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The art, beauty and pleasure of fishing lies in the act itself. 



For Allan and Maureen, and the far north 

Amaris labor 



Abstract 

This study resulted from concerns for the present and proposed movement of 

barramundi (Lates catcarife~ across presumed population genetic boundaries into the Kimberley 

region of Westem Australia for net·pen aquaculture and a recreational fishery development in 

dams no longer available to seasonal barramundi dispersal. 

Direct DNA sequencing of the non-recombining, maternally inherited mitochondrial 

genome of barramundi thought to represent wild populations from a broad section of a still wider 

Australian range were used for phylogenetic reconstructions that support hypotheses for historic 

gene tlow between Kimberley and other populations during Recent sea level fluctuations. Nil or 

low levels of genetic diversity in samples beyond the Kimberley were reflected in highly 

signHicant estimates of population genetic subd'1vision and low gene flow between the 

contemporary Kimberley population and elsewhere. The observed population genetic structure 

ot western Australian barramundi is discussed with regard to the island and isolation by distance 

models, however limited sampling and an absence of demographic data leaves a conclusion 

problematic. Stochastic, but long distance gene flow is predicted within Kimberley barramundi, 

and is discussed in relation to a distinct east-trending environmental cline that is thought to 

influence habitat availability and subsequent juvenile dispersal. 

The effects of hybridization due to stock enhan.,•ment or escapement are discussed in 

the context of the management objective, which is to maintain genetic diversity. Given this, there 

are clear implications for hatchery practices and wild fishery management in the Kimberley, which 

leaves the present translocation of barramundi a questionable practice that should not occur 

unless no contravention of the management objective can be assured. 
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Chapter 1 

1.1 General Introduction 

1.1.1 The Kimberley 

Barramundi, Lates cafcarifer (Bloch), is a native fish species of the Kimberley region in 

Westem Australia. Such is the mystique surrounding the barramundi that many people [often 

o;herwise non-fishers] engage in recreational activities for this species; it is a highly regarded 

Australian freshwater sportsfish and tablefish. The Kimberley is renowned for its natural 

resources, and is subject to increasing demands by developers and tourists wishing to explore its 

many attributes. Such demands also place pressures upon barramundi, as an increasingly 

urbanized populace expects the 1ullesl' experience in these 'wilderness" areas; these pressures 

may change the nature of barramundi populations. The challenge now is to develop the natural 

resources of the Kimberley only in a manner that ensures the long term sustainability of a 

barramundi fishery, and ultimately the conservation of an Australian icon so that future 

generations may also experience the natural wonderment of the Australian bush and its 

inhabitants. 

The Kimberley is Western Australia's northernmost region (Figure 1 ). Located between 

latitudes 14' and 21' south, the Kimberley climate ranges from the semi-arid tropics of tho 

interior, to a sub-equatorial coastal fringe that is very much influenced by the wet, north-westerly 

monsoon (McGregor & Chester, 1992). The area is embroidered with ephemeral watercourses, 

with the two major rivers being the Ord and Fitzroy Rivers. While comparatively short in length, 

at full flow the two carry the largest volume of water of Australia's rivers, and rank among the 

most potent in the world (Australian Water Resources Council, 1976). Both the Ord and Fitzroy 
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Figure 1. Geographic position of the Kimberley region in Western Australia. 
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rivers have been dammed for the purpose of irrigated agriculture, although the Fitzroy River 

project has long been abandoned. The barrage dam at Camballin (near Fitzroy Crossing; Figure 

2) is thought to have had an insignificant impact upon river mechanics (Department of Commerce 

and Trade & Department of Resource Development, 1993). There are two dams situated on the 

Ord River near Kununurra (Figure 3). The installation of a diversion dam (Lake Kunun•;rra) in the 

early 1960s established the Ord River Irrigation Area. About a decade later, the Ord River Dam 

at Lake Argyle was completed. When Lake Argyle exceeds bank-full stage, water enters 

Spillway Creek to rejoin Lake Kununurra a short distance downstream (Figure 3). 

It is now widely recognized that the regulation of rivers can produce a myriad of 

ecological aberrations (see for example, Pressey & Middleton, 1982; Fernando, 1991). For 

instance, the barramundi has a catadromous lffe history, such that most juveniles swim upstream 

to mature in the fresh waters of tropical Australian watercourses (Dunstan, 1959). The diversion 

dam at Lake Kununurra appears to have reduced the distributional range of the barramundi, with 

the seasonal congregation of predominantly sub-adults at the dam wall lending the species to 

exploitation by recreational fishers (personal observation). Although the provision of fish ladders 

to allow upstream access has been considered at Kununurra and tested at both Camballin and in 

Queensland (Morrissy, 1983), the use of these constructions by juvenile barramundi is 

questionable (Morrissy, 1980) and remains largely unresolved (Mallen·Cooper, 1992). 

1.1.2 Future scenarios for barramundi of the Kimberley: 
The recreational fishery 

The East Kimberley Recreational Ashing Advisory Committee (EKRFAC), has 

expressed interest in restocking barramundi to Lake Kununurra to re-establish part of the 

species' distribution in the Ord River and develop the potential recreational fishery. In 
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Queensland, hatchery-reared barramundi have been used to stock impoundments for 

recreational fishing (see MacKinnon & Cooper, 1987; Rutledge, 1990; Cadwallader & Kerby, 

1995) with significant economic benefits (Rutledge et al. 1990), and many thousands have been 

released into estuaries in the Cairns region (Russell & Rimmer, in press). A previous attempt to 

reintroduce barramundi into Lake Kununurra (Bird, 1992) involved the release of 124 tagged 

barramundi close to the diversion dam wall. Only 8 fish (approximately 6%) were recaptured, 

and all were from below the dam wall. This scant evidence was interpreted by Bird (1992) as 

perhaps indicating that all the fish may have returned to the river proper, and that the release of 

trapped fish into the dam is expensive and possibly futile (Bird, 1992). In the Northern Territory, a 

barramundi introduction has occurred on the Adelaide River at Manton Dam (south of Darwin), 

where about 200,000 fingerlings have been •eleased. Although no research has concluded the 

fate of these fish, it is believed that at least some passed through the dam wall (R. Griffin, 

Northern Territory Department of Primary Industry & Fisheries, personal communication, no 

date). The EKRFAC understands that the establishment of a recreational fishery would require 

constant replenishment, and that hatchery-reared fish could provide the basis for the fishery. The 

source of this material therefore requires careful consideration. 

1.1.3 Aquaculture 

The concept of fish-farming to meet food demands and support dwindling wild fish stocks 

(Pownall, 1969; Wells, t969) was regarded by Smith (cited in Morrissy, 1980, p. 215) as "what 

must be one of the most exciting, challenging and potentially valuable areas of fisheries work". 

Cultural farming of barramundi has occurred in South-east Asia for many years (Wongsomnuk & 

Manevonk, 1973), and Australian facilities operate in Queensland, South Australia and the 

Northern Territory (Anderson et al. 1993; for a review of the Australian industry see Treadwell, 

McKelvie & Maguire, 1991). There are problems w~h barrarrundl husbandry; ectocommensal 
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parasites (Aquaculture WA, 1995) and viral infections (Awang, 1987; Mackinnon, 1987; 

Glazebrook & Campbell, 1987; Glazebrook, Heasman & De Beer, 1990; Renault, Haffner, Baudin 

Laurencin, Brevil & Bonami, 1991; Munday, Langdon, Hyatt & Humphrey, 1992; but see 

Anderson et al. 1993) have decreased hatchery success and stock viability. 

The Western Australian Government and Fish Fanns International Ltd. signed the Fish 

Fanning (Lake Argyle) Development Agreement Act 1976 which proposed to "ranch" barramundi. 

Part of this proposition included the annual release of 200,000 fingerlings into the lake, and that 

10% of the annual catch would be available to recreational fishing, although nothing eventuated 

(Morrissy, t980). In more recent years net-pen aquaculture of barramundi has been achieved in 

Lake Argyle. Initially barramundi fingerlings produced from broodstock at the Northern Territory 

Government hatchery were supplied direct to the Lake Argyle fann. Larvae are now supplied 

from the Northern Territory to a Western Australian Government facility in Broome near Derby, 

Western Australia. After a short period, they are transported to L~e Argyle, and reared to 

market size (Baby Barra Boost, 1995). 

1.1.4 A synopsis for the Kimberley barramundi fishery 

In their discussion paper, the Regional Development Council and the Department of 

Commerce and Trade (1996) state: 

The declining world wild caught fishery combined with economic and population growth 
in Asia will create opportunities for expansion of aquaculture. The Kimberley has 
comparative advantages for the development of aquaculture due to its quality water 
bodies and suitable species types. There is an emerging commitment to aquaculture 
research and development evidenced by the proposed Broome Tropical Aquaculture 
Park. 
(p. 25) 
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Despite an 16% increase in the Kimberley fin fish industry in 1993/94 (Kimberley 

Development Commission, 1995), this statement implies that the concept of ecologically 

sustainable wild fisheries has a difficu~ future, especially perhaps, where comparatively small, 

isolated fisheries such as the Kimberley barramundi fishery (Morrissy, 1963, 1985, 1987; 

Aquaculture WA, 1995) are concerned. Indeed, the Kimberley Aquaculture Development Plan 

(Nel, 1996) promotes the perception that aquaculture will offset the depletion of wild stocks. 

The popular perception of "quality water bodies and suitable species types" indicates a 

bountiful future for aquaculture in the Kimberley, with $4.5 million budgeted for aquacultural 

development in Western Australia over the next 3 years (Kimberley Development Commission, 

1995). Potential target species for the Broome aquaculture facility inci•Jde crustaceans, molluscs 

and tropical fish species such as barramundi (Kimberley Development Commission, 1994). 

The translocation of aquatic species into Western Australia is subject to regulation under 

the Fish Resources Management Act 1994. The Act is managed through a Memorandum of 

Agreement between the Fisheries Department and the Department of Environmental Protection, 

and the current aims of the policy include " ... particular reference to maintenance of genetic and 

biodiversity' (Environmental Protection Authority & Fisheries Department, in review, p.3); 

presumably this refers to the genetic diversity of wild fish. Thorn (1995) reviews translocation 

policy and controls in Western Australia with an assurance that the appropriate decision-making 

process for assessing the suitability of the translocation or introduction of aquatic species into 

that state are secure. It is noteworthy that " ... the term species can also be used to mean species 

group" (Thorn, 1995, p.20). The movement of barramundi within its natural distribution and over 

many watersheds is a "fype D" translocation proposal, which requires the establishment of 
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"whether or not the species ... or genetically different strains in different watersheds or parts of its 

distribution" to be successful (Environmental Protection Authority & Fisheries Department, in 

review, p. 4). Guidelines for assessment of translocation proposals render the division of 

Western Australia into provincial geographic drainage basins, the Kimberley being classified in 

the Timor Sea Drainage Division. Analyses of risks, costs and benefits associated with the 

intended translocation to areas "in which they are not endemic", include the source of stock for 

translocation, and the genetic characteristics of the stock (Thorn, 1995). Barramundi are 

acknowledged to comprise a number of genetically differentiated stocks for the remainder of its 

distribution eastwards from the Kimberley (Keenan, 1994). Although the extent of this separation 

along the Western Australian coastline is unknown, it is widely presumed. 

1.1.5 The concept of fish stocks from the viewpoint of population genetics 

The theoretical basis of population genetic studies is the Castle-Hardy-Weinberg law 

which describes the fate of genetic material in a panmictic population having no selection in a nil 

environment; where stable, predictable equilibrium of gene frequencies is quickly reached and 

maintained. Despite the problems associated with such ideal populations (e.g. Aitukhov, 1981; 

Chakraborty & Leimar, 1987), the genetic structure of most natural populations is investigated 

from these first principles. Following this, the term "stock" has gained wide acceptance in 

fisheries management as being " ... a panmictic population of related individuals within a single 

species that is genetically distinct from other such populations" (Shaklee, Phelps & Salini, 1991, 

p. 174), and as such, stocks will be considered the primary genetic and evolutionary units of fish 

species. 
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Wright (1931) first assumed a panmictic model of population structure in which the total 

population is divided into an infinite number of "islands", each randomly breeding within itself, 

except for a proportion of migrants drawn at random from the whole. Later, Wright (1943) 

acknowledged that inter-population estimates of migration under the island model were unlikely 

to be accurate under natural conditions, and proposed an "isolation by distance" model of 

population structure: where a population is distributed uniformly over a large territory, but the 

parents of any given individual are drawn from a small surrounding region. Kimura & Weiss 

(1964) extended the principle of isolation by distance, and proposed a "stepping-stone" model of 

population structure, which demonstrated that the decrease in genetic correlation with 

geographic distance was dependent upon the dimensionality of spatial migration. In one 

dimension, gene flow is confined to only adjacent populations in a linear array, whereas in two 

dimensional space gene flow occurs between many more populations, and as such, a two

dimensional stepping-stone structure is equivalent to the island model (Ward, Woodwark & 

Skibinski, 1994). 

By studying the change in inbreeding coefficients of infinite island populations relative to 

the metapopulation, Wright (1951) proposed models to measure the properties of subdivided 

populations (F statistics, see Wright, 1965) that are an analogue of traditional analysis of 

variance (Weir, 1990; Barker, 1992). Advances in molecular technologies have led to the wide 

application of F statistics as further molecular variation within and between populations has been 

realized (e.g. Murayama, 1970; Nei, 1973; Nei & Tajima, 1981; Takahata & Nei, 1984; Nei & Jin, 

1989; Nel & Miller, 1990; Lynch & Crease, 1990), yet the statistic used to measure gene flow 

relies on Wright's (1931) formula for estimating migration [i.e. Nm: the number of individuals 

replaced by migrants per population per generation] In an Island model of population structure 
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(Cockerham & Weir, 1993). In an island model where Nm>1, genetic drift causing population 

differentiation becomes ineffective (Slatkin, 1987; Trexler, 1988; Slatkin & Maddison, 1969), 

however other authors (e.g. Trexler, 1988; Slatkin & Barton, 1989; Keenan, 1994) have 

demonstrated that when populations approximate a stepping-stone model of population structure, 

Nm estimates can be much higher than one whilst maintaining significant population 

differentiation. A corollary of Wrighfs model is that populations will not diverge by the process of 

genetic drift through isolation if one or more individuals are exchanged per generation. 

Therefore, apart from complete geographic isolation, selection is often regarded as !he most 

important force producing genetic structure within a species (Keenan, 1994). The premise of 

genetic variation and the consequence of natural selection is that the types and frequencies of 

alleles in populations gradually change to promote genotypic adaptation to the local environment 

(Hartl & Clark, 1989). Despite the restrictions of these models under natural conditions (Porter, 

1990), the island model remains the yardstick by which the evolutionary consequences of gene 

flow are measured (Hellberg, 1994). The extent of gene flow determines the extent to which 

different populations of a species are independent evolutionary units (Slatkin, 1987; Ellstrand, 

1992; Rannala & Hartigan, 1996), wrrh the degree of isolation and the rates of genetic exchange 

among subpopulations being critical to understanding population dynamics. 

Population genetics theory provides a methodological basis for investigating the effects 

of over-exploitation of wild populations, and the consequences of both planned and inadvertent 

mixing of stocks through the widespread practice of fishery supplementation programs and 

aquaculture (Ryman & Utter, 1987; Davidson et al. 1989; Pollard, 1990; Whitmore, 1991; 

Billington & Hebert, 1991; Dixon, 1992; and others). It Is equally relevant where habitat 
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modifications have contributed to the decline of a great number of populations and species of fish 

(Martinez, Arias, Castro & Sanchez, 1993). 

For some time ecologists have expressed anxiety for the consequences of increasing the 

spread of species by human agency, rather than by natural dispersal (Elton, 1958). Indeed, n is 

upon the assumption of local adaptation of discrete populations that there is much concern over 

the genetic interaction of wild stocks with conspecifics from elsewhere, or with fish bred in 

captivity (Aitukhov & Salmenkova, 1987; Nelson & Soule, 1987; Sattaur, 1989; Taylor, 1991; 

Keenan, 1994). Others have stressed the importance of maintaining or improving genetic 

diversity within native popt(rations through gene flow from exogenous individuals (Moav, Brody & 

Hulata, 1978; Kapuscinski & Lannan, 1984, 1986). The apparent contrast between theories 

invoking selection and adaptation as the primary determinant of gene frequencies (see for 

example Dawkins, 1978, 1983) and population structure, against those promoting the variable 

associations of gene flow and its effects, has resulted in a plethora of mathematical models (e.g. 

Zhivotovsky et al. 1994). In summary, population structure depends on the balance of 

evolutionary forces; natural selection affects genetic differentiation where selective forces differ, 

genetic drift leads to genetic differentiation, and gene flow among subpopulations promotes 

genetic similarity. 

The recognition of DNA-level polymorphism as a tool in fisheries science has been 

recognized for some time (Hellerman & Beckmann, 1988). As with many population surveys, 

fisheries surveys typically characterize the allele frequencies of a population at a given point, but 

fail to elucidate the historical evolutionary progression of the population. For example, if a single 

population becomes subdivided through a tectonic event, gene frequencies will diverge as a 
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result of drift and isolation. If these stocks were to experience secondary contact, gene 

frequencies at variable loci in the nuclear genome gradually erode until there is no evidence of 

past isolation (Billington & Hebert, 1991). Homogeneous populations are thought to be indicative 

of gene flow, irrespective of the geographic distributions of fish, and the fishery is managed as a 

single stock with the consequent movement of fish supposing no effect upon reproductive 

dynamics and population viability. 

The historical relationships among lineages of stocks (phylogeny) and their comparison 

to geographic distributions (phylogeography, sensu Avise, 1992) are offered through the study of 

animal mitochondrial DNA (mtDNA). Mitochondrial DNA displays slow divergence erosion, is 

non-recombining and is predominantly maternally inherited in animals, including fish (Meyer, 

1994). As such, mtDNA offers an insight to the maternal descent, or genealogy of populations 

(Hillis et al. 1996). For selectively equivalent genes like mtDNA, the ancestry of a sample of 

genes is followed using the "coalescent' or "genealogical" approach in population genetics 

(Tavare, 1984; Slatkin & Maddison, 1989; Hudson, 1990). Subsequent estimates of gene flow 

differ from those previously described in that gene frequencies are ignored (Morrrz, 1994), and 

historic genetic exchange can be inferred directly from the phylogenetic tree (Slatkin & Maddison, 

1989; Barton & Wilson, 1995). Knowing the genealogy of a population offers fisheries managers 

an opportunity to understand how through evolutionary time, stocks within a species have 

accumulated genetic differences resulting from isolation, thus requiring management on a multi

stock, rather than single stock basis (e.g. Ovenden, 1990). Such rationales have been cledrly 

demonstrated where studies of the mtDNA genome have been conducted in combination with 

historical geologic events (see A vise, 1994 and references therein). 
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1.1.6 Statement of obJectives and research questions 

This study alms to investigate how variation in the mitochondrial genome might provide 

evidence of the historic stock structure of selected Australian barramundi populations, and 

particularly in fish of the Kimberley region in Westem Australia. If geographic isolation has 

promoted the genetic divergence of discriminate stocks of fish from distinct locations, then an 

argument against moving the species between disparate regions would be founded upon the 

presumption that temporal and spatial restrictions on gene flow might have promoted adaptation 

to local environments. Barramundi stock conservation and management in the Kimberley is 

discussed in the context of riverine habitat alteration and increased natural resource 

development ofthe region. 

Specific questions are: 

How does within-population genetic diversity compare between geographic locations, and is 

there evidence of genetic differentiation between barramundi populations? 

What information can be obtained from mtDNA sequence analyses regarding the genetic 

divergence and geographic isolation of barramundi populations? 

Is there a relationship between the genetic differences of populations and geographic distance? 

How much gene flow is estimated to occur between contemporary barramundi populations 

separated by variable amounts of geographic distance? 

What inferences can be made for gene flow between barramundi populations, and which model 

of population genetic structure best approximates contemporary barramundi populations? 
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What are the phylogenetic characteristics of selected Australian barramundi across a broad 

section of Hs geographic range, and what inferences can be drawn for the historic relationships of 

these populations? 

Can an argument be made for managing barramundi populations as discrete evolutionary stocks, 

and what implications does this have for the translocation of the species to the Kimberley? On 

the basis of this study, what recommendations can be made for aquaculture and recreational 

fishery enhancement programs in the Kimberley to lake into account the conservation of wild 

populations, and lor achieving the management objective of maintaining genetic diversity? 
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Chapter 2 

2.1 Literature Review 

2.1.1 Biology and ecology of barramundl 

Barramundi, Lates cafcarifer (Bloch), is also known as pla·kapong (Yingthavom, 1951), 

bhek1i (Ghosh, 1973), sea bass (Wongsomnuk & Manevonk, 1973) and giant perch (Moore, 

1979). It is a euryhaline species, known to inhabit freshwater ponds and rivers, tidal swamps and 

estuaries, and coastal reefs (Shaklee & Salini, 1985). The species is a member of the 

Centropomidae, a family of tropical estuarine, marine and freshwater percoid fish, represented by 

atleast18 species (Greenwood, 1976). The barramundi has an Indo-West Pacific distribution; 

ranging from the Persian Guff through Asia to southern Japan, along the southern coast of New 

Guinea, and the northern coastline of Australia (Greenwood, 1976; Reynolds & Moore, 1982; 

Dunstan, 1959; Figure 4). In Australia (Figure 5), the species ranges from the Ashburton River in 

Western Australia, across the northern coastline, and southward along the east coast to the Mary 

River (Dunstan, 1959). 

Early studies of barramundi life history concluded that the species was anadromous, that 

its adults spawned in fresh waters before returning to at least partially saline waters (Smith, 1945; 

Yingthavorn, 1951), however it has since been demonstrated that rr is a catadromous species, 

with adults spawning in estuarine waters at optimal temperature and salinity regimes (Jones & 

Sujanslngani, 1954; Dunstan 1969, 1962; Ghosh, 1973; Wongsomnuk & Manevonk, 1973; 

Moore, 1982; Keenan, 1994). Embryonic hatching is thought to occur within 24 hours of 

fertilization (Wongsumnok & Manevonk, 1973), wlh larvae foraging in estuaries for a short time 

before migrating upstream as maturing juveniles (Russell & Garrett, 1985; Shaklee, Sallni & 

Garrett, 1993). Pender & Griffin (1996) concluded that many barramundi found in areas remote 

from freshwater parts of the Mary River in the Northern Territory probably had no freshwater 

phase. They thought this was due to spawning in coastal areas remote from the river and/or 

where late spawning prevented upstream juvenile migration prior to river subsidence. 
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Evidence from Australia and New Guinea has confirmed that barramundi is a 

protandrous hermaphrodite; individuals first become sexually mature males in their third and 

fourth years spawning at least once (Moore, 1979; Davis, 1982, 1984a; Shaklee & Salini, 1983), 

and subsequently become functional females, each producing 15·45 million eggs per year 

(Davis, 1984b). This being the case, there are regional, anomalous sexual aspects of 

barramundi lrre history. In New Guinea, Moore (1979) found that sex change occurs in inland 

waters, whereas Davis (1982) found the overwhelming majority of sex changes observed in 

Australian waters of the Northern Territory and Gulf of Carpentaria occurred in tidal waters. 

Additionally, Moore (1979) found a small proportion of primary females and the possibility that 

some males do not changr, to female. Similar findings have been recorded by Maneewong 

(1987) who has found primary males and females in Asian stocks. Davis (1982) collected one 

primary female from the Gull of Carpentaria, Australia. Further work in that region (near Weipa, 

western Cape York Peninsula; Davis, 1984b) identified a discrete stock of sexually precocious 

barramundi that were maturing at 1-2 years of age with evidence of size stunting at maturity. A 

similar observation has been reported from King Sound, Western Australia, where professional 

catches early in 1996 revealed large quantities of "small" (600·700 mm), ripe females (F. 

Bergmann, professional fisherperson [Derby], personal communication, June 10, 1996). 

The spawning of barramundi is typically prolonged, occurring just before or at the onset 

of the summer monsoonal period (Dunstan, 1959). Barramundi migration patterns prior to and 

following spawning are either poorty understood, or there is significant geographic variation. 

Dunstan (1962) concluded that a poor New Guinea wet season resulted in land-locking of fish, 

consequently reducing the number of spawners and recruitment. Similar results have been 

reported by Davis (1986) for fish in the Northern Territory and Gulf of Carp~ntaria. Moore & 

Reynolds (1982) disagree; arguing that adults in New Guinea do not become land-locked 

[compared to the situation in the Kimbertey and western parts of the Northam Territory, personal 

observations], and that stimuli for downstream migration are due to either gonad maturtty, and/or 

a response to changing water levels, with the number of spawners decreasing in an increased 

wet season. 
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Moore (1982) and Moore & Reynolds (1982) suggested that the substantial discharge of 

southern New Guinea rivers necessitates the significant movement of barramundi to more 

suitable salinities and spawning habitats up to 300km along the coast. Russell & Garrett (1985) 

speculated that the comparatively insignificant discharge of rivers and streams in nor1h-eastern 

Queensland created conditions for localized spawning. On the basis of recorded movements of 

tagged fish, movements of Australian barramundi are believed to be essentially within river 

systems, with migration between adjacent river mouths more than 1 OOkm apart considered to be 

a rare event (Davis, 1986; Russell & Garrett, 1988; but see discussion in Keenan, 1994). 

Reynolds & Moore (1973) found New Guinea barramundi returned inland immediately following 

spawning, and subsequent studies (Moore & Reynolds, 1982) found fish continually return to the 

same general area from which they originally migrated. Davis (1985) found fish of the Northern 

Territory and Gulf of Carpentaria tended to remain within the tidal limtt of rivers and did not 

partake in such migrations (but see Shaklee & Salini, 1983). If the movement of Australian 

barramundi is insignificant and seasonal spawning localized, then recruitment into major river 

systems would depend largely on the successful spawning of local populations. It is unknown 

whether the substantial flows of the Ord and Fizroy Rivers result in a substantial movement of 

adults to optimal spawning locales, or in migrations between rivers within those major river 

basins. 

The barramundi is long-lived (>10·20 years) and grows to a large size (>100 em total 

length; >20-50 kg total weight, Reynolds & Moore, 1982; Shaklee et al. 1993). It has been found 

to grow faster in fresh water than salt water (Reynolds & Moore, 1982), and one might attnbute 

this to a juvenile physiological requirement, however the species demonstrates geographic 

variation in age-specific growth rates and concomttant sex change. Comparisons of Northern 

Territory and Gulf of Carpentaria populations made by Davis (1982) showed length differences at 

which males first matured and changed sex, with Gull fish being consistently smaller. Variable 

length/sex ratio relationships in barramundi populations have been observed in India (Patnaik & 

Jena, 1976), Thailand (Wongsomnuk & Manevonk, 1973), and New Guinea (Moore, 1979). 
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Further evidence for spatial variation in barramundi morphology is found in fish used for 

recreational stocking in Queensland. Barramundi from Weipa and Cairns have been introduced 

into Lake Tinnaroo, near Cairns for recreational fishing. Based on tag recaptures, 9 year old 

Weipa fish were equivalent in size to 5 year old Cairns fish (A. Hogan, Queensland Department 

of Primary industries, personal communication, December 6, 1995). Whether this growth 

difference is a phenotypic indication of a very flexible biology (sensu Davis, 1987) or a genuine 

genetic difference is unknown, and is subject to continued debate. 

