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Abstract – This article details the exploration and
application of Genetic Algorithm (GA) for feature selection.
Particularly a binary GA was used for dimensionality
reduction to enhance the performance of the concerned
classifiers. In this work, hundred (100) features were
extracted from set of images found in the Flavia dataset (a
publicly available dataset). The extracted features are
Zernike Moments (ZM), Fourier Descriptors (FD),
Lengendre Moments (LM), Hu 7 Moments (Hu7M), Texture
Properties (TP) and Geometrical Properties (GP). The main
contributions of this article are (1) detailed documentation of
the GA Toolbox in MATLAB and (2) the development of a
GA-based feature selector using a novel fitness function
(kNN-based classification error) which enabled the GA to
obtain a combinatorial set of feature giving rise to optimal
accuracy. The results obtained were compared with various
feature selectors from WEKA software and obtained better
results in many ways than WEKA feature selectors in terms
of classification accuracy.

Keywords – Feature Extraction, Binary Genetic Algorithm,
Feature Selection, Pattern Classification.

I. INTRODUCTION

High dimensional feature set can negatively affect the
performance of pattern or image recognition systems. In
other words, too many features sometimes reduce the
classification accuracy of the recognition system since
some of the features may be redundant and non-
informative [1]. Different combinatorial set of features
should be obtained in order to keep the best combination
to achieve optimal accuracy. In machine learning and
statistics, feature selection, which is also called variable
selection, attribute selection or variable subset selection, is
the process of obtaining a subset of relevant features
(probably optimal) for use in machine model construction.
There are lots of techniques available for obtaining such
subsets. Some of these techniques include Principal
Component Analysis (PCA), Particle Swarm Optimization
(PSO), Genetic Algorithm (GA) ([9], [10], [11]). More
often, lots of researchers in recent times have employed
WEKA (Weka (Waikato Environment for Knowledge
Analysis) software for dimensionality reduction. However,
WEKA software is static in its feature selection approach
as the users cannot change the configuration of the
concerned feature selectors [25]. GA has been known to
be a very adaptive and efficient method of feature
selection as reported by ([18],[19],[20]) since the users or

writers can change the functional configuration of GA to
further improve their results. As such, a GA-based feature
selection (a subspace or manifold projection technique)
will be used to reduce the number of features needed by
the WEKA Classifiers used in this work. We employed
MATLAB GA Toolbox and provided detailed walk-
through of its operation. A Feature Subset Selection (FSS)
is an operator Fs or a map from an m-dimensional eature
space (input space) to n-dimensional feature space (output)
given in mapping

rxnrxm RRFs : (1)
where nm  and Znm, , rxmR is any database or matrix

containing the original feature set having r instances or

observation, rxnR is the reduced feature set containing r
observations in the subset selection. This is further
illustrated in Figure 1. It is to be noted that Feature
selection is inherently a multi-objective problem with two
main objectives of minimizing both the number of features
and classification error.

Fig.1. Illustrative diagram on feature selection

II. COMPLETE DATASET

A. Features Generated from the Flavia Dataset
(Dataset1)

The complete dataset for this work comprises of Zernike
Moment (ZM), FDs, Lengendre Moments (LM), Hu 7
Moments (Hu7M), Texture Properties (TP) and
Geometrical properties (GP) ([22], [23], [24]).The
variables 1(1)100=i,iF , in Table 1 and Table 2 represent

the features needed for this work. Thus the feature space
of this work is a rxmR matrix, where r, (number of
observations) = 1907 and m, (number of attributes or
futures required)= 100.
B. Ionosphere dataset (Dataset2)

The alternative dataset used for testing this work was the
Ionosphere dataset from the University College London
machine learning repository available at
http://archive.ics.uci.edu/ml/datasets/Ionosphere. This
dataset comprises of 351 observations and 34 attributes
with binary class information (bad radar and good radar
returns).

mailto:hezecomp@yahoo.com
http://archive.ics.uci.edu/ml/datasets/Ionosphere


Copyright © 2014 IJECCE, All right reserved
900

International Journal of Electronics Communication and Computer Engineering
Volume 5, Issue 4, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

