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ABSTRACI' 

The objective of this study was to note the time course changes for up to 28 days on the 

motor control properties of biceps brachil muscle following a bout of eccentric exercise. 

Eight subjects (5 male, 25-40 years of age) performed 35 maximal voluntary eccenttic 

contractions with the non-preferred arm of the elbow flexors through 130° of extension of 90°81
• 

Voluntary electromyographic (EMG) acrlvity and motor evoked potenrlals (MEPs) elicted by 

tnmscranial magnetic stimulation (TMS) were recorded via surface electrodes placed over the 

belly of the biceps bracbil muscle. Maximal isomettic strength was measured at 90° elbow flexion. 

A simple elbow flexion/extension tracking task was used to assist visuomotor co-ordination. 

Subjects displayed greatest strength loss at I day (of control measures) which recovered by 

21 days post-exercise. Impairment in the skilled tracking task was norlceable within hours 

following the exercise, and was greatest 1 day post exercise, but returned to control levels by 3 

days. There were no changes in the threshold level of MEP responses to TMS but maximal MEP 

amplitudes increased on average (although responses were variable). No changes were observed 

in the EMG activity following exercise. 

The changes in the motor perfonnance and corticomotor excitability occur following 

eccenttic exercise which may be related to alterations in the pattern of afferent feedback from 

weakened and/or painful muscles. The implicarlons from this suggest that coaches need to be 

sympathetic to the needs of the athlete when bdancing physical training with skill 

training/development 
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CHAPTER ONE 

INTRODUCfiON 

1.1 Background to the Study 

Delayed onset muscle soreness (DOMS). stiffness, and muscle fibre damage, 

are commonly experienced by individuals after performing unaccustomed exercise or 

following an Increase in trnining intensity. Altl10ugh the exact mechanisms which bring 

about exercise-induced muscle damage are unclear, the specific effects which occur 

have been well documented. These include prolonged weakness, loss in range of 

motion and contractile force (Armstong, Warren & Warren, 1991}, a leakage of 

muscle enzymes into the blood stream (Shumate, Brooke, Carroll, & Davis, 1979), 

muscle swelling, and muscle fibre necrosis. It has also been shown that activities 

which invlove lengthening of the active muscle (eccentric contractions) produce the 

greatest soreness and muscle damage (Armstrong, Ogilvie & Schwane, 1983), 

explaining why some forms of exercise (eg. downhill running) which have a large 

eccentric exercise component can result in considerable soreness where as others (eg. 

cycling), which incorporate fewer eccentric contractions, cause little or no damage. 

Although many studies have examined the responses to exercise-induced 

muscle damage, there is very little information on the effect of DOMS on performance. 

The functional consequences of exercise-induced damage are loss of muscle strength 

and DOMS, both of which may affect the ability of a subject to perform a task. This is 

of particular relevance for both coaches and athletes in their planning regarding 

periodisd training programmes to prevent or lessen the extent of DOMS, tapering for 

I 



events which require skilled movements, and training sessions to optimise skill 

development and pmctice whilst maintaining fitness levels. 

1.2 PurposeoftheStudy 

The objective of the study is to identify and characterise the time-course of any 

change in motor control properties of biceps bmchii after a single bout of exercise-

induced muscle soreness and damage. Research variables, as outlined in point 1.3, will 

be followed in subjects before, and at various times after, exercise-induced muscle 

soreness and damage. 

1.3 Hypotheses 

A period of muscle soreness and weakness following exercise-induced damage 

will result in changes in the motor control properties of biceps brachii reflected in: 

1. muscle strength; 

2. plasma creatine kinase (CK) levels 

3. skilled performance using a motor tracking task; 

4. corticomotor excitability of the biceps brachii; and 

5. cortical representation of the biceps bmchii. 
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1.4 Organisation of the Thesis 

Chapter One provides a discussion on the background, significance and 

purpose of the study, with a list of the major hypotheses being tested. Chapter Two 

reviews the related literature pertaining to the study; Chapter Three describes the 

theoretical framework of the study; and Chapter Four describes the design and 

methodology, including instruments of testing and measurement, and procedures of 

data collection and analysis. Results and data analysis are presented in Chapter Five, 

and the thesis concludes in Chapter Six by discussing the findings of the study, their 

relation to the literature, and their implications for further research. 
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CHAPTER TWO 

REVIEW OF THF. LITERATURE 

2.1 Delayed Onset Muscle Soreness (DOMS) and Muscle Damage 

Muscle soreness can arise from intense or unaccustomed strenuous activity 

(Clarkson, Byrnes, McConnick, Turcotte, & White, 1986). In this context 

unaccustomed activity can be defmed as an activity or exercise that has not been 

performed previously, or for a period of time longer than 4·6 weeks. Muscle soreness 

regularly occurs after exercise in individuals who perform physical exercise after a 

period of inactivity, however, it can also occur in regular competitive and elite athletes, 

demonstrating that high levels of fitness are no protection against muscle damage; 

although the better state of training, the more exercise can be tolerated without the 

symptoms of overuse (Kuipers, Drnkker, Fredrick, Genrten & Kraneburg, 1983). 

Muscle soreness generally occurs following activities which involve the generation of 

high muscle forces (Armstrong, Olgivie, & Schwnne, 1983). A typical feature of 

exercise-induced muscle soreness is its delayed onset (ie soreness tends to be most 

severe one to several days after exercise), hence the tenn 'delayed onset muscle 

soreness' or DOMS (Kuipers, 1994). DOMS diffen; from other commonly 

experienced muscle pains such as cramps, trauma (ie 1st or 2nd degree muscle tears), 

or ischaemic pain, where the resulting pain is almost immediate. Acute pain from a. 

cramp or trauma is commonly described as 'sharp, intense pain', whereas after 

eccentric exercise (lengthening of muscle during contraction), it is described as 'dull 

and aching' (Clarkson & Newham, 1994). Although exercise·induced muscle soreness 

is common, and its practical consequences are known, there is far less certainty 



regarding causative factors or the cellular mechanisms involved (Annstrong et al, 

1991). 

Armstrong (1984) discusses three mechanisms lhat have been proposed to 

account for the presence of muscle soreness and damage following exercise. These 

are: 

1. structural damage in the contractile and/or elastic tissues due to high tension 

development in the muscle; 

2. cell membrane damage leading to a disruption of calcium homeostasis in lhe 

injured fibres lhat produces a cellular necrosis; and 

3. stimulation of free nerve endings of Group IV sensory neurones due to 

accumulation in the interstitium of intracellular contents and products of 

macrophage activity. 

Two basic theories have been put forward to explain how exercise initiates 

damage. One mechanism describes a disturbance in metabolic function, whereas the 

olher addresses a physical disruption of lhe cell. 

2.1.1 Metabolic Paradigm 

During prolonged submaximal exercise, metabolic events, such as ischaemia or 

hypoxia, A 1P depletion and accumulation of muscle metabolites have been proposed 

to initiate muscle damage (Francis, 1983; Armstrong, 1984; Ebbling & Clarkson, 

1989). 

Devries (cited in Ebbing & Clarkson, 1989) suggested lhat exercise may initiate 

a positive feedback cycle in which local ischaemia leads to muscle spasm lhat in turn 
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causes compression of blood vessels and increased ischaemia leading to a reduction in 

oxygen availability to the muscle. 

However, Ebbling & Clarkson (1989) question the basis of the metabolic cause 

of exercise-induced muscle soreness and damage: 

If metabolic waste products were primarily responsible for 
exercise-induced muscle damage. then muscles which contract 
concentrically and fatigue more quickly would show more 
damage than muscles that develop active tension eccentrically 
(p.209). 

Schwane, Watrous, Johnson & Armstrong (1983) compared skeletal muscle 

damage following concentric and eccentric contractions in humans and animals. 

Eccentric contractions had a lower metabolic cost, and produced less lactate (La') than 

concentric contractions. However, eccentric contractions caused greater structural 

damage than concenoic exercise, and DOMS was only evident after eccenoic work in 

humans. Similarly, Kuipers, et al (1983) noticed muscle damage in rat hindlimb 

muscles (soleus, rectus femoris and vastus lateralis) followlng eccentric low intensity 

treadmi11 exercise, but found no elevation in La+ levels. Thus La+ does not seem to be 

a primary agent in the production of muscle damage. 

2.12 Physical Paradigm 

Many researchers dispute the metabolic hypothesis of muscle soreness, on the 

finding of greater muscle damage and subsequent delayed soreness following eccentric 

muscle actions versus concentric actions (Francis, 1983; Annstong et al, 1983; 

Knutten, 1986; Ebbfing & Clarkson, 1989). Wben muscles develop active tension 

eccenttically, they require less energy (due L.J the recruitment of fewer motor units) 

6 



than for concentric work, yet experience greater injwy than muscles that contract 

concentrically (Clarkson & Newham, 1994; Kuipelli, 1994). As eccentric contractions 

recruit fewer motor units. this places a greater stress on each individual motor unit 

Data from the studies of McCully and Faulkner (1986) suggest that physical muscle 

fibre damage results from high tensile stresses occurring during eccentric contractions. 

If the tensile stress exceeds muscular strength, then microscopic damage can occur to 

contractile elements and connective tissue. Muscle injmy is indicated by 

moiJlhological changes (Arrnstong et al, 1983) such as cell necrosis, phagocytosis, and 

inflammatory responses. In addition, perfonnance changes (Mair, et a!, 1992), delayed· 

onset soreness, and increases in muscle proteins in the blood stream (Evans, 1987) can 

also he observed as a result of muscle damage. 

2.2 DOMS and Functional Muscle Strength 

Exercise-induced damage has been assessed using changes in motor 

perfonnance, especially functional muscle strength (Ebbling & Clarkson, 1989). It has 

been demonstrated that maximum voluntary strength declines after eccentric exercise 

(Jones, Newham, & Clarkson, 1987; McCully & Faulkner, 1986; Newham, Jones and 

Clarkson, 1987). This is followed by a slow recovery in which strength may remain 

depressed for a week or longer (Ebbling & Clarkson, 1989; Newham et al, 1987). 
j. 
' The exact mechanisrm by which eccentric exercise results in loss of strength 

have not been clearly identified. One possiblity is that, since subjects experience pain 

during contraction when muscle damage has occurred, it may be that the discomfort 

associated with maximal voluntary efforts may inhibit full muscle activation. At present 
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there is increasing evidence to support the explanation that there is a lowered inherent 

capacity of the muscle to produce force rather than an inability of subjects to fully 

activate muscle (Davies & White; 1981; Jones et al, 1987; Newhamet al,1987). Thus, 

Newham et al (1987) superimposed electrical stimulation on voluntary isometric 

actions of muscles with DOMS (following eccentric exercise) of the fcreann tle:wrs. 

They found that additional force was generated by electrical stimulation only if 

voluntary force generation by the subject was submaximal. Results indicated that 

maximal force was generated throughout the testing period (Ebbling and Clarkson, 

1989). Furthermore, experiments in animals using electrical stimulation to assess 

muscle force following eccentric exercise show similar decrements to those seen in 

humans (Sacco, Dick, Jones & Vrbora, 1993). 

In addition to the reduction in maximal force generation. eccentric exercise also 

affects contractile properties. This is demonstrated by a change in the force-frequency 

relationship so that relatively lower forces are generated at low (ie .S 20Hz) 

frequencies (Clarkson & Newham, 1994). This is termed low frequency fatigue (LFF) 

and has been suggested to be the consequence of decreased calciwn release by each 

action potential or changes in the stretch reflex (SR) (Clarkson & Newham, 1994; 

Jones & Round, 1990). The functional significance of LFF is unknown, but force 

generation is impaired in the physiological firing range of isometric and =ntric 

activity. 
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2.3 Serum Levels of Muscle Proleins 

Evans (1987) notes that exercise-related increases in the plasma levels of intra· 

muscular proteins such as creatine kinase (CK},lactate dehydrogenase and myoglobin 

are the result of cxenional rhahdomyolisis (muscle fibre breakdown or necrosis) and 

further proposes that the exercise-induced increase in plasma CK are directly related 

to the intensity of the exercise. Support for this concept comes from the studies of 

Tidus & Ianuzzo (1983) where individuals who exercised at a high intensity and short 

duration showed greater enzyme activity and soreness as compared to individuals who 

exercis~ at lower intensities and for longer durations. More recently Saxton et al 

(1994) reported an increase in CK activity in eccentrically exercised arm flexors. 

However, othei researchers disagree. Kuipers, Janssen, Keizer and 

Verstappen's (1985) found a poor correlation between serum CK and the percentage 

volume of rat muscle fibres damaged. Likewise, Van der Meulen, Kuipers and 

Drukker (1991) reported no differences in the amount of histological muscle damage in 

either male or female rats, although there were notable differences in the amount of 

serum CK released between sexes. Thus, the actual volume of histological damage 

was significantly less than would be expected on the basis of enzyme release. 

The above findings of Kuipers eta! (1985) and VanderMeulen eta! (1991) 

are supported in human studies by the earlier findings of Newham, Jones and Edwands 

(1983) who, could not explain why some subjects in their study of stepping exercise 

released a greater efflux of CK whilst others did not. Similarly, Nosaka and Clarkson 

(1993) compared CK efflux after subjects eccentrically exercised one or both elbow 

flexors. They found that doubling the amount of damaged muscle (i.e both anms as 
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opposed to one ann) did not show any significant rise in plasma CK, concluding that 

CK is a poor correlate of the extent of muscle damage. 

Although conflicting evidence exists regarding the amount of CK released 

following exercise, to this point in time, CK is an useful directive of DOMS as the 

release of CK indicates that intramuscular damage has occurred. 

2.4 Electromyographic Studies or Muscle and Muscle Damage 

Electromyograph (EMG) studies have been used to record electrical activity of 

the muscle during contraction by using surface or intramuscular electrodes (Astrand & 

Rohdahl, 1986, p. 43; Jones & Round, 1990, p. 66). 

EMG studies have Shown that muscle damage resulting from eccentric exercise 

does not significantly affect EMG activity during maximal contractions. This supports 

the argument that restriction of motion and pain do not account for any changes in 

neuromuscular activity which must therefore arise from other pathophysiological 

processes (Newham eta!, 1987; Howell eta!, 1985) 

2.5 Neuromuscular Function, Motor Control and Muscle Damage 

To date, most of the literature in the discussion of neuromuscular function and 

muscle damage is drawn from animal studies. Much emphasis is being placed on 

trying to confum and expand, in conscious humans and primates, conclusions 

previously reached on the basis of animal experiments (Bigland-Ritchie, 1990, p. 378). 

