clauses must be a negative clause, which is the 

inverse of P1. These two resolution proof procedures are closely related to the set of 

support strategy (described in the next section). In fact, Stickel viewed P1 resolution as an 

extension of the set of support strategy. He supported this view by the following 

arguments: 

Using the set of support restriction, it is legitimate to designate the set of all 

positive clauses as the set of support. Resolution operations between input 

clauses will then require one parent to be a positive clause as desired. 

However, with just the set of support restriction, any derived clause can be 

resolved with any other clause and the intended restriction that one of the 

parent clauses to each resolution operation must be positive will not be obeyed. 

After each resolution operation, the resulting set of clauses is unsatisfiable 

provided the initial set of clauses is unsatisfiable. Thus, the set of support 

restriction ( with the set of all positive clauses designated as the set of support) 

can be applied to each set of clauses resulting after performing a resolution 

operation and not just to the initial set of clauses, effectively imposing the 

desired restriction that one parent clause of each resolution operation be a 

positive clause. (p. 86) 

N 1 resolution is closely related to the linear input resolution. Given a set of 

Hom clauses, a linear input derivation which starts with a negative top clause is also an N 1 

derivation. 
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Hyper-resolution (Robinson 1965) 

Unlike ordinary resolution that requires two clauses for each application, 

hyperresolution uses an arbitrary number of clauses in each inference step. Each 

hyperresolution operation takes a single mixed or negative clause, referred to as the 

nucleus, and a number of positive clauses, referred to as electrons, which correspond to 

the number of negative literals in the nucleus. To produce a positive clause, each negative 

literal of the nucleus is resolved with a literal in one of the electrons. The derived clause, 

referred to as the hyperresolvent, consists of all the positive literals of the nucleus and the 

unresolved on literals of the electrons (Stickel 1986, Wos et al. 1984 ). Hyperresolution is 

a generalisation of the P1 resolution. Negative hyperresolution interchanges the roles of 

positive and negative clauses in hyperresolution (Wos et al. 1984, p. 168). 

A successful application of hyperresolution can be viewed as applying linear 

resolution with the nucleus as the top clause, until the derived clause is positive. However, 

the entire process does not yield intermediate clauses. 

Linear Input and Unit resolution (Chang 1970) 

Linear input resolution is a restricted resolution proof procedure which 

requires that for every resolution, one of the parent clauses is the most recently derived 

clause, and the other is an input clause. If clauses are viewed as lists (not sets) of literals, 

every resolution involves binary resolution and merging operation. Chang (1970, p. 703) 

noted that a linear input derivation involves binary resolution and merging (Andrews 

1968). Linear input resolution is only complete for sets of Hom clauses. The 

completeness of linear input resolution for Hom clauses shows that it is unnecessary to 

resolve arbitrary pairs of input clauses with each other, because it is sufficient to take only 

those pairs of clauses that include a negative clause. A restricted form of linear input 

resolution, called ordered input resolution is the basis of PROLOG. Ordered input 

resolution requires that literals be resolved away in some fixed order such as strictly left to 

right, as used in PROLOG. In ordinary linear input resolution, the literals of the top 
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clause can be resolved away in any order to obtain an empty clause. If there are N 

literals in the top clause then there would be N! derivations of the empty clause. This 

inefficiency is eliminated in ordered input resolution. This technique is used in the ME 

procedure, SL-resolution, the GC procedure and SLM derivations. 

Unit resolution is a resolution proof procedure which requires that at least one 

of the parent clauses is a unit clause. A unit clause is a clause that contains one literal 

only. Chang has shown that if a theorem has a linear input proof then it also has a unit 

proof. Henschen and Wos (1974, p. 590) pointed out that "many in the field of 

automated theorem proving have devoted much effort and interest to the advantages, 

properties, and implementation of techniques which give preference and often exclusion to 

unit inference." The advantage of this derivation strategy is that whenever a clause is 

resolved with a unit clause, the result has fewer literals than the parent does. This helps to 

focus the search toward obtaining a refutation and thereby improves efficiency. However, 

like linear input resolution, unit resolution is only complete for sets of Horn clauses. 

UR-resolution (McCharen et al. 1976) 

McCharen et al. (1976) formulated an inference system known as Unit­

Resulting (UR) resolution, which they claimed to be an improved version of unit 

resolution. UR-resolution is an inference rule, similar to hyperresolution, which combines 

a series of binary resolution steps into one step. Where hyperresolution requires a single 

mixed or negative clause and a set of positive clauses, UR resolution requires a nonunit 

clause and a set of unit clauses to produce a unit clause or an empty clause. Unit 

resolution produces an intermediate clause for every successful resolution and some of 

these intermediate clauses may pollute the search space. UR-resolution minimises this 

problem by combining a series of unit resolution steps into one step, thus, yielding no 

intermediate clauses. However, UR-resolution is only complete for Horn clauses. 



8 

A successful UR-resolution can be viewed as applying linear input resolution 

with the non-unit clause as the top clause, and each step uses a unit clause as the other 

parent. The entire process, however, does not yield intermediate clauses. 

Connection Graphs (Kowalski 197 5) 

Connection graphs were first proposed by Kowalski (1975). Other authors 

who have used different forms of connection graphs are Sickel (1976), Chang and Slagle 

(1979), and Stickel (1982) as cited by Genesereth and Nilsson (1987). In brief, Amble 

( 1987, p. 42) describes a connection graph as an - "implementation strategy for resolution, 

using a network of links between resolvable clauses. Links are selected for resolution and 

deleted afterwards; new clauses are linked into the graph; and clauses with no links are 

deleted." He added that connection graphs allow any search strategy to be implemented 

and their application in expert systems and parallel inference machines is a promising 

research topic. Ramsay (1988, p. 102) conjectured that "connection graphs seem in some 

sense to be the last word in resolution theorem proving". However, he mentioned that 

connection graph resolution is unnatural. Traces of connection graph theorem provers at 

work are almost impossible to follow, unlike the linear type of derivation. 

There is some similarity between the Connection Graph with the Graph 

Construction of Shostak. In Graph Construction, clauses are linked with other clauses to 

form the refutation graph. However, its main purpose is to be able to analyse pictorially 

various resolution strategies. In the case of the Connection Graph, clauses are linked to 

form a connection graph which is a data structure to facilitate the encoding of inference 

operations. 
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Overview of General Search Space Restrictions 

Most research works on theorem provers based on the resolution principle are 

concerned with devising good search strategies. However, Ramsay (1988, p. 86) asserted 

that "there is no universal agreement as to which are the best strategies ... the choice will 

depend on characteristics of the kind of problem being solved as much as on the general 

properties of resolution." Resolution has no inherent search strategy that can be fixed 

independently. Experimental evidence, as described by Wos (1988), has shown that 

automating a resolution proof procedure without good search strategy has problems in 

terms of computer memory requirements and time to obtain a proof. To solve these 

problems, one should understand their causes. Wos (1988, pp. 21-43) describes major 

obstacles in the automation of theorem proving which are the main focus of most research 

on theorem proving. Some of them are summarised as follows (those not included are 

beyond the scope of this study): 

1. Clause retention. The reasoning program (theorem prover) keeps too many 

deduced clauses (too many conclusions) in its database of information. 

Retention of so much unneeded information is harmful to the effectiveness of 

an automated reasoning program. When a reasoning program retains a large 

number of unneeded clauses, this extra information interferes markedly with 

the program's effectiveness by causing the program to waste too much time. 

2. Inadequate focus. The program's reasoning is not sufficiently well directed. 

When a reasoning program is asked to complete some given assignment, it 

immediately begins drawing conclusions. Unfortunately, the program too 

easily gets lost, pursuing one unprofitable path after another. A reasoning 

program could provide even greater assistance if it could choose wisely the 

clauses from which to draw conclusions. 
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3. Redundant information. The reasoning program generates the same 

clause (or proper instances of clauses already generated) over and over again. 

A clause is redundant if it is a copy of a second clause, or if it is a proper 

instance of a second clause, that is obtainable from a second clause by 

substituting appropriate terms for variables. Deducing a clause of either type 

serves no purpose. 

4. Clause generation. The program draws too many conclusions, many of 

which are redundant and many of which are irrelevant even though they are 

not redundant. 

5. Size of the deduction steps. The inference rules do not take deduction 

steps (inference steps to obtain refutation) of the appropriate size. If the steps 

are too small, then the program can generate too many clauses, and, most 

likely, the program will retain, too many in its database. The result can be an 

inordinate waste of computer time to complete a given assignment To always 

obtain a proof with a minimum number of inference steps, one has to use a 

breadth-first search strategy which requires a lot of memory and computation 

time. If the size of the deduction step is too large, then the program can 

bypass the needed information and, therefore, fail to complete the assignment. 

With all the research works done on devising good search strategies, different 

types of search strategies have evolved that can be applied to control the search space of 

derivation strategies that use the resolution principle. Wos et al. (1984) categorises the 

different search strategies into groups : the ordering, restriction and pruning strategies. A 

search strategy is classified as an ordering strategy if the inference steps are directed in 

their choice of which clause to focus on next. When a derivation is prevented from using 

certain combinations of clauses, then the search strategy used is classifed as a restriction 

strategy. A pruning strategy is a strategy to remove redundant clauses. The following are 

reviews of some known search strategies which are used with linear derivation strategies: 
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Unit Preference Strategy (Wos et al. 1964) 

The unit preference strategy tries to deduce clauses with as few literals as 

possible. The point of this strategy is that short clauses are easier to work with. A clause is 

a unit if it contains a single literal. The unit preference strategy, as the name implies, gives 

more priority to a resolution involving a unit. The goal of theorem proving is to derive the 

empty clause, hence, clauses with fewer literals are closer to the goal than clauses with 

more literals. The unit preference strategy loosens the restriction of unit resolution to 

allow non-unit clauses be selected, but shorter clauses are used first. The advantages of 

unit resolution also apply to the unit preference strategy. The unit preference strategy may 

have a larger search space than unit resolution, however, it is complete for general clauses. 

The unit preference strategy plays an important role in the implementation of 

the ME procedure, SL-resolution, the GC procedure, SLM and its extension. 

Set of Support Strategy (Wos et al. 1965) 

An unsatisfiable set of clauses S can be subdivided into two subsets : a 

satisfiable set of clauses (S-T) and the set of support (T). Wos et al. (1965) have proven 

that if S is unsatisfiable, then a refutation can be derived by a sequence of resolutions in 

which at least one of the parent clauses of each resolution is a member of the set of 

support. The derived clause of each resolution is placed in the set of support. This 

strategy is known as the set of support strategy. Kowalski and Kuehner (1971, p. 232) 

described possible sets of support as the set of all positive clauses, the set of all negative 

clauses, or the set of all clauses that were derived from the negation of the conclusion of 

the theorem. The advantageous effect of the set of support strategy is that it avoids 

resolutions between parent clauses which both belong to a set of satisfiable clauses. This 

restriction can reduce the size of the search space significantly. Wos (1988, p. 52) 

claimed that the set of support strategy "is currently considered the most powerful 

restriction strategy available". Wos et al. (1965) have also shown that a strategy which 
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combines the set of support strategy and the unit preference strategy is often much more 

efficient than the unit-preference strategy alone, as cited by Slagle (1971). 

Supposing the selected top clause C1 of a linear derivation is a member of the 

set of support, then the resolvant of a resolution step between C1 and a side clause is 

placed in the set of support. Since one of the parent clauses in each step of linear 

derivation is the previously derived clause, every derived clause is placed in the set of 

support. Thus, each step of a linear derivation satisfies the restriction of the set of support 

strategy. Hence, a linear derivation strategy is a special case of the set of support strategy. 

Loveland (1968, p. 161) showed that there always exists ans-linear refutation with the top 

clause chosen from the set of support. Restricting the selection of the top clause to be 

always from the set of support is advantageous because it will limit the number of search 

trees which need to be investigated in the course of searching for a refutation. 

The SL-resolution, GC procedure and SLM explicitly require the set of 

support in the definition of their derivations. The ME procedure also satisfies the set of 

support strategy (Loveland 1969a), thus, the set of support strategy can be incorporated in 

the implementation of the ME procedure. 

Purity Elimination 

A literal is called a pure literal if its complement (subject to unification) does 

not appear in a set of clauses. A clause that contains a pure literal is useless for the 

purpose of refutation since the literal can never be resolved away. Hence, such a clause 

may be removed from a set of clauses. To remove such a clause is called pure-literal 

elimination. This strategy is used in the implementations of the ME procedure, SL­

resolution, the GC procedure, SLM and its extension. 
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Elimination of Tautologies 

A clause which contains a pair of exactly complementary literals is a 

tautology. The presence or absence of tautologies in a set of clauses has no effect on the 

unsatisfiability of the set. Hence, they may be removed from the set of clauses. The ME 

procedure, SL-resolution, the GC procedure and SLM provide restrictions that in effect 

prevent the use of tautologous input clauses. These restrictions are included in the 

implementations. 

Subsumption 

"Subsumption is the process for discarding a clause that duplicates or is less 

general than another clause available" (Wos et al. 1984, p. 171). A clause A subsumes a 

clause B if there exists a substitution 0 such that AS is a subset of B. If a clause in a set 

of clauses is subsumed by another clause in the set, then the set remaining after 

eliminating the subsumed clause is unsatisfiable if and only if the original set of clauses is 

unsatisfiable (Genesereth and Nilsson 1988). There are two forms of subsumption that 

can be employed. The elimination of a newly derived clause that is subsumed by a clause 

that is already present is called forward subsumption. Discarding of clauses already 

present that are subsumed by a newly derived clause is called backward subsumption 

(Stickel 1987, p. 84 ). The idea of subsumption is to prevent the use of subsumed clauses 

in the selection of pairs of clauses for resolution because they will only expand the search 

space unnecessarily. Subsumption is used in a different way in the subsumed unit 

extension operation (Sutcliffe 1989). Subsumed unit extension is included in the 

implementations of the ME procedure, SL-resolution, the GC procedure, SLM and its 

extension. 

Wei~htin~ (Wos et al. 1984) 

Wos et al. (1984) describe weighting as -"the process for assigning priorities 

to terms, clauses, and concepts". It can be used to reflect knowledge and intuition about 
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how a derivation should proceed. Weighting is both an ordering and a restriction strategy. 

A weighting strategy is used in the selection of literals to resolve on in the 

implementations of the ME procedure, SL-resolution, the GC procedure, SLM and its 

extension. 

Consecutively Bounded Depth-first Search 

Stickel (1986) pointed out that the use of an unbounded depth-first search 

strategy is incomplete as a search strategy for theorem proving. Breadth-first search and 

the A* algorithm (Nilsson 1980) are some of the suggested complete search strategies for 

theorem proving. However, the use of such search strategies for theorem proving have 

disadvantages. One of these disadvantages is the increase in memory requirements. A 

derivation strategy using these search strategies would have to represent and retain more 

than one derived clause at once. An alternative complete search strategy known as the 

consecutively bounded depth-first (Stickel and Tyson 1985) also known as depth-first 

iterative-deepening search (Korf 1985), has been suggested for automated theorem 

proving. Consecutively bounded depth-first search strategy involves repeatedly 

performing an exhaustive bounded depth-first search, with increasing depth bounds. This 

search strategy has minimal memory requirements and finds optimal solutions as 

efficiently as breadth-first or A* search, in spite of the effort spent on repeated search 

(Nie and Plaisted 1989). A modified version of consecutively bounded depth-first search 

is used in the implementations of the ME procedure, SL-resolution, the GC procedure, 

SLM and its extension. 
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1.5, Thesis Structure 

The rest of this thesis is arranged as follows: 

Chapter 2 investigates the inference operations and different restrictions imposed 

in s-linear resolution, the ME procedure, t-linear resolution, SL-resolution, the 

GC procedure and SL, and proposes two possible extensions to SLM; 

Chapter 3 describes the data structures, self-configuration, search strategies used, 

and algorithms in the implementations of the ME procedure, SL-resolution, 

the GC procedure, SLM and SLM-5. Descriptions of each program and its 

user-interface are also presented; 

Chapter 4 presents a comparison of experimental results from the implemented 

theorem provers; 

Chapter 5 presents conclusions with suggestions for future work; 

Appendix A contains the general algorithms of the implemented derivation 

strategies; 

Ap_pendix B contains the source codes of the programs with comments; 

Appendic C contains the description of how to operate the theorem provers; and 

Ap_pendix D contains the example theorems used to test the theorem provers. 
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Chapter 2 

ANALYSIS 

Introduction 

Robinson (1965) proved that a method of inference called resolution is a 

complete strategy for proving the unsatisfiability of a set of first order clauses. Since the 

introduction of the resolution principle, many researchers have attempted to mechanise 

theorem proving. However, although resolution has reduced the number of inference 

rules, the combinatorial explosion of the search space caused by the unrestricted 

application of resolution is a great hindrance. There is a great need to prune the search 

space of derivations for resolution to be practical. Hence algorithms that selectively 

choose resolutions, known as refinement strategies , have been formulated. Refinement 

strategies serve as guides for automated theorem provers that compute only a restricted set 

of all possible resolutions. Hunt (1975, p. 303-304) classifies three general classes of 

refinement strategies: syntactic, semantic and ancestory strategies. A syntactic strategy 

chooses clauses for resolution based on the structural properties of the clauses themselves, 

without regard to the interpretation of the atoms in the clause. These strategies are 

relatively easy to implement because they depend only on a structural examination of the 

clauses potentially involved in a resolution. However, syntactic strategies do not eliminate 

any redundant derivations from the search space. In contrast, semantic strategies select 

clauses which are known to have a certain truth value under a certain interpretation. These 

strategies are selective in applying resolution to clauses, which will result to the reduction 

of the search space. Ancestory strategies select clauses for further resolution based upon 

the history of the derivation of the clauses so selected. Ancestory strategies permit 

savings in both the number of resolutions to be considered and the amount of computer 

storage required for recording clauses that have been inferred (Hunt 197 5, p. 308). 

Linear derivation strategies fall into this category. 
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Definition of Linear Resolution 

Linear derivation strategies were independently formulated by Loveland 

(1970), Luckham (1970), and Zamov and Sharonov (1969). Kowalski and Kuehner 

(1971, p. 231) contend that a linear derivation strategy is a refinement of unrestricted 

resolution which reduces significantly the number of redundancies derivable. 

In general, a linear derivation D from a set of clauses Sis a sequence of 

clauses Ci, ... , Cn such that each q+1 , 1 S: i S: n-1, is a resolvant of q (center parent 

clause) and B (far parent clause) where either (a) B e S (input parent ), or (b) Bis 

some ancestor Cj of q, j < i (ancestor parent). C1 e S is the top clause of D and Cn 

is the clause derived by D. If Cn is the null clause then D is a linear refutation of S. 

q+1 is obtained in case (a) by input resolution while case (b) is by ancestor resolution. 

A linear derivation strategy known as input derivation restricts the far parent 

to be always from the set of clauses S. This strategy has been proven complete for Hom­

clauses, but is incomplete for non-Hom-clauses (Henchen 1976). The linear derivation 

strategies presented in this study allow ancestor resolution and have all been proven sound 

and complete for general clauses. 

The following six linear derivation strategies were analysed : 

1. s-linear resolution (1968) 

2. Model Elimination (ME) procedure (1969) 

3. t-linear resolution (1971) 

4. SL-resolution (1971) 

5. Graph Construction (GC) procedure (1976) 

6. Selective Linear Model (SLM) (1974) 
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The different restrictions imposed by these linear derivation strategies were 

investigated. The relationships between the strategies and their relative efficacies were also 

examined. 

Representation of Clauses and Input Set Manipulation 

A clause is a disjunction of literals and a set of clauses S is interpreted as a 

single statement which is the conjunction of all its clauses. The equality axiom of 

symmetry, for instance, is expressed in clausal form as equal(X,Y) v -equal(Y,X), where 

"v" indicates disjunction and "-" indicates negation. The linear derivation strategies 

presented here use two different formats for representing a clause. 

The s-linear and t-linear strategies represent a clause as a set of literals. Thus, 

the clause P v -Q v -R is represented as {P,-Q,-R}. In this representation scheme, 

when resolution is applied between two clauses, the resolvant clause must contain distinct 

literals. To satisfy this set constraint, a merging operation must be done implicitly 

together with the resolution. Thus, the resolvant of {P,Q,R} and {P,Q,-R} is {P,Q} as a 

result of one resolution and two merging operations. 

The ME, SL-resolution, GC procedures and SLM represent a clause in chain 

format. A chain is a sequence of literals, which are not necessarily distinct. There are 

three classes of literals that may occur in a chain : (i) B-literals, (ii) A-literals which are 

denoted by boxed literals or literals embedded in[] brackets, and (iii) C-literals denoted by 

circled literals. B-literals are derived from the literals in input clauses. The most basic 

chain structure is the elementary chain. An elementary chain is a sequence of B-literals, 

determined by assigning an ordering to the literals of a clause. In the ME procedure, SL­

resolution and GC procedure, an A-literal is derived from the resolved upon B-literal of a 

center parent chain after an input resolution. A C-literal, which is only used in the GC 
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procedure, is the complement of a deleted A-literal. A cell is defined such that two 

B-literals belong to the same cell iff they are not separated by an A-literal. 

The ME procedure generates matrix chains from an input clause. Matrix 

chains (which are also elementary chains) are formed by ordering the set of literals of a 

clause in such a way that each literal of the clause is the first literal of a chain, and the 

remaining literals are ordered according to some convenient rule. Hence, the clause : 

C = P v -Q v R 

will form the matrix chains : 

m 1 = P -Q R 

m 2 = -Q R P 

m 3 = R P -Q 

All literals in the matrix chain are classified as B-literals. 

In SL-resolution, each input clause is factored. For each factor produced a 

chain is formed in the same manner as ME's matrix chains. For example, the clause : 

C = -p(X) v -p(a) 

has two factors : 

C1 = -p(X) v -p(a) 

C2 = -p(a) 



The first factor will generate two matrix chains : 

m1 = -p (X) -p (a) 

m2 = -p(a) -p(X) 

and the second factor will generate one matrix chain : 

m3 = -p (a) 

20 

In the GC procedure, each input clause is only converted to a sequence of 

literals to form an elementary chain. 

In SLM, an input clause is converted into a sequence of B-literals to form a 

chain. Furthermore, each B-literal of the input chain has an assocaited truth index whose 

value is either O or 1 (representing false and true respectively), as determined by a given 

interpretation. A center chain of an SLM derivation is composed of a root node followed 

by zero or more subnodes. A subnode may also contain subnodes. To illustrate, consider 

the following figure of an SLM center chain : 

The rootnode of the center chain is null. There are two subnodes of the root node. The 

upper subnode, whose contents are [-Ro] [ S1], also has two subnodes. A subnode is 

said to be a tip node iff it has no subnodes. Subnodes -Qo, -Po and [-To] S1 are tip 

nodes. A branch of a center chain is a sequence of nodes from the root node to a tip node. 

The subscript of each literal in the center chain represents the truth index of the literal. 
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The line connecting the A-literal [ s1 ] and the root node represents the depth associated 

with the A-literal [ s1 ]. A depth is a position within the center chain which is to the left of 

the associated A-literal, and must be in the same branch. Only A-literals indexed by 1 have 

an assocaited depth. 

s-linear Resolution 

Loveland (1968a) formulated a restricted linear derivation strategy called the s­

linear strategy. The s-linear strategy does not only allow ancestor resolutions but also 

restricts the selection of ancestor clause to be used in ancestor resolution. The strategy 

ensures that the resolvant of an ancestor resolution always subsumes an instance of the 

ancestor parent clause. This restriction reduces the search space and simplifies the 

derivation. The strategy also eliminate redundant derivations by implementing a no­

tautologies restriction. 

Formal Definition 

A derivation Ci, ... , Cn from the set of clauses Sis ans-linear derivation iff 

restrictions i), ii) and iii) are satisfied. 

i) The sequence C1, ... , Cn is a linear derivation. 

ii) q+ 1 is obtained from q by applying resolution with either : 

(a) a clause from S, or 

(b) a clause Cj, j < i, chosen so that the resolvant q+1 subsumes an instance 

of Ci. 

iii) No tautology occurs in the derivation. 

If Cn is the null clause then the derivation is ans-linear refutation. 
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Example Problem 

To demonstrate how s-linear resolution works, consider the propositional 

problem found in Kalish and Montague (1964) as cited by Pelletier (1982). The set of 

clauses s = { {P, Q, R}, {P,Q, -R}, {P,-Q,R}, {-P,Q,R}, 

{P,-Q,-R}, {-P,-Q,R}, {-P,Q,-R}, {-P,-Q,-R} } represents the 

problem. Using the set of support strategy, the clause that contains all positive literals is 

chosen as top clause. The search tree of the s-linear refutation of S with {P,Q,R} as the 

top clause is shown in Figure 1. The circled clauses are the permissible clauses, others 

being rejected as tautologies. The double arcs drawn below a center chain represent the 

different inference options. The ancestor parent clauses are highlighted to distinguish 

them from the input parent clauses. 

Effects of the Restrictions 

It is known that ancestor resolution is required for the completeness of linear 

derivation strategies. However, allowing ancestor resolution also expands the search tree 

due to the increased number of possible parent clauses. The s-linear derivation strategy 

minimises this effect by imposing the restriction (ii.b) which restricts the selection of an 

ancestor parent clause for ancestor resolution. This restriction reduces the number of 

inference steps in a refutation since every ancestor resolution produces a resolvant with 

fewer literals than its center parent clause. Thus, this restriction has increased the efficacy 

of the derivation strategy. 

As shown in Figure 1, there are twelve possible resolvants that can be derived 

from the top clause {P,Q,R}. With the imposition of restriction (iii) , the permissible 

resolvants are reduced to three. This is a significant reduction of the search space. A 

refutation can of course be derived even if tautologous resolvants are allowed. However, 
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Fieure 1. The search tree for s = { {P, Q, R}, {P,Q, -R}, {P,-Q,R}, {-P,Q,R}, 

{P,-Q,-R}, {-P,-Q,R}, {-P,Q,-R}, {-P,-Q,-R}} using s-linear resolution. 
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derivations containing tautologous clauses will tend to be longer and in the extreme are 

redundant. Loveland (1968a, p. 156) has proven that a minimal refutation of S contains 

no tautologies. Allowing tautologies, though, will lessen the constraints in selecting a top 

clause from the set of clauses. Take, for instance, the set of clauses S = { {P,Q}, 

{-P,-Q}, {P}, {Q} }. With the "no-tautologies" restriction, nos-linear refutation exists 

when {P,Q} is chosen as the top clause although a refutation exists if tautologies are 

allowed. 

Model Elimination Procedure 

In 1968, Loveland introduced a new proof procedure which is a Herbrand­

type procedure, and uses the matching technique employed by Prawitz (1960) in his 

mechanical theorem proving. This new procedure was labelled Model Elimination 

(Loveland, 1968b, p. 236). The procedure seeks the truth-functionally contradictory 

clause associated with the Herbrand procedures by developing clauses which contradict 

the assigned truth values over its atomic components (Loveland 1968b, p. 236). A TRUE 

value is assigned to every resolved-upon literal of the center clause. A number of these 

truth-assigned literals represent a model. If this model contradicts an instance of one of 

the input clauses, then this model will be eliminated by removing the literals that define the 

model. (See section 2.3.3 for details.) Hence the name, "Model Elimination". 

Loveland realised that the original Model Elimination procedure he developed 

was too complex from a data-handling viewpoint, and somewhat cumbersome. In view of 

this, he made some modifications to the procedure that led to the formulation of a 

simplified version of the Model Elimination procedure (Loveland 1969b). This new 

version of the Model Elimination procedure extends the original version by the production 

of new clauses, called lemmas , during the derivations. These lemmas may be added to the 

original set of matrix chains. It is this simplified version of Model Elimination that this 

study discusses. 
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Formal Definition 

For a given set of clauses S, a set of matrix chains M is derived. A derivation 

C1 , ... , Cn is said to be a Model Elimination procedure derivation if restrictions i), ii) and 

iii) are satisfied. 

i) C1, .•. , Cn is a linear derivation and C1 e M. 

ii) Each q is a preadmissible chain. A chain is preadmissible if : 

a) two B-literals are complementary they must be separated by an A-literal, 

b) a B-literal is identical to an A-literal, the B-literal must precede the A­

literal in the chain, and 

c) no two A-literals have identical atoms. 

An admissible chain is a preadmissible chain whose last literal is a B-literal. 

An empty chain is an admissible chain. 

iii) Ci+ 1 is obtained from Ci by : 

a) extension 

b) reduction,or 

c) contraction 

q+1 is obtained from q by extension with an elementary chain B iff : 

a) q is an admissible chain. 

b) Ci and B share no variables. This can be achieved by a simultaneous 

replacement of all n variables of q by the variables x 1, ... , Xn and of all m 

variables of B by the variables Yl, ... , Ym 
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c) the last literal L of q and the complement of the first literal K of B are 

unifiable with the most general unifier mgu e. That is Le = -Ke. 

d) e is applied to the result of concatenating q and B minus K, 

e) Le is designated an A-literal with scope 0. Every other literal in q+l has the 

same classification as the literal from which it descends in q or B. The scope 

is a non-negative integer associated with A-literals, and is used as an aid in the 

production of lemmas. 

Ci+i is obtained from Ci by reduction iff: 

a) q is an admissible chain. 

b) there exists an A-literal -K which preceeds a B-literal L where Land Kare 

unifiable with mgu e. 

c) Le is deleted from qe, q+l =(q - L)e. All literals of q+1 have their parent 

classification except -Ke. Let m be the scope of-Kin Ci. If the number of 

A-literals n between-Kand Lis greater than m, then the scope of -Ke in 

Ci+l is n, otherwise the scope ism. 

Ci+1 is obtained from q by contraction iff: 

a) q is a pre-admissible chain and not an admissible chain. 

b) all A-literals beyond the last B-literal are deleted. A-literals are removed one 

at a time. As an A-literal Lis removed, a lemma is formed consisting of the 

complement of L plus the complements of any preceeding A-literal K of Ci 

such that the number of A-literals (strictly) between Kand Lis less than the 

scope of K. The lemma is added to M unless subsumed by a member of M. 

(Subsumption was only mentioned on Loveland's (1969a, p. 75) second paper 

on the ME procedure.) Each A-literal Lin q+1 has the same scope as its 

parent A-literal in Ci unless the scope of an A-literal L exceeds the number of 
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A-literals n beyond A-literal Lin Ci+i · If this occurs, the scope is reduced to 

n. 

Loveland has proven that each lemma produced by the ME procedure is a 

clause deducible by the resolution procedure from the same input clauses. Robinson's 

theory of resolution as cited by Loveland (1969a, p. 77), has established that the set 

produced by adding a resolvant clause to the original input set is unsatisfiable iff the 

original is unsatisfiable. Hence, the soundness of the ME procedure is unaffected by the 

addition of lemmas to the initial set of matrix chains. 

Example Problem 

Consider the example problem described in s-linear resolution. The given set 

of clauses S is transformed into an initial set of matrix chains M0 as follows: 

Input Clauses Matrix Chains 

PvQvR ~ PQR, QRP, RPQ 

PvQv-R ~ PQ-R, Q-RP, -RPQ 

Pv-QvR ~ P-QR, -QRP, RP-Q 

-PvQvR ~ -PQR, QR-P, R-PQ 

Pv-Qv-R ~ P-Q-R, -Q-RP, -RP-Q 

-Pv-QvR ~ -P-QR, -QR-P, R-P-Q 

-PvQv-R ~ -PQ-R, Q-R-P, -R-PQ 

-Pv-Qv-R ~ -P-Q-R, -Q-R-P, -R-P-Q 

PvQvR ~ PQR, QRP, RPQ 

Figure 2 shows the search tree for the given set of clauses using the ME 

procedure. Those chains that are not circled are non-preadmissible and are therefore 

pruned from the search tree (they did not meet the last two restrictions of 
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preadmissibility). The lemmas used as input chains in extension are highlighted to 

distinguish them from the original input chain. The scope associated with each A-literal 

is shown above the boxed A-literal. 

Elimination of Models 

In the definition of the extension operation, restriction ( c) specifies that the last 

literal of the center chain is to be resolved-upon with the first literal of the input chain. 

This process links the center chain with the input chain by their complementary literals. A 

truth value of TRUE is then assigned to the resolved-upon literal which becomes an A­

literal. The sequence of A-literals in the center chain represents a "model" (partial 

interpretation). If the interpretation contradicts an instance of one of the matrix chains 

then this interpretation cannot satisfy the given set of input clauses, and is hence not a 

model. Interpretations that are not models are implicitly eliminated. If the given set of 

input clauses is unsatisfiable then all interpretations developed in this strategy will be 

eliminated by the time an empty center chain is obtained. Take, for example, the fifth 

center chain of Figure 2. This center chain was obtained after three extension and two 

reduction operations. The three A-literals R, Q and P represent a partial interpretation. 

Examining the set of matrix chains, the interpretation that R, Q and P are all true 

contradicts the chain -P--Q-R (i.e., the clause -P v -Q v -R is false) which was the input 

chain used at the last extension operation. This implies that this partial interpretation is 

"not a model" and should be eliminated. 

Creation of Lemmas 

The process of eliminating an interpretation is done by the contraction 

operation. During the contraction operation, new chains called lemmas are formed, and 

may be added to the original set of matrix chains. The rationale of this scheme is that if 
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Figure 2. The search tree for s = {PQR, PQ-R, P-QR, -PQR, P-Q-R, -P-QR, 

-PQ-R, -P-Q-R} using the ME procedure. 
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the interpretation formed by the sequence of A-literals contradicts an instance of one of 

the matrix chains, then the chain obtained by combining the complement of each A-literal 

of the center chain (as bounded by the scope associated to each A-literal) can be 

interpreted as true. In Figure 2, when the contraction operation is applied to the fifth 

center chain the lemma -P-Q-R is produced but cannot be added to the set of matrix 

chains because it is subsumed by one of the matrix chains. At the seventh center chain, 

the contraction operation produced the lemma -Q-R, which is added to the set of matrix 

chains. There are two possible effects in the addition of lemmas to the original set of 

matrix chains. Firstly, it may reduce the number of inference steps required for a 

refutation. Most of the lemmas added to the original set of matrix chains have lesser 

number of literals than the original matrix chains. When these lemmas are used as input 

chains, the extension operation will produce a resolvant with a lesser number of literals. 

The lesser the number of literals in the center chain, the lesser also the number of 

inference steps required to obtain a refutation. The second effect is that the addition of 

lemmas expands the search space as there are more possible input chains. In Figure 2, the 

extension operation produces four resolvants when the B-literal Q of the second center 

chain was resolved. In the thirteenth and the eighteenth center chains the operation 

produces seven resolvants each as a consequence of the addition of lemmas to the set of 

matrix chains. 

Effects of the Restrictions 

The pruning effect of the derivation strategy can be attributed to the two 

restrictions imposed : (a) resolving only the last literal of the center chain (restriction c of 

the extension operation) and (b) the preadmissibility restrictions. In the s-linear derivation 

strategy, all the literals of the center clause are available for resolution. This scheme 

produces many resolvants at each step and therefore creates a large search tree. The ME 

procedure avoids this problem by resolving only on the last literal of a center chain which 

significantly reduces the size of search tree. In the preadmissibility restrictions, restriction 
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(a) prunes resolvants obtained from extensions with a tautologous input chain. In this 

way, tautologous input chains can never be used as input parent during the extension 

operation. Loveland (1969a, p. 362) has pointed out that tautological input clause is not 

needed to prove the unsatisfiability of a set of clauses. Although, the ME procedure 

prevents tautologous input chains, tautologous center chains may exist in the derivation. 

The fourth center chain of Figure 2, which is the only preadmissible resolvant of the 

previous center, contains tautologous literals Q and -Q. This is because the ME 

procedure does not implement the merging operation unlike with the s-linear resolution 

which has an implicit merging operation. 

Restrictions (b) and (c) trim the search tree by ensuring that truth values are 

consistently and non-redundantly assigned to literals of the center chain. Restriction (b) 

eliminates resolvants that contain B-literals identical to any of the preceeding A-literals to 

avoid resolving a literal more than once and thereby catches loops. It is redundant to 

assign a truth value to a literal which had been previously assigned and still existing in the 

center chain. Stickel (1984, p. 215) justifies this restriction that - "it is unnecessary to 

attempt to solve a goal (B-literal) while in the process of attempting to solve that same 

goal". In Figure 2, the application of the extension operations on the third center chain 

produces two resolvant chains which are non-preadmissible. They are non-preadmissible 

because a B-literal R is identical to the first A-literal. Restriction (c) has two pruning 

effects. Firstly, it prunes resolvants which restriction (b) cannot detect. Loops that are 

detected later due to instantiation are therefore prevented by restriction (c). Take, for 

instance, the following derivation: 



p(b) q(c) 

p(a) q(c) 

!-p(a) I q(b)l-p(a) !q(c) 

1 

!-p(a) I q(b)! -p(bjq(c) 

2 
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p(a)q(b) 

!-p(a) I q(b)l-p(a)! q(b) 

3 

Resolvant 1 is pruned from the search tree by restriction (c) because of the redundancy of 

assigning truth value to the literal -p(a) twice. Secondly, restriction (c) prunes resolvants 

that have inconsistent assignment of truth values which forces the application of the 

reduction operation. This implies that reduction of literals having identical atoms is 

compulsory in the ME procedure. This is an improvement on s-linear resolution because 

a compulsory ancestor resolution reduces the size of the search tree. Looking at the non­

preadmissible resolvants obtained by applying the extension operation to the fourth center 

of Figure 2, the existence of A-literals Rand -R is logically inconsistent because R will 

be interpreted as true and false at the same time. Since A-literals R and -R cannot be 

allowed to exist at the same time, the extension operation will fail after exhausting all 

possible input chains and thereby forcing the reduction operation to be performed. 

t-linear Resolution 

Kowalski and Kuehner (1971) formalised the t-linear and SL-resolution 

derivation strategies. They claimed that these two strategies are both refinements of the s­

linear derivation strategy. The formulation oft-linear resolution is intended to clarify the 

definition of SL-resolution, simplify the comparison with other linear resolution systems, 

and is only defined for ground derivations. A ground derivation is a derivation consisting 

of ground clauses. A ground clause is a clause of which no literal contains a variable. 
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2.4.1 Formal Definition 

Let C1, ... , Cn be a ground linear derivation from a set of input clauses S. A 

literal L in q is said to be a descendant of a literal L in ancestor clause Cj iff L occurs in 

every intermediate clause Ck, j :s;; k :s;; i. Cj is an A-ancestor of q iff: 

i) j <i, 

ii) Cj+ 1 has an input parent, and 

iii) all literals in Cj, except for the cancelled literal Kin obtaining Cj+l• have 

descendants in q, that is (Cj - {K}) = Ci. 

The cancelled literal K is called the A-literal of q from the A-ancestor Cj- To 

illustrate these, consider the sequence of clauses ( { P , Q, R } , { P , Q } , { P , R } , 

{P,-Q}, {P}, {Q,R}, {-P,Q}, {Q}) inFigure3. The A-ancestors of {Q} 

are {P} and {Q,R} with A-literals PandRrespectively. {P, -Q} and {-P,Q} do not 

qualify as A-ancestors because their successors are not derived by input resolution. 

{ P, Q } does not qualify because Q does not appear in every intermediate clause between 

{P,Q} and {Q}. 

A linear derivation is said to bet-linear if restrictions i), ii) and iii) are satisfied. 

i) If q+ 1 is obtained by ancestor resolution, then it is obtained by resolution 

with an A-ancestor of q. 

ii) If q contains a literal complementary to one of its A-literals, then Ci+ 1 is 

obtained by ancestor resolution. 

iii) A-literals of q from distinct A-ancestors have distinct atoms. 

Kowalski and Kuehner pointed out that the t-linear derivation strategy is 

compatible with the no-tautologies restriction. 
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2.4.2 Example Problems 

Figure 3 shows the search tree for the example problem introduced ins-linear 

resolution, using the t-linear derivation strategy with the no-tautologies restriction. Figure 

4 illustrates the search tree for a given set of clauses, s = { { - P , - R} , { -Q, - R} , 

{ Q, R} , { P } , { R} } , using the t-linear derivation strategy. As in Figure 1, 

permissible clauses are circled to distinguish them from the tautologous clauses which are 

pruned from the search tree. Ancestor parent clauses (A-ancestors) are highlighted to 

differentiate them from the input parent clauses. 

Effects of the Restrictions 

Restriction (i) makes sure that the resolvant clause Ci+ 1 always subsumes the 

center clause Ci. During an ancestor resolution of the t-linear derivation strategy, an A-

literal from an A-ancestor clause is being used to resolve with one of the literals of the 

center clause. Since all the other literals of an A-ancestor have descendants in the center 

clause , then it follows that the resolvant of an ancestor resolution always subsumes the 

center clause. Take, for instance, the ancestor resolution of the fourth center chain of 

Figure 3. The center clause { P, -Q} has an A-literal Q from the A-ancestor { P, Q}. The 

resolvant { P } , after applying resolution and an implicit merging operation, subsumes the 

center clause { P, -Q}. Obviously, this restriction has similarity with restriction (ii b) of 

the s-linear derivation strategy. However, restriction (i) oft-linear resolution is more 

effecient than restriction (ii b) of s-linear resolution since the former can immediately 

select an appropriate ancestor clause for ancestor resolution. In s-linear's ancestor 

resolution, the resolvant is generated first, and then tested to find out if it subsumes its 

center parent clause, which is a time consuming process. Int-linear resolution, only A­

ancestors are tried in ancestor resolution which makes the subsumption test unnecessary. 

This restriction also produces a narrower search tree because only A-ancestors are 
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Figure 3. The search tree for s { {P, Q, R}, {P,Q, -R}, {P,-Q,R}, {-P,Q,R}, 

{P,-Q,-R}, {-P,-Q,R}, {-P,Q,-R}, {-P,-Q,-R} } using t-linear resolution. 
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{P} 

{R} {Q,P} 

{-P} 
{R} 

Figure 4. The search tree for s { {-P, -R}, {-R, -Q}, { Q,R}, { R}, { P} } using t-

linear resolution. 
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considered for ancestor resolution. In Figure 3, the center clause { - P, Q} is only 

ancestor resolved with its A-ancestor { P} to obtain a new center clause { Q}. In s-linear, 

there are two ancestor clauses considered for ancestor resolution with the same center 

clause, the ancestor clauses { P, Q} and { P } (see Figure 1 ). 

Restriction (ii) makes the t-linear derivation strategy a refinement of the s­

linear derivation strategy. Ins-linear derivation strategy, ancestor and input resolution are 

both applied whenever possible, as observed in Figure 1. In t-linear resolution, an input 

resolution is disregarded whenever ancestor resolution is possible. This restriction is a 

preemptive version of the third preadmissibility restriction of the ME procedure. This 

implies that if a B-literal can be resolved on with an A-literal, it is immediately removed 

rather than applying an extension operation which will be failed eventually by the third 

preadmissibility restriction. The practical effect of this restriction is the significant 

pruning of the search tree. However, compulsory ancestor resolution does not always 

produce a refutation as short as a minimal s-linear refutation, since it may prevent an input 

resolution which derives a resolvant clause that can be easily refuted. Take, for instance, 

the sequence of clauses starting from clause {-P,R} in Figures 1 and 3. Figure 1 has the 

derivation ... , {-P,R}, {-P-Q}, {-Q}, {} whileFigure3has ... , 

{ -P, R}, { R}, { -P-Q}, {-Q}, { } . Figure 3 has a longer derivation than Figure 

1 as a result of the compulsory ancestor resolution of the center clause {-P,R} with its A­

ancestor { P}. 

Restriction (iii) prevents loops in derivations. Figure 4 illustrates an example 

how restriction (iii) prevents loops. When the clause { Q, R} is chosen as input parent in 

applying resolution to the the third center clause, the resolution produces a redundant 

resolvant. The resolvant {-P, Q} has A-literal -R from the first and the third center 

clause which make the resolvant redundant. Obviously, this resolvant is a repetition of the 

second center clause. This will cause loops in the derivation if this is allowed. However, 

it is possible that some of the resolvants trimmed by restriction (iii) are not redundant. 

The trimmed resolvant { -P} is not redundant because a refutation can still be obtained. 
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It is obvious that restrictions oft-linear resolution are difficult to implement in 

the set representation of clauses. There is a need to change the representation in order to 

associate A-literals and A-ancestors of a clause. This leads to the formulation of SL­

resolution. 

SL-resolution 

SL-resolution combines all the restrictions of the t-linear derivation strategy 

with the no-tautologies restriction. It has also a selection function that calls for a single 

literal to be selected from the most recently introduced literals of the center parent chain 

for use in input resolution. Ringwood (1988, p. 6) defines a selection function as a 

function from a set of atoms to atoms such that an image atom is an element of the 

preimage set. Kowalski and Kuehner (1971 : p. 233) implement two versions of 

SL-resolution, denored as SL(l) and SL(2), with different selection functions. SL(l) has a 

selection function which chooses and resolves upon the alphabetically least atom, while 

SL(2) chooses the alphabetically greatest atom. SL-resolution uses the chain format for 

the representation of clauses. In this format, restrictions (i) and (ii) of the t-linear 

derivation strategy can be simply implemented by immediately deleting any of the most 

recently introduced literals which are complementary to an associated A-literal. SL­

resolution does not only allow ancestor resolution but also includes factoring as 

suboperation of the reduction operation. Factoring corresponds to the implicit merging 

operation of s-linear and t-linear derivation strategies. The other operations used are the 

extension operation, which is equivalent to input resolution, and the truncation operation, 

which removes A-literals from the center chain. 
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Formal Definition 

Given a set of clauses,S, which is converted into a set of chains, M, a set of 

support, S0 , which is also converted to another set of chains MT, and a selection function 

n, a sequence of chains C1, ... , Cn is an SL-derivation if restrictions i), ii) and iii) are 

satisfied. 

i) C1, ... , Cn is a linear derivation and C1 e MT. 

ii) Each Ci+l is obtained from q by 

a) extension, or 

b) reduction,or 

c) truncation 

iii) Unless Ci+l is obtained from q by reduction, then no two literals occuring at 

distinct positions in q have the same atom (admissibility restriction ). 

Ci+l is obtained from Ci by extension with a chain B iff : 

a) The rightmost literal Lin Q(Ci) is a B-literal. 

b) q and B share no variables. 

c) The selected B-literal Lin Q(Ci) and the complement of the leftmost literal K 

in B are unifiable with mgu 0. 

d) 0 is applied to the result of concatenating Q(Ci) and B minus K in that order. 

