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Abstract—Many real applications are required to detect out-
liers in high dimensional data sets. The major difficulty of min-
ing outliers lies on the fact that outliers are often embedded in 
subspaces. No efficient methods are available in general for 
subspace-based outlier detection.  Most existing subspace-
based outlier detection methods identify outliers by searching 
for abnormal sparse density units in subspaces.  In this paper, 
we present a novel approach for finding outliers in the ‘inter-
esting’ subspaces. The interesting subspaces are strongly corre-
lated with `good' clusters.  This approach aims to group the 
meaningful subspaces and then identify outliers in the pro-
jected subspaces. In doing so, an extension to the subspace-
based clustering algorithm is proposed so as to find the ‘good’ 
subspaces, and then outliers are identified in the projected 
subspaces using some classical outlier detection techniques 
such as distance-based and density-based algorithms.  Com-
prehensive case studies are conducted using various types of 
subspace clustering and outlier detection algorithms. The ex-
perimental results demonstrate that the proposed method can 
detect outliers effectively and efficiently in high dimensional 
data sets. 

Keywords- Data Mining, Subspace Clustering, Outlier 
Detection, Dimensional Reduction 

I.  INTRODUCTION 
Finding outliers is a challenging data mining task, espe-

cially for high dimensional data sets. The notion of outliers 
can be defined from different perspectives. Hawkins [5] de-
fines an outlier as “an observation which deviates so much 
from other observations as to arouse suspicions that it was 
generated by a different mechanism”. Another definition is 
given by Barnett and Lewis in [2]: “An outlier is an observa-
tion (or subset of observations) which appear to be inconsis-
tent with the remainder of that dataset”. 

Normally, classical outlier detection techniques include 
distance-based, density-based, and distribution-based me-
thods. The pioneer work by Knorr and Ng formalized the 
notion of outliers in terms of distance [6]. An outlier is de-
fined as: “An object O in a dataset T is a DB(p, D)-outlier if 
at least a fraction q of the other objects in dataset T lies 
greater than distance D from O ”. This definition can identify 
‘global’ outliers effectively, but cannot detect ‘local’ outliers 
if the data set consists of clusters of diverse density. There 
are two parameters involved, i.e., the fraction p and the dis-
tance D. These parameters can have effects on the perfor-
mance of the detection techniques. Another simple distance-
based outlier definition is given in [7]: “Given an input data 
set with N points, parameters n and k, a point p is an outlier 
if there are no more than n -1  other points p’in the data set 

such that Dk (p’) ≤  Dk ( p), where Dk (p) denotes the dis-
tance of point p from its kth nearest neighbor”. This definition 
has only one parameter: the number of neighbors k. It ranks 
potential outliers based on the distance (Dk) of a point from 
its kth nearest neighbor. The top N points with the maximum 
values Dk are considered as outliers. 

Distance-based outlier detection methods rank outliers 
globally, but they cannot distinguish outliers from data 
points with diverse density. To overcome this problem, the 
local outlier factor [3] method mines outliers that deviate 
from their belong-to clusters, and ranks the outlier degree of 
data samples on the basis of the density of its local neighbor-
hood. 

Breunig et al. [3] proposed a local density-based outlier-
detection method to identify local outliers (LOF) based on 
the local density of a sample’s neighborhood. In [3], the LOF 
is introduced for each sample in the data set, indicating its 
degree of outlier-ness. The LOF of an object is calculated 
using the number of its nearest neighbors MinPts. The LOF 
of an object p represents the degree of outlierness. The LOF 
algorithm may not be effective with respect to density when 
its neighbors are sparse [8]. LOF cannot also find the poten-
tial outliers when their neighbors have similar densities. 

