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ABSTRACT. A growing literature advocates the use of high-frequency data for the purpose of volatility es-
timation. However, despite the successes in modeling the conditional mean of realized volatility empirical
evaluations of this class of models outside the realm of short run forecasting is limited. How can realized
volatility be used for pricing options? What are the modeling qualities introduced by realized volatility mod-
els for pricing derivatives? In this short paper, we propose an options pricing framework based on a new
realized volatility model that captures all the relevant empirical regularities of the realized volatility series
of the S&P 500 index. We emphasize two main empirical regularities for our volatility model and that are
potentially very relevant for option pricing purposes.

Fist, realized variation measures constructed from high-frequency returns reveal a large degree of time se-
ries unpredictability in the volatility of asset returns. Even though returns standardized by (ex-post) quadratic
variation measures are nearly gaussian, this unpredictability brings substantially more uncertainty to the em-
pirically relevant (ex-ante) distribution of returns. In this setting carefully modeling the stochastic structure
of the time series disturbances of realized volatility is fundamental. Second, there is evidence of very large
leverage effects; large falls (rises) in prices being associated with persistent regimes of high (low) variance in
the index returns.

We propose a model for the conditional volatility, skewness and kurtosis of daily index and stocks returns.
The main new feature of this model is to recognize that volatility is itself more volatile and more persistent in
high volatility periods. Contrary to “peso problem” considerations, we show that when volatility is (nearly)
observable it is not necessary to rely on rare realizations on past return data to learn about the tails of the
return distribution, an unexplored and large modeling gain enabled by high frequency data.

We conduct a brief empirical illustration analysis of the pricing performance of this approach against some
benchmark models using data from the S&P 500 options in the 2001-2004 period. The results indicate that
as expected the superior forecasting accuracy of realized volatility translates into significantly smaller pricing
errors when compared to models of the GARCH family. More significantly, our results indicate that modeling
leverage effects and the volatility of volatility are paramount reducing common pricing anomalies.

KEYWORDS: Realized volatility, option pricing, volatility of volatility, forecasting.
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2 PRICING OPTIONS BY SIMULATION USING REALIZED VOLATILITY

1. INTRODUCTION

The advent of high frequency stock market data and the subsequent introduction of realized volatility
measures represented a substantial step forward in the accuracy with which econometric models of volatil-
ity could be evaluated and allowed for the development of new and more precise parametric models of time
varying volatility. Several researchers have looked into the properties of ex post volatility measures de-
rived from high frequency data and developed time series models that invariably outperform latent variable
models of the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) or stochastic volatil-
ity family of models (Andersen et al., 2003) on forecasting future volatility, to the point that the comparison
has been dropped altogether in recent papers.

Contributions to the realized volatility modeling and forecasting literature are exemplified by Andersen
et al. (2003) and the HAR (heterogeneous autoregressive) model of Corsi (2004). Martens et al. (2004) de-
velop a nonlinear (ARFIMA) model to accommodate level shifts, day-of-the-week effects, leverage effects
and volatility level effects. Andersen et al. (2007) and otheres argue that the inclusion of jump components
significantly improves forecasting performance. Scharth and Medeiros (2009) introduce multiple regime
models linked to asymmetric effects. Bollerslev et al. (2009) propose a full system for returns, jumps and
continuous time for components of price movements using realized variation measures.

Despite these successes in modeling the conditional mean of realized volatility, empirical evaluations of
this class of models outside the realm of short run forecasting is limited. Fleming et al. (2003) examines
the economic value of volatility timing using realized volatility. Bandi et al. (2008) evaluates and com-
pares the quality of several recently-proposed realized volatility estimators in the context of option pricing
and trading of short term options on a stylized setting. Stentoft (2008b) derive an appropriate return and
volatility dynamics to be used for option pricing purposes in the context of realized volatility and perform
an empirical analysis using stock options for three large American companies.

In this short paper, we propose an options pricing framework based on a new realized volatility model
that captures all the relevant empirical regularities of the realized volatility series of the S&P 500 index and
conduct a brief empirical analysis of the pricing performance of this approach against some benchmark
models using data from the S&P 500 options in the 2001-2004 period. The results indicate that as expected
the superior forecasting accuracy of the proposed realized volatility model translates into significantly
smaller pricing errors when compared to models of the GARCH family. More significantly, our results
indicate that modeling leverage effects and the volatility of volatility are paramount reducing common
pricing anomalies.