Of the limited research available, the literature suggests that neuromuscular 

function can be affected by DOMS. This has been illustrated by Miles, Ives, and 

10 



Vincent (1993) who showed onset of agonist and antagonist muscle bursts were 

impeded, and the time from agonist EMG onset to initiation of movement. had also 

slowed. More recently, Sar.ton eta! (1994) investigated the effects of exercise-induced 

muscle damage on muscle tremor and motor controVproprioception. Mter 

eccentrically exercising the bicep brachii muscle, amplitude and fiequency of bicep 

tremor, perception of voluntary force, joint position and force proprioception were 

monitored to assess changes in the components of the neuromuscular system. Muscle 

tremor amplitude increased until 48 hours post exercise, perception of joint position 

and perception of force were both impaired indicating a loss of motor control and 

proprioception and maximum strength had not fully been restored by the fifth day post 

exercise. 

A possible mechanism for this impainnent of neuromuscular function has been 

linked to the affect of muscle damage within the muscle-tendon complex. Afferent 

sensory receptors Qocated in the muscle tendon complex) provide the means by which 

an individual is consciously aware of the positions of various parts of the body and 

whether a particular joint or limb is moving or stationery (Marieb, !994, p.486). 

Few studies have examined the effects of exercise on proprioceptive function. 

Saxton eta! (1994) showed a reduction in the ability to accurately perceive voluntary 

force in the biceps following eccentric exercise suggesting an alteration in 

proprioceptive feedback from the muscle with damage. This is supponed by the 

findings of Miles et a! (1993) who demonstrated motor reaction time had slowed 

subsequent to eccentric exercise. 
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These results, suggest impairment of neuromuscular function preceding full 

extent of delayed onset muscle damage. For further discussion of proproception and 

motor control, please refer to section. 2.6. 

2.6 Evaluation of Motor Skill and Coordination 

In the last three decades instrumented upper extremity tracking tests have been 

developed to measure human ne.urological performance more objectively (Behbehani, 

Kondraske, Tinter, Tindall, & Imrhan, 1990). Although these tests vary in procedure 

and configuration, the prime objective is to measure subjects' ability in tracking a 

moving target using the upper extremity. These tests have been used to study the 

performance of healthy subjects (Cassell, 1973), and those with Parkinson disease 

(Hoehn & Yaltr, 1967), brain damage (Jones & Donaldson, 1981) and other 

neurological disorders (Jones, 1980). 

Typically, tests involving the evaluation of quantitative measurement of the 

upper extremity involve the subject using a type of electrcmec:·~a."'!.ical device, such as a 

joystick, interfaced with the display unit via an elecllic potentiometer. In two recent 

studies (Neilson, O'Dwyer, & Neilson, 1988; Behbehani et a!, 1990), testing of 

tracking performance involved a microcomputer, a monitor, and a joystick in the 

evaluation of adaptibility of learning in healthy subjects while the study of Behbehani 

et a!, (1990) focused on the response time with accuracy, in healthy patients versus 

three patient populations (Parkinson • s disease, multiple sclerosis and myasthenia 

gravis) using oscillitory Oeft to right) movements. They found that Parkinson's 

patients had a slower reation time and lower amplitude gain (similar to Hufschmidt and 

12 



Lucking (1995) in their study of Parkinson's patients and tracking). Multiple sclerosis 

patients had similarly slowed reaction times and displayed overshooting oscillations, 

while myasthenia gravis patienrs, although faster than the oilier two populations, were 

still relatively slower in reaction time compared to healthy subjects. 

2.6.1 Learning Effect of Motor Skill Tracking Tasks 

Neilson, O'Dwyer and Neilson (1988, p.Jl4) note that "When the target in 

pursuit tracking is driven by a simple deterministic stimulus signal (such as a sine wave 

or square wave), subjects can anticipate the future position of the wget and thereby 

compensate for response time delay." For very regular target signals such as sine 

waves, subjects generate a signal of frequency approximately equal to that of the tirget 

and attempt to synchronize the two (Krendel and McRuer, 1960). This pattern 

generating mode has become known as "precognitive tracking .. following Krendel and 

McRuer (1960), who likened it to the ultimate level of skilled behaviour in their 

"successive organisation of perception" model of motor skill development 

2.7 Evidence of Cortical Reorganisation 

Research (Cohen, Bandelli, Findaly, & Hallet, 1991, Topka eta!, 1991, Wtlson, 

Thickbroom, & Mastaglia, 1993) has demonstrated that reorganisation of the motor 

cortex can occur with pennanently altered physiology (i.e amputations and spinal 

lesions). Pertnanent changes such as higher excitability of the motor cortex and a shift 

in the area of control when stimulated by TMS (see section 2.8) have been reported in 

forearm amputees (Cohen et a! 1991). The findings are supported in experiments 
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analysing the motor conex of human subjects following lower limb Qower leg) 

amputations (Fuhr et al, 1992). Similar studies examining subjects with spinal cord 

lesions have also been reponed (Levy, et al, 199()-, Topka, et al, 1991). These srudies 

identified a pattern of motor system reorganisation that results in enlarged muscle 

representation areas and muscles immediately proximal to the lesion eliciting an 

elevated excitable response. In addition, these tindiogs are supponed in animal models 

where motor outputs are reorganised after peripheral nerve lesions (Merzenich, et al, 

1983; Kalask & Pomeranz, 1979), removal of body pans (Kelahan, Ray, Carson, 

Massey & Doetsch, 1981; Merzenich, et al, 1984; Pons et al, 1991) and reversible limb 

deafferentation by local anaesthesia (Metzler & Marks, 1979). Such capability of the 

motor cortex to alter outflow to specific muscle groups suggests the possibility that 

these mechanisms may play a role in shon-tenn or temporary altered physiology (i.e 

DOMS). 

Brasil-Nato et al (1992) have suggested that human motor outputs can 

experience both shon and long term changes. The shon term changes are referred to 

as 'modulatio~· and the long term changes as 'reorganisation'. Modulation and 

reorganisation of muscular representation on the motor cortex has been demonstrated 

in the learning and acquiring of motor skill tasks (Pascual-Leone, Gramna, Hallet, 

1994), however, to date, modulation has not been demonstrated under conditions of 

temporarily altered physiology and motor perfonnance. 
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2.8 Transcranial Magnetic Stimulation of the Motor Cortex 

The cerebral con ex is involved in mental activities such as conscious thinking, 

reasoning, learning, memory, intelligence and sense of responsibility. It is also 

concerned with perception of the senses and the initiation and control of voluntary 

muscle contraction (Newton & Joyce, 1990, p.259). 

Motor cortex areas are defmed as regions in which electrical slimulation 

produces and controls muscular movement of a pan of the body (Newton & Joyce, 

p.260). Until recently, stimulation of the motor cortex in humans has been possible 

only by maintaining direct contact between stimulating electrodes and the cortex, either 

intraoperatively or through subdurally implanted elec~odes (Wilson eta!, 1993). 

Although these studies have provided fundamenlal insights into the 

Organisation of the motor cortex, their usefulness has been limited by their invasive 

nature and by ethical considerations since studies have been confined to patients 

undergoing surgery (Wilson eta!, 1993). 

Transcranial Magnetic Stimulation (TMS) is a recently developed non-invasive 

technique for the stimulation of the human motor conex. With TMS the conex is 

painlessly stimulated as a consequence of the rapid discharge of current through a 

magnetic coil held over the scalp (Barker, Jalinous, & Freeston, 1985). The !echnique 

uses a large pulse of magnetic field to induce currents below the stimulus point The 

current flow induced in the underlying conex by the pulse fimm the magnetic coil is 

sufficient to activate pyramidal tract neurones trans-synaptically (Day, et a!, 1989) 

and, under some circumstances, directly (Beradelli, lnghilleri, Cruccu, Manfredi, 1990; 

Wilson et a!, 1993 ). When the resulting membrane excitability of the a-motomeuron i 

f 
f 
' I 
~ 

IS I 
f 



reaches threshold, a measurable response of the motor evoked potential (MEP) will be 

recorded by surface electromyogram (EM G). The size of the MEP is directly related 

to the number of motorneurones activated, hence the excitability of the motor pathway 

is dependent on the stimulus intensity (Valls-Sole, Tolosa, Pujol, 1992). 

2.8.1 Mapping of the Motor Cortex 

Transcranial Magnetic Stimulation (TMS) is a non-invasive, painless teclmique 

which has been developed for the stimulation and mapping of the human cortex. This 

technique has been used to explore the functional anatomy of the motor cortex by 

measwing the motor evoked potential following stimulation at multiple scalp sites 

(Wilson et al, 1993). 

Following the development of increasingly focal stimulation techniques, TMS 

has been applied in exploratory studies of the orgaPjsation of the human corticomotor 

representation, particularly under conditions of altered physiology (Wilson et al, 1993). 

2.82 Reliability of TMS for Mapping 

Mortifee, Stewart, Schulzer & Eisen (1993) have demonstrated TMS to be 

reproducible and reliable in muscle representation of the motor cortex. The study 

mapped tl;o abductor pollicis brevis (APB) and abductor digiti minimi (ADM) motor 

cortices of six nonnal subjects, each studied on 2 separate occasions separated by 

several weeks. Their results showed that the coefficients of variation, which should be 

low (Fleiss, 1986) ranged from 14% to 37% and coefficients of reliability, which 
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should be high (Fliess. 1986), ranged from 63% to 94%, indicating that the described 

rechnique for motor mapping is reproducible. 

2.9 Summary 

Delayed onset muscle soreness (DOMS), is a common experience of 

individuals after performing unnaccustomed exercise or following an increase in 

training intensity. Although the exact mechanisms that bring about exercise-induced 

damage are Wlclear, it is well understood that eccentric contractions have been shown 

to result in the greatest injury to skeletal muscle fibres. 

In response to exercise, activity and behaviour; specific molecular, biochemical, 

electrophysiologica1 and structural changes take place in central nervous systems 

neurones and neural networks (Cotman & Nieto-Sanpedro, 1982). These plastic 

changes are pan of the structmal and physiological processes for recovery of function 

after injury - either pennanent or temponuy (Marshall, 1984; Kaas, 1991). 

Reorganisation in the human motor system has been studied using rranscranial 

magnetic stimulation of individuals following amputations (Cohen et al, !991; Furh, et 

al, 1992) and spinal cord lesions (Topka et a!, 1991); and a pauem of motor system I . 
reorganisation that results in enlarged muscle representation areas of motor cortex and 

\. 

larger motor evoked potentials for muscles immediately proximal to the lesion has been t 
' 

demonstrated. Such capability of the motor cortex to modulate outflow to specific 

muscle groups introduces the possibility that these mechanisms may play a role in 

temporary changes to the performance of motor skill tasks after exercise-induced 

muscle damage. i 
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CHAPTER THREE 

THEORETICAL FRAMEWORK 

3.1 Theoretical Framework 

DOMS is the result of unnaccustomed or high intensity exercise. Eccentric 

muscle contractions have been found to induce DOMS with the consequences being: 

• muscle pain; 

• tenderness and stiffness; 

• muscle weakness; and 

• muscle fibre damage (as indicated by CK efflux from muscles). 

It is proposed that the above consequences of eccentric exercise may alter 

some aspect of motor control, resulting in measureable changes in : 

• skilled tracking task; 

• corticomotor excitability; and 

• cortical representation of the affected muscle. 

With these changes in mind, the functional consequences of exercise induced 

muscle damage will be explored; that is, what effect does exercise induced muscle 

damage have on motor function, and how does the time course of any changes interact 

with the consequences of damage (e.g pain, stiffness and weakness). 

A diagranunatical representation of the theoretical framework of the 

research is shown in Figure 3.1. 
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CHAPTER FOUR 

METHODOLOGY 

4.1 Design 

A 'within-subjects, pre-tesr/post-test design' (Bums, 1995, p.ll8) was used to 

investigate the dependent variables of DOMS, against the independent variables. A 

diagrammarlcal representation is shown in Table 4.1. 

DEPENDENT VARIABLES INDEPENDENT VARIABLES 

Isometric Force Time (after exercise bout) 

Creatine Kinase Exercised Arm 

Accuracy of Skilled Tracking Non-Exercised (control) Arm 

MEP Amplitude 

EMG Activity 

Table 4.1 -Design variables. 

In order to quantify any improvement in accuracy of the tracking task over the 

course of testing, a control group consisting of six age matched healthy subjects (three 

male), perfonned the same tracking test over the same time course as the exercise 

group. 
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4.2 Subjects 

N'me healthy subjects (five male, four female), mean age 32 yean; (range 25· 

45yrs), not currently undertllking any specific upper body physical training (eg weight 

training) other than normal daily activities were in the initial group. Two subjects failed 

to complete the data collecdon leaving seven subjects to provide data for the study. 

The protocol for the study was approved by the Ethics Committee of Edith Cowan 

University and use of transcranial magnetic stimulation by the Sir Charles Gairdner 

Hospital Human Rights Committee. Subjects were told of the nature and risks of the 

procedures to be used, and written informed consent was obtained (Appendix A). 

Subjects were asked to refrain from making any changes to exercise habits over the 

course of the study. 

4.3 Instruments 

43.1 Exercise Protocol and Strength Measuremenls 

Kin-Com Isokinetic Dynamometer (Chattex Cmp., U.S.A) 

Preacher Bench (45 ') 

IBM Microprocessor 

SUN Microprocessor 
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4.32 Motor Skill Tracking Assessment 

Joystick-Lever Ann 

Electronic Potentiometer 

ffiM Microprocessor 

SUN Microprocessor 

4.3.3 Creatine Kinase Analysis 

Reflotron spectrophotometer (Boehringer Manheim, Australia) 

Hepatinised 30 J.Ll capillary tubes 

Spectrophotometer Strips 

4 3.4 Conicomotor Properties 

Magstim 200 (Magstim Co., U .K) 

Surface EMG electrodes (4 mm diameter, Grass) 

Modified Preacher Bench (45') 

ffiM Microprocessor 

SUN Microprocessor 

translucent rubber cap, adhesive tapes, restraining velcro straps, electrode gel 

4.3 5 General 

Analog to Digital Converter 

Goniometer 

Data test sheets (Appendix B) 
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4.4 Reliability/Reproducibility 

Calibration of all equipment was undertaken weekly (Appendix J). All 

measurement systems were computer software controlled, where the technical error of 

measurement was <5%. Testing reliability was ensured through tester training sessions 

undertaken prior to the commencement of the study. The ann positioning for strength 

testing, skilled tracking task and TMS recording was carefully standardised for each 

subject to minimise errors due to alteradons in ann posidon. Subjects were familiarised 

with the testing equipment prior to the collection of data to minimise the effect of 

learning on test results. Visual feedback was provided for strength tests and subjects 

were exhorted to perform maximally throughout all testing sessions. 

