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Abstract

A real-time analogue recurrent neural network (RNN) can
extract and learn the unknown dynamics (and features) of a
typical control system such as a robot manipulator. The
task at hand is a tracking problem in the presence of
disturbances. With reference to the tasks assigned to an
industrial robot, one important issue is to determine the
motion of the joints and the effector of the robot. In order
to model robot dynamics we use a neural network that can
be implemented in hardware.

The synaptic weights are modelled as variable gain cells
that can be implemented with a few MOS transistors. The
network output signals portray the periodicity and other
characteristics of the input signal in unsupervised mode.
For the specific purpose of demonstrating the trajectory
learning capabilities, a periodic signal with varying
characteristics is used. The developed architecture,
however, allows for more general learning tasks typical in
applications of identification and control. The periodicity
of the input signal ensures convergence of the output to a
limit cycle. On-line versions of the synaptic update can be
formulated using simple CMOS circuits. Because the
architecture depends on the network generating a stable
limit cycle, and consequently a periodic solution which is
robust over an interval of parameter uncertainties, we
currently place the restriction of a periodic format for the
input signals. The simulated network contains
interconnected recurrent neurons with continuous-time
dynamics. The system emulates random-direction descent
of the error as a multidimensional extension to the
stochastic approximation. To achieve unsupervised learning
in recurrent dynamical systems we propose a synapse
circuit which has a very simple structure and is suitable for
implementation in VLSI.

Index Terms- Artificial neural network (ANN), Electronic
Synapse, trajectory tracking, Recurrent Neurons.

I. INTRODUCTION

Recently, interest has been increasing in using neural
networks for the identification of dynamic systems.
Feedforward neural networks are used to learn static input-

output maps. That is, given an input set that is mapped into
a corresponding output set by some unknown map, the
feedforward net is used to learn this map. The extensive
use of these networks is mainly due to their powerful
approximation capabilities. Similarly, recurrent neural
networks are natural candidates for leaming dynamically
varying input-output. For instance, one class of recurrent
neural networks which is widely used are the so-called
Hopfield networks. In this case, the parameters of the
network have a particular symmetric structure and are
chosen so that the overall dynamics of the network are
asymptotically stable [1]. If the parameters do not have a
symmetric structure the analysis of the network dynamics
becomes intractable. Despite the complexity of the internal
dynamics of recurrent networks, it has been shown
empirically that certain configurations are capable of
learning non-constant time-varying motions.

The capability of RNNs of adapting themselves to leam
certain specified periodic motions is due to their highly
nonlinear dynamics. So far, certain types of cyclic
recurrent neural configurations have been studied. These
types of recurrent neural networks are well known,
especially in the neurobiology area, where they have been
studied for about twenty years. The existence of oscillating
behaviour in certain cellular systems has also been
documented [1-3,10]. Such cellular systems have the
structure of what, in engineering applications, has become
known as a recurrent neural network. Thus the neural
network behaviour depends not only on the current input
(as in feedforward networks) but also on previous
operations ofthe network [4].

II. ANN FOR TRAJECTORY TRACKING

In this paper we treat a neural network configuration
related to control systems. We describe a class of recurrent
neural networks which are able to learn and replicate
autonomously a particular class of time varying periodic
signals.

Neural networks are used to develop a model-based
control strategy for robot position control. In this paper we
investigate the feasibility of applying single-chip electronic
(CMOS IC) solutions to track robot trajectories.
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Fig. 1. The block diagram of the proposed recurrent neural

network.

Neural network with dynamic neurons

The block diagram of the type of network under study is
illustrated in the Fig. 1. In this figure u(t) is the input and
v,(t) is the output of the network. A recurrent network of
the type depicted in the Fig. 1 is described by the following
system of differential equations

XI = RIV- RIC, dx

Ra dt
R

va RI

v'iz, =_x _RIv
Ra

=--R,v T

Ra RI
=-_xI +yi(x2)

Similarly,
Vr2X2 =-_x2 ±yf/(XI)+U(t)

Finally, for the output of the circuit, we have,

=-Vx- F-OWI -y4IXI21)IXR RR
= -v

x + WIV(XI) + w)2Y02)
The time constants v, z-l, and r2 govern the dynamics of the
network, providing first order low-pass filtering in the
evolution of the neuron state variables. A more elaborate
model of neural dynamics would incorporate individual
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adjustable time constants at the level of the synaptic
contributions [5-7].

An alternative type ofRNN that can be described by the
differential equations given below can also be built with the
electronic neurons discussed in the next section. We see
that the above schematic (Fig. 1) implements the neural
network with only two dynamic neurons (neuron circuit is
shown in Fig. 2.). The equations of the branch currents
(Iml and Im2) discussed in the next section suggest the
synapses are suitable to implement both types of RNN
represented by either (1) or (2).

