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Higher breakfast glycemic load is associated with increased metabolic syndrome risk, 1 

including lower HDL-cholesterol and increased triglycerides, in adolescent girls  2 

ABSTRACT  3 

Almost all previous studies examining associations between glycemic load (GL) and 4 

metabolic risk have used a daily GL value. The daily value does not distinguish between 5 

peaks of GL intake over the day, which may be more closely associated with metabolic risk. 6 

We aimed to investigate cross-sectional associations between daily and mealtime measures of 7 

GL and metabolic syndrome risk, including metabolic syndrome components, in adolescents. 8 

Three-day food records and metabolic assessments were completed by adolescents 9 

participating in the 14-year follow-up of the Western Australian Pregnancy Cohort (Raine) 10 

Study. Breakfast GL, lunch GL, dinner GL and a score representing meal GL peaks over the 11 

day were determined in 516 adolescents. Logistic regression models investigated whether GL 12 

variables were independent predictors of metabolic syndrome in this population based cohort 13 

(3.5% prevalence of metabolic syndrome). Breakfast GL was predictive of metabolic 14 

syndrome in girls (OR = 1.15; 95% CI = 1.04,1.27; P˂0.01) but not in boys. Other meal GL 15 

values and daily GL were not significant predictors of metabolic syndrome. When breakfast 16 

GL was examined in relation to each of the metabolic syndrome components in girls, it was 17 

negatively associated with fasting HDL cholesterol (P=0.037; β=-0.004; 95% CI= -0.008, -18 

0.002) and positively associated with fasting triglycerides  (P=0.008; exp(β)=1.002; 95% 19 

CI=1.001, 1.004). Our results suggest that there may be a link between breakfast composition 20 

and metabolic syndrome components in adolescent girls. These findings support further 21 

investigation into including lower GL foods as part of a healthy breakfast in adolescence, 22 

particularly for girls. 23 

  24 
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INTRODUCTION 25 

The metabolic syndrome is a cluster of metabolic disturbances that increases the risk of 26 

developing type 2 diabetes and cardiovascular disease (1; 2). In Australia, prevalence of 27 

metabolic syndrome in adolescents has been previously reported at 3.6% using International 28 

Diabetes Federation (IDF) paediatric diagnostic criteria (3), increasing to 22.1% in adulthood 29 

(adult IDF criteria) (4). Diet is one of the factors that may have the ability to influence this 30 

progression from adolescence to adulthood.  31 

 32 

The glycemic index (GI) was developed 30 years ago with the aim of improving postprandial 33 

glycemia in the diabetic population (5). The GI ranks foods or beverages on their ability to 34 

raise blood glucose levels compared to ingestion of the same quantity of carbohydrate, 35 

expressed as a percentage. A high GI food consumed in a small amount can have a minimal 36 

impact on blood glucose concentrations, and conversely a low GI food consumed in a large 37 

amount can have a major impact on blood glucose concentrations. The glycemic load (GL) is 38 

a product of the quantity of carbohydrate present in food and the GI; by taking the 39 

carbohydrate into consideration, it represents the total impact of the food on blood glucose 40 

concentrations (6). Hence, the GL is better able to distinguish impact on postprandial glycemia 41 

compared with the GI.  42 

 43 

Habitual dietary intake of a diet with high postprandial glycemia may lead to 44 

hyperinsulinemia and disturbed lipid metabolism (7), with increased risk of developing 45 

metabolic syndrome (8; 9). Diets lower in GI/GL have been associated with improved health 46 

outcomes for various metabolic risk factors and chronic diseases in studies and meta-analyses 47 
(10; 11; 12). Other studies have not found significant associations between low GI/GL diets and 48 

reduced risk of diabetes (13; 14), perhaps in part because the use of daily values has some 49 

limitations in representing metabolic processes resulting from habitual dietary carbohydrate 50 

intake over the course of the day (13).  Studies investigating associations with dietary GI and 51 

GL often use food frequency questionnaires, which can estimate daily GI/GL but not 52 

individual meal values. We identified two studies which were able to assess meal values 53 

using either a food record (Hong Kong children aged 6-7 years (15)) or diet history  (older 54 

Australian women (16)). The latter considered a new measure of high glycemic carbohydrate 55 

impact, the GL peak score, based on the summation of individual mealtime GLs that scored a 56 

peak above the daily GL mean (16). To date, no published adolescent studies appear to have 57 
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examined mealtime patterns of glycemic impact, including investigation of periods when GL 58 

intake may peak substantially.  59 

 60 

Determining patterns of carbohydrate intake may provide insight into potential glycemic 61 

impacts for adolescents, who are also undergoing the stresses of growth, and metabolic and 62 

hormonal changes. In this explorative study, we aimed to investigate mealtime measures of 63 

GL intake in relation to metabolic syndrome risk, as well as components of the metabolic 64 

syndrome, in the 14-year follow-up of the Western Australian Pregnancy Cohort (Raine) 65 

