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Abstract 

This study investigated how sense of effort is altered during fatigue in nine normal 

subjects. A contralateral limb matching paradigm was used in which the subjects non

dominant (reference) arm was held at 20% MVC with force production matched at one 

minute intervals by the dominant (marching arm). It was found that matching tbrce 

increased in a linear fashion with fatigue. It was also observed that EMG amplitude 

increased in the reference and matching arm and remained elevated during a 15 minute 

recovery period. As in previous studies strong correlation (r = 0.85) between rmsEMG 

in the reference arm and matching force was recorded. It was found that a subject was 

able to estimate force accurately a short time (in 10 minutes) after the fatiguing influence 

was removed although strength had not fhlly recovered. As with previous studies it was 

concluded that judgements of force production were based on the subjects internally 

generated perception of effort and not on the absolute force being generated. 
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1.1 Background to the Study 

CHAPTER ONE 

INTRODUCTION 

Muscle tUtigue is a common occurrence which results when skeletal muscles perform 

sustained or repeated contractions in order to complete a task. Muscle fatigue can be 

detined as " ... any reduction in the force genemting capacity of the total neuromuscular 

system regardless of the force required in any given situation" (Bigland-Ritchie & 

Woods, 1984, p. 691). 

A contraction maintained at a low level for an extended duration ( eg carrying a briefcase 

to work) will gradually cause a sensation of increasing heaviness to be experienced and a 

gradually increasing amount of etlbrt being needed to support it. Studies concerning 

perceptions of weight and force date back to a text by Ernst Weber ( 1834) entitled lhe 

Sense f~j"J(mc.:h (cited in Jones, 1986 ). In the same year Sir Charles Bell also published a 

text exploring muscular sense, especially that of the hand (cited in Jones, I 986 ). Muller 

( 1840) cited in McCloskey ( 1981) is credited with t1rst voicing the idea that sensations 

may result from central neural processes relating to motor commands. 

Sensations of heaviness may be related to a centrifugal process known as corollary 

discharge. Corollary discharge is one of the central mechanisms involved in kinesthesia 

and was a term first ~sed by Sperry ( 1950) to describe" .. supposed internal signals that 

arise from centrifugal motor commands and that influence perception" (cited in 

McCloskey, 1981, p. 1415 ). Sense of effort refers to" .. sensations said to arise directly 



from the internal actions of motor commands" (McCloskey, Gandevia, Potter, and 

Colebatch, 1983, p.l51) and may sometimes be used as a synonym for corollary 

discharge (McCloskey, 1981 ). Another process known as sense of tension or force is 

thought to be separate from, but closely related to a sense of effort, ar1d is related to an 

individuals estimation of weight (Jones & Hunter, 198Jb). McCloskey, Ebeling and 

Goodwin (1974) suggest that cutaneous mechanoreceptors, receptors in the ccntracting 

muscles, tendons or joints and centrifugal mechanisms a!! may contribute to sense of 

tension. It is however more likely that sense of tension is mediated by peripheral 

feedback mechanisms while sense of effort is mediated through central processes 

(Catarelli, \988). 

Mechanisms that cause peripheral fatigue of the skeletal muscle system have been 

investigated quite thoroughly and are well known, however mechanisms responsible for 

central fatigue are not understood to the same degree. Alterations in metabolic 

processes within the fiber, failure of the motor neuron at the neuromuscular junction, 

changes in the motor nerve itself, and alteration in the central nervous system (Fox, 

Bowers & Foss, 1993) are all events that may cause muscular fatigue. While central 

fatigue is theorised to be psychologically related to a subjects motivation (Bigland

Ritchie & Woods, \984) and biochemically to neurotransmitters serotonin and dopamine 

(Davis, 1995) it is most likely that peripheral fatigue occurs due to: altered sarcolemmal 

membrane depolarisation, neuromuscular junction thilure, altered calcium absorption and 

release, and impaired cross-bridge interactions (Green, 1987). 
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How peripheral and central interactions of fatigue are processed by the central nervous 

system during fatigue and how this may affect a muscles perception of a weight is of 

great interest to the sports scientist. This is because many sports have actions ( eg 

gripping a tennis racquet) that rely on prolonged contractions at a low level to achieve 

success. Altered perceptions of fatigue also has implications for research into individuals 

which· suffer from effort related syndromes (eg chronic fatigue syudrome). During 

exercise these individuals have an increased sense of effort, in comparison to normal 

subjects, even though there is no differing physiological mechanisms present 

(McCluskey, 1993 ). 

1.2 Purpose of the Study 

The purpose of this study is to investigate how effort sensations change in skeletal 

muscle while it is being fatigued to exhaustion via a low level isometric contraction. This 

win be achieved by recording the progression of estimated tension production and 

rmsEMG amplitudes in the dominant arm (matching arm) and the non-dominant arm 

(reference arm). By doing this I will further clarify relationships between muscular 

fatigue and sense of effort already explored by other authors. 
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1.3 Aim of Study 

The aim of this study is to record alterations in a subjects sense of effort during a low 

level isometric contraction to maximal endurance. This will be achieved by: 

• Recording and comparing force production in the matching arm and reference arm 

during the exercise protocol and recovery period; 

• Recording and comparing EMG profiles of the reference and matching arms; 

• Recording perceived exertion of the subjects reference arm, via a Borg Scale rating, 

once per minute during the course of the exer~ise protocol: and 

• Recording and comparing maximal voluntary contraction (MVC) of the reference 

and matching arm before and after the exercise protocol. 

1.4 Hypothesis 

• There wil! be increased force production during the endurance task and recovery in 

the matching limb: 

• An increase in EMG amplitudes in both limbs during the endurance task which will 

remain elevated during recovery: 

• There wil! be increased perceived effort during the endurance task and recovery in 

the reference limb: and 

• There will be a decrease in MVC and maximal EMG of the reference arm and 

matching arm during recovery, compared to pre exercise values. 
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1.5 Theoretical Framework 

It has been observed that fatiguing a muscle will result in a decrease in the force able to 

be produced. The peripheral, and to a lesser extent central mechanisms of thtigue have 

been well documented. The role of sense of effort during fatigue and recovery has not 

been as extensively studied. The mechanisms behind sense 01' effort will be explored in 

subjects by utilising EMG and tension measures in contralateral arms. The importance of 

these tindings will lie in being able to relate force and :-nyoelectrica\ relationships to 

sense of effort and muscle fatigue in norma[ subjects. 
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2.1 Fatigue 

CHAPTER TWO 

LIT! 'TURE REVIEW 

Muscle fatigue is actiYity dependant and results in an impairment of motor performance 

( Enoka & Stuart. I 992). As fatigue increases the perceived effort requireC to maintain 

the same degree afforce wi!J also increase (Enoka & Stuart, 1992). Not only is fatigue 

demonstrated by a decrease in force production but also with a shift in the EMG 

frequency range spectnnn and the accumulation of intra-muscular metabolites (Biglanct

Ritchie & Woods. 1984). The c:1uses of fatigue are often divided into two areas. 

peripheral and centraL Peripheral tbtigue refers to mechanisms that affect the muscle 

directly while central fatigue is associated with events occurring only in the CNS (Davis. 

