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Abstract 21 

A combination of flooding and salinity is detrimental to most plants. We studied tolerance of 22 

complete submergence in saline water for Melilotus siculus, an annual legume with 23 

superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived 24 

complete submergence of one week at low salinity (up to 50 mol m
-3

 NaCl), but did not recover 25 

following de-submergence from 100 mol m
-3

 NaCl. The leaf gas films protected against direct salt 26 

ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even 27 

after 3 d of complete submergence. By contrast, leaves with the gas films experimentally removed 28 

suffered from substantial Na
+
 and Cl

-
 intrusion and lost the capacity for underwater photosynthesis. 29 

Similarly, plants in saline water and without gas films lost more K
+
 than those with intact gas films. 30 

This study has demonstrated that leaf gas films reduce Na
+
 and Cl

-
 ingress into leaves when 31 

submerged by saline water – the thin gas layer physically separates the floodwater from the leaf 32 

surface. This feature aids survival of plants exposed to short-term saline submergence, as well as 33 

the previously recognised beneficial effects of gas exchange under water.  34 

 35 

Keywords 36 

aerenchyma; Melilotus siculus; flooding tolerance; salinity tolerance; salt intrusion; leaf Na
+
; leaf 37 

K
+
; leaf Cl

-
; legume; plant submergence tolerance; underwater photosynthesis  38 
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Introduction 39 

Flooding can be a severe abiotic stress on plants (Bailey-Serres & Voesenek 2008) and in various 40 

situations the water can be saline. Flooded soils are typically low in O2 and when shoots are 41 

submerged plants face further restrictions on their gas exchange (Armstrong 1979; Voesenek et al. 42 

2006). Traits associated with plant flooding tolerance include aerenchyma for internal aeration 43 

(Armstrong 1979), adventitious roots (Jackson & Drew 1984), anoxia tolerance in some tissues 44 

(Greenway & Gibbs 2003), shoot elongation response (Bailey-Serres & Voesenek 2008), and 45 

capacity for underwater photosynthesis (Colmer et al. 2011). Flooding regimes of different depths 46 

and durations, however, impose selection pressures for various combinations of these and other 47 

traits in wetland plants (Colmer & Voesenek 2009).  48 

 49 

Salt tolerance is generally associated with the ability to regulate Na
+
, K

+
 and Cl

-
 transport to the 50 

shoots (Plett & Møller 2010; Teakle & Tyerman 2010; Shabala & Mackay 2011) and effective ion 51 

compartmentation and maintenance of favourable water relations (reviewed by Flowers & Colmer 52 

2008; Munns & Tester 2008). When combined with salinity, the low O2 associated with flooding  53 

impacts on the energetic demands of regulating ion transport to prevent shoot Na
+
 and Cl

-
 54 

accumulating to toxic levels (Barrett-Lennard 2003; Colmer & Flowers 2008) and to maintain 55 

sufficient K
+
 (Barrett-Lennard & Shabala 2013). Surprisingly, very few studies have evaluated the 56 

mechanisms of plant tolerance to saline submergence (e.g., in halophytes reviewed by Colmer & 57 

Flowers 2008).  58 

 59 

Melilotus siculus (Turra) B.D. Jacks. (syn. Melilotus messanensis) is a waterlogging- and salt-60 

tolerant annual legume species (Marañòn et al. 1989; Rogers et al. 2008; Teakle et al. 2012) used 61 

for pasture on some soils/small areas in some regions with Mediterranean climates. Waterlogging 62 

tolerance of M. siculus is linked to a high capacity for internal root aeration via aerenchymatous 63 

phellem (up to 50% porosity, Verboven et al. 2012) and formation of numerous new lateral roots of 64 

high porosity (Teakle et al. 2011). This internal supply of O2 for respiration provides energy to 65 

regulate root ion transport under combined waterlogging and salinity (Teakle et al. 2012). Areas 66 

naturally inhabited by M. siculus (Marañòn et al. 1989) or saline agricultural land being targeted for 67 

pasture production (Bonython et al. 2011) can also experience short-term flooding, resulting in 68 

plant submergence. Tolerance of M. siculus to submergence has not been previously studied, 69 

although the leaf surfaces were observed to possess gas films when submerged at a saline field site 70 
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(NL Teakle, personal observation). Several terrestrial wetland plants possess superhydrophobic 71 

leaves that retain a thin gas film when submerged (Raskin & Kende 1983; Colmer & Pedersen 72 

2008b). Superhydrophobicity of leaves is normally associated with the nano-structure of the cuticle 73 

and water repellent surfaces of leaves promote ‘self cleansing’, enhancing leaf performance and 74 

reputably lowering susceptibility to pathogens (Neinhuis & Barthlott 1997). Experiments with other 75 

wetland species have demonstrated that leaf gas films enhance underwater photosynthesis (Raskin 76 

& Kende 1983; Colmer & Pedersen 2008b) and also whole plant internal aeration (Pedersen et al. 77 

2009; Winkel et al. 2011; Winkel et al. 2013), thus contributing to submergence tolerance. 78 

However, the role of leaf gas films in tolerance to saline submergence has not previously been 79 

studied. 80 

 81 

The present study assessed the tolerance of M. siculus to submergence in non-saline and saline 82 

conditions. Responses of growth and tissue ion concentrations to increasing external NaCl were 83 

established for plants when roots were waterlogged and also when the shoots were completely 84 

submerged. The submerged leaves of M. siculus possessed gas films (Fig. 1). Since gas films 85 

prevent direct contact of the water with the underlying tissue surface, we hypothesised that this 86 

feature can ‘protect’ leaves from Na
+
 and Cl

-
 intrusion and thus enhance survival during 87 

submergence in saline water. We also hypothesised that leaf gas films of M. siculus improve 88 

underwater gas exchange and internal aeration, as also described above for other species with gas 89 

films on submerged leaves. 90 

 91 

Materials and Methods 92 

Plant culture 93 

Seeds of Melilotus siculus (SARDI 36983) were scarified, washed in 0.04% NaHClO, rinsed 94 

thoroughly in deionised (DI) water and then imbibed in aerated 0.5 mol m
-3

 CaSO4 in darkness for 3 95 

h before being transferred to mesh over aerated 10%-strength aerated nutrient solution. After 3 d, 96 

seedlings were transferred to 25%-strength aerated nutrient solution and exposed to light. Seven d 97 

after germination, seedlings were transplanted into plastic pots containing 4.5 l of 50%-strength 98 

aerated nutrient solution. There were 8 seedlings in each pot, held individually in holes in the pot lid 99 

using polyethylene foam. At 14 d after imbibition, solutions were changed to 100%-strength aerated 100 

nutrient solution. Nutrient solution at 100% concentration consisted of macronutrients (mol m
-3