Table 1: 100 Features in the Dataset2
SN Descriptor Features Number
1 ZM F1, F2, F3,...…F20 20
2 LM F21, F22, F23,…,F40 20
3 Hu7M F41, F42, F43,…,F47 7
4 TP F48, F49, F50,…,F69 22
5 GP F70, F71, F72,…,F79 10
6 FDs F80, F81, F82,…,F100 21

Table 2: Hundred (100) features derived from the Flavia
Dataset ([27])

Observation F1 F2 F3 F4 …….F100

Image 1 X1,1 X1,2 X1,3 X1,4 ……X1,100

Image 2 X1,1 X1,2 X1,3 X1,4 ……X1,100

Image 3 X1,1 X1,2 X1,3 X1,4 ……X1,100

Image 4 X1,1 X1,2 X1,3 X1,4 ……X1,100

…. …………………………….
…. …………………………….
…. …………………………….
Image 1907 X1907,1 X1907,2 X1907,3 …X1907,100

C. Problem Statement
Based on the dataset described in Table 2 the following

optimization problem was solved.
Problem:
Given that  Zn , 1001  n and 1000    R
where:
(i) n = number of features in the reduced feature set.
(ii) = Classification error.

Find a subset of features
iF in Table 2 such that the

objective  and n are minimized.

III. GENETIC ALGORITHM (GA)

Genetic Algorithms (GA) is an optimization technique,
a population-based and algorithmic search heuristic
methods that mimic natural evolution process of man ([2],
[3],[19], [20], [21], [26]). The operations in a GA are
iterative procedures manipulating one population of
chromosomes (solution candidates) to produce a new
population through genetic functionals such as crossover
and mutation (in a similar way to Charles Darwin
evolution principle of reproduction, genetic
recombination, and the survival of the fittest). As
documented in [4], the terminology between human
genetic and GA can be summarised as shown in Table 3.

Table 3: Comparative Terminology between human
genetic and GA

SN Human Genetic GA Terminology
1 chromosomes bit strings

2 genes Features
3 allele feature value

4 locus bit position
5 genotype encoded string
6 phenotype decoded genotype

The fitnesses of the solution candidates (chromosomes)
are evaluated using a function commonly referred to as
objective or fitness function. In other words, the fitness
function (objective function) gives numerical values which
are used in ranking the given chromosomes in the
population. The formulation of the fitness function
depends on the problem being solved. A good example to
illustrate a fitness function is the parabola h(x): x →ax2 +
bx + c which is used in optimising quadratic functions
over admissible real or complex range of values. The
symbols {a, b, c} in this expression are constants. The GA
in the MATLAB Toolbox is tailored to be a minimiser of
objective function as opposed to many other commercially
available GA which maximizes. However the
maximization problem can be seen as dual form of a
minimization problem depending on the user-defined
fitness function. To illustrate this, suppose the function
h(x) = x2 is to be minimized viz min [h(x)], then the dual
formulation of this problem is to maximize the negative of
h(x), written as max[-h(x)]. Thus maximizing the negative
of a function is equivalent to minimizing its positive. In
relation to this article, maximizing classification accuracy
is equivalent to minimizing the classification error rate.

IV. GA-BASED FEATURE SELECTION

As documented in [26], the five important issues in the
GA are chromosome encoding, fitness evaluation,
selection mechanisms, genetic operators and criteria to
stop the GA (see Figure 2). The GA operates on binary
search space as the chromosomes are bit strings. The GA
manipulates the finite binary population in similitude of
human natural evolution. To begin with, an initial
population is created (mostly randomly) and evaluated
using a fitness function. For binary chromosome employed
in this work, a gene value ’1’ depicts that the particular
feature indexed by the position of the ’1’is selected.
Otherwise, (i.e if it is ’0’), the feature is not selected for
chromosomal evaluation. Using the positional index of
features indexed by the ’1s’, the chromosomes are then
ranked and based on the rankings, the top n fittest kids
(Elitism of size n) are selected to survive to the next
generation. The fitness evaluation is done through
Algorithm 2. After the elite kids are pushed automatically
to the next generation, the remaining kids (individuals) in
the current population are allowed to genetically pass
through the functionals crossover and mutation to form
crossover and mutation kids respectively. The three (3)
kids viz elite, crossover and mutation then form the new
population (new generation). Crossover (a genetic
functional) is a combination of two individuals
(chromosomes) to form a crossover kids. Mutation
operator on the other hand, is used for genetic pertubation
of the genes in each chromosomes through bits flipping
depending on the mutation probability. Using the steps in
Figure 2, the modus operandi of the GA-based feature
selection are explained in this section. It’s to be noted that
this same figure (although with slight modification) is
employed in our previous paper [26].
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A. Generation of Initial Population
The initial population for this work is a matrix of