1995) 

2.1.1 Peripher:tl .'\'lechanisms 

The proposed mechanisms of peripheral fatigue have been extensively studied and as 

such are generally accepted. Asmussen ( 1979) states that there are two areas in which 

peripheral fatigue can occur divided into ·'transmission me:hanisms ·• and ·'contractile 

mechanisms.,. Possible mechanisms of peripheral fatigue stated by Green (1987) are: 

pre-synaptic failure. failure of sarcolemma to sustain an action potentiaL depressed 

calcium release from sarcoplasmic reticulum. reduced binding affinity of troponin for 

calcium. a failure in the cross bridge cycle and, depressed calcium re-accumulation by 

sarcoplasmic reticulum. 
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2.1.2 Central Mechanisms 

There are however several theories as to how muscle tJtigue can affect the CNS and its 

perception. Gandevia, Allen, & McKenzie (1995, p. 281) suggest some possible 

mechanisms of central fatigue. These include· decline in motor cortical neuron discharge 

during sustained contractions, decline in muscle :;pindle atlCrent discharge over the 

course of .strong isometric contractions, and ·· . inhibitory feedback from Golgi tendon 

organs and group Ill and IV afferents" Also suggested are psychnlngical tJctors such as 

a lack of motivation in the subject (Bigland-Ritchie & Woods, 1984; Secher, 1992: 

Stokes, Cooper, & Edwards, 1988). There also ... may be a physical limitation to the 

CNS capacity" (Bigland-Ritchie & Woods, I 984, p. (ll3 ). Davis ( 1995) hypothesised 

that the neurotransm"ltters )-hydroxytryptamine and dopamine might play a fatiguing 

role within the C'NS during prolonged e:-..::ercise. 

2.2 Kinesthetic Sensibility 

Proprioception is the perception of limb position and movement achieved through the 

activity of sensory neurons in the skin, muscles and joint tissue (Grigg, 1994 ). 

Information from the proprioceptors can be interpreted by the consciousness. This is 

known as kinesthetic sensibility and involves " .. perceived sensations about the static 

position or velocity of movement ... and perceived sensations about the forces generated 

during muscular contractions" (McCloskey, 1978, p. 763). Perceived sensations may be 

mediated by peripheral proprioceptive mechanisms and also by central input from the 

motor centres, the latter has been termed "corollary discharge". 
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2.2.1 Periphemll\tlechanisms 

Peripheral contributions to kinesthetic sensibility occur through muscle spindles. tendon 

organ receptors. joint receptors. and cutaneous mechanoreceptors (Jones. !994 ). 

Muscle spindles react to muscle length and are involved in signalling joint movement 

(Grigg, \994) Vibration is known to bt:: a pmvcrful stimulus tOr muscle spindles. 

Experiments involving vibration of the biceps brachii muscle tendon of one arm have 

shown either an increased force output estimation in the vibrated limb (Jones & Hunter_ 

\985) or a decreased force output estimation (\fcCioskey. J97S) when compared to the 

ann not exposed to vibration. This provides contlicting evidence as to whether muscle 

spindles are able to signal the force of a contraction. Golgi tendon organs are present in 

skeletal muscle tendon~i and relay information to the CNS concerning tendon tension. 

Overestimations of tension may be a result of Golgi tendon organ discharges 

(McCloskey, 1978). 

The remmmng two peripheral contributors are joint receptors which only transmit 

information when the joint is moved to its outer limit of range of motion and cutaneous 

mechanoreceptors whose role is thought to be almost negligible with notable functions 

being recorded mainly in the human hand (Grigg, 1994). 
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2.2.2 Corollary Discharge 

The term corollary discharge can be associated with high level neural processes and 

internal actions (Enoka & Stuart, \992) .... which arise from motor signals and which 

intluence perception"' (:VIcCioskey. et a!., 1983, p. !51) McCloskey ( 1981) is of the 

opinion that static contractions are extremely likely to be pe1·ceived by corollary 

discharge: much more so than sensations of movement. McCloskey and Torda ( 1975) 

concluded t"i"om their experiments that corollary discharge mav interact with muscle 

afferent signals before accessing the consciousness and that weight and tension 

estimation could be mediated through corol!ary discharge. The evidence for the role of 

corollary discharge in the perception of etfort is discussed by Enoka and Stuart (1992) 

and McCloskev, et al. ( !983 ). This includes: 

• An experimental!y induced decrease in muscle force leads to an increased perceived 

exertion in association with an increase in the generation of motor commands: 

• Attempted movement of a paralysed limb is not perceived. even though there ts 

awareness of the attempt and input from peripheral sensory sources indicating 

movement: 

• Excitation of a motor neuron pool leads to a decrease m motor commands and 

perceived exertion: and 

• Lesions fol!owing motor strokes increase perceived effort. 
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2.2.3 Sense of Effort 

A major kinesthetic function is the judgement of force experienced while the muscle is 

exerting an isometric contraction. This judgement is normally thought of as a centrally 

generated sense of effort (ie. corollary discharge) but could also possibly arise from a 

peripheral sense of force (Jones, I 995 ). 