Concerns for the conservation of wild barramundi stocks have been raised for some time 

(Shaklee & Salini, 1983). Those authors felt that the shift in size and sexual composition of the 

catch (60-90% males) would limit fishery recruitment. Davis (1982) feared for the vulnerability of 

barramundi stocks by even moderate fishing pressure ij sex change was not adaptable. 

Presently, the commercial barramundi fishery in Western Australia is about 50 tonnes 

(Aquaculture WA, 1995); Northern Territory, 495 tonnes (Wild Stock Fisheries Summary, 1995); 

and Queensland, 423 tonnes (Australian Fisheries Statistics, t995). The smaller Western 

Australian fishery is concentrated around the Ord and Fitzroy River basins, probably due to the 

relative absence of surrable juvenile habrrat (Morrissy, 1983, 1987). Davis (1985) speculated that 

because adult barramundi tended to remain wrrhin the tidal limits of rivers, they were in danger of 

commercial explorration. Whilst total commercial catches in Queensland and the Northern 

Territory have decreased since 1978 (Shaklee & Salini, 1985; also see Morrissy, 1987), there 

has been pressure from the recreational fishing fraternity for an increased catch quota (Griffin, 

1979), or in the absence of this, to introduce an acceptable replacement species (see Williams, 

1970, 1982; Pollard & Burchmore, 1986; Barlow & Rodgers, 1990). 

In summary, the high fecundity of adults and the requirement for juvenile development in 

fresh water environments make barramundi an ideal species for inland aquaculture. Barramundi 

demonstrate what Is thought to be a flexible biology over parts of their southern distribution, 

however this is relatively unknown in Western Australia. The prevalence of presumably locally

adapted traits wrrhin the species requires an understanding of the genetic structure of barramundi 
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populations across geographic distance, so that the relative roles of gene flow and local selective 

pressures In producing those differences might be better understood. 

2.1.2 Population structure In Australian barramundi 

Interest in the population structure of Australian barramundi was stimulated by the 

perceived decline of Queensland and Northern Terrttory commercial catches in the late 1970s 

(Salini & Shaklee, 1987a). Subsequent concern for the fishery led Shaklee & Salini (1983) to 

investigate the possibility of multiple barramundi stocks, and to substantiate an argument against 

the single stock management approach which largely prevails today. They (Shaklee & Salini, 

1983) scored the differential mobility of certain esterase enzymes as allelic differences 

(allozymes), to discriminate three general populations; at the western side of the Northern 

Territory, the south-eastern area of the Gu~ of Carpentaria, and the eastern side of Cape York 

Peninsula. Further allozyme studies appeared to confirm the existence of at least those three 

subpopulations or stocks (Shaklee & Salini, 1985). 

Salini & Shaklee (1987a) analyzed atlozyme data collected from Western Australia (Ord 

River), the Northern Territory, and the western side of the Gulf of Carpentaria (McArthur River) in 

an attempt to determine the coastal genotypes of barramundi stocks. They also collected data 

from the tip of Cape York Peninsula, Queensland, and from Papua New Guinea to determine the 

extent of exchange across Torres Strait. Allelic heterogeneity was such that seven discrete 

stocks were identified along the coastline batween lhe Ord and McArthur Rivers. Further, tt was 

concluded that there was little chance of genetic exchange between Australian and Papua New 

Guinean barramundi, leading to the belief that geographic distance (s 100km) was sufficient to 

inhibit significant gene flow between Australian stocks. In summarizing their findings for the 

seven Western Australian/Northern Territory stocks, Salini & Shaklee (1988) thought that since 

barramundi movements are most probably batween adjacent populations, then the one

dimensional stepping-stone model of population genetic structure would be the most appropriate 

for the species, however they acknowledged that migration estimates for that model required 

more complex assumptions for estimating effective population sizes. Instead, Salini & Shaklee 

22 



(1988) used the island model to predict that between-population movements were less than 2.6 

fish per year. 

Salini & Shaklee (1988) argued that temporal stability in allele frequencies from one 

sample location implied such frequencies were characteristic of localities rather than simply of 

collections and that geographic isolation and/or regional barramundi behaviour was 'sufficient to 

restrict gene flow to a level incapable of negating the effects of random genetic driff'. Against this 

opinion, Stoddart & Trendall (1990) believed the genetic differences were aHributable to the 

proportional differences of which genes were present between rivers, rather than differences in 

the genes themselves, and that the reported life history differences among barramundi were 

unlikely to have a genetic basis. Keenan & Salini (1990) found that in barramundi about 20% of 

loci are polymorphic, wHh some being highly variable. When f1xed allelic differences in 

barramundi were compared to its congener, Nile perch, Lates nilotica, variation was observed at 

about 12% of loci. While that level of shared identity is small (assuming the electrophoretic data 

are representative), Keenan & Salini (1990) point to the spawning of Nile perch in fresh water as 

an example where small genetic variation can produce some important biological differences. 

Keenan & Salini (1990) presented data suggesting that sufficient allelic polymorphism 

existed to identity fourteen discrete stocks, extending from Western Australia toward the southern 

Queensland limH of the barramundi. Shaklee et al. (1991) summarized this paHern of stock 

structure in Australian barramundi, substantiating their argument with the conformation of each 

locality to Hardy-Weinberg expectations; and in doing so presented evidence to suggest that the 

assumption of no migration between populations had not been violated. 

An extensive review of allozyme frequencies within Queensland barramundi resulted in 

Shaklee et al. (1993) identifying 24 stocks over the range of the species. Shaklee et al. (1993) 

tested the hypothesis that barramundi population structure approximated a one-dimensional 

stepping-stone model. They used Queensland harvest rates to estimate effective population 

size, and estimated gene flow to be over 10 times more fish moving between populations per 
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generation than Salini & Shaklee (1988) estimated under ihe ls~.nd model, despite substantial 

genetic differentiation. Whereas previous workers had refrained from discussing the role of local 

selection pressures in population genetic differentiation (e.g. Salini & Shaklee, 1988), Shaklee et 

al. (1993) cited discontinuous and inappropriate postlarval, juvenile and adult habitat, an 

apparent absence of extensive prespawning migration in Australia, and limited larval and juvenile 

dispersal (see Wongsumnok & Manevonk, 1973; Davis, 1985; and Russell & Garrett, 1985, 

1988) as reasons for the reproductive isolation of geographically disjunct barramundi 

populations, and argued that managers should not ignore the role of local selection pressures. 

Shaklee et al. (1993) speculated that more stocks would be revealed if surveys were conducted 

in Western Australia, and concluded that the genetic differentiation observed among Australian 

barramundi was the result of long-term reproductive isolation. 

Whereas previous studies had examined population differences on a regional basis, 

Keenan (1994) interpreted new and previously published data (Si;aklee & Salini, 1983, 1985; 

Salini & Shaklee, 1987a, 1987b, 1988; Shaklee et al. 1993) from fish comprising collections from 

the Ord River, Western Australia to the Mary River, Queensland to address the genetic structure 

of Australian barramundi populations from an evolutionary perspective. Keenan (1994) found 

that duplicate samples over seven years in two areas confinned Salini & Shaklee's (1988) theory 

of temporal allelic stability, and proposed sixteen discrete populations, all being confined to 

solitary rivers or to adjacent watercourses. For example, the Ord River population was found to 

be statistically homogeneous with the nearby Moyie River (Northam Territory). Keenan (1994) 

thought the generally low levels of heterozygosity found in Australian barramundi was due to the 

~ounding' effects of populations that have rapidly recolonized many tropical Australian estuaries 

during the most Recent changes in sea levels. Heterozygosities have decreased proportional to 

migratory distance from the primary eastern and western "source" populations of barramundi split 

by the Australia/New Guinea land bridge, such that there are both marked effects of genetic drift 

toward the edges of those colonizing populations, and evidence of increased heterozygosity 

through the natural hybridization of those source populations (Keenan, 1994). 
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Keenan (1994) also tested the one-dimensional model of population structure for 

barramundi, and estimated effective population sizes by calculating the proportional loss of 

observed heterozygosity between selected locations to show that the migration of barramundi 

between adjacent rivers could be substantial [at least an order of magnttude higher than previous 

estimates], whilst maintaining population subdivision over geographic distance (sensu Wright, 

1943). This model predicts that coastal gene flow acts as the primary determinant of population 

structure, and assumes there is substantial genetic exchange among barramundi. The 

implication to managers is that moving large amounts of fish about their geographic range is an 

acceptable management practice, despite population genetic boundaries. Such management 

regards as unimportant the selection pressures that derive from the requirement of fish for 

suttable habitat, of variable reproductive success in differing locations, and the local inheritance 

of particular traits in subsequent generations. 

Genetic differences between Australian barramundi populations have been recognized 

for some time. The genetic structure of those populations has thus far been proposed to 

approximate an isolation by distance model, although estimates of gene flow are dependent upon 

which population genetic model is chosen, and how many assumptions the investigator chooses 

to make. Keenan (1994) has proposed that following Recent interglacial events, habitat 

recolonization and the hybridization of divergent populations have caused the genetic differences 

between locations. The next section reviews current understandings of northern Australia's 

Recent geologic history in the context of Keenan's (1994) hypothesis for the evolution of 

genetically differentiated stocks of Australian barramundi. 

2.1.3 The role of Recent sea level change and the generation of differential 
stock hypotheses 

Recent ice ages and associated changes in sea levels would have produced some 

dramatic changes in the biogeography of the northern Australian coastline (Galloway & Leffler, 

1974). A history of unsteady continents and climates would be especially profound in the 

narrative of fish (Long, 1995), including barramundlllvlng at a shifting land/sea interlace. 
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Climates of the world have been characterized by a series of glacial-interglacial cycles 

for at least 2.5 million years (Berggren et al. 1980), and most probably well before this (Aplin, 

Baverstock & Donnellan, 1993). Data obtained from the coral staircase of the Huon Peninsula, 

New Guinea (Bloom, Broeker, Chappell, Matthews & Meso/ella, 1974; Chappell, 1974, 1983; 

Chappell & Shackleton, 1986) have enabled global estimates of sea level change for the past 

300,000 years. Lambeck & Nakada (1990) provided interpretations for sea level change in 

continental Australia for the past 18,000 years, and present understanding of the Pleistocene sea 

level history of Western Australia was summarized by Kendrick, Wyrwoll & Szabo (1991). 

An interglacial peak approximately 125,000 years BP is thought to have reduced 

northern Australian sea levels to at least 150 metres below present levels (Chappell, 1983; 

Shackleton, 1987; Collins, Wyrwoll & France, 1991), thus fonning a land bridge between Australia 

and New Guinea (Figure 6). There is no reason to presume this had not happened during 

interglacials prior to the aforementioned event. The Recent interglacial peak approximately 

18,000 years BP is thought to have had similar effects (Chappell, 1983), with sea levels often 50 

to 60 metres below present levels during the period 70,000-10,000 years BP (Torgersen, 

Hutchinson, Searle & Nix, 1983; Torgersen, Jones, Stephens, Searle & Ullman, 1985; Figure 6). 

Only during the peaks of the warmest periods, 7000 years BP to present and around 115,000 

years BP, were sea levels sufficiently high to open the Torres Strarr (Keenan, 1994). For the 

remainder of the time, the eastern population would have been isolated, however the western 

population possibly experienced genetic exchange with south-east Asian fish, particularly during 

times involving extremely low sea level and extensive flood pluming from north-western 

Australian rivers (Keenan, 1994). 

The presence of a land bridge between Australia and New Guinea from about 115,000-

7,000 years BP poses zoogeographic constraints to the distribution of Austranan barramundi in 

the Recent period. Such a mechanism is thought responsible for significant population 

divergence in the prawn, Penseus monodon (Benzie, Frusher & Bailment, 1992). Throughout 

this time the primary eastern (Pacffic Ocean) and western (Indian Ocean) populations were 
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separated for perhaps 108,000 years, allowing the components of genetic isolation and 

population subdivision to occur (Keenan, 1994). Again, the history of g/acial·interglacial cycles 

significantly predates this relatively recent event, such that periodic genetic isolation could have a 

much longer history, and Keenan's usage of "ancestral" populations becomes very much a 

relative tenn. It is thought that marine water began to encroach upon the western edges of the 

Gull of Carpentaria about 11,000 years BP (Jones & Torgersen, 1988), and Keenan (1994) 

supposed that this would be the boundary of the most easterly population from the western 

coastline. 

From about 18,000 years BP, the barramundi of the western population would have 

colonized parts of what Galloway & Loftier (1974) describe as a rapidly rising land/sea intertace. 

At sea levels of ·60 metres, the most easterly population (i.e. from the west) might represent the 

eastern periphery of an established "central", Arafura Sea population, inhabiting prevailing 

estuarine conditions off the Northern Territory coastline (Figure 6). With similar conditions 

occurring in the ancient river basin to which the Ord and other rivers still flow (Figure 6), it raises 

the possibility of a barramundi population that has been isolated from the central population for 

perhaps 18,000 years. In itself, this hypothesis is problematic; the time taken for a sea level rise 

to ·60 metres is probably insufficient to allow genetic differentiation to occur between the western 

and Arafuran populations. Perhaps the latter stock existed even at sea levels of ·150 metres. 

And, If the glacial·interglacial cycle had continued far longer than is presumed, then what 

differences have been derived prior to, and since the last glaciation? The King Sound/Fitzroy 

River basin is not so apparent at these levels (·60 metres; Figure 6), and fish there might have 

represented a population which utilized seasonal estuarine habitat fronting the Indian Ocean, or 

the Ord River basin population may have served as the point from which colonization occurred as 

habitat became available. 

Geographically disparate populations must either have preconceived adaptation to their 

environment as manifested in a flexible biology, or selective mechanisms promote adaptation to 

•:hanging environmental conditions, ensuring their reproductive success. Implicit in the next 
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section is the tenet of selection of locally adaptive trans, against that of gene flow, as the primary 

determinants of population structure. 

2.1.4 Some applications of population genetics theory to issues In fishery 
management 

2.1.4.1 Adaptive fitness 

The differential reproductive success of individuals in their environment prompted the 

Darwinian theory of natural selection as one of fitness (Hartl & Clark, 1989). Each habitat is 

assumed to have a suitability for that species, and suitability is equivalent to fttness in 

evolutionary time, so that selection produces adaptation by altering relative allelic frequencies 

and eliminating individuals that are less fit (Krebs, 1985). 

How natural selection enables a species to adapt to its environment is difficult to 

measure, however the study of how species survive in alien environments provides some 

theoretical basis. Simberloff (1981) concluded that the success of a species in a "new" 

environment would be dependent on "vacant niches". In contrast, Moyle, Li & Barton (1986) 

contend that by compressing the "realized niche" of one or more of the present species, the 

newcomer then ,its" into the environment. Barrett & Richardson (1986) argue that the 

inheritance patterns of traits conferring increased fitness might enable successful invasion. For 

example, Morrissy (1973) found the exotic Western Australian rainbow trout (Oncorhynchus 

mykiss) exist with a higher summer temperature tolerance than eastern fish. 

In a comprehensive review of local adaptation in salmonids, Taylor (1991 and references 

therein) finds evidence of locally adapted trans in morphology, behaviour, developmental biology, 

physiology, disease resistance, and l~e history traits. Futuyama (1986) and Taylor (1991) 

acknowledge that a unffied concept which demonstrates a genetic basis to local adaptation is 

elusive, and the methodology for establishing such a cr.ncept is not universally accepted (Endler, 

1986). If three condnions were to demonstrate the argument, they would be that: the feature has 

a genetic basis; differential expression of the tran would be associated with differential survival 
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and reproductive capability among individuals in the same environment, and there is an abifity to 

demonstrate a mechanism for selection and maintenance of the tra~ in the population (Barker & 

Thomas, 1987). It is indeed a fonnidable task. 

In contrast to natural selection is artificial selection, and more importantly directional 

selection, where phenotypically superior traits are chosen for agricultural improvement. A fonn of 

artificial selection by fishery harvest has been attributed to declines in growth rates in some 

salmonids (Ricker, 1972). In many agricultural species, successful artificial selection by 

outcrossing has been accomplished for many years, provided that population tum-around has 

been maintained (Hartl & Clark, 1989). In iisheries this has not been the case, possibly due to 

the high fecundity of most species, resulting in a very small effective population size and a 

homogeneous population (see Keenan, 1995). Selective pressures resulting from an artificial 

environment are thought to have caused reduced adaptive potential of many hatchery stocks 

(Meffe, 1986), and have been blamed for the loss of disease resistance in rainbow trout 

(Ferguson & Drahushchak, 1990), and reduced genetic variation in many salmonid species 

(AIIendort & Phelps, 1980; Vuorinen, 1982; StAhl, 1987; Gyllensten & Wilson, 1987; Verspoor, 

1988). Whether the apparent decrease in fitness is due to population homogeneity (e.g. 

inbreeding depression), or to the typically crowded hatchery conditions in an otherwise "nil" 

environment is unknown. Under hatchery conditions, theoretical Castle-Hardy-Weinberg 

equilibria of gene frequencies is not achieved, implying environmental adaptation is a 

detenninant of population structure. 

There are arguments that challenge the pre·eminence of local adaptation (Larkin, 1981). 

The apparent fle~ibility in species of successful naturalizations (e.g. chinook salmon in New 

Zealand, Withler, 1982) could itself result from highly variable local environments through 

selection for phenotypic plasticity (Via & Lande, 1985). Some species, such as coho salmon in 

coastal Vancouver (Larkin, 1981) use alternative "home" streams in drought years, and might 

differ in their propensity to fonn locally adapted populations (Taylor, 1991). 
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2.1.4.2 Mutation and genetic neutrality 

Mutation creates variation in her"able genetic material. The problem of whether mutation 

rates are important in adaptive fitness has resulted in a number of theoretical approaches in 

population genetics. In classical population genetics theory, the typically low phenotypic variation 

seen in species was thought to be due to natural selection cleansing the genome of inevitable 

mutational variation; the proposition being that genetic variability produced a "load" on the gene 

pool such that organismal fitness was diminished (see Wallace, 1970). Contrasting this theory 

was that genetic variability was much higher, and natural selection favoured genetic 

polymorphisms through "balancing" mechanisms such as the fitness superiority of heterozygotes 

(Dobzhansky, 1955), variation in fitness among habitats, or frequency-dependent fitness 

advantage (Ayala & Campbell, 1974). Of the models, it is only the theory of frequency-dependent 

selection that assumes fitness is dependent upon biotic factors, including intraspecific 

competition for resources. By considering fitness as a property of gene frequency, and by 

allowing rare genotypes to have higher fitness, the opportunity for the existence of two or more 

segregating phenotypes (polymorphism) in the population might increase (Hartl & Clark, 1989). 

Contrary to this, Kimura (1968) suggested that most polymorphisms produce such small 

effects that they are selectively neutral, and their fate is ultimately determined by random genetic 

drift. The cornerstone of that assumption is that genic regions that are less functionally 

constrained are most like to harbour neutral variation and to display the greatest allelic or 

nucleotide substitution (Avise, 1994). Neutral theory does not challenge the Darwinian mode of 

adaptive evolution, rather " appears to be a response to the intellectual challenge provided by the 

unexpectedly high levels of molecular variabii"Y observed in species. 

The role of mutation and neutral theory in selective processes remains a matter of 

conjecture (e.g. Liberman & Feldman, 1986), and has not diminished with the recent 

technological advances which have better equipped investigators to probe molecular sequences. 

Whilst the controversy remains, " was perhaps best summarized by Darwin (cited in Hartl & 

Clark, 1989): 
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Variations nenher useful nor injurious would not be affected by natural s~lection, and 
would be left either a fluctuating element, as perhaps we see in certain polymorphic 
species, or would ultimately become fixed .... We may easily err in attributing importance 
to characters, and in believing that they have been developed through natural 
selection; ... many structures are now of no direct use to their possessors, and may never 
have been of any use to their progenitors .... we are much too ignorant in regard to the 
whole economy of any organic being to say what slight modifications would be of 
importance or not. 
(p. 349) 

2.1.4.3 Genetic drift, effective population size and population founding 

The chance process of changes in allele frequencies is random genetic drift, with its 

principal effect being genetic divergence between subpopulations (Gall, 1987). The magnitude of 

allele frequency change in each generation depends on population size, and becomes less 

important in larger populations (Hartl & Clark, 1989). It is the effect of population size on 

processes that change gene frequencies which heralded the arguments between Fisher (1931) 

and Wright (1931), and remains within the discourse of population genetics to this day. In any 

event, it is the loss of unique allelic characteristics through directed selection, or the subsequent 

hybridization and concomitant "pollution" (SaHaur, 1989) of discrete gene pools by transgenics 

that is the concern of fisheries biologists (AIIendort & Leary, 1988; Ferguson, 1990). Alteration of 

selective forces including predation, competition, environmental modification and disease are 

considered the sorts of processes which ultimately lead to gene pool modification through 

differential reproductive success and allelic drift (Krueger & May, 1991). 

Mayr (1963) postulates that reproductive isolation by geographic distance enables 

genetic divergence because of random genetic drift and natural selection. A critical measure of 

whether effective genetic transmission to subsequent generations will alleviate any detrimental 

effects of random genetic drift and loss of variability is the concept of the minimum viable 

population (Soule, 1987), dependent on the effective population size (N,). N, is extremely 

difficult to measure. It is usually very much smaller than the actual popu:ation size, with plenty of 

fish masking the fact that the progeny may derive from very few adults (Nelson & Soule, 1987). 

32 



Other combined factors of skewed sex ratio and variance in lifetime family size are thought to 

reduce N, by at least an order of magnitude (Nelson & Soule, 1987; SheiWin, 1992). 

A population that undergoes a severe temporary reduction in population size is said to 

experience a "bottleneck" effect (Hartl & Clark, 1989). A population bottleneck is a natural 

phenomenon, typically occurring when a small group of migrants leave a population to found a 

new population; the accompanying random genetic drift is known as a 'launder effect" (Nei, 

Marayuma & Chakraborty, 1975). Bottlenecking of founding populations in hatcheries is thought 

to be a major contributor to the problems associated with the propagation of populations in 

artificial environments, where gene pools suffer a depletion in the genetic representation of their 

natural counterparts (AIIendort & Ryman, 1987). The low levels of heterozygosity are attributed 

to a restricted, homogenizing gene pool, such that the loss of genetic variat'1on, perhaps only 

10%, can have deleterious effects upon stock viability (Falconer, 1981). Low heterozygosity in 

Australian barramundi stocks have been attributed to founder effects (Keenan, 1994). An 

application of successful founding in hatcheries has been demonstrated by Ferguson, lhssen & 

Hynes (1991), who implemented a controlled breeding program among trout species that showed 

comparable enzyme heterozygosity among hatchery and wild fish. Their work showed that 

maintaining allelic variation and N, was species-specific and warranted a fairly equitable 

contribution to tho population by all founders, thus promoting genic representation and minimizing 

the effects of genetic drift. 

2.1.4.4 Inbreeding depression and heterosis 

Closely related to the concept of genetic variation is inbreeding. Inbreeding is mating 

between relatives; with small N,, individuals are more likely to mate w~h a relative by chance 

(SheiWin, 1992). 

The tendency for hatcheries to restrict gene flow and to maintain closed populations 

(usually for disease quarantine), prompted Gall (1987) to question the long-term success of the 

industries. The effect of genetic drift by inbreeding depression has an interpretation in the 
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percentage increase In homozygosity caused by a particular mating system (pedigree) over the 

population average (Hartl & Clark, 1989). For example, Tave (1993) demonstrated the change In 

the coefficient of inbreeding (F) typically used by fish fanmers to be about 3·5% per generation, 

sufficient to counteract the benefits of mass selective breeding programs. A reduction in frrness 

that is proposed to be due to genetic drift is usually measured by a decrease in fertility or progeny 

viability (Sherwin, 1992), and in its overall effect is analogous to inbreeding depression (Mayer, 

Charlesworth & Meyers, 1996). The poor breeding performance of stocked fish in impoundments 

was attributed by Tave (1993) to small N, and the associated lack of genetic variability restricting 

adaptive fitness. Keenan (1995) found that larger founding populations in stocked reservoirs had 

levels of genetic variation similar to wild populations, and that as a result the introduction was 

more likely to be successful. 

The homogenizing effect of hybridization, resulting in a decline in some characteristic 

relative to parental lines, is outbreeding depression (Krueger & May, 1991; Sherwin, 1992). 

Whilst this is the nonm, rr is not necessarily the rule; Allendorf & Leary (1988) found that crosses 

of rainbow trout ( Salmo gairdnen) and westslope trout ( Salmo clarki lewisr) resulted in reduced 

growth rates relative to parents, whereas the latter species crossed wrrh yellowstone cutthroat 

trout (Salmo clarki bouviem) yielded hybrids with increased development rates. 

The situations where coadapted gene complexes of hybridizing parents remain intact to 

yield an F1 generation of apparently increased fitness is hybrid vigour or heterosis, and is a 

common feature of modem agriculture (Hartl & Clark, 1989). Dobzhansky (1955) thought the 

preservation of some of the parental genic arrangements was the result of local selective 

pressures, and this may explain the event of heterosis among two parapatric freshwater fish in 

South America, Poeciliopsis occidentalis and Poeciliopsis monarcha, where there is a hybrid all· 

female fonm in the contact zone (Moore, 1977). There appears to be no empirical studies lhat 

have demonstrated F, fitness as a function of divergence between parental stocks. The data that 

are available invariably show lower fiTness in F, hybrids than either parental stock, even rr the F1 

generation displayed vigour (Endler, 1977). Emlen (1991) developed a model to evaluate the 
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consequences of hybridization of salmon populations adapted to various environments. The 

study (Em/en, 1991) concluded that periodic mixing of only 5·1 0% of the population may result in 

reductions of fitness that could require a number of generations to recover. 

Queensland commercial barramundi hatcheries typically use fewer than 20 broodfish 

(Keenan, 1995). The hatcheries are retaining the highest pertorming males and fastest growing 

fish from particular production runs (F1) as eventual broodstock, providing the bulk of fingerling 

production (F2), (A. Garrett, Department of Primary Industry and Fisheries, Queensland, personal 

communication, March 28, 1996). This implies that ~ homogeneous fish populations in 

hatcheries and fishery enhancement programs have limited genetic variability, then hybridization 

w~h wild populations might impact upon the mnes~ of the latter, and the sustainability of those 

ventures is questionable. 

2.1.4.5 Hybridization 

The general ability and propensity of fish to interbreed and produce viable hybrid 

offspring are firmly established, w~h natural hybridization of fish thought more common than in 

other groups of vertebrates (Campton, 1987). Australia's fish fauna has so far avoided these 

effects because no introduced fish thought to be closely related to indigenous Australian families 

have yet been introduced here, although there is evidence of hybridization occurring among 

some exotic species (i.e. carp, Arthington, 1991). 

The negative impacts of hybridization are typically associated with the interbreeding of 

lineages from remote or art~icial environments. Shaklee eta/. (1993) describe "domestication 

selection" where hatchery spawning and propagation typically selects traits for tolerance to 

crowding, decreased aggression, increased growth rate, and disease resistance, and yet in the 

wild each of these factors mi!~Jt normally be expected to affect the differential survival of 

individuals, and thus the genetic fitness of the stock (e.g. Hynes, Brown, Helle, Ryman & 

Webster, 1981; Gharrett & Shirley, 1985; Allendort & Ryman, 1987; Verspoor, 1988; Gila & 

Ferguson, 1990). Indeed none of these characteristics may be representative of the source 
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stock, 'with the hatchery acting as a sink for wild broodstock, thus reducing by attrition the very 

population it was designed to enhance" (Waples, 1991 ). 

