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ABSTRACT 

The purpose of the project was to assess the effects of inbreeding on the 

genetic constitution of two Pakistani bradaris (literally defined as brotherhoods). 

Both bradaris contain children born to consanguineous (first cousin) and non­

consanguineous marriages. DNA samples have been supplied by Dr Subaib Ahmed 

of the Armed Forces Institute of Pathology in Rawalpindi, for a total of 91 

individuals. 

The specific allele frequencies, and levels of homozygosity of each bradari, 

were determined using twenty fluorescence-labelled microsatellite markers for 

chromosomes 13 and 15. Amplification of the DNA was performed using the 

polymerase chain reaction (PCR). The PCR products were separated 

electrophoretically on an ABI Prism 310 Genetic Analyzer, with GeneScan software 

employed to identify the alleles of each individuf!J. Comparisons were made between 

the two bradaris, and between the bradaris and previously published data available 

from the GDB (Genome Data Base) and CEPH (Centre d'Etudes du Polymorphisme 

Hurnain). The level of homozygosity in each bradari was also compared to expected 

levels, calculated assuming random mating and with a correction for the inbreeding 

coefficient for each pedigree. 

The observed allele frequencies differed significantly between the bradaris 

for thirteen of the twenty markers. Allele frequencies in each bradari Wl!re also 

compared to the GDB and CEPH data and were found to be significantly different for 

all loci. The observed levels of homozygosity at each locus varied from 4% to 55% 

in the Khattar, and 3% to 40% in the Rajpoot. Observed homozygosity in each 

bradari was not statistically different from the GDB or CEPH data. Both the basic 

and corrected values for expected homozygosity were significantly greater than 



observed homozygosity in each bradari. An increase in homozygosity i.n the 

children of first cousin marriages was observed, however it was less than the 

predicted 6.25%. 

Lower than expected levels of homozygosity in the Pakistani families could 

indicate that there is preferential early selection against homozygotes in these 

families. There also appear to be reduced homozygosity levels in some regions of the 

two chromosomes, which may indicate that the resistance to homozygosity is specific 

to certain loci. 
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I. INTRODUCTION 

Consanguineous marriage, which conventionally is defined as a marital 

union between a couple related as second cousins or closer, is practised in many parts 

of the world, particularly in countries within North and Sub-Saharan Africa and 

West, Central and South Asia (Bittles, 1994 ). In these regions, the highest incidence 

of consanguinity is in the poorest and least educated sectors of the population, such 

as landless families resident in rural areas and lower socioeconomic groups in cities 

(Bittles, 1994 ). The socioeconomic st<ltus of these sections of society has played an 

important role in increasing the popularity of consanguineous marriages, since they 

.o offer the benefit of significantly decreasing the dowry or bride-wealth that may be 

payable, and ensure that family pro;erty is maintained within the extended family. 

Marriage with a close biological relative is further believed to facilitate prenuptial 

arrangements, to increase the likelihood that the bride will have an amicable 

relationship with her husband and her mother in-law, and to reduce hidden 

uncertainties regarding the health of the spouse and his/her family (Bittles, Mason, 

Greene andRao, 1991). 

."-- 1.1 Coefficient of inbreeding 
-·t; , .. 

Theoretically, inbred populations are expected to exhibit higher levels of 

homozygosity than non-inbred populations, because of the greater probability that the 

members of a consanguineous marriage will have inherited identical copies of a gene 
-. 

from a common ancestor (Jorde, 1991). In the case of a first cousin marriage, this 

shared ancestcr is in the grandparental generation. Homozygosity by descent, or 

autozygosity, can be predicted using the coefficient of inbreeding (F), a statistical 

fonnula that calculates the increase in homozygosity expected in the children of 

_-, I 
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consanguineous unions (Jorde, 1991). For example, in Figure 1.1, I is the child of a 

:; first cousin marriage between D and E with a common ancestor A. F is calculated by 

tracing the paths of the gametes that lead from !'s parents back to A, through B and 

C. The probability of autozygosity of the alleles is one-halfbecauso, with Mendelian 

segregation, the probability that a particular allele present in a parent is transmitted to 

a child is one-half (Hartl, 1988). 

A '> 

Figure 1.1: Abbreviated diagram of a first cousin marriage 

Therefore, in the present example, there are five paths between I and A, and so the 

probability of autozygosity is 1/2 ' 1/2 ' 1/2 ' 1/2 * 1/2 or 1/32. This can be 

simplified to the equation: 

F = L (Yz)''+n,_, 

Equation 1.1: Coefficient of inbreeding ,;,; 

where n is the number of individuals separating the child and the conunon ancestor 

and 1/2 is the probability that the child will inherit the allele of a specific parent. The 

child of a first cousin marriage will have two such paths, one for each grandparent 

and so the probability of autozygosity is 1/32 + 1/32 = 1116. Hence the child of a 

first cousin union is predicted to display 6.25% greater homozygosity than the child 

of a non-consanguineous marriage. 

,_.,-
'''' -·. ;·-·- -
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In a large pedigree with a hi ... • "'rv of consanguinity prior to the current 

generation, the actual coefficient of inbreeding predictably will be higher than can be 

calculated for a single generation, due to the cumulative effect of inbreeding (Shami, 

Grant and Bittles, 1994). The effect of prior inbreeding is calculated as the swn of 

the probability of autozygosity due to each separate path of inheritance of the alleies, 

and is represented by the equation: 

F = L (Yz) (1 + FA) 

Equation 1.2: Coefficient of inbreeding: multiple generations 

where n is the number of individuals in ee.ch path connecting the parents and A is the 

conunon ancestor in each path (Hartl, 1988). 

Although the levels of autozygosity in some human populations have been 

calculated on a theoretical basis using the above equations, the available literature 

provides only limited information comparing observed and expected levels of 

homozygosity in inbreeding communities. Similarly, few data are available 

comparing the levels of homozygosity in inbred and non-inbred populations. Such 

an investigation could indicate the extent to which the genome has been affected by 

inbreeding, and it forms the purpose of the present study. 

1.2 Aims 

The aim of the project was to use twenty microsatellite markers, ten each for 

chromosomes 13 and 15, to evaluate how inbreeding may have affected parts of the 

genome of two bradaris from Pakistan. A bradari, in Islamic Pakistan, is recognised 

as the extended family along paternal and/or fraternal lines and frequently includes 



:~ ' < -: -: - : ---

consanguineous marriages. The microsatellite analysis had four main aims. These 

were to: 

1. Determine specific allele frequencies for the loci tested in each bradari. 

2. Compare the observed allele frequencies in each bradari with each other 

and with non-inbred populations. 

3. Calculate the observed and expected homozygosity and compare these 

values in each bradari. 

4. Compare homozygosity in the bradaris with non-inbred populations and 

at different values of F. 

4 
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II. LITERATURE REVIEW 

II.1 History of the region 

Turkmenistan Uzbekistan Taj iki ~tan 
I ? f?(andzh 

>--.. r .) 1 H. 

~,_/V \ , ~·-~~ 

Ha·;rudA --------: -
Faraf]_j...-/ J 
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A t g h a n i s tan 

• _ uetta 
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Arabian 
Sea 

) 
r 

/ 

c.-

Figure 11.1: Pakistan 

China 

Clatm 

New Dehli o 

I n di a 

Traces of the earliest inhabitants of modern-day Pakistan exist in the form of 

stone implements found dating to the second inter-glacial period, from 400,000BC to 

250,000BC. These people slowly evolved to form village sites in Baluchistan (the 

Nal culture) , on the Makran Coast to the west of the Indus Delta (the Ku ll i culture) , 

and along rivers in Punjab and Rajasthan. Later they would found the extensive 

Indus Valley population which flourished from 2500BC to 1700BC, with its main 

centres Moenjodaro in Sind and Harappa in Punjab (Thapar, l990). 

5 



The nomadic Aryan-speaking peoples of the Urals and Siberia migrated to 

the region in about 1500BC, driving the native peoples southward (Wallbank, 1965). 

By the 9th century BC they had established settlements across the Indian 

subcontinent, observing a rigid division of labour which was a precursor to the caste 

system, and practising a Vedic religion which later evolved to Hinduism (Santiago, 

1987). At this point there were six main population groups on the sulY.:ontinent: the 

Negrito, Proto-Australoid, Mongoloid (Sino-Tibetan), Mediterranean (Dravidian), 

Alpine and Aryan (Thapar, 1990). 

By the sixth century BC the Persian err.pire had extended its boundaries to 

encompass the norih-west region of the subcontinent, when Cyrus the Great crossed 

the Hindu Kush mountains and established a new dynasty (Santiago, 1987). This 

ended following the conquest of the Persian empire by Alexander of Macedonia in 

330BC. Although Alexander returned westwards after reaching the Punjab in 

327BC, a number of his soldiers settled in the region where they established and 

reinforced trade routes between India and Afghanistan, Iran and Asia Minor 

(Wallbank, 1965). The Greek influence on the cultures subjugated by Alexander and 

his armies exceeded mere military control, since throughout his conquests Alexander 

encouraged his soldiers to marry local women (Vollmer, Keall and Nagai-Berthrong, 

1983). 

The next major political force in the region was the Mauryan empire, 

established by Chandragupta MaQrya who, in the latter ye<rs of the fourth centwy 

BC, overthrew the Nandan empire in the east of the subcontinent and then 

successfully campaigned in central and northern India, seizing control of the 

remnants of the Greek Empire founded by Alexander. The second emperor, 

Bindushara, extended the area of Mauryan influence by campaigning southward to 
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Mysore (Ailchin eta/., 1983). The Muuryan empire is considered to have been one 

of India's most sophisticated and highly structured political entities, but it lasted for 

only 100 years, and effectively ceased with the death of its third emperor, Ashoka, in 

235BC. Ashoka adopted Buddhism and developed TaJ<ila, in Ghandara, as a centre 

of religious study. Ghandara was a region that included Peshawar and the Indus, 

lower Swat and Kabul valleys, and it remained a significant centre of learning for 

over 700 years. Bactrian Greeks controlled Ghandara and the indus valley by the 

second century BC, but they were soon superseded by Scythians from Central Asia, 

who in tum were displaced from the region by Parthians from Persia (Thapar, 1990). 

By the second century AD the Kushans, migrants from Central Asia, had 

established the Kushan Dynasty, which included Ghandara and extended from 

eastern Iran to the Chinese frontier and south to the river Ganges. By this time 

Ghandara had become an important pilgrimage site for Buddhists, and it was a major 

part of the silk and trade routes which were established between China and India and 

the Roman Empire (Tnapar, 1990). The Kushans gradually lost control of their 

ter<itories until they field only Ghanciara and Kashmir, which eventually fell to the 

Persian Sassanians in 300AD. The southern areas of Sind and Eastern Punjab 

became part of the Gupta dynasty of the north.east of the subcontinent. Later, in the 

fifth century AD, Hepthalites from Central Asia pillaged Ghandara and the Gupta 

lands, an invasion from which Ghandara never recovered. Eventually, the 

Hepthalites were driven out by the Turkic dynasty which in tum was replaced by the 

Hindu Shahi dynasty in the ninth century (Santiago, 1987). 

In the tenth century AD, Muslims from Central Asia began their systematic 

conquest of Indo-Pakistan, and it was the Afghan-Turks who captured the northern 

region of the subcontinent, bringing it under Islamic rule by the thirteenth centwy. 
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Mongolian invaders also exercised some control over the subcontinent, reaching as 

~-
_, __ 

far as the city of Lahore, until their decline in the fourteenth century. In the sixteenth 

century, the Moghul Empire was established and its control over most of the 

subcontinent continued for approximately two centuries. As Moghul power declined, 

the Sikhs briefly ruled the north-west of the subcontinent, but they were brought 

under the control of the British Raj in 184'1 (Santiago, 1987). 

Due to the unrest of Muslim political factions in British India, the concept of 

a separate Muslim state was suggested in 1930. The name Pakistan, meaning Land 

of the Pure, was coined and, as part of the negotiations which accompanied the 

granting of independence, the boundaries between the predominantly Hindu and 

:,._ 
Muslim states of India and Pakistan were drawn by 1947. The subsequent mass 

migration of Muslims to West and East Pakistan (now Bangladesh), and of Hindus 

and Silchs to India, was accompanied by large-scale rioting and substantial loss of life 

(Santiago, 1987). 

Today, the people of Pakistan represent a mixture of the various ethnic 

groups which have invaded and settled the Indian subcontinent, and so they include 

Mongol, Arab, Dravidian and even European influences (King and St Vincent, 1993 ). 

They are included in the racial group Caucasian (Stowell, 1996) an.d in the North, the 

individuals may be notably fair in complexion. The majority of the population of 

Pakistan are Punjabi (about 50-60%), with other major ethnic groups being Pathans, 

Baluch, Sindhis and Mohajirs, the latter being post-Independance migrants from the 

northern states of India. The predominant religion is Islam, which is followed by 

97% of the population, while the remaining 3% are mainly Hindu and Christian 

(King and St Vincent, 1993). 
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11.2 Rawalpindi 

The two bradaris included in this study are from Rawalpindi in the province 

of Punjab. The city lies on the Potohar plateau occupying the site of an old village 

inhabited by the Rawals, a group of Yogis. It was part of Ghandara and the 

Achaemenid Persian Empire, and later became an important centre on the trade route 

that ran from the Khyber Pass through the Peshawar valley to Lahore (Santiago, 

1987). Destroyed doting Mongol invasions in c..c fourteenth century, Rawalpindi 

was later restored by Jh311da Khan, a Gakhar chief who gave the city its present 

name. In 1765 a Sikh adventurer named Milka Singh occupied the city and invited 

people from Jhelurn and Shahpur to settle there. It was annexed by the British in '--

1849, by which time it had become an important commercial centre (Rawalpindi, 

1983). According to the 1981 Census of Pakistan, which is the most recent official 

data source available, the population of Rawalpindi W&S 764,843. The current 

population is greatly in excess of that figure. 

