
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 353: 65–79, 2008
doi: 10.3354/meps07171

Published January 17

INTRODUCTION

Seagrasses are exposed to a highly variable light
environment owing to the range of depths they
colonise (Duarte 1991), seasonal cycles of irradiance
(Alcoverro et al. 2001a) and fluctuating water quality
(Longstaff & Dennison 1999). Maximisation of light
utilisation through a number of physiological changes
can lower the compensation irradiance, or the mini-
mum light required to sustain plants over annual
cycles, and can prolong survival under conditions of
reduced light availability (Dennison & Alberte 1985). If
these changes are insufficient to maintain a positive

carbon balance, utilisation of carbohydrate reserves
provides an additional source of carbon with which to
prolong tolerance to reduced light (Burke et al. 1996,
Lee & Dunton 1997). 

During periods of light reduction, photosynthetic
adjustments can improve light capture and conversion
to chemical energy. For example, the ratio of chloro-
phyll a to chlorophyll b (chl a:b ratio; Longstaff & Den-
nison 1999) can be reduced, as can maximum photo-
synthetic rate and saturating irradiance (Dennison &
Alberte 1985, Ruiz & Romero 2001, Ralph & Gademann
2005), while chlorophyll concentration can be in-
creased (Dennison & Alberte 1985, Abal et al. 1994,
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Lee & Dunton 1997, Longstaff & Dennison 1999), as
can photosynthetic efficiency (α; Durako et al. 2003).
Responses of the photoprotective xanthophyll pig-
ments in seagrasses to changes in light availability
are not as well known (with the exception of Flanigan
& Critchley 1996, Ralph et al. 2002). In response
to increased light, photosynthetic down-regulation
diverts energy to the xanthophyll cycle as a mecha-
nism to avoid photosystem damage (Demmig-Adams
et al. 1996). De-epoxidation of the xanthophyll violax-
anthin to antheraxanthin and then zeaxanthin removes
excess irradiance from the photosystem as heat (Dem-
mig-Adams et al. 1996). The diversion of energy away
from photosynthesis leads to a reduction in the maxi-
mum quantum yield of Photosystem II (PSII; variable
fluorescence:maximum fluorescence ratio, Fv:Fm) and,
as such, increases in xanthophylls cycle products
are associated with reductions in the Fv:Fm ratio and
increases in non-photochemical quenching (Demmig-
Adams et al. 1996, Ralph et al. 2002). Given their role
in the quenching of excess irradiance, seagrass plants
growing in low-light environments should maintain
lower concentrations of xanthophyll pigments than
plants in high-light environments.

Other physiological responses to light reduction
include a reduced δ13C signature of leaves owing to
higher selectivity against 13C when growth is reduced,
and increased tissue nutrient and amino acid concen-
tration (Abal et al. 1994, Longstaff & Dennison 1999).
Reductions in carbohydrate concentrations in the
leaves and rhizome are often detected during shading
because carbohydrates are remobilised to sustain res-
piratory and growth requirements (Burke et al. 1996,
Lee & Dunton 1997, Kraemer & Hanisak 2000). 

Physiological responses precede morphological ad-
justments and shoot loss (Longstaff & Dennison 1999)
and are seen as short-term responses to light availabil-
ity. As such, physiological characteristics may be use-
ful early warning monitoring tools of a light-related im-
pact on seagrass meadows. A depth-related gradient of
long-term light availability represents a steady and
persistent light reduction with depth, and therefore
provides an opportunity to identify how these physio-
logical characteristics enable seagrasses to persist un-
der long-term sub-optimal light conditions. 

The ability to acclimate to depth-related light reduc-
tion should confer an important advantage to all spe-
cies that occupy such gradients, and a number of spe-
cies have demonstrated physiological adaptation with
depth (Dennison & Alberte 1985, Olesen et al. 2002,
Schwarz & Hellblom 2002). However, the importance
of physiological responses of Posidonia sinuosa and the
similarly slow-growing, meadow-forming Posidonia
oceanica have been questioned (Masini et al. 1995,
Alcoverro et al. 1998, Olesen et al. 2002). Mechanisms

that optimise light capture and carbon fixation/utilisa-
tion operate at a number of levels, including meadow-
scale (shoot density), shoot-scale (morphology) and
leaf-scale (physiological changes). It has been pro-
posed that in such meadow-forming species the physi-
ological adaptations are not utilised along depth gradi-
ents, and that meadow-scale changes are instead more
important (Olesen et al. 2002). These physiological re-
sponses can, however, operate in these species in re-
sponse to shading (Ruiz & Romero 2001). In an earlier
study (Collier et al. 2007) we described the morphology
and growth of the meadow-forming seagrass P. sinu-
osa along a depth-related gradient of light extending
from 1.6 m to the depth limit at 9.0 m. As with P. ocea-
nia (Olesen et al. 2002), shoot-density differences dom-
inated, which should have reduced respiratory load
and self-shading at deeper sites. Shoot density reduc-
tion enables greater light penetration through the
canopy and was therefore considered a meadow-scale
adjustment. Leaf growth was the same among all
depth strata in summer, even at the depth limit, sug-
gesting that sufficient physiological and morphological
adjustments had been made to enable optimal leaf
growth at the shoot level. While meadow-scale shoot
loss appeared to dominate, physiological adaptation to
the depth-related light gradient should have also opti-
mised shoot performance. However, the meadow-scale
responses may have been sufficient so that physiologi-
cal responses were not necessary over the long-term. 