Hybridization typically increases average heterozygosity within the hybridizing 

populations, but also results in a loss of diversity between populations, so that locally adapted 

and "unique" traits are replaced by a smaller number of relatively homogeneous ones (AIIendort 

& Leary, 1988), and the occasional expression of "hidden" deleterious recessives (Emlen, 1991 ). 

Examples of this phenomenon have been documented for populations that have experienced 

little stocking, and for those that have experienced a history of stocking (e.g. Simon, 1972; Utter, 

Milner, StAhl & Teal, 1989). The ecological and evolutionary potential of the species as a whole 

is reduced, and genetic diversity, which would normally be "expected to buffer total productivity 

for the resource against periodic or unpredictable environmental change", might render the 

population vulnerable to perturbations (Riggs cited in Waples, 1991). In the salmonid fisheries of 

the northern hemisphere, hybridization between hatchery and wild fish is common, with fears 

held for the viability of wild stocks (e.g. Sattaur, 1989; Evans & Willox, 1991; Krueger & May, 

1991). Similarly, the back-crossing of hybrid fish Ontrogression) has been demonstrated to result 

in poor growth and survivorship to reproduction (Williamson & Carmichael, 1990; Philipp & Whitt, 

1991; Philipp, 1991). 

To summarize, the genetic and ecological consequences of decreased organismal 

fitness through small effective population sizes, hybridization and propagation in artificial 

environments among others, are demonstrated. The problems associated with gene flow or the 

lack thereof are often seen as a major threat to stock viability, and appear to largely ignore the 

role of mutation; the presumption being that mutation is either selectively neutral or will disappear 

with recombination. Genomes characterized by [presumably] no recombination and high 

mutation offer alternative hypotheses for how genetic variability amongst geographically disjunct 

populations might Implicate local selective pressures rather than gene migration, as a major 

determinant of barramundi population genetic structure. 
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2.1.5 The mitochondrial gene complex 

2.1.5.11ntroductlon 

Mitochondria are small organelles present in high numbers wnhin the cytoplasm of 

aerobic cells. They fulfil most of the energy requirements of aerobic cells by cou~ing electron 

transfer reactions with the production of adenosine triphosphate or ATP (Darley·Usmar, Ragan, 

Smith & Wilson, 1994). The mitochondria contain mitochondrial DNA which encodes 13 

component subunits of much larger protein complexes that fonn part of the metabolic pathway 

responsible for oxidative phosphorylation (Darley-Usmar et al. 1994). 

Mitochondria are characterized by a high degree of genetic and metabolic autonomy 

(Darley-Usmar et al. 1994). Most proteins in mitochondria are encoded by nuclear genes, 

however their specific transport across the mitochondrial membrane remains poorly understood 

(Clayton, 1991; Holt & Jacobs, 1994). Evidence for the intergenomic transfer of genetic material 

between the nucleus and mitochondria has been found in all well-studied regions of the human 

mitochondrial genome (Zhang & Hewitt, 1996). Holt & Jacobs (1994) postulate that because the 

actual number of mitochondria is tissue-dependent, the replication of mtDNA is cell-cycle 

regulated, at least within a defined tissue type. This suggests that mtDNA replication is 

influenced by a 'copy control mechanism", rather than by replication occurring at the DNA· 

synthesis phase or S phase, as with nuclear DNA (Watson, Hopkins, Roberts, Steitz & Weiner, 

1987). Thus, the control of replication is more relaxed than for nuclear DNA (Clayton, 1991). 

2.1.5.2 Characteristics of the mitochondrial genome 

The mitochondrial genome is a small, double-stranded, circular molecule of DNA (Attardi, 

1985), which constitutes around 1% of total cellular DNA (Alberts et al. 1989). The morphological 

similarity of mitochondrial to plasmid DNA prompted the endosymbiotic hypothesis (Margulis, 

1970); which proposes that mtDNA are evolutionary relics, prompting further hypotheses 

concerning the relative importance of the mitochondrial genome (Alberts et al. 1989). Despite 

this, the essential function of energy synthesis by mitochondria necessitates the conservation of 

highly constrained genes, and yet genomic regions differ considerably in genetic variability. 
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Animal mtDNA is non-recombining and appears to be almost exclusively maternally inherited 

(Hayashi, Tagashira & Yoshida, t985; Olivo, Van de Walle & Laipis, 1983; Hurst, 1991), and the 

combination of specific genes in the mtDNA genome has been described by Avise et at. (1987), 

and Avise (1992, 1994) as "haplotypes". 

Maternally inher~ed mtDNA is especially attract'1ve as a population marker to fisheries 

biologists since ~ is more likely to show differences among populations than is nuclear DNA, 

because the effective genomic population size is halved, meaning that it is more susceptible to 

population bottlenecks (Nei & Tajima, 1981; Billington & Hebert, 1990). This would especially 

apply to founding stocks, whereas "source" populations would be expected to have more '1ixed" 

haplotypes. Koehler, Lindberg & Brown (1991) believe the maternal inheritance of animal mtDNA 

to be mediated by the differential amplification of small numbers of specific germ-line mtDNA 

molecules from the mtDNA genotype of the previous generation, allowing paternal leakage of 

mtDNA. The extent and rate of leakage is thought to be small, but the precise proportion remains 

unknown (Gyllensten, Wharton & Josefsson, 1991). 

Usually an organism has only one type of mtDNA, however if a zygote receives a large 

number of organelles through the egg, a chance mutation may enable the replication of more 

than one mtDNA type (heteroplasmy) (Attardi, 1985; Klug & Cummings, 1993). 

2.1.5.3 Structure and function of mtDNA 

In higher vertebrates including fish, the mitochondrial genome is about 16,500 base pairs 

(bp) in length (Brown, 1983; Meyer, 1994). The piscine mitochondrial gene order (Figure 7) is 

thought to comply with the 'consensus" vertebrate gene order, containing 13 genes coding for 

proteins, 2 genes coding for ribosomal RNAs (the small 128 and larger 168 rRNA), 22 genes 

coding for transfer RNAs (tRNAs), and a major noncoding region (control region) that contains 

the initiation sites for mtDNA replication and RNA transcription (Meyer, 1994). The 13 genes 

coding for proteins are cytochrome b, 3 units of cytochrome oxidase (COt, C011, C0111), 2 

subunits of oxidative phosphorylation (ATPase6, ATPase8), and 7 subunits of the mitochondrial 
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Piscine 
Mitochondrial 

Genome 

Figure 7. Piscine mitochondrial gene order. The origins of H- and L- strand 
replication are indicated in the figure. The origin of the H- strand is in 
the control region, and the origin of L- strand replication is in the 
YCNAW tRNA gene cluster. Transfer RNA genes are shown in 
shaded boxes. The coding sequences (templates) of all proteins 
(except ND 6) and the majority of the tRNA genes are on the H·strand. 
The tRNA genes encoded by the L- strand are labelled on the outside 
of the circle, and the tRNA genes encoded by the H· strand are 
labelled an the inside (from Meyer, 1994). 
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dehydrogenase complex (ND1,2,3,4,4L,5,6). Descriptions of subunit function are given in Attardi 

(1985) and Darley-Usmar & Schapira (1994). 

The mtDNA genome consists of a light "L' and a heavy "H' strand, reflecting density 

differences in their respective guanine and thymine content (Clayton, 1991). All genes except 

ND6 and 8 tRNAs are encoded by the H·strand (Meyer, 1994). Within the control region, the 

synthesis of a short segment of H·strand DNA results in a three-stranded DNA structure known 

as the displacement loop (D·Ioop), and the short nascent H·strand is located at the origin of H

strand replication (0,; Clayton, 1991). The sequences adjacent to the D-loop contain both the 

o, (Fig. 7), and the transcriptional promoters for the H· and L·strands (Holt & Jacobs, 1994). 

When the H·strand has replicated over two-thirds its length, the origin of L·strand replication (0,) 

is exposed on the displaced H-strand, and initiation of L-strand synthesis begins in a tRNA 

cluster away from the control region (Fig. 7; Clayton, 1991). Other D-loop sequence elements of 

unknown function include three conserved sequence blocks which Holt & Jacobs (1994) 

suggested may have a role in promoting H·strand synthesis, although this remains poorly 

understood. 

The transcription of mitochondrial DNA to RNA, and its translation to protein essentially 

follows the same pattern as in the "universal' biogenetic code (Alberts et al. 1989; Clayton, 1991). 

There are however several differences: nearly every nucleotide appears to be part of at least one 

coding sequence. The few regulatory and intervening sequences available throughout the 

genome means mutations are more likely to become ~ixed' within a region, especially in the 

absence of recombination which typically erodes those features over generational time; only 22 

tRNAs are required for mnochondrial protein synthesis, compared to at least 31 tRNAs specifying 

amino acids in the cytosol, which means that protein synthesis occurs with fewer tRNA 

molecules; and lastly, comparison of mitochondrial gene sequences and the amino acid 

sequences of the corresponding proteins indicate an altered genF.'dc code, so that 4 of the 64 

cedens have "meanings' which differ from those present in other genomes (Alberts et al. 1989). 
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In summary, lhe mttochondnal genome appears to be highly efficient as tt contains few 

duplicate or noncoding sequences (Gray, 1989). The mitochondrial genetic code is more 

degenerate and less constrained than tts nuclear equivalent (Attardi, 1985; Alberts et al. 1989; 

Meyer, 1994), thus high mutation rates in isolated populations should reveal genetic 

differentiation by their characteristic genotypes. These features, along with non-recombination 

and the predominantly maternal mode of inherttance, make the molecule an attractive tool for 

studying lhe genealogy of populations. The following section evaluates the evolution of mtDNA 

from the viewpoint of intraspecific population divergence in Recent geologic time. 

2.1.6 Evolution of the mitochondrial genome 

2.1.6.11ntroduction 

It has been observed that mtDNA variation is more pronounced between than within 

populations, and this allows mtDNA to be used to estimate phylogenies of populations and 

patterns of historical phylogeography (Joseph & Moritz, 1994; Dowling, Moritz, Palmer & 

Rieseberg, 1996). There has been wide application of mtDNA studies in piscine population 

genetics and fisheries management (see reviews in Ferris & Berg, 1987; Ryman & Utter, 1987; 

Hallennann & Beckmann, 1988; Ovenden, 1990; Dizon, Lockyer & Perrin, 1992; Avise, 1994). 

Investigations of mtDNA have shown sufficient intraspecific variation to pennit the identification of 

fish stocks (e.g. Bartlett & Davidson, 1991, 1992; Carr & Marshall, 1991; McVeigh, Bartlett & 

Davidson, 1991; Avise, 1994), and to facilitate phylogenetic studies among closely related fish 

species (Kocher et al. 1989; Meyer, Kocher & Wilson, 1991; Stunnbauer & Meyer, 1992). 

The mtDNA genome is thought to evolve at a rate about 10 times that of its nuclear 

equivalent (Brown, George & Wilson, 1979). The high rate of evolution is thought to be due to an 

unusually high rate of mutation (Brown et al. 1979; reviewed in Attardi, 1985; Thomas & 

Beckenbach, 1989; Holt & Jacobs, 1994). Alberts et al. (1989) consider the high degeneracy of 

the mtDNA code coupled w~h a reduced fidelity in replication and/or repair, to allow frequent 

base subslitution (one purine for another, or one pynmidlne for another) without adversely 

affecting lhe organelle. 
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2.1.6.2 The molecular clock 

Brown (1983) proposed that mitochondrial DNA evolved at a rate of approximately 2% 

per million years, or about 300 bp over this time, assuming a 15,000 bp molecule. This 

"molecular clock hypothesis' infers that populations which have colonized habitats since the end 

of the Pleistocene would show little divergence (Billington & Hebert, 1991), however this has not 

been the case (see review in Hillis, Mabie & Moritz, 1996). There is no conclusive evidence that 

the forecast rate of evolution of the mtDNA genome (Brown et al. 1979) can be correlated with 

the time of predicted divergence, or universally applied across taxa. Martin, Naylor & Palumbi 

(1992) considered that unknown factors, apart from base or codon position bias, choice of 

sequence or selection, were responsible for an apparently slow rate of divergence in some 

groups of sharks. Avise (1992) suggested life history characteristics might confound the 

molecular clock, believing the wide, effective dispersal of the catadromous eel Anguilla rostrata, 

was responsible for little or no population sequence divergence, despite interglacial cycles dating 

to the Pliocene. Li & Graur (1991) considered the variability of divergence rates in nucleotide 

positions, different genes and different genomic regions to be undeniable. This same variability 

has been demonstrated among taxonomic groups (Li, 1993; Avise, 1994), casting further doubt 

upon the universality of a standard molecular clock. 

The ability to discriminate between stocks of a fish species does not rely on divergence 

which postdates isolation, but instead may be based on pre-existing mtDNA polymorphisms 

(Bematchez, Dodson & Boivin, 1989; Ward, Billington & Hebert, 1989; Bematchez & Dodson, 

1990; Avise, 1992), and any new variability within a stock might enhance discrimination. Recent 

coalescence of historically subdivided populations might be masked in nuclear genomic 

investigations (Hudson, 1990), however mtDNA polymorphisms in founding populations have 

been useful in stock discrimination (Avise et al. 1987; Meyer, 1994). 

A final word on mitochondrial molecular clocks concerns generational time and 

senescence. The degeneration of mitochondria in old organisms has been described across 

species (BiHies, 1989). Hayashi et al. (1994) proposed that the primary reason for mitochondrial 
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dysfunction was associated w~h nuclear DNA rather than mitochondrial DNA mutation. Other 

hypotheses suggest the role of oxygen 1ree radicals" in disrupting respiratory gene organization 

(Bittles, 1992). Whichever theory is correct, analyses of human mtDNA have revealed large, 

age-dependent genomic deletions (Pang, Lee, Yang & Wei, t994), and age-specific point 

mutations (Zhang, Linnane & Nagley, 1993). Whether mtDNA mutations are spontaneous or 

induced, the lack of replicative repair mechanisms are thought to be responsible for the rapid rate 

of evolution. The possibility that age-related mutations mi!IJt be a significant factor in observed 

mtDNA differences within and between fish stocks has not yet been considered in fisheries 

population studies. 

2.1.6.3 Tempo and mode of nucleotide sequence substitution 

Of the three kinds of observed mtDNA sequence changes, nucleotide base substitutions 

are more common than additions or deletions (indels), and rearrangements are the least common 

fonn of mtDNA change (Meyer, 1994). The rate of silent substitutions (nucleotide base changes 

that do not result in amino acid changes) which are mainly transitions (changes of one purine for 

the other, or one pyrimidine for the other), is about 4·6 times that of replacement substitutions, 

which cause amino acid change (Brown et al. 1979). 

Evolution of the mitochondrial genome is due principally to transitional differences 

(Wolstenholme & Clary, 1985). Transitions often outnumber transversions (purine-pyrimidine 

swapping) by a factor of 1 0·20 in within-species comparisons, and they are found in all pos~ions 

of codons in all mitochondrial genes (Meyer, t994), including the non-coding control region 

(Kocher & Wilson, 1991). The predominance of trans~ions over transversions is thought to have 

a mutational rather than a selective origin (Thomas & Beckenbach, 1989; Meyer, 1994) where 

the relative probabilities of substitutions between particular nucleotide base pairs can be 

asymmetric, resulting in biased base composition (Moritz & Hillis, 1996). 

Substitutions at third positions of codons accumulate until they become saturated with 

transitions, however mutations at first and second positions may continue thereafter (Meyer, 
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1994). The transitional bias appears to decrease w~h increasing sequence divergence, and 

therefore time since common ancestry, at which stage transversions predominate (Wolstenholme 

& Clary, 1985). Transversional bias is believed to be symptomatic of evolutionary divergence, 

and has been demonstrated in specific fish phylogenies (e.g. Kocher et al. 1989; Meyer, Kocher 

& Basasibwaki, 1990; Fajen & Breden, 1992). The rate of transversion increase depends on 

factors governing base saturation. Base saturation depends on base compositional bias 

(DeSalis, Freedman & Prager, 1987), and the time taken for transversions to become fixed, 

which is probably detennined by the differential functional constraints of coding regions 

(Holmquist, 1983). 

2.1.6.4 Protein coding genes 

Each mitochondrial protein coding gene varies in tts evolutionary rate relative to 

functional constraints on the gene product and base compositional biases (DeSalis et at. 1987; 

Johansen, Guddal & Johansen, 1990). Substitutional patterns in these genes are relatively well 

understood, and are reviewed in Meyer (1994). Transitions in the third position of codons are the 

most frequent fonn of substitution (Edwards & Wilson, 1990). The second position of codons is 

thought to be the most conserved, and for this reason ~ is most similar among closely related 

taxa and increases in phylogenetic infonnation among more distantly related species (Meyer, 

1994). 

The cytochrome b gene is the only fully functional mitochondrial·encoded protein that is 

not a subunit of a larger enzyme complex (Palumbi, 1996), and~ is perhaps the most studied of 

mitochondrial genes. The evolution and structure of the cytochrome b gene is reviewed 

elsewhere (Irwin, Kocher & Wilson, 1991; Esposti Degfi et al. 1993). Although functional 

constraints of the cytochrome b gene product tend toward generally high conservation of 

sequences, there is a heavy predominance of transttions, which occur at least 20 times more 

often than transversions (Edwards & Wilson, 1990). Meyer (1994) suggests that the transitional 

bias in itself Is an unreliable indicator of descent in the absence of transversions, and this gene 

might be unsuitable for phylogenetic reconstruction in relatively recent evolutionary time. The 
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slow evolution of the gene (Martin et al. 1992) has been used to test deep evolutionary 

relationships in whales (Amason & Gullberg, 1994) and sharks (Martin & Palumbi, 1993), wHh the 

latter noting various levels of amino acid conservation in different parts of the gene. Other 

workers (e.g. Bartlett & Davidson, i991; Whitmore & Craft, 1996) have investigated sequence 

variation to establish genealogical relationships of fish species, however intraspecific 

differentiation is often more difficult to determine (Meyer, 1994), and is variable among taxa. For 

example, whilst McVeigh et al. (1991) found very low levels of intraspecific variation in Atlantic 

salmon, Carr & Marshall (1991) reported sufficient haplotype diversity to distinguish between 

populations of Atlantic cod. 

The cytochrome oxidase <Xlmplex evolves at similar evolutionary rates to the cytochrome 

b gene (Palumbi, 1996). Whilst deep evolutionary divergence has been demonstrated in Penaeid 

shrimps (Palumbi & Benzie, 1991) and other phyla (Palumbi, 1996), this gene has rarely 

produced meaningful intraspecific phylogenies (Meyer, 1994). 

Meyer (1994) suspects the ATPase complex to be among the more variable of coding 

genes. It has been used for testing the relationships of Neopterygian sharks (Normark, McCune 

& Harrison, 1991), however il apparently awaits more widespread application, including 

comparisons of intraspecific phylogenies. 

The mitochondrial dehydrogenase complex (ND genes) has similar characters to those 

ATPase subunits (Meyer, 1994). The specific variability of the mitochondrial-encoded genes is 

well exemplified in this gene complex; O'Connell, Skibinski & Beardmore (1995) found no 

significant haplotype variation in the ND5 and ND6 genes of Atlantic salmon, and concluded that 

meaningful variability in this gene depended on substantial evolutionary divergence within a 

species. These same genes were investigated by Hansen & Loeschcke (1996) to detect 

significant intraspecific variability in brown trout. 
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2.1.6.5 Transfer RNA genes 

All vertebrate mitochondrial genomes contain 22 transfer RNAs (tRNAs), and have been 

found to display much base substitution variability, although they are still among tile more slowly 

evolving of tile mitochondrial genes (Meyer, 1994). This characteristic, and tile small size of 

tRNAs (59-75 bp), have restricted their use in phylogenetic enquiry. 

2.1.6.6 Ribosomal RNA genes 

The two subunit ribosomal RNA (rRNA) genes (12S & 16S) have overall substitution 

rates about half those of protein coding genes (Mindel! & Honeycutt, 1990; Hillis & Dixon, 1991), 

making them suitable for investigating groups within major phyla (see review in Hillis et al. 1996), 

and of more distantly related species within major fish groups (e.g. lutjanid snappers in Sarver, 

Freshwater & Walsh, 1996). Gene length mutation is more frequent in rRNA genes, by 

comparison with protein coding genes (Meyer, 1994), making alignment of sequences for 

phylogenetic inference can be difficult and potentially misleading (Swofford, Olsen, Waddell & 

Hillis, 1996). 

2.1.6. 7 The control region 

The mitochondrial control region may evolve as much as five times faster than protein 

coding regions (Aquadro & Greenberg, 1983; Brown, 1985; Thomas & Beckenbach, 1989), 

although rrttle is known of the mechanisms controlling this high mutation rate (Holt & Jacobs, 

1994). Fumagalli, Taberlet, Favre & Hausser (1996) believed unidirectional replication slippage 

to be the dominant factor in the rapid evolution of the molecule. The structure of the control 

region is partially constrained to regulate replication and transcription (Clayton, 1991), whilst the 

sequences flanking those conserved sequence blocks are areas of high variability that contain 

many polymorphic sites within species (Meyer, 1994; Fumagalli et al. 1996; Palumbi, 1996). 

For some time, authors have advocated investigating polymorphisms in the non-coding 

regions (Slatkin, 1987; Davidson et al. 1989). In the control region, nucleotide substitutions 

outnumber deletions and addnions in closely related fish species (Meyer et al. 1990). 
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Sturmbauer & Meyer (1992) compared the sequence divergence of cichlid fish (Tropheus spp.) 

and found only 2 substttutions in the cytochrome b gene, compared to 4% corrected sequence 

divergence in the control region. This region has been found to display the highest frequency of 

length mutations at the population level, and large numbers of duplicated tandem sequence 

repeats (e.g. Buroker, Brown & Gilbert, 1990). 

Sequencing analyses of the control region have enabled specific differentiation over 

about a million years (Meyer et al. 1990); between generic fish taxa (Ong, Stabile, Wirgin & 

Waldman, 1996), and among geographically remote populations of the same species 

(Bematchez, Guyomard & Bonhomme, 1992). 

To conclude, the control region is often, but not always, the most informative region in the 

mitochondrial genome (Hansen & Loeschcke, 1996). For instance, those authors found the 

control region to be uninformative in differentiating Danish brown trout stocks, whereas the ND1, 

5 and 6 genes contained the greatest polymorphic information. For many taxa the control region 

has proved to be useful as a fisher1es population marker, but clearly there are exceptions. 
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Chapter 3 

3.1 Materials and Methods 

3.1.1 Introduction 

The methods available for investigations of molecular systematics are many and varied, 

and reflect astounding technological advancement (see review and references in Hillis, Moritz & 

Mabie, 1996). The analysis of DNA has several advantages over alternatives such as proteins 

for molecular systematics: the genotype rather than the phenotype is assayed; one or more 

sequences appropriate to a problem can be selected upon the basis of evolutionary rate or mode 

of inheritance; the methods of sequence analysis are typically general to all DNA types; and DNA 

can be prepared from small amounts of relatively stable tissue (Dowling et al. 1996). 

Investigations of recombinant DNA are not addressed herein, however rr is noted that allozyme 

data (e.g. Pogson, Mesa & Boutilier, 1995) and tandemly repeated segments of "satellite" DNA 

(see Castelli, Philippart, Vassart & Georges, 1990; Bentzen & Wright, 1992; Wright & Bentzen, 

1994; Heath, Bernier & Mousseau, 1995) remain as useful tools for depicting piscine population 

structure and the genetic '1ingerprints" of individuals. 

3.1.2 Systematic investigations ofthe mitochondrial genome: A review 

Of the techniques available in DNA sequence investigations (see Dowling et al. 1996; 

Palumbi, 1996), this discussion will describe and compare those two that have received widest 

application: restriction fragment length polymorphisms (RFLPs) and direct sequence analysis. 

RFLP analyses typically investigate base substitutions or insertion/deletion (indels) 

events. These are commonly detected using restriction endonucleases: enzymes isolated from 
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bacteria that cut DNA at a constant posnion wnhin a specific recognition sequence (typically 4-6 

bp in length), throughout the genome (Beckenbach, 1991 )- lndels, rearrangements and base 

substitutions, can create or eliminate cleavage snes for a particular enzyme(s), thereby altering 

the number and size of fragments detected by them. The cleavage of DNA at a characteristic, 

usually symmetrical recognition sequence, most often results in sequence overhang at either end 

(5' or 3'), but sometimes none (Dowling at al. 1996). The variable fragment patterns revealed 

following digestion of the DNA extract with restriction enzymes are the basis for polymorphic 

fragment length analyses, and have been successfully used in assessing population sub

structuring in fish (e.g. Billington & Hebert, 1988, 1990; Ward, Billington & Hebert, 1989; McVeigh 

et al. 1991; Billington, Barrette & Hebert, 1992; Danzmann, Ferguson & Arndt, 1993; Grewe et al. 

1993; Crosetti, Nelson & A vise, 1994; Billington & Strange, 1995; Hall & Nawrocki, 1995; Pogson, 

Mesa & Boutilier, 1995; Tagliavini, Harrison & Gandolfi, 1995; Ward, Emot & Grewe, 1995; 

Hansen & Loeschcke, 1996; Whitmore & Crafi, 1996; but see Ovenden, Bywater & White, 1993; 

O'Connell et al. 1995). 

In general, restriction enzymes that cleave at 4 bp sites will cleave more often than those 

that cleave at 6 bp sequences, thus producing more, albeit smaller fragments. The recognition 

that restriction enzymes vary in their efficiency for generating RFLPs (Dowling at al. 1996) has 

complicated the procedure. For example, whilst 4 bp-recognizing restriction enzymes are 

thought most suitable for closely related animal mtDNAs (Dowling & Brown, 1993), Dowling at al. 

(1996) later thought that enzymes which produced larger fragments tended to detect more 

fragment length polymorphism. McVeigh et al. (1991) expressed reservations for RFLP analyses 

of the mitochondrial genome, because random surveying of the entire genome included areas of 

differential functional constraints and variable mutational frequencies. For instance, Thomas, 
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Withler & Beckenbach (1986) thought that because of the frequency of changes in the mtDNA 

control region, restriction enzymes in this region would probably underestimate the level of 

sequence divergence due to an increased probability of multiple changes within a restriction site. 

Similar arguments have been offered by Thomas & Beckenbach (1989) and Billington & Hebert 

(1991), although Beckenbach (1991) appeared unsure whether RFLP analysis provided higher 

or lower estimates of sequence divergence, and concluded that direct sequencing of target areas 

within the mtDNA genome seemed a more rigorous approach. 

Direct sequence comparisons between homologous DNA regions rather than restriction 

site similanties are possible through the selection of DNA pnmers [typically highly conserved 

oligonucleotide sequences which anneal to a complementary sequence of single-stranded DNA] 

specific to the molecule being studied (e.g. Kocher et al. 1989; Meyer et al. 1990), and the 

molecular cloning technique of the polymerase chain reaction [see below], (Chapman & Brown, 

1991). For the mitochondrial genome, direct sequencing of variable coding and non-coding 

regions (Bartlett & Davidson, 1991; Carr & Marshall, 1991; McVeigh et al. 1991; Bematchez et al. 