The literal LS in Ci+ 1 descending from the rightmost literal of Q( Ci) 

becomes an A-literal in Ci+l · The rest of the literals in Ci+l have the same 

classification as in Ci or B. 

Ci+l is obtained from Ci by reduction iff: 

a) The rightmost literal in Ci is a B-literal. 

b) Ci is not obtained from q _ 1 by truncation. 
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c) The rightmost cell of q contains a B-literal Land either 

1) Ci contains a B-literal K, which is not in the rightmost cell of q (basic 

factoring), or 

2) Ci contains an A-literal -K, which is not the rightmost A-literal of q 

(ancestor resolution). 

d) L and K are unifiable with mgu 8. 

e) LS is deleted from Ci8. The classification of every literal in Ci+ 1 is the same 

as it was in Ci, 

Ci+1 is obtained from Ci by truncation iff: 

a) The rightmost literal in q is an A-literal. 

b) All rightmost A-literals are deleted from q. The classification of every literal 

in Ci+ 1 is the same as it was in q. 

Example Problems 

Figure 5 shows the search tree for the previous example using SL-resolution. 

To illutrate the incompleteness of compulsory factoring, a search tree of the set of clauses 

S= { -r, r-q(b)-m, m-p(X)-q(X), q(a), q(b), p(a) }ispresentedin 

Figure 6. The search tree shown in Figure 7 depicts the effect of the admissibility 

restriction in enforcing reduction to reducible literals which have identical atoms or atoms 

which become identical later in the derivation. The admissible resolvants are circled to 

distinguish them from the inadmissible resolvants. These resolvants are declared non­

admissible because they contain literals having the same atoms and are not reduceable. 
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Effects of the Restrictions 

It is clear that the search tree of SL-resolution (Figure 5 ) is not as complex 

as the search trees produced by the derivation strategies discussed earlier. This pruning 

effect can be attributed ,mainly to two of the restrictions: (i) the restriction which only 

selects a single literal from each center parent chain for extension operation (selection 

function Q), and (ii) the admissibility restriction. 

The selection function of SL-resolution has similar effect to the ME procedure 

scheme of resolving only the last literal of the center parent chain. It reduces the size of 

the search tree significantly. However, the two schemes are different. The ME procedure 

method of selecting a literal to be resolved on can be categorised as a selection rule. "A 

selection rule is a decision procedure for choosing an atom to resolve on each resolution 

step and as such it may depend on the history of the derivation." (Ringwood 1988, p. 6). 

This differs from a selection function because it can select a literal based on a desired 

ordering which may not depend on the history of the derivation. However, the 

compatibility of a more liberal employment of selection function can be established for the 

ME procedure (Kowalski and Kuehner, 1971, p. 240). 

The admissibility restriction encompasses the three t-linear restrictions and the 

no-tautologies restriction. It ensures compulsory merging operation, compulsory ancestor 

resolution on literals having identical atoms, and no tautologous resolvants. The 

importance of having no-tautologies has already been discussed in s-linear resolution. 

The no-tautologies restriction has contributed much in narrowing the search tree. 

Kowalski and Kuehner (1971, p. 238) had mentioned that if a literal can be removed by 

reduction then this is done before any extension operations are performed. This is 

misleading because this can be interpreted that an extension operation cannot be 

performed when the chain is reducible. Figure 6 illustrates an example where a 

compulsory reduction causes incompleteness of the derivation strategy. When the literal 

-q(X) of the third center chain is removed by factoring with -q(b ), the resulting fourth 



reduce PO 

-R-P-Q 

-POR 

-P-QR 

R-P-Q 

RP-Q 

-QP-R 

-QPR 

-RP-Q 

-RPQ 

[oofi]pa 

42 

Figure 5. The search tree for s = {PQR, PQ-R, P-QR, -PQR, P-Q-R, -P-QR, 

-PQ-R, -P-Q-R} using SL-resolution. 
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r (X) -t (X), t (a), p (a) } using SL-resolution. 
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center chain is unresolvable and thus, refutation cannot be obtained if reduction is 

compulsory. The admissibility restriction only ensures that a reduction operation is 

performed when two reducible literals have identical atoms or atoms which become 

identical later in the derivation. Figure 7 illustrates this point. When an extension 

operation is applied on the second center chain, after two more extension operations a 

resolvant having two identical B-literals is obtained. This resolvant is then rejected by the 

admissibility restriction and the derivation backtracks to the second center chain to enforce 

the reduction operation. 

Based on the definition of the admissibility restriction, a chain which is non­

reduceable is declared non-admissible if it contains : 

i) two B-literals having identical atoms, 

ii) a B-literal and an A-literal having identical atoms, or 

iii) two A-literals having identical atoms. 

Restriction (i) enforces factoring and applies the no-tautologies restriction. 

This restriction is more strict than the first restriction of the ME procedure's 

preadmissibility restrictions. SL-resolution does not only eliminate tautologous resolvants 

derived from tautologous input chains but at all instances. Factoring shortens and 

simplifies the derivation by maintaining only distinct literals in the center chain. 

Restriction (ii) is an extended version of the second preadmissibility restriction of the ME 

procedure. The ME procedure catches redundant resolvants only when an A-literal 

preceeds an identical B-literal. SL-resolution rejects resolvants that contain A- and B­

literals with identical atoms (regardless of their order in the chain), unless the next 

operation is reduction. The purpose of this restriction is to enforce factoring in the case of 

identical B- and A-literals, to enforce ancestor resolution in the case of complementary A­

and B-literals and to prevent tautologies in the case of complementary B- and A-literals. 

In the ME procedure, both reduction and extension operations can be applied to a center 

chain [P][-R] -PQ (literals enclosed by[] are A-literals). This means that there will be a 
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derivation obtained by reducing first the B-literal -P and then an extension operation to 

resolve on the B-literal Q, and another derivation by applying first an extension operation 

to Q and reduce the B-literal -Plater. In SL-resolution, only the reduction operation can 

be applied because restriction (ii) will ensure that an extension operation cannot be applied 

due to the presence of identical atom P. Restriction (iii) is exactly the same to the third 

preadmissibility restriction of the ME procedure. 

In the definition of the reduction operation, restriction (b) requires that the 

parent chain to be reduced is not obtained from a truncation operation. This is because the 

admissibility restriction will ensure that the chain to be truncated is already cleared of any 

B-literals that could be removed by reduction. Hence, a chain obtained after truncation is 

already unreduceable. 

Restriction (c) of the reduction operation is required to deal with redundancies 

introduced in the conversion of clauses to matrix chains. Take, for instance, the input 

clause 

p(X) V -f(X) V -f(a) 

which is converted into 5 matrix chains : 

p (X) -f (X) -f (a) 

-f (X) -f (a) p (X) 

-f (a) p (X) -f (X) 

p (a) -f (a) 

-f(a) p(a) 

When an extension operation is applied to a center parent chain, -p (a) , two of the above 

chains will qualify to be input parent chains. The two resolvants obtained are : 



1-p(a) j -f(a) -f(a) 

1-p(a) j -f(a) 
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Obviously, the first resolvant is redundant since after a reduction operation (without 

restriction (c)) the chain will become similar to the second resolvant. 

A second case is the clause -p ( a ) v -p ( x) which will generate three 

matrix chains during conversion : 

-p(a) -p(X) 

-p(X) -p(a) 

-p(a) 

An extension operation of the center parent chain p (a) will produce three resolvants. 

The resolvant obtained from the second matrix chain is redundant, since after a reduction 

operation (without restriction (c)) the chain will become the same as the other resolvant. 

Hence, to avoid this redundancy, restriction (c) is imposed on the reduction operation. 

The inclusion of factoring into the SL-resolution has a drawback at the first­

order level. Take, for instance, the clause that represents the transitivity of equality 

equal(X,Y) v -equal(X,U) v -equal(U,Y) 

which will produce two factors : 

equal(X,Y) v -equal(X,U) v -equal(U,Y) 

equal(Y,Y) v -equal(Y,Y) 
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The second factor has lost the meaning of the original clause. In fact, the second factor 

can never be used at all because of restriction (c) imposed in the reduction operation. This 

means that keeping the second factor is just a waste of memory space. 

2.6. Qnmh Construction 

The added selection function of the SL-resolution and the selection rule used 

in the ME procedure have reduced enormously the search space of linear derivations. 

However, Shostak (1976, p. 59) found out that the added selectivity of these two 

derivation strategies may produce longer derivation as a result of "repeated computation". 

The added selectivity of SL-resolution and the ME procedure limits the selection of a 

literal within the most recently introduced literals of the chain. It is not difficult to show 

that selecting a literal outside from the most recently introduced literals may obtain a 

simpler refutation. Shostak proved this by presenting a simplified version oft-linear 

resolution called st-linear resolution. The st-linear resolution is basically the same as the 

t-linear resolution except for the absence of the third restriction oft-linear resolution in st­

linear resolution. Shostak used st-linear resolution to show that unnecessary repeated 

refutation of the same literal can be avoided. Unnecessary repeated refutation means a 

repeated use of a certain set of input clauses to refute the same literal. To illustrate this 

point, consider Figure 11 (p. 56). The input chains -L-P, PRN and -R-L were used in 

that order by SL-resolution twice to refute the literal L. st-linear resolution avoids this 

unnecessary repeated refutation by allowing the selection of literal to be resolved on from 

any of the literals of the center clause. Looking at Figure 10 (p. 55), st-linear resolution is 

capable of selecting the literal Q instead of L from the third center clause, resulting in a 

simpler refutation. The ME procedure and SL-resolution cannot select the literal Q from 

the third center chain because of the constraints of the added selectivity. Allowing flexible 

selection of the literal to be resolved on, however, produces a larger search space. In view 

of this, Shostak devised a new derivation strategy, called the Graph Construction (GC) 

procedure. The GC procedure alleviates the unnecessary repeated refutation. problem and 

at the same time minimises the size of the search space by retaining the added selectivity 
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of SL-resolution. The GC procedure has an additional mechanism that converts truncated 

A-literals into C-literals. AC-literal is inserted at a specific position called the C-point, 

which is associated to the truncated A-literal. Any B-literal whose complement is unifiable 

with any preceeding C-literal is deleted from the center chain (C-reduction). In this 

scheme, unnecessary repeated refutation of a B-literal is avoided. 

Formal Definition 

Let E and E0 be the sets of elementary chains derived from a given set of 

input clauses Sand set of support S0 respectively. With a given selection function n, a 

sequence of chains C1, ... , Cn is a GC procedure derivation if restrictions i), ii), iii), and iv) 

are satisfied. 

i) C1, ... , Cn is a linear derivation and C1 e E0 . 

ii) Each q+1 is obtained from q either by 

a) extension, 

b) reduction or 

c) truncation 

iii) q+1 must be obtained by reduction if it is possible (compulsory reduction). 

iv) q must not contain two non-B-literals having identical atoms. 

Ci+l is obtained by extension with input chain B from E iff: 

a) The rightmost literal Lin il(Ci) is a B-literal. 

b) The selected B-literal Lin Q(Ci) and the complement of a literal Kin Bare 

unifiable with mgu e. 
c) 0 is applied to the result of concatenating Q(Ci) and B minus K, in that order. 

The literal LS in Ci+ 1 descending from the rightmost literal of Q( Ci) 

becomes an A-literal in Ci+1 · The C-point associated with the A-literal L is 
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set to the left of the leftmost literal of q+l · The rest of the literals in Ci+i 

have the same classification as in Cj or B. 

Ci+l is obtained by reduction iff: 

a) a B-literal Lin the rightmost cell of q, and an A- or C-literal K to the left of 

L, are complementary with mgu 8. 

b) LS is deleted from qe. The C-point associated with each A-literal to the 

right of K is set just to the right of K if the C-point at q is to the left of K. 

All other literals descending from Cj retain their classification. 

Ci+l is obtained by truncation iff: 

a) the rightmost literal Lin q is a non-B-literal. 

b) Lis deleted from q. If Lis an A-literal, the complement of Lis inserted at 

the C-point associated with L. The classification of the inserted literal is a C­

literal. The classification of all the other literals in the chains remains 

unchanged. 

Example Problems 

The search tree, using the GC procedure for the set of clauses described in the 

previous derivation strategies is shown in Figure 8 (p.53). Chains that are not encircled are 

declared inadmissible because they will eventually violate restriction (iv) after applying an 

extension, or a reduction and an extension operation to the chain. 

The set of clauses s = { -T-N' RPN' L-Q, -R-L, MQN' L-M, 

-P-L, T } is presented to point out the disadvantage of the added selectivity of SL­

resolution and the ME procedure. Figures 9, 10, 11 and 12 are the search trees for this 
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given set of clauses using the ME procedure, st-linear resolution, SL-resolution and the 

GC procedure respectively. Another set of clauses S = { -p ( x) -q ( x) - r, q ( b) , 

q (a), r-q (b), p (a) }, which was defined by Sutcliffe (1989, p. 17), is also 

presented to demonstrate the problem of compulsory C-reduction. Figure 13 shows the 

search tree of this given set of clauses with -p ( x) -q ( x) -r as the chosen top clause. 

Effects of~ Restrictions 

One distinguishable similarity between Figure 4 of SL-resolution and Figure 

8 of the GC procedure is that they have the same number of extension operations applied. 

Although the GC procedure does not impose factoring, it has minimised the application of 

extension operations by "recycling" truncated A-literals and imposes a reduction operation 

using the recycled A-literals. 

In the first example, the GC procedure and SL-resolution seem to have the 

same effect as manifested by the same number of extension and reduction operations 

applied. However, in the second example, the GC procedure obtained a simpler refutation 

than SL-resolution. The GC procedure has a simpler refutation than SL-resolution 

because unnecessary repeated refutation is avoided in the GC procedure by reducing a B­

literal with a conditionally proven C-literal. Truncated A-literals are wasted in SL­

resolution while the GC procedure has a mechanism that "recycles" truncated A-literals. 

Reduction with C-literals may have the same effect as factoring in SL­

resolution. The role of these two operations in the derivation strategy is to simplify the 

derivation by minimising the application of extension operations. However, C-reduction is 

more effective than factoring in most cases. One case of this is shown in Figures 11 and 

12. SL-resolution has resolved on the literal L twice by extension (at the third and tenth 

center chains of Figure 11). The GC procedure resolved on the literal L once by 

extension at the third center chain and once by C-reduction at the eleventh center chain of 
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Figure 12. C-reduction removed the B-literal L immediately while in SL-resolution, the 

process of refuting L at the third center chain, which involves a series of extension 

operations, is repeated in refuting Lat the tenth center chain. Analysing the search tree of 

Figure 12, the first refutation of L tells that L cannot be TRUE, the GC procedure "learns" 

this by inserting a C-literal which is a contradiction of the previous truth assignment of L. 

Hence, when the B-literal Lis introduced again to the chain it is immediately removed 

from the center chain by C-reduction to avoid inconsistency. The idea of factoring is to 

maintain distinct B-literals on the center chain to avoid redundancy. However, this is only 

effective at the early stage of the derivation when there are still B-literals at the left side of 

the center chain. But once these B-literals become A-literals, the factoring operation 

becomes less effective. In contrast, the C-reduction of the GC procedure will become 

more effective as the derivation go deeper because there will be more C-literals inserted at 

the left side of the center chain. 

The GC procedure has a narrower search tree than the ME procedure because 

the ME procedure produces lemmas which increase the number of possible input parent 

chains during an extension operation. The creation of C-literals in the GC procedure does 

not affect the number of input chains. In fact, the insertion of C-literals makes restriction 

(iv) more effective in cutting down redundant resolvants. In Figure 8, when the extension 

operation is applied to the tenth center chain, two resolvants are inadmissible because of 

the presence of C-literal -R at the left side of the resolvants. Hence, the creation of C­

literals has a better effect than the addition of lemmas in the ME procedure. Shostak 

(1976, p. 63) has pointed out that "ME lemmas tend to be highly redundant" and have 

limited value in application. 

Restriction (iii) (compulsory reduction) has narrowed down the search tree 

and simplify the derivation significantly. However, compulsory reduction with C-literals 

at the first-order level is incomplete, as is shown in (Sutcliffe and Tabada, 1989, pp.17-

18). As shown in Figure 13, compulsory C-reduction is incomplete at the first order level. 

He suggested that this problem can be overcame by slightly modifying the compulsory 
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Fi"ure 9. The search tree for s = {-T-N, RPN, L-Q, -R-L, MQN, L-M, 

- P - L, T } using the ME procedure. 
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Figure 12. The search tree for s = {-T-N, RPN, L-Q, -R-L, MQN, L-M, 

- P-L, T } using the GC procedure. 
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reduction restriction, ie., by allowing an extension operation as an alternative for C­

reduction. Figure 13 demonstrates this modification. 

Restriction (b), in the definition of the extension operation, specifies that the 

literal to be resolved with the selected literal of the center chain can be any literal of the 

input parent chain. This is different from SL-resolution and the ME procedure which 

always select the first literal of the input parent chain during an extension operation. The 

significant contribution of restriction (b) is that the generation of matrix chains for each 

input clauses is unnecessary which means a saving of memory. 

Restriction (iv) of the GC procedure prunes redundant derivations from the 

search tree. However, it may take one or two inference steps first before a resolvant is 

found to be redundant. Take, for instance, the resolvant to the left of the fifth center chain 

in Figure 8. This resolvant chain is actually admissible at this state. It will become 

inadmissible only after reducing -Q and applying an extension to resolve on the B-literal 

R. This slows down the derivation. This can be improved by imposing the second 

preadmissibility restriction of the ME procedure with slight modification. The additional 

restriction can be stated this way - "A chain should not contain any B-literal which is 

identical to any of the preceeding non-B-literals". This additional restriction may serve as 

a preemptive version of restriction (iv). 

Selective Linear Model (SLM) Inference System 

Shostak (1976) noted that the added selectivity of the ME procedure 

(Loveland 1969) and SL-resolution (Kowalski and Kuehner 1971) may cause repeated 

refutations of the same literal. This problem was alleviated in the GC procedure (Shostak 

1976) by recycling truncated A-literals as C-literals. This solution, however, does not 

solve the problem of producing certain irrelevant branches of the search tree which can be 

detected only at a later part of the derivation. Take, for instance, the search tree depicted in 



60 

Figure 14(i). There are three resolvants produced by extending on -p (X) of the second 

center chain. Two of these resolvants are redundant. This redundancy is only detected 

later in the derivation by the GC procedure. Had the literal - r ( x) been resolved on 

before -p (X), the generation of these two redundant resolvants would have been avoided. 

The ME procedure, SL-resolution and the GC procedure have this problem because the 

selection function must select a literal from the rightmost cell. Brown (1974) developed a 

linear derivation strategy, called the Selective Linear Model (SLM), that solves this 

problem. 

The SLM derivation strategy has an additional operation, aside from the 

extension, reduction and truncation operations used in the ME procedure, SL-resolution 

and the GC procedure, which spreads B-literals whose indices are O onto different 

branches of the center chain. This scheme allows each spread literal to be refuted 

concurrently with the others, by interleaving the operations on the branches. This makes 

the selection of literal to be resolved on during an extension operation more flexible 

because it is not necessary to completely resolve away one literal before considering of 

another. Figure 14 (ii) shows that the spreading and the concurrent consideration of the 

branches can prevent redundant resolvants. 

Truncated A-literals indexed by 1 are recycled in the SLM derivation strategy 

in the same manner as C-literals in the GC procedure. When such an A-literal is 

truncated, the negation of this A-literal (with index changed to 0) is inserted at its depth. 

This inserted literal is still classified as an A-literal and can be used later in a reduction 

operation. 

A distinguishing feature of SLM is the use of semantic information in 

derivations. The general advantage of using semantic information is that it will restrict the 

generation of resolvants to those that are highly likely to be relevant by taking into account 

the intended meaning of the literals. SLM differs from the GC procedure because it does 

not recycle truncated A-literals indexed by 0. This is done to prevent applying ancestor 
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Fi~ure 14. Search trees for s = { -r (X) -q (X), q (X) -p (X), p (a), p (b), 

p ( c) , r ( c) } using (i) the GC procedure and (ii) the SLM inference system. 
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resolution to B-literals indexed by O with recycled A-literals which were originally indexed 

by 0. It should be pointed out that this type of ancestor resolution has similarity to 

factoring of B-literals indexed by 0. Brown (1974, p. 4) cited that no generally used 

programming language factors its procedure invocations (a B-literal indexed by O is 

regarded as procedure invocation). Henschen (1974) has also shown that factoring is not 

necessary in obtaining a refutation for a set of Hom clauses. This principle is generalised 

in SLM in the case of a set of clauses which has a Hom model and the top clause is false 

in the model. The reduction operation is dropped in this situation, thereby reducing the 

size of the search tree. Recently, Plaisted (1989) proposed a positive refinement of the 

ME procedure, as cited by Nie (1990, p. 2). The basic idea of the refinement is to perform 

reduction operation only on negative subgoals. A negative subgoal is equivalent to a B­

literal indexed by O in SLM using the 10 interpretation (see section 3 for a detailed 

description of the Io interpretation). Nie (1990, p. 2), who implemented the refinement, 

has shown that selective reduction of subgoals performs better. 

Brown (1974, p. 10) claimed that the complexity of SLM refutation is 

bounded by the complexity of the simplest hyper-minimal M-clash refutation (h M-clash 

refutation). He defines hyper-minimal M-clash refutations are those refutations which are 

obtainable from M-clash semantic trees. The M-clash semantic tree is defined in 

(Kowalski and Hayes 1969). 

2.7.1. 

2.7.1.1. 

Formal Definition 

Input Clauses Conversion 

A set of input chains M is derived from the given set of input clauses S by 

indexing each literal of each clause, using a given interpretation, I, and by choosing exactly 

one sequence of literals in the clause. Each literal in the chain is classified as B-literal. A 

literal L has an index O if for all substitutions e, Le is false in the given interpretation I. If 

all instances Le are true in I, then the index value is 1. Otherwise the index of L is 2 (i.e. 
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if neither of the two tests terminate within a specified time). For each clause that contains 

a literal L indexed by 2, new clauses are created, which will replace the previous clause, by 

changing the index of L to 1 if there exists a ground substitution 0 such that L0 is TRUE 

in I and to O if there exists a ground substitution 0 such that L0 is FALSE in I. If there 

exist both TRUE and FALSE instances of L, then both indices are used. A clause is 

created for each possible index of L together with the other literals of the original clause. 

Take, for example, the clause p(X)2q(X)2 (the truth values of literals p(X) and q(X) cannot 

be determined yet, hence the subscript 2). If there exist two substitutions 01 and 02 such 

that p(X)01 and q(X)02 are TRUE, and p(X)02 and q(X)01 are FALSE in I, then the four 

clauses; p(X)1q(X)1, p(X)0q(X) 1, p(X)1q(X)0 and p(X)0q(X)0 will replace the original 

clause. 

2.7.1.2. Derivation Definition 

A selection function of SLM is a function which chooses a tip node of some 

branch in a center chain, extracts the rightmost cell of the selected tip node and selects a 

permutation of that cell. The rightmost literal of the selected permutation is the selected 

literal. 

Given a set of input clauses S converted into set of input chains M, a support 

set T (a subset of M), an interpretation I and a selection function q>, a sequence of chains 

C1, ... , Cn is an SLM derivation if restrictions i), ii), iii), and iv) are satisfied. 

i) C1, ... , Cn is a linear derivation and C1 e T. 

ii) Each Ci+ 1 is obtained from Ci by either 

a) spreading, 

b) extension, 

c) reduction, or 

d) truncation. 
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iii) No two A-literals indexed by O on any branch of any chain have identical 

atoms unless an A-literal indexed by 1 occurs between them (Hyper 

Minimality). 

iv) Ci+ 1 must be obtained from Ci by reduction if restrictions a), b ), anc c) are 

satisfied. 

a) Reduction is possible. 

b) The A-literal Land the B-literal K used in the reduction have identical 

atoms. 

c) No A-literal indexed by 1 occurs between Land K. 

Ci+ 1 is obtained from Ci by spreading only if : 

a) Truncation is not possible 

b) There is more than one B-literal indexed by O in <j>(Ci). Let the B-literals 

indexed by O in <!>(Ci) be L 1, ... , L0 • Let D be obtained by deleting L 1, ... , L
0 

from <!>(q). The cell is then replaced by the tree: 

D 

and combined with the other nodes to obtain Ci+I · 

c) The classifications and indices of every literal in Ci+l remain as they were in 

Ci. 

q+ 1 is obtained from q by extension with an input chain B only if : 

a) Truncation is not possible 

b) Spreading is not possible. 
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c) q and B share no variables. 

d) There exists a literal Kin B such that the selected B-literal from <!>(Ci) and K 

are complementary by unification with mgu 8. Let the selected B-literal from 

<l>(q) be L. 

e) The sum of the indices of the two literals must equal 1. 

f) The literal K is deleted from B and the remaining literals of B are appended to 

the right of q>(Ci ). The substitution 8 is applied to the result in obtaining 

Ci+I· 

g) There exists a ground substitution O' such that for each literal Jin Ci+l' if J is 

indexed by O then Ja is FALSE in I and if J is indexed by 1 then Ja is TRUE 

inl. 

h) LS in Ci+l is classified as an A-literal. The classification of all other literals, 

and indices of all literals remain as they were in Ci and B. 

i) If Lis indexed by 1 then a depth is associated with the new A-literal, set to the 

left of the leftmost literal in the root of q+ 1.1 

Ci+ 1 is obtained from q by truncation only if : 

1 

a) Reduction is not possible 

b) The rightmost literal of the rightmost node of some branch of Ci is an A-literal 

L. 

c) Lis deleted from q. If there are no more literals in the node then the node is 

automatically deleted. 

d) If the A-literal L was indexed by 1 then the complement of L classified as an 

A-literal is inserted either: 

1) at its depth, or 

In Brown's paper, it is the literal K which is associated with the depth. This is 

wrongly stated because a depth is associated with an A-literal. Since the newly created A­

literal is LS, the depth should be associated with LS. 
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2) immediately to the right of any A-literal indexed by O occurring between 

the position of L and the depth of L. 

e) The classification of every literal in Ci+l remains as it was in Ci. In the case of 

an insertion of new A-literal, the index of the inserted A-literal is 0. The 

indices of all other literals remain as they were in q. 

Ci+ 1 is obtained from q by reduction only if either I or II is satisfied. 

I) The last non-reduction operation was a truncation operation of an A-literal whose 

index was 1. Let L be the inserted A-literal of the last truncation operation. Then 

restrictions a) toe) must be satisfied. 

a) There exists a B-literal K to the right of L in Ci such that L and K are 

complementary by unification with mgu e. 

b) The sum of the indices of L and K is equal to 1. 

c) The B-literal K is deleted from Ci and the substitution e applied to the result. 

d) Same as (g) of the extension operation. 

e) The classifications and indices of every literal in Ci+l remain as they were in 

Ci. 

f) The depth of every A-literal indexed by 1 occurring to the right of A-literal L 

is set immediately to the right of L iff the current depth is to the left of L. 

II) The last non-reduction operation was an extension operation. Let D denote the new 

cell introduced by this extension operation. The restrictions a) to e) must be 

satisfied. 

a) There exists a B-literal Kin D and an A-literal L anywhere to the left of K and 

in the same branch such that L and K are complementary by unification with 

mgue. 

b) - f) are as in (I) above. 
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Semantic Checking 

Restriction (f) of the extension operation, which is also used in the reduction 

operation, applies semantic checking to each literal in the center chain using the given 

interpretation. The semantic checking ensures that there exists a ground instance 

consistent with the index of the literal. 

SLM can use the trivial interpretation which interprets all positive literals as 

true and all negative literals as false. This interpretation will be referred as Io hereafter. It 

must be noted that the restriction - "the sum of indices must equal 1 ", used in the 

extension and reduction operations will lose its effect, as the restriction will necessarily be 

satisfied. 

Semantic checking can narrow down the search tree more if a non-trivial 

interpretation is available. However, to establish a non-trivial interpretation for a given set 

of clauses is not an easy task. Henschen (1976, p. 820) presented two reasons why 

semantic information is not widely used in theorem provers. Firstly, it is difficult to 

determine whether or not a clause containing variables is falsified, especially for 

interpretations whose domains are not fairly small. The second reason is the problem of 

finding a general representation of an interpretation with reasonable storage requirements. 

The interpretation Io has neither of these problems and is easy to specify. 

Example Problems 

Figure 14 (p. 61) shows the search trees for the set of clauses s = 

{ -r(X)-q(X), q(X)-p(X), p(a), p(b), p(c), r(c) }using(i)theGC 

procedure and (ii) the SLM derivation strategy with the interpretation Io. This problem 

gives evidence of the advantage of spreading the center chain into subchains and 

interleaving the refutation between subchains. Figure 15 demonstrates the inadequacy of 
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SLM in detecting endless loops that may occur in a derivation. The set of clauses is 

S= {-P-Q, PQ, P, Q}, with the top clause -P-Q and using the interpretation 10 . 

Figures 16 and 17 present the search trees for the set of clauses s = { -A, - o-E, 

-C-P, AD-C, CD, E-F-G, FC, GC-Q, QC, P} using SLM with the 

interpretation Io, and the GC procedure respectively. Figure 18 presents the search tree of 

the set of clauses s = { -p ( a ) , q ( a ) , r ( b ) , t ( b ) , s ( x) - q ( x) , 

s (Y) -r (Y), p (X) -s (X) -t (Y) -s (Y)} using SLM with the non-trivial 

interpretation that each predicate of the set { p (a) , q (a) , r ( b) , t ( b) , s ( a ) , - s ( b) } 

is TRUE and all others are FALSE. 

Effects of the Restrictions 

The hyper minimality restriction (iii) has three effects on derivations. Firstly, it 

prevents some loops in derivations. Take, for instance, the following derivation from the 

set of clauses S = {-P0, P1-<Jo, -P0Q1, P1}, with the chosen top clause -P0 : 

P-Q 
l 0 

Q-P 
l 0 

P-Q 
l 0 

[iJ-o 
0 0 

1-P,-Q,-P,-Q 
0 0 0 0 

[i] 

p 

l 

0 

0 0 

The hyper minimality restriction will declare the fourth center chain inadmissible, thus 

preventing a loop. This causes the derivation to backtrack and try other possible 

resolvants of the previous extension operations. The derivation has to backtrack to the 
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Figure 18. The search tree for S = {-p(a), q(a), r(b), t(b), -q(X)s(X),-r(X)s(X), 

-s(X)p(X)-t(Y)-s(Y)} using SLM with the interpretation I = {p(a), q(a), r(b), t(b), s(a), 

s(b)} as all TRUE, and others as FALSE. 
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third center chain and apply the extension operation using the input chain P1. Again, the 

resolvant obtained is still inadmissible. It then backtracks to the first center chain ( there is 

no alternative for the second center chain) and applies the extension operation using the 

input chain P1. This time the resolvant is admissible and it leads to a minimal refutation. 

The hyper minimality restriction, however, does not trap all possible causes of loops. It is 

insufficient in detecting loops, especially for sets of clauses that contain clauses which 

have more than one literal indexed by 1. Take, for instance, the set of clauses S = 

{-Po-Qo, P1Q1, P1, Q1} whose search tree is shown in Figure 15. SLM cannot detect 

that the sixth center chain will lead to an endless loop. Without the aid of a good search 

strategy, SLM would not obtain a refutation from this set of clauses. The ME procedure, 

SL-resolution and the GC procedure can easily detect loops in such a derivation because 

they restrict the occurrence of two non-B-literals having identical atoms. This restriction 

is not imposed in SLM because it is in conflict with the hyper minimality restriction. To 

illustrate this conflict, consider the search tree shown in Figure 16. If two A-literals 

having identical atoms are not allowed to exist in the same branch, the eighth center chain, 

which is the resolvant of applying the extension operation on the seventh center chain, is 

inadmissible. This forces the reduction of the B-literal C with the A-literal -C. By doing 

so, the depth associated with the A-literal D will be moved to the right of A-literal -C. The 

remaining B-literal D then has to be resolved on the same way as the previous B-literal D. 

The second effect of the hyper minimality restriction is that it reduces some of 

the irrelevant derivations obtained by the indeterminancy of inserting a truncated A-literal 

indexed by 1, during a truncation operation. An example of this is the truncation of A­

literal Cat the eleventh center chain of Figure 16. Three of the chains obtained by the 

truncation are declared inadmissible by the restriction. 

The third effect of the hyper minimality restriction is to ensure that the 

insertion of an A-literal, which is the complement of a truncated A-literal indexed by 1, 

has maximum effect in an SLM derivation in terms of compulsory reductions. To 

illustrate this effect, consider the truncation of the A-literal C of the eleventh center chain 



74 

of Figure 16. The hyper minimality restriction will not allow the insertion of A-literal -C 

at the depth position of the truncated A-literal C nor in any position to the left of A-literal 

-E. The truncation operation will then insert the A-literal -C to the right of the A-literal 

-E. The insertion of A-literal-Cat this position will then satisfy the third restriction of a 

compulsory reduction. Consequently, all B-literals Con the right side of A-literal -E must 

be removed by reduction. 

Restriction (iv) defines the restrictions of a compulsory reduction. Restriction 

(iv.b) specifies that the literals involved in the reduction should have identical atoms. 

Compulsory reduction of literals having non-identical atoms is an incomplete derivation 

strategy. The ME procedure, SL-resolution and the GC procedure also force a reduction 

on literals having identical atoms. However, there is a difference between SLM and these 

three derivation strategies, in the sense that the ME procedure, SL-resolution and the GC 

procedure can retrospectively check if a literal should have been reduced. Consider the 

center chain [-r (a) 0 ] [t (b) 1 ] [-p (a) 0 ] [q (X) 1 ] p (X) 1 (the subscript associated 

with each literal is the truth index of the literal) with the only possible input chain 

-t (b) 0-p (a) 0 . The ME procedure, SL-resolution and the GC procedure will force a 

reduction operation on the B-literal p(X)i with the A-literal [-p(a)0] because the resolvant 

obtained from the extension operation is inadmissible to the restrictions imposed in the 

three derivation strategies. On the other hand, the resolvant of applying an extension 

operation to the center chain is still admissible in SLM. 

Restriction (iv.c) of compulsory reduction requires that there must not be an 

A-literal indexed by 1 in between the two literals. The purpose of this restriction is to 

preserve as much as possible the depth associated with a TRUE A-literal. The advantage 

of this is to maximise the usefulness of an inserted A-literal after truncating a TRUE A­

literal. To demonstrate this effect, consider the search tree shown in Figure 16. Had the 

B-literal C of the sixth center chain been reduced, the depth associated with the A-literal D 

would have been moved to the right of A-literal -C. Obviously, the creation of A-literal 

-Dafter truncating the A-literal Dis useless since it will be inserted at the right of A-
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literal -C and truncated without serving its purpose. As shown in the example, by keeping 

the depth of D at its original position the B-literal D of the fifteenth center chain is 

removed by compulsory reduction instead of resolving away the literal the same way as 

the previous B-literal D. Comparing the result with the GC procedure shown in Figure 17 

(i), resolving away the literal Dis repeated by the GC procedure because the C-point 

associated with the A-literal Dis moved to the right of A-literal -C during the reduction 

operation at the sixth center chain. In this example, the GC procedure will fail to obtain a 

refutation from the chosen top clause -A. It will then choose another top clause from the 

set of support, as shown in search tree (ii) of Figure 17. As shown, using the top clause 

-D-E leads to a minimal refutation. This is advantageous if the objective is to obtain a 

minimal refutation. However, it may take more time to obtain a minimal refutation because 

some of the inference steps may be wasted in the process of searching for a minimal 

refutation, similar to what happen in Figure 17 (i). Another issue to consider is the ability 

to obtain a refutation using a specific top clause. The example shows that SLM can obtain 

a refutation using more of the top clauses from the set of support than the GC procedure. 

This partly justifies the claim of Brown ( 197 4, p. 1) that SLM has more desirable 

properties for certain applications of the predicate calculus than the other derivation 

strategies. One specific application which requires the ability to obtain a refutation for a 

specific top clause is a deductive question-answering system. 

Restriction (g) of the extension operation definition, using a non-trivial 

interpretation, can detect some redundant resolvants. This effect is demonstrated in Figure 

18. When the input chain s(Y)i-r(Y) 0 is used in the extension of the third center chain, 

the resolvant is immediately pruned from the search tree because the truth index of-r(Y)0 

was changed. The resolvant obtained by extending the fifth center chain (on the right 

branch of the search tree) with the input chain t(b)i, is also rejected because the truth 

index of -q(Y) 0 was changed after the instantiation. The ME procedure, SL-resolution 

and the GC procedure do not provide semantic checks. 
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The selection functions used by the ME procedure, SL-resolution and the GC 

procedure add more problems to early detection of redundancy because only the literals of 

the rightmost cell are considered in the selection. If a literal is not in the rightmost cell and 

cannot be resolved away, possibly as a result of instantiation, the detection of this problem 

has to wait until all literals to the right of that literal are resolved away. SLM partially 

alleviates the problem brought about by the added selectivity of these three derivation 

strategies by spreading false B-literals onto different branches and concurrently resolving 

them away. Hence, SLM may be able to detect the problem earlier than the ME procedure, 

SL-resolution and the GC procedure. This effect is demonstrated in Figure 14 (p. 61). 

Brown (1974, p. 23) pointed out that for a set of clauses with a Hom model 

and a derivation with a FALSE top clause, the reduction operation and restriction (d) of 

the truncation operation can never be used because all the literals in the center chains are 

FALSE (indexed by 0) in the interpretation. However, for a set of general clauses, 

restriction (d) of the truncation operation may produce many irrelevant derivations. Take, 

for instance, the truncation of the A-literal [S1] in the following derivation: 

l~s I ~Pl ~01 ~RI M 
0 0 O O l 

l~P I ~sl ~01 ~RIM 
0 0 O O l 

l~PI ~01 ~sl ~RIM 
0 0 O O l 

!~Pl ~01 ~RI ~sl M 
0 0 O O l 

Three of these chains are irrelevant since they all have the same effect. The hyper 

minimality restriction is not adequate to prevent the indeterminancy of inserting A-literals 

created by truncation. In view of this, Brown suggested three methods to reduce this 

redundancy. These three methods are denoted SLM-1, SLM-2 and SLM-3. 
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SLM Variations 

SLM-1 is obtained from SLM by modifying the truncation operation. The 

modification is to insert the truncated A-literal into a position only if that position is not 

equivalent to a position at which the truncated A-literal has already been inserted. Two 

positions are said to be equivalent if no B-literals occurs between the two positions. This 

method reduces some of the redundant derivations obtained from truncation without 

affecting the effectiveness of the hyper minimality and compulsory reduction restrictions. 

However, SLM-I has a drawback. The example shown in Figure 19 (p. 79) demonstrates 

that SLM-1 will fail to obtain a refutation if the chosen top clause is -Q-R. SLM does 

not have problem in obtaining a refutation of the chosen top clause, as shown in Figure 

20. Brown, however, pointed out that the complexity of SLM-I refutations remain 

bounded by the complexity of the simplest h M-clash refutations. 

SLM-2 is obtained from SLM by omitting the hyper minimality and 

compulsory reduction restrictions, and by always placing an A-literal created by truncating 

an A-literal indexed by 1, at its depth. This method solves the indeterminancy problem of 

inserting an A-literal created from a truncated A-literal. However, the advantages of this 

modification are bought at the expense of the effects of the hyper minimality and the 

compulsory reduction restrictions. One disadvantage of imposing the hyper minimality 

restriction in SLM-2 is that it may prevent SLM-2 from obtaining a refutation using some 

top clauses, which could be used in an SLM derivation. To illustrate this point, consider 

the search tree shown in Figure 21. The tenth center chain would be inadmissible had the 

hyper minimality restriction been imposed in SLM-2. Obviously, all the efforts to obtain 

the derivation are wasted since no other alternatives are available. One negative effect of 

imposing the compulsory reduction restriction in SLM-2 is demonstrated in Figure 22. 

The reduction of B-literal G at the eleventh center chain (the resolvant obtained by 

extending the center chain using the input chain -G-P will not lead to minimal refutation 

since the B-literal-P is introduced) has moved the depth of the A-literal D to the right of 

A-literal -G. The insertion of A-literal -D to the right of A-literal -G when the A-literal 
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D is truncated from the twelfth center chain, has forced the reduction of B-literal D at the 

thirteenth center chain. This reduction has moved also the depth of A-literal A to the right 

of A-literal -D. Thus, the B-literal A is removed by reduction when the A-literal -A is 

inserted at its depth after truncating the A-literal A from the fifteenth center chain. This 

causes the transfer of the depth of A-literal Q to the right of A-literal -A. Consequently, 

the insertion of A-literal -Q after truncating the A-literal Q from the eighteenth center 

chain is useless. Had it been inserted to the left of A-literal -P, the B-literal Q of the 

twentieth center chain could have been resolved away by reduction. SLM-2 with non­

compulsory reduction may still obtain the shown derivation but it has other derivations 

that may lead to minimal refutation such as applying extension operation to the sixteenth 

center chain instead of applying the reduction operation. Dropping the compulsory 

reduction restriction expands the search tree since an extension operation can still be 

performed to resolve on a B-literal when it can be simply reduced. In fact, Brown 

conjectured that the number of refutations in the SLM-1 search space is always fewer than 

in SLM-2. SLM-2 also has no loop-check since the hyper minimality restriction is 

omitted. 

SLM-3 is obtained from SLM by deleting restriction (d) in the truncation 

definition. Thus, the SLM-3 truncation operation simply deletes an A-literal in the same 

manner as SL-resolution's truncation operation. This method still maintains the hyper 

minimality and the compulsory reduction restrictions. However, resolving away of literals 

are possibly repeated since truncated A-literals are not recycled. 

2.7.6. 

2.7.6.1. 

New Variations of SLM 

Transformation of non-Hom set to subsets of Hom clauses 

The problems in SLM of detecting loops and the indeterminancy of inserting 

A-literals created from truncated A-literals will only occur when the derivation, which 
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Fi~ure 19. A search tree for S = {-Q-R, -P-T, QP, RP, T} using SLM-1 with the 

interpretation Io-
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Figure 21. The search tree for S = {-Q-R, -P-T, QP, RP, T} using SLM-2 with the 

interpretation 10 . 
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Fi~ure 22. A search tree for S = {-P, -G-P, -A-M, -Q-R, PQ-C, C-G, G-B-F-Q, 

QDA, FAQ, BD, -DG, M, R} using SLM-2 (with compulsory reduction) with the 

interpretation Iostarts from a FALSE top clause, has a center chain that contains at least 
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one A-literal indexed by 1. This happens when some of the input chains have more than 

one B-literal indexed by 1, i.e the interpretation used is not a Horn model of the input 

clauses. To prevent the occurrence of A-literals indexed by 1 in any center chains of the 

derivation, the set of clauses which has a non-Horn model may be broken down into 

subsets of clauses such that each subset has a Horn model, using the splitting technique of 

Chang (1972). 

The idea of splitting is to split the problem into subproblems and work on 

each subproblem. The splitting technique starts with a set of clauses S U { C } , where C 

is a clause to be split into two groups of literals: P and Q, i.e. C = P U Q. The splitting 

technique will then produce the two sets S U {P} and SU {Q}. If consistent refutations 

can be derived from both of these subsets then S U { C} is unsatisfiable. Consistent 

refutations are obtained if the substitutions applied to the common variables of P and Q in 

each refutation are compatible. Chang claimed that the splitting techniques can improve 

the proof search efficiency both with respect of time and memory, as cited by Henschen 

and Wos (1974, p. 591). Henschen (1976, p. 816) suggested that sets of non-Horn 

clauses could be transformed to subsets of Horn clauses, in order to apply to sets of non­

Horn clauses a theory specifically designed for sets of Horn clauses. This technique can 

be applied in SLM, by splitting the set of general clauses to subsets of Horn clauses and 

using the interpretation 10 or splitting the set of clauses with a non-Horn model into 

subsets of clauses such that each subset has a Horn model. 

Once the set of clauses is broken down into subsets of clauses, a refutation for 

each subset of clauses can be obtained using SLM. To increase the efficacy of SLM in 

obtaining a refutation from a set of clauses with a Horn model, the following 

modifications of SLM may be done : 

a) The reduction operation is removed. The reduction operation is not needed to 

prove the unsatisfiability of a set of clauses having a Horn model. 
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b) The hyper minimality restriction will be changed to - "no two A-literals have 

identical atoms". There is no need to categorise A-literals by truth index since 

for a given set of clauses with a Hom model and a FALSE top clause, the 

literals of the center chain are all indexed by 0. 

c) The truncation operation definition will be that of SLM-3. 

These modifications of SLM constitute the new variation of SLM and will be called SLM-

4 hereafter. 

SLM-4 solves the indeterminancy of inserting A-literals, and loop detection 

problems of SLM. Figure 23 shows the search trees for S = { -p(X)0 , 

p(X)iq(Y)i-c(X,Y,Z)0, -p(X)0q(X)i, -q(X)0p(X)i, c(a,a,c)i }using SLM-4. The chain 

p(X)1q(Y)i-c(X,Y,Z)0, which contains more than one literal indexed by 1, is selected to be 

split. The chain is then split into p(X)i-c(X,Y,Z)0 and q(Y)1. The first subset S1 is then 

formed by combining the first part of the split, p(X) 1-c(X, Y ,Z)0 and the rest of the chains 

of S. Figure 23(i) shows the search tree of the first subset of S. The refutation has 

instantiated the variable Y with the constant a. To obtain a consistent refutation, the 

second subset of S is formed by the subcase hypothesis q(a) 1 which is the instance of 

q(Y)1 derived after refuting the first subset, and the rest of the chains of S. The refutation 

of S2 is shown in Figure 23(ii). Since S1 and S2 have consistent refutations, S is then 

unsatisfiable. Figure 24 shows the search tree for S using SLM. Clearly, in this example, 

SLM-4 has no problem of detecting loops and preventing irrelevant derivations obtained 

during a truncation operation. 