dimension Population Size x Chromosome Length
containing only random binary digits. The Population Size
is the number of chromosomes (individuals) in the
population, while Chromosome Length (Genome Length)
is the number of bits (genes) in each chromosome. It is a
good idea to make the population size to be at least the
value of the chromosome length so that the chromosomes
in each population span the search space [5]. The
pseudocode (same as [26]) for initial population is given in
Algorithm 1.
Algorithm 1. Creation of Initial Population (see [26])
1: procedure POPFUNCTION()
2: pop  Binary Matrix of size PopulationSize *

GenomeLength
3: Return pop
4: end procedure

Fig.2. GA-Based feature Selection (modified from [26])

Table 4: parameters used in GA
GA Parameter Value
Population size 100
Genomelength 100
Population type Bitstrings
Fitness Function kNN-Based Classification Error
Number of generations 300
Crossover Arithmetic Crossover
Crossover Probability 0.8
Mutation Uniform Mutation
Mutation Probability 0.1
Selection scheme Tournament of size 2
EliteCount 2

B. Fitness Evaluation
For GA to select a subset of features, a fitness function

(a driver for the GA) must be defined to evaluate the
discriminative capability of each subset of features. The
fitness of each chromosome in the population are
evaluated using kNN-based fitness function (see
Algorithm 1). The Dataset1 is shown in Table 2
comprising of 100 features. The second dataset (Dataset2)
contains 34 features. The kNN algorithm solves
classification problem by looking for the shortest distance
between the test data and training sets in the feature space.
Suppose the training set, using Dataset1 and Dataset2,is
defined as

},...,,,{ 321 Mxxxxx  (2)

where }34,1907{M for the Dataset1 and Ionosphere

Dataset (Dataset2) respectively. The M is the number of
observations in these dataset. Each 1(1)100=i,ix is a

vector containing 100 features as shown in Table 2. The
kNN algorithm computes Euclidean distance between test
data xtest and the training sets and then find the nearest
point (shortest distance) from the training set to the test
set. This distance is expressed in Equation 3.





M

m
itestitest xxxxD

1

2)(),( (3)

The kNN count each categorymin the class information
(accumulated as )( mxcount using 3 Nearest Neighbors and

then report classification results and errors based on the
expression:

))(max(arg mxcount (4)

subject to:





M

i
m classxcount

1

)( (5)

where }32,...3,2,1{class and }2,1{ for the experimental

Dataset1 and Dataset2 respectively. In each chromosome a
gene value ‘1’ indicates the particular feature indexed by
the position of the ‘1’ is selected. If it is ‘0’, the feature is
not selected for evaluation of the chromosome concerned.
The Genome (Chromosome) are the encoded bit strings
represeting the features. As the GA iterates, the
individuals (combinatorial set of features) in the current
population are evaluated, and their fitness are ranked
based on the kNN-based classification error. Individuals
with lower fitness have better chance of surviving into the



Copyright © 2014 IJECCE, All right reserved
902

International Journal of Electronics Communication and Computer Engineering
Volume 5, Issue 4, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209

next generation or mating pool. The iterations involved in
running the GA ensures that the GA reduce the error rate
and picks the individual with the least (best) fitness value
since error rate is reported for each chromosomes involved
and the smallest of error rate is finally picked up by the
GA.

 
ff NNfit 1exp   (6)

 = kNN-Based classification error.

fN = Cardinality of the selected features.

