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VIII 

ABSTRACT 

The filtration rate, oxygen consumption and biomass of the introduced 

polychaete Sabella spallanzanii, within Cockburn Sound. 

Sabella spallanzanii, a filter feeding, sabellid polychaete worm which is common in the Mediterranean 

Sea, was recently discovered in Cockburn Sound, Western Australia. The species has been in Port 

Phillip Bay, Victoria for about 10 years, where it has spread widely, competes with native species and 

has economic impacts on the local scallop fishery. In Cockburn Sound, S. spallanzanii has colonised a 

shallow, sandy area known as the Southern Flats, reaching a mean biomass of 258 gDW m"2
, as well as 

almost all artificial structures .:tlch as jetties and navigational marker pylons. A large biomass of this 

introduced filter feeder may have a coruiderable filtration capacity which could control levels of 

phytoplankton in the Sound. 

This study measured the biomass and filtration rate of S. spallanzanii to determine its potential to effect 

phytoplankton levels in Cockburn Sound through filter feeding. The results suggest that these 

polychaetes have a substantial filtering capacity, capable of filtering the water-column above them at the 

Southern Flats (5m depth) 4.6 times daily. 

To determine the feeding efficiency of S. spa/lanzanii (volume of water filtered per metabolic demand), 

the oxygen consumption and filtration rate were measured. Feeding efficiency, which may provide an 

indication of the potential spread of S. spallanzanii to less eutrophic waters, increased with temperature 

from 130C, reaching an optimum at 22°C. Between 22 ~ 27°C the feeding efficiency decreased sharply, 

indicating that its upper temperature limit is approached. To meet its metabolic requirements, 

S. spal/anzanii requires a phytoplankton concentration with a chlorophyll a level of 1.42 pg L"1 in winter 

(l7°C) and 0.73 pg L"1 in summer (22°C), It was concluded that the feeding efficiency of S. spallanzanii 

may limit it to eutrophic harbours with a high level of phytoplankton. 
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Chapter 1 

INTRODUCTION 

Background 

For many years much attention has been paid to the problems facing Australia from introduced 

species in terrestrial and freshwater environments. Meanwhile, invasions of our marine 

environment have gone largely unnoticed. The problems facing Australia from the introduction of 

marine pests have been highlighted by recent media attention to such pests as the northern Pacific 

seastar Asterias amurensis, the Japanese kelp Undaria pinnatifida, toxic dinoflagellates and the 

Mediterranean fan wonn Sabella spa/lanzanii. 

This concern over introduced marine species is not UDJUStifi~ as many marine invasions are of 

such magnitude that they may be leading to profound ecoiogical changes in the ocean (Carlton, 

1989). With the advent of modern transport such as shipping, marine species have a mechanism 

to cross natural oceanic barriers, being deposited in a new environment where they may become a 

pest (Carlton and Geller, 1993). There are many examples of marine pests having serious 

ecological and eConomic impacts (e.g. Meinesz and Hesse 1991; Carlton and Geller, 1993; 

Nichols, Thompson and Schemel, 1990). 

There are now over 70 species of intrcxluced algae, invertebrates and fish which have been 

identified in Australian waters (Rainer, 1995). While not all of these species can be considered as 

pests, the CSIRO has compiled a list of species with sufficient potential for economic or 

ecological effects to justify them receiving immediate priority for study. Sabella spal/anzanii, a 

filter feeding polychaete worm, is one of those species listed (CSIRO unpublished). 
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In 1994, large, dense beds of Sabella spai.'anzanil were discovered on the Southern FlaL'i in 

Cockburn Sound, Western Australia (Lcmmcns, Clapin, Greenway, Lavery and Cary, in press). 

Further investigation found that it also covered most of the jetties throughout Cockburn Sound, 

north to Fremantle and in harbours at Bunbury and Albany (Ciapin and Evans, 1995). 

Sabella spallanzanii, which is common in the Mediterranean Sea, was first reported in Australia 

during the early 1980's in the Gcclong ann of Port Phillip Bay, Victoria (Carey and Watson, 

1992). It has now spread over most of the northern and western parts of Port Phillip Bay where it 

competes with native species and is causing serious problems for the commercial scallop fishery. 

AsS. spallanzanii has only recently been found in Western Australia, it is not yet known whether 

it will have the same rapid rate of spread or impacts as seen in Port Phillip Bay. It is important, 

therefore, to detennine the species' biological and ecological attributes, which may influence its 

further spread and potential impacts. 

Significance and purpose of the study 

One major difficulty with managing introduced species is the Jack of knowledge on the ecological 

role and impact they will have in their new environment. This can only be partially predicted from 

knowledge of their biology and ecology in their region of origin (Carlton and Geller, 1993). 

Therefore, it is essential to the effective management of these pests to develop some knowledge on 

their biology and ecological role whilst insitu in their new envirorunent. 

Little is known about what impact S. spa/lanzanii will have in Cockburn Sound or whether 

it is capable of spreading outside the Sound and invading other near-shore environments. 

S. spal/anzanii has already reached high densities on natural and artificial substrates in some 

areas of Cockburn Sound (Clapin and Evans 1995). The possible impacts may include 
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competition with native spcc1cs for space and food, reduction in diversity, displacement of 

scagrass and impacts on commercial mussel farms. Because S .. vpa/lanzanii is a filter feeder, the 

combined filtration capacity of large beds in Cockburn Sound may have an impact by stripping 

phytoplankton from the water and if this is the case, then attempts to remove it could result in a 

' localised reduction in water quality. 

Amongst the more important questions which need to be addrcs!'Cd at this stage arc: 

What factors are important in the establishment and spread of S. spal/anzanii. In particular, is its 

spread related to the availability of ph}1oplankton and the efficiency with which it feeds on that 

food source and what is its contribution to stripping the water column of phytoplankton. 

Although there may be many other environmental factors which limit its density and distribution, 

in Australia S. spal/anzanii has so far only been found at high densities in eutrophic harbours. 

Therefore, food availability and feeding efficiency may be important factors in limiting it to 

eutrophic areas which have levels of phytoplankton high enough to sustain its food requirements. 

Sabelid worms such as Sabella spa/lanzanii gather food by filtering water to remove suspended 

particles or cells (Nicol, 1930). S. spa/lanzanii must be able to filter enough water to gather 

sufficient food to meet its metabolic requirements. If the food concentration in the water is low, it 

needs to filter more water to meet its needs than if the concentration of food is high. Two 

possibilities exist: if it is an efficient filter feeder and can filter a large volume of water compared 

to its metabolic requirements, then it can potentially live in waters with relatively low food 

concentrations. Should this be the case, it will have the potential to spread outside Cockburn 

Sound, unless it is limited by some other factor. If on the other hand, it is an inefficient feeder, 

then in order to meet its food requirements it may be restricted to areas where food concentrations 

are relatively high. 
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The purpose of this study therefore, is to incrCJsc our knowledge of the autecology of Sabella 

spa/lanzanii in Cockburn Sound. Specifically, the study will dctcnninc its feeding efficiency and 

whether this is a limiting factor and what impact S spallanzanii could have on phytoplankton 

levels in Cockburn Sound. This will provide information to assist the nnnagcmcnt of 

S. spal/anzanii. The study was carried out in conjunction with the CSIRO Coastal Zone Filter 

Feeder Project. This study also aims to highlight the importance of filter feeders in coastal waters 

and provide an opportunity for input to current coastal management models. 

Components or the study 

Feeding efficiency in filter feeders has not been measured as a single function. Instead, studies on 

other fan wonns have inferred a level of feeding efficiency by comparing the oxygen consumption 

rate as a measure of metabolic rate, and therefore energy consumption., with filtration rate as a 

measure of food collection (RiisgArd and lvarsson, 1990; Shumway, Bogdanowicz and Dean, 

1988). The present study followed a similar strategy, measuring the filtration rate and oxygen 

consumption rate of S. spal/anzanii separately, and inferring a level of feeding efficiency from 

these two parameters. In addition, the amount of food required to meet the metabolic requirements 

per unit of water filtered was calculated. This could then be related to actual levels of 

phytoplankton in tne natural environment to detennine whether S. spallanzanii is potentially 

capable or spreading outside Cockburn Souud. 

Because temperature is known to affect both filtration rate and oxygen consumption rate (e.g. 

Jorgensen, Larsen, and Riisgiird, 1990; Schmidt-Neilsen, 1983) these parameters were each 

measured at a range of temperatures. This range of temperatures was also intended to detect 

either an optimum or the tolerable limits of S. spallanzanU, as this may give an indication of the 

environmental temperatures in which it can spread. 
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Since high algal cell concentrations arc known to effect filtration rate (e.g. Petersen and Riisgcird, 

1992; Riisg;ird and Ivarsson, 1990), filtration rate of S. ~pal/anzanli was also tested at various 

cell concentrations. 

To determine the filtration capacity of the population of S. spa/lanzanii it was necessary to 

measure the biomass in Cockburn Sound, estimate the total area covered and relate this to the 

filtration rate per unit ofwonn body dry weight. Measurement of biomass also involved sampling 

different habitats where S. spallanzanii occurs and sampling seasonal variation. 

Aims 

The aims of this study were to: 

l. Detennine the filtration rate of Sahel/a spal/anzanii and whether this rate is dependent on 

temperature or algal cell concentration. 

2. Measure the oxygen consumption rate of S. spallanzanii and the effect of temperature on this 

rate. 

3. Determine the biomass of S. spal/anzanii in Cockburn Sound and whether the majority of that 

biomass is distributed on the Southern Flats area or on artificial structures such as jetties and 

navigational marker pylons. Secondly, to determine whether there is seasonal variation. 

4. Using the filtration rate and oxygen consumption rate, to determine the feeding efficiency of 

S. spal/anzanii and the concentration of food required to meet its metabolic requirements. 

5. By combining the results of filtration rate and biomass, to determine the total filtration 

potential of the S. spallanzanii population in Cockburn Sound. 
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Review of literature 

Introduced marine species. 

There arc numerous reports in the literature on the introduction and subsequent spread of marine 

species, often having both ecological and economic impacts on the area invaded. Since its 

introduction to the northern Mediterranean, the toxic tropical alga Caulerpa taxifo/ia has spread 

rapidly, significantly reducing or destroying seagrass populations and causing toxicity in fish 

rendering them unsuitable for human consumption or sale (Mcinesz and Hesse 1991 ). Another 

case is the Asian clam Potamocorob/a amurensis which has invaded San Francisco Bay, spread, 

and reached such high density that it has displaced the fonner conununity (Nichols, Thompson, 

and Schemel, 1990). These species have caused ecological changes through intense competition, 

changing conununity structure and reducing diversity. This is often facilitated by the absence of 

predators in their new envirorunent as is the case with the toxic Cau/erpa taxifo/ia (Meinesz and 

Hesse 1991). 

Introduced spec1es may also affect community structure through selective predation. The 

introduced European green crab, Carcinus maenas selectively preys on species of a certain size 

significantly reducing the abundance of several taxa and altering community structure in Bodega 

Harbour, California (Grosholz and Ruiz 1995). 

There are not many reports of introduced filter feeders having an impact. One notable exception 

is the Asian clam P. amurensis, which has significantly reduced chlorophyll concentrations and 

the abundance of 3 corrunon zooplankton species in the San Francisco Bay estuary (Kimmerer, 

Gratside and Orsi, 1994). 



7 

Carlton and Geller ( 1993) considered that bays, estuaries and inland waters where ships may take 

up and dump ballast water, arc often disturbed by extensive urbanisation, rendering them 

especially susceptible to invasion. They concluded that these cnvironm(..'l1lS arc the marine analogs 

of despoiled, highly invaded oceanic islands and they may be among the most threatened 

ecosystems on the planet. This conclusion is well supported by the literature as most of the 

reported invasions arc in bays, estuaries, inland waters or harbours, including all the reported 

invasions of S. spallanzanii in Australia. 

The importance of filter feeders 

Although numerous studies have been conducted elsewhere (see below) there have been few 

studies in Australia on the filtration rate of locally occuning species (e.g. Lemmens, Kirkpatrick 

and Thompson, 1996). Van Senden (1994) points out that there is a general lack of information 

on local filter feeders and because of this, the filter feeder component ofCOASEC model is based 

on data from overseas literature. This highlights the need for studies on the filtration capacity of 

filter feeders in local waters. There are, however, some data which indicate that filter feeders are 

an important part of the coastal ecosystem. Wells and Threlfull (198C) found that 82.2% of the 

benthic fauna in the deep basin of Cockburn Sound were infaunal filter feeders. In Port Phillip 

Bay, filter feeders comprise about half the benthic macroinvertebrate biomass and may account 

for 42% of the total assimilation of organic material by benthic invertebrates (Wilson, Cohen and 

Poore, 1993). 

Several studies have shown that filter feeders are important in controlling phytoplankton levels in 

shallow coastal bays (e.g. Officer, Smayda and Mann, 1982; Alpine and Cloem, 1992; and Hily, 

1991). In South San Francisco Bay, Cloem (1982) showed that the abundance of filter feeding 

bivalves is sufficient to filter the entire volume of the bay daily, suggesting that this is the primary 
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mechanism controlling phytoplankton levels during summer and autumn. A similar result wa.'i 

demonstratt..-d by Petersen and Riisgi\rd (1992) for the ascidian Ciona infesfina/is, which is 

sufficiently abundant in summer to filter the volume of a shallow fjord in Denmark daily. In Port 

Phillip Bay, filter feeders arc estimated to filter the volume of the entire Bay in about 16.5 days 

(Wilson eta/ .. 1993). 

Feeding efficiency 

Jorgensen (1975) estimated that, in order to obtain enough food to meet its minimal energy 

requirements, a temperate zone, near coastaJ, marine filter feeder must filter more than I 0 L of 

water per mL of oxygen consumed. Riisgcird and Ivarsson (1990) found the water-processing 

capacity (feeding efficiency) of Sabella penicillus to be 354 L of water filtered per mL of oxygen 

consnmed. The high feeding efficiency of S. penicillus suggests that this polychaete is adapted to 

live in waters with extremely low algal concentrations (Riisg3.rd & lvarsson, 1~90). In 

comparison, the mussel Myti/us edulis filters on1y 15 to 50 L of water per mL of oxygen 

consumed (Riisgard, Randlov, and Kristensen, 1980). Riisgard and lvarsson, (1990) concluded 

that M edulis may not be able to live in localities with as low food concentrations as 

S. penicillus. This demonstrates that different species of filter-feeders can be adapted to different 

regimes of suspended food. 

Although there has been previous work on both the filtration rate and oxygen consumption of 

other Sabellid polychaetes such as Sabella penicillus (Riisgiird & lvarsson, 1990), there are no 

appropriate results which can be used for Sabella spal/anzanii. 
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Sahel/a spallanzrr;,ii 

Sabdla spal/anzanii is conunon along the Italian coast and can be found in both the open ocean 

from I to 30m depth. as well as in eutrophic harbours, where it reaches high densities 

(Giangrande and Pctraroli, 1994). So far, in Australia, Sabella spal/anzanli has only been found 

at high densities in shallow, eutrophic harbours such as Port Ph~llip Bay and Cockburn Sound, 

(Carey and Watson, 1992; Clapin and Evans 1995). Cockburn Sound has bad clcvatod levels of 

phytoplankton for at least the past 15 years (Chitlings and McComb, 1981; Cary, Simpson, and 

Chase, 1991; Cary, Masini, and Simpson, 1995). This suggests that, while it can live at low 

phytoplankton levels in the ocean, S. spallanzanii may need higher levels of food to establish a 

population of high density and therefore food levels may be a limiting factor. 