Ekblom and Goldberg ( 1971 ) are credited with first ra1smg the issue of central and 

peripheral factors contributing to an etYort sense_ Since then many author~ bave 

investigated this sense of effort (Cafaret!i & Bigland-Ritchie, 1979: Jones & Hunter, 

1983a: and :\lcC\oskev. et al.. 1974)_ Thev have genera!lv used the arm and involved 
" - ~ -

either the biceps brachii. triceps surae or forearm muscles. Jones and Hunter (!983a) 

conducted experiments similar to the current study involving the contralateral muscles of 

the upper arm. Tension and myoelectrical relationships were established relating 

contralateral arms and they concluded that sense of tension was not distinguishable from 

a sense of effort YlcCioskey. et a! .. (197-J.) found evidence during the course of their 

experiments for a ~eneral overestimation of tension in fatigued muscles via central 

processes. The phenomenon of altered estimation in fatigue has since being studied by 

other investigators ( Aniss. Gandevia, & Milne, 1988: Cafarelli & Big!and-Ritchie, 1979: 

Jones & Hunter. \983a) who have also concluded that it is mediated by central 

mechanisms. It has also been established that the degree to which sense of effort alters, 

depends largely on the size of load rather than the length of time the contraction is held. 
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2.3 Electromyography (EMG) and Muscle Fatigue 

Electromyography is used to detect myoelectrical signals and is an important tool when 

studying localised muscle fatigue (Beliveau, Van Hoecke, Garapon-Bar, Gaillard, Herry, 

Atlan, & Bouissou, 1992; Linssen. Stegeman. Joosten. van't Hoff, Binkhorst, & 

Notermans. 1993) Analysis of surface EMG amplitude. power density frequency 

spectrum, and muscle tiber conduction •;e]ocity can provide important information in 

fatigue profiles of muscles (Linssen. et al.. 1993 ). Possibly the most commonly measured 

EMG variable used to observe myoelectrical fhtigue is amplitude. Bigland-Ritchie 

( \981) states that E:-...·JG magnitude depends on the amount of active titers. the fibers 

mean activation rate, and each fibers average actio11 potential. Jones and Hunter ( 1982. 

1983a; & 1983b) have carried out several experiments concerning the relationships 

between myoelectric activity and force perception. Their findings suggested that during 

the course of a fatiguing contraction overestimation of forces \vas most likely to result 

from efferent signals of similar magnitude being dispatched to fatigued and unfatigued 

muscles. Several authors have described myoelectrical and metabolic patterns evident in 

the muscle during fatiguing exercise and the following recovery p(;nod. The::~:.'! include: 

• A progressively increasing elevation in El\i!G amplitude as fatigue develops and 

immediately postexercise when compared to resting EMG (Bigland-Ritchie, 1981; 

Kirsch and Rymer. I 987; and Mat on, 1981 ): 

• A recovery of the EMG power spectrum that occurs within 10 minutes postexercise 

and which is tbster than that of intramuscular metabolites (Beliveau. et al., 1992; 

Kirsch & Rymer. 1987); 
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• Changes in phosphate, phosphocreatine and phosphoric acid concentration which 

appear to parallel those in the EMG power spectrum during exercise (Beliveau, et al., 

!992); 

• A decrease in the 10\v ffequency E~IG content coupled with an increase in high 

frequency EMG content (van der Hoeven. V<In Weerden. & Zwans. \993 ): and 

• A decrease in myoelectrical activity during the course of a fatiguing :VIVC (BiglandM 

Ritchie. 1981) 

1A Perceived Exertion 

For quite some time now scientists have endeavoured to find a ratio~based relationship 

between the subjective occurrence of perceived exertion and an objective. quantifiable 

physiological mechanism. ivlihevic ( 1981) suggests that the degree to which a 

physiological response 1s interpreted as a perceptual cue depends on the responses 

availability to the conscious. The psychophysical perceptions of a subject to physical 

effort is known as perceived effort with Borg ( \982. p. 3 77) stating that a subject rating 

of·· ... perceived exertion is the single best indicator of the degree of physical strain" 

There are two physiological factors. local and central. thought to contribute to exertion 

perceptions. Local fhctors which involve tee!ings of strain from the exercising muscle.s 

and may include input from blood lactate. Golgi tendon organs and general muscle 

sensations (Mihevic, 1981; Pandolf, 1982). Central factors are associated with heart 

rate, ventilation and respiration rates (Mihevic, \981 ). Ekblom and Goldbarg ( 1971) 

published experimental findings relating oxygen consumption. heart rate and blood 
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lactate concentrations to ratings of perceived exertion (RPE). They concluded that 

subject RPE was based on both, central and peripheral factors, with RPE in heavy 

exercise relating to the amount o~ muscle mass used. Cafarelli (l982) theorised that 

sensory responses to brief static and dynamic exertion are a function of the 

neuromuscular system. 

In 1970 Borg ( 1982) proposed a 15-grade scale which has been widely accepted by the 

scientific community to best objectifY subjective perceptual feelings (Tabit: 2. I). The 

ratio values in this table have been found to correlate strongly to heart rates of between 

60 and 200 beats per minute for adults aged 30 to 50 years, with heart rate thought to 

reflect exercise strain (Borg, I 982; Mihevic, \981 ). The following equation may allow 

heart rate to be predicted from RPE· 

Heart Rate~ RPE X 10 (Borg & Noble, 1974) 

Table 2.1 The 15 point scale for perceived exertion. 

6 
7 Very, very light 
8 
9 Very light 
10 
II Fairly light 
12 
13 Somewr.at hard 
14 
15 Hard 
16 
17 Very, hard 
18 
19 Very, very hard 
20 

Source: Borg, G. ( 1982). Psychological bases of percived exertion. Medicine and 
Science in Sports and Exercise, 14 (5), 377-381. 
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As well as Borg's 15-grade RPE scale there has been a scale developed based on ratio

scaling principles, used to grade the subjects effort magnitude. This scale can be applied 

to rate subjective increases experienced during activities involving an increasing stimulus 

intensity. A possible disadvantage of theses scales may be a tendency for the subject to 

"conserve numbers" (eg 20 or 10 must equal the maximal effort) in order to fit in with 

the scale (Cafarelli. 1988 ). 
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3.1 Design 

CHAPTER THREE 

METHODOLOGY 

This study involved comparisons of muscle force and EMG measures in contralateral 

arms. Subjects were seated in a strength·testing chair and held their non·dominant 

(reference) biceps brachii at 90° at a force equating to 2.0% of their MVC, until they 

were unable to maintain the required force. At regular intervals, of one minute, a 

replication of force production in the reference arm was attempted by the dominant 

(matching) arm. Immediately following this matching contraction, RPE in the reference 

arm was recorded. EMG profiles of both limbs monitored through surface electrodes 

mounted on the biceps brachii were recorded throughout the entire procedure. Figures 

3.1 and 3.2 illustrate a subject positioned in the force chair ready to begin the exercise 

protocol. 