1992; Sturmbauer & Meyer, 1992; Martin & Palumbi, 1993; Amason & Gullberg, 1994; Ong et al. 

1996; Sarver et al. 1996) have furthered understanding of the evolutionary relationships of fish 

species and population structure. Whilst direct sequencing of the mitochondrial genome seems 

closer to determining actual population divergence in specific genomic regions, the recent work 

of Santos, Ribeiro-Dos-Santos, Meyer & Zago (1996) demonstrated a 93% agreement between 

data obtained by RFLP and direct sequencing of American Indian D-loop mtDNA. 
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3.1.3 The Polmerase Chain Reaction 

Although the exponential synthesis of DNA was first descnbed some time ago (Kleppe, 

Ohtsuka, Kleppe, Molineux & Khorana, 1971), direct genomic sequencing required the labonous, 

technically demanding process of genomic cloning which typically precluded the analysis of large 

numbers of individuals in population studies (Carr & Marshall, 1991). The advent of enzymatic 

genome amplification (Saiki et al. 1985), followed by the use of heat stable polymerase (Mullis & 

Faloona, 1987) such as Thermus aquaticus (Taq), eventuated in the polymerase chain reaction, 

or PCR (Saiki et al. 1988). 

For a detailed treatment of the PCR, see Erlich, Gelfand & Sninsky (1991), Mullis, Ferre 

& Gibbs (1994) and Palumbi (1996). Briefly, the PCR cycle consists of three major phases: 

denaturation, annealing and extension. In denaturation, heat is used to stop all enzymatic 

reactions and dissociate genomic DNA from double to single strands. In the annealing phase, 

the temperature is lowered so that oligonucleotide primers can bind to appropriate sites (target 

positions or flanking sequences) on the template DNA. The extension phase allows the enzyme 

to work, synthesizing the target DNA segment. As the temperature slowly rises from the 

annealing temperature, polymerization begins and is unidirectional. At this time, the polymerase 

recognizes the single-stranded template DNA and binds temporarily to this strand at a point 

adjacent to a double-stranded stretch of DNA. The polymerase also binds to deoxynucleotlde 

tnphosphates (dNTPs), and using the energy in the triphosphate bond, catalyzes a reaction that 

attaches an appropriate nucleotide to the second DNA strand. The polymerase enzyme then 

moves to the nascent end of lengthened, double·stranded DNA, and the process (cycle) is 

repeated. Once a few extra nucleotide bases have been added to the primer, the stability of the 
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primer-template complex is secure, and the polmerase will synthesize thousands of bases per 

minute. 

The principal advantage of PCR is that n is very rapid. It can utilize tiny quantities of 

tissue, enabling non-lethal sampling (Doupe & Chandler, manuscript submitted see Appendix A), 

and is sufficiently robust to amplify even degraded tissue (Beckenbach, 199t). Notwithstanding 

this, the biggest assumption made about PCR is that the product produced is the product desired, 

and is typically indicated by comparing the fragment obtained with a fragment of known size 

(Palumbi, t996). There is evidence that mitochondrial gene segments have been transferred into 

the nuclear genome, and are particularly susceptible to PCR incorporation (Zhang & Hewitt, 

1996). The use of target-specific primers and capillary-feed, rather than temperature-gradient gel 

electrophoresis is thought to reduce the contamination by nuclear insertions in amplified 

mitochondrial DNA sequences (Zhang & Hewitt, 1996). Innis, Gelfand, Sninsky & White (1990 

and references therein) provide a thorough description of methods and applications for PCR, 

including guidelines for minimizing product contamination and considerations for optimal target 

amplification. 

3.2 Procedure 

The many steps required to obtain the barramundi mtDNA sequences are potentially 

confusing in their complexity, and are summarized in Figure 8. 

3.2.1 Sampling location, size and methodology 

Baverstock & Moritz (1996) suggest samples should be taken from multiple populations 

representing a hierarchy from closely spaced to geographically distant sites, which allows the 
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Tissue sample (barramundl fin clip) 
ll 

Total DNA extraction => Spectrophotometric quantification and standardization of 
DNA 

<= 

Primer annealing to target mtDNA and PCR amplification 
ll 

Agarose gel electrophoresis to confirm PCR amplification of target miDNA fragment 
ll 

<= 

Cleaning of target mtDNA 

<= 

Agarose gel electrophoresis to confirm cleaning 
and estimate sample amounts of mtDNA by 
comparisons of ethidlum bromide fluorescence 

ll 

Cycle sequencing using fluorescently labelled dldeoxynucleotide triphosphates 
ll 

Removal of dideoxynucleotide triphosphates by ethanol precipitation 
ll 

Template mtDNA denaturation 

<= 

Capillary electrophoresis of sequences 
ll 

Comparative alignment of double-stranded mtDNA fragment => Resolution of one strand 
ll 

<= 

Alignment of all mtDNA sequences for data analysis 

Figure 8. Synopsis of procedure taken to produce the final set of aligned 
barramundi miDNA sequences. 
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identification of locally polymorphic haplotypes and those with widespread variation. This also 

allows assessments of the distribution of variation within versus among populations. A common 

problem in genetic surveys Is the number of samples to be taken. Grewe et al. (1993) proposed 

a model which would allow sampling of at least one individual lake trout for every haplotype 

present 95% of the time. These workers set a conservative minimum sample size (n = 80) for 

their study involving RFLP analysis. Sequencing analysis might require considerably less 

samples due to target sampling of a specific region, rather than the entire genome. In 

sequencing studies of the mitochondrial control region, Bernatchez et al. (1992) sampled 

between 1-8 individuals in each of 24 populations to successfully discriminate geographically 

remote European brown trout populations. Ong et al. (1996) sequenced that penomic region to 

assess population divergence between approximately 20 individuals from 2 populations of 

Atlantic sturgeon. Sequencing investigations of other mtDNA regions like cytochrome b have 

identified genetically separate populations from small samples, often using only 1-10 individuals 

(e.g. McVeigh et al. 1991; Whitmore & Craft, 1996). Notwithstanding the potential to discriminate 

populations with comparatively few samples, the relatively high cost of sequencing analyses 

(approx. $25 per fish) constrains the maximum number of samples for this study to approximately 

50 individuals. 

The spatial sampling regime of Austraflan barramundi is given in Figure 9. Sampling was 

biased in a westwards direction to sample polymorphism within the Kimberley populations, and to 

reveal polymorphic differences between those fish and adjacent but distant stocks that represent 

the genetic diversity present in hatchery stocks presumed to be representative of local wild fish. 

One barramundi sample each from Thailand and New Guinea, and one sample of the Nile perch, 

Lates nllotica, was obtained to provide comparative 'out-groups" for phylogenetic 

54 



Figure 9. 

Western 
Australia 

Northern 
Territory Queensland 

Location of sampling sites across northern Australia. 
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analyses, and to provide an indication of their evolutionary relationships to, and amounts of 

genetic divergence from Australian populations. 

Kimberley fish were sampled from the professional net fishery. Derby (Fitzroy River) 

samples were taken from fish caught in nets set along tidal creeks flanking the Fitzroy River 

estuary. Fifteen fish (FIT 1-FIT 15) were sampled at random from the total catch over 5 days. 

Scissors and tweezers were used to take caudal fin samples as described by Doupe & Chandler 

(Appendix A). The tissue sample was placed in a marked 1.5mL cryogenic tube, and 

immediately stored in liquid nitrogen at ·196'C. The sampling bench and implements were 

washed with seawater between each sampling. The procedure described was repeated for 

Wyndham fish, which were sampled from tidal creeks adjacent to the Ord River estuary. Fifteen 

fish (ORD 1-0RD 15) were sampled from the total catch over 3 days. On return to Perth, the 

Kimberley samples were stored at ·20'C. 

Darwin fish were obtained from the Australian Barramundi Culture P/L hatchery, south of 

Darwin. The 10 fish (DAR 1· DAR 10) were the F1 generation of wild broodstock obtained from 

Shoal Bay, near Darwin (8. Richards, manager, personal communication, October 6, 1996). 

Cairns fish were obtained from the Bluewater Barramundi PIL hatchery at Mourilyan, 

south of Cairns. The 5 fish (CAl 1-CAI 5) were the F1 generation of wild fish taken from the 

Cairns area (G. Doyle, manager, personal communication, October, 8, 1996). 

For Cairns and Darwin fish, the procedure was that juvenile fish (= 300g) were randomly 

selected from ponds and killed in a cold saltwater brine. The whole fish was 
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immediately packed in ice, packaged, and freighted to Perth by air. Fish were collected and 

transported to the University where they were stored at -20'C. 

One partly processed (i.e. gilled, gutted & scaled) fish from a Thailand hatchery (SEA 1) 

was obtained from Sealanes Food Service PIL, Fremantle, Westem Australia. Once processed 

in Thailand, this fish was stored at -20'C, and maintained at this temperature for transport and 

storage in Fremantle (P. Paino, manager, personal communication, October 25, 1996). 

In the laboratory, frozen fish from Thailand, Cairns and Darwin were systematically taken 

from the freezer and fin clipped. Each sample was treated as for the Kimberley samples, except 

that the bench was thoroughly washed with tap water, and sampling instruments were washed in 

02M HCL, and then distilled water between sampling. The tissue samples were first placed in 

marked 1.5ml cryogenic tubes, and then placed in liquid nitrogen overnight. Samples were then 

stored at -20'C. 

The New Guinean sample (PNG) was a barramundi fillet purchased from a restaurant in 

northern New Guinea. This fish was reported to have been caught in the professional net fishery 

near Kerema, on the south coast of New Guinea (M. Vanderklift, tourist, personal communication, 

September 11, 1996). The muscle tissue sample was taken from the fillet and placed in a 200ml 

specimen vial containing 85% ethanol for 2 hours (Dessauer, Cole & Hafner, 1996). Once the 

alcohol had diffused through the tissue, the 85% ethanol was replaced with 70% ethanol for 

sample storage (Kocher et al. 1989). 
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One muscle tissue sample from a Nile perch (Lates nilotica, NP) was taken from a fillet 

supplied by Sealanes Food Service P/L, Fremantla, Western Australia. The fish was processed 

in Kenya, and the fillet was packed and maintained at ·20'C for transport and storage in 

Fremanfle (S. Paino, manager, personal communication, November 2, 1996). The sample was 

treated wnh alcohol as for the New Guinean sample. 

3.2.2 Extraction and preparation of total DNA 

For each sample, a small quantity of tissue (approx. 0.1g) was taken and placed in a 

marked 1.5ml eppendort tube. Sample preparation and total DNA extraction occurred by those 

methods described in Doupe & Chandler (Appendix A), except that samples were not vortexed, 

but gently mixed. The New Guinean and Nile perch samples were first washed in distilled water, 

and then processed as for the others. Total DNA stock samples were then stored at4'C. 

3.2.3 Spectrophotometric quantification of total DNA 

For each sample, a 1:10 dilution was pertormed by taking 10~L of DNA extract and 

adding 90~L of distilled water, to make a 1 OO~L solution. That amount was placed in the 

Beckman™ DU640 spectrophotometer, following calibration using distilled water (500~). A 

spectrophotometrical optical density (OD) reading was taken for each sample to determine the 

amount of total DNA and protein present in the sample at the respective 260nm and 280nm 

wavelengths. After each sample was analyzed, the cuvette was twice washed using purified 

water (approximately 100~L). 

The OD2.,10D280 ratio estimates the purity of the nucleic acid, and the OD260 reading 

estimates the total nucleic acid concentration of the sample. An OD260 of 1 corresponds to 
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approximately 50J!g/ml of double-stranded DNA (Sambrook, Fritsch & Maniatis, 1989). 

Quantification of sample total DNA (J!g/ml) was obtained using the formula: 

Total DNA (J!g/ml) = OD260 x 50 x dilution 

3.2.4 Standardization of total DNA 

The spectrophotometrical reading of total DNA (J!g/ml) was used to create a 

standardized solution of 1 OJ!g/ml DNA (x) in 200J!L distilled water for each sample using the 

equation: 

X = 1 OJ!g/ml X 200J!l 

x = 2000Ul 

Total DNA (J!g/ml) 

distilled water to be added (J!L) = 200 • x 

3.2.5 Amplification and visualization of target mtDNA 

Light and Heavy strand primers were used to target variable sequences in the left flank 

of the mtDNA control region (see Figure 7). The light strand primer, designed specifically for the 

barramundi mtDNA control region (S. Chenoweth, Griffith University, personal communication, no 

date) was: BRC1L 5' m ATG CTA ACC AAT AAG T 3'. The heavy strand primer was: 

MT16498H 5' CCT GAA GTA GGA ACC AGA TG 3' (Meyer et al. 1990). Samples from all 

Australian fish, and the Thai and New Guinean sample were used in the control region 

investigation. Amplification of each strand was done concurrently using the PCR reactions and 

thermocycling conditions described in Doupe & Chandler (Appendix A), except that the total 

volume of each PCR reaction solution was increased from 10J!L to 20J!L (18J!L of PCR reaction 

mix and 2J!L of total DNA). 
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Light and Heavy strand primers known to target vanable sequences in the mtDNA 

cytochrome b region (Kocher et at. 1989; see Figure 7) were used for one sample from each 

Australian locality (DAR 1 [DAR b], FIT 1 [FIT b], ORO 1 [ORO b], CAl 2 [CAl b]), and the New 

Guinean [PNG b], Thai [SEA b], and Nile Perch [NP b] samples. The light strand primer was: 

l14841 5' AAA AAG CTT CCA TCC AAC ATC TCA GCA TGA TGA AA 3' (Kocher et al. 1989). 

The heavy strand primer was: H15149 5' AAA CTG CAG CCC CTC AGA ATG ATA m GTC 

CTC A 3' (Kocher et at. 1989). Amplification of each strand was done concurrently using the 

PCR reactions and thermocycling conditions described in Doupe & Chandler (Appendix A). The 

total volume of each PCR reaction mix was increased as described for the control region. 

Gel electrophoresis of all PCR reactions was pertormed using the conditions and 

methods followed by Doupe & Chandler (Appendix A). Spec'ifically, 2Jll of 6 x Ficoll loading 

buffer was added to each of 5J1L PCR reactions and to 4Jll of 1 00ng/J1L pUC19 plasmid DNA cut 

wilh a Hpall restriction enzyme to produce standard fragments of known size (BiotechTM). 

Electrophoresis time was extended to 40·50 minutes, and voltage was increased to 80 volts. 

Once electrophoresis was complete, the electrophoretic gel was transferred to a tub and 

soaked in the 1 x TAE electrophoresis buffer containing 5J1L of ethidium bromide for 5-10 

minutes. Ethidium bromide molecules become intercalated into the DNA, and fluoresce in the 

presence of ultraviolet light (Sambrook et at. 1989). The gel was then irradiated with ultraviolet 

light, and the DNA visualized. The electrophoresed fragments for all reactions and for both 

genomic regions were compared to the pUC/Hpall DNA standards for PCR fragment size 

confirmation (Doupe & Chandler, Appendix A). Figure 10 shows an example of an agarose gel 
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used routinely to determine the success of PCR reactions by visualization and comparison of the 

target fragment to the DNA size standards. 

Where gels demonstrated the success of the PCR, sample PCR products were frozen 

and stored at -20'C. Where any PCR reaction failed (determined by no visual fragment on the 

agarose gel), the PCR was repeated by accessing sample total DNA stock. In that event, the 

total DNA concentration of the reaction was doubled from 211L to 4!1L, by subtracting 211L of 

distilled water from the PCR reaction mix. Thermocycling and electrophoresis conditions were 

not altered. This procedure was repeated for the following mtDNA control region samples: DAR 

6; ORO 2, 8, 15; FIT 4, 15; CAll, 3, 4, 5 & SEA 1. 

Gel electrophoresis of fragments again indicated a PCR failure in 3 of the mtDNA control 

region samples: ORO 15, FIT 4 & SEA 1. Tissue sampling, total DNA extraction and PCR was 

repeated for these samples, using the procedure as described above. Electrophoresis of the 3 

samples was perlormed as described. Ethidium bromide staining and ultraviolet fluorescence 

revealed that ORO 15 and FIT 4 had again failed to reveal any reaction product, whereas SEA 1 

displayed a signal, albeit weak. II is difficult to determine why 2 of 30 samples failed to anneal to 

primers and promote polymerization, especially when all other samples for the Kimberley were 

treated with an identical procedure both in the field and the laboratory. Those 2 samples were 

omitted from the experiment, however the tissue samples and sample PCR products were 

retained. 
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Figure 10. Agarose gel stained with ethidium bromide to show 
mtDNA control region PCR amplified sequences of 
Lates ca/carifer. From left, the lanes are the 
pUC/Hpa// DNA standard, DAR 5, ORD 3, FIT 6, CAI 2

and PNG. 

Figure 11. Agarose gel stained with ethidium bromide for fluorescent 
quantification of double-stranded DNA, and confirmation 
of cleaned DNA templates. Note the absence of primer
dimers ··beneath the template DNAs that can be seen 
in Fig. 10 before cleaning. 
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3.2.6 Preparation for sequencing templates 

The PCR reaction products were then cleaned to remove all non-target DNA including 

primers, polymerases, and salts from the template DNA before thermal cycle sequencing. This 

was done using the protocol provided in the QIAquickTM PCR purification k~: 

Allotments of 6 PCR reaction products were systematically removed from the freezer and 

briefly spun in a table-top centrifuge at 13,000 rpm. First, the volume of each template PCR 

reaction product was estimated by drawing the sample into a pipette set for a known volume. 

Distilled water was added to the estimated volume of PCR reaction product to make a 30!ll dilute 

solution. For each sample, 5 volumes of PB buffer (150!ll) was added to 1 volume of PCR 

reaction (30!ll), and the 0.5ml eppendort tube was hand mixed. A QIAquickTM spin column was 

placed in a marked 2ml collection tube, and the sample placed inside the column. The sample 

was then centrifuged at 13,000 rpm for 45 seconds. The flow-through was discarded, and the 

spin column was returned to the collection tube. The sample was washed by adding 0.75ml PE 

buffer (diluted with 100% ethanol) to the spin column, and centrifuged at 13,000 rpm for 45 

seconds. The flow-through was discarded, and the spin column was returned to the collection 

tube. The sample was centrifuged for one minute at 13,000 rpm1
• The spin column was then 

placed in a clean, labelled 1.5ml eppendort tube, and the collection tube was discarded. 

Template DNA elution was done by adding 30!il of distilled water directly onto the spin column 

membrane, and allowing the sample to stand for 1 minute. The template DNA was then 

centrifuged for a further minute at 13,000 rpm, and stored at -20'C. 

1 Product leakage from gel loading wells (see 3.2.7) was thought to be due to ethanol elution of 
DNA in some samples. Ethanol was removed by drying samples at room temperature in a Speed 
Vacrn SC110 vacuum centrifuge for 20 minutes at low speed and resuspended in 30!ll of 
distilled water. 
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3.2.7 Ethidlum bromide fluorescent quantification of double-stranded DNA: 
The mlnlgel method 

Sambrook et al. (1989) provided a variety of methods for quantifying the amount of 

nucleic acid present in a sample, even when the total is very small. Apart from 

spectrophotometric measurement, the sample amount of DNA can be estimated from the 

intensity of fluorescence emitted by ethidium bromide following electrophoresis on a minigel. 

Two microlitres of 6 x Ficollloading buffer was added to 5j.LL of template DNA and run on 

a 2% agarose gel in 1 x TAE electrophoresis buffer (Sambrook et al. 1989) at 80 volts for 1 hour. 

The last well was loaded with 2j.LL of 6 x Ficoll diluted with 3j.LL of distilled water and mixed with 3 

j.LL of 100ng/j.LL pUC19/Hpall DNA standard. Gels were stained with ethidium bromide to 

observe DNA fluorescence, and to confirm that templates were cleaned (see Figure 11). 

The concentration of template DNA on the minigel was estimated by first summing the 

individual fragment lengths (in base pairs) of the pUC/Hpall DNA standard (2652 bp, Biotech 

manual). Then, the number of base pairs for each fragment was transformed to a percentage of 

the total pUC/Hpall DNA molecule. Following this, me percentage DNA shared by each fragment 

was transformed to a DNA concentration (ng/j.LL), by knowing the DNA concentration of the 

pUC/Hpall standard (100ng/j.LL). For eaoh sample, the fluorescent intensity of the template DNA 

was compared to that DNA standard fragment which displayed comparable fluorescence, giving 

an estimation of the quantity of DNA in each sample. Those samples estimated to contain < 5ng/ 

Ill DNA (DAR 5, 6, 7; ORO 2, 11, 14; FIT 1, 7, 15; CAI1; SEA [control region); CAl b; SEA b; Nile 

Perch b) were dried at room temperature by vacuum centrifuge at low speed for approximately 60 
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minutes, and resuspended in 10J!L of distilled water (approximately half volume), to increase the 

DNA concentration of the sample (see 3.32 below). 

3.3 Direct DNA Sequencing 

3.3.1 A review of direct DNA sequencing techniques and strategies 

Of the available methods for DNA sequencing, the two techniques most widely used are 

the enzymatic method of Sanger, Nicklen & Coulson (1977) and the chemical degradation 

method of Maxam & Gilbert (1977). Both methods generate separate populations of 

radiolabelled or fluorescently labelled oligonucleotides that begin from a fixed point and terminate 

randomly at a fixed residue, or combination of residues. Because every nucleotide base in the 

DNA has an equal chance of being the variable terminus, each population consists of a mixture 

of oligonucleotides whose lengths are determined by the location of a particular base along the 

length of the original DNA (Sam brook et al. 1989). The populations of oligonucleotides are then 

resolved by electrophoresis under conditions that discriminate between individual DNAs that 

differ in length by as litlle as one nucleotide. 

Maxam·Gilbert, or chemical DNA sequencing relies on the use of base-specific 

modification and cleavage reactions (Hillis et al. 1996). This method involves dividing the target 

DNA into four subsamples, which are treated with a series of base-specific chemical reagents 

that partially cleave the DNA. For example, a sample treated with dimethyl sulfate will methylate 

a few percent of the guanines in the sequence, and piperidine displaces the methylated 

guanines, thereby cleaving the DNA at those sites (Hillis et al. 1996). In all subsamples, random 

chemical cleavage occurs to only a few fragments among a large population of DNA fragments. 
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The radiolabelled fragments from the four subsamples are electrophoretically separated by size 

on a denaturing polyacrylamlde gel, and the sequences are then read from an autoradiograph. 

Sanger sequencing uses dideoxynucleotide analogues in primer-directed enzymatic 

DNA extension to produce discrete DNA fragments (Hillis et al. 1996). Oligonucleotide primers 

are annealed to the target DNA, and the sample is divided into four subsamples. For each 

sample, the four deoxynucleotide triphosphates (dNTP; i.e. dATP, dCTP, dGTP, dTTP), one of 

which is radioactively labelled or labelled with a fluorescent dye, are added. DNA polymerase 

and one of four dideoxynucleotide triphosphates (ddNTP; i.e. ddATP, ddCTP, ddGTP, ddTTP) is 

added to each subsample. The competition between chain elongation and termination is 

determined by the ratio of dNTP to ddNTP in each of the four sequencing reactions (Sambrook et 

al. 1989). The primer has a free 3' OH group to which additional nucleotides can be attached, 

and polymerization occurs by using the target DN,\ as a template (Hillis et al. 1996). On some 

strands in the sequencing reaction, a given ddNTP will be ;.scorporated into the growing strand, at 

which point the polymerization is terminated, because the ddNTP lacks a 3' OH group (Sambrook 

et al. 1989). The labelled fragments are electrophoretically separated and interpreted, as for 

Maxam-Gilbert sequencing. 

Both sequencing methods have been used extensively, however tt there was to be a 

single argument for one method over the other, it would be a preference for Sanger sequencing 

because this method does not requ'ire prior knowledge of the restriction map of the target 

sequence. That information is required for Maxam-Gilbert sequencing, because it is necessary 

to cleave the DNA into manageable size pieces for sequencing (Hillis et al. 1996). 
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3.3.2 Cycle sequencing: The dideoxy-medlated chain termination method 

Cycle sequencing is based on the dldeoxynucleotide chaln-tennination method of 

Sanger et at. (1977). The reaction involves heat denaturation of double-stranded template DNA, 

allowing oligonucleotide primers access to a single strand, and subsequent extension by a 

thermostable DNA polymerase (Taq). Successive cycles of denaturation, annealing and 

synthesis result in the amplification of a fluorescently labelled product. 

A single cycle sequencing reaction consisted of 4.51!L of terminator premix (fluorescently 

labelled ddNTPs: 1.581!M A·DyeDeoxy, 94.741!M T-DyeDeoxy, 0.421!M G·DyeDeoxy and 47.37 

11M C-DyeDeoxy, 78.951!M diTP, 15.791!M dATP, 15.791!M dCTP, 15.791!M dTIP, 168.42mM 

Tris-HCL (pH 9.0), 4.21mM (NH4)2S04, 42.10mM MgCI2, 0.42 units/11L Amplitaq DNA 

polymerase), 20ng template DNA, 2.011L of 1.611M primer (L-strand or H-strand), and double 

distilled water to make a total volume of 1011L (Applied Biosystems Inc.). Double distilled water 

was added only to those reactions where samples were estimated to contain ~ 9ng/I!L DNA. 

Where samples were estimated to contain less than that amount, no water was added, but 3.51!L 

(estimated to contain 15-20ng DNA) of template DNA was added to the reaction. The reagents 

were hand mixed in a O.SmL eppendorl tube and briefly spun in a table-top centrifuge at 10,000 

rpm. Each sample was transferred to a labelled 251!L PCR capillary tube for sequencing. This 

procedure was duplicated for each sample (light and heavy strands), and for both genomic 

regions. 

The sequencing reactions were done on a MJTM research minicycler. The minicycler 

was preheated to 96°C. Samples were placed in the minicycler for a denaturation step at 96°C 

for 30 seconds, followed by an annealing step of sooc for 15 seconds, and a synthesis step of 
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60'C for 4 minutes. This cycle was repeated 25 times. When cycling was completed, the 

samples were held at4'C before being transferred to labelled 0.5mL eppendorf tubes. Samples 

were stored at ·20'C. 

3.3.3 Purification of extension products by ethanol precipitation 

Excess DyeDeoxy terminators may be removed from the completed sequencing 

reactions by a variety of centrifugation and precipitation protocols. The method used here was a 

modified version of the ethanol precipitation of spin column eluant (Applied Biosystems protocol 

401388). 

To each sample, 2011L of room temperature 95% ethanol and 1llL 3M Na acetate (pH 

4.6) was added, and briefly vortexed. The sample was chilled ai·20'C for 15 minutes, and then 

spun in a refrigerated centrifuge to 13,000 rpm for 30 minutes at 4'C. The supernatant was 

removed and discarded. The DNA pellet was washed with 20011L of ice-cold 70% ethanol and 

spun in a refrigerated centrifuge to 13,000 rpm for 10 minutes at 4'C. The supernatant was 

removed and discarded. The sample was dried at room temperature by vacuum centrifuge for 

approximately 15 minutes allow speed. Samples were then stored at·20'C. 