4.5 Data Collection 

The data collection took place in two phases. A preliminary study was 

undertaken to ascertain reliability of measurements of corticomotor excitability and 

cortical representation (mapping) of the biceps brachii. Once reliability was 

established, the main data collection phase was staggered over a four week period 

(fable 4.2) 

45.1 Preliminary Study 

A preliminary study was completed prior to the main study to ascertain the 

reproducibility of corticomotor properties of mapping the biceps brachii muscle. 

Wilson eta! (1993) have demonstrated reproducibility in distal muscle groups of the 
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hand (adductor policis brevis and adductor digiti minimi), however, to date, there is no 

infonnation on these parameters for the proximal muscle groups (ie biceps brachii). 

The preliminary study involved seven subjects. The methodology followed 

Wilson et al (1993) - which is described in detail in section 4.7.3, with subjects 

attending two recording sessions seven days apart. 

4.6 Eccentric Exercise Protocol 

Once reliability and reproducibility of pre-exercise measurements were 

established, subjects performed the exercise protocol. This consisted of 7 sets of 5 

repetitions maximal voluntary isokinetic eccentric contractions (see Fig 4.1). The limb 

was moved through 130° of extension at 90°s-1 and returned at a velocity of l5°s"1 

flexion. giving a work-rest ratio of 1:4. Rest periods of two minutes between sets 

were provided to minimise the effect of fatigue on force production over the course of 

the eccentric exercise protocol. Subjects were encouraged to perform maximally 

throughout the exercise protocol. 
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Fig 4.1 Subject completing eccennic exercise protocol on isokinetic dynamometer. 
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4.7 Testing Protocols 

The main study consisted often separate visits incorporating: 

• Two pre-exercise testing sessions - for baseline measurements of variables 

involved; 

• · Eccentric exercise protocol; and 

• Eight post-exercise testing sessions at I, 3, 7, 14, 21 and 28 days incorporating the 

testing variables outline in Table 4.2. 

' Pre-Test Post-Test 

I 2 +1 +3 +5 +7 +14 +21 +28 

Isometric • • • * • • • • • 
Strength 

CK • • • • * • * • • 
Skil1 • • • • • • • • 
Tracking 

' Cortico-motor ' ' 
Properties • * ' ' * 
(non-ex bicep) 

Conico-motor 
Properties • • • • * * • • • 
(ex bicep) 

Table 4.2 Testing schedule matrix 
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4.7.1 Strength 

lsomelric maximal vol1mtary contraction (MVC) force was assessed at 90' 

elbow flexion using an isokinetic dynamometer (Kin Com, Chattex Inc, USA) on at 

least two occasions prior to the eccentric exercise protocol and at the beginning of 

every testing session following the exercise protocoL Subjects were encouraged to 

perform maximally for three seconds during the effort. Two MVC's were performed 

to ensure the attainment of peak torque recording. 

Force data was digitised and displayed using a custom made software 

progromme at a rate of 50Hz and stored for subsequent analysis. Maximal strength 

was taken as the peak force attained above pre·contraction baseline (see Fig 5.2 for 

typical force trace). 

4.7 2 Creatine Kinase 

In order to verify that delayed onset muscle soreness was reflected in muscle 

fibre damage, changes in serum creatine kinase (CK) levels were measured using a 

spectrophotometer (Reflotron, Boehringer Manheim, Australia). 30j.ll peripheral 

capillary blood samples were taken following lancet finger prick from the index finger 

of the non-dominant hand. The samples were dispensed onto the reagent carrier by 

slowly depressing the pipette plunger to the red separation zone enswing the pipette 

did not touch the surface of the red pad. The reagent strip was then placed into the 
;, 

spectrophotometer for analysis. 
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4.7.3 Transcranial Magnetic Stimulation 

. 
A Magstim 200 magnetic stimulator with a 50mm diameter figure '8' coil (Fig 

4.2) was used. The stimulator coil was held in position against the scalp, with the 

centre of the figure '8' coil over the measured site to be stimulated (Fig 4.3). To 

maintain consistency of responses, the coil was held in the same position for all scalp 

sites stimulated (ie tangential to the skull with the handle posterior). 

lnr.,pvr" ThQII., 
o •.• , 

900 • 

;_ · 

Fig 4.2 Magstim 200 magnetic stimulator with 50mm diameter figure '8'coil. 
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Fig 4.3 Positioning of figure '8'coil over measured stimulus site. 
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4.73.1 Recording of Muscular Response 

Surface electromyograph (EM G) (Grass Gold, 4mm diameter) electrodes were 

placed over the biceps brachii muscle whh the active electrode over the motor point of 

the muscle, and inactive electrode 2 em distal (Fig 4.4). To ensure reliability of the 

muscular response, and to maintain accuracy of the electrode placement, ihe surface 

of the biceps muscle was 'mapped' (by the use of plastic wrap) using anatomical 

'landmarks'. The earth electrodes were placed over the lateral epicondyle of the 

humerus in both arms. The amplified signal was high pass filtered at 10 Hz and low 

pass at 2 kHz, and the digitised data was collected at a rate of 200 Hz in 500 ms 

epochs which were triggered consecutively with the onset of the 1MS pulse. 
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Fig 4.4 Placements of EMG electrodes on surface of biceps. 
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4.7.3.2 Facilitation 

Research has shown that a muscle in a slightly contracted state will be activated 

by TMS at a lower sdmulus intensity than a relaxed muscle (Mazzocchio et al, 1994). 

By using a lower stimulus imensity and slightly contracting the target muscle, 

neighbouring muscles are less likely to be activated during the experiment It was 

important that surrounding muscles were activated as little as possible, as interference 

may occur in the EMG signal. Biceps brachii facilitadon was isolated by resdng the 

arm on the preacher bench with the wrist restrained by velcro straps to the modified 

pan of the preacher bench (Fig 4.5). This kept the elbow at an angle of 90', 

minimised facilitation of surrounding muscles and maintained isometric contraction of 

the biceps. To keep consistency for dominant/non-dominant muscles and between 

subjects, it was necessary to quantify the contraction level for facilitation of biceps 

brachii. Each subject performed an isometric MVC (in the above facilitadon posirion) 

against a manual restraint for three seconds. The root mean square (nns) of the EMG 

interference pattern during the three second contraction was used as a measure of the 

maximal voluntary EMG activity. During sdmulation, subje:ts were required to 

maintain facilitation of the biceps muscles at 10% of MVC for that muscle. The 

computer displayed the level of contraction as feedback to the subject to maintain that 

level. The display showed a bar grnph illustradng the current level of contracdon, 

which was updated approximately every 500ms. The compmer allowed triggering of 

TMS stimulation to occur only if the subject maintained the contraction within the 

target range of 10% ± 3% for 1.5 seconds. 
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Fig 4.5 Facilitation of biceps on modified preacher bench. 
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4.7.32MEP 

MEP responses were quantified by measuring the peak to peak response of the 

biphasic waveform (Fig 4.6). The responses were measured in m V. 

MEP 

25 ms 

~----- Silcnl periOO duration -----..C 

Fig 4.6 Typical MEP responses in the biceps brachii to TMS 
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4.7.3.3 Thresholds 

The site of stimulation was in the region expected to control biceps (as 

detennined in the preliminary study) at a longitude of Ocm and a latitude of 4cm from 

the venex (Fig 4.7). To locate the subjects optimal site for determination of threshold 

responses, four stimuli were recorded, at the separate sites moving laterally along the 

inter-aural line, to detennine the site with the largest response, thus being the closest 

site to the centre of the area controlling the biceps. 

To determine the threshold level of stimulation required to induce MEP 

responses, the optimal site was stimulated, starting at 30% intensity (output range of 

Magstim 200 being 0% to 100%). At each intensity, four stimuli were given five 

seconds apart. This was repeated at increments of 5% until an intensity was reached 

where individual waveforms had ceased to become larger, or 100% intensity 

stimulation had been achieved. Threshold for the mapping procedure was defined as 

the intensity at which at least two out of four stinmli evoked a ME.P discernible above 

background EMG (Wilson et a!, 1993). Fig 4.8 illustrates recorded MEP responses 

during the threshold procedure. 
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Pre-auricular 
crease 

Vertex 

Longitude 

Nas1on 

Fig 4.7 Location of stimulus sites on the cap placed over the subject's head. 

Latitude is defined as em from the vertex (arc length) and longitude as distance fonn 

the interawalline in em. 
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e1 
e2 KAKMIN 
e3 •1 321.7 uY 

e4 •2 192.9 uY 
·3 388.2 uY 

e5 •1 U8.7 uY 266 . 1 uY 
e6 ·5 388.2 uY 
e7 •6 351.0 uY 
e8 · 7 185.5 uY 

319 . 1 uY 319.2 uV 
116.8 uV 
151.7 uV 
293. I uV 
Hl.1 uV 397.9 uV 
459. I uV 
161.1 uV 
213.1 uV 
721.2 uV H8. 5 uV 
996 . 1 uV 
511.1 uY 
761.7 uV 
721.2 uV 155 .6 uV 
1.155 .v 
127 .2 uY 
595.7 uY 
803.2 u V 115.2 uY 
832.5 u V 
G73 .8 uV 
911.9 uY 
1.115 .v 888.1 uY 
903.3 uY 
803.2 uV 
883 .8 uY 
1. ISS oY 911.3 uV 
1.167 .v 
1.131 .v 
1.115 .v 
1.362 .v 1.276 .v 
1 . 829 . v 
1.181 .v 
2.U1 oV 
1.235 o V 1. 758 oV 
2. 187 oV 
2.522 .v 
1. 751 ov 
2 . 815 oY 
2 . 115 oV 
1 .971 .v 
1.895 . v 
1. 791 . v 
1. 106 .v 
699 . 6 u v 
158 . 7 u V 
2 . 81 5 . v 

Fig 4.8 Recorded M.E.P responses during threshold protocol. 

The left hand axis numbers each 250msec EMG trace and the base axiS gives and 

indication of the time scale for which each event occurs. With each increase m 

intensity the MEP becomes larger and always begins from 10-20msec following a 

stimulus. The peak amplitude of the MEPs was averaged (four stimuli representing a 

5% increment in intensity) and recorded for each intensity. Threshold data for MEP 

amplitude at each stimulus intensity was plotted to produce threshold curves. The 

calculated threshold was used for interhemispheric, pre-exercise and post-exercise 

threshold comparisons. 
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4.7.4 Corticomotor Mapping of the Biceps Brachii 

Mapping of the motor conex has been previously described in Chapter 2. The 

protocol was based on techniques developed for mapping cortical representation of 

hand muscles by Wdson et a! (1993). The study followed the same procedure for 

stimulation the motor cortex, compiling the map and interpreting the data. 

To locate the stimulus sites, a flexible, translucent, rubber cap was fitted over 

the scalp of the subject with pre-marked sites at spacings of one centimetre (Fig. 4.8). 

The cap was held in place by two velcro straps and positioned using anatomical 

landmarks to locate the centre of the cap on the vertex of the scalp. Measurements 

between the nasion and inion, and the left and right preauricular crease were used to 

locate the vertex at the mid·point and intersection of the nasion·inion line, and the 

inter-aural line. Stimulus sites were located using a latitude/longitude based coordinate 

system. Latitude was defined as the distance over the scalp from the nasion·inion line, 

and longitude as the distance from the inter~auralline (Wilson et al, 1993) 
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Fig 4.9 Translucent cap with pre-marked sites for stimulation by TMS. 
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During the mapping process, the 'timulator intensity was set at 20% above 

threshold level to maintain a consistent uniformity above threshold for each 

hemisphere. The difference in mapping intensities between heMispheres (pre-damage) 

was within 5% in aU seven subjects. The first site stimulated for mapping was the 

same site used to examine thresholds, being close to the estimated centre of the motor 

area for the biceps brachti. Mapping the biceps brachti on the motor cortex required 

the stimulation of all sites around the estimated centre of the map. At each stimulus 

site (lcm equidistant in latitude, 2em in longitude) moving away from the estimated 

centre, the MEP response became smaller, until no measurable response was recorded 

after stimulation and this signified the border of the representation for the target 

muscle. Tills required the stimulation from 20-32 sites. Four muscle responses to 

stimulation of each scalp position were recorded and the average of the four responses 

was assigned to represent the scalp position stimulated. 

4.7.4.1 Map Compilation and Interpretation 

Four !YfEP waveforms from each site were reviewed off line by the 

experimenter and those not containing artefact (ic noise) were averaged. The peak-to-

peak amplitude of the averaged MEP waveforms at each scalp site were assigned to 

that site as an index of the contribution of the underlying cortex to the control of the 

biceps brachii. The latitude and longitude of stimulus sites over the scalp (m 

centimetres) was converted to positions on an 'idealised' sphere of half circumference 

given by the subjects inter-aural distance (Fig 4.9). From the MEP amplitude measured 
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at discrete sites over the hemisphere. the expected MEP amplitude for intennediate 

sites on the hemisphere was estimated. The results are presented in map form, where a 

square matrix is used to represent the scalp viewed from the superior aspect above the 

venex. The map shows a two dimensional representation of the biceps brachii on the 

motor conex in contralateral cerebral hemispheres. The map indicates the 'optimal 

centre of gravity' stimulus site (in em latitude and longitude) and contours according to 

the muscle EMG response, decreasing towards the edge of the map until no response 

in measure (Fig 4.1 0) The shaded contours are scaled in the key at the base of the 

figure, and represent from zero (clear) to one hundred percent (black) of the maximwn 

amplitude that is measured or estimated for that representation. The optimal site of 

each representation which occurs at the calculated point of maximwn amplitude is 

marked on the map with a white cross. The area of the map is calculated (in cm2
) from 

and above the 50% and 75% contours and this study used the 50% area in all subjects. 
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Fig 4.10 Cortico motor representation of the biceps. 
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4.7 .5 Skill Tracldng 

The motor skill tracking task involved the subject sitting and resting the non~ 

dominant ann on a tabletop so that the upper ann was 90° to the torso (Fig. 4.11) to 

ensure that the bicep was isolated. The subject held the ann handle by the palm of the 

hand and was instructed not to move the wrist in any flexion or extension. Thus 

movement of the lever arm was to be controlled as much as possible by the elOOw 

flexors and extensors. 

The tracking task were programmed to run in a ffiM colour microprocessor 

linked to a Sun computer station. The target was a white cursor driven vertically on 

the display screen by a random generated programme using sine wave cycles. The 

amplimde of the cycles varied with the frequency fiXed at five cycles in ten seconds. 

The indicator of the ann consisted of a red cursor on the display screen which was 

directly parallel to the white cursor. 

Target movement and lever arm movement were amplified and smoothed in 

Iow~pass ftlters before being displayed on the monitor. 