3.2 Pilot Study 

Preceding the main project a pilot study was conducted. The main purpose of this study 

was to measure reproducibility of force and EMG data obtained using the experimental 

setup. This study was also used to familiarise the author with all equipment operation 

prior to commencement of the main project. Five male subjects participated in this study 

mean age 23.6 ( D 2.I) years and mean weight 76.6 ( '0' 5 0) kilograms, with data being 

collected from between 4 and II limbs. Contractions were performed, in random order, 

with non~dominant and dominant biceps brachii equal to to, 20, 30, 40, 50, 60, 80 

15 



percent of subject MVC, as measured at the beginning of the session. The protocol was 

perfOrmed tbr each subject during two separate occasions with all data being sampled at 

a rate of 500 Hz. Method error (ME) of MVC and maximal rmsEMG data was 2.9 and 

10.3, respectively. The coefficient of variation was 2.2% for MVC and 14.5% for the 

rmsEMG. Force and rmsEMG data fbr the first te~t and the retest have been graphed 

against one another and are displayed in Figure 3.3. Figure 3.4 contains typical force and 

rmsEMG traces recorded during the contractions made at various MVC percentages. 

3.3 Instruments 

• Force Chair and restraining straps; 

• Padded Board with C -Clamps; 

• Tensiometer-strain gauge: 

• 5 Volt Power Supply; 

• IBM microprocessor; 

• Amlab Software; 

• IS Point Borg Scale (Borg, 1982); 

• RPE Data Collection Sheet; 

• Alcohol swabs (Medi-Swab); 

• Electrode leads; and 

• Surface EMG electrodes (Ag/AgCI. Meditrace). 

16 



3.4 Subjects 

Nine subjects composed of university staffanO students participated in this study (7 male 

and 2 female). Ages ranged from 20 to 37 years, mean 27.6 (s.d. D6.9) and weight 

ranged from 53 to I JO kilograms, mean 79.6 (s.d. iJ 17.2). Subject exercise activity level 

ranged from 2-3 days of aerobic exercise a week to 6-7 days mixed aerobic and light 

resistance training. Physical characteristics arc described in Appendix A. Eight of the 

nine subjects were right hand dominant with one male subject being left hand dominant. 

Each subject was familiarised \Vith test protocols and expectations previous to the 

commencement of testing and informed as to the potential side etfects they may 

experience post-exercise. To this effect all subjects signed an informed consent form 

prior to any testing (Appendix, B). This study received approval form the Edith Cowan 

University Committee For The Conduct of Ethical Research before any testing was 

pelformed. To protect subjects anonymity names were not used with all subjects 

assigned numbers. 

3.4.1 Subject Limitations 

Subjects varied in age and sex and also in strength, sttsceptibility to fatigue and 

dominant arm. Subjects also varied on subjective ratings of perceived exertion. Subjects 

were required to be non participatory in intensive weight training. 

3.4.2 Subject Delimitations 

Delimitations included subjects perception of effort, threshold of pain and time to 

fatigue. In order to decrease impact of these areas when subjects neared maximal 
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endurance they were verbally encouraged to give I 00%, insuring the" a true maximal 

endurance was reached. 

3.5 Procedures 

3.5.1 Apparatus 

Subjects were seated in the force chair and secured with the restraining straps across the 

midritr Elbows were then positioned at shoulder width on an adjustable padded brace 

which was secured in place with c-clamps. The brace was secured in the optimum height 

position to produce a 90 angle between the upper arm and the fOrearm. Height was 

adjusted via a series of holes drilled into the tOrce chair frame. The strain-gauge fOrce 

transducers mounted on the force chair frame were then attached to the subjects wrist 

via a padded, non-elastic strap. Both hands were placed in a pronated position. Once per 

week the strain-gauge fOrce transducers were calibrated using thed weight calibration 

plates (Appendix C). Nine volt batteries were used to run a regulated 5 volt power 

supply and were discarded once they dropped a half volt in order maintain calibration 

accuracy. Throughout the testing session force and EMG measures tOr both limbs were 

continually recorded and stored, via the Amlab program, on the computer hard drive at a 

rate of 500 Hz. 

3.5.2 Determination of MVC 

Preceding each testing session subjects MVC (measured in N) was determined at 90° of 

flexion using both the non-dominant (reference) arm and the dominant (matching) arm. 

The subject was instructed to bring the wrist to the shoulder with the largest amount of 
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effort possible and to avoid all other body movements. When a MVC was being 

performed the subject was instructed to keep the opposing arm also at 90° of flexion. 

Each contraction was held until a visually judged peak force had been obtaint!d on the 

computer monitor. Two minutes rest was allocated between trials. From the contraction 

with the highest force production for the non-dominant arm, a 20°'o :-.IVC was 

determined. This was then displayed on the computer monitor using a ydlow trace to 

provide the subject \Vith a marker of the required target contraction. A blue trace was 

positioned at 10 N below the yellow and subjects experiencing difticulties keeping the 

force on the yellow trace were informed that they could keep it between the two. g1ving 

them a larger target area. 

3.5.3 Electromyography 

The subjects biceps brachii and lateral epicondyle were thoroughly cleaned with alcohol 

swabs. Surt3.ce (Ag/AgCl) eb.:tromyograph electrodes \Vere then placed o\·er the biceps 

brachii muscle of both limbs. The active electrode was positioned over the mid-point of 

the muscle belly and the inactive electrode 20 mm di~;tal. The mid-point was determined 

visually by having the subject tlex their biceps brachii at 90° of t1exion. The earth 

electrodes was placed over the lateral epicondyle of the humerus. Electrode leads \vere 

attached after the surface electrodes were secured and plugged into a preamplifier 

controlled by an IBM computer. 

3.5.4 Borg Scale RPE 

A 15 point Borg Scale was employed to record subject RPE in the reference arm. Prior 

to commencement of any testing subjects who were unfamiliar with the use of a Borg 
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Scale were instructed as to its usage. Subjects were informed in a very clear manner that 

given RPE values were to correspond to the amount of effort they felt they were 

exerting at the wrist and not the force. RPE values were sampled from the reference arm 

once per minute during the endurance task and at I, 3, 5, 10, and 15 minutes of the 

recovery. Values were recorded in a data sheet (Appendix D) along with any comments 

the subject cared to make. 

3.5.5 Endurance Tasl\. 

The endurance task \vas commenced after the subject performed the isometric 

contraction of the reference arm at the predetermine0. 20% MVC level. From this time 

once per minute the subject was verbally instructed to match the force being exerted in 

the reference arm, with the matching arm, for a period of 10 seconds. Immediately 

following this contraction a rating of perceived exertion in the reference arm was 

recorded using a Borg Scale (Borg , 1982). Maximal endurance was considered to of 

been achieved when the subject could no longer sustain the target force of20% MVC. 