2.7.6.2. Adding more restrictions to SLM 

The problem with the splitting technique is the complexity of splitting a set of 

clauses that contains many clauses which have more than one literal indexed by I. The 
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Figure 23. The search trees of the two subsets of S = {-p(X), p(X)q(Y)-c(X,Y,Z), 

-q(X)p(X), -p(X)q(X), c(a,a,c)} using SLM-4 with the interpretation 1
0

. 
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Figure 24. The search tree for S = {-p(X), p(X)q(Y)-c(X,Y,Z), -q(X)p(X), -p(X)q(X), 

c(a,a,c)} using SLM with the interpretation I0 • 
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difficulty of maintaining consistent refutations for numerous sets adds to the difficulty of 

implementing such method. In view of this, an alternative variation of SLM is suggested. 

The problem with SLM's truncation operation is that it allows alternative 

points of inserting truncated A-literals, in order to get the maximum use of them. 

However, this causes problems since it may produce many irrelevant derivations, thereby 

expanding the search tree unnecessarily. Consider a branch of a center chain which 

contains N consecutive A-literals indexed by O in between an A-literal L indexed by 1, and 

its depth. If these N consecutive A-literals indexed by Oare in the same node then N 

irrelevant derivations are produced during the truncation of L since SLM inserts the 

truncated A-literal at its depth or at the right of each A-literal indexed by O in between the 

depth and L. They are irrelevant derivations since inserting the truncated A-literal at its 

depth has the same effect as when it is inserted to the right of any of the A-literals indexed 

by O in between the depth and L. There is, however, a different effect on the derivation if 

the truncated A-literal is inserted at a position in one node and in another position in a 

succeeding node although the literals between the two positions are all A-literals indexed 

by 0. Consider the center chain 

I-Pl-al 
0 0 

0 1 

Obviously, there is a difference in inserting the A-literal-Sat its depth which is in the root 

node or inserting it to the right of A-literal -R in the tip node. The first insertion of A­

literal -Swill force the reduction of the B-literal Sin the other tip node while the second 

insertion of the A-literal -S to the right of A-literal -R has different effect in the 

derivation. However, inserting A-literal -s either at its depth or to the right of A-literal -P 

or -Q has the same effect in the derivation. SLM-1 attempts to reduce these irrelevant 

derivations by defining an equivalent position restriction. However, it was found out that 
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the equivalent position restriction may cause also some problems as pointed out in section 

2.7.5. In view of this, a modification of the equivalent position restriction is suggested as 

follows: 

Two positions P 1 and P 2 , where P 1 is to the left of P 2 and are in the same 

node, are equivalent if the literals in between P 1 and P 2 are all A-literals 

indexed by 0. 

The definition of the truncation operation of SLM may then be modified as in 

SLM-1. In this scheme, the truncation of the A-literal S of the above center chain will 

only produce two chains while SLM will produce 4 chains. Looking at Figure 19 (p. 79), 

the suggested method can obtain a refutation of the chosen top clause -R-Q because 

when the A-literal P is truncated at the seventh center chain, there are two possible 

positions that the A-literal -P can be inserted. The first position is at its depth which is at 

the root node and the second position is at the right of A-literal -R which is on the next 

node. 

The loop detection problem of SLM is brought about by allowing two A­

literals having identical atoms to coexist in the center chain in order to preserve the depth 

of A-literals in between them. This problem is complicated by the generalisation of 

classifying non-B-literals. SLM has no distinction between an A-literal produced by an 

extension operation and an A-literal created from a truncated A-literal. If there are 

different classifications of these two types of A-literals, it is easier to detect that a certain 

atom is repeatedly resolved on by extension operations, which is a distinguishing sign of 

the occurrence of endless loops. The ME procedure, SL-resolution and the GC procedure 

prevented this loop problem by not allowing two non-B-literals to have identical atoms. 

This restriction also makes the reduction operation compulsory for literals having identical 

atoms. However, SLM avoids such compulsory reduction in order to preserve the depths 

of A-literals, and imposing such a restriction on SLM would negate this preservation. 

However, if the restriction is loosened in such a way that it will prevent identical A-literals 
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created by extension operations, but will allow complementary A-literals iff an A-literal 

indexed by 1 is in between them, then the loop problem is prevented without hampering 

the hyper minimality effects. Hence, the following modifications of SLM are suggested : 

a) Restrictions (b), (d) and (e) of the truncation operation definition are modified 

as follows: 

For (b): 

The rightmost literal of the rightmost node of some branch of Ci is a non-B-

literal. Let this literal be L. 

For(d): 

If Lis an A-literal indexed by 1 then the complement of L classified as C­

literal is inserted either : 

1) at its depth, or 

2) immediately to the right of an A-literal indexed by O iff that 

position is not equivalent to a position at which the C-literal has 

already been inserted, and occurs between the position of L and 

the depth of L. 

For (e) 

The classification of every literal in G+ 1 remains as it was in Ci. In the case 

of an insertion of C-literal, the index of the inserted C-literal is 0. The indices 

of all other literals remains as they were in q. 

b) Restriction (iv.b) of the compulsory reduction restriction definition is changed 

to -

The non-B-literal Land the B-literal K used in the reduction have identical 

atoms. 
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c) The hyper minimality restriction is changed to: 

There must be no two identical non-B-literals indexed by O on any branch of 

any chain unless an A-literal indexed by 1 occurs between them. 

This restriction is intended to insert the C-literal at a position where it has 

maximum effect in the derivation in terms of compulsory reduction, and to minimise 

irrelevant derivations which the equivalent position restriction cannot prevent. For 

example, the truncation of A-literal Con the eleventh center chain of Figure 16 (p. 70). 

The restriction will not permit the insertion of C-literal -C either at its depth or to the 

right of A-literal -C. 

d) Restrictions that will detect loops will be added. They are as follows : 

1) No B-literal that is identical to any of the preceding A-literals should 

occur on any branch of any chain. 

2) No two identical A-literals should occur on any branch of any chain. 

Restriction (d.1) is similar to the second preadmissibility restriction of the ME 

procedure. The purpose of this restriction is to prevent loops caused by adding a B-literal 

which is identical to a preceding A-literal. Stickel (1984, p. 215) affirms that it is 

unnecessary to attempt to solve a goal (B-literal) while in the process of attempting to 

solve that same goal (A-literal). Restriction (d.2) is a retrospective check of the first 

restriction. 

Restriction (iv.c), as defined in section 2.7.1.2, only forces a reduction if the 

literals involved in the reduction have identical atoms. However, this restriction is not 

enforced retrospectively. Take, for instance, the center chain 

[ -p(a)o][q(a) i1 [-f(a)oH-g(X)o]f(X)i. SLM will still admit the resolvant which is 
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obtained by resolving f(X)i with an input chain -f(a)o-q(a)o. The resolvant 

[-p(a)oHq(a)i][-f(a)oH-g(a)oHf(a)i]-q(a)o may produce an expanded search tree and a 

longer refutation than by simply reducing the B-literal f(X)i. In the ME procedure, SL­

resolution and the GC procedure, the resolvant is inadmissible. It should be noted that 

reducing the B-literal f(Xh does not affect any depths. Hence, a retrospective check of 

restriction (iv.c) is added to handle this situation. 

e) A retrospective check of restriction (iv.c) is defined as follows: 

No A- or C-literal which is exactly complementary to a following A­

literal may occur on any branch of any chain unless an A-literal indexed 

by 1 exists between them. 

In SLM, the reduction operation case (I) (after truncation of A-literal indexed 

by 1) may reduce a B-literal which may precede some A-literals indexed by 1. This has 

some negative effects since the reduction may move the depths of some A-literals 

unnecessarily. As shown in Figure 22 (p. 82), reducing B-literals which precede some A­

literals indexed by 1 has complicated the refutation. In view of this, the reduction 

operation is redefined in such a way that it will not reduce B-literal until all the following 

non-B-literals are removed. 

f) The reduction operation is redefined as follows: 

Cj+ 1 is obtained by reduction only if a) to f) are satisfied. 

a) The last non-reduction operation is an extension operation or a 

truncation of an A-literal indexed by 1. 

b) The rightmost cell of the selected branch contains a B-literal K and there 

exists a non-B-literal L which is to the left of Kand in the same branch. 
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L and K are complementary by unification with mgu e and the sum of 

their indices is equal to 1. 

c) - e) same as II c) - e) of SLM reduction definition. 

t) The depth of every A-literal indexed by 1 occurring to the right of the 

non-B-literal L is set immediately to the right of L iff the depth is to the 

left ofL. 

Another disadvantage of SLM is that it does not recycle all proved literals. 

Sutcliffe (1989, p. 10) in his General Clause Theorem Prover (GCTP), defines a proved 

literal as a logical consequence of the input clauses used thus far. If a C-literal is inserted 

to the left of any A- or B-literal then the C-literal is a proved literal, otherwise, it is a 

conditionally proved literal. SLM does not recycle truncated FALSE A-literals in order to 

prevent reducing a FALSE B-literal with it. Brown (1974, p. 4) justifies this by pointing 

out that factoring, in some cases, will add an irrelevancy to the search space. However, it 

will not happen if the recycled literal is a proved literal. Reducing a B-literal with a proved 

literal is like recalling that portion of the derivation that obtains the proved literal. Sutcliffe 

extends the C-literal mechanism of the GC procedure by removing proved literals from the 

center chain and adding them to the set of input clauses, as unit clauses. He argued that 

the addition of proved literals as unit clauses to the set of clauses is particularly effective in 

conjunction with the unit preference strategy. This has also an advantage in the 

environment of a consecutively bounded search since the proofs of B-literals discovered 

within one bound are carried over to the next bound. It is, therefore, suggested that a 

proved literal be added to the set of input clauses as a unit clause iff it is not subsumed by 

any unit clauses in the set. To maintain the effect of the hyper minimality restriction, 

conditionally proved literals are treated as in SLM. The following restrictions are added to 

the operations used in SLM to implement the suggested modifications: 
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f) For the extension operation : 

There exists an input chain B which is either 

i) a unit chain (unit preference strategy), or 

ii) any chain. 

If the selected literal L is indexed by 0, a status flag of 1 is associated with the 

new A-literal Le. 

g) For the reduction operation : 

The status flag of each A-literal indexed by O occurring to the right of 

the non-B-literal Lis set to 0. 

h) For the truncation operation: 

If the A-literal L is indexed by O and the status flag is 1 then L is a 

proved literal. If Lis indexed by 1 and it is not preceded by any A- or 

B-literal then L is a proved literal. If L is a proved literal then the 

complement of L with the corresponding change to its index and the 

classification changed to a B-literal, will be added to the set of input 

chains M iff it is not subsumed by any unit chains in M. 

All these modifications and additional restrictions constitute a new variation of 

SLM, which will be called SLM-5 hereafter. Figure 25 demonstrates the efficacy of 

SLM-5. As shown, the resolvants obtained in applying extension operations to the fourth 

center chain with the input chain -Ro-Qo and the fifth center chain with the input chain 

-s0-P0 are inadmissible. They are inadmissible because loops will occur if the derivation 

is continued from any of these resolvants. SLM would admit these resolvants as 

admissible. Using the proved literal P1 as the input chain during the extension operation 

of the tenth center chain has simplified the refutation. In SLM, the B-literal -Po of the 

tenth center chain has to be resolved the same way as the previous B-literal -Po of the 

third center chain. 
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Figure 25. The search tree for S = {-P-Q, -R-Q, -S-P, QR, PS, -R-T, T-P, -S-M, 

M} using SLM-5 with the interpretation Io-
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2.8. A Surmmuy 

An overview comparison of s-linear, ME procedure, t-linear, SL-resolution, 

GC procedure, and the SLM derivation strategies, is tabulated in Table 1. 



Table 1 - ~1m11anues ana umerences 01 me ~1x unear uenvauon ~rrategies 

F,aUl!~ nenvation ~u .... y: ... , 
s-linear ME procedure t-linear SL-resolution GC procedure SLM 

Clauses Set of literals Chain format Set of literals Chain format Chain format Chain format 

Selection Any literal in the Rightmost B-literal in Any literal in the Use a selection Use a selection Use a selection 
center clause. the center chain. center clause. function to select a function to select a function to select a tip 

literal from the most literal from the most node of some branch 
recently introduced recently introduced in a center chain, and 
literals in the center literals in the center select a B-literal from 
chain. chain. the rightmost cell of 

the tip node. 

Factoring No, but apply No. No, but apply Yes. No, but reduction of No, but reduction of 
merging on identical merging on identical an A-literal with a C- an A-literal with a 

literals. literals. literal can be viewed recycled A-literal can 
as delayed factoring. be viewed as delayed 

factoring. 

Ancestor Yes. A restrictive Yes, via reduction. Yes. A compulsory Yes, via reduction. Yes, via reduction. Yes, via reduction. 

Resol'n ancestor resolution. ancestor resolution. 

Spreadin£ No. No. No. No. No. Yes. 
Recyle No. Yes, in the form of No. No. Yes, in the form of C- Partly. Only A-literals 

Tnmcated lemmas. literals. indexed by 1 are 

A-literals recycled, as A-literals 
indexed by 0. 

Semantics No. No. No. No. No. Yes. 
No Yes. Partly. Tautologous No, but is compatible Yes. No. No. 

Taut's center chains are not with that restriction. 

allowed if the 
complementary B-
literals are not 

separated by an A-
literal. 
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Chapter 3 

IMPLEMENTATION 

Introduction 

The ME procedure, SL-resolution, the GC procedure, SLM and SLM-5 have 

been implemented using the PROLOG language. (The s-linear and t-linear derivation 

strategies are not included in the implementation because of their limitations. The t-linear 

derivation strategy is only defined for ground derivations. In the case of the s-linear 

derivation strategy, it is already known that it produces bigger search trees than the other 

strategies.) Writing theorem provers in PROLOG is not new. Other theorem provers 

implemented in PROLOG language are (Santane-Toth and Szeride, 1982), (Brown, 1984), 

(Satz, 1988) and (Sutcliffe, 1989). 

PROLOG is a special case of a theorem prover (Bratko 1986, p. 397). It is a 

programming language based on a specialised version of linear input resolution for Hom 

clauses (Clocksin and Mellish 1987). PROLOG implements the ideas of the predicate 

logic as a programming language (Amble 1987, p. 44), which simplifies the development 

of a theorem prover for first order predicate logic. Unification plays a vital role in theorem 

proving. However, PROLOG implements a unification algorithm without an occurs 

check. An occurs check is a check for an occurence of the same variable in expressions 

being unified, that may cause a looping substitution, i.e. a variable is repeatedly bound to a 

term containing the variable. This type of unification is unsound for theorem proving. 

Thus, there is a need to write a PROLOG procedure to handle the occurs check problem. 

There is also a need to modify the search strategy of PROLOG because a depth-first 

strategy is not an appropriate search strategy for theorem proving. Implementations of 

PROLOG on conventional computer architectures have achieved efficiency comparable 

with pure LISP (Warren et al. 1977) as cited by Kowalski (1982, p. 3). However, Stickel 
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(1984, p. 211) argued that writing a theorem prover in PROLOG offers uncertain 

advantages in comparison with writing a theorem prover in any other language, such as 

LISP. He pointed out that theorem prover written in PROLOG would perform slower 

than the speed of PROLOG, because several PROLOG inference operations would have 

to be performed for each theorem-proving inference operation. This is true if a theorem 

prover is executed using a PROLOG interpreter. With the advent of PROLOG compilers 

such as the Arity PROLOG compiler (Arity Corporation 1988), the speed of a compiled 

theorem prover is comparable to that of PROLOG. 

The implementations of the five derivation strategies include the following: 

1. A self configuration facility. 

2. Inference operations used by each derivation strategy such as 

i) an extended extension operation which includes paramodulation (Wos 

and Robinson 1968) 

ii) reduction 

iii) truncation 

iv) spreading (for SLM and SLM-5 only) 

3. The unit preference strategy 

4. Pure literal elimination 

5. The elimination of tautologies 

6. Syntactic checking based on the restrictions imposed in each derivation 

strategy 

7. A check if literals can be extended upon 

8. A selection function to select the literal from the center chain to be resolved on 

during an extension operation. 

9. A modified consecutively bounded depth-first search strategy. 

Some of these features are not in the original definitions of the derivation strategies. In the 

implementations, the effects of adding extra features to a derivation strategy is to increase 
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the efficacy of the resultant system, without losing the basic structure of the original 

strategy. 

3 .2. Data Structures 

Input clauses are represented by facts in the PROLOG database. Each fact has 

the following format : 

a_c1ause(C1ause) 

where: 

Clause = [L1, Li, ... , L0 ] 

Li = a literal consisting of a sign and its atom. An atom preceded by the'++' 

(defined as an operator) sign denotes a positive literal and the'--' sign 

denotes a negative literal. (Literals are represented in this manner 

throughout the implementations.) 

Input clauses are converted to input chains of B-literals before using them in 

derivations. The data structure of a B-literal in the ME procedure, SL-resolution and the 

GC procedure is in the following format : 

B_Litera1ME/SL/GC = [b, Litera1] 

In the ME procedure, an input clause should generate N matrix chains where N is the 

number of literals in the clause. To save memory space, only one chain is formed for 

every input clause. The extension operation of the ME procedure, however, is modified in 

such a way that any of the literals of the input clause can be selected. Thus, an input chain 

is formed by converting all the literals of the input clause to B-literal form in the ME and 

GC procedures. Input clauses to SL-resolution are factored and each factor is converted to 

an input chain. In all cases, a unique index is assigned to each input chain formed. The 

input chain and index are asserted into the PROLOG database as a two-argument fact : 



input_chain(Index,Chain) 

where: 

Index = an integer greater than 0. 

Chain= [ B_Litera11, B_Litera12, ... , B_Lit~] 
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SLM and SLM-5 convert input clauses to input chains in a similar manner, 

but additionally assign a truth index to each literal in the clause. The data structure of a 

B-literal in SLM and SLM-5 is the following: 

B_LiteralSLM/SLM-S = [b, Truth_Index, Literal] 

where: 

Truth_lndex = an integer O or 1 which denotes FALSE or TRUE respectively. 

Only the trivial interpretation 10 has been implemented to assign a truth index to each 

literal. 

The data structure of a center chain in ME procedure, SL-resolution and GC 

procedure is a list. The term 'rightmost literal of the chain' in the formal definitions is 

actually the first literal of the center chain list in the implementations. A center chain in 

ME procedure and SL-resolution derivations is a list of B-literals and A-literals. The data 

structure of an A-literal in the ME procedure is a three-element list: 

A_LiteralME = [a, Scope, Literal] 

where: 

Scope= an integer which represents the scope associated with the A-literal. 

An A-literal in SL-resolution is represented by a two-element list: 

A_Literal5L = [a, Literal] 
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A center chain in a GC procedure derivation is a list of B-literals, A-literals, C­

literals and C-point atoms. The data structure of an A-literal in the GC procedure is a 

three-element list : 

A_Litera1Gc = [a, c_N, Litera1] 

where: 

c_N = an atom that represents the C-point associated with the A-literal 

N = an integer 

The position of a C-point atom in the center chain is the C-point of the A-literal containing 

that C-point atom. A C-literal is represented by a two-element list : 

C_Litera1Gc = [c, Litera1] 

A center chain in SLM and SLM-5 is in the following format: 

Center Chain= [Node1 , ... , Nodenl 

where: 

Nodei = [L,R,SubchainsLMISLM-5] 

L = an integer which serves as a link to the previous node. 

R = an integer which serves as a link to the next node. 

SubchainsLM = a list of B-literals, A-literals and depth atoms. 

SubchainsLM-S = a list of B-literals, A-literals, C-literals and depth atoms. 

In SLM, A-literals have the following two formats: 

(i) A-literals indexed by 0 

A_Litera1SLM = [a, 0, Litera1] 



(ii) A-literal indexed by 1 

A_LiteralsLM = [a, 1, d_N, Literal] 

where: 

d_N = an atom that represents the depth associated with the A-literal 

N = an integer 

In SLM-5, A-literals have the following format : 

(i) A-literals indexed by 0 

A_LiteralsLM-S = [a, 0, Status, Literal] 

(ii) A-literal indexed by 1 

A_LiteralSLM-S = [a, 1, d_N, Literal] 

where: 
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Status= an integer O or 1 which represents the status flag associated with the 

A-literal. 

d_N = an atom that represents the depth associated with the A-literal 

N = an integer 

The position of the depth atom in the branch is the depth of the A-literal. AC-literal of 

SLM-5 is represented in the following format: 

C_LiteralsLM-S = [c, 0, Literal] 

A branch can be extracted from a center chain by getting first the root node 

(the root node is the node whose first two elements are 0,0) from the center chain and 

extracting the succeeding nodes from the rest of the center chain. The succeeding nodes 
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are obtained by repeatedly matching the second element of the current node to the first 

element of any of the remaining nodes in the center chain, until a tip node is obtained. A 

tip node is obtained if its second element cannot be matched with the first element of any 

of the remaining nodes in the center chain. 

3.3. Self Configuration 

Each of the theorem provers implemented configures itself to a certain extent. 

Before any derivations begin, an examination of the input clauses is done to determine the 

following: 

1. the occurence of equality literals. 

2. the occurence of pure literals. 

3. the occurence of tautologous clauses. 

4. whether the set of clauses is a set of Horn clauses or a set of non-Horn 

clauses. 

5. whether the set of clauses is written in a propositional or a first order 

predicate logic. 

6. the minimum and maximum number of literals in a clause (the size of the 

clause). 

If an equality literal exists (i.e. a literal with an equal ( L, R) atom), the 

reflexive axiom of equality is added to the input chains by asserting the input chain whose 

single B-literal is ++equal (X, X). The predicate equal_exist is also asserted into 

the PROLOG database to indicate that an equality literal exists. 

A check for pure literals is also done during the self configuration. If such a 

literal exists, the clause containing the pure literal is removed from the database because it 
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can only pollute the derivation search space. Tautologous input chains are also removed 

from the database. 

If the input clauses are all Horn clauses, a PROLOG fact 

c 1 au s e type ( horn ) is asserted into the database; otherwise, the fact 

clause_type (general) is asserted. If the clause_type (horn) exists, the 

reduction operation is suppressed in the ME procedure, SLM and SLM-5. The basis for 

suppressing the reduction operation is the completeness of input resolution for Hom 

clauses (Henschen 1974). However, the effects of the restrictions imposed in the ME 

procedure, SL-resolution, the GC procedure, SLM and SLM-5 systems need to be 

considered. In the case of the ME procedure whose reduction operation is equivalent to 

ancestor resolution, the reduction operation is not necessary for a given set of Horn 

clauses. In SLM and SLM-5 using the trivial interpretation 10 , the reduction operation is 

not also necessary for a set of Horn clauses. Although the reduction operation of SLM 

and SLM-5 is not purely ancestor resolution (because they reuse truncated A-literals 

indexed by 1), it is still safe to suppress the reduction operation because no A-literal 

indexed by 1 can occur in any center chains of the derivation. In SL-resolution whose 

reduction operation involves factoring and ancestor resolution, reduction cannot be 

suppressed. This is because SL-resolution imposes the admissibilty restriction which 

constrains the derivation not to produce center chains that contain two literals having 

identical atoms. Consider the derivation from the set of Horn clauses 

S={-P-Q,Q-P,P}. 

-P-0 vQ-P 
-P!-O!-P 

The last center chain will be inadmissible if the reduction operation is suppressed. Thus, 

SL-resolution is incomplete if the reduction operation is suppressed. In the case of the 
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GC procedure, its reduction operation involves ancestor resolution and C-reduction which 

has similar effect to factoring. Again, reduction cannot be suppressed because of the C­

literal mechanism and the imposed restriction. Consider the following GC procedure 

derivation of the given set of clauses : 

-P-Q 

Q-P 

truncate all A-literals 

@®-p 

The last center chain will become inadmissible if an extension is performed. Thus, the GC 

procedure is incomplete if the reduction operation is suppressed. 

The minimum and maximum sizes of the input clauses are determined. This 

information is stored in an asserted fact clause_size (Min, Max). This information 

is used to order the input clauses from the clause with the minimum number of literals to 

the clause with the maximum number of literals. This information is also used in the ME 

procedure for suppressing long lemmas generated in the derivations. Lemmas whose 

sizes are greater than the maximum size of the original input clauses are not added to the 

input set. 
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3.4. Extending the Extension Operation 

The extension operation defined by each derivation strategy is extended to 

include a special case of binary resolution (referred to as subsumed unit extension by 

Sutcliffe (1989, p. 9)) and paramodulation. A subsumed unit extension is a binary 

resolution whose input parent chain is a unit chain and whose literal subsumes the 

negation of the selected B-literal of the center chain. After a subsumed unit extension no 

backtracking is permitted. The Prolog technology theorem prover (Stickel 1986) and the 

GCTP (Sutcliffe 1989) include the subsumed unit extension as an inference operation. 

The equality axioms which establish that equality is reflexive, symmetric, 

transitive and allow equal terms to be substituted in any expression (substitution) are 

common in mathematical theories. The basic resolution principle, however, makes no 

special provision for the use of these axioms. To introduce equality into a resolution 

based theorem prover, it is necessary to include clauses that specify the equality axioms in 

the input set. However, the inclusion of the equality axioms to the set of clauses "is a 

source of many difficulties" as pointed out by Bundy (1983, p. 62). The alternative is to 

build into the theorem prover the knowledge required to handle equality appropriately. An 

inference rule called paramodulation is used for this purpose, whenever the 

equal exist predicate exists in the datbase. It combines into a single step the 

operations of instantiation and replacement of (equal) terms (Wos 1984, p. 121). 

Moreover, Brown (1984, p. 38) asserted that - "adding paramodulation to a resolution 

theorem prover results in an ability to prove theorems about systems that contain equality 

in a natural, efficient way." 

Paramodulation is added to the extension operation as it is viewed as a 

sequence of binary resolution steps put into one step. The equality axioms of symmetry, 

transitivity and substitution are not needed in the input clauses with the inclusion of the 

paramodulation in the extension operation. The only equality axiom necessary to obtain 
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completeness, is the reflexivity axiom. The algorithm for deciding which suboperation of 

extension is attempted first during an extension operation is described in the next section. 

Search Strategy 

Syntactic restrictions imposed in each derivation strategy reduce the size of the 

search space. These restrictions are invoked after every inference step which involves 

substitution of variables or the addition of new B-literals to the center chain. Two new 

syntactic restrictions have been added to the GC procedure in the implementation. The 

first one is not to allow a B-literal which is identical to any preceding non-B-literals (a 

modified version of the second preadmissibility restriction of the ME procedure). This 

restriction is a preemptive check of the no two non-B-literals with identical atoms 

restriction. The second additional restriction is not to allow complementary B-literals 

unless they are separated by an A-literal (first preadmissibility restriction of the ME 

procedure). This restriction prevents the use of a tautologous instance of an input chain. 

Tautologous input chains are not needed to prove the unsatisfiability of the input chains 

(Loveland 1969a). To illustrate the effect of these two restrictions on GC procedure 

derivations, consider the example shown in Figure 26. The ninth center chain of the right 

branch of the search tree is inadmissible if the first restriction is imposed. The restriction 

detects the redundancy one step earlier than the restriction imposed by the GC procedure. 

Imposing the second additional restriction on GC procedure derivations would detect the 

redundancy of the sixth center chain of the right branch of the search tree, three steps 

before the GC procedure detects the redundancy. 

The set of support strategy is used in all implementations. The set of support 

strategy limits the number of search trees which need to be investigated in the course of 

searching for a refutation. Kowalski and Kuehner (1971 , p. 232) identified the set of all 

negative clauses or the set of all positive clauses as possible sets of support. In the 
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Figure 26. The search tree for S = {-p(X,Y), p(X,Y)-s(X)-q(X)q(Y)-r(X,Y), 

r(X,Y)-f(X)-g(Y), g(a), f(a), f(b), q(a), q(b), s(b), -q(X)} with the top clause -p(X,Y), 

using the GC procedure. 
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implementations, the set of negative clauses is the default support set. Sutcliffe (1989, 

p. 8) argued that using such a negative clause as the top clause leads to 'natural' proofs. 

The search trees shown in Figures 27 and 28 demonstrate the effect of the 

choice of literal to resolve upon, on the size of the search tree. The size of the search tree 

in Figure 27 is larger than that of the search tree shown in Figure 28. This disparity is 

caused by the choice of which literal to resolve on first. Resolving on -q(X) first will 

cause the substitution of the variable X immediately, while resolving -p(X) first will delay 

the substitution of the variable X. Instantiation of variables at an early stage is 

advantageous because there are typically a lesser number of possible input chains that can 

be matched with a sufficiently instantiated literal, thereby reducing the number of 

resolvants. In view of this, a literal with a lesser number of matching clauses will be given 

higher priority in the selection of literals to be resolved on. Naish (1985, p. 61) suggested 

that the literal with the lowest number of matching clauses should be selected first to 

restrict early expansion of the search tree. Moreover, a literal which can be resolved on by 

an input chain which may introduce more B-literals to the center chain should have lower 

priority in the selection. Adding more B-literals to the center chains may produce longer 

refutations. Giving preference to literals which can be resolved on by clauses with fewer 

literals is in line with the unit preference strategy. 

The selection function of the implementations considers all the points 

mentioned in the previous paragraph. To do this, the extension operation is performed on 

each candidate literal (but not allowing the binding of variables) and the number of new B­

literals for each successful extension is accumulated. Preference is given to literals which 

accumulate the lowest total. To break ties, literals which can be resolved on by a unit chain 

and/or have lesser number of variables are preferred. Thus, the following formula is used 

to compute the weight of each candidate literal, and the literal with the minimum weight is 

the selected literal: 



p(X)-r(X) 

Will fail after truncations 

truncate A-literals 
-p(b)-q(b) and insert 
C-literals p(b)q(b) 

~-q(b) 

C-reduce -q(b) 

~ 
truncate all C-llteri 
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-q(X)-p(X) 

p(X)-q(X) 

truncate A-literals 
-p(b)-q(b) and insert 
C-literals p(b)q(b) 

~-q(a) 

C-reduce -q(a) 

truncate all C-literals 

Fieure 27. The search tree for S = {-q(X)-p(X), p(X)-q(X), p(X)-r(X), q(a), q(b), 

r(c), r(d), r(e), r(t) } with the top clause -q(X)-p(X), using the GC procedure. 
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@-p(b) 

p(X)-r(X) 

FAIL 

C-reduce -q(b) 

Fieure 28. The search tree for S = {-p(X)-q(X), p(X)-q(X), p(X)-r(X), q(a), q(b), 

r(c), r(d), r(e), r(t) } with the top clause -p(X)-q(X), using the GC procedure. 
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Weight = 
i=l 

where: 

Ni = the size of the input parent chain to resolve on the literal. 

m = the number of possible input parent chains. 
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Unit = 0 if the center chain literal can be resolved on by a unit chain, otherwise 

1. 

Var= the number of variables in the center chain literal. 

In the ME procedure, SL-resolution and the GC procedure, the implemented 

selection function extracts the rightmost cell of the center chain, computes the weight for 

each B-literal of the rightmost cell and selects the literal with the minimum weight. In the 

case of SLM and SLM-5, the implemented selection function first extracts all the tip 

nodes of the center chain. The B-literals of the rightmost cell of each tip node are then 

collected. B-literals which are identical to any A-literals are removed from the collected B­

literals. This is done to prevent resolving away the same literal concurrently as much as 

possible. The remaining B-literals become the candidate literals. If all the collected B­

literals have identical A-literals then all are used as candidate literals. The weight of each 

B-literal from the list of candidate literals is computed using the above formula. The B­

literal with the minimum weight is the selected literal. The selection function returns the 

selected B-literal and the tip node where the literal belongs. 

In the implementation of SLM-5, the part of truncation operation which adds 

proved literals to the input chain database is suppressed if the given set of clauses is a set 

of Horn clauses. This is because linear input resolution is already complete for set of 

Horn clauses, hence, adding more clauses to it may only expand the search tree. In the 

implementation of the spreading operation of SLM-5, the operation is suppressed if the 

given set of clauses is written at propositional level. The main objective of the spreading 

operation is to have more choices of B-literals to resolve on in order for the selection 
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function to select a B-literal which is most likely to fail or succeed. This is significantly 

effective on clauses with variables because the derivation may be able to detect irrelevant 

substitution of variables on previous unifications sooner. However, with ground clauses, 

the effect of the spreading operation is insignificant. It is rather more advantageous to 

concentrate the effort on one branch. In this scheme, proved literals are more likely 

obtained earlier in the derivation, and having such literals in the input set is favorable, 

particularly in conjunction with the subsumed unit extension. 

During the self configuration, the input chains are ordered within the Prolog 

database from the input chain with the minimum number of literals to the input chain with 

the maximum number of literals. This is to make sure that extension using clauses with 

fewer literals is attempted first. This search strategy is in line with the unit preference 

strategy because unit input chains are tried first. The effect of this search strategy, 

however, is less effective in the ME procedure because the lemmas generated during the 

derivations are added before the original input chains, to make sure that they are used 

before the original input chains. The preference of lemmas over the original input clauses 

is based on the reason that the literals of the lemmas are typically more instantiated than 

the input clauses. Using a lemma as an input parent chain during an extension operation 

would most likely provide conditions which would require that more compulsory 

reductions be performed. 

A check whether each B-literal of a center chain can be extended upon is done 

after every inference step where substitutions of variables occur. The purpose of this 

check is to detect redundant derivations immediately after the substitution of variables 

instead of waiting until such a literal, which cannot be extended upon, is selected for 

extension. Take, for instance, the extension of the center chain -q(X)[-p(X) ]-r(X) shown 

in Figure 27. The check will immediately reject any resolvants obtained from the said 

center chain immediately after the substitution of the variable X. This check saves the time 

taken in truncating first the succeeding A-literals before finding that the resolvant of the 

previous extension operation is redundant. This check may use much time especially if 
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there are still many B-literals in the center chain. In view of this, only B-literals which are 

sufficiently instantiated are subjected to the check. A literal is sufficiently instantiated if 

its number of non-variable terms is at least half its total number of terms. The algorithm 

for this check is described in the next section. As described in the algorithm, two types of 

information may be added to the database : v a 1 id_ liter a 1 (Atom) and 

redundant literal (Atom), where Atom is the literal's atom. The 

valid literal (Atom) fact is used to identify a B-literal, whose atom is subsumed 

by the Atom, that can be extended upon. The redundant literal (Atom) fact is 

used to identify a B-literal, whose atom subsumed the Atom, that cannot be extended 

upon. These two facts could possibly be provided by the user (if they are known) 

together with the set of clauses to accelerate the derivations. However, this should be done 

with caution since they may affect the completeness of the system. It must be pointed out 

that the check is suppressed if the given set of clauses is written in propositional logic (i.e., 

literals are all ground). The reason of this is that all clauses that contain pure literals are 

removed during self configuration. Since the literals of the input clauses are all ground 

then there can be no instance that a pure literal may occur in a derivation. 

Sutcliffe (1989) modified the standard consecutively bounded depth first 

search implemented in the Prolog technology theorem prover by Stickel (1985). The 

modified consecutively bounded depth first search used by Sutcliffe places a bound on the 

number of A- and B-literals in the current center chain. This version of the consecutively 

bounded depth first search is used in the implementations of the five derivation strategies. 

At the beginning of a search, the initial depth bound is either set to a user specified value 

or (if not specified) the size of the chosen top clause is used. The number of A- and B­

literals in the center chain is always monitored after every extension operation. If a 

refutation is not obtained and the number of A- and B-literals in the center chain exceeds 

the depth bound, backtracking occurs. The minimum amount by which the depth bound is 

exceeded is monitored (asserted as exceed (N) in the Prolog database where N is the 

difference after subtracting the depth bound from the number of A- and B-literals in the 

center chain). If the bounded search fails to find a refutation and the fact exceed (N) 
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exists, the depth bound is incremented by N and the derivation is re-started. If a search 

fails and exceed (N) does not exist, the search is terminated in failure. If at any stage of 

the search the center chain is empty, the search is stopped and the refutation is completed. 

The general algorithms of the five implemented theorem provers are described 

in Appendix A. The algorithms have been implemenetd using the ARITY Prolog compiler. 

The source codes of the programs are listed in Appendix B. 

.1.6.. Theorem Prover Description 

The implementations of the ME procedure, SL-resolution, the GC procedure, 

SLM and SLM-5 produce the ME-TP, SL-TP, GC-TP, SLM-TP, SLM5-TP theorem 

provers respectively. Figure 29 shows the general system diagram of each theorem 

prover. Each theorem prover involves five files. The executable file which serves as the 

inference engine, the application database which handles the storage of information 

generated during runtime, the program description file which contains the description of 

the theorem prover, the commands description file which contains all the syntax of 

commands used and their descriptions, the problem files where each file contains a 

theorem to prove, and the output device where the output of the theorem prover is sent. 

The output device can be the console, printer or a text file. The five theorem provers are all 

command-driven. 

Appendix C describes how to run each theorem prover in DOS; the format of the theorem 

to be proven (a set of clauses); how to load the set of clauses into the theorem prover; how 

to start the derivation; and how to direct the output of the derivation. The three types of 

output produced during and after the derivation are also described. 
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Program Commands 
Description Description 

(INTRO.SCA) (HELP.SCA) 
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Problem Theorem Prover 
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,..... 

Printer I 
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Figure 29. The theorem prover system diagram. 
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Chapter 4 

COMPARISON 

4.1. Introduction 

The five theorem provers developed were tested with 13 problems taken from 

Pelletier (1986), 10 problems from Chang (1970), and the Schubert's Steamroller problem 

as presented in Stickel (1986). These 24 selected problems are listed in Appendix D. 

They were run on an IBM compatible machine which has a 16 MHz clockspeed with a 20 

MB hard disk. The speed of the system was measured in terms of logic inference per 

second (LIPS) using the naive reverse program, which is commonly used as a benchmark 

test for PROLOG systems (Amble 1987, Tamlund 1988). The naive reverse program is 

as follows: 

reverse ( [] , [] ) . 

reverse([EIList], Result) :­

reverse(List, Partial), 

append(Partial, [E], Result). 

append ( [], L, L) . 

append( [HIListl, List2, [HIList3]) ·­

append(Listl, List2, List3). 

The naive reverse program was compiled using the Arity/Prolog compiler. It was run to 

reverse a list of 200 integers, giving the result of 1.38 seconds execution time, which is 

equivalent to 14,711 LIPS. The number of logical inferences (the number of PROLOG 

calls) is computed using the formula LI = (N+ 1) * (N+2) / 2 where N is the size of the 

list to reverse. During the testing, it was found that the LIPS value changes as the size of 
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the list is varied. The inconsistency of LIPS value can be attributed to the virtual memory 

use which is inherent to Arity/Prolog. For comparison purposes, the LIPS value of a 

system should be obtained by reversing a list of 200 integers. It must be pointed out, 

however, that "timing results are especially difficult to compare, influenced as they are by 

so many variables that are independent of the theorem-proving itself' (Stickel 1986, 

p. 93). 

Comparison of Results 

The results of proving the selected 24 problems are shown in Table 1. The 

proof search bound column of the table contains the search bound which produces the 

proof. The number of center chains in the derivation are the center chains generated by 

extension and reduction operations within the proof search bound (i.e., center chains 

generated before the proof search bound was reached are excluded in the count). The 

number of inadmissible center chains within the proof search bound were also recorded. 

The number of center chains in the proof represents the size of the refutation. In the case 

of the ME-TP and SLM5-TP, the number of center chains in the proof may not represent 

the actual size of the refutation. The proofs of lemmas or proved literals were not 

recorded. Hence, it is difficult to determine the actual size of a refutation which uses a 

lemma or a proved literal generated in previous search bounds, as input parent chain. The 

derivation duration is the time from the start of the search for the search bound in which 

the refutation was obtained, until the time when the empty center chain is obtained. The 

search duration is the total time duration for obtaining the proof. 

The space efficiency of each theorem prover has been computed in terms of 

the number of center chains. This value is referred to as the memory use efficiency 

(MUE) and it uses the result of the ME-TP as the basis of comparison. The MUE is 

computed using the following formula : 
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(RCTP - RCME-TP) 
MUETP - ---------------------------- * 100 

RCME-TP 

where: 

RC= TC - IC 

= the number of retained center chains 

TC = the number of center chains generated in the derivation by 

extension and reduction operations 

I c = the number of inadmissible center chains generated in the 

derivation by extension and reduction operations 

TP = the SL-TP, GC-TP, SLM-TP or SLM5-TP 

A positive MUE implies that the theorem prover uses more memory than the ME-TP and 

a negative MUE means that the theorem prover uses less memory than the ME-TP. 

The execution time efficiency (ETE) of each theorem prover has also been 

computed. It is used to determine how fast the theorem prover solves each problem 

compared to the ME-TP. The efficiency was computed using the following formula : 

(SDTP - SDME-TP) 
ETETP - ---------------------------- * 100 

SDME-TP 

where: 

SD the search duration 

A positive ETE implies that the theorem prover is slower than the ME-TP while a negative 

value means that the theorem prover is faster than the ME-TP. 
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Table 2 - Experimental Results of the Five Theorem Provers with the Size of the Top 

Clause as the Initial Search Bound. 

Center chains Inadmissible Center diaios 

Proof in lhe derivation ,·enter chains in~proof Duration (sec I Efft.·iency t 5f I 

'Ibeam1 Semt'b 

Prover bound Ext'n. Red'n. Ext'n. Red'n Ext'n. Red'n. Derivation Sean:b Mt:J;.11 rn.b 

I. Selected problems taken from Pelletier t 19861 

Pel-JO wilb t51 as the lop dause 

ME-TP 5 8 2 0 6 0.55 1.65 

SL-TP 4 7 3 2 0 5 3 0.22 0.77 -11.11 -53 .33 

GC-TP 5 7 2 0 5 3 0.38 1.59 -II.II -3.64 

SIM-TP 5 9 3 3 0 6 3 0.66 2.47 0.00 49.70 

S1M5-TP 5 8 2 2 0 6 2 0.55 203 -II.II 23.03 

Pel- 12 with ( 8 I as the top dause 

ME-TP 8 26 13 11 0 15 13 2.3 7 5.65 

SL-TP 5 16 12 5 0 7 10 1.21 1.81 -17 g6 -67.96 

GC-TP 8 17 10 10 0 7 10 I.I 0 4.72 -39.29 -16.46 

SIM-TP 10 172 73 67 0 14 17 4312 138.53 53S.71 2351.K6 

S1M5-TP 8 2.~ 12 10 0 15 12 2.19 7.86 -3.57 .W.12 

Pel-14 with ( 3 I as the lop dause 

ME-TP 4 5 0 4 0.27 0.99 

SL-TP 4 2 0 3 2 017 0.60 0.00 -39.39 

GC-TP 4 4 2 0 3 2 022 0.94 0.00 -S.05 

SIM-TP 4 6 2 2 0 4 2 0.44 132 2000 33J3 

SLM5-TP 4 5 0 4 0.33 1.16 0 00 17 17 

Pel-17 with t51 as the top dause 

ME-TP 5 s 0 0 5 OJ9 1.21 

SL-TP 5 s 0 0 5 0.17 0.66 000 -4.t45 

GC-TP 5 4 2 0 () 4 2 0.33 1.21 0.00 000 

SL\1-TP 5 s () 0 5 OJK I 43 0 00 I K. l K 

SL\15-TP 5 .5 0 () .'\ 0.49 I .5' 0.00 26-15 

cont'd. over 
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Table 2 (cont'd.) 

Ceota"chain.s Inadmissible Centcr chains 

Proof in lbe derivation ,·enter chains in the proof Duration (s,~:) Effi.:it.u·y (%I 

Theorem Sean:b 

Prover boond Ext'n. Red"n. Ext"o. Rcd'o Ext'n. Red"n. Derivation Search \flr.11 mcb 

Pe~20 wilb (5) as the top clause 

ME·TP 3 3 0 0 0 3 0 0.22 0.66 

SL-TP 3 3 0 0 0 3 0 0 22 055 0.00 -16.67 

GC-TP 3 3 0 0 0 3 0 0.22 0.66 000 0.00 

SL\f-TP 3 3 0 0 0 3 0 0.27 0.77 0.00 16.67 

SL\15-TP 3 0 0 0 3 0 0.27 0.77 0.00 16.67 

Pe~21 with (4> as the top dause 

ME-TP 4 4 0 0 4 0.33 l.04 

SL-TP 4 4 2 0 0 4 2 0.28 1.16 20.00 11.54 

GC-TP 4 2 0 0 3 2 0.22 0.99 0.00 -4.81 

SlM-TP 4 5 2 0 0 4 2 0.49 1.54 40.00 48.08 

SlM5-TP 4 4 0 0 4 0.49 1.54 11.00 48.08 

Pe~23 wilh (4> as lbe top clause 

ME-TP 5 7 0 4 3 0.55 2.42 

SL-TP 4 3 0 0 .i 0.16 1.76 -55.56 -27.27 

GC-TP 5 6 3 0 3 0.55 2 47 -I I.I I 2.07 

SlM-TP 6 21 7 13 0 4 2 1.59 5.99 6667 147.52 

S1M5-TP 5 (j 4 2 0 5 4 l.04 3.46 2222 42.98 

Pe~ 24 with ( 6> as the top da1Lse 

ME-TP 5 7 2 0 0 7 2 0.77 1.98 

SL-TP 6 9 0 0 9 0.61 3 02 33.33 52.53 

GC-TP 5 6 0 0 6 3 0.61 1.87 0.00 -5.56 

SL\f-TP 7 7 3 0 0 7 1.16 .U4 11.11 88.89 

S1M5-TP 7 7 2 0 0 7 2 I.I 0 3.84 0.00 9H4 

Pel-25 with (7) a., the top dause 

\iE-TP 5 30 2 3 0 II 0 2.58 533 

SL-TP 6 8 3 0 0 X -~ 0.66 533 -62.07 000 

GC-TP 5 24 ~ 0 4 2 69 5.50 000 _l 19 

SL\1-TP 6 8 () () ~ 1.20 ~ 46 -62 07 502 

SL\15-TP .lo 2 0 11 0 4 1 ~ 7.YI 0.00 48.41 

------

cont'd. over 
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Table 2 (cont'd.) 