Structure of the thesis 

Because there are several different components of this study, each with different methods and 

hypotheses, they will be dealt with in separate chapters. This chapter, (Chapter I) will introduce 

the study, its various components and the general literature. Chapter 2 will cover the field study 

to determine the biomass of S. spallanzanii in Cockburn Sound. Chapter 3 covers the laboratory 

investigation of fill.ration rate, and Chapter 4 the laboratory measurements of oxygen 

consumption rate. Fi~.1ally, the main results of the previous chapters will be amalgamated in 

Chapter 5, to determine the feeding efficiency and filtration capacity of S. spa/lanzanU, and the 

implications for the management of this introduced species. Each chapter will deal with the 

specific literature relevant to the topic, and the methodologies used. The discussions within the 

chapters on biomass, filtration rate and oxygen consumption rate will concentrate on the results 

and the technical aspects of the findings, whereas the final chapter will focus on a synthesis of 

results from the previous chapters and the implications for the management of S. spal/anzanii. 
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Description of the study site: Cockburn Sound 

Cockburn Sound is a coastal embayment south of Frcmantlc, Western Australia. It is protected 

from the ocean by Garden Island on the western side and the shallow Parmclia bank on the 

northern side (Figure 1.1 ). The Sound has a deep central basin (18 to 20m), surrounded by 

shallow(< Sm) sediment platfonns of 50m to 3km width. It is on ~nc of these sediment platforms, 

the Southern Flats, that large beds of S. spallanzanii are located (Figure 1.2 ). The distribution of 

S. spallanzanii within Cockburn Sound is concentrated in beds on the Southern Flats. 

S spallanzanii covers an area of approximately 20 hectares on flat, shallow (4 to 5m) bottom 

(Ciapin & Evans 1995). S. spal/anzanii is also found on artificial structures such as jetty pylons, 

breakwaters, navigational markers and wrecks throughout the Sound and along the southern and 

eastern shore northwards to Fremantle (Ciapin & Evans, 1995). 



Figure 1.1. Site Location Maps 1 & 2. 
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Chapter 2 

BIOMASS IN COCKBURN SOUND 

INTRODUCTION 

In Cockburn Sound, large dense beds of Sabella spallanzanii occur on the flat, shallow (4 to 

Sm), sandy bottom of the Southern Flats (Ciapin & Evans, 1995). S. spal/anzanii also occurs on 

artificial structures such as jetty pylons, navigational marker pylons, marinas, breakwaters and 

wrecks. During a preliminary survey, Clapin and Evans (1995) foundS. spallanzanii on all the 

jetties and pylons surveyed throughout the Sound, along the southern and eastern shore 

northwards to Owen Anchorage, the Gage Roads channel and Fremantle. During that survey, 

visual estimates of density were recorded but no quantitative data were collected, the only other 

data was a preliminary sample from one site on the Southern Flats when the species was first 

discovered (Lemmens, Clapin, Greenway, Lavery and Cary, in press). Thus, there were no data 

with which to determine the biomass of Sabella spal/anzanii in Cockburn Sound. l he present 

study quantified this biomass by sampling representative areas from the Southern Flats, jetties 

and navigational marker pylons. 

Aims 

The aims of this section were to detemtine the density and biomass of Sabella spal/anzanii in 

Cockburn Sound and where the majority of that biomass is distributed: on the Southern Flats area 

or on artificial structures such as jetties and navigational marker pylons, so that the relative 

importance of these habitats can be established. Secondly, to detennine whether there is seasonal 

variation in biomass or the size of individuals so that changes such as growth or rcc.ruitment may 

be detected and to give an indication of the dynamics of the population. 
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More specifically, the following questions arc addressed in this section: 

I. What is the biomass of Sabella spal/anzanii in Cockburn Sound. 

2. Is there a seasonal change in the biomass or size of .s: spal/anzanii in Cockburn Sound. 

3. Whether the majority of that biomass is distributed on the Southern Flats area or on artificial 

structures such as jetties and navigational marker pylons. 

METHODS 

Study site 

Sampling effort was concentrated on determining the density and biomass of the Southern Flats 

beds because they are the largest area of S. spallanzanu found on natura] substrate. Clapin and 

Evans (! 995) made a visual density estimate of these beds and indicated that there were 

differences. For this reason four of the large beds of S. spallanzanii on the Southern Flats were 

sampled (Fig. 1.1 ). Artificial structures however, cannot be ignored as an important substrate, so 

three randomly selected jetties and three navigational marker pylons were sampled on the 

southern and eastern edges oftl>e Sound (Fig. 1.1 ). The sites on the Southern Flats had similar a 

depth of 4 to Sm and substrate of sand and shell, which was once covered by seagrass beds as 

there were mmains of seagrass rhizomes. The jetties selected were the disused Explosives jetty 

just north of Woodman Poin~ the Broken Hill Pty. steel refinery jetty (BliP) and the Rockingham 

jetty in Mangles bay (Fig. 1.1 ). These jetties are well spaced from north to south in the Sound 

and each were considered representative of other nearby jetties in terms of size, structure and 

position. The pylons selected were located from the north, near Woodman Point, to Kwinana in 

the south (Fig. 1.1 ). 
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Preliminary sampling and determination or sample size 

Because of the apparent clumping habit of S spal/anzanU, the distribution of individuals within 

large beds is very patchy. For this reason, preliminary sampling to dctcnninc an appropriate 

quadrat size and number of replicates was carried out early during the project (August 95) at the 

Southern Flats. Counts of individuals were made within ten random replicates of each of three 

quadrat sizes (0.25, 0.5 and I.Om2
). 

Precision (p = S.E. I mean count m"2
) was calculated for each quadrat size and increasing 

numbers of replicates. The unit (in this case, number and size of replicates) with the smallest 

value ofp will give the most precise estimate (Andrew & Mapstone, 1987). The smallest quadrat 

size, 0.25m2 (Fig. 2.1 ) gave the least precise result (p = 0.43, n = 10). There was a marked 

increase in precision for the 0.5m2 quadrat (p = 0.15, n = 10) then only a small increase for the 

l.Om2 quadrat (p = 0.14, n = 10). Therefore, while there was an advantage in increasing the 

quadrat size from 0.25 to 0.5m2
, there was very little advantage in doubling the size again to 

l.Om2
• A further advantage of the 0.5m2 quadrat is that it was found to be an easily manageable 

size Widerwater, whereas the l.Om2 quadrat and the very large amount of material to be collected 

from it was much more difficult to handle. Therefore, the extra cost in time and effort was not 

worth the small gain in precision. 
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Figure 2.1. Precision (S.E. I mean of count data, ind. m"2
) with increasing number of replicates at each quadrat size 0.25. 0.5 

and 1.0 m2
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It can be seen from Figure 2.1 that with a 0.5m2 quadrat, there was no real gain in precision 

above 4 replicates (p = 0.16, n = 4, top= 0.15, n = 5). Based on the precision comparison and 

ease of handling, 4 replicates of a 0.5m2 quadrat was chosen as the most efficient sample number 

and size. 

Preliminary investigation to determine an appropriate measure of biomass 

Because of the large size of each sample (3 to 15kg wet weight per replicate) and the limited time 

and furnace space available, an alternative was sought to using ash free dry weight (AFDW). The 

obvious choice was the dry weight (DW) of worms removed from their tube, as this would give a 

measurement of the living part of the worm without the possibility of errors from including 

inorganic material in the tube. This was also a convenient measurement to compare biomass with 

filtration rate and oxygen consumption rate in Chapters 3 and 4 of this study and has been used 
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by other researchers of filtration rate and oxygen consumption rate in fan wmms (e.g. Riisgard 

and Ivarsson, 1990 and Shumway, Bogdanowicz and Dean, 1988). 

A preliminary trial was conducted to test whether body dry weight (without the tube) would be a 

reliable measure compared to AFDW of the worm including the tube. Fifty worms were removed 

from their tubes and individually weighed, dried and ashed. 

a. WormBodyDWtoAFDW 
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Figure 22. OW to AFDW regressions for: a. wonn bodies and b. worm bodies plus tubes. The linear regression line and 

equations are shown on the figure. 

The DW to AFDW of worm bodies produced a very strong positive linear regression with an R2 

of 0.993 (Fig. 2.2 a.) whereas the DW to AFDW of the worm bodies plus tubes produced a 

much poorer regression with an R2 of 0.449 (Fig. 2.2 b.). The amount of inorganic material, 

such as sand and mud in the tube, varies between individuals and this causes a large variation in 

the ratio of DW to AFDW. As ashing of all samples collected was not possible, it was much 

more convenient and consistent to remove the worms from the tube and use DW of the worm 

body (including the crown) as a measure of biomass. A further useful measurement, mean DW 

per individual (body DW by total number in each replicate) may be used to detect changes in 

population structure such as growth or recruitment from one season to the next. 
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Sampling design, collection and processing 

Sampling was carried out in winter 1995 (August - September), and in summer 1996 (January -

February). This was cx.pcctcd to cover the range of seasonal conditions which may affect 

S. spallanzanii biomass and also pcnnitted analysis of seasonal variation. 

Using the rationale established above, four randomly located replicates of 0.5m2 were taken by a 

scuba diver from each of four sites on the Southern Flats. Because the jetties and pylons present a 

vertical substrate there was the possibility of stratlfication in biomass at different depths. To 

account for this possibility, sampling was stratified by taking three replicates at each of 3, 6 and 

9 metres where depth was sufficient. Three jetties were sampled with three replicate pylons at 

each jetty and three navigational marker pylons were sampled, each being a replicate for a single 

'pylon' category. Sampling on the jetties and marker pylons used a steel framed quadrat similar 

to that used on the Southern Flats, but which has been curved to wrap around the surface of the 

pylon to cover a surface area of 0.5m2
. Because stratified sampling on jetties and pylons 

considerably increased the number of samples to be taken, the number of replicates was reduced 

to three. This helped keep the total number to a manageable size and should only slightly reduce 

the precision of sampling on the jetti,es and pylons. 

For each quadra~ all S. spallanzllnii and invertebrates were removed by hand, placed into plastic 

bags and labelled. Samples were transported in an insulated box to the laboratory and frozen 

(-20°C) until processing. Specimens were carefully removed from their tubes, counted and placed 

into pre-weighed crucibles. The tubes were cleaned of any epifauna, counted and placed into 

trays. Epifauna and other invertebrates from each sample were placed in a freezer for storage 

until processing by a joint study (Lenunens, Clapin and Parker, in prep). Samples were dried in 

an oven at 80°C until constant weight (5 to 8 days) and weighed for dry weight. 
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Area or Sabella spallanzanii coverage 

The area covcrL-rl by the beds of S. spallanzanii on the Southern Flats was dctcnnincd by 

measurements from 1996 aerial photographs at a scale of I :20000 (Department of Land 

Administration. Perth). It was not within the time or scope of this project to rectify the images 

however. to reduce errors caused by aberrations in the photographs, only images with the 

Southern Flats beds close to the centre point were used. Ground truthing was largely conducted 

during a preliminary study by Clapin and Evans (1995). However, additional field verification to 

check the extent of beds, was conducted using scuba, during this project. Photographs were 

overlain with a transparent sheet of I nun graph paper and the area of S. spa/lanzanii beds was 

measured and calculated to square meters. 

The surface area of pylons and jclties sampled was determined by counting the pylons and 

measuring their circumference and depth. The total area of jetties was estimated from multiplying 

the area of each jetty sampled by the number of jetties of a similar size in the region nearby 

(including the jetty sampled). There are 4 jetties of a similar size near the Rockingham jetty, 6 in 

the Kwinana region near the BHP jetty and 3 in the Owen Anchorage region near the Explosives 

jetty. This is possibly an underestimation because the other jetties in the Kwinana region, namely 

the Alcoa Australia, British Petroleum, Australian Steel Industries, Co-operative Bulk Handling 

and Kwinana Bulk Cargo jetties arc all larger than the BHP jetty which was sampled. 

The biomass of S. spallanzanii on jetties was calculated assuming that the other jetties in the 

same region each have approximately the same area and biomass. The biomass on the pylons was 

calculated using the mean biomass and mean pylon area from the 3 pylons sampled, multiplied by 

the number of similar sized pylons counted in Cockburn Sound (29) and the Gage Roads Chanuel 

(16). 
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Statistical analyses 

Analysis of variance (ANOVA) was used to determine if there were significant differences in 

either biomass or worm size between sites and seasons. Then a Scheffe Ftcst was used to identify 

where any significant differences occur. Prior to using ANOVA the data were checked for 

homogeneity using an Fnwr. test and where nr.ccssary, transformed log (x+l) and checked again 

(Fowler and Cohen 1993). 

RESULTS 

Table 2. I. Summao: table: Area of Sab~/la Sf!.a/lanz.anii covera~e and biomass 

Measured area Estimation of Total area Mean Biomass Total Biomass 

Southern Flats Area m2 Aream2 gm·2 kg 
Site I 16800 16800 164 2760 

Site 2 10000 10000 279 2787 

Site 3 6000 6000 387 2323 
Site 4 3200 3200 203 651 

Estimated Total area nl 36000 Total 8521 kg 

Jetties Area m2 Number of jetties of similar size gm·l kg 
BliP 4253 Kwinana area -6 25518 57 1452 

Explosives 918 Owen anchorage area = 3 2754 29 80 
Rockingham !56 Rockingham area =4 624 122 76 

Estimated Total area m' 33149 Total 1608 kg 

PYlons Aream2 Nwnber of other: pylons of similar size gm-2 kg 
Area per pylon 23.9 Within Cockburn Sowtd - 29 693.1 Mean=Jl 21 

Gage Roads Channel = 16 382.4 12 

Estimaled Tolal area m' 1076 Total 33kg 

Total Biomass 10162 kg 

Table 2.1. Summary table: Area of Sahel/a spallanzanil coverage and biomass. The total estimated area of Southern Rats S. 

:spallanzanfl patches, jetties and pylons is given in m2
• Mean biomass (g m'2) for each site is the mean of all replicates., depths 

and seasons. Total biomass (kg) was calculated from the biomass of individual sites, mean of each site by the estimated area 

of coverage for that site. 

The total area on the Southern Flats covered by S. spa/lanzanii is only slightly larger (36000m2
) 

than that of the jetties (33149m2
). However, because the mean biomass m"2 on the Southern Flats 

was considerably greater, the total biomass was much greater than the jetties (Table. 2.1 ). The 
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pylons represent a much smaller total area and biomass than the other two categories, with an 

area of 1076m2 and a total biomass of only 33kg. The Southern Flats has a significantly higher 

mean biomass (258 ± 49 gDW m"2
) than either the pylons (31 ± 20) or jetties (69 ± 28) (AN OVA 

p = 0.0002, df= 2). 

Southern Flats Seasonal Bioma<Js (Worm DW) 
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Figure 2.3. Seasonal mean biomass ± S.E. of Sabella spal/anzanii for the Southern Flats. Biomass is given as mean worm 

body dry weight m-2 (excluding tubes) mean of 4 replicates at each site for winter and summer. 

While there were noticeable spatial and temporal trends in biomass at the Southern Flats (Fig. 

2.3.), these were not significant (two way ANOVA, between: seasons P = 0.733; sites P = 0.524; 

interaction P = 0.832, df= I, 3 & 3 respectively). This is most likely due to high standard error 

and seasonal changes in biomass which did not follow a consistent trend between sites, while 

there was a decrease in biomass from winter to summer at sites I and 3, there was an increase at 

sites 2 and 4. 
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Figure 2.4. Sahel/a spa/lanzanii, seasonal worm body size g DW per individual at the Southern Flats. The worm body dry 

weight per individual (g DW ind- 1 excluding the tube) shown is the mean ± S.E. of 4 replicates at each site for winter and 

summer. 

