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Abstract 34 

Alzheimer’s disease (AD) is a progressive degenerative disorder of the brain and is the most 35 

common form of dementia. To-date no simple, inexpensive and minimally invasive 36 

procedure is available to confirm with certainty the early diagnosis of AD prior to the 37 

manifestations of symptoms characteristic of the disease. Therefore, if population screening 38 

of individuals is to be performed, more suitable, easily accessible tissues would need to be 39 

used for a diagnostic test that would identify those who exhibit cellular pathology indicative 40 

of mild cognitive impairment (MCI) and AD risk so that they can be prioritized for primary 41 

prevention. This need for minimally invasive tests could be achieved by targeting surrogate 42 

tissues, since it is now well recognized that AD is not only a disorder restricted to pathology 43 

and biomarkers within the brain. Human buccal cells for instance are accessible in a 44 

minimally invasive manner, and exhibit cytological and nuclear morphologies that may be 45 

indicative of accelerated ageing or neurodegenerative disorders such as AD. However, to our 46 

knowledge there is no review available in the literature covering the biology of buccal cells 47 

and their applications in AD biomarker research. Therefore, the aim of this review is to 48 

summarize some of the main findings of biomarkers reported for AD in peripheral tissues, 49 

with a further focus on the rationale for the use of the buccal mucosa (BM) for biomarkers 50 

of AD and the evidence to date of changes exhibited in buccal cells with AD. 51 

 52 

Keywords 53 

Alzheimer’s disease, peripheral biomarkers, buccal mucosa, mild cognitive impairment, 54 
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1. Need for predictive biomarkers of AD 60 

Alzheimer’s disease (AD) is the sixth leading cause of death in the United States [1] and the 61 

most common form of dementia. AD patients have been reported with cognitive impairment 62 

characterized by impaired ability to register new information, reasoning, visuospatial 63 

abilities and language functions. AD patients also exhibit behavioural symptoms such as for 64 

instance, mood fluctuations, apathy, compulsive or obsessive behaviours and loss of 65 

interest, often correlated with loss of cognitive functions [2-5]. Previously, clinical diagnosis 66 

of AD were based upon criteria outlined by the National Institute of Neurological and 67 

Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and Related 68 

Disorders Association (ADRDA), published in 1984 including memory impairments, 69 

visuospatial and language impairment (aphasia) as measured by the Mini-Mental State 70 

Examination (MMSE) [6]. These criteria were recently revised by the NINCDS-ADRDA to 71 

incorporate biomarkers of brain amyloid-beta (cerebrospinal fluid (CSF) Amyloid-β 1-42, 72 

positive positron emission tomography (PET) amyloid imaging) and downstream neuronal 73 

degeneration (CSF Tau, magnetic resonance imaging of brain atrophy, PET imaging of 74 

fluorodeoxyglucose uptake) in the diagnosis of AD [5]. Although NINCDS-ADRDA does not 75 

encourage the use of such biomarkers within tests for routine diagnostic purposes, they can 76 

and should be used to increase certainty of diagnostic in research and clinical trials. 77 

However, the current suite of tests used in clinical diagnosis can only provide a possible or 78 

probable diagnostic of AD in living subjects and the definitive diagnostic can only be made 79 

during post-mortem. This is achieved by the observation of the extracellular senile plaques 80 

and intracellular neurofibrillary tangles in the specific areas of the brain such as the 81 

entorhinal cortex and hippocampus [7,8]. The number of new AD cases is dramatically 82 

increasing with an estimated 81.1 million people worldwide being affected by dementia by 83 

2040 [9] and since the pathogenic processes of AD are likely to begin years before clinical 84 

symptoms are observed, the need of predictive biomarkers has become urgent. Moreover 85 
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AD does not only alter the quality of life, health and wellbeing of those affected but also 86 

leads to a significant social financial burden [10,11]. 87 

 88 

2. Peripheral tissue as source for AD biomarkers 89 

A biomarker, as defined by the National Institutes of Health Biomarkers Definitions Working 90 

Group, is “a characteristic that is objectively measured and evaluated as an indicator of 91 

normal biological processes, pathogenic processes, or pharmacologic responses to a 92 

therapeutic intervention” [12]. A potential biomarker should be useful for detecting early 93 

stages of a disease and exhibit high levels of sensitivity and specificity.  The scientific 94 

community has been actively investigating potential early biomarkers of AD. Currently, the 95 

majority of investigators have used blood, CSF or brain imaging. In terms of direct brain 96 

imaging, Pittsburgh B (PiB) compound was used and shown to be able to readily detect 97 

amyloid-β (Aβ) protein aggregation forming senile plaques in specific regions of the brain, 98 

however it has been shown in some case reports that the accumulation of large plaques are 99 

necessary for PiB imaging to be useful [13,14]. Additionally, CSF has been used to identify 100 

changes in Aβ42 and Tau protein levels [15,16]. However, these methods of investigations are 101 

not ideal for screening populations since they are either too invasive and/or expensive 102 