): 101 

0.5 KH2PO4, 3.0 KNO3, 4.0 Ca(NO3)2, 1.0 MgSO4; and micronutrients (mmol m
-3

): 37.5 102 
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FeNa3EDTA, 23.0 H3BO3, 4.5 MnCl2, 4.0 ZnSO4, 1.5 CuSO4, and 0.05 MoO3, as used previously 103 

for this species (e.g., Rogers et al. 2008; Teakle et al. 2011). NaCl concentration was 0.1 mol m
-3

. 104 

Solution pH was buffered with 2.5 mol m
-3

 MES (2-[N-Morpholino]ethanesulfonic acid) adjusted 105 

with KOH to pH 6.3. Nutrient solutions were aerated, changed weekly and topped up with DI water 106 

as required. All pots were covered with Al-foil to exclude light. Plants were kept for the duration of 107 

the experiment in a naturally lit, temperature controlled (20/15°C day/night) phytotron during 108 

September to October 2010 in Perth, Western Australia. Average photosynthetically active radiation 109 

(PAR) within the phytotron at midday during the experimental period was 1149 µmol m
-2 

s
-1

.  110 

 111 

Root-zone salinity and O2 treatments 112 

Salinity treatments in the root-zone medium were imposed 21 d after imbibition, by adding 25 mol 113 

m
-3

 NaCl increments every 12 h to reach the final concentrations of 25, 50 or 100 mol m
-3

, also with 114 

control solutions maintained at 0.1 mol m
-3

 NaCl. Two days after the final NaCl concentrations 115 

were reached, a hypoxic pre-treatment was given to the root-zone medium of stagnant designated 116 

pots by bubbling with N2 until the O2 level was approximately 10% of that at air-equilibrium. After 117 

24 h, the solutions in these pots were changed to a deoxygenated stagnant 0.1% (w/v) agar nutrient 118 

solution (Wiengweera et al. 1997), with the mineral composition as described above. Plants were 119 

then grown for an additional 3 d in this stagnant root-zone medium prior to imposition of the shoot 120 

submergence treatments.  121 

 122 

Submergence treatment 123 

For the submergence treatments, individual plants were carefully removed from the 4.5 l pots and 124 

the intact roots placed (with the same foam holder around the stem base) into a 250 ml black plastic 125 

bottle containing the same nutrient solution (with the same salinity level and also containing de-126 

oxygenated stagnant agar solution) as for each particular plant in the various root-zone treatments 127 

described in the preceding section. Each bottle also contained 7 glass marbles to weigh the bottle 128 

down in the submergence tanks. The top of the bottle and foam were wrapped in parafilm, to 129 

impede the possibility of nutrients moving through the foam holder, which was acting like a plug in 130 

the bottle neck. The bottles containing one plant each were then transferred into clear Perspex 131 

cylinders filled with 12 l of solution (shoots completely submerged and unable to reach air). The 132 

submergence solution contained 2 mol m
-3

 CaSO4, 0.25 mol m
-3

 MgSO4 and 1 mol m
-3

 KHCO3. 133 

Dissolved CO2 was maintained at 140 mmol m
-3

 (with pH at 7.2) using a pressurised CO2 cylinder 134 
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and bubble stone in the tanks and a pH controller (α-control, Dupla Aquaristik, Bielefeld, 135 

Germany). The submergence solution was circulated using a pump attached to a sponge filter and a 136 

UV filter. Four circulating lines were set-up, with 8 tanks per line and 6 plants per tank. Non-137 

submerged plants were also transferred to 250 ml bottles containing glass marbles and the same 138 

nutrient solution with 0.1% (w/v) agar and the various NaCl treatments as used above, and placed in 139 

tanks filled with water to just below the top of the bottle (i.e. ‘emergent’ with shoots in air).  140 

 141 

Response to submergence with different salinity levels 142 

This dose-response experiment had an overall design of 4 NaCl treatments (0.1, 25, 50 and 100 mol 143 

m
-3

) and 2 submergence treatments (fully submerged and shoots in air). Four submergence lines 144 

were set-up; one for each of the 4 salinity treatments (0.1, 25, 50 and 100 mol m
-3

 NaCl). Plants 145 

were completely submerged for 7 d. After 3 d submergence, one plant per treatment was harvested 146 

to measure underwater net photosynthesis of excised leaves. Ion concentrations and dry mass (DM) 147 

were measured after 7 d of submergence. After the 7 d submergence period, the remaining plants in 148 

each tank were removed (i.e. ‘de-submerged’) and recovery from submergence was assessed after a 149 

further 7 d. Details of measurements are given below and for the treatments in Table 1. 150 

 151 

Role of leaf gas films in tolerance to saline submergence   152 

Plants were grown as in the dose-response experiment (see above), but only with root-zone salt 153 

treatments of 0.1 and 100 mol m
-3

 NaCl 7 d prior to submergence with hypoxic-stagnant conditions 154 

also imposed for the final 4 d prior to submergence. The main experimental design (Treatments 1-8 155 

in Table 1) was: 2 submergence treatments (fully submerged or shoots in air); 2 leaf gas film 156 

treatments (brushed with water, or brushed with 0.1% v/v Triton X-100 to remove gas films); 2 157 

salinity treatments (0.1 or 100 mol m
-3

 NaCl). Emergent controls (shoots in air) with aerated roots 158 

(Treatments 9-12 in Table 1) were also included in this experiment. 159 

 160 

The submergence treatments were imposed 28 d after imbibition. As indicated above in the 161 

experimental design, just prior to submergence, leaf gas films were removed from half of the plants 162 

by brushing both sides of the leaves with 0.1% v/v Triton X using a soft paintbrush, as in a previous 163 

study (Pedersen et al. 2009); in this earlier research on rice, daily brushing of leaves with this dilute 164 

Triton X for plants with the shoot in air did not significantly affect the growth over a 7 d period 165 

compared with non-brushed controls (Pedersen et al. 2009). After brushing of the leaves, the whole 166 
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shoot was then rinsed in submergence solution prior to placement into the tanks. Plants with gas 167 

films kept intact were brushed with DI water prior to placement into the tanks. 168 