Aggarwal and Yu [1] proposed a subspace outlier detec-
tion approach. The approach assumes that data points are 
based on certain statistical distribution, so potential outliers 
are those that the density of the data in lower dimensional 
projections is abnormally lower than average. This is a grid-
based method that it first quantizes the object space into a 
finite number of cells that form a grid structure, and then 
performs mining algorithms on the grid structure. The search 
process starts from one-dimensional projections and grows 
up to higher dimensionality gradually. In this algorithm, the 
sparsity coefficient is used as the measure criteria, and the 
evolutionary computation is used as the search strategy to 
avoid intensive computation. The sparsity coefficient of a 
given projection is calculated according to its normal distri-
bution. Then, the significance of the dimensions is evaluated 
in terms of the sparsity coefficient. In this aspect, the prob-
lem turns to find the subset of dimensions with the most neg-
ative sparsity coefficients. 

To address the problems described above, this paper 
presents a novel approach by identifying outliers in the inter-
esting subspaces. The interesting subspaces are found using 
some subspace-based clustering algorithms, and outliers are 
identified using classical outlier mining algorithms. 

Rather than searching for outliers in sparse grids, we at-
tempt to find the projected dimensions with strong correla-
tion. Normally, clusters lie in the projection with high densi-
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ty. The mathematical root is that the subspaces can be meas-
ured by the correlation criteria among data samples. In doing 
so, we use subspace-based clustering to find the interesting 
subspaces. After that, the outliers embedded in the interest-
ing subspaces are detected by using distance-based or densi-
ty-based outlier detection techniques. This approach is able 
to provide a promising result over high-dimensional data sets, 
and also can avoid the intensive computation load as com-
pared with other subspace outlier detection methods. 

This paper makes the contributions as follows: A novel 
approach is proposed for finding outliers in the interesting 
subspaces with tight clusters. The proposed approach takes 
advantage of some existing techniques, i.e., subspace cluster-
ing, distance-based and density-based outlier detection me-
thods. Comprehensive case studies have been conducted 
with various types of high dimensional data sets to demon-
strate the effectiveness of the proposed approach. 

The rest of the paper is organized as follows: In Section 
II, we detail the problems and gives some definitions. Sec-
tion III introduces the interesting subspaces and identifies 
them using subspace clustering methods. The algorithm for 
mining outliers in subspaces is described in Section IV. The 
experimental results are presented and discussed in Section 
V. Finally, Section VI concludes the paper. 

II. PROBLEM FORMULATION 
The existing subspace outlier mining algorithms focus on 

the identification of abnormal, low-dense projections. These 
algorithms are not able to determine the degree of correlation 
among dimensions, and hence no evidence is available about 
the correlation relationship among dimensions. The existing 
subspace outlier mining algorithms ignore some classical 
outlier mining methods, for example, distance-based and 
LOF (local outlier factor) [3] algorithms, which are able to 
identify outliers very effectively at lower dimensions. To 
address the issue of identification of meaningful outliers, we 
first find the interesting subspaces with tight clusters and 
with abnormal distributions. Next, we score the outlier-ness 
in the projected subspaces using existing classical outlier 
mining algorithms. The fundamental problem is that what 
kind of criteria can be used to find the interesting subset of 
dimensions and to further rank the outliers obtained from 
those projections.  

Our approach is different from the existing subspace out-
lier detection approaches. To the best of our knowledge, 
there are no similar approaches using classical outlier mining 
algorithms in high-dimensional data sets. The correlated di-
mensions can be found on the basis of major distribution of 
data samples in subspaces. Subspace clustering is a good 
approach that can find correlated dimensions while not infer-
ring any causal relationship [4]. Since the local feature corre-
lation of dimensions can be determined by the feature of data 
points among dimensions, subspace clustering methods are a 
better choice to find the correlated dimensions. 