Before using these physiological characteristics as
monitoring tools, it is crucial that their response under
conditions of long-term light reduction be identified in
order to provide sufficient background for their inter-
pretation and use in management. The aim of this
research was to characterise a number of physiological
characteristics of the meadow-forming seagrass Posi-
donia sinuosa that have previously been reported as
responsive to light availability, with a particular
emphasis given near the depth limit where light avail-
ability is sub-optimal.

MATERIALS AND METHODS

Study locations. The study was conducted in Cock-
burn Sound (CS) and Warnbro Sound (WS) in south-
western Australia, where monospecific stands of the
locally dominant species Posidonia sinuosa grow on
steep, sub-tidal depth gradients ranging from approx.
1 to 9 m depth. CS was located on north-east Garden
Island, which is protected from the dominant south-
westerly wind and swell. Sampling at CS was carried
out in winter (June 2002) and summer (January to Feb-
ruary 2003) at 6 depths: 1.6, 4.0, 5.7, 6.5, 8.3 and 9.0 m
(lowest astronomical tide), which are herein referred to
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as sites CS1, CS2, CS3, CS4, CS5 and CS6 respec-
tively. Sampling effort was concentrated nearer to the
depth limit, where the greatest differences were
expected owing to the approach of compensating light
levels. The deepest 5 sites were within close proximity
to each other on a steep slope leading to a basin
(32° 09’ 37” S, 115° 40’ 47” E), while the shallowest site
was located approx. 800 m away, closer to Garden
Island (32°09’36”S, 115°40’16.”E). The location of sam-
pling in WS was Safety Bay, located in the north-east of
the sound, which is more exposed to south-westerly
winds. Sampling at WS was carried out in summer only
(January to February 2003) at the same 6 depths, and
sites are herein referred to as WS1, WS2, WS3, WS4,
WS5 and WS6 respectively. Again, the deepest 5 sites
were located within close proximity (32° 18’ 57” S,
115° 42’ 52” E), while the shallowest site was located
approx. 150 m away, closer to the mainland shore
(32° 18’ 54” S, 115° 42’ 50” E). The sites were sampled
for a variety of physiological parameters. 

Sampling and analysis. Carbohydrates (soluble sug-
ars and starch): Six replicate rhizomes and shoots were
randomly collected from each depth, placed in plastic
bags and immediately stored on ice prior to storage at
–18°C. Samples were later analysed for soluble sugar
concentration according to the method of Dubois et al.
(1956). For rhizome material, 0.1 to 0.2 g from a seg-
ment nearer to the terminal shoot (Internode 4) and an
older segment (Internode 10) were analysed separately
(3-way ANOVA, Season × Depth × Segment). Starch
levels showed no difference between these segments
and so data were pooled for final statistical analysis,
whereas sugar data for both segments were presented
separately (Segment × Location: p < 0.01). All analyses
on leaves were carried out on the youngest fully mature
leaf (usually Leaf 1 or 2). Rhizome material was finely
ground with acid-washed sand, and leaf material was
ground in liquid nitrogen because grinding in sand did
not effectively macerate leaves. Sugars were twice ex-
tracted in ethanol at 60°C for 20 min. A trial determined
that this extraction regime was as effective as 3 shorter
extractions. The extract was analysed for sugar content
using the phenol-sulphuric acid colorimetric method.
Samples were gelatinized at 100°C for 15 min and then
solubilised in 70% perchloric acid. Starch content was
then analysed using the phenol-sulphuric acid colori-
metric method (Quarmby & Allen 1989). 

Nutrient content and δδ 13C: Leaf samples for δ13C and
nutrient content (%N and %C) were randomly se-
lected from the pre-scraped above-ground biomass
samples. Only the youngest fully mature leaf was se-
lected. Dried samples were finely ground in a mixer
mill (Retsch MM 200) and analysed for δ13C, %N and
%C carbon using a mass spectrometer (ANCA-NT Eu-
ropa Scientific, Crewe) interfaced with a 20-20 isotope

ratio mass spectrometer (Europa Scientific, Crewe).
Isotope signatures were determined by comparison
with a working laboratory reference material, which
had been previously calibrated against various Inter-
national Atomic Energy Agency (IAEA) or National
Institute of Standards and Technology (NIST) standard
reference materials with a precision of <0.1‰. All δ13C
are traceable to the internationally accepted Vienna
PeeDee Belemnite (VPDB; for 13C) scales.

Pigments: At each depth, 6 replicate shoots were ran-
domly collected and placed immediately on ice in the
dark, prior to storage at –18°C. In a darkened room,
the youngest fully mature leaf was scraped free of epi-
phytes, finely chopped and extracted in N,N-dimethyl-
formamide at 4°C for 72 h in darkness. Spectrophot-
metric determination of chlorophyll concentrations
were performed on the extracts according to the
equations of Wellburn (1994). 