 169 

Plants were submerged (and subsequently sampled) during the afternoon as described for the dose 170 

response experiment. Individuals from each treatment were randomly harvested at daily intervals 171 

for various measurements outlined below, including tissue ion concentrations. After 6 d 172 

submergence, the remaining plants were de-submerged and recovery assessed after an additional 7 173 

d. 174 

 175 

Harvests and fresh and dry mass measurements 176 

An initial harvest for root and shoot fresh mass (FM) and DM was taken 21 d after imbibition 177 

(when NaCl treatment commenced). Additional harvests were then taken at the time of 178 

submergence (28 d after imbibition, after the salt and stagnant root-zone pre-treatments) and at 179 

various subsequent intervals for the different experiments (see above and figure legends). Young, 180 

fully expanded leaves were sampled in situ for measurements of underwater net photosynthesis and 181 

tissue chlorophyll concentration (details below). Plants were then removed from the tanks and 182 

bottles, and roots were washed 3 times (for 10 s each time) in 4 mol m
-3

 CaSO4 with mannitol at a 183 

concentration iso-osmotic to the root-zone NaCl treatment (Lang 1967). Roots were separated from 184 

shoots and maximum root length and FM were recorded. Shoots were rinsed in 2 mol m
-3

 CaSO4 185 

with mannitol at a concentration iso-osmotic to the submergence NaCl treatment and tissues 186 

collected for measurements of mass and ion concentrations. Total shoot FM was recorded and 187 

tissues were oven dried at 60°C for 3 d, after which DM was recorded and tissue ion concentrations 188 

were measured (see next section). Extra plants were used for measuring petiole and tap root 189 

porosity (described below). 190 

 191 

Concentrations of tissue ions 192 

Concentrations of Na
+
, K

+
 and Cl

-
 were measured in dried samples of leaflets or whole shoots. 100 193 

mg of finely ground dried tissue was extracted in 10 ml of 0.5 M HNO3 for 2 d at 30 °C (Munns et 194 

al. 2010). Extracts were measured for Na
+
 and K

+
 (Jenway PFP7 Flame Photometer, Essex UK) and 195 

Cl
-
 (Slamed Chloridometer CHL 50, Frankfurt Germany). The reliability of these analyses was 196 

confirmed by taking a reference plant sample (ASPAC #85) with known ionic composition through 197 

the same procedures. 198 
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 199 

Underwater net photosynthesis  200 

The youngest, fully expanded leaves were removed from plants that had been submerged for 3 d. 201 

Underwater net photosynthesis (PN) was measured essentially as described by Pedersen et al. 202 

(2013). Gas films were removed from half of the samples by brushing with 0.1% v/v Triton X and 203 

then rinsing using a solution of the same composition as the incubation medium. Leaves were 204 

carefully added to 25 mL glass vials containing incubation solution, which was the same as the 205 

submergence solution the plants had come from (i.e. with either 0.1 or 100 mol m
-3

 NaCl in the 206 

basal medium of 2.0 mol m
-3

 CaSO4, 0.25 mol m
-3

 MgSO4 and 1.0 mol m
-3

 KHCO3) plus 5.0 mol 207 

m
-3

 TES (2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid) buffer to 208 

maintain the pH at 7.2 after adjustment with 0.5 M HCl, so that dissolved CO2 was at 140 mmol 209 

m
-3

. The pO2 of the solution was adjusted to approximately 10 kPa by mixing equal volumes of N2 210 

or air-bubbled solution; starting with O2 below air-equilibrium helps to prevent photorespiration 211 

(Setter et al. 1989; Pedersen et al. 2011). The top of the glass vials were sealed with Parafilm
®
 and 212 

aluminium foil, instead of glass stoppers, to prevent the pressure that can occur from stopper 213 

insertion causing the gas film to ‘collapse’ on these leaves. Blank vials without leaves were also 214 

included. Vials were incubated on a rotating wheel within an illuminated (PAR = 700 µmol m
-2

 s
-1

) 215 

water bath (20°C) for 60 min. Dissolved O2 concentrations were then measured using a Clarke-type 216 

O2 microelectrode (OX-25, Unisense A/S, Aarhus, Denmark). Immediately after these 217 

measurements, leaflet samples were weighed and leaflet area measured using a leaf area meter (Li-218 

Cor LI-3000, Lincoln, USA). 219 

 220 

Net photosynthesis for leaves of intact plants in air was also measured. An infra-red gas analyser 221 

(Li-Cor LI-6400) attached to a leaf cuvette was used to measure light-saturated net photosynthesis 222 

by young, fully expanded leaves at ambient CO2 (390 µmol mol
-1

) with PAR of 1500 µmol m
-2 

s
-1

 223 

(maximum PAR in phytotron). 224 

 225 

Porosity measurements 226 

Porosity was measured on petioles and tap roots using the ‘buoyancy method’ (Raskin 1983; 227 

Thomson et al. 1990). Maximum root and stem diameters were measured with digital callipers 228 

before the plants were separated into roots and shoots at the hypocotyl. Whole petioles with young, 229 

fully expanded leaflets were removed and the length and FM of the petiole recorded. A minimum of 230 
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0.2 g FM of petiole tissue was used. Approximately 0.5 g FM of the upper part of the tap root 231 

containing phellem (Teakle et al. 2011) was used for root samples. 232 

 233 

Chlorophyll analysis 234 

Leaflet samples from plants that had been submerged for 3 d were frozen in liquid N2 and freeze-235 

dried. 20 mg of ground sample was extracted in 1.25 ml of cold 100% methanol for 30 min in 236 

darkness (Wellburn 1994). Samples were centrifuged for 10 min at 1000 rpm in a microcentrifuge 237 

at 4°C. The supernatant was removed and 2 µl analysed across 220 to 750 nm using a NanoDrop 238 

Spectrophotometer (ND 1000, Thermo Scientific, Asheville, USA). Based on the nanodrop 239 

resolution of 3 nm, the following equations from Wellburn (1994) were used to calculate 240 

chlorophylls a (Chl a) and b (Chl b) using absorbance (Abs) at 653 and 666 nm. 241 