II.3 Consanguinity in Pakistan 

Until recently, the rigid caste system imposed in India did not permit 

marriages between individuals of different castes or from different regions, and 

breaches of this law were punished by banishment (Hershman, 1981). Caste 

endogamy almost certainly has lead to genetic drift among the people of the Indian 

subcontinent, and it has been suggested to have contributed to differences in genetic 

traits between the castes (Gadgil and Malhotra, 1983). Perhaps to reduce the adverse 

effects of inbreeding, pennission to marry was only granted if the marriage partners 

were from different villages, a custom that is still practised today among the Muslim 
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groups in the Northern Areas (Jammu and Kashmir) in Pakistan (Hershman, 1981; 

Jamie, 1992). 

References to consanguineous marriage appear throughout the history of the 

subcontinent in the Indo-Aryan texts. The early Aryans associated their god of death 

with incest, implying that marriage to a close biological relative was unacceptable in 

their culture (Thapar, 1990). In the 1 Brahmanas consanguineous marriage appears to 

have been permitted to the level of father's brother's daughter (Kapadia, 1958). 

Later, the 2Sutra writers began imposing restrictions prohibiting marriage between 

persons related within certain generations of the father and mother. This was known 

as sapinda exogamy and, under these regulations, cross-cousin marriages were 

proscribed unless justified under specific and peculiar social circumstances. One 

writer in particular, Gautama, maintained that marriage partners should be related no 

closer than in the sixth generation on the maternal side, and in the eighth generation 

on the paternal side, with a lunar penance imposed for unions in the third generation. 

An interesting example, which illustrates how views changed at least among 

the Indo~Aryans, is found in the Royal house of Yadava. Within this family, 

marriages between partners related within the fourth or fifth generation were 

frequently contracted, as were first cousin marriages although to a l~sser extent. 

However, it seems probable that by the 7th century AD the attitude towards 

consanguineous marriage had sufficiently changed to prompt the Yadavas to discredit 

their ancestors who had contracted marriages in the third generation (Kapadia, 1958). 

1 T!-.e Brahmanas are a Vedic text, written in prose, to guide the four Vedas (castes) in their social 
customs and gives explanations for these customs (Beck, 1996a). 
2 The Sutras are various texts belir.ved to have been written by the disciples of Buddha after his death 
(483BC) that detail appropriate social customs for the castes (Beck, 1996b). 
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Irrespective of the changing attitudes towards consanguinity in the Indo-

Aryans, cousin marriages were customary in the south and in pockets of northern 

India. Among Dravidians, cross-cousin marriage was a characteristic feature and it is 

reported in Telugus, Kannadagas and Tamils. Consanguineous marriage prevails 

among the Muslims throughout the subcontinent and its incidence may have 

increased in the thirteenth century following the conquest of southern Asia by 

Muslim invaders from the Middle East. In the Islamic tradition, women can inherit 

goods and property and so to prevent the dispersal of family wealth, cross-cousin 

'~ 

marriages would be favoured (Bittles, 1995). Muslims also pmctise endogamy 

within the different sections of Islam. For example, the Ismailis, Sunnis and Shias do 

not intennarry, and each of the different groups within each of these branches of 

Islam are also endogamous. 

Examination Gf thf! 1990-1991 nationaJ. Pakistan Demographic and Health 

Survey indicates that consanguinity 1s strongly favoured in all provmces, and 

accounts for 62.7% of all marriages (Hussain and Bittles, 1997). Previous studies in 

urban Punjab found that consanguineous unions constituted approximately 50% of 

marriages (Bittles, Grant and Shami, 1993; Yaqoob, Gustavson, Jalll, Karlberg and 

lselius, 1993). In Pakistan, as in other Muslim countries, the most favoured form of 

consanguineous marriage is first cousin, especially of the type father's brother's 

daughter. While this fonn of marriage results in a coefficient of inbreeding of zero at 

the X-chromosomal loci (Fx = 0), it is more likely to have been adopted for social 

reasons rather than its genetic benefits - the prophet Mohammed married his cousin, 

and arranged for his daughter to marry his paternal uncle's son (Bittles, 1994). 

In a full first cousin marriage, the couple are predicted to share identical 

alleles inherited from the same two ancestors (their common grandparents) at one 

II 
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quarter of all autosomal loci. The marriage partners may actually be even more 

i:,\ 
closely related than can be calculated for a single generation as, in a country such as 

Pakistan where consanguinity is preferential, it is probable that the couple share more 

than one common ancestor. Bradari marriages are also the norm in most 

communities, which further increases the probability of homozygosity in the progeny 

(Shami eta/., 1994). 

II.4 Morbidity and mortality associated with consanguinity 

The available literature indicates that mortality and morbidity are higher in 

those populations which frequently contract marriages between close biological 

relatives, because of the increased probability of being aut0zygous for an otherwise 

rare recessive disease (Bittles, 1994). Some reviews of the relationship between 

consanguinity and mortality and morbidi'iy in Pakistan have indicated that mortality 

and morbidity were higher in the children of consanguineous unions than non-

consanguineous marriages (Bittles et a!., 1993; Grant, Shami, Milligan and Bittles, 

1994). Similar findings have been reported in other spatially distant parts of the 

world, such as Nigeria (Scott-Emuakpor, 1974), Japan (Schull and Nee!, 1972) and 

Bm'lil (Freire-Maia, Freire-Maia and Quelce-Salgado, 1963). These studies have not, 

however, indicated that inbreeding has as much influence on morbidity and mortality 

as expected. 

There are a nwnber of possible explanations for these results. Theoretically, 

a long history of inbreeding in a community will lead to the elimination of rare lethal 

genes due to the non-reproduction of persons who are homozygous (Radha Rama 

Devi, Appaji Rao and llittles, 1987). A similar picture may hold true for sub-lethal 

genes, depen~.'.mg upon the severity of the disease. In either case, if inbreeding is 

---_,_, 
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practised over a long period of time then the particular trait may be eliminated, which 

in turn could mean that the adverse effects of mortality and morbidity in succeeding 

generations would be substantially reduced. 

Mortality may also be recorded as low because deaths go unreported in rural 

\- communities, and among groups of low socioeconomic status. Pre-natal deaths may 

be under-recorded where medical care was not available or de2med necessary, or 

because the fetus was spontaneously aborted before the mother was aware of the 

pregnancy. Unrecorded miscarriages are believed to occur quite frequently in all 

human populations (Roberts and Lowe, 1975), although their actual incidence is 

difficult to determine (Wilcox e/ al., 1988). Consanguineous couples may have an 

elevated frequency of spontaneous abortion, as conceptuses with high autozygosity 

may have an increased chance of being homozygous for a mutation predisposing to 

early abmtion (Schull and Nee!, 1972). A strong argument against this possibility is 
·'' 

that sterility appears reduced in consanguineous couples, but again this could be 

strongly dependent on environmental and age differentials (Bittles e/ al., 1991). In 

either case, the inability to determine the actual level of prenatal death in a 

' community with any real degree of confidence means that both theories remain 

speculative. 

Morbidity within an inbreeding population may also be underestimated 

because it is less precisely defined than mortality. Errors may arise where morbidity 

-~- within a population is recorded at birth, which severely underestimates the real 

incidence of disease since only about 40% of congenital abnonnalities are diagnosed 

in the newborn child (Al-Gazali, Dawodu, Sabarinathan and Varghese, 1995; Teebi, 

1994). Moreover, morbidity will appear reduced if only severe defects are recorded, 
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or if the available clinical facilities do not permit the detection of all internal 

malformations (Teebi, 1.994). 

Conversely, the apparent risks associated with consanguinity may be 

exaggerated. Environmental factors associated with the low socioeconomic status of 

the majority of the couples who contract consanguineous unions predictably will be 

detrimental to their health (Sharni eta/., 1994). For example, Yaqoob eta/. (1993) 

found that the rate of birth defects increased with decreasing socioeconomic status, 

but observed no significant association between consanguinity and birth defects. 

Secondly, consanguineous marriages are usually contracted between couples 

who are younger than those not marrying a relative (Satha and Ahmed, 1992). This 

characteristic may also be linked to socioeconomic status and poor education, as was 

reported by Mian and Mushtaq (1994), who found that as economic status increased 

so too did age at marriage. In younger parents, the physical immaturity of the couple 

also may represent a risk to the health of the developing fetus, particularly the 

physical and hormonal development of the mother (Bittles et a/., 1991 ). 

The presence of recessive lethal genes in inbred and outbred populations is 

influenced by natural selection, with positive selection for genes which are beneficial. 

The sickle-cell anaemia gene for example, is a recessive lethal which in the 

heterozygous state will provide a degree of immunity to malaria (Cununings, 1991). 

The genes coding for less common disorders may exhibit similar characteristics in 

inbred communities if they also provide an advantage in coping with specific 

environmental conditions. Finally, it has also been suggested that some disease­

causing genes provide a benefit in utero, thereby maintaining their presence in the 

population (Diamond, 1987). 
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Despite these caveats, the level of homozygosity in a population may be 

reflected in the rates of morbidity and mortality observed in inbred communities. -~ 

Although statistical compensation can be employed to control for socioeconomic and 

age differentials, the applicability of these adjustments remains largely unproven 

·' (Grant and Bittles, 1997) and direct assessment of the level of homozygosity in a 

. 

• population can only be conducted at the genome level. Furth.ermore, some indication 

of the genetic isolation of a community may be gained if the degree of genetic ,, 

' variation in the community is less than would be expected with the same allele 
j 

frequencies, but under conditions of random mating. Several options are available to 

investigate the effect that inbreeding has exerted on the genome, and these are ' . 
discussed in the next section. 

11.5 Methods for analysing the genome 

Jl.5.i Early studies 

The search for the disease loci of inherited diseases and the development of 

evolutionary trees have contributed to the construction of maps of the human 

genome. Genetic maps contain fixed reference points known as markers, i.e., 

nucleotide sequences which display changes in the base pair sequence and are present 

at polymmphic frequencies. Ideally, a map will contain one marker every 100 kilo 

base p~rs (kbp}. These markers are inherited in a codominant Mendelian manner, 

and for each marker an individual will have two forms, tenned alleles, one from each 

parent (Ott, 1991 ). 

Early studies mapped the human genome using markers such as blood group 

antigens, serum protein polymorphisms and allozymes, which required a range of 

biochemical techniques for their analysis and often proved to be uninformative 
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{Hudson et al., 1992; Queller, Strassmann, and Hughes, 1993). Mapping was 

revolutionised with the introduction of restriction fragment length polymorphisms 

"'" 
{RFLPs) in the early 1980s {Botstein, White, Skolnick and Davis, 1980). RFLPs are 

identified by employing a DNA restriction enzyme which cleaves the sample DNA at 

a specific nucleotide recognition sequence, and the resulting products can be detected 

by agarose gel electrophoresis {Botstein et al., 1980). More than 3000 RFLPs have 

-ii'- been described, with uses ranging from the mapping of Mendelian diseases to the 

investigation of genetic heterogeneity in a given population (Ewens, Spielman and 

Harris, 1981; Lit!, 1991 ). RFLPs offer simpler identification procedures than 

previous methods, but are limited in their application since most have a 

heterozygosity of less than 50% and the results obtained are often difficult to 

compare between experiments {Donnis-Keller et al., 1987; Kidd eta/., 1989). 

Mapping was further improved by the description of DNA minisatellites 

{Jeffreys, Wilson, Thein, Weatherall, and Ponder, 1986) also referred to as variable 

nwnber tandem repeat sequences (VNTR~ Nakamura eta/., 1987). Minisatellites are 

stretches of DNA in which a short nucleotide sequence is repeated some 14 to 100 

times {Krontiris, 1995), and the alleles are defined by changes in the number of 

repeats {Lewontin and Hartl, 1991). They are detected indirectly by excising the 

region of DNA with a restriction enzyme and estimating the length of the fragment 

by gel electrophoresis and Southern Blotting {Devlin, Risch and Roeder, 1990). 

Minisatellites are highly polymorphic, in some cases with heterozygosity of almost 

100%, and therefore they are considerably more informative than RFLPs. Their 

application is, however, limited because they are non-randomly spaced throughout 

the genome, being concentrated in the telomeric regions of chromosomes (Royle, 

Clarkson, Wong and Jeffreys, 1988). 
. __ ';' 
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The problems associated with RFLPs and VNTRs have been overcome by 

the use of simple sequence repeats (SSRs) or microsatellites. Microsatellites are 

DNA sequences that are usually less than 500 base pairs (bp) in length and contain a 

repeat motif of l-6bp (Housman, 1995). They are thought to arise due to slippage 

during replication or unequal meiotic exchanges (Litt and Luty, 1989). 

Microsatellites are found throughout the genome, within introns, protein coding 

l'l•gions and between genes, and they are highly polymorphic, thereby overcoming the 

problems associated with VNTRs and RFLPs (Hearne, Ghosh and Todd, 1992). 

11.5.ii Tvoes of microsatellites 

There are several types of microsatellites, the simplest being the monomeric 

repeats, such as the A· T multimers which appear to be the most frequent form in the 

human genome. Dimeric (C-A)n·(G-T)11 repeats are the most common, with one 

every 30kbp (Weissenbach et a/., 1992). Their abundance means that dinucleotides 

with a high level of heterozygosity are relatively frequent throughout the genome, 

and for this reason they have been extensively used both for pedigree analysis and to 

generate high density maps of the human and mouse genomes (Deka eta/., 1995). 