2. DATA AND STYLIZED FACTS OF REALIZED VOLATILITY

2.1. Realized volatility and Data. Suppose that at day t the logarithmic prices of a given asset follow a
continuous time diffusion:

dp(t + τ) = µ(t + τ) + σ(t + τ)dW (t + τ), 0 ≤ τ ≤ 1, t = 1, 2, 3...

where p(t + τ) is the logarithmic price at time t + τ , is the drift component, σ(t + τ) is the instantaneous
volatility (or standard deviation), and dW (t + τ) is a standard Brownian motion. Andersen et al. (2003)
(and others) showed that the daily compound returns, defined as rt = p(t) − p(t + 1), are Gaussian
conditionally on Ft = σ(p(s), s ≤ t), the σ-algebra (information set) generated by the sample paths of p,
such that

rt|Ft ∼ N

(∫ 1

0
µ(t− 1 + τ)dτ,

∫ 1

0
σ2(t− 1 + τ)dτ

)
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PRICING OPTIONS BY SIMULATION USING REALIZED VOLATILITY 3

The term IVt =
∫ 1
0 σ2(t− 1 + τ)dτ is known as the integrated variance, which is a measure of the day

t ex post volatility. In this sense, the integrated variance is the object of interest. In practical applications
prices are observed at discrete intervals. If we set pi,t, i = 1, .., n to be the ith price observation during
day t, realized variance is defined as

∑n
i=1 r2

i,t. The realized volatility is the square-root of the realized
variance and we shall denote it by RVt. Ignoring the remaining measurement error, this ex post volatility
measure can modeled as an “observable” variable, in contrast to the latent variable models.

In real data, however, high frequency measures are contaminated by microstructure noise such as bid-
ask bounce, asynchronous trading,infrequent trading, price discreteness, among others. In this paper, we
turn to the theory developed by Barndorff-Nielsen et al. (2008) and implement a realized kernel estimator
based on one minute returns and the modified Tukey-Hanning kernel, which is consistent in the presence
of microstructure noise.

The empirical analysis focuses on the realized volatility of the S&P 500 index (SPX) and the S&P 500
options traded the Chicago Board Options Exchange (CBOE). The raw intraday data was obtained from
the Taqtiq/SIRCA (Securities Industry Research Centre of Asia-Pacific) database. To calculate the realized
volatility series we use tick-by-tick open to close quotes originated in the E-Mini S&P500 futures market
of the Chicago Mercantile Exchange.1 The period of analysis for the realized volatility starts in January 2,
1996, and ends in November 28, 2008. For the options, we record daily intraday option prices close to the
14 : 30 time mark between January 2, 2001, and ends in March 15, 2004. The data for the risk-free rate is
obtained from the three month T-Bill.

3. MODELING REALIZED VOLATILITY AND PRICING EUROPEAN OPTIONS

3.1. The HAR/AE-VL Model. Our model for returns, realized volatility and the volatility of realized
volatility is given by:ecalling that we shall be working with the realized volatility (RVt), consider the
notation RVj,t =

∑t
i=t−j+1 RVt,j/j. We can then write our HAR model with daily, weekly and monthly

components as:

rt = µt + RVtεt,

RVt = φ0 + φ1RVt−1 + φ2RV5,t−1 + φ3RV22,t−1

+ λ1I(rt−1 < 0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1

+ λ3I(r22,t−1 < 0)r22,t−1 + htνt,

h2
t = θ0 + θ1E(RVt|Ft−1)2 + θ2ν

2
t−1,

(1)

where rt is the log return at day t, µt is the conditional mean for the returns, RVt is the realized volatility, εt

is N.i.d.(0, 1), ψt shifts the unconditional mean of realized volatility, d denotes the fractional differencing
parameter, L the lag operator, I is the indicator function, rj,t−1 is a notation for the cumulated returns∑t−1

i=t−j rt−i, ht is the volatility of the realized volatility, νt is i.i.d. and distributed normal inverse gaussian
with E(νt) = 0 and E(ν2

t ) = 1, εt and νt are allowed to be dependent, Ft−1 is the information set of the
end of day t − 1 and E(RVt|Ft−1) is given by the model for the conditional mean of realized volatility.
We discuss below each part of the general model separately.

