
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2005

Using Adaptive Agents to Automatically Generate Test Scenarios Using Adaptive Agents to Automatically Generate Test Scenarios

from the UML Activity Diagrams from the UML Activity Diagrams

Dong Xu
Edith Cowan University

Huaizhong Li
Edith Cowan University

Chiou Peng Lam
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/APSEC.2005.110
This is an Author's Accepted Manuscript of: Xu, D. , Li, H. , & Lam, C. P. (2005). Using Adaptive Agents to
Automatically Generate Test Scenarios from the UML Activity Diagrams. Proceedings of 12th Asia-Pacific Software
Engineering Conference. (pp. 385-392). Taipei, Taiwan. IEEE Computer Society. Available here
© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/2711

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41534148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F2711&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F2711&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/APSEC.2005.110
http://dx.doi.org/10.1109/APSEC.2005.110

Using Adaptive Agents to Automatically Generate Test Scenarios from the
UML Activity Diagrams

Dong Xu 1

School of Computer Science,
Shanghai University,

China
d.xu@ecu.edu.au

Huaizhong Li
School of Computer and

Information Science,
Edith Cowan University,

Australia
h.li@ecu.edu.au

Chiou Peng Lam
School of Computer and

Information Science,
Edith Cowan University,

Australia
c.lam@ecu.edu.au

1 This author was a visiting researcher at Edith Cowan University when the paper was written.

Abstract

Test case generation is one of the most important
issues in software testing research and industrial
practice. Test scenarios are frequently used to derive
test cases for scenario-based software testing.
However, the generation of the test scenarios is usually
a manual and labor-intensive task. It is desired that
test scenarios can be automatically generated. In this
paper, we propose an automated approach using
adaptive agents to directly generate test scenarios
from the UML activity diagrams.

1. Introduction

Software testing remains the primary technique used
to maintain quality of the software products and to gain
consumers’ confidence in software. Unfortunately, it is
well-known that testing software is a time-consuming
and costly process [4]. Therefore, techniques that
support the automation of software testing will result in
significant cost and time savings for the software
industry. Automatic generation of the test data is
essential for the automation of software testing.

Great attention has been given to effectively using
UML, which is the industrial de-facto standard for
modeling object-oriented software systems, in software
testing (see, for example, [6] and the references
therein). One of the focused research topics is using
UML artifacts for scenario based testing.

Scenarios represent the sequences of executions in a
software system. Properly generated test scenarios are
essential for the scenario-based software testing to
achieve the required test adequacy and to guarantee the
software quality [8]. However, one major problem with

the generation of test scenarios is that the generation
procedures are either completely manual or can not be
fully automated [2].

Currently there is a research trend to apply artificial
intelligence techniques in software engineering,
especially in software testing research (see for
example, [5][11][15] and the references therein). One
of the much focused areas in applying artificial
intelligent techniques to software testing is the
automated generation of test data.

Results have been reported of using artificial
techniques in test data generation for software testing.
The focus of the techniques mainly involves the
applications of the genetic algorithms and the Ant
Colony Optimization algorithms, for examples,
[12][15]. However, automation of the generation
procedure, efficiency of the generation algorithms, and
the feasibility of the generated test data are frequently
concerned. Furthermore, the reported results mainly
concern with the state-based testing problems. The
problem of generating test scenarios for scenario-based
software testing receives less attention.

Recently, an approach has been proposed in [13] to
use so-called anti-ant-like agents to automatically
generate test threads from the UML activity diagrams.
It is shown in [13] that using agents provides a
potential avenue to automate the generation of test
scenarios for scenario-based software testing.
However, the proposed algorithm in [13] may result in
redundant exploration of the activity diagrams and
hence reduce the efficiency of the generation process.
Furthermore, the complexity of the activity programs
which are explored in [13] calls for further research.

In this paper, we propose to use adaptive agents to

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

overcome the difficulties and limitations encountered
in [13]. The algorithm proposed in this paper is more
efficient, and is capable to deal with the UML activity
diagrams which contain more complicated structures.

This paper is structured as follows. Section 2
provides an analysis of the UML activity diagrams.
Section 3 presents an adaptive agent approach to test
scenario generation. Section 4 briefly describes the tool
support for the proposed approach. Section 5 briefly
discusses the related work; and the conclusion is found
in Section 6.