Equation 1: Chl a = 15.65 x Abs666 – 7.34 x Abs653 242 

Equation 2: Chl b = 27.05 x Abs653 – 11.21 x Abs666 243 

 244 

Internal pO2 of petioles 245 

Internal pO2 at the distal end of petioles of excised leaves was measured when reliant on internal O2 246 

movement, to evaluate O2 entry and supply via leaflets when in air (with the petiole in 247 

deoxygenated medium) or when submerged with or without leaf gas films. Each leaf with petiole 248 

(approximately 100 mm in length) was mounted on a stainless steel mesh in a trough following the 249 

procedure of Colmer & Pedersen (2008a). The petiole was immersed in 0.1% w/v deoxygenated 250 

agar prepared in the same submergence solution as above, whereas the leaf with its 3 leaflets 251 

protruded out of the trough (i.e. leaflets exposed to air). An O2 microelectrode (tip diameter 25 µm, 252 

OX25, Unisense A/S, Denmark) connected to a pA meter (Multimeter, Unisense A/S, Denmark) 253 

was inserted 150 µm into the petiole, 50 mm below the leaflets, and pO2 was followed over time. 254 

Petiole pO2 was measured i) with the leaflets exposed to air, ii) with the leaflets submerged with 255 

intact gas films, iii) with the leaflets submerged but with the gas films removed (see above), and iv) 256 

with the leaflets severed. Measurements were taken at 20 °C in darkness. 257 

 258 

Data analyses 259 

A minimum of 4 replicates per treatment combination were used in all experiments. Tanks 260 

connected to circulation lines were blocked per salinity treatment and within each line of tanks the 261 

other treatments (submergence level, gas films) were randomly allocated to tanks. Data were 262 
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analysed using GraphPad Prism 6.0. Residuals were checked for normality and homogenous 263 

variance. Most data were normally distributed and analysed using one- or two-way ANOVA and 264 

treatment comparisons made using Tukeys multiple comparison test or Least Significant Difference 265 

(LSD). Shoot RGR (Fig. 6) data were not normally distributed so non-parametric tests were used. 266 

The Kruskal-Wallis analysis was used to test for overall significant differences and Dunn's post-hoc 267 

test to compare between treatments. Significance level of P < 0.05 was used for all analyses and 268 

‘n.s.’ indicates non-significant. 269 

 270 

Results 271 

Response to submergence with different salinity levels 272 

M. siculus survived 7 d of submergence, even with 100 mol m
-3

 NaCl, the highest salt level and 273 

longest duration tested. However, after de-submergence (with the various root-zone NaCl 274 

treatments maintained), the plants previously submerged in 100 mol m
-3

 NaCl subsequently died; 275 

whereas, plants previously submerged in 0.1, 25 or 50 mol m
-3

 NaCl survived.  276 

 277 

Shoot DM after 7 d of submergence was 0.12 g per plant (average for all NaCl treatments, no 278 

significant effect of NaCl) whereas it was 0.46 g for plants with shoots in air (emergent; average for 279 

all NaCl treatments). This submergence effect on shoot DM resulted from the cessation of DM 280 

increments when submerged, whereas the emergent plants grew. 281 

 282 

As hypothesised, shoot Na
+
 and Cl

-
 concentrations increased with each higher NaCl treatment; the 283 

increases in concentrations of these ions in the shoots of submerged plants were far greater than 284 

those of emergent plants (Fig. 2). A dose-effect was also evident under both flooding conditions. 285 

For example, shoot Cl
-
 concentrations of emergent as well as completely submerged plants were 286 

2.3-fold higher in plants exposed to high salt (100 mol m
-3

 NaCl) compared to those in low salt (25 287 

mol m
-3

 NaCl) concentration. Shoot Na
+
 concentration also showed a similar dose-dependent 288 

pattern for emergent and submerged plants, but again with higher overall concentrations in the 289 

submerged plants compared to plants with emergent shoots. Salt exposure reduced shoot K
+
 290 

concentrations in both emergent and submerged plants; shoot K
+
 did not differ between emergent 291 

and submerged plants in 25 and 50 mol m
-3

 NaCl, but it was 34% less for submerged plants at 100 292 

mol m
-3

 NaCl (Fig. 2c). 293 

 294 
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Leaf gas films – influence on leaf ion concentrations during submergence 295 

Gas films were present on both sides of M. siculus leaves when under water (Fig. 1), but the films 296 

only persisted for 3 d. Here we describe the effect of gas film removal on tissue ions, and in the next 297 

section we present the effects on underwater net photosynthesis and internal aeration. 298 

  299 

For plants with emergent shoots there was no effect of leaf brushing with 0.1% v/v Triton X (and 300 

rinsing) on tissue ion concentrations, but in both cases (i.e. the two types of plants with shoots in 301 

air) there was a steady decline in K
+
 concentration in the leaves with time (Fig. 3). 302 

 303 

For the submergence treatments, leaflet Na
+
 and Cl

-
 concentrations had tripled within the first day 304 

of submergence in 100 mol m
-3

 NaCl (Fig. 3a,c), for plants with gas films removed (i.e. brushed 305 

with 0.1 % v/v Triton X and rinsed prior to submergence).Whereas, for plants with intact gas films 306 

there was only a ~10% increase in leaflet Na
+
 and Cl

-
 concentrations in the first day after 307 

submergence in 100 mol m
-3

 NaCl (Fig. 3a,c). For these leaflets with gas films, tissue Na
+
 and Cl

-
 308 

also remained relatively low on the second day, but then increased substantially on the third and 309 

fourth days. Interestingly, these increases in tissue ions commencing on day 3 (Fig. 3a,c) coincided 310 

with a visual decline in the gas film presence. A similar, although less pronounced, effect of 311 

removal of gas films on ion entry was also measured in the whole shoot (Fig. 3b,d).  312 

 313 

Gas film presence also influenced tissue K
+
 concentration of submerged plants. Young leaflet and 314 

whole shoot K
+
 concentrations declined soon after submergence when leaf gas films had been 315 

removed, resulting in lower tissue K
+
 in submerged plants with gas films removed as compared 316 

with those when the films were intact. This difference was evident up to day 4, but by day 6 of 317 

submergence there was little difference between plants initially with (the gas films only persisted 318 

for 3 d) or without (i.e. artificially removed at the time of submergence) gas films (Fig. 3e,f).  319 