The algebraic structure of this equation ensures the
learning of the GA, error minimization and reduced
number of features selected.
Algorithm 2. Fitness Function Evaluation ( see [26])
1: procedure fit()
2: FeatIndex   Indices of ones from BinaryChromosome
3: NewDataSet   DataSet indexed by FeatIndex
4: NumFeat   Number of elements in FeatIndex
5: 3  NumNeighborskNN
6: kNNError  ClassifierKNN(DataSet,ClassInformation

,NumNeighborskNN)
7: Return kNNError
8: end procedure
C. Generation of children for new population

After fitness evaluation, new population is created using
Elitism and Genetic Operators (Crossover and Mutation).
In this GA (MATLAB GA Toolbox), three types of
children are created to form the new population [5]. They
are:
(a) Elite children: These children are given pushed
automatically into the next generation (being those with
the best fitness values). Elitism in the GA Toolbox is
specified by the identifier "EliteCount" with default value
of 2. It is obviously bounded by the population size. This
implies "EliteCount" PopulationSize. With size 2, GA
picks the top two best chromosomes and push them
automatically to the next generation.
(b) Crossover Children: This is explained in section D
below.
(c) Mutation Children: This is explained in section D
below.
D. Proportion of Elite, Crossover, and Mutation
Children in the New Population

Table 4 shows the configuration of the GA in this work.
From Table 4, the length of each chromosome for
experimental Dataset2 is 100 since we have a total number
of 100 features extracted from the Flavia dataset. The
maximum number of generation was set to 300 to avoid
the GA been trapped in local optimal. To create new
population, the GA performs Elitism, Crossover and
Mutation in sequential order.
(1) Elite Children: The number of elitism as shown in
Table 4 is 2. Therefore, the top two kids with the lowest
fitness values are automatically pushed in the next
generation. Thus, Number (Elite kids) = C1 = 2. This
means there are 98 (i.e100-C1) individuals in the
population apart from elite kids. From the remaining 98
chromosomes, crossover and mutation kids are then
produced.

(2) Crossover Children: The proportion/fraction of the
next generation, apart from the left over kids, that are
produced by crossover is called Crossover fraction.
Crossover fraction used in this work is 0.8. If this fraction
is set to one, then there is no mutation kids in the GA,
otherwise, there will be mutation kids. With the fraction
taken as 0.8, then the number of crossover children will be
C2 = round (98 *0.8) = 78
(3) Mutation Children: Finally, number of mutation
children is: C3 = 100- C1 - C2 = 100-78-2 = 20.
This implies C1 + C2 + C3 = 100
E. Selection Mechanism Used: Tournament

The aim of selection mechanism in GA is to make sure
the population (solution candidates) is being constantly
improved over all fitness values. The selection mechanism
helps the GA in discarding bad designs and keeping only
the best individuals. There are many selection mechanism
in the GA Toolbox, the default of this being stochastic
uniform (with default size 4) but Tournament Selection of
size 2 was used in this work due to its simplicity, speed
and efficiency ([6], [17], [18]). Also, tournament selection
enforces higher selection pressures on the GA (resulting in
higher rate of convergence) and makes sure the worst
individual does not get into the next generation ([4], [9],
[10], [11], [12], [13], [14]). In the GA, two functions are
needed to perform tournement selection. The first function
generates the players (parents) needed in the actual
tournament function, while the second function which
outputs the winner of the tournament. The fitnesses of the
selected chromosomes are ranked and the best of this
becomes the winner. In tournament selection of size 2, two
chromosomes are selected from the population after the
Elite kids are taken out and the best of the two
chromosomes,(using fitness ranking), is selected.
Tournament selection is performed iteratively until the
new population is filled up.
F. Crossover function

The crossover operator in the GA genetically combines
two individuals (parents) to form children for the next
generation. Two parents chromosomes are needed to carry
out crossover operation. The two chromosomes are taken
from tournament selection. The GA uses crossover
fraction, say, XoverFrac to specify the number of kids
produced by the crossover functional after Elite kids are
removed from the current population being evaluated.. The
variable XoverFrac, as discussed in the preceding section,
is bounded by the inequality 0 XoverFrac 1. The
value used for XoverFrac in this work is 0.8 and the
crossover function chosen is arithmetic type. In this case,
XOR operation is performed on the two parent
chromosomes since they are binary ([5], [7], [8], [15],
[16]). This is illustrated in Equation 7.

