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Abstract 

Test case generation is one of the most important 
issues in software testing research and industrial 
practice. Test scenarios are frequently used to derive 
test cases for scenario-based software testing. 
However, the generation of the test scenarios is usually 
a manual and labor-intensive task. It is desired that 
test scenarios can be automatically generated. In this 
paper, we propose an automated approach using 
adaptive agents to directly generate test scenarios 
from the UML activity diagrams.  

1. Introduction 

Software testing remains the primary technique used 
to maintain quality of the software products and to gain 
consumers’ confidence in software. Unfortunately, it is 
well-known that testing software is a time-consuming 
and costly process [4]. Therefore, techniques that 
support the automation of software testing will result in 
significant cost and time savings for the software 
industry. Automatic generation of the test data is 
essential for the automation of software testing. 

Great attention has been given to effectively using 
UML, which is the industrial de-facto standard for 
modeling object-oriented software systems, in software 
testing (see, for example, [6] and the references 
therein). One of the focused research topics is using 
UML artifacts for scenario based testing.  

Scenarios represent the sequences of executions in a 
software system. Properly generated test scenarios are 
essential for the scenario-based software testing to 
achieve the required test adequacy and to guarantee the 
software quality [8]. However, one major problem with 

the generation of test scenarios is that the generation 
procedures are either completely manual or can not be 
fully automated [2]. 

Currently there is a research trend to apply artificial 
intelligence techniques in software engineering, 
especially in software testing research (see for 
example, [5][11][15] and the references therein). One 
of the much focused areas in applying artificial 
intelligent techniques to software testing is the 
automated generation of test data.  

Results have been reported of using artificial 
techniques in test data generation for software testing. 
The focus of the techniques mainly involves the 
applications of the genetic algorithms and the Ant 
Colony Optimization algorithms, for examples, 
[12][15]. However, automation of the generation 
procedure, efficiency of the generation algorithms, and 
the feasibility of the generated test data are frequently 
concerned. Furthermore, the reported results mainly 
concern with the state-based testing problems. The 
problem of generating test scenarios for scenario-based 
software testing receives less attention. 

Recently, an approach has been proposed in [13] to 
use so-called anti-ant-like agents to automatically 
generate test threads from the UML activity diagrams. 
It is shown in [13] that using agents provides a 
potential avenue to automate the generation of test 
scenarios for scenario-based software testing.  
However, the proposed algorithm in [13] may result in 
redundant exploration of the activity diagrams and 
hence reduce the efficiency of the generation process. 
Furthermore, the complexity of the activity programs 
which are explored in [13] calls for further research. 

In this paper, we propose to use adaptive agents to 
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overcome the difficulties and limitations encountered 
in [13]. The algorithm proposed in this paper is more 
efficient, and is capable to deal with the UML activity 
diagrams which contain more complicated structures. 

This paper is structured as follows. Section 2 
provides an analysis of the UML activity diagrams. 
Section 3 presents an adaptive agent approach to test 
scenario generation. Section 4 briefly describes the tool 
support for the proposed approach. Section 5 briefly 
discusses the related work; and the conclusion is found 
in Section 6.

2. Analysis of the UML Activity Diagrams 

In general, an UML activity diagram includes an 
initial state, the action states, the final states, the fork 
nodes, the join nodes, the branch nodes, the merge 
nodes, the transitions and their associated guard 
conditions, and the final nodes.  

The following definition for the UML activity 
diagrams is modified from [16]: 
Definition 1 An activity diagram is a 8-tuple AD = (A, 
B, M, F, J, K, T, 0a ) where A = },,,{ 21 naaa ⋅⋅⋅  is a 

finite set of action states of the UML activity diagram; 
B = },,,{ 21 ubbb ⋅⋅⋅  a finite set of branches; M = 

},,,{ 21 vmmm ⋅⋅⋅  a finite set of merges; F = 

},,,{ 21 yfff ⋅⋅⋅  a finite set of forks; J = },,,{ 21 xjjj ⋅⋅⋅
a finite set of joins; K = },,,{ 21 wkkk ⋅⋅⋅ a finite set of 

final states and end flows; T = },,,{ 21 zttt ⋅⋅⋅  a finite set 

of transitions which satisfies etectTt =∨>=<∈∀ ,
where },,,{,, 21 lcccCEeCc ⋅⋅⋅=∈∈  is a finite set of 

guard conditions, },,,{ 21 seeeE ⋅⋅⋅=  is a finite set of 

edges of the activity diagram; and 0a is the unique 

initial state. 
A test scenario is defined as follows: 