Despite the inconsistent variation in biomass between sites and different seasons on the Southern 

Flats (Fig. 2.3 ), all sites showed a significant decrease in mean worm size from winter to 

summer (Fig. 2.4 ), (two way ANOVA, between: seasons P < 0.0001; sites P = 0.657; interaction 

P = 031, df= 1, 3 & 3 respectively). 

This seasonal difference in mean worm size was not apparent on the jetties or pylons and there 

were no significant differences (ANOV A, between seasons: Explosives jetty P = 0.92; BHP jetty P 

= 0.75; Rockingham jetty P = 0.78; pylons P = 0.82). 
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Figure 2.5. Seasonal mean biomass ± S.E. of Sabella spallanzanii for pylons. Biomass is given as mean wonn body dry 

weight m-2
( excluding tubes), of3 replicates at each depth for winter and summer. 

Distinct spatial and seasonal patterns in biomass were noted for the pylons (Fig_ 2_5 )- There was 

a clear increase in biomass with depth in both seasons and there was also an increase in biomass 

from winter to sununer at all depths_ However, because of large standard errors, these differences 

were not significant (ANOVA two way between: seasons P = 0_283; depths P = 0_287; interaction 

P = 0.49, df= 1, 2 & 2 respectively). 
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Jetty Seasonal Biomass 
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Figure 2.6. Seasonal mean biomass± S.E. of Sabella spallanzanii for the Explosives jetty (Expl. J.), BHP jetty (BHP J.) and 

Rockingham jetty (R'ham J.). Biomass is given as mean worm body dry weight m-2 (excluding tubes) of 3 replicates at each 

depth for each jetty, winter and summer. 

Biomass increased with depth at both the Explosives and BHP jetties (Fig. 2.6 ). While this 

difference in biomass between depths was significant at both jetties, it was not between seasons 

(two way ANOVA, between seasons and depths: Explosives jetty, seasons P = 0.416 and depths P 

= 0.013; BHP jetty, seasons P = 0.193 and depths P = 0.004). The Rockingham jetty was only 

sampled at 3m because of its limited depth, but has a greater biomass than either of the other 

jetties at 3m (one way ANOVA, P = 0.0002, df = 2). At 6m depth there was no significant 

difference in biomass between the BHP jetty and Explosives jetty (one way ANOVA, P = 0.14, df 

= 1). 
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DISCUSSION 

Distribution of Sabella spallanwnii biomass within Cockburn Sound 

Southern Flats vs artificial structures 

The largest area and biomass of Sabella spal/anzanli in Cockbmn Sound arc the dense beds on 

the Southern Flats. Although the Southern Flats beds are onJy slightly larger in area than the 

jetties (fable 2.1), the higher mean biomass m·' on the Southern Flats yields a total biomass 

much greater than the jetties (8521 & 1608 kg respectively). The pylons represent a much smaller 

total area and biomass than the other two categories, with an area of I 076m2 and a total biomass 

of only 33kg. The Southern Flats therefore, represents the majority of the biomass of S. 

spallanzanii in Cockburn Sound and this may indicate that this shallow, but protected, sandy 

area is the preferred habitat of this species. This area has been greatly disturbed by the loss of 

scagrass (Cambridge, and McComb, 1984) and this disturbance may assist the invasion of S. 

spallanzanii through making spa~ more available. S. spallanzanii makes up 94% of the total 

filter feeder biomass the Southern Flats whereas on the jetties and pylons it is only 3 to 9.5% of 

the total (Lemmens, Clapin and Parker, in prep.). The jetties are well covered with other 

invertebrates; space is not a readily available resource and therefore invasion of these habitats has 

Nen less successful (also see Chapter 5). 

The estimated area of jetties does not include other artificial structures such as the Garden Island 

Canseway, Navy facilities, wrecks, marinas and rock breakwaters which could not be sampled 

within the constraints of this project. If the area of all jetties, pylons and other structures is 

considered, they are potentially a very important habitat for S. spal/anzanii populations within 

Cockburn Sound. Additionally, the close proximity of these jetties to berthed shipping makes 

them ideal sources for further invasions of the species. 
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Patterns in distribution 

Clapin and Evans ( 1995) found that Sahel/a spal/anzanii occurs on the Southern Flats in an area 

of approximately 20Ha. The present study has found that within this area, dense beds which arc 

visible in aerial photographs cover an area of approximately 3.6 Ha and there appears to be 

patterns in spatia] distribution at several scales. Within the b~, distribution is patchy and 

although solitary individuals are common, worms tend to fonn large tangled clumps, attached to 

one common anchor which may be a piece of shell, a rock, an ascidian or one larger worm. On a 

larger scale, the patchy clumps fonn beds of 0.32 to 1.68 Ha, the density of these beds varing 

from 130 to over 437 ± 40 individuals m·' and a biomass of 106 to 484 ± 39g body DW m·'. 

The distribution of S. spal/anzanii biomass on artificial structures is also very patchy, but there 

does appear to be some trends in the data. On the jetties and pylons sampled, the biomass of S. 

spa//anzanii increases with depth. This increase appeared to be very clear on the pylons but 

because of higb standard error between replicates, was not significant (Fig. 2.5). These large 

diffurences between replicates were due to the randomly picked, replicate pylons being widely 

spaced in the survey area. Pylon 2 was closer to shore in a more protected position than the other 

pylons (Fig. 1.1) and it had 5 to 100 times their biomass. There was however, a significant 

increase in biomass with depth on the Explosives and BHP jetties (Fig.2.6 ). The Rockingham 

jetty was not deep enough to sample at 6m but the biomass at 3m was higher than that of the 

other jetties at 6m. This increase in biomass with depth may be partly related to shelter from 

wave action, as shallower depths would experience more vigorous disturbance from waves. This 

relationship to shelter is also seen when comparing the jetties. The Rockingham jetty which had a 

much higher biomass at 3m than the other jetties, is at the southern end of Cockburn Sound (Fig. 

1.2 ) which is more sheltered than the positions of other jetties on the eastern side of the Sound. 

Pylons 1 and 3 are further from the shore and more exposed than the jetties (Fig. 1.1 ), they bave 

a lower biomass at 3m and 6m than the jetties and the majority of their biomass is at 9m. This 
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may also hold true for the Southern Flats beds which arc on the southern side of the Flats (Fig. 

1.2 & 1.3 ). This location is well sheltered by the large shallow sand flats to the north, Garden 

Island and the Causc...'Way to the west and to the south~wcst, Rockingham and Cape Peron. 

Seasonal changes in biomass and worm size 

It was expected that by sampling in different seasons, differences in biomass due to growth, 

mortality or recruitment could be detected. However, seasonal changes in biomass did not appear 

to follow any consistent trend. This result is quite different to that of Giangrande and Petraroli 

(1994) who found that Sabella spal/anzanlt in the Mediterrane::n Sea doubled in size from 10 to 

20 em in length over about one year. The population of S. spallanzanii on the Southern Flats 

consists of mostly large worms from 25 to 35 em in length and very few or no small worms or 

juvenile recruits were observed during the sampling dives or in the samples. This would indicate 

that the Southern Flats population is one of large mature worms which are not growing at the 

rapid rate reported for small individuals by Giangrande and Petraroli (1994) and hence, no 

increase in biomass was observed. 

Following from the above, comparison of wonn body size at the Southern Flats between seasons 

gave an unexpected result. While no there was no significant difference between sites, there was a 

significant decrease in worm body size from winter to summer. Since there were no small worms 

or recruits in the population, this decrease in worm body size from winter to summer is not due to 

a recruibnent event and therefore the larger worms must have reduced in biomass. It is possible 

that this decrease in body size is the result of spawning. Dales ( 1969) noted that in Sabella 

spallanzanll between two-thirds and three-quarters of the total body weight is expended annually 

in the form of gametes. There is no additional data such as gonad maturation or observations of 

spawning to back this up and hence, it can only be considered as a possibility. However, since no 
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other feasible explanation is apparent, this is considered the most likely possibility and warrants 

further investigation into the reproductive biology of the species in Cockburn Sound. 

Differences in wonn body size from winter to summer on the jetties and pylons did not show the 

same clear decrease as for the Southern Flats. Observations of the S. spallanzanii populations on 

the jetties and pylons indicated that there was a large range in size from 0.05 to over 3 g DW ind.-1 

with many large worms of 20 to 30 em length and some very small recruits of only 3 to 5 em. 

Whereas the Southern Flats population is of relatively even size, which may have resulted from 

one major recruitment event, the jetties and pylons support a ropulation of varying size with 

evidence of some recent recruibnent. 

This large mature population of S. spallanzanii on the Southern Flats may act as the seed stock, 

releasing spawn which is canied away to the north-east by a counter clockwise summer current in 

the Sound (e.g. Steedman and Craig, 1983). This would help explain the lack of recruits on the 

Southern Flats and the opposite on jetties and pylons to the north-east. The biomass and density 

of S. spa/lanzanii reported here is 4 to 6 times that reported in the Mediterranean by Giangrande 

and Petraroli (1994) and in the absence of any other data on the density of mature populations in 

its place of origin, it is fair to suggest that this introduced species is thriving in the disturbed 

habitats of Cockburn Sound. The very large and widely distributed biomass of S. spal/anzanii in 

Cockburn Sound will make any attempts to remove the species very difficult indeed, if not 

impossible. This data will be used in Chapter 5 to detennine the filtration capacity of 

S. spa/lanzanii and as a base line which will he useful to assess future changes in its population 

in Cockburn Sound. 
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Chapter3 

FILTRATION RATE 

INTRODUCTION 

Filter feeders may have considerable potential to control phytoplankton levels by their filtering 

activity. This effect is particularly evident when there are large numbers of filter feeders in 

shallow waters (e.g. Officer et al. 1982; Alpine and Cloern, 1992; and Hily, 1991). Sabella 

spallanzanit, like other Sabellid palycbaetes, feeds by extending its crown of fine filaments into 

the water column and with the action of beating cilia, pumps water through the filaments where 

particles are retained (Nicol, 1930; and Jorgensen, Kiorboe, Mohlenberg and Riisgard, 1984). 

The rate at which water is cleared of particles over time is often termed filtration or clearance rate 

(e.g. Jorgensen, 1966), (in this case the tenn filtration rate will be used). In order to detennine the 

effect that S. spallanzanii may have in Cockburn Sound through filtering, it is necessary to know 

both its filtration rate per unit of biomass and the biomass of the population in Cockburn Sound. 

The biomass of S. spallanzanit in Cockburn Sound was reported in Chapter 2 and in this chapter 

the filtration rate is detennined 

Evidence of effects of temperature and algal cell concentration on filtration rate. 

Effects ofternperature 

Filtration rate generally increases with temperature. A positive relationship has been shown 

between filtration rate and temperature in the ascidian, Ciona intestinalis (Petersen & Riisgird, 

1992), the mussel Mytilus edu/is (Jorgensen eta/., 1990) and for Sabella penicillus (Riisg3rd & 

Ivarsson, 1990). If the same is true for Sabella spallanzanii, then it is likely that with seasonal 
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temperature changes there will be a difference in the filtration potential of the population in 

Cockburn Sound and hence a difference in the impact it has through filtering phytoplankton. 

There is also evidence to suggest that filtration rate may reflect the limits of the tolerable 

temperature range of a filter feeder. Petersen and Riisgird (1992) found that the filtration rate of 

C. intestinalis increased linearly only within a certain temperature range, but then decreased 

rapidly when a critical temperature of 21 °C was exceeded. The decrease in filtration rate above 

this range may be a response to the subject experiencing stressful temperatures. Jorgensen et a/. 

(1990) found that inM edu/is there is a tolerable temperature range, above and below which the 

subjects did not remain fully open and filtering. The lower limit of this temperature range may 

also be important Fiala-Medioni ( 19'/8) found that at low temperatures (7°C) filtration in the 

ascidian Phallusia mammillata had stopped or was too low to measure. The evidence indicates 

that there is a tolerable temperature range for these filter feeders which filtration rate is likely to 

reflect. 

The tolerable temperature range is not known for Sabella spal/anzanii from the Literature. but it 

may have an important bearing on the extent to which it can spread to wanner or cooler waters. 

Algal cell concentration 

Recent studies on Sabella penicillus (RiisgArd & lvarsson, 1990) and Ciona intestina/is 

(Petersen & Riisgard 1992) found that filtration rate was constant with increasing algal cell 

concentration up to a point where the gut of the subject was filled (gut saturation point) then 

filtration rate decreased. The ef!ect of algal cell concentration on the filtration rate of 

S. spallanzanii is not known from the literature but there could be a similar gut saturation effect. 

If this is the cas.: then along with temperature, cell concentration will be an important parameter 

in detennining the filtration capacity of the S. spal/anzanii population in Cockburn Sound . 
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Aims and hypothesis 

The aims of this section arc firstly, to determine the filtration rate of Sabella ,\'Pallanzanli and 

whether this is dependent on temperature and/or algal cell concentration. Secondly, to determine 

the most appropriate and practical measurement (i.e. body or crown size) to apply the 

filtration rate of S. spallanzanii to the population sampled in th? biomass section of this study 

(Chapter 2). 

The following hypotheses are addressed in this chapter: 

l. That the filtration rate of Sabella spallanzanii increases with temperature within a tolerable 

temperature range. 

2. That the filtration rate of Sabella spallanzanii decreases with high algal cell concentration 

above 10 x 103 cells mL'1, 

Definition of Terms 

Since some important tenns used in this thesis vary in the literature. they are defined here: 

Filtration rate, (or clearance rate) is the volume of water filtered (cleared) of particles per unit 

time (e.g. Jorgensen, 1966), assuming that particles are retained 100% efficiently. 

Pumping rate, is the actual volume of water pumped or processed per unit time. 

Partide capture efficiency or retention efficiency. is the efficiency with which particles of a given 

size are captured and retained (Jorgensen eta/. 1984),lfthis is less than 100% then filtration rate 

will be less than pumping rate. 

Feeding efficiency, (water-processing capacity, e.g. Riisgard & lvarsson, 1990) is an indirect 

measurement of the volume of water filtered per unit of metabolic demand (oxygen conswned). 

Filtration capacit)', is the volume of water, which can potentially be filtered per unit time, by a 

group or whole population of filter feeders. 
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Literature on filtration rate methodology 

Direct and indirect measurement 

The filtration rate of vari~us filter feeders has been measured by numerous authors using either 

direct or indirect teclmiques (e.g. Dales, 1957; Jorgensen, 1966; Bayne, eta/., 1976; Shumway, 

et al .. 1988; Riisgard, 1991; Riisgard & lvarsson, 1990). 

Direct measurement involves measuring the actual volume of water pumped by the animal 

(pumping rate). Riisgard (1991) measured the pumping rate of the polychaete, Nereis 

diversico/or by placing the animal in a glass tube between two chambers, so that the volume of 

water pumped from one to the other could be measured directly. This technique may be 

appropriate for species which pump water through a tube such as N diversico/or (Riisgoird, 

1991 ), or siphon such as an ascidian. Sabellid polychaetes however, extend their feeding 

mechanism (crown) of fine filaments out of their tube into the water (Nicol, 1930), therefore 

direct measurement of pumping rate is not feasible. 

Indirect measurement of filtration rate involves measuring the decrease in the concentration of 

particles in the water surrounding the animal over time and inferring the volume of water filtered. 