Trimeric and tetrameric repeats are less common, although they nevertheless 

are described quite frequently in the human genome, particularly on the X-

chromosome where they are found every 300-500kbp (Edwards, Hammond, Jin, 

Caskey, and Chakraborty 1992). AAAN and AAN repeats are especially abundant 

(Hearne eta/., 1992). They are easier to amplify and to identify than dinucleotides, 

thus facilitating allele size assignment for DNA typing and genetic mapping (Gill and 

Evett, 1995). 
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Trimeric repeats are particularly interesting, because expansions in some of 

the repeats have been implicated in the aetiology of several important human genetic 

disorders, including the neurodegenerative disease Huntington's chorea, fragile X 

syndrome, myotonic dystrophy and Jacobsen syndrome (Hofferbert, Schanen, 

Chehab and Francke, 1997). 

II.S.iii Benefits ofmicrosatellite analysis 

The high polymorphism foWld in microsatellites is due to variation in their 

number of repeat Wlits (Hearne el a!., 1992). Microsatellites have an estimated 

mutation rate of between Sxlo-s and 5xto··t, which is sufficiently large to have 

allowed the evolution of polymorphisms, yet with a frequency that permits their use 

in demonstrating inheritance for linkage and population studies, and for forensic 

studies (Hearne eta/., 1992). 

A further benefit of microsatellites is that their small size facilitates cloning 

and synthesis (Yuille, Goudie, Affara and Ferguson-Smith, 1991), and alJows them to 

be reliably amplified using the Polymerase Chain Reaction (PCR; Weber and May, 

1989). This method of amplification of a marker is cheaper and quicker than the 

Southern Blotting technique used for the much larger ininisatellites (Boerwinkle, 

Xiong, Fourest, and Chan, 1989). PCR is also superior because it alJows L'le 

amplification of more than one locus in a reaction for a single DNA sample, by the 

technique of "multiplex" PCR (Chamberlain, Gibbs, Ranier, Nguyen and Caskey, 

1988). Again, this method is feasible because microsatellites are so small. Multiplex 

reaction kits are also available, which standardise the reactions, reduce costs and 

simplifY the technical procedures (Edwards, Civitello, Hammond and Caskey, 1991). 
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Microsatellites provide the additional benefit that alleles at a specific locus 

can be easily detected using radioactive or non-radioactive labels. The labels are 

attached to the microsatellite primer sequence during synthesis, or are incorporated 

into the PCR reaction mixture. Fluorescent labelling, a non-radioactive method of 

detection, is particularly sensitive and offers a number of advantages over the use. of 

radioactive labels that will be discussed in the next section. 

II.S.iv Allele detection methods 

The alleles at a locus can be detected in a number of ways however, as 

previously stated, the two most popular methods are the incorporation of radioactive 

or fluorescent labels. In both methods, the labels are used to identifY the alleles of 

the target sequence of DNA during PCR amplification, the products of which can 

then be separated by electrophoresis. Radioactive detection employs X-ray film to 

visualise the alleles which appear as black bands on the film, while fluorescent labels 

are detected and interpreted using specialised fluorescence-detecting instruments and 

computer software. Overall, fluorescent labelling techniques are preferred to 

radioactive methods because they are more sensitive, offer greater accuracy in sizing, 

are cheaper and safer. 

One advantage of radio-isotope labelling over fluorescent-based methods is 

that they are simpler to use because the equipment required is not as labour-intensive 

and technically demanding (Perlin, Burks, Hoop and Hoffman, I 994 ). They cannot 

however provide the level of resolution achieved by the instruments used to detect 

fluorescent labels (Fregeau and Fourney, 1993). This l'esolution is attained, in part, 

by the inclusion of a fluorescent standard within e?.zh sample to size the alleles. Size 

standards display a fixed pattern of peaks at certain base pair lengths, which the 
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instrument can then use as a guide to size the unknown alleles. The method also 

facilitates comparisons between and within runs, because the software assigns an 

actual size in base pairs to each peak (Sullivan, Pope, Gill and Robertson, 1992). 

Knowing the size of each allele aids the researcher further by allowing objective 

interpretation of the results, unlike autoradiographs where allele assignment is left 

entirely to the discretion of the researcher (Makino, Y azyu, Kishimoto, Sekiya and 

Hayashi, 1992). 

Although the initial costs of the equipment used with fluorescent detection 

methods is higher than for radioactive methods, the associated consumable costs are 

lower (Chehab and Kan, 1989; Ziechler, 1989). The consumable costs can be 

reduced by several factors, the most significant being the optimisation of conditions. 

Since the instrument can detect four different coloured dyes, red, blue, green and 

yellow (one of which is used solely for the size standard), at least three diftCrent PCR 

products can be included in each lane (Makino et a/., 1992), and more than three can 

be included if the size differences between the microsatellites are sufficiently large to 

avoid overlap (Gill and Evett, 1995). 

Amplified microsatellites occasionally will display minor ''stutter" bands in 

front of the allele fragments, particularly in dinucleotide repeats (Love, Knight, 

McAleer, and Todd, 1990). These bands are thought to arise from impurities in the 

primers, or from errors in Taq polymerase replication during PCR (Litt and Luty, 

1989; Perlin et a/., 1994). On X-ray film, stutter bands can lead to genotype 

misclassification because a homozygote may appear to be a heterozygote. The 

introduction of fluorescence~labelled primers and computer-aided analysis for 

microsatellite applications has improved allele identification, and so reduced 

ambiguities associated with stutter bands. 
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A final important advantage offered by fluorescent labels is that they do not 

pose the potential health risks that are associated with the use of radio-isotopes, and 

they also obviate the need for an expensive, high-specification radioisotope 

laboratory. 

11.6 Evaluating population diversity using polymorphic markers 

To date, there have been few reported attempts to analyse the differences 

between inbred and nonpinbred communities using microsatellites. Estimates of the 

coefficient of inbreeding in major populations have been obtained from analysis of 

marriage registration, and from individw! family pedigrees, but these findings have 

not been supported by genetic analysis (Jorde, 1991). There have been a number of 

investigations comparing levels of genetic variability in different populations, which 

have employed a range of markers, including allozymes, RFLPs, VNTRs and 

microsatellites. This same methodology for investigating differences between major 

populations can equally be applied to the pedigrees of inbred communities. 

Some studies (Chakraborty, Deka, Jin and Ferrell, 1992; Deka et a/., 1995) 

have assessed the heterozygosity in different populations at various polymorphic loci. 

Although they do not specifically refer to inbreeding, they have investigated various 

large and small populations and, in the latter case, have effectively addressed the 

influence of random inbreeding associated with genetic drift. Their fmdings indicate 

that heterozygosity decreases with decreasing population size and increasing 

isolation. Inbred communities, such as bradaris in Pakistan, can be relatively small 

and isolated so, irrespective of the effects of preferential consanguinity, a lower level 

of heterozygosity would be expected within a bradari than in a larger non-divided 

population. 
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Other researchers (Murty el a/., 1993; Bowcock eta/., 1994) investigated the 

specific allele frequencies present in various populations and reported greater genetic 

variation within than between populations. However, a comparison of populations 

separated by large spatial distances displayed great~r differences in allele frequency 

distribution than did populations which were geographically closer together (Hou, 

Schmitt, Staak, Puers and Prinz, 1994). With these precedents in mind, in the 

context of the Punjabi bradaris it would be expected that there would be greater 

allele frequency variation within each bradari than between them, but that they both 

would show greater genetic similarity to each other than to non-Pnnjabi populations. 

II. 7 Conclusion 

There is documentary evidence that consanguineous unions have been 

strongly favoured in Pakistan for at least the last four generations (Shami et al., 

1994), and it seems probable that marriage between close biological kin is a long-

standing tradition in the region. Consanguinity has been linked to elevated levels of 

morbidity and mortality, but whether these findings can be ascribed to an increase in 

homozygosity, rather than to adverse environmental factors, remains unclear. While 

morbidity and mortality can indirectly indicate an increase in homozygosity, they 

cannot provide a true picture of the level of homozygosity in the genome. 

Microsatellite analysis of genetic diversity in world populations is revealing 

much infonnation about genomic differences in etlmic groups, and currently it 

appears to be the most appropriate method for analysis of the whole genome. While 

other marker systems exist, including RFLPs and VNTRs, microsatellites present 

fewer technical problems and they are more economical in large-scale use. 

Fluorescent labelling of these markers and amplification using PCR appears to be the 
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best method of detecting the alleles. Therefore, to investigate the effects of 

inbreeding at the genomic level, the use of fluorescence~ labelled microsatellites was 

selected as the most appropriate option for the present study. 
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III. MATERIALS AND METHODS 

111.1 Subjects 

The DNA samples of the bradari members under study were initially 

collected for research into P-thalassaemia, conducted in the Anned Forces Institute of 

Pathology (AFIP) in Rawalpindi, and University College, London. Tne samples for 

microsatellite analysis and the associated pedigrees were provided by Lt. Col. (Dr) 

Subaib Ahmed of the AFIP in April 1996. 

For the purpose of the study, the definition of consanguineous maniage was 

limited to couples related as second cousins or closer. In total, 91 individuals were 

investigated. DNA was not available for deceased individuals, and individuals were 

not included if they had married into the family and had no children. 

Ill.l.i Khattar 

The Khattar bradari pedigree represents five generations and comprises 67 

individuals. DNA samples were received for 51 individuals from generations lll, N 

and V, represented in Figure III. I. Of these 51 individuals, there are thirteen 

marriages with a total of 40 children from marriages 1 to 13. Six of these marriages 

are non-consanguineous, numbered 1, 2, 3, 5, 6 and 9, with a total of eighteen 

children. DNA samples were received for only one member in marriages 1, 2, 5 and 

6, either because the marriage partner was deceased or their DNA sample had not 

been obtained. There are six consanguineous marriages in the pedigree, numbered 4, 

7, 8, 10, II, 12 and 13, all of which are between first cousins. The total number of 

children born to the consanguineous unions is 22. 
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Figure !11.1: Khattar hradari pedigree: each marriage and individual is identified by number 
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III.l.ii Rajpoot 

The Rajpoot bradari pedigree comprises four generations, with individuals 

-;::-:' identified iJy number from 1 to 42 for generations II, III and IV (Figure 11!.2). Only 
;;-'_ 
--:,, 

forty DNA samples have been included because individual 1 (the proband) was not 

received, and individual 13 was excluded because she married into the family and has 

no children. There are nine marriages within the pedigree, three of which are non-

consanguineous and six which are consanguineous. The non-consanguineous 

marriages, numbered 1 to 3, are all in generation II and have a total of sixteen 

children. The six consanguineous marriages, numbered 4 to 9, are all in generation 

III and each is a first cousin union. DNA samples were received for sixteen children 

from four of the consanguineous marriages. 
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III.2 DNA concentration 

The DNA samples were received for each individual in 15-20flg quantities, 

suspended in approximately 30J.1l of water. To estimate the concentration of DNA in 

the samples, two specimens were selected randomly from each pedigree and the 

DNA concentration determined using a UVNIS DU640 Spectrophotometer 

(Beckmao). A blank reading on water was recorded before measuring the samples. 

A fifty-fold dilution of the specimens was read at the 260nm wavelength. DNA 

concentration was calculated from the 260nm reading, since one optical density (OD) 

unit at 260nm equates to 50f1g/ml of DNA (Sambrook, Fritch and Maniatis, 1989). 

The average DNA concentration of the four specimens tested was approximately 

530ng/J.Ll, but calculations for the preparation of working solutions were based on a 

500ng/f.ll stock concentration to allow for possible overestimation of the DNA 

concentration in the test samples (this is more easily compensated in the PCR 

mixture than underestimation). 200J.Ll working solutions were prepared at Sng/IJ.l 

concentration using sterile water. Each working sample was gently vortexed and 

then briefly centrifuged before storage at 4°C. Stock solutions were stored at -80°C 

to inhibit degradation of the samples. 

111.3 Selection of primers 

Ten microsatellites were initially selected from the panel of thirty Human 

Diversity primers made available by Prof. L.L. Cavalli-Sforza, Department of 

Genetics, Stanford University. SiY. primers for chromosome 15 and four for 

chromosome 13 were chosen from twelve primers previously used in the Centre for 

Human Genetics, Edith Cowan University in population genetics studies. The 
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conditions for the amplification of these microsatellites had been optimised as part of 

that research (Kalaydjieva and Tolun, 1996). 