2. Analysis of the UML Activity Diagrams

In general, an UML activity diagram includes an
initial state, the action states, the final states, the fork
nodes, the join nodes, the branch nodes, the merge
nodes, the transitions and their associated guard
conditions, and the final nodes.

The following definition for the UML activity
diagrams is modified from [16]:
Definition 1 An activity diagram is a 8-tuple AD = (A,
B, M, F, J, K, T, 0a) where A = },,,{ 21 naaa ⋅⋅⋅ is a

finite set of action states of the UML activity diagram;
B = },,,{ 21 ubbb ⋅⋅⋅ a finite set of branches; M =

},,,{ 21 vmmm ⋅⋅⋅ a finite set of merges; F =

},,,{ 21 yfff ⋅⋅⋅ a finite set of forks; J = },,,{ 21 xjjj ⋅⋅⋅
a finite set of joins; K = },,,{ 21 wkkk ⋅⋅⋅ a finite set of

final states and end flows; T = },,,{ 21 zttt ⋅⋅⋅ a finite set

of transitions which satisfies etectTt =∨>=<∈∀ ,
where },,,{,, 21 lcccCEeCc ⋅⋅⋅=∈∈ is a finite set of

guard conditions, },,,{ 21 seeeE ⋅⋅⋅= is a finite set of

edges of the activity diagram; and 0a is the unique

initial state.
A test scenario is defined as follows:

Definition 2 Let AD = (A, B, M, F, J, K, T, 0a) be an

activity diagram. Denote TS the set of test scenarios
for AD. tsTSts ,∈∀ is a sequence of action states and

transitions, i.e.
.,,2,1,1100 niKkTtAaktatatats iinn ⋅⋅⋅=∈∧∈∧∈∧⋅⋅⋅=

A directed graph is defined as G = (V, E) where V
is a set of vertices of the graph and E a set of edges of
the graph. A UML activity diagram can be viewed as
an activity graph where the vertices are the activity
nodes, the object nodes, the branch nodes, the fork
nodes, the join nodes, and the initial node, while the
edges are the activity edges in the activity diagram. An

activity graph is a directed, dynamic graph in which the
activity edges may become accessible only after the
evaluation of their associated guard conditions.

The fork-join pairs in the UML activity diagrams
represent concurrent executions. Due to the
concurrency contained in fork-join pairs, it is difficult
to derive test scenarios for an UML activity diagram
which contains fork-join pairs. Furthermore, in
complicated UML activity diagrams, the fork-join pairs
can have complicated structures, namely, they may
contain nested fork-join pairs, and they may include
branches or loops between the fork and the join.

To our knowledge, there is no systematic approach
reported in literature to automatically generate all test
scenarios for the UML activity diagrams which contain
complicated fork-join structures. For example, the
approach in [16] generates only incomplete test
scenarios for an UML activity diagram under the
assumption that the activity diagrams contain forks
which only have two outgoing edges. Although the
approach reported in [13] does not constrain the
outgoing edges of the forks, the generated test
scenarios for a fork-join pair only contain the
combination of the sequentially connected execution
paths between the fork and the join, therefore, may
miss some test scenarios for the fork-join pair.

This paper further extends the approach reported in
[13] to tackle more complicated UML activity
diagrams. In particular, the approach proposed in this
paper aims at providing a solution to generate complete
test scenarios for the UML activity diagrams which
may contain complex fork-join structures.

First of all, we present a simple classification of the
fork-join pairs considered in this paper.

2.1 A simple classification of the fork-join pairs

The fork-join pairs considered in this paper can be
classified as four types, namely, the Atomic-Fork-Join
(AFJ) type, the Simple-Fork-Join (SFJ) type, the
Simple-Nested-Fork-Join (SNFJ) type and the Branch-
Nested-Fork-Join (BNFJ) type. Note that it is possible
that the fork-join pairs in the UML activity diagrams
may contain other structures. Research is currently
being carried out to investigate the fork-join structures
which are not covered here.