Study in Perth, Western Australia. We hypothesised that individual meal GL values and a 66 

score representing peaks in meal GL would be better predictors of metabolic syndrome risk 67 

than a daily GL value. 68 

69 
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RESEARCH DESIGN AND METHODS 70 

Study population  71 

This study is a cross-sectional analysis of adolescents who participated in the 14-year follow-72 

up of the Raine Study. As previously described (17), 2900 pregnant women were enrolled in a 73 

controlled trial from public and private antenatal clinics at or near King Edward Memorial 74 

Hospital in Perth, Western Australia between May 1989 and November 1991. The resulting 75 

2868 children were recruited for cohort follow-up. The 14-year follow-up (mean age 14.0 ± 76 

0.2 years, age range 13.0–15.0 years) occurred from 2003 to 2005, and was the first to collect 77 

comprehensive dietary data allowing nutrient analysis of individual meals in habitual diet. 78 

Adolescents with type 1 or type 2 diabetes mellitus or implausible energy intakes (< 3000 or 79 

> 20 000 kJ⁄ day, as previously used in studies of adolescents (18; 19)) were excluded from the 80 

study. Informed written consent for the 14-year follow-up procedures was provided by study 81 

participants and a parent/guardian, and approval was obtained from the ethics committees of 82 

King Edward Memorial Hospital and Princess Margaret Hospital for Children.  83 

 84 

 85 

Dietary glycemic intake assessment 86 

Three-day food records were completed by the adolescents, with parental support if 87 

requested. Intakes were recorded in household measures. Subjects were provided with written 88 

and verbal instructions, as well as metric measuring cups and spoons. Consumption away 89 

from home was recorded in relation to serve size (for example, two slices of a large pizza or 90 

one Whopper hamburger) or estimated in household measures. A checklist ascertained 91 

whether each of the three days recorded was typical of the subject’s usual intake, and only 92 

those records completed and classified as representative were used. A dietitian checked each 93 

food diary as it was returned and sought clarification via follow-up telephone calls (20). Food 94 

record data were entered into FoodWorks dietary analysis software (Professional Version 95 

4.00, Xyris Software, Brisbane, Queensland, Australia).  Food composition data that were not 96 

available through FoodWorks were obtained from a Australian nutrition website with a 97 

customized GI database (21). Where GI values for a specific product were not available, the GI 98 

value was imputed from a product or subgroup of products that was assessed by the 99 

researchers to be sufficiently similar in terms of type of starch, molecular monosaccharide 100 

components, ingredients, including amounts of protein and fat, amount of dietary fibre 101 

present, and degree of cooking or processing. If a product was too specialised to be a good 102 
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match, (for example, a specific type of body building powder) no GI value was given.  GI 103 

values for mixed foods and recipes were estimated from component foods, for example, the 104 

GI for trifle was based on a weighted GI calculation of the carbohydrate containing 105 

ingredients (sponge, jelly and custard). The formula used to calculate the composite GI of 106 

meals based on relative weighting of carbohydrate content does not take into account the 107 

effect of the whole dish, and there is likely to be a variable loss of discrimination of 108 

individual GI values in composite foods. 109 

 110 

To ensure that food records were representative, 80% or more of the total daily dietary 111 

carbohydrate required an assigned GI value for the record to be included. GL values for 112 

individual meals comprised the sum of GL values for all foods and beverages in that meal. 113 

Meal GL values were obtained by averaging the values for each particular meal over the three 114 

days recorded, to produce daily breakfast, morning tea, lunch, afternoon tea, dinner and 115 

supper GL values for each subject. Limited availability of GI values may affect the results of 116 

studies examining associations between GI/ GL and chronic disease, particularly when local/ 117 

traditional foods are involved. In our cohort, GI values were able to be assigned to 92% of all 118 

carbohydrate foods and beverages (3). This meant that for some subjects, carbohydrate foods 119 

or beverages in a meal were not able to be allocated a GI value.  Non-allocation of a GI 120 

meant the contribution of these foods or beverages to the GL for the meal was unable to be 121 

calculated (despite having a likely effect on blood glucose levels). To ensure that the GL 122 

values we were using were as representative as possible of the food being consumed, we 123 

decided that 80% or more of the dietary carbohydrate per meal should be assigned a GI value 124 

in order for the meal GL to be used in the study. This was based on methods used in previous 125 

research and professional opinion of clinical relevance, whereby a value of lower than 80% 126 

was thought to potentially compromise the validity of the data (3). Subjects were excluded if 127 

this meant that two or more meals of the same type (eg breakfast) out of the three-day record 128 

period did not have usable GL values. 129 

 130 

Mean breakfast GL, morning tea GL, lunch GL, afternoon tea GL, dinner GL and supper GL 131 

values were calculated for each subject where possible. Together with the mean meal GL (the 132 

mean of the above six meal GLs), these were used to produce the peak score GL. Meal peak 133 