Definition 2 Let AD = (A, B, M, F, J, K, T, 0a ) be an 

activity diagram. Denote TS the set of test scenarios 
for AD. tsTSts ,∈∀  is a sequence of action states and 

transitions, i.e.  
.,,2,1,1100 niKkTtAaktatatats iinn ⋅⋅⋅=∈∧∈∧∈∧⋅⋅⋅=

A directed graph is defined as G = (V, E) where V 
is a set of vertices of the graph and E a set of edges of 
the graph. A UML activity diagram can be viewed as 
an activity graph where the vertices are the activity 
nodes, the object nodes, the branch nodes, the fork 
nodes, the join nodes, and the initial node, while the 
edges are the activity edges in the activity diagram. An 

activity graph is a directed, dynamic graph in which the 
activity edges may become accessible only after the 
evaluation of their associated guard conditions.  

The fork-join pairs in the UML activity diagrams 
represent concurrent executions.  Due to the 
concurrency contained in fork-join pairs, it is difficult 
to derive test scenarios for an UML activity diagram 
which contains fork-join pairs. Furthermore, in 
complicated UML activity diagrams, the fork-join pairs 
can have complicated structures, namely, they may 
contain nested fork-join pairs, and they may include 
branches or loops between the fork and the join.  

To our knowledge, there is no systematic approach 
reported in literature to automatically generate all test 
scenarios for the UML activity diagrams which contain 
complicated fork-join structures. For example, the 
approach in [16] generates only incomplete test 
scenarios for an UML activity diagram under the 
assumption that the activity diagrams contain forks 
which only have two outgoing edges. Although the 
approach reported in [13] does not constrain the 
outgoing edges of the forks, the generated test 
scenarios for a fork-join pair only contain the 
combination of the sequentially connected execution 
paths between the fork and the join, therefore, may 
miss some test scenarios for the fork-join pair. 

This paper further extends the approach reported in 
[13] to tackle more complicated UML activity 
diagrams. In particular, the approach proposed in this 
paper aims at providing a solution to generate complete 
test scenarios for the UML activity diagrams which 
may contain complex fork-join structures.  

First of all, we present a simple classification of the 
fork-join pairs considered in this paper.  

2.1 A simple classification of the fork-join pairs 

The fork-join pairs considered in this paper can be 
classified as four types, namely, the Atomic-Fork-Join 
(AFJ) type, the Simple-Fork-Join (SFJ) type, the 
Simple-Nested-Fork-Join (SNFJ) type and the Branch-
Nested-Fork-Join (BNFJ) type. Note that it is possible 
that the fork-join pairs in the UML activity diagrams 
may contain other structures. Research is currently 
being carried out to investigate the fork-join structures 
which are not covered here. 

Before we provide the definitions for each of the 
types, we give the following definition: 
Definition 3 Let ID denote the incoming degree of a 
node in the activity diagram, OD denote the outgoing 
degree of a node. ID(x) and OD(x) denote the number 
of incomings and outgoings of the node x, where 

.KxJxFxMxBxAx ∈∨∈∨∈∨∈∨∈∨∈
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Especially, ID( 0a ) = 0, OD( 0a ) = 1, OD(k)  =  0, 

.Kk ∈∀
 Now, we are ready to give a definition for the 

Atomic-Fork-Join type: 
Definition 4 An AFJ is a 4-tuple AFJ = (A, T, f, j) 
where A and T are the set of action states and the set of 
transitions, respectively; f is the unique fork in the 
AFJ; j is the unique join in the AFJ; 

Aaaa ∈=∧= ,1)(ID1)(OD which means that each 

action state has one incoming and one outgoing 
exactly; and 2)(ID2)(OD =∧= jf  which means 

that the unique fork only has 2 outgoings, and the 
corresponding join has 2 incomings. The sequence 

jaaf inii t
i

t
i

t ⎯→⎯⋅⋅⋅⎯→⎯⎯→⎯ 21
21  is called an 

execution path of this fork-join.  
Note that only two parallel execution paths are 

contained in an AFJ. We use ES to denote the set of the 
execution paths },,{ 21 esesES =  then .2|| =ES If 

,|{1 AaaS ∈= a occurs in },, 11 ESeses ∈
,|{2 AaaS ∈= a occurs in },, 22 ESeses ∈ then 

.21 φ=∩ SS  Moreover, if ,|{1 TttU ∈= t occurs in 

},, 11 ESeses ∈ ,|{2 TttU ∈= t occurs in 

},, 22 ESeses ∈ then .21 φ=∩UU  Therefore, each 

action state and each transition in an AFJ only appear 
in one of the two execution paths. 