Petersen and Riisgilrd (1992) defined filtration rate as "clearance of 100% efficiently retained 

particles" and measured this as the volume of water cleared of algal cells per unit time. This 

technique was also used to measure the filtration rate of Sabella penicillus in a glass beaker 

(Riisgilrd & Ivarsson, 1990). As S. spallanzanii is closely related and of similar morphology to 

S. penicillus (Ewer, 1946) it would seem that this teclmique is also appropriate to measure the 

filtration rate of S. spallanzanii and hence this method was adopted here. 
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Calculation of filtration rate 

Filtration rate (F) is calculated as: F = (V I n t) In (Co I C1), where V is the volume of the 

experimental container, n is the number of wonns, t is time and Co and C, arc the concentrations 

of algal cells at times 0 and t respectively (RiisgArd & lvarsson, 1990). The usc of this formula 

requires the following assumptions to be made: particle captor~ or retention by the subject is 

100% efficient,and there is instantaneous mixing of the total water volume (Riisgcird & lvarsson, 

1990; Petersen & Riisgii.rd, 1992). 

Particle retention efficiency 

Only if particle retention efficiency is 100% will filtration or clearance rate be equal to pumping 

rate, which is the total volume of water processed. If particle retention is less than 100% efficient, 

then more water will be pumped by the subject to filter the same number of particles, leading to 

filtration rate being an underestimation of pumping rate. As the present study intends to detennine 

any impact which Sabella spa/lanzanil may have as a result of filtering phytoplankton, the 

volume of water which is cleared of particles (filtration rate) is a more relevant measurement than 

pumping rate. 

Jorgensen eta/. (1984) found that particle retention by Sabella penicillus was close to 100% at 

the optimum size· of 3,urn diameter, with little change in efficiency up to S,urn. However, with 

decreasing particle size retention, efficiency rapidly declined to about 30% for lpm particles. The 

choice of particle size is therefore important in approaching the assumption of I 00% retention 

efficiency. Because S. spallanzanii is closely related to S. penicillus it is likely to have a similar 

optimum size (3 to 8 ,um) for maximum particle retention and this should be reflected in the 

choice of algal cells used in filtration experiments. 
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Mixing 

With regard to the assumption of instantaneous mixing of the total water volume in the 

experimental chamber, Riisg3.rd and lvarsson ( 1990) noted that this condition is more easily 

approached with only one individual in the chamber. This condition could also be improved by 

providing internal circulation of the water with a pump or air bub~lcr. 

Cell concentration 

Riisgiird and lvarsson (1990) stressed the importance of performing laboratory filtration 

experiments at natural algal concentrations, because if the concentration is too high the gut 

capacity of the subject will be saturated, leading to a decline in filtration rate. At algal cell 

concentrations below 4 x 103 cells mL-1 the filtration rate of S. penicillus was found to be high 

and constan~ but declined at higher cell concentrations (Riisgilrd & lvarsson, 1990). Using dense 

suspensions of graphite, DaJes (1957) recorded a filtration rate about 55 times lower for 

S. penicillus than the rate measured using lower algal concentrations by Riisgird and Ivarsson. 

Presumably, the low filtration rate resulted from gut saturation with a high concentration of inert 

particles. 

Lag-phase 

Petersen and Riisgilrd (1992) reported a lag-phase in the filtration rate of Ciona intestinalis. 

Filtration rate was initially low when the subjects were first fed, then increased until reaching a 

maximum and constant rate. Identifying this lag-phase may be quite important when measuring 

filtration rate. because if included, it may cause an underestimation of the true rate. Petersen and 

Riisgard noted that the lower filtration rate for C. intestinalis reported by Randlov and Riisgilrd 

(1979) may have resulted because they did not notice this lag-phase phenomenon. To avoid the 

lag-phase Petersen and Riisg3rd only used stable filtration rates which were obtained some time 

after the first addition of algal cells. 
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METHODS 

Experimental design 

In order to determine the filtration rate of S. spallanzan;; and whether it is dependent on 

temperature or algal cell concentration, two separate experiments were conducted. In the first, 

filtration rate was measured at four temperatures: 13°, 17°, 22° and 27°C at the same initial algal 

cell concentration of 2.5 to 5 x 103 cells mL"1
• The temperatures 17° and 22°C were chosen 

because they approximate winter and summer means in Cockburn Sound (Pearse, 1986) as well 

as both 5°C lower and higher, hence 13° Note 
1 and 2-fC. Six replicates and two controls were 

measured at each temperature. 

The second experiment measured filtration rate at 4 different initial alga] cell concentrations at a 

constant temperature of 22 ± 0.1 °C. In each experiment, the filtration rate was first measured at a 

low initial cell concentration of 2.5 to 5 x I 03 cells mL'1 to establish the base rate for each 

individual. The worms were allowed to graze the concentration down overnight, (14 hours) then 

measured again at a higher concentration in the ranges of 10 to 15, 15 to 20 and 20 to 35 x 103 

cells mL'1 and the two rates compared. Nine replicates and three controls were measured at each 

algal cell concentration. Cell concentrations were randomly assigned to different worms until 

enough replicates had been measured at each concentration. 

Controls 

To control for changes in aJgal cell concentration during the experiment due to factors such as 

settlement, coagulation or growth, two control aquaria were set up and sampled in an identical 

manner, but with an empty worm tube. 

1 , Unfortwmtely it was not possible to cool the constant tcmperu.ture room sufficiently to achieve a stable water 
temperature of 12°C, so 13 :1: 0.20c was used as the lowest tcmperu.turc. 
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Collection and care or specimens 

Specimens of S. spallanzanU were collected from the Southern Flats in Cockburn Sound and 

transported in an insulated container with aerated sea water to the University of Western 

Australia Marine Biology Laboratory at the Bernard Bowen Fisheries Research Laboratories, 

Waterman (or the CSIRO Marine Laboratories at Mannion). ~c wonns were kept in aerated, 

flow~through sea water aquaria in a temperature controlled room for several days to acclimate 

temperature and handling prior to experimentation. During acclimation the worms were fed on 

algal monocultures of Thalassiosira pseudonana, Duna/ie/Ja marina or Rhodomonas sp. as well 

as any natural particles in the seawater. 

Phytoplankton selection and rearing 

Algal monocultures of Thalassiosira pseudonana, Duna/iella marina and Rhodomonas sp. were 

cultured by The CSIRO Marine Laboratories at Mannion. Freely suspended cells were collected 

by carefully decanting or siphoning off the supernatant avoiding any coagulated or settled ceUs on 

the bottom. In this way, onJy suspended cells were used in the experiment, reducing the chances 

of settling or coagulation of cells leading to an error in the measurement of filtration rate. Only 

the larger (-5 to 8,um) Rhodomonas sp. were used in the experiments, because they were more 

easily measured ~hove background interference and bacteria than the other smaller species 

cultured. 

Preliminary investigation 

A preliminary mortality experiment was conducted to determine if the subjects could be 

maintained in aquaria long enough to acclimate and for the experiments to be conducted (i.e. 10 

to 14 days). Wonns were kept in 18 L aerated, flow-through aquaria (10 to 60 in each) for one 

month at 17 to 22°C without food. Worms were handled and counted regularly. No mortalities 

were recorded over 32 days, however signs of stress were observed after 14 to 20 days; some 
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worms had autotomiscd (dropped) their crowns. Observations also showed that if the worms were 

handled roughly or disturbed repeatedly, they would stop feeding, withdraw into the tube and 

produce a thick mucus secretion. 

This led to several precautions being taken to avoid or reduce the possibility of stress problems 

interfering with experimental results. Fresh specimens were coHectcd ev":ry 6 to I 0 days. To 

avoid the production of excess mucus, worms were handled gently and were discarded if they 

began producing mucus or lost their crown. Only worms which were regularly open and filtering 

were used in experiments. Worms used for temperature experiments were adjusted slowly to that 

temperature over several days (< 2°C change per day) then acclimated to that temperature for at 

least 48 hours. 

A preliminary filtration rate trial indicated that the time length or the lag-phase in starved Sabella 

spa/lanzanii subjects was from I to 2 hours. To reduce the time required for recording a result, 

this lag-phase was avoided by starting feeding the subjects with a low concentration or cells (500 

to 1500 cells mL"1
) for approximately 2 hours before starting the experimental measurements. 

lbis cell concentration was enough to stimulate the worms to feed, but much too low to cause gut 

saturation and hence have an effect on the experiment. Samples were taken every 30 minutes 

during this period to check that the wonns were filtering. As per the procedure of Petersen and 

Riisgiud (1992), only stable filtration rates were used, which were obtained some time after the 

first addition or algal cells (see calculation of filtration rate). 

Experimental apparatus, set-up and testing 

Tall aquaria ( 19 by 22cm wide and 45cm high) were specially constructed to acconunodate 

worms in a natural upright position and without the extended crown touching the sides. Eight 

aquaria were set up in four 50 L plastic tubs, (two in each) within a constant temperature room. 

Julabo E-type temperature control units were coMected to each bath and these units provided 
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water circulation within the baths (-15 L min" 1
). Room temperature was set at I to 2 degrees 

lower than the desired water temperature and the water bath control units were used to maintain 

the aquarium water at the desired temperature. Aquarium water temperature was monitored for 

two days prior to each experiment and found to be stable within ± 0.1°C for I 7°, 22° and 27°C 

and± 0.2 for 13 'c. 

Mixing and aeration of the aquarium water was provided by an air bubbler. Mixing in the aquaria 

was first tested by adding a few drops of fluorocine and observing complete mixing. An air 

bubbler f'Onstructed from a glass pipette tip was found to create an approximately even mix 

within 10 to 15 seconds of introducing the dye. As the sampling interval for the experiment is 15 

minutes, this mixing was considered to be as close to achieving the assumption of instantaneous 

mixing as was possible without disturbing the wonn. 

Procedure 

The aquaria were filled with sea-water 36.5 ± O.l%o salinity, filtered to l!ffll absolute (Cunuo 

filter No. PPK09NGO 10) to remove the bulk of the background particles in the range to be 

measured during the experiment (i.e. 3 to lOJml). Individual worms in their own tubes were 

placed in the aquaria and supported in a natural upright position with a stand made from PVC 

tubing. Worms were allowed to acclimate in the aquaria for approximately 24 hours. To reduce 

any effect from the build-up of waste products during this time, the aquaria were filled to near 

their maximum of 16 to 18 L. Faecal material was removed from the water prior to 

experimentation with a small siphon tube and the volume was topped up with clean filtered 

seawater. 

Before starting the experiment the volume of each aquaria was reduced to a smaller known 

volume (6 to 10 L), because the change in algal cell concentration due to filtering by the wonn 
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will be greater in a smaller volume, thereby increasing the accuracy. The volume was however, 

maintained large enough to pcnnit the worm to fully extend its crown while feeding. 

Phytoplankton cells (Rhodomonal' sp.) were added to the water to reach the desired initial 

concentration. After allowing time for the water to be thoroughly mixed by the air bubbler, a 

1 OmL sample was withdrawn and the initial water volume recorded. The first sample was 

measured for cell concentration at time zero (C0). Subsequent samples were taken and measured 

every 15 minutes during the experiment. The cell concentration was returned to Co approximately 

each hour by adding Rhodomonas sp. cells and sampling was continued for up to 4 hours until a 

constant filtration rate was measured for each wonn. 

The concentration of algal cells mL.1 in each sample was counted on a Coulter Multisizer II 

model M/52RII with a 75prn aperture, set for a particle size range from 5.024 to 10.940 prn. 

This particle size range was selected to closely approximate the size of the Rhodomonas sp. cells 

used and to avoid measuring any smaller cells, particles or bacteria which would cause 

interference in the reading. To avoid any effect of settling or coagulation in the samples, all 

samples were measured within 15 minutes of sampling and each was thoroughly mixed by 

shaking before reading. 

Calculation of filtration rate 

Filtration rate (F) was detennined by the reduction in algal cell concentration over time, as 

explained in the literature review on methods. However, as the lag~phase in the filtration rate of 

each wonn varied, the mean rate over the entire experimental period would have been effected. 

As was explained earlier, to avoid the lag-phase, only stable filtration rates were used which were 

obtained some time after the first addition of algal cells (I hour for concentration experiment). 

This was detennined as the maximum filtration rate which was stable for at least 45 minutes (i.e. 

4 of the 15 minute readings) where the R2 ~ 0.950 for the slope of the concentration of algal cells. 
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This was verified during the experiment as a straight line on a semi-log plot (as pcr Riisgiird and 

Ivarsson, 1990 p.251). The mean filtration rate over this 45 minute period was calculated by 

adapting the fonnula explained earlier F =(VI n I) In (Co I C,) to F = -J(V, .rlope ) , (60/1 000)], 

where V is the aquarium volume (mL), slope is the slope of the In (natural log) of cell 

concentration (cells mL' 1) as a function of time (min) and 60/1000 is used to convert to hours and 

litres. By checking the R2 of slope this method has the advantage of giving an objective measure 

of whether the filtration rate of each wonn has reached a level and remained stable. 

An observation as to whether the wonn was open or closed was made at the time each sample 

was taken. If during sampling, the wonn was accidentally disturbed, had retracted into its tube 

and remained closed (not filtering) for more than a few minutes, the filtration rate would 

decrease. If this occurred then the R2 of this data would be less than 0.95 and the data was 

excluded from the results until the wonn was open and filtering nonnally again. This method did 

not exclude the wonns' natural rhytlun of opening and closing. It was quite conunon during the 

experiment to observe wonns close then reopen and reswne filtering without notably affecting the 

filtration rate. 

Dry weight 

At the end of the.experirnents the crown, body and tube of each wonn were placed in separnte 

pre-weighed crucibles and dried in an oven at 80°C until constant weight. Weights were measured 

to O.OOOOlg on a Sartorias MCl balance and the crucible pre-weight was subtracted to obtain 

dry weight (DW). 

Crown measurement 

The sum total length of crown-filaments was measured on a small sample of 12 wonns. The 

spiralling crown of each was carefully dissected into small groups of filaments of relatively even 

length. The filaments were laid out on I nun waterproof graph paper, counted and measured. 
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Statistical analyses 

Temperature experiment 

One way analysis of variance was used to determine if there were significant differences between 

filtration rates at different temperatures. Prior to using ANOVA, an Fmax test was used to check 

for homogeneity of variance. The data were transformed loi: x+ I where necessal)' and checked 

again (Fowler & Cohen 1993). Because there was an uneven number of replicates, {only 2 at 

13°C and 6 at the other temperatures) a Tukey test could not be used (Fowler & Cohen). 

A Scheffe F test was used to identifY where any significant differences occur between 

temperatures. 

Cell concentration experiment 

A 't' test for paired results (Fowler & Cohen 1993) was used to detennine if there was a 

significant difference between filtration rate at a low cell concentration and each of the higher 

concentrations. As the 't'test assumes that the two samples have a similar variance, a two tailed F 

test was used to check for homogeneity, the data were transfonned log x+ I where necessary and 

checked again (Fowler & Cohen). 
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Figure 3. 1. The effect of temperature on filtration rate in Sabella spallanzanii. Mean filtration rate± S.E. is shown 

at 13°, 17°, 22° and 27°C ± 0.2°C. 

The effect of temperature on filtration rate is shown in Figure 3.1. Filtration rate per gram of 

worm body dry weight increases between 13° and 22°C, then decreases sharply from 22° to 27°C. 

Analysis of variance showed that there is a significant difference in filtration rate between 

temperatures (P = 0.0014). The source of this difference was between 17° and 22°C as shown by 

a Scheffe F test (Scheffe P = 0.004). To reduce any effect of body weight on the temperature 

experiment, filtration rate has been normalised to per gram of body dry weight. The size of 

worms used as replicates at each temperature was not significantly different (ANOVA P = 0.713). 