GL values were calculated for each subject by subtracting the mean meal GL from each meal 134 

GL value, and are represented graphically as a set of positive and negative peaks with the 135 
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mean set to zero. Peak score GL was calculated by adding all the positive meal peak values 136 
(16) (see Figure 1).  For the purposes of this study, we investigated five GL variables: 1) 137 

breakfast GL, 2) lunch GL, 3) dinner GL, 4) peak score GL, 5) daily GL. 138 

 139 

Metabolic syndrome definition  140 

Prevalence of metabolic syndrome in this adolescent cohort at the 14-year follow-up has 141 

previously been reported as 3.6% or 4.0% (3), using age-specific adolescent definitions from 142 

the IDF and the National Cholesterol Education Program Adult Treatment Panel III 143 

respectively (22). While no consistent adolescent definition for the metabolic syndrome exists, 144 

the American Heart Association recommends using the IDF paediatric definition for 145 

adolescents (23), and this has been used in the current study.  The IDF metabolic syndrome 146 

definition requires the presence of a high waist circumference in addition to two or more of 147 

the following: high systolic or diastolic blood pressure; high fasting serum triglycerides; low 148 

fasting serum high-density lipoprotein (HDL) cholesterol; or high fasting plasma glucose 149 

concentrations. Cut points for categorization of these high and low subgroups vary by gender 150 

and age, as published previously (22). A research nurse took at waist measurements at the level 151 

of the umbilicus from adolescents standing in the anatomical position, to the nearest 0.1 cm 152 

until two readings were within a centimetre of each other. Phlebotomists visited adolescents 153 

at their homes to obtain fasting blood samples. Serum glucose was measured using an 154 

automated Technicon Axon Analyzer (Bayer Diagnostics, Sydney, NSW, Australia), 155 

triglycerides were measured using the Cobas MIRA analyser (Roche Diagnostics, Basel, 156 

Switzerland), and HDL-C was determined on a heparin–manganese supernatant. PathWest 157 

Laboratories at Royal Perth Hospital conducted the biochemistry assays. Six measurements 158 

seated blood pressure readings were taken at rest over a 10-minute period using a Dinamap 159 

ProCare 100 automatic oscillometric recorder (GE Healthcare Technologies, Rydalmere, 160 

NSW, Australia). The first measurement was disregarded, and the mean of the next five 161 

measurements was calculated to give diastolic and systolic blood pressure values. 162 

  163 

Potential confounding variables  164 

Information regarding potential confounding variables was collected from adolescents 165 

themselves and their parents/guardians (3). Information on physical and sedentary activity was 166 

assessed by time spent outside school hours participating in physical activity that caused 167 
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breathlessness or sweating (categorized as less than once a week = low exercise, once to three 168 

times a week = moderate exercise, or four times or more per week = high exercise), and time 169 

spent watching television/videos and using computers for school, work and recreation 170 

(categorized as less than two hours per day = low screen use, two to four hours per day = 171 

moderate screen use, or over four hours per day = high screen use). These variables were 172 

combined into a five category summary variable, which ranged from low screen use with 173 

high exercise to high screen use with low exercise. Family characteristics including family 174 

structure, family income, maternal age, maternal education and family history of diabetes and 175 

cardiovascular disease were supplied by parental report. The Tanner stages of pubic hair 176 

development was used to assess puberty status in the cohort (24; 25). Adolescents were asked to 177 

select their corresponding developmental stage from a set of standard drawings depicting 178 

Tanner stages two (sparse) to five (adult), in a privately completed questionnaire. Stage one 179 

was omitted as an option as this corresponds to a pre-pubescent period (<10 years of age). 180 

Dietary variables considered as potential confounding factors in the models included average 181 

daily intakes of total energy, total fat, saturated fat, and protein. Body mass index (BMI), 182 

calculated as weight in kilograms divided by height in meters squared, was also considered. 183 

Trained researchers measured weight to the nearest 100 g using a Wedderburn Digital Chair 184 

Scale, and height to the nearest 0.1 cm with a Holtain Stadiometer. Due to the narrow age 185 

range in the 14-year follow-up, age was not considered as a confounding factor. 186 

 187 

Statistical analysis 188 

Nutrient intakes, including GL measures, were adjusted for total energy using the residuals 189 

method to control for confounding and reduce extraneous variation (26). Continuous measures 190 

were expressed as mean ± standard deviation. Student's independent sample t-tests, Mann-191 

Whitney U-tests and Chi-square tests were used to compare subject characteristics between 192 

included and excluded adolescent populations. Logistic regression models were used to 193 

analyse the relationship between mealtime GL measures and metabolic syndrome, adjusted 194 

for potential confounding variables and split by gender (due to significant interaction effects 195 

between sex and GL measures). Potential confounding variables were tested in the models. 196 