Before we provide the definitions for each of the
types, we give the following definition:
Definition 3 Let ID denote the incoming degree of a
node in the activity diagram, OD denote the outgoing
degree of a node. ID(x) and OD(x) denote the number
of incomings and outgoings of the node x, where

.KxJxFxMxBxAx ∈∨∈∨∈∨∈∨∈∨∈

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Especially, ID(0a) = 0, OD(0a) = 1, OD(k) = 0,

.Kk ∈∀
 Now, we are ready to give a definition for the

Atomic-Fork-Join type:
Definition 4 An AFJ is a 4-tuple AFJ = (A, T, f, j)
where A and T are the set of action states and the set of
transitions, respectively; f is the unique fork in the
AFJ; j is the unique join in the AFJ;

Aaaa ∈=∧= ,1)(ID1)(OD which means that each

action state has one incoming and one outgoing
exactly; and 2)(ID2)(OD =∧= jf which means

that the unique fork only has 2 outgoings, and the
corresponding join has 2 incomings. The sequence

jaaf inii t
i

t
i

t ⎯→⎯⋅⋅⋅⎯→⎯⎯→⎯ 21
21 is called an

execution path of this fork-join.
Note that only two parallel execution paths are

contained in an AFJ. We use ES to denote the set of the
execution paths },,{ 21 esesES = then .2|| =ES If

,|{1 AaaS ∈= a occurs in },, 11 ESeses ∈
,|{2 AaaS ∈= a occurs in },, 22 ESeses ∈ then

.21 φ=∩ SS Moreover, if ,|{1 TttU ∈= t occurs in

},, 11 ESeses ∈ ,|{2 TttU ∈= t occurs in

},, 22 ESeses ∈ then .21 φ=∩UU Therefore, each

action state and each transition in an AFJ only appear
in one of the two execution paths.

For example, the fork-join pairs shown in Figure 1

and Figure 2 are both AFJs. Denote the number of test
scenarios as NTS. For the fork-join pair in Figure 1,

NTS = 1
3C = 3. For the fork-join pair shown in Figure

2, NTS = 2
4

1
4 CC + = 4 + 4×3/2 = 10.

Next, we provide a definition for SFJ:

Definition 5 A SFJ is a 4-tuple SFJ = (A, T, f, j) where
A, T, f and j are the set of action states, the set of
transitions, the unique fork, and the unique join in the
SFJ, respectively; Aaaa ∈=∧= ,1)(ID1)(OD which

means that each action state has one incoming and one
outgoing exactly; njnf =∧=)(ID)(OD where

,2 Nnn ∈∧≥ N is the set of natural numbers; the

sequence jaaf inii t
i

t
i

t ⎯→⎯⋅⋅⋅⎯→⎯⎯→⎯ 21
21 is called

an execution path of this fork-join.

Obviously n parallel execution paths are contained
in a SFJ. Hence, },,,{ 21 nesesesES ⋅⋅⋅= and .|| nES =
If ,|{1 AaaS ∈= a occurs in },, 11 ESeses ∈

,|{2 AaaS ∈= a occurs in },, 22 ESeses ∈ ,⋅⋅⋅
,|{ AaaSn ∈= a occurs in },, ESeses nn ∈ then

.21 φ=∩⋅⋅⋅∩∩ nSSS Moreover, if

,|{1 TttU ∈= t occurs in },, 11 ESeses ∈
,|{2 TttU ∈= t occurs in },, 22 ESeses ∈ ,⋅⋅⋅
,|{ TttU n ∈= t occurs in },, ESeses nn ∈ then

Figure 1 Figure 2 Figure 3

Figure 4 Figure 4.1 Figure 4.2 Figure 5 Figure 5.1 Figure 5.2

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

.21 φ=∩⋅⋅⋅∩∩ nUUU Therefore, each action state

and each transition in an SFJ only appear in one of the
n execution paths.

The fork-join pair shown in Figure 3 is a SFJ. Its
NTS is:

 NTS =)(1

1

1

1

0

1

1
1

1

1

j
m

n

i

m

j

j

m
i

i

i

k
k

CC −

−

=

−

=

+

+
+

+

=

×∏ , where we

assume that .12,1 0
021 =∧≥≥≥⋅⋅⋅≥≥ Cnmmm n

Obviously, the SFJ is an extension of the AFJ. In
general, most of the fork-join pairs in the UML activity
diagrams belong to the SFJ type.

The NTS formula shown above can be deduced
easily, and hence the derivation procedure is omitted.
The NTS formula can be used to verify whether a
proposed method is capable to generate all test
scenarios for a SFJ in an activity diagram.