 320 

Shoot net uptake of ions for the initial 24 h after submergence was substantially higher when the 321 

leaf gas films had been experimentally removed compared to plants with intact gas films (Fig. 3a-322 

d). In the whole shoot, Na
+
 increased 2.2-fold in plants without gas films versus 1.6-fold in those 323 

with gas films (Cl
-
; 2.7 without versus 1.7 with gas films) and the ion ingress was even more 324 

pronounced in the youngest fully expanded leaflets where Na
+
 increased 2.8-fold in tissues when 325 
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without gas films and by only 1.4-fold in those with gas films (Cl
-
; 3.5 without versus 1.5 with gas 326 

films). 327 

 328 

Leaf gas films – influence on underwater net photosynthesis and internal aeration 329 

O2 dynamics were evaluated in petioles when reliant on O2 diffusion via the lamina (i.e. leaflet) 330 

surfaces. Leaves with petioles of ~ 100 mm length were excised and then the petiole portion was 331 

submerged in deoxygenated 0.1% agar submergence solution, all in darkness, so that the only 332 

source of O2 would be via longitudinal internal diffusion. A microelectrode measured tissue O2 at 333 

the distal end, initially with the lamina in air and then following lamina submergence, removal of 334 

leaf gas films, and finally lamina excision. As expected (see Introduction), O2 status of the petiole 335 

declined upon submergence of the leaflets in water at air-equilibrium, and removal of gas films 336 

further restricted the supply of O2 to the petiole (Fig. 4). Excision of the leaflets caused pO2 to drop 337 

within the petiole to under 2 kPa (Fig. 4); then, entry of O2 would have been only via the short stub 338 

of petiole and cut surfaces remaining in the water. 339 

 340 

The enhancement of underwater gas exchange via gas films was clearly evident in measurements of 341 

underwater net photosynthesis (PN) of individual leaflets; i.e. enhanced CO2 uptake from water. 342 

Removal of the gas films from leaflets grown in air (and submerged for the first time) reduced the 343 

underwater PN to 41% (non-saline) and 35% (saline), as compared to those with intact gas films 344 

(Fig. 5). Similarly, leaflets of plants that had been submerged for 3 d with no gas film showed a 345 

substantial decline in underwater PN as compared to those with intact gas films (Fig. 5). There was a 346 

significant interaction between submergence and NaCl treatment, with the adverse effect of gas film 347 

removal being stronger for plants in saline than in the non-saline solution. Both previously 348 

emergent and submerged plants from the 100 mol m
-3

 NaCl treatment had ~ 25% higher rates of 349 

underwater PN for leaflets than those from the non-saline treatment; this effect might be related to 350 

the presence of a more prominent gas film on leaves of plants exposed to 100 mol m
-3

 NaCl than on 351 

leaflets from plants in the non-saline treatment (personal observation). 352 

 353 

The 100 mol m
-3

 NaCl treatment reduced concentrations of chlorophyll a and b in leaflets from 354 

emergent shoots (55% of non-saline controls) and also in leaflets of submerged shoots (71% of non-355 

saline controls; Table 2). When emergent (i.e. shoots in air), the plants brushed with dilute Triton X 356 

had lower leaflet chlorophyll in the non-saline conditions, whereas in the saline conditions there 357 
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was no effect on plants brushed with dilute Triton X (Table 2). When submerged, removal of gas 358 

films did not influence chlorophyll concentrations in leaflets of plants in non-saline conditions, 359 

whereas at 100 mol m
-3

 NaCl the leaflet chlorophyll a and b were 30-40% less when gas films had 360 

been removed, compared to leaflets with intact gas films (Table 2).  361 

 362 

Leaf gas films – influence on dry mass during submergence 363 

Submerged plants without gas films suffered greater declines in shoot DM than those with gas films 364 

intact (Fig. 6). The marked decline in shoot DM after 3 d of submergence (Fig. 6a) coincided with 365 

loss (detachment near petiole base) of older leaves. Shoot RGRs of all submerged plants were near 366 

zero or negative, reflecting tissue losses, but leaf gas film removal resulted in greater losses of shoot 367 

tissues (i.e. more negative RGR) and these losses were also greatest for plants submerged in 100 368 

mol m
-3

 NaCl (Fig. 6b). By contrast to the shoots which lost DM, the root DM of submerged plants 369 

in all treatments did not differ to the initial values (data not shown; mean root DM after 6 d of 370 

submergence was 0.13 g per plant). 371 

 372 

Following de-submergence, the plants submerged in 100 mol m
-3

 NaCl wilted and then desiccated, 373 

whereas the plants submerged in non-saline solution initially wilted and then recovered and grew 374 

(whole plant RGR data in Supporting Information Table 1S). 375 

 376 

There was also no effect of leaf gas film removal (i.e. brushing leaves of emergent plants with 0.1% 377 

v/v Triton X, and rinsing) on the growth of plants when the shoots were maintained in air 378 

(Supporting Information Table 1S), supporting that the responses of plants to this pre-treatment to 379 

prevent gas film retention were not an artefact of the brushing.   380 

 381 

Discussion 382 

Leaf gas films delayed salt intrusion into leaves of plants submerged in saline water. This role of 383 

leaf gas films in influencing Na
+
 and Cl

-
 ingress and thus plant tolerance of saline submergence, 384 

adds to the previously recognised role of these films in enhancement of gas exchange of submerged 385 

plants (Raskin & Kende 1983; Colmer & Pedersen 2008b). This function of leaf gas films of 386 

diminishing Na
+
 and Cl

-
 entry into submerged leaves of M. siculus was of significance to survival 387 

of short-term saline submergence.  388 

 389 
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Gas films occur on superhydrophobic leaves when submerged; a feature now recognised for several 390 

terrestrial wetland species that facilitates underwater gas exchange (Pedersen & Colmer 2012). Leaf 391 

gas films enhance CO2 uptake for underwater photosynthesis in light, and O2 uptake for respiration 392 

in darkness; both elevate shoot pO2 and this enhances internal aeration of submerged tissues 393 