Usually, a matrix is used to represent a data set, in which 
the columns represent the dimensions or attributes and the 
rows indicate the objects. Suppose that matrix D with n rows 
and m columns is used to represent a data set. It can 
thus be presented as D = (X, A) where: 

• X is a set of data objects, X = {X1, …, Xn}; 
• A is a set of dimensions,  A= {A1, …, Am}; 

 
 
 

 

 
 

III. MINING INTERESTING SUBSPACES 
To analyze the correlation among the dimensions of a da-

ta set, we introduce the entropy and joint entropy measures. 
Given a discrete variable X, entropy H(X) describes the un-
certainty about the value of X. If X consists of several events 
x, whereby each occurs with the probability px, then the en-
tropy of X is given by: 

∑−=
x

xx ppXH )(log)( 2                              (1) 

Definition 5 The mutual information I(X; Y) is defined as: 
)|()()|()();( XYHYHYXHXHYXI −=−=  (2) 

Mutual information is an important indicator to reveal the 
non-linear correlation relationship between variables X and 
Y. Mutual information indicates the amount of uncertainty 
remaining about X after Y is known, which is equivalent to 
the amount of uncertainty in X, minus the amount of uncer-
tainty in X which remains after Y is known. Entropy indi-
cates the uncertainty of variables. We can use entropy and 
mutual information of variables as the measurement criteria 
to find the correlated dimensions in high-dimensional data 
sets. 

The interest (mutual information) [4] is calculated by: 

∑
=

−=
n

i
nin XXHxHXXInterest

1
11 ),,()(),,( (3) 

Definition 6 (The interesting subspaces) The interest-
ing 
subspaces are those with high Interest and tight clusters. 

ENCLUS [4] uses entropy and interest (mutual informa-
tion) to carry out the downward and upward pruning 
processes. This algorithm groups subspaces with strong cor-
relation among dimensions. We use the entropy-based clus-
tering algorithm to identify the interesting subspaces, and 
then distinguish outliers from the projected subspaces using 
distance-based or density-based algorithms. Accordingly, the 
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Definition 1 (z-scores: z k (ai) of a data point ai) zk (ai) 
is the normalization of d k (ai) of a data point ai in each 
subspace, indicated as d k (ai)/σ. 

Definition 2 (dk (xi) of a data point xi) The kth –distance 
dk (xi) of a data point xi is its k th -nearest neighbor. 

Given a value of k, the outlier-ness of data points in D 
are ranked in terms of the kth -distance of data points. In 
order to rank the outliers across different subspaces, the z-
scores of data points in each subspace can be normalized by   
the standard derivation σ as dk (xi) / σ .  

Definition 3 (LOFk (xi) of a data point xi) Given a value 
of k, LOFk (xi) of a data point xi is the local outlierfactor of 
its k nearest neighbors. 

Similarly, we normalize the z-scores of data points in-
each subspace using LOFk (xi) / σ.

Definition 4 (Top N outliers) The top N outliers are the 
N data points in D with the highest z-scores in the full and all 
interesting subspaces. 



 

Definition 4 for defining the top N outliers is modified as 
below. 
Definition 7 (Top N outliers) Top N outliers are N data 

points in D with the highest z-scores in the interesting 
subspaces. 

IV. ALGORITHM 
Outliers can be ranked in the aggregated view by com-

bining outliers identified in the interesting subspaces. The 
interesting subspaces are ranked by the goodness of cluster-
ing. Based on the interesting subspaces, we are able to cal-
culate z-scores in the limited subspaces using distance-based 
or density-based algorithms. We search for top N data 
points with the highest z-scores in the reported subspaces 
using an iterative procedure. 