[15,17,18]. Therefore, if screening of populations of individuals for the early detection of AD 103 

is to be performed, more suitable, easily accessible tissues need to be utilized introducing 104 

diagnostic tests at much lower costs together with high specificity and sensitivity. This need 105 

for minimally invasive tests could be achieved by targeting surrogate tissues reflecting 106 

systemic susceptibility as recent evidence indicates that AD is a disorder that is not 107 

completely restricted to pathology and biomarkers within the brain, but significant biological 108 

changes also appear in non-neural tissues such as fibroblasts, blood and buccal cells [19-23] 109 

and is summarized in Table 1.  110 

 111 
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2.1. Fibroblasts  112 

The plausibility that AD risk is reflected in cellular biomarkers in peripheral tissue has been 113 

investigated by studying well-known markers of genomic instability that have been reported 114 

to increase with age, and therefore suggest that the capacity for repair of DNA damage may 115 

also be altered in AD [24-26]. Micronuclei (MN) are a well validated and robust biomarker of 116 

whole chromosome loss and/or breakage that originate from chromosome fragments or 117 

whole chromosomes that lag behind at anaphase during nuclear division and have been 118 

shown to be predictive of increased cancer risk, cardiovascular mortality and have been 119 

found to be elevated in neurodegenerative disorders [27-30]. In fibroblasts for example, MN 120 

frequency has been shown to be increased with advancing age [31] as well as in AD [32]. 121 

Down’s syndrome is also considered a premature ageing syndrome with a high rate of 122 

conversion to dementia and is associated with abnormally high levels of DNA damage 123 

[33,34]. Furthermore, Down’s syndrome (trisomy 21) patients express brain changes by their 124 

4
th

 decade of life that are histopathologically indistinguishable from AD [35]. As the amyloid-125 

β protein precursor (AβPP) gene is encoded on chromosome 21 [36], it has been suggested 126 

that one of the underlying mechanisms of AD could be the altered gene dosage and 127 

subsequent expression of AβPP, leading to accumulation of the aggregating form of Aβ 128 

peptide following proteolysis. Peripheral tissue such as skin fibroblasts from familial and 129 

sporadic AD has been shown to exhibit a 2-fold increase in the number of trisomy 21 cells 130 

when compared to controls [35]. Moreover, an increase in immunostaining of amyloid 131 

peptides (Aβ40, Aβ42) as well as an imbalance between free cholesterol and cholesterol ester 132 

pools has been observed in fibroblasts of AD [37]. The capacity of fibroblasts to spread in 133 

culture was also observed to be altered in AD with a decrease of cytosolic free calcium 134 

(p<0.001) [38]. Furthermore an increase of total bound calcium in fibroblasts was observed 135 

when compared to age-matched controls [39]. 136 

 137 
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2.2. Olfactory epithelium  138 

Anosmia or olfactory dysfunction resulting in loss of smell is common in neurodegenerative 139 

diseases such as Parkinson’s or AD and may appear as one of the early symptoms. 140 

Furthermore, olfactory dysfunction has been found to be commonly associated with 141 

memory deficiency in transgenic mouse models of AD [40,41]. In humans, the olfactory 142 

epithelium was shown to be a peripheral tissue that exhibited increased oxidative damage in 143 

AD. HNE-pyrrole (a product of lipid oxidation) and heme oxygenase-1 (a catalytic enzyme 144 

involved in degradation of heme) levels were found to be increased in neurons and epithelial 145 

cells from olfactory biopsy sections in AD compared to healthy controls (p<0.002 and 146 

p<0.0001, respectively), thus confirming the presence of oxidative damage at a peripheral 147 

level in AD [42]. Increased levels of Aβ and hyperphosphorylated Tau were also observed in 148 

the olfactory epithelium in AD [21]. Detection was performed by immunohistochemistry and 149 

a significant increase in frequency of both Aβ (p<0.001) and hyperphosphorylated Tau 150 

(p<0.05) was observed when compared to controls [21]. Post-mortem neuropathological 151 

examination of participants’ brains were also undertaken and a significant correlation (r = 152 

0.37, p<0.001) was found between Aβ plaque frequency in olfactory epithelium and 153 

averaged Aβ frequency in multiple cortical regions (i.e. hippocampus, entorhinal cortex, 154 

amygdala, superior/middle temporal gyri, angular gyrus, mid-frontal gyrus, and anterior 155 

cingulate cortex) [21]. Additionally, there was a significant correlation found between 156 

hyperphosphorylated Tau in olfactory epithelium and hyperphosphorylated Tau in brains 157 

(p<0.05) [21]. Therefore, the presence of Aβ and Tau immunostaining could also be 158 

investigated in peripheral tissue such as olfactory epithelium for potential early AD 159 

biomarkers. 160 

 161 

2.3. Whole blood 162 
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Since blood can be sampled easily and may reflect pathological changes in AD, it is not 163 

surprising that this tissue has been commonly investigated as a source for AD biomarkers 164 

[43-45]. For instance, following completion of a genome-wide association study (Alzheimer’s 165 

Disease Neuroimaging Initiative) [46], TOMM40 (translocase of outer mitochondrial 166 

membrane 40) was found to be a potential gene associated with AD (TOMM40 risk alleles 167 

were two times more frequent than in controls) and therefore an additional risk for 168 

developing AD [46]. The expression of this gene has been found to be significantly down-169 

regulated in blood from AD compared to controls [44]. Another study, the Australian, 170 

Imaging, Biomarkers and Lifestyle study (AIBL) observed lower levels of red blood cell folate 171 

in AD patients compared to healthy controls (p=0.004), albeit serum folate did not show 172 

significant differences [47]. A recent study conducted by Leidinger et al. identified 140 173 

differentially expressed microRNAs (mi-RNAs), non coding RNAs that play key roles in the 174 

regulation of gene expression, in blood of Alzheimer’s patients when compared to controls 175 

and further validated a 12-miRNAs signature of AD [48]. Using this newly developed 176 

signature, AD patients were separated from the control group with 95.1% specificity and 177 