3.3A Sequence analysis by capillary electrophoresis 

Frozen samples were transported in crushed ice to the Lions Eye Research Institute at 

Nedlands, Perth. For each sample, 25!lL of template suppression reagent (Applied Biosystems 

Inc.) was added. The sample was hand mixed and then briefly spun in a table-top centrifuge to 

10,000 rpm. The template sequence was denatured by placing the sample in a Perkin ElmerThl 

9600 thermocycler pre-heated to 95'C for 2 minutes, followed by immersion in crushed ice for 

68 



approximately 5 minutes. The sample volume (approximately 25~tL) was transferred to a labelled 

0.5ml electrophoresis tube (Applied Biosystems Inc.) and capped. Samples were then loaded 

into a ABI PrismTM 310 Genetic Analyzer. 

Each sample was injected into a 47 em long sequencing capillary containing 6% 

sequencing polymer with 6.6M urea (Applied Biosystems Inc.) for 30 seconds at 2.4kV. Samples 

were then electrophoresed at 7.5kV at 42°C. The sample migrated along the capillary for a 

length of 36 em at which time the fluorescently labelled ddNTPs incorporated in each of the four 

sequencing reactions (see 3.31 & 3.32) were detected at the 590nm wavelength by tunable laser 

beam, which is stationary with respect to the electrophoresis apparatus. The detected fragments 

were then computationally interpreted as a nucleotide sequence by a series of pair-wise 

comparisons and base-spacing algorithms designed by the manufacturer (ABI PrismTM) that 

compare light absorption wavelengths of the fluorescently labelled ddNTPs (Applied Biosystems 

Inc.). Electrophoresis continued for a total of 80 minutes for mtDNA control region samples, and 

for 100 minutes for the mtDNA cytochrome b gene, which was expected to yield longer 

sequences. 

3.3.5 Comparative sequence analysis of double-stranded mtDNA 

Double-stranded mtDNA sequences were analyzed using the software package 

Sequence Navigator version 1.0.1 (ABI PrismTM), First, the L-strand and H-strand sequence for 

a given sample was selected, and then the reverse complement sequence of the H-strand 

sequence was obtained, allowing the complementary opposite sequences to be read in a 

parallel, 5'-3' direction. 
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The two sequences were then comparatively aligned. The L·strand sequence [which 

does not display the unlabelled forward primer, but begins with the first labelled ddNTP], was 

identrried by locating the reverse complement sequence of the H-strand primer, found at the end 

of the target sequence (Figure 12). All nucleotide bases proceeding the H·strand primer of that 

sequence were deleted from the data. The H-strand sequence was identified by locating the L· 

strand primer, which precedes the H·strand sequence (Figure 12). All nucleotide bases 

preceding the L·strand primer were deleted from the data. 

5' => 3' 

Unlabelled primer I L • strand sequence I 3'· 5' H • strand primer 

5'· 3' L • strand primer I H • strand sequence I Unlabelled primer 

3' <= 5' 

Figure 12. Schematic diagram showing positions of primers and nucleotide 
sequences in comparative alignment with the H·strand sequence 
in reverse complement. 

The target sequences were again comparatively aligned to allow cross-checking of the 

double-stranded nucleotide sequence (Figure 13a), and for comparisons of the 

electropherograms for each strand (Figure 13b,c). The relative intensity of fluorescence for each 

of the four labelled dideoxynucleotides corresponds to the peak height seen on the 

chromatograph (Figure 13b & c), with reliable reads depending on many factors, including 

template quality, current variation, and polymer injection variation (Hillis et al. 1996). Where 

fluorescent peaks stood independently, or when signal variation and other anomalies were 

minimal relative to minor background "noise", the nucleotide base resolved by the base spacing 

algorithm was accepted as being correct (see examples to the left of base 205 [highlighted] in 
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180 190 200 

...................... 1 ..................................... 1 ..................................... l ............................ . 
TAATAC GAGCATAGTG AGAGATCACC AATCAGT 

TA.A.TAC GAGCATAGTG AGAGATCACC AATCaGT 

(a) 

ATAA ACGAGCATAGTG ACCAATC GT 

ATAATACGAG CATAGTGAGAGATCAC CAATC 

(c) 

Figure 13. Example of partial mtDNA control region sequences and 
chromatographs for DAR 2 from the automated DNA sequencer. 
The height of the coloured lines indicates the relative intensity of 
fluorescence that corresponds to each of the four labelled 
dideoxynucleotides so the peaks are read directly as nucleotide 
sequences. Nucleotide bases are adenine (A), cytosine (C), 
guanine (G) and thymine (T). 13(a) shows nucleotide base pairs 
174-207 in comparative alignment with the (lower) H-strand
sequence in reverse complement arrangement. The lower two
windows show the L-strand (13b) and H-strand (13c) in
comparative alignment. 13 (c) is an example of base resolution at
base pair no. 205 (highlighted), where two distinct peaks (A&G) in
the L-strand chromatograph (13b) are displayed as a wide G peak
in the H-strand chromatograph, creating background noise which
obscured a smaller, yet defined A peak. In this instance an "a"
base was nominated.
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13b & c). Where nucleotide bases were not resolved by the sequencing analysis algorithms, the 

base was recorded as "N" or'·". In all sequences, this was encountered mostly at the 5' ends of 

each sequence, where the unlabelled primers create "noise" with respect to the pairwise 

comparisons of the initial, labelled sequences. This often resulted in the first 20-40 nucleotide 

bases of a given sequence remaining poorly or only partially resolved. Where ambiguities 

occurred, electropherograms were compared in consultation to the manufacturers catalogue 

(Applied Biosystems Inc.), which describes a series of errors commonly encountered in 

sequencing analyses. Bases were only resolved where the comparative amplitude of fluorescent 

peaks was considered sufficient [relative to the background noise typically seen near the base of 

most peaks] for a nucleotide base to be confidently nominated. In those circumstances, low9r 

case lettering was used to indicate that nucleotide manipulation had occurred (Figure 13c). The 

analyzed L-strand sequence was retained as the data sequence for each sample. This 

procedure was repeated for all samples, and for both genomic regions. 

A generally poor base signal was a common characteristic of most cytochrome b 

electropherograms, resulting in ambiguous sequence resolution. The raw sequence data were 

re-analyzed using the variety of base-spacing algorithms available without significant 

improvement. Sequences were tentatively resolved for the Australian and New Guinean 

samples, however only the Kimberley samples were considered to be reasonably reliable. The 

Darwin, Cairns and PNG (H·strand) samples required extensive editing. The Thai and Nile perch 

samples contained large segments of no base signal, indicating total failure. The cytochrome b 

samples were removed from any further analysis. 
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It is commonplace to search nucleotide databases (e.g. Genbank) for comparable 

sequences, although this becomes diff1cult or ambiguous if the sequences are distantly related or 

come from non-protein-coding regions (Hillis et al. 1996). This was the case with the barramundi 

control region mtDNAs, where comparable sequences were not located in database searches. 

Representative sequences from the 44 sequences obtained for the barramundi mtDNA control 

region were compared with sample sequences of that region provided by S. Chenoweth 

(personal communication, no date) to confirm sequence homology. 

3.3.6 Sequence comparison and alignment 

Many authors (e.g. Sankoff, Morel & Cedergren, 1973; Felsenstein, 1988; Weir, 1990) 

argue that sequence alignment and phylogenetic analysis are not separate issues; assumptions 

based upon evolutionary models of base substitution and insertion/deletion events will influence 

how these incidents are weighted in a comparative sequence alignment matrix. For example, the 

mutational bias for transitions in the mtDNA control region is thought to be about 10:1 (Tamura & 

Nei, 1993), and popular sequence alignment analyses that arbitrarily weight mutation events 

(Needleman & Wunsch, 1970), or assume mutations have an equal chance of occurrence (Jukes 

& Cantor, 1969) might incorrectly influence subsequent analyses (Hillis et al. 1996). Considering 

this, Weir (1990) and Hillis et al. (1996) recommend that investigators should attempt aligning 

sequences by eye, especially where intraspecific phylogenies are concerned. 

The sequences were organized within a square data matrix using the software package 

MacCiade version 3.03 (Maddison & Maddison, 1992). Each sequence occupied a single line on 

the matrix, and "dummy'' bases (e.g. ZllZ.) were added to the 5' end of each sequence so all 

samples were equal in length (287bp). The 3'·5' H-strand primer was removed from the 3' end of 
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the sequence, which gave a common starting point for alignment. Alignment was done by eye in 

a 3' ·5' direction. Every attempt was made to align common nucleotide bases between 

sequences, and where a final alignment resulted in a gap, a base deletion was accepted to have 

occurred. Sequences that were not resolved in the comparative alignment analysis of double· 

stranded DNA were left unresolved. Alignment continued in a 5' direction until a common starting 

base was found, beyond which at least one base was ambiguous (i.e. a Z , N or a,t,c,g began the 

sequence). No attempt was made to weight any bases. 

3.4 Data analysis 

3.4.1 Introduction 

The following methods describe how inferences for the evolution of geographically 

disparate barramundi stocks are obtained by estimates of nucleotide diversity within and between 

barramundi mtDNA populations, and to test correlations of genetic diversity over geographic 

distance. Genetic d'1versity estimates are also used to measure the extent of genetic population 

subdivision and their transformation to evaluations of gene flow between populations. Genetic 

distances are calculated upon models of mtDNA evolution to construct phylogenies for the 

barramundi populations, and to infer the historic relationships between stocks using a coalescent 

model of gene flow. In addition to this, "intuitive" analyses which might include visual 

comparisons of aligned sequences, the tallying of unique and shared genotypes, or the ratios of 

mutational events provide support for those inferences. 

A summary of the methods of data analysis is provided in Figure t4, to demonstrate how 

inferences of population structure might explain the mtDNA phylogenies of selected populations 

of Australian barramundi. 

74 



Nucleotide diversity 
(general) 

Within-population 
nucleotide diversity 

Between-population 
nucleotide diversity 

11 
Estimates of population subdivision 
(For 4 populations then 3 populations) 

Number of genotypes within populations 
Total number of genotypes 
Number of shared genotypes 
Transitlon:transverslon ratios 

" (± S.E. and P) 
Number of polymorphic sites 

k· number of nucleotide differences per site 
dxy- number of nucleotide substitutions per site 
and UPGMA 

pooled " and pooled dxy 

11 
NST='> Nm 

Analysis of Molecular Variance 
(3-way nested) 

11 
IIIST ='> Nm (and P) 

11 
Correlation of dxy to cumulative coastal distance 
(For 4 populations then 3 populations) 

<= 

Mantel's test (P) 

<= 
11 

Genetic distance Using Kimura's two-parameter correction model 

<= 
11 

Phylogenetic relationship between sequences 

11 

11 

<= 

Fitch·Margoliash 
Neighbour-Joining 
Maximum Parsimony 

11 

Estimation of gene flow between populations by coalescent theory 
11 

Test for panmlxis among all populations by estimation of coalescent events (s for P) 
11 

Test for panmixis among 3 populations by estimation of coalescent events (s) 
11 

Estimation of Nm 

11 

Figure 14. Synopsis of data analysis methods undertaken to infer the genetic population 
structure and phylogenies of Australian barramundi from mtDNA control region 
sequences. 
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3.4.2 Nucleotide diversity within and between barramundi populations 

Since no homologous sequence for the barramundi mtDNA control region was obtained 

from a genetic database, a reference sequence was required from within the samples, however 

the criteria for a reference sequence would ideally include a sequence that was unique to a given 

. geographic location (Hillis et al. 1996). The mtDNA sequences obtained for the Cairns fish 

fulfilled this criteria. 

Nucleotide diversity was first calculated by counting the number of genotypes within each 

geographic location, and which genotype(s) were shared between localities. The number of 

insertion/deletion events for each sequence was counted and transition/transversion ratios were 

calculated. 

The within-population nucleotide diversity estimate (n; see equations 10.5 and 10.6 of 

Nei, 1987), and the standard error of the estimate and number of polymorphic nucleotide sites 

were calculated for each population using the DNA Sequence Polymorphism (DnaSP) software 

package version 1.0 (Rozas & Rozas, 1995). Confidence limits for the standard errors of each 

population (see equation 8.5 in Zar, 1984) were estimated using Bonferroni's correction (Chew 

cited in Trexler, 1988) for multiple tests [where P<0.02) and with no correction [where P<0.05). 

Between-population nucleotide diversity was measured by the average number of nucleotide 

differences per site between populations (k; see equation A3 in Tajima, 1983), and the average 

number of nucleotide substitutions per site between populations (d,y; see equation 10.20 in Nei, 

1987). The dq values were clustered by the unweighted pair group method using arithmetic 

averages (UPGMA) clustering algorithm (Sneath & Sakal, 1973), using the software package 

Phentree (Constantine, Hobbs & Lymbery, 1994). 
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3.4.3 Nucleotide diversity estimates as a measure of population subdivision 

The values obtained for 11 and dxy were used to calculate an Fsranalogue (see Lynch & 

Crease, 1990) which estimates population subdivision at the nucleotide level (Nsr), by giving 

'1he ratio of the average genetic distance between genes from different populations relative to 

that among genes in the population at large' (Lynch & Crease, 1990). Nsr estimates were 

obtained for all four Australian barramundi populations, and then for three populations by 

removing Cairns data. 

First, the 11 values for each population were pooled, following Lynch & Crease (1990), equation 3: 

where "' = within population diversity for the /'population 
n, = number of populations in the sample 

Then, d,,values between populations were pooled, following Lynch & Crease (1990), 
equation 15: 

where d, = pooled between population diversity 
dxy = nucleotide diversity between the x' andY' populations 

Nsrwas obtained using equation 36 (Lynch & Crease, 1990): 

To estimate gene flow, the formula of Wright (1931) was followed: 

Nm = (1/FST" 1 )/4 

where N = the effective population size 
m = is the effective proportion of migrants between populations 

Excoffier, Smouse & Quattro (1992) present an analysis of molecular variance (AMOVA) 

for mtDNA restriction sequences which is derived from a matrix of squared·distances among all 
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pairs of genotypes. The analysis produces variance estimates and Fsr analogues that reflect the 

correlation of genetic diversity at different levels of hierarchical subdivision (Excoffier et al. 1992). 

The Analysis of Molecular Variance version 1.05 software package (Excoffier et al. 1992) was 

used to test for significant statistical subdivision of barramundi populations, by providing a PHI 

statistic (<l>sr) that is analogous to traditional Fsr estimates (Reynolds, Weir & Cockerham, 1983). 

Because barramundi may show variable genetic divergence between populations, input 

files were prepared as per the manufacturers instructions, with the exception being that I used 

Kimura's (1980) two-parameter model (see 3.4.5) rather than the usual euclidean distance 

algorithms described in Excoffier et al. (1992). 

To test for population subdivision between all four Australian barramundi populations, I 

compared all seqiJences represented only once (CAI1, DAR 1, 3, 4 & 6, FIT 1, 3, 5, 6, 7, 8, 9 & 

13, and ORD 4, 6, 7, 8, 9, 10, 11, 12 & 14). To test for significant population subdivision between 

Darwin and Kimberley populations, and then between only Kimberley populations, the Cairns and 

then Darwin distance estimates were systematically removed from the analysis. One thousand 

permutations for each analysis was pertormed to give statistical significance levels. 

Estimates of Nm for each hierarchical test of pcpulation subdivision were made using the 

equation of Wright (1931 ). 
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3.4.4 The correlation of dzy to cumulative coastal distance 

The interrelationship between the genetic characteristics of each barramundi population 

and coastal distance [and thus the isolation by distance model of barramundi population genetic 

structure] was tested using estimates of the average number of nucleotide substitutions per site 

between populations (d.,). This measurement was preferred to other distance measures, as d,, 

estimates the differences in genetic diversity between populations, rather than differences in the 

mtDNA sequences themselves. 

Cumulative coastal distances between Derby, Wyndham, Darwin and Cairns were 

estimated using the software package ARC·INFO version 7.0.4, (Environmental Systems 

Research Institute). Mantel's correlation (Rohlf, 1992) was chosen in favour of traditional tests 

for correlation because the test variables here cannot be considered independent (Zar, 1984). 

The statistical significance (Pg) of Mantel's correlation (Z) was tested by one hundred random 

resamples of the data (Numerical Taxonomy and Multivariate Analysis System [NTSYS] software 

package version 1.70; Rohlf, 1992). All populations were tested first, and then genetic and 

coastal distance data for Cairns were removed from the analysis. 

3A.5 Genetic distance between barramundi mtDNA sequences 

Methods for measuring the extent of genomic difference between mtDNA sequences (i.e. 

genetic distance) are characterized by inherent assumptions concerning evolutionary models of 

mutation (see Nei, 1987; Weir, 1990; Swofford at a/. 1996). For example, the unequal rates of 

base substitutional patterns in the mtDNA genome are well·established (Tamura & Nei, 1993; 

Meyer, 1994; Swofford at al. 1996), so that standard population classification measures (e.g. Nei, 
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1972; Rogers, 1972) that make a priori assumptions conceming rates of divergence (see Nei, 

1987) as a function of allele frequencies are thought to miss the evolutionary information obtained 

from sequence data (Swofford et al. 1996). It is for this reason that Kimura's (1980) two

parameter corrective model was chosen to estimate the genetic distance between individual 

barramundi sequences. Kimura's model accounts for the observation that base transitions and 

transversions occur at different rates, but assumes equal frequencies of base change over the 

length of the sequence (Nei, 1987; Weir, 1990). The PHYLIP version 3.5 software package 

(Felsenstein, t993) was used to estimate pairwise genetic distance between barramundi 

sequences. 

3.4.6 Phylogenetic relationship between barramundi sequences 

The construction of phylogenetic trees to graphically represent genetic distance 

measures also assume models of evolutionary change (Avise, t994). For example, additive 

distance algorithms assume that empirical distances in the matrix are either underestimates or 

overestimates of their true values, with the net effect being that branch lengths connecting the 

operational taxonomic units (OTUs) vary in respect to their empirical distances (A vise, 1994). 

Average linkage clustering algorithms (e.g. UPGMA) assume the pairwise distance values reflect 

a constant rate of evolution along the dendrogram branches (i.e. ultrametric), thus any rate 

heterogeneity among taxa is not detected (Nei, 1987; Weir, 1990; Avise, 1994). Fitch & 

Margoliash (1967) and Saitou & Nei (1987) provide additive distance algorithms that account for 

this discrepancy so that branch lengths are analogous to genetic distance (Weir, 1990; Swofford 

et al. 1996). Cladistic parsimony methods use neither additivity nor ultrametricity, but reconstruct 

phylogenies on the basis of the minimum number of evolutionary steps required (see Felsenstein, 

1983; Williams, 1992). 
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I used PHYLIP to construct Fitch·Margoliash and Neighbor-Joining trees from the matrix 

of genetic distance between sequences, and the Phylogenetic Analysis Using Parsimony version 

3.1.1 software package (PAUP; Swofford, 1993) to construct maximum parsimony trees from the 

original sequence data. The PNG sequence was used as an outgroup taxon to root the trees. 

No single minimum-length tree was found using either branch and bound or heuristic searches in 

PAUP, but very similar trees were produced by the Fitch·Margoliash and Neighbor-Joining 

analyses in PHYLIP. The data for each classrrication were pooled and a consensus tree which 

summarizes the congruence of the rival trees (Swofford, 199t), was drawn. The consensus tree 

was compared to the Fitch·Margoliash and Neighbor-Joining trees. All trees were very similar, 

and the Fitch tree was retained as best representing the data. 

3.4. 7 A coalescent approach to estimations of gene flow and migration 
between barramundi populations 

An alternative estimation of gene flow by methods other than Fsr analogues is based 

upon the coalescent model of Tavani (1984; see also Hudson, 1990), and estimates by 

calculation of coalescent events, how closely a given phylogeny constructed for mtDNA samples 

approximates the random-mating island model of population genetic structure (see Slatkin & 

Maddison, t989). The model (Slatkin & Maddison, 1989) assumes that mtDNA samples have 

been taken from distinct geographic areas, so each sampling location is regarded as a state 

character (see Forey et al. 1992) associated wtth each gene sampled, and is treated as an 

unordered multistate character (see Fitch, 1971). The algorithm (Slatkin & Maddison, 1989) 

assigns the character state of each location to the corresponding external node of the tree. Sets 

of states are then assigned down the tree toward the root. At each step, the rule for joining two 

sets is a simple majority-rules procedure, so the ancestral state is made of states that occur in 

both state sets that have been joined; if no states are present in both, then a migration event 
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must have occurred and the ancestor's state set is present in both sets. Summing the joinings 

gives the minimum number of migration events consistent with the data (Slatkin & Maddison, 

1989). 

I used the Fitch-Margoliash phylogeny, with the PNG sequence deleted, in the analysis. 

Hudson, Slatkin & Maddison (1992) and Edwards (1993) have demonstrated that estimates of 

gene flow using the method of Slatkin & Maddison (1989) are comparable across tree-making 

methods. The algorithm described in Slatkin & Maddison and implemented in MacCiade version 

3.03 (Maddison & Maddison, 1992) was used to estimate the number of migration steps (s) or 

coalescent events that have occurred to explain the Australian barramundi phylogeny. The 

phylogeny was resampled one thousand times to compare the observed s value with its null 

distribution given the number of populations and individuals sampled with random mating. This 

gives an s value that predicts where the barramundi phylogeny would demonstrate panmixis and 

how closely the observed phylogeny approximates an island model of population structure, thus 

inferring the likelihood of the observed s value supporting genetic population structuring among 

the barramundi populations. 

To estimate Nm from s, taxa from the Darwin and Kimberley samples were randomly 

removed to gain equal sample sizes (n=8), and the smallest sample (Cairns) was discarded 

(following Slatkin & Maddison, 1989; see also Edwards, 1993). The modified tree was 

reconstructed and a smaller estimation for s was obtained. This value was multiplied by 2/r, 

where r is each sampling location (Slatkin & Maddison, 1989), and the resulting value was used 

to estimate Nm by interpolation of the values from Table 1 in Slatkin & Maddison (1989). 
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Chapter 4 

4.1 Results 

4.1.1 Nucleotide polymorphism of barramundi mtDNA populations 

This study produced a total of 44 barramundi mtDNA control region sequences, with 

each being 23t nucleotide bases in length. These sequences are shown in comparative 

aflgnment and match-first format in Table t where there are clear patterns of nucleotide base 

change between populations. 

Mitochondrial DNA nucleotide polymorphism of barramundi is summarized in Table 2. 

There were 26 mtDNA genotypes among the samples, of which 4 were present in the Darwin 

sample and tO in each of the two Kimberley rivers. The average number of genotypes per 

individual in the Darwin sample is 0.4, compared to a larger average among Kimberley fish of 0.7. 

Table 2 
Nucleotide base characteristics in barramundi mtDNAs 

Population 

Cairns 
Darwin 
Fitzroy R. 
Ord R. 
PNG 

Total 

Samples 
(n) 

5 
10 
14 
14 
1 

44 

Genotypes Transitions 
(n) a 

1 
4 19 
10 20 
10 28 
1 5 

26 72 

Transversions Ratio 
b a:b 

2 9.5:1 
5 4:1 
1 28:1 
1 5:1 

9 8:1 

Insertion/ 
Deletions 

5 
4 

9 
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Table 1 
Barramundi mtDNA control region sequences in comparative alignment to Cairns mtDNAs 