The simulated network contained six fully
interconnected recurrent neurons with continuous-time
dynamics. The simulated neural network can be described
by a general set of equations such as the ones given below.

N

r5',=y'Wi -exp(y,)-A Lexp(yj)
N

=y'+W -(1-A)exp(y,)-2ALexp(yj)

(2)
with x,(t) the neuron state variables constituting the outputs
of the network, x,(t) the external inputs to the network, and
a(.) a sigmnoidal activation function. The value for -r is kept
fixed and uniform in the present implementation. There are
several free paramneters, to be optimally adjusted by the
learning process. For example if we implement a fully in-
terconnected RNN, there will be 36 connection strengths
Wij and -6 thresholds Oj.

The so called triggering nonlinear function of the
neurons associated with this network is taken as tanh(x,)
and is shown in the Fig. 1 as VI(xi). However, it is likely
that a larger class of triggering functions with the same
properties of oddity, boundedness, continuity, monotonicity
and smoothness could be considered. Such triggering
functions include arctan(x), (1I+ e-x )1, e x2 etc. In the
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next section we will introduce a synaptic circuit that
implements the oiw shown in Fig. 1.

III. RECURRENT NEURON CHARACTERISTICS

In the synaptic circuit, the current of M5, which we de-
note as IM5 acts as an excitatory current which increases the
membrane potential vc, while the currents of Ml and M2,
which we denote as IMI and IM2, respectively, act as lateral-
and self-inhibitory currents which decrease the membrane
potential. In this synaptic circuit, the node equations at the
node v, are as follows:

c" = IM5 /M1 IM2
where IMa stands for the current of transistor Ma of the
synaptic circuit. It should be noticed that the left side of the
above equation represents the current of the capacitor,
while the right side of the equation is given by the linear
combination of saturation currents of MOS transistors op-
erating in the subthreshold (weak inversion) region. The
input transistors are operated in weak inversion for two rea-
sons. In this configuration, (1) they deliver maximal trans-
conductance for a given current and (2) low vgs and Vds
voltages are needed for large swing. This implies that the
network can easily be implemented by the MOS circuit of
Figure-2 operating in the subthreshold region [8].

A transistor can be biased in different ways by choosing
the dependent variable as current or voltage. For voltage
biasing, the gate-source voltage of the device is the same
and current is the dependent variable. For current biasing,
the current in the devices is the same but the voltage is the
dependent variable. Current-mode circuits should be bi-
ased deep in saturation for best accuracy. In the case of
voltage-mode circuits, best accuracy is obtained in weak-
inversion.

In the subtrhreshold region of operation, 'M2 is ideally
given by

JM2 =10 exp(v, /VT )

V tanh(x1) ,

of a voltage, VT= kT/q (k is the Boltzmann's constant, T
the temperature, and q the charge of an electron), q
measures the effectiveness of the gate potential, v1, is an
extemal input voltage, C represents a capacitance, IX, is a
MOS transistor parameter, and / represents a gain constant.
We have conformed to the standard notation in writing the
CMOS equations above to represent the dynamics of the
circuit [9].

The current mirror consisting ofM2 and M3 implies that
the output current of the synaptic circuit IM3 is equal to
IM2. The current IMS which depends on the input vrn acts as
an excitatory input and is given by
IM5 = I0 exp(vrn /I17V). The voltage v, is amplified by
the common source amplifier consisting of transistor M3
and its load M4.

VDD

Fig. 2. The circuit diagram of the proposed recurrent neuron.

Vc

Figure 3. Small-signal equivalent ofthe synaptic circuit.

Similarly, Im, is given as

IMI = 10 exp(vx / 77VT)
in terms of the gate-source voltage vt of MI, as long as it
operates in the saturation region (vtr > 4 VT). where v,
represents a transformed variable possessing the dimension

Analysis of the synapse circuit

The synaptic circuit can be realized in two different
formats. The format shown in Fig.2 implements the
synapse as a gain controlled voltage amplifier. An altemate
format of the synapse (shown in Fig. 4) is based on a
transimpedance gain function. The main difference
between these two circuits is the presence of an additional
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feedback transistor placed between v, and output v0
(Compare Figs. 2 and 4.). In both cases the gate terminal
of transistor Ml can be used to control the gain of the
synapse. In this case the small-signal equivalent circuit
shown in Fig. 3 can be used to show that the voltage gain is
given by:

Va(s) 9m5
VI(S) gm2 + gdl + SCc
In this case, the output of the synapse, co * yV(xI) goes
through the output stage integrator and the voltage vx is
used to control the gate of transistor Ml of the synapse.
Hence the synapse behaves like a variable gain amplifier
controlled by the variable conductance gdl. In other words,
w, is a function ofthe state vx.