91.5% sensitivity. Additionally, this signature presented a separation of MCI versus control 178 

with 81.1% specificity and 87.7% sensitivity [48]. Although these studies on whole blood 179 

samples have shown interesting results, studies on blood components (i.e. white blood cells, 180 

platelets and plasma) have also brought to light several promising findings as discussed 181 

below. 182 

 183 

2.4. White blood cells  184 

Tau protein, one of the main proteins known to be associated with AD interacts with 185 

microtubules, actin filaments and intermediate filaments to play a key role in regulating the 186 

organisation and integrity of the cytoskeleton [49]. An increase in the phosphorylation levels 187 

of Tau was reported to occur due to the compromised function of protein phosphatase 2A in 188 
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AD brains [50,51]. Tau protein was shown to be elevated in CSF of AD patients and is an 189 

accepted biological marker of AD [15,16]. In lymphocytes, both phosphorylated and non 190 

phosphorylated forms of Tau were detected by Western blot and shown to be significantly 191 

increased in AD compared to controls (approximately 2-fold increase), with a direct 192 

correlation between phosphorylated Tau and disease duration [52]. Another protein, 193 

chitotriosidase (chitinase) a chitinolytic enzyme secreted by activated mononucleated cells 194 

that has previously been shown to exhibit a higher activity in CSF in AD [53,54], also showed 195 

a significantly increased level of expression (19-fold) in macrophages [55]. Evidence of the 196 

nuclear accumulation of γH2AX, a protein that becomes phosphorylated following induction 197 

of DNA double strand breaks, has been observed in astrocytes of AD brains [56]. Peripheral 198 

DNA damage, including single and double strand breaks, has been shown to increase in 199 

leukocytes of MCI and AD when compared to controls (p<0.001) [57]. Individuals with MCI 200 

have also been used to study biomarkers of AD since this group shows an approximate 50% 201 

of conversion into AD over 4 years [58] and it is interesting to note that the level of primary 202 

DNA damage is lower, although not significant, in AD compared with MCI [57]. This is 203 

suggestive that this type of DNA damage decreases as the disease progresses further. 204 

Oxidative stress which results in the accumulation of oxidized DNA base adduct 8-hydroxy-205 

2deoxyguanosine (8-OHdG) is also believed to be involved in a number of 206 

neurodegenerative diseases [59-61] and has been shown to occur prior to the pathology 207 

hallmarks of AD [62]. An approximate 5-fold increase in 8-OHdG was observed in CSF of AD 208 

compared with controls (p<0.001) and may partly explain the DNA damage that has been 209 

observed in AD cases [63]. The comet assay, which can be used to assess both single and 210 

double strand breaks in DNA, has also been utilized after enzyme treatment to demonstrate 211 

that peripheral leukocytes exhibit a significant increase in oxidative DNA damage markers 212 

i.e. oxidized DNA pyrimidines and purines in MCI and AD with respect to controls (p<0.002 213 

and p<0.001, respectively) [57]. More evidence has come from genomic instability markers 214 
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such as MN which were shown to increase in frequency in lymphocytes with age [64] and AD 215 

when compared to healthy controls [22,65,66].   216 

 217 

Another marker of genetic instability, telomere length, is known to change with ageing and 218 

in some cell types involves progressive telomere shortening. Telomeres are highly conserved 219 

DNA sequence repeats (of TTAGGG) involved in the maintenance of genome stability. 220 

Telomere length can be assessed by a variety of methods including southern blot, flow 221 

cytometry, quantitative fluorescence in situ hybridisation (FISH) or by quantitative reverse 222 

transcription-polymerase chain reaction (qRT-PCR) [67-70]. Shortened telomeres in blood 223 

have been shown to be associated with an increased risk of cardiovascular disease and 224 

degenerative disease such as cancers [71-73]. Telomere length has also been investigated in 225 

white blood cells of confirmed AD cases and found to be significantly shorter in those of AD 226 

patients compared with young and old controls (p<0.0001) [19]. Studies have shown a 227 

decrease in telomere length in lymphocytes isolated from AD that was correlated (r = -0.77) 228 

with a decrease in the MMSE scores indicating a possible link between telomere length and 229 

cognitive decline in AD [74].  230 

 231 

Lymphocytes from AD cases or first degree relatives also show substantial differences 232 

relative to controls with respect to intracellular lipid pods [75]. Oil Red O (ORO) staining 233 

(indicative of accumulation of neutral lipids) has been used to demonstrate higher levels of 234 

neutral lipids in peripheral blood mononuclear cells of probable AD patients [75]. The study 235 

by Pani et al. 2009 demonstrated that approximately 85% of isolated lymphocytes from AD 236 

had high neutral lipids levels (mainly cholesterol ester) as well as an increased content of the 237 

Acetyl-Coenzyme A acetyltransferase-1 protein (the enzyme that catalyses the formation of 238 

cholesterol esters in cells) compared with cognitively normal age-matched controls. These 239 
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data suggest that intracellular cholesterol ester levels are systemically increased in AD 240 

patients and support the hypothesis of altered lipid metabolism in AD.  241 

 242 

AD pathology has also been linked to proteins that are involved in maintaining the cell-cycle. 243 

