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Abstract 

     Using  a data base underpinned by probability considerations, in which a variety 
of attributes, some of which may be quantitative, are recorded for a number of 
“operational taxonomic units” (OTU’s), a key system is described by which an 
unnamed specimen may quickly be identified. 

      The concept of “diagnostic power” is introduced, by which each attribute is 
evaluated in terms of its potential contribution to identifying the unnamed 
specimen. 

           Besides coverage of different types of attribute and the introduction of 
“diagnostic power”, the system has the advantages of incorporating multiple values 
of an attribute for each OTU, and offering short-cuts to identification 
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1.  Introduction 

  
        Diagnostic keys have been part of the biological world for centuries.   They have 
made it possible to allot a specimen – let us call it the propositus – to one of a 
number of recognized categories, usually taxonomic groupings.   Traditionally, the 
diagnostic key has been a printed key in a book – often  dichotomous.   The enquirer 
is offered alternatives for a particular attribute.  If he can decide which alternative 
for that attribute applies to the propositus, the key then directs  him to another 
attribute, about which he again has to make a decision.   Finally there are no choices 
– the set of attribute values observed for the propositus are found in only one of the 
taxa included in the key, and the propositus is identified as belonging to that taxon. 
      A great difficulty in the use of such keys has been that an attribute which needs 
to be defined may not be observable in the material in hand -- perhaps the 
propositus is incomplete, perhaps it is at the wrong stage of development, perhaps 
the enquirer lacks necessary tools or skills.   It would be an enormous advantage if 
the enquirer could choose the attributes about which he is to make a decision, 
rather than having them chosen for him.   
 
                 The new possibilities opened for diagnostic keys by the development of the 
computer were early recognized (Goodall, 1968, Pankhurst 1970, 1975), but 
remained  little more than possibilities until computers of smaller size became 
available.   Initially, as might be expected, computer applications simply made 
possible the rapid development of keys of the traditional type.   However, it soon 
became evident that the possibilities were much wider.   The advent of the personal 
computer led to the development of electronic keys.   A number of computer 
programs, many listed by Norton (2002) and Dallwitz (2009) , have been developed 
for this purpose.   General questions about the principles underlying identification 
keys were early discussed by Payne and Preece (1980), and have since been 
considered by Pankhurst (1991) and by Hagedorn et al. (2010).   Much attention has 
recently been devoted to simple keys for use on portable devices in the field, often 
to cover rather limited ranges of taxa, and for use by non-specialists (e.g. 
KeyToNature (2011); see also Nimis et al (2012)) 
 
              In computer-oriented keys, rather than the enquirer being guided through a 
series of decisions in an order prescribed by the designer of the key (who in the past 
was usually following the systematics of plants), he could have a virtually unlimited 
choice of search through the information available in the data base.    But this was 
almost an embarras des richessses.    One might raise the question: is unguided 



choice of attributes really in the best interests of fast and accurate identification?  
Clearly attributes are not of equal value for this purpose.    Sometimes a single 
attribute suffices without further ado to identify an unknown specimen as belonging 
to a single category and that category only.    For instance, among Australian species 
of Drosera (Goodall and Marchant 1996), one species only (D. burmannii) has styles 
described as “penicillate” (brushlike).  A penicillate style thus serves instantly to 
identify an unknown as D.burmannii. Another example: most Drosera species have 
three or five styles, but there are just two species in Australia with only a single style 
(D. fimbriata and D.hamiltonii).    These style characters clearly have high diagnostic 
power within Drosera.   Should an identification program for Australian species of 
Drosera, then, direct an enquirer to style chararcters, as likely to lead most directly 
to identification?   
        Some identification programs confront this problem of guiding the user’s choice 
of attributes, selecting for him what are often called the ‘best’ attributes; but the 
principles of selection are rarely addressed. Gower and Payne (1975) considered the 
question at some length – but only for binary attributes (albeit taking account of 
missing values).  Sneath (1980) also discussed the problem in the limited case of 
presence-absence variables.  According to Hagedorn et al. (2010) “the fastest 
algorithms are those that provide a division into equally sized partitions”   This is 
true if all taxa included in the key (or still available as options) are equally likely to be 
presented for identification, but this will rarely or never be true in practice. 
       Dallwitz et al. (2008) say that a program, in selecting the ‘best’ attribute, might 
take into account (1) what they call the ‘cost’ of the different attributes – the effort 
required to determine them, and the risk of error; (2) the frequency with which 
different OTUs are presented for identification; and (3) the distinctiveness of the 
character values observed.    ‘Cost’ seems to be highly dependent on the particular 
circumstances of the identification – including the user’s expertise –so that it is 
probably better to leave it to the user to take account of it himself.   The frequencies 
in question are in principle hardly determinable; in  programs as constructed, the 
frequencies (prior probabilities) are usually assumed to be equal.   The 
distinctiveness of the character, however, is inherent in the data and the way they 
are handled by the program, so should very properly be presented to the user in the 
course of the identification, each time he selects an attribute for definition. INTKEY 
(Dallwitz 2009, Dallwitz et al. 2008) presents attributes to the user in decreasing 
order of a function reflecting the evenness of numbers of OTUs with the different 
values of the attribute in question.    This may be a good rule of thumb  where all 
attributes are qualitative and defined for all OTUs, and where a single value of each 
attribute characterizes each OTU .    The general case, where any taxon may have 
more than one value for an attribute, where not all attributes are qualitative, and 