Additional shoots were collected for analysis of acces-
sory pigments. Whole shoots were collected, wrapped in
foil whilst under water and placed in liquid nitrogen
upon return to the surface. Samples were stored at
–86°C. In a darkened room, a whole mature leaf, includ-
ing all material emerging from the leaf sheath to the leaf
tip, was scraped free of epiphytes. Leaf material was
ground in a cold, glass mortar with acid-washed sand
and cold (–4°C), HPLC-grade 90% acetone. The sample
was sonicated in an ice bath for 20 min, allowed to
extract for 12 h at 4°C and sonicated for a further 20 min.
The extract was then analysed for pigment concentration
on a high performance liquid chromatograph (Waters)
comprising a 600 controller, 717 plus refrigerated auto-
sampler and a 996 photodiode array detector. Con-
centrations of pigments were determined from a
combination of standards (Sigma) and from purified
pigments isolated from algal cultures. 

PAM fluorometry. Photosynthetic characteristics
were measured in 6 replicate leaves using a Diving-
pulse amplitude modulated (PAM) fluorometer (Walz).
The sites were measured in a randomised order
between 10:00 and 14:00 h on cloudless days to cap-
ture the midday period of maximum electron transport
(Ralph & Gademann 1999, Campbell et al. 2003). No
data were collected for WS5. All measurements were
made on the youngest mature leaf, 15 cm from the top
of the leaf sheath (lower-mid section), which is the
most mature section that was consistently epiphyte
free and where the highest effective quantum yield is
expected (Durako & Kunzelman 2002). The leaf was
held 5 mm from the tip of the fibre-optic cable in a
dark-adaptation clip. Rapid light curves (RLCs) were
initiated immediately after the clip was fitted using the
internal step-wise program, which measures effective
quantum yield [φPSII = (Fm’ – F)/Fm’], where F is back-
ground fluorescence and Fm’ is maximum fluorescence
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yield after providing a 0.8 s saturating pulse at each
irradiance step. Preliminary data indicated that the
appropriate range of irradiance steps to cover saturat-
ing and non-saturating irradiance throughout the
depth range was 1 to 900 µmol m–2 s–1. 

Electron transport rate (ETR) was calculated as the
product of the effective quantum yield and the irradi-
ance provided by the internal halogen lamp and a
standard absorptance factor (AF) (φPSII × photosyn-
thetic photon flux density [PPFD] × 0.5 × 0.84). A stan-
dard absorptance factor was used here because the
best means to directly measure absorptance continues
to be debated among the scientific community. As
such, all values are considered relative ETR (rETR)
because leaf absorptance was not directly measured
(Durako et al. 2003). rETR was plotted against irradi-
ance, and the photosynthetic characteristics (photosyn-
thetic efficiency in light-limiting conditions, α; maxi-
mum relative electron transport rate, rETRmax; and
saturating irradiance, Ek) were calculated by fitting the
hyperbolic tangent model of Jassby & Platt (1976)
using Sigmaplot 2001 (version 7.0, SPSS). For CS only,
where sufficient light data were available (Collier et al.
2007), hours of photosynthetically saturating irradi-
ance (Hsat) were calculated from Ek and the measured
light data at each depth.

Following measurement of the RLCs, leaves were
dark-adapted for 10 min as recommended by Beer et
al. (2001) in order to measure ‘maximum’ or ‘potential’
quantum yield of PSII (Fm – F0)/Fm = Fv/Fm). Maximum
quantum yield was then determined by measurement
of background fluorescence (F0) and maximum fluo-
rescence (Fm) of dark-adapted leaves after providing a
0.8 s saturating pulse. Quenching coefficients were
calculated according to the equations (Fm – Fm’)/Fm’
for non-photochemical quenching (NPQ), and (Fm’ –
F)/(Fm’ – F0) for photochemical quenching (qP). 

Statistical analysis. All data were tested for normality
and homogeneity of variances (Levene’s median test). If
either assumption failed, data were log or square-root
transformed to achieve the highest Levene’s score. If
transformation still did not satisfy assumptions of
ANOVA, the p value was set to 0.01 to minimise the risk
of a Type I error (Underwood 1997). For conforming
data, significance was determined at p < 0.05. Signifi-
cant effects of the season and site (depth) were tested
using a 2-way ANOVA with site and season as random
factors. Location and site differences were tested using
a 2-way ANOVA (Location × Site) for all data collected
in summer at CS and WS. Season and location were
analysed as fixed factors, while site was a random
factor. Tukey’s post-hoc analysis was used to further
determine differences between the sites sampled, and
a t-test was used to determine differences at the same
depth between season and location. 

RESULTS

Carbohydrates

Total soluble sugars in the leaves ranged from 4 to
12 mg g–1 fresh wt. There was no clear trend in sugar
concentrations in leaves with increasing depth
(Fig. 1A,B), though there were significant Site × Sea-
son and Site × Location interactions (p < 0.05; Table 1).
Sugar concentrations did not differ among sites at CS
in winter, while the lowest concentration was recorded
from the 4.0 m site in summer. At WS, which was only
sampled in summer, the deepest 2 sites had a lower
leaf sugar concentration than the shallowest. This was
not the case at CS. 

Starch concentrations in the leaves were about 2 to
3 times greater than those of soluble sugars (17 to
32 mg g–1 fresh wt) (Fig. 1D,E). Like sugars, starch in
leaves showed no trend with depth, but at CS there
was a Site × Season interaction (p < 0.01; Table 1). In
winter, the highest starch concentration occurred at
CS3 and the lowest at CS1. In summer, CS5 and
CS6 exhibited the lowest starch concentrations. At all
sites except CS5, starch concentrations were higher in
summer than in winter.