For example hyperphosphorylated Tau is linked to the activity of cyclin-dependent protein 244 

kinases [76,77]; AβPP metabolism is monitored by cell-cycle dependent changes and is also 245 

up-regulated by mitogenic stimulation [78-80]; and finally Aβ (a product of AβPP processing) 246 

has been identified as mitogenic in in vitro studies [81,82]. A recent study using lymphocytes 247 

from AD patients demonstrated the potential of G1/S checkpoint proteins as biomarkers of 248 

AD. In that study, increased expression of Cyclin E, Rb, CDK2 and E2F-1 was observed and 249 

gave specificity/sensitivity scores of 84/81%, 74/89%, 80/78% and 85/85%, respectively [83]. 250 

These studies suggest that altered cell-cycle mechanisms may be indirectly involved in the 251 

process of AD onset and development.  252 

 253 

2.5. Platelets 254 

Platelets have also been investigated in AD and found to express changes with the disease 255 

state. For instance the ratio of two isoform products of AβPP processing (130kDa/110kDa) 256 

that occurs in platelets was studied as a potential biomarker and found to be decreased in 257 

platelet membranes in AD and MCI compared with their respective controls [84,85]. The 258 

presence of phosphorylated and non phosphorylated Tau protein was detected by 259 

immunofluorescence as well as different variant forms of Tau using Western blot 260 

techniques. The different immunoreactive fractions of Tau separated by Western were 261 

combined to obtain a ratio of high (>80 kDa) and low (<80 kDa) molecular weight bands and 262 

when quantified by imaging was found to be significantly increased in AD compared to 263 

healthy controls (p=0.0001) [23].  The results from this study confirmed that peripheral 264 

markers such as platelet Tau isoforms could serve as potential biological markers of AD. 265 
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 266 

2.6. Plasma 267 

Plasma is obtained with relative ease and has been used widely to identify potential 268 

biomarkers of AD. Plasma sampled from AD individuals has previously shown an 269 

approximate 4.8-fold increase in chitotriosidase levels when compared to healthy controls 270 

(p<0.001) [86]. YKL-40, a homolog to chitotriosidase was recently described in early stages of 271 

AD with significantly higher protein levels found in CSF (p<0.0001) as well as in plasma 272 

(p=0.014) compared to controls [87,88], and more importantly, presented a strong ability to 273 

predict onset and progression of dementia [87]. For instance, it was found that a high YKL-274 

40/Aβ42 ratio in CSF demonstrated strong predictive values of a faster cognitive decline, and 275 

that levels of YKL-40 significantly correlated (r = 0.5948, p<0.0001) with levels of 276 

phosphorylated Tau in CSF [87]. Analysis of plasma has some advantages as an approach to 277 

population-based screening of AD as it is well accepted and less invasive than CSF sampling, 278 

for example. A review of longitudinal studies that examined plasma levels of Aβ indicates 279 

that higher baseline levels of Aβ40 might predict higher risk of conversion towards AD [89] 280 

and that higher levels of Aβ42 were also associated with a 3-fold increase of AD risk [20]. 281 

Importantly, higher level of baseline plasma amyloid in people free of dementia appears to 282 

be a predictive marker of a faster cognitive decline in those individuals who converts to AD 283 

[90]. An intensive study investigating biomarkers for diagnosis of AD in the Australian 284 

Imaging, Biomarkers and Lifestyle study of ageing (AIBL) cohort identified a list of 21 plasma-285 

based biomarkers that showed a significant fold change between AD and healthy controls. 286 

The top 10 biomarkers with the most differences (p<0.0001) were as follows; insulin like 287 

growth factor binding protein 2, pancreatic polypeptide, cortisol, vascular cell adhesion 288 

molecule 1, superoxide dismutase, interleukins 10 and 17, albumin, calcium and Zinc 289 

(isotope 66) [43]. More recently a study from Mapstone et al. [91] discovered and validated 290 

a list of 10 phospholipid fatty acids that were depleted in healthy controls who would 291 
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convert to MCI or AD within a 2-3 year timeframe This panel of metabolites was still 292 

depleted after conversion and allowed separation of converters from controls that remained 293 

cognitively normal with more than 90% accuracy. Importantly, the ROC curve generated in 294 

their study showed an area under the curve (AUC) of 0.96 and a specificity and sensitivity of 295 

both 90% [91]. The evidence discussed above suggests that AD is a systemic disorder 296 

involving a change in a myriad of biological parameters that can be reflected in peripheral 297 

tissues.  298 

 299 

3. Focus on buccal cells as a peripheral tissue 300 

Buccal mucosa (BM), like the brain and skin epithelium cells, are derived from differentiated 301 

ectodermal tissue during embryogenesis and therefore would be a potential surrogate non-302 

neural tissue that may have the potential to reflect the underlying pathological changes 303 

observed in AD. Buccal cells have been used as a source of tissue in a variety of biochemical 304 

and molecular biology studies using an assortment of different techniques to collect the cells 305 

including; cotton swabs [92], cytobrushes [92-94], a “swish and spit” method [95-97], a 306 

modified Guthrie card [98] and a method of rubbing cheeks against teeth to exfoliate cells 307 

[94]. The results from those studies demonstrated that high quantities of buccal cells (more 308 

than a million per sampling) could be obtained and then subsequently used in a variety of 309 

assays; such as DNA analysis using PCR or other genotype tests [95,96,99-102], for isolation 310 

of mRNA for gene expression profiling, Western blots for detection of proteins and 311 

immunocytochemistry [103-105], high-performance liquid chromatography (HPLC) [106] and 312 

ion transporter assays [107]. Ideally invasive procedures should be avoided in AD patients 313 

due to age and presenting medical issues, therefore buccal cells could offer an appropriate 314 

alternative as a relatively non-invasive and easily accessible source of tissue for analysis. 315 