Nagelkerke R² values were compared between models, with increasing values indicating 197 

better fit (27). Variables were retained as confounders in the model if they were significant or 198 

improved the fit of the model. Models were fitted with and without BMI to allow 199 
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comparisons, because BMI is associated with the metabolic syndrome - the definition of 200 

metabolic syndrome includes waist circumference. Odds ratios (ORs) and 95% confidence 201 

intervals (CIs) were obtained for all variables. Where GL measures were found to be 202 

significant predictors of metabolic syndrome, regression models were used to examine 203 

associations with continuous measures of metabolic syndrome components (waist 204 

circumference, blood pressure, fasting serum triglycerides, fasting HDL-cholesterol and 205 

fasting plasma glucose). Components were logged as required to normalise data. BMI was 206 

included in each of these analyses, with the exception of waist circumference. No 207 

mathematical correction was made for multiple comparisons. Statistical analyses were 208 

performed using the Statistical Package for Social Sciences (SPSS Statistics for Windows, 209 

version 19.0, IBM corp, New York, USA) and tests used a significance level of 0.05.  210 

211 
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RESULTS 212 

Study population 213 

From the original cohort of 2868 at birth, 1286 adolescents in the 14-year follow-up agreed to 214 

complete the 3-day food record. Adolescents who completed the 3-day food record were 215 

more likely to have older mothers, a higher family income and a lower BMI compared with 216 

other adolescents in the follow-up who did not complete a food record (28). Completed records 217 

were returned by 962 subjects (3). Of these, 822 were considered complete and representative 218 

of usual diet. Five subjects were excluded as they had diagnosed diabetes, no subjects were 219 

excluded for implausible energy intakes. A total of 516 non-diabetic adolescents provided 220 

records where all six meals had at least two GL values to average, and this “two-meal valid” 221 

group was used in the statistical models. Table 1 shows a comparison of subject 222 

characteristics for the adolescents between the included (n=516) and excluded (n=306) 223 

groups, from the total of 822 adolescents with food dairies that were considered complete and 224 

representative of usual diet. Daily dietary carbohydrate intake was found to be significantly 225 

higher in the excluded subject group (P=0.028).  226 

 227 

Mealtime glycemic carbohydrate intake  228 

Meal GL values are described in Table 2. Dinner was the meal with the highest GL value 229 

(mean ± SD, 44.9± 20.1), followed by lunch (31.6± 16.5), breakfast (30.9± 14.9), afternoon 230 

tea (23.9± 18.6), morning tea (15.5± 13.2) and supper (10.7± 11.5). Table 2 also provides a 231 

breakdown of dietary intake and metabolic syndrome by mean meal GL tertile for boys and 232 

girls. Boys and girls with higher mean meal GL values were more likely to have higher 233 

energy adjusted carbohydrate intakes and lower protein and fat intakes when compared with 234 

boys and girls with lower mean meal GL values (P<0.05).  From the group of 516 235 

adolescents, 480 had data available to assess metabolic syndrome, which was identified in 17 236 

subjects out of 480 (3.5%). Increasing risk of metabolic syndrome with increasing mean meal 237 

GL tertiles was observed in boys but not girls (Table 2). 238 

 239 

Associations with metabolic syndrome 240 
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Final logistic regression models included BMI, single parent family, physical activity and 241 

daily protein intake as confounding variables. The other factors investigated did not 242 

contribute significantly to the fit of the models, so were not included as confounders. Results 243 

of the logistic regression analyses are shown in Table 3; there was little difference in odds 244 

ratios and significance when BMI was included or excluded as a confounder in these models. 245 

Daily GL was not a significant predictor of metabolic syndrome.  Breakfast GL was 246 

associated with increased risk of metabolic syndrome (OR=1.15; 95% CI=1.04-1.27; P˂0.01) 247 

in girls. That is, for each unit increase in breakfast GL, the odds of metabolic syndrome 248 

increased by a factor of 1.15 (or equivalently, by 15%). With BMI removed from the model, 249 

breakfast GL was still a significant predictor (OR=1.06; 95% CI=1.00-1.12; P=0.04). 250 

Breakfast GL was not a significant predictor of metabolic syndrome in boys (P=0.15). No 251 

other GL values were significant predictors of metabolic syndrome.  When breakfast GL was 252 

examined in relation to each of the components of the metabolic syndrome in girls, it was 253 

negatively associated with fasting HDL cholesterol (P=0.037; β=-0.004; 95% CI= -0.008, -254 

0.002) and positively associated with fasting triglycerides  (P=0.008; β=0.002 for logged 255 

triglyceride values; exp(β)=1.002; 95% CI=1.001-1.004). That is, for each unit increase in 256 

breakfast GL there was a mean decrease in HDL cholesterol of 0.004 mmol/L and a 0.2% 257 

increase in the geometric mean fasting triglyceride level.  258 

 259 

  260 
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 261 

DISCUSSION  262 

In this study we aimed to explore mealtime measures of GL intake in relation to metabolic 263 

syndrome risk as well as components of the metabolic syndrome, in 14-year old adolescents.  264 