Table 111.1: Initial set of ten microsatellites 

Locus Label Oligo name Sequence 

Dl3Sl26 FAM 1303L TCACCAGTAAAATGCTATTGG 

1303R GTGATTTTCAAATTTGCTCTG 

Dl3Sl33 TET CAOOSL GGCAACATAGGGAAACCCTAGC 

CAOOSR GCTAGGACTACAGGTGCAAACC 

Dl3Sl92 HEX HKCAJ-1 GGGTAACATAGCAAGACCCC 

HKCAJ-2 AGGTATGAGCCATCTCGTCC 

DI3S270 HEX 084xc5a (CA) AGTGCCTGGGTATGAACGTG 

084xc5m (GT) CTGGAAATGCCTTGGAAGGA 

Dl5Sl01 HEX MS178L GAGCCAAGATCATGTTGC 

MS178R TGCCCACTAGTTTGAGACA 

D15Sl08 HEX MFD102L ATTCTTAACAGGAAGTGAGGG 

MFD102R AACATGAGTTTCAGAGGGG 

Dl5Sll TET Dl5SllL GACATGAACAGAGGTAAATTGGTGG 

Dl5SllR GCTCTCT AAGATCACTGGAT AGG 

Dl5S97 FAM MS14L TCTCCCTCCAATAATGTGAC 

MS14R TGAGTCAATGA TTGAAA TT ACTG 

Dl5S98 HEX MS112L CATGTGAAACTGCAAAAGCTG 

MS112R AAAAGTCGCATTTGGTCGTT 

GABRBJ HEX L CTCTTGTTCCTGTTGCTTTCAATACAC 

R CACTGTGCTAGTAGTTCAGCTC 
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After the results had been collated for the initial set of ten microsatellites, a 

further ten were chosen in order to facilitate the development of haplotypes for 

chromosomes 13 and 15. This second group was composed of six rnicrosatellites for 

chromosome 13 and four for chromosome 15. Six of the second set were also 

selected from the Stanford Human Diversity set of primers, three for chromosome IS 

and three for chromosome 13. Where more than one primer was located in a region 

of the chromosome to be investigated, the marker with the highest level of 

heterozygosity was chosen. The remaining four markers were selected from the ABI 

Prism Linkage Mapping Set, panels 17, 19 and 22 (Perkin Elmer), for chromosomal 

locations not covered by any of the Stanford Human Diversity set. There were three 

such microsatellites selected for chromosome 13 and one for chromosome 15. 
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Table 111.2: Second set often m!crosateUites 

Stanford Human Diversity primers 

Locus Label Oligo name Sequence ;( 

Dl3Sll5 HEX MS34-2 TCTTAGCTGCTGGTGGTGG 

MS34-l TGTAAGGAGAGAGAGATTTCGACA 

Dl3Sl44 HEX l348GT TCCAAGTATGATTAATCGGAG 

l348R TCAT AA TCATGTGAACCM 1"TC 

Dl3Sl25 FAM l320L GTAACTGGCCAGAATGTCAT 

l320R GTCCTCCMMGAACTCACA 

Dl5Sl02 FAM NlJ0-2 TAGGGCCMTGGAGAGAGC 

Nl30-l TCAATAACTCCATTGCTCAGTCC 

D!SS!OO TET MSl64-l CTTTCCAATTCACCCCCAC 

MSl64-2 ATCCAGCTCCCCCAAATATT 

Dl5Sl69 TET Utswl59IL CAGGAGAGAGCCTTGGAT 

Utswl591R GAGACATCTCTTCTGMAGCTC 

ABI Prism Linkage Mapping Set primers 

Locus Label Oligo name Sequence 

Dl3S!75 TET AFM249xblm TGCATCACCTCACATAGGTTA 

AFM249xbla TATTGGATACTTGAATCTGCTG 

Dl3Sl73 TET AFM26lyg5a CCCTGTTCCAGTAATGATGACC 

AFM26lyg5m GTCTCTGGCTGCTCTCAAGACTAT 

Dl3S285 FAM AFM309va9a ATATATGCACATCCATCCATG 

AFM309va9m GGCCAAAGATAGATAGCAAGGTA 

Dl5Sl20 HEX AFMI64zc9m GGCTCAAAGTGTTTGCACTG 

AFM164zc9a TTTGTGATGGTCTTTTATAGGCATA 
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111.4 Primer working solutions 

III.4.i Stanford Human Diversity primers 

Fluorescence-labelled forward and reverse primers were received at 8JlM 

concentration and in 200Jll quantities. Working solutions of the initial ten primers 

were prepared in 1.6J!M concentrations (20!'1 primerF + 20J!l primerR + 200!'1 sterile 

water). 

111.4.ii ABI primers 

The ABI primers were received from Perkin Elmer in tubes containing 

1500pmol of primer at a lOJlM concentration. Working solutions were prepared in a 

I: I ratio, in 50J!l volumes (25!'1 primerF and 25!'1 primerR), to give a 5J!M solution. 

111.5 PCR amplification and protocol 

The dinucleotide tandem repeat sequences were amplified using the 

polymerase chain reaction (PCR), an in vitro method for synthesising defined 

sequences of DNA using a thermostable DNA polymerase enzyme. The reaction 

consists of three steps: denaturation, annealing and extension. In the first step, the 

DNA is separated into single strands that can be used as a template. Step two 

employs two oligonucleotide primers that anneal to the template DNA at positions 

flanking the target DNA sequence. Finally, a complementary copy of the region 

specified by the two primers is synthesised using the enzyme Taq polymerase. 

Repetition of these steps results in exponential amplification of the target sequence 

(Eeles and Stamps, 1993). 
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III.5.i Stanford Human Diversity primers 

The PCR protocol for the Human Diversity primers developed by 

Kalaydjieva and Tolfut (1996) was used to test the primers. Each PCR was made up 

to 5~tl containing 2~tl (lOng) of sample DNA, I (0.32~tM) of primer, lfll of5x buffer 

(5-7.5mM MgCI,; lmM dNTPs, 0.5fll lOx polymerase buffer [Biotech]), 0.05-l~tl 

Taq DNA polymerase (Biotech) and 0.95~tl of dH,O. PCR reaction mixtures were 

carried out in 0.2ml reaction tubes (Perkin Elmer) in a 96 Well GeneAmp 

Thermocycler (Perkin Elmer). The thermocycling consisted of four main 

components. Initially, the samples were denatured for 5 minutes at 94°C. This was 

followed by fifteen cycles of 20 seconds denaturing at 94 •c, one minute of 

annealing, starting at 63°C and reduced in each cycle by 0.5°C (giving a final 

temperature of 55.5°C), and a 30 second extension period at 72°C. A further fifteen 

cycles followed, each consisting of 20 seconds denaturing at 94°C, 20 sezonds 

annealing at 55°C and 30 seconds of extension at 72°C. The cycle concluded with a 

five minute extension period at 72°C. 

Ill.5.ii ABI primers 

A modification of the PCR protocol received with the ABI p·dmers was used 

to test the primers, employing reduced reaction volumes. PCR reaction mixtures 

were made to 5fll volumes, consisting of2~tl (lOng) DNA, 0.4~tl primer (0.4flM), lfll 

Sx buffer (7.5mM MgCI,; lmM dNTPs; O.S~tl lOx polymerase buffer [Biotech]), 

0.05~tl of Taq polymerase and 1.65fll dH20. The PCR began with an initial 

denaturing period lasting five minutes at 95°C. This preceded ten cycles of IS 

seconds at 94•c, 15 seconds at 55•c and 30 seconds at n•c. A further twenty 
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cycles followed, consisting of 15 seconds at 89'C, 15 seconds at 55'C and 30 

seconds at 72'C. The final extension temperature was 72'C and lasted for five 

minutes. 

111.6 Evaluation of microsatellite primers 

To ensure that the primers were functioning, PCRs were prepared and tested 

by agarose gel electrophoresis. This technique employs an electric current to move 

the negatively charged DNA towards a positively charged electrode through an 

agarose gel. The larger the allele fragment, the slower it moves through the agarose. 

Therefore the alleles are differentiated by length fractionation. The PCR products are 

visualised using Ethidium Bromide (EtBr) under fluorescent light. 

A 2% agarose gel solution (0.5g agarose powder [Sigma Chemical 

Company] in lOOm! lxTAE buffer [0.04M Tris-acetate; O.OO!M EDTA]) was 

prepared and poured on to an 80 ml mini-gel tray, and a small toothed comb was 

inserted at one end of the tray. The gel was allowed to set for approximately 40 

minutes at room temperature, after which the comb was removed and the gel was 

then placed in the electrophoresis unit. The 5!J.l PCR products were loaded into the 

wells with 1ft[ of 6x Ficoll loading buffer (0.25% bromophenol blue, 0.25% xylene 

cyanol FF; 15% Ficoll [Type 400; Pharmacia] in water). pUC19 DNA/Hpa ll 

(0.5mg/ml; Biotech; fragment size range from 26-50lbp) was loaded into lane I as a 

size standard. The gel was electrophoresed at IOOV for approximately 30 minutes. It 

was then stained for 10 minutes in EtBr (l.5ftl 100% EtBr I 30m[ water) and viewed 

on UV light using a Mighty Bright transilluminator (Hoefer Scientific Instruments). 

A photograph of the gel was taken using DS34 Direct Screen Instant Camera 

(Polaroid). All primers produced a good signal in the agarose gel. 
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III. 7 Fluorescent detection of alleles 

The forward primer for oach of the microsateilites was labelled with one of 

three fluorescent dyes, each of which appears as a different . ;a lour on the computer 

screen: FAM (blue), TET (green) or HEX (yellow). '!he standard, GeneScan 500-

TAMRA (ABI), is labelled with TAMRA which appears red. The labels emit light at 

specific wavelengths, which the computer software interprets and outputs as different 

colours. These fluorescent labels are incorporated into the PCR product during 

amplification and highlight the alleles. 

III.S Allele identification and sizing 

Identification and sizing of the alleles was accomplished using an ABI 

Prism 310 Genetic Analyzer which employs GeneS can Software (Perkin Elmer, 

1995). Alleles are identified by the ABl Prism 310 via a laser-induced fluorescent 

capillary electrophoresis system. PCR products are loaded on to the autosampler tray 

where they are individually introduced into the polymer-filled capillary. Each PCR 

product travels through the capillary to a window where the DNA fragments are 

illuminated by a laser. The laser excites the fluorescent dyes attached to the 

fragments, causing each dye to emit light at a specific wavelength (Hearne et a/., 

1992). A spectrograph then collects the light emitted by the dyes, and separates it 

according to wavelength. The data are collected by a charged-coupled device camera 

that allows all four types of fluorescent emissions (F AM, TET, HEX and T AMRA) 

to be detected simultaneously. The light is stored as electrical signals that can be 

interpreted by the associated software (ABI Prism 310 Genetic Analyzer Users' 

Manual, 1995). 
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111.9 Preparation of the ABI Prism 310 Genetic Analyzer 

Ill.9.i Initial ten primers 

A detailed description of the procedures for preparing the ABI Prism 3 10 

can be found in the ABI Prism 310 Genetic Analyzer Chemistry Guide (Research 

Genetics, 1995). Th~ conditions used were those suggested for short fragments. The 

capillary was 75f1m in diameter, with a total length of 41cm, and length to the 

window of 30cm. The ABI Prism 310 uses a 2% polymer (5g of lOx Genetic 

Analyzer Buffer [ABI]; 14.lg of?% GeneScan Polymer [ABI] in 50ml water) at the 

anode, and a 3% polymer (6.6M urea, lx Genetic Analyzer Buffer [ABI]) at the 

cathode. Buffers are sufficient for up to 96 electrophoretic separations or 24 hours, 

unless stored at 4 °C when it can be used for up to 2 weeks. The instrument also 

requires washing reagents which are used to clean the capillary between runs. These 

include a 0.3N NaOH solution, a IN HCI solution and two tubes ofdH,O. 

The ABI Prism 310 run module which was routinely selected was GS-Short 

Denatured C. If the capillary had been used for more than 100 separations the GS­

XT-Short Denatured C module was employed, which includes a wash cycle between 

separations. The matrix file selected was GS C 3 DEN UREA 6.6M, and the size 

standard file chosen was GS 500 TAMRA 3p.!Osec.4lcm. For all separations, the 

injection time was 10 seconds at 7kV, and runs were conducted at I3kV at 30°C for 

15 minutes. Analysis parameters were left as default and automatic analysis of each 

injection was selected. Before the start of each run a wash cycle, GS Wash Capillary 

and Block, was perfonned. 
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111.9.ii Second set often primers 

The procedures for preparing the ABI Prism 3 I 0 for the second group of 

primers differed from the initial group because, in the interim, the laboratory had 

adopted a new, simpler method of analysis. The changes involved the use of a glass 

syringe to pump Performance Optimised Polymer 4 (POP-4 [ ABI]) into the capillary. 

Instead of 2% and 3% polymer solutions at the anode and cathode respectively, a lx 

buffer solution (10-fold dilution of !Ox Genetic Analyzer Buffer with EDTA in 

df!,O) replaced the polymers and the POP-4 was stored in the syringe. The capillary 

used with POP-4 is 47cm in total length, 36cm in length to the window, and 50f1I11 in 

diameter. For all separations, the run module selected was GS STR POP4 C, 

injections were 10 seconds duration at 15kV, and runs lasted 18 minutes at 15kV and 

60•c. The matrix file selected was GS STR POP4 C and the size standard file 

chosen was GS 500 TAMRA POP4 30crn124min. Again, analysis parameters were 

left as default and each injection was automatically analysed. Unlike the previous 

method, this protocol did not require acid-base washing reagents. 