Subjects were instructed to attempt to keep lhe response marker aligned with 

the continuously moving target. Five attempts of ten second duration were recorded at 

a rate of 10Hz and stored in computer files for subsequent analysis. 
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Fig 4.11 Assesment of motor skill tracking. 

Subject moves lever in elbow extension and flexion to correspond with cursor 

appearing on monitor (not shown). 
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4.8 Data Analysis 

Data analysis was conducted using Excel 5.0 (Microsoft Corp.). 

Interhemispheric differences in MEP map area, threshold MEP's, maximum annplitude 

for MEr's, centre of gravity optimal stimulus location (latitude and longitude), and 

MVC EMG annplitude, were tested using the Wilcoxin Signed Rank Test. The level of 

significance for an tesis was set at p< 0.05. For accuracy of motor tracking skill, data 

was analysed using the Wllcoxin Mann Whitney Test as the experimental group were 

compared to a control group. 

Throughout the time course of the data collection subjects were unable to 

attend testing sessions, thus some data points were missed. Subsequent procedures of 

using prior knowledge or mean values for the treaunent of missing data points were 

adopted (Tabachnick & Fidell, 1989). Results are described in text quoting p values 

only, full statistical fmdings are shown in Appendix D. 
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4.9 Limitations 

1. Selection of subjects restricted participants to people who were not currently 

undenaking rigorous physical activity, and so involved some degree of subjective 

evaluation on the part of both the researchers and the subject. 

2. Volunteer subjects may not be representative of the population as a whole. 

3. Central fatigue is a confounding factor, but of minimal importance (James, 

Sacco, &Jones, 1995), although uncontrollable. However, all the subjects were urged 

earnestly to perform maximally. 

4.10 Assumptions 

1. Subjects will perfonn to the best of their ability during the testing sessions. 

2. Subjects will not make lifestyle changes likely to confound the results of the 

investigation, ie major dietary or training adjustments. 
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CHAPTER FIVE 

RESULTS 

Full results are tabulated in Appendix C, typical MEP maps, and threshold 

curves, are presented in Appendix E. All group means are given in the text± standard 

error of the mean (sem). 

5.1 Reproducilibity 

Test/retest method error for reproducibility was calculated following the 

protocol described by Thorstensson (1976) for the parameters measured.. Table 5.1 

summarises test/retest for all variables. Full results are illustrated in Appendix F. 

ME CV% 

Strength (N) 5.49 2.43 

CK (lull) 6.613 6.31 

Voluntary EMG (m V) 90.97 19.08 

MEP Amplitude (m V) 1.19 19.1 

Threshold Responses (%) 0 0 

MEP map location (em from vertex) 0.299 6.23 

MEP map area ( cm2
) 3.71 34.61 

Table 5.1 Method error for reproducibility of two tests. ME=Method Error; 

CV%=Coefficient of Variation. 
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5.2 Strength 

As a result of eccentric exercise all subjects showed a dramatic loss in strength 

immediately following exercise, which was greatest at one day post-exercise (strength 

loss of 36 ± ll% of pre-exercise values. Fig 5.1). Fig 5.2 illustrates maximal voluntary 

contraction force traces pre and one day post-exercise in a typical subject. Although 

strength loss was dramatic, il was noticable that subjects did not report any muscle 

pain whilst perfonning isometric contractions, even when they were experiencing 

DOMS. 

Strength recovered gradually over the time course of the study (Fig 5.1) and 

only returned to nonnal range 21 days post-exercise. Even by 28 days mean strength 

had not reached control values (mean= 94 ± 2% for the seven subjects at 28 days). 
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Figure 5.1 Changes in mean elbow flexor strength in seven subjects following exercise 

protocol. Data expressed as a percentage of pre-exercise strength for each subject 

(*p<0.05) 
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Fig 5.2 MVC force traces pre and one day post-exercise of a typical subject 
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5.3 Creatine Kinase 

Fig. 5.3 illustrates that plasma CK at day seven had significantly increased from 

pre-test values. However, the responses were quite variable between individuals 

ranging from peak ck values of 120% to 1864%. By 14 days post-exercise, plasma 

CK had almost returned to baseline measures. 
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Fig 5.3 Changes in plasma CK following eccentric exercise in seven subjects.(*P<0.05) 
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5.4 Motor Skill Tracking 

Accuracy in motor skill tracking was determined by a percentage error from the 

target cursor as described in section 4.7.5. Figure 5.4 illustrates a typical tracking 

trace pre and post-exercise. 

Significant decreases in skill were noted in the experimental group following 

the exercise protocol. Accuracy of the experimental group gradually improved over 

the time course of the study with normal values returning at 14 days. However, 

control subjects were consistently superior. Figure 5.5 shows nonnalised mean 

tracking results for experimental and control groups. 
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Figure 5.4 Typical tracking trace of elbow flexors and extensors pre and one day post· 

exercise (% deviation from the target shown in brackets). 
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Fig 5.5 Mean change in tracking error of experimental and control subjects nonnalised 

to inital values.(*P<0.05) 
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5.5 Voluntary EMG Responses 

The average EMG activity recorded during a maximal voluntary contraction 

(Fig 5.6) showed no consistent change following eccenttic exercise. Of the six 

subjects measured at one and three days post-exercise, two showed a consistent 

decrease in maximal EMG, two showed increased activity, and two showed no change 

(see Appendix F for full results). At one day post-exercise (when strength had 

marl<edly decreased by 26%) the mean maximal EMG activity had declined by only 

12%. 
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Fig 5.6 Mean EMG changes during time course of study in all subjects. 
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5.6 MEP Responses 

The amplitude of the MEP reponse to TMS showed a mean increase at one and 

three days after eccentric exercise (Fig 5.8). However, not all subjects showed this 

response (accounting for the large error bars at one, three and seven days). 

1 day post exercise 

EMG 

• 
' • • • • 
' 

l 
( I I I I I I I I I ( I I I I I I 1.1 I I I l ! I I I I 1 l ( I l I I I I I 1 I ) I I I 1 1 I I I I ( I I I I I I I I I I I I I I I I ! I I I I I I I I ! I I I I I I I I I ! I I I [ I I I I I I I I I I+ 
0 100 200 300 400 500 600 700.0 800.0 900.0 m 1 

Fig 5. 7 Size changes in rvmP pre and post exercise ( e~.~h MEP is average of four 

responses). 
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Fig. 5.8 Mean maximallv!EP amplitude± SEM of seven subjects during time course of 

study. 
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5. 7 Threshold Responses 

Threshold MEP responses in the seven subjects to TMS did not change during 

the time course of the study. Slight increases (2.5%) were observed at seven days, 

however, the increase was not significant Little variablity was also noted between 

subjects (as indicated on error bars in Fig 5.9) during the period of the study. Subject 

threshold responses ranged from 40% - 75% of the maximum stimulator output. 
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Fig 5.9 Mean tfueshold responses to TMS for seven subjects pre and post-exercise. 
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5.8 Corticomotor Representation 

Figure 5.10 shows a trend towards a medial shift in the centre of gravity 

location of the area that 'controls' the biceps brachii in the seven days following 

exercise. However, not all subjects showed a response towards a medial shift; two 

subjects exhibited a lateral shift (Fig 5.11) which influenced the mean shift at 21 and 28 

days laterally. 

0.20 

0,15 

0.10 

F: 0.05 

g 
0.00 ;; 

~ 
-0.05 • 20 5 

-0.10 

-0.15 

-020 

time post ex (days) 

Fig 5.10 Mean shift in Centre of Gravity location following excerise protocol. 

Negative numbers represent shift medial towards the centre of the heruL positive 

numbers represent lateral shift away from centre. 
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Negative numbers represent shift medial to centre of head, positive numbers represent 

lateral shift away from centre (number legend represents subjects). 
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5.9 Map Areas 

Figure 5.10 illustrates increases in area size of corticomotor repre$entation in 

a typical subject for the biceps. Corticomotor map areas showed a marked mean 

increase 14 days after the exercise protocol (table 5.2). However, not all subjects 

Lqcreased in area, two subjects displayed a decrease in map area, although this 

decrease was not significant 

Mean Corticomotor Map Area (em'± SEM) 

Post exercise (days) 

Pre Exercise Immed I 3 7 /4 21 28 

mean 11.75 11.9 10.46 11.57 12.68 13.1 12.45 11.27 

s.e.m ± 2.35 ± 0.21 ± 0. 724 ± 1.05 ±2.44 ± 1.78 ± 1.26 ± 1.33 

Table 5.2 Mean corticomotor map areas (in cm2
) during time course of study. 
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CHAPTER SIX 

DISCUSSION 

The objective of this study was to investigate the conicomotor properties of 

the biceps brachii muscle after a single bout of eccentric exercise resulting in muscle 

soreness and damage. 

The first hypothesis was that functional muscle strength would change after an 

eccentric exercise insult All subjects in the study experienced a decline in force 

immediately following the exercise protocol with strength depressed for up to three 

weeks (fig 5.1) preceding the exercise bout. This supports the findings of Newham et 

a! (1987) and Ebbling and Clarkson (1989) who eccentrically exercised healthy 

volunteers and reponed force decrements of up to 50% with recovery taking 14 days. 

Although the degree of force is well characterised the mechanism for weakness is 

unclear. One possibility by which eccentric exercise resulLS in such a dramatic loss of 

strength may be a lowered inherent capacity of the muscle to produce force rather than 

an inability of subjects to fully activate muscle (Jones et al, 1987; Newham eta!, 1987). 

Studies have supported this proposal with superimposed electrical stimulation over 

damaged muscle, demonstrating full voluntary activation during isometric contractions 

of painful human muscle (Rutherford eta!, 1986; Newham et al, 1987). Furthennore, 

the changes in human muscle are compatible with those of studies on electrically 

stimulated animal muscle (Warren eta!, 1993; Faulkner et al, 1989). Another reason, 

as proposed by Friden, Seger, Sjostrom, & Ekblom (1983), is possibly due to greater 

damage in type ll fibres. Type ll fibres are preferentially recruited when strength 

demands increase. Due to damage to these fibres, when a larger recruitment is needed 
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in maximal contractions, the fibres are not able to produce force, thus strength is 

impaired. 

The second question posed was that plasma CK values would increase as a 

result of the eccentric exercise insult The increase in plasma CK (Fig 5.3) was 

significant, with CK concentration rates differing in subjects ranging from 121% to 

1864% increase from pre-exercise values and peaking at day seven post-exercise . 

This is consistent of the findings of Jones et a!. (1986) and Clarkson et a! (1986), 

confirming that muscle damage had indeed taken place in the subjects studied. 

Though this investigation is cheifly concerned with motor control properties 

following eccentric exercise, it is necessary to ascertain that damage has been induced 

to assess its effect on motor control and corticomotor representation. CK has been 

shown to be a good indicator that skeletal damage has occurred (Newham et al., 

1983), but it is inconsistent in determining the degree of damage sustained, or the 

muscle mass involved in the damaging exercise (Nosaka, Clarkson, & Apple, 1992). 

The degree and time course of CK efflux for damaged groups in the study was 

comparable to that reported previously (Newham et a!, 1983; Ebbling & Clarkson 

1989), as were the intersubject variability (Nosaka eta!, 1992) as seen in Appendix C. 

Although the exact mechanisms of enzyme effiux following eccentric exercise is 

unknown, it is generally assumed to reflect some form of membrane damage (Newham 

eta!, 1987; Jones, & Clarkson, 1987). 

In Section 1.0, it was hypothesised that myogenic weakness would result in 

changes in skilled perfonnance using a motor tracking task. Results show that 

significant decrements in perfonnance were evident, immediately following the 

exercise, and lasted up to three days. Since there is a learning effect when perfonning 
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motor skill tasks, two groups (the experimental and age-matched controls) undertook 

the skilled perfonnance motor tracking task. Results support this hypothesis with the 

experimental group showing significantly decreased performance following exercise 

(Fig 5.5). To funher quantify this decrease in perfotmance the control group 

significantly improved over the first seven days and overall performed better than the 

experimental group. This is consistent with results reponed in Behvehani eta! (1990) 

and Hufschmidt & Lucking (1995) using patients with neuromuscular disorders 

(myesthenia gravis and multiple sclerosis). 

The motor skill tracking control group displayed behaviours of "pre-cognitive 

tracking" as described by Neilson et a! (1988) (section 2.5.1). Similarly, the 

experimental group also illustrated a learning effect, however, the onset of eccentric 

exercise damage, disrupted the "pattern generating" mode (Neilson eta!, 1988), if only 

for one day. Learning did resume in the experimental group (Fig 5.5), but it was 

clearly noticable that the experimentai group lagged behind the control group in terms 

of accuracy. 

Significant decreases in skill were found following eccentric exercise. 

Immediately following the exercise protocol, skill (as measured by the tracking tttsk) 

declined by 13%, and at one day 27% (appendix C). Improvements in the tracking 

task returned at day three and continued to improve for the rest of the investigation. 

The decline in motor control may be attributed to damage affecting afferent 

signals as proposed by Saxton et al (1994) and Miles et a! (1994). Ail 

DOMS has been reponed to generally being localised in the distal portion of the 

muscle in the region of the muscle-tendon junction (Armstrong, 1984), this may also 

include damage of the Golgi Tendon Organ (GTO). As the GTO acts as a receptor of 
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the amount of force the muscle is generating (Sage, 1984, p. 168), during time of 

regeneration from damage, a damaged GTO may not be fully receptive to !he forces 

generated to properly control movment (especially in sudden changes of direction from 

the muscle). Afferent feedback from the muscle appears to be affected as a result of 

damage to structures in the muscle·tendon junction as demonstrated by the dramatic 

decrease in visuomotor tracking skill of the experimental group. 1b.is loss of motor 

perfonnance following exercise is all the more impressive given the significant learning 

improvement in the control group (Fig 5.5). 

Examination of tracking task traces following the exercise protocol revealed 

that the majority of the tracking error resulted from overshooting of !he limb during 

!he turning phases of !he task (Fig 5.4) This is in agreement with the findings of Miles 

eta! (1994) that when subjects moved their arm to a pre·detennined, stationary target, 

overshooting occurred following eccentric exercise. The decrements in skill tracking 

cannot be explained by myogenic weakness. Marked strength loss lasted for up to 

three weeks following the exercise prott)Col, however, accuracy loss in skill tracking 

only lasted three days following the exercise insult Furthennore, at no point did any of 

!he subjects complain of discomfort during !he tracking activity, discounting !he 

possibility that pain may have impaired tracking performance. A more likely 

explaination is that damage to GTO receptors may have resulted in inappropriate 

afferent feedback during sudden changes in direction. 