(Pedersen et al. 2009; Winkel et al. 2011). The present study demonstrates that leaf gas films also 394 

restrict salt intrusion into leaves during saline submergence. The removal of gas films from leaves 395 

of M. siculus increased entry of Na
+
 and Cl

-
, so that tissue concentrations were more than double 396 

those in leaves with intact gas films (Fig. 3). The function of leaf gas films in restricting ion uptake 397 

would most likely be the result of the thin gas layer preventing direct contact of the saline water 398 

with the leaf surface. In addition, the enhanced tissue aeration and photosynthesis resulting from gas 399 

films might also aid cellular energy status and thus functioning of ion transporters (c.f. situation for 400 

hypoxic roots, Pang et al. 2006; Colmer & Greenway 2011). Nevertheless, the physical separation 401 

of leaf surface and saline water is likely of most importance since water and ions can be absorbed 402 

by leaves (Burkhardt et al. 2012; Eller et al. 2013). 403 

  404 

The role of gas films in hindering ion entry into submerged leaves was evident in the time-series 405 

measurements for plants submerged in 100 mol m
-3

 NaCl, which had large increases in tissue Na
+
 406 

and Cl
-
 in submerged leaves on the third day (Fig. 3),  coinciding with the disappearance of gas 407 

films. The tissue Na
+
 and Cl

-
 concentrations increased further in subsequent days and after 6-7 d of 408 

submergence reached presumably toxic levels as M. siculus did not survive. Plants submerged in 409 

100 mol m
-3

 NaCl in the dose-response experiment also did not recover upon de-submergence, 410 

whereas those previously in 25 or 50 mol m
-3

 NaCl for 7 d resumed growth following de-411 

submergence. The relatively short-term benefits of leaf gas films on M. siculus are consistent with 412 

the view of Colmer & Voesenek (2009) who classified leaf gas films as an adaptive trait for short-413 

duration submergence. 414 

 415 

In addition to the newly identified function described above for leaf gas films in preventing ion 416 

intrusion into tissues when under saline submergence, leaf gas films also enhanced underwater gas 417 

exchange and internal aeration of submerged M. siculus, as found previously for submerged rice 418 

(Pedersen et al. 2009) and Spartina anglica (Winkel et al. 2011). Similar to these two other species, 419 

the gas films on leaves of M. siculus enhanced CO2 entry for underwater PN (Fig. 5) and in darkness 420 

O2 entry into leaves and internal diffusion along the petiole (Fig. 4). Interestingly, the 421 



Page 15 of 23 

 

measurements of underwater PN also showed that leaves of plants with roots pre-exposed to salinity 422 

had higher rates than leaves from non-saline plants (Fig. 5). This effect of pre-exposure to salinity 423 

was visually associated with more prominent gas films on these leaves when submerged. Further 424 

studies are needed to determine how any salt-induced structural or chemical alterations of the 425 

cuticle might influence leaf hydrophobicity and leaf gas film formation/persistence upon 426 

submergence. Differences in leaf hydrophobicity, as dependent on growth conditions, have been 427 

described for other species (seasonal changes in hydrophobicity observed in species of e.g., beech, 428 

oak and ginkgo; Neinhuis & Barthlott 1998). 429 

 430 

Leaf gas films of M. siculus protected against ion intrusion and facilitated gas exchange under 431 

saline submergence – but did this contribute to survival and growth of the plants? Plants with gas 432 

films did not grow during submergence, even in non-saline water, but when the gas films were 433 

removed shoot DM was reduced to half of the initial value (Fig. 6) as older leaves were injured, 434 

which then presumably was the cause of these leaves being detached within 3 d of submergence 435 

(data not shown). Plants in saline submergence solution suffered the most when leaf gas films were 436 

removed, degradation of the shoot was substantial (RGR was -0.3
 
d

-1
) presumably due to the high 437 

tissue Na
+
 and Cl

-
 concentrations (Fig. 3) having toxic effects. Detrimental effects of high tissue 438 

Na
+
 and Cl

-
 concentrations on leaf functioning were evident as a loss of photosynthetic capacity in 439 

leaves with gas films removed (Fig. 5). These plants did not survive after de-submergence 440 

(Supporting Information Table 1S).  441 

 442 

Although M. siculus could only survive complete submergence with low salinity (< 50 mol m
-3

 443 

NaCl), this species tolerated waterlogging with high salinity of 500 mol m
-3

 NaCl (Teakle et al. 444 

2012). When M. siculus maintains shoot contact with the atmosphere, the continuum of tissue gas-445 

filled spaces (in petioles, stem/root phellem, and primary aerenchyma in roots) promotes O2 446 

movement into the root system. M. siculus with shoots in air can even survive in a severely hypoxic 447 

root medium with salinity near that of seawater (Teakle et al. 2011). The thick layer of highly 448 

porous phellem at the shoot base and extending down the roots (porosity in Supporting Information 449 

Table 2S) provides a low-resistance pathway for O2 transport (i.e. aerenchyma) into and along roots 450 

of M. siculus (Teakle et al. 2011; Verboven et al. 2012).  451 

 452 
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In summary, this study has demonstrated that leaf gas films reduce ion ingress into leaves when 453 

submerged by saline water (supporting the first hypothesis in the Introduction) – the thin gas layer 454 

separates the floodwater from the leaf surface. The leaf gas films were also beneficial for 455 

underwater PN and internal aeration of submerged plants, supporting the second hypothesis and the 456 

present findings with M. siculus are also consistent with earlier findings on other species (see 457 

Introduction and Discussion). Thus, leaf gas films aid survival of plants exposed to short-term 458 

saline submergence. This role of leaf gas films should be evaluated also for other species that 459 

experience submergence by saline waters e.g., Phragmites australis (Adams & Bate 1999) or rice 460 

(Gregorio et al. 2002), to build on our present findings for M. siculus. 461 
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Tables 469 

Table 1: Summary of experiments and treatments imposed on Melilotus siculus. 470 

 471 

 

Treatment 

Number 

Root-zone 

salinity  

(mol m
-3

 NaCl) 

Root-zone 

aeration 

Submergence 

treatment
#
 

Submergence 

salinity  

(mol m
-3

) 

Gas film 

present* 

Dose response experiment 

1 0.1 Stagnant Emergent n.a. n.a. 

2 25 Stagnant Emergent n.a. n.a. 

3 50 Stagnant Emergent n.a. n.a. 

4 100 Stagnant Emergent n.a. n.a. 