Furthermore, buccal cells have been shown to be osmotically stable in hypotonic solutions 316 

including water [108] making them more easily processed with less risk of losing intracellular 317 
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contents during investigation procedures. Additionally, it has been found that buccal cells 318 

can be readily preserved during transportation for cytology and immunocytochemistry 319 

studies by isolation directly into buccal cell buffer [109]. Therefore it would be possible to 320 

isolate buccal cells from patients in remote regions and facilitate storage of samples in 321 

laboratories. 322 

 323 

3.1. Morphological changes in buccal cells 324 

For the BM to be a valuable tissue to study for biomarkers of AD, the BM would need to 325 

exhibit changes within the cells that correlate well with the disease state. Structurally, the 326 

BM is a stratified squamous epithelium consisting of four distinct layers [110-112] as shown 327 

in Figure 1. First the stratum corneum lines the oral cavity. Below this layer, is located the 328 

stratum granulosum, and the stratum spinosum containing populations of differentiated, 329 

apoptotic and necrotic cells. The next layer contains the rete pegs or stratum germinativum 330 

composed of basal cells, which, by cell division and DNA replication regenerate and maintain 331 

the profile, structure and integrity of the BM [113]. The basal cells are believed to 332 

differentiate and migrate to the keratinized surface layer in 7 to 21 days. With normal ageing 333 

the efficiency of cell regeneration decreases [112,114] resulting in a thinner epidermis and 334 

underlying cell layers [115]. The protective function of the stratum corneum is not altered 335 

[116] but the rete pegs adopts a more flattened appearance [117,118].  336 

 337 

Since buccal cells and the nervous system are derived from the same germ cell layer, the 338 

ectoderm, the regenerative potential of BM might be affected in parallel with the 339 

regenerative potential of the brain, which is found to be altered in AD [119]. One study 340 

investigated the BM’s different cell types and its composition in AD compared with age-341 

matched controls by the use of the buccal cytome assay [120]. Frequencies of the various 342 

cell types were scored and an alteration of the BM composition was shown to occur in AD. A 343 
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significant decrease in the frequency of basal cells, karyorrhectic and condensed chromatin 344 

cells (p<0.0001) were found in the AD cohort [120] as shown in Figure 2. The odds ratio of 345 

being diagnosed with AD for a combined karyorrhectic and basal cell frequency of <41 per 346 

1000 cells was shown to be 140 with a specificity of 96.8% and a sensitivity of 82.4% [120]. 347 

This segregation of cell types has also been shown in an automated manner using imaging 348 

analysis by laser scanning cytometry (LSC) [121], making this cytome assay more feasible for 349 

scoring on a larger study scale. Another study [122], aimed at assessing morphologic and 350 

cytometric aspects of cells of the oral mucosa of AD patients using the Papanicolaou staining 351 

method [123]. A visual assessment of cell types was made by microscopy and cytological 352 

parameters were measured using the Image J analysis software. The results of that study 353 

demonstrated a significant reduction in the number of intermediate cells (p<0.05) as well as 354 

in the nuclear:cytoplasmic area ratio (p<0.0001) in the AD group compared to the controls 355 

[122]. Both studies suggest that changes occur in the BM of those diagnosed with AD in 356 

terms of cytological features and cell type composition which may indicate a decrease in the 357 

regenerative capacity of the BM in AD.  358 

 359 

3.2. Cytokeratins – Biochemical cell type segregation 360 

The frequency of basal buccal cells as discussed in the previous section was found to be 361 

lower in AD, using the buccal cytome assay, which scores cells on morphological features. 362 

Therefore, an epithelial cell differentiation marker may allow a more definite and precise 363 

identification of basal cells, as compared with visual assessment by the buccal cytome assay. 364 

Indeed, buccal cells contain groups of structural proteins called cytokeratins (CK) [124], that 365 

are found to be expressed in a tissue specific manner [125,126]. Buccal cells normally 366 

express CK 4, 5, 13, 14 and possibly 19 depending on their cell types [125,127]; CK5 and 367 

CK14 are predominantly expressed in the basal layer but after a period of differentiation and 368 

migration, buccal cells begin expressing CK4 and CK13 accompanied with a progressively 369 
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reduced expression of CK5 and CK14 [128]. Furthermore, in other epithelial tissues such as 370 

the olfactory epithelium, basal cells were shown to express keratin 8 [129]. An example of 371 

the differences in cytokeratin immunostaining of buccal cells observed by our group is 372 

shown in Figure 3, where some cells were found to be positive for CK5 or CK13, others were 373 

both CK5 and CK13 positive, whilst yet another population of buccal cells were negative for 374 

CK5 and CK13 (Figure 3). Another study also showed that CK10 and CK8 were detected in 375 

low amounts in buccal cells using immunocytochemistry techniques [128]. Interestingly, 376 

differential expression of CK proteins, such as CK5, has been observed in carcinomas of the 377 

BM [127,130]. For instance, in mucoepidermoid carcinoma there was a strong correlation of 378 

high levels of CK5 expression (in oral mucosa) with poorer survival times (p<0.001). 379 