CAJ:1 TCAACA'l'TTGCTr�CA.1'.ACGTGCM"'?CAA:I'GGTACTCGTA.AA.tAC>.AJGTACGGTAACCTMMTT.MTGTACTTTMGCMTAA'tAT'?ACNtMTAATCATCAGCMtMTMGACCGTA.GTGAGAGAl'CACCAATCAGTAGG't'ATTCAG/J.GTG'ITGAtGGT'fCT'TGA'tAGTCAA.GGACAGATATGGTGTGGGGGTT.ACACAAAl'TGAAC'rATTACTGG 
c:AlZ •••••••.•.•••..•••....•••..•••••.••••.••••.••••••••.•••••••••••••••••••.••••••••••.•••••••••••••••••.••••••••••••••••.•••••••••••••••.••••••••••••••••••••.•••••••••••..•••..••••••••.• • •••.•.•••..••...•••...•••••••••..•••••• •. • • • • • • 
CA.13 ••••••••••••••••••••••••••••••••••••••• -•••••••••••••••••••••• -- .• -- •••• - ••••••••••• - ••• - •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
CA14 ....................................................................................................................................................................... ' ....................... ' ••••.•••.••••••••••••••••••••••••••••.••• 
CAJS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , •••• , •••••••••••••••••••• ••••••• ................................................................................................................ . 
t)AR.l ••••••••••• C ••••••••••••••••• T •••••• C .•••••••••••••••••• T •••••• ,AC ••••••••••• C •••• C ••• c ..• A ••••••••••••••• C •••••••••••••••••• C •••• A •••••••••••••••••• •, ••••••••••••••••••••••••••• , •••••••••••••• A.C.CAA ••••••••••••••• ,G,, •••••••• , ••• , 
DAR2 •• , , , •• , , , .C,,,, •• ,,, •••• ,, .• T.,, ••• C ••••. , ••• ,,,,,,, , • T, •.• ,. ,AC .•••••• , ••• c ... ,C, •• C,, .A., •••• • ••.••••. C,, •• ,.,.,,, •• , •••• c .... 1\ •.••• ,.,,,, •••• , •••• , •• ,,, •••••. , •••• ,,,. •,,,,,.,, •••• , •••• ,, ,A,C,c:AA,,, •• , •• , •• ,,, •• G ••••••••••••••• 
DAR.3 ••..••..... C •...••. T .••••.••• T •••••• C •••••.•••••••• ,,,, T,,,,,, ,AC,,.,,, •••• ,C, ••• C,,, C,, ,A,,,,,,•,,.,,., .C,,,,.,,,,,, •,,, ••• C •.•• A .••••••• ,.,,.•, •• ,,•,,,,,,,., •••••••••••••.••• ,,• .•••••••••..• A.C.CAA .•.••.• • • •••..•• G ...•• , •••• , •••• 
1)A.R4 •• , •••• , •• TC ••••••••••••• ,., .T •••••• C ••••••• ,, ••••••••• T ••.•.•• AC ••••••••••• C •••• C ••• C ••• A •••••• , •• , ••••• C., •••• ,, •• ,,, ••••• C •.•• A., •••••• ,, ••• ,•., ••• •, ••• ,.,, ••••••••••••••• , •• ,.• •••• , ••••••• A.C.D.A ••••• ,, 1,, ••• , •• G., •••••••• ,,,,, 
OARS ,, , , , •• , , , ,C,,,,,.,.,,,.,,,, ,T,,, .•. c ...... , . , , , , , .. , . ,T ••• ,, .. ;,.c .......... ,C .••• C,, .c., .A .• , ••.•. , •....• c., ,, , , •. , . , .• , , , •. C ...• A ...••• , •• ,,,•••,,.,.••· •••••••••.•.• ,,,,,.,,,,.,.,, •• ,,, •• ,,, ,'A.,C,CM .••••• , ••, ,, • , , ,G,,., ••...•....• 
DA.R6 •••..••.... c .....•........... T ....•• C ..••.. , .•...••••. ,T,,,,,, ,AC,,, •• ,,,, .• C.,, •. ,, ,C,, ,A,,,.,, ••• ,,, .•• C, .••. ,,,., •• ,,,,. ,C, •.• A •..•••••••• ,.,,.,. , . , .• , , •••••••.••••.••••.•.•• , , • , ••.•••••.•. A .•. CAA .....••••..•••.. G ....•••••••••.• 
t)AR1 , •••••••••• C ••••••••••••••••• T •••••• C ••••••••••••••••.• T ••••••• AC ••••••••••• C •••••••• C ••• A ••••••••••••.•• C •••••••••••••••••• C ••.• A ••.••••••••••• • •••••••••••••••••••••••••••••••••• • •••••• , ••••• A. ••• CAA •••••••• , ••••••• G •••••••••••••• , 
DARB , , , , , •• , , , , C.,,,,.,,,,, •• ,,,. T.,, ••• C •..• ,,, ••• ,,, ••••• T .•••..• AC .••..•..... c .... c ... (: ... A •.•••.. , .•....• C •.•••. , ••••• •,, .•• C •.•• A ••.••.••••. ,,.•, .•••••••••• , ••••.••••..•••• , •• ,.,, •••••• , .•••• A.C. CAA.,,,, •• ,,,,.,,, ,G,,,,,,, ••.••..• 
t>AR9 ••...•..... c .......•...•••.. , T •• , ••• C •.• , ••. , •• ,, ••• ,., T,.,,,, ,AC,,,,,,,,., .C.,,,,,, ,C,, ,A,, •• ,.,, ••••• , ,C,,.,.,.,, ••• ,.,,, .C.,, ,A,, •••• , •• ,,, •• ,,,,.,,.,,,,,,,,,,,.,.,,,., •• ,,,.,,,,.,,,,,,.,, ,A ••. CAA ••.. , .• , •••.•• , .G •..•.....•••••• 
OA1110- •••••••••• C ••••••••••••••••• T •••••• C ••••••• • •••••••••• 't .•••... AC ••••••••••• C •••• C ••• C ••• A ••••••• • ••••••• C ••••••••••• • •••••• C •••• A •••••••••••••••••••••••••••••••••••••••••••••••••• • ••••••••••• A.C. CAA •••••••• ,• •••••• G ••••••••••••••• 
FITl .T ...•••..••••••••••.•••••••.•••...•••.•.••.••••...••....•••....................•...•....•..•............ c ...... .....................................••......•............... c .....•......•...... c.c ..........••......•. 11.1.?.'?'?.? ••• 
E'I1'2 .T ........................................................................................................ c ............................................•....................... c .....•............. c.c ............•..................... 
FIT3 .T •.•••••.•.••..•••• T ..•••...•••...•••••••.••••••.•••••..•••..•••••.•••.••••••••••••••.•••.•••••••••..... c ......•.....•••..........................................................••......•...... c.c ...........••..................... 
OT5 ,T •••••••..••...•••....•••...•••....••...••..•.....•.....•......•.•.••.. , ..•.•.....••....•...•........... C ......•...••.....•..•...•...••...•...•••.•.. ••· ........•.........•••......•...•...••...• c.c ...........•....................•. 
FIT6 ,T, ••••••..•.•••••••• ,,,,,,, .•••••••••.•.....•.• ,,, •••...••.. , .................... c ....................... c ....................••............. , ... , ....••........... , ..... , ... , , .....•............. C.C .. ,,, ,, ••••••·•••, ,,,,, •••..•••••• 
F1T'1 .T ••....•..•...•••••.••••••••.••••..••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c ........... c ................•...............•........•...•......... ? •••••••••••••••••••••••••••••••• c.c ...........••........ c ........... . 
fITS .T ••••••••••••.••••••••••.••••••••• t;;?? ••••••••••••••••••••••• , ••• ••• ................... ,, ••••••••••••••••• C ••••••.• , •••• •••• ••...••..•••.••••••.•••••••. , .•.•.••••..•.•••...••..•.••••.••••••••.•.. C.C ..•••..••••••••••••••••••••••••••• 
FIT9 , ..••••.• , .c.,,, .. ,,,,, •. ,., .T., ... -•...•...•••.•.•••• -••.• , •••• -•••••••••••••••••••• c ... -............... c .............•.... - .... A .••••••••••••• , •• , ••••••••••••••••.•••• , ••••• , ••• ,•, •••••.•.•• A ••• c,,.;\ ••• ,,,., •• , ••••• G ••••• ,.,,,,, •• , 
fITlQ.T ..............•.....••.....•••........•..••••....•.....•...........•..•••.•......•••...•........•...... c ....•.......•.........................•......••.....•.•.....•....•.•.....••........••... C.C ............•.••...•..•.•....••••. 
FITll, T .. , ...... , , , , • , , , , , , • , .. , .......•• , , ...... , .•.......................•..•.•.........• , , , , • , , , •. , . , •... , .. C, ..........• , ..............•........... , , ...• , , ..... , .•...........• , ...• , .... , .....•.... C. C. , , . , , . , •• , , , . , •. , , • , , , , , ••.. , .•.. 
FI1"l2 ....... , .......••......•. ,, .. T,.,,,. C,,.,.,.,., .. , •• ,, ,T, •• ,,, .AC,,,.,,,.,,,.,,,,,,, .C., ,A ....• ,,,,.,,,,. C,,,,,,,,,,,.,,,,, ,C,,, ,A,,, •• ,,, •. ,,,,.,,, •• ,.•,,,,., ................ ,.,,,,.,, •.. ,, .•.. A ... CAA ........••...... G .•....•••. , .••. 
FIT13. T .•... • ••••.• • •••••••••..•..••••.••• , .••.•••••.•••••.•.••.....•....••..• •, •. , ..• ,., ••..••• , •.••• , .•....• C ...••. , ...•• , •..•••.•.••...•••.••••••• • .•.•.•• , •..••••••...•••.•••• • •.••..•• C ..••.•••.•. C. C ............ ....................... -
FlTl4-T- ............•.....•.•...•........• , ..•..••.•...••.....•.....•....••. , , . , •. , ..• , .•••..••. , .••..••. , ...• C ..•••......•................•........•...... •• ....................................••.... c.c ..........••...•...... , , , .. , , , ... . 
FIT15, T •. ,,,, ••• , .•.•.... , ••. ,,, .••• ,., •• ,,, •• ,, ••••• ,, ••• ,,., •• ,,, .•••.••• , .••••• ,, •• ,, •••. ,, •• ,, ••. , •••. , .•• c.,, .• ,,,, ... , .. ,, •.. ,, .. ,,, .• ,, .. ,,,,.,,,, .. ,., .. ,,,, ..•........... ,,., .• ,,, .. ,, ...•.... C. c ....... , ... , •..................... 
ORDl .T ••.••••••••••••...••••.•••••.•••••••.••..••••.•••••.•••••••.•••••••••.••••••.•••••••••••••••••••••••.•• c ............................................••............................•......•...... c.c ...........••..................... 
ORD2 .T •....••....•••.....••...••• ? ••••••••••••.•••• , ••••••••••••••••• , ••••••••••• , ••• , • , •• , •••••••••••••••••• C .•.••.•.•••• , ..••••...••..•••...•...••• , .••• , ••••...••••....••..•••....•. , , •••...••••... c.c ...........• , .....•.......... , •..• 
OR.DJ ,T,,, ..••••• , ••• , , , •••• ,,,, ,,? , , , •••• , ..•. , •... , ..•......•.....•....•.....•............•.•...•..•.•...... c ........... , ............. , .......... , .. , , ... , •......•.... , ...• , , , ... , .....• , ... , , ..... , .c.c .•.... , ....•• , .....•... , ......... . 
ORD4 •••••••••• --••••••••••• , •••• ,T •••• -••••••••••••• , , •• , ,T,,,,,, ,AC .... ,,., ••• CC,, •• ,,• ,C,, ,;t.,,,.,,,,.,,, .•• C,,, ••• , • , • , , , , , ,, ,C, •• ,A, •.••••••• ,, ••• •,,.,,,,.,,,, •••••••••• , ••••• , ••• , ..... ,., •.•••• A ••• CAA •••.••••••..•••..••••..••••...•• 
OR'DS .T ••..•••...•••...•••••.•.•••....••••..••..••...••••....••....••..••••...•••...•••.•••..•••..•••.••••.••• C ..••••..••••.•.•••••..••..•••...••..•••..••••••••....•••...•••.•.••.•.•••.•.•••••.••..•• C.C .••••••.••••.••••••••••••••••••• ,, 
ORD6 .T •••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••.••••.••••....••.•.••••••••••••.•••.•••••..•• c ...................................................................................... G •• c.c .......... c ...................... . 
ORD7 •.••.•••• A ..••••••••••.. G •••• T ...••...••... C ••...•••.•• T ••.•••• A. •••••••••••• C •••••••• C •• ,A.,,, •• ,,, •••••• C ••.••• ,., •••••.• C:.C ••.• A ...•••.•••••.••• ,., ••..•••...••••...•• ,., •••••••• ,,, ••••.•..••• A .•• CAA .•..•.•••••.•••. c; .•••.•••••••••• 
ORDU •••.•• C •• A •.•••••••••••.•••••.•••••••.••••.••••••••••••••••••••••••••••••••••••••••••• c ...........•...... c .....••...............................•••...... 1 •••••••• G ••••••••••••••••••••••••••••••••• c ................................. . 
OR09 ........... C •.....•••.....••• T' •••• , .C ..••...••.•. , ••. ,, T.,.,,, .AC,,,,,, .• , ,CC,, •• ,,, .C., ,A ...•• ,,, ••• ,,, .C.,, ••• ,.,,,.,,,,, .C.,, .A,.,,.,,,,,,.,.,,,,,.,,,.,,,,.,.,, .•.• ,, ...• ,,,, •••• •,,.,,.,,, ,A,, .CAA., •.. , .•• ,,, .••....•............ 
ORDlO •••.••••••• C ••.•••••••••••••• T •••••• C •••••••••••••••••• T ••••••• AC •••••••••• CC ••••••.• C •.• A ••.•••. , •••.•.• C •••••••••••••••••• C •••• A ••••••••••••••••••••••••••••••••••.••••••••••••••••••••••.•••• A ••• CAA •••••••••••••••• G •••••••.•• , ••.• 
ORDll, T.,,,, •• , ..•.•...•••. ,,.,.,,,,, •• ,,,, •• ,,,,.,,,,, ••.•.••• , .. , •• ,.,. -......••.. , •.. , ••...••...•..•.•....• c .. , ........•.•. , .... ,., ......•...•...•.• , ... , .• , .. , ....••....•............. , •.......•... C.C ••• ,,,,,,,, •• ,,, •• G ••. , •• ,,,, •••• , 
ORDJ2. T •....••....•••..••••.••.•••.•.••••...•••. , ••.••.•••.•.•••...••.•.•••...••••.. , ...•• , , , , • , . , , ••. , • ••.•.. C ....•••••.•••••••....•.•....••... , ••••••.• , •• •, .•. , .•. , ••....•••.•.••.• , •• , .• ,, ••••.••.. C. C .....••••.•••.•••••.•••••••..••••• 
ORD13,T.,,, .•• ,,,, •• ,,,, •• ,,,,, •• ,,., •• ,, ..••.••••••••••• ,., •.•••..•••.•.••...•.••...••...•...••.•..•. , , .•.... c ......... , ................................... ,, , ..... , • , ................................ c.c ................................ ,. 
ORD14. ••••...••.•.••••.•••••••••••• T •.•••• c ................ , .T ••• , , •• AC •••••••• , .cc.,,,.,, .c., ,1',,,.,.,,,, .• , , .c.,.,, .. , , , , , , .. , , .c.,, ,}\,,, . .. , ..... , ••. , , , , . , , , , .•.. , , , . , , , , .. , . , , •. , , , , ... ? ••••• ,,,.A.., .CAA ••.•• ,.,, •• , •• , .G., •••••.••••••• 
PtjG ••••...••.• c ................ G •••••.. A •.•..•••.....••.....••....••.....•....••...••...••...••••••..•.•.... c ...............................................•.......................................... C.A ...•••...•••..•••....••......••• 

A matching nucleotide base is indicated by".". Unresolved nucleotide bases are represented with "?". Insertion/deletion events are shown by 
Nucleotide bases are (A) adenine, (T) thymine, (C} cytosine, (G) guanine. 
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The Kimberley rivers shared the only mtDNA genotvpe that was present in two 

geographic locations. This genotype was shared by FIT 5, 10, 11, 14 & 15 and ORD 1, 5, 12 & 

13. The Cairns fish were represented by a single genotype and although this lack of variation 

within the sample might simply be a function of the smaller sample size, one might expect more 

polymorphism from a randomly sampled population reputed to be the F1 of wild broodstock (see 

Discussion). Darwin samples had multiple genotypes and were taken using the same criteria as 

Cairns fish. 

The barramundi control region sequences were adenine and thymine rich, which is 

similar to other fish species (e.g. Bernatchez et al. 1992), but differs to some other vertebrates 

(e.g. birds, Edwards, 1993), and like other studies of mtDNA, transitions outnumbered 

transversions. Replacement substitutions (transversions) appeared in all samples except Cairns, 

with most being recorded from Darwin and especially F1tzroy River fish. Meyer et al. (1990) and 

Fajen & Breden (1992) have linked the comparatively higher number of transversions in some 

fish populations to evolutionary divergence. The large transitional bias in Ord River fish (28:1) 

indicates there is a relatively high rate of silent mutation occurring within that population, whilst 

the transition/transversion ratios within other populations including the total among samples, 

reflects the widely accepted model of piscine mtDNA evolution (i.e. 5-10:1, Meyer, 1994). Nine 

single insertion/deletion events were detected, but only in Kimberley fish. 

The number of polymorphic sites for each of the barramundi mtDNA sequences is shown 

in Table 3. There were 46 polymorphic sites among all sequences with Cairns fish having nil 

polymorphic sites. Darwin sequences contained only 4 polymorphic sites which resulted in 4 
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mtDNA genotypes, whereas the Fitzroy River sample (10 genotypes) contained 4 times as many 

polymorphic sites as Darwin. The Ord River sequences (10 genotypes) contained 6 times more 

polymorphic sequences than Darwin and half as much again as the Fitzroy River. 

Table3 
Within·population estimates of mtDNA nucleotide diversity 

Population 

Cairns 
Darwin 
Fitzroy R. 
Ord R. 

Total 

Sequences 
(n) 

5 
10 
14 
14 

44 

Polymorphic sites 
(n) 

0 
4 
17 
25 

46 

11 

0.00 
0.005 
0.016 
0.04 

S.E. 

± 0 
± .003 
±.011 
± .014 

The within·population estimates of nucleotide diversity (11) for these Australian 

barramundi mtDNA sequences from each geographic location are given in Table 3. The single 

genotype representing Cairns fish resulted in a diversity index of nil. The larger amounts of 

within-population nucleotide diversity (11) of Kimberley fish is well demonstrated here. For 

example, nucleotide diversity for Darwin mtDNAs was 0.005, which is three times less than the 

Fitzroy River samples (0.016), and more than 10 times less than samples from the Ord River 

(0.04). The nucleotide diversity in the Ord River sample was 2.5 times more than the Fttzroy 

River. Despite the large differences in within-population estimates of nudeotide diversity, they 

were not significant at the 5% confidence level (applied with a Bonferroni correction), which 

indicates more samples are required to reduce the standard errors associated with each within· 

population estimate. 
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Measurements of betwee~·population diversity are presented in Table 4. The average 

number of nucleotide differences per site between populations (k) was distinctly higher where 

Cairns was compared to Darwin and Ord River fish, ·~d where Darwin was compared to 

Kimberley sequences. The high k values demonstrate the substantial differences in polymorphic 

sites between these populations. Estimated k values were approximately halved where 

comparisons were made between Kimberley samples, and between Cairns and Fitzroy River 

populations, because these populations shared many similar nucleol'lde sites. For example, 

85% of Fitzroy River samples differ from the Cairns sequence by between 4 and 6 (1.7·2.6%) 

nucleotide bases (see Table 1). 

Table4 
Between-population barramundi mtDNA nucleotide diversity 

Population 

Cairns v. Darwin 
Cairns v. Fitzroy R. 
Cairns v. Ord R. 
Darwin v. Fitzroy R. 
Darwin v. Ord R. 
Fitzroy R. v. Ord R. 

Sequences 
(n) 

15 
19 
19 
24 
24 
28 

k 

9.4 
4.12 
8.31 
7.62 
9.00 
5.45 

0.08 
0.02 
0.03 
0.05 
0.05 
0.02 

Similar patterns of the differences in nucleotide diversity between barramundi 

populations are shown in the average number of nucleotide substitutions per site (d,). Darwin 

and Kimberley fish (0.05), and Darwin and Cairns fish (0.08) have much higher d, values than 

those obtained from comparisons between Cairns and Kimberley fish (0.02 & 0.03), and for 

comparisons of only Kimberley fish (0.02). The data indicate that Darwin miDNAs are quite 

different to all other populations, and that Cairns and Kimberley miDNAs are more alike. This is 

shown in the UPGMA cluster analysis of d, values (Figure 15). The d"' values involving Cairns 
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Darwin 

Ord River 

Fitzroy River 

Cairns 

0 0.02 0.025 0.06 

Figure 15. UPGMA dendrogram giving the relationship of the average number 
of nucleotide substitutions per site between populations 
(dxy) o' Australian barramundi. 
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fish may have been distorted by the small sample size and monomorphic character of those 

samples. 

The pooled within-population estimates of nucleotide diversity 1tp, and the pooled 

between-population estimates of the average number of nucleotide substitutions per site d,, are 

given in Table 5. 

Table 5 
Nucleotide diversity-based estimates of population subdivision and migration rates 

Sample 

4 populations 
3 populations 

1lp 

.01525 

.02033 

dp 

0.041 
0.02 

Nsr 

0.72 
0.49 

Nm 

0.1 
0.4 

The average between-population nucleotide diversity for all 4 Australian barramundi 

populations yielded the high Nsr (read Fsr after Lynch & Crease, 1990) value of 0.72 (Table 5), 

indicating that 72% of the observed nucleotide diversity is due to diversity between populations 

(i.e. substantial genetic structuring). The range of allozyme-based Fsr estimates for barramundi 

populations given by Shaklee & Salini (1985), Shakiae et al. (1993) and Keenan (1994) are very 

much smaller than those indicated here (0.004-0.046 and 0.005-0.064). These results indicate 

that barramundi population subdivision is more clearly defined when estimated by the 

mitochondrial genome than for estimates made from the measurement of gene frequencies at 

variable nuclear loci (see Hallerman & Beckmann, 1988; Billington & Hebert, 1991). Further, 

when Cairns mtDNAs are removed from the analysis (Table 5), an Nsr value of 0.49 upholds the 

inference of well-defined genetic structuring within the Kimberley and Darwin populations, and 
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indicates that approximately half the average nucleotide diversity observed in Darwin and 

Kimberley fish is due to genetic differences between those populations. 

The Nsr estimates for all four of these Australian populations (0.72) and for the Darwin 

and Kimberley populations (0.49) inferred an Nm value of 0. t and 0.2 respectively. The higher 

Nsr value (and lower Nm estimate) gained where the Calms population was included in the 

analysis is probably due to the nil genetic diversity in that population since Nsr is a function of 

between-population diversity compared to within-population diversity. These results indicate that 

the migration of genes between populations is insufficient to influence within-population genetic 

structure under an island model (Slatkin, t 987), and that other forces such as genetic drift and/or 

localized selective pressures might be the primary determinants of the observed genetic 

differentiation among barramundi populations. 

4.1.2 Analysis of Molecular Variance 

Results for the AMOVA analysis are given in Table 6, together with an AMOVA-based 

estimate of Nm (Excoffier et al. t992). 

TableS 
Analysis of Molecular Variance among selected Australian barramundi populations 

Sums of 
Variance component d.f. Squares 

Cairns'· Darwin'· Ord '· Fitzroy 3 
Darwin '· Ord '· Fitzroy 2 
Ord '· Fitzroy 1 

0.4897 
0.3798 
0.0367 

Mean 
Squares 

O.t63 
O.t90 
0.37 

<l>sr 

0.563 
0.526 
0.084 

p Nm 

P<O.OOt 0.2 
P<O.OOt 0.2 

0.1>1'>0.05 2.7 
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The among-populations variance estimate for all 4 Australian barramundi populations 

gave the highly significant ~sr value of 0.563 (P<0.001) under the island model, which is 

equivalent to a low predicted gene flow between populations of 0.2 individuals per generation. 

Very similar results were obtained for among-populations variance estimates for Darwin and 

Kimberley populations (~sr =0.526, 1'<0.001), Nm=0.2. The AMOVA for only Kimberley fish 

indicated there is substantial migration of fish between the Ord and Fitzroy Rivers (Ntn=2.7), and 

that within-population genetic structuring was not significant (~sr=0.064). This ~sr estimate is 

still higher than Keenan's (1994) average Fsr estimate of 0.064 for 14 barramundi populations 

east of the Kimberley, for which he concluded there was moderate population differentiation. 

4.1.3 The correlation of dxy to cumulative geographic distance 

Mantel's correlations of the average number of mtDNA nucleotide substitutions per site 

between populations (dzy), and cumulative geographic distance matrices were not significant 

where all four Australian barramundi populations (Z=3490, Pg>0.05), or only Darwin and 

Kimberley populations (Z=674, Pg>0.05) were compared. The results suggest a non-linear 

relationship between dzyand cumulative coastal distance, and provide conditional support for an 

"isolation by distance" iype of population structure (Richardson, Baverstock & Adams, 1986; see 

Discussion). 

4.1.4 Genetic distance between barramundi m!DNA genotypes 

The genetic distance matrix calculated from Kimura's (1980) two-parameter corrective 

model is given in Appendix B. The Fitch·Margoliash phylogram generated from this matrix is 

shown in Figure 16 and shows the interrelatiorl'~hips of sequences as a function of genetic 

distance, and the common ancestry of sequences in an evolutionary context. 
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Figure 16. Fitch-Margoliash phylogram summanz1ng genetic distance 
relationships between Australian barramundi populations. Branch 
lengths reflect actual genetic distance as corrected after Kimura 
(1980). PNG is the outgroup taxon. 
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The Cairns fish form a separate group, but as with the estimates for dxy (Figure 15), 

Cairns fish are associated with a major cluster that incorporates 75% of Kimberley fish. The 

Darwin population groups with the other significant cluster containing the remaining 25% of 

Kimberley miDNAs. Wlhin the Cairns cluster, that group, and a single divergent fish (ORO 8) are 

separate from a second cluster that contains 85% of the Fitzroy River mtDNAs and 57% of the 

Ord River mtDNAs. In this cluster, FIT 5, 10, 11 14 & 15 share genetic identity with ORO 1, 2, 3, 

5, 12 & 13, suggesting there is some gene flow between those populations as indicated by their <1o 

statistic (Table 6). Other genotypes representing both Kimberley localities display varying 

amounts of evolutionary divergence by their variable branch lengths and their genetic 

dissimilarity from the major Fitzroy River-Ord River phylogeny. 

The Fitch·Margoliash phylogram also shows that although only the Ord and Fitzroy River 

populations share identical sequences, the sharing of ancestral sequences is widespread. For 

example, the Fitzroy and Ord sequences in the first cluster are most closely related to the Cairns 

sequences than to the other sequences from the Kimberley. In the second cluster, ORO 4, 9, 10 

& 14 are more closely related to the Darwin sequences than to FIT 12, ORO 7 & FIT 9. 

4.1.5 Estimates of migration and gene flow between barramundi populations 
using a coalescent approach 

The transformed Fitch·Margoliash phylogram is shown in Figure 17. Slatkin & 

Maddison's (1989) algorithm estimated a minimum number of 10 between-population migration 

steps (&=10 coalescent events) in the barramundi phylogeny (Figure 17). 
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1:::::::::::1 Cairns 
� Darwin
- Fitzroy River
- Ord River
E3 Equivocal

Figure 17. Transformed Fitch-Margoliash phylogram of Australian barramundi 
populations showing the number of inferred between-population 
coalescent events (s) as indicated on the tree. The equivocal area 
indicates the convergence of unresolved ancestral states. 
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The null distribution produced by random tree sampling (n=1000) of the phylogeny [given 

the number of populations and individuals sampled in an island model of genetic population 

structure], predicted an s value of 23 for the barramundi phylogeny (Figure 15) to characterize 

panmixis. Gene flow sufficient to promote random mating between these widespread Australian 

barramundi populations is therefore highly unlikely (P<0.001). 

Migration rates between Darwin and Kimberley barramundi populations [where S=6] gave 

an Nm estimate of approximately 4.0 individuals migrating between populations per generation. 

This Nm estimate approaches Slatkin's (1987) prediction that under conditions of an island 

model, inter-population exchange of more than 5.0 individuals per generation is sufficient to 

counteract population divergence due to ganetic drift. 

The prediction by Slatkin & Maddison (1989) that coalescent analysis provides an insight 

into the historical associations of mtDNA phylogenies is well demonstrated here, and furthers the 

hypothesis given for the genetic distance phylogram presented in Figure 16. For example, the 

sharing of ancestral sequences between Kimberley and Darwin barramundi in Figure 16 is 

represented here as a number of coalescent events which predict at some time in the past, there 

was substantial migration (Nm::4.0) between these populations. 
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Chapter 5 

5.1 Discussion 

5.1.1 Evaluation of molecular techniques fer phylogenetic enquiry 

The method of caudal fin clipping as a minimally invasive sampling technique for the 

acquisition of genetic material (Doupe & Chandler, Appendix A) is well demonstrated by this 

study. In conjunction with alcohol preservation as used for the New Guinean sample, it presents 

a cost-effective, simple and straight-forward method of field tissue collection and storage. This is 

especially so given the clear advantages of target amplification by PCR followed by direct DNA 

sequencing. Notwithstanding this, the failure to amplify two samples from each Kimberley river 

indicates no method is absolute. The reasons for non-amplification might include the inexactness 

of the minigel method of DNA quantification (Sambrook et al. t 989). This might also account for 

the failure of some of the cytochrome b amplifications, however it appears that cycles of partial 

thawing and freezing of the Thai and African samples had resulted in the degradation of DNA. 

Further, the "universality'" of these primers (sensu Kocher et al. t989) does not necessarily hold 

for all taxa, and might not be the most appropriate probe for these species. 

5.1.2 Sequence variation In the barramundi mtDNA control region 

The large amounts of polymorphism thought to characterize the mtDNA control region of 

fish (Bernatchez et al. 1992; Meyer, 1994) is also a feature of barramundi populations. If 

numbers of polymorphic sites are equivalent to genotypic diversity as seems to be the case here 

(see Tables 2 & 3), then there are implications for Kimberley aquaculture and the wild fishery 

(see later): Darwin fish were represented by four fewer samples than those from the Kimberley, 
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yet the Kimberley had 5-7 times more polymorphic sites representing 2.5 times the number of 

genotypes when compared to the Darwin collection. 

Estimates of mtDNA variability, 1t, for barramundi are generally far higher than those 

reported for a range of coastal and marine species including the catadromous eel, Anguilla 

rostrata (see Table 2 in Avise, 1992), however this is not a general characteristic of all 

barramundi populations in the present study. For example, Cairns fish show no genetic cl1versity 

from an albeit small sample, yet Kimberley fish [particularly Ord River samples] show 3-iO times 

more genetic diversity than Darwin samples, which is high relative to the difference in the number 

of samples. 