where an attribute may be undefined for many taxa, is not satisfactorily addressed 
under this principle. Grosser et al. (2010) adopted a different approach to selecting 
attributes for attention, using the whole data set, taxa and attributes, for the 
purpose.   This question of the diagnostic value of attributes is considered afresh in 
Section 5 below. 
 

2.  A proposal based on probability  
        Over the years, a probabilistic system has been described for numerical 
classification, using a particular type of data base (Goodall 1966, 1993, Goodall et Al. 
1991, Goodall and Marchant 1996).   The system handles all types of attributes, 
whether purely qualitative, ordered, quantitative (expressed as a real number), 
spatial (expressed by coordinates e.g. Goodall 1994) or angular (ordered on a 
circular scale e.g. Goodall 1993), with multiple values possible for each OTU1 х 
attribute combination.   Combination of probabilities for the different attributes  
depends on the assumption that the attributes are logically independent of one 
another.   The fact that some OTU х attribute combinations may be unknown 
(“missing values”), or even logically indeterminate, presents no difficulty;  those 
combinations are ignored.     Since the relationship (similarity /dissimilarity) between 
two OTU’s can be expressed in the same terms of probability (within the data base) 
for attributes of all types, the values can easily be combined.    
       Though designed for purposes of classification (similarity, clustering), data bases 
built on these principles can also be used effectively for identification.    The present 
paper describes a computer key for this purpose. 
 

3. The probabilistic data base 

           In these data bases, each attribute has a number of alternative values, and for 
each OTU х attribute combination, the proportion of the OTU with each alternative 
value for the attribute is specified in the data base. For each OTU х attribute 
combination, these proportions must, of course, sum to unity.     In the case of 
quantitative attributes, the different alternatives  are ranges of values, each defined 
by a  median.   Similarly, for spatial attributes, each alternative is defined by the 
coordinates of its centroid.   These data bases have much in common with those of 
the well-known DELTA system, developed from 1970 onwards (Dallwitz 1974, 2009; 
Pankhurst (1991). 
 
 
1  OTU:  “Operational Taxonomic Unit” – the items classified under this system. 



 

 

       An example is taken from the data-base for Australian species of Drosera 
[Goodall and Marchant  1996, Dallwitz 1974), to be used later (Table 1). 

Table 1. Example of probabilistic data base entries. Selected attributes for Drosera arcturi. The proportion is 
n estimate of probability. 

Attribute                      Type                                             A  l   t  e  r  n  a  t  i  v  e  s 
Leaves in rosette?    Qualitative                                Yes                                  No 
                                                        Proportion             1.0                                  0.0 
 
*Rosette shape         Ordered                            Hemispherical   Convex   Slightly convex  Flat or concave 
                                                      Proportion              0.0                  0.8               0.2                           0.0 
 
*Radical leaves,         Quantitative                          Range 1:         Range 2:                Range 3: 
  max.dimension                                                       3 – 5 cm             5 – 7 cm              7 – 20 cm     
                                                    Median (cm)            4.0                        6.0                      13.0 
                                                      Proportion             0.4                        0.4                        0.2 
 
Flowering date          Circular                                Jan         Feb.-Sept.         Oct.      Nov.          Dec. 
                                                   Proportion            0.2              0.0                 0.2         0.3           0.3 
 
