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Abstract— Establishing the physical survivability of large net-
works is not a trivial task. Some techniques for assessing physical
survivability such as the cutset method can not deal with large size
networks [1], [2]. A fast technique for finding biconnected compo-
nents of a graph and testing the network for node-/link-bridges,
presented in [3], does not provide any further information, such
as identifying the fundamental cycles within the network, which
would significantly benefit the next phase of network design
for protection using such techniques as shared backup path
protection (SBPP), p-cycle, or ring protection [3]. This paper
presents an alternative technique, based on graph theory, for
evaluating the physical survivability of networks. This technique
can deal with network sizes of many thousand nodes, with
computational times which are comparable with the biconnected
components method, whilst providing more information about the
susceptibility of a network to individual link and node failures
in preparation for the next phase of network protection design.

I. INTRODUCTION

Design of survivable communication networks has
been a challenging problem. Without establishing network
survivability, there can be severe consequences when a
physical link fails. Network failures which may be caused
by dig-ups, vehicle crashes, human errors, malfunctional
systems, fire, rodents, sabotage, natural disasters (eg. floods,
earthquakes, lightning storms), and some other factors, have
occurred quite frequently and sometimes with unpredictable
consequences. To tackle these, survivability measures can
be implemented at the service layer, the logical layer, the
system layer, and the physical layer. The physical layer is the
base resource infrastructure of the network, and to be able to
protect it, we need to ensure that the physical topology of
the network has sufficient link and node diversity. Without
this, protection at higher layers will not be feasible. With the
implementation of Dense Wavelength Division Multiplexing
(DWDM) in the optical backbone of metropolitan and long-
haul networks, greater flexibility is achieved in providing
alternate routes for lightpath connections. However, the
survivability problem at the physical layer remains the same.
In fact, it becomes even more critical, because each link of
a backbone network carries huge amounts of traffic and the

failure of an optical component, such as a fiber cut or a node
failure, may cause a very serious problem in terms of loss of
data and profit. For instance, the direct voice-calling revenue
loss from failure of major trunk group is frequently quoted at
$100,000/minute or more. Therefore, network survivability is
a critical and imperative issue in telecommunication networks
today, particularly in optical networks.

A physical topology is considered to be survivable if it
can cope with any single failure of network components by
rerouting those connections affected by the failure through
alternative paths. Clearly, this requires some resource redun-
dancies in the network. Using the graph theory terminologies,
a survivable physical network must be a two-connected graph,
or a biconnected graph [3]. The Menger’s theorem [4] gives
the necessary and sufficient condition for survivability of
networks at the physical layer, using the connectivity between
network’s cutsets. However, the computational complexity of
this model grows exponentially with the size of the network,
since a network with N nodes would yield 2N − 2 cutsets.
Therefore, the cutset technique cannot efficiently deal with
even moderate size networks of say 40 nodes, and larger
networks are out of computational reach of this technique.
Testing for survivability of large networks can be done using
using a technique called biconnected components of a graph
introduced by W. D. Grover [3]. This technique can determine
vulnerable links and nodes of the network. However, verifying
network survivability is just the first step in network planning,
after which we need to apply appropriate protection routing
schemes using such techniques as SBPP, p-cycle, or ring
protection [5], [6], [7]. It is therefore very helpful if the
algorithm used for determining the physical survivability of
the network can also provide additional information which is
of benefit to protection design.

In this paper, based on graph theory, we introduce a new
method for examining the physical survivability of networks
using properties of 2-connected graphs. This technique also
determines all simple distinct cycles on the network which is



useful for the protection design. The rest of this paper is orga-
nized as follows: Sec. II provides the theoretical background,
including some basic definitions, properties of 2-connected
graphs, and the theory of cutsets. It also outlines the necessary
condition for a physical network to be survivable. Sec. III out-
lines our proposed method for verifying network survivability
using the properties of 2-connected graphs. Sec. IV presents
the results and finally Sec. V provides our conclusions for the
work presented in this paper.

 v  x  y

 e

Fig. 1. A network with a link bridge (e) and a node-bridge (v)

II. SURVIVABILITY VERIFICATION FRAMEWORK

In this section we will first outline some notations and
definitions related to graph theory. We will then look at
some theorems and techniques for establishing the physical
survivability of the network.