The overall transition/transversion ratio complies with the general model (i.e. 8:1; see 

Meyer, 1994), but with two dominant features; first, mutation rates in this section of the mtDNA 

control region are very high, and second, the differences between populations suggests each is 

displaced from equilibrium and evolving at separate evolutionary rates. For instance, F1tzroy 

River fish showed a low ratio of 4:1 compared to Darwin (9.5:1) and the Ord River (28:1); the 

latter shows very high rates of silent mutation, whilst the numbers of transversions in the Darwin 

(2) and [especially] Fitzroy River (5) populations infer evolutionary divergence. This is providing 

that higher transversional bias in piscine mtDNAs is symptomatic of population differentiation 

(Kocher at al. 1989; Meyer at al. 1990; Fajen & Breden, 1992), as is the case with mammals (see 

Bernatchez et al. 1992). 
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5.1.3 Genetic diversity and population subdivision of barramundi 

A goal of this study was to present a description of the genetic structure of barramundi 

across a broad geographic section of a still wider Australian range. The relatively low number of 

individuals and populations sampled risks underestimating existing genetic diversity thus limiting 

the usefulness of such an approach (but see Slatkin & Barton, 1989), however the Nsr estimate 

of 0.72 for all Australian populations indicates barramundi have a very high genetic structure (see 

Table 4 in Lynch & Crease, 1990; Bernatchez et al. 1992). This inference still holds when Cairns 

fish are removed from the analysis (Nsr-0.49). The equivalence of gene diversity estimates to 

traditional Fsr have been demonstrated by Chakraborty & Danker-Hopfe (1991), and statistical 

power for the presence of a well-defined barramundi population genetic structure is provided by 

AMOVA, with <~>sr values approximating 0.5. This demonstrates highly significant (P<0.001) 

population subdivision between all populations, and again between Kimberley and Darwin 

populations. 

Partial, but not significant (0.1>1'>0.05) population subdivision was observed between 

the Ord and Fitzroy Rivers, and is often noted in larger populations covering a broad range 

(Lande & Barrowclough, 1987). Trends of population structuring are evident in the UPGMA 

dendrogram of population relationships (Figure 15), where Fitzroy and Ord River populations are 

separated by 0.025 nucleotide substitutions per sile, but Darwin fish show substantial nucler,iide 

divergence (0.06 substilutions/site). The clustering of Cairns fish with the Kimberley populations 

is more likely due to the small sample size and monomorphic nature of the Cairns sample, 

although the possibility of a deeper historical relationship between these lineages cannot be 

discounted. 
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5.1.4 Gene flow estimations and barramundi population genetic structure 

Conditional support for a stepping-stone form of isolation by distance is provided by tests 

of Mantel's correlations of the average number of nucleotide substitutions per site between 

populations (d,,), and cumulative geographic distance. Under the stepping-stone model in one 

dimension, the correlation of the variables decreases exponentially with geographic distance 

(Kimura & Weiss, 1964). This explains the asymptote in Figure 18a - a levelling off with 

increasing distance, but not the convex asymptotic relationship found here (schematically shown 

in Figure 18b). This deviation is partly a function of the statistic (see Peterson, 1996). For 

example, more samples would presumably yield more polymorphism, but only until base 

saturation by silent mutations would result in more common bases between populations 

(homoplasies; Meyer, 1994), and a concurrent levelling of the correlation. The nil diversity of the 

Cairns samples by chance alone may have resulted in their similarity to the most distant samples 

[Frrzroy River, see also Figure 15), and have consequently dragged the exponent sharply 

downwards (Figure 18b). 

(a) 

d,., d,., 

Coastal distance 

(b) 

•, 
• • • • • • • 

' • • 
' ' 

Coastal distance 

Figure 18. Schematic representation of an isolation by distance model of 
population structure predicting the relationship of dxy and 
cumulative coastal distance (a), and the convex asymptotic 
relationship found for Australian barramundi in this study (b). 
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All frequency-based estimate• of gene flow outside the Kimberley give Nm<O.S, and 

predict that genetic drift could be causing the significantly high levels of population subdivision 

due to small effective population sizes (Nei et al. 1975). This might explain the low levels of 

genetic diversity beyond the Kimberley. The larger amounts of polymorph ism and genotypes 

within the Kimberley might indicate these populations are sufficiently large to counteract the 

effects of genetic drift, however the sampling regime favoured this result to some extent. 

Keenan (1994; table 4) compared estimates of Nm under the island and one-dimensional 

stepping-stone models, and demonstrated that Nm estimates are two orders of magnitude larger 

under the stepping-stone model, whilst maintaining significant subpopulation differentiation (see 

also Slatkin, 1985; Trexler, 1988; Slatkin & Barton, 1989). Isolation by distance will often produce 

statistically significant allelic divergence despite substantial exchange among adjacent 

populations, because exchange between genetically similar subpopulations results in each 

migrant being less effective in promoting divergence, as it has an increased probability of 

reproducing in a similar population from which l has emigrated (AIIendort & Phelps, 1981; 

Johnson, Clarke & Murray, 1988; Edwards, 1993). Goldstein & Holsinger (1992) demonstrated 

that one-dimensional population structure allowed far higher polygenic variation than did a two

dimensional model, despite gene flow. For instance, if gene flow is confined to only adjacent 

populations in a linear array, rather than to many more populations in two-dimensional space (as 

for an island of populations), population differentiation (i.e. Fsr) will be higher in one-dimensional 

space. Ward et a/. (1994) showed that while total heterozygosity was similar in 49 freshwater 

(one dimension) and 57 marine species (two dimensions), subpopulation heterozygosity was 

significantly higher in freshwater species. 
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Recalculating Nm under a stepping-stone model requires estimations of mutation rate (~) 

and effective population size (N,), in addition to a quartering of N, to account for non

recombination of mtDNA (Billington & Hebert, 1991). Accurately estimating ~ in this rapidly 

evolving genomic region is important, as ~ may mislead frequency-based estimates of population 

subdivision, and therefore Nm (see Edwards, 1993; Milligan, Leebens-Mack & Strand, 1994). 

Further, estimating~ assumes selective neutrality (Porter, 1990; Edwards, 1993), although the 

debate concerning the selective role of mtDNA mutation remains unresolved (see Avise et al. 

1987: Avise, 1992). Estimates of N, are also problematic (Lande & Barrowclough, 1987) but 

necessary (Cockerham & Weir, 1993), and are confounded by the constraints of population 

genetic models. 

For the purpose of demonstration, but notwithstanding all of the problems associated 

with estimating migration rates under a stepping-stone model, a comparison of migration 

estimates between the island and stepping-stone models can be made. In this example, we will 

apply the highly significant AMOVA estimate of population subdivision between Kimberley and 

Darwin barramundi (<l>sr =0.5) as the analogue fixation index (Fsr). For the island model, the 

number of immigrants (N.m) is solved using the equation: 

N,m = 025 [(1/Fsr) - 1) 

For the one-dimensional stepping-stone model, the island model estimates of N, and ~are used, 

and N,m is solved using equation 2 in Keenan (1994): 

N,m = 0.03125 X N,W' x [(1/Fsr)- 1]' 

where N, was estimated as 1000, 2000 and 3000, and calculated for mtDNA using the formula 

NJ4xm, and a mutation rate, ~=1xto·• (C. Keenan, Department of Primary Industry & Fisheries, 

personal communication, March 24, 1997). 

101 



A range of values for effective population size adjusted for mtDNA was employed to estimate 

gene flow as measured by migration rates between populations (Table 7). 

Table 7 
Estimates of migration rata as a percentage (m%) and number of immigrants (N,m) as 
determined from the island model and one-dimensional stepping-stone model using an observed 
tl>sr value (0.5) with a fixed mutation rate (!\) and a range of effective population sizes (NJ for 
western Australian barramundi populations 

Model tl>sr 

Island 0.5 

Stepping-stone 0.5 

m% (N,m) 
11 N,=250 

1x1Q-5 .09 (0.24) 

1x10·• 5.2 (13) 

N,= 500 

.05 (0.24) 

1.2 (6) 

N,= 750 

.03 (0.24) 

0.5 (4) 

It is evident from Table 7 that variation in population size has no effeci on the estimates 

of N,m derived from the island model, whereas the estimates derived from the one-dimensional 

model for the same population sizes range from 13-4, as N, increases. Keenan (1994) attributed 

such differences to mutation rate 11. arguing that while mutation rate has little effect on the 

estimate of N,m in the island model and is usually ignored, the factor N,w' can have a large 

effect on N,m in the one-dimensional model because mutation becomes formally equivalent to 

long-range dispersal. Caution should be taken when estimating 11 for at least two reasons; first, 

there is evidence of variable divergence and non-equilibrium connitions among these barramundi 

populations, and second, the mutation rate of 1x10• could be an underestimate for this rapidly 

evolving portion of the mtDNA genome. If that is the case, then higher mutation rates will reduce 

estimates of N,m (see Table 4 in Keenan, 1994). Estimating N, can also differ even when the 

same model of population genetic structure is applied, because the population estimate appears 

dependent upon whether demographic or genetic data are used. For example, N, for barramundi 
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under a stepping-stone model in one dimension was much lower when estimated from harvest 

rates (demographic data; Shaklee et al. 1993) than Keenan's (1994) estimate, where the 

proportional loss of heterozygosity between selected locations was compared [genetic data]. 

The recalculation of Nm for a stepping-stone model does increase migration estimates, however 

its accuracy depends upon genetic and demographic data, and both are only coarse estimates. 

For the interaction between these variables to explain the large genetic differentiation between 

barramundi populations, then more accurate measurements are required. This can only be 

accounted for through monitoring the change in gene frequencies in each population, and by the 

collection of ecological data that gives population life history information (Sherwin, 1992; Rannala 

& Hartigan, 1996). 

The phylogenetic analysis of relationships between sequences showed a somewhat 

different picture of genetic structure than that provided by estimates of Nm from the variance of 

gene frequencies within and between populations. The new information provided by coalescent 

analysis showed that although extant sequences were largely confined to different populations, 

thereby giving high estimates of population subdivision and low estimates of gene flow, ancestral 

sequences were more widely spread, and indicated a substantial number of migration events. As 

shown by Edwards (1993) and Milligan etal. (1994), traditional Fsrmethods make no distinction 

between the effects of genetic factors [such as mutation] and demographic factors [such as 

migration]. Phylogenetic methods using coalescent analysis separate these factors. The 

apparent discrepancy between substantial genetic structure and reconstructed migration events 

may be partly explained by the high mutation rates in mtDNA. Whilst coalescent analysis is 

thought to account for the historical nature of the relationship between sequences, and thus their 

genetic structure (Lymbery, 1995), estimates of migration remain dependent upon an island 
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model of population structure (Slatkin & Maddison, 1989) and the accuracy of the phylogram 

(Felsenstein, 1988; Templeton, Crandall & Sing, 1992; Hudson et al. 1992). The hypothesis that 

the historic barramundi phylogeny approximates a random-mating island model was shown to be 

highly unlikely (P<0.001), despite a large number of migration events (s=10). When Cairns data 

are removed, estimated migration between Kimberley and Darwin populations (Nm.:4.0) 

becomes theoretically sufficient to prevent population differentiation by genetic drift under an 

island model (Slatkin, 1987; Slatkin & Maddison, 1989). 

Determining how much gene flow still occurs between barramundi populations might well 

be confounded by estimations that are based upon equilibrium island models with no selection. 

Furthermore, isolating the effects of genetic data from demographic data (e.g. Edwards, 1993) 

might be theoretically expedient, but n is difficult to understand population dynamics under such 

simplifying constraints. Conflicting estimates of migration might be resolved in an historical 

conteX1 which indicates far higher levels of gene flow than is estimated by diversity-based 

indices, which may be better indicators of contemporary gene flow (Moritz, 1994; Barton & 

Wilson, 1995). For example, if populations have separated in Recent geologic time, migration 

estimates will be high, reflecting II 1e retention of mitochondrial lineages; this is expected to 

decrease as the time since divergence increases relative to N, (Edwards, 1993). High mutation 

in differentially isolated populations already experiencing the effects of diminished gene flow 

might explain the genetic subdivision inferred from diversity-based estimates, whilst the sharing 

of common sequences between only Kimberley populations reflects continuity of genetic 

exchange. Both situations might have occurred in the conteX1 of barramundi population 

extinction-recolonizations (see Lande & Barrowclough, 1987) across northern Australia (see 

below), where range expansion might cause a deviation from the genetic structure expected to 
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result from isolation by distance (Slatkin, 1993; Peterson, 1996). Such events are thought to 

confound estimates of high population subdivision and migration that are based on the island 

model (Lande & Barrowclough, 1987; Whitlock, 1992; Milligan et al. 1994). 

The genealogical structure of these Australian barramundi possibly approximates an 

isolation by distance model in one dimension, however this classification is provisional for at least 

two reasons: first, larger samples from intenmediate locations are required, and second, the 

isolation by distance model is applicable only when the Kimberley populations are pooled, and 

might not suit the Kimberley genealogy per se (see later). Contrasting Keenan's (1994) 

argument against gene flow estimates based on the island model is the overwhelming support 

t'lroughout the literature for its simplicity (see also Slatkin & Barton, 1989; Porter, 1990). Further, 

Keenan (1994) summarizes the mechanism that produces barramundi population subdivision as 

"simply" mutation and genetic drift operating independently in different parts of the population. 

There are serious ramWications for simplifying genetic models from a management perspective; 

this change in philosophy has resulted in a paradigm shift from the role of selective adaptation in 

population processes (see especially Shaklee et al. 1993), to its dismissal as being 

inconsequential (Keenan, 1994). The corollary here is that the barramundi's physical 

environment, [and therefore local selection pressures], play no part in population dynamics, so 

habitat management is largely insignificant in the conservation of viable barramundi genetic 

variation. 

5.1.5 Recent history and zoogeography of western Australian barramundi 

The maternal inheritance, absence of recombination, and rapid evolution of the mtONA 

control region provides further zoogeographic hypotheses for the Recent history of western 
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Australian barramundi populations; coalescent and genetic distance analyses provide historic 

infomnation for adjacent Kimberley and Darwin populations (Figure 16), and a hypothesis for the 

shared ancestry of sequences and observed population subdivision is proposed in the context of 

alternate sea levels and population extinction-recolonization events: 

If we consider sea levels 150m below present levels (Figure 6), sea level retreat and 

extinction of localized habitats and their populations results in a large population inhab'1!1ng the 

western coastline. The broad geographic coverage of the "western population" (sensu Keenan, 

1994) has allowed peripheral population divergence [i.e. isolation by distance] into a northern 

(Darwin) and southern (Rtzroy R'1ver) population, with a hybrid contact zone (i.e. the Ord River 

population) separating the two. Partial coalescence of each population, as revealed by 

substantial gene flow at the contact point (Nm::4.0), would provide larger amounts of genetic 

diversity and silent mutation in the hybrid population, with drift affecting variable silas away from 

the contact zone. Common ancestral sequences would be retained in all populations due to no 

recombination. 

Coastal inundation to 60m below present levels provides a shifting land/sea intertace, 

and the recolonization of habitats by dispersing barramundi. The Ord River basin is well 

developed at these levels, as is the 'top end" fronting the Arafura Sea (Figure 6), resulting in 

decreased between-population contact and increased within-population differentiation due to 

mutation. Fitzroy and Ord River populations continue to exchar.zco genes, however il is unclear 

whether the Ord River has served as the point from which other Kimberley populations have 

colonized. 

106 



Fluctuating sea levels during the period 70,000·10,000 years BP (Torgersen et al. 1983; 

Torgersen et al. 1985) would probably see cycles of at least partial extinction-recolonizations of 

barramundi populations along the western coastline. Gaggioti (cited in Taylor & Dizon, 1996) 

thought that variable dispersal over long periods results in increased population genetic 

differentiation. 

An approximation of time since population divergence is possible, despne the problem of 

variable evolutionary rates between populations (Li, 1993; Avise, 1994). Assuming that the 

16,500bp piscine mtDNA genome evolves at 2% or about 300bp per million years (Brown, 1983), 

then the control region (approx. 1100bp long; Shoffner & Wallace, 1995) which is thought to 

evolve five times faster !han protein coding regions (Aquadro & Greenberg, 1983; Brown, 1985; 

Thomas & Beckenbach, 1989) might be expected to change by at least 100bp over this time. 

Clearly this has not occurred, however the magnitude of the differences between the Kimberley 

and other populations suggests there is evidence for longer-term isolation. For instance, if the 

populations have been separated for about 10,000 years, then the number of nucleotide base 

differences per site between populations (k) would be one or very few. If 100,000 years of 

isolation were allowed, then k values approximating 10 become more representative of the data 

where comparisons between Darwin and other locations are made, however these are coarse 

estimates that don't account for the periodic recombination of a western population, or the 

variable evolution of subpopulations. More accurate inferences are possible given more 

samples, and an investigation of a more slowly evolving region like the cytochrome b gene. 
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5.1.6 Gene flow, selection and population differentiation 

Although genetic models are typically insensitive to selection and mutation, selective 

forces that vary geographically could affect population subdivision, and therefore estimates of Nm 

(Johnson et al. 1988). For example, Slatkin (cited in Johnson et al. 1988) argued that 

geographically variable selection should result in a large variance of private alleles; the greater 

numbers of genotypes, and the higher within-population estimates of nucleotide diversity and 

polymorphic sites found in the Kimberley fish might be explained by geographically variable 

selection. The differential effect of selection over gene flow and genetic drift reflects the relative 

importance of genetic adaptations to local environments (Slatkin, 1987), so permanent clines can 

result from the interaction between gene flow and selection (Haldane cited in Slatkin, 1985; 

Rockwell & Barrowclough, 1987). If we consider changes in selection intensities occurring along 

a geographical gradient, then environmental "pockets" may arise that favour certain alleles in 

certain areas, so that the genotypic frequencies are characteristic of localities (Slatkin, 1985). 

For barramundi, geographic variation in localities for sex change (Moore, 1979; Davis, 

1982), the presence of primary females, and absence of sex change (Moore, 1979; Maneewong, 

1987), variable length/sex ratio relationships (Davis, 1982; Patnaik & Jena, 1976; Wongsomnuk 

& Manevonk, 1973; Moore, 1979), relative age/size classes (MacKinnon & Cooper, 1987), and 

the possibility of fully marine lne histories (Pender & Griffin, 1996), are supposed to be due to a 

'11exible biology" IKeenan, 1994), and population differentiation is presumed to be due to genetic 

drift and a small N,, if we assume genetic neutrality and no selection. It is difficult to comprehend 

that such wide variability in life-history traits is explained by a process that theoretically 

decreases genetic diversity and limits adaptation, particularly when considering habitat shifts and 

population instability In the Recent period. Like most studies of population genetic structure, this 
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study has investigated a single, presumably neutral genomic region. Given the polygenic basis 

of most me history traits (Holsinger, 1996), quantitative studies that separate the genetic from 

environmental effects on traits, and/or mapping genes which influence lrre history traits and then 

studying their population genetics, are required (e.g. Mitcheii-Oids, 1995; Storler, 1996). 

In the context of periodic extinction-recolonization events, population differentiation due 

to genetic drift is negligible if the time of population persistence is Jess than the time required to fix 

neutral alleles, which is equivalent to population size (Slatkin, 1987). If migration (m) is opposed 

by selection (s), then population size is unimportant, because differentiation will occur where S>m 

(Slatkin, 1987; Johnson et al. 1988; Trexler, 1988; Lymbery, 1993). Not knowing the effects of 

mutation or the role of selection pressures in detennining population genetic structure remains a 

difficult problem (AIIendorl & Phelps, 1981; Pogson et al. 1995), but cannot be ignored (see 

Altukhov, 1990; Taylor, 1991). Considering Wright's (1943) acknowledgement of the role 

environmental adaptation might contribute to population structure, and the wide concern for the 

effects of artificial selection in hatchery environments, surprisingly few investigators look to local 

conditions to explain their data, preferring to explain genetic differentiation by drift alone. 

5.1. 7 The role of local environments and selective processes in forecasting 
an alternative barramundi population structure in the Kimberley 

Dunston (1959) broadly classified the characteristics of Queensland rivers to describe 

five types of barramundi habitat relative to juvenile abundance. Morrissy (1985, pp.15·16) 

compare~. these to the Kimberley, and concluded there was a deficiency of habitat diversity in the 

region, with the most suitable juvenile habitat being confined to the areas of King Sound (Fitzroy 

River) and Cambridge Gulf (Ord River), with habitat on the remainder being " ... sparse on the 

largely rocky, steep Kimberley coasr. Historic annual rainfall statistics obtained from the Bureau 
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of Meteorology for each sampling location demonstrate the inconsistent nature of the tropical 

monsoon (Figure 19). Such differences in rainfall would be expected to affect the availability of 

juvenile habitat in the Kimberley (Morrissy, 1985), and the dispersal of fish. 

Keenan (1994) discussed the movement of tagged barramundi along the Queensland 

coast, and with few exceptions, thought adult fish typically remained about their native rivers. He 

speculated that variable population boundaries might reflect the regional effects of flood pluming, 

and concluded that stochastic but extensive flooding of northern Australian rivers was probably 

the major source of juvenile transfer between localities, and hence gene flow between 

populations. Flood pluming, or more specifice.iiy, !he effects of flood pluming on dispersal and 

juvenile habrrat are stochastic events, and might provide some explanation for the genetic 

population structure found in the Kimberley. For example, Morrissy (1985, Figure 8) showed an 

inverse relationship between mean monthly rainfall and mean monthly catches at Wyndham. 

Assuming a direct association between rainfall and riverllow, then the decrease in catches might 

indicate dispersal of fish following the flood plume, or fish leaving the flooded areas to find more 

suitable salinities and spawning habitats, as noted elsewhere (Moore, 1982; Moore & Reynolds, 

1982). Either situation arising from variable, local rainfall at or between these few major 

Kimberley rivers results in the infrequent, but probably large migration of fish across a coastline 

separating suitable habitats. The interaction of rainfall and juvenile habrrat availability then 

provides a hypothesis for Kimberley barramundi population genetic structure and migration 

estimates found in the present study. 

The relationship between gene flow and geographic distance differs for Kimborley 

barramundi, as rr appears that Recent genetic exchange remains a characteristic of 
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contemporary populations. This is inferred by insignificant population subdivision and estimated 

gene flow between the Ord and Fitzroy Rivers (Nrn=2.7), which is sufficient to prevent population 

divergence by genetic drift under an island model of population structure. This change in 

population structure indicates a population genetic boundary exists between the Kimberley and 

the wider barramundi population dynamics occurring east of this region, and follows Keenan's 

(1994) finding of at least two population boundaries between the Ord River and Darwin 

(=850km); its exact location is presgntly unknown. An east-trending increase in rainfall and 

numbers of larger rivers results in a distinct environmental cline across northern Australia, with 

mean annual rainfall in the Kimberley (Derby::600mm & Wyndham::700mm) being far less than 

Darwin (::1700mm) or Cairns (=2000mm) (Figure 19), and corresponds to the genetic boundary. 

Keenan also recognized that Queensland barramundi population boundaries (500-600km) 

extend for much greater distances than in the Northern Territory, and this study indicates that the 

Kimberley population boundary is wider still at approximately 3,500km. The interplay of shifting 

seasonal habitat, selective pressures and long-distance gene flow in the Kimberley can only be 

better interpreted by knowing the geography of absolute survival values (Rockwell & 

Barrowclough, 1987) and more genetic information, however we cannot ignore the genetic 

separation of this population from adjacent populations occupying habitats that are at least 

seasonally, more widespread. 

The geographic classnication of the Kimberley in the limor Sea Drainage Division for 

biological and management practicalities (Thorn, 1995) has direct applications for barramundi 

management in the sense that the Kimberley drainage basin coincides with a discrete population 

genetic province. Given that intraspecffic population genetic differentiation is a criterion for the 

assessment of translocation proposals in Western Australia (see Thorn, 1995; Environmental 
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Protection Authority & Fisheries Department, in review), then appropriate management policy 

would embrace the biogeographical affintties (sensu Horwitz, 1997) of this barramundi population 

from a regional Kimberley perspective, rather than a continental approach. A similar policy has 

recently been endorsed in Queensland, where the Fisheries Management Authority has ceased 

the translocation of barramundi across population genetic boundaries (C. Keenan, personal 

communication, March 10, 1997). 

5.1.8 Directions for Kimberley aquaculture and its implications for 
recreational fishery enhancement programs and conservation 

Because Kimberley aquaculture and recreational fishery enhancement programs will 

occur in the same riverine environment that is inhabited by wild barramundi, albeit separated by 

dam walls, then their genetic management implications cannot be discussed independently. 

Furthermore, these implications should be discussed in the context of the management objective 

for the tran~ocation of live aquatic species in Westem Australia: " ... to minimize the risk [of a 

proposed translocation] to ... local aquatic environment with particular reference to maintenance of 

genetic and biodiversity' (Environmental Protection Authority & Fisheries Department, in review, 

p. 3). 

The aquaculturalist Is typically interested in the selection and mass production of traits for 

fast or optimal growth (Davidson et al. 1989; James, 1992). In the absence of a link between 

genetic markers and quantitative traits (see Starter, 1996), then it is desirable that a large 

population of fish that yields the greatest potential for biological and genetic diversity is surveyed 

(Purdom, 1992). Although low levels of genetic diversity do not necessarily equate to reduced 

population fitness and viability (e.g. Caro & Laurenson, 1994; but see Altukhov & 
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Selmenkova, 1987; Ryman & Utter, 1987), the comparative differences between barramundi 

populations would indicate that Kimberley aquaculturalists would be better served by harvesting 

the existing genetic diversity found in the local river systems upon which these ventures are 

planned. Furthermore, no free polymorphic sites in Cairns or Darwin barramundi indicates a low 

potential for the genetic improvement of desirable production traits when compared to Kimberley 

fish. Against this opinion, is the argument that gene flow from exogenous individuals will increase 

genetic diversity (Moav et al. 1978; Kapuscinski & Lannan, 1984, 1986). Considering Caims and 

Darwin fish are represented by one and four genotypes respectively, then n is difficult to detect a 

productive benefit arising from their hybridization with Kimberley fish. Of course, all of this is 

providing that the transplanted fish do in fact survive, or that hybridization has not caused the 

breakup of coadapted gene complexes that might affect the viability of the venture (Sherwin, 

1992) and the wild fishery (Nelson & Soule, 1987). 

The implication to hatchery proprietors that larger broodstock populations should yield 

greater genetic diversity is possibly ill·founded, even when Kimberley fish are used to alleviate 

the potential problems arising from low genetic diversity. If broodstock are not changed, 

irrespective of their pertormance, then the effect of inbreeding depression has been shown by 

Tave (1993) to be sufficiently large to counteract the effects of mass selective breeding. Similar 

problems occur when only small founding population sizes are used (Ferguson et al. 1991). The 

number of samples taken from Darwin and the Kimberley are similar to broodstock sizes in a 

typical barramundi hatchery (Keenan, 1995), and while not statistically significant, the differences 

in genetic diversity between those samples demonstrate the need for producers to understand 

the relationship between genetic diversity and both the size and origin of the founding population. 
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The genetic diversity available to aquaculture by harvesting wild populations requires 

effective management of the wild fishery. The continued decline in wild barramundi populations 

(Davis, 1982; Shaklee & Salini, 1983; Russell & Rimmer, in press) possibly reflects both the 

demand by the various user groups for a finite resource and current management practices; the 

annual harvest of Kimberley barramundi is about 10% of the annual quota in Queensland and the 

Northern Territory. The low levels of genetic diversity in those samples might represent the low 

diversity available in wild stocks due to over-harvest (e.g. Ricker, 1972), or the effects of hatchery 

practices due to small effective population sizes and broodstock retention. Either scenario has 

clear implications for fishery enhancement programs in the Kimberley where hatchery stocks are 

used, and for state fishery policy to achieve management objectives for the maintenance of 

genetic diversity in the wild fishery. 