5 0.1 Stagnant Submerged 0.1 Yes 

6 25 Stagnant Submerged 25 Yes 

7 50 Stagnant Submerged 50 Yes 

8 100 Stagnant Submerged 100 Yes 

Leaf gas films – influence on ion intrusion, underwater photosynthesis and internal 

aeration 

1 0.1 Stagnant Emergent n/a Yes
1 

2 0.1 Stagnant Emergent n/a No
2 

3 100 Stagnant Emergent n/a Yes
1 

4 100 Stagnant Emergent n/a No
2 

5 0.1 Stagnant Submerged 0.1 Yes 

6 0.1 Stagnant Submerged 0.1 No 

7 100 Stagnant Submerged 100 Yes 

8 100 Stagnant Submerged 100 No 

9 0.1 Aerated Emergent n.a. Yes
1 

10 0.1 Aerated Emergent n.a. No
2 

11 100 Aerated Emergent n.a. Yes
1 

12 100 Aerated Emergent n.a. No
2 

      

 

Additional growth conditions to establish supporting information 

S1 0.1 Aerated Emergent n.a. No
2 

S2 100 Aerated Emergent n.a. Yes
1 

S3 100 Aerated Emergent n.a. No
2 

S4 0.1 Stagnant Submerged 100 Yes 

S5 0.1 Stagnant Submerged 100 No 
#
‘Emergent’ plants had shoots completely in air and ‘Submerged’ plants were completely 472 

submerged by the solution in the tank so that no shoot parts were in contact with the air. *Gas films 473 

were removed by brushing with 0.1% v/v Triton X. Plants with gas films intact were brushed with 474 

DI water. . 
1,2

Emergent plants do not possess a ‘gas film’, i.e. 
1
brushed with DI water and 

2
brushed 475 

with 0.1% v/v Triton X, and the shoots remained in air.  476 
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Table 2. Impact of saline submergence on chlorophyll concentrations in leaves of Melilotus siculus. 477 

Prior to submergence, all plants had been pre-treated in the root medium with 0.1 or 100 mol m
-3

 478 

NaCl for 7 d with the last 4 d in stagnant deoxygenated nutrient solution (the various root-zone 479 

conditions continued during each respective submergence treatment). Gas films were removed by 480 

brushing with 0.1% v/v Triton X. Plants with gas films intact were brushed with DI water. Values 481 

are the mean (±SE, n=4).  482 

Submergence 

treatment 

(mol m
-3

 NaCl) 

 

Gas films 

present 

 

Leaflet Chla 

(µg g
-1

 FM) 

 

Leaflet Chlb 

(µg g
-1

 FM) 

 

Leaflet Chl  

a:b 

Emergent 0.1 Yes
1
 

 

456 ± 68 

 

103 ± 14 

 

4.4 ± 0.1 

Emergent 0.1 No
2
 365 ± 37 81 ± 9.1 4.5 ± 0.1 

Emergent 100 Yes
1
 249 ± 21 56 ± 1.6 4.4 ± 0.3 

Emergent 100 No
2
 241 ± 23 52 ± 5.2   4.6 ± 0.04 

Submerged 0.1 Yes 472 ± 21 119 ± 4.1   4.0 ± 0.06 

Submerged 0.1 No 471 ± 20 117 ± 5.5   4.0 ± 0.06 

Submerged 100 Yes 338 ± 38 83 ± 9.2   4.1 ± 0.03 

Submerged 100 No 196 ± 22 58 ± 6.1   3.4 ± 0.15 

LSD0.05 75.6 17.6 n.s. 
1,2

Emergent plants do not possess a ‘gas film’, i.e. 
1
brushed with DI water and 

2
brushed with 0.1% 483 

v/v Triton X, and the shoots remained in air.   484 
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Figure legends 485 

Figure 1. Photograph of submerged Melilotus siculus plants showing leaf gas films. Plants were 486 

submerged with gas films removed (-GF) using 0.1% v/v Triton X (left) or with gas films intact 487 

(+GF) (right). M. siculus exhibits a hyponastic response (reorientation of petioles towards the 488 

vertical direction) when submerged, but it does not display a shoot elongation response.  489 

 490 

Figure 2. Shoot ion concentrations of Melilotus siculus in response to increasing levels of salinity 491 

combined with submergence for 7 d (dose response experiment). Plants were submerged 28 d after 492 

imbibition. Prior to submergence, all plants had been pre-treated in the root medium with either 0.1, 493 

25, 50 or 100 mol m
-3

 NaCl for 7 d with the last 4 d in stagnant deoxygenated nutrient solution (the 494 

various root-zone conditions continued during each respective submergence treatment). Leaf gas 495 

films were present on all plants and were not artificially manipulated in this experiment. Values are 496 

the mean (±SE, n=4). Aerated controls for 0.1 and 100 mol m
-3

 NaCl treatments were (µmol g
-1

 497 

DM): Cl
-
, 56 ± 4.6 and 872 ± 65; Na

+
, 165 ± 4.4 and 1363 ± 53; K

+
, 1512 ± 85 and 1072 ± 50 498 

(mean ±SE, n=4). 499 

 500 

Figure 3. Effects of gas film removal on concentrations of Cl
-
, Na

+
 and K

+
 in the youngest fully 501 

expanded leaves (leaflets only) and whole shoots of Melilotus siculus, with time after submergence 502 

in saline solution. Plants were submerged 28 d after imbibition for a total of 6 d. Prior to 503 

submergence, all plants had been pre-treated in the root medium with 0.1 or 100 mol m
-3

 NaCl for 7 504 

d with the last 4 d in stagnant deoxygenated nutrient solution (the various root-zone conditions 505 

continued during each respective submergence treatment). Gas films were removed by brushing 506 

with 0.1% v/v Triton X (-GF). Plants with gas films intact were brushed with DI water (+GF). 507 

Values are the mean (± SE, n=4).   508 

 509 

Figure 4. O2 dynamics of petioles of Melilotus siculus in response to submergence in the dark and 510 

the influence of leaf gas films. O2 microelectrodes were inserted 50 mm below the leaflets, with the 511 

petiole in stagnant deoxygenated 0.1% w/v agar submergence medium. Gas films were removed by 512 

brushing with 0.1% v/v Triton X (-GF). Plants with gas films intact were brushed with DI water 513 

(+GF). Values are the mean ± SE (n=8). Different letters indicate significant differences between 514 

treatments (P<0.05) based on Tukey’s test. 515 
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 516 

Figure 5. Underwater net photosynthesis (PN) of Melilotus siculus in response to submergence in 517 

non-saline or saline solution and with presence or removal of leaf gas films. Plants were submerged 518 

28 d after imbibition. Prior to submergence, all plants had been pre-treated in the root medium with 519 