CrossOverkids (ii) = 21 pp  (7)

where
 ii is an  index that runs from 1 to the number of kids
needed for crossover;
  is an XOR operator for binary operands;
 p1 = first parent needed by the crossover function;
 p2 = second parent needed by the crossover function;
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The XOR operator  works as follows:
1 1 = 0

1 0 = 1

0 1 = 1

0 0 = 0
So for two binary operands (parent chromosomes) viz;
p1 = 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
p2 = 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1
CrossOverKid = p1 p2
CrossOverKid = 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0
G. Mutation function

Mutation is a genetic pertubation of individuals in the
population. Mutation ensures genetic diversity and
searching of broader solution space. We used uniform
mutation as our choice. For uniform mutation, the GA
generates GenomeLength set of random numbers (RDs)
from uniform distribution. The value of each random
number is associated with the position of each gene (bit) in
the chromosome. The chromosome is scanned from left to
right and for each associated bit, the value of each RD is
compared with the mutation probability (denoted as

mp )

and if the RD at position i is less than pm, then gene (bit)
at position i is flipped. Otherwise, the gene is left
unflipped. This is repeated from the Least Significant Bit
(LSB) to the Most Significant Bit (MSB) of each
chromosome in the mutation children. As an example,
given a parent chromosome

p = 1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0;
The number of bits in this p is 20. Therefore, a set of 20

uniform random numbers are generated, say,
RD20 = [0.5159 0.4161 0.5830 0.5138 0.2839 0.3934
0.2659 0.3776 0.9710 0.2595 0.1807 0.2244 0.5224
0.3166 0.4452 0.4138 0.3362 0.4145 0.5863 0.6220]
If the mutation probability is

mp = 0.3, then
mp is

compared with each vector entry in RD20 and the
following binary vector

intmpop is obtained.

intmpop = 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0.

The positional index of 1s in
intmpop are 5, 7, 10, 11, 12.

Finally, all the genes in p at locus 5, 7, 10, 11, 12 are
flipped, which will then produce a mutation kid as:
MutKid = 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0.
H. New Population (Member of next generation)

The GA keeps evolving until the new population is
filled up. The new population is filled by adding
individuals from Elite kids, crossover kids, and mutation
kids. This is illustrated by Equation 8
NewGeneration = Number(Elitkids) +

Number (Crossover kids) + Number (Mutation kids)
(8)

This is then evaluated again and the selection-
reproduction steps are repeated until the stopping
condition is met.
NewGenerationScore = Fitness (NewGeneration) (9)
I. Repeat Until GA termination conditions occur

Once the GA reaches optimum solution, it stops. The
code condition at which the GA stops is called stopping

conditions. The two stopping conditions applicable to this
work are:
(a) Maximum Number of Generations

(GenerationsZ+).
(b) Stall Generation Limit (StallGenLimit Z+).

The GA can terminate prematurely if the ’Generations’
is not properly set. The value of 'Generations' for this work
was set to be 300 while the value 100 was used for
StallGenLimit. The GA terminates if the average change
in the fitness values among the chromosomes over
StallGenLimit generations is less than or equal to Tolfun
which is valued as 0.000001. Specifically, the GA
examines the difference in values of fitnessess of all
generations and if the average of these differences for 100
generations is less than or equal to 0.000001, the GA
terminates. This implies genetic homogeneity (similarity
in fitness values) among the chromsomes of the generation
containing the best chromosome and consequently, the
convergence of the GA.

V. SIMULATION AND EXPERIMENTAL RESULTS

Based on the GA configuration in Table 4, the following
results were obtained. The carefully chosen fitness
function enabled the GA to minimize classification error
from kNN. As a proof (from MATLAB documentation
[5]), the best fitness and mean fitness should be close in
value as the GA reaches the termination condition. The
stall generation is number of generations produced by the
GA since the last upgrade of the fitness value. The GA
terminates at generation 101. This is also evidenced by the
GA simulation diagrams in Figures (4 and 5) where the
value of the fitness function remains constant from
generation 58 to 101 and generation 38 to 101 for the
Dataset1 and Dataset2 respectively. The features selected
by the GA from both datasets are:
(a) Selected Feature 1 (Dataset1) = 1, 6, 12, 15, 18, 56, 64,
71, 72, 75, 78 i.e (11% of the original dataset).
(b) Selected Feature 2 (Dataset2) = 2, 3, 5, 7, 8, 34 i.e
(17.65% of the original dataset).