For example,  the fork-join  pairs  shown in Figure 1  

and Figure 2 are both AFJs. Denote the number of test 
scenarios as NTS. For the fork-join pair in Figure 1, 

NTS = 1
3C = 3. For the fork-join pair shown in Figure 

2, NTS = 2
4

1
4 CC + = 4 + 4×3/2 = 10.  

Next, we provide a definition for SFJ: 

Definition 5 A SFJ is a 4-tuple SFJ = (A, T, f, j) where 
A, T, f and j are the set of action states, the set of 
transitions, the unique fork, and the unique join in the 
SFJ, respectively; Aaaa ∈=∧= ,1)(ID1)(OD which 

means that each action state has one incoming and one 
outgoing exactly; njnf =∧= )(ID)(OD  where 

,2 Nnn ∈∧≥ N is the set of natural numbers; the 

sequence jaaf inii t
i

t
i

t ⎯→⎯⋅⋅⋅⎯→⎯⎯→⎯ 21
21  is called 

an execution path of this fork-join. 

Obviously n parallel execution paths are contained 
in a SFJ. Hence, },,,{ 21 nesesesES ⋅⋅⋅= and .|| nES =
If  ,|{1 AaaS ∈= a occurs in },, 11 ESeses ∈

,|{2 AaaS ∈= a occurs in },, 22 ESeses ∈ ,⋅⋅⋅
,|{ AaaSn ∈= a occurs in },, ESeses nn ∈ then 

.21 φ=∩⋅⋅⋅∩∩ nSSS  Moreover, if 

,|{1 TttU ∈= t occurs in },, 11 ESeses ∈
,|{2 TttU ∈= t occurs in },, 22 ESeses ∈ ,⋅⋅⋅
,|{ TttU n ∈= t occurs in },, ESeses nn ∈ then 

Figure 1 Figure 2 Figure 3 

Figure 4       Figure 4.1    Figure 4.2 Figure 5       Figure 5.1        Figure 5.2 
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.21 φ=∩⋅⋅⋅∩∩ nUUU  Therefore, each action state 

and each transition in an SFJ only appear in one of the 
n execution paths. 

The fork-join pair shown in Figure 3 is a SFJ. Its 
NTS is: 

 NTS = )( 1

1

1

1

0

1

1
1

1

1

j
m

n

i

m

j

j

m
i

i

i

k
k

CC −

−

=

−

=

+

+
+

+

=

×∏  , where we 

assume that .12,1 0
021 =∧≥≥≥⋅⋅⋅≥≥ Cnmmm n

Obviously, the SFJ is an extension of the AFJ. In 
general, most of the fork-join pairs in the UML activity 
diagrams belong to the SFJ type. 

The NTS formula shown above can be deduced 
easily, and hence the derivation procedure is omitted. 
The NTS formula can be used to verify whether a 
proposed method is capable to generate all test 
scenarios for a SFJ in an activity diagram.  

Now, we define the SNFJ type as follows: 
Definition 6 A SNFJ is a fork-join pair which contains 
a nested SFJ inside.  If the nested SFJ is replaced with 
one of its test scenarios, and as a consequence the host 
fork-join pair becomes a SFJ, we call such fork-join a 
SNFJ.   

For example, the fork-join pair shown in Figure 4 is 
a SNFJ. It can be decomposed into 2 SFJs shown in 
Figure 4.1 and Figure 4.2 respectively. Obviously, the 
NTS of a SNFJ =  the NTS of the decomposed SFJs. 
Therefore, the NTS of a SNFJ can be calculated using 
the above formula for a SFJ. 

 Finally, we give the definition for the BNFJ type: 
Definition 7 A BNFJ is a fork-join which contains a 
branch-merge pair inside.  If the branch-merge is 
replaced with one of its test scenarios, and as a 
consequence the host fork-join pair becomes a SFJ, we 
call such fork-join a BNFJ.

For example, the fork-join pair shown in Figure 5 is 
a BNFJ. A BNFJ can be decomposed into two SFJs 
shown in Figure 5.1 and Figure 5.2 respectively. 
Obviously, NTS of a BNFJ =  NTS of the two 
decomposed SFJs.  