3.5.6 Post-Exercise Procedure 

For a period of 15 minutes after maximal endurance the subject remained seated in the 

force chair and a recovery protocol was performed. During this period subjects 

continued to attempt to match force produced in the reference ann with the matching 

arm at time intervals of 1, 3, 5, 10, and 15 minutes post maximal endurance. At the 

above appointed times a 20% contraction of the reference arm was performed. After the 

contraction had been held for 5 seconds a RPE value was g1ven by the subject. 
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Following this the matching arm attempted to exert a similar force for 10 seconds. Both 

arms were then relaxed and an MVC of the reference was performed immediately 

followed by an MVC of the matching arm. As in the pre exercise MVC procedure the 

opposing arm remained at 90° of flexion. 

3.6 Data Analysis 

All data was analysed using the either the statistical program SPSS (version 6.0} for 

windows or Microsoft Excel (version 5 0). Data recorded during the endurance task and 

recovery period for tbrce and EMG variables varied widely in magnitude between 

subjects. Due to this fact. data was normalised. for comparison purposes to percentages 

of pre exercise maximal measures. To take into account the tact that subjects also varied 

in endurance time all data were standardised to produce an equivalent time series for 

each subject. Standardisation was achieved though the use of percentages to segment 

enduranl:e times into equivalent portions with values being taken from corresponding 

times. MVC and maximal EMG were determined by taking the average of a 0.2.5 second 

period before and after the strongest recorded force. Paired t-tests were performed 

between initial values and values recorded during the endurance task and recovery to 

obtain statistically significant values (P<O.OS/P<O.O I). A Pearson r product moment 

correlation was performed between average values for reference arm rmsEMG and 

matching force. 
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Figure 3.1 A front-on illustration displaying a subject correctly positioned to commence 
the endurance task. 

Figure 3.2 Side on illustration showing the positioning of wrist straps and angle of the 
subjects arms ... 
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Figure 3.3 This represents the relationship found between force and rmsEMG values 
recorded during contractions of various strength . 
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Figure 3.4 This displays typical rmsEMG and force traces recorded during contractions 
ofvarying force (one divison equals 0.5 seconds). 

24 



CFAPTER FOUR 

RESULTS 

All force and EMG subject data for the endurance task and recovery protocols were 

normalised with respect to pre-exercise maximal measures as outlined in the methods 

section. Values are expressed as mean± the standard error of the mean (sem). Measures 

corresponding to 0% of maximal endurance are those values recorded during the tirst 

matching contraction. Subject raw data can be found Appendix E. Standardised values 

for normalised subject data can be found in Appendix F. 

4.1 Pre-Exercise MVC and Maximal EMG 

Data representing the mean MVC and maximal EMG for the reference and matching 

arm are displayed graphically in Figure 4.1 and Figure 4.2 respectively. The reference 

arm produced a mean force of 315.1 (:!:::22.3) N with a range of 209 - 427 N. This 

compared to the matching arm which produced a mean force of343.6 (±22.5) N with a 

range of 216 - 508 N. The matching arm produced a mean force which was 8.3 % 

greater than the reference arm. This difference in means was found not to be statistically 

significant. The reference arm produced a mean voltage of 18.5.4 (::::12.7) mY with a 

range of 78 - 278 mY. This was very c!osely replicated by the matching arm which 

produced a mean voltage of 184.6 (±20.0) mV with a range of 85- 268 mV. There was 

very little variation between the maximal EMG of both arms with the reference arm 

producing a nnsEMG signal 0.4% greater than the matching arm. 

25 



4.2 !?o.-ce Production During the Endurance Task 

Normalised data representing the relationship between force production in the reference 

and matching arm can be found graphically in Figure 4.3. There was great variability in 

the endurance times of each subject, with times ranging from 7 to 34 minutes. Mean 

endurance time was 12.9 (± 1.6) mins. Throughout the endurance task subjects were 

found to be very accurate at maintaining the required reference contraction, with the 

force being maintained at a mean of2.0.4 (±0.3)% oft he reference MVC Force exerted 

by the matching arm was less accurate with contractions exerted by the matching arm 

found to gradually increase in strength as the endurance task progressed. Normalised 

force in the matching arm ranged from 21.8 (±1.0)% of the subjects matching arm 

MVC, during the tirst matching contraction to 41.8 (±2.5) % during the subjects final 

contraction. The fact that the first matching contraction was only approximately 2% 

greater than the reference arm force demonstrated that the subjects were able to 

accurately judge the required force during a low level contraction. However at maximal 

endurance this was far from the fact with force production of the matching arm during 

the tina! measure being 104.5% of the reference arm. Differences between the first 

matching contraction and those made at 40%, 60%, 80% and I 00% of the endurance 

time were significantly greater (P<0.05). 
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4.3 EMG Production During the Endurance Task 

Values for rmsEMG production in the reference and matching arm are displayed 

graphically in Figure 4.4. The mean EMG value of the reference arm was 28.1 (±0.7)% 

of the pre-exercise maximal value. There was very little variation in rmsEMG values for 

the reference arm with measures only ranging over 7.7%. Reference arm rmsEMG 

corresponding to the first matching contraction was 24.0 (±3.5)% and increased to 31.7 

(±2.8) % at the point equivalent to 80% of the subjects maximal endurance. rmsEi'vlG 

during the contraction corresponding to maximal endurance had decreased to 30.0%. 

Paired t-test's relating the first :-msEMG value to those at 20%, 40%, 60%, SO% and 

100% found no changes of statistical significance (P<O.OS). A Pearson test for 

correlation was performed between average values for reference arm rm"EMG and 

matching force \vith the relationship bearing a coefficient of0.85 (Figure 4.5). 

Values for the matching arm increaseJ on average by 14.7% of maximum, almost twice 

that of the reference arm. A value of26.0 (:::3 8)% of the pre-exercise maximal measure 

was recorded during the tirst matching contraction and one of 40.7 (::::4.4) % was 

recorded during the last. The mean rmsEMG measure for the matching arm was 31.5 

(± 1.24) %, which was only 3.4% greater than the mean of the reference arm. At the 

points corresponding to 0%, 20%, 4l,% ,60% and 80% of maximal endurance. both 

arms appeared to follow the same distribution pattern, with the largest difference being 

3.5%. 