The tracking task was performed at lower velocities (5 cycles in 10 seconds) 

for several reasons. By having the stimulus move at a slower velocity, subjects will 

learn specific features of the stimulus signal quicker (Neilson et al, 1988). Similarly, 

slowing of the response movments assists in improving accuracy (viz the speed-
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accuracy trade-off described by Fitts' law [Neilson eta!, 1988]) thus obtaining reliable 

baseline measurements sooner than at higher velocities (as a result of quicker learning). 

By usiPz a lower velocity, the muscle fibre recruitment needed to perfonn the task at 

the slower rate (the rate used in this study) would automatically invlovle fibres not 

damaged and preferentially tend towards type I fibres, leaving out the possibly more 

affected type II fibres. 

The results in this investigation are consistent with the findings of Saxton et al 

(1994) and Miles et a! (1994) regarding impairment of nueromuscular control. 

However, this is the first known investigation to demonstrate a decline in motor 

control of a dynamic tracking task following exercise-induced muscle weakness (see 

appendices G and H). 

Changes in EMG activity in the current investigation compliment the research 

of Newham, Mills, Quigley and Edwards (1983) who reported no change in EMG 

activity in th~ days following eccentric damage. Similarly, this study found that 

following eccentric exercise mean EMG activity (measured under rnaxirnal isometric 

contraction) did not consistently change (Fig 5.6). Of six subjects measured, two 

showed decreases. in EMG, two cliched no change and two produced increased 

activity. With these findings it can be assumed that DOMS does not affect the 

electrical activity in the muscle, and that the pain and soreness associated with DOMS 

does not come from any affected signal. EMG activity is further discussed in relation 

to cortical excitability, later in this section. 

Following myogenic weakness the question was posed that there would be a 

change in cortical representation of the biceps. Ftndings are suggestive of changes in 

cortical representation (Fig 5.10). These changes have included a shift in the optimal 
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site that "controls" the biceps brachii following eccentric exercise and the area size 

representing the biceps brachii on the motor conex. Although it is thought this has 

not been demonstrated before in regards to shon tenn muscle disease or injwy, the 

findings seem consistent with Cohen et al (1990); and Topka et al (1991) who reported 

plasticity of the motor cortex with conical reorganisation occuring in long-tenn 

changes in physiology such as stroke, spinal cord lesions and limb amputations. Brasil

Neto et al (1992) have suggested that short tenn changes are possible and are referred 

to as "modulation". Modulation of muscular representation on the motor con ex has 

been reported (Pascual-Leone, Grafman & Hallet, 1994) and it may be postulated in 

this study, due to the plasticity of the motor cortex, that temporary physiological 

changes (such as swelling, non-use, and injury brought on by eccentric damage) may 

elicit a "modulation" response in the motor cortex until functional use of the biceps is 

regained. 

Evidence from this study supports the hypothesis that conicomotor excitability 

in the biceps would change. Corticomotor excitabiltiy changed in all subjects (Fig 5.8) 

following the exercise protocol, with a mean increase over the first seven days of 

40%. These findings compliment the findings in other studies where short term 

physiological changes (Brasil-Nato et al, 1992) and changes in physiology long term 

(Cohen et al, 1991; Topka et al, 1992; Wilson et al, 1993) result in increases in MEP 

excitability. In relation to this hypothesis, the question was posed as to the reason 

for the change in MEP size whep. physiological changes occur. There are two possible 

explanations to account for the changes in .MEP amplitude observed following 

eccentric exercise. The first being that when muscles are damaged through eccentric 

exercise, continually stimulated afferent signals from the nerves (due to pain caused by 
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damage) cause an "overload" effect in the central nervous system (CNS), thus when 

stimulated (for example by TMS), the excitability of the motor cortex is increased. 

Alternatively, excitability from the motor cortex arises in the brain itself through a 

feedback mechanism from the muscle. Receptors in the muscle detect change in 

function which is interpreted by the sensory cortex. The motor cortex then counters 

this inhibition of the muscle by "driving" the muscle harder in order to achieve the 

same output as when the muscle was healthy. This increased neural drive is reflected 

in an increased excitability of the motor cortex. 

However, the second proposal cannot be supported in this study as an increase 

in neural drive would be reflected in a ch:lrlge in EMG activity. No consistent change 

in EMG was observed, thus it can be assumed that the changes observed in MEP 

excitability were due to an altered pattern of afferent signals from the sensory nerves. 

To quantify and validate the changes observed in this study, test/retest 

measurements were obtained prior to the investigation (see section 4.5; table 5.1; and 

appendix C) using the protocol as described by Thortensson (1976). Test/Retest 

coefficent of variation (CV) for thresholds and strength were 0% and 2.43% 

respectively, indicating high reliability. CK had a CV of 6.31% suggesting that 

reliability was not quite as significant, however, with increases in CK of up to 1864% 

from pre-test values, test-retest variations are satisfactory. Conico-motor 

representations had varying degrees of variability with the optimal centre of gravity 

position, representational area of the biceps, and motor cortex MEP excitability being 

6.23%, 34.61%, and 19.1% respectively. These result' are consistent with the findings 

of Fliess (1986) who demonstrated coefficients of variation from 14% to 37%. This 

variability may explain the lack of significant alterations observed in these parameters 
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following exercise in that the changes may have been too subtle to be picked up by the 

techniques used. This suggests that the protocols employed in this study for measuring 

conical representation need to be funher controlled in order to increase the sensitivity 

of measurement. Alternatively, it may be that muscles required in gross movements 

(such as the biceps brachii) do not possess precisly defined areas of motor cortex as do 

muscles which are used in fine movments and precision skills such as the adductor 

pollicis brevis or flexor digiti minirni which have demonstrated reliability of 

cortciomotor representation in other studies using test/retest protocols (Wilson et al, 

1993; Thompson eta!, 1995). 

This investigation has demonstrated that delayed onset muscle soreness and 

damage following eccentric exercise was detrimental to neuromuscular function. In 

particular the characteristic pattern of errors observed in the motor skill tracking task 

suggests that the central nervous system had difficulty integrating the proprioceptive 

information arising from the exercised muscle. The most likely explanation for this is 

that damage to golgi tendon organs or other mechanoreceptors within the muscle

tendon complex had occurred with exercise. Furthermore, the changes in corticomotor 

excitabilty (as judged by MEP amplitude), although variable, imply that adaptations in 

the central nervous system had occurred so as to increase the motor drive to the 

exercised muscle, either in response to a reduction in the perceived force because of 

muscle weakness, or due to alterations in the pattern of feedback from other afferents 

(eg. pain receptors). 

Functionally, the results and assumptions put forward in this study, can be 

applied by coaches and athletes in all settings from the beginning SJ!Onsperson through 

to elite athletes in many sports that involve high tensile forces and eccentric 
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contractions (such as the racquet sports or sports involving lunging and quick changes 

in direction). With the importance of periodisation of training in recent years, coaches 

need to understand balancing physical training with skill sessions, especially with 

athletes who are in the cognitive learning phase or developing skills in the associative 

phase (Sage, 1984). 

The importance of motor skill and muscle damage is unquestionable. From the 

findings of this investigation, additional research is necessary to further understand the 

relation~hip between neuromuscular control and muscle damage. 
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APPENDIX A 

Informed Consent Sheets 



Australian Neuromuscular Research Institute: Consent Fonn 

Eccentric exercise of elbow flexor muscles 

Procedure: The procedure is non-invasive. Electrode discs will be taped onto the both biceps muscles. 
The activity in the muscles will be recorded via these electrodes and the information will be fed into the 
computer. Magnetic stimulation will be used. A snugly fitting cap w~h pre-marked spacings will be placed 
on the head. The magnetic coil will be pos~ioned on various s~es of the cap and that part of the brain will 
be stimulated. Each stimulation will be very short, much less than 1 second. This is not painful, but some 
small movements may be noticed in the target muscle. Occasionally, tingling or a tap on the scalp may 
be felt. During the session you will be asked to contract muscles in the arm maximally for 5 seconds arx:l 
submaximally also during the stimulation. You will be shown how to perform these contractions and will 
be given a chance to practic3. We will start the session with a few practice runs, and there will be a rest 
period after each set of trials. There are very few possible discomforts associated w~h these procedures. 
On rare occasions magnetic stimulation may cause a headache. If this occurs, or for any other reason 
you wish to stop the session, we will stop the session. 

I understand that I am free to withdraw from the study at any time. 

I acknowledge that I have read the above statement which explains the nature and object and the 
possible risks of the investigation and the statement has been explained to me to my satisfaction. Before 
signing this document I have been given the opportunity to ask any questions relating to any possible 
physical or mental harm I might suffer as a result of my participation and I have recieved satisfactory 
answers. I agree that research data gathered from the result of the study may be published provided my 
name is not used. 

In the light of the forgoing, I hereby release the Australian Neuromuscular Research Institute or any 
employee, member or representHive thereof, from all or any claim that I may have arising out of my 
participation on this experiment. I understand that this document in no way limits my rights at law from 
any damage that might arise from negligence on the part of the investigators. 

To the best of my knowledge I am not pregnant. I do not have a cardiac pacemaker and I do not have 
metal implants in my head. 

1, ................................ , age ....... years, agree to participate as a subject in a study of the type described 
above. 

Signed ........................ . 

Witness........................ Date ............... . 



Australian Neuromuscular Research Institute: Consent Form 

Mapping of elbow flexor muscles 

Procedure: The procedure is non-invasive. Electrode discs will be taped onto the both biceps muscles. 
The activity in the muscles will be recorded via these electrodes and the information will be fed into the 
computer. You will be asked to per1orm 7 sets of 5 maximal 'eccentric' contractions with your non
preferred arm. Some localised discomfort may be experienced in the week following the eccentric 
contractions, however, you, possibly may some discomfort during the exercise. If this occurs and you 
wish to stop, or for any other reason you wish to stop the session, we will stop the session. 

I understand that I am free to withdraw from the study at any time. 

I acknowledge that I have read the above statement which explains the nature and object and the 
possible risks of the investigation and the statement has been explained to me to my satisfaction. Before 
signing this document l have been given the opportunity to ask any questions relating to any possible 
physical or mental harm I might suffer as a resuh of my participation and l have recieved satisfactory 
answers. I agree thai research data gathered from the resuh of the study may be published provided my 
name is not used. 

In the light of the forgoing, l hereby release the Australian Neuromuscular Research Institute or any 
employee, member or representitive thereof, from aU or any claim that I may have arising out of my 
participation on this experiment. I understand that this document in no way ~mils my rights at law from 
any damage that might arise from negligence on the part of the investigators. 

To the best of my knowledge I am not pregnant and I do not have a cardiac pacemaker. 

!, ................................ , age ....... years, agree to participat~~ as a subject in a study of the type described 
above. 

Signed ........................ . 

Wnness........................ Date ............... . 



APPENDIXB 

Data Test Sheets 



SKILL TRACKING 

NAME- DATE- FILENAME-

ATTEMPT 1-

ATTEMPT2-

ATTEMPT3-

ATTEMPT4-

ATTEMPTS-

MEAN SCORE-

COMMENTS-



STRENGTH 

NAME- DATE- FILENAME-

MVCI-

MVC2-

MVC3-

CKREADING-

COMMENTS-

,, 



APPENDIXC 

Test/Retest Data 



TEST.RETEST 

COG SUBJECT TEST 1 TEST2 DIFF STR SUBJECT TEST 1 TEST2 DIFF CK SUBJECT TEST 1 TEST2 DIFF 
1 5.4 5.2 0.2 1 1 
2 5.5 5.3 0.2 2 280 271 9 2 
3 3.5 4.4 -0.9 3 166 163 3 3 120 102 18 
4 4.9 4.9 0 4 261 241 20 4 51 51 0 
5 5 5 122 116 6 
6 5 4.9 0.1 6 158 149 9 6 36 28 8 
7 4.4 4 0.4 7 270 266 4 7 
9 4.9 4.8 0.1 9 255 234 21 9 209 217 -8 

10 10 10 120 124 -4 
11 11 11 

MEAN 4.8 4.765714 0.014286 MEAN 231.6667 220.6667 11 MEAN 109.6667 102.8 4.8 
S.D 0.678233 0.452506 0.422013 S.D 54.67967 52.23281 7.n1744 S.D 61.80831 66.13522 9,352362 
S.E.M 0.242226 0.161609 0.150719 S.E.M 19.52845 18.65458 2.ns623 S.E.M 22.07439 23.61972 3.340129 
M.E 0.298409 M.E 5.495503 M.E 6.613181 
c.v 6.229 c.v 2.43 c.v 6.31 

AREA SUBJECT TEST 1 TEST2 DIFF MEP SUBJECT TEST 1 TEST2 0/FF EMG SUBJECT TEST 1 TEST2 DIFF 
1 11 11.2 -0.20 MAX 1 4.4 4.5 -0.1 1 343 533 -190 
2 8.70 8.60 0.10 2 5.04 4.51 0.53 2 378 442 -64 
3 7.00 13.00 -6,00 3 9 9.8 -0.8 3 122 166 -44 
4 14.80 9.90 4.90 4 7.13 9.69 -2.56 4 944 730 214 
5 5 1.58 2.29 -0.71 5 418 422 -4 
6 8.00 13.50 -5.50 6 2.39 2.24 0.15 6 273 333 -so 
7 17.10 8.70 8,40 7 12.88 9.88 3 7 n1 616 155 
9 11.10 8.40 2.70 9 9 559 sn -18 

10 10 10 
11 11 11 

MEAN 11.1 10.35 0.766667 MEAN 6.06 6.401667 -0.065 MEAN 476 4n.375 -1.375 
S.D 3.69414 2.135193 5.250306 S.D 3.950447 3.544103 1.682102 S.D 269.9524 176.5429 128.6623 
S.E.M 1.319336 0.762569 1.875109 S.E.M 1.410874 1.265751 0.600751 S.E.M 96,41156 63.05105 45.95081 
M.E 3.7125 M.E 1.19 M.E 90.97 
c.v 34.61 c.v 19.1 c.v 19.08 

Page 1 



APPENDIXD 

Statistical Data 



NORMAUSED S1RENGTII 

pre immed ld 3d 7d 14d 
100.00 76.43 85.00 93.57 98.21 105.00 
100.00 69.57 71.00 74.00 84.47 86.96 
100.00 87.66 75.74 87.23 90.64 102.55 
100.00 69.70 69.00 72.00 80.00 84.85 
100.00 75.00 71.15 83.97 82.69 98.08 
100.00 65.73 56.99 60.84 83.92 85.31 
100.00 71.37 67.06 71.37 98.82 90.00 
100.00 57.09 47.16 46.10 47.87 62.77 

Stats analysis for strength 

- -- --Wilcoxon Matched-Pairs Signed-Ranks Test 

1MMED 
with PRE 

Mean Rank Cases 

.00 0 -Ranks (PRE LT IMMED) 
4.50 8 +Ranks (PRE GT IMMED) 