Since the SFJ type forms the basis of the 
decomposition for the SNFJ type and the BNFJ type, 
we clearly need to investigate how to generate test 
scenarios for the SFJ type. In the following, we present 
an algorithm, called the SFJ algorithm, to generate the 
test scenarios for a SFJ type. 

2.2 The SFJ algorithm 

Suppose the SFJ is the one shown in Figure 3. The 
pseudo codes of the SFJ algorithm are given below. 

The SFJ Algorithm: 

Step 1: Create n action stacks as the following: 

A11

A12

  … 

A1m1

  S1

A21

A22

  … 

A2m2

  S2

An1

An2

  … 

Anmn

  Sn

where Aij, i=1,2,…n, j=1,2,…m are the action states 
that appear in the SFJ;  
Step 2: Create a stack list, denoted as “st”: 

Step 3: Create a tree node structure: 
Struct tree_node:   

Action: action; 
 Stack_list: st; 
Endstruct;
Create a scenario tree as an 
intermediate data structure;  

Step 4: Create a recursive function to generate the 
scenario tree for the SFJ.  Suppose the root of the 
execution path tree starts from the fork node, denote 
here root.action = fork, root.st = st. The function 
pseudo codes to generate this tree are given below:

//create scenario tree for simple fork- 
//join and it’s a recursive function 
createSFJScenarioTree(tree_node:treeNode)
{

for each stack(Si) in 
stack_list(st) of the treeNode 

//pop up top element 
action := Si.popup();

   if Si. isEmpty() then 
remove the Si   from the 
stack_list(st);

   endif 
create a tree node named    
nodeNew where nodeNew.action := 
action,    node.st = st; 
//adding a child to the current
//tree node 
tree.addChild(node, nodeNew);

 endfor; 

 // operation for each leaf of the 
// current thread tree 

 for each tree leaf 
   //Is the stack list of the leaf            

  //node EMPTY? 
   if leaf.st is NOT empty  then 

createSFJScenarioTree(leaf);
//calling recursively 

   endif 
 endfor 
}
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Step 5: Generate test scenarios for the SFJ by 
traversing the scenario tree. Each path from root to a 
leaf forms a test scenario for the SFJ. 

Note that the NTS formula can be used to verify that 
all test scenarios for a SFJ have been generated. 

By using the SFJ algorithm, 10 test scenarios can be 
generated for the fork-join pair shown in Figure 2, and 
the generated test scenarios are exactly the same as 
those listed in Table 2. However, only 6 test scenarios 
can be generated using the algorithm proposed in [16].  

3. Generate Test Scenarios from the UML 
Activity Diagrams 

In this section, we will describe the complete 
algorithm of using adaptive agents to automatically 
generate test scenarios from the UML activity 
diagrams.  

3.1 Adaptive Agents and Their Behavior 

We consider the problem of sending adaptive agents 
to search an activity graph which corresponds to a 
UML activity diagram.  The objective of the agent’s 
exploration is to build the test scenarios from the 
corresponding activity diagram. 

The adaptive agents proposed exhibit similar 
behavior of some bacteria, for example the type of 
bacteria called Maxococcus xanthus.  Maxococcus 
xanthus is a type of myxobacterium which lives in soil. 
A Maxococcus xanthus can move around the ground to 
search for nutrients. As it moves, the bacterium can lay 
down a slime trail which may play the role of greasing 
the path to easy the movement. Therefore, if a 
bacterium finds a slime trail, it has a better chance to 
follow that trail to make its movement easier [14].  

Like Maxococcus xanthus bacteria, our agents move 
around in the directed activity graph to search for 
nutrients. As these agents move, they also lay down 
slime trails to mark their paths. However, unlike 
Maxococcus xanthus, bacteria, our agents actually 
exhibit opposite behavior with regard to the use of 
slime trails, namely, too strong slime concentration will 
turn our agents into stationary spores. A spore can not 
move around further to search for nutrients. Therefore, 
once an agent is turned into a spore, it will be removed 
from the search process. 

Like many bacteria, our agents can adapt to the 
environment. Namely, if nutrients are sufficient at a 
place such that the workload of an arriving agent is too 
high, the agent will simply clone itself to easy the 

workload it has to take. The cloned agents will then be 
dispersed to different directions to cover the nutrients. 