In the rhizomes, total soluble sugar concentrations
ranged from 18 to 93 mg g–1 fresh wt, and at CS these
concentrations were significantly lower in winter than
in summer (p < 0.001; Table 1); however, there was no
significant effect of site (Fig. 1A). When analysed ac-
cording to location, a significant Segment × Location in-
teraction was observed (p < 0.01; Table 1). The data are
therefore separately presented for the younger (Inter-
node 4) and older rhizome segment (Internode 10)
(Fig. 1B,C). At both locations, sugar concentration was
significantly higher in the older segment (Internode 10)
than in the younger segment (Internode 4) (CS: p <
0.05; WS: p < 0.001). A significant effect of location on
sugar concentration in the rhizomes was observed, but
the difference was dependent on the site sampled (Site
× Location: p < 0.05). At Sites 1 (p < 0.01), 3 and 4 (p <
0.05), sugar concentration was significantly higher at
WS than CS for both segments. Starch concentration in
the rhizome ranged from 4 to 12 mg g–1 fresh wt and
was significantly higher at WS than at CS (p < 0.05), but
was unaffected by the site sampled. 

Nutrient content and δδ13C

At CS, and owing predominantly to a significant (p <
0.001) increase in %N in winter (Fig. 2A), the carbon to
nitrogen ratio (C:N ratio) was significantly lower (p <
0.001; Table 1) in winter (Fig. 2B). In summer, there
was a significant effect of depth on the C:N ratio and
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%N; however, this was affected by the location sam-
pled (Site × Location: p < 0.05). At CS there was no
effect of site, while at WS the deepest 3 sites had a sig-
nificantly (p < 0.01) lower C:N ratio than the shallowest
site. With regard to %N at WS, the only significant dif-
ference (p < 0.05) observed was that between WS1 and
WS5. 

The δ13C content significantly increased with depth
at both locations in summer (p < 0.01; Table 1). The 2
shallowest sites were significantly more depleted in
the heavier carbon isotope than were the deepest 3
sites (Fig. 2F). At CS, the effect of site was influenced
by the season sampled (Site × Season: p < 0.05)
because there was no significant differences among
the sites sampled in winter. In summer, δ13C was sig-
nificantly less negative than in winter at all depths. 

Chlorophyll

Total chlorophyll (chl a + b) concentration was signif-
icantly affected by site (Table 2), but the site at which
a difference was observed was dependent on both
Season (Site × Season: p < 0.01; Table 3) and Location
(Site × Location: p < 0.01). At CS in summer, total
chlorophyll concentration was lower at CS1 than at
CS3, while at WS the observed differences did not vary
consistently with increasing depth. 

The chl a:b ratio was not affected by season but was
affected by Site in summer (Table 2); however, the site
at which a difference was observed depended on the
location sampled (Site × Location: p < 0.01). At CS the
chl a:b ratio was lowest at CS1, while at WS the ratio
was lowest at WS3 and highest at WS4. 
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Carotenoids

Of the xanthophyll cycle pigments,
there was no zeaxanthin detected.
Of the others, relative violaxanthin,
antheraxanthin and total xanthophyll
cycle pigment concentrations were not
significantly affected by site (Fig. 3).
There was significantly less relative
antheraxanthin in winter than in sum-
mer at CS (p < 0.01; Table 3). For the
accessory pigments there was a sig-
nificant effect of season and site on
all pigments; however, no clear trend
with increasing depth was apparent
(Table 2). Neoxanthin and lutein con-
centrations were significantly lower
at CS4 than CS1 in summer and win-
ter, while β,β-carotene concentrations
were lowest at CS2 and CS4. 

Rapid light curves

While RLC-derived parameters de-
monstrated significant differences
among sites, these differences did not
follow a clear trend with increasing
depth, varying according to location
for α and both location and season for
rETRmax and Ek (Fig. 4). The most dis-
tinctive trend was at CS, where α was
significantly higher in winter than in
summer but did not vary among sites
(p < 0.01; Table 3). In contrast, there
was a significant effect of site on α at
WS, whereby α was significantly
lower at WS1 than at WS3, WS4 and
WS6. For rETRmax, CS3 and CS5 had
the highest rate compared with other
sites in winter, while CS4 had a
higher rETRmax than did CS1 in sum-
mer. At WS, rETRmax increased with
depth and was significantly higher at
WS4 and WS6 than at WS1. At CS, Ek

was highest at CS3 and CS5 in win-
ter, and at CS4 and CS5 in summer.
Only CS4 differed significantly
between the 2 sampling occassions.
At WS, Ek was higher at WS6 than at
all other depths. Ek was higher at WS6
than at CS6, but higher at CS4 than at
WS4. The number of light-saturating
hours of photosynthesis (Hsat) ranged
from 11.5 to 8.6 h from the shallowest
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to the deepest sites in summer, and from 8.0 to 1.6 h
from the shallowest site to CS5 in winter; Ek was
higher at CS5 than at CS6 in winter (Table 4). 

Maximum quantum yield and quenching analysis

There was no significant difference observed in
maximum quantum yield (Fv:Fm ratio) among sites

sampled at either location (p > 0.05; Tables 3 & 5).
However, the Fv:Fm ratio was significantly lower in
summer (ranging from 0.73 to 0.75) than in winter
(ranging from 0.82 to 0.83) (p < 0.001; Table 3).