Algorithm 1 is used to mine top N outliers in interesting 
subspaces (MOIS). If the replaced rate (M／N) is smaller 
than δ for a couple of times, convergence of R is achieved, 
and MOIS is stopped. Algorithm 1 finds the minimal num-
ber of interesting subspaces, in order to obtain the consistent 
top N outliers. However, the reported interesting subspaces 
have good clustering, and may not consist of high percen-
tage of outliers. Such subspaces may have effect on the pre-
cision of top N outliers. In this regard, it is required to fur-
ther refine the interesting subspaces in terms of their shape 
factors. 
______________________________________________ 
 
Algorithm 1 MOIS: Mining top N outliers in interesting 
Subspaces 
_____________________________________________ 
Input: a data set  D, integer k, N, threshold ω, ε, and δ 
Output: Top N outliers, and minimal number of interesting 
subspaces 
1: Initialize a list O for top N outliers; 
2: Initialize a list T for z-scores; 
3: Calculate z-scores (Distance-based or LOF-based measure) 
in the full space, and add them with related indexes 
into T ; 
4: Find top N objects in T and add them with related indexes 
into O ; 
5: Call ENCLUS INT (D, ω, ε) [4] to find all interesting 
subspaces; 
6: Rank the reported interesting subspaces in a list L; 
7: for Each subspace in list L do 
8:       Copy O into a list O1  ; 

 9:       Calculate new z-scores in the subspace, and add them 
with related indexes into a list T1 ; 

10:     Find top N objects in T1, and add them into a list O2 ; 
11:     Compare O1  with O2 , record the duplicate objects 

with the highest z-scores in a list T2 ; 
12:     Remove the objects with indexes that exist in T2  from 

O1 with O2; 
13:     Merge O1 , O2 , and T2 into a list S ; 
14:     Sort S in descend order (based on z-scores); 

15:     Count the number M of objects (based on indexes) 
in O being replaced, and add M into a list R; 

16:     Clear the list of O ; 
17:     Add the top N objects from S into O ; 
18:     if R converges then 
19:          Break; 
20:      end if 
21:      Clear the lists of O1 , O2 , T1 , T2  and S ; 
22: end for 
23: Return O and R ; 
24: Find top N outliers in O, and minimal number of interest-
ing subspaces (equivalent to size of R). 
 
________________________________________________ 

We run the algorithm by comparing top N outliers of 
every subspace based on an iterative procedure. 

We use the following terminologies to interpret the re-
sults: 

a) True positive rate = 

)()(
)(

FNiveFalseNegatIPveTurePositi
TPveTurePositi

+
  

b) False positive rate = 

)()(
)(

FPiveFalsePositTNveTureNegati
FPiveFalsePosit

+
 

V. EXPERIMENTAL RESULTS 
We evaluated the distance-based and LOF-based algo-

rithm of MOIS over the Statlog data set. For the Sonar data 
set, we set ω=9.0, ε = 0.1, and interest gain = 0.8. Similarly, 
a performance metric was obtained by tuning the number of 
N. Based on the performance metric, the ROC curves were 
drawn for comparing the performances. Since the percentag-
es of outliers in data sets are known in advances, we conduct 
the experiments with actual percentage of outliers. 

A. Breast cancer Wisconsin (Diagnostic) Dataset 
The Breast Cancer Wisconsin (Diagnostic) (BCWD) data 

set contains 569 data objects with 32 attributes. It has two 
classes: malignant and benign. We generated a new data set 
from BCWD, with 483 data samples (357 of benign and 26 
of malignant). This experiment aimed to identify the samples 
of malignant as outliers in subspaces. 

Now we defined the percentage of outliers as 6.8%, i.e., 
the number of outliers N was 26. We performed distance-
based MOIS over the BCWD data set. The results are dis-
played in Table 1. It is clear that the results indicate that all 
subspaces and aggregated projections have better perfor-
mance than that of the full space. In some subspaces, the 
outliers can be identified effectively, for example, subspace 
(0,3,23) represents the combination of subset of attributes (0, 
3, 23) (starting from index 0), which results in very high hit 
rate and precision. Next, we performed the LOF-based algo-
rithm MOIS over the BCWD data set. The results of seven 
subspaces are displayed in Table 2. The results also indicate 
that all subspaces and aggregated projections performed bet-
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ter than that of the full space. The results are slightly differ-
ent than those with distance-based MOIS. 