Now, we define the SNFJ type as follows:
Definition 6 A SNFJ is a fork-join pair which contains
a nested SFJ inside. If the nested SFJ is replaced with
one of its test scenarios, and as a consequence the host
fork-join pair becomes a SFJ, we call such fork-join a
SNFJ.

For example, the fork-join pair shown in Figure 4 is
a SNFJ. It can be decomposed into 2 SFJs shown in
Figure 4.1 and Figure 4.2 respectively. Obviously, the
NTS of a SNFJ = the NTS of the decomposed SFJs.
Therefore, the NTS of a SNFJ can be calculated using
the above formula for a SFJ.

 Finally, we give the definition for the BNFJ type:
Definition 7 A BNFJ is a fork-join which contains a
branch-merge pair inside. If the branch-merge is
replaced with one of its test scenarios, and as a
consequence the host fork-join pair becomes a SFJ, we
call such fork-join a BNFJ.

For example, the fork-join pair shown in Figure 5 is
a BNFJ. A BNFJ can be decomposed into two SFJs
shown in Figure 5.1 and Figure 5.2 respectively.
Obviously, NTS of a BNFJ = NTS of the two
decomposed SFJs.

Since the SFJ type forms the basis of the
decomposition for the SNFJ type and the BNFJ type,
we clearly need to investigate how to generate test
scenarios for the SFJ type. In the following, we present
an algorithm, called the SFJ algorithm, to generate the
test scenarios for a SFJ type.

2.2 The SFJ algorithm

Suppose the SFJ is the one shown in Figure 3. The
pseudo codes of the SFJ algorithm are given below.

The SFJ Algorithm:

Step 1: Create n action stacks as the following:

A11

A12

 …

A1m1

 S1

A21

A22

 …

A2m2

 S2

An1

An2

 …

Anmn

 Sn

where Aij, i=1,2,…n, j=1,2,…m are the action states
that appear in the SFJ;
Step 2: Create a stack list, denoted as “st”:

Step 3: Create a tree node structure:
Struct tree_node:

Action: action;
 Stack_list: st;
Endstruct;
Create a scenario tree as an
intermediate data structure;

Step 4: Create a recursive function to generate the
scenario tree for the SFJ. Suppose the root of the
execution path tree starts from the fork node, denote
here root.action = fork, root.st = st. The function
pseudo codes to generate this tree are given below:

//create scenario tree for simple fork-
//join and it’s a recursive function
createSFJScenarioTree(tree_node:treeNode)
{

for each stack(Si) in
stack_list(st) of the treeNode

//pop up top element
action := Si.popup();

 if Si. isEmpty() then
remove the Si from the
stack_list(st);

 endif
create a tree node named
nodeNew where nodeNew.action :=
action, node.st = st;
//adding a child to the current
//tree node
tree.addChild(node, nodeNew);

 endfor;

 // operation for each leaf of the
// current thread tree

 for each tree leaf
 //Is the stack list of the leaf

 //node EMPTY?
 if leaf.st is NOT empty then

createSFJScenarioTree(leaf);
//calling recursively

 endif
 endfor
}

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Step 5: Generate test scenarios for the SFJ by
traversing the scenario tree. Each path from root to a
leaf forms a test scenario for the SFJ.

Note that the NTS formula can be used to verify that
all test scenarios for a SFJ have been generated.

By using the SFJ algorithm, 10 test scenarios can be
generated for the fork-join pair shown in Figure 2, and
the generated test scenarios are exactly the same as
those listed in Table 2. However, only 6 test scenarios
can be generated using the algorithm proposed in [16].

3. Generate Test Scenarios from the UML
Activity Diagrams

In this section, we will describe the complete
algorithm of using adaptive agents to automatically
generate test scenarios from the UML activity
diagrams.

3.1 Adaptive Agents and Their Behavior

We consider the problem of sending adaptive agents
to search an activity graph which corresponds to a
UML activity diagram. The objective of the agent’s
exploration is to build the test scenarios from the
corresponding activity diagram.

The adaptive agents proposed exhibit similar
behavior of some bacteria, for example the type of
bacteria called Maxococcus xanthus. Maxococcus
xanthus is a type of myxobacterium which lives in soil.
A Maxococcus xanthus can move around the ground to
search for nutrients. As it moves, the bacterium can lay
down a slime trail which may play the role of greasing
the path to easy the movement. Therefore, if a
bacterium finds a slime trail, it has a better chance to
follow that trail to make its movement easier [14].