The controls (not shown on the figure) showed that the effect on the results from changes in algal 

cell concentration due to growth, settlement, coagulation or errors in readings accounted for less 

than 0.66% of the mean filtration rate at each temperature (0.08% at 22° to 0.65% at 27°C). 
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Figure 3.2. a & b Sabella spallanzanii. The effect of algal cell concentration on filtration rate in a: small worms 

(l.O to 1.7 g body DW) and b: large wonns (1.7 to 2.5g body dry weight DW). Each pair of bars shows the mean 

filtration rate (F, L h" 1 gDW-1
) for the same worms at two different cell concentrations. The first bar in each pair is 

for a low cell concentration range of2.5 to 5 x 103 cells mL"1 (Ll ), the second was at a higher concentration range of 

10 to 15 (HI), 15 to 20 (H2) aod 20 to 35 x 103 cells mL-1 (H3) respectively. For each pair the P value for a two 

tailed 't' test for paired results is given on the figure (Fowler & Cohen 1993). 

The effect of algal cell concentration on filtration rate is shown in Fignre 3.2 a and b. The mean 

filtration rate for the same worms is shown first for an initial low cell concentration (Ll) then at a 

higher concentration (HI, H2 & H3), all measurements were started one hour after first dosing 
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with the desired algal cell concentration. When the results of all 9 replicates for each pair of 

concentrations were examined there was a significant decrease in filtration rate between the low 

(LI) and higher algal cell concentrations at both 15 to 20 and at 20 to 35 x 103 cells mL·' (LI, H2 

P = 0.007; Ll, H3 P = 0.0004). When the results were compared by worm body size, larger 

worms (1.7 to 2.5 gDW, Fig. 3.2.b) did not show a significant decrease in filtration rate until 

experiencing the highest cell concentrations of20 to 35 x 103 cells mL-' (Ll, H3 P = 0.05), while 

smaller worms (Fig. 3.2.a) showed a significant decrease in filtration rate at lower concentrations 

of only 15 to 20 x 103 cells mL-' and at 20 to 35 x 103 cells mL-' (Ll, H2 P = 0.05; 

Ll, H3 P = 0.002). 

Effect of body and crown size 
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Figure 3.3. The relationship between filtration rate and crown-filament length of Sabella spallanzanii at 22°C. 

The equation and line of a linear regression are shown, along with the P statistic of an ANOVA for regression. 

The total length of crown-filaments was measured on 12 worms whose filtration rate had been 

determined at 22°C and a cell concentration of -2.5 x 103 cells mL-1 There was a significant 

positive linear relationship between filtration rate and crown-filament length, (Figure 3.3., R2 
= 

0.966 p < 0.0001). 
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Figure 3.4. The relationship between filtration rate and body dry weigbt of Sabella spallanzanii at 22°C. 

The equation and line of a linear regression are shown, along with the P statistic of an ANOVA for regression. 
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Figure 3.5. The relationship between filtration rate and crown dry weight of Sabella spal/anzanii at 22°C. 

The equation and line of a linear regression are shown, along with the P statistic of an ANOVA for regression. 
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Figure 3.6. The relationship between crown and body (including crown) dry weight of Sabella spallanzanii at 22°C. 

The equation and line of a power regression curve are shown, and the P statistic of an ANOVA for regression. 

Body and crown dry weight 

To help determine an appropriate measure with which to relate filtration rate to biomass, body 

and crown dry weight were each plotted against filtration rate of worms which had been measured 

at 22°C and a cell concentration of 2.5 to 5 x 103 cells mL·'. Figure 3.4. shows tbat tbere is a 

significant positive relationship between filtration rate and body dry weight (R2 = 0.616, P < 

0.001). Figure 3.5. shows tbe relationship between filtration rate and crown dry weight, while 

tbere is a significant positive relationship (R2 
= 0.593, P < 0.001), this is not as strong as tbat for 

filtration rate and crown filament length (shown earlier Fig.3.3). In both cases (Figs. 3.4 & 3.5), 

tbe line and equation of a linear regression are given because tbey showed the strongest R2 value. 

There is a positive relationship between crown dry weight and body dry weight (Fig. 3.6., R2 
= 

0.552, P < 0.005). The equation for tbe regression line is expressed as a curve (power 

relationship) as this gave the strongest R2 value. 
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DISCUSSION 

Effect of temperature 

The increase in filtration rate with temperature has been explained by various authors as due to 

either or both the decreasing viscosity of water with increasing temperature or by increasing 

metabolic rate with temperature. Riisgird and lvarsson, (1990) found that for Sabella penicillus 

the correlation between filtration rate and temperature can be accounted for wholly by viscosity 

changes due to temperature and Jorgensen eta/. (1990) found a similar result for Mytilus edulis. 

On the other hand, Petersen and Riisgcird ( 1992) found that the asci dian Ciona inlestinalis had a 

greater increase in filtration rate with temperature than that reported for either S. penici//us or M 

edulis. They concluded that this increase suggests a substantial increase in ciliary activity with 

temperature and that it can not be explained solely by temperature-dependent viscosity. In the 

present study there is clearly an increase in filtration rate with increasing temperature in the range 

of 13° to 22 °C. 

The increase in metabolic rate and hence activity with temperature is often modelled by the Q10 

factor which is the proportional increase in metabolic rate over an increase of 10°C. RiisgArd and 

Larsen (1993) considered that the Q10 for biological processes is usually between 2 and 3 and 

thus if the Q10 for filtration rate is higher than 2 to 3 it indicates that physical effects including 

viscosity are making an impact. The Q10 for the .filtration rate of S. spallanzanii is 3.08 for 13° to 

22°C and 5.1 for 17° to 22°C, which is above the 2 to 3 suggested by Riisgard and Larsen, 

consequently both viscosity decrease and metabolic increase are likely to contribute to this 

filtration rate increase. 
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Filtration rate and tolerable temperature ran~ 

The first hypothesis was that, the filtration rate of Sahel/a .\'pallanzanii will increase with 

temperature within a tolerable temperature range. The significant increase in filtration rate with 

temperature between 13° to 22 °C, tends to confinn this. Beyond the increase there was a marked 

decrease at a high temperature of 27°C. Whether this is a gflldual decline in filtration rate 

between 22° and 27°C or a sharp cut off point as the lethal temperature is approached is unclear. 

However, 27°C is very likely to be above the tolerable temperature for Sabella spallanzanii. 

Observations at 13°C found that the subjects did not stay open and filtering for long compared 

with higher temperatures; only 2 out of 8 worms acclimated to this temperature remained open 

for long enough to take measurements. Consequently, it was not possible to obtain measurements 

on the full 6 replicates at 13°C and the result was calculated on only 2 replicates. Two possible 

scenarios could help to explain this: either 13°C is below the optimum temperature range for 

Sabella spal/anzanii or the acclimation period was insufficient. Even though the temperature was 

gradually decreased to l3°C over four days, then held for 48 hours, this may have been 

insufficient to acclimate the subjects given that they were collected during sununer from water of 

20° to 22°C. Unfortunately, time did not pennit the experiment to be repeated with subjects 

collected during winter. S. spa/lanzanii is well established in Port Phillip Bay (Carey and 

Watson, 1992) where water temperatures are generally lower than in Cockburn Sound 

therefore, 13°C is not likely to be below its tolerable range. 

Effect of algal cell concentration 

The second hypothesis was that, the filtration rate of Sabella spal/anzanii will decrease with high 

algal cell concentration above 10 x 103 cells mL"\ which the results confirm. However, the 

relationship does not appear to be a linear decrease. rather. filtration rate is high and relatively 

constant at low cell concentrations and then declines at concentrations around 15 to 20 x I 03 cells 

mL·1
• Riisgird and Ivarsson (1990) suggested that the decrease in the filtration rate of Sabella 
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penicil/11s at cell concentrations above 4 x IOJ cells mL'1 is because at higher concentrations the 

gut capacity is exceeded, thus leading to a lower filtration rate. Petersen and Riisg;ird (I 992) 

found a similar relationship for the ascidian Ciona lnfestinalis and also found that the gut 

capacity was dependant on size~ small ascidians reached gut saturation at lower cell 

concentrations {15 x 103 cells mL'1) than large ascidians (20 x IOJ cells mL'1). The results of the 

present study tend to agree with these previous studies, with smaller wonns showing a decrease in 

filtration rate at lower cell concentrations than larger wonns (Fig. 3.2 ). As smaller worms arc 

also likely to have a smaller gut capacity, the gut capacity explanation seems very likely to apply 

here. 

Natural algal cell concentrations compared to experimental concentrations 

The mean algal cell concentrations in Cockburn Sound from 1992 to 1994 were 160 ± SD II 0 

cells mL"1 for summer and 184 ±SOliS cells mL-1 for winter, with the highest concentrations 

recorded in Mangles Bay (which is near the Southern Flats), with a mean of 260 cells mL"1 (pers. 

comm. Stuart Helleren, Curtin University). These cell concentrations are many times lower than 

the cell concentrations which caused a decrease in filtration rate of even the smaller worms and 

therefore, natural cell concentrations are very unlikely to cause gut saturation and effect the 

filtration rate of S. spallanzanii in Cockburn Sound. 

It is possible that the results may have been affected by the difference between natural and 

experimental concentrations. Using lower concentrations was not possible as the accuracy of 

detecting a change above background noise was limited. An effect is unlikely because filtration 

rate was constant for up to 5 hours at cell concentrations of2.5 to 5 x 103 cells mL'1, indicating 

that the specimens were able to feed continually at this level without reducing the rate. 
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Effect of body and crown size 

In order to find an appropriate measure to relate filtration rate to worm body size or biomass 

several parameters were explored. Body dry weight appears to be the most practical of the 

measurements to determine the potential filtration capacity of Sabella spal/anzanii populations. 

This is also quite convenient, as body dry weight was an easy f!leasurcmcnt to obtain from the 

large samples collected in the field component of this study to determine the biomass of 

S. spa/lanzanii in Cockburn Sound. Filtration rate per gram of body dry weight and biomass can 

thus be used to calculate the filtration capacity of the S. spa/lanzanii population per unit area. 

Crown~filament length gave the strongest relationship with filtration rate (Fig. 3.3) which agrees 

with the conunent of Riisg3.rd and Ivarsson (1990) that crown-filament length may be regarded as 

an indirect measure of filtration rate. Measuring crown-filament length was quite a painstaking 

process, so despite this strong relationship, the measurement does not seem very practical to 

relate to the biomass study to detennine the filtration potential of aS. spallanzanii population. 

As the crown is the organ responsible for filtering, I would have expected crown dry weight 

(Fig. 3.5 ) to show a stronger relationship with filtration rate than body dry weight (Fig. 3.4 ), 

however, this was not the case. The explanation for this may be in the structure of the crown 

itself. The crown consists of two lateral lobes which bear the filaments (Nicol, 1930). The base of 

these lobes is quite fleshy and would account for a large portion of the crown weight compared to 

the fine filaments. If this base was removed from the filaments, the weight should have a much 

stronger relationship to the filtering unit, the filaments. Crown-filament dry weight would be a 

much easier measurement to obtain than crown-filament length. For future studies it may be 

useful to express filtration rates per unit of crown-filament length or dry weight to allow 

comparison of different sized wonns and to nonnalise size differences between replicates when 

examining the effects of temperature or other factors on filtration rate. 
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A positive relationship was expected between crown dry weight, body dry weight and filtration 

rate, with larger wonns generally having larger crowns and therefore a greater potential filtration 

rate. While this was the case, the relationship is a little weaker than expected. Looking at crown 

to body dry weight (Fig. 3.6) there is a reasonably large spread of crown size which may be due 

to the fact that the worms do occasionally autotomisc their crown, often as a response to 

disturbance or predation. Consequently, there will be some worms at various stages of 

regenerating their crown. There may also be a physica1 limit on crown size, therefore it is likely 

that body size and crown size do not share a linear growth pattern, but rather crown size reaches 

a asymptote before body size. The equation for the regression line is thus expressed as a curve. 

None the less, the regression of filtration rate to body DW was significant and therefore, it was 

considered appropriate to relate filtration rate to biomass using Fin L per g body DW per hour. 

Comparison to Sabella penicillus 

Riisglird and Ivarsson, (1990) considered that S. penicillus is well adapted to live in waters with 

low food concentrations, but this does not necessarily apply to S. spallanzanU, as the filtration 

rate, per gram DW, for S. penicillus is considerably higher (114.5 Las compared to 3.78 L 

gDW1 hr'1). 
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Chapter4 

OXYGEN CONSUMPTION 

INTRODUCTION 

Oxygen is consumed during respiration and the rate of oxygen consumption is a convenient 

measure for the overall metabolic activity of an animal (Schmidt-Nielsen, 1983). Riisg<ird and 

lvarsson (1990) inferred a level of feeding efficiency in the fan worm Sabella penicillus by 

comparing the oxygen consumption rate as a measure of energy consumption and filtration rate 

as a measure of food collection. This approach was also used by Shumway et. a/. (1988) which 

allowed them to calculate the concentration of food (algal cells) in the water filtered which is 

required to maintain the metabolic rate of the fan worm Myxicola infundibulum. 

One important reason for measuring the oxygen consumption rate of Sabella spallanzanii is so 

that it can be related to filtration rate to calculate feeding efficiency. A second reason is to 

detennine the effect of temperature on the metabolic rate of S. spallanzanii as this could help 

determine the range of tolerance for the species. This may be important in predicting the extent to 

which S. spal/anzanii will spread into warmer or colder waters from its current range. 

Metabolic rate generally increases with temperature. The classic notion is that as temperature 

increases within an animalS range of tolerance. the rate of oxygen consumption will increase in an 

exponential manner (Schmidt-Nielsen I 983). Above the range of tolerance the oxygen 

conswnption may drop below the expected exponential relation with the drop becoming more 

pronounced until the lethal limit is reached (Schmidt-Nielsen). A similar relationship can be 

expected in S. spallanzanii. By testing a wide temperature range, the range of tolerance can be 

detected. 



53 

Aims and hypothesis 

The aims of this section arc to determine the oxygen consumption rate of Sabella spallanzanii 

and to determine the effect of temperature on oxygen consumption rate. A further aim is to 

detennine what is the most appropriate and practical measurement (i.e. body OW or crown size) 

to relate the oxygen consumption rate of S. spa/lanzanii to the,filtration rate (see Chapter 3). 

These data will then contribute to an analysis of feeding efficiency in Chapter 5 to help detenninc 

whether this or temperature could be factors controlling S. spa/lanzanii distribution. 

Specifically, the hypotheses addressed in this section are: 

I. That the oxygen conswnption rate of Sabella spallanzanii will increase with temperature 

within a tolerable temperature range. 

2. That at a given temperature, oxygen consumption rate will increase with worm size measured 

as body dry weight. 

METHODS 

The methodology of measuring oxygen: consumption 

The measurement of oxygen consumption rate in marine organisms is often conducted in a closed 

chamber so that the drop in oxygen concentration can be measured from the water surrounding 

the animal. There are several problems with this approach. Steffensen (1989) examined some 

errors in respirometry and found that the chamber volume needs to be sufficient and time short 

enough to avoid excessive decrease in ambient 0 2 concentrations or build up of C02 and 

excretory products which might affect respiration. However, the volume must not be too large or 

the time too short, because then the accuracy of detecting a change in 0 2 concentration will be 

impaired. Hence it is important to choose an appropriate respirometer volume for the size of each 
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specimen. allowing measurements of oxygen consumption over shorter time intervals (Steffensen, 

1989). Riisg:\rd and lvarsson (1990) successfully used a chamber volume of 162 mL over a 2 

hour period for measuring the respiration of a 120 mg (DW) worm. 