A. Definitions

The following definitions are adopted from [8] and [9].

• Graph: A graph G is a pair of sets V and E satisfying
E ⊆ [V ]2, where V is a set of vertices (or nodes) and
E is the set of edges (or links) connecting two distinct
vertices in V .

• Connected graph: a non-empty graph G is connected if
any two of its vertices are linked by a path in G, and is
k-connected if any two of its vertices can be joined by k
independent paths.

• Subgraph: a graph G′(V ′, E′) is called a subgraph of the
graph G(V,E), denoted by G′ ⊆ G, if V ′ ⊆ V and
E′ ⊆ E.

• Component: a maximum connected subgraph of G is
called a component of G.

• Cutvertex and Bridge: As illustrated in Fig. 1, a vertex
v ∈ V of graph G(V,E) is called a cutvertex (or node-
bridge) if it separates two other vertices of the same
component. An edge e ∈ E is called cutedge (or link-
bridge) if it is the only means of connecting its end
vertices.

• H-path: Given a graph H , a path P is called H-path if P
is non-trivial, and meets the graph H exactly at its end
vertices.

• Block: a maximal connected sub-graph without a cutver-
tex is called a block. A block of a graph G will either
be a maximal 2-connected sub-graph, a bridge, or an
isolated vertex. Conversely, every such sub-graph is a
block. Different blocks of G overlap on at most one

vertex, which is then a cut vertex of G. Thus, every edge
of G lies in a unique block, and G is the union of its
blocks. This is demonstrated in Fig. 2.

Fig. 2. A graph and its blocks, adopted from [8]

Based on the above definitions, we shall now describe two
existing techniques for determining the physical survivability
of networks.

B. Survivability via Cutsets

In the cutset technique, a cut divides the graph representing
the network into two subgraphs, referred to as a cutset, and the
size of the cutset is defined as the number of edges connecting
these two subgraphs. If for every possible cutset, there are two
or more links between the two subgraphs of the cutset, then
the network is survivable. Menger’s theorem [4], [8], given
below, determines the connectivity of a network by examining
its cutsets.

Theorem 2.1: A topology with the set of vertices (nodes)
N and the set of edges (links) E is 2-connected if and only
if every non-trivial cut 〈S,N −S〉 has a corresponding cutset
of size greater than or equal to 2.

Network survivability can be verified using Menger’s the-
orem. However, as discussed earlier, the complexity of the
algorithm increases exponentially with the number of nodes
and it cannot deal with large networks.

C. Survivability via 2-Connected Graphs

From Theorem 2.1, it can be deduced that the cutsets of a
cycle always have a size of 2. Furthermore, a 2-connected
graph can be easily constructed from simple cycles. The
following proposition implies a method for constructing such
graph [8].

Fig. 3. 2-connected graphs



Proposition 1: A graph is 2-connected if and only if it can
be constructed from a cycle by successively adding H-paths
to graph H already constructed.

Proof: Cleary, every graph constructed as proposed is 2-
connected. Conservely, let G be a 2-connected graph, then G
contains a cycle, and a subgraph H is constructible, as evident
in Fig. 3. Any edge x, y ∈ E(G)\E(H) with x, y ∈ H defines
a H-path. Then, H is an induced sub-graph of G. If H �= G,
then by the connectedness of G, there is an edge vw with
v ∈ G−H and w ∈ H . As G is 2-connected, G− w has a
v−H path P . Then wvP is a H-path in G, and H ∪wvP is
a constructible sub-graph of G.