When our adaptive agents are dispatched to search 
an activity graph, they observe the following rules: 

Rule 1: An agent can only move in the directions of the 
edges at a fixed speed. 
Rule 2: An agent can lay down fixed amount of slime 
over an activity edge when it arrives at the edge. 
Rule 3: An agent is turned into a spore if it arrives at 
an activity edge which possesses too high slime 
concentration. 
Rule 4: An agent is killed if it finds antibiotic 
substance. 
Rule 5: Search an activity edge represents one normal 
work load for an agent at a particular time. An agent 
can only take one workload at a time. 
Rule 6: An agent can clone itself if it is requested to 
carry out a higher workload. The cloned agents inherit 
the complete information of the fathering agent and 
exhibit the same behavior of the fathering agent. 

When using the proposed agents to search an 
activity diagram, special attentions need to be paid to 
two types of nodes in an activity diagram: 

The final nodes are considered as spots which 
contain antibiotic substance. An agent is killed if 
it arrives at a final node. 
The branch nodes are considered as the spots 
which contain rich nutrients. If a branch node has 
m outgoings, then the requested workload for an 
agent which arrives at the branch node is m times 
higher than its normal workload. Therefore, the 
agent has to reproduce m-1 clones at the branch 
node; each agent will carry on a search in a 
different outgoing.  

The overall behavior of the adaptive agents in our 
approach is governed by an activity diagram illustrated 
in Figure 6. Note that for simplicity, it is assumed in 
this paper that each cyclic loop is executed at most two 
times. This assumption is the same as the one in [16]. 

3.2 Algorithm 

We define a scenario tree as an interim storing 
structure.  The initial node of an activity diagram is 
regarded as the root of the tree. Each tree node denotes 
the elements of the activity diagram such as the action 
states, the forks, the joins, the branches, the merges, the 
guard conditions, and the final states.  Test scenarios 
can then be derived from the scenario tree by traversing 
the tree.  

First  of all,  we  represent  the  guard  conditions  in 
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forms which are slightly different from the originals. A 
guard condition which consists of an attribute type and 
a value are denoted as <Type: value>. In general, there 
are three kinds of guard conditions in an activity 
diagram, namely text which is a string description, 
counter which is an integer mostly used to represent the 
loop times, and Boolean or Boolean expression which 
represents a conditional decision. For example, a 
condition can be denoted as <Boolean: True>.  

The pseudo codes of the algorithm, which 
implement the behavior model shown in Figure 6, are 
illustrated as follows: 

/* Initialization */ 
for every edge (i,j) do 
   Pij = 0; /*Set 0 slime level to every
              edge*/ 
endfor;

Call an agent to traverse the activity 
diagram from its initial state. 

While (true) do 
   Evaluate status at node i;

   /*Report initial node to the scenario
     tree as the root*/ 
   if (is initial node) do 
 Create tree root; 
   endif; 

   if (found antibiotics) do 
       if (is last alive agent) do 

          Break; 
       else 
          Kill agent; 
       endif; 
   endif; 

   /* action state */ 
   if (access action) do 
     Reporting action node to the
     scenario tree; 
   endif 

   /*Data Reporting*/ 
   if (access Data) do 
     Report data access to the scenario
     tree; 
   endif; 

   /*Clone agent*/ 
   If the outgoing edges of the traversed
   node are m, clone m-1 agents to
   traverse the different edges

   /*If arrives at a fork node*/ 
   if (found fork-join pair) do 
     if (the node is a SFJ) do 
       Call SFJ algorithm;
     else 
       Decompose SNFJ or BNFJ into SFJ; 
       Call SFJ algorithm for each SFJ;
       Merge the generated test
       scenarios;
     endif; 
     Merge fork-join test scenarios into
     the scenario tree; 
   endif; 

Initilization, Pij = 0

Merge SFJ TS to the scenario tree

Call an agent

Arrive at a node

Create tree root

Found poison

Arrive at an edge Pij, Pij++

Kill agent

Cut redundant tree branch

Reporting action node to the scenario tree

Report data access to the scenario tree

Report guard condition node to the scenario tree

SFJ node

{initial node: }

{end node: }

{action state: }{fork-jion: }

Clone agents

{branch: }

{Pij >= 3: } {else: }

{last alive agent: }

{attach data object: }

{else: }

Turn agent into a spore

{last alive agent: }

{else: }

{else: }

Figure 6 The behavior model of the adaptive agents 
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   Agent moves to an outgoing edge; 

   /*Condition reporting*/ 
   if (found Condition) do 
     Report guard condition node to the
     scenario tree; 
   endif; 
   /*Increased Pij by one when an agent
     arrives at an edge*/ 
   Pij ++; 

   /*loops are only permitted to execute
     two times due to the coverage
     criterion adopted in this paper */ 
   if (Pij >= 3) do 
       Cut redundant tree branch; 
       if (is last alive agent) do 
          Break; 
       else 
          Turn the agent into a spore; 
       endif; 
   endif; 

   Agent moves to next node; 
endwhile;

/* Generate a test scenario*/ 
Generate sequence of action states and 
transitions formed from the root to a 
leaf of the scenario tree. 