C <!Dier chains Inadmis.,ibk C <!Dier chains 

Proof in the derivation ceotrr dmiru, in the proof Duration ( Sn' I Elficieo.·y ( % I 

Tbeomn Searrh 

Prover bound Ext'n. Red'n. Ext'n. Red'n Ext'n. Red'n. Derivation Search ~fCE8 rn,{> 

Pel-27 with (21 as the top clause 

ME-TP 5 7 0 0 0 7 0 0.72 1.81 

SL-TP 5 8 0 0 0 8 0 0.54 1.65 14.29 -8.84 

GC-TP 5 7 0 0 7 0.83 2.09 14.29 !S.47 

SLM-TP 5 8 0 0 0 8 0 0 88 2.2S 14.29 24.31 

SLMS-TP 5 8 0 0 0 8 0 0.87 2.36 14.29 3039 

Pei-30 wilh {7) as the top dause 

ME-TP 4 4 0 0 3 0.38 1.60 

SL-TP 4 4 0 0 3 0.27 1.42 0.00 -11.25 

GC-TP 4 4 0 0 3 0.33 1.53 0.00 -438 

SLM-TP 4 4 0 0 3 0.38 1.86 0.00 16.25 

SLM.5-TP 4 4 0 0 3 0.44 J.'}8 000 23.75 

Pel-31 with (61 as the top clause 

ME-TP 3 4 0 0 0 4 0 0 33 0.88 

SL-TP 3 4 0 0 J 4 0 0.22 0.76 0 00 -Li.64 

GC-TP 3 4 0 0 0 4 0 0.32 0.88 0.00 0 00 

SLM-TP 3 4 0 0 0 4 0 OJ8 1.10 0.00 25.00 

SLM.5-TP 3 4 0 0 0 4 0 0.44 116 0 00 31 82 

Pel-32 with (7) as the top dause 

ME-TP 4 6 0 0 0 6 0 0.44 1.1 S 

SL-TP 4 7 0 0 0 7 0 OJ9 l.l 0 16.67 -435 

GC-TP 4 5 0 0 5 0.50 l.21 0.00 5.22 

SLM-TP 4 7 0 0 0 7 0 0.66 1.49 16.67 2957 

SLM.5-TP 4 7 0 0 0 7 0 0.66 l 54 16.67 H.91 

2 Problems taken from Chang ( 1970 I 

Chang-! with ( 41 as the top da11,e 

ME-lP 4 5 0 0 0 4 0 () K7 1.26 

SL-lP 4 0 0 0 0 0.60 l.05 -2000 -lli 67 

GC-lP 4 .l 0 0 O l9 o ,2 -20 ()() -\.! 9~ 

SL\1-TP 4 s 0 0 () 4 0 0.99 l .49 (1.00 iK H 

SL\IHP 4 5 II () (I 4 () I 04 i AX 0.00 J 7 46 

cont'd. over 
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Table 2 (cont'd.) 

Center chains lnadnussibk C enl,=r chains 

Proof in the derivation l't111er diains in the proof Duration (sec I Elfl,:ieni:y ( 7.c I 

Theorem Selllt'h 

Prover bound Ext'n. Red'n. Ext'n Red'n Ext'n. Red'n. Derivation Search Mt.:E8 EW' 

Cbang-2 with (71 as the lop clause 

ME-TP 8 1344 0 587 0 10 0 225.96 475.82 

SL-TP (' 

GC-TP 7 743 662 444 252 ll 5 262.38 281.16 -6.34 -40.91 

Sl.M-TP 8 76 0 16 0 10 0 2H7 57.84 -92.07 -87.84 

S1.M5-TP 8 76 0 16 0 10 0 26.36 58.66 -92.07 -87.67 

Cbang-3 with (5) as the lop clause 

ME-TP 7 15 0 0 0 7 0 2.52 4.94 

SL-TP 5 43 2 12 2 6 0 8.30 13.51 106.67 173.48 

GC-TP 7 42 52 12 18 6 18.24 20.65 326.67 318.02 

Sl.M-TP 8 75 0 6 0 10 0 2186 48.78 360.00 887.45 

S1.M5-TP 8 75 0 6 0 10 0 22.63 )0.21 360.00 916.40 

Cbang-4 with(5) as the lop clause 

ME-TP 7 181 0 61 0 7 0 24.55 27.57 

SL-TP ,· 

GC-TP 7 42 52 12 18 6 18.24 20.93 -46.67 -24.0X 

Sl.M-TP 7 15 0 0 7 0 3.79 6.59 -88J3 -76.10 

S1.M5-TP 7 15 0 0 7 0 H4 6.65 -88.33 -75.88 

Cbang-5 with(91 as the top dause 

ME-TP 4 4 0 0 0 4 0 0.71 1.10 

SL-TP 3 0 0 0 3 0 0.27 0.72 -25.00 -34.55 

GC-TP 4 3 0 0 3 0.54 0.93 0.00 -15.45 

Sl.M-TP 4 4 0 0 0 4 0 0.77 1.21 0.00 1000 

Sl.M5-TP 4 4 0 0 0 4 0 0.72 1.21 0.00 1000 

Cbang-6 with (91 as the lop dause 

ME-TP 7 4 0 0 0 4 0 0.61 16.7.'i 

SL-TP 6 1254 33 255 20 5 44402 48132 25200.00 2773.55 

GC-TP 7 2827 2985 1417 578 5 2 2068 71 2090 96 95325.00 l 23X.l l4 

SL\t-TP 7 .l.'\0 0 .l8 0 7 I) 106.22 123.08 7700.00 6.l4 SI 

SL\i.i-1P 7 HO u JK 0 7 0 109.91 126.94 7700.UU MH5 

·----

cont'd. over 
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Table 2 (cont'd.) 

C dller d1ains Inadmis.sibk C dltl'f chains 

Proof in the dl'fiv ation ,'enter chains inthcproof Duration (sec) Efficieo:y ( % ) 

Theor<.'111 s~rch 

Prowr bound Ext'n. Red'n. Ext'n. Red'n Ext'n. Red'n. Derivalioo Search MVFI ~ 

Chang-7 with ( 7) as the top dause 

ME-TP 5 s 0 5 0.93 2.31 

SL-TP 4 8 0 0 5 0 0.77 1.87 -12.50 -19.05 

GC-TP 5 8 0 5 0.94 2.36 0.00 2.16 

SL\1-TP 5 8 0 5 l.04 2.69 0.00 16.45 

SL\15-TP 5 8 0 5 l.15 2.97 0.00 28.57 

Chaog-8 with (9) as the top clause 

ME-TP 5 17 0 4 0 12 0 2.47 3.73 

SL-TP 7 37 2 10 0 18 0 4.23 16.25 123.08 335.66 

GC-TP 5 13 4 4 0 8 4 2.36 3.51 0.00 -5.90 

SL\1-TP 7 19 6 5 0 10 4 3.46 26.81 53.85 618.77 

SL\15-TP 6 21 2 5 0 12 0 4.28 6.42 38.46 72.12 

Chaog-9 with(8) as the top clause 

ME-TP 6 16 2 3 0 8 2 l.92 6.70 

SL-TP 6 16 2 3 0 8 2 1.48 6.10 0.00 -8.96 

GC-TP 6 16 2 3 0 8 2 2.26 8.18 0.00 22.09 

SL\1-TP 7 16 2 3 0 8 2 2.25 9.84 0.00 46.87 

SL\15-TP 7 16 2 3 0 8 2 2.69 10.99 0.00 64.03 

Chang- IO with ( l 2) as the top clause 

ME-TP 5 48 0 9 0 7 0 21.31 36.64 

SL-TP 5 69 0 8 0 7 0 29.61 52.46 56.41 43.18 

GC-TP 5 48 4 9 0 7 0 26.80 43.61 10.26 19.02 

SL\1-TP 5 46 0 II 0 7 0 19.67 35.87 -10.26 -2.10 

SL\15-TP 5 46 0 II 0 7 0 19.94 36.14 -10.26 -1.36 

Chang-10 with ( 13) as the top c'lause 

\tE-TP 5 24 0 6 0 7 0 11.65 31.75 

SL-TP 5 21 0 3 {) 7 0 10.54 28.90 0.00 -8.98 

GC-TP 5 24 2 6 0 7 0 13.68 34.93 II.II 10.02 

SL\t-TP 5 24 0 6 0 7 0 10.32 28.51 0.00 -10.20 

SL\15-TP 5 24 0 6 0 7 0 10.44 28 72 o.oo -9.54 

cont'd. over 
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Table 2 (cont'd.) 

Ccrit~ chains lnadmissibk C <'Ill~ chains 

Proof in tilt' dmvation ,·crita ,·hams in~proof Duration (se<'I Effi..:ieocy ( % I 

llk,orem S<'llf,'h 

Prowr bound Ext'n. Red'n. Ext'n. Red'n Ext'n. Red'n. Derivation Search Ml'J:.1l mi 

Chang -l O with ( 14) as the top dause 

\IE-TP 5 48 0 9 0 7 0 3152 S6.30 

SL-TP 5 9'3 0 lO 0 7 0 61.03 82.33 112.82 46.23 

GC-TP 5 48 4 9 0 7 0 29.66 49.32 10.26 -12.40 

SL\.1-TP 5 .l(i 0 ll 0 7 0 22.57 42.35 -10.26 -24.78 

SL\.15-TP 5 .l(i 0 11 0 7 0 22.80 42.67 -10.26 -24.21 

Chang-to with ( 15) as the top clause 

\IE-TP 4 16 0 3 0 5 0 10.49 1752 

SL-TP 4 161 19 9 0 121.44 143.52 992.31 719.18 

GC-TP 4 16 0 3 0 5 0 7.53 12.91 0.00 -26.31 

SL\f-TP 4 17 0 4 0 5 0 7.36 12.63 0.00 -27.91 

SL\15-TP 4 17 0 4 0 5 0 7.36 12.74 0.00 -27.28 

3. S,·hubert's steamrollerprobkm widt (26) as the top clause 

\IE-TP ll 35741 6282 18372 2470 39 15657.93 21150.93 

SL-TP 11 442 3 253 51 0 133.80 886.61 -99.10 -95.81 

GC-TP II 122 72 70 26 21 26 77.66 859.15 -99.54 -95.94 

SL\f-TP d 

SL\15-TP II 1047 19 501 19 31 0 640.00 884.00 -97.42 -95.82 

\'otc . a \ICE is tilt' memory use effidency of each theorem prover relative to the ME-TP resuk. 

b ETE is the exa."Ution time efficiency of each dteorem prover relative to the ME-TP resull. 
,, 

Run out of di~ space ( l O MB) after running more than 24 hours. 

d Toe derivation was aborted due to a 'not enough global stack' error. 
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Memmy Use Efficiency Comparison 

As shown in Table 1, none of the five theorem provers consistently used the 

least amount of memory in solving the selected problems. This shows that the space 

efficiency of a theorem prover is dependent on the properties of the problems. 

The ME-TP required less memory than the others for problems PEL-27, 

CHANG-3, CHANG-6 and CHANG-8. The ME-TP obtained a smaller search space in 

these problems because unit lemmas, which were generated in previous search bounds, 

were used as input chains during extension operations. These results gave evidence that 

adding lemmas, especially unit lemmas, is effective in conjunction with subsumed unit 

extension and the unit preference strategy. It also has a positive effect in a consecutively 

bounded depth-first search environment because lemmas generated in one search bound 

are carried over to the next search bound The other theorem provers, especially the SL­

TP, used a great deal of memory in finding a proof for the CHANG-3 problem. This 

problem of SL-TP is mainly caused by the excessive application of the factoring 

operation. The GC-TP had difficulty in solving the CHANG-6 problem. As shown in the 

results, the GC-TP performed too many C-reductions (no A-reduction was performed 

because CHANG-6 is a set of Horn clauses). However, lemma generation does not 

always have positive effects. The negative effect of lemma generation in the ME-TP is 

shown in the results for the Schubert's steamroller problem. The results show that the 

ME-TP used more memory than SL-TP, GC-TP and SLM5-TP. This was because the 

ME-TP generated many lemmas of which some were non-unit lemmas. The addition of 

these lemmas increases the number of possible input parent chains, which caused 

expansion of the search tree. The negative effect of generating non-unit lemmas is also 

obvious in the results for PEL-12. 

The SL-TP required less memory than the other theorem provers in solving 

problems CHANG-5 and CHANG-7. This efficiency of SL-TP compared to the others 

was due mainly to the initial factoring of the input clauses prior to the derivation. 
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Examining problem CHANG-5 (in Appendix A), the SL-TP converts clause (6) into two 

chains, one chain for the original clause and another chain for the factor of the clause. The 

application of factoring to each input clause prior to the derivation is particularly effective 

in conjunction with the unit preference strategy because input chains with fewer literals are 

tried first in extension operations. However, SL-TP used more memory than the other 

theorem provers in. solving problems CHANG-1, CHANG-3, and CHANG-10(12) 

(XXXX(N) means problem XXXX with clause (N) as the top clause). The expanded 

search trees of SL-TP in these three problems are caused by the indiscriminate application 

of factoring. The search trees obtained by SL-TP in solving problems CHANG-2 and 

CHANG-4 were too large for the computer to handle. The expanded search trees in these 

problems are caused by the factoring of input clauses during the conversion of input 

clauses to input chains, and the factoring operations applied during the derivation. This 

confirms the argument of Brown (1974, p. 4) that factoring may add an irrelevancy to the 

search space. It is notable that SL-TP obtains good results in problems written at the 

propositional level, such as PEL-10, PEL-12, PEL-14 and PEL-17. This is because 

factoring operations performed in these problems are all compulsory. However, in first 

order predicate calculus problems, especially those recursive type problems such as 

CHANG-2, CHANG-3, CHANG-4 and CHANG-10, the factoring operation does cause 

some problems. 

The GC-TP required less memory than the other theorem provers in solving 

problems PEL-12, CHANG-I and the Schubert's steamroller. As shown in the results of 

solving the Schubert's steamroller problem, the GC-TP performed a lot better than the 

ME-TP. This efficiency of the GC-TP compared to the ME-TP is due to the effects of the 

C-literal mechanism. The C-literal mechanism has two positive effects. The first effect is 

that it may help narrow down the search tree because the admissibility restrictions do not 

allow any A- or B-literals which are or become identical to any of the inserted C-literals. 

In the ME-TP derivation, the preadmissibility restriction does not consider the recycled 

literals (in the form of lemma literals) in assessing the admissibility of a center chain. The 

second advantage of the C-literal mechanism over the lemma generation of the ME-TP is 
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that it may simplify the refutation because one C-reduction of the GC-TP is equivalent to 

one ME-TP extension using a lemma, removal of other B-literals from the lemma by 

reduction, and a truncation. A shorter refutation is advantageous because less memory is 

used. However, in a consecutively bounded depth-first search environment, lemmas 

generated by the ME-TP have more lasting effects than the C-literals of the GC-TP, 

because C-literals produced within one search bound are not carried over to the next 

search bound. 

The C-reduction of the GC-TP can be viewed as delayed factoring in the sense 

that the leftmost of two unifiable B-literals in a center chain may be removed by reduction 

after the other is resolved away and inserted as a C-literal at a position preceding the first 

B-literal. The results of solving PEL-12 show that C-reduction has a better effect than the 

factoring operation. The GC-TP uses less extension operations than the SL-TP because 

of the use of recycled literals. However, in some cases the GC-TP produces larger search 

trees as demonstrated in the results of solving CHANG-6, CHANG-10(13) and CHANG-

10(14). This negative effect of the GC-TP can be attributed to the insertion of C-literals 

which give more choices in the selection of non-B-literals during reduction operations. As 

shown in the results for CHANG-6, the GC-TP performed more reduction operations 

than SL-TP. Although the C-literal mechanism is similar in effect to the lemma generation 

of the ME-TP, the ME-TP performed better than the GC-TP in these problems. The 

reason is that the C-literal mechanism of the GC-TP always converts a truncated A-literal 

to a C-literal, even if its atom is subsumed by the atom of a unit chain. This causes 

problems because a B-literal can either be reduced or resolved away by extension, thereby 

expanding the search tree. In the case of the ME-TP, a formed lemma is only added if it is 

not subsumed by any input chains. 

SLM-TP and SLM5-TP produce smaller search trees in solving CHANG-2, 

CHANG-4, CHANG-10(12) and CHANG-10(14). This is due to the spreading 

operation which provides more flexibility in the selection of literal to be resolved on. 

Having more choices of literals to resolve on will give more chances for the selection 
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function to select a literal which leads to the detection of failure or to a successful 

refutation. The spreading operation, however, is less effective in problems written at 

propositional level. The results in problems PEL-12 and PEL-14 demonstrate this effect. 

This is because the selection function alternately selects B-literals from different branches 

of the center chain, which results in less opportunities to apply reduction. Hence, the 

spreading operation is suppressed in the implementation of SLM-5 if the set of clauses is 

at propositional level. As demonstrated in the results, SLM5-TP uses less memory than 

the SLM-TP in problems written at propositional level. Generally, the overall results 

showed that SLM5-TP has better memory use efficiency than SLM-TP. 

For sets of Hom clauses written at first order level, the results for SLM5-TP 

are the same as for SLM-TP. However, the results of the two theorem provers differ for 

sets of non-Hom clauses. The results of solving the Schubert's steamroller problem show 

that SLM5-TP performed a lot better than SLM-TP and ME-TP. SLM5-TP performed 

better than SLM-TP because SLM5-TP added proved literals to the set of input chains 

which is favorable in conjunction with subsumed unit extension and the unit preference 

strategy. The addition of proved literals also has positive effects in a consecutively 

bounded depth-first search environment. SLM5-TP also performed better than the ME­

TP in solving the Schubert's steamroller problem because of the spreading operation and 

because all the added chains from proved literals areunit chains. 

Execution Time Efficiency Comparison 

In most cases, when a theorem prover produces the least number of center 

chains the execution time is also the least. Obviously, lesser efforts are required when 

fewer center chains are produced, thereby requiring less execution time. 

There are some cases, however, when a theorem prover has a low execution 

time although it has the same or slightly larger number of center chains produced than the 
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others. Take, for instance, the results in problems PEL-12, PEL-27, PEL-31, PEL-32 and 

CHANG-9. Although the memory use efficiency of SL-TP in these problems is similar 

to those of the other theorem provers, its execution time is less than that of the others. The 

reason for this difference is the simplicity of the operations used in SL-TP. The 

truncation operation of SL-TP simply removes A-literals. The ME-TP truncation 

operation involves lemma formation, updating of scopes and a subsumption test to check 

if the lemma has to be added to the input chains. These require great effort which slows 

down the derivation. In the case of GC-TP, the updating of the C-point of A-literals 

affected by each reduction operation is an additional effort which also slows down the 

derivation. The complexity of the data structure of SLM-TP and SLM5-TP, in addition to 

the extra effort required to update depths of A-literals affected by reduction operations, 

increases the execution time. 

Overall Performance Comparison 

The over-all performance of the five theorem provers was measured in terms 

of the speed (execution time) difference between each theorem prover in solving non­

trivial problems. Non-trivial problems are identified as those problems which require 

more than 60 seconds to solve by at least one theorem prover. Table 3 presents the speed 

differences between each of the theorem provers in non-trivial problems. The speed 

difference, SPD, is computed using the following formula : 

where: 

* 100 
SDmax SDmin 

SPDrP = the speed difference of a theorem prover 

SDmax = the maximum search duration to prove the problem 

SDmin = the minimum search duration to prove the problem 

SDTP = the search duration of a theorem prover 
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Table 3. - Speed Difference of the five Theorem Provers in Problems which require more 

than 60 seconds to obtain a Refutation. 

Problem 

PEL-12 

CHANG-2 

CHANG-4 

CHANG-6 

Speed Difference(%) Maximum 

Search Level of 

ME-TP SL-TP GC-TP SLM-TP SLM5-TP Duration Difficulty 

97.20 100.00 97.87 0.00 95.57 138.53 2 

0.00 46.57 100.00 99.80 475.82a 6 

0.00 31.65 100.00 99.71 27.57a 5 

100.00 77.89 0.00 94.87 94.69 2090.96 4 

CHANG-10(14) 65.11 0.00 82.57 100.00 99.20 82.33 1 

CHANG-10(15) 96.26 0.00 99.79 100.00 99.92 143.52 3 

SCHUBERT 

Note: a 

b 

C 

d 

e 

f 

0.00 

33.87 

55.78 

45.16 

94.83 

99.86 

71.21 

51.16 

100.00 

61.26 

75.16 

48.35 

57.77 

89.50 

77.95 

99.88 

98.76 

98.12 

98.39 

96.87 

21150.93b 7 

SL-TP was not able to obtain result on this problem. The shown maximum search 

duration is taken from the result of the ME-TP. 

SLM-TP was not able to obtain result on this problem. The shown maximum search 

duration is taken from the result of the ME-TP. 

Disregarding the results of SL-TP and SLM-TP. 

Disregarding the results in CHANG-2 and CHANG-4 problems. 

Disregarding the results in the SCHUBERT problem. 

Disregarding the results in CHANG-2, CHANG-4 and SCHUBERT problems. 
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The theorem prover that has bigger SPD value indicates that it performs better 

than the others in terms of execution time. The maximum search duration of a problem is 

the maximum execution time required to solve the problem by one of the theorem provers. 

Each non-trivial problem has a designated level of difficulty. The designation of level of 

difficulty to each problem is based on the maximum search duration. Problems in which 

one of the theorem provers did not produce results have a higher level of difficulty than 

the others. That is why CHANG-4, in which SL-TP did not produce a result, has a higher 

level of difficulty than CHANG-6 although CHANG-6 has a greater maximum search 

duration than CHANG-4. 

A weighted mean for each theorem prover is computed to obtain an overall 

performance comparison. The weighted mean of a theorem prover is computed using the 

following formula : 

where: 

m 

I ( SPDTPi * LDi) 
i=l 

m 

I LDi 
i=l 

LDi = the level of difficulty of problem i 

m = the number of problems considered 

As shown in Table 3, there are four rows of weighted means. The first row is 

the weighted means for ME-TP, GC-TP and SLM5-TP only. The weighted means of SL­

TP and SLM-TP were not included in this row because SL-TP did not produce results in 

CHANG-2 and CHANG-4 while SLM-TP did not produce a result in the SCHUBERT 

problem. The weighted means in this row show that SLM5-TP performed significantly 

better than the ME-TP and GC-TP in all the non-trivial problems. The second row of 

weighted means provides an overall comparison between ME-TP, SL-TP, GC-TP and 
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weighted mean of SLM-TP is not included in this row because it gave no result in the 

SCHUBERT problem. This row also shows the superiority of SLM5-TP over the others 

in solving the non-trivial problems considered. The third row of weighted means shows 

the overall performance of ME-TP, GC-TP, SLM-TP and SLM5-TP in solving the non­

trivial problems except the SCHUBERT problem. SL-TP is not included because it has 

no results in CHANG-2 and CHANG-4. It is notable that SLM-TP performed better than 

the ME-TP and GC-TP in solving the non-trivial problems considered. SLM5-TP still 

came out as the best. In the last row, the computed weighted means exclude the results 

obtained in problems CHANG-2, CHANG-4 and SCHUBERT. The results show that 

SLM5-TP performed better than the others in solving the considered problems. The 

results of ME-TP in these problems are closely comparable to the results of SLM5-TP. 

Overall, the SLM5-TP performed better than the other theorem provers in solving the non­

trivial problems. 
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Chapter 5 

CONCLUSION 

Summary of Features 

In the analysis of s-linear resolution, ME procedure, t-linear resolution, SL­

resolution, GC procedure and SLM derivation strategies, the following major features 

were found: 

i) Extension operation 

a) selection function 

b) resolvants of ancestor resolution subsume the center clause. 

ii) Reduction operation 

a) compulsory ancestor resolution on literals having atoms which are or 

become identical. 

b) compulsory merging operation. 

c) compulsory C-reduction. 

d) compulsory reduction when the literals involved have identical atoms 

and no A-literal indexed by 1 is between them 

iii) Truncation operation 

a) production of lemmas 

b) creation of C-literals 

c) insertion of A-literals created from truncated A-literals at more than one 

position 

iv) Spreading operation 

v) Syntactic checks 

a) Admissibility restrictions 

b) Hyperminimality restriction 
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vi) Semantic check 

In s-linear and t-linear resolutions, the literals of the center clause are resolved 

away in any order. This means that even if each literal of the center clause can be resolved 

away in one way, there would still be N! derivations where N is the number of literals in 

the center clause. Hence, s-linear and t-linear derivations have large search trees. This 

inefficiency of s-linear and t-linear resolutions was eliminated by the ME procedure, SL­

resolution, GC procedure and SLM by using a selection function which only selects one 

literal from a center chain to resolve upon. Consequently, the search trees of the ME 

procedure, SL-resolution, GC procedure and SLM are smaller compared to s-linear and t­

linear search trees. The selection function is in effect similar to the strategy used in 

ordered input resolution. The restriction that the resolvants of ancestor resolution must 

subsume the previous center clause is imposed in different ways by the six derivation 

strategies. This restriction makes sure that newly introduced literals can factor with 

existing literals in the center clause. 

The reduction operation is an inference rule used in the ME procedure, SL­

resolution, the GC procedure and SLM. The reduction operations of the ME procedure, 

SL-resolution, the GC procedure and SLM are partly implementing the implicit merging 

operations of s-linear and t-linear resolutions. The reduction operation of SL-resolution is 

more powerful than that of the ME procedure because it includes ancestor resolution and 

explicit factoring. The compulsory reduction operation of the GC procedure is a more 

strict application than SL-resolution because it does not require that the literals involved 

have atoms that are, or become identical. SLM imposes compulsory reduction only if the 

literals involved have identical atoms and no A-literal indexed by 1 is between them. It has 

been shown that this restriction, together with the hyper minimality restriction, maximises 

the use of recycled A-literals. 

The truncation operation is employed in the ME procedure, SL-resolution, the 

GC procedure and SLM. The truncation operation of SL-resolution only removes A-
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literals from the center chain. The ME and GC procedures make use of all truncated A­

literals. SLM reuses truncated A-literals indexed by 1. The ME procedure recycles 

truncated A-literals in the form of lemmas. The GC procedure implements the recycling 

of truncated A-literals via C-literals. This is more efficient than the lemma mechanism of 

the ME-TP because a C-reduction of the GC-procedure is equivalent to one extension 

using a lemma, removal of other B-literals from the lemma by reduction and a truncation. 

SLM reuses truncated A-literals indexed by 1, by inserting them as A-literals indexed by 

0, at possibly more than one position in the center chain. Allowing the insertion of 

recycled A-literals at more than one position, however, produces irrelevant derivations 

which expand the search tree. 

The spreading operation used in SLM allows each spread literal to be resolved 

away concurrently with the others, by interleaving the operations on the branches. In the 

ME procedure, SL-resolution and the GC procedure, the selection function has limited 

choice of literals because only B-literals in the rightmost cell of a one 'branch' center chain, 

are considered. If a literal is not in the rightmost cell cannot be resolved away, possibly as 

a result of instantiation, the detection of this problem has to wait until all literals to the 

right of that literal are resolved away. Spreading partially alleviates this problem by 

allowing the selection function to choose a B-literal to resolve on from any of the center 

chain branches. 

The six derivation strategies impose syntactic checking to trim redundant 

derivations. Loveland proved that a refutation as small as a minimal non-linear resolution 

does not contain tautologous clauses, and a restriction to ensure this is imposed in the 

s-linear and SL-reslution strategies. The ME and the GC procedures are not compatible 

with the no-tautologies restriction. The ME procedure imposes three preadmissibility 

restrictions. The first one prevents using tautologous input chains during extension 

operations. The second preadmissibility restriction prevents the occurence of endless 

loops in a derivation. The third preadmissibility restriction enforces compulsory reduction 

on B-literals which have identical atoms with preceding A-literals. It also serves as a 
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retrospective check of the second preadmissibility restriction. SL-resolution imposes a 

more restrictive syntactic restriction than the ME procedure, which reject tautoilogies and 

enforce factoring of B-literals that are or become identical. In the GC procedure, an 

extended implementation of the first two preadmissibility restrictions of the ME procedure 

is imposed. SLM's hyper minimality restriction and the restrictions that satisfy the 

application of compulsory reduction, maximise the use of recycled A-literals. The hyper 

minimality restriction also partly prevents the occcurence of loops in the derivation. 

SLM applies semantic checking to each literal in the center chain using a given 

interpretation, during extension and reduction operations. The practical effect of semantic 

checking is the pruning of some irrelevant derivations from the search tree. However, 

there is difficulty in implementing a non-trivial interpretation. Two problems were 

identified by Heschen ( 197 6) in the implementation of a non-trivial interpretation. First, it 

is difficult to determine whether or not a clause containing variables is falsified, especially 

for interpretations whose domains are not fairly small. The second problem is the 

difficulty of finding a general representation of an interpretation with a reasonable storage 

requirements. 

5.2. Systems' Performance 

SLM may have longer refutations than those obtained by the ME procedure, 

SL-resolution or the GC procedure because it does not factor nor ancestor resolve B­

literals indexed by 0. However, SLM produces a narrower search tree than those obtained 

by the other three derivation strategies because it has a lesser number of reductions. It has 

also been shown that SLM can obtain a refutation using more of the top clauses from the 

set of support than the GC procedure. This feature is desirable in certain applications 

which require the ability to obtain a refutation from a specific top clause. 
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SLM-1, SLM-2 and SLM-3 are variations of SLM designed to reduce the 

number of irrelevant derivations caused by the indeterminancy of inserting A-literals 

created from truncated A-literals. SLM-1 minimises the number of irrelevant derivations 

by only inserting the A-literal in a position that is not equivalent to a previous position. 

However, this has a negative effect because the restriction may prevent a refutation for a 

certain top clause. SLM-2 always inserts the A-literal created from a truncated A-literal at 

its depth. This solves the indeterminancy problem, but its effect is bought at the expense 

of omitting the hyper minimality and compulsory reduction restrictions. SLM-3 solves 

the indeterminancy problem by not recycling A-literals. Obviously, SLM-3 may obtain 

longer refutations because some literals will be repeatedly resolved away when they could 

be simply reduced using a recycled A-literal. SLM-4 and SLM-5 are new variations of 

SLM which are intended to alleviate the problems of SLM. SLM-4 requires a set of 

clauses which has a non-Hom model to be broken down into subsets of clauses such that 

each subset has a Hom model. Each subset has to be refuted using SLM-4. SLM-4 traps 

loops by not allowing identical A-literals to coexist in any center chain. A-literals are 

simply deleted during truncation which solves the indeterminancy problem. The problem 

with this variation of SLM lies in the difficulty of splitting a set of clauses that contains 

many clauses which have more than one literal indexed by 1. SLM-5 is formulated based 

on the problems encountered in SLM and SLM-1. It maintains the main features of SLM 

but modifies the equivalent position restriction of SLM-1, adds more restrictions to detect 

loops, modifies the extension operation such that a unit chain is selected first as input 

parent chain, and modifies the reduction operation definition by always selecting the B­

literals to be reduced from the rightmost cell. SLM-5 suppresses the spreading operation 

if the set of clauses is written at propositional level. The reduction operation is also 

suppressed in refuting a set of Hom clauses. SLM-5 makes use of proved literals which 

are not subsumed by any unit chains, by adding them to the input chain database as unit 

chains. However, the addition of proved literals is only done when refuting a set of non­

Hom clauses. This restriction is based on the idea that linear input resolution is complete 

for sets of Hom clauses, thus, the addition of more clauses to the original set of Hom 

clauses may only expand the search tree. 
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It is conjectured that SLM-5 answers the question posed by Brown (1974, p. 

32) - "is there an interesting linear inference system whose refutations are bounded by the 

complexity of some hyper minimal refutations?" He suggested that by always placing 

"an A-literal created by truncation, at its depth and no where else, leads to such a system". 

Although SLM-5 does not follow this suggestion precisely, SLM-5 produces shorter 

refutations and smaller search trees than SLM. SLM-5 minimises the repetitive resolving 

away of literals because it reuses more truncated A-literals than SLM. The addition of 

proved literals to the input chain database partly solves the indeterminancy problem of 

SLM in inserting truncated A-literals. SLM-5 has better restrictions than SLM for 

detecting loops and pruning irrelevant derivations from the search tree. 

The ME procedure, SL-resolution, GC procedure, SLM and SLM-5 were 

implemented in PROLOG. The Arity/PROLOG compiler was used to compile the 

implemented theorem provers. The unit preference strategy, set of support strategy, pure 

literal elimination, elimination of tautologies, match check, selection function based on a 

computed weight of B-literals, and a modified consecutively bounded depth first search 

strategy were included in the implementations. The extension operation was also extended 

to include subsumed unit extension and paramodulation. 

The implemented theorem provers were tested using twenty four selected 

problems. The results show that none of the theorem provers consistently perform better 

than the others. The effects of the lemma generation in the ME-TP, the initial factoring of 

input clauses and factoring operation during derivations used in SL-TP, the C-literal 

mechanism of GC-TP, the spreading operation of SLM-TP and SLM5-TP, and the 

generation of proved literals in SLM5-TP were compared. 

In some problems, the addition of lemmas to the input chain database has 

positive effects on the derivation. However, the addition of lemmas to the input chain 

database also increases the number of possible input chains. As a result, the ME-TP 
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produces larger search trees in some of the problems, compared to the other theorem 

provers. 

The results show that the factoring of input clauses before converting them to 

input chains has a positive effect in SL-TP derivations, particularly in conjunction with the 

unit preference strategy. The results show that SL-TP produced shorter refutations than 

the other theorem provers for some problems. This is because some input clauses were 

factored prior to the derivation and these factors were used as input parent chains during 

extension operations, thus, minimising the number of factoring operations applied. 

However, this initial factoring also causes problems in SL-TP derivations, especially on 

recursive type problems such as those presented in Chang (1970). This is because some 

of the factors cause irrelevancy in the search space. The initial factoring of the input 

clauses also increases the number of input clauses, because a clause may produce more 

than one factor. 

In the experimentation, the GC-TP produced better results than the other 

theorem provers for some problems. This efficiency of GC-TP is brought about by its C­

literal mechanism. Two positive effects of C-literal mechanism were observed. Firstly, the 

C-literal mechanism in conjunction with the syntactic restrictions of GC-TP helps trim the 

search space of some redundant derivations. Secondly, reducing a B-literal with a C-literal 

reduces the length of a refutation because repeated resolving away of B-literals is 

minimised. These effects were shown in the results of some problems. However, in a 

consecutively bounded depth-first search environment where more than one search bound 

is required, the lemma generation of the ME-TP appears to be better than C-reduction 

because lemmas generated in one search bound are carried over to the next search bound. 

An examination of results also revealed that the insertion of C-literals may expand the 

search tree, particularly in sets of Horn clauses where C-literals are all proved literals. 

This may expand the search tree because some of these C-literals may subsume some unit 

input chains. Thus, a B-literal of the center chain may be reduced by a C-literal or be 

resolved upon by a unit chain. 
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The results of some of the problems show the positive effect of the spreading 

operation used in SLM-TP and SLM5-TP. These results confirm Brown's arguments 

which point out that having more flexibility in the selection of literal to resolve on is 

critical for the performance of a derivation strategy. However, it was discovered that the 

spreading operation is less effective in problems written at propositional level. The results 

show that SLM5-TP, which suppresses the spreading operation for problems written at 

propositional level, performs better than SLM-TP. 

Based on the overall results, SLM5-TP performed consistently well. It solved 

all the 24 selected problems within a reasonable memory use and execution time, and 

never produced the worst result on difficult problems. 

5.3. Future Directions 

A number of problems which are worthy of further investigation are 

suggested. 

Improving the consecutively bounded depth first search strategy. 

Early version of each theorem provers placed the bound on the number of 

inferences. The early version produced different results than when the bound is placed on 

the number of A- and B-literals in the center chain. In some cases the earlier version gave 

better results than the second version but in some problems it also gave poor results. The 

question is - are there better ways of implementing the consecutively bounded depth-first 

search strategy that give better and more stable results? The works of Nie and Plaisted 

( 1989) on the refinements of this search strategy may provide the answer to this question. 
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Improving the selection function. 

It was found in the experimentation that the implemented selection function 

significantly improved the performance of the six derivation strategies. Although it 

requires great effort to compute the weight of each candidate literal to be resolved on, 

using the selection function still gives better results compared to simply selecting the 

rightmost literal. This indicates the importance of the selection function to a theorem 

prover. Hence, it is worth investigating whether a better way of implementing a selection 

function can be found that requires less effort but is as effective or more effective than the 

selection function used in this study. 

Implementing i! more complex intemretation. 

The implemented interpretation for SLM-TP and SLM5-TP is the trivial 

interpretation which interprets all positive literals as TRUE and all negative literals as 

FALSE. It would be worth an investigation to find a general representation of a non-trivial 

interpretation which can be implemented. 
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Appendix A 

ALGORITHMS 

A.1. Derivation Algorithm 

The general algorithm in obtaining a derivation is as follows : 

DO WHILE the current center chain is not an empty list 

Apply the inference rules to the current center chain to 

obtain a new center chain 

IF the new center chain satisfies the restrictions then 

Let the new center chain be the current center chain 

ELSE 

Backtrack and find another possible solution 

END-IF 

END-DO 

Inference Operation Selection Algorithm 

For the ME procedure, SL-resolution and the GC procedure. 

IF the first element of the current center chain is a non-B­

literal then 

ELSE 

Apply the 

chain to 

allowed) 

truncation operation to the current center 

obtain new center chain (no backtracking 
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IF reduction of literals with identical atoms is 

possible then 

Apply compulsory reduction (no backtracking allowed) 

ELSE 

Apply the reduct ion operation OR the ext ens ion 

operation to obtain a new center chain 

END-IF 

END-IF 

For SLM and SLM-5. 

IF the last non-reduction operation was a truncation of an 
' 

A-literal indexed by 1 then 

Select the branch where the A- or C-literal generated 

from truncated A-literal is inserted 

IF the compulsory reduction restriction is satisfied 

then 

Apply compulsory reduction 

ELSE 

Apply reduction to the branch OR the extension 

operation to the center chain 

END-IF 

ELSE 

IF the last non-reduction operation was the spreading 

operation then 

Apply the extension operation 

ELSE 

IF a branch of the center chain is truncatable then 



ELSE 
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Apply the truncation operation (no backtracking 

allowed if the truncated A-literal is indexed by 

0) 

IF the rightmost cell of the newly inferred 

branch of the center chain contains more than 

one B-literal indexed by O then 

Apply the spreading operation 

ELSE 

IF the compulsory reduction restriction is 

satisfied then 

Apply compulsory reduction 

ELSE 

Apply reduction to the branch OR the 

extension operation to the center chain 

END-IF 

END-IF 

END-IF 

END-IF 

END-IF 

Selection Function Algorithm 

A selection function is used to select a B-literal from the center chain to 

resolve on during an extension operation. 
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Selection function algorithm for the ME procedure, SL-resolution and the GC 

procedure. 

Extract the rightmost cell from the center chain. 

IF the rightmost cell contains only one literal then 

Let the literal be the selected literal. 

ELSE 

Compute the weight for each literal of the rightmost 

cell. 

Let the literal with the minimum weight be the selected 

literal. 

END-IF 

Selection function algorithm for SLM and SLM-5. 

Extract all tip nodes from the center chain 

Extract the rightmost cell for each tip node 

Collect all B-literals from the rightmost cells 

Remove all B-literals which are identical to any A-literals 

of the center chain 

IF all B-literals have identical A-literals then 

Let the collected B-literals be the list of literals to 

be considered for selection (candidate list) 

ELSE 

Let the rest of the collected B-literals be the 

candidate list 

END-IF 

IF the candidate list contains a single literal then 

Let the single literal be the selected literal 

ELSE 
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Compute the weight for each B-literal of the candidate 

list 

Let the B-literal with the minimum weight be the 

selected literal 

END-IF 

Find the tip node where the selected B-literal belongs 

A.4 Extension Qperation Algorithm 

Generally, the extension operation is implemented using the following 

algorithm: 

Select a B-literal L to resolve on from the center chain 

using the selection function. 

IF a unit chain is available and its literal K subsumes the 

negation of L then 

Apply binary resolution using the unit chain as the 

input parent chain (no backtracking allowed). 

ELSE 

IF an input chain C has a B-literal K which is 

complementary unifiable with L then 

Apply binary resolution to L using C as the input 

parent chain (allow backtracking to select another 

literal from C or get another input chain) 

OR 

IF an equality literal exists then 

Apply paramodulation to L 

END-IF 

END-IF 

END-IF 
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A.5 Match Check Algorithm 

The algorithm for checking whether a center chain contains a literal which 

cannot be extended upon is as follows: 

IF a B-literal L which is sufficiently instantiated can be 

selected from the center chain then 

IF the atom of L subsumes a valid literal atom 

ELSE 

Select another B-literal from the center chain and 

check 

IF the atom of Lis subsumed by one of the redundant 

literal atom then 

ELSE 

The check fails 

IF L can be extended upon with an input chain C 

then 

ELSE 

IF all the other literals of C can be 

extended then 

Assert the atom of L as valid literal 

atom, select another B-literal from the 

center chain and check 

ELSE 

Assert the atom of L as redundant 

literal atom and the check fails 

END-IF 
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Assert the atom of L as redundant literal 

atom and the check.fails 

END-IF 

END-IF 

END-IF 

ELSE 

The check succeeds 

END-IF 
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Appendix B 

LISTING OF PROGRAM'S SOURCE CODE 

/* ===============================================------=----
Module: METP.ARI 
Purpose: Main program of the ME-TP theorem prover 
Required Modules : 

INTERPRE.ARI 
DRIVER.ARI 
SET _MAN.ARI 
ME_RULES.ARI 
SUPPORT.ARI 

==================================================-======= */ 

% ----------------------------------------------------------------------------------------------------
% Invoke when CTRL BRK is pressed 

% ----------------------------------------------------------------------------------------------------
resta.It :­

what_to_do. 
what_to_do :-

print(l,[nl,$The CTRL-BRK was pressed. Exit to DOS (YIN)?$]), 
getO(X), 
member(X, "Y y"), 
halt. 

what_to_do :­
main. 

% ----------------------------------------------------------------------------------------------------

% The main procedure of the theorem prover 

% ----------------------------------------------------------------------------------------------------
main:­

els, 
fileerrors(_, off), 
asserta(ds(me)), 
inn·oduction, 
repeat, 

print(l ,[nl,nl,$ME-TP :- $]), 
ratom(Command), 

interpreter(Command). 
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I*========================================================== 
Module: SL TP.ARI 
Purpose: Main program of the SL-TP theorem prover 
Required Modules : 

INTERPRE.ARI 
DRIVER.ARI 
SET _MAN.ARI 
SL_RULES.ARI 
SUPPORT.ARI 

========================================================== */ 

% ----------------------------------------------------------------------------------------------------
% Invoke when CTRL BRK is pressed 

% ----------------------------------------------------------------------------------------------------
restart:­

what_to_do. 
what_to_do :-

print( l ,[nl,$The CTRL-BRK was pressed. Exit to DOS (YIN)?$]), 
getO(X), 
member(X,"Yy"), 
halt. 

what_to_do :­
mam. 

% ----------------------------------------------------------------------------------------------------

% The main procedure of the theorem prover 

% ----------------------------------------------------------------------------------------------------
main:­

els, 
fileerrors(_, off), 
asserta(ds(sl)), 
introduction, 
repeat, 

print(l,[nl,nl,$SL-TP :- $]), 
ratom(Command), 

interpreter( Command). 
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I*========================================================== 
Module: GCTP.ARI 
Purpose: Main program of the GC-TP theorem prover 
Required Modules : 

INTERPRE.ARI 
DRIVER.ARI 
SET _MAN .ARI 
GC_RULES.ARI 
SUPPORT.ARI 

======================================-===========-=-===== *I 

:% ----------------------------------------------------------------------------------------------------
% Invoke when CTRL BRK is pressed 

% ----------------------------------------------------------------------------------------------------
restart:­

what_to_do. 
what_to_do :-

print(l ,[nl,$The CTRL-BRK was pressed. Exit to DOS (Y/N)? $]), 
getO(X), 
member(X "Y ") ' y ' 
halt. 

what_to_do :­
main. 

% ----------------------------------------------------------------------------------------------------

% The main procedure of the theorem prover 

% ----------------------------------------------------------------------------------------------------
mam :­

els, 
fileen-ors(_, off), 
asserta( ds(gc)), 
introduction, 
repeat, 

print(l,[nl,nl,$GC-TP :- $]), 
ratom(Command), 

interpreter(Command). 
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I*========================================================== 
Module: SLM.ARI 
Purpose: Main program of the SLM-TP theorem prover 
Required Modules : 

INTERPRE.ARI 
SLM_DRV.ARI 
SLM_SEL.ARI 
SLM_SUP.ARI 
SLM_RULE.ARI 
SLM_REST.ARI 
SUPPORT.ARI 

========================================================== *I 

:% ----------------------------------------------------------------------------------------------------
% Invoke when CTRL BRK is pressed 

% ----------------------------------------------------------------------------------------------------
restart:­

what_to_do. 
what_to_do :-

print(l,[nl,$The CTRL-BRK was pressed. Exit to DOS (YIN)?$]), 
getO(X), 
member(X, "Y y"), 
halt. 

what_to_do :­
main. 

% ----------------------------------------------------------------------------------------------------

% The main procedure of the theorem prover 

% ----------------------------------------------------------------------------------------------------
mam :­

els, 
fileerrors(_, off), 
asserta(slm_ version(l)), 
introduction, 
repeat, 

print(l,[nl,nl,$SLM-TP :- $]), 
ratom(Command), 
interpreter( Command). 
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I*========================================================== 
Module: SLM5.ARI 
Purpose: Main program of the SLM5-TP theorem prover 
Required Modules : 

INTERPRE.ARI 
SLM_DRV.ARI 
SLM_SEL.ARI 
SLM_SUP.ARI 
SLM5_RUL.ARI 
SLM5_RES.ARI 
SUPPORT.ARI 

========================================================== */ 

:% ----------------------------------------------------------------------------------------------------
% Invoke when CTRL BRK is pressed 

% ----------------------------------------------------------------------------------------------------
restru.t :­

what_to_do. 
what_to_do :-

print(l ,[nl,$The CTRL-BRK was pressed. Exit to DOS (YIN)?$]), 
getO(X), 
member(X, "Y y"), 
halt. 

what_to_do :­
main. 