Season did not have a significant effect on qP or
NPQ. NPQ was affected by site, but the nature of the
effect depended on the location sampled (Site × Loca-
tion: p < 0.05). At WS there was no effect of Site, while
at CS the NPQ was higher at CS3 than at CS6. 
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Fig. 2. Posidonia sinuosa. Nutrient content at Cockburn Sound (CS) in winter 2002 and summer 2003 (left), and CS and Warnbro
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DISCUSSION

Photosynthetic responses to the light gradient

The photosynthetic parameters measured here indi-
cate limited physiological differences among sites
along the depth-related light gradient. Studies on
other species demonstrate that chl a fluorescence can
describe the photokinetics of seagrasses growing in
different light environments (Ralph & Gademann
2005). These include increased photosynthetic effi-
ciency (α) to maximise photosynthetic performance in
the light-limiting region of the curve, a reduced maxi-
mum electron transport rate (rETRmax), a reduction in
the saturating irradiance (Ek) (Schwarz & Hellblom
2002, Campbell et al. 2003, Silva & Santos 2003) and
changes to maximum quantum yield (Fv:Fm ratio)
(Major & Dunton 2002, Campbell et al. 2003). How-
ever, these trends are inconsistent: due to a number of
field-based environmental scale-related considera-
tions, there are as many reports of no response or a
response that does not follow the light gradient as
there are of an observed response (e.g. Pirc 1986,
Dawes 1998, Olesen et al. 2002, Durako et al. 2003).
With the exception of a lower α at WS1, the current
study and previous research using oxygen evolution
(Masini et al. 1995) revealed few differences in any
photosynthetic parameter in Posidonia sinuosa among
depth strata, including RLC-derived parameters, max-

imum quantum yield and quenching. While seasonal
variation of α and photoadaptation under severe light
reduction (Collier 2007) indicate that some plasticity is
possible in this species, the adaptive process of the P.
sinuosa plants to the depth-related light gradient did
not include a change in these photosynthetic charac-
teristics. 

The attenuation of light with increasing water depth
was just one process acting to influence the light envi-
ronment at the epidermis of seagrass leaves. Addi-
tional attenuation of light occurs within dense seagrass
canopies, which places the mid-lower section of leaves
in an even lower light environment (Masini et al. 1995,
Enríquez et al. 2002). In response, the lower sections of
Thalassia testudinum leaves in dense canopies are
shade-adapted and photosynthetic quantum yield may
be considerably elevated (Durako & Kunzelman 2002,
Enríquez et al. 2002), and in Posidonia australis the
ETRmax was lower near the leaf base (Ralph & Gade-
mann 1999). Also, in a dense Posidonia oceanica
meadow, leaves demonstrated shade adaptation in the
lower section (10 to 15 cm from the sheath), with
increased α and reduced rETRmax and Ek compared
with the mid and upper sections (Collier 2007). Mea-
surements were made on the lower-mid region of
leaves in the current study in order to minimise the
influence of epiphytes (Ralph & Gademann 1999) and
regions of leaf necrosis (Durako & Kunzelman 2002)
near the upper leaf sections. As such, in the dense
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Location Season Site
1 2 3 4 5 6

Chl a+b (mg g–1 fresh wt)
CS Winter 4.48 (0.18)a* 4.71 (0.16)a* 4.10 (0.57)a 3.10 (0.23)a 2.91 (0.45)a 2.80 (0.34)a*

SummerA 0.98 (0.8)a 1.60 (0.20)ab 2.48 (0.31)b 1.87 (0.49)ab 1.65 (0.35)ab 1.39 (0.16)ab

WS Summer 2.46 (1.02)ac* 0.85 (0.29)bc* 2.84 (1.31)a 1.27 (0.78)c 1.98 (0.55)abc 1.66 (0.57)abc

Chl a:b ratio
CS Winter 1.8 (0.4)a 2.0 (0.3)a 2.0 (0.6)a 2.4 (0.3)a 2.5 (0.2)a 2.6 (0.2)a

SummerA 1.9 (0.1)a 2.4 (0.1)b 2.3 (0.3)b 2.2 (0.2)b 2.4 (0.1)b 2.4 (0.1)b

WS Summer 2.1 (0.2)ab* 2.2 (0.1)ab* 2.0 (0.1)a 2.5 (0.3)b 2.4 (0.2)ab 2.2 (0.2)ab

Neoxanthin (µg g–1 fresh wt)
CS Winter 18.3 (3.3)a* 14.3 (3.5)ab* 25.0 (2.4)ab* 11.0 (1.9)b* 16.9 (3.9)ab* 14.6 (3.2)ab*

Summer 17.8 (2.0)a 12.5 (2.2)a 12.4 (3.1)ab 7.4 (2.8)b 11.0 (2.4)ab 11.6 (3.9)ab

Lutein (µg g–1 fresh wt)
CS Winter 135.8 (10.4)a* 105.3 (10.5)ab* 146.6 (14.6)ab* 86.5 (10.0)b* 134.4 (8.1)a* 119.9 (6.8)ab*

Summer 122.1 (8.6)a 83.3 (13.4)ab 88.7 (18.0)ab 64.2 (20.4)b 104.8 (7.4)a 87.5 (21.4)ab