Steffensen (1989) pointed out the problem of stratification of gas content in the water and 

suggested the usc of an adequate pumping system for recirculating and mixing to solve trus 

problem. A pump is also less likely to cause disturbance to the worm than other methods of 

mixing the water (e.g. stirring, or agitating the chamber), as was found in earlier experiments on 

Sabella penicillus by Ewer and Fox ( 1940). 

Riisgcird and Ivarsson (1990) measured the oxygen consumption of S. penicillus in a respiration 

chamber connected to a circulation pump which provided internal mixing and passed the water 

over an oxygen electrode connected to a recorder. The chamber and circulation system were 

immersed in a constant temperature bath to avoid any effects of small temperature changes on 

oxygen saturation levels and metabolic rate. All measurements were performed with oxygen 

saturation above 83% to minimise a decrease in respiration rate with lower oxygen levels, as was 

noted by Fox (1938). 

After considering problems in the respirometry of aquatic organisms, Steffensen (1989) 

reconunended the use of an intennittent flow system where the chamber is an open or flow 

through system which is then switched to closed circuit during measurements. This system avoids 

the problems of excessive decrease in ambient 0 2 concentrations or build up of C02 and 

excretory products, but allows the ratio of chamber volume to specimen size to be small, which 

increases the accuracy of detecting a change in 0 2 concentration over a short time. This approach 

was adopted in this study. 
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Experimental design 

The oxygen consumption rate of Sabella spal/anzanii was measured at four different 

temperatures: 13°, l7°, 22° and 27°C (as for filtration rate) in filtered sea-water. Measurements 

were conducted on active, filtering worms which had their crowns open (i.e. routine metabolic 

rate) so that oxygen consumption could be related to filtration,ratc. The consumption of the 

electrode, water and empty tube was measured to control for any effect of background 

consumption (e.g. of the oxygen electrode, water, micr<HJrganisms or the worm tube). Six 

replicates and six controls were measured at each temperature. 

Collection and care of specimens 

Specimens of S. spallanzanii were collected from the Southern Flats in Cockburn Sound and 

transported in an insulated container with aerated sea water to the University of Western 

Australia Marine Biology Laboratory at the Bernard Bowen Fisheries Research Laboratories, 

Waterman. The wonns were kept in aerated, flow-through sea water aquaria in a temperature 

controlled room for several days to acclimate to temperature and handling prior to 

experimentation. During acclimation the worms were fed on algal monocultures of Thalassiosira 

pseudonana, Dunaliella marina or Rhodomonas sp. in addition to any natural particles in the 

seawater which was on~y coarse filtered. 

Preliminary investigation 

As described in Chapter 3, a preliminary mortality experiment indicated that the subjects could be 

maintained in aquaria long enough to acclimate and for the experiments to be conducted. Similar 

precautions were adopted here to avoid undue disturbance of the specimens which might effect 

the results. 
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Experimental apparatus, design, construction, set-up and testing 

To measure oxygen consumption of S. spal/anzanii, two chambers were designed and constructed 

of clear, cylindrical acrylic (sec diagram, Fig. 4.1.). The upper half had an internal diameter 

sufficient to acconunodatc the open crown of the specimen without it touching the sides {75 nun). 

To reduce the volume and thereby increase the accuracy of m~urements, the lower half had a 

smaller diameter (28 nun) sufficient to accommodate the tube with minimum disturbance. An 

additional tubular insert was made to further reduce the chamber volume to accommodate smaller 

wonns. 0-ring seals ensured a good seal and allowed the segments to be separated while inserting 

the specimen. The top of the chamber had an a-ring sealed plunger with a tapered hole, leading to 

a fine capillary tube. The plunger was pushed down to exclude any air and to adjust the volume; 

the capillary tube allows air to escape and the internal pressure to be equalised with ambient 

pressure while minimising oxygen transfer into the chamber (Hansatech, l993b ). The volume of 

the chamber was adjustable from 200 to 750 mL including all tubing and the oxygen electrode 

housing. 

Circulation system 

futernal water circulation was maintained by a closed circuit and a small submersible pwnp 

(Rena C20). Water was pumped from one side of the chamber and the flow was divided, some 

being returned to the bottom of the chamber to ensure adequate circulation, while the rest passed 

over an oxygen electrode and returned to the top of the chamber. To allow flushing of the 

chamber with air saturated sea-water from a 30 L reservoir, the circulation system could be 

switched from internal to external circulation by means of two, three-way valves (Fig. 4.1 ). 
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Figure 4.1 Respirometry Chamber diagram 
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Oxygen electrode 

A small housing was constructed of clear acrylic to hold a Hansatcch Clarke~typc oxygen 

electrode (Delieu & Walker, 1972). A tapered hole with an o-ring scaled plug in the top of this 

housing allowed any air to be bled from the system. The electrode housing was connected to the 

chamber and pump with Nalgene premium. grade VI tubing (114~' ID). A small magnetic stirrer 

(follower) was placed in the housing to mix the water above the electrode to ensure complete 

mixing for maximal sensitivity and minimal noise (Hansatech, 1993b). The electrode was 

connected to a Hansatech CB I -D control box which allowed adjustment of the output voltage 

range, coarse and fine residual voltage back-off and showed. a digital display of the output 

(Hansatech, 1993a). The output signal was interfuced to an IBM compatible computer with a 

CMA, 8 bit UIA analog to digital converter and recorded using IP Coach 4 software (CMA 

Foundation 1993). This system allowed two electrodes to be used simultaneously and graphically 

displayed the result on the computer during all calibration, experimental and control readings. 

To control water temperature, the chamber, pump, tubing and 30 L reservoir were inunersed in 

an insulated constant temperature water bath and the room was air conditioned. Cooling was 

provided by an external refrigeration unit and heating by a Julabo E-type temperature bath 

control unit. Circulation within the water bath was assisted by a submersible pump (Rena C40). 

Testing 

Mixing in the respirometry chamber was tested by adding a few drops of fluorocene die and 

observing complete dispersal. This was observed within approximately I 0 to 15 seconds, 

indicating complete mixing. An initial trial was conducted while measuring the oxygen 

consumption of worms at 22°C to check the methods and determine the appropriate volume of the 

chamber (these data are not included in the experimental results). The chamber volume was 

reduced to a volume where the change in oxygen concentration as a result of the worms 
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respiration was easy to detect above background consumption and noise. To avoid the associated 

problem of waste product and C02 build-up, the intcnnittcnt flow system suggested by Steffensen 

(1989) was adopted. To reduce any problems from electrical interference, the electrode was 

placed as far as possible from interference; the control box was run on batteries and the 

airconditioner, cooling unit and computer were run from power points outside the room. 

Calibration 

The oxygen electrode was assembled and connected to the computer as described by Walker 

(1987) and Lemmens (1994). The control box was switched on prior to calibration, allowing it to 

warm up and the electrode output voltage to stabilise. The electrode unit was flushed with a 

continuous stream of N2 gas to remove all oxygen. Once the reading was stable the residual 

current was backed-off to zero (Walker, 1987, Hansatech, l993a & b). The chamber was flushed 

with air-saturated seawater from the reservoir and once the voltage was stable, three I OmL 

samples were collected from the outflow for determination of oxygen concentration by Winkler 

titration (Grasshoff, Ehardt and Kremling, 1983). A third point of calibration was found by 

filling the chamber with water which had been partly deoxygenated by bubbling with N2 gas. 

Again three !OmL samples were taken once the electrode had stabilised and the voltage recorded. 

To maintain the accuracy of measurements, oxygen electrode memb.'Qlles were replaced every 

second day and calibrated daily. Winkler samples were taken at the beginning of each replicate 

and checked against the calibration values for voltage and oxygen concentration. The Wmkler 

thiosulphate titrant was standardised against an Iodate standard daily (Grasshoff, et. a/. 1983). 

Acclimation 

Wonns used for temperature experiments were adjusted slowly to the experimental temperature 

over several days (< 2°C change per day) and then acclimated for at least 48 hours. Individual 

wonns in their own tubes were transferred into the experimental chamber in a natural upright 
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position. Specimens were allowed to acclimate to the chamber for several hours, with the 

chamber circulation system switched to external flow of natural sca~watcr (36.5 ± 0. I %u salinity). 

Additional sca~water was filtered through a Cuno I .urn absolute filter (No. PPK09NGO I 0) to 

remove the bulk of the micro-organisms which might produce or consume oxygen and affect the 

experiment. The filtered water was allowed to stand for several hours in a 30 L reservoir in the 

temperature bath at the appropriate temperature to equalise oxygen saturation with ambient 

conditions and avoid ovcrsaturation. 

Procedure 

Once the electrode had been calibrated and the specimen acclimated, the plunger lid was fitted to 

the chamber and pushed down slowly to set the chamber to a known volume and exclude all air. 

The electrode was connected and the chamber was flushed for 10 minutes with filtered sea-water 

from the reservoir. Once the worm had its crown fully open the chamber was switched to internal, 

closed circuit circulation, being careful not to disturb the specimen. The decrease in oxygen 

concentration was monitored by the electrode and I'P~rded to computer over 30 minutes at 0.9 

second intervals. 

Several precautions were followed to ensure that the readings would represent the routine 

metabolic rate of the specimen while it was open and not disturbed. If the worm was accidentally 

disturbed and withdrew into its tube for more than a few minutes the reading was abandoned, the 

chamber was flushed until the worm opened again and then the experiment was restarted. This 

did not however, exclude the worm's natural, undisturbed rhythm of withdrawing for short periods 

of30 seconds to 1 minute and reopening. 
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Measurements were only conducted between I 00 and 80% oxygen saturation. If air wa~ 

accidentally entrained in the chamber water, causing supersaturation, or if the saturation was 

allowed to fall to less than 80%, which may effect respiration rate (Fox, 1938), the chamber was 

flushed with saturated water from the reservoir and the experiment started again. By choosing the 

appropriate chamber volume for the size of the worm, and by carefully bleeding off air bubbles, 

these problems could largely be avoided. 

Once a consistent oxygen consumption had been recorded over 30 minutes (as verified by a 

regression of 0 2 levels over time), the worm was removed from its tube and the chamber was 

flushed for 10 minutes with filtered sea-water from the reservoir. The oxygen conswnption of the 

electrode, water and empty tube was then measured for a further 30 minutes (the control). 

Each worrn, crown and tube were placed into pre~weighed crucibles and dried for the 

determination of dry weight, as described previously (Chapter 3). 

Calculation of oxygen consumption rate 

A regression of oxygen levels over time was calculated on the 2000 data points of each 30 minute 

reading to check that the reading represented a constant rate of consumption. In all cases R2 was 

greater than 0.96, indicating that the oxygen consumption rate over 30 minutes was essentially 

linear. Voltage data were converted to oxygen concentration (mg L'1) using the slope of the three 

point calibration. The oxygen consumption rate was calculated using the formula: 

{(slopeC1 x V)- (s/opeC, x V) x 60}/ DW, where slopeC1 is the slope of oxygen concentration 

from the experimental reading, slopeC2 is the slope from the control, V is the volume of the 

chamber, 60 is the conversion from minutes to hours and DW is the dry weight of the worm body 

including the crown bat not the tube. This provides the consumption rate of the worm in mg 
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oxygen per hour per g DW corrected for the background consumption (of the tube, water, micro

organisms and the electrode). Mass (mg) of oxygen was used instead of volume (mL) because 

mass was the measurement produced directly from the calibration titrations and this also avoided 

any progressive inaccuracy from the extra step in converting to volume. 

Statistical analyses 

A one way analysis of variance was used to test if there was a significant difference in oxygen 

conswnption rates between temperatures. An Fmax test was used to check for homogeneity of 

variance prior to using ANOV A. The data were log (x+ 1) transformed where necessary and 

checked again for homogeneity (Fowler & Cohen 1993). A Scheffe F test was used to identify 

where significant differences occur. 
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RESULTS 

Effect of temperature on oxygen consumption 

Oxygen concentration decrease mer 30 minutes at 13°C replicate No. 1 
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Figure 4.2. Typical oxygen consumption recording over 30 minutes (13°C, replicate 1), with the worm (experiment) 

and with the empty worm tube (control). Oxygen concentration is given in mg 02 L" 1 and the equation and line of a 

linear regression are shown next to each recording. 

Figure 4.2 shows a typical recording of the decrease in oxygen concentration over 30 minutes in 

the experiment with the worm and the control with the empty tube. The oxygen consumption of 

the worm is represented by the difference between the slopes of the two linear regression lines, in 

all cases the slope of the experiment was greater than the controL Analysis of variance showed 

that there was a significant difference between the experiment and control, (ANOVA P = 0.0006, 

df = l ), therefore the consumption can be attributed to the worm. 
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Figure 4.3. The effect of temperature on oxygen consumption rate in Sabella .spallanzanii. The mean oxygen 

Gonsumption rate of six replicates at each of 13°, 17°, 22° and 27°C ± O.l °C is given in mg 02 hour·1 g nw-1 ± S.E. 

Figure 4.3 shows that there is au increase in meau oxygen consumption with increasing 

temperature (mean± S.E. were: 0.228 ± 0.045; 0.254 ± 0.044; 0.294 ± 0.035 & 0.463 ± 0.069 at 

13°, 17°, 22° and 27°C respectively). Analysis of variauce showed that there was a significaut 

difference in consumption rates between temperatures (ANOVA P = 0.0117, df = 3). However, 

the source of this difference was between 13° aud 27°C as shown by a Scheffe Ftest (Scheffe P = 

0.0239). The increase in oxygen consumption with temperature between 13° aud 22° 

approximated au exponential increase; from 13° to l7°C the Q10 was 1.3 aud for 17° to 22°C was 

only slightly higher, Q10 = 1.34. However, the increase from 22° to 27°C was greater, which can 

be seen by the higher Q10 of2.47 aud in Figure 4.3. 
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Figure 4.4. The relationship between body size DW and oxygen consumption rate in Sabella spallanzanii. Oxygen 

consumption rate in mg hour"1 at 22°C is plotted against dry weight of the body including crown. The equation and 

line of a linear regression are shown. 

It can be seen from Figure 4.4 , that for the six replicates measured at 22°C there was a linear 

increase in oxygen consumption with body size as dry weight. Analysis of variance showed that 

this regression was significant (ANOVA 22°C, P = 0.0042, n = 6). 
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DISCUSSION 

Effect of temperature on oxygen consumption 

The results of this experiment showed a significant increase in the oxygen consumption rate of S'. 

spal/anzanii with increasing temperature from 13° through to 27°C which serves to confinn the 

first hypothesis, that the oxygen consumption of Sabella spallanzanii will increase with 

temperature within a tolerable range. Although the only significant difference shown by the 

Scheffe Ftest 'vas benveen the two extreme temperatures of 13° and 27°C and not between other 

combinations, this does not disprove the hypothesis and it is clear from Figure 4.3 that oxygen 

consumption rate increased with temperature. 