% ----------------------------------------------------------------------------------------------------

% The main procedure of the theorem prover 

% ----------------------------------------------------------------------------------------------------
main:­

els, 
fileerrors(_, off), 
asserta(slm_ version(5)), 
introduction, 
repeat, 

print(l,[nl,nl,$SLM5-TP :- $]), 
ratom(Command), 
interpreter( Command). 
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I*========================================================== 
Module: ME_RULES.ARI 
Purpose: Contains the operation and syntactic restrictions 

=========================================================- *I 

% ----------------------------------------------------------------------------------------------------
% Reduction operation for the ME procedure 

% ----------------------------------------------------------------------------------------------------
reduce(Chain, Resolvant, _, _) :­

clause_type(hom), ! , fail. 
reduce(Chain, Resolvant, [b,L], Type) :­

clause_type(general), % No reduction for Horn clauses 
choose([a,S,Kl, Pree, Succ, Chain), 
[! select([b,L], Others, Pree), 
reducible(L, K, Type), 
count_A(NS, Pree), 
append(Others, [ [a,NS,KJISucc] , Resolvant) !]. 

9"o ----------------------------------------------------------------------------------------------------

% Check if the two literals are reducible 

9"o ----------------------------------------------------------------------------------------------------
reducible(L,K, Type) :­

complementary(L,K, L_A,K_A), 
match(L_A, K_A, Type). 

% ----------------------------------------------------------------------------------------------------
% Find if the two Atoms are identical or unifiable 

% ------------------------. ---------------------------------------------------------------------------
match(Al, A2, id):­

identical_atom(A 1,A2), ! . 
match(Al, A2, unify):-

unify(Al, A2). 

9"o ----------------------------------------------------------------------------------------------------
% Count the number of A-literals on the left side of the chain 

9"o ----------------------------------------------------------------------------------------------------
count_A(O, []) :- !. 
count_A(N, [ LiterallChain]) :-

count_A(Nl, Chain), 
increment_A_ctr(Literal,Nl, N). 

% ----------------------------------------------------------------------------------------------------
% Increment the A-ctr if the literal is an A-literal 

9"o ----------------------------------------------------------------------------------------------------
increment_A_ctr([al_],Nl, N) :-

N is Nl+l, !. 
increment_A_ctr(_, N, N). 

9"o ----------------------------------------------------------------------------------------------------
% ME Truncation operation 

% ----------------------------------------------------------------------------------------------------
truncate([ la,S,L] I Rest_Chain], Lemma, Resolvant) :­

truncate_all([ [a,S,L] I Rest_Chain ], Lemma, Resolvant). 
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% ----------------------------------------------------------------------------------------------------
% Truncate all the preceeding A-literals 

% ----------------------------------------------------------------------------------------------------
truncate_all([ [b,L] I Rest_Chain ], [], [ [b,L] I Rest_Chain]) :- !. 
truncate_all([], [], []) :- !. 
truncate_all([ [a,S,L] I Rest_Chain], [IndexlLemma_Ndx], Result) :­

form_a_lemma(O,Lemma, Rest_ Chain), 
update_scopes(Rest_Chain, Updated), 
negate(L,K), 
inse1t_lemma(Index, [KILemma]), 
truncate_all(Updated, Lemma_Ndx, Result). 

% ----------------------------------------------------------------------------------------------------
% Fmm a lemma 
% Algmithm: 

% Pick up an A-literal and evaluate if its scope exceeds then number of A-

% literals (A_Ctr) preceeding it. Increment the counter and pick up again 

% another A-literal from the rest of the chain until no more A-literals. 

% ----------------------------------------------------------------------------------------------------
form_a_lemma(A_Ctr, Lemma, Chain):­

pick_suc([a,Scope,L], Succ, Chain), 
evaluate(A_Ctr, Scope, L, Lemma, Lemma_Rest), 
inc(A_Ctr, N), 
fmm_a_lemma(N, Lemma_Rest, Succ), !. 

form_a_lemma(_, [], Rest). 

% ----------------------------------------------------------------------------------------------------

% Evaluate if the scope of an A-literal exceeds the number of preceding literal 

% ----------------------------------------------------------------------------------------------------
evaluate(A_Ctr, Scope, L, [KILemma], Lemma):-

Scope > A_ Ctr, 

negate(L,K), ! . 

evaluate(A_Ctr, Scope, L, Lemma, Lemma). 

% ----------------------------------------------------------------------------------------------------
/* Update the Scopes of the following A-literals 
Algorithm: 

(1) If the rest of center chain is empty then the update is also 
empty and stop the recursion. 

else 
(2) if the first element of center chain is an A-literal then 

insert this A-literal at the update with N as the scope 
Increment the scope by 1 
Continue the update of the rest of center chain 

else 
(3) - Inse1t the first literal of the center chain and inse1t 

it as it is at the update 
Continue the update of the rest of center chain */ 

% ----------------------------------------------------------------------------------------------------



update_scopes(Chain, Updated):­
choose([a,Scope,L], Pree, Succ, Chain), 
count_A(N, Pree), 
Scope> N, 
append(Prec, [[a,N,L]ISucc], New_Chain), 
update_scopes(New_Chain, Updated), !. 

update_scopes(Updated, Updated). 
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% ----------------------------------------------------------------------------------------------------
% Insert a lemma if it is not subsumed by a chain 

% ----------------------------------------------------------------------------------------------------
insert_lemma(O, Lemma) :- /* -- Disregard if the# of literals is --- */ 

clause_size(_,Max), /* -- greater than or equal the maximum --- */ 
length(Lemma, N), /* -- size of the input clauses ----------- */ 
N >= Max,!. 

insert_lemma(Index, Lemma):-
not subsumed_input(Lemma), 
fo1m_a_chain(Lemma, Input), 
get_chain_ndx(Index), 
store_fact(a, input_chain(Index, Input)). 

insert_lemma(O, Lemma). 

% ----------------------------------------------------------------------------------------------------
% Find an input chain which is subsumed by the lemma 

% ----------------------------------------------------------------------------------------------------
subsumed_input(Lemma) :­

input_chain(_, Chain), 
equivalent(Lemma, Chain), !. 

% ----------------------------------------------------------------------------------------------------
% Determine if the lemma is equivalent to the chain 

% ----------------------------------------------------------------------------------------------------
equivalent([],[]):- !. 
equivalent([LILemma], Chain) :-

select([b,K] ,Rest, Chain), 
unify(K,L), 
equivalent(Lemma, Rest). 

% ----------------------------------------------------------------------------------------------------
% ME Extension operation 

% ----------------------------------------------------------------------------------------------------
extend(Chain, Resolvant, Input, Type) :-

selection_function([b, Literal_L], Others, Chain), 
resolve(Literal_L, Right_Cell, Input, Type), 
append(Right_Cell, [ [a,O,Literal_L]IOthers ], Resolvant). 

% ----------------------------------------------------------------------------------------------------

/* 
Preadmissibility Restriction 

The chain is not preadmissible iff: 
(i) the iightmost cell contains tautology literals 

(ii) the chain contains an A-literal identical to a following B-literal 
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(iii) the chain contains A-literals with identical atoms.*/ 

% ----------------------------------------------------------------------------------------------------
syntax_check(id, _) :- ! . 
syntax_check(unify, Chain) :-

pick_suc(L, Others, Chain), 
pick_pre(K, Pree, Others), 
inadmissible(L, K, Pree), ! , fail. 

syntax_check(unify,_). 

% ----------------------------------------------------------------------------------------------------
% Check if the two literals are inadmissible 

% ----------------------------------------------------------------------------------------------------
inadmissible([b, K], [b,L], In_Between) :- /* preadmissibility I */ 

tautology(L,K), 
all_B_(In_Between), !. 

inadmissible([b, K], [a,_,L], _) :- /* preadmissibility II */ 
literal_atom(K, Sign, Atoml), 
literal_atom(L, Sign, Atom2), 
identical_atom(Atoml, Atom2), !. 

inadmissible([a,_, K], [a,_,L], _) :- /* preadmissibility III */ 
identical_atom(L,K), ! . 

% ----------------------------------------------------------------------------------------------------

% Determine if the list contains all B-literals 

% ----------------------------------------------------------------------------------------------------
all_B_([]) :- !. 
all_B_([[b,_]lln_Between]) :-

all_B_(ln_Between). 
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/* ========================================================== 
Module: SL_RULES.ARI 
Purpose: Contains the operations and the syntactic rest1ictions employed by SL-

TP 
========================================================== *I 

% ----------------------------------------------------------------------------------------------------
% SL Reduction operation 

% ----------------------------------------------------------------------------------------------------
reduce(Chain, Resolvant, B_Literal, Type) :­

extract_right_most_cell(Right_Most_Cell, [ A_LiterallLeft_ Cells], Chain), 
member(Any_Literal, Left_Cells), 
[! select(B_Literal, Rest_RMC, Right_Most_Cell), 
can_be_reduce(B_Literal, Any_Literal, Type), 
append(Rest_RMC, [A_LiterallLeft_Cells], Resolvant) !]. 

% ----------------------------------------------------------------------------------------------------
Determines if the two literals can be factored or ancestor-resolved 

% ----------------------------------------------------------------------------------------------------
can_be_reduce([b,L], [a,K], Type) :- % --- ancestor resolution ---

complementary(L, K, L_A,K_A), 
match(L_A, K_A, Type),!. 

can_be_reduce([b,L], [b,K], Type) :- % --- factoring ------------
literal_atom(L,Sign, L_A), 
literal_atom(K,Sign, K_A), 
match(L_A, K_A, Type). 

% ----------------------------------------------------------------------------------------------------

% Match the two atoms and retum id if they are identical 
% or unify if variables were instantiated 

% ----------------------------------------------------------------------------------------------------
match(Al, A2, id):­

identical_atom(Al,A2), !. 
match(Al, A2, unify):-

unify(Al, A2). 

% ----------------------------------------------------------------------------------------------------
% SL truncation operation 

% ----------------------------------------------------------------------------------------------------
uncate([ [a,_) I Resolvant ], No_Trunc, Resolvant2) :-

strip_a_literals(Resolvant, Resolvant2, No_ Trunc ). 

% ----------------------------------------------------------------------------------------------------
% Snip the chain from all A-literals preceeding the 
% leftmost B-literal 

% ----------------------------------------------------------------------------------------------------
strip_a_literals([), [], [)) :- !. 
strip_a_literals([ [b,X]IRest], [ [b,X]IRest],[)) :- !. 
strip_a_literals([ [a,_]IRest], Resolvant, [OITrunc]) :-

strip_a_literals(Rest, Resolvant, Trunc). 

% ----------------------------------------------------------------------------------------------------

% SL Extension operation 
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% ----------------------------------------------------------------------------------------------------
extend(Chain, Resolvant, Input, Type) :-

selection_function([b, Literal_L], Others, Chain), 
resolve(Literal_L, Right_Cell, Input, Type), 
append(Right_Cell, [ [a, Literal_L]IOthers ], Resolvant). 

% ----------------------------------------------------------------------------------------------------
/* Admissibility Restriction 

( 1) The chain is not admissible if the left cells contain 
identical atoms. 

(2) The chain is not admissible if the rightmost cell 
contains B-literal which is tautologous (identical atom) to 
any of the B-literals in the left cells, OR 
the rightmost cell contains literal which is identical to 
any of the A-literals in the left cells 

(3) The input chain is not admissible because the unification find 
it to be tautologous (restriction c.ii of reduction definition). 

(4) The input chain is not admissible because the unification find 
that it contains factorable literals or tautologous literals 
(restriction c.ii of reduction definition). * / 

% ----------------------------------------------------------------------------------------------------
syntax_check(id, _) :- ! . 
syntax_check(Type, Chain) :-

extract_right_most_cell(RMC, LC, Chain), 
inadmissible(RMC, LC), 
! , fail. 

syntax_check(_, _). 

o/'o ----------------------------------------------------------------------------------------------------
% Check if the chain is admissible by checking 
% (1) If the rightmost cell does not contain a B-literal which is 
% (a) tautologous to one of the B-literals in the left cells 
% (b) identical to one of the A-literals in the left cells 
% (2) If the left cells does not contain two literals having identical atoms 

o/'o ----------------------------------------------------------------------------------------------------
inadrnissible(RMC, LC) :- % *** RMC should not contain identical atoms 

pick_suc([b,L], Succ, RMC), 
member([b,K], Succ), 
identical_atom(L,K), ! . 

inadmissible(RMC, [AILC]) :­
class(A,a,L ), 
member([b,K], RMC), 
identical_atom(L,K), ! . 

inadrnissible(RMC, [_ILC]) :­
member([a,L], LC), 
member([b,K], RMC), 
identical(L,K), ! . 

inadmissible(_, LC) :­
pick_suc([_,L],Succ, LC), 
member([_,K], Succ), 
identical_atom(L,K),!. 

% *** RMC should not contain B-literal which 
%***has identical atom with rightmost A-literal 

% *** RMC should not contain a B-literal which is 
% *** identical to an A-literal in the left cell 

% *** LC should not contain any two literals 
% *** having identical atoms · 
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I*========================================================== 
Module: GC_RULES.ARI 
Purpose: Contains the operations and the syntactic resuictions employed by GC-

TP 
========================================================== *I 

% ----------------------------------------------------------------------------------------------------
% GC procedw-e Reduction operation 

% ----------------------------------------------------------------------------------------------------
reduce(Chain, Reductant, [b,L], Type) :­

extract_1ight_most_cell(Right_Most_Cell, Left_ Cells, Chain), 
choose(Non_B, LS, RS, Left_Cells), 
not class(Non_B, b, _), 
[! select([b,L], Rest, Right_Most_Cell), 
reducible(Non_B, L, Type), 
collect_C_point(LS, [], Depth_List), 
remove_C_point(Depth_List, RS, Remove_Cpoints, New_RS), 
mega_append([Rest,LS,Remove_Cpoints,[Non_BINew_RS] ], Reductant) !]. 

% ----------------------------------------------------------------------------------------------------
% Apply the reduction by selecting a B-literal from the rightmost cell 
% of the chain to match with a non-B-literal 

% ----------------------------------------------------------------------------------------------------
apply_reduction(Non_B, [b,L], Right_Most_Cell, Rest, Type) :­

select([b,L], Rest, Right_Most_Cell), 
reducible(Non_B, L, Type), !. 

% ----------------------------------------------------------------------------------------------------
% Remove the depths from right cells 

% ----------------------------------------------------------------------------------------------------
remove_C_point(Depths, LC, [DIRest_Cpoints], Left_Cells) :­

select(D, Other_Cpoints, Depths), 
select(D, Other_LC, LC), 
remove_C_point(Other_Cpoints, Other_LC, Rest_Cpoints, Left_Cells), !. 

remove_C_point(Depths, LC,[], LC). 

% ----------------------------------------------------------------------------------------------------
% Find if the two literals are reducible 

% ----------------------------------------------------------------------------------------------------
reducible(Non_B, K, Type):­

non_B_atom(Non_B, L), 
complementary(L, K, L_A, K_A), 
match(L_A,K_A, Type). 

% ----------------------------------------------------------------------------------------------------
% Matching two atoms based on mode (compulsory or non-compulsory) 

% ----------------------------------------------------------------------------------------------------
match(Atoml, Atom2, id):­

identical_atom(Atoml,Atom2), !. 
match(Atoml, Atom2, unify):­

unify(Atoml, Atom2). 

% ----------------------------------------------------------------------------------------------------
% Collect the C-points associated with A-literals 
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% ----------------------------------------------------------------------------------------------------
collect_C_point([], L,L) :- !. 
collect_C_point([ LiterallLS], Initial, Depth_List) :­

extract_C_point(Literal, Initial, Depths), 
collect_C_point(LS, Depths, Depth_List). 

% ----------------------------------------------------------------------------------------------------
% Extract the C-point if the literal is an A-literal 

% ----------------------------------------------------------------------------------------------------
extract_C_point([a,D,_], Initial, [DIInitial]) :- !. 
extract_C_point( _, L,L). 

% ----------------------------------------------------------------------------------------------------
% GC Truncation operation 

% ----------------------------------------------------------------------------------------------------
truncate([ L I_],_,_) :­

class(L,b,_), ! , fail. 
truncate(Chain, Times, Resolvant) :-

truncate_all(Chain, Times, Resolvant). 

% ----------------------------------------------------------------------------------------------------
% Tmncate all non-B-literals 

% ----------------------------------------------------------------------------------------------------
truncate_all([],[], []) :- !. 
truncate_all([ [b,L]IRest], [], [ [b,L]IRest]) :- !. 
truncate_all([ LiterallRest], Times, Result) :- % truncate an A-literal 

remove(Literal, Rest, New _Rest, Times, Rest_ Times), 
truncate_all(New _Rest, Rest_ Times, Result). 

% ----------------------------------------------------------------------------------------------------
% Remove the A-literal and insert C-literal at its depth OR remove the C-literal. 

% ----------------------------------------------------------------------------------------------------
remove([a,D,L], Rest, New_Rest, [OITimes], Times) :­

choose(D, Pree, Succ, Rest), 
insert_C(L, Prec,Succ, New_Rest), !. 

remove([c,L], Rest, Rest, Times, Times). 

% ----------------------------------------------------------------------------------------------------
% Insert a C-literal 

% ----------------------------------------------------------------------------------------------------
insert_C(L, Prec,Succ, New_Rest) :­

negate(L,K), 
append(Prec, [[c,K]ISucc], New_Rest). 

% ----------------------------------------------------------------------------------------------------
% GC Extension operation 

% ----------------------------------------------------------------------------------------------------
extend(Chain, Resolvant, Input, unify) :-

[ ! selection_function([b, Literal_L], Others, Chain), 
gen_symbol(D) !], 
resolve(Literal_L, RMC, Input, Type), 
[! append(RMC, [ [a,D,Literal_L]IOthers], Right), 
append(Right, [D], Resolvant) !]. 
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% ----------------------------------------------------------------------------------------------------
% Generate the C-point symbol 

% ----------------------------------------------------------------------------------------------------
gen_symbol(Symbol) :­

ctr_inc(O,Ctr), 
name(Ctr,N), 
append("c_" ,N,List), 
name(Symbol,List). % counter O is rese1ved for C-ptr 

% ----------------------------------------------------------------------------------------------------
% Admissibility Restiiction 

% ----------------------------------------------------------------------------------------------------
syntax_check(id, Chain) :- ! . 
syntax_check(unify, Chain) :-

pick_suc(Literall, Succ_Literals, Chain), 
pick_pre(Literal2, In_Between, Succ_Literals), 
inadmissible(Literal 1, Literal2, In_Between), 
!, fail. 

syntax_check(_, _). 

% ----------------------------------------------------------------------------------------------------
/* Check if the two literals are inadmissible 

(1) If the first literal is a B- and the second is an A-literal and 
they are identical then they are inadmissible. 

else 
(2) if the two literals are non-B-literals and they 

have identical atoms then they are inadmissible 
else 

(3) No tautologous literals unless an A-literal exists between them. This 
implies that no tautologous input chain should be used. 
(First preadmissibility restliction of the ME procedure) */ 

% ----------------------------------------------------------------------------------------------------
inadmissible([b,K], Non_B, _) :­

non_B_atom(Non_B, L), 
literal_atom(K, Sign, Al), 
literal_atom(L, Sign, A2), 
identical_atom(A 1, A2), ! . 

inadmissible(Literall, Literal2, _) :­
non_B_atom(Literall, Al), 
non_B_atom(Literal2, A2), 
identical_atom(A 1, A2), ! . 

inadmissible([b,K], [b,L], In_Between) :­
tautology(L,K), 
all_B _ (In_Between). 

% ----------------------------------------------------------------------------------------------------
% Extract the literal atom (with sign) of a non-B-literal 

% ----------------------------------------------------------------------------------------------------
non_B_atom(L, A):­

class(L,C, A), 
C\== b. 

% ----------------------------------------------------------------------------------------------------
% Check if the list contain all B-literals 



171 

~ ----------------------------------------------------------------------------------------------------
all_B_([]) :- !. 
all_B_([[b,_]IRest]) :-

all_B_(Rest). 
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I*================================================-----===--
Module: SET _MAN.ARI 
Purpose: Load the set of clauses and contain the procedures used in self-

configuration facility of ME-TP, SL-TP and GC-TP. 
======================================================-=== */ 

% ----------------------------------------------------------------------------------------------------
% Compile the file by asserting the set of clauses and 
% apply the self configuration facility 

% ----------------------------------------------------------------------------------------------------
compile(File) :­

ds(DS), 
[-File], ! , 
check_format, 
assertz( clause_file(File) ), 
factor_clauses(DS), 
find_configuration, 
generate_matrix_chains(DS), % modify this for SL-resolution 
tautology _elimination, 
pure_literal_elimination, 
abolish(a_clause/1), 
expunge. % equivalent to purging the deleted fact permanently 

compile(File) :-
print(l ,[nl,$***This file is not available ... $,nl,$***Try another one ... $]). 

% ----------------------------------------------------------------------------------------------------
% Factor the set of clauses if the detivation strategy used is SL-TP 

% ----------------------------------------------------------------------------------------------------
factor_clauses(sl) :­

a_clause(Clause), 
generate_factors( Clause), 
fail. 

factor_clauses(sl) :­
abolish(a_clause/1), 
retract(factored(Clause)), 
store_fact(a,a_clause(Clause)), % Store factors as input clause 
fail. 

factor_clauses(_). 

% ----------------------------------------------------------------------------------------------------
% Generate factors of the list 

% ----------------------------------------------------------------------------------------------------
generate_factors(List) :­

factor(List, Factor), 
store_as_factor(F actor), 
fail. 

generate_factors(List). 

% ----------------------------------------------------------------------------------------------------
% Factor a given list 

% ----------------------------------------------------------------------------------------------------
factor(List, Factor) :­

select(L, Partial, List), 
member(K, Partial), 
unify(L,K), 
factor(Partial, Factor). 
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factor(Factor, Factor). 

% ----------------------------------------------------------------------------------------------------

% Store the factor if it is not subsumed by any of the factors 

% ----------------------------------------------------------------------------------------------------
store_as_factor(Factor) :-

[! length(Factor, N), 
convert_to_predicate(Factor, Terml) !], 
factored(List2), 
length(List2, N), 
convert_to_predicate(List2, Term2), 
subsumes(Terml, Term2),!. 

store_as_factor(Factor) :-
store_fact( a, factored(Factor) ). 

% ----------------------------------------------------------------------------------------------------
% Convert the list into a temporary predicate with the element of the list as arguments 

% ----------------------------------------------------------------------------------------------------
convert_to_predicate(List, Term) :­

get_combination(List, List2), 
Term= .. [temp1List2]. 

% ----------------------------------------------------------------------------------------------------
% Get a combination with backtracking allowed to extract all 
% possible combination 

% ----------------------------------------------------------------------------------------------------
get_combination([E], [E]) :- !. 
get_combination(List, [EIPartial]) :-

select(E, Rest, List), 
get_combination(Rest, Partial). 

% ----------------------------------------------------------------------------------------------------
% Check if the asserted file is in the right format 

% ----------------------------------------------------------------------------------------------------
check_format :­

a_clause(_), ! . 
check_format :-

print(l ,[ nl,$***The consulted file is not in the right format$]), 
print(l,[nl,$ Format a_clause([Literall, .... Literaln]). $]), !, fail. 

% ----------------------------------------------------------------------------------------------------
% Find the configuration of the set of clauses 

% ----------------------------------------------------------------------------------------------------
find_configuration :-

print(l,[nl,$Wait. .. Configuring the set of Clauses$]), 
a_clause(Clause), 
[! write($.$), 
length(Clause, N), 
rnin_max(N), /* determine the minimum and maximum size of clause */ 
determine_ order( Clause), 
determine _type( Clause), 
determine_equal(Clause) !], fail. 

find_configuration. 
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9o ----------------------------------------------------------------------------------------------------
9o Determine the order of the set of clauses 

9o ----------------------------------------------------------------------------------------------------
deterrnine_order(Clause) :­

order(l), !. 
deterrnine_order(Clause) :­

member(L, Clause), 
count_ var(L, N), 
N>O, 
abolish(order/1), 
asserta(order(l)), !. 

deterrnine_order(Clause) :­
order(O), ! . 

deterrnine_order(Clause) :­
asserta(order(O)), !. 

9o ----------------------------------------------------------------------------------------------------
9o Determine the type of the set of clauses 

9o ----------------------------------------------------------------------------------------------------
determine_type(Clause) :­

clause_type(general), ! . 
dete1mine_type(Clause) :-

select(++ L, Others, Clause), 
member(++ K, Others), 
abolish( clause_type/1 ), 
asserta( clause_type(general)), ! . 

determine_type(Clause) :­
clause_type(horn), ! . 

determine_type(Clause) :-
asserta( clause_type(horn) ). 

9o ----------------------------------------------------------------------------------------------------
9o Dete1mine if an equal literal exist 

9o ----------------------------------------------------------------------------------------------------
deterrnine_equal(Clause) :­

equal_exist, !. 
detennine_equal(Clause) :­

member(Literal, Clause), 
literal_atom(Literal, _, equal(_,_)), 
asserta( equal_exist), !. 

determine_equal(_). 

9o ----------------------------------------------------------------------------------------------------
9o Eliminate tautologous chain 

9o ----------------------------------------------------------------------------------------------------
tautology_elimination :-

print(l,[nl,$Tautology elimination in action ... $]), 
input_chain(N ,Chain), 
[! select([b,L], Others, Chain), 
member([b,K], Others), 
tautology(L,K), 
retract(input_chain(N,Chain)), 
print(l,[nl,$***Input chain $,Chain,$ is a tautology.$]) !], 
fail. 

tautology _elimination. 
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% ----------------------------------------------------------------------------------------------------
% Remove a chain which contain a pure literal 

% ----------------------------------------------------------------------------------------------------
pure_literal_elimination :-

print(l ,[nl,$Pure literal elimination in action ... $]), 
input_chain(N,Chain), 
[! 
has_pure_literal(Chain), 
retract(input_chain(N,Chain)), 
print(l,[nl,$***Input chain $,Chain,$ has a pure literal.$]) 
!], fail. 

pure_literal_elimination. 

% ----------------------------------------------------------------------------------------------------
% Determine if the chain is resolvable 

% ----------------------------------------------------------------------------------------------------
has_pure_literal(Chain) :­

all_resolvable(Chain), ! , fail. 
has_pure_literal(Chain). 

9'o ----------------------------------------------------------------------------------------------------
Update the fact 

% ----------------------------------------------------------------------------------------------------
update_fact(Factl, Fact2) :­

retract(Factl ), 
store_fact(a, Fact2), ! . 

update_fact( _ , Fact2) :-
store_fact(a, Fact2). 

% ----------------------------------------------------------------------------------------------------
% Update the minimum and maximum size of the input clauses 

% ----------------------------------------------------------------------------------------------------
min_max(N) :-

clause_size(Min,Max), 
update_size(N, Min, Max), !. 

min_max(N) :-
store_fact( a, clause _size(N ,N)). 

update_size(N, Min, Max):-
N < Min, 
update_fact(clause_size(Min, Max), clause_size(N,Max) ), ! . 

update_size(N, Min, Max):-
N > Max, 
update_fact(clause_size(Min, Max), clause_size(Min,N) ), !. 

update_size( _, _, _). 

% ----------------------------------------------------------------------------------------------------
% Concatenate a list of lists into a list 

% ----------------------------------------------------------------------------------------------------
mega_append([], []) :- !. 
mega_append([H], H) :- !. 
mega_append([HIRest], Result):-



mega_append(Rest, Last_Result), 
append( H, Last_Result, Result). 
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% ----------------------------------------------------------------------------------------------------
% Generate matrix chains for each clause of the input clauses 

% ----------------------------------------------------------------------------------------------------
generate_matrix_chains(DS) :­

clause_size(Min, Max), 
chain_ndx_set, 
get_a_clause(Clause, Min, Max), 
write($*$), 
convert_to_chain(DS, Clause), fail. 

generate_matrix_chains(_) :-
add_reflexive_equality. 

% ----------------------------------------------------------------------------------------------------
% Add the reflexive axiom of equality as a unit input chain if the set 

% ----------------------------------------------------------------------------------------------------
add_reflexive_equality :­

equal_exist, 
store_as_chain(a, [ ++ equal(X,X)]), !. 

add_reflexive_equality. 

% ----------------------------------------------------------------------------------------------------
% Conve1t a clause to chain depending on the derivation strategy 
% requirement. 

% ----------------------------------------------------------------------------------------------------
convert_to_chain(_, Clause):­

store_as_chain(z, Clause). 

% ----------------------------------------------------------------------------------------------------

% Get a clause from the least to maximum number of literals 

% ----------------------------------------------------------------------------------------------------
get_a_clause(Clause,Min, Max) :­

a_clause(Clause ), 
length(Clause, Min). 

get_a_clause(Clause,Min, Max):-
Min < Max, 
N is Min+l, 
get_a_clause(Clause, N, Max). 

% ----------------------------------------------------------------------------------------------------

% Store a clause as input chain 

% ----------------------------------------------------------------------------------------------------
store_as_chain(Pos, Clause) :­

form_a_chain(Clause, Chain), 
get_chain_ndx(N), 
store_fact(Pos, input_chain(N,Chain)). 

% ----------------------------------------------------------------------------------------------------
% Form a chain 
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% ----------------------------------------------------------------------------------------------------
form_a_chain([], []) :- !. 
form_a_chain([LiterallOthers], [ [b,Literal]IChain]) :-

form_a_chain(Others, Chain). 

% ----------------------------------------------------------------------------------------------------
% Initialise the chain index 

o/'o ----------------------------------------------------------------------------------------------------
chain_ndx_set :-

ctr_set(30 ,1). % Counter 30 is set as chain index counter 

% ----------------------------------------------------------------------------------------------------
% Get the current chain index and increment it 

% ----------------------------------------------------------------------------------------------------
get_chain_ndx(N) :­

ctr_inc(30,N). 
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I*==================================================-==-==== 
Module: INTERPRE.ARI 
Purpose: Serves as user command interpreter. This used by all the implemented 

theorem provers 
==================================================-======= *I 

% ----------------------------------------------------------------------------------------------------
% Display the theorem prover Inu·oduction 

% ----------------------------------------------------------------------------------------------------
introduction :-

display _screen('intro. scr'), 
els, 
abolish([ output_device/1, sos/1, derivation_JO, refutation_JO, statistics_JO]), 
asserta(match_check), 
asserta( occurs_ check_), 
asserta(sos(-)), 
asserta(refutation_), 
asserta(statistics_), 
asserta(output_device(l)). 

% ----------------------------------------------------------------------------------------------------
% Display the help options 

% ----------------------------------------------------------------------------------------------------
display_help :­

els, 
display _screen('help. scr'). 

% ----------------------------------------------------------------------------------------------------
% Display the screen file to the screen 

% ----------------------------------------------------------------------------------------------------
display_screen(Scrn_File) :­

p_open(H,Scrn_File,r), 
repeat, 

read_line(H,String), 
full_screen(String), 
elose(H), ! . 

% ----------------------------------------------------------------------------------------------------
% Display the string if it is not an assigned flag such as stop and end 

% ----------------------------------------------------------------------------------------------------
full_screen($stop$) :­

! , hit_key. 
full_screen($end$) :­

getO(X), els, ! . 
full_screen(Suing) :-

print(l ,[ nl,String]), fail. 

% ----------------------------------------------------------------------------------------------------
% Hit an ESC key 

% ----------------------------------------------------------------------------------------------------
hit_key :­

get0(27), ! . 
hit_key :-

els, fail. 
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9'o ----------------------------------------------------------------------------------------------------
% Pause until a key is pressed 

% ----------------------------------------------------------------------------------------------------
pause_:-

print(l,[ nl,$Hit any key ... $]), 
getO(_). 

% ----------------------------------------------------------------------------------------------------
% Interpret the entered command 

% ----------------------------------------------------------------------------------------------------
interpreter(stop) :- !. 
interpreter(dir) :- ! , 

directory('* .ari' ,File,_,_,date(Yr,Mm,Dd),Size), 
print(l,[nl,File,$ I $,Yr,$-$,Mm,$-$,Dd,$ I $,Size,$ bytes$]), 
fail. 

interpreter(cls) :- !, 
c Is, fail. 

. (? . ' mterpreter . ) . - . , 
display _help, fail. 

interpreter(help) :- !, 
display _help, fail. 

interpreter( check) :- ! , 
abolish(match_check/0), 
asserta(match_check), 
fail. 

interpreter(nocheck) :- l, 
abolish(match_check/0), 
fail. 

interpreter(trace) :- !, 
abolish( deriv ation_JO), 
asserta( derivation_), fail. 

interpreter(notrace) :- !, 
abolish(derivation_JO), fail. 

interpreter(proof) :- ! , 
abolish(refutation_}O), 
asserta(refutation_), fail. 

interpreter(noproof) :-!, 
abolish(refutation_JO), fail. 

interpreter(stat) :- ! , 
abolish( s ta tis tics_JO), 
asserta(statistics_), fail. 

interpreter(nostat) :- ! , 
abolish ( statistics_}O), fail. 

interpreter(list) :- !, 
display_ chains, fail. 

interpreter(input) :- !, 
display _chains, fail. 

interpreter(sos) :- ! , 
display _sos, fail. 

interpreter(occur) :- !, 
abolish( occurs_check_JO), 
asserta(occurs_check_), fail. 

interpreter(nooccur) :- !, 
abolish(occurs_check_}O), !, fail. 

interpreter(valid) :- !, 



show_ valid_literals, fail. 
interpreter(redundant) :- !, 

show _redundant_literals, fail. 
interpreter(default) :- !, 

show _cun-ent_flags, fail. 
interpreter(prove) :- !, 

prove_theorem(O), 
! ' fail. 

interpreter(X) :­
name(X,List), 
extract_pred(List, Pred, Term), !, 
find_command(Pred,Term), 
fail. 

interpreter(X) :­
syntax_en-or_, 
fail. 

syntax_en-or_ :-
print(l,[nl,$Wrong syntax or unknown command <<<$,X,$>>>$]), 
fail. 
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% ----------------------------------------------------------------------------------------------------
% Show valid literals if any 

% ----------------------------------------------------------------------------------------------------
show_ valid_literals :­

not valid_literal(_), 
printf([ nl,$No information of valid literals yet ... $]), !. 

show_valid_literals :­
valid_literal(Atom), 
printf([nl,tab(7),Atom]), 
fail. 

show_ valid_literals. 

% ----------------------------------------------------------------------------------------------------
% Show redundant literals if any 

% ----------------------------------------------------------------------------------------------------
show_redundant_literals :­

not redundant_literal(_), 
printf([nl,$No information ofredundant literals yet...$]), !. 

show _redundant_literals :­
redundant_literal( Atom), 
printf([nl,tab(7),Atom]), 
fail. 

show _redundant_literals. 

% ----------------------------------------------------------------------------------------------------
% Display all the indicators flag 

% ----------------------------------------------------------------------------------------------------
show_cun-ent_flags :-

display _flag($trace$,de1ivation_), 
display _flag($proof$,refutation_), 
display _flag($check$,match_check), 
display _flag($occurs check$, occurs_check_), 
cun-ent_sos, 
cun-ent_bound. 

display _flag(Text, Flag) :-



Flag, 
print(l,[nl,$### The $,Text,$ flag is ON.$]), !. 

display_flag(Text, Flag):-
print(l,[nl,$@@@ The $,Text,$ flag is OFF.$]), !. 
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% ----------------------------------------------------------------------------------------------------

% Display the polarity of the suppmt set 

% ----------------------------------------------------------------------------------------------------
current_sos :­

sos(Sign), 
print(l,[nl,$The selected polaiity of the SOS is [$,Sign,$]$]), !. 

current_sos. 

% ----------------------------------------------------------------------------------------------------

% Display the current search bound 

% ----------------------------------------------------------------------------------------------------
current_bound :­

bound(N), 
print(l,[nl,$The current seai·ch bound used is $,N]), !. 

current_bound :-
print(l ,[nl,$The current search bound used is the size of the top clause$]). 

% ----------------------------------------------------------------------------------------------------
% Detennine approp1iate command 

% ----------------------------------------------------------------------------------------------------
find_command(prove,N) :­

integer(N), 
prove_theorem(N), ! . 

find_command(bound,N) :- !, 
integer(N), 
abolish(bound/1 ), 
asserta(bound(N)), !. 

find_command(consult,File) :- !, 
clear_all, 
print(l,[nl,$Consult file$, File]), 
compile(File ). 

find_command(sos,Sign) :­
abolish(sos/1 ), 
asserta(sos(Sign)), !. 

find_ command( cd,Path) :­
chdir(Path), !. 

find_command(cd,Path) :-
print(l,[nl,$*** Invalid directory path$]), !. 

find_command(output,File) :-
open_device(File ), ! . 

find_command(input,_) :- !, 
display _chains. 

find_command(redundant,Atom_Image) :- ! , 
add_redundant(Atom_Image ). 



find_command(show, Arg) :- !, 
interpreter(Arg). 

find_command(show, Arg) :-
syntax_eITor_, fail. 
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% ----------------------------------------------------------------------------------------------------
% Add a redundant atom 

% ----------------------------------------------------------------------------------------------------
add_redundant(Atom_Image) :­

atom_string(Atom_Image, String), 
string_te1m(String, Atom), asse1ta(redundant_literal(Atom) ), !. 

add_redundant(Atom_Image) :-
print(l,[nl,$*** Wrong syntax of atom $,Atom_Image]). 

% ----------------------------------------------------------------------------------------------------
% Extract the predicate name and the argument 
% '(' - 40 ')' - 41 '['- 91 ']' - 93 '{' - 123 '}' - 125 

% ----------------------------------------------------------------------------------------------------
extract_pred(List, Pred, Term) :­

choose( 40, Pree, Succ, List), 
reverse(Succ, [], Rev _List), 
pick_suc(41, Rev_Arg, Rev_List), 
reverse(Rev_Arg, [], Arg), 
name(Pred, Pree), 
name(Term, Arg), !. 

extract_pred([911List], consult, File) :­
pick_pre(93,Arg,List), 
form_a_prolog_file(Arg,File), ! . 

extract_pred([ 1231List], output, File) :­
pick_pre(125,Arg,List), 
name(File, Arg), !. 

extract_pred(List, cd, Path) :-
choose(32, Pree, Succ, List), 
name(Path,Succ), !. 

% ----------------------------------------------------------------------------------------------------
% F01m a proper arity prolog file if a file extension is not specified 
% '.' - 46 'ari' - 97,114,105 

% ----------------------------------------------------------------------------------------------------
form_a_prolog_file(Arg,File) :­

not member( 46,Arg), 
append(Arg, ".ari", List), 
name(File, List), !. 

form_a_prolog_file(Arg,File) :-
name(File, Arg). 

% ----------------------------------------------------------------------------------------------------
% Display the chains of the set of support 

% ----------------------------------------------------------------------------------------------------
display_sos :-

not clause_filel_), 
print(l,[nl,$*** There is nothing to display ... $]), !. 

display_sos :-
print(l,[nl,$>>>> List of clauses in the Set of Support$]), 
set_of_supp01t(Chain), 
input_chain(N,Chain), 
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print( l ,[ nl,$[$,N,$] $,Chain]), 
fail. 

display _sos. 

% ----------------------------------------------------------------------------------------------------
% Get the initial search bound 

% ----------------------------------------------------------------------------------------------------
get_search_bound(_, Bound):- ' 

bound(Bound), !. 
get_search_bound(Chain, Bound) :-

length(Chain,Bound). 

% ----------------------------------------------------------------------------------------------------
% Prove the theorem 

% ----------------------------------------------------------------------------------------------------
prove_theorem(N) :­

not clause_file(_), 
print(l,[nl,$*** There is nothing to prove ... $]), !. 

prove_theorem(N) :-
ini t_search_space, 
record_event(derivation_strut), 
[! obtain_(N, Chain, Bound), 
search(Chain, Bound.Status), 
record_event(derivation_end), 
event_duration(derivation), 
Status == true, 
print(l,[nl,$Goal : $,Chain]), 
pause_!], 
display _statistics(Chain), ! . 

prove_theorem(O) :-
print(l ,[ nl,$*** The theorem is unsatisfiable ... $]), !. 

prove_theorem(N) :-
print(l,[ nl,$*** The chosen top chain is unrefutable ... $]), !. 

% ----------------------------------------------------------------------------------------------------
% Initialise the derivation search space 

% ----------------------------------------------------------------------------------------------------
init_search_space :­

abolish( event/2), 
abolish( exceed/I), 
abolish( op_cn-/2), 
abolish(path/1 ), 
abolish( en-/3 ), 
store_fact(a, path([])). 

% ----------------------------------------------------------------------------------------------------
% Obtain the top clause and the search bound 

% ----------------------------------------------------------------------------------------------------
obtain_(N, Chain, Bound) :­

N >0, 
input_chain(N, Chain), 
get_search_bound(Chain, Bound), ! . 

obtain_(O, Chain, Bound) :­
set_of_supp01t(Chain), 
get_search_bound(Chain, Bound). 
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I*========================================================== 
MODULE: SUPPORT.ARI 
PURPOSE: Contains utility procedures used in ME-TP, SL-TP, GC-TP, 

SLM-TP, and SLM5-TP. 

================================================---------= */ 

% ----------------------------------------------------------------------------------------------------

% Append two lists into one list 
% ----------------------------------------------------------------------------------------------------

append([], L,L) :- !. 

append(Ll, L2, L3) :-

insert(Ll,Ll 1, L3,L33), 

append(Ll 1,L2,L33). 
% ----------------------------------------------------------------------------------------------------

% Insert elements of the first list to the second list or vice versa 
lfo ----------------------------------------------------------------------------------------------------

insert([Hl,H2,H3,H4,H5,H6,H7,H81T], T, [Hl,H2,H3,H4,H5,H6,H7,H81R],R) :- !. 

insert([Hl,H2,H3,H41T], T, [Hl,H2,H3,H41R],R) :- !. 

insert([Hl,H21T], T, [Hl,H21R],R) :- !. 

insert([HllT], T, [HllR],R). 
% ----------------------------------------------------------------------------------------------------

% Find if the element is member of the list 
% ----------------------------------------------------------------------------------------------------

member(E, [El_], 1). 

member(E,[_IRest],N) :-

member(E,Rest,Nl ), 

N is Nl+l. 

member(E,List) :-

member(E,List, _). 
% ----------------------------------------------------------------------------------------------------

% Recursive selection of element from a list starting from the first element 
% ----------------------------------------------------------------------------------------------------

select(X, T, [XIT]). 

select(X, [YIT], [YIR]) :-

select(X, T ,R). 
% ----------------------------------------------------------------------------------------------------

Select starting from the last element of the list 
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% ----------------------------------------------------------------------------------------------------

select_last(E, [XIPrev], Succ, [XIList]) :-

select_last(E, Prev, Succ, List). 

select_last(E, [], Succ, [EISucc]). 
% ----------------------------------------------------------------------------------------------------

% Pick an element and return the other succeeding elements 
% ----------------------------------------------------------------------------------------------------

pick_suc(E,Succ, [EISucc]). 

pick_suc(E,Succ, [XIRest]) :-

pick_suc(E,Succ, Rest). 
% ----------------------------------------------------------------------------------------------------

% Pick an element and return the other preceding elements 
9"o ----------------------------------------------------------------------------------------------------

pick_pre(E,[], [EISucc]). 

pick_pre(E,[XIPrec], [XIRest]) :-

pick_pre(E,Prec, Rest). 
% ----------------------------------------------------------------------------------------------------
% Reverse a list 
% ----------------------------------------------------------------------------------------------------

reverse([], Result, Result) :- !. 

reverse([HIRest], Initial, Result) :-

reverse(Rest, [Hllnitial], Result). 
% ----------------------------------------------------------------------------------------------------

% Partition a list into two as divided by the element E 
% ----------------------------------------------------------------------------------------------------

choose(E, [], After, [EIAfter]). 

choose(E, [BIBefore], After,[B1List]) :-

choose(E, Before, After, List). 
% ----------------------------------------------------------------------------------------------------

% Delete the occurence of element E in the list Ll 
% ----------------------------------------------------------------------------------------------------

delete(E, [XILl], Ll) :-

X == E, !. 

delete(E, [HILl], [HIL2]) :­

delete(E, Ll, L2). 
% ----------------------------------------------------------------------------------------------------
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% Delete all the occurence of the specified element 
% ----------------------------------------------------------------------------------------------------

delete_all(E,List, Result) :­

delete(E,List,Rest), 

delete_all(E, Rest, Result), !. 

delete_all(E,List, List). 
% ----------------------------------------------------------------------------------------------------

% Unification algorithm with occur check 

% Occur check is only done if it is sure that they are PROLOG unifiable. 

% Instantiation will only takes place if occur-check is satisfied 
% ----------------------------------------------------------------------------------------------------

unify(L,K) :­

nonvar(L), 

nonvar(K), 

equal_unify(L,K), ! . % ------- Try equal symmetry axiom 

unify(L,K) :- % The occurs check is disabled 

not occurs_check_, 

!, L = K. 

unify(L, K) :­

var(L), 

var(K), 

L=K, !. 

unify(L, K) :­

atomic(L), 

atomic(K), ! , 

L=K, !. 

unify(L, K) :­

var(L), !, 

% variable vs variable 

% atomic vs atomic 

occur_check(L,K), ! . 

unify(L, K) :-

var(K), !, 

occur_check(K,L), !. 



unify(L, K) :-

L = .. [FunctorlTe1msl], 

K = .. [Functor1Terms2], 

unify _list(Terms 1, Terms2). 
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9o ----------------------------------------------------------------------------------------------------

9o Unify each corresponding element of the list 
9o ----------------------------------------------------------------------------------------------------

unify_list([], []) :- !. 

unify_list([EllRestl], [E21Rest2]) :-

unify(El, E2), 

unify_list(Restl, Rest2). 