It was only during the contraction corresponding to maximal endurance that a mtsEMG 

value in the matching ann increased to a greater extent (10.7%). The fact that rmsEMG 

for the matching arm did not increase with the same manner as matching force suggests 

that rmsEMG is not a good indicator of muscular effort. Paired t-tests were performed 

27 



relating the rmsEMG recorded at 0% to those at 20%, 40%, 60%, 80% and 100% with 

none of the differences found to be statistically significant. 

-t4 RPE During the Matching Exercisr 

Progression of RPE from the measure corresponding to 0% of maximal endurance to 

100% of maximal endurance is displayed graphically in Figure 4.6. Subject RPE 

increased in a linear fashion from 0~ 0 of maximal endurance to the measure at 60~/o of 

maximal endurance . .-\.s subjects neared maximal endurant.:e (SO% meJsure) the RPE 

values increased in a pattern steeper than the linear distribution then increased by only 

one value at 100%. The initial RPE taken within the first 5 seconds of commencement of 

the reference force ranged from 6 to 12 with a mean of9. RPE recorded following the 

tirst matching contraction ranged from 7 to 12 with a mean of I 0. RPE recorded 

following the tina! contraction ranged from 19 to 20 with a mean of20. A paired t-test 

was performed on the first and last recorded RPE value with the observed change found 

to be statistically significant (P<0.05). 
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4.5 Recovery of MVC 

Comparisons between rate of MVC recovery of the reference and matching arms are 

displayed in Figur{; 4 7. At 15 minutes post exercise MVC had recovered to 93.1 (±3.2) 

%of its pre exercise level in the reference arm and 94.6 (±2.2) % in the matching ann. 

Mean MVC force for the reference arm at I minute recovery was i-:4.1 (±2.8) % with 

the matching arm recording 91.6 (±2.5) %. It is interesting to note that after the tirst 

minute of recovery the matching arm was only able to produce 91.6% of its pre~exercise 

force even though it did not perform any specific fatiguing protocol. Also from these 

measures it can he seen that the reference arm although more fatigued following the 

endurance protocoL after 15 minutes, '>vas able to recover to almost the same strength as 

the matching arm which was not fatigued. Paired t-test"s were performed relating pre-

exercise MVC's of both arms to MVC's measured at L 3. 5, 10, and 15 minutes 

recovery. There was a statistically significant reduction (P<0.05) in the force production 

of both the reference and matching arms up until the 15 minute mark. 

4.6 Recovery of M<tximal EMG 

Recovery rmsEMG comparisons of the reference and matching arms are displayed in 

Figure 4.8. Recovery of maximal rmsEMG was not as marked as MVC recovery with 

the reference arm only reaching 82.7 (±6.7) % of its pre-exercise measure and the 

matching ann 91.3 (±2.6) %. Maximal rmsEMG of the reference arm stayed depressed 

over the course of the rec0very period with a mean measure of 82.1 (± 1.1) %. Maximal 

rmsEMG of the matching arm recovered to a greater extent with a mean of 89.7 (± I.5) 

%. but as in the reference ann. rmsEMG recovery was depressed when compared to 

MVC recovery. During all recovery measures the matching arm displayed a mean 

measure higher than that of the reference arm. a pattern also seen in the recovery of 
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MVC. Paired t-test's comparing pre-exercise values to recovery measures were 

performed on both arms. rmsEMG of the reference arm was still significantly (P<O.OS) 

less at the 15 min11te mark of recovery. The matching ann was on1y significantly less 

during the 1 and 3 minute recovery contractions. 

4. 7 Force During the Recovery Period 

Comparisons of the recovery force of the reference and matching anns are displayed in 

Figure 4. 9. During the five matching occasions, force of the reference arm was produced 

slightly above the required mark at a mean of 21.1 (±0.2) % with the force of the 

matching arm produced at a mean of25.7 (±1.3) %. Matching force was more closely 

estimated as the recovery period progressed and fatigue decreased. During the lOth and 

15th minute matching force was well estimated at 21.4 (±1.8) %, and 22.8 (±1.5) %, 

respectively. Force in the matching arm during the first and third and fifth minute was 

significantly greater (P<O. 05) than force exerted during the first matching contraction of 

the endurance task. 
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4.8 EMG During the Recovery Ptriod 

Recovery force of the reference and matching arms are displayed in Figure 4. I 0 The 

mean EMG of the reference arm taken ti-om the five recovery matching contractions was 

21.9 (±0.2) %. This compared to the mean EMG of the matching arm which was 25.7 

(±0.6) %. The distribution pattern of the data points as shown in Figure 4 lO follow a 

very similar course. There was no significant differences between recovery rmsEMG 

values and values recorded during the first matching contraction. There was a close 

similarity during the recovery period between mean force and mean rmsEMG for the 

reference ann '.vith only 0 S% difference. This was also true for the matching arm which 

had the same mean percentage for force and rmsEMG. 

4.9 RPE During the Recovery Period 

The graph ofRPE values during the recovery period Figure 4.11 shows that RPE values 

for the reference arm decreased back to the same values recorded following tP.e first 

matching contraction during the lOth minute of recovery. 
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Figure 4.1 Comparison of mean pre-exercise MVC's in the reference and matching 
Arms (Nieans ± SEM). 
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Figure4.2 Comparison of the mean maximal pre-exercise rmsEMG in the reference and 
matching arms (Means± SEM). 
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Figure 4.3 Relationship between reference and matching arm forces during the 
endurance task (Means ± SEM). * Denotes significant difference at the level of 
0.05 between given value and initial value. 
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Figure 4.4 Relationship between reference and matching arm rmsEMG during the 
endurance task (Means ± SEM). 
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Figure 4.6 Progression of RPE measures during the endurance task (Means± SEM). 
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Figure 4.7 Comparative display ofiviVC recovery in the reference and matching arms 
(Means± SEM). *Denotes significant difference at the level of0.05 between 
recovery and pre-exercise value. 
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Figure 4.8 Comparison between reference and matching arm maximal rmsEMG 
recovery (Means± SEM). * Denotes significant difference at the level of0.05 
between recovery and pre-exercise value. 
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Figure 4.9 Display of reference and matching arm force relationship during the recovery 
period matching tasks (Means± SEM). * Denotes significant difference at the 
level of0.05 between given value and initial endurance task value. 
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CHAPTER FIVE 

DISCUSSION 

The purpose of this study was to investigate how sense of effort changed during fatigue 

In order to achieve this, a contralateral limb matching paradigm employing a low-level 

isometric contraction to maximal endurance was performed. Force and rmsEMG 

changes were measured in both arms with RPE recorded only in the reference arm. 