Q10 is a commonly used expression of the proportional increase in oxygen consumption over a 

I 0°C increase in temperature. If the oxygen consumption rate were to increase in an exponential 

manner the Q10 ,v:ill remain constant (Schmidt~Nielsen 1983). The increase in oxygen 

consumption with temperature between 13° and 22° approximates an exponential increase; the Q10 

for 13° to I7°C is 1.3 and for 17° to 22°C is only slightly higher at 1.34. This follows what was 

expected within the range of temperature tolerance, but at higher temperature the Q10 was 

expected to drop below the exponential relation, with this drop becoming more pronounced until 

the lethal limit is reached (Schmidt-Nielsen 1983). The increase from 22° to 27°C was greater 

than the expected exponential relation, with a Qw of 2.47. The first possible explanation of tills 

result is that 27°C is not above the tolerable temperature for S. spa/lanzanii and the temperarure 

range tested was not sufficient to detect the upper ·limit. Another possibility is that there could be 

a slight increase in respiration rate caused by stress, before it decreases, although this is not 

supported by the theory. 
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During acclimation at 27°C several spccuncns were observed producing mucus and some 

autotomiscd their crown, indicating that they were stressed. Although measurements were only 

taken on specimens which were not producing mucous and with the crown intact, this effect of 

stress may have resulted in the increase in metabolic rate detected by these results. Therefore it is 

likely that 27°C is approaching the upper limit for S spallanzanii and it may not be able to 

successfully invade waters of this temperature or wanner (see Chapter 5 for further discussion). 

Effect of body size on oxygen consumption 

Th~re was a significant increase in oxygen consumption rate with body size, This confinns the 

second hypothesis, that at a given temperature, the oxygen consumption rate of S. spallanzanii 

will increase with wonn size measured as body dry weight. Body size does have an effect on 

oxygen conswnption, as expected, larger specimens using more oxygen (Pandian and Vemberg, 

1987). To compare to the results ofRiisg<ird and Ivarsson (1990), their result was converted to 

per gram DW and the results given here are converted from mg to mL oxygen. In comparison, the 

oxygen conswnption per gram of dry weight of S. penicillus is slightly higher, 0.323 mL gDW'1 

hr ·' than that of S. spallanzanii 0.223 mL gDW·' hr ·'. 

A possible source of error in this experiment is from differences in the size of wonns used. as 

repiiTcates at each temperature, because the wonns were chosen at random. The results for mean 

conswnption at each temperature have been nonnalised to oxygen consumption rate per gram of 

body dry weight to reduce any effect of body size. Analysis of variance was also used to test that 

there was no significant difference in mean body dry weight between temperatures (P = 0.4898 df 

= 3). These precautions should ensure that the mean increase in oxygen consumption rate per 

gDW with temperature was largely independent ofwonn size (Fig. 4.3). 
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Relation to the natural environment 

The results of this experiment arc likely to be representative of the oxygen consumption of 

Sabella spallanzanii in the natural (or invaded) environment. The specimens would be adapted to 

a certain level of disturbance in the Cockburn Sound environment, from waves or water motion 

and from the movements of fish or crabs. During the initial trial, ~orne specimens were purposely 

disturbed by handling, as a result oxygen consumption was increased and became less stable, 

which could be detected in the resulting data. The results were improved by reducing disturbance 

to the specimens with careful handling and acclimation and by only using stable readings of 

oxygen consumption as displayed in Figure 4.2 with an R2 of greater than 0.95 and in most cases 

around 0.99. When disturbed, specimens retracted into their tubes for long periods (10 minutes to 

hours) but when left undisturbed they would open and close in a natural cycle of 10 to 20 minutes 

open, then close for a short period of 30 seconds to 2 minutes and reopen. By only taking 

measurements when the specimens were opening and closing in their apparently undisturbed 

cycle, the effect of unnatural disturbance was minimal. 

The other and probably more important reason for measuring open specimens, was so that the 

oxygen consumption measured was representative of an open, filtering worm, being the routine 

rather than basal metabolic rate. Although Riisgard and lvarsson (1990) concluded that in 

Sabella penicillus, the beating of the cilia which are involved in filtering, contribute only 

marginally to the total respiration rate, I considered that it was important to measure respiration 

rate while filtering so that it could be related to filtration rate results from Chapter 3. 

During the measurements, there was no detectable change in the respiration rate when the 

specimen periodically withdrew into its tube (for example Fig. 4.2 ). This agrees with the results 

of RiisgArd and lvarsson (1990) for Sabella penicillus, who also commented that this indicates 

the crown is for feeding only and is not a respiratory organ. This is in contrast to earlier work by 
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Ewer and Fox ( 1940) who found that the respiration rate of S. spallanzanii decreased by 36% 

when the crown was an1putatcd and therefore concluded that the crown is a respiratory organ. 

Surely amputation of the crown would cause the specimen a great deal of disturbance which may 

itself effect the respiration rate. My own observations while keeping Sabella spallanzanii in 

aquaria indicate that when the crown is autotomiscd the wonn can live for weeks without a crown 

while it is regrown. This alone indicates that it is not important as a respiratory organ. Wells 

(!951 & 1952) found that Sabella spallanzanii pumps water through its tube by peristaltic 

contractions of the body and that this and not the crown supplies the body with oxygen. 

A limitation of this experiment is that is was not possible to test the oxygen consumption rate 

under identical conditions to the filtration rate experiments, with algal cells in the water being 

filtered. This was because the concentration of algal cells would be progressively reduced during 

the experiment by the filtering activity of the specimen, this would have made it difficult, or 

impossible to control for the background consumption or production of the cells. Riisgcird and 

Ivarsson (1990) concluded that inS. penicillus, filtering contributes only marginally to the total 

respiration rate and therefore, it was considered that the oxygen consumption of S. spa/lanzanii 

would not be effected by the presence or abs .. nee of algal cells. 

The results of this experiment are considered to be representative of the nonnal routine metabolic 

rate of S. spa/Janzanii while it is filtering water and therefore can be related to the filtration rate 

results to calculate the filtration efficiency at the various temperatures tested. 
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The previous chapters have explored the biomass, filtration rate and oxygen consumption rate of 

Sabella spallanzanii in Cockburn Sound. This final chapter integrates those results and discusses 

the implications for management of this introduced species. The two main areas which will be 

discussed are the potential impacts which S. spal/anzanii may have as a result of filter-feeding 

and its potential to invade new areas. 

METHODS 

Filtration capacity of the Sabella spallanzanii population in Cockburn Sound 

The area of Sabella spa//anzanii coverage and biomass (results from Table 2.1 ), were used with 

the mean filtration rate per gDW at each temperature (Chapter 3), to calculate the filtration 

capacity of S spa/lanzanii at each site at various temperatures. The filtration capacity of 

S. spallanzanli on the Southern Flats has been calculated separately for each site, then totalled, 

as this is IDIJfC realistic than using the mean biomass and total area. The filtration capacity on 

jetties has bee.n calculated assuming that the other jetties in the region nearby each have 

approximately the same area and biomass. For the pylons, the mean area and biomass of the three 

replicates was multiplied by the number of pylons in the Sound (see Chapter 2, Methods). 

Because there were no significant differences in biomass between summer and winter samplings, 

the means for each site includes data from both seasons. 
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Feeding efficiency of Sabella spa/lanumii 

There arc several ways in which feeding efficiency has been calculated by different authors. To 

allow comparisons to be made, the methods of Riisg<ird and lvarsson ( 1990) and Shumway et al. 

(1988) have been followed and an additional method has been devised to equate to the 

concentrations of chlorophyll a in Cockburn Sound. 

Feeding efficiency in filter feeders has not been measured as a single function. Instead, Ri isgard 

and Ivarsson ( 1990) inferred a level of feeding efficiency in the fan worm Sabella penicillus by 

comparing the oxygen consumption rate (energy consumption), and filtration rate {food 

collection). They then calculated the volume (L) of water filtered per mL of oxygen consumed, 

which they termed '\vater~processing capacity". 

A similar approach was used by Shumway eta/. (1988) which allowed them to calculate the 

concentration of food (algal cells) in the water filtered which is required to maintain the metabolic 

rate of the fan wonn Myxicola infUndibulum. This was calculated assuming an equivalent of 

oxygen conswned to calories required for respiration of 4.8 calories per mL 0 2 and that 10 x 106 

algal cells is approximately equal to l calorie (Shumway el a/. 1988). 

Feeding efficiency. volume filtered per unit oxygen consumption 

The feeding efficiency of S. spallanzanii (Fig. 5 .I ) was calculated using the results of mean 

filtration rate per gram body OW, ± S.E. (Figure 3.1 ) and mean oxygen conswnption rate per 

gram body DW, ± S.E. (Figure 4.3 ) at the various lemperatures tested. The results are displayed 

as volume fillered (L) per mg of oxygen consumed (see Chapter 4, methods). The error bars 

displayed in Figure 5.1 represent the upper and lower limits calculated from the means ± S.E. for 

filtration rate and oxygen consumption. To allow comparison to other works, where necessary the 
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results of oxygen consumption m mg were converted to mL usmg standard temperature 

('c + 273°K), pressure (I atm), and the gas constant R (0.08206) (Zumdahl, 1993). 

Food requirement, Chlorophyll a equivalent 

To further evaluate the feeding efficiency of S. spal/anzanii, the concentration of phytoplankton 

required as food was calculated, and converted to its equivalent in chlorophyll a. This is useful 

because data on the levels of chlorophyll a as a measure of phytoplankton abundance is readily 

available for Cockburn Sound (e.g. Chitlings, 1979; Chitlings & McComb, 1981; Cary eta/. 

1991). The food requirement (Chi a equivalent) of S. spallanzanii was calculated by converting 

the oxygen consumption (0 2; mg gDW"1 hr"1
) to the equivalent carbon requirement (C; mg gDW"1 

hr"1
), assuming that in respiration, for each mole of oxygen (02) consumed there is one mole of 

carbon (C) required (Gnaiger, 1983). Therefore, C mg = 0 2 mg x 12 I 32. The equivalent amount 

of chlorophyll a was calculated assuming a C:Chl a ratio of approximately 40: l for 

phytoplankton (Parsons & Takahashi, 1973) and this was divided by the volume of water filtered 

to give the equivalent concentration of Chi a mg L'1 (and converted to pg L'1) required to 

maintain the metabolic requirements of S. spa/lanzanii. 

This calculation does make some broad assumptions, but the result tends to be conservative to 

avoid an overestimation. The oxygen to carbon consumption (RQ1 ) for lipids and proteins is 

lower than the ratio of 1:1 for carbohydrate used in the above equation (Gnaiger, 1983). If we 

assume that the composition of phytoplankton is approximately 50% protein, 35% carbohydrate 

and 15% lipid (Parsons & Takahashi, 1973) then the RQ; will be approximately I 0 2 : 0.95 C 

(Gnaiger, 1983). This will result in the food requirement being 5% lower than that calculated 

above. On the other hand, if the C:Chl a ratio of 30: I suggested by Strickland ( 1960) is used then 

the result will be approximately 25% higher than that calculated above. 
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RESULTS 

Table 5.1. Filtration Capacity of Sabella spallanzanii; Summary Table 

Temp °C u· Winter 11• Summer 22• 27" 

Volume filtered (megalltres per day) 

Southern Flats 

Total (sum of 4 sites) 280 341 772 503 

J£!!!£! 
Kwinana region 47.8 58.2 131.6 85.6 

Owen anchorage region 2.6 3.2 7.2 4.7 

Rockingham region 2.5 3.1 6.9 4.5 

Total 52.9 64.4 145.8 94.8 

Pvlons 
Total 1.1 1.34 3.02 1.97 

Cockburn Sound Total 334 407 9Zl 599 

Mean Filtration rate (kilolitres per m2 per day) 

Temu•c 13" Winter 11• Summer 22• zr 
Southern Flats 8.51 10.36 23.43 15.24 

Jetties 2.29 2.78 6.29 4.09 
Pvlons 1.01 1.22 2.77 1.80 

Table 5.1. Filtration capacity of Sabella spa/lanzanii: Swnmary table. The tota] filtration capacity was calculated 

from the estimated area of each site and the biomass for each site. The mean volwne of water filtered kL m·1 day"1 

is also given for comparison of each category; Southern Flats, jetties and pylons. 

The filtration capacity of S. spallanzanii is highest in sununer, with a water temperature of 22°C. 

It is estimated that the whole population of S. spallanzanii in Cockburn Sound can filter 921 

megalitres per day in summer and 407 megalitres in winter (Table 5 .I ). The beds on the 

Southern Flats account for the major part of this filtration capacity (i.e. about 84%). On a per m2 

basis the beds of S. spallanzanll on the Southern Flats are capable of filtering 23.4 kL day'1 m·', 

on the jetties and pylons this is considerably less, 6.3 and 2. 7 kL day·1 nf2 respectively, during 

summer. 
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Feeding efficiency of Sabella spallanzanii! 

Effect of Temperature 
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Figure 5.1. Feeding efficiency of Sabella spallanzanii: Effect of temperature. Feeding efficiency is given as the 

volume of water filtered in litres per mg of oxygen consumed at each temperature. Error bars represent upper and 

lower estimates by calculating feeding efficiency using mean± S.E. oxygen consumption and filtration rates. 

Table 5.2. Feeding Efficiency of Sabella spallanzanii: Summa•y Table 

Temp°C 13' 17' 22' 27' 

Filtration rate (L gDW'1 h·1 ) from Chapter 3. 1.371 1.670 3.777 2.457 

Oxygen consumption rate (mg gDW'1 h'1 
) from Chapter 4. 0.228 0.254 0.294 0.463 

Feeding efficiency (volume filtered L per mg of 0 1 consumed) 6.01 6.57 12.84 5.31 

Chlorophyll a (,ug L·') food concentration required to meet 1.56 1.43 0.73 1.76 
metabolic demand measured as Chi. a 

Feeding efficiency (volume filtered L per mL of 0 2 consumed) 8.20 8.84 16.97 6.91 

for comparison to RiisgArd and Ivarsson, (1990) 

Algal cells required (cells mL·') 585 543 283 695 

for comparison to Shumway et. a/., (1988) 

Table 5.2. Feeding efficiency of Sabella spallanzanii: Summary table. Feeding efficiency was calculated from the 

mean filtration rate and the mean oxygen consumption rate at each temperature tested. Tiris is given as the volume 

of water filtered in litres per mg of oxygen consumed at each temperature (as for Fig. 5.1, above). Chlorophyll a 

required per litre of water filtered is given. For comparison to other work, feeding efficiency is also converted to L 

per mL of oxygen and to the algal cell requirement. 



75 

The feeding efficiency, measured as the volume of water filtered per un!l. of oxygen consumed, 

increased between 13°, 17° and 22°C (Fig. 5.1 ), then decreased to the lowest level of efficiency at 

27°C (5.31 L mg'1 0 2). This trend was identical for efficiency expressed in litrcs mL'1 of oxygen 

(fable 5.2 ). 

The algal concentration (expressed in chlorophyll a and/or cells mL' 1 
) rcquirr.:d to meet the 

metabolic needs of S. spa/lanzanii is lowest at 22°C, because a greater volume of water is filtered 

per unit of oxygen consumed at this temperature (Table 5.2 ). At 27°C the filtration rate 

decreased while the oxygen consumption continued to increase, resulting in a lower feeding 

efficiency and thus, more food is required to meet its metabolic demand than at lower 

temperatures. 

DISCUSSION 

Filtration capacity of the Sabella spallanzanii population in Cockburn Sound 

The population of Sabella spallanzanii in Cockburn Sound is capable of filtering a considerable 

volume of water per day. On the Southern Flats in summer (22°C), its mean filtration capacity is 

23.4 kL day'1 m·2• Given that the average depth on the Southern Flats is approximately 5m, and 

asswning complete mixing (see below), this equates to filtering the water column above each m2 

of S. spal/anzanii 4.68 times per day (5m water depth- 5000L seawater perm\ The density of 

S. spallanzanii on the jetties and pylons was generally less than on the Southern Flats. 

Consequently, they represent a lower filtration capacity. Despite this, S. spa/lanzanii is still able 

to reach a considerable filtration capacity at these sites. For example, S. spa/lanzanU on the 

Rockingham jetty has a potential mean filtration capacity of II kL day"1 m·2• Therefore, the 

importance of these structures as artificial reefs supporting large numbers of S. spal/anzanii 

should not be overlooked. 