0.1 or 100 mol m
-3

 NaCl for 7 d with the last 4 d in stagnant deoxygenated nutrient solution (the 520 

various root-zone conditions continued during each respective submergence treatment). Gas films 521 

were removed by brushing with 0.1% v/v Triton X (-GF). Plants with gas films intact were brushed 522 

with DI water (+GF). Leaflets were removed 3 d after submergence treatments commenced and 523 

underwater PN measured for samples from plants that had been with shoots in air or submerged 524 

(with or without gas films). Values are the mean (±SE, n=4). Different letters indicate significant 525 

differences between treatments (P<0.05) based on Tukey’s test. Aerial photosynthesis was 526 

measured on intact emergent plants (i.e. shoots in air) and the average value for young fully 527 

expanded leaves in air was 20.6 ± 1.7 µmol CO2 m
-2

 s
-1

. 528 

 529 

Figure 6. Shoot dry mass (DM, a) and shoot relative growth rate (RGR, b) of Melilotus siculus in 530 

response to submergence with gas films intact (+GF) or removed (-GF) in saline and non-saline 531 

solutions for 6 d. Plants were submerged 28 d after imbibition. Prior to submergence, all plants had 532 

been pre-treated in the root medium with 0.1 or 100 mol m
-3

 NaCl for 7 d with the last 4 d in 533 

stagnant deoxygenated nutrient solution (the various root-zone conditions continued during each 534 

respective submergence treatment). Gas films were removed by brushing with 0.1% v/v Triton X (-535 

GF). Plants with gas films intact were brushed with DI water (+GF). Values are the mean (±SE, 536 

n=4). Different letters represent a significant difference between treatments (P<0.05) based on 537 

Dunn’s post hoc test. Values for root DM did not change during the treatment period and were not 538 

significantly different between treatments (average 0.127 g). DM for the emergent plants (i.e. with 539 

shoots in air) at day 6 were (g plant
-1

): 0.1 mol m
-3

 NaCl, 0.71 ± 0.03 (shoot) and 0.28 ± 0.02 (root); 540 

100 mol m
-3

 NaCl, 0.45 ± 0.04 (shoot) and 0.18 ± 0.01 (root).  541 
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Supporting Information Table 1S. Whole plant relative growth rate (RGR; assuming logarithmic 

growth or decay of tissue) of Melilotus siculus during a 6 d submergence period (indicated in table 

as 0-6 d) and following de-submergence for 7 d (indicated in table as 6-13 d). Plants were 

submerged 28 d after imbibition. Prior to submergence, all plants had been pre-treated in the root 

medium with 0.1 or 100 mol m
-3

 NaCl for 7 d with the last 4 d in stagnant deoxygenated nutrient 

solution (the various root-zone conditions continued during each respective submergence 

treatment). Gas films were removed by brushing with Triton X. Plants with gas films intact were 

brushed with DI water.l Values are the mean (±SE, n=4).  

Submergence 

treatment 

(mol m
-3

 NaCl) 

 

Gas films present 

 

RGR g g
-1 

d
-1 

0-6 d  

 

RGR g g
-1 

d
-1

 

6-13 d 

Emergent 0.1 Yes
1 

0.396 ± 0.011
de

 0.157 ±0.038
d
 

Emergent 0.1 No
2 

0.364 ± 0.022
d
 0.149 ±0.022

d
 

Emergent 100 Yes
1 

0.244 ± 0.044
d
 n.d. 

Emergent 100 No
2 

0.228 ± 0.025
d
 n.d. 

Submerged 0.1 Yes 0.031 ± 0.009
c
  0.373 ± 0.085

d
 

Submerged 0.1 No -0.129 ± 0.038
ab

 0.282 ± 0.029
d
 

Submerged 100 Yes -0.026 ± 0.020
b
 * 

Submerged 100 No -0.194 ± 0.049
a
 * 

Values with different letters were significantly different (P<0.05, Tukey test) 

*indicates plants for this treatment were all dead; n.d. = not determined 

1,2
Emergent plants do not possess a ‘gas film’, i.e. 

1
brushed with DI water and 

2
brushed with 0.1% 

v/v Triton X. 

 

  



Supporting Information Table 2S. Summary of the response of Melilotus siculus to complete 

submergence combined with salinity. Plants were submerged 28 d after imbibition. Prior to 

submergence, all plants had been pre-treated in the root medium with either 0.1 or 100 mol m
-3

 

NaCl for 7 d with the last 4 d in stagnant deoxygenated nutrient solution (the various root-zone 

conditions continued during each respective submergence treatment). Values are the mean (±SE, 

n=4). See Table 1 for treatment definitions. A: Porosity and shoot mass were measured 6 d after 

submergence. Plants were then de-submerged and grown with shoots in air for another 7 d to assess 

recovery. B: Shoot ion concentrations were measured after 6 d submergence. 

A. 

Submergence 

treatment 

Salinity 

(mol 

m
-3

) 

Petiole 

porosity 

(%) 

Tap root 

porosity 

(%) 

Shoot DM 6 d 

 submerged 

(g/plant) 

Shoot DM  

7 d recovery 

(g/plant) 

Emergent 0 12.3 ± 1.1  31.5 ± 2.2 0.48 ± 0.07 0.92 ± 0.2 

      

Submerged 0 4.5 ± 1.1 16.3 ± 4.3 0.078 ± 0.005 0.10 ± 0.04 

      

Emergent 100 6.7 ± 0.7 28.9 ±1.06 0.45 ± 0.01 1.06 ± 0.1 

      

Submerged 100 2.0 ± 0.4 7.9 ± 1.1 0.11 ± 0.01 0.19 ± 0.1 

      

P-value sub x salt* 0.369 0.038 0.405   0.361 

LSD0.05 2.2 3.2 0.05 0.12 

 

B.  

 

Submergence  

treatment 

 

Salinity 

(mol m
-3

) 

Shoot concentration (µmol g
-1

 DM) 

Cl
- 

Na
+ 

K
+ 

Emergent 0 57 ± 4 148 ± 1 1293 ± 160 

     

Submerged 0 102 ± 6 288 ±17  1824 ± 41 

     

Emergent 100 826 ± 38 1331 ± 76 795 ± 84 

     

     

Submerged 100 3440 ± 37 3918 ± 69 523 ± 14 

     

P-value sub x salt* <0.001 <0.001 <0.001 

LSD0.05 52 51 110 

 *P-values are given for the interaction between submergence and salinity treatments based on a 2-way ANOVA. 
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