III.lO Preparation of DNA samples for the ABI Prism 310 Genetic Analyzer 

PCR products were diluted to a 1/20 concentration for markers labelled with 

FAM and TET, and a 1/10 concentr1tion for markers labelled with HEX. One 

microlitre portions of the diluted PCR product were pipetted into 0.5ml sample tubes 

with l2fll of forrnamide (ABI) and 0.4fll of the standard, TAMRA. Samples were 

denatwed for 2 minutes at 95°C, then chilled on ice before being placed in the ABI 

Prism 310. Up to four PCR products were included in a single sample tube. This 

procedure differed slightly for separations using the POP-4 polymer, where the 

samples required O.Sfil ofT AMRA, and were denatured at 95°C for tluee minutes. 
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III.ll Allele assignment 

The alleles were sized by reference to the standard, GS-500 TAMRA, which 

was loaded with the samples. The ABI Prism 310 detects the fluorescence emitted by 

the T AMRA and recognises the size distribution of the fragments, using this as a 

reference to size the other fragments. Sizes are estimated us~ng GeneScan, with the 

alleles displayed as peaks and with a corresponding table listing the sizes of all peaks 

associated with the selected colour. Up to sixteen lanes can be simultaneously 

examined and the software allows the user to view one to four of the dye colours, so 

that colours can be examined individually. The individual peaks which represent the 

alleles can be selected using a mouse, and the corresponding value is highlighted in 

an adjoining table (see Figure 111.3). The results from each run were stored on 

Cartridge Disks and later on Kodak Writable CD-ROM disks. 
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Figure III.3: GeneScan screen image 

III.12 Testing primers on the ABI Prism 310 Genetic Analyzer 

III. l2.i Initial ten primers 

15:15 .1J ~ ~ 
0 

360( - _( 

L+ 

p-

Primers were tested on the ABI Prism 3 10 using the PCR protocol for the 

Stanford Human Diversity primers described in section ill.5. i, and with the 

conditions specified for the initial set of primers detailed in section ill.9.i . The PCR 

products for Dl5Sl01 , Dl5S97, Dl3Sl33 and D15Sl92 gave weak results, and so 

the concentration of the primers for these markers was increased by 50% in the 

reaction mixture (i .e., from l .O!J.l to 1.51-!1 , with the volume of water reduced from 

0.951-!1 to 0.451-!l to compensate) . On re-testing, each of the primers gave good results 

on the ABI Prism 310. 



III.l2.ii Second set often primers 

For the second group of primers, testing was performed using the conditions 

specified in section III. 9 .ii. For the Stanford primers, PCRs were amplified using the 

protocol in section Ill.S.i. DI3Sl44, D!5Sl02, Dl5SIOO and Dl5Sl69 displayed 

little or no signal, and so their concentration in the reaction mixture was increased by 

50%. As Dl5Sl69 continued to amplifY poorly, it was re-tested with varying 

concentrations of magnesium chloride (MgCl,; l.OmM, l.SmM, 2.0mM and 2.5mM) 

in the Sx buffer mixture. A concentration of l.OmM MgCh in the buffer gave the 

best results. 

The primers for Dl3Sl44 amplified particularly poorly when employed with 

the entire Khattar pedigree. Upon re~testing, the PCR products produced no results 

for any oft: -~arnples. A new working solution of the primers was prepared on two 

occasions, but neither produced any results. The lack of signal from the fluorescent 

marker led to the assumption that the primer had degraded. New primers were 

ordered and they produced a strong signal in both the agarose gel and on the ABI 

Prism 310. 

The ABI primers were tested using the PCR protocol detailed in section 

IV.S.ii. All of the primers amplified well on the ABI Prism 310, and so no 

adjustments were made to the protocol. 

III.l3 Statistical analysis 

III.13.i Allele frequency differences 

To calculate the significance of the differences in allele frequencies, ax! test 

was employed. The criteria for this test are that for each of the two groups being 

compared, there must be no alleles with an expected frequency of zero, and that at 
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least 75% of expected allele frequencies must be greater than five. If these criteria 

are not met, the differences in allele frequencies are significant. Since it is almost 

inevitable that alleles will not be shared between two groups, and that there may be a 

frequency of rare alleles (i.e., a frequency < 5), it is possible to compare common 

alleles with pooled rare alleles, or to group alleles of similar sizes. A significant 

difference is noted if the results of the r! test calculations are not within the range 

0.975>p>0.025, i.e., the 95% confidence interval. 

JII.13.ii Calculation of homozygosity 

Observed homozygosity for each marker was calculated directly from the 

observed frequency ofhomozygotes for the marker: 

n Homozygous 
Homozygosity=----"===-

Equation III.l: Observed bomozygoJity 

where nHomozygous is the number of homozygous individuals and nroraf is the total 

nwnber of individuals. 

Expected levels of homozygosity were calculated from the observed allele 

frequencies, by the fonnula for predicting heterozygosity under random mating: 

" 
H = 1- L p,' 

i"' I 

Equation III.2: Expected homozygosity 

where His heterozygosity,p; is the frequency of the ith allele, n is the total nwnber of 

alleles (Murray, 1996). Therefore, His the probability that a random individual is 



heterozygous for any two alleles at a locus with allele frequencies p;. Since 

homozygosity is equivalent to 1-H. LJ>,' is the homozygosity (Hartl, 1988). 

With inbreeding, the allele frequencies will remain the same, however the 

proportion ofheterozygotes will be reduced and.so a correction for inbreeding can be 

included in the equation (Hartl, 1988): 

n 

H 1- L p,2 (1- F)+ p,F 
i= I 

Equation 111.3: Expected homozygosity under inbreeding 

In large, random mating populations the difference in observed and expected 

homozygosity would be measured using a x2 test, as a means of detecting deviation 

from Hardy-Weinberg equilibrium. Since this population did not fulfil these 

requirements, a t-test was used to compare the observed and expected homozygosity 

at the 5% level of significance. 

"- 111.13.iii Calculation of the coefficient of inbreeding 

For each of the pedigrees, the mean coefficient of inbreeding was calculated 

as the average of all individual inbreeding coefficients: 

n 

L;F, 
i-1 

n 

Equation 111.4: Expected pedigree coefficient of inbreeding 

where FE is the expected calculated inbreeding coefficient, n is the number of 

individuals which were investigated, and Fi is the inbreeding coefficient of the ith 
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individual. Individual inbreeding coefficients were calculated based on parental 

relationships, that could be determined from the pedigrees. 

The observed inbreeding coefficient {Fts) was evaluated by: 

Equation III.S: Observed coefficient of inbreeding 

where F1s is the inbreeding coefficient, HE is the average expected heterozygosity 

(including correction for the expected inbreeding coefficient, Equation lll.3) and Ho 

is the average observed heterozygosity (Murray, 1996). The mean expected and 

observed inbreeding coefficients were compared at the 5% level of significance using 

a /-test. 
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IV. RESULTS 

IV. I Polymorphic markers 

The polymorphic marker infonnation was obtained from the Genethon and 

the Cooperative Human Linkage Centre (CHLC) microsatellite maps available 

through the World Wide Web (WWW; see Appendix VII.2). Genethon is an . 

organisation that was initially developed to provide tools for the localisation and 

cloning of disease-determining genes, and it provides physical and genetic maps of 

the human genome. CHLC also aims to provide maps of the human genome but has 

a strong focus on using microsatellites that can be amplified by PCR and which 

display high heterozygosity. 

Sex-averaged map distance information was obtained from both of these 

sources and used to construct approximate maps of the markers studied from 

chromosomes 13 and 15. Figures IV.l and IV.2 show the chromosome maps with 

approximate distance in centiMorgans (eM) between markers. The distance covered 

was approximately 112cM for chromosome 13, and 145cM for chromosome 15, i.e., 

one marker each 1 0-15cM. 
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Figure IV.l: Microsatellite map distances for chromosome 13 
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Figure IV.2: Microsatemtc map distances for chromosome 15 
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IV.2 Reference populations 

The reference populations chosen were obtained from the Centre d'Etudes 

du Polymorphisme Humain (CEPH) and the Genome Data Base (GDB) available on 

the WWW (see Appendix Vll.2). CEPH is a data base that was established in 1984 

to provide maps of the human genome, constructed using a reference pOOJ.el of 61 

large families. The GDB is the official repository for genome mapping data for the 

Human Genome initiative and it includes both CEPH data and results provided by 

other research laboratories. 

Eighteen of the twenty microsatellites chosen for this study were included in 

the CEPH data base, the exceptions being Dl3Sl33 and Dl3Sl92. The information 

available included average heterozygosity, gene name (where applicable), number of 

alleles and allele sets, which listed allele sizes and their frequencies. Allele sets were 

available for five of the chromosome 13 markers, and nine of the chromosome 15 

markers. 

The GDB contained information on all markers used in the study, listing the 

maximum heterozygosity, location, primary author, allele sets, populations tested and 

the number of chromosomes used. This information had not been updated since 

1992/1993. The data for seven of the markers were partially or entirely calculated 

using CEPH families. For five of the microsatellites, Dl5S97, Dl5S98, DlSSlOO, 

DlSSlOl and Dl5Sl02, the allele sets were not listed because the source (Hudson e/ 

a/., 1992), had used radio-isotope labels which did not give exact allele sizes. 

' 



IV.3 Voriation in the alleles 

As previously stated, allele scoring was performed with the aid of 

GeneScan. To verify that the alleles for each individual had been inherited in a 

Mendelian manner, the data in GeneScan were also analysed by GenoTyper (Perkin 

Elmer, 1995), a program which pennits the user to examine each marker in a specific 

family and includes a function which can check the inheritance of alleles. If an 

individual did not appear to have inherited one allele from each parent, their sample 

was reamplified and the products once again analysed by the ABI Prism 310. In all 

families Mendelian segregation of alleles was observed at all loci. 

Figures IV.3 to IV.6 show the genotype and haplotype bars for each 

chromosome and each bradari. For all pedigrees, the disease condition 1s P-

thalaszaemia and the symbol definitions are as follows: 

0 0 Unaffected • 
i!if 
''\J • rn:J Affected ~ . . . 

() [] Heterozygous 

Consanguineous marriage 

~-
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IV.3.i Allele size variation 

In general, the observed data displayed similar allele sizes to the reference 

groups, however there were several instances where allele size ranges in the 

published data rlid not match, for example at DI3SI73, Dl58102, DI58108 and 

Dl5SIOO (see Table IV.!). 

For some markers, alleles were identified which bad not been previously 

described by the GDB or CEPH. In general, the new allele was within the ranges 

described in the published data and, without access to allele sets for all of the 

published data, it was difficult to detennine with confidence whether the allele had 

not previously been described. However, in one instance (D ISS 11, allele size 

229bp), the allele was not described in any of the published allele sets, nor was it 

within any of the published ranges. 
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Table IV.l: Allele size ranges in base pairs 

Locus Khattar Rajpoot Total GDB CEPH 

D13SI75 98-104 98-108 98-108 101-113 105-115 

DI3SII5 160-176 164-172 160-176 161-175 161-17:.5 

DI3SI92 99-121 103-117 99-121 88-124 na 

Dl3SI33 131-189 131-185 131-189 130-187 na 

Dl3SI26 103-109 103-109 103-109 100-112 na 

Dl3S270 80-100 80-96 80-100 79-99 81-95 

Dl3SI44 181-193 181-193 181-193 183-199 na 

DI3SI25 130-154 148-160 130-160 131-155 na 

DI3Sl73 234-2·:0 230-240 230-2~0 166-178 166-172 

Dl3S285 88-102 88-100 88-102 92-106 92-106 

DI5SII 229-263 243-261 229-263 243-263 238-260 

GABRB3 185-197 185-203 185-203 181-201 na 

DI5S97 180-198 180-190 180-198 159- 168-186 

D15SIOI 105-119 105-119 105-119 104- 110-134 

Dl5Sl02 210-224 210-226 210-226 217- 98-114 

msstos 142-162 142-160 142-162 185-205 141-161 

DI5S98 145-171 145-171 145-171 152- 141-175 

DI5SI69 138-150 138-150 138-150 142-158 142-158 

DISSIOO 182-192 182-192 182-192 183- 119-131 

DI5S)20 158-170 158-172 158-172 150-\74 150-174 

Note: Ranges in bold indicate results which are non-identical in the various 

reference groups. A value listed as na indicates that no size range was 

available. 



• 

IV.3.ii Number of alleles 

The number of alleles which were identified ranged from 3 (D 13 S 17 5) to 11 

(Dl3S192) among the Khattar samples and from 3 (Dl3S126) to 7 (D13Sl33, 

D15Sl01, Dl5S98) in the Rajpoot samples. The mean number of alleles per locus 

on each chromosome is displayed in Figure IV.7. 

Khattar Rajpoot Corrbined GOB CEPH 

!;::1 Chromosorre 13 

• Chromosorre 15 

oTotal 

Figure IV.7: The mean number of alleles for all loci on each chromosome and 

for both chromosomes combined 

A paired t-test was used to determine if the difference in the number of 

alleles between each of the bradaris was statistically significant. At the 5% level, the 

test indicated that the difference was significant overall but it did not attain 

significance for the individual chromosomes. The total number of alleles described 

for both bradaris was combined for comparison with the data from the GDB and 

CEPH. The results indicated that the nwnber of alleles observed in the combined 

bradaris was significantly fewer than in both of the published data sets. It must be 
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noted that the number of loci studied differed in the two reference groups employed, 

and this was taken into consideration when the data were compared. 

IV.3.iii Allele sharing 

The proportion of alleles shared by the bradaris ranged from 0.29 

(GABRB3) to I (all alleles shared; DISSIOO). Table IV.2lists each locus with the 

total number of alleles and the number shared for that locus. 

Table IV.2: Alleles shared between the two bradaris 

Chromosome 13 Chromosome 15 

Locus # Al!eles #Shared Proportion Locus #Alleles #Shared Proportion 

013SI75 4 3 0.75 015511 9 3 0.33 

013Sll5 7 3 0.43 GABRB3 7 2 0.29 

013SI92 II 6 0.55 015597 7 5 0.71 

013SI33 II 5 0.45 0155101 8 4 0.50 

013SI26 4 3 0.75 0155102 9 4 0.44 

0138270 7 4 0.57 DI5SI08 6 5 0.83 

013SI44 6 4 0.67 Dl5S98 II 4 0.36 

013SI25 7 4 0.57 0158169 6 5 0.83 

013SI73 6 3 0.50 Dl5SIOO 5 5 1.00 

013S285 7 5 0.71 0155120 8 3 0.38 

Note: Proportions in bold represent the lowest and highest for each chromosome. 