We hypothesised that meal based GL values would be better predictors of metabolic 265 

syndrome risk than a daily GL value. In our group of 516 adolescents, no significant 266 

association was found with daily GL values and metabolic syndrome. However, breakfast GL 267 

was a significant independent predictor of metabolic syndrome in the same group.  As we 268 

were comparing GL values on a meal basis, we excluded adolescents where it was not 269 

possible to accurately and consistently allocate meal GL values. In a previously published 270 

study of the larger Raine Study cohort, a significant association was found with daily GL and 271 

metabolic syndrome (3). It is likely that a reduced sample size meant we were no longer able 272 

to detect a significant association with daily GL. We would expect a low prevalence from a 273 

paediatric population cohort study rather than a clinical group, and caution must be taken 274 

when interpreting the results due to low statistical power to find associations with dietary 275 

components (29).  However, our current findings suggest that breakfast GL may be a more 276 

sensitive predictor than daily GL in our adolescent group.  277 

Breakfast GL was found to be significantly associated with odds of metabolic syndrome in 278 

girls, but not in boys. This association was seen independently and dependently of BMI, so 279 

BMI does not appear to mediate the observed association. To put these associations into 280 

perspective, our results suggest that if an additional slice of white bread (GL = 12) were 281 

added on top of the girls' existing breakfast, the theoretical associated odds of metabolic 282 

syndrome would be 5.35 times greater, with an associated 95% CI of 1.60-17.6 times. It must 283 

be noted that the confidence interval here is large, due in part to the low prevalence of 284 

metabolic syndrome in the study group (n = 17 adolescents; n = 9 girls). Breakfast GL was 285 

also found to be significantly associated with two components of the metabolic syndrome, 286 

decreased fasting HDL cholesterol and increased fasting triglycerides.  287 

 288 

Almost all previous studies using daily GI/GL values have not been able to distinguish 289 

between different mealtime effects on glucose and insulin responses, and this may have 290 

contributed to conflicting results on whether dietary glycemic carbohydrate intake is a useful 291 
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predictor of chronic disease risk (9; 11; 12; 13; 14; 30; 31; 32; 33; 34). Our findings suggest that breakfast 292 

GL may be particularly important. Blood glucose and insulin responses have been shown to 293 

be proportional to breakfast GL in clinical trials (31; 32). Bao et al. (31) suggest that breakfast 294 

metabolic responses may not necessarily reflect responses to other meals. In adolescents, 295 

clinical trials have shown the benefits of consumption of low-GI carbohydrate at breakfast 296 
(35), with increased satiety and reduced consumption at an ad libitum lunch, while breakfasts 297 

with sufficiently low-GI, multi-grain cereals may produce second meal effects that can last 298 

through to lunch or beyond (36). It is possible that a low-GL breakfast may have the benefit of 299 

decreasing the amount eaten at lunch (and potentially the lunch GL), thus reducing the 300 

metabolic risk associated with both meals. Effects may differ by age - in older women, 301 

O'Sullivan et al. (16) showed that increasing lunch GL was significantly associated with 302 

increased risk of insulin resistance, along with peak score GL.  303 

We found that two components of the metabolic syndrome, decreased fasting HDL 304 

cholesterol and increased fasting triglycerides, were significantly associated with increasing 305 

breakfast GL. Other studies in both youth and adults have also found similar associations 306 

with GL.  In a randomised controlled trial involving 32 healthy 11 to 25 year olds, higher GL 307 

diets were associated with lower HDL cholesterol (37). In adults, a systematic review and 308 

meta-analysis (10) concluded that reduced fasting plasma triglycerides were associated with 309 

lower GL diets in adults. In an adult male population, fasting triglycerides were found to 310 

increase with increasing dietary GI but not GL, while HDL cholesterol decreased with 311 

increasing GL (38). Risk of developing metabolic syndrome was related to daily GI and GL in 312 

Korean women (but not men), with high triglyceride and low HDL cholesterol the 313 

components that were associated with high intakes. Although more research is needed to 314 

expand on our findings, there are potential mechanisms to explain our results.  Habitual 315 

intake of high meal GLs can result in hyperglycemia, hyperinsulinemia and disturbed lipid 316 

metabolism (7), which have been linked to the development of chronic diseases such as 317 

metabolic syndrome and consequent type 2 diabetes and heart disease (31; 39; 40; 41). Following 318 

a high peak in glucose and subsequently insulin, post-prandial hypoglycaemia is common 319 

four to six hours after a high GL meal.  This can stimulate counter-regulatory hormone 320 

secretions that raise glucose and free fatty acids levels (7).  This is linked to increased levels of 321 

inflammatory mediators and triglycerides, and decreased HDL cholesterol (42).   322 