9o ----------------------------------------------------------------------------------------------------
9o Check the occurence of the vruiable on the other te1m 
9o ----------------------------------------------------------------------------------------------------

occur_check(L,K) :-

a tom_to _list(K, K_List), 

member(K2, K_List), L == K2, !, fail. 

occur_check(L,L). 
9o ----------------------------------------------------------------------------------------------------
9o Convert atom to list 
9o ----------------------------------------------------------------------------------------------------

atom_to_list(K, [K]) :-

var(K), !. 

atom_to_list(K, [K]) :-

atomic(K), ! . 

atom_to_list(K,[PIArgs_List]) :-

K = .. [PIArgs], 

flatten_list(Args, Args_List). 
9o ----------------------------------------------------------------------------------------------------
9o Flatten a list of atom to list 
9o ----------------------------------------------------------------------------------------------------

flatten_list([], []) :- !. 

flatten_list([AIArgs], Args_List) :-

atom_to_list(A, List), 

flatten_list(Args, Args_List2), 
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append(List, Args_List2, Args_List). 
% ----------------------------------------------------------------------------------------------------

% Unification based on the equality symmetry axiom 
<fo ----------------------------------------------------------------------------------------------------

equal_unify(Equal_L, Equal_K) :­

literal_atom(Equal_L, Sign, L), 

literal_atom(Equal_K, Sign, K), 

equal_unify(L,K), ! . 

equal_unify( equal(LS 1,RS 1 ), equal(LS2,RS2)) :­

unify(LS 1,RS2), 

unify(RS 1,LS2). 
% ----------------------------------------------------------------------------------------------------

% Count the number of vruiables in an atom 
% ----------------------------------------------------------------------------------------------------

count_var(Atom, 1) :- var(Atom), !. 

count_ var(Atom, 0) :-

atomic(Atom), ! . 

count_ var(Atom, N) :­

Atom= .. [_IArgs], 

count_ var_list(Args, N). 
% ----------------------------------------------------------------------------------------------------
% Count the number of variables in the list 
% ----------------------------------------------------------------------------------------------------

count_var_list([], 0) :- !. 

count_ var_list([EIArgs], N) :-

count_ var(E, M), 

count_var_list(Args, K), 

N is M+K. 
% ----------------------------------------------------------------------------------------------------

% Check if General subsumes Specific 
% ----------------------------------------------------------------------------------------------------

subsumes(General,Specific) :­

disagree_pairs(General,Specific, Gen_List, Spec_List), 

is_general(Gen_List, Spec_List). 
% ----------------------------------------------------------------------------------------------------
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% Detennine the disagreeing pairs of the two unifiable atoms 

% at the lowest level. 
% ----------------------------------------------------------------------------------------------------

disagree_pairs(General, Specific, [],[]) :-

General == Specific, ! . 

disagree_pairs(General, Specific,_,_) :­

atomic(General), 

% if they are identical ( variable or atomic) 

atomic(Specific), !, fail. 

disagree_pairs(General,Specific, [General],[Specific]) :­

var(General),!. 

disagree_pairs(General,Specific, Gen_List, Spec_List) :­

nonvar(General), 

nonvar(Specific ), 

General= .. [PITerms_G], 

Specific = .. [PITerms_S], 

disagree_list(Terms_G, Terms_S, Gen_List, Spec_List). 
% ----------------------------------------------------------------------------------------------------

% Extract the corresponding terms which disagree 
o/'o ----------------------------------------------------------------------------------------------------

disagree_list(Terms_G, Terms_S, [], []) :­

Terms_G == Terms_S, !. 

disagree_list([GenerallTerms_G], [SpecificlTerms_S], Gen_List, Spec_List) :­

disagree_pairs(General,Specific, Sub_Gen_List, Sub_Spec_List), 

disagree_list(Terms_G, Terms_S, Accu_Gen, Accu_Spec), 

append(Sub_Gen_List, Accu_Gen, Gen_List), 

append(Sub_Spec_List, Accu_Spec, Spec_List). 
o/'o ----------------------------------------------------------------------------------------------------

% Check if the first list is more general than the second list by checking if the # 

% of distinct variables in the first is greater than the second, otherwise, 

% check if one of the variables in the first list when substituted by its corresponding 

% non-variable term in the second list, the rest of the first list is still general than the 

% second (This is assuming that in the extraction of the two lists, there is no 
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% instance that a non-variable element in the first list is paired 

% with a variable te1m in the second list) 
% ----------------------------------------------------------------------------------------------------

is_general(Gen_List, Spec_List) :­

unify_var_nonvar(Gen_List, Spec_List), 

s u bsume_list( Gen_List, Spec _List). 
% ----------------------------------------------------------------------------------------------------

% Check if the first list subsume the second list by checking if there is no pair 

% where the first element is subsumed by the second element, OR 

% checking if the number of distinct variables in the first is not less than the second list 
% ----------------------------------------------------------------------------------------------------

subsume_list(Gen_List, Spec_List) :­

more_general(Gen_List, Spec_List), 

count_distinct_ var(Spec_List, N), 

rename_vars(Gen_List, Spec_List, [], Gen_ Vars), 

count_distinct_ var(Gen_ V ars,M), 

!,M>=N. 
% ----------------------------------------------------------------------------------------------------

% Rename/substitute the general variables by the specific variables 
% ----------------------------------------------------------------------------------------------------

:rename_ vars(Gen_List, Spec_List, Result, Result) :­

Gen_List == Spec_List, ! . 

rename_vars([GenerallGen_List], [SpecificlSpec_List], Initial, Gen_ Vars):­

check_var(General, Specific, Initial, Result), 

rename_vars(Gen_List, Spec_List, Result, Gen_ Vars). 
% ----------------------------------------------------------------------------------------------------

% Check if the general vruiable was already substituted before 
% ----------------------------------------------------------------------------------------------------

check_ var(General, Specific, Initial, [Generalllnitial]) :­

var(General), 

var(Specific), 

not exact_element(General, Initial), 

General = Specific, ! . 

L check_ var(General, Specific, Initial, Initial) :-
~ 
fi 
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var(General), 

var(Specific), 

exact_element(General, Initial), 

General = Specific, ! . 

% for p(X,X,Y) vs p(A,B,B) 

check_ var(_, _, Initial, Initial). 
% ----------------------------------------------------------------------------------------------------

% Count the number of distinct variables in the list 
% ----------------------------------------------------------------------------------------------------

count_distinct_ var(List, N) :­

distinct_ var(List, [], Var_List), 

length(V ar_List, N). 
% ----------------------------------------------------------------------------------------------------

% Extract distinct variables from the list 
% ----------------------------------------------------------------------------------------------------

distinct_var([EIList], Initial, Var_List) :­

unique_ var(E, Initial, Result), 

distinct_ v ar(List, Result, V ar_List), ! . 

distinct_ var(_, Result, Result). 
% ----------------------------------------------------------------------------------------------------

% Find if E is a variable and distinct from the rest 
% ----------------------------------------------------------------------------------------------------

unique_var(E, Initial, [EIInitial]) :­

var(E), 

not exact_element(E,Initial), !. 

unique_ var(_, I,I). 
% ----------------------------------------------------------------------------------------------------

% An element is identical to one of the elements in the list 
% ----------------------------------------------------------------------------------------------------

exact_element(E,[FI_]) :­

E == F, !. 

exact_ element(E, [_I List]) :-

exact_element(E, List). 
% ----------------------------------------------------------------------------------------------------

% Check if the first list is more general than the second list 
% ----------------------------------------------------------------------------------------------------



more_general(Gen_List, Spec_List) :­

Gen_List == Spec_List, ! . 

more_general([GIGen_List], [SISpec_List]) :­

subsume_test(G,S), 

more_general(Gen_List, Spec_List). 
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% ----------------------------------------------------------------------------------------------------
% Test if two terms subsume each othe11 
% ----------------------------------------------------------------------------------------------------

subsume_test(G,S) :­

nonvar(G ), 

var(S), ! , fail. 

subsume_test(G,S) :-

not unify(G,S), 

! ' fail. 

subsume_test(G,S). 
% ----------------------------------------------------------------------------------------------------

% Unify a vaiiable of the general list with a non-variable element in 

% the second list 
% ----------------------------------------------------------------------------------------------------

unify_vai·_nonvai·(Gen_List, Spec_List) :­

Gen_List == Spec_List, ! . 

unify_ var_nonvai·([GenerallGen_list], [SpecificlSpec_List]) :­

unify _subsume(General, Specific), 

unify_ var_nonvar(Gen_list, Spec_List). 
% ----------------------------------------------------------------------------------------------------

% Unify only if the first subsumes the second 
% ----------------------------------------------------------------------------------------------------

unify_subsume(General, Specific):­

var(General), 

nonvai·(Specific ), 

unify(General,Specific), !. 

unify _subsume(General, Specific). 
% ----------------------------------------------------------------------------------------------------

% Read an atomic data from the keyboard 
% ----------------------------------------------------------------------------------------------------



ratom(Text) :-

get_string([], List), 

trailing_space(List, Listl ), 

reverse(Listl, [], List2), 

trailing_space(List2, Net), 

name(Text,Net). 
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<fo ----------------------------------------------------------------------------------------------------

% Remove any preceding spaces 
% ----------------------------------------------------------------------------------------------------

trailing_space([321Rest], Result) :-

trailing_space(Rest, Result), ! . 

trailing_space(Result, Result). 
% ----------------------------------------------------------------------------------------------------

% Read a series of characters 
<fo ----------------------------------------------------------------------------------------------------

get_string(Initial,Result) :-

getO(X), 

X \== 13, 

valid_char(X,Initial, Update), 

get_string(Update,Result), ! . 

get_string(Result, Result). 
<fo ----------------------------------------------------------------------------------------------------

% Check if valid character 
% ----------------------------------------------------------------------------------------------------

valid_char(8, [], []) :-

put(7), put(32), ! . 

valid_char(8,[_1Result], Result) :­

put(32), 

put(8), !. 

valid_char(X,Initial, [XIInitial]) :­

X >= 32, 

X =< 136, !. 

valid_char(_, Initial, Initial) :-



put(7), 

put(8), 

put(32), 

put(8). 
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% ----------------------------------------------------------------------------------------------------

% Record an event 
% ----------------------------------------------------------------------------------------------------

record_event(Event) :­

get_time(Time ), 

display _time(Time, Event), 

asserta(event(Event,Time)). 
% ----------------------------------------------------------------------------------------------------

% Detennine the duration to obtain a refutation or the whole derivation 
% ----------------------------------------------------------------------------------------------------

event_duration(refutation) :-

retract( event($refutation_start$,Tl) ), 

retract(event($refutation_end$,T2) ), ! , 

compute_duration(T2,Tl ,$Refutation$), ! . 

event_duration(derivation) :-

reu·act( event( de1ivation_sta1t, Tl)), 

retract(event(derivation_end,T2)), !, 

compute_duration(T2,T1,$Derivation$). 
% ----------------------------------------------------------------------------------------------------

% Compute the duration of an event 
% ----------------------------------------------------------------------------------------------------

compute_duration(T2,Tl ,Event) :­

time_lapse(T2,Tl ,Lapse), 

concat(Event,$ duration$,Message ), 

display _time(Lapse, Message). 
% ----------------------------------------------------------------------------------------------------

% Get the system time and display with a prompt When 
% ----------------------------------------------------------------------------------------------------. 
get_time(s_time(Hr,Min, Sec, Hundredth)) :-

time( time(Hr ,Min, Sec,H undredth) ). 
% ----------------------------------------------------------------------------------------------------
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% Display the time 
% ----------------------------------------------------------------------------------------------------

display_time(s_time(Hr,Min,Sec,Hd), Prompt):-

printf([nl, Prompt,$ time= $,Hr,$ : $,Min,$: $, Sec,$ : $,Hd, nl]). 
% ----------------------------------------------------------------------------------------------------

% Compute the time lapse Time2 - Timel. 

% Time = s_time(Hr, Mn,Sc,Ht) 
% ----------------------------------------------------------------------------------------------------

time_lapse(Time2, Timel, Lapse):-

convert_to_seconds(Time2, Seconds2), 

convert_to_seconds(Time 1, Seconds 1 ), 

sec_diff(Seconds2, Secondsl, Lapse_in_Seconds), 

standard_time(Lapse_in_Seconds, Lapse). 
% --------------------------------------------------------------------------- ·------------------------

% Compute the time difference in seconds 
% ----------------------------------------------------------------------------------------------------

sec_diff(Seconds2, Seconds!, Lapse_in_Seconds) :­

Seconds2 < Seconds 1, 

Lapse_in_Seconds is 24*60*60 + Seconds2 - Secondsl, !. 

sec_diff(Seconds2, Seconds!, Lapse_in_Seconds) :-

Lapse_in_Seconds is Seconds2 - Secondsl. 
% ----------------------------------------------------------------------------------------------------

% Conve1t the time in terms of seconds 
% ----------------------------------------------------------------------------------------------------

convert_to_seconds(s_time(Hr, Mn, Sc, Hd), Seconds) :­

Seconds is Hr*3600 + Mn*60 +Sc+ Hd/100. 

% ----------------------------------------------------------------------------------------------------

% Convert from seconds to standard time format 
% ----------------------------------------------------------------------------------------------------

standard_time(Seconds, s_time(Hr,Mn,Sc,Hd) ) :­

Sec is integer(Seconds), 

Hr is Sec//3600, 

Mn is (Sec//60 - Hr*60), 

Sc is Sec - Mn*60 - Hr*3600, 
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Hd is (Seconds - Sec)*lOO. 
% ----------------------------------------------------------------------------------------------------

% Pl.int a list of string/values to the device specified 
% ----------------------------------------------------------------------------------------------------

print(Handle, List) :­

member(ltem, List), 

printing(Handle,Item), fail. 

print(_, _). 

printing(H,nl) :­

nl(H), !. 

printing(H,tab(T)) :­

tab(H,T), !. 

printing(H,Item) :-

write(H,Item). 
% ----------------------------------------------------------------------------------------------------

% Get the handler of the default output device and print the contents of the list 
% ----------------------------------------------------------------------------------------------------

printf(List) :­

output_device(Handle ), 

print(Handle, List). 
% ----------------------------------------------------------------------------------------------------

% Determine if the two atoms are identical 
% ----------------------------------------------------------------------------------------------------

identical_atom(Al,A2) :- Al== A2, !. 

identical_atom(equal(Al ,A2), equal(B l,B2)) :-

Al == B2, A2 == Bl, !. 

identical_atom(L, K) :­

literal_atom(L, _, Atoml), 

literal_atom(K, _, Atom2), 

identical_atom(Atoml, Atom2). 
% ----------------------------------------------------------------------------------------------------

% Extract the sign and atom of the literal 
% ----------------------------------------------------------------------------------------------------

literal_atom(Literal, Sign, Atom) :-



Literal = .. [Sign, Atom], 

opposite(Sign,_), !. 
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% ----------------------------------------------------------------------------------------------------

% Detennine if the two signed atoms are complementary in sign 
% ----------------------------------------------------------------------------------------------------

complementary(L, K, L_A,K_A) :­

literal_atom(L, Signl, L_A), 

literal_atom(K, Sign2, K_A), 

opposite(Signl, Sign2). 
% ----------------------------------------------------------------------------------------------------

% Detennine if the two literal are identical 
% ----------------------------------------------------------------------------------------------------

ident:ical(L,K) :-

literal_atom(L, Sign, L_A), 

literal_atom(K, Sign, K_A), 

identical_atom(L_A,K_A). 
% ----------------------------------------------------------------------------------------------------

% The two literals are tautologous 
% ----------------------------------------------------------------------------------------------------

tautology(L, K) :-

complementary(L, K, L_A,K_A), 

identical_atom(L_A, K_A). 
% ----------------------------------------------------------------------------------------------------

% Check if two atoms are opposite 
% ----------------------------------------------------------------------------------------------------

opposite(L,K) :-

negate(L,K). 

negate(-- , ++ ) :- !. 

negate(++ , -- ) :- !. 

negate(++ A, -- A) :- !. 

negate(-- A, ++ A) :- !. 

negate(0,1) :- !. 

negate( 1,0). 
% ----------------------------------------------------------------------------------------------------

% Open a device if it is not the console 
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% ----------------------------------------------------------------------------------------------------

open_device(Device) :-

output_device(Handle), 

abolish( output_device/1 ), 

Handle \== 1, 

close(Handle), fail. 

open_device(console) :-

asserta( output_device(l) ), !. 

open_device(Device) :­

create(Handle,Device ), 

asserta( output_device(Handle) ), ! . 
% ----------------------------------------------------------------------------------------------------

% Store a fact at the bottom or at the top 
% ----------------------------------------------------------------------------------------------------

store_fact(z, Fact) :-

assertz(Fact ), !. 

store_fact(a, Fact) :-

asserta(Fact ). 
% ----------------------------------------------------------------------------------------------------
% Delete a fact from the database without backtracking 
% ----------------------------------------------------------------------------------------------------

delete_fact(Fact) :­

retract(Fact), !. 
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!* ================================================-=-----== 
Module : DRIVER.ARI 
Purpose : Search control of the derivation for the ME-TP, SL-TP and GC-TP. 

=============================================------------ *! 

!* ----------------------------------------------------------------------------------------------------
Control the search for a refutation using the consecutively bounded depth-first 
search strategy. The bound is the number of A- and B-literals in the center chain. 

---------------------------------------------------------------------------------------------------- *! 

search(Goal, Limit, true) :­

increment_bound(Limit,Bound), 

abolish(op_ctr/2), % erase the operation counter of the previous search tree 

abolish( eIT/3 ), 

ctr_set(0,0), 

% erase the eITor counter of the previous search tree 

% set the GC C-point counter to 0 

refute(Goal, start, Bound), ! . 

search(Goal, _, fail) :- % --- Failure caused by unrefutable goal ---

printf([ nl,$**** Unrefutable Goal : $, Goal, $****$,nl]). 

% ----------------------------------------------------------------------------------------------------

% Increment the search bound by the minimum excess of the previous search bound 

% ----------------------------------------------------------------------------------------------------

increment_bound(Bound,Bound) :­

new_search(Bound), 

reset_refutation_start. 

increment_bound(Limit,Bound) :-

delete_fact( exceed(lncrement) ), 

New_Limit is Limit+ Increment, 

print(l,[nl,$New Limit$, New_Limit,nl]), 

increment_bound(New _Limit,Bound). 

% ----------------------------------------------------------------------------------------------------

% Update the search bound 

% ----------------------------------------------------------------------------------------------------

new_search(Bound) :­

abolish(search_bound/1), 
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store_fact(a,search_bound(Bound)), ! . 

% ----------------------------------------------------------------------------------------------------

% Reset the start time of refutation 

% ----------------------------------------------------------------------------------------------------

reset_refutation_sta.It :-

delete_fact( event($refutation_start$, _) ), 

record_event($refutation_start$), ! . 

reset_refutation_start :­

record_event($refutation_start$). 

% ----------------------------------------------------------------------------------------------------

% Refute a center chain 

% ----------------------------------------------------------------------------------------------------

refute([],_, _) :-

display _success,!. 

refute(Chain, Prev_Operation, Depth):-

infer(Chain, Resolvant, Prev _Operation, Operation, Side_C, Type), 

assess_depth(Operation, Resolvant), 

[! inc(Depth, New_Depth), 

update_cn·(Operation,1), 

admissibility _check(Type, Operation, Resolvant), 

disp_center_chain(Resolvant, Operation, New_Depth, Side_C, derivation_) !], 

refute(Resolvant, Operation, New_Depth), 

disp_center_chain(Resolvant, Operation, New_Depth, Side_C, refutation_), 

update_path([Operation]). 

'fo ----------------------------------------------------------------------------------------------------

% Check the admissibility of a center chain using the syntactic and match checks 

% ----------------------------------------------------------------------------------------------------

admissibility_check(id, _, _) :- !. % No need to check (no substitution of variables) 



admissibility_check(Type, Operation, Resolvant) :­

err_ctr(syn,Operation), 

syntax_check(Type, Resolvant), !, 

etT_ ctr( sem, Operation), 

all_have_matches(Resolvant), ! . 
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% ----------------------------------------------------------------------------------------------------

% Infer the center chain using any of the operations used 

% ----------------------------------------------------------------------------------------------------

infer(Chain, Resolvent, _, t, Lemma, id) :­

truncate(Chain, Lemma, Resolvent), !. 

infer(Chain, Resolvent, Op, r, (B_Literal], id) :­

is_reducible(Op ), 

reduce(Chain, Resolvent, B_Literal, id), !. % Compulsory reduction 

infer(Chain, Resolvent, Op, r, [B_Literal], Type) :-

is_reducible(Op ), 

reduce(Chain, Resolvent, B_Literal, Type). 

infer(Chain, Resolvent, _, x, Index, Type) :-

extend(Chain, Resolvent, Index, Type). 

% ----------------------------------------------------------------------------------------------------

% SL does not allow reduction for center chain obtained by tmncation 

% ----------------------------------------------------------------------------------------------------

is_reducible(t) :-

ds(sl), ! , fail. 

is_reducible(_). 

% ----------------------------------------------------------------------------------------------------

% Assess if the search bound is exceeded by the number of A- and B-literals 

% ----------------------------------------------------------------------------------------------------

assess_depth(x, De1ived_Chain) :­

search_bound(Bound), 

count_AB_(Derived_Chain, 0, N), 



N > Bound, 

Excess is N - Bound, 

exceeded(Excess), !, fail. 

assess_depth(_, _). 
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<fo ----------------------------------------------------------------------------------------------------

% Count the number of A- and B-literals in the center chain 

% ----------------------------------------------------------------------------------------------------

count_AB_(Chain, Initial, Result) :-

[! pick_suc(L, Succ, Chain), 

class(L,Class, _), 

Class\== c, 

inc(Initial, Partial) !], 

count_AB_(Succ, Partial, Result), !. 

count_AB_(_, Result, Result). 

% ----------------------------------------------------------------------------------------------------

% Record the excess if it is less than the previous excess 

% ----------------------------------------------------------------------------------------------------

exceeded(C) :­

exceed(P), 

p <C, !. 

exceeded(C) :-

abolish( exceed/1), 

store_fact(a, exceed(C)). 

% ----------------------------------------------------------------------------------------------------

% Display the center chain and the operation applied 

% ----------------------------------------------------------------------------------------------------

disp_center_chain(Chain, Op, Depth, Side_C, Check) :-

Check, 

operation(Op,Operation), 



printf([nl,$Inference rule applied: $,Operation]), 

disp_rule(Op,Side_C), 

printf ([ nl,$Derivant at depth : $,Depth,nl]), 

print_chain(Chain), 

fail. 

disp_center_chain(_, _, _, _,_). 
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% ----------------------------------------------------------------------------------------------------

% Display the input chain OR the reduced B-literal or the lemmas generated 

% ----------------------------------------------------------------------------------------------------

disp_rule(x, Index) :-

input_chain(Index, Chain), 

printf([n1,$Input Chain$, Chain]), !. 

disp_rule(r, B_Literal) :-

printf([nl,$Selected B-literal $, B_Literal]), !. 

disp_rule(t, Lemma) :-

disp_lemma(Lemma). 

% ----------------------------------------------------------------------------------------------------

% Display the lemma 

% ----------------------------------------------------------------------------------------------------

disp_lemma(Lemma) :­

ds(me), 

printf([ nl,$Lemma $]), 

member(X, Lemma), 

input_chain(X, Chain), 

printf([nl,$ $, Chain]), 

fail. 

disp_lemma(_) :­

printf([ nl]). 

% ----------------------------------------------------------------------------------------------------

% Display the elements of the center chain 
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% ----------------------------------------------------------------------------------------------------

print_chain([ LitlChain]) :­

p1int_chain(Chain), 

printf([$ $,Lit]), ! . 

print_chain(_). 

% ----------------------------------------------------------------------------------------------------

% Select an input chain from the set of support 

% ----------------------------------------------------------------------------------------------------

set_of_support(Chain) :-

sos(Sign), %+++ Obtain the assigned polarity of the supp01t set 

input_chain(_, Chain), 

same_sign(Chain, Sign). 

% ----------------------------------------------------------------------------------------------------

% Check if all the sign of the literal is the same to polarity of the support set 

% ----------------------------------------------------------------------------------------------------

same_sign([], Pola1ity) :- !. 

same_sign([BIChain], Polarity) :-

class(B,b,Literal), 

literal_atom(Literal,Sign,_), 

polarity(Sign, Polarity), 

same_sign(Chain, Polarity). 

% ----------------------------------------------------------------------------------------------------

% Compare the sign of the literal to the polarity of the supp01t set 

% ----------------------------------------------------------------------------------------------------

polarity(++,+):-!. 

polarity(--, -). 

% ----------------------------------------------------------------------------------------------------

% Display the success message and record also the end time of refutation 

% ----------------------------------------------------------------------------------------------------



display_success :-

record_event($refutation_end$), 

printf([nl,$SUCCESSFULL REFUTA TION$,nl]). 
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% ----------------------------------------------------------------------------------------------------

% Update the operation counter 

% ----------------------------------------------------------------------------------------------------

update_ctr(Op, Val) :­

retract(op_ctr(Op, Ctr)), 

N is Ctr+ Val, 

store_fact(a, op_ctr(Op, N)), !. 

update_ctr(Op, Val) :-

store_fact(a, op_ctr(Op, Val)). 

% ----------------------------------------------------------------------------------------------------

% Clear all the derivation predicates from the database prior to the start of the % 

derivation 

% ----------------------------------------------------------------------------------------------------

clear_all :-

abolish ([ exceed/1, op_ctr/2, path/1,err/3, redundan t_literal/1, v alid_literal/1, 

input_chain/2, order/1, clause_type/1, equal_exist/0, clause_file/1, 

search_bound/1 ]), 

expunge, 

store_fact(a, path([])). 

% ----------------------------------------------------------------------------------------------------

% Display the input chains 

% ----------------------------------------------------------------------------------------------------

display_chains :-

not clause_file(_), 

print(l,[nl,$*** There is nothing to display ... $]), !. 

display _chains :-

clause_file(Source ), 



printf([nl,$Theorem source file : <<< $,Source,$ >>>$]), 

printf([nl,$The matrix chains with the generated lemma$,nl]), 

input_chain(X, Chain), 

printf([nl,$[$,X,$] $]), 

print_input_chain(Chain), 

fail. 

display _chains :-

order(L), 

clause_type(Type ), 

clause_size(Min,Max), 

member([L, Order], [ [0 ,$propositional$], [ I ,$first order$]]), 

printf([nl,nl,$The problem is a set of $,Type,$ clauses$]), 

printf([nl,$Written in $,Order,$ logic.$]), 

printf([nl,$Minimum clause size : $,Min]), 

printf([nl,$Maximum clause size: $,Max]), !. 

display _chains. 
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% ----------------------------------------------------------------------------------------------------

% Display the literal of the input chain 

% ----------------------------------------------------------------------------------------------------

print_input_chain([]) :- !. 

print_input_chain([[b,L]IRest]) :-

printf([$ $,L]), 

print_input_chain(Rest). 

% ----------------------------------------------------------------------------------------------------

% Display the statistics of the derivation 

% ----------------------------------------------------------------------------------------------------



display _statistics(_) :­

not statistics_, ! . 

display _statistics(Goal) :­

search_bound(Bound), 

printf([nl,$Top clause: $,Goal,n1,$Derivation Search bound: $,Bound]), 

refutation_stat, 

search_tree_stat, 

error_stat. 
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% ----------------------------------------------------------------------------------------------------

% Display the number of inadmissible center chains 

% ----------------------------------------------------------------------------------------------------

error_stat :­

gather_err(syn,Resultl), 

gather_err(sem,Result2), 

printf([nl,nl,$ Failed by Restrictions Statistics :$]), 

disp_err($syntactic check$,Result 1 ), 

disp_err($extendable check$,Result2). 

% ----------------------------------------------------------------------------------------------------

% Gather the asserted operation counter which inadmissible center chains was 

% infened 

% ----------------------------------------------------------------------------------------------------

gather_err(Err,[[Op,Ctr]IRest]) :­

retract(err(Err,Op, Ctr)), 

gather_err(Err,Rest), !. 

gather_eIT(_,[]). 

% ----------------------------------------------------------------------------------------------------

% Display the check where inadmissible center chains were detected 

% ----------------------------------------------------------------------------------------------------

disp_eIT( _, []) :- !. 

disp_err( Type, List) :-



printf([ nl,$0n $, Type,$ restrictions$]), 

display_ops(List, 0). 

208 

% ----------------------------------------------------------------------------------------------------

% Display the first refutation statistics 

% ----------------------------------------------------------------------------------------------------

refutation_stat :­

event_duration(refutation), 

path(Path), 

count(Path, Results), 

printf([nl,$Refutation path : $,Path,nl,$Refutation Statistics :$]), 

display_ops(Results, 0). 

% ----------------------------------------------------------------------------------------------------

% Display the search tree statistics 

% ----------------------------------------------------------------------------------------------------

search_tree_stat :-

printf([ nl,nl,$Search tree Statistics:$]), 

gather_ops([x,r,t], Result), 

display_ops(Result, 0). 

% ----------------------------------------------------------------------------------------------------

% Gather all the applied operations that constitute the search u·ee 

% ----------------------------------------------------------------------------------------------------

gather_ops([], []) :- !. 

gather_ops([OITail], [[0,N]IRest]) :-

op_ctr(O,N), 

gather_ops(Tail, Rest), ! . 

gather_ops([OITail], Rest) :-

gather_ops(Tail, Rest). 

% ----------------------------------------------------------------------------------------------------

% Count the number of occurence of each distinct element of the list 

% ----------------------------------------------------------------------------------------------------
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count([], []) :- !. 

count([HIRest], [[H,F]IResult]) :­

length(Rest, M), 

delete _all(H,Rest, Others), 

length(Others, N), 

Fis M-N+l, 

count( Others,Result ). 

% ----------------------------------------------------------------------------------------------------

% Display the statistics of each operation of the list 

% ----------------------------------------------------------------------------------------------------

display_ops([[Op,C]IRest], N) :­

Tis N+C, 

disp_op(Op,C),. 

display_ops(Rest, T), !. 

display_ops(_,Total) :-

printf([nl, $Total No. oflnference Steps:$, Total]). 

% ----------------------------------------------------------------------------------------------------

% Display the number of times an operation is applied 

% ----------------------------------------------------------------------------------------------------

disp_op(Op, C) :­

operation(Op,Operation), 

printf([nl,$ No. of $,Operation,$= $,C]), !. 

% ----------------------------------------------------------------------------------------------------

% Identify the operation code 

% ----------------------------------------------------------------------------------------------------

operation(x,$extension$):- ! . 

operation(r,$reduction$):- ! . 

operation( t,$truncation$). 

<fo ----------------------------------------------------------------------------------------------------

% Update the operation collector which collect the operation applied in the search path 



! 
j, 

f 
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9o ----------------------------------------------------------------------------------------------------

update_path(Times) :­

delete_fact(path(Current)), 

append(Times, Current, New), 

store_fact(a, path(New)). 

update_path(Times) :­

delete_fact(path( Current)), 

append(Times, New, Current), 

store_fact(a, path(New)), !, fail. 

9o ----------------------------------------------------------------------------------------------------

<,lo Count the error detected 

9o ----------------------------------------------------------------------------------------------------

err_ctr(_,_). 

err_ctr(Type, Op):­

get_prev(Type, Op, Ctr), 

N is Ctr+l, 

store_fact(a, eIT(Type, Op, N)), !, fail. 

9o ----------------------------------------------------------------------------------------------------

<,lo Get the CUITent error type counter 

9o ----------------------------------------------------------------------------------------------------

get_prev(Type, Op, Ctr) :­

delete_fact(en(Type, Op, Ctr)), !. 

get_prev(Type, Op, 0). 

9o ----------------------------------------------------------------------------------------------------

9o 

9o 

9o 

9o 

Resolve on the literal either by 

(i) a unit input chain (subsumed unit extension) 

(ii) any input chain, or 

(iii) pa.ramodulate 
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% ----------------------------------------------------------------------------------------------------

resolve(Literal_L, [], Input, id) :­

unit_subsume(Literal_L, Input), !. 

resolve(Literal_L, Input, N, unify) :­

binary_resolution(Literal_L, Input, N). 

resolve(Literal_L, Input, N, unify) :­

equal_exist, 

paramodulate(Literal_L, Input, N). 

% ----------------------------------------------------------------------------------------------------

% Apply a binary resolution to resolve the selected literal 

% ----------------------------------------------------------------------------------------------------

binary_resolution(Literal_L, Input, N) :­

input_chain(N, Input_Chain), 

select( [b,Literal_K], Input, Input_Chain), 

right_match(Literal_L, Literal_K). 

% ----------------------------------------------------------------------------------------------------

% Apply paramodulation to the Literal. 

% ----------------------------------------------------------------------------------------------------

paramodulate(Literal, [[b,New _Literal] IRest_Input], Index) :­

extract_predicate_symbol(Literal, Symbol, Terms), 

find_equal_chain(LS, RS, Rest_Input, Index), 

substitute(LS, RS, Terms, New_Terms), 

extract_predicate_symbol(New _Literal, Symbol, New_ Te1ms). 

% ----------------------------------------------------------------------------------------------------

% Find an input chain which contain a positive equal literal. It has 

% to be checked if it did not pick up the reflexive equality axiom. 

% ----------------------------------------------------------------------------------------------------

find_equal_chain(LS, RS, Rest_Input, Index) :­

input_chain(lndex, Chain), 

select([b, ++ equal(LS, RS)], Rest_Input, Chain), 
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LS\== RS. % make sure that it is not the reflexive axiom 

% ----------------------------------------------------------------------------------------------------

% Substitute a term which is unifiable to any of the terms of the 

% equal literal LS and RS. 

% ----------------------------------------------------------------------------------------------------

substitute(LS, RS, [EITerms], [New_EITerms]) :-

nonvar(E), % Do not paramodulate an into variable 

find_unifiable(LS, RS, E, New_E). 

substitute(LS, RS, [EITerms], [EINew_Terms]) :-

substitute(LS, RS, Terms, New_Terms). 

% ----------------------------------------------------------------------------------------------------

% Determine which term of the equal literal is unifiable with the 

% given term E of the paramodulated literal 

% ----------------------------------------------------------------------------------------------------

find_unifiable(LS, RS, E, New _E) :­

replace(LS, RS, E, New _E), !. 

find_unifiable(LS, RS, E, New _E) :­

E = .. [PredlTerms]. 

substitute(LS,RS, Terms, New_Terms), 

New_E = .. [PredlNew_Terms]. 

% ----------------------------------------------------------------------------------------------------

% Replace the term with one of the terms of the equal literal 

% ----------------------------------------------------------------------------------------------------

replace(LS, RS, E, RS):­

identical_atom(LS,E), !. 

replace(LS, RS, E, LS) :­

identical_atom(RS,E), !. 

replace(LS, RS, E, RS) :­

var(RS), 

unify(LS,E), ! . 



replace(LS, RS, E, RS):­

unify(LS,E). 

replace(LS, RS, E, LS) :-

unify(RS,E). 
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% ----------------------------------------------------------------------------------------------------

% Extract the sign, predicate symbol, arity and term of a literal 

% ----------------------------------------------------------------------------------------------------

extract_predicate_symbol(Literal, symbol(Sign, Predicate, Arity), Terms):­

literal_atom(Literal, Sign, Atom), 

Atom= .. [PredicatelTerms], 

length(Terms, Arity). 

% ----------------------------------------------------------------------------------------------------

% Find a unit input chain which is subsumed by the given literal. 

% ----------------------------------------------------------------------------------------------------

unit_subsume(Literal_L, Index ) :-

input_chain(lndex, [ [b,Literal_K] ]), 

complementary(Literal_L, Literal_K, L_A, K_A), 

subsumes(K_A, L_A), !. 

% ----------------------------------------------------------------------------------------------------

% Match the two literals 

% ----------------------------------------------------------------------------------------------------

right_match( Literal_L, Literal_K) :­

complementary(Literal_L, Literal_K, A 1,A2), 

unify(Al,A2), !. 

% ----------------------------------------------------------------------------------------------------

% Selection function based on the computed weight of literal 

% ----------------------------------------------------------------------------------------------------

selection_function(Literal, Left_Cells, Chain):­

get_rightmost_cell(Right_Cell, LeftCell, Chain), 
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choose_literal(Literal, Right_Cell, LeftCell, Left_Cells), !. 

% ----------------------------------------------------------------------------------------------------

% Choose a literal to resolve upon 

% ----------------------------------------------------------------------------------------------------

choose_literal(Literal, [Literal], LeftCell, LeftCell) :- !. 

choose_literal(Literal, Right_Cell, LeftCell, Left_Cells) :-

compute_ weights(Right_Cell, Weights, LeftCell), 

select_literal(Literal, Rest, Right_Cell, Weights), 

append(Rest, LeftCell, Left_Cells). 

% ----------------------------------------------------------------------------------------------------

% Select a literal which has the minimum weights 

% ----------------------------------------------------------------------------------------------------

select_literal(Literal, Rest, Right_Cell, Weights) :­

minimum(Val, Weights), 

member(Val, Weights, Pos), 

nth_element(Pos, Literal, Rest, Right_Cell), !. 

% ----------------------------------------------------------------------------------------------------

% Get an element at the given position returning the rest of the list 

% ----------------------------------------------------------------------------------------------------

nth_element(l, E, Rest, [EIRest]) :- !. 

nth_element(Pos, E, [XIRest], [XITail]) :-

dec(Pos,Next), 

nth_element(Next, E, Rest, Tail). 

% ----------------------------------------------------------------------------------------------------

% Find the minimum value of the list 

% ----------------------------------------------------------------------------------------------------

minimum(Val, List):-

pick_suc(N, Succ, List), 



minimum(N, Val, Succ), !. 

minimum(Initial, Val, List):­

pick_suc(N, Succ, List), 

N < Initial, 

minimum(N, Val, List), !. 

minimum(Val, Val, _). 
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<fo ----------------------------------------------------------------------------------------------------

<fo Compute the weight of each candidate literal literal 

<fo ----------------------------------------------------------------------------------------------------

compute_weights([], [], _) :- !. 

compute_weights([ [b,L] IRest], [ColOthers], LC):­

match_count(L,M), 

has_identical([b,L], I, LC), 

Co is I+ M, 

compute_ weights(Rest, Others, LC). 

<fo ----------------------------------------------------------------------------------------------------

<fo Detennine the weight of the literal by accumulating the size of the 

<fo input chain in every possible extension 

<fo ----------------------------------------------------------------------------------------------------

match_count(L,_) :-

ctr_set(16,0), <fo Initialise the accumulator 

ctr_set( 17 ,0), <fo Initialise the unit input flag 

resolve(L, Input, _, _), 

[ ! length(Input, N), 

sum_ weight(N) !], fail. 

match_count(L,Weight) :­

literal_atom(L, _, Atom), 

count_ var(Atom,Var), 

ctr_is(16,W), 
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Weight is W+Var. 

% ----------------------------------------------------------------------------------------------------

% Accumulate the weight of the literal. If the side chain is a unit 

% then do not accumulate for the first time and set the unit flag to 1 

% ----------------------------------------------------------------------------------------------------

sum_ weight(O) :­

ctr_is( 17 ,0), 

ctr_set(l 7, 1 ),! . 

sum_ weight(N) :-

ctr_is( 16,Current), 

Weight is Current+N+ 1, 

ctr_set(16,Weight). 

% ----------------------------------------------------------------------------------------------------

% Find if the literal is preceded by an identical literal 

% ----------------------------------------------------------------------------------------------------

has_identical(L, 0, LC) :­

member(K, LC), 

L == K, !. 

has_identical(L, 1, LC). 

% ----------------------------------------------------------------------------------------------------

% Get the rightmost cell if it has, otherwise the entire chain. 

% ----------------------------------------------------------------------------------------------------

get_rightmost_cell( _, _, [[Sl_]I_]) :-

S \== b, !, fail. /* ----- first literal is non-B-literal ----- */ 

get_rightmost_cell(Right_Cell, [[SIT]ILeftCell], Chain) :­

choose([SIT], Right_Cell, LeftCell, Chain), 

s \== b, !. 

get_rightmost_cell(Chain, [], Chain). 

% ----------------------------------------------------------------------------------------------------
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% Match check. Check if one of the B-literal of the chain cannot be extended upon 

% ----------------------------------------------------------------------------------------------------

all_have_matches(_) :­

not match_check, ! . 

all_have_matches(_) :­

order(O), !. 

all_have_matches(Chain) :­

member([b,L], Chain), 

sufficiently _instantiated(L), 

unextendable(L), ! , fail. 

all_have_matches(_). 
' 

% ----------------------------------------------------------------------------------------------------

% Detennine if the literal is sufficiently instantiated, that is 

% half of its terms are at least not variables 

o/'o ----------------------------------------------------------------------------------------------------

sufficiently_instantiated(Literal) :­

literal_atom(Literal, Sign, Atom), 

Atom= .. [_!Terms], 

length(Terms, N), 

Mis (N+l)//2, 

check_ var(Terms,M). 

% ----------------------------------------------------------------------------------------------------

% Check if the number of nonvariable terms does not exceed the allowed 

% ----------------------------------------------------------------------------------------------------

check_var(Te1ms,O) :- !. 

check_ var(Terms,M) :-

[! select(E,Rest, Terms), 

nonvar(E), 

dec(M,N) !], 

check_ var(Rest,N). 
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% ----------------------------------------------------------------------------------------------------

% The literal is not extendable within a selies of two extensions 

9'o ----------------------------------------------------------------------------------------------------

unextendable(L) :­

literal_atom(L,_, Al), 

valid_literal(A2), 

subsumes(Al,A2), !, fail. 

unextendable(L) :­

literal_atom(L,_, L_A), 

redundant_literal(K_A), 

subsumes(K_A, L_A), ! . % K_A subsumes L_A 
I 

unextendable(L) :­

unresolvable(L), 

li teral_atom(L,_,A), 

store_fact(a, redundant_literal(A) ), ! . 

unextendable(L) :-

li teral_atom(L,_,A ), 

store_fact(a, valid_literal(A) ), !, fail. 

9'o ----------------------------------------------------------------------------------------------------

% Check if the literal is umesolvable after the next level 

% ----------------------------------------------------------------------------------------------------

unresolvable(L) :-

resolve(L, Input, _,_), 

all_resolvable(Input),!, fail. 

unresolvable(L ). 

% ----------------------------------------------------------------------------------------------------

% Check if the introduced literals are resolvable 

% ----------------------------------------------------------------------------------------------------

all_resolvable([]) :- !. 

all_resolvable([[b,L]llnput]) :-



resolve(L, _, _,_), 

all_resolvable(lnput). 
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% ----------------------------------------------------------------------------------------------------

% The literal is unresolvable 

% ----------------------------------------------------------------------------------------------------

unresolvable(L) :-

resolve(L, _, _,_), ! , fail. 

unresolvable(_). 

% ----------------------------------------------------------------------------------------------------

% Extract the rightmost cell of the chain 

% ----------------------------------------------------------------------------------------------------

extract_right_most_cell([], [ LIChain], [ LIChain] ) :­

not class(L,b,_), !. 

extract_right_most_ cell([LIRight_Most_ Cell], Left_ Cells, [LIChain]) :-

extract_right_most_cell(Right_Most_ Cell, Left_ Cells, Chain). 

% ----------------------------------------------------------------------------------------------------

% Determine the classification of the literal 

% ----------------------------------------------------------------------------------------------------

class([C,L], C, L) :- !. 

class([C,S,L],C,L) :- !. 

class([C,_,_,L],C,L). 
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I*========================================================== 
Module: SLM_DRV.ARI 
Purpose: Contains the search control for SLM and SLM-5 delivations 

========================================================== *I 

9h ----------------------------------------------------------------------------------------------------
9h Delivation Search Control (bounded depth-first search) 

9h ----------------------------------------------------------------------------------------------------
search(Goal_Chain, Depth, true) :­

increment_bound(Depth,Bo und), 
ctr_set(l, 1 ), 9h This counter is reserved for node link counter 
ctr_set(2,0), 9h This counter is reserved for depth counter 
start_refutation, 
reset_ctr, 
refute([ [0,0,Goal_Chain] ], [0,0,x], 0), 
abolish(unit_subsume_fail/0), !. 

search(Goal_ Chain, Depth, fail). 

9h ----------------------------------------------------------------------------------------------------
9h Reset the refutation start time 

9h ----------------------------------------------------------------------------------------------------
start_refutation :-

retract( event($refutation_start$,_)), 
record_event($refutation_start$), ! . 

start_refutation :-
record_event($refutation_start$). 

9h ----------------------------------------------------------------------------------------------------
9h Increment the search bound if the failure is caused by reaching the bound limit 

9h ----------------------------------------------------------------------------------------------------
increment_bound(Depth,Depth) :­

new _search(Depth ). 
increment_ bound(Depth,N ew _Depth) :­

find_ excess(Excess ), 
Depth2 is Depth + Excess, 
increment_ bound(Depth2,N ew _Depth). 

9h ----------------------------------------------------------------------------------------------------
9h Find the excess by checking first if the failure was caused by the 
9h unit subsume check then there is no excess, otherwise, find the exceed(Excess). 

9h ----------------------------------------------------------------------------------------------------
find_excess(Excess) :-

delete_fact( exceed(Excess) ), ! . 
find_excess(O) :-

delete_fact( unit_subsume_fail). 

9h ----------------------------------------------------------------------------------------------------
9h New Search bound 

9h ----------------------------------------------------------------------------------------------------
new_search(Bound) :­

abolish(search_bound/1 ), 
abolish( disproved/2 ), 
print(l,[nl,nl,$New Search bound: $,Bound]), 
asserta(search_bound(Bound)), !. 
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% ----------------------------------------------------------------------------------------------------

% Check if the chain is empty 

% ----------------------------------------------------------------------------------------------------
empty_chain([]) :- !. 
empty _chain([[0,0,[]]]). 

% ----------------------------------------------------------------------------------------------------
% Find a refutation 

% ----------------------------------------------------------------------------------------------------
refute(Chain, _, _) :-

empty_chain(Chain), 

display _success, ! . 
refute(Chain, Tip, Level) :-

infer(Chain, De1ived_Chain, Tip, New_Tip, Op, Type, Desc), 

[ ! 

assess_depth(Op, Derived_Chain), 

inc(Level, New_Level), 

update_ctr(Op, 1), 

apply _restrictions(Op, Type, Derived_ Chain), 

disp_center_chain(Derived_Chain, New_ Tip, Desc, Op, New _Level,derivation_) 

! ] ' 

refute(Derived_Chain, New_Tip, New_Level), 

disp_center_chain(De1ived_ Chain, New_ Tip, Desc, Op, New _Level.refutation_), 

update_path([Op]). 

% ----------------------------------------------------------------------------------------------------

% Apply an inference operation to the center chain 

% ----------------------------------------------------------------------------------------------------
% ############ Reduction after an extension operation 
infer(Chain, Derived_Chain, Tip, Tip, r, Type, B_Literal) :-

[! untruncatable(Chain, Tip), 
after_extension(Tip, L,R), 
select_ branch ([ [L,R,S ubchain] !Branch], Other_Branches, Chain) ! ] , 
reduce(x, [[L,R,Subchain]IBranch], Reduced_Branch, B_Literal, Type), 



append(Other_Branches, Reduced_Branch, Derived_Chain). 
% ############ Reduction after a truncation operation 
infer(Chain,Derived_Chain, Tip, [L,R,t_l,C_Literal], r, Type, B_Literal):­

after_tmncation(Tip, _, C_Literal), 
select_branch([[L,R,Subchain]IBranch], Other_Branches, Chain), 
reduce(C_Literal,[[L,R,Subchain]IBranch],Reduced_Branch, B_Literal, Type), 
append(Other_Branches, Reduced_Branch, Derived_Chain). 