Alleles which were shared by the bradaris were observed with a greater 

frequency than alleles that were not shared, with the overall mean frequency of 

shared alleles, 0.204, and unshared alleles, 0.055. The most frequently observed 

allele at a particular locus was found in both bradaris, and for eighteen loci the most 

frequently observed allele in each bradari was observed in both pedigrees. The 

exceptions were at D15S169, where the most common allele identified in the Khattar 

· .. :-· 
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was not observed in the Rajpoot, and at Dl3Sl73 where the most common allele in 

the Rajpoot was not identified in the K.hattar. 

IV.3.iv Allele frequencies 

The frequency of alleles ranged from 0 (unobserved) to 0.75, and the most 

frequent allele for each locus had a frequency of at least 0.25. Allele frequencies 

were compared as common versus pooled rare alleles or, where necessary, rare alleles 

were included with alleles of similar size. The x2 test indicated that allele 

frequencies in the two bradaris were significantly different at thirteen loci. Figure 

IV.8 shows the allele frequencies for Dl5SI I, where the allele frequencies were 

found to be significantly different between the two bradaris and the GDB and CEPH 

data. Specific allele frequency data and results of the x2 tests for other loci are listed 

in Appendix VIIJ. 

Allele frequencies for each family and for the combined bradari data were 

compared with the GDB and CEPH data, although this could only be accomplished 

for those markers which had allele sets listed or had similar size ranges. The x2 tests 

indicated that allele frequencies were significantly different at all loci between the 

bradaris and both databases, at the 5% level (data not shown). 
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IV .4 Level of variation in homozygosity of loci 

IV.4.i Bradari variation 

Homozygosity varied considerably both within and between the two 

bradaris, with upper and lower limits of 4% (Dl3Sl92) and 55% (Dl5Sl08) in the 

Khattar, and 3% (Dl5S98) and 40% (D15S!Ol) in the Rajpoot. To determine if the 

levels of homozygosity between the two bradaris were statistically different, the data 

were compared, locus by locus, using a paired /-test. No significant difference was 

observed at the 5% level (Figure 1V.9). 

A correlation coefficient was calculated to see if there was a relationship 

between the number of alleles at a locus and observed homozygosity. The 

correlation coefficient indicated that there was an inverse relationship between the 

two factors for both chromosomes: r(chr13) ~ -0.78 and r(chrl5) = -0.52 . 
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IV.4.ii Variation between the bradaris and reference populations 

The observed levels of homozygosity in the bradaris were compared with 

homozygosity in the published data using a paired t-test. At the 5% level, the 

homozygosity in the Khattar was significantly greater than the CEPH for 

chromosome 15 (t = 2.489, t-critical = 2.262), and homozygosity in the Rajpoot was 
( 

significantly less than CEPH for chromosome 13 (t = -4.810, t-critical = 2.262). No 

significant difference in homozygosity was observed between the bradaris and the 

GDB. Mean homozygosity for each bradari, the combined bradaris and the 

published data are shown in Figure IV .1 0. 

~ ·c;; 
0 
01 

~ 
0 
E 
0 

:I: 

Khattar Rajpoot Corrbined GOB CEPH 

Figure IV.lO: Mean homozygosity levels 

Note: CEPH does not include Dl3Sl33 and Dl3S192. 

IV.4.iii Expected homozygosity 

• Olromosorre 13 

o Olromosorre 15 

Expected homozygosity was initially calculated using Equation III.2. In 

general, expected homozygosity exceeded the observed homozygosity, differing by as 

much as 15% in the Khattar and 22% in the Rajpoot (Figures IV.ll and IV.12). 
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Figure IV.12: Observed and expected values of homozygosity for the Rajpoot pedigree 
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Observed homozygosity was compared to expected homozygosity using a 

paired t~test. At the 5% level of significance, a difference between the expected and 

observed levels of homozygosity was noted in both the Rajpoot and the Khattar 

pedigrees. However, when the data from both pedigrees were pooled, there was no 

significant difference in observed and expected homozygosity (Table IV.3.i). 

Expected homozygosity was also calculated with a correction for the 

inbreeding coefficient, using Equation III.3. Again, expected homozygosity generally 

exceeded observed homozygosity, with a maximum difference of 17% in the Khattar, 

and 24% in the Rajpoot. A paired Hest indicated that expected homozygosity was 

statistically greater than observed homozygosity, at the 5% level of significance 

(Table IV.3.ii). 

Table IV.3: Values of the !~statistic for expected versus observed homozygosity 

where F-=0 (i) and with a correction for F (ii) 

Chromosome Khattar Rajpoot Combined df /-critical range 

13 3.608* 4.792* 2.2624* 9 -2.262 <I< 2.262 

15 1.106 2.745* -0.342 9 -2.262 <I< 2.262 

Total 3.027* 5.198* 1.225 19 -2.093 < t < 2.093 

ii 
Chromosome Khattar Rajpoot Combined df !-critical range 

13 4.619* 9.516* 4.026* 9 -2.262. 2.262 

15 1.889 3.4998* 0.572 9 -2.262.2.262 

Total 4.244* 7.21 * 2.692* 19 -2.093 • 2.093 

* the value is significant at the 5% level 



IV.5 Homozygosity in the children of first cousin and non-consanguineous 

marriages 

IV.5.i Observed homozygosity 

The overall increase in the level of homozygosity in the children of first 

cousin marriages compared with non-consanguineous marriages · was 0.0539, i.e., 

close to the expected 0.0625. In the Khattar, the mean increase in homozygosity in 

the first cousin progeny was 0.0593 and in the Rajpoot it was 0.0463 (Figure IV.l3). 
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[] Chromsome 13 

• Chromsome 15 

0 Total 

Figure IV.13: Mean differences in homozygosity between children of first 

cousin and non-consanguineous marriages 

A paired t-test was used to determine if the increase in homozygosity in the 

children of first cousin marriages was statistically significant, and indicated that 

homozygosity was significantly greater in the Rajpoot for chromosome 15 at the 5% 

level. A t-test was also used to compare the increase in homozygosity observed in 

the two chromosomes. While there was a marked increase in homozygosity on 

chromosome 15 compared to chromosome 13 this diffe~;:ence was not shown to be 

statistically significant. 
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IV.5.ii Expected versus observed homozygosity 

The expected homozygosity for each locus was calculated for the children of 

first cousin (F=0.0625) and non-consanguineous marriages (F=O) using Equation 

III.3. Expected homozygosity was generally greater than the observed homozygosity, 

and the two were compared using a paired t-test. At the 5% level, the. difference was 

significant in each pedigree for both types of marriage (data not shown). 

IV.5.iii Individual homozygosity 

A comparison was also made between the number of homozygous loci in the 

children offirst cousin and non-consanguineous marriages (Figure IV.14). 

12 
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•Non­
consanguineous 

Figure IV.14: The distribution of homozygous loci in the children of first 

cousin and non-consanguineous marriages 

The distribution of homozygous loci in the children of first cousin marriages 

followed the pattern of a normal distribution with a near bell-shaped curve. 

Individuals possessed a range of 1 - 10 homozygous loci, with a modal value of 6 
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homozygous loci. The non-consanguineous progeny exhibited a mixed distribution 

pattern, with most having 5 homozygous loci. 

IV.6 The obsenred and expected coefficients of inbreeding 

For each pedigree, the expected coefficient of inbreeding (FE) was 

calculated by Equation lll.4. In the Khattar, F. ~ 0.0276 for the 51 individuals 

studied, while in the Rajpoot, FE ~ O.D25 for the 40 individuals studied. All 

consanguineous marriages were first cousin unions, so for the children of these 

marriages FE= 0.0625, while FE= 0 for children of non-consanguineous marriages. 

The observed inbreeding coefficient (Fo) was evaluated by Equation Ill.5. 

In all cases, the values of the observed inbreeding coefficient were negative and 

therefore quite different from the expected values (Table IV.4). The negative values 

of the observed inbreeding coefficient can be attributed to the overall reduction in 

observed homozygosity compared with expected homozygosity. 

Table IV.4: Expected inbreeding coefficients 

Mean expected Mean observed 

inbreeding coefficient inbreeding coefficient 

Khattar 0.0276 -0.0602 

Rajpoot 0.0250 -0.1163 

First cousin 0.0625 -0.08787 

Non-consanguineous 0.0000 -0.06826 

- - - -

~f_ .... 

-~~; 
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V. DISCUSSION 

V.l Suitability of reference populations 

It was reasonable to compare the Pakistani populations with data from 

predominantly European populations as it is likely that the polymorphisms shared by 

one group are also present in another. This sharing is expected since the 

measurement of genetic variability between human populations, F sr, is 

approximately 0.1, indicating that almost 90% of human genome variability is 

common to all human sub-populations (Schmitt, 1997). However, the information 

obtained from the GDB and CEPH are derived from a number of different research 

groups and, in some instances, has been determined using sample populations which 

did not contain the same specific individuals. Furthennore, the data may not have 

been drawn from a randomly selected group, as the individuals usually have been 

investigated because of specific biological or medical characteristics (Li and Sadler, 

1991). Unfortunately, time limitations did not permit multivariate analysis of the 

observed results to accommodate these variables. 

Use of ethnically different sample populations can produce quite variant 

information about a marker, in particular the information content of a marker. For 

example, the heterozygosity of a marker must be at least 0.7 for a forensic or linkage 

study to be cost effective (Ott, 1992). In the present study, the GDB was the first 

avenue for evaluating the level of heterozygosity that would be expected for a 

marker, and witt, the exception of four loci, Dl3Sll5, Dl3Sl26, Dl3Sl25 and 

D15Sl08, this value was greater than 0.7. However, the observe.d levels of 

heterozygosity for Dl3Sll5 and DlJSl25 were higher than the values published in 

the GDB and CEPH, and were also greater than 70%. Thus, on the basis of these 
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observations, the two markers would be considered suitable for linkage or forensic 

studies. 

Despite these minor caveats, it is appropriate to use the GDB and CEPH as 

reference populations since they have been specifically compiled to provide an 

indication of the degree of genetic diversity that might be expected in a population, 

and thus serve as a starting point for genetic studies. Even in linkage studies, these 

databases are used as reference material, although it appears probable that the allele 

frequencies observed in the pedigrees under study will differ from the published 

allele frequencies (Kruglyak, Daly and Lander, 1995). 

V.2 Success ofPCR amplification and fluorescent deti;.-~tion of alleles 

The PCR protocol developed by Kalaydjieva and Tolun required 

modification for some of the markers, in particular necessitating an increase in the 

concentration of primers in the reaction mixture. It had been several months since 

the primers had been tested and their conditions optimised, so it is probable that they 

had degraded to varying degrees during this time. Degradation of primers is 

inevitable, as it proceeds at a rate of approximately 0.1% per month because of 

natural breakdown, but mildly degraded primers are readily accommodated in the 

PCR reaction mixture. The ease with which the PCR protocol could be modified to 

suit the degrading primers demonstrates the flexibility of both microsatellite primers 

and PCR. 
' t 

,.~, 
After modification of the protocol, PCR amplification of the markers was 

successful for all microsatellites studied, although it was necessary to rescan svme 

PCR products because the instrument detected little or no signal. Poor detection of 

alleles by the ABI Prism 310 may have been due to dilution of PCR products in the 
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multiplex samples, or have been caused by experimental problems such as pipetting 

errors. 

V.3 Evaluation of dinucleotide markers 

The effectiveness of the dinucleotide repeat microsatellites used in this s~dy 

has been confounded by several factors. The most problematic factor was the lack of 

continuity in allele sizes between published data and the results obtained with the 

bradari DNA samples. Unfortunately, it was not possible to screen samples from the 

published data to ensure that the allele sizes allocated to DNA from the bradaris 

were in agreement with these sources. Had this opportunity been available, the 

information could have been used to scale the results from different populations so 

that allele sizes in the GDB, CEPH and the bradaris were congruent with one another 

(Morell eta!., 1995). Large differences in allele size could be attributed to the use of 

differing microsatellite primers. If the primer sequence is longer, then amplification 

will result in a PCR product with a longer final length. Inconsistent allele sizing can 

also result from the use of different fluorescent label systems, such as using primers 

which have been labelled during synthesis, as opposed to incorporating the dyes into 

the PCR product during amplification. 

The allele sizes also occasionally differed by a single base parr. For 

example, at Dl3Sl75 the GDB published sizes begin at 99, but the observed sizes 

begin at 98. While this can in part be the result of subjective scoring of alleles by the 

researcher, it can also be due to some measure of incompatibility between the 

fluorescent detection systems that are employed. The mobility of the DNA fragments 

may be inconsistent between instruments, resulting in different size allocations for 

the .same allele (Perlin eta!, 1994). For example, in the Centre; for Human Genetics 

70 



it was observed that the same PCR product analysed using an ABI Prism 310 and an 

ABI Prism 373 DNA Sequencer would not always be assigned the same fragment 

size. 

Changes in size between dinucleotide alleles of approximately :bp did 

produce some confusion when tryi:.'g to score alleles. ·This problerr. would be 

overcome by the use of tri-, tetra- or penta-nucleotides, which would produce less 

ambiguity with scoring alleles because of the greater distinction in fragment size. 

However, compared to dinucleotides, larger repeats display higher mutation rates and 

increased selection on repeat length. Hence, different populations display greater 

similarity in their allele frequencies in these longer nucleotide repeat microsatellites 

(Wall, Williamson, Petrou, Papiaioannou and Parkin, 1993; Morell eta/., 1995). In 

sununary, the differences observed in this study between the two bradaris, and 

between the bradaris and the GOB and CEPH, may not have been so great using 

microsatellites with larger nucleotide repeats. However, it must be remembered that 

dinucleotides do offer the benefit that they occur more frequently and they are ·.~ 

distributed evenly throughout the genome. They also have been tested more 

extensively than the other types of microsatellite repeat (Moore et al., 1991). 