 323 
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In our study we found significant associations in girls, but not in boys. Higher GL diets have 324 

been previously associated with a greater risk of the metabolic syndrome in women, but not 325 

men (43). Females may be more innately insulin-resistant than males due to specific sex-linked 326 

gene expression, leading to changes in receptor and signalling pathways (44). In puberty, there 327 

is a natural tendency for girls to have more fat gain relative to boys (44; 45). Hormones in girls 328 

such as oestradiol favour fat deposition while those of boys favour muscle tissue 329 

accumulation (45). Increased oestradiol is associated with an increased subcutaneous fat 330 

deposition and insulin response, and decreases fatty acid oxidation (46). Higher fat stores and 331 

insulin levels in turn increase secretion of leptin; increased leptin leads to increased oestradiol 332 

and subsequent IGF-1 (insulin-like growth factor 1), further increasing insulin secretion and 333 

fat storage (45). Although highly speculative, the effect of hormonal surges at a key stage in 334 

puberty is a possible reason for an increased sensitivity to GL in relation to metabolic risk at 335 

this time. 336 

 337 

Daily dietary protein intake was noted as an important confounding factor in the association 338 

of breakfast GL with metabolic syndrome in girls. The adolescents in our study were 339 

observed to consume breakfasts with a relatively high GL but low protein content when 340 

compared to lunch and dinner. Increasing protein consumption at meals lowers the glycemic 341 

response by delaying gastric emptying (47). A high-protein, low-GI diet produced a combined 342 

beneficial effect attributed to reduced insulin response, increased satiety and decreased 343 

energy intake in children (5 to 18 years) in the DiOGenes dietary study (48), while higher 344 

versus lower protein intake was associated with lower waist circumference and lower LDL 345 

cholesterol levels in another paediatric subset of this study (49).Higher protein breakfasts may 346 

have the ability to attenuate high-GL responses sufficiently to reduce metabolic syndrome 347 

risk. Quality protein for breakfast may lower the meal GL by promoting satiety and by 348 

displacing carbohydrate. Further research is required to test this concept 349 

 350 

Strengths and limitations  351 

Strengths of this study include the use of three-day food records, which enabled investigation 352 

of GL at a mealtime level. Our study also allowed for gender-specific analysis of the group. 353 

Limitations of this study include the inability to generalise to other Western adolescent 354 
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populations, with the adolescents completing food records in our study more likely to have 355 

lower BMIs and older mothers, and come from households with a higher annual income. In 356 

reducing the sample size to 480 adolescents to ensure accurate and consistent GL meal data 357 

across the three-day record, 17 remained with diagnosed metabolic syndrome, of which nine 358 

were female. Subjects excluded had significantly higher intakes of carbohydrates (Table 1), 359 

and this may have meant that some associations with higher intakes went undetected. The 360 

bulk of published GI values come from Australia and the USA (50), and despite the high 361 

representation of Australian foods, there is a need for a larger GI database of carbohydrate 362 

foods commonly consumed by younger populations, such as fast foods and snack bars. 363 

Consumption of foods that did not have GI values often occurred at the same mealtime on 364 

two consecutive days, which effectively removed a subject from the study each time (via the 365 

previously-determined exclusion criterion requiring at least two GL values to average for any 366 

one meal). Although many adolescents were removed due to our strict criteria, this method 367 

helped to maintain accuracy of the data by ensuring the meal GL values represented a true 368 

reflection of the foods reported.  Although we attempted to minimise under- and over-369 

reporting through the use of cut-offs previously used in adolescent studies, this method is 370 

imprecise and it is possible that we included adolescents in our study who were misreporting 371 

their intake. It has been suggested that adolescents with higher BMIs (and therefore at higher 372 

risk of metabolic syndrome) are more likely to misreport dietary intake (18) and this could 373 

affect the associations observed.  In addition, this study is a cross-sectional snapshot of the 374 

prospective cohort, and as such causality cannot be established. 375 

 376 

Implications 377 

In this study we hypothesised that meal based GL values would be better predictors of 378 

metabolic syndrome risk than a daily GL value; breakfast GL did appear to have a more 379 

sensitive association. Adolescence is an important time for establishing dietary patterns into 380 

adulthood, and insight into their impact on disease processes may provide meaningful data to 381 

formulate dietary advice. Although we cannot determine causality from our study, it is 382 

possible that the addition of low GL foods to breakfast may be beneficial for girls. Our 383 

findings support previous recommendations made in this regard around consumption of a low 384 

GL breakfast (51) (52). 385 

 386 
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 403 

 404 

 405 

Figure 1. Glycemic load (GL) variables and food intake for a sample subject in the 406 
Raine study (chosen for illustrative purposes only). The mean meal GL was set to 407 
zero, producing both positive and negative peaks. For this subject, positive peaks are 408 
seen at breakfast (18), lunch (3) and dinner (17). These are summed to create the peak 409 
GL score, which is 38 (sum of positive peaks). 410 
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Table 1.  A comparison of adolescent subject characteristics between the populations included (minimum of 424 
two-meals with valid GL) and excluded (due to >20% dietary carbohydrate not assigned a GI, insufficient valid 425 
meal GL values, or diabetes) from the study, out of the group that returned complete and representative food 426 
diaries (n = 822) 427 