ββ,ββ-carotene (µg g–1 fresh wt)
CS Winter 63.0 (4.9)ab* 52.8 (4.8)a* 69.6 (5.1)b* 47.3 (2.1)a* 66.7 (3.6)bc* 57.0 (3.7)ac*

Summer 52.6 (4.2)ab 49.3 (2.2)a 68.8 (4.4)b 47.8 (5.1)a 51.3 (2.5)bc 50.8 (6.3)ac

AOnly different when analysed according to location

Table 2. Posidonia sinuosa. Pigment concentration at Cockburn Sound (CS) in winter (June 2002) and summer (January 2003)
and Warnbro Sound (WS) in summer (January 2003) at 1.6, 4.0, 5.7, 6.5, 8.3 and 9.0 m (Sites 1 to 6, respectively): chl a + b, chl a:b
ratio, and accessory pigments neoxanthin, lutein and β,β-carotene (data not shown for accessory pigments at WS). Parentheses: 

SE (n = 6). Sites with the same lower case letters did not differ significantly within season or location. *p < 0.05
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meadows at shallower locations,
photosynthetic parameters are
probably responding to the
attenuated light environment
within the dense canopy instead
of to the shallow, high-light
environment. 

Earlier we described the
strong reduction of shoot density
with increasing depth and the
probable implications in terms
of reduced self-shading (Collier
et al. 2007). When shoot den-
sity declines, considerably more
light penetrates through the
canopy so that the lower sections
of leaves growing in deeper
water may receive comparable
light levels to plants at shallower
depths (Dalla Via et al. 1998).
Like Posidonia oceanica (studied
by Dalla Via et al. 1998), Posido-
nia sinuosa forms dense mead-
ows in shallow water with high
light, but becomes more sparse
at deeper, low-light sites (up to
88-fold reduction in shoot den-
sity between 1.6 and 9.0 m
depth; Collier et al. 2007). This is
likely to reduce self-shading and
increase light penetration to
leaves. Light availability at the
leaf surface was not measured as
a part of the current study; how-
ever, the similar photosynthetic
characteristics among the depth
strata suggest that it could be
comparable. In contrast, when
seagrasses are shaded, changes
in photosynthetic characteristics
occur (e.g. Dennison & Alberte
1985). The current study sug-
gests that these differences may
not necessarily continue in the
long term because the whole
meadow and the morphology
of the plant adapt to increase
light availability at the leaf sur-
face. Further investigation into
the short-term vs. long-term
responses of this species is war-
ranted.

Some photosynthetic parame-
ters suggest that light availabil-
ity in this region of the canopy
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even increases with depth. At both CS and WS in sum-
mer, rETRmax and Ek were elevated at deeper sites
when measured at the lower-mid level of the canopy.
The high photosynthetic capacity at depth may sup-
port the leaf growth rates that are known to be equal
among all depths in summer, including the depth limit

(Collier et al. 2007). Photosynthetic responses at the
lower-mid level of the canopy may therefore not reflect
the overall light conditions of the meadow. Any future
consideration of the use of these parameters as indica-
tors of the long-term light environment should include
self-shading effects on light pre-history. Measure-
ments made nearer to the top of the canopy may more
appropriately represent ambient light availability, but
the practical application of measuring leaf tips
depends on epiphyte density and leaf integrity. 

Total xanthophyll concentrations in Posidonia sinu-
osa (6 to 12 mmol pigment [mol chl a+b]–1) were simi-
lar to those reported for Zostera capricorni (4 to 5 mmol
pigment [mol chl a+b]–1) by Flanigan & Critchley
(1996), but substantially lower than those of Z. marina
(approx. 300 mmol pigment [mol chl a+b]–1) (Ralph et
al. 2002). The values recorded for Z. marina are typical
of terrestrial sun-adapted plants. Plants adjust their
total xanthophyll cycle pigment pool in response to
total irradiance, such that shade plants maintain signif-
icantly less xanthophyll than sun plants (Thayer &
Björkman 1990, Adams et al. 1996). Concentration of
antheraxnathin was not significantly elevated at shal-
low sites compared with deeper sites, even though the
whole leaf (from leaf base to tip) was analysed. Self-
shading by the canopy and epiphyte cover on the leaf
tips may ameliorate the effects of high light exposure
at the shallow depths. Even in January, when peak
daily light availabilities were reached, only partial
conversion of xanthophyll products occurred (whereby
violaxanthin was converted to antherxanthin); no
zeaxanthin was detected. 

Other depth-related influences

Changes observed along a depth-gradient may also
result from environmental factors other than light. For
example, sediment reduction-oxidation (redox) poten-
tial may be affected by light availability. We measured
redox potential but did not observe a significant differ-
ence among depths at this site (Collier et al. 2007).
Other sediment characteristics such as nutrient avail-
ability were not measured and therefore cannot be dis-
missed. Photosynthetic characteristics of Posidonia
oceanica that did not follow the depth-related light
gradient were also previously attributed to the influ-
ence of thermoclines (Pirc 1986). Temperature was not
measured in the current study, but vertical tempera-
ture stratification is unlikely to be significant in the
generally well-mixed shallow waters of Cockburn and
Warnbro Sounds. 