76 

l11c filtration capacities estimated here assume that there is complete mixing, while in reality, 

stratification or boundary effects may limit access to a lesser portion of the water column. 

However, the shallow flats areas of Cockburn Sound where the majority of the S. spallanzanii 

population occurs, arc likely to remain well mixed by wind driven currents in winter and 

convection currents in summer (Hearn, 1991 ~ Steedman & Craig, 1983). 

Effect of food concentration on filtration rate 

The filtration rate of S. spallanzanii was shown to be high and constant at algal cell 

concentrations below lO x I 03 cells mL-1
. The rate did not decrease significantly until the 

specimens were exposed to high cell concentrations; above 15 x 103 cells mL'1 for small wonns 

and 20 x 103 cells mL'1 for larger wonns. Mean algal cell concentrations in Cockburn Sound 

range from approximately 160 to 260 cells mL'1 {pers. comm. Stuart Helleren}. These cell 

concentrations are many times lower than the cell concentrations which caused a decrease in 

filtration rate of even the smaller wonns and, therefore, natural cell concentrations are unlikely to 

effect the filtration rate and total filtration capacity calculated for S. spal/anzanii in Cockburn 

Sound. 

Effect of temperature 

The filtration rate of S. spallanzanii is dependent on temperature, as was shown in Chapter 3. 

The mean filtration rate increased with temperature between 13° and 22°C, then decreased when a 

high temperature of27°C was approached. The filtration capacity of the population is calculated 

using filtration rate, and it therefore, will also be dependent on temperature. In Cockburn Sound, 

S. spallanzanii is likely to experience a temperature range of approximately 15° to 23°C with 

mean temperatures of J7° in winter and 22°C in summer (Pearse, 1986). Given these mean 
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temperatures, in winter the filtration capacity of S spallanzanii will be Jess than half that of 

summer and therefore, so will the impact on phytoplankton densities. 

The total filtration capacity of the S spal/anzanU population on the Southern Flats in winter is 

estimated to be 341.5 mcgalitrcs per day and in summer 772.4 ML day' 1
• The combined total 

potential filtration capacity for the jetties and pylons in winter is estimated to be 65.8 ML day' 1 

and in summer 148.8 ML day·1
• While this may not be large in terms of the whole of Cockburn 

Sound, the filtration capacity of S. spa//anzanii may, at least locally, have a important effect on 

the phytoplankton population. As the population of S. spallanzanii increases and spreads in 

Cockburn Sound, this impact will become more pronounced. Filtration capacity was calculated 

from filtration rate which is the volume of water cleared 100% efficiently of particles per unit 

time, so the filtration capacities discussed here are the volumes completely cleared of cells. 

Other studies have shown a similar potential for filter-feeders to filter large volumes of water and 

thereby exert a controlling effect on phytoplankton abundance in shallow water ecosystems (e.g. 

Cloem, 1982; Nichols, 1985; Hily, 1991; Alpine and Cloem, 1992). In Port Phillip Bay, filter

feeders are estimated to account for 42% of total assimilation of organic material by benthic 

invertebrates (Wilson, Cohen and Poore, 1993). By removing a large biomass of phytoplankton, 

incorporating it into their own biomass and releasing waste products, S. spallanzanii like these 

other filter-feeders, has become an important part of the trophic structure, however the 

contribution of this species was not a natural part of the undisturbed system. 

This study has established that the filtration capacity of the S. spa/lanzanii population in 

Cockburn Sound is considerable, but we do not yet know the fate of this filtered organic material 

once it is ingested. Sabella spa/lanzanii may be involved in several ecological processes. 

Through filtration, it could be increasing the rate at which organic material is removed from the 
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water column and deposited to the sediments (e.g. Hatcher, Grant and Schofield, 1994). Another 

possibility is that it may interrupt the denitrification process by intercepting organic material 

before it can settle into the sediments. In areas such as Port Phillip Bay, denitrification is 

considered to play an important role in removing nitrogen from the system and releasing it to the 

abnosphere as N2 (Skyring, Longmore, Chiffings & Crossland 1992) and therefore, any 

intenuption of this process could have a severe impact. The large and increasing biomass of 

S. spal/anzanii in Cockburn Sound, may be also acting as a nutrient sink, or an ecological dead 

end (e.g. Hopkinson, Fallon, Jansson & Schubaucr 1991 ). 

Kimmerer, Gratside and Orsi (1994) studied the impact of an introduced clam in San Francisco 

Bay and found that within a year of it becoming abundant, chlorophyll a levels and the abundance 

of 3 common zooplankton species had declined by 53% to 91%. They further concluded that the 

direct predation by this introduced filter-feeder may have an important effect on biomass and 

species composition of inshore zooplankton (Kimmerer, et.a/. 1994). This suggests the so far 

overlooked possibility that an introduced filter-feeder such as S. spallanzanii may not only affect 

phytoplankton levels but could also affect zooplankton composition and abundance, further 

altering the natural trophic balance. The close proximity of large numbers of S. spallanzanii to 

commercial mussel farms in Cockburn Sound and at Albany is some cause for concern, as they 

may compete for both space anc! food. S. spal/anzanii is already becoming a nuisance to 

commercial mussel fanns, by attaching themselves to spat settlement ropes (pers. comm. 

Southern Ocean Fisheries Ltd. Albany). 

An important impact from the introduction of S. spallanzanii may occur through competition 

with native species of filter feeders for food and space. The large filtration capacity of 

S. spal/anzanii demonstrated in this work suggests that it could remove considerable amounts of 

food from the water-column and thereby create competition for food resources with other filter 
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feeders. S !!.'fJallanzanii has an additional competitive advantage of height over most of the other 

filter feeders where it occurs in Cockburn Sound; at 20 to 50cm long it can stand out further into 

the water than any other species observed during this study. 

On the Southern Flats S. spal/anzanii contributes 94% of the total filter feeder biomass, whereas 

on the jetties and pylons it is only 3% to 9.5% of the total (Lcmmens, Clapin and Parker, in 

prep.). The Southern Flats area represents a disturbed habitat as it was once covered by seagrass 

(Cambridge and McComb, 1984). It appears that S. spa/lanzanii pfcfers this disturbed, shallow, 

sandy bottom habitat where it can out--compete other filter feeders. On the other hand, the jetties 

were densely covered with filter-feeders before the introduction of S. spa//anzanii (pers. 

ob!lervations) and this may have helped resist the invasion. Disturbance is likely to increase the 

success of invasion and spread of S. spal/anzanU and this should be seen as a caution against 

disturbing any new areas in the Sound as they are likely to be invaded. In Port Phillip Bay 

S. spallanzanii has spread rapidly across areas dredged by the local scallop fishery and while it 

may seem speculative, this disturbance is probably contributing to the spread. 

A further impact is that once S. spallanzanii has invaded disturbed areas such as the Southern 

Flats which were once covered with seagrass, it might then prevent seagrass from re-colonising 

the area. 

Feeding efficiency of Sabella spallanzanii und the effect of temperature 

Temperature is an important factor in detennining the potential of Sabella spallanzanii to spread 

to areas further north and south of its present distribution in Australia. The effects of temperature 

on S. spal/anzanii were examined to help determine its tolerable tem;Jerature range. Both the 

filtration rate and oxygen consumption rate of S. spal/anzanii increased with temperature from 
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13° to 22nC. However, from22° to 27°C the oxygen consumption rate increased sharply while the 

filtration rate decreased sharply. Consequently, the feeding efficiency increased between I 3° and 

22°C then decreased markedly at 27°C (refer to Fig. 5.1 ). Feeding efficiency showed a much 

clearer change between temperatures than either oxygen consumption rate or filtration rate on 

their own. There was only a small increase in efficiency between 13° and liJC, however at 22°C 

the efficiency is nearly twice that of the lower temperatures, suggesting that the optimum 

temperature for S. spal/anzanii is approximately 22°C. 

At 27°C the oxygen consumption of S. spallanzanii increased above the expected exponential 

relationship and the filtration rate declined, indicating that the specimens were suffering stress. 

2i'C appears to be above the tolerable temperature of S. spallanzanii and this was further 

confirmed by observations of several specimens producing mucus or autotomising their crowns 

during acclimation to 27°C. Observations during this study suggest that S. spal/anzanii can 

survive short periods of extreme temperatures (12 hours at 4° or 30°C), which would increase 

their chances of surviving transport through tropical or cold waters inside or on a ship's hull. 

However, because of the decrease in feeding efficiency and stress observed at 27°C, it is 

considered unlikely that S. spal/anzanii will successfully invade warm tropical waters. Even so, 

there is still a large area of the Western Australian coastline, at least north to Shark Bay where 

temperatures are below 27°C (Prata, 1989). The next site north of Fremantle which seems most 

likely to be invaded would be Geraldton Harbour, as it has regular shipping visits and 

temperatures not much higher than Cockburn Sound. 

At low temperatures and hence low feeding efficiency, S. spal/anzanii will require more food in 

the volume of water filtered to meet its minimum energy requirements. Therefore, there must be a 

limit where even. a high food concentration such as that in Cockburn Sound can not sustain its 

metabolic needs, and the combination of both low temperatures and food concentrations arc likely 
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to limit its success and survival. To meet its metabolic requirements at I 311C, S spal/anzanii 

needs a phytoplankton level equating to a chlorophyll a concentration of approximately 1.56,ug L-1, 

at 17°C it requires 1.42pg L'1 whereas, at 22°C it only requires 0.73pg L" 1
• 

At l3°C S. spalfanzanii was observed to react slowly to physical stimuli and some remained 

withdrawn into their tubes for longer periods than at higher temperatures, but they did not show 

the same signs of stress as at 2'tC. Although the feeding efficiency of S. spal/anzanii was low at 

13°C, it can live at lower temperatures than in Cockburn Sound (eg. in Port Phillip Bay). 

Therefore, this is not below its tolerable temperature and providing it has an adequate food 

concentration it can thrive in temperatures of 13° to 22°C. However, it is still possible that even 

lower temperatures may limit the successful spread of S. spallanzanii. particularly if food 

concentrations are also low. 

Comparison of the Feeding efficiency of Sabella spallanzanii to other filter feeders 

Riisgaro and Ivarsson (1990) calculated the water-processing capacity (feeding efficiency) of 

Sabella penicillus to be 354 L of water filtered per mL of oxygen consumed at 17°C. In 

comparison. Sabella spa//anzanii filters only 17 litres of water per mL of oxygen consumed at 

22°C and only 8.8 L per mL 0 2 at a winter temperature of l7°C (Table 5.2). The feeding 

efficiency of Sabella spa//anzanU is low compared to that reported for Sabella penicillus. 

Because the highest efficiency for S. spa/lanzanii was at 22°C. and the results given by Riisgird 

and lvarsson (1990) for S. penicillus are at 17°C. the following comparison assumes that these 

are the optimum temperatures for each species. To further assist the comparison. the results of 

Riisgard and lvarsson (1990) have been converted from their 'standard' 65 mg DW worm to the 

equivalent of per lg DW. The oxygen consumption of S. penicillus is slightly higher (0.323 mL 

0 2 gDW1 hr '1) than that of S. spal/anzanli, (0.223 mL 0 2 gDW' hr ·'), so this is not the cause 
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of the higher efficiency. However, the filtration rate of.\: penicillus (114.5 L gDW" 1 hr "1
) is 

considerably higher than for S .vmllanzanii (3.7H L gDW" 1 hr "\ 

Riisg<ird and Ivarsson ( 1990) concluded that the high feeding efficiency of S penicillus suggests 

that this polychaete is adapted to live in waters with extremely low algal concentrations. They 

compared this to the mussel Mytilus edulis which filters 15 to 50 L of water per mL of oxygen 

consumed and commented that these two species seem to be adapted to different regimes of 

suspended food; M edulis may not be able to live in the same localities (with low food 

concentrations) as S. penicillus (Riisg<ird & lvarsson, 1990). Following this line of reasoning, 

S. spallanzanii would seem to be adapted to live in waters with much higher algal concentrations 

than either S. penicillus or M. edu/is. 

Shumway eta/. {1988} measured an oxygen consumption rate of 0.221 mL gDW'1 hr"1 and 

filtration rate of2.78 L gDW'1 hr '1 for the fan worm Myrtco/a infUndibulum. Assuming an oxy

caloric equivalent of 4.8 calories per mL 0 2 and that 10 x 106 algal cells is approximately equal 

to l calorie, they calculated that M infUndibulum requires a food concentration of 243.5 algal 

cells mL'1 to maintain its basal metabolic rate and 3816 cells mL'1 to maintain its routine 

metabolic rate (Shumway et al.. 1988}. Using this same calculation method, S. spallanzanii 

would require a food concentration of 543 cells mL'1 to maintain its routine metabolic rate in 

winter and 283 cells mL'1 in summer. These algal cell concentration requirements are slightly 

higher than the concentrations in Cockburn Sound {160 to 260 cells mL'1
, pers. cornm. Stuart 

Helleren}. This raises the possibility that S. spallanzanii may not get all its food requirements 

from phytoplankton and could also feed on suspended organic material to meet its metabolic 

needs. 

An alternative method to further evaluate the feeding efficiency of S. spallanzanii, is to calculate 

the concentration of chlorophyll a which equates to the minimal food requirements. This was 
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done by converting from oxygen consumption to the equivalent carbon requirement and equating 

this to the carbon Ia chlorophyll a ratio of phytoplankton, as described in the methods section. To 

meet its metabolic requirements, 5: spal/anzanii requires a phytoplankton concentration with a 

chlorophyll a level of 1.42 pg L1 in winter and 0.73 pg L'1 in summer. Mean chlorophyll a levels 

of 1.82 to 2.22 pg L'1 in Cockburn Sound would satisfy this food requirement (Cary, Simpson 

and Chase, 1991; Lcmmcns et a/. in press). Chlorophyll a levels outside Cockburn Sound arc 

much lower, for instance, mean levels in Marmion Lagoon vary from 0.2 to l Jig L' 1 Chi a 

(Johannes and Hearn, 1985; Johannes eta/., 1994). These lower levels may not provide enough 

food to meet the minimum metabolic requirements of S. spa//anzanii and for this reason alone it 

may not be able to live in these conditions. 

The implication of the comparatively low feeding efficiency of S. spallanzanii is that if it requires 

a high concentration of food to meet its metabolic needs, then it may not be able to spread to 

areas with low food concentrations. If this is the case, then it would help to explain the present 

distribution of S. spallanzanii in Australia where it appears to be confined to eutrophic harbours 

such as Port Phillip Bay, Victoria, Princess Royal Harbour and Oyster Harbour at Albany, 

Bunbury Harbour and Cockburn Sound. The alternative is that it can spread outside these 

eutrophic harbours, but will not be likely to achieve the high population densities or biomass as it 

can under more favourable conditions. 

The results of this study indicate that Sabella spallanzanU is most likely to successfully invade 

and reach high biomass in sheltered, shallow waters with temperatures between 13° and 2211C 

where eutrophic conditions provide high levels of phytoplankton and in particular where human 

activity has created -tisturbance to natural or artificial habitats. In areas with lower temperatures 

than 13°C and much less than I J.t& L'1 Chi a, S. spallanzanii would find it more difficult to 

prosper, while temperatures of 27°C or above may limit its survival. 
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