    
Subject characteristics Two-meal 

valid 
population 

n = 516 

Excluded 
population  

 
n = 306 

P value a  
 

Characteristics    
Gender (female - n; %) 252; 48.8 % 149; 48.7 % 0.968 
Weight categories b  (n; %) 
Underweight 
Normal weight 
Overweight 
Obese 

 
30; 5.8% 

352; 68.5% 
102; 19.9% 

30; 5.8% 

 
25; 8.2% 

225; 73.8% 
45; 14.7% 

10; 3.3% 

0.053 

Physical activity participation (n; %)   

0.980 4+ times/week 179; 34.8 % 108; 35.4 % 
1-3 times/week 288; 56.0 % 170; 55.7 % 
≤ 1 time/month 47; 9.1 % 27; 8.8 % 

Screen time – computers, TV, video (n; %)   

0.766 4+ hours/day 159; 31.2 % 94; 31.1 % 
2-4 hours/day 201; 39.5 % 126; 41.7 % 
<  2 hours/day 149; 29.3 % 82; 27.2 % 

Single parent family (n; %) 97; 19.0 % 47; 15.5 % 0.210 
Annual family income (pa, $AUD) (n; %)   

0.956 < $35 000 106; 20.9 % 63; 20.9 % 
$35 001 - $70 000 180; 35.6% 110; 36.5 % 

      > $70 001 220; 43.5 % 128; 42.5 % 
Maternal education (n; %)   

0.758 <  Year 12 240; 46.6 % 146; 47.7 % 
≥ Year 12 275; 53.4 % 160; 52.3 % 

Dietary variables     
Energy (kcal/d) 2225 ± 579 2303 ± 584 0.067 
Carbohydrate (g/day) 277 ± 79 291 ± 87 0.028  
Protein (g/day) 88.4 ± 26.1 89.6 ± 26.5 0.529 
Total fat (g/day) 80.7 ± 24.7 82.7 ±23.8 0.249 
Saturated fat (g/day) 34.3 ± 12.3 35.4 ± 11.6 0.231 
    

a: All comparison of means for normally-distributed scale variables used Student's t-test for independent 428 
samples; Mann-Whitney U tests were used where scale variables were not normally distributed. The Chi- 429 
square test of contingencies was used to compare categorical variables between the two populations. P (2-430 
tailed) <0.05 in all cases. b: Standard adolescent criteria were used to classify participants into BMI categories 431 
of underweight, normal weight, overweight, and obese (53; 54)  432 

 433 

434 



19 
 

Table 2. GL variables and prevalence of the metabolic syndrome in Raine Study adolescents arranged according 435 
to tertiles of mean meal GL  436 

  BOYS  GIRLS 
Variable Total 

group 
Low  
meal GLb 

Medium 
meal GLb 

High meal 
GLb ,c 

 Low meal 
GLb 

Medium 
meal GLb 

High meal 
GLb ,c 

 n = 516 n = 88 n = 82 n = 94  n = 95 n = 94 n = 78 
Daily nutrient intakes a        

Energy (kcal) 2225±579 2533±609 2430±637 2497±541  1892±378 1910±435 2057±398* 
Carbohydrate (g) 277±79 249±28 277±20 304±22 *  253±20 278±17 303±25 * 
Protein (g) 88.4±26.1 97.8±17.5 91.0±13.9 84.2±14.7 *  93.9±11.2 85.4±11.1 78.4±12.7 * 
Total fat (g) 80.7±24.7 89.3±11.2 79.7±9.0 71.2±9.4 *  88.8±8.7 81.9±8.4 73.9±9.8 * 
Saturated fat (g) 34.3±12.3 38.7±7.7 34.5±5.8 29.6±6.0 *  36.8±5.4 35.1±5.7 31.2±5.8 * 
Daily GI (%) 54.6±4.9 51.3±4.1 55.0±3.5 57.5±4.2 *  51.6±4.9 54.3±3.8 58.1±4.5 * 
Daily GL 152±45 126±16 152±10 175±15 *  131±13 150±9 175±16 * 

 
GL variables a 

        

Breakfast GL  30.9±14.9 26.5±11.8 34.6±14.8 35.2±16.5 *  25.9±9.0 30.1±10.5 32.6±12.6 * 
Morning Tea GL 15.5±13.2 10.7±11.4 13.5±11.1 17.6±13.7 *  13.5±9.4 15.8±10.6 21.9±15.2 * 
Lunch GL 31.6±16.5 29.8±16.8 27.5±14.7 38.9±15.6 *  26.7±11.8 32.2±12.1 33.6±14.4 * 
Afternoon tea GL 23.9±18.6 17.2±15.1 25.3±15.9 26.6±20.8 *  20.0±10.6 22.6±11.9 32.1±19.4 * 
Dinner GL 44.9±20.1 37.3±14.0 42.6±16.2 53.9±24.0 *  39.1±13.2 44.1±13.9 51.8±18.8 * 
Supper GL 10.7±11.5 7.7±8.9 11.8±12.8 11.8±14.7 *  9.0±6.1 11.4±8.4 12.4±9.2 * 