Like Maxococcus xanthus bacteria, our agents move
around in the directed activity graph to search for
nutrients. As these agents move, they also lay down
slime trails to mark their paths. However, unlike
Maxococcus xanthus, bacteria, our agents actually
exhibit opposite behavior with regard to the use of
slime trails, namely, too strong slime concentration will
turn our agents into stationary spores. A spore can not
move around further to search for nutrients. Therefore,
once an agent is turned into a spore, it will be removed
from the search process.

Like many bacteria, our agents can adapt to the
environment. Namely, if nutrients are sufficient at a
place such that the workload of an arriving agent is too
high, the agent will simply clone itself to easy the

workload it has to take. The cloned agents will then be
dispersed to different directions to cover the nutrients.

When our adaptive agents are dispatched to search
an activity graph, they observe the following rules:

Rule 1: An agent can only move in the directions of the
edges at a fixed speed.
Rule 2: An agent can lay down fixed amount of slime
over an activity edge when it arrives at the edge.
Rule 3: An agent is turned into a spore if it arrives at
an activity edge which possesses too high slime
concentration.
Rule 4: An agent is killed if it finds antibiotic
substance.
Rule 5: Search an activity edge represents one normal
work load for an agent at a particular time. An agent
can only take one workload at a time.
Rule 6: An agent can clone itself if it is requested to
carry out a higher workload. The cloned agents inherit
the complete information of the fathering agent and
exhibit the same behavior of the fathering agent.

When using the proposed agents to search an
activity diagram, special attentions need to be paid to
two types of nodes in an activity diagram:

The final nodes are considered as spots which
contain antibiotic substance. An agent is killed if
it arrives at a final node.
The branch nodes are considered as the spots
which contain rich nutrients. If a branch node has
m outgoings, then the requested workload for an
agent which arrives at the branch node is m times
higher than its normal workload. Therefore, the
agent has to reproduce m-1 clones at the branch
node; each agent will carry on a search in a
different outgoing.

The overall behavior of the adaptive agents in our
approach is governed by an activity diagram illustrated
in Figure 6. Note that for simplicity, it is assumed in
this paper that each cyclic loop is executed at most two
times. This assumption is the same as the one in [16].

3.2 Algorithm

We define a scenario tree as an interim storing
structure. The initial node of an activity diagram is
regarded as the root of the tree. Each tree node denotes
the elements of the activity diagram such as the action
states, the forks, the joins, the branches, the merges, the
guard conditions, and the final states. Test scenarios
can then be derived from the scenario tree by traversing
the tree.

First of all, we represent the guard conditions in

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

forms which are slightly different from the originals. A
guard condition which consists of an attribute type and
a value are denoted as <Type: value>. In general, there
are three kinds of guard conditions in an activity
diagram, namely text which is a string description,
counter which is an integer mostly used to represent the
loop times, and Boolean or Boolean expression which
represents a conditional decision. For example, a
condition can be denoted as <Boolean: True>.

The pseudo codes of the algorithm, which
implement the behavior model shown in Figure 6, are
illustrated as follows:

/* Initialization */
for every edge (i,j) do
 Pij = 0; /*Set 0 slime level to every
 edge*/
endfor;

Call an agent to traverse the activity
diagram from its initial state.

While (true) do
 Evaluate status at node i;

 /*Report initial node to the scenario
 tree as the root*/
 if (is initial node) do
 Create tree root;
 endif;

 if (found antibiotics) do
 if (is last alive agent) do

 Break;
 else
 Kill agent;
 endif;
 endif;

 /* action state */
 if (access action) do
 Reporting action node to the
 scenario tree;
 endif

 /*Data Reporting*/
 if (access Data) do
 Report data access to the scenario
 tree;
 endif;

 /*Clone agent*/
 If the outgoing edges of the traversed
 node are m, clone m-1 agents to
 traverse the different edges

 /*If arrives at a fork node*/
 if (found fork-join pair) do
 if (the node is a SFJ) do
 Call SFJ algorithm;
 else
 Decompose SNFJ or BNFJ into SFJ;
 Call SFJ algorithm for each SFJ;
 Merge the generated test
 scenarios;
 endif;
 Merge fork-join test scenarios into
 the scenario tree;
 endif;