 Geographical           Spatial    Name                 N.Z.         Tasmania   Victoria        N.S.W        Elsewhere 
      distribution                         Centroid N-S      42.0             42.5           37.0            32.0               -- 
                                                                    E-W    172.0          146.0         146.0          152.0              --         
                                                     Proportion          .25              .25              .25              .25               0.0 
 

• * These attributes are indeterminate if leaves are not in a rosette 

 
The example in Table1  is the form of data base used by the diagnostic keys 
described below; the proportion of OTU i with value or range  k for attribute j is 
symbolized as Pijk; ; if the attribute is quantitative, the median of that range is Aijk.     
  

  These data bases do not need to be complete -- some attributes for some OTU's 
may remain undefined without causing difficulties; and their structure has the 
advantage of permitting multiple states for each OTU x attribute combination.  This 
is indeed highly appropriate in biological taxonomy, where multiple states for OTU х 
attribute combinations are commonplace.    For instance, Marchant and George 
(1982), in their description of Drosera pulchella, include 
                            "Calyx 1.5-2.5 mm long, divided into obovate lobes, 
                             glandular-pubescent, the apices of the lobes entire or 
                            slightly fimbriate" 
 



In the data base mentioned above, the translation of this description includes two 
attributes with multiple states (length, and  lobe apex). 
   

4. Diagnostic key using a probabilistic data base 

    Some features of the probabilistic data base described above make it particularly 
suitable for an identification key.    That certain attributes may be indeterminate or 
unknown for some OTUs is a commonplace of taxonomic knowledge, as also is the 
possibility of alternative values of an attribute within the same OTU.    These are 
handled without difficulty by the probabilistic approach. 
             The key user with a specimen for identification (the propositus) is offered a 
free choice among the attributes recorded.   He chooses one, and describes this 
attribute for the propositus.   Often the description will be multiple – the atttribute 
in question may have more than one value for the propositus −  in which case the 
user is asked to estimate their proportions.    For quantitative attributes, he may 
describe the propositus in one of three ways: 
      1. He may specify two or more ranges of values, each with a median value and  a 
proportion (as for the OTU’s included in the data set); 

      2. A maximum and minimum may be stated; or 
      3. A single value may be specified. 
            If option 1 or 3 has been chosen, limits are estimated as described in the 
Appendix.  The program then compares the propositus description with the records 
for that attribute in each of the OTUs for which it has been recorded, and finds, for 
each, the proportion of overlap.   “Overlap” is here defined as the proportion of the 
OTU in question, as described in the data set, which is compatible with the 
description of the propositus. An OTU should not be discarded as a possible 
identification unless there is no overlap --  the values reported for the propositus lie 
completely outside the range reported for that OTU.     All OTUs with positive 
overlaps remain possible diagnoses.   They are listed, each with its overlap 
proportion.   The enquirer then has an opportunity to describe another attribute for 
the propositus.   
          Whenever a new attribute is described for the propositus, the overlaps for the 
new attribute are calculated, and multiplied by those previously calculated for other 
attributes to give the overall overlap of each OTU with the propositus as described 
to date.   A number of OTUs previously possible as identifications now have zero 
overlaps and are excluded.   The field is narrowed.   The process  of attribute 
selection, propositus description,  and calculation of overlap is repeated until only a 
single OTU remains with a positive overlap, and hence as a possible identification.    



The propositus is within the range of variation of this OTU, and outside the ranges of 
all others. 
                         The calculation of “overlap” is clearly critical to the process of  
identification.     For any non-quantitative attribute, where Pijk is the proportion of 
OTU i with the k’th value of attribute j, and subscript x is used in place of i to denote 
the propositus, the “overlap” of OTU i with the propositus is defined simply as: 
               Σ Pijk  for all k where Pxjk > 0 

      In quantitative attributes, “overlap ” is based on the extreme limits for the 
propositus and the limits of each range for each OTU  in the data base with which it 
is to be compared.  The limits required are estimated from the medians in the data 
base as described in the Appendix.    If one had a continuous distribution curve of 
values for each OTU, the solution would be straightforward – the overlap would 
simply be the area of the distribution curve within the extremes for the propositus.  
However, the data base provides only the proportions within ranges, the 
medians,and the limits as derived from the medians.  The limits for the k’th range of 
attribute j in OTU i  will be symbolized as Lijk and Lij(k+1), the extremes for the 
propositus (x), with n ranges, being  Lxj1 and Lxj(n+1). The overlap between  the k ‘th 
range of OTU i and all  n ranges of the propositus, as a proportion of the entire range 
of OTU i, is then estimated as 

         PIJk{max(0,(min(Lij(k+1),Lxj(n+1))- max(Lijk ,Lxj1)))/(Lij(k+1) -Lijk )} 

and these quantities are summed over all values of k to give the total overlap of OTU 
i  with the propositus for attribute j. 
 