% ############ Spread if the last operation is an extension operation 
infer(Chain,Derived_Chain, Tip, [Ll,Rl,s], s, id, []) :-

spreadable, 
[! after_extension(Tip, L, R), 
untruncatable(Chain, Tip), 
select([L,R,Subchain], Other_Nodes, Chain) !], 
spread([L,R,Subchain], New _Nodes), 
append(Other_Nodes, New _Nodes, Delived_ Chain), 
get_tip_node([Ll,Rl,_], Derived_Chain), !. 

% ############ Tmncate non-B-literals 
infer(Chain,Derived_Chain,[L,R,Opl_], New_Tip, Tr, Type,[]) :­

[! Op\== s, 
select_ branch([ [L,R,S ubchain] !Branch], Other_Branches, Chain) ! ] , 
truncate([[L,R,Subchain]IBranch], Tmncated_Branch, [TrlC], Type), 
[! append(Tmncated_Branch, Other_Branches, Delived_Chain), 
find_tip([L,R], Delived_ Chain, New_ Tip, [TrlC]) ! ] . 

% ############ Apply the extension operation 
infer(Chain, Extended_Chain, Old_Tip, New_Tip, x, Type,Input_Index) :­

untruncatable(Chain, Old_ Tip), 
extend(Chain, Extended_Chain, New_Tip, Type, Input_Index). 
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% ----------------------------------------------------------------------------------------------------
% Determine if spreading can be applied. Spreading should be applied only if the 
% set of clauses is in first order level. If is not in first order and the version of SLM 
% is 5.then spreading is not applied. 

% ----------------------------------------------------------------------------------------------------
spreadable:­

order(l), !. 
spreadable:-

slm_ version(5), 
! ' fail. 

spreadable. 

% ----------------------------------------------------------------------------------------------------
% Get a new tip 

% ----------------------------------------------------------------------------------------------------
get_new_tip([L,R,s], Chain) :­

select([L,R,S], Others, Chain), 
not member([R,X,_], Others), !. 

% ----------------------------------------------------------------------------------------------------
% Select a new tip node 

% ----------------------------------------------------------------------------------------------------
select_node([L,R,s], [L,R,Subchain], Other_Nodes, Chain) :­

select([L,R,Subchain], Other_Nodes, Chain), !. 
select_node(_, [L,R,Subchain], Other_Nodes, Chain):-



select([L,R,Subchain], Other_Nodes, Chain), 
not member([R,X,_], Other_Nodes), !. 
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% ----------------------------------------------------------------------------------------------------
% Check if the cmTently inferred branch is not uuncatable 

% ----------------------------------------------------------------------------------------------------
untruncatable(Chain, [L,R, s]) :- !. 
untruncatable(Chain, [L,RI_]) :-

member([L,R,[ Al_]], Chain), 
member(A, [[al_], [cl_]]), !, fail. 

untruncatable( _, _). 

% ----------------------------------------------------------------------------------------------------
% Check if the tip was inferred by truncation 

% ----------------------------------------------------------------------------------------------------
after_truncation([L,R,t_l,C_Literal], [L,R], C_Literal). 

% ----------------------------------------------------------------------------------------------------
% Check if the tip was inferred by extension 

% ----------------------------------------------------------------------------------------------------
after_extension([L,R,x], L,R). 

% ----------------------------------------------------------------------------------------------------
% Select a branch from the chain 

% ----------------------------------------------------------------------------------------------------
select_branch(Branch, Other_Branches, Chain) :-

select([O,O,S], Other_Nodes, Chain), 
find_next_nodes([[0,0,S]], Branch, Other_Branches, Other_Nodes). 

% ----------------------------------------------------------------------------------------------------
% Find next nodes 

% ----------------------------------------------------------------------------------------------------
find_next_nodes([[L,R,S]IRest], Branch, Other_Branches, Chain):-

select([R,RR,SS], Other_Nodes, Chain), 
find_next_nodes([[R,RR,SS],[L,R,S]IRest], Branch, Other_Branches, Other_Nodes). 

find_next_nodes([[L,R,S]IRest], [[L,R,S]IRest], Chain, Chain) :-

not member([R,_,_], Chain). 
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I*========================================================-= 
Module: SLM_SUP.ARI 
Purpose: Contains most of the utilities procedures used in SLM-TP and SLM5-

TP. This include the self configuration facilities, etc. 
===================================================--===== *I 

<fa----------------------------------------------------------------------------------------------------
<fa Update the operation counter 

<fa----------------------------------------------------------------------------------------------------
update_ctr(Op, Val) :­

delete_fact(op_ctr(Op, Ctr)), 
N is Cu·+Val, 
store_fact(a, op_ctr(Op, N)), ! . 

update_ctr(Op, Val) :-
store_fact(a, op_ctr(Op, Val)). 

<fa----------------------------------------------------------------------------------------------------

<fa Reset the operation used counter and the rejected operations counter 

<fa----------------------------------------------------------------------------------------------------
reset_ctr :-

abolish([ op_ctr/2,err/3]). 

<fa----------------------------------------------------------------------------------------------------

<fa Assess the depth bound if it exceeded the search depth bound 

<fa----------------------------------------------------------------------------------------------------
assess_depth(x, Center_Chain) :­

search_bound(Bound), 
count_A_and_B_(Center_Chain, Count), 
Count> Bound, 
New is Count - Bound, 
exceeded(New), ! , fail. 

assess_depth(_, _). 

<fa----------------------------------------------------------------------------------------------------
<fa Count the A- and B-literals in the center chains 

<fa----------------------------------------------------------------------------------------------------
count_A_and_B_(Center_Chain, New_Level) :­

collect_subchain(Center_Chain, [],List). 
count_AB_(List, 0, New_Level). 

<fa----------------------------------------------------------------------------------------------------
<fa Count the A- and B-literals in the list of literals 

<fa----------------------------------------------------------------------------------------------------
count_AB_([], N, N) :- !. 
count_AB_([EIList], Initial, Count):-

is_AB_(E, Initial, Paitial), 
count_AB_(List, Partial, Count). 

<fa----------------------------------------------------------------------------------------------------
<fa Evaluate if the element is an A- or B-literals 

<fa----------------------------------------------------------------------------------------------------
is_AB_(E, Initial, Paitial) :-



class(E, Class,_,_), 
member(Class, [a,b]), 
inc(Initial, Partial), ! . 

is_AB_(E, Initial, Initial). 
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% ----------------------------------------------------------------------------------------------------
% Collect the subchains 

% ----------------------------------------------------------------------------------------------------
collect_subchain([], L, L) :- !. 
collect_subchain([[_,_,Sub]ICenter_Chain], Initial, List) :-

append(Sub, Initial, Partial), 
collect_subchain(Center_Chain, Partial, List). 

% ----------------------------------------------------------------------------------------------------

% The search bound is exceeded. If the excess is >= to the previous 

% excess then do nothing else store the cmTent excess 

% ----------------------------------------------------------------------------------------------------
exceeded(Excess) :­

exceed(Current), 
Current < Excess, ! . % Keep the minimum excess 

exceeded(Excess) :-
abolish( exceed/I), 
store _fact( a,exceed(Excess) ), !. 

% ----------------------------------------------------------------------------------------------------

% Update a fact by replacing Factl by Fact2 in the memory 

% ----------------------------------------------------------------------------------------------------
update_fact(Factl, Fact2) :­

delete_fact(Factl ), 
store_fact(a, Fact2), !. 

update_fact(Factl, Fact2) :-
store_fact(a, Fact2). 

% ----------------------------------------------------------------------------------------------------
% Update the refutation path which allow backtrackingif somewhere the proof failed 

% ----------------------------------------------------------------------------------------------------
update_path(Times) :-

delete_fact( path(Current)), 
append(Times, Current, New), 
store_fact(a, path(New)). 

update_path(Times) :-
delete_fact( path(Current)), 
append(Times, New, Current), 
store_fact(a, path(New)), !, fail. 

% ----------------------------------------------------------------------------------------------------
% Select a top chain from the set of support. 
% Choose a chain which contains literals having the same truth Index 

% ----------------------------------------------------------------------------------------------------
set_of_support(Chain) :-

sos(Sign), 



model(Sign, Index), 
input_chain(_, Chain), 
same_truth_ value(lndex, Chain). 
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% ----------------------------------------------------------------------------------------------------
% The sign indicates the truth index based on the trivial interpretation 

% ----------------------------------------------------------------------------------------------------
model(+, 1) :- !. 
model(-, 0). 

% ----------------------------------------------------------------------------------------------------
% Determine if a chain contains literals of the same trnth value 

% ----------------------------------------------------------------------------------------------------
same_truth_value(Index, []) :- !. 
same_truth_value(Index, [LIChain]) :-

class(L,b,Index,_), 
same_truth_ value(lndex, Chain). 

% ----------------------------------------------------------------------------------------------------
%Compile the file by asserting the set of clauses and apply the self configuration facility 

% ----------------------------------------------------------------------------------------------------
compile(File) :-

abolish( valid_literaVl ), 
abolish(redundant_literal/1 ), 
[-File], !, 
abolish([ clause_file/1, equal_exist/2, input_chain/2, clause_size/2, clause_type/1, 

order/1]), 
assertz(clause_file(File) ), 
check_format, 
configurise_ clauses, 
convert_clause_to_chain, 
tautology _elimination, 
pure_literal _ elimination, 
abolish(a_clause/1), 
expunge. 

compile(File) :-
print(l,[nl,$***The file is not available in the current directory.$]), 
print(l,[nl,$>>> Try another file ... $]), fail. 

% ----------------------------------------------------------------------------------------------------
% Check if the asserted file is in the right format 

% ----------------------------------------------------------------------------------------------------
check_format :­

a_clause(_), ! . 
check format:-

- print(l,[nl,$***The consulted file is not in the right format$]), 
print(l,[nl,$ Format a_clause([Literall, .... Literaln]). $]), 
!, fail. 

% ----------------------------------------------------------------------------------------------------
% Find the configuration of the set of clauses 

% ----------------------------------------------------------------------------------------------------
configurise_clauses :-

print(l,[nl,$Wait. .. Configuring the set of Clauses$]), 
a_clause(Clause ), 
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[! write($.$), 
length(Clause, N), 
min_max(N), /* dete1mine the minimum and maximum size of clause */ 
determine_ order(Clause ), 
dete1mine_type(Clause), 
determine_equal(Clause)!], 
fail. 

configurise_clauses. 

% ----------------------------------------------------------------------------------------------------
% Determine the order of the set of clauses 

% ----------------------------------------------------------------------------------------------------
determine_order(Clause) :­

order(l), ! . 
determine_order(Clause) :­

member(L, Clause), 
count_ var(L, N), 
N>O, 
abolish( order/1 ), 
asserta( order(l)), !. 

determine_order(Clause) :­
abolish( order/1 ), 
asserta( order(O)), !. 

% ----------------------------------------------------------------------------------------------------
% Determine the type of the set of clauses 

% ----------------------------------------------------------------------------------------------------
determine_type(Clause) :­

clause_type(general), !. 
determine_type(Clause) :-

select(++ L, Others, Clause), 
member(++ K, Others), 
abolish( clause_type/1 ), 
asserta( clause_type(general)), ! . 

determine_type(Clause) :-
abolish( clause_type/1 ), 
asserta( clause_type(hom)). 

% ----------------------------------------------------------------------------------------------------
% Dete1mine if an equal literal exist 

% ----------------------------------------------------------------------------------------------------
determine_equal(Clause) :­

equal_exist, !. 
determine_equal(Clause) :­

member(Literal, Clause), 
literal_atom(Literal, _, equal(_,_)), 
asserta(equal_exist), !. 

determine_equal(_). 

% ----------------------------------------------------------------------------------------------------
% Eliminate tautologous chain 

% ----------------------------------------------------------------------------------------------------
tautology_elimination :-

ptint(l,[nl,$Tautology elimination in action ... $]), 
input_chain(N ,Chain), 
[! 



select([b,L], Others, Chain), 
member([b,K], Others), 
tautology(L,K), 
retract(input_chain(N,Chain)), 
print(l,[nl,$***Input chain $,Chain,$ is a tautology.$]) 
! ] ' 
fail. 

tautology _elimination. 
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% ----------------------------------------------------------------------------------------------------
% Remove a chain which contain a pure literal 

% ----------------------------------------------------------------------------------------------------
pure_literal_elimination :-

print(l ,[nl,$Pure literal elimination in action ... $]), 
input_chain(N ,Chain), 
[! 
has_pure_literal(Chain), 
print(l ,[n1,$Input chain that contains pure literal : $,nl, tab(5), Chain]), 
retract(input_chain(N,Chain)) 
!], 
fail. 

pure _literal_ elimination. 

% ----------------------------------------------------------------------------------------------------
% Detennine if the chain is resolvable 

% ----------------------------------------------------------------------------------------------------
has_pure_literal(Chain) :-

all_resolvable( Chain), ! , fail. 
has_pure_literal(Chain). 

% ----------------------------------------------------------------------------------------------------

% Convert a clause to input chain 

% ----------------------------------------------------------------------------------------------------
convert_clause_to_chain :­

clause_size(Min, Max), 
chain_ndx_set, 
get_a_clause(Clause, Min, Max), 
form_a_chain(Clause, Chain), 
get_chain_ndx(N), 
store_fact(z, input_chain(N, Chain)), 
fail. 

convert_clause_to_chain :-
add_reflexive_axiom. 

% ----------------------------------------------------------------------------------------------------
% Add the equality reflexive axiom 

o/'o ----------------------------------------------------------------------------------------------------
add_reflexive_axiom :-

equal_exist, 
get_chain_ndx(N), 
store_fact(a,input_chain(N,[[b,l,++ equal(X,X)]]) ), !. 

add_reflexive_axiom. 

% ----------------------------------------------------------------------------------------------------
% Get a clause starting from the minimum no. of literals 
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<fo ----------------------------------------------------------------------------------------------------
get_a_clause(Clause, N, Max):­

a_clause( Clause), 
length(Clause, N). 

get_a_clause(Clause, N, Max):-
N < Max, 
inc(N,M), 
get_a_clause(Clause, M, Max). 

<fo ----------------------------------------------------------------------------------------------------
<fo Form a chain from a given clause 

<fo ----------------------------------------------------------------------------------------------------
form_a_chain([], []) :- !. 
form_a_chain([LIRest], [[b,l,L]IOthers]) :-

interpret(L, I), 
form_a_chain(Rest, Others). 

<fo ----------------------------------------------------------------------------------------------------
<fo Initialise the chain index counter 

<fo ----------------------------------------------------------------------------------------------------
chain_ndx_set :-

ctr_set(30, 1 ). 

<fo ----------------------------------------------------------------------------------------------------
<fo Get a chain index and update it 

<fo ----------------------------------------------------------------------------------------------------
get_chain_ndx(N) :-

ctr_inc(30,N). 

<fo ----------------------------------------------------------------------------------------------------
<fo Update the current minimum and maximum size of a clause in the set 

<fo ----------------------------------------------------------------------------------------------------
min_max(N) :-

clause_size(Min, Max), 
update_size(N, Min, Max), !. 

min_max(N) :-
store_fact( a, clause _size(N ,N)). 

<fo ----------------------------------------------------------------------------------------------------

<fo Update the clause size 

<fo ----------------------------------------------------------------------------------------------------
update_size(N, Min, Max) :­

N < Min, 
update_fact(clause_size(Min,Max), clause_size(N, Max)), !. 

update_size(N, Min, Max):-
N > Max, 
update_fact(clause_size(Min,Max), clause_size(Min, N)), !. 

update_size(_, _, _). 

<fo ----------------------------------------------------------------------------------------------------
<fo Display successful refutation message 

<fo ----------------------------------------------------------------------------------------------------



display_success :-
record_event($refutation_end$), 
printf([nl,$SUCCESSFULL REFUTA TION$,nl]), !. 
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% ----------------------------------------------------------------------------------------------------
% Display the set of input chain and some information about the input chains 

% ----------------------------------------------------------------------------------------------------
display_chains :-

not input_chain(_,_), 
print(l,[nl,$No input chains yet...$]), !. 

display_chains :­
clause_file(File), 
printf([ nl,$Source File ***[$,File,$]$]), 
printf([nl,$The set of input chains :$,nl]), 
input_chain(N, Chain), 
printf([nl,$[$,N,$] :$]), 
print_input_chain(Chain), 
fail. 

display _chains :­
clause_type(Type ), 
order(N), 
what_order(N,Logic), 
clause_size(Min,Max), 
printf([nl,$The problem is a set of $,Type,$ clauses$]), 
printf([nl,$Written in $,Logic,$ logic.$]), 
printf([nl,$Minimum number of literals $,Min]), 
printf([nl,$Maximum number of literals $,Max]). 

% ---------------------------------------------------------------------------------------------------­

% ----------------------------------------------------------------------------------------------------
what_order(O,$propositional$) :- !. 
what_order(l,$first order$) :- !. 

% ----------------------------------------------------------------------------------------------------
% Display literals of input chain 

% ----------------------------------------------------------------------------------------------------
print_input_chain([]) :- !. 
print_input_ chain([[b,I,L] I Chain]) :-

printf([$ $,L]), 
print_input_chain(Chain). 

% ----------------------------------------------------------------------------------------------------
% Display the center chain 

% ----------------------------------------------------------------------------------------------------
disp_center_chain(Chain, Tip, Desc, Op, Level, Check) :­

Check, 
[! operation(Op, Operation), 
printf([nl,n1,$Inference Rule Applied: $,Operation,nl]), 
disp_rule(Desc, Op), 
printf([$-- : Center chain at Search Depth $,Level]) !], 
get_branch(Branch, Chain), 
disp_branch(Branch), 
fail. 

disp_center_chain(_, _, _, _, _, _). 

% ----------------------------------------------------------------------------------------------------
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% Display a branch of the chain 

% ----------------------------------------------------------------------------------------------------
disp_branch(Branch) :-

branch_to_list(Branch, List), 
separate_nodes(Nodes, Literals, List), 
printf([ nl,$Branch $]), 
display _nodes(N odes), 
display _literals(Literals), ! . 

% ----------------------------------------------------------------------------------------------------
% Separate the nodes from the literals 

% ----------------------------------------------------------------------------------------------------
separate_nodes([], [], []) :- !. 
separate_nodes(Nodes, Literals, [EIList]) :-

a_literal(E, Nodes, Nodes_Rest, Literals, Literals_Rest), 
separate_nodes(Nodes_Rest, Literals_Rest, List). 

% ----------------------------------------------------------------------------------------------------
% Is it a literal or a node 

<fo ----------------------------------------------------------------------------------------------------
a_literal([L,R], [RINodes], Nodes, Literals, Literals) :- !. 
a_literal(E, Nodes, Nodes, [EILiterals], Literals). 

% ----------------------------------------------------------------------------------------------------
% Display the nodes of the branch 

<fo ----------------------------------------------------------------------------------------------------
display_nodes([]) :- ! . 
display _nodes([NINodes]) :-

display _nodes(Nodes), 
printf([$->$,N]), !. 

% ----------------------------------------------------------------------------------------------------
% Display the literals of the branch 

<fo ----------------------------------------------------------------------------------------------------
display_literals([]) :­

printf([nl]), !. 
display _literals([LILiterals]) :­

display _literals(Literals ), 
printf([$ $,L]), !. 

% ----------------------------------------------------------------------------------------------------

% Determine the operation code 

% ----------------------------------------------------------------------------------------------------
operation(x,$EXTENSI0N$) :- !. 
operation(r,$REDUCTI0N$) :- !. 
operation(s,$SPREAD1NG$) :- ! . 
operation(t_O,$TRUNCATI0N A(0)$) :- !. 
operation(t_l,$TRUNCATION A(1)$). 

% ----------------------------------------------------------------------------------------------------
% Display the inference rule applied 

% ----------------------------------------------------------------------------------------------------



disp_rule(Index, x) :-
input_chain(Index, Chain), 
printf([$Input Chain : $,Chain,nl]), ! . 

disp_rule(B_Literal, r) :-
printf([$Reducing $, B _Literal,nl ]), ! . 

disp_rule(_, _) :- !. 
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% ----------------------------------------------------------------------------------------------------
% Display a node 

% ----------------------------------------------------------------------------------------------------
disp_a_node([L,R,S]) :­

Ind is L mod 40, 
printf([nl,tab(lnd), $Node($, L,$,$, R,$):$]), 
Tab is Ind+5, 
disp_subchain(Tab, S), 
fail. 

disp_a_node(_). 

% ----------------------------------------------------------------------------------------------------
% Display a subchain 

% ----------------------------------------------------------------------------------------------------
disp_subchain(Tab,[]) :­

printf([nl,tab(Tab)]), !. 
disp_subchain(Tab, [Literal1Subchain]) :­

disp_subchain(Tab, Subchain), 
printf([$ $, Literal]). 

% ----------------------------------------------------------------------------------------------------
% Clear all asserted facts and initialise the refutation path 

% ----------------------------------------------------------------------------------------------------
clear_all :-

abolish( op_ctr/2), 
abolish(node_ctr/1), 
abolish(path/1 ), 
abolish(err/3), 
store_fact(a, path([])), 
ctr_set(2,0). 

% ----------------------------------------------------------------------------------------------------
% Display the statistics of the derivations 

% ----------------------------------------------------------------------------------------------------
display_statistics(Chain) :­

not statistics_, ! . 
display _statistics(Chain) :-

search_bound(Bound), 
printf([nl,$Goal : $,Chain]), 
printf([nl,$Derivation search bound $,Bound]), 
event_duration(refutation), 
refutation_stat, 
search_tree_stat, 
error_stat. 

<fo ----------------------------------------------------------------------------------------------------
% Display the statistics on errors 

% ----------------------------------------------------------------------------------------------------



error_stat :­
gather_e1T(syn,Resultl), 
gather_err(sem,Result2), 
printf([nl,nl,$ Failed by Restlictions Statistics :$]), 
disp_err(syntactic,Resultl), 
disp_err(semantic,Result2). 
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% ----------------------------------------------------------------------------------------------------

% Gather the rejected operation counter 

% ----------------------------------------------------------------------------------------------------
gather_err(Err,[[Op,Ctr]IRest]) :­

retract(err(Err,Op, Ctr)), 
gather_err(Err,Rest), !. 

gather_err(_,[]). 

% ----------------------------------------------------------------------------------------------------

% Display the number of inadmissible operations 

% ----------------------------------------------------------------------------------------------------
disp_err(_, []) :- !. 
disp_err(Type, List) :-

printf([ nl,$0n $, Type,$ restrictions$]), 
display _ops(List, 0). 

% ----------------------------------------------------------------------------------------------------
% Display the first refutation statistics 

% ----------------------------------------------------------------------------------------------------
refutation_stat :-

path(Path), 
count(Path, Results), 
printf([nl,$Refutation path: $,Path]), 
printf([nl,$Refutation Statistics :$,nl]), 
display _ops(Results, 0). 

% ----------------------------------------------------------------------------------------------------
% Display the search tree statistics 

% ----------------------------------------------------------------------------------------------------
search_tree_stat :-

printf([nl,nl, $Search tree Statistics : $]), 
gather_ops([x,s,r,c,t_O,t_l], Result), 
display_ops(Result, 0). 

% ----------------------------------------------------------------------------------------------------
% Gather all the applied operations that constitute the search tree 

% ----------------------------------------------------------------------------------------------------
gather_ops([], []) :- !. 
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gather_ops([OITail], [[O,N]IRest]) :-
op_ctr(O,N), 
gather_ops(Tail, Rest), !. 

gather_ops([OITail], Rest) :-
gather_ops(Tail, Rest). 

% ----------------------------------------------------------------------------------------------------
% Count the number of occurence of each distinct element of the list 

% ----------------------------------------------------------------------------------------------------
count([], []) :- !. 
count([HIRest], [[H,F]IResult]) :­

length(Rest, M), 
delete_all(H,Rest, Others), 
length(Others, N), 
Fis M-N+l, 
count( Others.Result). 

% ----------------------------------------------------------------------------------------------------
% Display the statistics of each operation of the list 

% ----------------------------------------------------------------------------------------------------
display_ops([[Op,C]IRest], N) :­

Tis N+C, 
disp_op(Op,C), 
display _ops(Rest, T), ! . 

display_ops( _,Total):-
printf([nl,$Total No. of Inference Steps:$, Total]). 

% ----------------------------------------------------------------------------------------------------
% Display the number of times an operation is applied 

% ----------------------------------------------------------------------------------------------------
disp_op(Op, C) :­

operation(Op, Operation), 
printf([nl,$ No. of $,Operation,$= $,C]), !. 

% ----------------------------------------------------------------------------------------------------
% Extract the rightmost cell of the branch 

% ----------------------------------------------------------------------------------------------------
extract_RMC_([], [EIList], [EIList]) :-

not member( E, [[b,_,_], [_,_], [b,_,_,_]]), !. 
extract_RMC_([EIRMC], Left_Cells, [EIList]) :­

extract_RMC_(RMC, Left_Cells, List). 

% ----------------------------------------------------------------------------------------------------
% Convert a branch of nodes into a linear list (node indicators are included as a 
% paired element) 

% ----------------------------------------------------------------------------------------------------
branch_to_list([], []) :- !. 
branch_to_list([[L,R,Subchain]IBranch], List) :-

branch_to_list(Branch, Others), 
append([[L,R]ISubchain], Others, List). 

% ----------------------------------------------------------------------------------------------------
% Convert a linear listed branch of nodes into a branch of nodes 
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% ----------------------------------------------------------------------------------------------------
list_to_branch([], []) :- ! . 
list_to_branch([NodellListl, [Node_Subchain1Branch]) :­

is_node(Node 1 ), 
form_subchain(List, Subchain, Others), 
append(Nodel ,[Subchain], Node_Subchain), 
list_to_branch(Others, Branch). 

is_node([L,R]) :­
integer(L), 
integer(R). 

% ----------------------------------------------------------------------------------------------------
% Form a subchain of a node 

% ----------------------------------------------------------------------------------------------------
form_subchain([], [], []) :- !. 
form_subchain([EIRest], [], [EIRest]) :-

is_node(E), ! . 
form_subchain([EIRest], [EISubchain], Others) :­

form_subchain(Rest, Subchain, Others). 
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I*========================================================== 
Module : SLM_RULE.ARI 
Purpose : Contains the operations used by SLM-TP. 

========================================================== *I 

o/'o ----------------------------------------------------------------------------------------------------
% EXTENSION OPERATION FOR SLM 

o/'o ----------------------------------------------------------------------------------------------------
extend(Chain, Extended_Chain, [L,R,x], Type, Input_Index) :­

selection_function(B_Literal, [L,R,LC], Other_Nodes, Chain), 
resolve(B_Literal, Input_Rest, Input_Index, Type), 
[! convert_B_A(B_Literal, A_Literal, Depth), 
append(Input_Rest, [ A_LiterallLC], Extended), 
insert_depth(Depth, [L,R,Extended], Other_Nodes, Extended_Chain) !]. 

% ----------------------------------------------------------------------------------------------------
% Insert the depth at the root node 

% ----------------------------------------------------------------------------------------------------
insert_depth(Depth, Node, Other_Nodes, [[0,0,Root_Sub]IRest_Nodes]) :­

append(Other_Nodes, [Node], Chain), 
select([O,O,Root], Rest_Nodes, Chain), 
append(Root, Depth, Root_Sub), !. 

% ----------------------------------------------------------------------------------------------------
% Convert a B-literal to A-literal and return the depth symbol if the literal is indexed 
% by 1, otherwise, return an empty list. 

% ----------------------------------------------------------------------------------------------------
convert_B_A([b,1,L], [a,1,Symbol,L], [Symbol]) :-

gen_sym(" d_" ,Symbol), ! . 
convert_B_A([b,O,L], [a,0, L], []). 

% ----------------------------------------------------------------------------------------------------
% Spreading operation 

% -----------------------------------·----------------------------------------------------------------
spread([L,R,Subchain], [[L,R,True_Literals]INew_Nodes]) :­

classify(False_Literals, True_Literals, Subchain), 
length(False_Literals, N), N > 1, 
create_nodes(R, False_Literals, New_Nodes). 

o/'o ----------------------------------------------------------------------------------------------------

% Classify the subchain into two lists : FALSE and TRUE literals lists 

% ----------------------------------------------------------------------------------------------------
classify([], [], []) :- !. 
classify([], [LIRest], [LIRest]) :-

non_B_literal(L), !. 
classify(False_Literals, True_Literals, [LISubchain]) :­

assess_truth(L, False_Literals, FALSE, True_Literals, TRUE), 
classify(F ALSE, TRUE, Subchain). 

o/'o ----------------------------------------------------------------------------------------------------
% Assess the truth value of the B-literal. If it is indexed by O then it is added to the 
% list of false literals, otherwise, to the list of true literals 
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% ----------------------------------------------------------------------------------------------------
assess_truth([b,0,L], [[b,0,L]IFalse], False, True, True) :- !. 
assess_truth(L, False, False, [LITrue], True). 

% ----------------------------------------------------------------------------------------------------
% Create new tip nodes 

% ----------------------------------------------------------------------------------------------------
create_nodes(R, [], []) :- !. 
create_nodes(R, [LIFalse_Literals], [[R,C,[L]]INew_Nodes]) :­

ctr_inc(l, C), 
create_nodes(R, False_Literals, New _Nodes). 

% ----------------------------------------------------------------------------------------------------
% SLM reduction 
% case (I) : Reduction after a truncation operation 
% case (II) : Reduction after an extension operation 

% ----------------------------------------------------------------------------------------------------
reduce(_, Branch, Reduced_Branch, B_Literal, Type):­

clause_type(hom), ! , fail. 
reduce([a,0,L], Branch, Reduced_Branch, B_Literal, Type) :­

[! branch_to_list(Branch, List), 
choose([a,0,L], Pree, Succ, List) !], 
extract_RMC_(RMC, Left, Pree), 
apply_reduction(Left, [a,0,L], Succ, RMC, Reduced_Branch, B_Literal,Type), !. 

reduce(x, Branch, Reduced_Branch, B_Literal, Type):­
[! branch_to_list(Branch, List), 
extract_RMC_(RMC, Left_Cells, List)!], 
remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, Type). 

% ----------------------------------------------------------------------------------------------------
% Remove a B-literal from the rightmost cell by reduction. First a B-literal which 
% has identical atom with non-B-literal, otherwise, try by unification 

% ----------------------------------------------------------------------------------------------------
remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, id):­

choose(Non_B, Pree, Succ, Left_Cells), 
non_B _literal(Non_B ), 
apply _reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B _Literal,id), !. 

remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, Type):­
order(l), 
choose(Non_B, Pree, Succ, Left_Cells), 
non_B _li teral(N on_B ), 
apply_reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B_Literal,Type). 

% ----------------------------------------------------------------------------------------------------
% Check if the chosen literal is not a B-literal 

% ----------------------------------------------------------------------------------------------------
non_B_literal([bl_]) :- ! , fail. 
non_B_literal([_,_]) :- ! , fail. 
non_B_literal(Non_B). 

% ----------------------------------------------------------------------------------------------------
% Apply reduction using the chosen non-B-literal 

% ----------------------------------------------------------------------------------------------------
apply_reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B_Literal,Type) :­

select(B_Literal, Rest_RMC, RMC), 



reducible(B_Literal, Non_B, Type), 
move_depths(Prec, Non_B, Succ, New_Left_Cells), 
append(Rest_RMC, New_Left_Cells, Result), 
list_to_branch(Result, Reduced_Branch), !. 
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% ----------------------------------------------------------------------------------------------------
% Find if the two literals are reducible 

% ----------------------------------------------------------------------------------------------------
reducible([b,I,L], Non_B, Type):­

class(Non_B, a, J, K), 
opposite(J,I), 
complementary(L, K, L_A, K_A), 
match(L_A, K_A, Type). 

% ----------------------------------------------------------------------------------------------------
% Check if the two atom are unifiable/identical 

% ----------------------------------------------------------------------------------------------------
match(L_A, K_A, id) :­

identical_atom(L_A, K_A), !. 
match(L_A, K_A, true) :­

unify(L_A, K_A). 

% ----------------------------------------------------------------------------------------------------
% Check if an A-literal indexed by 1 occurs between 

% ----------------------------------------------------------------------------------------------------
no_A_l(Between) :-

member([a,1,_,K], Between), !, fail. 
no_A_l (Between). 

% ----------------------------------------------------------------------------------------------------
% Move the depths of A-literals indexed by 1 and change the status flags 
% of A-literals indexed by O which are to the 'right' of the non-B-literal 
% used in the reduction. 

% ----------------------------------------------------------------------------------------------------
move_depths(Preceeding, Non_B, Succeding, Result):­

collect_depths(Depths, New _Prec, Preceeding), 
remove_depths(Depths, Succeding, Common, Rest_Succ), 
append(New_Prec, Common, Right_Non_B), 
append(Right_Non_B, [Non_BIRest_Succ], Result). 

% ----------------------------------------------------------------------------------------------------
% Delete the depths from the 'left' of the non-B-literal used in the reduction 

% ----------------------------------------------------------------------------------------------------
remove_depths(Depths, Succeding, [EllCommon], Rest_Succ) :­

select(El, Othersl, Depths), 
select(E2, Others2, Succeding), 
El== E2, 
remove_depths(Othersl, Others2, Common, Rest_Succ), !. 

remove_depths(_, Rest, [], Rest). 

% ----------------------------------------------------------------------------------------------------
% Collects all the depths associated for each A-literal indexed by 1 

% ----------------------------------------------------------------------------------------------------
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collect_depths([], [], []) :- !. 
collect_depths(Depth, [E210thers], [EllRest]) :-

extract_depth(Depth, Added_Depth, El, E2), 
collect_depths(Added_Depth, Others, Rest). 

% ----------------------------------------------------------------------------------------------------
% Extract the depth of an A-literal indexed by 1 

% ----------------------------------------------------------------------------------------------------
extract_depth([DIDepth], Depth, [a,1,D,L], [a,1,D,L]) :- !. 
extract_depth(Depth, Depth, E, E). 

% ----------------------------------------------------------------------------------------------------
% Truncation operation for SLM 

% ----------------------------------------------------------------------------------------------------
truncate([NodelBranch], Truncated_Branch, Truncation, Type):­

truncatable(Node, Ptr, Subchain), 
[! strip_A_literal(Subchain, Subchain_Rest, Depth_Atom), 
form_node(Ptr, Subchain_Rest, Formed_Node), 
append(Formed_Node, Branch, Branch_Rest) !], 
insert(Depth_Atom, Branch_Rest, Truncated_Branch, Truncation, Type). 

% ----------------------------------------------------------------------------------------------------
% Determine if node is truncatable and extract the Node Ptr & the Subchain of the node 

% ----------------------------------------------------------------------------------------------------
truncatable([L,R, [EISubchain]], [L,R], [EISubchain]) :-

non_B_literal(E). 

% ----------------------------------------------------------------------------------------------------
% Form the node pointer and the subchain into node 

% ----------------------------------------------------------------------------------------------------
strip_A_literal([], [], []) :- ! . 
strip_A_literal([LIRest], [LIRest], []) :-

examine(L, true), !. 

strip_A_literal([LIRest], Rest, [D,A]) :­
examine(L, [D,A]), !. 

strip_A_literal([LIRest], Subchain, Depth_Atom) :­
examine(L, []), 
strip_A_literal( Rest, Subchain, Depth_Atom). 

% ----------------------------------------------------------------------------------------------------

% Examine the literal if is a B-literal, an A-literal indexed by O or by 1 

% ----------------------------------------------------------------------------------------------------
examine([b,I,A], true) :- !. 
examine([a,0,A], []) :- !. 
examine([a,1,D,L], [D,L]). 

% ----------------------------------------------------------------------------------------------------
% Form the node pointer and the subchain into node 

% ----------------------------------------------------------------------------------------------------
form_node(_, [], []) :- !. 
form_node([L,R], Subchain, [ [L,R,Subchain] ]). 
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% ----------------------------------------------------------------------------------------------------
% Insert a C-literal if the stripped literal is an A-literal indexed by 1 

% ----------------------------------------------------------------------------------------------------
insert([], Branch, Branch, [t_O], !) :- !. 
insert([D,L], Branch, Truncated_Branch, [t_l,A_literal]. true) :­

[! convert_to_A(L,A_literal), 
branch_to_list(Branch, List), 
choose(D, Pree, Succ, List) !], 
insert_A_literal(A_literal, Pree, Inserted), 
[! append(Inserted, Succ, Result), 
list_to_branch(Result, Truncated_Branch) !]. 

% ----------------------------------------------------------------------------------------------------
% Convert the literal to A-literal 

% ----------------------------------------------------------------------------------------------------
convert_to_A(L, [a,0,K]) :-

negate(L,K), ! . 

% ----------------------------------------------------------------------------------------------------
% Insert A-literal at its depth or to a position to the right of an A-literal indexed by 0 
% --------------------------------------------------------------------------
insert_A_literal(A_literal, Pree, Inserted) :­

append(Prec, [A_literal], Inserted). 
insert_A_literal(A_literal, Pree, Inserted) :­

select_last([a,0,Literal], Prec2, Succ2, Pree), 
[! append(Prec2, [A_literal, [a,O,Literal]1Succ2], Inserted) !]. 
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I*-----==============----=============-----===--------------
Module: SLM_SEL.ARI 
Purpose: Contains the resolve and selection function used both by SLM-TP and 

SLM5-TP 

========================================================== */ 

% ----------------------------------------------------------------------------------------------------
% Resolve upon a literal by subsumed unit chain, ELSE any input chain OR 
% paramodulate the literal if equal exist 

% ----------------------------------------------------------------------------------------------------
resolve(L, [], N, id) :­

unit_subsume(L, N), !. 
resolve([blL], RMC, N, true):­

input_chain(N, Chain), 
select([blK], RMC, Chain), 
right_match(L, K). 

resolve([b,I,L], RMC, N, true) :­
equal_exist, 
paramodulate([I,L], RMC, N). 

% ----------------------------------------------------------------------------------------------------
% Apply paramodulation to the Literal. 

% ----------------------------------------------------------------------------------------------------
paramodulate([Truth,Literal], [[b,Truth,New _Literal] IRest_Input], Index) :­

extract_predicate_symbol(Literal, Symbol, Terms), 
find_equal_chain(LS, RS, Rest_Input, Index), 
substitute(LS, RS, Terms, New_ Terms), 
extract_predicate_symbol(New _Literal, Symbol, New_ Terms). 

% ----------------------------------------------------------------------------------------------------
% Find an input chain which contain a positive equal literal. It has 
% to be checked if it did not pick up the reflexive equality axiom. 

% ----------------------------------------------------------------------------------------------------
find_equal_chain(LS, RS, Rest_Input, Index) :­

input_chain(Index, Chain), 
select([b, 1, ++ equal(LS, RS)], Rest_Input, Chain), 
LS \== RS. % make sure that it is not the reflexive axiom 

% ----------------------------------------------------------------------------------------------------
%Substitute a term which is unifiable to any of the terms of the equal literal LS and RS. 
% This procedure allows substitution first one term at a time until all terms are 
% substituted. 

% ----------------------------------------------------------------------------------------------------
substitute(LS, RS, [EITerms], [New_EITerms]) :-

nonvar(E), % Do not paramodulate an into variable 
find_unifiable(LS, RS, E, New_E). 

substitute(LS, RS, [EITerms], [EINew_Terms]) :-
substitute(LS, RS, Terms, New_Terms). 

% ----------------------------------------------------------------------------------------------------
% Determine which term of the equal literal is unifiable with the given term E of 
% the paramodulated literal 

% ----------------------------------------------------------------------------------------------------
find_unifiable(LS, RS, E, New_E) :-



replace(LS, RS, E, New_E), !. 
find_unifiable(LS, RS, E, New_E) :­

E = .. [PredlTerms], 
substitute(LS,RS, Terms, New_Terms), 
New_E = .. [PredlNew_Terms]. 
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% ----------------------------------------------------------------------------------------------------
% Replacing the literal term with one of the equal term 

% ----------------------------------------------------------------------------------------------------
replace(LS, RS, E, RS):­

identical_atom(LS ,E), ! . 
replace(LS, RS, E, RS) :­

var(RS), 
unify(LS ,E), ! . 

replace(LS, RS, E, RS) :-
unify(LS,E). 

replace(LS, RS, E, LS) :-
unify(RS,E). 

lfo ----------------------------------------------------------------------------------------------------
% Extract the sign, predicate symbol, arity and term of a literal 

% ----------------------------------------------------------------------------------------------------
extract_predicate_symbol(Literal, symbol(Sign, Predicate, Arity), Te1ms) :­

literal_atom(Literal, Sign, Atom), 
Atom= .. [PredicatelTerms], 
length(Terms, Arity). 

% ----------------------------------------------------------------------------------------------------
% Find an input chain which is subsumed by L 

% ----------------------------------------------------------------------------------------------------
unit_subsume([b,l,L], N) :­

input_chain(N, [[b,J ,K]]), 
opposite(l,J), 
complementary(L,K,L_A,K_A), 
subsumes(K_A,L_A), ! . % *** K_A subsumes L_A 

% ----------------------------------------------------------------------------------------------------
% Find out if the two literals are complementary unifiable 

% ----------------------------------------------------------------------------------------------------
right_match([I, L], [J, K]) :­

opposite(l,J), 
complementary(L, K, L_A, K_A), 
unify(L_A,K_A). 

% ----------------------------------------------------------------------------------------------------
% Generate symbol with the given prefix 

% ----------------------------------------------------------------------------------------------------
gen_sym(Prefix, Symbol):­

ctr_inc(2,Current), 
name(Current, List), 
append(Prefix,List, Symbol_list), 
name(Symbol, Symbol_list). 

% ----------------------------------------------------------------------------------------------------
% Selection function which selects a literal wleast weight 
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% ----------------------------------------------------------------------------------------------------
selection_function(B_Literal, Tip, Remaining_Nodes, Chain) :­

extract_all_tips(Tips, [], Other_Nodes, Chain), 
collect_RMCs(Tips, [], B_Lists), 
setof(X, member(X, B_Lists), Distinct_List), 
choose_literal(B_Literal, Tip, Distinct_List, Tips, Other_ Tips, Chain), 
append(Other_Tips, Other_Nodes, Remaining_Nodes), !. 

% ----------------------------------------------------------------------------------------------------
% Collect all the B-literals in all the rightmost cells 

% ----------------------------------------------------------------------------------------------------
collect_RMCs([], B_List, B_List) :- !. 
collect_RMCs([[L,R,Sub]ITips], Initial, B_List) :-

get_RMC_(RMC, Sub), 
append(RMC, Initial, Accumulate), 
collect_RMCs(Tips, Accumulate, B_List). 

% ----------------------------------------------------------------------------------------------------
% Get the rightmost cell of the subchain 

% ----------------------------------------------------------------------------------------------------
get_RMC_(RMC, Sub) :­

pick_pre(Non_B, RMC, Sub), 
not class(Non_B,b,_,_), !. 

get_RMC_(RMC, RMC). 

% ----------------------------------------------------------------------------------------------------
% Choose a B-literal from the candidate list. B-literal which is identical to an A-literals 
% is removed from the candidate list. 

% ----------------------------------------------------------------------------------------------------
choose_literal(B_Literal, Tip, B_Lists, Tips, Other_Tips, Chain):­

strip_id_B_A(B_Lists, No_id_B_List, Chain), 
length(No_id_B_List, Length), 
Length> 0, 
select_literal(B_Literal, Tip, No_id_B_List, Tips, Other_ Tips), ! . 

choose_literal(B_Literal, Tip, B_List, Tips, Other_Tips, Chain):-
select_literal(B_Literal, Tip, B_List, Tips, Other_ Tips). 

% ----------------------------------------------------------------------------------------------------
% Select a B-literal with the least weight if there are more than one B-literal to select. 

% ----------------------------------------------------------------------------------------------------
select_literal(B_Literal, Tip, [B_Literal], Tips, Other_ Tips) :­

find_B(B_Literal, Tip, Other_ Tips, Tips), ! . 
select_literal(B_Literal, Tip, B_List, Tips, Other_ Tips) :­

compute_ weights(B_ Weights, B_List), 
minimum(Val, B_ Weights), 
member(Val, B_ Weights, Pos), 
member(B_Literal, B_List, Pos), 
find_B(B_Literal, Tip, Other_Tips, Tips). 

% ----------------------------------------------------------------------------------------------------
% Do not include a B-literal, which is identical to any A-literal, for selection 

% ----------------------------------------------------------------------------------------------------
strip_id_B_A([], [], _) :- !. 
strip_id_B_A([BILiterals], B_List, Chain) :-

find_id(B,Chain, B_List, B_Rest), 
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strip_id_B_A(Literals, B_Rest, Chain). 

9'o ----------------------------------------------------------------------------------------------------
% Find if the B-literal is unifiable (identical) to an A-literal 

9'o ----------------------------------------------------------------------------------------------------
find_id([b,I,B], Chain, B_List, B_List) :­

member([L,R,Sub], Chain), 
member(A_Literal, Sub), 
class(A_Literal, a,I,A), 
identical(A,B), !. 

find_id(B, Chain, [BIB_List], B_List). 

Ito----------------------------------------------------------------------------------------------------
% Extract all tips from the center chain 

% ----------------------------------------------------------------------------------------------------
extract_all_tips(Tips, Initial, Other_Nodes, Chain) :-

select_tip(Node, Initial, Rest_Nodes, Chain), 
extract_all_tips(Tips, [Nodellnitial], Other_Nodes, Rest_Nodes), !. 

ext:ract_all_tips(Tips, Tips, Chain, Chain). 

9'o ----------------------------------------------------------------------------------------------------
% Select a tip node 

% ----------------------------------------------------------------------------------------------------
select_tip([L,R,Subchain], Tips, Other_Nodes, Chain) :­

select([L,R,Subchain], Other_Nodes, Chain), 
not member([R,_,_], Other_Nodes), 
not member([R,_,_], Tips),!. 