III. THE PROPOSED TECHNIQUE

Assume that G′ and G′′ are two blocks of graph G. From
Proposition 1, we can deduce the connectivity of graph G
depending on the relation between G′ and G′′, as described
below.

1) If G′ and G′′ have at least 2 common vertices, then G is
a 2-connected graph with no cutvertex (i.e. node bridge)
or cutedge (i.e. link bridge).

2) If G′ and G′′ only have one common vertex, then G
is a 2-connected graph with a cutvertex which is the
common vertex.

3) If G′ and G′′ are separated by a cutedge, then G is not a
2-connected graph, and the cutedge cannot be protected.

4) If G′ and G′′ have no common links or nodes, then
G is not a 2-connected graph, and therefore it is not
survivable.

Based on the above discussion, we can use the relationship
between networks’ cycles or 2-connected graphs to verify the
survivability of its physical topology. An undirected graph is
thus seen as the combination of all the fundamental cycles.
Using Alg. 1, these fundamental cycles can be found from a
spanning tree {V, T} of a graph G = {V,E} (eg. the spanning
tree highlighted by thick lines in Fig. 4).

Algorithm 1 Finding cycle
Input : A tree T and an edge e whose end-nodes is in T ;
Output: A cycle P formed by T and e;

init
(s, d)← end-nodes of e;
queue← [node.s, node.P ]; check ← 0;
while check == 0&queue �= ∅ do

[v]← head(queue); queue← queue−{head(queue)};
if v.s == d then

check = 1; P ← v.P
else

for all vk is neighbour of v.s; do
node.s← vk; node.P ← P ∪ vk;
push node into queue;

end for
end if

end while

However, it is not easy to find all of the fundamental cycles
in the graph. For instance, in Fig. 4, the edges represented
with thin lines are not part of the spanning tree (shown by
thick lines). If any of these edges are added to the tree, it
will form a unique cycle, but such cycle is not necessarily
a fundamental cycle (eg. consider adding edge b-c). Any set
of cycles found from the spanning tree can be used to verify
the survivability of the topology from which it is generated.
An algorithm for finding a set of cycles through spanning tree
of a graph is represented in Alg. 1. An efficient method for
finding fundamental cycles of a graph, referred to as Paton′s
algorithm, is outlined in [10]. Further discussion of this topic
is outside the scope of this paper.

Fig. 4. Spanning Tree on a arbitrary graph

If a graph is 2-connected, then each vertex of the graph will
be at least on one of the cycles resulting from Alg. 1. Hence,
such set of cycles is sufficient to verify the survivability of the
graph. Next, we introduce an algorithm, represented by Alg. 2,
which not only verifies the survivability of a graph, but also
identifies the vulnerabilities of the graph, eg. cutvertices and/or
cutedges if they exist.

IV. SIMULATION

In this section we shall first demonstrate the inviability of
the cutset technique for establishing the survivability of large
networks. It should be noted that in the cutset technique, the
number of subnetworks that must be considered for a network
of N nodes is 2N − 2. Therefore, the computational time
increases logographically with the size of the network. Table I
gives the actual and estimated computational times achieved
using a Pentium 4, 2.8 GHz processor. It should be noted
that the computational times for networks of 40 nodes and
higher are extrapolated from the computational time of the
smaller networks, based on the increase in the computational
complexity as a function of the number of network nodes.
We can clearly see from the results of Table I that the cutset
technique is not suitable for large networks.

Before presenting the performance results of our proposed
technique, we shall give an example of how our approach
works over an arbitrary physical topology G as shown
in Fig. 5(a), with the set of nodes V and edges E.