The pseudo codes are straightforward to be 
followed. 

4. Tool support 

We have developed a prototype tool called TSGAD 
(Test Scenarios Generator for Activity Diagrams) using 
the proposed algorithm to automatically generate test 
scenarios for given activity diagrams. An activity 
diagram can be developed using many standard UML 
tools and exported into a XMI file. TSGAD can 
directly read a XMI file which includes all UML 
diagrams, extract the contained activity diagram, and 
automatically generate test scenarios afterwards. 

Due to space limitation, we can not describe 
TSGAD in details here. However, we use an example 
to demonstrate the tool. The example shown in Figure 
7 is an activity diagram which simulates a test scenario 
generator. The generator in Figure 7 takes an activity 
diagram generated using Rational Rose, Poseidon or 
Visio, and converts the imported diagram into a generic 
XML format. Afterwards, the generator parses the 
XML file to derive all test scenarios.  

The activity diagram shown in Figure 7 was drawn 
using Poseidon UML and a XMI file was exported. As 
shown in Figure 8, the generated XMI file was 
imported into TSGAD, namely, the intermediate 
scenario tree was displayed in the left panel; the 

corresponding activity diagram was displayed in the 
central panel; while the XML representation for the 
activity diagram was shown in the right panel. TSGAD 
automatically generated all test scenarios for the 
imported activity diagram, as shown in the bottom 
panel in Figure 8. The details of all generated test 
scenarios have to be deleted due to space limitation. 

5. Related work  

In [16], the concept of basic paths (BPs) for the 
activity diagrams is defined. From BPs, the test 
scenarios are derived by depth first search. However, a 
detailed walkthrough of the proposed algorithm shows 
that some test scenarios are not generated, especially 
when the test scenarios are derived from the fork-join 
parts of the activity diagrams. For example, only 6 
execution paths are generated for the fork-join structure 
shown in Figure 2 using the algorithm proposed in 
[16].  Furthermore, it has been assumed in [16] that the 
activity diagrams have pairs of branches and merges, 
and pairs of forks and joins; a fork in an activity 
diagram can only have two outgoings.  Obviously, 
these assumptions limit the applicable scope of the 
algorithm proposed in [16]. The algorithm proposed in 
this paper removes most of the constraints imposed in 
[16], and the proposed algorithm is more efficient due 
to the use of the adaptive agents. 

An algorithm using anti-ant-like agents is given in 
[13] to generate thin threads from the activity diagrams. 
While the algorithm proposed in [13] doesn’t rely on 
the assumptions used in [16], the efficiency of the test 
thread generation is not optimal. For example, a group 
of ants is used to explore an activity diagram; each ant 
starts from the initial state of the activity diagram such 
that some parts of the activity diagram are explored 
many times. In contrast, the algorithm proposed in this 
paper uses one agent to start the initial exploration.  

More agents are adaptively reproduced if and only if 
it is necessary. Therefore, redundant exploration of the 
activity diagrams is avoided. 

Similar to [16], the algorithm proposed in [13] can 
not generate complete test scenarios for fork-join pairs 
in general. In comparison, the algorithm proposed in 
this paper can generate all test scenarios for these fork-
join structures described in Section 2. 

6. Conclusion 

This paper presented an automated approach to 
generated test scenarios from the UML activity 
diagrams.  Using the developed algorithm,  an adaptive 
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agent can effectively explore the UML activity 
diagrams and automatically generate test scenarios.  

 Our approach has the following advantages: 1) the 
UML activity diagrams exported by UML tools are 
directly used to generate test scenarios, and the whole 
generation process is fully automated; 2) redundant 
exploration of the activity diagrams is highly avoided 
due to the use of adaptive agents, resulting in improved 
efficiency in the generation of the test scenarios. 
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Figure 7 An example 

Figure 8 Demonstration of TSGAD 
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