The lack of strong light-related trends in the physio-
logical attributes of Posidonia sinuosa may also reflect
limitation by other major resources. For example, %N
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Fig. 3. Posidonia sinuosa. Xanthophyll cycle pigment concen-
trations relative to chlorophyll concentration at Cockburn
Sound (CS) in winter 2002 and summer 2003 at 1.6, 4.0, 5.7,
6.5, 8.3 and 9.0 m (Sites 1 to 6, respectively): (A) violaxanthin,
(B) antheraxanthin, and (C) total xanthophyll concentration.
Values are mean ± SE (n = 6). Sites with the same lower-case
letters did not differ significantly within season or location. 

*p < 0.05
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of leaves ranged from only 1.1 to 1.4% at both loca-
tions in summer, well below the 1.8% level considered
indicative of nutrient limitation for seagrasses (Duarte
1990). Generally, there were few significant differ-
ences among depths (with the exception of the shal-
lowest site at WS), but N limitation at all depths may
have offset the significance of light availability. In olig-
otrophic zones, the response of photosynthetic charac-
teristics and pigment pools to light can be restricted by
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Season Site
CS1 CS2 CS3 CS4 CS5 CS6

Winter 8.0 7.3 3.3 4.6 1.6 2.8
Summer 11.5 11.2 10.8 10.6 10.1 8.6

Table 4. Hours of light-saturated photosynthesis (Hsat) at 6 sites
(depths) at Cockburn Sound (CS) in winter 2002 and summer
2003, calculated from saturating irradiance (Ek) and measured
light availability recorded every 15 min (Collier et al. 2007)
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N availability (Alcoverro et al. 2001b). However, δ13C
signatures indicated that C limitation at shallower
depths was unlikely because the leaves were depleted
in 13C and not enriched, the latter of which would be
expected under conditions of C limitation. When light
is reduced, the δ13C signature of seagrass reduces
owing to a reduced photosynthetic and productivity
demand for carbon, allowing more 13C discrimination
(Cooper & DeNiro 1989, Abal et al. 1994, Hemminga &
Mateo 1996). The less negative values at the deeper
site would instead suggest C limitation at depth. A
reversal of this trend here may reflect the hydrody-
namic nature of the meadow rather than the light sta-
tus. The shallow sites are generally highly dynamic,
allowing conditions of reduced boundary layers to
develop at the leaf surface (Fonesca & Kenworthy
1987). In the current study, the deeper sites may have
experienced less water movement around the leaves in
summer when the swell was reduced, which may have
created thicker diffusion boundary layers around the
leaves and lead to elevated δ13C signatures. 

Seasonal photosynthetic responses

Over seasonal cycles, seagrasses are exposed to vari-
ation in at least 2 key environmental variables: light
intensity and temperature. These seasonal fluctuations
are often associated with photosynthetic adaptation
(e.g. Dennison 1987, Perez & Romero 1992). Generally,
temperature effects are the most pronounced near the
upper and particularly the lower boundaries of the opti-
mum temperature range (e.g. Masini & Manning 1997).
Temperature extremes at the study site of the present

study ranged from approximately 16 to 23°C, the mid
and optimum temperature range for Posidonia sinuosa
photosynthesis. As such, temperature effects on photo-
synthetic parameters were probably less significant
than light-related effects. The consistent and substan-
tial seasonal response of α at all depths indicates the
capacity for photosynthetic adaptation to seasonal light
availability in P. sinuosa. An elevated α is frequently re-
ported in low-light adapted plants (Ralph & Gademann
2005), which can be linked to the seasonal variability of
this parameter (e.g. Agawin et al. 2001, Campbell et al.
2003). The elevated α in winter would improve the
capacity of the photosystems to utilise reduced light in
winter. During winter, leaves were operating in this
light-limiting region (below saturating irradiance) for
most of the day, particularly at the 4 deeper sites. Adap-
tation of the other photosynthetic parameters (rETRmax

and Ek) is possible in Posidonia spp. under conditions of
extreme light deprivation (Ruiz & Romero 2001, 2003,
Collier 2007), but was not observed in the current study
in relation to seasonal differences in light availability. 

The increase in the concentration of the xanthophyll
cycle product antheraxanthin and the decrease in the
Fv:Fm ratio at all depths indicate that the photoprotec-
tive cycle was more active during summer than in win-
ter in Posidonia sinuosa. Xanthophyll cycle pigments
undergo rapid conversion in response to high light
levels (Demmig-Adams et al. 1996), and as such the
elevated antheraxanthin were indicative of higher
light levels at all depths during summer. Although
highly variable and not significantly different, NPQ
was generally also higher in summer. However, the
total xanthophyll pigment pool did not significantly
change between summer and winter. 
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Site Season Site
1 2 3 4 5 6

Fv:Fm

CS Winter 0.824 (0.004)a* 0.833 (0.004)a* 0.816 (0.011)a* 0.821 (0.006)a* 0.831 (0.008)a* 0.823 (0.016)a*
Summer 0.735 (0.006)a 0.746 (0.003)a 0.749 (0.004)a 0.730 (0.011)a 0.749 (0.006)a 0.749 (0.004)a

WS Summer 0.771 (0.005)a 0.750 (0.012)a 0.747 (0.009)a 0.749 (0.008)a nd 0.752 (0.015)a

NPQ
CS Winter 0.018 (0.016)a 0.014 (0.014)a 0.011 (0.011)a 0.000 (0.000)a 0.003 (0.003)a 0.016 (0.013)a