   Peak score GL 
 

42.3±15.6 38.5±14.5 41.7±15.6 50.7±19.5 *  36.4±10.2 40.3±1.6 46.2±16.0 * 

Metabolic Syndrome d (n; %)       
Yes 17; 3.5 % 2; 2.4 % 0; 0.0 % 6; 6.8 % *  2; 2.6 % 5; 5.7 % 2; 2.8 % 
No 463; 96.5% 81; 97.6% 73; 100 % 82; 93.2 %  74; 97.4 % 83; 94.3 % 70; 97.2 % 
         

Abbreviations:-    GI: glycemic index; GL: glycemic load 437 

a:  Daily intakes adjusted for energy  438 
b:  Arranged into tertiles of mean meal GL, where mean meal GL =  Σ(Breakfast GL. + Morning tea GL+ Lunch 439 

GL + Afternoon tea GL + Dinner GL + Supper GL)/6  440 
c:  Comparison between highest and lowest tertiles; all comparison of means for normally-distributed scale 441 

variables used Student's t-test for independent samples; Mann-Whitney U tests were used where scale variables 442 
were not normally distributed. The Chi-square test of contingencies was used to compare categorical variables 443 
between the two populations. P (2-tailed) <0.05 in all cases, with significance indicated by an asterisk (*) 444 

d:  International Diabetes Foundation definition of metabolic syndrome i.e. high waist circumference and any 2 or 445 
more of the following: high systolic or diastolic blood pressure; high fasting serum triglycerides; low serum 446 
high-density lipoprotein cholesterol, or high plasma glucose concentrations; cut points for categorization of 447 
these high and low subgroups vary by gender and age, as published previously (22) 448 
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Table 3. Meal, peak score and daily GLa variables and risk of metabolic syndrome b in Raine Study 449 
adolescents (n = 516) in unadjusted and adjusted logistic regression models (with and without BMI)c 450 
 451 
Meal GL Variable 
(BMI excluded/included) c 

GIRLS (n=252) 
 

BOYS (n=264) 

OR (95% CI) P OR (95% CI) P 
     
Breakfast GL     

Unadjusted 1.05 (0.99 – 1.11) 0.07 1.01 (0.97 – 1.06) 0.51 
Adjusted, BMI excluded 1.06 (1.00 – 1.12) 0.04 1.04 (0.98 – 1.09) 0.18 
Adjusted, BMI included 1.15 (1.04 – 1.27) ˂ 0.01 0.83 (0.64 – 1.07) 0.15 

     
Lunch GL     

Unadjusted 1.04 (0.99 – 1.09) 0.06 1.03 (0.99 – 1.07) 0.09 
Adjusted, BMI excluded 1.04 (0.99 – 1.08) 0.15 1.04 (1.00 – 1.09) 0.06 
Adjusted, BMI included 1.04 (0.99 – 1.10) 0.14 1.05 (0.97 – 1.15) 0.24 

     
Dinner GL     

Unadjusted 1.00 (0.95 – 1.04) 0.84 0.99 (0.95 – 1.03) 0.56 
Adjusted, BMI excluded 0.98 (0.94 – 1.03) 0.44 0.97 (0.93 – 1.01) 0.14 
Adjusted, BMI included 0.97 (0.91 – 1.04) 0.43 0.96 (0.89 – 1.02) 0.19 

     
Peak Score GL     

Unadjusted 1.01 (0.97 – 1.07) 0.58 1.01 (0.97 – 1.05) 0.70 
Adjusted, BMI excluded 1.00 (0.94 – 1.05) 0.94 0.99 (0.95 – 1.04) 0.78 
Adjusted, BMI included 1.01 (0.95 – 1.08) 0.71 0.95 (0.86 – 1.04)                    0.24 

     
Daily GL     

Unadjusted 1.00 (0.98 – 1.02) 0.77 1.01 (0.99 – 1.02) 0.48 
Adjusted, BMI excluded 1.00 (0.98 – 1.02) 0.90 1.00 (0.99 – 1.02) 0.64 
Adjusted, BMI included 1.01 (0.99 – 1.04) 0.44 1.03 (0.99 – 1.06) 0.19 

     
Abbreviations:-  GL: glycemic load; OR: odds ratio; 95% CI: 95% confidence interval 452 
a:  All GL variables were adjusted for energy 453 
b:  Using the age-specific International Diabetes Foundation definition of metabolic syndrome (22) 454 
c:  Logistic regression models were adjusted for single parent family, physical activity and energy-adjusted 455 

daily protein intake, with BMI excluded or included as an additional confounder 456 
 457 

 458 

 459 

 460 

 461 

  462 
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