Data collected during this study contirmed the first hypothesis that force production in 

the matching arm would increase as the endurance task progressed and remain elevated 

during the recovery period. Force during the pre-fatigue ::20% MVC contraction was 

matched quite accurately, hmvever a significant increase in force production was 

recorded at the point corresponding to 40% of the subjects maximal endurance and at 

subsequent matching contractions. During the recovery period force in the matching arm 

remained significantly elevated at the I, 3 and 5 minute mark but had decreased to a 

nonsignificant difference after I 0 minutes. It \vas most likely that after 10 minutes the 

subjects reference arm had recovered sufficiently from the endurance task that fatigue 

was no longer an influencing factor. 

The fact that force exerted during the first matching contraction was found to accurately 

estimate reference force indicates that forces are able to be estimated accurately in a 

fresh muscle. The ability to accurately estimate static forces has been previously 

demonstrated by Cafarelli and Bigland-Ritchie ( 1979) using unfatigued subjects to 

perform a series of fore~! matching contractions with the muscle held at varying lengths. 
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Matching contractions performed where one limb was in a stronger mechanical position 

resulted in an increased force output of up to 30%, but when both limbs were positioned 

at angles representing equal strength, forces were accurately matched. As maximal 

strength in this study was not tOund to vary significantly between limbs and initial 

matching force estimates were accurate, it can be can safely assumed that the recorded 

force differences were not related to an interlimb strength variation. 

This study confirms the results of investigations performed by Jones & Hunter (1983a, 

& 1983c) who also used a contralateral limb matching paradigm to explore force 

relationships during fatigue with reference tOrces being maintained at between 30 and 

70% MVC and matching contractions performed for 2 seconds once every 15 seconds. 

As in their studies, an increase in matching force was observed as the endurance task 

progressed. This increase in force also occurred in a linear fashion. During their 

experiments the rate of matching force increase was found to vary with initial force of 

the reference arm, with force increasimr at a greater rate, the hi!!her the initial force. 
~ - ~ 

Jones anrl Hunter ( 1983a) developed an equation to predict the increase in matching 

force from the initial force during an endurance task. 

P~(IOO-F)aT+F 

P = matching force{% MVC), 

F = reference force(% MVC). 

T = % endurance time, and 

a= constant (0.0047). 
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The fact that subjects force production increased with endurance time leads us to 

conclude that they could not distinguish between sensations of effort and sensations of 

force when the muscle was fatigued. This was a conclusion also reached by McCloskey 

~t a!. (1974) and Jones (1983) and supports the hypothesis of a centrally generated 

process being responsible for force estimation during fatigue. The increase in force data 

as the task progressed also suggests that the more fatigued a muscle is the less a subject 

is able dissociate the absolute force exerted from the effort needed to sustain it. This 

process has been discussed in detail by Gandevia and .\rfcCioskey ( 1976) and A.niss et J!. 

( 1988), who state that \vhen judging a weight subjects are guided more by effort than 

actual muscular tension. The use of a 20% initial force could have influenced the subject 

performance with previous investigators (Jones & Hunter, 1982) finding that most 

accurate force estimations occur near the middle of the subjects force range. 

The second hypothesis which stated that EMG amplitude would increase during the 

endurance task and remain elevated during the recovery period was also ~:onfinned by 

the test data. rmsEMG values increased steadily with percentage endurance time but 

there were no significant differences bet\veen the values measured at 0% and those at 

20%. 40%, 60%, 80% and I 00% of the endurance time. for both the reference and 

matching arms. A gradual increase in surface EMG amplitude over the course of a 

fatiguing contraction would be expected and signifies increasing recruitment of motor 

units or higher firing frequencies in motor units already recruited (Lind & Petrofsky. 

1979; Petrofsky, Glaser & Phi!lips, 1982). As the iecovery period progressed. amplitude 

of nnsEMG of both arms gradually decreased until at the 15 minute mark it was 

40 



between 2 and 3% below that recorded during the first matching contraction of the 

endurance task, with no significant differences being noted. 

The EMG/force relationship in the mm..::hing arm followed a pattern very similar to that 

described for an unfatigued biceps brachii by Bigland-Ritchie (I 981 ). Other muscles ( eg, 

soleus and adductor po!licis) follow a linear pattern but the biceps brachii has a nonlinear 

one possibly related to variations in motor units and the force range each is activated in 

(Bigland-Ritchie. 1981 ). 

rrnsEMG of the reference arm has previously been found to display a linear relationship 

with force exerted in the matching arm to the extent of being able to predict matching 

force from reference rmsEN'[G (Jones & Hunter, 1983a; !985). This relationship has led 

investigators to hypothesis that over-estimation of forces is due to increased excitatory 

input into the reference arm. This relationship is confirmed in this study with a high 

correlation coefficient (0.85) for normalised reference arm rmsEMG and matching force 

mean values. Previous investigations (Jones & Hunter, !983b) described this 

relationship as only occurring at low· initial forces (35% of max) and not with 

contractions performed at 50% and 65% of maximum. Investigators (Oda & Moritani, 

1995) have suggested that electrical activity in one arm is independent of activity in the 

other arm during fatigue. They found that during the course of a bilateral fatiguing 

contraction, cross-correlation of rmsEMG values decreased as the contraction 

progressed leading them to suggest that as t1ltigue increases there is a neural 

derangement of the common drive. If this were true then as fatigue progressed subject 
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force estimations would be less likely to be based on electrical activity m the 

contralateral arm, a relationship not found in this study. 

Hypothesis 3 stated that perceived effort wil! increase as the endurance task progresses 

and remain at an increased value during recovery. Based on previous literature (Borg & 

Noble~ 1974; Caiu, 1973; Stevens & Cain, 1970) and common sense we would expect a 

subjects perception of effort to increase. the longer an effort is maintained and to be at a 

maximal value at maximal endurance. Authors ( eg Pando It: 1982) have stated that a 

subjects RPE can be based on peripheral or central factors. During this study it was 

assumed that the subjects RPE, was based on local cues experienced in and around the 

contracting muscle. RPE collected during this study followed a steady linear 

progression, reflecting the progress of muscular fatigue, until the subject reached 80% 

of maximal endurance where a shaper increase followed by a plateau at maximal 

endurance occurred. 