The best and mean fitness value, using the kNN
classification error for Dataset1 were 0.1746 and 0.181
while that of Dataset2 were 0.06268 and 0.07151. These
results are validated in section below.

Fig.3. GA simulation diagram on Dataset1
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Fig.4. GA simulation diagram on Dataset2

VI. VALIDATION OF EXPERIMENTAL RESULTS

To validate the GA-FS in this work, the resuts of the
GA-based features were compared with a number of
WEKA-Based features and test were also made using the
selected features on a number of WEKA classifers such as
Multi-Layer Perceptron (MLP), Random Forest (RF), J48,
Naive Bayes (NB), and classification using regression
(RC). The two WEKA feature evaluators used are WEKA
Correlation Feature Selection Subset Evaluator (WEKA
CFS-SE) and WEKA ranker (Information Gain). The GA
was evaluated using fitness function as shown in
Equations (4.5). The simulation diagram (Figures 4 and 5)
based on the chosen fitness function shows convergence of
the GA. The feature indexed by 6 in the Dataset1 cuts
across all the selectors. This proves a point that this feature
will be useful for building image-based classification
systems . This feature is Zernike Moment of order 6 and
iteration 0 (i.e ZMI(6,0)). When the Dataset1 was fed into
WEKA CFS which is a wrapper-based feature selector, 20
features were reported and this includes the feature
indexed by 6 also. Interestingly, the GA selected 11
features ([1, 6, 12, 15, 18, 56, 64, 71, 72, 75, 78]) that
were also selected by the WEKA ranker and CFS. The
features common to both methods are Zernike moments,
Hu moments, Texture properties, and Geometric
properties. The GA approach has high level of
controllability as the parameters in the GA configuration
table can still be fine-tuned to obtain better results.
Geometric properties of the Flavia dataset index by the
vectors [70, 71, 72, 73, 74, 75, 76, 77, 78, 79] were also
selected at rate more than any other features. The third
features prefentially selected by all the selectors is Hu 7
moments (indexed by vectors [41, 42, 43, 44, 45, 46, 47]).

Table 7: Classification accuracy using GA and WEKA-
Based features on first dataset (Dataset1).

SN Selector+WEKA Classifier Accuracy
(%)

RMSE

1 GA+MLP 72.88 0.1105
2 GA+RF 72.37 0.1037
3 GA+J48 67.97 0.1300
4 GA+NB 56.72 0.1222
5 GA+RC 69.70 0.1012
6 WEKA(IG)+MLP 73.52 0.1135
7 WEKA(IG)+RF 74.00 0.1065
8 WEKA(IG)+J48 70.84 0.1267
9 WEKA(IG)+NB 61.25 0.1483

10 WEKA(IG)+RC 74.62 0.1092
11 WEKA(CFS SE)+MLP 76.25 0.1084
12 WEKA(CFS SE)+RF 81.48 0.0961
13 WEKA(CFS SE)+J48 73.36 0.1223
14 WEKA(CFS SE)+NB 71.26 0.1268
15 WEKA(CFS SE)+RC 78.81 0.1017

Table 8: Comparison GA-FS with WEKA feature selectors
using Dataset1

SN Feature Selector Selected Features
1 GA 1, 6, 12, 15, 18, 56, 64,

71, 72, 75, 78
2 WEKA (Information

Gain Ranking Filter)
70, 77, 74, 73, 8, 50, 51,
66, 2, 9, 71, 48, 21, 61,
60, 62, 31, 79, 72, 6

3 WEKA (CFS Subset
Evaluator)

1, 2, 6, 7, 12, 15, 16, 41,
43, 45, 51, 65, 66, 70,
71, 73, 74, 75 ,76 , 77

Table 9: Comparison GA-FS with WEKA feature selectors
using Dataset2.