5. Diagnostic Power of Attributes 

      At any point in the process of identification, the choice of a new attribute to 
specify for the propositus may be rather critical.   An optimal choice may lead one 
directly to the correct answer, whereas other choices, while not actually leading one 
astray, may be far less fruitful, and take one to the correct answer only after many 
time-consuming steps.   The program can help and guide this choice, without 
determining it.   To meet this need, the user is given the opportunity, at any stage, to 
enquire after the diagnostic power of attributes  not yet specified for the propositus,  
among all the OTUs still remaining as possible solutions. 

 



  The diagnostic power of an attribute is defined as the probability that  specification 
of a value for that attribute for the propositus  will distinguish between a random 
pair of OTUs within the system; this is close to the “separation coefficient”, as 
defined by Pankhurst (1991).    It answers the question: what proportion of values of 
the attribute are different in a random pair of individuals?.   All possible pairs of 
OTUs must be considered, and within any OTU pair all possible pairs of values.   Only 
for pairs which differ can the attribute in question have any diagnostic value.  It may 
be noted that, where the attribute is indeterminate or has not been recorded for 
one or both of the OTUs,  the contribution to diagnostic power is explicitly zero   

       For OTUs  a  and b, and non-quantitative attribute j, the non-overlap of a with 
respect to b is a contribution to  diagnostic power , and may be expressed as 

              Dabj =Σk Pajk where Pbjk = 0 

The non-overlap of b with respect to a is      

                          Dbaj = Σk Pbjk where  Pajk= 0 

It will be noted that the two are different  (except where both OTU’s have records for 
the same subset of values), and so must be calculated separately. 

                  In the case of quantitative attributes, since the OTU description includes 
only the proportions in specified ranges, disagreement between  individuals is 
indicated by the extent to which the ranges in which they respectively  fall do not 
overlap. 

                In determining their non-overlap, one has recourse to the limits, estimated 
as described in the Appendix.    The non-overlap of a with respect to b includes all 
ranges of a for which the lower limit exceeds the uppermost limit of b, or the upper 
limit is less than the lowermost limit of b,  together with a proportion of any shared 
ranges , thus: 

Dabj=ΣkPajk[{max(0,(min(Laj(k+1),Lbj1)-Laj1))+ 

             max(0,(Laj(k+1)-max(Lajk,Lbj(u+1)))}/(Laj(k+1)–Lajk)] 

where u is the number of ranges of attribute j for OTU a    

Similar calculations, mutatis mutandis, give the non-overlap of b with respect to a: 



Dbaj=ΣkPbjk[{max(0,(min(Lbj(k+1),Laj1)-Lbj1))+ 

             max(0,(Lbj(k+1)-max(Lbjk,Laj(v+1)))}/(Lbj(k+1)–Lbjk)]   

where v  is the number of ranges of attribute j for OTU b.            

Though the range of values shared {(Laj(p+1) – Lbjq) or (Lbj(q+1) – Lajp), whichever is 
positive} is common to the two OTU’s, the contribution to power (based on the non-
overlap) may be quite different.   For instance, the extreme range for one may lie 
entirely within that for the other.    The two contributions must each be calculated 
and added to the overall power assessment for the attribute in question.     

        Whether the attribute j be quantitative or not, the values of Dabj are then 
averaged over all pairings of the n OTU’s which remain relevant (including those 
where values of this attribute are unknown or indeterminate for one or both OTU’s, 
in which case Dabj = Dbaj = 0) to give the overall diagnostic value of attribute j: 
             Vj  = ΣaΣb≠aDabj  /{n(n-1)}, 

n being the total number of OTUs still possible as diagnoses. 