The use of an RPE scale during this investigation to quantify subject effort resulted in a 

pattern similar to that described by other investigators. It has been noted that perceived 

effort gets progressively harder to accurately quantity the closer a subject is to a 

maximal effort with Jones and Hunter (! 982) recording a horizontal asymptote towards 

maximal forces. Subjects during this investigation perceived effort at 80% of maximal 

endurance to be almost as difficult as that required at maximal endurance. Also 

followilig this line it has been found that estimations of RPE involving the same stimulus 

intensity vary depending on whether a contraction of similar magnitude is performed in a 
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fatigued or unfatigued state (Teghtsoonian, Teghtsoonian, and Karlsson, 1977) with 

subjects in this study exerting the same force during an unfatigued or fatigued state. 

RPE recovered faster than strength which would seem to indicate that recovery of a 

subjects sense of effort is independent of their strength recovery. This is further 

demonstrated by the fact that when subjects returned to a pre· fatigue RPE they were 

also able to accurately estimate matching forces. 

The final hypothesis of a decrease in maximal strength and EMG during recovery was 

also cont!rmed by this investigation. A decrease in maximal strength of the reference arm 

would be expected because a contraction to maximal endurance had been performed. 

Maximal force in the reference arm was found to be significantly lower up until after the 

tenth minute. Maximal rmsEMG of the reference arm was still significantly less than pre~ 

exercise measures when the recovery period ended at the 15 minute mark. This drop in 

both maximal force and surface EMG may indicate that fatigue has occurred through 

mechanisms relating to electrical transmission (Lind & Petrofsky, 1979). A significant 

decrease in the maximal force of the matching arm was also recorded until the fifteenth 

minute but matching arm maximal rmsEMG measures were only significantly lower until 

the fifth minute of recovery. 

It is interesting to note that maximal force in the matching arm was significantly lower 

up until after the 15 minute mark, but that maximal rmsEMG was only significantly 

lower until the fifth minute. Maximal force in the reference arm had recovered to a 

nonsignificant difference by the fifteenth minute but maximal nnsEMG at this time was 
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still significantly depressed. This would seem to indicate that loss of force in the 

matching arm was due to a failure in the contractile apparatus and force loss in the 

reference ann was due to altered electrical transmission. Findings in this study can be 

parallelled to those of previous investigators ( eg Loscher, Cresswell & Thorstensson, 

1996) who found that following a maximal effort EMG remained depressed even though 

muscle force was found to be ~ble to be activated at close to a maximal level, indicating 

the possibility of central fatigue. However authors Lind and Petrofsky ( 1979) found the 

opposite with MVC recovering by the seventh minute post-exercise following a 

contraction to maximal endurance at 25% of NlVC while surface EMG had recovered 

within 3 minutes. Variations in recovery rate may be due the experiments being 

performed using different muscle groups. 

With hindsight it seems that several experimental procedures could have been modified 

to improve the study. In order to ensure that the 20% target force was based on a true 

measure of maximal force the use of nerve stimulation could of been employed. 

However. according to data presented by Cafarelli and Bigland-Ritchie ( 1979) when 

there was a comparison of voluntary MVC's to forces elicited by stimulation a subjects 

voluntary N1VC's was only minimally different to one elicited by stimulation. 

Occasionally the subject was found to move the upper arm resting on the padded board 

and also to move the forearms in a lateral fashion towards each other during the 

matching contractions. Usage of molded arm rests as described by (Jones, 1989) and an 

apparatus to minimise lateral movement of the forearm would of contributed to a 

decrease in arm movement and the ri:-.k of inaccurate measures. Subjects also frequently 

commented towards the end of the endurance task that there was a "pins and needles" 
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sensation experienced above the wrist. This would have resulted from the wrist straps 

occluding blood flow and compression of nerves. Attempts had been made to adequately 

pad the straps and excess padding did not seem to solve the problem. The use of a hand 

held grip placed in the palm would most likely eliminate the problem but may be the 

cause of others. 

Observation taken from this study may have applications to sporting actions involving 

prolonged contractions at a constant force (eg gripping a tennis racquet or cricket bat). 

To avoid possible errors in judgement related to muscle fatigue athletes could be 

encouraged to release the grip as often as possible and concentrate on relaxing and 

stretching the used muscles. This could possibly delay the onset of fatigue thus aiding 

concentration maintenance. Future studies could be designed to monitor the actual 

fatiguing effect grip maintenance has during a competitive situation with the use of 

surface EMG and pre/post activity MVC 

In conclusion this study investigated bow normal subjects sense of effort altered during 

fatigue. It was found that matching force increased in a linear fashion with fatigue and 

displayed a strong correlation (0.85) to rmsEMG in the reference arm. It was also found 

that a subject was able to estimate force accurately a short time (in 10 minutes) after the 

fatiguing influence was removed. It was concluded that judgements of force production 

were based on the subjects internally generated perception of effort and not on the 

absolute force being generated. 
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Consent Form for Participation in the Investigation into 

''Muscle Fatigue and Sense of Effort" 

The purpose of this study is to record the effects of muscular fatigue on sense of effort. 

You will be asked to hold a contraction of the biceps of your non-dominant arm at 20% 

of your maximal strength. as measured on the day, until you are unable to sustain the 

force any longer. At this point the exercise wit! be terminated. During the contraction 

period you will be asked verbally every minute to hold a contraction for I 0 seconds with 

your dominant arm, attempting to match the force in the right one. You will also be 

asked to rate your ··perceived etfort" on a number scale. Throughout the procedure the 

electrical activity of your biceps will be monitored with surface electrodes. It is a 

painless procedure. 

The above protocol will be clearly demonstrated and you will have a chance to practice 

before the testing commences. 

Some slight delayed soreness may be experienced in the exercised arm 24 - 48 hours 

after the testing day. 

The results gained from this research may be used to further our insight as to how 

muscle fatigue effects our sense of effort. 

Having read the above statements I acKnowledge that I am able to withdraw from the 

study at any time and are a\vare of the possible experienced side-effects. I also release 

Edith Cowan University of any claim arising from experimental procedures . 

! ........ ············· ........ ,age ..... years, agree to panicipate as a subject in the above 

study. 

Signed .............................. . 

Witness ..................................... Date ... . 
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REFERENCE FORCE DUR!NG RECOVERY 
1 min 3 min 5 min 110 min 15 min 
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22.3 25.9 28.6 ~3.21 26.8 
20.4 20.1 19.9 20.1 19.0 
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REFERENCE MVC DURING RECOVERY 
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