TABLE I.  RESULTS OF DISTANCE-BASED MOIS OVER BCWD 

Subspaces True Classification 
TP FP TN FN HR(%) PS(%) 

(20,22) 19 7 350 7 73.1 73.1 
(0,3,20) 21 5 352 5 80.8 80.8
(3,20,23) 21 5 352 5 80.8 80.8 
(0,3,23) 22 4 353 4 84.6 84.6
(0,3,22) 21 5 352 5 80.8 80.8
(0,22,23) 21 5 352 5 80.8 80.8 
Full Space 11 15 342 15 42.3 42.3 
Aggregation 14 12 345 12 53.8 53.8 

TABLE II.  RESULTS OF LOF-BASED MOIS OVER BCWD 

Subspaces True Classification 
TP FP TN FN HR(%) PS(%) 

(20,22) 21 5 353 5 80.8 80.8 
(0,3,20) 19 7 351 7 73.1 73.1
(3,20,23) 21 5 353 5 80.8 80.8 
(0,3,23) 20 6 352 6 76.9 76.9
(0,3,22) 19 7 351 7 73.1 76
(0,22,23) 21 5 352 5 80.8 80.8 
Full Space 15 11 347 11 57.7 57.7 
Aggregation 20 6 352 6 76.9 76.9 

B. Landsat Satellite Data Set 
The original Landsat Satellite data set in Statlog consists 

of 6435 samples with 36 attributes. It has six classes. We 
generated a new test data set with 1839 samples. Class 5 (69 
samples) was considered as outliers to be detected. By set-
ting the percentage to 3.75%, the number of outliers was 69. 
The results with the distance-based and LOF-based 

MOIS algorithms are detailed in Table 3 and Table 4, re-
spectively. We can find that the performance of distance-
based MOIS was better than that of LOF-based MOIS. 

TABLE III.  RESULTS OF DISTANCE-BASED MOIS OVER STATLOG 

Subspaces True Classification 
TP FP TN FN HR(%) PS(%) 

(24,28) 8 61 1709 61 11.6 11.6 
(1,2,3) 21 48 1719 48 30.4 30.4 
(13,14,15) 22 47 1720 47 31.9 31.9 
(3,7) 7 62 1705 62 10.1 10.1 
(5,6,7) 19 50 1717 50 27.5 27.5
(21,22,23) 21 48 1719 48 30.4 30.4
Full Space 8 61 1706 61 11.6 11.6 
Aggregation 12 57 1710 57 17.4 17.4

TABLE IV.  RESULTS OF LOF-BASED MOIS OVER STATLOG 

Subspaces True Classification 
TP FP TN FN HR(%) PS(%) 

(24,28) 8 61 1709 61 11.6 11.6 
(1,2,3) 21 48 1719 48 30.4 30.4 
(13,14,15) 22 47 1720 47 31.9 31.9 
(3,7) 7 62 1705 62 10.1 10.1 
(5,6,7) 19 50 1717 50 27.5 27.5 
(21,22,23) 21 48 1719 48 30.4 30.4
Full Space 8 61 1706 61 11.6 11.6 
Aggregation 12 57 1710 57 17.4 17.4

VI. CONCLUSION 
This paper presents a novel approach for mining outliers 

in subspaces. There are two steps behind this method: 1).find 
the correlated subspaces using the entropy-based algorithm; 
and 2). identify outliers in the related subspaces using clas-
sical outlier detection methods. This paper describes the cri-
teria for measuring the degree of correlation among dimen-

sions. The results are more meaningful and interpretable than 
those of some direct subspace outlier mining methods. Fu-
ture work includes formulating a criterion to identify the 
most interesting subspaces, and evaluate the outliers in the 
most interesting subspaces. Another direction of this work is 
to further investigate the groups in subspaces, and design a 
powerful visualization toolbox so as to provide interpretable 
solutions to the results. 
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