     It may be noted that, since the diagnostic power depends on the set of OTU’s 
remaining, it needs to be recalculated whenever this set is diminished as a result of  
exclusions following the description of an attribute for the propositus. 
         Though the procedure for calculation differs between quantitative and non-
quantitative attributes, the results are fully comparable, expressing in each case the 
proportion of non-overlap. 
             The discussion of diagnostic power so far has the underlying assumption that  
all OTUs in the system are equally likely as identifications of the propositus.   Often 
this assumption may be patently false (cf. Dallwitz et Al. 2008) and the key user may 
have specific information to the contrary.   Most obviously, if the propositus is 
collected from a specified geographical area, there may be prior knowledge of the 
abundance and breadth of distribution of the various taxa.   If this knowledge is 
incorporated into a table of prior probabilities, it can be used by the program in 
calculating attribute power.  Then, in the equation  for Vj  above,  the contribution 
for each pair of OTU’s is weighted by the product of the prior probabilities of the two 
OTU’s in question 

            In the practical application of the programs, if the user has information on 
prior probabilities, he is invited to specify them for the more probable OTUs 
(summing, of course, to less than unity), and the balance of probabilities is then 
divided equally among all remaining OTU's.     



         

6.  Exceptional Features as an Aid in Identification 
        As noted by Hagedorn et al. (2010),  certain exceptional features within a group 
of organisms can be very helpful for identification, and may even make it possible to 
bypass the key.   Only a few of the OTUs within the group possess them.    The 
unsophisticated enquirer will not know the value of looking for these unusual 
characters, but the specialist’s eye leaps to them immediately.   “Penicillate styles” 
were mentioned above as such a character for Drosera spp.   It seemed worth while, 
within the key program, to list such exceptional features as soon as work on a 
propositus begins. 
       The program gives the user the opportunity to define “exceptional” for this 
purpose as he chooses.  In the present exposition, “exceptional” is defined 
as ”shared by no more than 3% of the OTUs for which the attribute was recorded”.   
For qualitative or spatial attributes, this test is applied to each value; for ordered or 
circular attributes, it is applied only to the values limiting a sequence in either 
direction; for quantitative attributes, it is applied to the medians of the extreme 
ranges. 

7. An example of use 

                     To illustrate the use of the program, I take a set of data on Australian 
species of Drosera used by Goodall & Marchant (1996), and since extended to cover 
a total of 89 species and subspecies, and 144 attributes,   including fifteen calyx 
characteristics.     The user (let us call her “Estelle”) is attempting to identify a 
specimen purely on the calyx characters. She is first asked whether she has 
information on the prior probability of the various taxa; she has not.     She then 
indicates that she would like to be told of exceptional  features that might facilitate 
diagnosis, and defines ”exceptional” as  “shown by no more than 3% of the taxa 
included”.  She is then told that there are 51 “exceptional” characters, of which nine 
are calyx attributes, namely: 
                     Attribute                                                            Value 
             Sepal shape – position of maximum width       Near apex 
             Sepal shape – length/width ratio                       > 8: “linear” 
             Sepal apex shape                                                    Acuminate 
             Sepal apex fringe                                                     Shallowly fringed 
             Sepal length                                                            < 1.5 mm or  > 8.0 mm 
             Sepal iridescence                                                     Iridescent 
             Sepal concavity                                                        Deeply concave 
             Gland distribution on sepals                                  At base    
             Calyx enlarging in fruit?                                          Enlarging 
  