Initilization, Pij = 0

Merge SFJ TS to the scenario tree

Call an agent

Arrive at a node

Create tree root

Found poison

Arrive at an edge Pij, Pij++

Kill agent

Cut redundant tree branch

Reporting action node to the scenario tree

Report data access to the scenario tree

Report guard condition node to the scenario tree

SFJ node

{initial node: }

{end node: }

{action state: }{fork-jion: }

Clone agents

{branch: }

{Pij >= 3: } {else: }

{last alive agent: }

{attach data object: }

{else: }

Turn agent into a spore

{last alive agent: }

{else: }

{else: }

Figure 6 The behavior model of the adaptive agents

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

 Agent moves to an outgoing edge;

 /*Condition reporting*/
 if (found Condition) do
 Report guard condition node to the
 scenario tree;
 endif;
 /*Increased Pij by one when an agent
 arrives at an edge*/
 Pij ++;

 /*loops are only permitted to execute
 two times due to the coverage
 criterion adopted in this paper */
 if (Pij >= 3) do
 Cut redundant tree branch;
 if (is last alive agent) do
 Break;
 else
 Turn the agent into a spore;
 endif;
 endif;

 Agent moves to next node;
endwhile;

/* Generate a test scenario*/
Generate sequence of action states and
transitions formed from the root to a
leaf of the scenario tree.

The pseudo codes are straightforward to be
followed.

4. Tool support

We have developed a prototype tool called TSGAD
(Test Scenarios Generator for Activity Diagrams) using
the proposed algorithm to automatically generate test
scenarios for given activity diagrams. An activity
diagram can be developed using many standard UML
tools and exported into a XMI file. TSGAD can
directly read a XMI file which includes all UML
diagrams, extract the contained activity diagram, and
automatically generate test scenarios afterwards.

Due to space limitation, we can not describe
TSGAD in details here. However, we use an example
to demonstrate the tool. The example shown in Figure
7 is an activity diagram which simulates a test scenario
generator. The generator in Figure 7 takes an activity
diagram generated using Rational Rose, Poseidon or
Visio, and converts the imported diagram into a generic
XML format. Afterwards, the generator parses the
XML file to derive all test scenarios.

The activity diagram shown in Figure 7 was drawn
using Poseidon UML and a XMI file was exported. As
shown in Figure 8, the generated XMI file was
imported into TSGAD, namely, the intermediate
scenario tree was displayed in the left panel; the

corresponding activity diagram was displayed in the
central panel; while the XML representation for the
activity diagram was shown in the right panel. TSGAD
automatically generated all test scenarios for the
imported activity diagram, as shown in the bottom
panel in Figure 8. The details of all generated test
scenarios have to be deleted due to space limitation.

5. Related work

In [16], the concept of basic paths (BPs) for the
activity diagrams is defined. From BPs, the test
scenarios are derived by depth first search. However, a
detailed walkthrough of the proposed algorithm shows
that some test scenarios are not generated, especially
when the test scenarios are derived from the fork-join
parts of the activity diagrams. For example, only 6
execution paths are generated for the fork-join structure
shown in Figure 2 using the algorithm proposed in
[16]. Furthermore, it has been assumed in [16] that the
activity diagrams have pairs of branches and merges,
and pairs of forks and joins; a fork in an activity
diagram can only have two outgoings. Obviously,
these assumptions limit the applicable scope of the
algorithm proposed in [16]. The algorithm proposed in
this paper removes most of the constraints imposed in
[16], and the proposed algorithm is more efficient due
to the use of the adaptive agents.

An algorithm using anti-ant-like agents is given in
[13] to generate thin threads from the activity diagrams.
While the algorithm proposed in [13] doesn’t rely on
the assumptions used in [16], the efficiency of the test
thread generation is not optimal. For example, a group
of ants is used to explore an activity diagram; each ant
starts from the initial state of the activity diagram such
that some parts of the activity diagram are explored
many times. In contrast, the algorithm proposed in this
paper uses one agent to start the initial exploration.

More agents are adaptively reproduced if and only if
it is necessary. Therefore, redundant exploration of the
activity diagrams is avoided.