0 Ties (PRE EQ IMMED) 

8 Total 

Z= -2.5205 2-Tailed P= .0117 

- - - - -Wilcoxon Matched-Pain: Signed-Ranks Test 

ONEDAY 
with PRE 

Mean Rank Cases 

.00 0 -Ranks(PRELTONEDAY) 
4.50 8 + Ranks (PRE GT ONEDAY) 

0 Ties (PRE EQ ONEDA Y) 

8 Total 

Z= -2.5205 2-TailedP= .0117 

2ld 
104.64 
93.79 
110.21 
92.12 
101.28 
87.41 
83.92 
86S8 

28d 
105.36 
92.55 
98.30 
89.70 
92.95 
87.76 
93.73 
96.00 

j 
' ' 



-----Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
wilh THR.E.E.f>AY 

Mean Rank Cases 

4.50 8 • Ranks (TIIREEDA Y LT PRE) 
.00 0 + Ranks (TIIREEDA Y GT PRE) 

0 Ties (TIIREEDA Y EQ PRE) 

8 Total 

z = -2.5205 2· Tailed P = .0117 

--- -- Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
wilh SEVENDAY 

Mean Rank Cases 

4.50 8 -Ranks(SEVENDAYLTPRE) 
.00 0 +Ranks (SEVENDA Y GT PRE) 

0 Ties (SEVENDAY EQ PRE) 

8 Total 

Z= -2.5205 2-TailedP= .0117 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

FOURTEEN 
with PRE 

Mean Rank Cases 

250 2 -Ranks (PRE LT FOUR"l"EEN) 
5.17 6 + Ranks (PRE GT FOURTEEN) 

0 Ties (PRE EQ FOURTEEN) 

8 Tol3l 

Z= -1.8204 2-TailedP= .0687 

' 
' 

' ' 



-----Wilcoxon MaLched-Pairs Signed-Ranks Test 

PRE 
with lWENTYONE 

Mean Rank Cases 

5.60 5 -Ranks (TWENTYON LT PRE) 
2.67 3 + Ranks (TWENTYON GT PRE) 

0 Ties (TWENTYON EQ PRE) 

8 Total 

Z= -1.4003 2-TailedP= .1614 

-----Wilcoxen Matched-Pairs Signed-Ranks Test 

PRE 
with lWENTYEIGiff 

Mean Rank Cases 

4.71 7 -Ranks (TWENTYEI LT PRE) 
3.00 I + Ranks (TWENTYEI GT PRE) 

0 Ties (TWENTYEI EQ PRE) 

8 Tolal 

Z= -2.1004 2-Tailed P = .0357 



CK 

PRE lD 3D 7D 140 
24.00 150.00 202.00 248.00 126.00 
120.00 420.00 600.00 1270.00 170.00 
50.90 80.00 145.00 99.00 81.00 
122.00 220.00 500.00 1050.00 123.00 
21.90 32.00 117.00 281.00 39.00 
74.00 434.00 1400.00 1380.00 433.00 
209.00 441.00 258.00 253.00 117.00 
120.00 200.00 490.00 1380.00 228.00 

STATS ANALYSIS FORCK 

- - - - - Wilcoxon Matched-Pairs Signed-Ranks Test 

ONEDAY 
with PRE 

Mean Rank Cases 

450 8 -Ranks(PRELTONEDAY) 
.00 0 +Ranks (PRE GT ONEDAY) 

0 Ties (PRE EQ ONEDA Y) 

8 Total 

Z= -25205 2-Tailcd P = .0117 

- - -- - Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with THREEDAY 

Mean Rank Cases 

.00 0 -Ranks(TilREEDAYLTPmi) 
450 8 +Ranks(TilREEDAYGTPRE) 

0 Tics (THREEDA Y EQ PRE) 

8 Total 

Z= -2.5205 2-Tailcd P = .0117 

210 
191.00 
105.00 
91.00 
120.00 
54.00 
282.00 
109.00 
124.00 

280 
109.00 
92.00 
105.00 
116.00 
42.00 
93.00 
100.00 
112.00 

' ' 
' • 



- - - - - Wdcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with SEVEN 

Mean Rank Cases 

.00 0 -Ranks (SEVEN LT PRE) 
4.50 8 +Ranks (SEVEN GT PRE) 

0 Ties (SEVEN EQ PRE) 

8 Total 

Z= -2.5205 2-TailedP= .0117 

- - - --Wilcoxon Matched-Pairs Signed-Ranks Test 

FOURTEEN 
with PRE 

Mean Rank Cases 

4.43 7 -Ranks (PRE LT FOURTEEN) 
5.00 I +Ranks (PRE GT FOURTEEN) 

0 Ties (PRE EQ FOURTEEN) 

8 Total 

Z= -1.8204 2-Tailed P = .0687 

--~--Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with 1WENTYON 

Mean Rank Cases 

3.33 3 - Ranks (TWENTY ON LT PRE) 
5.20 5 + Ranks (TWENTY ON GT PRE) 

0 Ties (T\VENTYON EQ PRE) 

8 Total 

Z= -1.1202 2-Tailed P= .2626 



~- - --Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with 1WENTYEI 

Mean Rank Cases 

4.00 4 ·Ranks (fWENTYEI LT PRE) 
5.00 4 +Ranks (fWENTYEI GT PRE) 

0 Ties (TWENTYE! EQ PRE) 

8 Tolal 

z = -.2801 2-Tailed P = .7794 

f . 
~. 



COMBINED TRACKING 

group pre immed ld 3d 7d 14d 
2,00 LOO .99 .94 LOO ,97 1.07 
2.00 LOO .98 LOI .89 ,82 ,75 
2.00 LOO ,87 ,87 ,77 ,15 ,76 
2,00 LOO ,92 .74 .58 .60 .60 
2.00 LOO ,94 ,92 ,92 ,87 ,87 
2.00 LOO ,87 1.09 1.05 .95 LOI 
2.00 LOO .88 ,79 ,73 ,17 ,78 
LOO LOO U4 1.30 ,92 1.03 ,89 
LOO LOO 1.01 1.30 LOO ,96 .87 
LOO LOO L29 1.43 U4 .88 .94 
LOO LOO U9 1.30 1,00 1.01 ,89 
LOO LOO 1.33 1.48 .91 .92 .81 
LOO LOO ,93 ,99 .96 .95 .15 
LOO 1,00 1.06 1.20 1.38 1.07 .96 
LOO 1,00 U1 LIB .87 .99 1.03 

STATISTICAL TEST FOR TRACKING (2 IND GRPS) 

-----Mann-Whitney U- Wilcoxon Rank Sum W Test 

PRE 
by GROUP 

Mean Rank Cases 

8,00 8 GROUP= LOO 
8.00 7 GROUP = 2,00 

u 
28.0 

15 Total 

Exact 
W 2-Tai1cdP 
56.0 LOOOO 

Corrected for Lies 
Z 2-Tai1cd P 

.0000 LOOOO 

- - - - - Mann-Whitney U- Wilcoxon Rank Sum W Test 

IMMED 
by GROUP 

Mean Rank Cases 

1 L13 8 GROUP= LOO 
4.43 1 GROUP = 2.00 

u 
3,0 

15 Total 

Exact 
W 2-Tai1cd P 
31.0 ,0022 

Corrected for ties 
Z 2-Tai1cdP 

-2.8958 .0038 



-----Mann-Whitney U- Wilcoxon Rank Sum W Test 

ONEDAY 
by GROUP 

Mean Rank Cases 

11.25 8 GROUP= 1.00 
4.29 7 GROUP=2.00 

u 
2.0 

IS Total 

Exact 
W 2-Tailed P 
30.0 .0012 

Corrected for ties 
Z 2-TailcdP 

-3.0197 .0025 

-----Mann-Whitney U- Wilcoxon Rank Sum W Test 

THREEDAY 
by GROUP 

Mean Rank Cases 

9.81 8 GROUP= 1.00 
5.93 7 GROUP= 2.00 

u 
13.5 

15 Total 

Exact 
W 2-TailcdP 
415 .0939 

Corrected for ties 
Z 2-TailedP 

-1.6856 .0919 

-----Mann-Whitney U- Wilcoxon Rank Sum W Test 

SEVEN 
by GROUP 

Mean Rank Cases 

10.69 8 GROUP= 1.00 
4.93 7 GROUP= 2.00 

u 
6.5 

15 Total 

Exact 
W 2-TailcdP 
34.5 .0093 

Corrected for Lies 
Z 2-TailcdP 

-2.4904 .0128 



-----Mann-Whitney U- Wilcoxon Rank Sum W Test 

FOURTEEN 
by GROUP 

Mean Rank Cases 

9.00 8 GROUP= 1.00 
6.86 7 GROUP= 2.00 

u 
20.0 

IS Total 

Exact 
W 2-TailedP 
48.0 .3969 

Corrected for lies 
Z 2-TailedP 

-.9283 .3532 

STATISTICAL TEST FOR EXPERIEMENTAL GROUP (WITillN GROUP) 

-- - -- Wilcoxon Matched-Pairs Signed-Ranks Test 

IMMED 
with PRE 

Mean Rank Cases 

4.71 7 -Ranks (PRE LT lMMED) 
3.00 I +Ranks(PREGTlMMED) 

0 Ties (PRE EQ lMMED) 

8 Total 

Z= -2.1004 2-Tailed P = .0357 

-- - - - Wilcoxon Matched-Pairs Signed-Ranks Test 

ONEDAY 
with PRE 

Mean Rank Cases 

5.00 7 -Ranks(PRELTONEDAY) 
1.00 I + Ranks (PRE GT ONEDA Y) 

0 Ties (PREEQONEDAY) 

8 Total 

Z= -2.3805 2-Tailed P = .0173 



-- - - -Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with THR.EEDA Y 

Mean Rank Cases 

2.50 4 - Ranks (TIIREEDA Y LT PRE) 
5.50 2 +Ranks (TIIREEDAY GT PRE) 

2 Ties (I"HREEDA Y EQ PRE) 

8 Total 

Z= -.1048 2-Tailed P = .9165 

-----Wilcoxon Matched-Pairs Signed-Ranks Te!.t 

PRE 
with SEVEN 

Mean Rank Cases 

5.10 5 -Ranks (SEVEN LT PRE) 
350 3 +Ranks (SEVEN GT PRE) 

0 Ties (SEVEN EQ PRE) 

8 Total 

z = -1.0502 2-Tailed P = .2936 

-----Wilcoxon Matched-Pairs Signcd-Rmlks Test 

FOURTEEN 
wilhPRE 

Mean Rank Cases 

1.00 I -Ranks (PRE LT FOURTEEN) 
5.00 7 + Ranks(PREGTFOURTEEN) 

0 Tics (PRE EQ FOURTEEN) 

8 Total 

Z= ·2.3805 2-Tailed P = .0173 

\ 
I~ 



---~-Wilcoxon Matched-Pairs Sign:d-Ranks Test 

PRE 
with 1WENTYON 

Mean Rank Cases 

4.42 6 • Ranks (TWENTY ON LT PRE) 
1.50 I +Ranks (TWENTYON GT PRE) 

I Ties (TWENTYON EQ PRE) 

8 Tocal 

Z= -2.1129 2-Tailed P = .0346 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with 1WENTYEI 

Mean Rank Cases 

5.60 5 - Ranks (TWENTYEI LT PRE) 
2.67 3 + Ranks (TWENTYEI GT PRE) 

0 Ties (TWENTYEI EQ PRE) 

8 Tocal 

Z= -1.4003 2-TailedP= .1614 

STATISTICAL TEST FOR CONTROL GROUP (WITHJN GROUP) 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

1MMED 
wilhPRE 

Mean Rank Cases 

.00 0 -Ranks(PRELTIMMED) 
4.00 7 +Ranks (PRE GT IMMED) 

0 Ties (PREEQ IMMED) 

7 Total 

z = -2.3664 2-Tailed P = .0180 ' • 



-- - -- Wilcoxon Matched-Pairs Signed-Ranks Test 

ONEDAY 
with PRE 

Mean Rank Cases 

2.50 2 -Ranlcs(PRELTONF..DAY) 
4.60 5 + Ranks (PRE GT ONF..DAY) 

0 Ties (PRE EQ ONF..DA Y) 

7 Tolal 

z = -1.5213 2-Tailed P = .1282 

- - - - - Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with THREEDA Y 

Mean Rank Cases 

4.00 5 -Ranks (fHREEDAY LT PRE) 
1.00 I +Ranks (fHREEDAY GT PRE) 

I Ties (fHREEDA Y EQ PRE) 

7 Total 

Z= -1.9917 2-Tailed P = .0464 

- - - -- Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with SEVEN 

Mean Rank Cases 

4.00 7 -Ranks (SEVEN LT PRE) 
.00 0 +Ranks (SEVEN GT PRE) 

0 Ties (SEVEN EQ PRE) 

7 Tolal 

Z= -2.3664 2-TailedP= .0180 



- --- - Wilcoxon Matched-Pairs Signed-Ranks Test 

FOURTEEN 
wilhPRE 

Mean Rank Cases 

1.50 2 • Ranks (PRE LT FOURTEEN) 
5.00 5 + Ranks (PRE GT FOURTEEN) 

0 Tics (PRE EQ FOURTEEN) 

7 Tola! 

Z= -1.8593 2-Tailed P = .0630 



STATISTICAL TESTFOREMG(MAXADU) 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

ONEDAY 
with PRE 

Mean Rank Cases 

3.67 3 - Ranks (PRE LT ONEDA Y) 
5.00 5 +Ranks(PREGTONEDAY) 

0 Ties (PRE EQ ONEDA Y) 

8 Tolal 

Z= -.9802 2-Tailed P = .3270 

-----Wilcoxon Matched-Pairs Signed-Ranks TesL 

PRE 
wilh TIIREEDA Y 

Mean Rank Cases 

5.00 3 - Ranks (TIIREEDA Y LT PRE) 
4.20 5 + Ranks (TI!REEDA Y GT PRE) 

0 Ties (TI!REEDA Y EQ PRE) 

8 Tolal 

z = -.4201 2-Tailed P = .6744 



.... ·Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with SEVEN 

Mean Rank Cases 

4.83 6 -Ranks (SEVEN LT PRE) 
350 2 +Ranks (SEVEN GT PRE) 

0 Ties (SEVEN EQ PRE) 

8 Tolal 

Z= -1.5403 2-Tailed P = .1235 

- - -- - Wilcoxon Matched-Pairs Signed-Ranks Test 

FOURTEEN 
wilhPRE 

Mean Rank Cases 

5.75 4 -Ranks(PRELTFOURTEEN) 
3.25 4 + Ranks (PRE GT FOURTEEN) 

0 Ties (PREEQ FOURTEEN) 

8 Total 

Z= -.7001 2-Tailed P = .4838 

----·Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with TWENTYON 

Mean Rank Cases 

4.67 3 - Ranks (TWENTYON LT PRE) 
4.40 5 +Ranks (TWENTYON GT PRE) 

0 Ties (TWENTYON EQ PRE) 

8 Total 

z = -.5601 2-TailedP= .5754 
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- - - - - Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
wilh TWENTYEf 

Mean Rank cases 

4.50 4 -Ranks (TWENTYEI LT PRE) 
3.33 3 +Ranks (TWENTYEI GT PRE) 

0 Ties (TWENTYEI EQ PRE) 

7 Total 

z = -.6761 2-Tailed P = .4990 



STATISTICAL TEST FOR THRESHOLD MAX MEP 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

ONEDAY 
with PRE 

Mean Rank Cases 

4.20 S -Ranks(PRELTONEDAY) 
S.OO 3 + Ranks (PRE GT ONEDA Y) 

0 Ties (PREEQONEDAY) 

8 Total 

z. -.4201 2-Tailed P • .6744 

-- - - - Wilcoxon M'atched-Pairs Signed-Ranks Test 

PRE 
with ntREEDAY 

Mean Rank Cases 

3.67 3 ·Ranks (THREEDAY LT PRE) 
S.OO S +Ranks (THREEDAY GT PRE) 

0 Ties (THREEDA Y EQ PRE) 

3 Total 

z. -.9802 2-TailcdP= .3270 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with SEVEN 

Mean Rank Cases 

3.60 S -Ranks(SEVENLTPRE) 
6.00 3 +Ranks(SEVENGTPRE) 

0 Ties (SEVEN EQPRE) 

8 Total 

Z ~ .0000 2-Tailed P • 1.0000 

!. 