The perception that aquaculture will offset the depletion of wild stocks (Nel, 1996) is 

flawed if the populations that are used to maximize genetic diversity are genetically impoverished 

in the first instance. For example, the release of many thousands of hatchery barramundi in the 

Cairns region over the past few years is aimed at enhancing the local recreational fishery 

(Russell & Rimmer, in press), and yet a sample of Cairns fish presumed to be the F1 of wild 

stocks, show no genetic diversity in the mitochondrial region surveyed. In their study of 

Australian bluefish (Pomatomas saltatrixj, Graves, Beardley, McDowell & Scoles (1992) sampled 

18 hatchery fry that were believed to be the F1 of wild fish, and found a single mtDNA genotype 

which they explained as a 'result of a smaller effective population size", or "reflecting a longer 

period of population isolation", inferring population boHienecking. The hybridization of these fish 

wrrh other local fish is probably inevitable, and the effects of introgression would be expected to 

result in a loss of adaptive fitness in wild populations (e.g. SaHaur, 1989; Hynes et al. 
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1981; Allendori & Ryman, 1987; Williamson & Carmichael, 1990; Philipp, 1991; Waples, 1991; 

Frankham, 1994 and others). If genetic vanation vilhin discrete populations is to provide a theme 

for the sustainability of aquacultural industries and serve as the basis for stock enhancement 

programs, then the goals of aquaculture and the release of populations into the wild must be 

clearly defined. If not, these objectives [and the management objective of maintaining genetic 

diversity] cannot be met by the one program (Dixon, 1990), and has little conservation value. 

Escaped barramundi presently constitute a part of the non-target catch for lhe Lake 

Argyle catlish (Arius sp.) industry (N. Stewart, proprietor, personal communication, October 24, 

1996), and reports of barramundi [presumably escapees] being caught in rivers to the south of 

Lake Argyle and in Spillway Creek (Figure 3) (S. Goodson, EKRFAC, personal communication, 

March 7, 1997) dem;nstrates that barramundi will leave Lake Argyle, and it appears that Lake 

Kununurra is being stocked with fish, albeit by default. A study where the mtDNA genotypes of 

barramundi found in Spillway Creek were compared to the Darwin and Ord River mtDNAs herein 

(Table 1) should confirm the origin of those fish. The movement of barramundi into the greater 

Ord River catchment is probably an acceptable, minimum impact method of recreational fishery 

enhancement of a translocated species (see Prokop, 1995), however the escapement of fish into 

Lake Kununurra and probably the lower Ord River (Bird, 1992) suggests the hybridization of 

genetically differentiated barramundi is imminent. This contrasts the requirement for mechanical 

barriers to prevent escapement (Thorn, 1995), and indicates the inadequacy of dam walls as 

such. But furthermore, the potential for introgression and genetic pollution (sensu Sattaur, 1989) 

of the Ord River barramundi population is imminent, and contravenes the management objective. 
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For the translocation of genetically differentiated barramundi to have no impact upon 

local stocks, then land-based farm production is desirable, but might be perceived as an 

unacceptable alternative. The desire to produce hatchery fish that are genetically and 

ecologically similar to the local population is a task confronting scientists and managers of 

hatchery and wild populations. Doyle et al. (1991) proposed that breeding programs designed to 

increase genetic diversity by producing breeds specially adapted to local environments would be 

an attractive conservation strategy, however such programs require natural-type hatchery 

environments for selective processes to be evaluated (e.g. Frankham, 1994). This situation is 

unlikely in fledgling aquaculture industries where short-term production success is vital to ensure 

economic viability. Clearly, assistance by government and industry is required if the goals of 

sustainable aquaculture and the conservation and maintenance of genetic diversity are to 

achieve a similar endpoint. 

5.1.9 Conclusion 

The results of this study indicate that barramundi in each of the Kimberley, Darwin and 

Cairns regions are readily identifiable as genetically differentiated stocks, and should be 

managed as such. A decision to ban the translocation of barramundi requires more than the 

identification of genetic markers that characterize gene frequencies and patterns of diversity, 

because the markers themselves are a result of the demographic properties that influence them 

(Milligan et al. 1994; Holsinger, 1996). Whilst sustainable barramundi aquaculture in the 

Kimberley should look toward the propagation of native stocks, demographic and ecological 

information for Kimberley barramundi is required, as this will enable the clarification of local 

selection pressures and genetic differentiation (Holsinger, 1996; Starter, 1996). 
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If managers wish to adopt either the island or stepping-stone models to draw the analogy 

between the translocation of barramundi between genetically subdivided populations, and their 

migration [i.e. gene flow] among those populations without human agency, then Table 7 will serve 

as an example: If we consider N.=250, then in an island model, 0.24 individuals or .09% of the 

population can be translocated per year [i.e. a generation]. The same estimate of N, under the 

stepping-stone model allows 13 individuals or 5.2% of the population to be moved per year, 

whilst maintaining highly significant population subdivision. Clearly, the island model would be 

unsatisfactory to the proponent of the translocation, as it effectively stops the movement of 

barramundi, however the stepping-stone model would theoretically allow sufficient barramundi to 

found a hatchery. If that were the case and these fish were translocated from hatcheries in 

Darwin or Cairns, then we might expect comparable levels of genetic diversity as found here, and 

the potential problems associated wilh this have been previously outlined. These problems then 

contravene the management objective to maintain genetic and biodiversity, but that is the context 

that the translocation management of barramundi must be framed. 

Managers should accept that genetic results concerning population differentiation and 

estimates of population size and gene flow between populations must be interpreted by models. 

For example, the island model is the simplest, yet it makes the most restrictive assumptions that 

constrain equal effective population sizes and results in the smallest level of genetic 

differentiation (i.e. N,) for a specific level of dispersal, whereas stepping-stone models handle 

more complicated assumptions including variation in N,, to yield higher dispersal (Taylor & Dizon, 

1996). Neither model considers variable dispersal over time, but effective management would 

ideally allow for temporal variation in population demographics. The phylogenetic analysis 

provided herein provides some indication of how population dynamics might change over time. 
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Given the inherent problems associated with population genetic models, and an absence of 

ecological data, managers would do better to acknowledge frequency-based estimates of 

population differentiation which clearly show that the population genetic structure of Kimberley 

barramundi is vasdy different to Darwin or Cairns fish. This restriction then shifts the burden of 

proof from the investigator, for which statistically significant levels of population subdivision have 

been inferred, to the proponent of a translocation proposal. That is, the proponent must 

demonstrate that there will be no significant change to the genetic structure as a result of the 

proposal, and that the management objectives will be maintained (see Horwitz, 1995 and Taylor 

& Dizon, 1996). If that cannot be shown, then a precautionary approach to the translocation of 

barramundi genetic material which dictates that disturbance might lead to loss or damage should 

be followed (sensu Horwitz, 1995). In the absence of such critical information, the translocation 

should not proceed. 

If the genetic differentiation and diversity of the Kimbe~ey barramundi is to be preserved, 

then a reactive government should reflect the desires of a community that understands the cost 

of management under increasing pressure for a finite resource (sensu Wardell-Johnson & 

Horwitz, t 996). This requires consideration for the capacity of future generations to experience 

environmental values which go beyond a perception of the Kimberley barramundi as quarry to 

which anglers have a "righr of access (Stagles, 1995), or as economic chattels to be moved 

around the landscape. 
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Appendix A 

Minimally Invasive tissue sampling of fishes revisited. 

Robert G. Doupe and David Chandler 

Department of Environmental Management 

2 Department of Human Biology 

Edith Cowan University, Joondalup, Western Australia 6027 

Abstract. Despite the desirability of gathering genetic data without killing subjects, the 

overwhelming majority of studies in fishery-oriel1ted population genetics have utilized !'Issues 

from individuals that were sacrificed for the research. We investigate the amounts of total DNA 

available from a range of tissue in lhe barramundi, Lates ca/carifer (Bloch), a commercially and 

recreationally important species. Quantitative comparisons of total DNA extracted from caudal fin 

clips against necropsied tissue (liver), demonstrate no significant difference, however caudal fin 

tissue provides a significantly cleaner product. Amplification and electrophoresis of total DNA, 

followed by direct sequencing of target mitochondrial genomic regions obviates lhe need for 

lethal tissue sampling and promotes the merits of fin clipping for the acquisition of comparative 

genetic material that is practical, ethical and attuned to the aims of conservation and better 

management. 

Extra Keywords: total DNA; nonlethal sampling; fin clips. 
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Introduction 

Whilst the acquisition of tissue samples for fisheries-based genetic research would 

ideally enable the release of sampled individuals, protein analyses and the subsequent discovery 

of apparently tissue-specific forms of virtually identical enzymes (isozymes), resulted in a shift 

toward necropsied tissues (e.g. liver, eye, heart, kidney and brain) (Morizot eta/. 1990). A greater 

understanding of both organelle and nuclear DNA (i.e. total DNA) has been achieved with recent 

technological advances, such as the probing and/or amplification of DNA sequences (e.g. Kocher 

eta/. 1989), enabling the discrimination of species, subspecies, and local populations and stocks. 

DespHe the desirability of gathering genetic data without killing subjects, the 

overwhelming majority of studies in fishery-oriented population genetics have utilized tissues 

from sacrificed individuals (Billington and Hebert, 1990; Morizot eta/. 1990). 

Morizot et a/. (1990) stated a number of criteria tor minimally invasive sampling 

procedures, rather than noninvasive, or low·risk sampling. The most salient of these include: 

1. Lethality caused by the sampling technique should be extremely infrequent, and the 

effects on fish health and fitness should be minimal. 

2. The collected tissue should allow extensive genetic analyses. 

3. Sampling should be relatively easy to pertorm, [perhaps by relatively untrained persons], 

and post-sampling treatment of tissues should be minimal, allowing easy and convenient 

field storage. 

In their comprehensive review of fishery-based nonlethal sampling procedures, Morizot 

eta/. (1990) concluded that although liver tissue was the most potentially informative allozyme 

yielding material, the favoured minimally invasive approach of fin clipping was only slightly behind 

liver in information yield, and ahead of other tissues when compared to the above selection 

criteria. Few other workers have employed minimally invasive sampling techniques. Vuorinen 

and Piironen (1984) examined the enzyme products scored from the adipose fins of juvenile 

salmonlds without significant detriment, as did Morizot eta/. (1990) in their studies of cattish, with 

149 



the latter suggesting the high fat content of this tissue source causing difficulties in interpretation. 

More recently, Hall and Nawrocki (1995) sampled the adipose fin of brown trout Salmo truffa (L.), 

to successfully discriminate a number of populations. Wingo and Muncy (1984) established a 

procedure for sampling the blood of the walleye Stizostedion vifreon (l.). This technique was 

used by Billington and Hebert (1990) to vindicate blood sampling as a nonlethal sampling 

methodology, as did Pogson et al. (1995). Work by Mork and Heggberget (1984) and Danzmann 

ef al. (1993) has confirmed the utility of fish gametes as a potentially minimally invasive sampling 

technique for the collection of genetic data, although this is typically a seasonal opportunity. 

Rapid advances in genetic technologies have substantially increased the tools available 

to researchers in fisheries population studies, resulting in comparisons between various genetic 

techniques (e.g. Ward et al. 1989; Pogson et al. t995; Ward et al. 1995), and a greater 

understanding of the mitochondrial genome of fish populations (Billington and Hebert, 1988; 

Kocher et al. t989; Billington et al. 1992; Grewe et al. 1993; Billington and Strange, 1995), yet 

investigators mostly rely on tissue taken from sacrificed animals. This practice continues despite 

the demonstration of Whitmore ef al. (1992) that mttochondrial DNA (mtDNA) restriction fragment 

length polymorphisms are available by sampling the scale epithelium of live fishes. 

This study uses the barramundi, Lates calcarifer (L.), as a model for investigating the 

amounts of total DNA available from various tissues in a representative fish. We then seek to 

reiterate that the technologies of gene amplification and direct sequencing enables the 

development of molecular character sets from tissue sources obtained by our preferred minimally 

invasive sampling technique of caudal fin clipping. 
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Methods 

Tissue selection 

Eight areas of a freshly killed 400g barramundi were Identified as potential s~es for the 

extraction of sufficient amounts of total DNA for use in genetic analyses. We selected typically 

necropsied tissues (liver, gill, heart); 'moderately" invasive tissue (eye); potentially minimally 

invasive tissue sampling of lateral scales and muscle biopsy (pectoral fin muscle and basal tail 

muscle); and the preferred minimally invasive tissue source, caudal fin clips. Blood samples were 

not taken, however liver, gill and heart tissues are areas of rich blood supply, and might serve as 

a blood analogue. 

DNA preparation and quantification 

Tissue samples were vortexed in 250!1L 0.1% Triton X-100 (Sigma) for 1 min. 50~tl of 

100mg/ml proteinase K (Sigma) was added to the tube and the compos~e heated for 1 hour at 

50'C with occasional mixing. Twenty five microlitres of SET buffer (5% SDS, 50mM EDTA, 

500mM Tris pH 8) (Sigma) was added to the reaction and a single extraction pertormed with 500 

!1L 1:1 Phenol:chloroform'isoamyl alcohol (Sigma). The aqueous layer was removed to a new 

tube and 25!1L of 3M sodium acetate (Sigma) and 250!1L isopropanol (BDH) added. DNA was 

precip~ated from the solution at ·20'C for 30 min and then pelleted at 13 OOOrpm for 15 minutes 

at room temp. The DNA pellet was washed once with 70% ethanol (BDH), dried and 

resuspended in 50~tl of sterile water. 

Each of 50!1L samples were analyzed spectrophotometrically to provide both DNA and 

protein optical densities (OD) at their respective 260nm and 280nm wavelengths. The 

OD2.,,!0D2"'"m ratio provides an estimate of the purity of the nucleic acid, with pure 

preparations having OD2.,,10D28., values between 1.8·2.0 (Sambrook eta/. 1989). 

To compare total DNA yield and purity of caudal fin and liver tissue, we obtained a 

second fish (320g). The procedure followed was Identical to that stated above except only 

caudal fin and liver were sampled. Caudal fin clips were taken at the distal margin of the fin, with 
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the angle of cutting being a rounded, 'bite-like" cut. Five pieces of tissue were taken from each 

source. 

DNA amplification and electrophoresis 

We selected primers designed to amplify variable sequences within the control and 

cytochrome b regions of the barramundi mitochondrial genome using the polymerase chain 

reaction (PCR, Saiki at a/. 1988). For the control region, we used a light-strand primer (S. 

Chenoweth, personal communication) and a heavy-strand primer (Meyer et al. 1990). The light 

and heavy strand primers used for the cytochrome b amplification were those described in 

Kocher et at. (1989). Amplification of each region was done separately for DNA samples 

eX1racted from the liver and caudal fin. PCR reactions consisted of polymerase reaction buffer 

(67mM Tris-HCL pH 8.8, 16.6mM (NH4)2S04, 0.45% Triton X-100, 2mg/ml gelatin) (Biotech), 

O.OS~tM of each primer (Research Genetics), 0.5units of Taq polymerase (Biotech) 250~tM 

dNTPs (Biotech), 2mM MgCI2 (Sigma) and 20ng of target DNA in a 10~tl reaction. Amplrrications 

were done in capillary tubes on a MJ research minicycler. Conditions for the control region were 

an initial denaturing step of 94"C for 5 min followed by 35 cycles of 94/30 sec, 40/30 sec, 72/60 

sec and a final step of 72/5 min. Thermo cycling conditions for the cytochrome b region were 54" 

for 5 min followed by 30 cycles of 94/20 sec, 50/40 sec, 72/40 sec and a final step of 72/5 

minutes. Five microlitres of each reaction was run on a 2% agarose gel in 1 x TAE buffer 

(Sambrook et al. 1989) at 70 volts for 30 min using pUC19 Hpall (Biotech) standards of known 

fragment size. DNA was visualized by staining with ethidium bromide. 

DNA template preparation and sequencing 

Direct sequencing of the double-stranded PCR products requires the prior removal of 

DNA primers, salts and polymerases. One caudal fin PCR product each from the mtDNA control 

region and cytochrome b gene was cleaned following the manufacturer's protocol (QIAquick). 

Double stranded DNA was fluorescently quantified using the mlnigel method (Sambrook et a/. 

1989). 
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Thermal cycle sequencing involved the mixing of fluorescently labelled 

dldeoxynucleotide triphosphates, template DNA and PCR primers to make a 1 011L reaction 

(Applied Biosystems). The sequencing reactions were done in capillary tubes on a MJ research 

minicycler. Sequencing conditions involved 96°C for 30 sec, followed by 50/15 sec and 60/4 min. 

This cycle was repeated 25 times for both genomic regions. 

Excess dideoxynucleotide triphosphates were removed from samples by ethanol 

precipitation (Applied Biosystems). For each sample, 25!1L of template suppression reagent 

(Applied Biosystems) was added, briefly centrifuged, and denatured in a Perkin Elmer 9600 

therrnocycler preheated to 95°C for 2 min. Each sample was transferred to a ABI 310 Genetic 

Analyzer and electrophoresed for 80 min for the control region, and 100 min for the cytochrome b 

gene. The double-stranded sequences were aligned, and the light strand sequence was resolved 

using the Sequence Navigator version 1.0.1 software package (ABI Prism). 

Data analysis 

The data were tabulated and compared without statistical analyses. A simple factorial 

ANOVA was applied to replicate samples of caudal fin and liver tissues for differences in total 

DNA yields (llg/ml) and purity of total DNA extracted (OD260,.,10D,.,m). 

Results 

Total DNA extraction from source tissue 

The results of the total DNA extraction, together with the conversion of optical density 

unrrs to DNA concentrations (11g/ml) are given in Table 1. The amounts of total DNA extracted 

from all tissues ranged from 6.0·1 07.5!1g/ml. 
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Table 1. Spectrophotomelrlcal results of DNA extracllon analysis 

Tissue source 

Liver 

Eye 

Lateral scales 

Pectoral fin muscle 

Basal tail muscle 

Caudal fin 

Gill 

Heart 

DNA 
OD,.,.,m 

1.41 

0.37 

. 2.15 

0.85 

0.30 

0.52 

0.70 

0.12 

Total DNA 
(11g/mL) 

70.5 

18.5 

107.5 

42.5 

15.0 

26.0 

35.0 

6.0 

Quantity and quality of total DNA in caudal fin and liver tissue 

Protein 
OD,.,.,m 

1.71 

0.20 

1.13 

0.45 

0.17 

0.27 

0.45 

0.10 

1.72 

1.89 

1.90 

1.89 

1.82 

1.96 

1.50 

1.15 

Total DNA extracted from the caudal fin ranged from 34.0·78.5!1g/mL ( ±14.5 S.E.), 

compared to liver samples 25.5·55.0!1g/mL ( ± 11.7 S.E.). There was no significant statistical 

difference (F = 3.79, d.f. 9, P > 0.05) in extracted total DNA (!lg/mL) between caudal fin and liver 

samples. 

The purity ol DNA extracted (OD26.,,/0D280,m) had a relatively small range in the caudal 

fin (1.65·1.79; ± 0.05 S.E.), compared to the higher vanability found in the liver samples (1.02· 

1.62; ± 0.20 S.E.), and there was a statistically significant difference (F = 11.58, d.f. 9, P < 0.05) in 

the purity of total DNA extracted from the caudal fin and the liver, with DNA extracted from the 

caudal fin being significantly less contaminated by protein. 
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AmpiHicalion of lhe mitochondrial control region and cytochrome b gene was expected to 

yield DNA fragment sizes of;:: 300 base pairs (S. Chenoweth, personal communication; Meyer et 

a/. 1990; Kocher et a/. 1989). Products obtained from both liver and caudal fin DNA confirm this 

(Fig. 1). 

Direct sequencing of caudal fin PCR products obtained from barramundi mtDNA 

demonstrate the resolution of a 279 base pair sequence for the mtDNA control region, and a 334 

base pair sequence for the mtDNA cytochrome b gene (Fig. 2). 

Discussion 

The results of the DNA extraction analysis clearly demonstrate the utility of a range of 

tissue for further molecular examination. The lack of statistical variability between the amounts of 

total DNA extracted from the liver and fin clips indicates that the present accepted requirement for 

necropsied tissue has no clear scientific advantage, and negates the need for destructive 

sampling melhodologies. We note the 'important contribution by commercial fisheries for tissue 

samples, however these are not always available. The method described herein provides a 

practical and ethical alternative. 

Fin clipping has been an accepted identification method in fisheries research for many 

years, aJthough some researchers (e.g. Billington and Hebert, 1990; Cadwallader, 1995) have 

criticized the technique as being inefficient and expensive. Nevertheless, whilst arguments might 

continue regarding fin clipping for capture and release studies (Bergstedt, 1985), this 

investigation promotes the merits of fin clipping for the acquisition of genetic material, perhaps in 

conjunction with physical identification. The described methodology has wide ranging 

applications in the establishment of genetic markers. For example, markers could be developed 

for the identification of individuals in both wild and captive environments; for identifying colonies 

of endangered species; for assessments of hybridization; and using genetic data in mark·release 

studies (Morizot eta/. 1990). 
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Fig. 1. Agarose gel stained with ethidium bromide to show PCR amplified 
sequences of Lates calcarifer. The fragment sizes of the pUC/ Hpa/1 
standard (lanes 1 , 5 & 9) are given at right. Lane 2 is liver v. control 
region and lane 3 is caudal fin v. control region. Lane 6 is liver v. 
cytochrome b and lane 7 is caudal fin v. cytochrome b. Lanes 4 & 8 
are water blanks. 
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~ GTGTAAATGCATATATATATGCATTAATTAACATTTGCTTGTAATCAAAGGACATACGTG60 

CATTCAATGGTACTCGTAAATACAATGTACGGTAACCTATAATTAATGTACTTTAAGCAA 120 

TAATATTACATACTAATCATCAGCAATAATATTGAGCGTAGTGAGAGATCACCAATCAGT 180 

AGGTATTCAGAGTGTTGACGGTTCTTGATAGTCAAGGACAGACACGGTGTGGGGGTTA 238 

CACAAATTGAACTATTACTGGCATCTGGTTCCTACTTCAGG 279 

b) GCTCATATTAGCCTATGNCTTATCTCCCAAATCCTAACAGGCCTATTCCTAGCCATACA 60 

CTACACTTCAGATATCGCAACAGCNTTTACATCCGTGACACATATTTGTCGCGACGTCAA120 

CTATGGATGACTTATTCGGAATATACATGCTAATGGCGCATCTTTCTTCTTCATCTGCAT 180 

CTACCTTCACATTGGTCGGGGTCTGTACTACGGCTCCTATCTCTACAAAGAAACTTGAAA240 

CATTGGAGTCATCCTCCTACTATTAGTTATAATAACTGCCTTCGTGGCTATGTTCTCCCC 300 

TGAGGACAAATATCATTCTGAGGGGCTGCAGTTT 334 

Fig. 2. Barramundi mitochondrial DNA sequences from a, part of the control region, and b, part 

of the cytochrome b region. Bases are adenine (A), cytosine (C), guanine (G), and 

thymine (T). N indicates an unresolved nucleotide base. 

Caudal fin clipping is possibly the only minimally invasive tissue sampling technique that 

reasonably addresses the cr~eria of Morizot et at. (1990). First, the method is non-lethal, and is 

likely to have minimal effect upon fish health or fitness, whereas "moderately" and potentially 

minimally invasive tissue extractions as described would be expected to impair fish health. For 

example, eye removal would have obvious implications, and one might anticipate an increased 

potential for fungal or other infections through muscle biopsy and scale removal. Whilst the scale 

removal technique of Whitmore et at. (1992) demonstrated similar results to ours, we argue that 

method has some significant shortcomings; the removal of scale epithelium leaves a large 

potential for infection (Morizot et at. 1990), and scale removal is possibly impractical for small 

fish. Stuart (1958) wams against the clipping of fins other than pelvic and caudal f1ns, due to 

possible interterence in mobility and reproductive displays. The conclusions of Russell and Hales 
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(1992) and Russell (1995) were that the rapid regeneration of clipped fins in the barramundi 

rendered clipping for physical identification an ineffective practice. Such rapid recovery strongly 

suggests that, in species such as the barramundi, fin clipping is a preferred sampling technique in 

obtaining tissue for genetic analyses. 

Second, the results of this study indicate that the amounts of total DNA extracted from 

the caudal fin are comparable to the live•;. We amplified regions of the mitochondrial genome 

which constitute approximately 1% of total ~NA (Alberts eta/. 1989). This implies that total DNA 

available in caudal fins has direct application for other techniques involving the probing and 

amplification of specific nucleotide sequences. 

Third, sampling is relatively simple; the tissue yielded plenty of DNA when only stored on 

ice, although warmer climates and prolonged periods in the field may increase molecular 

deterioration. Alternate means of sample storage, such as 70% ethanol preservation (Kocher et 

a/. 1989), have been demonstrated to be effective (Whitmore eta/. 1992; unpublished data), but 

rarely used. 

Population genetics studies offer outstanding prospects for aquacultural improvement 

(Morizot eta/. 1990). Additionally, rr the aims of such studies in fisheries management are to 

identify the genetic similarities and differences between stocks of species, and these works are to 

be utilized in a manner that enables their conservation (especially where rare or restricted 

genomes have been identified), then it is timely that lethal sampling practices are reviewed. The 

evidence is that minimally invasive tissue sampling techniques are a potential source of genetic 

information at least for the barramundi, and probably many other bony fishes. As our natural 

resources continue to decline under the strain of exploitation and over-utilization, tt is timely that 

we researchers continue to evaluate methodologies that are practical, ethical and reflect the 

broad objectives of conservation and better management. 
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Appendix B 

Genetic distance matrix using Kimura's two-parameter corrective model for the barramundi mtDNA control region 

CAl1 CAJ2 CAil C.1.14 CAIS OAR1 CAR;:Z CARJ OAR• O.l,R, OA,R(i OAR7CAR!I CARQ DAR1oFm FIT2 FlP F1T5 Fflti ITT7 ,:l'Tll FIT9 FlnO FrT1l FIT12 AT13 FITl-41 f'rrt5 OR01 OROZ ORDJ ORD4 OROS OR06 OR07 OROS OROO OAD10 0R011 ORC12 CR013 OR014 OR015 PNG 

CAIi o_ocoo� 

CAl2 0,0:X:0 O.OX:C-

CAIS O.OC.OO 0.0000 O:C:000 • 

CA14 0.0000 O,OOXl O.OOXI O,OXO• 

CAtS O,OXIJ Q.CO:X, o.o:m o.o::m o.ocm-

DAR1 •'- 0.0!!63 0.0363 O.tes3 O.o,53 O.rm3 O.CIJXI· 

CIAR2 OJJllfi3 0.(E63; CI..CE63 D.Cll:i3 OJIIG O.CJXlO O.OXJ:1. 

DAR3 OJJ914 O.Q914 0.1!114 Om14 O.C914 0.IJM.4 0.0044 Oalll-

0A.R4 QD911 a.am o.ce11 omn o.mn o.ma om,a O.m57 o.CDJJ. 
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