V.4 Variation in the alleles 

In general, there were fewer alleles observed in the bradaris than in the 

GDB and CEPH data (refer to Figure IV. 7). This finding was expected, since 

bradaris are endogamous communities and therefore they would have a smaller gene 

pool than a larger, randomly mating population. This factor is further supported by 

the observation that, for some markers, the reference data (particularly the GDfi) 
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were derived from fewer individuals but displayed greater polymorphism thz,J the 

t-
equivalent results obtained from the bradari members. 

Allele sharing among the bradaris was quite low at some loci, and allele 

frequency distributions observed in the Khattar and Rajpoot displayed significant 

differences at thirteen of the twenty loci. Loci with high proportions of shared alleles 

in the two bradaris tended not to display differences in allele frequencies. The 
' 

observed allele frequencies indicated that the two Pwtjabi communities shared 
·~ 

greater similarity with each other than with the non-Punjabi reference populations. 

However, because the bradaris were found to be significantly different at more than 

half the loci studied, this may indicate that they are not as genetically similar as 

would be expected, given that they are from the same region. This finding may 

indicate that the bradaris have diverged from each other, which could be a result of 

inbreeding. Alternatively, they may not share the same founding population, which 

is possible given the history of migration in the region (see st:ction Il.l). 

' 
The appearance of a previously undescribed allele in the Khattar pedigree 

(229bp at Dl5Sll ), present with a frequency of 0.1, was of interest. The allele was 

introduced into the bradari by individual 16 who married her first cousin, individual 

11. The 229bp allele was inherited by six of their seven children, one of whom (31) 

in turn had passed it on to three of her children. As this allele was not described in 

any published data, it may be the result of a local mutation. Thompson and Nee! 

(1997) have suggested that private polymorphisms will be observed in relatively 

undisturbed tribal populations, and this new allele may be an example of such a 

polymorphism. The high frequency with which the allele has been inherited also 

demonstrates how quickly the gene pool of a genetically isolated population can be 

altered by admixture. Furthermore, there appears to be selection in favour of the 
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heterozygous genotype at this locus. The father's genotype for this marker was 

243/243, while the mother was 229/243, so possible genotypes for the c ffspring ore 

229/243 or 243/243, but in 6 out of7 cases the heterozygous genotype was observed. 

Selection against homozygotes will be discussed in more detail in section V.S. 

V.S Homozygosity and the coefficient of inbreeding 

The coefficient of inbreeding provides a mathematical measure of the level 

of excess homozygosity that results from consanguineous unions. In the pedigrees 

investigated in this study, the calculated inbreeding coefficient was F = 0.0276 in the 

Khattar and F = 0.0250 in the Rajpoot. On the basis of these calculations, which 

were derived from the five (Khattar) and four (Rajpoot) generation pedigrees 

available, it was predicted that the level of homozygosity in the bradaris would not 

be significantly different, although the Khattar could be expected to display greater 

homozygosity. The results of the microsatellite analysis indicated that homozygosity 

was not significantly greater in the Khattar than in the Rajpoot, although the 

difference was greater than would be predicted from the pedigrees. 

It was also predicted that the observed levels of homozygosity m the 

bradaris would be higher than both the expected homozygosity and the levels of 

homozygosity in the published data sets. In fact, the reverse proved to be true as the 

expected homozygosity was actually higher than observed homozygosity, attaining 

statistical significance for both bradaris. Furthennore, the bradaris did not display a 

greater degree of homozygosity than the reference data, as there were a greater, 

though not statistically significant, number ofhomozygotes in the CEPH database. 

This finding was unexpected, not merely because the CEPH families are not 

inbred, but also because the number of alleles observed for the CEPH data were 
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higher than in the Pakistani families. If the number of alleles is inversely 

proportional to the relative proportion ofhomozygotes for a locus, then it would have 

been expected that the CEPH data would have revealed less homozygosity tlum the 

bradari pedigrees. 

All of these observations indicate that the level of observed homozygosity in 

the bradaris is reduced by comparison with the values that would be expected in an 

inbred community and in the non-inbred reference populations. The most likely 

explanation would appear to be some selectional mechanism operating against the 

homozygous genotypes. 

In protein and enzyme studies it has previously been proposed that 

environmental factors can act to positively influence the selection of a heterozygote, 

as the hybrid form of a gene may confer beneficial intennediary properties not 

present in either homozygote, i.e., the phenomenon of heterozygote advantage 

(Fincham, 1975; Clarke, 1979). For example, it has been suggested that several 

diseases are maintained in the population because of heterozygote advantage. These 

include cystic fibrosis (Meindl, 1987), Mediterranean fever (Brenner-Ullman, 

Melzer-Ofir, Daniels and Shohat, 1994) and thalassaemia (Wang and Schilling, 

1995), although the only undisputed example is sickle-cell anaemia (Edwards, 1977). 

Preferential selection of heterozygotes has also been suggested where a 

homozygote has specific immunological disadvantages during pregnancy. For -" 

example, the HLA region has been linked to recurrent abortion in couples whose 

level of HLA sharing is high (Beer, Quebbeman, Ayers and Haines, 1981). It is 

believed that in pregnancy the fetus is maternally detected as a foreign organism and, 

to prevent its rejection, it stimulates the release of protective antibodies 

(Schwarzenau, 1990). In couples with high HLA compatibility, the antigenic 
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differences between mother and fetus are reduced, which could impede the release of 

these protective antibodies, resulting in spontaneous loss of the pregnancy 

(Schwarzenau, 1990). However, it has also been suggested that HLA sharing per se 

is not responsible for early embryonic loss, but rather that the HLA may be in tight 

linkage disequilibrium with the gene or genetic defect responsible for the abortion 

(Jin, Ho, Speed and Gill, 1995, Brennan, 1997). 

Theoretically, if a more general sectional mechanism against high levels of 

homozygosity is operative at other loci in the genome, then microsatellites that are 

linked to or are found within these loci are also more likely to be heteroZ) go us. The 

selective force(s) behind the lower than expected levels of homozygosity described in 

the present study may be optimally active early in pregnancy, and result in the 

preferential early abortion of embryos or fetuses which exhibit high homozygosity. 

In particular, the5e selectional mechanisms may be expressed at the loci of early 

developmental genes. 

Interestingly, an excess of heterozygosity has also been reported in a number 

of diverse species und~cgoing inbreeding, including chickens (Mirra, Sheldon, Yoo 

and Frankham, 1991), Drosophila (Rumball. Franklin, Frankham and Sheldon, 

1994), and dogs (Rogers, 1995). In particular, Rumball et a/. (1994) using 

polymorphic enzyme loci observed that the rate of decline of heterozygotes in full-sib 

and double Jrst cousin matings was significantly slower than the theoretical 

expectations. Further, in successive generations of Drosophila, the heterozygote was 

increasingly more fit than the homozygote. If, as believed, the Pakistani families in 

the present study have been contracting close kin marriages for an extended period of 

time, then the increased i.:1cidence of heterozygosity could perhaps be attributed to a 
,-'· 

similar increase in their fitness, not present in the homozygotes. However, the family 
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sizes of close kin unions in Pakistan generally are larger than among non~ 
:~ 

consanguineous unions, suggesting no decrease in fitness (Bittles eta/., 1993). 

If prenatal selection against homozygotes is occurring, it would appear to 

vary in intensity within different regions of the individual chromosomes. While there 

was no statistically significant differenc_e in the level of homozygosity between the 

two bradaris for either chromosome, differences were noted when data from the 

individual bradaris were compared to the published data. The Khattar were 

significantly more homozygous than the CEPH data for chromosome 15, and the 

Rajpoot were significantly less homozygous than the CEPH data for chromosome 13. 

Similarly, the increase in homozygosity in the children of first cousin marriages and 

-~ 
non-consanguineous marriages for the Rajpoot was more pronounced on 

chromosome 15, and was slightly higher in the Khattar for this ch:omosome. This 

effect was also reflected in the differences in the expected homozygosity and 

observed homozygosity, which were as high as 24% for individual loci on 

chromosome 15, and 17% for chromosome 13. Overall, these observations support 

_,_ 
the suggestion that certain regions of the genome may demonstrate resistance to 

homozygosity (Rogers, 1995). 

The level of homozygosity in the children of first cousins was higher than in 

the children of non~consanguineous marriages, although not by the expected 6.25%. 

Thus, it would appear that although there may be some degree of preferential 

selection against homozygotes, the influence of descent from a common ancestor is 

still present, albeit to a reduced degree. However, as indicated by Figure IV.l3, the 

effects appear to be highly variable across the two chromosomes and in both 

pedigrees. 
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V.6 Polymorphism information content of markers 

As the observed homozygosity in the hradaris was significantly lower than 

expected, it was decided that the polymorphism information content (PIC) of each 

marker should also be calculated. The PIC of a marker is the probability that the 

genotype of a given offspring will permit identification of which marker allele at a 

locus was inherited from each parent. It is calculated by: 

n n-1 

PIC= 1- L p,'- L 
i=l i=l J=i+l 

Equation V.l: Polymorphism information content 

where p1 is the frequency of the ith allele, and n is the total number of alleles (Ott, 

1991). As the PIC is an adjusted form cf heterozygosity, it is conventionally 

discussed relative to heterozygosity rather than homozygosity. 

The PIC, like heterozygosity, decreases with decreasing number of alleles, 

and so detecting differences in populations is strongly dependent on the number of 

alleles described for a marker (Taylor, Sherwin and Wayne, 1994). With inbreeding, 

the PIC may be more informative than heterozygosity, as it gives a more conservative 

estimate of the possible level of heterozygosity from the observed allele frequencies. 

For example, if the PIC for a marker is low, it indicates a high probability that the 

parental haplotypes frequently are identical, with a corresponding increased potential 

for the homozygous genotype. The PIC would therefore be expected to indicate a 

greater deviation from expected heterozygosity in a population that is influenced by 

stl~ction against homozygosity. 
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With these preced~nts in mind, the PIC of each marker was calculated 

according Equation V.l, and compared with the observed and expected levels of 

heterozygosity using a paired 1-test (Tables V.l and V.2). 

Table V.l: PIC, observed heterozygosity and expected heterozygosity for the 

Khattar pedigree 

Locus PIC Observed Expected Expected 

heteroz-ygosity heterozygosity heterozygosity 

(F~O) (F~0.0276) 

Dl3Sl75 0.440 0.570 0.544 0.529 

DI3SI 15 0.551 0.760 0.694 0.675 

Dl3SI92 0.783 0.960 0.822 0.799 

Dl3Sl26 0.771 0.800 0.814 0.792 

Dl3Sl33 0.478 0.650 0.620 0.603 

Dl3S270 0.309 0.730 0.591 0.574 

DIJSI44 0.672 0.800 0.758 0.737 

DJJSI25 0.656 0.750 0.749 0.728 

D!JS173 0.467 0.710 0.650 0.632 

DIJS285 0.738 0.900 0.789 0.766 

Dl5Sl1 0.294 0.590 0.587 0.570 

GABRBJ 0.625 0.690 0.733 0.713 

Dl5S97 0.752 0.860 0.798 0.776 

Dl5SIOI 0.498 0.590 0.671 0.653 

Dl5SI02 0.737 0.760 0.796 0.774 

Dl5S!08 -0.248 0.450 0.424 0.412 

Dl5S98 0.624 0.880 0.731 0.710 

D15S169 0.633 0.760 0.731 0.71 I 

Dl5SIOO 0.374 0.710 0.608 0.591 

Dl5Sl20 0.698 0.780 0.770 0.748 

t-test -5.46657 -4.70404 -4.03452 

Note; !-test values are for comparisons with PIC where df- 19 and !-critical- 2.093. 
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Table V.l: PIC, observed heterozygosity and expected heterozygosity for the 

Rajpoot pedigree 

Locus PIC Observed Expected Expected 

heterozygosity heterozygosity heterozygosity 

(F=O) (F=0.025) 

DI3SI75 0.607 0.820 0.657 0.640 

DI3SII5 0.435 0.800 0.637 0.621 

DI3SI92 0.759 0.840 0.803 0.782 

DI3SI26 0.687 0.880 0.762 0.743 

DI3S!33 0.538 0.710 u.625 0.609 

DI3S270 0.577 0.920 0.698 0.680 

DI3SI44 0.249 0.730 0.561 0.547 

DI3SI25 0.591 0.880 0.703 0.685 

DI3SI73 0.725 0.960 0.778 0.758 

DI3S285 0.705 0.880 0.765 0.745 

DI5SII 0.492 0.670 0.662 0.645 

GABRB3 0.219 0.670 0.561 0.547 

DI5S97 0.637 0.720 0.733 0.714 

Dl5S101 0.429 0.600 0.644 0.628 

0158102 0.624 0.820 0.728 0.709 

DI5SI08 0.359 0.700 0.610 0.594 

DI5S98 0.732 0.970 0.774 0.755 

DI5SI69 0.456 0.670 0.630 0.614 

DI5SIOO 0.439 0.670 0.639 0.622 

D15S120 0.699 0.870 0.761 0.742 

t~test -10.0359 -6.83666 -5.86144 

Note: /-test values are for comparisons with PIC where df- 19 and /-critical- 2.093. 

At the 5% level, PIC was found to be significantly lower than both observed 

and expected heterozygosity. Furthermore, the /-test indicated that PIC was 

significantly different from observed heterozygosity to a greater extent than observed 

versus expected heterozygosity. Therefore, the PIC predicted a reduced level of 

heterozygosity in the bradaris than was observed or would have been predicted by 

expected heterozygosity, an observation which lends support to the hypothesis of 
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selection against homozygosity. Under these circumstances, the PIC of a marker may 

therefore be a better indication that a population is influenced by selection against 

homozygotes, than the observed homozygosity. 