Ito----------------------------------------------------------------------------------------------------
% Find the node where the B_Literal occurs 

% ----------------------------------------------------------------------------------------------------
find_B(B_Literal, [L,R,LC], Other_Tips, Tips):­

select([L,R,Subchain], Other_ Tips, Tips), 
choose(Literal, Pree, Succ, Subchain), 
B_Literal == Literal, 
all_B _ (Prec ), 
append(Prec, Succ, LC), !. 

% ----------------------------------------------------------------------------------------------------
% All the elements of the list are B-literals 

Ito----------------------------------------------------------------------------------------------------
all_B_([]) :- !. 
all_B_([LIPrec]) :-

class(L,b,_,_), 
all_B_(Prec). 

% ----------------------------------------------------------------------------------------------------
% Find the minimum value of the list 

% ----------------------------------------------------------------------------------------------------
minimum(Val, List) :-

[! pick_suc(N, Succ, List) !], 
minimum(N, Val, Succ). 

minimum(Initial, Val, List):­
pick_suc(N, Succ, List), 



N < Initial, 
minimum(N, Val, List),!. 

minimum(Val, Val, _). 
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% ----------------------------------------------------------------------------------------------------
% Compute the coefficient for unit input factor, number of possible 

% ----------------------------------------------------------------------------------------------------
compute_weights([], []):- !. 
compute_ weights([WIOthers], [ L IRest] ) :­

match_count(L,W), 
compute_ weights(Others, Rest). 

% ----------------------------------------------------------------------------------------------------
% Detennine the weight of the literal by accumulating the size of the 
% input chain used in every possible extension 

% ----------------------------------------------------------------------------------------------------
match_count(L,_) :­

cu·_set(16,0), 
ctr_set(l 7 ,0), 
resolve(L, Input, _, _), 
[! length(Input, N), 
sum_weight(N) !], fail. 

match_count([b,l,L],Weight) :­
literal_atom(L, _, Atom), 
count_var(Atom,Var), 
ctr_is(16,W), 
Weight is W+Var. 

% Initialise the accumulator 
% Initialise the unit input flag 

% ----------------------------------------------------------------------------------------------------
% Accumulate the weight of the literal. If the side chain is a unit 
% then do not accumulate for the first time and set the unit flag to 1 

% ----------------------------------------------------------------------------------------------------
sum_weight(O) :­

ctr_is(l 7 ,0), 
cu·_set(l 7, 1), !. 

sum_ weight(N) :­
ctr_is(16,Cunent), 
Weight is Cun-ent+N+l, 

ctr_set(l 6,Weight). 

% ----------------------------------------------------------------------------------------------------
% Apply the admissibility rest:Iictions of SLM 

% ----------------------------------------------------------------------------------------------------
apply_resuictions(Op, id, _) :- ! . 
apply _resu·ictions(Op, _, _) :-

member(Op, [s,t_O]), !. 
apply _restrictions(t_l, _, Chain) :-

! , syntax_check(t_l, Chain). 
apply _resu·ictions(Op, u·ue, Chain) :­

syntax_check(Op, Chain),!, 
semantic_checking(Op, Chain). 

% ----------------------------------------------------------------------------------------------------
Error counter 
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% ----------------------------------------------------------------------------------------------------
err_ctr(Type, Op):­

delete_fact(e1T(Type, Op, Ctr)), 
inc(Ctr,N), 
store_fact(a, eIT(Type, Op, N)), !. 

err_ctr(Type, Op):-
store_fact(a, err(Type, Op, 1)). 

% ----------------------------------------------------------------------------------------------------
% Collect all B-literals in the chain 

% ----------------------------------------------------------------------------------------------------
collect_B([], []) :- !. 
collect_B([[_,_,Sub]IChain], List) :-

collect_B(Chain, List2), 
extract_B(Sub, B_List), 
append(B_List, List2, List). 

% ----------------------------------------------------------------------------------------------------

% Extract B-literals from the center chain 

% ----------------------------------------------------------------------------------------------------
extract_B([], []) :- !. 
extract_B([LIRest], B_List) :-

get_only _B(L, B_List, Rest_B), 
extract_B(Rest, Rest_B). 

% ----------------------------------------------------------------------------------------------------

% Get only the B-literals 

% ----------------------------------------------------------------------------------------------------
get_only_B(L, [LIB_List], B_List) :-

class(L, b,_,_), ! . 
get_only_B(_, B_List, B_List). 

% ----------------------------------------------------------------------------------------------------
% Semantic checking. (In place of semantic check, the match check is used) 

% ----------------------------------------------------------------------------------------------------
semantic_checking(_, Chain) :­

not match_check, ! . 
semantic_checking(_, Chain) :­

order(O), !. 
semantic_checking(Op, Chain) :-

[! collect_B(Chain, List) !], 
not all_have_matches(List), ! , 
err_cn·(sem, Op), fail. 

semantic_checking(_, _). 

% ----------------------------------------------------------------------------------------------------
% Match Check. 
% Check if a sufficiently instantiated B-literal can be extended upon at least up 
% to the next level 

iro ----------------------------------------------------------------------------------------------------
all_have_matches(List) :­

exist_unextendable(List), ! , fail. 
all_have_matches(_). 
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% ----------------------------------------------------------------------------------------------------
% There exist a literal which is unextendable 

% ----------------------------------------------------------------------------------------------------
exist_unextendable(List) :­

member([b,I,Literal], List), 
sufficient! y _instantiated(Literal), 
unresolvable([b,I,Literal]), ! . 

% ----------------------------------------------------------------------------------------------------
% Check if the literal is sufficiently instantiated. The rule is if the number of 
% non-variable terms is half the total number of terms of the literal. 

o/'o ----------------------------------------------------------------------------------------------------
sufficiently_instantiated(Literal) :­

literal_atom(Literal, _, Atom), 
Atom= .. [_!Terms], 
length(Terms, N), 
Mis (N+l)//2, 
check_nonvar(Terms, M). 

o/'o ----------------------------------------------------------------------------------------------------
% Check if the number of nonvariable te1ms is equal to the specified no. 

% ----------------------------------------------------------------------------------------------------
check_nonvar(_, 0) :- !. 
check_nonvar(Terms, M) :-

[! select(E, Rest, Te1ms), 
nonvar(E), 
dec(M,N) !], 
check_nonv ar(Rest,N). 

% ----------------------------------------------------------------------------------------------------
% Check if the list of B-literal are all resolvable 

% ----------------------------------------------------------------------------------------------------
all_resolvable([]) :- !. 
all_resolvable([BIRest]) :-

resolve(B,Input,_,_), 
all_resolvable(Rest). 

% ----------------------------------------------------------------------------------------------------

% Check if the literal is unresolvable 

% ----------------------------------------------------------------------------------------------------
unresolvable([b,_,L]) :- % Check if the atom is a valid literal atom 

literal_atom(L,_,L_A), 
v alid_literal(K_A), 
subsumes(L_A,K_A), !, fail. 

unresolvable([b,_,L]) :- % Check if the atom is a redundant literal atom 
literal_atom(L,_,L_A), 
redundant_literal(K_A), 
subsumes(K_A, L_A),!. 

unresolvable([b,I,Literal]) :- % Check if the literal can be possibly extended upon 
unextendable([b,I,Literal]), 
literal_atom(Literal,_,L_A), 
store_fact(a, redundant_literal(L_A)), !. 

unresolvable([_,_,L]) :­
literal_atom(L,_,L_A), 
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store_fact(a, valid_literal(L_A) ), !, fail. 

9o ----------------------------------------------------------------------------------------------------
9-o Check if the literal cannot be extended upon 

9o ----------------------------------------------------------------------------------------------------
unextendable(Literal) :­

resolve(Literal,Input,_,_), 
all_resolvable(lnput), !, fail. 

unextendable(Literal). 

9o ----------------------------------------------------------------------------------------------------
9-o Find a tip of a branch 

9o ----------------------------------------------------------------------------------------------------
find_tip([L,R], Chain, New_Tip, Truncation):­

member([L,R,S], Chain), 
append([L,R], Truncation, New_Tip), !. 

find_tip([L,R], Chain, New_Tip, Truncation):-
find_new_tip(Tip, Chain), 
append(Tip, Truncation, New_ Tip), ! . 

find_tip([L,R], [], [], Truncation). 

9o ----------------------------------------------------------------------------------------------------
9-o Find a new tip from the chain 

% ----------------------------------------------------------------------------------------------------
find_new_tip([L,R], Chain):­

get_tip_node([L,R,[Literall_] ], Chain), 
not class(Literal,b,_,_), !. 

find_new _tip([L,R], Chain) :-
get_tip_node([L,R,_], Chain), !. 

% ----------------------------------------------------------------------------------------------------
9-o Get a tip node 

9o ----------------------------------------------------------------------------------------------------
get_tip_node([L,R,S], Chain) :­

select([L,R,S], Others, Chain), 
not member([R,_,_], Others). 

9o ----------------------------------------------------------------------------------------------------
% Get a branch only from the chain 

% ----------------------------------------------------------------------------------------------------
get_branch(Branch, Chain) :-

select([0,0,S], Others, Chain), 
next_node([[O,O,S]], Branch, Others). 

9o ----------------------------------------------------------------------------------------------------
9-o Find the next node of the branch 

% ----------------------------------------------------------------------------------------------------
next_node([[L,R,S]IRest], [[L,R,S]IRest], Chain) :­

not member([R,_,_], Chain), !. 
next_node([[L,R,S]IRest], Branch, Chain) :-



select([R,RR,SS], Others, Chain), 
next_node([[R,RR,SS],[L,R,S]IRest], Branch, Others). 
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% ----------------------------------------------------------------------------------------------------
% Find if the list contains only B-literal 

% ----------------------------------------------------------------------------------------------------
all_B([]) :- !. 
all_B([LIBetween]) :-

class(L, b,_,_), 
all_B(Between). 

% ----------------------------------------------------------------------------------------------------
% Find if the list does not contain an A-literal indexed by 1 

% ----------------------------------------------------------------------------------------------------
no_A_l_([]) :- !. 
no_A_l_([LIBetween]) :-

class(L,a, 1,_), ! , fail. 
no_A_l_([_IBetween]) :-

no_A_l_(Between). 

% ----------------------------------------------------------------------------------------------------
% Reserve for possible extensions 

% ----------------------------------------------------------------------------------------------------

% Interpret the truth index of the atom 

% ----------------------------------------------------------------------------------------------------
interpret(Signed_Atom, Index) :-

trivial_I(Signed_Atom, Index). 
trivial_!(++ A, 1) :- !. 
trivial_!(-- A, 0). 

% ----------------------------------------------------------------------------------------------------
% Get the rightmost cell of the branch 

% ----------------------------------------------------------------------------------------------------
get_RMC(RMC, List) :­

pick_pre(L, RMC, List), 
non_B_literal(L), !. 

get_RMC(RMC, RMC). 
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I*========================================================== 
Module: SLM-REST.ARI 
Purpose: Contains the procedure that implement the syntactic restrictions of 

SLM-TP 
========================================================== *I 

% ----------------------------------------------------------------------------------------------------

% Sytanctic restrictions used by SLM-TP 

% ----------------------------------------------------------------------------------------------------
syntax_check(Op, Chain) :­

get_branch(Branch, Chain), 
[! branch_to_list(Branch, Literals_List) !], 
not restrictions(Literals_List), 
en_ctr(syn,Op), !, 
fail. 

syntax_check(_, _). 

% ----------------------------------------------------------------------------------------------------
% Resttictions for SLM 

% ----------------------------------------------------------------------------------------------------
restlictions(Literal_List) :-

pick_suc(Right_Literal, Rest, Literal_List), 
class(Right_Literal, Cl, I, L), 
pick_pre(Left_Literal, In_Between, Rest), 
class(Left_Literal, C2, J, K), 
inadmissible([Cl,I,L], [C2,J,K], In_Between),!, fail. 

resn·ictions(_). 

% ---------------------------------------------------------------------------------------------------
/* Find if the combination of the two literal are inadmissible 

1) No A-literal which is identical to any A-literal indexed by O unless 
an A-literal indexed by 1 is between them. 

2) No two tautologous A literals unless an A-literal indexed by 1 exists between them 
(to enforce compulsory reduction) 

3) No B-literal which is identical to a preceeding A-literal unless 
an A-literal indexed by 1 is between them (preemptive of 1) */ 

% ----------------------------------------------------------------------------------------------------
inadmissible([a,I,L], [a,I,K], Between) :- % to prevent inse1ting a recycled 

identical(L,K), % A-literal to an equivalent position 
no_A_l_(Between), !. 

inadmissible([a,I,L], [a,J,K], Between) :- % to prevent extension when it 
opposite(I,J), % must be reduced 
tautology(L,K), 
no_A_l_(Between), !. 

inadmissible([b,I,L], [a,1,K], Between) :- % to prevent loop by not allowing 
identical(L,K), 
no_A_l_(Between). % identical B- and A-literals 

% ----------------------------------------------------------------------------------------------------
% Identify the classification, index and atom (with sign) of the literal 

% ----------------------------------------------------------------------------------------------------
class([C,I,L], C, I, L) :- !. 
class([C,I,_, L], C, I, L) :- !. 
class([C,I,_,_, L], C, I, L). 
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I*========-=--============================================== 
Module: SLM5_RUL.ARI 
Purpose: Contains the procedures of the inference operations of SLM5-TP 

========================================================== *I 

% ----------------------------------------------------------------------------------------------------
% EXTENSION OPERATION FOR SLM-5 

% ----------------------------------------------------------------------------------------------------
extend(Chain, Extended_Chain, [L,R,x], Type, Input_Index) :­

selection_function(B_Literal, [L,R,LC], Other_Nodes, Chain), 
resolve(B_Literal, Input_Rest, Input_lndex, Type), 
[! convert_B_A(B_Literal, A_Literal, Depth), 
append(lnput_Rest, [A_LiterallLC], Extended), 
inse1t_depth(Depth, [L,R,Extended], Other_Nodes, Extended_Chain) !]. 

<fo ----------------------------------------------------------------------------------------------------
% Inse1t the depth at the root node 

% ----------------------------------------------------------------------------------------------------
insert_depth(Depth, Node, Other_Nodes, [[0,0,Root_Sub]IRest_Nodes]) :­

append(Other_Nodes, [Node], Chain), 
select([O,O,Root], Rest_Nodes, Chain), 
append(Root, Depth, Root_Sub), !. 

% ----------------------------------------------------------------------------------------------------
% Convert a B-literal to A-literal and return the depth symbol if the 
% literal is indexed by 1, otherwise, return an empty list. 

<fo ----------------------------------------------------------------------------------------------------
convert_B_A([b,l,L], [a,l,Symbol,L], [Symbol]) :-

gen_sym("d_",Symbol), !. 
convert_B_A([b,0,L], [a,0,1,L], []). 

<fo ----------------------------------------------------------------------------------------------------
% SPREADING OPERATION of SLM5-TP 

<fo ----------------------------------------------------------------------------------------------------
spread([L,R,Subchain], [[L,R,True_Literals] !New _Nodes]) :­

classify(False_Literals, Tme_Literals, Subchain), 
length(False_Literals, N), N > 1, 
create_nodes(R, False_Literals, New_Nodes). 

<fo ----------------------------------------------------------------------------------------------------
% Classify the subchain into two lists: FALSE and TRUE literals list 

<fo ----------------------------------------------------------------------------------------------------
classify([], [], []) :- !. 
classify([], [LIRest], [LIRest]) :-

non_B_literal(L), !. 
classify(False_Literals, Tme_Literals, [LISubchain]) :­

assess_truth(L, False_Literals, FALSE, True_Literals, TRUE), 
classify(FALSE, TRUE, Subchain). 

% ----------------------------------------------------------------------------------------------------
% Assess the tmth value of the B-literal. If it is indexed by 0 
% then it is added to the list of false literals, otherwise, to the list of true literals 

% ----------------------------------------------------------------------------------------------------
assess_truth([b,0,L], [[b,0,L]IFalse], False, True, True) :- !. 
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assess_truth(L, False, False, [LITrue], True). 

% ----------------------------------------------------------------------------------------------------
% Create new tip nodes 

% ----------------------------------------------------------------------------------------------------
create_nodes(R, [], []) :- !. 
create_nodes(R, [LIFalse_Literals], [[R,C,[L]]INew_Nodes]) :­

ctr_inc(l, C), 
create_nodes(R, False_Literals, New_Nodes). 

% ----------------------------------------------------------------------------------------------------
% REDUCTION OPERATION OF SLM5-TP 
% case (I) : Reduction after a truncation operation 
% case (II) : Reduction after an extension operation 

% ----------------------------------------------------------------------------------------------------
reduce(_, Branch, Reduced_Branch, B_Literal, Type):­

clause_type(horn), ! , fail. 
reduce([c,0,L], Branch, Reduced_Branch, B_Literal, Type):­

[! branch_to_list(Branch, List), 
choose([c,O,L], Pree, Succ, List) !], 
extract_RMC_(RMC, Left, Pree), 
apply_reduction(Left, [c,O,L], Succ, RMC, Reduced_Branch, B_Literal,Type), !. 

reduce(x, Branch, Reduced_Branch, B_Literal, Type):­
[! branch_to_list(Branch, List), 
extract_RMC_(RMC, Left_Cells, List) !], 
remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, Type). 

% ----------------------------------------------------------------------------------------------------
% Remove a B-literal from the 1ightmost cell by reduction 
% (i) Compulsory reduction 
% (ii) reduce by unification 

% ----------------------------------------------------------------------------------------------------
remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, id) :­

choose(Non_B, Pree, Succ, Left_Cells), 
non_B _literal(Non_B ), 
apply _reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B_Literal,id), !. 

remove_B(RMC, Left_Cells, Reduced_Branch, B_Literal, Type):­
order(l), 
choose(Non_B, Pree, Succ, Left_Cells), 
non_B _literal(Non_B ), 
apply_reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B_Literal,Type). 

9'o ----------------------------------------------------------------------------------------------------
% Check if the chosen literal is not a B-literal 

% ----------------------------------------------------------------------------------------------------
non_B_literal([bl_]) :- !, fail. 
non_B_literal([_,_]) :- !, fail. 
non_B_literal(Non_B). 

9'o --- ---------------------------------------------- -.--------------------------------------- ---------- -
% Apply reduction using the chosen non-B-literal 
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% ----------------------------------------------------------------------------------------------------
apply_reduction(Prec, Non_B, Succ, RMC, Reduced_Branch, B_Literal,Type) :­

select(B_Literal, Rest_RMC, RMC), 
reducible(B_Literal, Non_B, Type), 
move_depths(Prec, Non_B, Succ, New_Left_Cells), 
append(Rest_RMC, New _Left_ Cells, Result), 
list_to_branch(Result, Reduced_Branch), ! . 

<fo ----------------------------------------------------------------------------------------------------
% Find if the two literals are reducible 

<fo ----------------------------------------------------------------------------------------------------
reducible([b,I,L], Non_B, Type):­

class(Non_B, C, J, K), C\==b, 
opposi te(J ,I), 
complementary(L, K, L_A, K_A), 
match(L_A, K_A, Type). 

<fo ----------------------------------------------------------------------------------------------------
% Check if the two atom are unifiable/identical 

% ----------------------------------------------------------------------------------------------------
match(L_A, K_A, id) :­

identical_atom(L_A, K_A), !. 
match(L_A, K_A, true):-

unify(L_A, K_A). 

% ----------------------------------------------------------------------------------------------------
% Check if an A-literal indexed by 1 occurs between 

% ----------------------------------------------------------------------------------------------------
no_A_l(Between) :-

member([a, 1,_,K), Between), 
! , fail. 

no_A_l(Between). 

<fo ----------------------------------------------------------------------------------------------------
% Move the depths of A-literals indexed by 1 and change the status flags 
% of A-literals indexed by O which are to the 'right' of the non-B-literal 
% used in the reduction. 

<fo ----------------------------------------------------------------------------------------------------
move_depths(Preceeding, Non_B, Succeding, Result):­

collect_depths(Depths, New _Pree, Preceeding), 
remove_depths(Depths, Succeding, Common, Rest_Succ), 
append(New_Prec, Common, Right_Non_B), 
append(Right_Non_B, [Non_BIRest_Succ], Result). 

<fo ----------------------------------------------------------------------------------------------------
% Delete the depths from the 'left' of the non-B-literal used in 
% the reduction 

<fo ----------------------------------------------------------------------------------------------------
remove_depths(Depths, Succeding, [EllConunon], Rest_Succ) :­

select(El, Othersl, Depths), 
select(E2, Others2, Succeding), 
El== E2, 
remove_depths(Others 1, Others2, Common, Rest_Succ ), ! . 

remove_depths(_, Rest, [], Rest). 
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% ----------------------------------------------------------------------------------------------------
% Collects all the depths associated for each A-literal indexed by 1 and at the 
% same time change the status flag of A-literals indexed by Oto 0. 

% ----------------------------------------------------------------------------------------------------
collect_depths([], [], []) :- !. 
collect_depths(Depth, [E210thers], [El IRest]) :-

extract_depth(Depth, Added_Depth, El, E2), 
collect_depths(Added_Depth, Others, Rest). 

% ----------------------------------------------------------------------------------------------------
% Extract the depth of an A-literal indexed by 1 or change the status flag of an 
% A-literal indexed by 0. 

9'o ----------------------------------------------------------------------------------------------------
extract_depth([DIDepth], Depth, [a,1,D,L], [a,1,D,L]) :- !. 
extract_depth(Depth, Depth, [a,0,1,L], [a,0,0,L]) :- !. 
extract_depth(Depth, Depth, E, E). 

% ----------------------------------------------------------------------------------------------------
% TRUNCATION OPERATION for SLM5-TP 

% ----------------------------------------------------------------------------------------------------
truncate([NodelBranch], Truncated_Branch, Truncation, Type):­

truncatable(Node, Ptr, Subchain), 
[! strip_A_literal(Subchain, Subchain_Rest, Depth_Atom), 
form_node(Ptr, Subchain_Rest, F01med_Node), 
append(Fonned_Node, Branch, Branch_Rest) !], 
insert(Depth_Atom, Branch_Rest, Truncated_Branch, Truncation, Type). 

% ----------------------------------------------------------------------------------------------------
% Determine if the node is n-uncatable and exn·act the Node Ptr & the Subchain of 
% the node 

% ----------------------------------------------------------------------------------------------------
truncatable([L,R, [EISubchain]], [L,R], [EISubchain]) :-

non_B_literal(E). 

% ----------------------------------------------------------------------------------------------------
% Form the node pointer and the subchain into node 

% ----------------------------------------------------------------------------------------------------
suip_A_literal([], [], []) :- !. 
strip_A_literal([LIRest], [LIRest], []) :-

examine(L, true), !. 
strip_A_literal([LIRest], Rest, [D,A]) :­

examine(L, [D,A]), !. 
suip_A_literal([LIRest], Subchain, Depth_Atom) :­

examine(L, []), 
strip_A_literal( Rest, Subchain, Depth_Atom). 

% ----------------------------------------------------------------------------------------------------
% Examine if the non-B-literal is a C-literal or an A-literal indexed by O and 
% status flag is O (conditionally proved literal, an A-literal indexed by O and 
% status flag is 1 (proved literal), or an A-literal indexed by 1 
% (get the associated depth and the atom) 

% ----------------------------------------------------------------------------------------------------
examine([b,I,A], true) :- !. 
examine([c,0,A], []) :- !. 
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examine([a,0,0,A], []) :- !. 
examine([a,0,1,L], []) :-

add_as_unit_chain(L), !. 
examine([a,1,D,L], [D,L]). 

% ----------------------------------------------------------------------------------------------------
% Add the proved literal as a unit chain if it is not subsumed by 
% any of the unit input chain 

% ----------------------------------------------------------------------------------------------------
add_as_unit_chain(L) :­

opposite(L,K), 
add_to_set_([b, 1,K]). 

% ----------------------------------------------------------------------------------------------------
% Add the B-literal as unit chain if it does not subsume a unit chain 
% or if the set is a set of general clauses 

% ----------------------------------------------------------------------------------------------------
add_to_set_([b,l,Literal]) :­

clause_type(general), 
opposite(l,J), 
opposite(Literal, K), 
not unit_subsume([b,J,K], _), 
get_chain_ndx(N), 
store_fact(a, input_chain(N, [[b,I,Literal]]) ), !. 

add_to_set_(_). 

% ----------------------------------------------------------------------------------------------------
% Form the node pointer and the subchain into node 

% ----------------------------------------------------------------------------------------------------
form_node(_, [], []) :- !. 
form_node([L,R], Subchain, [ [L,R,Subchain] ]). 

% ----------------------------------------------------------------------------------------------------
% Inse1t a C-literal if the stripped literal is an A-literal indexed by 1 

% ----------------------------------------------------------------------------------------------------
insert([], Branch, Branch, [t_O], !) :- !. 
inse1t([D,L], Branch, Truncated_Branch, [t_l,C_literal], true) :­

[! conve1t_to_C(L,C_literal), 
branch_to_list(Branch, List), 
choose(D, Pree, Succ, List), 
proved(C_literal, Succ, Status)!], 
insert_ C_literal(Status, C_literal, Pree, Inse1ted), 
[! append(Inserted, Succ, Result), 
list_to_branch(Result, Truncated_Branch) !]. 

% ----------------------------------------------------------------------------------------------------
% Find if the C-literal is a proved literal 

% ----------------------------------------------------------------------------------------------------
proved([c,0,Literal], Succ, true):­

no_A_or_B_(Succ), 
add_to_set_([b,O,Literal]), ! . 

proved(_,_, false). 

% ----------------------------------------------------------------------------------------------------
% Dete1mine if the list does not contain an A- or B-literals 
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% ----------------------------------------------------------------------------------------------------
no_A_or_B_(Succ) :-

member(E, Succ), 
class(E,Class,_,_), 
member(Class,[a,b]), !, fail. 

no_A_or_B_(_). 

% ----------------------------------------------------------------------------------------------------
% Convert the literal to C-literal 

% ----------------------------------------------------------------------------------------------------
convert_to_C(L, [c,O,K]) :-

opposite(L, K). 

% ----------------------------------------------------------------------------------------------------
% Inse1t the C-literal at its depth or to a position not equivalent to the position where 
% C-literal was already inserted. Two positions are said to be equivalent if the literals 
% occuning between two positions are all C-literals or A-literals indexed by 0 

% ----------------------------------------------------------------------------------------------------
insert_C_literal(trne, C_literal, Pree, Pree):-!. 
insert_C_literal(_, C_literal, Pree, Inserted):-

append(Prec, [C_literal], Inserted). 
insert_C_literal(_, C_literal, Pree, Inserted):­

select_last(Literal, Prec2, Succ2, Pree), 
[! inequivalent_pos(Literal, Succ2), 
append(Prec2, [C_literal, Literal1Succ2], Inserted) !]. 

% ----------------------------------------------------------------------------------------------------
% Check if the preceeding literal of A-literal indexed by O is 
% 1) a B-literal (2) an A-literal indexed by 1 (3) a node pn· 

% ----------------------------------------------------------------------------------------------------
inequivalent_pos([a,0,_,L], [Succeeding_Literal1Succ2]) :-

not class(Succeeding_Literal,a,0,_). 
check_prec([bl_]) :- !. 
check_prec([a, 11_]) :- !. 
check_prec([_,_]). 
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I*========================-========================-======== 
Module: SLM5-RES.ARI 
Purpose: Contains the procedures that implement the syntactic restrictions of 

SLM5-TP 
========================================================== *I 

% ----------------------------------------------------------------------------------------------------

% Syntactic Check 

% ----------------------------------------------------------------------------------------------------
syntax_check(Op, Chain) :­

get_branch(Branch, Chain), 
[! branch_to_list(Branch, Literals_List) !], 
not restrictions(Literals_List), 
err_ctr(syn,Op ), 
! , fail. 

syntax_check(x, Chain) :- % Check if an A-literal is subsumed by a unit chain 
clause_type(general), 
member(Node, Chain), 
get_subchain(Node, Chain, Subchain), 
member(Literal, Subchain), 
class(Literal, a, I, Atom), 
unit_subsume([b, I, Atom], _), 
toggle_subsume_flag, 
err_ctr(syn,x), 
! ' fail. 

syntax_check(_, _). 

% ----------------------------------------------------------------------------------------------------
% Toggle the unit subsume flag e1rnr 

% ----------------------------------------------------------------------------------------------------
toggle_subsume_flag :­

unit_subsume_fail, ! . 
toggle_subsume_flag :-

store_f act(a,unit_subsume_fail). 

% ----------------------------------------------------------------------------------------------------
% Get a subchain but remove the rightmost literal if it is a subchain of a tip node 

% ----------------------------------------------------------------------------------------------------
get_subchain([L,R,[_ISubchain]], Chain, Subchain) :-

not member([R,_,_], Chain), !. 
get_subchain([L,R,Subchain], Chain, Subchain). 

% ----------------------------------------------------------------------------------------------------
% Get a pair of literals and check if they are admissible 

% ----------------------------------------------------------------------------------------------------
restrictions(Literal_List) :-

pick_suc(Right_Literal, Rest, Literal_List), 
class(Right_Literal, Cl, I, L), 
pick_pre(Left_Literal, In_Between, Rest), 
class(Left_Literal, C2, J, K), 
inadmissible([Cl,I,L], [C2,J,K], In_Between), 
! ' fail. 

restrictions(Literals ). 

% ----------------------------------------------------------------------------------------------------



/*Find if the combination of the two literal are inadmissible 
1) No B- or A-literal is identical to any of the preceeding A-literals 
2a) No C-literal which is identical to any A-literal indexed by O unless 

an A-literal indexed by 1 is in between them 
2b) No B-literal which is identical to a preceeding C-literal unless 

an A-literal indexed by 1 is in between them (preemptive of 1) 
3) No A-literal which is tautologous to a preceeding C-literal unless an 

A-literal indexed by 1 occw-s between them. 
4) No two tautologous B-literals unless a non-B-literal occurs 

between them */ 
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% ----------------------------------------------------------------------------------------------------
inadmissible([Cl,I,L], [C2,I,K], _) :­

pair(l,Cl ,C2), 
literal_atom(L,Sign, Al), 
literal_atom(K,Sign, A2), 
identical_atom(A 1,A2), ! . 

inadmissible([Cl,I,L], [C2,l,K], Between) :­
pair(2,Cl ,C2), 
identical_atom(L,K), 
no_A_l_(Between), !. 

inadmissible([Cl,I,L], [C2,J,K], Between) :­
pair(3,Cl ,C2), 
1 is I+J, 
tautology(L,K), 
no_A_l_(Between), !. 

inadmissible([b,I,L], [b,J,K], Between) :-
1 is l+J, 
tautology(L,K), 
all_B(Between). 

% ----------------------------------------------------------------------------------------------------

% Possible pair of literals classification 

% ----------------------------------------------------------------------------------------------------
pair(l,b,a). 
pair( 1,a,a). 
pair(2,b,c). 
pair(2,a,c ). 
pair(2,c,a). 
pair(3,a,a). 
pair(3,a,c). 
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Appendix C 

THEOREM PROVER DESCRIPTION 

C.1. Running the theorem prover 

Any of the five theorem provers can be run by typing the filename of the 

executable file at the DOS prompt. Once invoked, the program looks for the program 

description file (INTRO. SCR) and displays its contents on the screen. Pressing the ESC 

key at any point skips the display of the entire file. After the display of the program 

description, the theorem prover prompt (the theorem prover name followed by the symbol 

':-')appears. Typing the command'?' or 'help' displays the syntax of commands and 

their descriptions. This list of commands is stored in the HELP.SCR ·file. Each 

command has to be terminated by a carriage return key. 

C.2. Loading g theorem 

Each theorem to be proved should be stored into a text file and each clause of 

a theorem should be in the correct format. A clause should be terminated with a dot. For 

example, problem PEL-10 of Appendix D should be written to a file in the following 

format: 

a_clause ( [++ r, q] ) . 

a clause ( [--- r, ++ p]) . 

a_clause ( [-- r, ++ q] ) . 

a_clause ( [-- p, ++ q, ++ r] ) . 

a clause ( [--- p, q] ) . 

a clause ( [ ++ - p, ++ q] ) . 
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A problem file can be loaded into the database by typing the command [Filename] 

where the Filename should include the extension, otherwise, the theorem prover will 

append the extension ' . ari' to the specified filename before searching for the file in the 

current directory. If the file is not in the current directory, an error message is displayed. 

Typing the command dir displays all the files in the current directory with the extension 

' . ari ', on the screen. To transfer to another subdirectory, the command cd PATH 

should be typed at the prompt. After a successful loading of the problem file, the input 

clauses can be viewed by typing the command list or input at the prompt. The input 

clauses are displayed on the screen with their corresponding index number. The clauses 

in the set of support can be viewed by typing the command show (sos) or sos at the 

prompt. The default set of support is the set of negative clauses. The set of support can 

be changed to the set of positive clauses by typing the command sos ( +) . 

Starting the derivation 

The derivation is started by typing the command prove or prove (Index) 

where Index is the index number of a top clause. If the command prove is used, the 

theorem prover chooses a top clause from the set of support. If the selected top clause 

does pot produce a refutation, another clause from the set of support is selected. If 

desired, the initial search bound can be specified by typing the command bound ( N) 

where N is an integer greater than 0. During the derivation, some of the B-literals in the 

center chains will be checked if they can be extended upon. Because this check may 

consume a lot of time, this check can be disabled by typing the command nocheck 

before starting the derivation. Typing the command check will make the check 

operational again. During the unification of two terms, an occurs check is done before the 

two terms are unified. The occurs check can be disabled by typing the command 

nooccur. However, it should be pointed out that disabling the occurs check may cause 

some serious problems, hence, it must be done with caution. Typing the command 

occur will make the occurs check operational again. 
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C.4. Derivation Output 

During the derivation, the five theorem provers generate output and send it to 

the output device. As shown in Figure 29, an output device can be the console, printer or a 

text file. The default output device is the console. The command { prn} directs the 

output to the printer, and the command {Fi le name} to direct the output to the text file 

Fi le name. The command {console} directs the output to the console. The five 

theorem provers generate three types of output during and after the derivation. They are 

as follows: 

1. Trace of the derivation. Each inference step of the derivation (excluding 

inadmissible inference steps) is written to the output device. This includes the 

center chain, the operation applied, the input chain if the operation applied is 

an extension, the B-literal removed by a reduction operation, the lemmas 

generated after truncation in the case of the ME-TP, and the current search 

depth. This trace can be disabled by typing the command not race before 

the start of the derivation. The commands trace and not race toggle on 

and off the trace of the derivation respectively. 

2. Trace of the proof. The inference steps that lead to the refutation are written 

to the output device. The commands proof and noproof toggle on and off 

the trace of the proof respectively. 

3. Statistics of the derivation. After a refutation is obtained, the statistics of the 

derivation are written to the output device. The statistics include: (i) the search 

duration, (ii) the refutation duration (the time from the start of the search for 

the search bound that produce the refutation was obtained until the time when 

the empty chain is obtained), (iii) the sequence of operations applied to obtain 
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the refutation, (iv) the number of each of the operations in the refutation, 

(v) the number of each of the operations in the successful search bound, and 

(vi) the number of each of the operations pruned by the syntactic restrictions 

and the match check. The commands stat and nostat toggle on and off 

the writing of the statistics to the output device respectively. 

During the derivation, some information is generated and stored into the 

database. The valid_literal (Atom) facts can be viewed by typing the command 

valid and the command redundant displays the redundant_literal (Atom) 

facts. The command show (default) or default displays the current values of the 

trace derivation flag, trace proof flag, match check flag, occurs check flag, the polarity of 

the set of support and the initial search bound 
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Appendix D 

PROBLEMS USED TO TEST 

THE IMPLEMENTED THEOREM PROVERS 

The following are problems used to test the implemented theorem provers. They are 

grouped according to the source from which they were taken. They are presented in 

clausal format. The sign '-' means negation and 'v' means OR. 

Selected problems from Pelletier ( 1986) 

Pel-10. 

premises. 

1. RV -Q 

2. -RV p 

3. -RV Q 

4 . -P V Q 

5. -P V -Q 

6. p V Q 

A problem to test whether 'natural' systems correctly manipulate 

V R 
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Pel-12. The 'hardest' propositional problem found in Kalish and 

Montague (1964), according to Pelletier (1982). 

1. p V Q V R 

2. -P V -Q V R 

3. -P V Q V -R 

4. p V -Q V -R 

5. p V -Q V R 

6. p V Q -R 

7 . -P V Q V R 

8. -P V -Q V -R 

Pel-14. 

resolution. 

A problem not solvable by unit resolution nor by 'pure' input 

1. -P v Q 

2. -Q V p 

3. -Q v -P 

4. Q V p 

Pel-17. A problem which appears not to be provable by Bledsoe et al 

(1972). 

1. -P V Q V s 

2. -P V -R V s 

3. p 

4. -Q V R 

5. -s 
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Pel-20. 

1 . -p ( Y) V -q ( Z) V r ( f ( Y, Z) ) 

2. -p(Y) V -q(Z) v s(X) 

3. p (a) 

4. q (b) 

5. -r (W) 

Pel-21. A moderately tricky problem, especially for 'natural' systems with 

'strong' restrictions on variables generated from existential quantifiers. 

1. -P v f (a) 

2. -f(b) vP 

3. P V f (X) 

4. -f(X) v -P 

Pel-23. 

1. P V f (X) V f (Y) 

2. f(X) VP V f(b) 

3. -f(a) VP V f(Y) 

4. -f(a) V -f(b) 

5. -P 
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Pel-24. 

1. -s(X) v -q (X) 

2 . -p(X) v q (X) v r (X) 

3. p (a) V q(b) 

'4. -q(X) v S (X) 

5. -r(X) v S (X) 

6. -p(X) v -r (X) 

Pel-25. 

1. p(a) 

2 . -f (X) V -g (X) V -r (X) 

3 . -p(X) V f (X) 

4. -p(X) v g (X) 

5. -p(X) v q (X) V p(b) 

6. -p(X) v q (X) V r (b) 

7 . -q(X) V -p (X) 

Pel-27. 

1. f (a) 

2 . -g(a) 

3. -f (X) v h (X) 

4. -j (X) V -i (X) v f (X) 

5. -h(X) v g (X) V -i(Y) V -h(Y) 

6. j (b) 

7. i(b) 
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Pel-30. 

1. -f (X) v -h (X) 

2. g (X) v f(X) 

3. -g(X) v -h (X) 

4 • g (X) v h(X) 

5. i (X) v f (X) 

6. i (X) v h(X) 

7 . -i(a) 

Pel-31. 

1. -f (X) v -g (X) 

2. -f(X) v -h (X) 

3. i(a) 

4 . f(a) 

5. j (X) v h(X) 

6. -i (X) v -j (X) 

Pel-32. 

1. -f (X) v -g(X) V i (X) 

2. -f(X) v -h (X) v i (X) 

3. -i (X) v -h (X) V j (X) 

4 . -k(X) v h (X) 

5. f (a) . 

6. k (a) 

7 . -j (a) 
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D.2. Problems from Chang 0970) 

Chang-1. In an associative system with left and right solutions, there is a 

right identity element. 

1. p(g(X,Y),X,Y) 

2. p(X, h(X,Y),Y} 

3. -p(X,Y,U) v -p(Y,Z,V) v -p(X,V,W) v p(U,Z,W) 

4. -p (k (X) , X, k (X} ) 

Chang-2. In an associative system with an identity element,if the square of 

every element is the identity, the system is commutative. 

1. p (X, e,X) 

2. p(e,X,X) 

3. -p(X,Y,U) V -p (Y, Z, V) V -p (U, Z, W) V p(X,V,W) 

4. -p(X,Y,U) V -p(Y,Z,V) V -p (X, V, W) V p (U, Z, W) 

5. p(X,X,e) 

6. p(a,b,c) 

7 . -p(b,a,c) 

Chang-3. In a group, the left identity element is also a right identity. 

1. p(i(X),X,e) 

2 . p(e,X,X} 

3. -p(X,Y,U) V -p (Y, Z, V) v -p(U,Z,W) v p(X,V,W) 

4 . -p(X,Y,U) V -p (Y, Z, V) v -p(X,V,W) v p(U,Z,W) 

5. -p(a,e,a) 
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Chang-4. In a group with left inverses and left identity every element has a 

right inverse 

1. p(i(X),X,e) 

2. p(e,X,X) 

3 . -p(X,Y,U) v -p (Y, Z, V) v -p(U,Z,W) v p(X,V,W) 

4 . -p (X, Y, U) v -p(Y,Z,V) v -p(X,V,W) v p(U,Z,W) 

5. -p(a,X,e) 

Chang-5. If S is a nonempty subset of a group such that if X, Y belongs to 

S then x.y-l belongs to S, then the identity e belongs to S. 

1. p(e,X,X) 

2. p(X,e,X) 

3. p(X,i(X),e) 

4 . p ( i ( X) , X, e) 

5. s (a) 

6. -s(X) v -s(Y) v -p(X,i(Y),Z) v s(Z) 

7. -p(X,Y,U) v -p(Y,Z,V) v -p(U,Z,W) v p(X,V,W) 

8. -p(X,Y,U) v -p(Y,Z,V) v -p(X,V,W) v p(U,Z,W) 

9. -s(e) 
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Chang-6. If Sis a nonempty subset of a group such that if x, Y belongs to 

S then x. y- l belongs to S, then S contains x-1 whenever it contains X. 

1. p(e,X,X) 

2. p(X,e,X) 

3. p(X,i(X),e) 

4. p(i(X),X,e) 

5. s (b) 

6 . - S ( X) V - S ( Y) V -p ( X, i ( Y) , Z) V S ( Z) 

7. -p(X,Y,U) v -p(Y,Z,V) v -p(U,Z,W) v p(X,V,W) 

8. -p(X,Y,U) v -p(Y,Z,V) v -p(X,V,W) v p(U,Z,W) 

9. -s(i(b)) 

Chang-7. If a is a prime and a = b 2 / c 2 then a divides b. 

1. p (a) 

2. m(a,s(c),s(b)) 

3. m(X,X,s(X)) 

4. -m(X,Y,Z) v m(Y,X,Z) 

5. -m(X,Y,Z) v d(X,Z) 

6. -p(X) v -m(Y,Z,U) v -d(X,U) v d(X,Y) v d(X,Z) 

7. -d(a,b) 
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Chang-8. Any number greater than 1 has a prime divisor. 

1. d (X, X) 

2 . -d(X,Y) V -d (Y I Z) v d(X,Z) 

3. p (X) v d(g(X),X) 

4. p (X) V 1(1,g(X)) 

5. p (X) V l(g(X), X) 

6. 1(1,a) 

7. -p(X) V -d(X,a) 

8. -1(1,X) V -l(X,a) V p ( f (X) ) 

9. -1(1,X) V -l(X,a) v d(f(X),X) 

Chang-9. There exist infinitely many primes. 

1. l(X,f(X)) 

2. -l(X,X) 

3. -l(X,Y) v -l(Y,X) 

4. -d(X,f(Y)) v l(Y,X) 

5. p (X) v d (h (X) , X) 

6. p (X) v p (h (X) ) 

7. p (X) v l (h (X) , X) 

8. -p(X) v -l(a,X) v l(f(a),X) 



Chang-IO. Given the rewriting rules: 

A+B=B+A 

A+ (B+C) = (A+B) + C 

(A+B)- B = A 

A= (A+B)- B 

(A-B) + C = (A+C) - B 

(A+B) - C = (A-C) + B 

Show that 

(A+B) + C = A + (B+C) 

(A-B) + C =A+ (C-B) 

A+ (B-C) = (A-C) + B 

. (A+B) - C = A + (B-C) 

1. r( p(X,Y),p(Y,X)) 

2. r( p(X,p(Y,Z)), p(p(X,Y),Z) 

3. r( s(p(X,Y),Y), X 

4. r( X, s{p(X,Y),Y) 

5. r( p(s{X,Y),Z), s(p(X,Z),Y) 

6. r( s(p{X,Y),Z), p(s{X,Z),Y) 

7. -r(X,Y) v -r(Y,Z) v r(X,Z) 

8. r(X,X) 

9. -r(X,Y) v -r(U,p(X,V)) v r(U,p(Y,V)) 

10. -r(X,Y) v -r(U,s(X,V)) v r(U,s(Y,V)) 

11. -r(X,Y) v -r(U,s(V,X)) v r(U,s(V,Y)) 

12. -r( p(p(a,b),c), p(a,p(b,c)) 

13. -r( p(s{a,b),c), p(a,s(c,b)) 

14. -r( p{a, s(b,c)), p(s(a,c), b) 

15. -r( s(p{a,b),c), p(a,s(b,c)) ) 
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D.3. The Schubert's Steamroller problem as described~ Stickel (1986). 

Problem Statement: 

1. 

2. 

3. 

4. 

5 . 

6. 

7 • 

8. 

9. 

Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of 

each of them. Also there are some grains, and grains are plants. Every animal 

either likes to eat all plants or all animals much smaller than itself that like to eat 

some plants. Caterpillars and snails are much smaller than birds, which are much 

smaller than foxes, which in tum are much smaller than wolves. Wolves do not 

like to eat foxes or grains, while birds like to eat caterpillars but not snails. 

Caterpillars and snails like to eat some plants. Therefore, there is an animal that 

likes to eat a grain eating-animal. 

-f (X) V a (X) 

-b(X) V a (X) 

-w(X) V a (X) 

-c (X) V a (X) 

-s (X) V a (X) 

f ( f) 

b (b) 

w (w) 

C (C) 

10. s (s) 

11. g (g) 

12. -g(X) V p (X) 

13. -a (X) V -p (Y) V -a ( Z) V -p (V) v e(X,Y) V -m (Z, X) V 

-e (Z, V) v e (X, Z) 

14. -c (X) V -b (Y) v m(X,Y) 

15. -s (X) V -b (Y) v m(X,Y) 

16. -b(X) V -f(Y) v m(X,Y) 
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17. -f(X) v -w (Y) v m (X, Y) 

18. -w(X) v -f(Y) v -e(X,Y) 

19. -w(X) v -g(Y) v -e(X,Y) 

20. -b(X) v -c (Y) v e(X,Y) 

21. -b(X) v -s(Y) v -e(X,Y) 

22. -c (X) v p (h (X) ) 

23. -c (X) v e(X, h (X)) 

24. -s(X) v p(i(X)) 

25. -s(X) v e(X, i (X) ) 

26. -a(X) v -a (Y) v -g(Z) v -e(X,Y) v -e(Y,Z) 


	An analysis and implementation of linear derivation strategies
	Recommended Citation

	Page 1