3.1.1. HAR specification. The HAR (Heterogeneous Autoregressive) model proposed by Corsi (2004) is
an unfolding of the Heterogeneous ARCH (HARCH) model developed by earlier in. It is specified as
a multi-component volatility model with an additive hierarchical structure, leading to an additive time

1These fully electronic contracts feature among the most liquid derivatives contracts in the world, therefore closely tracking price
movements of the S&P 500 index.
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4 PRICING OPTIONS BY SIMULATION USING REALIZED VOLATILITY

series model of the realized volatility which specifies the volatility as a sum of volatility components over
different horizons.

We can see that the HAR specification is an AR(22) model rendered parsimonious by several param-
eter restrictions. Simulations reported in Corsi (2004) that the HAR model is capable of reproducing the
observed hyperbolic decay of the sample autocorrelations of realized volatility series over not too long hori-
zons. Moreover, the model displays forecasting performance which is similar to that of ARFIMA models.
For its estimation simplicity, the HAR-RV has been commonly favored in the high frequency econometrics
literature (e.g, Andersen et al., 2007).

3.1.2. Asymmetric Effects. Scharth and Medeiros (2009) (among others) highlight the impact of leverage
effects on the dynamics of realized volatility. The latter argues for the existence of regime switching
behavior in volatility, with large falls (rises) in prices being associated with persistent regimes of high
(low) variance in stock returns. The authors show that the incorporation of cumulated daily returns as a
explanatory variable brings modeling advantages by capturing this effect, which can be quite large; after
analyzing certain stocks in the Dow Jones index, the authors document that falls in the horizon of less
than two months are associated with volatility levels that are up to 60% higher than the average of periods
with stable or rising prices. We estimate models with and without such effects. We also consider the
relation between returns and volatility on a same day (which comes from the dependence between νt and
ε, discussed soon).

3.1.3. Volatility of Volatility. Allen et al. (2009) show that the time series of the volatility of the realized
volatility of the S&P500 index displays evidence of long memory, leverage effects and high correlation
with the level of volatility. To account for all these aspects simultaneously and parsimoniously, we take the
“level of volatility” to be the conditional mean of volatily and set the variance of the errors to be a function
of this variable.

3.1.4. The Distribution of νt. To account for the non–gaussianity of the error terms we follow Corsi et al.
(2008) and assume that the (unconditional) i.i.d. innovations εt are distributed normal inverse Gaussian
(NIG). The density of the NIG distribution is given by:

f(x; α, β, µ, δ) =
α

π

K1

(
αδ(

√
1 +

(x−µ
δ

)2
)

√
1 +

(x−µ
δ

)2
exp

{
δ

(√
α2 − β2 + β

(
x− µ

δ

))}
(2)

where Ki(x)is the modified Bessel function of the second kind with index i; µ ∈ R denotes the location
parameter, δ > 0 the scale, α > 0 the shape, and β ∈ (−α, α) the skewness parameter. µ and δ are always
set so that the distribution has mean 0 and variance 1.

3.1.5. The Dependence between νt and εt. To account for the asymmetry in the ex-ante return distribution,
we let νt and εt be dependent and model this dependence via a bivariate Clayton copula. Let U = Φ(εt) and
V = 1−Υ(νt), where Φ(.) and Υ(.) are the corresponding normal and NIG cdfs for εt and νt respectively.
The joint CDF or copula of U and V is given by:

Cκ ≡ P (U ≤ u, V ≤ v) =
(
u−κ + v−κ − 1

)−1/κ(3)
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PRICING OPTIONS BY SIMULATION USING REALIZED VOLATILITY 5

3.2. Estimation. To estimate the model we maximize the following log-likelihood function:

`(d̂, φ̂, ψ̂, λ̂, θ̂, α̂, β̂; RV1...T , X1...T ) = T log(α̂)− T log(π) +
T∑

t=1

log
[
K1(α̂δ̂(1 + ŷ2

t )
1/2)

]

−0.5
T∑

t=1

log(1 + ŷ2
t ) + T δ̂(α̂2 − β̂2)1/2 + δ̂β̂

T∑

t=1

ŷt

−0.5
T∑

t=1

log(ĥt)

(4)

where X collects the additional explanatory variables, γ = (α̂2 − β̂2)1/2 and ŷt = ν̂t/ĥt−µ̂