Specifically, at the completion of that study, 12 (of 13) patients with high levels of CK5 380 

expression were deceased, compared with 6 patients out of the 18 patients with the lowest 381 

values of CK5 expression [130]. In another study investigating dementia, levels of keratin 382 

autoantibodies when quantified by enzyme-linked immunosorbent assay (ELISA) in serum 383 

from patients with dementia, including 68% of patients diagnosed with AD, were found to be 384 

significantly increased compared to healthy controls (p<0.05) [131]. It was speculated that 385 

the increase in presentation of the keratin antigen to the immune-competent cells may 386 

result from the degenerative process of the brain. Since CK expression has been widely 387 

shown to differ in the BM with cell types [125,127], developmental stage [132,133], tissue 388 

differentiation [126,134-138] and pathological conditions [139-145], CK proteins could 389 

provide information on the proliferation and differentiation status which may be dependent 390 

on the disease state. Furthermore CK staining of BM may offer a convenient 391 

immunocytochemical manner of identifying cell types which could be scored in a 392 

quantitative and automated manner in AD patients using cellular imaging techniques such as 393 

laser scanning cytometry. 394 

 395 
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3.3. Buccal cells and Tau 396 

Accumulation of Tau forming neurofibrillary tangles (NFTs) in the brain is one of the main 397 

hallmarks of AD and has a major role in neuronal death. Hattori et al. [103] demonstrated 398 

the presence of putative multiple isoforms of Tau on Western blots that were the non-399 

phosphorylated form of Tau protein in buccal cells with the prominent appearance of two 400 

bands at approximately 65 kDa and 110 kDa, using the monoclonal BT-2 antibody. Using 401 

ELISA techniques, total Tau protein was shown to be significantly elevated within buccal cells 402 

of AD compared with age-matched controls (p<0.01). Furthermore, the increase in Tau of 403 

oral epithelium was shown to be significantly correlated with the Tau level in CSF (r = 0.43, 404 

p=0.011) and was also higher in AD subjects when diagnosed at a younger age of onset than 405 

with patients at later age of onset [103]. Therefore it is feasible that oral epithelium Tau may 406 

be a measurable and useful predictive biomarker of AD in buccal cells; however this unique 407 

observation has not been verified yet in other studies and awaits replication. 408 

 409 

3.4. Buccal cells and Amyloid 410 

Aβ is the main component of senile plaques appearing in the brains of AD and is generated 411 

by the processing of its precursor AβPP. Since AβPP is ubiquitously expressed, it may be 412 

involved in stimulation and proliferation of keratinocytes where they are mostly expressed 413 

in the basal layer [146]. It is feasible that differences of AβPP expression in the BM could 414 

therefore also reveal information regarding the regeneration potential of the BM in AD. The 415 

expression of AβPP was shown to be present in the buccal pouch of hamsters and AβPP is 416 

believed to promote the development of oral carcinogenesis [147]. The biopsy of oral tissues 417 

for instance has been advocated as an alternate method of detecting amyloid deposition in 418 

amyloidosis [148] confirming that amyloid can accumulate to detectable levels in peripheral 419 

tissue such as the liver in systemic amyloidosis [149]. AβPP has previously been investigated 420 

in young adult Wistar rats and localized by immunohistochemistry in several peripheral 421 
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tissues, i.e. liver, kidney, spleen, pancreas, salivary gland, testis and ovary [150]. Since AβPP 422 

is a protein ubiquitously expressed in humans, it is likely that Aβ protein which is processed 423 

from AβPP and its’ variants (e.g. monomers, dimers, oligomers, etc…) may be a plausible 424 

target to be investigated in the BM of AD patients [151]. It is plausible that a genetic or 425 

acquired predisposition for amyloidogenic processing of AβPP could be evident not only in 426 

the brain but also in epithelial tissues. 427 

 428 

3.5. Buccal cells and DNA damage 429 

Genomic DNA damage has been shown to be associated with AD as discussed earlier [152]. 430 

Genomic instability has been reported to increase with age and therefore the capacity for 431 

DNA damage repair may also be altered [24-26]. In buccal cells a buccal micronucleus 432 

cytome assay was developed by Thomas et al. to score DNA damage, cell death and 433 

regenerative potential [120,153]. A Down’s syndrome cohort was used as a model for 434 

premature ageing and presented a significantly elevated level of MN compared with both 435 

the older and younger control groups (p<0.0001) [154]. The same buccal micronucleus 436 

cytome scoring assay was performed on an Alzheimer’s cohort and showed a slightly 437 

elevated MN score in the AD group when compared to age-matched controls, but this 438 

difference did not reach statistical significance [120]. Genomic changes such as aneuploidy 439 

of both chromosomes 17 and 21, containing respectively the genes coding for Tau and AβPP 440 

[155,156], has also been investigated in buccal cells. Aneuploidy levels of chromosomes 17 441 

and 21 were shown to increase in buccal cells in AD and Down’s syndrome compared to 442 

their respective controls [157]. Additionally, DNA double strand breaks have been detected 443 

in human buccal cells using an immunofluorescent antibody against γH2AX [158], therefore 444 

confirming that MN and γH2AX are two important DNA damage biomarkers that can be 445 

detected and may be altered in buccal cells from patients with AD. Oxidative stress has also 446 

been studied in leukocytes and exfoliated BM using HPLC after DNA isolation [106] and 447 
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because the association between accumulated oxidative DNA damage and ageing is well 448 

documented, it is possible that the BM may show changes in 8-OHdG levels from AD buccal 449 

samples; however this has yet to be tested. 450 

 451 

3.6. Buccal cells and cytological parameters 452 

In a recent study from our group, an automated buccal cell assay was developed using laser 453 

scanning cytometry (LSC) to measure buccal cell neutral lipid, nuclear DNA content and 454 

nuclear shape from clinically diagnosed AD, MCI patients and age- and gender-matched 455 

controls [109]. Findings showed significantly lower levels of neutral lipids in MCI and a 456 

significant increase in DNA content in both MCI and AD compared to controls. The ploidy 457 

distribution of nuclei was also investigated in this study and showed that the increase in 458 