- - - -- Wilcoxon MalChed-Pairs Signed-Ranks Test 

FOURTEEN 
with PRE 

Mean Rank Cases 

4.50 6 -Ranks (PRE LT FOURTEEN) 
4.50 2 +Ranks (PRE GT FOURTEEN) 

0 Ties (PRE EQ FOURTEEN) 

8 Total 

z = -1.2603 2-Tailed P = .2076 

- - - -- Wilcoxon MalChed-Pairs Signed-Ranks Test 

PRE 
with 1WENTYON 

Mean Rank Cases 

3.50 6 -Ranks(TWENTYONLTPRE) 
7.50 2 +Ranks (TWENTYON GT PRE) 

0 Ties (TWENTYON EQ PRE) 

8 Tola1 

Z= -.4201 2-Tailed P = .6744 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with TWENTYEI 

Mean Rank Cases 

4.00 2 -Ranks (TWENTYEI LT PRE) 
4.00 5 +Ranks (TWENTYEI GT PRE) 

0 Ties (TWENTYEIEQPRE) 

7 Total 

Z= -1.0142 2-TailedP= .3105 



STATISTICAL TEST FOR THRESHOLDS 

- - - - - Wilcoxon Matched-Pairs Signed-Ranks Test 

ONEDAY 
with PRE 

Mean Rank Cases 

1.50 I -Ranks(PRELTONEDAY) 
1.50 I +Ranks(PREGTONEDAY) 

6 Ties (PRE EQ ONEDAY) 

8 Total 

Z= .0000 2-Tailed P = 1.0000 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with THREE.DA Y 

Mean Rank Cases 

1.50 I - Ranks (TIIREEDA Y LT PRE) 
1.50 I + Ranks (THREEDA Y GT PRE) 

6 Ties (TIIREEDAYEQPRE) 

8 Total 

Z= .0000 2-Tailed P = 1.0000 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with SEVEN 

Mean Rank Cases 

5.50 I -Ranks (SEVEN LT PRE) 
3.10 5 +Ranks (SEVEN GT PRE) 

2 Ties (SEVEN EQ PRE) 

8 Total 

z = -1.0483 2· Tailed P = .2945 
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- - - - - Wilcoxon Matched-Pairs Signed-Ranks Test 

FOUR1EEN 
with PRE 

Mean Rank Cases 

2.50 3 - Ranks (PRE LT FOURTEEN) 
2.50 1 + Ranks (PRE GT FOURTEEN) 

4 Ties (PRE EQ FOURTEEN) 

8 Total 

Z= -.9129 2-Tai1ed P = .3613 

- - - - - Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with TWENTYON 

Mean Rank Cases 

.00 0 - Ranks (TWENTYON LT PRE) 
1.50 2 +Ranks (TWENTYON GT PRE) 

6 Ties (fWENTYON EQ PRE) 

8 To~ i 
' 

Z= -1.3416 2-Tai1edP= .1797 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with TWENTYE1 

Mean Rank Cases 

.00 0 -Ranks (TWENTYE1 LT PRE) 
1.00 1 + Ranks (fWENTYE1 GT PRE) 

7 Ties (fWENTYE1 EQ PRE) 

8 To~ 

Z= -1.0000 2-Tai1edP= .3173 



STATISTICAL TESTS FOR COG LOCATION 

---Wilcoxon Matched-Pairs Signed-Ranks Test 

ONEDAY 
with PRE 

Mean Rank Cases 

4.00 1 - Rsnks(PRELTONEDAY) 
2.75 4 +Rsnks(PREGTONEDAY) 

0 Ties (PRE EQ ONEDAY) 

5 Toral 

z = -9439 2-Tailed P = .3452 

-- - - - Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
wilhTHREEDAY 

Mean Rank Cases 

2.50 4 - Ranks (THREEDA Y LT PRE) 
5.00 I + !Qnks (THREEDAY GTPRE) 

I Ties (THREEDAY EQ PRE) 

6 TOtal 

z = ·.6742 2-Tailed P = .5002 

-----Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with SEVEN 

Mean Rank Cases 

4.60 5 -Ranks (SEVEN LT PRE) 
4.33 3 +Ranks (SEVEN GT PRE) 

0 Ties (SEVEN EQ PRE) 

8 Total 

Z = -.7001 2-Tailed P= .4838 
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-~ 

• · · · · Wilcolton Matched·Pairs Signed·Ranks Test 

FOURTEEN 
with PRE 

Mean Rank Cases 

4.67 3 - Ranks (PRE LT FOURTEEN) 
3.50 4 +Ranks (PRE GT FOURTEEN) 

I Ties (PREEQ FOURTEEN) 

8 Tolal 

Z= .0000 2-Tailed P = 1.0000 

~ .. ··Wilcoxon MaLched·Pairs Signed-Ranks Test 

PRE 
with TWEN1YON 

MeanRank Cases 

4.00 I -Ranks(TWENTYONLTPRE) 
3.40 S + Ranks (1WENTYON GT PRE) 

2 Ties (TWENTYON EQ PRE) 

8 Total 

Z= -1.3628 2-TailedP= .1730 

·~---Wilcoxon Matched-Pairs Signed-Ranks Test 

PRE 
with TWENTYEI 

Mean Rank Cases 

1.50 2 -Ranks (TWENTYEI LT PRE) 
4.00 3 +Ranks (TWENTYEI GT PRE) 

I Tics (TWENTYEl EQ PRE) 

6 Total 

Z= -1.2136 2-Tailed P = .2249 
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Typical Subject Results 
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--------- -- - ------ --------
COLLECTION: thresh@6,0@4S% 

CLASS: All epochs C HA NNEL: L GICEP 

NAME: 

URN: unspecified SEX: unspcciftcd 

DATE: Thu Ju l 06 10:44:41 1995 - pnntcd Thu Jul 6 II : 15:53 1995. 

FILE: {homc/gary/pc/data/mapping/damage/alan/ 

SERIES: replicate? 

COMMENTS: 

Background Is 0. 40 +- 0.17 mV, limit set to 0. 7S mV . 

Parameters of the fit to a(l-exp(-b(x-c)))/(l+exp( -b(x-c )))+d 

A.pllludo (a): 5. 0 

Haxl-u- s l ope (b) : 0.1 

X-offsel (c) : 75.0 

Y~ffset (d) : 5. 0 

5. 0mV 

4.0mV 

J.OmV 

2. 0mV 

I.OmV 

457. 507. 557. 607. 657. 707. 

HAS INTENSITY 

C linical Research Un it 

(PLOT OATA I ( SEE GUfSS I ~ ~ 
Gel bkg froa epochs: 1-4. dif= 20ms 
C41oulate bkg froa.: middle of epoch 

Set bg 11•1 l. ...... : 2 sd 

S~tlng ~ .. .... : 4St In steps of 5~ 

S~ lng f...,. epoch: I In gr-o<4>5 of 4 

Plot ....-.: one fro- <X>l.-. 1 

757. 807. 857. 907. 

Australian Neuromuscular Research Insti tute 
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COLLECTION: L BICEP 

NAME: 

URN: unspecified AGE: unspecified SEX: unspecified 

DATE: Thu Jul 06 10:44:41 1995- printed Fri Jul 7 13:53:27 1995_ 

FILE: /home/gary/pc/dala/mapping!damagc/alan/ 

SERIES: replicate? 

COMMENTS: 

RIGHT H[ IIISPHERE 

E~:~: u . . 
N : : . . . . 

. . . . . . . . . . . . 

-t-~~ 
E :r-: u~: : 

0 : : . . . . 
. . . . . . . . 

E 
u 

('< 

I 

E 
v ... 
I 

3cm 4cm 

. . . . 

:>em 6cm 7cm 8cm 9cm 

> 
E 

C linical R~arch Uni t Aust ra lian Neurom uscula r Resea rch Institute 



T 
COLLECTION: L IHCEP 

NAME: 

URN: u nspccificd AGE: unspecified SEX: unspecified 

DATE: Thu Jul 06 10:44:41 1995- printed fori Jul 7 15:07 :04 1995_ 

FILE: jhome}gary/pc/data/mapping/damage}al.an/ 

SERIES: replicale? 

COMMENTS: 

_ _ __ CllCUU.TI OH OPTIOHS __ _ __________ _vi SPlAT OPT I OHS ___ ______ _ _ 

Md zeroed s 1 tes _ : ~ around edges 

U alt Cillculal lon : ~1 deg outer limit 

Set reso lull on ___ : ~ 256x256 rnatr I x 

Interpolation ____ : ~spl ine fit 

Diltil source _____ _ : ~ N-P 

____ S!YI I. liSTOli IIUC:[ __ _ 

Pos iti on ..ap . .. : at I x I In a 1 x 1 grid (CLEAR M.AJ>) [KEY) 

Hap screen s I ze: ~ S 12xS 12 WIX RES 

Upper threshol d : 0 INge 

L01o.er lhresho 1 d : 0 s 1tes 

Co lour t~le ... : 0 8&11 & levvlG 

Hap b.lekground . : 0 ..n 1te 

Show s ites . .... : 
,... 
.._..no 

VIew ing direction .. : ~Vertex 

UT val ue (u,m,:t) ... : • 

LT vil lue (u,~,:t) ._ .: 

Invert colour t ab le: ~yes 
Show gre~ sea 1 e key: ~yes 
Show reference gr i d: ~ bl.lek 

[ PRO) 

lmiigo l ~e l ____ __ : L BICEP ______ __ __,...,.SliHC: t IU.C:HIH OPT I ON$ ___ =------
~ yes . tn 11'11n colol.tf"""81ow up 1mage •.•••• : Cno Restore __________ : ~ full map 0<-aw wl th mask_: 

Add to mask •••• : Restore :t scilled.: 

( Calculate ) ( 0<-aw ) ( Quantitate ) ( Save pi xe l s ) 

( Cler datil ) ( Load data) 

Unlh: C.v Loc: D Optlrnal l1•: 
,... 
"'no 
~ 

Heol : ""~11 

SITE: ... 1 Fit SITE: ·-1 Fit SITE: . .. 1 Fit 
,,1: 6 . 7~ 6-ll 0 , 2: 1.17 1. 67 l,--4: L21 1-19 

,,2: s_ oa s.u 8,1: 0 -21 1.11 1,1: 2. 71 2 _s7 

, ,1 : 1.23 1.SO 8,- i: 1.17 I . OS 1 ,2: 1.11 1.62 

,,-2 : 1.20 1. 78 0,-1: 1. 00 -D.Ol 1,1 : I .H ~ -~' 
,,-1: 0.18 I .11 ,,1: •. 23 0 .)0 1,-2: I .27 1_11 

7 ,I: ) - ~' ) _29 9,2: a_u I - 1~ J , 1 : 1_11 1_61 

7 ,2: )_ OJ J_lS 9,-2: 1_07 0_15 3 ,2: •. 61 1_~0 

7,1 : 1.S7 1.22 S , l: s . 62 s .76 

7 , -2: 1.17 I_9G S,2: ~ .12 1 .Sl 

7.-4: 0 .31 1_1) 5,1: 0.97 0.70 

0 ,1: I .1S 1.61 S,- 2: 1.12 1. 09 

'OpU•ol' 1et1tudc {sat 25.t degr-ees S .J c •) 

"Opti••l~ longitude 1s •t ft.l degrees 0 . 7 c a ) 

l"AC( SO\ 

COC l•tl tude : 2G- Ddeg 5.3co) 

COG 1 ong1 tude: a . Sdeg D .He•) 

ANT longt tude: )l .Sdog 2 _6co) 

POST l ongitude: - 12 -Sdeg (- l.lco ) 

" EOl letttude 19.0deg ).9ca) 

LATL lotitud c 

£l ongot ton 

S ur f occ ore• 

)-4.0deg 7 . 0ca) 

1 .0/).lc•- 1. ) 

tl .G c•Z 

C linical Research Unit 

I"AG( 1S\ 

26.2deg s. ~c·) 

G. 4dcg t . Gc•) 

2J .~deg }. l eo ) 

- 4 .1idcg (-0 . 4c e ) 

21 . 2deg ~ .6co) 

32. 2deg 6 .6co) 

2.5/2.lc• - 1.2 

) .8 c•2 

~add pixels (min) kush width .... ... - : ~ 4 

Sa"" Ntrlx) Re trieve ) ( The Works ) [r---;;Q:-u717t---, 

)( 
. 'f-.. 

. ..... ..... + ·· -·- -···· ·-

.)(' 

Australian Neuromuscular .Research Institute 



COLLECTION: 

NAME: 

URN: unspecified AGE: unspecified SEX : unspecified 

DATE: Thu Jul 06 10:44 :41 1995- printed fori Jul 7 13:55:38 1995, 

FILE: /ho me/gary/pc/data/mapping!dam agc/ala n/lml3.bic 

SERIES: replicate? 