δ̂

3.3. A Monte Carlo Method for Return Density Forecasting. In this section, we propose a method that
will enable the application of the modeling framework described previously when the ex-ante density of
daily returns is of interest. This implies that the distribution of returns standardized by the conditional mean
of realized volatility departs significantly from the normal distribution verified when the same returns are
standardized by the realized volatility. Unfortunately, an analytical solution for the density implied by our
flexible normal variance-mean mixture hypothesis (realized volatility is distributed normal inverse gaussian
and returns given volatility are normally distributed) is not available. We then turn to the following Monte
Carlo method. Conditional on information up to day t − 1, the forecasted empirical density function for
day t can be calculated as follows:

(1) The functional form of the model is used for the evaluation of predictions of the realized volatil-
ity and the volatility of volatility conditional on past realized volatility observations, returns, the
estimated volatility of volatility series and shocks, and other variables. We randomly generate n
shocks distributed as the standardized NIG with the parameters estimated from the data as de-
scribed in section, which multiplied by h̃t and added to R̃V t originate a vector of n simulated
realized volatilities for day t.

(2) We compute the CDF of the simulated volatility shocks. Using the estimated Clayton copula, we
generate n standardized shocks for the returns conditional on the volatility shocks by the inverse
CDF method.

(3) The simulated returns are given by the product of each simulated realized volatility with the respec-
tive standardized shock. The empirical density function of the set of all the n simulated returns
yield our final density forecast.

3.4. Pricing European Options with Realized Volatility. To price european options on the S&P 500
index using the framework discussed above, we simulate returns and volatility under the risk neutral distri-
bution. As it is well known, the existence of a risk neutral dynamics follows from absence of arbitrage and
mild regularity conditions. To keep the pricing framework tractable, we follow the approach of Stentoft
(2008b) and assume that investors require no premium for being exposed to realized volatility risk. In this
case the risk neutral RV dynamics are the same as the physical dynamics. The risk neutral system is:
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6 PRICING OPTIONS BY SIMULATION USING REALIZED VOLATILITY

rt = µ∗t + RVtε
∗
t ,

RVt = φ0 + φ1RVt−1 + φ2RV5,t−1 + φ3RV22,t−1

+ λ1I(rt−1 < 0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1

+ λ3I(r22,t−1 < 0)r22,t−1 + htνt,

h2
t = θ0 + θ1E(RVt|Ft−1)2 + θ2ν

2
t−1,

(5)

where ε∗t is distributed N(0, 1). µ∗t is such that EQ(exp [µt + RVtε
∗
t ]) = exp rft, where rft is the daily

risk-free rate (assumed constant during the life of the option) and EQ(.) is the expectation under the risk
neutral measure.

4. EMPIRICAL ILLUSTRATION

In this section we perform a brief empirical analysis of our option pricing model. For conciseness we
focus on put options with between 9 and 60 calendar days to expiration. Defining moneyness by M =
St/X , where St is the underlying index price at the time when the option is observed and X is the strike
price, we divide the options into the following groups: at-the-money (0.98 < M < 1.02), out-the money
(1.02 < M < 1.05), in-the-money (0.95 < M<0.98), deep out-of-the-money (1.05 < M < 1.1) and the
deep in-the-money (0.9 < M < 0.95). We consider some alternative models. (i) the Black and Scholes
price (where the volatility is given by the mean of realized volatility over the last month) (ii) GARCH/NIG
prices (for the GARCH, EGARCH, GJR-GARCH and NGARCH models). See (for example) Stentoft
(2008a) for the theoretical background and details. (iii) two variations of our realized model: in both cases
the specification is exactly as in the main model, except that we consider a GARCH(1,1) model for the
volatility of realized volatility (ht in the notation of the last sections) and first alternative does not allow for
lagged leverage effects.

The results are summarized in Table 1 below, where we focus on the mean absolute pricing error metric.
As expected, both GARCH and RV prices are substantial improvements over the Black and Scholes prices.
Among the GARCH models, the EGARCH stands out as having a much superior performance than the
others, followed by the GJR, NGARCH and GARCH specifications. Perhaps surprisingly, the RV-HAR-
GARCH models are inferior to the EGARCH model. Nevertheless, the HAR/AE-VL model presented
in this paper substantially reduces pricing errors at all moneyness categories when compared to the best
GARCH model. Table 2 illuminates the reason for better performance of the model: contrary to all the
other specifications it does not underprice in general these put options (and in particular the out-of-the-
money ones, a well known and deficiency of the BS model). The reason why the model achieves the results
is the conjunction of leverage effects and the specification of the volatility and volatility: increases in the
volatility may breed even more volatility through a higher volatility of volatility– the model generates much
fatter tails than the alternatives.
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