Estelle does not recognize any of these descriptions as applying to her specimen, 
and chooses to report that the sepal length is 2.0 mm.     The program responds that 
33 taxa remain as possible identifications, the proportion compatible with the 
propositus ranging from 1.0 (for 7 taxa) down to 0.002.  Estelle then indicates that 
the calyx lobes in her specimen are free to the base.   This reduces the number of 
taxa still consistent with the description to 28, with overlapping proportions ranging 
from 0.002 to 1.00.   She then asks about the diagnostic value of the remaining 
attributes.   Those for calyx attributes range from 0.071 for all 28 of the OTU’s 
remaining to 0.731among 16 of them; the most promising seems to be the apex 
fringe of the sepals, with a diagnostic value of 0.643, for which all 28 remaining 
OTU’s have information.   Estelle reports that the apex is “shallowly fringed”, and is 
informed that the possible identifications are now reduced to two: D. macrantha 
ssp.macrantha, and D. pulchella.  She again enquires about the value of different 
calyx attributes in distinguishing between these two taxa, and is told that each of the 
following three attributes has a diagnostic power of 1.0 at this point: 
                   Position of maximum width, 
                   Pilosity, and 
                   Glandularity 
She chooses the last attribute, and reports that glands are present on the sepals; this 
defines the propositus as D. pulchella, and completes the identfication.   She is 
offered a complete description of the taxon from the data base. 
              It may be noted that Estelle had been told at the outset that a shallow fringe 
at the sepal apex was an “exceptional”  character;  if she had  recognized  
immediately that this applied to her specimen, she could have shortened the 
identification process, and gone directly to the final two taxa as possibilities. 
             Estelle has now another specimen to identify, and again wishes to use calyx 
characters.    Not recognising that any of the “rare” attributes applies to her new 
specimen, she chooses to report that the sepal length is 7.0 mm.     The program 
responds that 29 taxa in the data set include such values, the proportion compatible 
with the propositus ranging from 1.0 (for 8 taxa) down to 0.003.   Estelle indicates 
further that the calyx lobes in her specimen are free to the base.   This reduces the 
number of taxa still consistent with the description to 21, with overlapping 
proportions ranging from 0.033 to 1.000.   She then asks about the diagnostic value 
of the remaining attributes.   Those for calyx attributes range from 0.095 to 0.800, 
the most promising seeming to be (a) the sepal margins, with a diagnostic value of 
0.668 , and on which the system has information for 10 OTUs still among the 



possibilities, and (b) the distribution of glands, with a diagnostic value of 0.800, 
among 5 OTUs.   Estelle chooses the latter attribute, but is reminded that this is 
dependent on another attribute, not yet defined for the propositus -- whether the 
calyx is free of glands or not.  She confirms that, in her material, all the calyces are 
glandular, and then states that, of the four possibilities offered (glands throughout, 
sparsely glandular, glands at base or glands near edges), the second describes her 
specimen best.  She is then informed that a single taxon in the data base matches 
this description, namely  D. menziesii ssp. thysanosepala.    So the identification is 
complete.   Again, she is offered a full description of this taxon from the data base. 

          It did not apply in Estelle’s case, but a user may make a mistake, leading to a 
description of the propositus which is incompatible with any OTU in the data base.   
If that happens, he or she is so informed, and invited to begin again. 

8. Concluding Remarks 
        In conclusion, one may indicate certain advantages distinguishing this system 
from more traditional keys.   One of these is the possibility of including multiple 
values, both for the OTUs in the data set and for the propositus.   If the user has 
several differing specimens, or is merely uncertain as to which description best fits 
his specimen, he can incorporate the variation or uncertainty in his description of 
the propositus.   A second advantage is the combination of quite different types of 
attribute (qualitative, quantitative, etc.) within the same system.   Thirdly, attention 
is drawn to possible “short-cuts” – unusual and distinctive characters.   The fourth 
special feature is the concept of “diagnostic power” of an attribute in distinguishing 
among a particular set of OTUs, and the opportunity to calculate it at any stage. 

       It hardly needs pointing out that the system is not limited to biological 
identification, but that it could be used in any situation where a propositus is to be 
allotted to one of a number of OTUs defined by multiple variables – such as arises 
constantly, for instance, in medical diagnosis.     

       The computer programs used in this system (INPUT for preparing a data base, 
and IDENTIFY for identification) are available, without charge, on request to the 
author. 
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Appendix 

Estimation of Limits for Ranges of Values in Quantitative Attributes 

 In this system, values of quantitative attributes are described in terms of the 
proportions (Pijk)  within ranges defined by medians (Aijk).    The diagnostic process, 
however, depends on the overlap between values for the propositus and OTUs in the 
data set, which are not derivable directly from the range medians. Accordingly, a 
procedure has been developed to estimate the limits of the ranges, so that overlaps 
can be determined.           
            In defining limits, a distinction is made between attributes in which random 
variation tends to be uniform as between different ranges of values (called 
"arithmetic" here),  and those in which it tends to proportionality (here called 
"logarithmic").    In attributes for which zero values have been recorded, it is 
assumed that variation is "arithmetic".   If there are no zero values, a decision 
between “arithmetic” and “logarithmic” is based on consideration of the extreme 
range of values for the attribute in the entire data set.    If the maximum is more 
than twice the minimum, it is assumed that variation in this attribute should be 
treated as "logarithmic", otherwise "arithmetic";  i.e. it depends on the value of 
                      Ei  =   maxik Aijk / minik Aijk 
EJ   > 2 causes j to be treated as “logarithmic”, Ej ≤ 2 as “arithmetic”. 
             The estimation of limits for the ranges around the medians Aijk then proceeds 
as follows: 
       If two or more ranges of attribute j are defined for an OTU i, then the limits for 
range k (out of n)  (1 < k < n) are defined as 
                   Lijk = (Aij(k-1) + Aijk)/2                                                     ("arithmetic")                 
                   Lij(k+1)   = (Aijk + Aij(k+1))/2 
or 
                  Lijk = √(Aij(k-1) * Aijk)                                                     ("logarithmic")                 
                   Lij(k+1)  = √(Aijk * Aij(k+1)) 
For the lower limit of the first range, 
                  Lij1  = max[0, (3Aij1 – Aij2)]                                      ("arithmetic"), or 