Ms.1
V V ¢m

vv

Vin

Fig. 4. The circuit diagram of the proposed synapse that im-
plements a transimpedance gain function Z7(s).

IV. A NEURAL NETWORK BASED
CONTROLLER FOR ROBOT POSITION

CONTROL.

We train a neural network to learn and mimic movement of
a robot manipulator. A block diagram of such a setup is
depicted in Fig. 5. The neural network leams the behaviour
of the robot manipulator over certain time horizon. The
neural network also optimizes the control action such that
the error between the output of the robot manipulator and
the reference (desired) trajectory is minimized.

Effector
Trajectory Reference trajectory

Fig. 5. Block diagram of a neural network based robot
control system.

Neural network with sigmoidal neurons

In the proposed recurrent neural network (Fig. 1) we need a
sigmoidal yI(xi) function. This sigmoidal circuit shoule be
suitable for implementation in CMOS. We will introduce a
simple circuit that can implement the sigmoidal function

Fig. 6. Circuit diagram to implement the VI(xi) finction.

VDD

The circuit shown in Fig. 6 is a linearized
transconductor whose output current ion, is proportional to
tanh(vj,). In this circuit, the G. is derived from a cross
coupled pair of matched transistors (M7 and M8) operating
in the triode region. In this configuration, the Gm is
controlled with gate voltages Vc1 and Vc2-

The possibility of building the entire electronic system
discussed in this paper using CMOS technology is currently
explored. In the absence of such a hardware system, we are
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studying the performance by simulating an operational
amplifier based conceptual circuit model.

V. SIMULATION OF THE PROPOSED SYSTEM

The novel concepts formulated in this paper can be
experimentally verified by the manufacture of a prototype
electronic system. The circuits needed for such
implementation are presently simulated using CAD
packages. For example the circuits of sigmoidal transfer
function (Fig. 6) and synaptic networks (Figs. 2 and 4.) were
designed using 0.18 micron CMOS technology. These
simulations confirmed the scalability of the modularized
architecture of the learning algorithm. We are verifying the
robustness of the architecture under technology parameter
perturbations. These simulation results will be discussed
during the presentation at the conference.

As an alternative to the experimental verification, we
have simulated the system of differential equations that
represent the proposed recurrent neural network. The task
set for this verification is to apply a variety of input
waveforms to the simulator and observe the output
waveforms. The inputs to the simulator explored comprise
a variety of waveforms such as triangular, saw-tooth,
square and sinusoids. All these input waveform
characteristics such as frequency, amplitude and phase
were varied and the ability of the neurons to settle to a limit
cycle were observed.

VI. INDUSTRIAL APPLICATIONS

The architecture of an analog recurrent network that can
learn a continuous-time trajectory is presented. The
presentation shows that the RNN does not distinguish
parameters based on a presumed model of the signal or
system for identification. Simulation of such an
autonomous tracking of a trajectory is shown in Fig. 7. The
vertical (y-axis) shows the robot joint position in radians
and the horizontal (x-axis) shows time in msec.

In many decision making processes such as
manufacturing, aircraft control, robotics etc, we come
across problems of control systems that are highly complex,
noisy, and unstable. A tracking system or agent must be
built that observes the state of the environment and outputs
a signal that affects the overall system in some desirable
way. The RNN presented here is suitable for such tasks
because it is general and robust enough to respond
effectively to conditions not explicitly considered or
completely modelled by the designer.

The architecture of the analog RNN discussed here is
easier to implement in CMOS VLSI technology. The RNN
presented is a very small network consisting only of two
synaptic weights. However, it was able to learn periodicity
from the applied signals in unsupervised mode. It should
be noted that this network is scalable. A large RNN of this
structure can be built with relatively little hardware and can
be used for a variety of applications in control,
instrumentation and signal processing applications.

Fig. 7. The reference trajectory (red) compared with tracking
RNN output.

Fig. 8. Output of the RNN for an applied varying input.

VII. CONCLUSIONS

The complexity of real world systems often defy
mathematical analysis, and, most interesting tasks in these
environments are too hard for designing a controller
strategy by hand. Both of these problems can be avoided
by learning from direct interaction given two essential
components: a simulator that behaves like the environment,
and a learning mechanism that is powerful enough to solve
the task.
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In this paper we discussed the application of;
analogue recurrent neural network to learn and track ti
dynamics of an industrial robot. The observations ma(
from this study suggest that RNNs (similar to those in Fi
1) can be applied to the control of real systems th
manifest complex properties - specifically, hig
dimensionality, non-linearity and requiring continuoi
action. Examples of these real systems include aircri
control, satellite stabilization, and robot manipulat
control.

We conclude that robust controllers of partial
observable (non-Markov) systems require real-tin
electronic systems that can be designed as single-ch
Integrated Circuits (CMOS IC). This paper explored su
techniques and identified suitable circuits.
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