V.7 Prospects for future research 

The results of the present study should be treated with caution, due to their 

preliminary nature, the limited sample size, and the knowledge that the individuals in 

the pedigrees may carry the recessive disease, ~-thalassaemia. There was also the 

problem of inadequate information on the backgrounds of the individuals studied and 

the exact relationship between spouses. For example, the inbreeding coefficient of 

individuals who had married into the pedigree was not known, and a value of F>O 

could affect the inbreeding coefficient of the whole pedigree. Furthermore, the 

length of time that inbreeding has been practised in these bradaris is uncertain, and 

from the pedigrees provided only a maximum of two generations include 

consanguineous marriages. If consanguinity has been a feature.of the bradaris for 

more than the last two generations, it predictably would be reflected in their 

cumulative inbreeding coefficients. 

Another major limitation to the study was time, which prevented extensive 

analysis of the results. For example, analysis of the observed allele frequencies was 

performed using a x2 test, but alternative analyses could be employed, such as the 

Monte Curb method which involves random number generation and may be a more 

appropriate method when dealing with small populations (Scribner, Arntzen and 

Burke., 1993). Time also prevented thorough analysis of the results to determine if 

the differences in sample size between the two bradaris, and between the bradaris 

and GOB and CEPH were significantly influencing the results. More detailed 
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analysis of the results should take into consideration the varying population sizes, as 

it is probable that this factor has been influential when comparing the bradaris with 

published data. 

Further analysis of the results also could pay specific ~uention to the 

homozygosity and altojlc-sharing at specific loci, with respect to the function of any 

genes that are linked to the rnicrosatellites investigated (e.g. GABRB3). 

Additionally, the results could be analysed to evaluate any association between 

homozygosity and certain regions of the chromosomes examined, which may indicate 

if inbreeding exerts specific regional effects, and may also assess the neutrality of 

microsatellite markers. The study could also be extended to investigate markers on 

different chromosomes or specific regions of chromosomes, such as the X­

chromosome or the HLA region of chromosome 6, as they may demonstrate greater 

resistance to homozygosity. Similarly, a variety of markers (e.g. minisatellites, 

RFLPs) could be compared, as they may each respond to homozygosity and 

inbreeding in alternative ways, dependent on their mutation rates and positions on the 

chromosomes. 

The mutation rate of the individual microsatellites is another factor which 

could have been considered in the analysis of the present results. It is accepted that 

the different types of genetic marker possess different rates of mutation, and these 

can be predicted by two principle models, the Infinite Allele Model (!AM) and the 

Stepwise Mutation Model (SMM; Shriver, lin, Chakraborty and Boerwinkle, 1993). 

The SMM has been shown to be the most appropriate model for microsatellites 

(Edwards eta/., 1992; Shriver e/ a/., 1993; Valdes, Slatkin, and Freimer, 1993; Di 

Rienzo et al., 1994), and can be used to detect genetic distance and divergence. This 

has implications for the results obtained in this study because it provides an 
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alternative means of comparing the two bradaris with each another and with the 

GOB and CEPH data 

Continuing research would also benefit by increasing the sample size. This 

proposal is based on the observation that, on a number of occasions, the differences 

observed between the bradaris became less significant as data wer~ combined. 

Sample size is important from a statistical perspective and, regardless of the 

relationship between individuals, small number problems will limit the information 

. that can be derived from a study (Cooper, Smith, Cooke, Neimann and Schmidtke, 

1985). The sample size could be increased to encompass new families from the 

Rawalpindi region, and thus investigate how the genomes of separate endogamous 

communities living in the same geographical area have diverged. Alternatively, an 

increased sample size could include families from geographically distant regions, and 

from different ethnic groups, to gain insight into whether inbreeding produces 

comparable decreases in homozygosity in all human populations. 

Further study could also investigate the association between spontaneous 

abortion and homozygosity. In this investigation, low homozygosity was suggested 

to be a consequence of the rejection of fetuses with high homozygosity. Early 

pregnancy loss in humans has recently been found to occur at a rate of between 45% 

(young women) and 90% (women in their forties) in a study conducted in 

Bangladeshi women, based on sequential urinary assay of human Chorionic 

Gonadotrophin levels (Wood, Holman and O'Connor, 1997). Using such a system, 

the rate of spontaneous abortion could be monitored in both consanguineous and 

non-consanguineous couples. Moreover, marker analysis could indicate whether 

homozygosity was higher in abortuses that in live births, although a study of this 

nature would be faced with major practical and ethical constraints. 
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In conclusion, the current results could be further investigated to establish 

more detailed infonnation on the effects of inbreeding in these families, and how 

they differ from non·inbred populations. Further investigations in other regions of 

the genome, and in other individuals, may also lead to significant conclusions as to 

the probable homogeneity of the effects of inbreeding that were observed in this 

study. 
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VII. APPENDIX 

Appendix 1: Definition of terms 

Allele: one of the possible fonns of a gene 

Allozygosity: homozygosity where the identical alleles are inherited by cbance and 

not by descent from a common ancestor 

Autozygosity: homozygosity where the identical alleles are inherited from the same 

ancestor 

Bradari: in Pakistan, the extended family recognised along paternal and/or fraternal 

lines 

Coefficient of inbreeding: the probability that the two alleles at a locus are 

inherited because of descent from a common ancestor 

Consanguinity: mating between two individuals who are related by a common 

ancestor in the last three or less generations 

Fsr: a measure of genetic distance between two populations 

Haplotype: the alleles received by an individual from one parent 

Heterozygosity: alleles at a particular locus are different 

Homozygosity: alleles for a particular locus are the same 

Human leucocyte antigen: antigens which help the body differentiate between self 

and non-self 

Locus (loci): region where a gene is found 

Mendelian inheritance: inheritance where alleles are passed on to the next 

generation in equal ratios from each parent 

Microsatellitc: tandem repeats of simple sequences less than I OObp long, occurring 

randomly in the genome 
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Minisatellite: repeat sequences where a 5hort nucleotide sequence of DNA is 

repeated tandemly 20 to I 00 times 

Morbidity: diseased or disease related 

Mortality: death rate in a population 

Polymorphism Information Content: probability that. the marker genot)'pe of a 

given offspring will allow deduction of which of the two marker alleles was inherited 

from each of the parents 

RFLP: specific sequences of DNA which can be cleaved by restriction enzymes 

Spontaneous abortion: cessation of pregnancy within the first 28 weeks of 

pregnancy 
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Appendix 2: WWW sites for human genome information 

Genethon 

Home Page: www.genethon.fr/genethon-en.html 

Map Query: ftp.genethon.fr/pub/Gmap/Nature-199Sidata/ 

,, 
Cooperative Human Linkage Centre (CHLC.l 

Home Page: www.chlc.org/ 

Map Query: v'Vffl.chlc.or/ChlcMaps.html 

Centre d'Etude.s du Polymorohisme Humain (CEPH) 

Home Page: www.cephb.fr/cephdb/ 

Marker Query: www.cephb.fricgi-binlwdb/ceph/systeme/form 

Genome Data Base (GDB) 

The GDB was upgraded from version 5.6 to version 6.2 in late 1996. Marker 

information in this study was mainly derived from version 5.6. 
,, 

Home Page: gdbwww.gdb.org/gdb/ (version 6.2) 

gdbwww.gdb.org/gdb/docs/gdbhome.htrnl (version 5.6) 

Polymorphism 

Query: gdbwww.gdb.org/gdb/ (version 6.2) 

gdbwww.gdb.org/gdb-bin!gdb5.6/browserlbin/map?249,19 

(version 5.6) 
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-~ Appendix 3: Observed allele frequencies 
-r.,;. 

x2 test values listed are only those that were significant 

df=(n-1) 

Chromosome 13 

Locus Allele size'(bp) Khattar Rajpoot x' 

DIJS175 98 0.44 0.51 

100 0.51 0.21 

104 0.05 0.14 

108 0.00 0.14 

D!3S115 !60 0.04 0.00 6.70, d£=3 

164 0.45 0.50 

166 0.25 0.14 

168 0.00 0.06 

172 0.19 0.30 

174 0.02 0.00 

176 0.05 0.00 

D13S192 99 0.22 0.00 

103 0.03 0.13 

105 0.06 0.09 

107 0,22 0,00 

109 0.04 0.20 

Ill 0.01 0.28 

113 0.05 0.21 

115 0.02 0.00 -~ 
117 0.05 0.10 

119 0.26 0.00 

121 0.05 0.00 

99 

'-1!-

~~\;£1.,_,. ~~~~=,-.-,---~="'""'=""""""'~~~~~~-=-J.·.-·· 
:·.:-: ~~_.;_~ ·_;- -,~~--~,~~:::; .,:,-?"':-::,.":~:--:~-~-' __ ':: -·- -._; ___ ;:C:0:_,;.~~~-·':~Z:.~~}~~;~~:-::l~Tt~~~-----~~--:-::-· _<,:;-:·~:·~~~i J,f~;i~.:~;~~ii~'L?'-'--,· · -- ___ ,. --" ~ ---<~:~ --, -~~-------~;-~.- -_- ., -.~~ _.,,_~ 



Chromosome 13 (cont.) 

Locus Allele fiize (bp) Kbattar Rajpoot x.' 

DllSill Ill 0.2l O.l4 

Ill 0.00 0.26 

165 O.Ol 0.00 

17l 0.29 0.06 

177 0.06 0.01 

179 O.Ol 0.20 

131 OJ4 0.00 

ISl 0.00 0.10 

185 0.08 O.Ql 

187 O.ll 0.00 

189 0.02 0.00 

DllSI26 IOl 0.06 0.24 

105 0.42 0.26 

107 0.08 0.00 

109 0.44 0.50 

DllS270 80 0.59 0.44 

82 0.00 0.08 

88 0.00 O.QJ 

90 O.Ql 0.28 

92 0.20 O.ll 

96 O.ll 0.08 

100 0.06 0.00 

DIJSI44 181 0.30 0.29 2.12, dFl 

185 0.05 0.00 

187 0.14 0.00 

189 0.34 0.59 

191 0.09 0.06 

19l 0.08 0.06 
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Chromosome 13 (cont.) 

Locus Allele size (bp) Khattar Rajpoot x' 

D13S125 130 0.08 0.00 

144 0.06 0.00 

148 0.17 0.08 

150 0.27 0.35 

152 0.05 0.38 

154 0.37 0.13 

160 0.00 0.08 

DI3S175 230 0.00 0.24 

232 0.00 0.28 

234 0.45 0.21 

236 0.15 0.10 

238 0.35 0.00 

240 0.05 0.18 
,.,,. 
":-"-

88 0.14 0.18 5.04, dN ~ 
-~ 

DI3S285 

' 92 O.D3 0.13 ;;R 

94 0.09 0.00 

96 0.30 0.24 

98 0.22 0.33 

100 0.02 0.14 , __ -

102 0.21 0.00 
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Chromosome 15 

Locus Allele size (bp) Khattar Rajpoot x' 

Dl5Sll 229 0.10 0.00 

243 0.60 0.29 

245 0.00 0.08 

247 0.00 0.05 

249 0.00 0.05 

251 0.19 0.49 

253 0.03 0.00 

261 0.01 0.05 

263 0.08 0.00 

GABRB3 185 0.33 0.20 

187 0.06 0.00 

189 0.25 0.61 

193 0.00 0.16 

195 0.05 0.00 

197 0.30 0.00 

203 0.00 0.03 

Dl5S97 180 0.21 O.Q3 9.38, df=4 

182 0.23 0.09 

184 0.00 0.29 

186 0.25 0.39 

188 0.11 0.10 

190 0.17 0.11 

198 0.04 0.00 

Dl5SIOI lOS 0.08 0.10 

107 0.09 0.00 

109 0.49 0.55 

Ill 0.00 0.06 

113 0.26 0.08 

115 0.00 0.18 

117 0.08 O.Q3 

119 0.00 0.01 
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Chromosome 15 (cont.) 

Locus Allele size (bp) Khattar Rajpoot x' 

DISS102 210 0.28 0.04 

212 0.11 0.35 

214 0.02 0.00 

216 0.27 0.31 

218 O.o! 0.00 

220 0.04 0.21 

222 0.17 0.00 

224 0.10 0.00 

226 0.00 0.09 

DISSI08 142 0.06 0.15 10.37, dF4 

144 0.05 O.o4 

ISO O.o? 0.14 

158 0.05 0.10 

160 0.75 0.58 

162 O.Q2 0,00 

DISS169 145 0.44 0.06 

147 0.00 0.06 

149 O.o? 0.00 

151 0.00 0.04 

153 0.00 0.11 

ISS 0.15 0.00 

157 0.08 0.00 
,;-_ 

159 0.04 0.29 

161 0.02 0.00 

"" 163 O.o! 0.11 

171 0.20 0.33 
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Chromosome l 5 (cont.) 

Locus Allele size (bp) Khattar Rajpoot x' 

DISS9il 138 0.23 0.11 

140 0.06 0.49 

142 0.11 0.04 

144 0.20 0.03 

148 0.40 0.00 

150 0.01 0.34 

DI5SIOO 182 0.16 0.21 1.16, d!=3 

184 0.04 0.05 

188 0.55 o.~J 

190 O.oi 0.18 

192 0.25 0.04 

DI5SI20 158 0.18 0.33 6.89, d!=3 

160 0.2:9 0.18 

162 0.00 0.05 

164 0.00 0.08 

166 O.o7 0.00 

168 0.27 0.28 

170 0.19 0.00 

172 0.00 0.10 
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