DNA content observed in MCI and AD cases were due to a significant decrease in the 459 

proportion of 2N nuclei with a concomitant increase in the proportion of >2N nuclei. 460 

Additionally, the LSC automated buccal cell assay developed by our group allowed collection 461 

of “circularity” measurements providing information on the shape of buccal cell nuclei. It 462 

was found that nuclei had a significantly more irregular shape in MCI and AD when 463 

compared to controls [109]. These results suggest that the changes in DNA content are due 464 

to hyperdiploid nuclei accumulating with the disease state. ROC curves were also used in this 465 

study for each of the parameters analysed and their combination, generating AUC varying 466 

from 0.763 to 0.837 [109]. It would therefore be of interest to combine this automated assay 467 

with detection of other potential specific protein markers, which may increase the likelihood 468 

of better predictive markers for AD. 469 

 470 

3.7. Buccal cells and telomere length 471 

Absolute telomere length has been investigated in buccal cells of confirmed AD cases and 472 

healthy age- and gender-matched controls. A significantly shorter telomere length was 473 
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observed in buccal cells of the AD group compared to controls (p=0.01). Additionally, in the 474 

same individuals, there was a significant decrease in telomere length in white blood cells 475 

(p<0.0001) [19]. However there was no correlation between buccal cell and lymphocyte 476 

telomere length. This may be partly due to the differences in turnover rates of cell division in 477 

buccal cells compared with lymphocytes. Although the evidence is minimal to-date, buccal 478 

cells and lymphocytes appear to exhibit a reduction in telomere length in AD and therefore, 479 

suggest that other peripheral tissues inducing BM may also be used to assess reductions in 480 

telomere length in AD. 481 

 482 

4. Future perspectives 483 

As populations throughout the world continue to age, the prevalence of AD is expected to 484 

increase dramatically. By 2050 nearly one million new AD cases per year has been estimated, 485 

with this increasing prevalence becoming a global concern threatening to impact heavily on 486 

both social and economic levels [10,159-161]. Therefore biomarkers for an early diagnostic 487 

of the disease would tremendously benefit the community as treatment strategies would 488 

likely to be more effective in preserving brain function if administered early in the disease 489 

process prior to the development of symptoms. Evidence that pathologic changes of AD are 490 

reflected in peripheral tissues such as fibroblasts, olfactory epithelium, whole blood, 491 

platelets, white blood cells and plasma indicates that AD is a systemic disorder and that 492 

these tissues should be considered as a useful source for  potential biomarkers (see Table 1). 493 

However, investigating a minimally invasive tissue such as the BM as a source of biomarkers 494 

with high specificity and sensitivity for AD is yet to be achieved. The BM is an easily 495 

accessible non neuronal tissue, which offers a simple, painless and non-expensive sampling 496 

procedure. Previous findings suggest that the regenerative potential of the buccal mucosa 497 

varies and cytological changes occur within buccal cells following the appearance of AD. 498 

However there is still little known in this area regarding buccal cell differentiation and 499 
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proliferation status. Only a few studies have investigated changes in the oral mucosa in AD 500 

investigating cytological parameters, cell type composition, qualification of Tau, MN, DNA 501 

content, lipids, telomere length as well as chromosome 17 and 21 aneuploidy (see Table 1) 502 

confirming that the BM is a potential tissue for AD diagnostic biomarkers. Therefore, further 503 

research must be undertaken in order to obtain a better understanding of the biology of 504 

buccal cells, to replicate such studies and investigate other potential markers of AD that 505 

might include lipid content, APOE gene expression, AβPP, Aβ, γH2AX, 8-OHdG as well as 506 

others. Longitudinal studies could then be undertaken to capture the variation in biomarkers 507 

with the progression of the disease and the associated cognitive decline. This review 508 

summarizes some of the knowledge gaps in buccal cells as a peripheral tissue for AD 509 

diagnostics. If combined with results from other peripheral tissues, new biomarker sets 510 

could emerge that may identify individuals who are at increased risk or are at an early stage 511 

of AD with much higher certainty. Therefore, investigations involving minimally invasive non-512 

neural tissue for sampling biomarkers cellular origin of MCI/AD risk need to be further 513 

investigated. 514 
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Table 1: Summary of AD biomarkers altered in peripheral tissues. 1133 

 1134 

Peripheral tissue 

investigated  

Parameters measured and outcome Reference(s) 

Fibroblast 

3-fold ↑ MN frequency [32] 

2-fold ↑ Trisomy 21 levels [35] 

1.3-fold ↑ Immunostaining of amyloid pep[des (Aβ40, 

Aβ42)  

[37] 1.3-fold ↓ β-Secretase 1 

6-fold ↑ Rate of cholesterol esterifica[on a^er 48 h  

56% ↑ pool of neutral lipids 

Altered pattern of spreading in culture 

[38] 

70% ↓ Free calcium content 

197% ↑ Bound calcium content [39] 

Whole blood 

TOMM40 alleles ↑ disease risk by 2 [46] 

10% ↓ Red blood cell folate [47] 