SN Feature Selector Selected Features
1 GA 2, 3, 5, 7, 8, 34
2 WEKA (Information

Gain Ranking Filter)
5, 6, 33, 29, 3, 21, 34,
8, 13, 7, 31, 22

3 WEKA (CFS Subset
Evaluator)

1, 3, 4, 5, 6, 7, 8, 14,
18, 21, 27, 28, 29, 34

Table 10: Classification accuracy using GA and WEKA-
Based features on second dataset (Dataset2).

SN Selector+WEKA
Classifier

Accuracy(%) RMSE

1 GA+MLP 93.02 0.2339
2 GA+RF 94.35 0.1045
3 GA+J48 91.70 .2462
4 GA+NB 90.55 0.2989
5 GA+RC 91.89 0.1988
6 WEKA(IG)+MLP 93.73 0.2388
7 WEKA(IG)+RF 92.59 0.2414
8 WEKA(IG)+J48 91.74 0.2780
9 WEKA(IG)+NB 86.32 0.3387
10 WEKA(IG)+RC 89.74 0.2801
11 WEKA(CFS SE)+MLP 92.31 0.2499
12 WEKA(CFS SE)+RF 92.88 0.2427
13 WEKA(CFS SE)+J48 90.60 0.2982
14 WEKA(CFS SE)+NB 92.02 0.2682
15 WEKA(CFS SE)+RC 90.88 0.2666

VII. CONCLUSION

In this paper, a GA-based feature selection technique
was described. The technique developed herein involved
the use of a novel fitness function to select combinatorial
set of features from original feature set. For
benchmarking, features selected by both WEKA Feature
Selectors and the GA were fed into a number of WEKA
classifiers. The GA-based features outperformed WEKA-
based features in more instances. In most cases, the
difference in the classification accuracy reported by the
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two approaches are very small. The features selected by
both method on the first and second dataset respectively,
are shown in Table 5 & 6. In overall, both the GA method
and WEKA-CFS which are wrapper-based feature
selectors produced better classification accuracy than
WEKA ranker (IG) which is filter-based. The main
advatange of the method herein lies in the area of
controllability as the GA can be fine-tuned to produce
better results all the time by changing the fitness functions.
Of all the features selected, ZM had the highest frequency
followed by geometric features. The approaches in this
work is much more promising than those from previous
works such as [27] & [28] as more features are extracted
from the images used. With the application of GA for
dimensionality reduction, more disciminating features
were obtained.

ACKNOWLEDGMENT

This work was supported by Edith Cowan University,
Western Australia under the scholarship scheme
ECUIPRS (Edith Cowan University International
Postgraduate Research Scholarship.

REFERENCES

[1] Bruzzone L. Persello C. A novel approach to the selection of
robust and invariant features for classification of hyperspectral
images. Department of Information Engineering and Computer
Science, University of Trento, 2010.

[2] Tian J. Hu Q. Ma X. Ha M. An Improved KPCA/GA-SVM
Classication Model for Plant Leaf Disease Recognition Journal
of Computational Information Systems , 2012, 18, 7737-7745.

[3] Melanie M. An Introduction to Genetic Algorithms A Bradford
Book The MIT Press, 1999.

[4] Sivanandam S. N. Deepa S. N. Introduction to Genetic
Algorithms Springer-Verlag , Berlin, Heidelberg, 2008

[5] Mathworks T. Statistics Toolbox User’s Guide The MathWorks,
Inc. 3 Apple Hill Drive Natick, MA 01760-2098, 2013.

[6] Eiben A. E. Smith J. E. Rozenberg G. (Ed.) Introduction to
Evolutionary Computing Springer-Verlag Berlin Heidelberg,
2010

[7] Marek O. Introduction to Genetic Algorithms Czech Technical
University (http://www.obitko.com/tutorials/genetic-algorithms/
about.php), 1998

[8] Siddique N. Adeli H. Computational Intelligence: Synergies of
Fuzzy Logic, Neural Networks, and Evolutionary Computing
John Wiley and Sons Ltd, The Atrium, Southern Gate,
ChiChester, West Sussex, PO19 8SQ, United Kingdom, 2013.