SummerA 0.048 (0.048)ab 0.114 (0.091)ab 0.292 (0.060)a 0.170 (0.077)ab 0.176 (0.158)ab 0.002 (0.002)b

WS Summer 0.144 (0.086)a* 0.145 (0.101)a 0.024 (0.022)a 0.078 (0.045)a nd 0.176 (0.082)a*

qP
CS Winter 0.980 (0.009)a 0.976 (0.008)a 0.954 (0.021)a 0.972 (0.014)a 0.937 (0.015)a 0.959 (0.016)a

Summer 0.940 (0.034)a 0.989 (0.007)a 0.987 (0.012)a 0.986 (0.007)a 0.989 (0.004)a 0.966 (0.010)a

WS Summer 0.908 (0.022)a 0.918 (0.036)a 0.908 (0.038)a 0.973 (0.015)a nd 0.940 (0.024)a

ADepth differences were significant only when analyzed according to location

Table 5. Posidonia sinuosa. Maximum quantum yield (Fv:Fm ratio), non-photochemical quenching (NPQ) and photochemical
quenching (qP) at Cockburn Sound (CS) in winter (June 2002) and summer (January 2003) and Warnbro Sound (WS) in summer
(January 2003). Parentheses: SE (n = 6). Sites with the same lower-case letters did not differ significantly within season or 

location. *p < 0.05
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The difference in Hsat between shallow and deep
locations was only 25% in summer but 65 to 80% in
winter, suggesting that physiological differences
among depths were greatest during winter. However,
in general, the photosynthetic parameters responded
to seasonal light variation equally among depths; the
only depth-dependent response of the photosynthetic
apparatus was chlorophyll concentration at the 2 shal-
lowest and the deepest site. Elevated %N during win-
ter probably enabled the increases in chlorophyll (and
other accessory carotenoid pigments). Higher chloro-
phyll concentration may enhance light capture —
albeit at reduced efficiency as concentration increases
(Enríquez 2005) — when plants are exposed to reduced
irradiance. 

Carbohydrate reserves

The capacity to store considerable quantities of car-
bohydrates is an important and distinctive feature of
the structurally large seagrasses, and their responses
should be considered in terms of an annual cycle,
because growth can be de-coupled from photosynthe-
sis (Alcoverro et al. 2001a). The limited seasonal photo-
synthetic responses of Posidonia sinuosa to changes in
irradiance may be compensated by the ability to access
stored carbohydrates. The formation of carbohydrate
reserves requires light to be near to saturation levels
for considerable periods of the day (Alcoverro et al.
2001a), so peak concentration tends to occur towards
the end of summer or in autumn (Pirc 1985, Alcoverro
et al. 2001a, Collier 2007). This would have occurred
just after the timing of sampling in the current study.
The elevated soluble sugar concentrations in the rhi-
zome and starch in the leaves of P. sinuosa at all depths
during summer indicate that light availability and pho-
tosynthetic C fixation had been sufficient for the pro-
duction of carbohydrate reserves. The use of carbohy-
drate reserves for over-wintering (Pirc 1985, Burke et
al. 1996) is probably important for P. sinuosa, because
reserves were already substantially depleted by early
winter (June). Soluble sugars in the rhizome showed
the largest seasonal difference, though starch in the
leaves was also significantly reduced in winter.

Carbohydrate concentrations were the same among
depth strata (with few exceptions) in both seasons,
suggesting that the pattern of utilization and storage
were similar at all depths. While this study examined
only 2 seasons, more frequent carbohydrate analysis of
Posidonia sinuosa over 1 year produced similar results
(Collier 2007). It was surprising that, in winter, carbo-
hydrate depletion at deeper sites was not greater than
at shallow sites: it was expected that the plants grow-
ing in deeper water would rely more heavily on carbo-

hydrate reserves during winter. Furthermore, the ratio
of above- to below-ground biomass increases with
depth (Collier et al. 2007), which is expected to in-
crease the demand on carbohydrate reserves at deeper
sites. Similar trends in carbohydrate concentrations
over a 30 m depth gradient were also observed in Posi-
donia oceanica over an annual cycle (Pirc 1985).
Meadow-scale adjustments (shoot reduction) with
depth may be sufficient to reduce C demand and the
requirement to draw-down on carbohydrate reserves
during winter, yet enable accumulation of reserves
during summer.

In conclusion, the gradient of light corresponding to
depth resulted in reduced Posidonia sinuosa shoot
density but did not correlate with changes in physio-
logical characteristics. While laboratory and in situ
manipulative experiments indicate that changes in
photosynthetic parameters may be an important mech-
anism enabling seagrasses to endure short-term light
reduction (Dennison & Alberte 1985, Ruiz & Romero
2001), they probably exaggerate their importance
when compared with field situations with long-term
light reduction (Olesen et al. 2002). Where meadow-
scale shoot density reductions and concomitant (but
minor) shoot-scale morphological changes (Collier et
al. 2007) effectively open the canopy to greater light
availability, adaptation is dominated by meadow- and
shoot-scale differences rather than by leaf-scale physi-
ological changes. During seasonally induced light
reduction in winter, carbohydrate reserves are used at
all depths to support growth and respiration. The
application of these physiological characteristics as
monitoring tools to identify long-term light reduction is
probably not effective for P. sinuosa and other similar
meadow-forming species. 
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