Similar to [16], the algorithm proposed in [13] can
not generate complete test scenarios for fork-join pairs
in general. In comparison, the algorithm proposed in
this paper can generate all test scenarios for these fork-
join structures described in Section 2.

6. Conclusion

This paper presented an automated approach to
generated test scenarios from the UML activity
diagrams. Using the developed algorithm, an adaptive

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

agent can effectively explore the UML activity
diagrams and automatically generate test scenarios.

 Our approach has the following advantages: 1) the
UML activity diagrams exported by UML tools are
directly used to generate test scenarios, and the whole
generation process is fully automated; 2) redundant
exploration of the activity diagrams is highly avoided
due to the use of adaptive agents, resulting in improved
efficiency in the generation of the test scenarios.

References

[1] F. Basanieri, A. Bertolino, and E. Marchetti,
“CoWTeSt: A Cost Weighed Test Strategy”, Proc. Escom-
Scope 2001, London, 2001.
[2] X. Bai, C. P. Lam, and H. Li, “An Approach to generate
the Thin-threads from the UML Diagrams”, Proc.
COMPSAC 2004, Hong Kong, 2004.
[3] S. Bennett, S. McRobb and R. Farmer, Object-Oriented
Systems Analysis and Design Using UML, Second Edition,
McGraw-Hill Education, 2002.
[4] R. V. Binder, Testing Object-Oriented Systems -
Models, Patterns, and Tools, Addison-Wesley, 1999.
[5] L. Briand, “On the many ways Software Engineering
can benefit from Knowledge Engineering”, Proc. 14th SEKE,
Italy, 2002.
[6] L. Briand and Y. Labiche, “A UML-Based Approach to
System Testing”, Software & Systems Modeling, 1(1), 2002.
[7] K. Doerner and W. J. Gutjahr, “Extracting Test
Sequences from a Markov Software Usage Model by ACO”,
LNCS, Vol. 2724, pp. 2465-2476, Springer Verlag, 2003.

[8] J. Horgan, S. London, and M. Lyu, “Achieving
Software Quality with Testing Coverage Measures”, IEEE
Computer, 27(9), 1994.
[9] C. Kaner, J. Falk, and H. Q. Nguyen, Testing computer
software, 2nd Edition, John Wiley & Sons, 1999.
[10] Y. Kim and C. R. Carlson, “Scenario Based Integration
Testing for Object-Oriented Software Development”, Proc.
of the Eighth Asian Test Symposium, Shanghai, 1999.
[11] C. P. Lam, M. C. Robey and H. Li, "Application of AI
for Automation of Software Testing", Proc. SNPD03,
Germany, 2003.
[12] H. Li and C. P. Lam, “Optimization of State-based Test
Suites for Software Systems: An Evolutionary Approach”,
Int. J. Computer & Information Science, 5(3), 2004.
[13] H. Li, and C. P. Lam, “Using Anti-Ant-like Agents to
Generate Test Threads from the UML Diagrams”, Proc.
TESTCOM 2005, LNCS 3502, Montreal, 2005.
[14] M. J. McBride, P. Hartzell, and D. R. Zusman, Motility
and Tactic Behavior of Myxococcus xanthus, Myxobacteria
II (M. Dworkin and D. Kaiser eds.), American Society for
Microbiology, Washington, 1993.
[15] P. McMinn and M. Holcombe, “The State Problem for
Evolutionary Testing”, Proc. GECCO 2003, 2003.
[16] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng,
“Generating Test Cases from UML Activity Diagram based
on Gray-Box Method”, Proc. APSEC’04, 2004.
[17] E. J. Weyuker, “Testing Component-Based Software: A
cautionary Tale”, IEEE Software, 15(5), 1998.

Open activity diagram file

{MDI file: }

{XMI file: }

{html file: }Htm translator

XMI translator

MDI translator

XML file

Display diagram Display XML file

Generate test scenarios

{other file format: }

Generate scenario tree

0t

1t

4t

2t

3t

6t5t

8t

7t

9t

10t

11t 12t
13t

15t
16t

14t

17t
18t

1a

2a

3a

4a

5a

8a

9a

7a6a

Figure 7 An example

Figure 8 Demonstration of TSGAD

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

	Using Adaptive Agents to Automatically Generate Test Scenarios from the UML Activity Diagrams
	Microsoft Word - APSEC 2.doc