COMMENTS: 

'.. 6,0 

6,2 

6 ,4 

\ 

6,-2 

6 ,-4 

7 ,0 

7 ,2 

7, 4 

7 ,-2 

7 ,-4 

8 ,0 

8,2 

8,4 

8,-2 

8,-4 

9,0 

9,2 

9, - 2 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

~ 
\ r 
\-
\-
\_ 

~~ : : 
I I 

~ 
I 

: 
.l 

I 

I I : 
: : 
I 

I 
T 
I 

T L 
I : 
I : : 

_l_ A : 

L BICEP 

W~V£ HAXKIM 
• 1 &.72i oV 
· 2 5 . 001 .v 
w) 1.2)) .v 
wi 1.19& .v 
•5 170.2 uV 
. & ) . i&i .v 
w7 ) .820 .v 
.o 1 .57S .v 
w9 1.1&7 .v 

•11 )05 . 2 uV 
•11 451.7 uV 
w12 171 . 3 uV - .1) 2H.8 uV 
w14 1&& . I uV 
·15 15.7 uV 
•1& 229.5 uV 
•17 107.4 uV 
w10 7:J .2 uV 
•19 5 . &25 .v 
w2 0 4 . 722 .v 
•21 9&9.2 uY 
·22 1.121 .v 
w2) 205.1 uV 
• 24 2.71) .v 
·25 1.401 .v 
w2G 09.5 uV 
· 27 2&8 .& uV 
w20 402.8 uV 
w29 &12 .8 uV 

Hc•n 1 . 512 .v 
:5\dov 1.911 .v 

H(n 7J .2 uV 
I \ I 11ax ~ &.72'4 •V 

I -:::~ ! ~ /C----~= 
5,4 '-----+l-~ 

5 ,-2\ I ~+-1 --------~-------------

~t ~~~~~~~~~~~~~~~ 

~~==~c~~==~~===t====~========~~==============~~=-==?-~ 0 m s 
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COLLECTION: 6,0 

NAME: 

URN: unspec ific{] AGE: unspecific{] SEX: unspecified 

DATE: Thu Ju t 06 t0:44 :41 1995 - printed Fri Jut 7 13:50:3 1 1995. 

FILE: /ho me/gary/pc/data/mapping/damage/alan/lm13.bic 

SERIES: rcpticatc? 

COMMENTS: 

cn.LECTIONS A V AJlJ>l3J...f OH THIS F ll.£ : 

6 , 0 • • 2 • J 0 ~ • 5 7, 0 0 1 0 2 0 J 0 ~ 

6,2 • 1 • 2 • J . ~ 
6 , ~ 0 1 • 2 • J . ~ • 5 Half c ln:uof~ = J\ -
6, - 2 • • 2 • J . ~ 
6,-~ • • 2 • J . ~ Average, re-..-on l~o and s tore }( Cancel 

7, 0 • • 2 • J . ~ Click a ll Rec tify 8 no 

7,2 • • 2 • J . ~ 
7,~ • • 2 • J . ~ 
7,-2 • 1 • 2 • J . ~ 
7,-~ • • 2 • J . ~ 
11,0 • • 2 • J . ~ 
8,2 • 1 • 2 • J . ~ -
8,4 • • 2 • J . ~ 
8, -2 • • 2 • J . ~ 
11, -~ • • 2 • J . ~ 
9,0 • • 2 • J . ~ 
9,2 • • 2 • J . ~ 
9 , -2 • 1 • 2 • J • 4 

6,0 0 1 0 2 O J 0 ~ 

7,-2 0 1 0 2 0 J 0 ~ 

5 ,0 • 1 • 2 • J . ~ 
5,2 • • 2 • J . ~ 
5,4 • • 2 • J . ~ 
s,-2 • • 2 • J . ~ 
s,-4 • • 2 • J . ~ 
4,0 • 1 • 2 • J . ~ 
~.2 • 1 • 2 • J . ~ > 
4,4 • 1 • 2 • J . ~ E 

0 

4, -2 • 1 • 2 • J . ~ ci 
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Raw Data Collected 
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Sub·ect Max% lmmed Post 1d Post 3d 
Subject 0 0.5 1 3 

2 100.00 76.43 93.57 
3 100.00 69.57 
4 100.00 87.66 75.74 87.23 
5 100.00 69.70 
6 100.00 75.00 71.15 63.97 
7 100.00 65.73 56.99 60.84 
9 100.00 71.37 67.06 71.37 

10 100.00 57.09 47.16 46.10 

mean 100.00 71.57 63.62 73.85 
sd 0.00 8.83 11.51 17.98 
sem 0 3.531002 4.605814 7.191309 

STRENGTH 
NORMALISED STRENGTH 

Post 7d Post 14d Post 21d 
7 14 21 

98.21 105.00 104.64 
84.47 86.96 93.79 
90.64 102.55 110.21 
80.00 84.85 92.12 
82.69 98.08 101.28 
83.92 85.31 87.41 
98.82 83.92 
47.87 62.77 86.88 

83.33 89.36 95.03 
15.97 14.40 9.41 

6.388188 5.760539 3.764092 

Post 28d 
28 

105.36 
92.55 
98.30 
89.70 
92.95 
87.76 
93.73 

94.33 
5.88 

2.351715 

' i. 
' 



'·' 

CK 

CREATINE KINASE 
_j 

Subject Pre 1 Post 1d Post 3d Post 7d Post 14d Post 21d Post28d 
0 1 3 7 14 21 28 

2 24.00 202.00 248.00 126.00 191.00 109.00 
3 120.00 1270.00 170.00 102.00 
4 50.90 80.00 145.00 99.00 81.00 91.00 150.00 
5 122.00 1050.00 123.00 116.00 
6 21.90 32.20 117.00 281.00 39.80 54.60 42.00 
7 74.00 434.00 1400.00 1380.00 433.00 282.00 93.00 
9 209.00 441.00 258.00 253.00 117.00 109.00 95.00 

10 120.00 490.00 1380.00 228.00 124.00 105.00 

mean 92.73 246.80 435.33 745.13 164.73 141.93 101.50 
so 62.91038 221.0829 490.9361 572.8107 121.9704 82.04113 29.96665 
SEM 25.16415 88.43314 196.3744 219.1243 48.78816 32.81645 11.98666 



POT TRACKING 
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MAP C.O.G LOC 

MAP c.n r, ,TITUDE- LEFT BICEP 

Pre 1Pre 2 Pre 3 !POSt /POSt 3d Post Sd Post 7d Post 14d Post 21d /POSt~ 
~ 5.: 5. 5. 5 5.. 5. 
3.5 4. 4] 4. 4. 

1--....::;t--__i,!-7 4. 4.8 4.8 5.2 4.8 4 4. 4. 4.~ 
5. '0 5. 1 

1---~--....,J----'"i~--"'41.."+-9 __ 5"'-'..f.--';~---7-4~. 4. 5. 5. 4. 4 
4. 4. 3. 4. 4. 4 

1----f;;I--4~.----;C*--+--+--+.i-J---7 4. 4. 4. 4. 5. 4 

4. 4. 4. 5. 5.: ---+---1 10 
1" 

Pre 1 Pre 2 ~ 

M \P C.O.G LATITUDE- SHIFTS 
I Post 1d Post 3d I"Qst 70 [I:'_O$t 14d Post 21d l'<l§]28d_ 

0 14 2' 281 
5.5 5.3 2 0.0 -0.2 ·0.: 0. 0. 
3.5 4.4 J.O -0. 0. 

4. -o -o. -o. -o -o. -o.: 
-0 0. 

-0 -0 
__1~ 

4.: ·0 ·0.3 
4. 

~~ ~M 
o.oo -o.o: -0.10 ~ 

=-===~==--=-t===-~~1=4' . ~~~ 
0.' 

---.---~.-------~-·- ----··· ,., .. - .. , .. ,._-.,----------···· ..... . -· ...... . 
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lmear 

3.90 

MAP MEP 

~ -LE~~~EP+---~1---~--~ 
121~1 Pos~ f4T 

4. ~.sor 

5.20 4.70 

L40 
i.80 

6.901 

~ :~ 

3.801 
. 4.301 

·.201 
~.001 

,I 
•. sol 
LSOI 

:~ 
lf?OI !.90 
3:3o 1.80 

iMEP ; - LEF CEP 
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'.60 
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~ !:551 
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'~ 55.65 

00.931 ii=± ~.so~ ~ ~ 
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10 65.00 70.00 
1' 

53. 53. 

~=-----~3~.7~1 4.11 

ss~,c ][s3 ~ 
3.47413 3.~ 



MAP AREA 

MAP AREA- LEFr BICEP 

SubJect Pre 1 Pre 2 /mmed Post 1d Post 3d Post sd Post 7d Post 14d Post 21d Post 2Bd 
1 
2 8.70 8.60 8.80 8.30 9.50 9.30 
3 7.00 13.00 14.30 13.50 11.10 
4 14.80 9.90 11.50 11.70 15.10 14.30 8.70 13.40 15.00 14.90 
5 25.60 27.60 23.20 19.40 
6 8.00 13.50 12.30 11.90 12.50 12.70 12.30 15.00 12.40· 10.90 
7 17.10 8.70 , 1.90 10.60 9.90 8.50 11.40 8.00 
9 11.10 8.40 8.50 14.00 7.90 11.20 11.30 12.90 10.30 

10 12.20 8.30 8.40 9.10 10.40 8.00 
11 

X 13.06 10.35 11.90 10.46 11.57 11.63 12.68 13.10 12.44 11.03 
so 6.123943 2.312358 0.565685 1.883614 2.752938 3.330666 6.359863 4.637117 3.53874 2.869814 
SEM 2.355363 0.889369 0.217571 0.724467 1.058822 1.281025 2.446101 1.783507 1.361054 1.103775 
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EFFECfS OF MAXIMAL ECCENTRIC E:>CERCISE ON MOTOR 
CONTROL PROPERTIES OF TI-lE BICEPS BRACH!! MUSCLE 

P. Sacco, A. 1. Pearce*, M. L. Thompson*, G. W. Thickbroom*, 
F.L. Masraglia*, University of Western Australia, Penh, WA 6009. 

We have studied the time course of changes in voluntary slrcngth/mmor skill 
and corticomotor excitability for up to 28 days following a bout of eccenlric 
exercise. Eight subjects (5 male, 25-40 years of age) perfonned 35 maximal 
voluntary eccentric contractions of the elbow tlexon; through 130° of 
extension at 90°s·1

• Voluntary electromyographic (EMG) activity and motor 
evoked potentials (MEP's) elici1ed by transcranial magnetic s<ifnulation (TMS) 
were recorded via surface electrodes placed over the belly of the biceps brachii 
muscle. Maximal isometric strength was measured at 90° elbow flexion. A 
simple elbow flexion/extension tracking task was used to assess visuomotOr 
co-ordination. Threshold curves were generated of MEP amplitude vs 
intensity ofTMS and maximum MEP amplitude was taken from the plateau of 
the threshold curve. Strength loss was greatest 1 day after exercise (64±5% 
(mean± sem) of pre-exercise value) and rr...covered to 89±6% by 14 days . 
Subjects showed an impairment in the skilled tracking task within hours after 
exercise (13.±4% mean increase in tracking error) which was most noticeable 1 
day post exercise (25±9%) but returned to control levels by 3 days. There 
were no changes in the threshold level ofMEP responses to magnetic 
stimulation, but maximal MEP amplitudes increased on average by 38% and 
42% of control values at I & 3 days post-exercise. No such increases in the 
root mean square EMG during maximal voluntary cffons were observed. We 
conclude lhat changes in motor pcrfonnance and conicomotor excitability 
occur following ecccnlric exercise which may be related to alterations in the 
pattern of affereot feedback from weakened and/or painful muscles. 
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EFFECTS OF MAXIMAL ECCENTRIC EXERCISE ON NEUROMUSCULAR 

CONTROL OF TilE BICEPS BRACHJJ MUSCLE 

A. J. Pearce* ,P. Sacco, , M. L. Thompson, G. W. Thickbroom, F. L. Mastaglia 

University of Western Australia, Penh, W A 6009. 

• Edith Cowan University, Joondalup, W A 6027 

We have studied the time course of changes in voluntary sttength, neuromuscular 

control and corticomotor excitability for up to 28 days following a bout of eccentric 

exercise. Eight subjects (5 male, 25-40 years of age) performed 35 maximal voluntary 

eccentric contractions of the elbow flexors through 130° of extension at 90°s-1
• 

Voluntary electromyographic (EMG) activity and motor evoked potentials (MEP's) 

elicitt;".d by transcranial magnetic stimulation (TMS) were recorded via surface 

electrodes placed over the belly of the biceps brachii muscle. Maximal isometric 

strength was measured at 90° elbow flexion. A simple elbow flexion/extension tracking 

task was used to assess visuomotor co-ordination. Threshold curves were generated of 

MEP amplitude vs intensity ofTMS and maximum lvffiP amplitude was taken from the 

plateau of the threshold curve. Strength loss was greatest 1 day after exercise (64±5% 

(mean ± scm) of pre-exercise value) and recovered to 89±6% by 14 days. Subjects 

showed an impainnent in the skilled tracking task within hams after exercise (13±4% 

mean increase in tracking error) which was most noticeable I day post exercise 

(25±9%} but returned to control levels by 3 days. There were no changes in the 

threshold level of MEP responses to magnetic stimulation, but maximal MEP 

amplitudes increased on average by 38% and 42% of control values at I & 3 days 

post-exercise. No such increases in the root mean square EMG during maximal 

voluntary efforts were observed. We conclude that changes in neuromuscular control 

and corticomotor excitability occur following eccentric exercise which may be related 

to alterations in the pattern of afferent feedback from weakened and/or painful 

muscles. 
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Subject Gender Age (yrs) Height (em) Weight (kg) 

I f 30 173 70 

2 m 42 170 63 

3 f 37 165 57 

4 m 32 176 66 

5 f 42 166 60 

6 f 30 165 64 

7 m 30 170 60 

9 m 25 176 70 

10 m 25 180 76 

11 m 27 182 90 

a f 22 165 60 

b f 30 173 70 

c m 42 173 80 

d m 41 180 70 

e f 43 175 72 

f m 45 190 85 

g m 25 176 70 
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Isokinetic Calibration 
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weight (kg) 
0 
1 
6 

11 
16 
21 
26 
21 
16 
11 

6 
1 
0 

adu 
112 
816 

2480 
3750 
5504 
6800 
8336 
6688 
5440 
3760 
2288 

688 
112 

100 physical units= 3100 adu 

KCCALIB 

load (adu) 
0 

unload (adu) 
0 

480 
1984 
3312 
5120 
6400 
8000 

Calibration Chart 

Page 1 

480 
1968 
3344 
4944 
6336 
8000 

mean (adu) 
0 

480 
1976 
3328 
5032 
6368 
8000 

adu/N 
0 

48.9 
33.6 
30.9 
32.1 
30.9 
31 .3 
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