Since this topology is an unconnected topology, the first
step results in a tree T , being a subgraph of G, and an
unconnected node 13, as shown in Fig. 5(b). T has a set
of nodes VT and edges ET , where VT = V − {13}, and
ET = E − {(2, 4), (2, 5), (8, 9), (11, 12)}. The spanning tree



Algorithm 2 Survivability verification
Input : cycles = list of cycles;

m = number of cycles; E = set of network links
Output: Nodebridges, 2-connected subgraphs, linkbridge

init
deep = 1; back = 1;
currentCycle← firstcycle
while newcycles �= cycles do

for i = size(back) : m− 1 do
|loc| = cycles(i + 1)

⋂
currentCycle

case |loc| > 1 : joint at more than 2 vertices
newcycle =

⋃
currentCycle, cycles(i + 1)

cycles = {cycles \ {cycles(1), cycles(i + 1)}}
cycles =

⋃{cycles{cycles, newcycles}}
currentCycle← firstcycle
case |loc| = 1 : possible cut vertex at loc
push i into queue;
possibBridge← loc % possible cut vertex at loc
push indices(end− 1) into back
push (i + 1) into deep
if i = m− 1 & length(deep) > 1 then

Nodebridges =
⋃{Nodebridges, possibBridge(last)}

2-connected=
⋃ {2-connected, cycles(deep(last))}

end if
end for

end while
for i = 1 to |E| do

if E(i) intersect two distinct blocks ( 2-connected or single
node subgraphs) then

linkbridges =
⋃{linkbridges, Ei}

end if
end for

can be determined using Prim’s algorithm or Kruskal’s algo-
rithm [11].

Next, a set of cycles is found using Alg. 1. In our example,
this consists of 4 cycles {c1, c2, c3, c4} as shown in Fig. 5(c).

The configuration of the spanning tree resulting from the
first step allows us to conclude that G is an unconnected
topology. However, further analysis of the physical topology
can be performed in the second step, through the survivable-
base algorithm, Alg. 2. The input of the second step is
the spanning tree T of Fig. 5(b), and the output is shown
in Fig. 5(c). Note that topology G contains 3 maximal
survivable-bases, namely as S1 = {c1}, S2 = {c2, c3}, and
S3 = {c4}. S1 and S2 share nodes 2 in graph G, hence node
2 is a cutvertex (or node-bridge). There are 3 link-bridges
which are (5 − 6), (6 − 7) and (9 − 10). Nodes 6, 10, 13
which are not part of any 2-connected block are referred to
as single nodes.

To demonstrate the computational efficiency of our algo-
rithm, we randomly generate networks with various sizes.
Fig. 6 represents the simulated results of 10 randomly gen-
erated networks with the number of nodes varying from 15 to

TABLE I

ACTUAL AND ESTIMATED COMPUTATIONAL TIMES FOR ESTABLISHING

SURVIVABILITY USING CUTSET TECHNIQUE

No. of Nodes Time (s)

10 0.728

20 825

25 26350

40 1.0737 × 109

(34 years)

80 1.1806 × 1021

(3.7 × 1011 centuries)

200 1.5693 × 1057
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(a) An arbitrary physical topology
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(b) The spanning tree

(c) Survivable-base results

Fig. 5. An illustrative example

375 nodes. The graph shows that the verification time increases
almost linearly with increasing the number of network nodes.
The simulation results have shown that 2-connected graph the-
orem can be used to identify the weak nodes/links of a given
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Fig. 6. Simulation times resulting from the proposed technique, averaged
over 10 randomly generated networks with an average nodal degree of 3

large size network much faster than some other techniques
such as ‘cutset’. Furthermore, it also provides information
about all distinct cycles in the network, useful for the next
phase of network planning, which cannot be provided by the
biconnected components technique.

V. CONCLUSION

In this paper we have presented a new approach for
evaluating the physical survivability of large networks. The
computational efficiency of this approach, when dealing with
large networks, is comparable to the biconnected components
approach in [3]. However, our technique is also capable of
providing all the distinct fundamental cycles of the network,
if required. It also identifies all node-bridges and link-bridges

of the network, not previously considered in the literature. The
work presented in this paper forms a good basis for further
developments towards design and optimization of survivable
networks.
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