[9] Taherdangkoo Mohammad. Paziresh Mahsa. Yazdi Mehran.
Bagheri Mohammad. An efficient algorithm for function
optimization: modified stem cells algorithm. Central European
Journal of Engineering. 2012; 3 (1): 3650

[10] Fogel David B. Evolutionary Computation: The Fossil Record.
New York: IEEE Press. ISBN 0-7803-3481-7; 1998.

[11] Zhang J. Chung H. Lo W. L. Clustering-Based Adaptive
Crossover and Mutation Probabilities for Genetic Algorithms.
IEEE Transactions on Evolutionary Computation vol.11, no.3,
pp. 326335, 2007.

[12] Goldberg D.E. Korb B. Deb K. Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems,
5(3):493530;1989.

[13] Falkenauer Emanuel. Genetic Algorithms and Grouping
Problems. Chichester, England: John Wiley & Sons Ltd. ISBN
978-0-471-97150-4; 1997.

[14] Srinivas M. Patnaik L. ”Adaptive probabilities of crossover and
mutation in genetic algorithms,” IEEE Transactions on System,
Man and Cybernetics, vol.24, no.4, pp.656667, 1994.

[15] Kjellstrom G. On the Efficiency of Gaussian Adaptation. Journal
of Optimization Theory and Applications 71 (3): 589597.
doi:10.1007/BF00941405; 1991.

[16] Rania Hassan. Babak Cohanim. Olivier de Weck. Gerhard Vente
r . A comparison of particle swarm optimization and the genetic
algorithm. 2005.

[17] Civicioglu P. Transforming Geocentric Cartesian Coordinates to
Geodetic Coordinates by Using Differential Search Algorithm.
Computers &Geosciences 46: 2012; 229247. doi:10.1016/
j.cageo.2011.12.011

[18] Baudry Benoit. Franck Fleurey.Jean-Marc Jezequel.Yves Le
Traon. Automatic Test Case Optimization: A Bacteriologic
Algorithm. IEEE Software (IEEE Computer Society) 22 (2):
2005: 7682. doi:10.1109/MS.2005.30.

[19] Crosby Jack L. Computer Simulation in Genetics. London: John
Wiley & Sons. ISBN 0-471-18880-8; 1973.

[20] Akbari Ziarati. A multilevel evolutionary algorithm for
optimizing numerical functions” IJIEC 2 ; 419430 ; 2011

[21] Holland John. Adaptation in Natural and Artificial Systems.
Cambridge, MA: MIT Press. ISBN 978-0262581110; 1992.

[22] Hu M K. Visual Pattern Recognition by Moment Invariants, IRE
Trans. Info. Theory, vol. IT-8, pp.179187, 1962.

[23] Zernike F. Beugungstheorie des Schneidenverfahrens und Seiner
Verbesserten Form, der Phasenkontrastmethode. Physica 1 (8):
689704; 1934.

[24] Fourier J. B. Joseph. The Analytical Theory of Heat, The
University Press; 1878.

[25] Mark Hall. Eibe Frank. Geoffrey Holmes. Bernhard Pfahringer.
Peter Reutemann . Ian H. Witten. The WEKA Data Mining
Software: An Update; SIGKDD Explorations, Volume 11, Issue
1; 2009

[26] BABATUNDE Oluleye. ARMSTRONG Leisa. LENG Jinsong.
DIEPEVEEN Dean. Zernike Moments and Genetic Algorithm:
Tutorial and Application. British Journal of Mathematics and
Computer Science. 4(15): 2217-2236.

[27] Wu Stephen Gang. Bao Forrest Sheng. Xu Eric You. Wang Yu-
Xuan. Chang Yi-Fan. Xiang Qiao-Liang. A Leaf Recognition
Algorithm for plant Classification Using Probabilistic Neural
Network. In Signal Processing and Information Technology,
2007 IEEE International Symposium on (pp. 11-16). IEEE;
2007.

[28] Ulrich Weiss. Peter Biber. Stefan Laible. Karsten Bohlmann.
Andreas Zell. Plant Species Classification using a 3D LIDAR
Sensor and Machine Learning. Ninth International Conference
on Machine Learning and Applications. 339-345; 2010.

http://www.obitko.com/tutorials/genetic-algorithms/

	A Genetic Algorithm-Based Feature Selection
	tmp.1504229096.pdf.1KF0p