                 Lij1  = √(Aij1
3/Aij2)                                                       ("logarithmic") 

and for the upper limit of the uppermost range 



                  Lij(n+1)  = (3Aijn – Aij(n-1))/2                                        ("arithmetic"), or 

                 Lij(n+1)  = √(Aijn
3/Aij(n-1))                                              ("logarithmic")               

             If only a single range has been defined for an OTU, its limits are defined in 
relation to the values of this attribute in other OTUs.     If one or more of the other 
OTUs  have been recorded with multiple values for this attribute, the range of the 
different medians (arithmetic or logarithmic) is averaged: 
                           Σi (Aijn – Aij1)/2m                         ("arithmetic"),  or 
                          Σi {Aijn/Aij1}1/2(n-1)/m                     ("logarithmic") 
where summation over i only applies to the m OTUs for which multiple ranges of 
values have been recorded.    
            Where no ranges of values are recorded for any OTU in the data, the putative 
range of values around any single stated value for one of the OTUs is related  
arbitrarily to the extreme range for the attribute in the data set.  Thus, one 
calculates 
                           B = maxi Aijn , ,   C = mini Aij1                                    i                                   i 
B and C being the limits of values of attribute j for the m OTUs for which this 
attribute has been recorded.    One then calculates G as the assumed half-range 
around the stated median, where no more apposite information is available: 
                               G = (B – C)/2(m-1)                       (“arithmetic”),  or 
                                G = (B/C)1/2(m-1)                            (“logarithmic”) 
These values of G are then used to set the ranges around the single values recorded 
for each OTU: 
            Lij1   =  max[0, (Aij1 - G)],  Lij2  =  Aij1  + G          ("arithmetic")   or 

            Lij1  =  Aij1  /  G,       Lij2 =  Aij1 * G                      ("logarithmic") 

                         For the propositus (x), the data provided by the key user may also not 
include limits for ranges, so indirect estimation of limits may also be needed here.       
As indicated above, the value of this attribute in the  propositus may be described in 
three distinct ways: 

                           (1)  Two or more ranges of values may be specified, each with a median 
value and a  proportion (as for the OTU's included in the data set); 
             (2) A maximum and minimum may be specified; or 
             (3)  A single value may be specified. 
These three cases are treated differently in converting the data to the form required, 
and then setting limits for ranges. 
              In case (1), limits for the propositus are defined exactly as described above 
for OTUs  in  the  data set; these limits will be symbolized by 
                              Lxjk  ,  k=1,(n+1) 
               In case (2), where maximum and minimum are defined, these minimum and 
maximum  values, Bmin and Bmax, become the limits for the single range defined for 



this attribute   in the propositus:  Lxj1 =  Bmin  , Lxj2  =  Bmax ,with the median of the 
range being 

                                     Axj1  =  (Lxj1 + Lxj2)/2   ("arithmetic"), or 
                                     Axj1   =  √(Lxj1 .Lxj2)    ("logarithmic"). 
 Since there is only one range defined,  Pxj1 = 1.   
                  In case (3), where a single value is named for the propositus, this value 
becomes Axj1    and again Pxj1 = 1.     The limits Lxj1 and Lxj2 are defined as described 
above for  OTUs with a single range: 
                        L xj1   =  max[0, (Axj1 - G)],  Lxj2  =  Axj1  + G  ("arithmetic");   or 
                        Lxj1  =  Axj1 / G,                     Lxj2 =  Axj1 * G     ("logarithmic") 
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