AD signature of 12 mi-RNAs identified, compared with 

controls (95% specificity / 91.5% sensitivity) 

[48] 

White blood cell 31% ↓ Telomere length [19] 

Lymphocyte 

↑ Neutral lipid accumulation [75] 

2-fold ↑ Total Tau [52] 

↑ MN frequency in chromosomes 13 and 21 [22,65,66] 

1.15-fold ↓ Telomere length correlated with ↓ 

MMSE scores (r = -0.77) 

[74] 

↑ G1/S checkpoint proteins (Cyclin E, Rb, CDK2 and [83] 
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E2F-1) 

Leukocyte 

2-fold ↑ Single and double strand breaks combined 

2.6-fold ↑ DNA oxidized pyrimidines  

2-fold ↑ DNA oxidized purines  

 

[57] 

 

Macrophage 19-fold ↑ Chitotriosidase expression level  [55] 

Platelet 

2.1-fold ↓ AβPP Isoforms (130kDa/110kDa) ratio in 

platelet membranes 

[84,85] 

6.5-fold ↓ High kDa/Low kDa forms of Tau ra[o [23] 

Plasma 

↑ Aβ in individuals who further convert to AD [89] 

↑ Aβ42 predicts ↑ AD risk [20] 

↑ Aβ predicts faster cognitive decline [90] 

↑ Insulin growth factor binding protein 2, pancrea[c 

polypeptide, cortisol, vascular cell adhesion molecule, 

superoxide dismutase, interleukin 10 

[43] 

↓ Albumin, Calcium, Zinc (isotope 66), interleukin 17 

4.8-fold ↑ Chitotriosidase level [86] 

3.7-fold ↑ YKL-40 level [88] 

10 lipids panel predicting conversion to MCI or AD 

ROC curve AUC value was 0.96 

[91] 

Nasal cell 

3.7-fold ↑ Abundance ra[ngs for Aβ and 1.8-fold ↑ 

for phosphorylated Tau 

[21] 

1.2-fold ↑ HNE-pyrrole and 1.5-fold ↑ Heme 

oxygenase-1 

[42] 

Buccal cell 

↓ Frequencies of basal, karyorrhectic and condensed 

chromatin cells 

[120] 
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1.24-fold ↓ Nuclei/Cytoplasmic size ra[o in 

intermediate cells [122] 

1.5-fold ↓ Intermediate cell frequency 

↑ MN frequency in Down’s syndrome [121,154] 

1.75-fold ↑ Tau correlated (r = 0.43) with ↑ Tau in 

CSF 

[103] 

1.2-fold ↑ Aneuploidy levels of chromosome 17 

[157] 

1.5-fold ↑ Aneuploidy levels of chromosome 21 

2-fold ↓ Telomere length [19] 

1.7 fold ↑ and 1.5 fold ↑ DNA content in MCI and AD, 

respectively 

1.5 fold ↓ Neutral lipid content in MCI 

1.7 fold ↓ and 1.5 fold ↓ 2N nuclei popula[on in MCI 

and AD, respectively 

↑ irregular nuclear shape 

[109] 

 1135 

 1136 

Abbreviations: Aβ, Amyloid-β; AD, Alzheimer’s disease; AβPP, Amyloid-β protein precursor; 1137 

CSF, Cerebrospinal fluid; mi-RNAs, microRNAs; MMSE, Mini-mental state examination; MN, 1138 

Micronuclei. 1139 
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Figure 1.  1148 
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Figure 2. 1161 
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Figure 3. 1183 
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 1197 

Figure legends 1198 

 1199 

Figure 1: Diagrammatic representation of a cross section of normal buccal mucosa.  1200 

The schematic is illustrative of a healthy individual’s buccal mucosa, highlighting the 1201 

different cell layers and possible spatial relationships of the various cell types present. 1202 

 1203 

Figure 2: Changes in the buccal cytome are associated with AD.  1204 

The frequency (%) of different buccal cell types scored for AD (n=31) and their age- and 1205 

gender-matched controls (n=31); for (A) condensed chromatin cells, (B) basal cells and (C) 1206 

karyorrhectic cells. Representative images of the buccal cell nuclei (which are one of the 1207 

parameters used to define the buccal cytome in addition to the cytoplasm area and staining 1208 

intensity) are shown as insets within each graph. Abbreviations: AD, Alzheimer’s disease; 1209 

Data are Mean +/- SD. ****p<0.0001. Adapted from Thomas et al. 2007 [120]. 1210 

 1211 

Figure 3: Immunocytochemistry techniques showed a difference in expression of 1212 

Cytokeratin 5 and 13 within buccal cells.  1213 

(A) Schematic showing the differential expression of cytokeratins within the buccal cell 1214 

layers. (B) Cytokeratin 5 and 13 were detected using an immunocytochemistry dual-staining 1215 

technique, cells expressing cytokeratin 13 were detected with a secondary antibody 488 1216 

Alexa Fluor (Green) and cells expressing cytokeratin 5 were detected with a secondary 1217 

antibody 647 Alexa Fluor (Red). (C) Using Laser Scanning Cytometry different populations of 1218 

cells were scored depending on the type of cytokeratin expressed. (D) From the scattergram 1219 

in (C), the percentage of buccal cell types based on cytokeratin 5/13 expression is shown. 1220 


	Biomarkers of Alzheimer's disease risk in peripheral tissues; focus on buccal cells
	/var/tmp/StampPDF/RcePpJXzsc/tmp.1434507125.pdf.wUQ5F

